

Alexander Gegov

Complexity Management in Fuzzy Systems

Studies in Fuzziness and Soft Computing, Volume 211

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 195. Zongmin Ma
Fuzzy Database Modeling of Imprecise and
Uncertain Engineering Information, 2006
ISBN 3-540-30675-7

Vol. 196. James J. Buckley
Fuzzy Probability and Statistics, 2006
ISBN 3-540-30841-5

Vol. 197. Enrique Herrera-Viedma, Gabriella
Pasi, Fabio Crestani (Eds.)
Soft Computing in Web Information
Retrieval, 2006
ISBN 3-540-31588-8

Vol. 198. Hung T. Nguyen, Berlin Wu
Fundamentals of Statistics with Fuzzy Data,
2006
ISBN 3-540-31695-7

Vol. 199. Zhong Li
Fuzzy Chaotic Systems, 2006
ISBN 3-540-33220-0

Vol. 200. Kai Michels, Frank Klawonn,
Rudolf Kruse, Andreas Nürnberger
Fuzzy Control, 2006
ISBN 3-540-31765-1

Vol. 201. Cengiz Kahraman (Ed.)
Fuzzy Applications in Industrial
Engineering, 2006
ISBN 3-540-33516-1

Vol. 202. Patrick Doherty, Witold
Łukaszewicz, Andrzej Skowron, Andrzej
Szałas
Knowledge Representation Techniques: A
Rough Set Approach, 2006
ISBN 3-540-33518-8

Vol. 203. Gloria Bordogna, Giuseppe Psaila
(Eds.)
Flexible Databases Supporting Imprecision
and Uncertainty, 2006
ISBN 3-540-33288-X

Vol. 204. Zongmin Ma (Ed.)
Soft Computing in Ontologies and Semantic
Web, 2006
ISBN 3-540-33472-6

Vol. 205. Mika Sato-Ilic, Lakhmi C. Jain
Innovations in Fuzzy Clustering, 2006
ISBN 3-540-34356-3

Vol. 206. A. Sengupta (Ed.)
Chaos, Nonlinearity, Complexity, 2006
ISBN 3-540-31756-2

Vol. 207. Isabelle Guyon, Steve Gunn,
Masoud Nikravesh, Lotfi A. Zadeh (Eds.)
Feature Extraction, 2006
ISBN 3-540-35487-5

Vol. 208. Oscar Castillo, Patricia Melin,
Janusz Kacprzyk, Witold Pedrycz (Eds.)
Hybrid Intelligent Systems, 2007
ISBN 3-540-34719-1

Vol. 209. Alexander Mehler, Reinhard
Köhler
Aspects of Automatic Text Analysis, 2007
ISBN 3-540-37520-1

Vol. 210. Mike Nachtegael, Dietrich Van der
Weken, Etienne E. Kerre, Wilfried Philips
(Eds.)
Soft Computing in Image Processing, 2007
ISBN 3-540-38232-1

Vol. 211. Alexander Gegov
Complexity Management in Fuzzy Systems,
2007
ISBN 3-540-38883-4

Alexander Gegov

Complexity
Management
in Fuzzy Systems
A Rule Base Compression Approach

ABC

Alexander Gegov
University of Portsmouth
School of Computing

P01 3HE Portsmouth
United Kingdom
E-mail: alexander.gegov@port.ac.uk

Library of Congress Control Number: 2006933536

ISSN print edition: 1434-9922
ISSN electronic edition: 1860-0808
ISBN-10 3-540-38883-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38883-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the author and techbooks using a Springer LATEX macro package
Cover design: Erich Kirchner, Heidelberg

Printed on acid-free paper SPIN: 11733621 89/techbooks 5 4 3 2 1 0

Buckingham Building

To the pioneers of European integration

Preface

Doing research is a great adventure
As any adventure sometimes it is hard
You may feel alone and with no idea where to go
But if you have courage and press onwards
You will eventually stand where no one has stood
And see the world as no one has seen it
There can be no better feeling than this!
Adaptation from ‘Introduction to Research’,

 Tom Addis (2004)

The idea about this book has been on the author’s mind for almost a decade
but it was only about a couple of years ago when the underlying research
process was actually started. The reason for this delay has been the
insufficient spare time for research being a lecturer in a ‘new’ UK
university where the emphasis is mainly on teaching. And maybe this book
would have never been written if the author had not been presented with the
chance of developing new teaching modules in fuzzy logic that have given
him food for thought in a research related context and have helped him
combine efficiently his teaching and research activities.

The title of this book may sound too specialised but it has a much wider
meaning. Fuzzy systems are any systems for modelling, simulation, control,
prediction, diagnosis, decision making, pattern recognition, image
processing, etc. which use fuzzy logic. Although fuzzy logic is an advanced
extension of binary logic, the latter is still used predominantly today. The
main reason for this anachronism is the high level of complexity that is
usually associated with the use of fuzzy logic. So, if we were able to solve
this problem by means of a suitable complexity management approach,
fuzzy logic would gradually replace binary logic. In this context, the book
is aimed at anyone who wants to explore new possibilities for using fuzzy
logic more effectively and more efficiently.

Complexity has always been an important attribute in research methods.
Even nowadays, in the age of supercomputers capable of performing
computations at a very high speed, there are still open problems in many
research areas which are due to computational complexity, and in
particular, to the lack of adequate methods for managing this complexity.
For example, some large scale problems in cosmology and genetics are still

VIII Preface

unsolvable within a reasonable time with the computational power available
at present. In the case of threat from terrorism or natural disasters, the
amount of information that is relevant to the decision making process can
be so large that it may not be possible to process this information reliably
within a reasonable time even with the help of the fastest computers.

We could possibly wait for computer technology to become more
powerful to hopefully cope with the current challenges of complexity.
Unfortunately, this process may take too long, and if and when it has been
finally completed, the expected result may still be quite unreliable. The
reason for this is that complexity as an attribute of the world that we live in
has not only a quantitative dimension in terms of number and scale but also
a qualitative dimension in terms of uncertainty and ambiguity. And until we
learn how to deal with the qualitative aspects of complexity, we may never
be in the position to solve some of the current problems however advanced
the computer technology is. Also, we must bear in mind that efficiency of
computer software usually has a much greater impact on computational
times associated with large scale problems than the speed of computer
hardware on which the software is running.

So, if we want to tackle successfully the current challenges of
complexity, we need to be able to develop and implement efficient and
intelligent computational algorithms. These algorithms must be capable of
not only dealing with the quantitative aspects of complexity on the basis of
their efficiency but also with its qualitative aspects by means of their
intelligence. In this context, fuzzy systems in the form of rule bases are
possibly the best tool available for accounting qualitative aspects of
complexity such as the uncertainty of the environment. However, the
processes of fuzzification, inference and defuzzification usually make these
systems suffer from some quantitative aspects of complexity such as the
large number of fuzzy rules and associated operations on the fuzzy
membership functions of the inputs and the outputs.

The focus of this book is on the management of complexity in fuzzy rule
based systems. This problem has been pushed from a marginal location into
the mainstream of fuzzy logic research in recent years. The reason for this
move is due to the ever more increasing demand for using fuzzy logic not
only for small scale domestic purposes but also in large scale industrial and
other applications. As a result, many papers and books on fuzzy logic have
started to discuss the complexity aspects of the proposed methods in
separate paragraphs or even whole sections. Moreover, a number of specific
methods for complexity reduction in fuzzy systems have already been
developed and used.

This work is possibly a first attempt to deal with the problems of
complexity in fuzzy rule based systems at a monographic level. The
underlying philosophy is based on the idea of managing complexity rather
than only reducing it. In this context, management is viewed as a group of
activities such as perception, understanding, and analysis of complexity

Preface IX

with the intention of simplifying it formally in a universal and systematic
way. This type of approach is quite different from most of the existing
complexity reduction methods, which are usually characterised by a limited
application scope and empirical nature. In fact, many of these methods
simplify the complexity in fuzzy systems by actually ignoring it without
adequate justification and with the hope that the resultant simplified system
would behave similarly to the original complex one.

As opposed to the complexity reduction methods mentioned above, this
book does not rely on semi-mechanistic simplifications and hopes for good
luck in a gamble. It is based on the assumption that the inherent redundancy
in fuzzy systems should be exploited not by empirical trials but through a
sound and formal systematic process. This redundancy and the resulting
complexity are attributes of the virtual fuzzy world created by us for the
purpose of dealing with the uncertainty in the real crisp world. So, it is only
up to us to identify this redundancy accurately, remove it safely and then
arrive quickly at the desired destination in the real world once the job has
been done. It may look a bit like the plot in the famous movie ‘The Matrix’

The author would like to thank some people and institutions without
whom this book possibly would not have been what it is. He is very grateful
to Prof Robert Babuska from the Systems and Control Centre at the Delft
University of Technology, The Netherlands, for the enlightening
discussions on the topic, and to the Editor-in-chief for this book series Prof
Janusz Kacprzyk for the kind invitation to submit this work which had a
stimulating effect on the overall research and writing process. He is also
quite indebted to his senior colleague Prof Tom Addis for being an
inspirational example with his passion for research, for advising him how to
reduce the impact of academic paperwork on his research activities and for
encouraging him to challenge the widely spread perception in UK
universities that the most important research indicators are the amount of
external funding secured and the score achieved in the Research
Assessment Exercise. The author would like to thank his junior colleague
Dr Bart-Floris Visscher for the constructive feedback on some of the initial
drafts of this book, his BSc project student Neelamugilan Gobalakrishnan
for the software validation of some of the theoretical results and the
copyright holder for some of the material presented in Chapter 9, the
University of Portsmouth, for giving him the permission to use this material
in the book. The cooperation of Jane Chandler, former Head of the
Department of Computer Science and Software Engineering, and Prof Ajit
Narayanan, Head of the School of Computing, University of Portsmouth,
UK, for keeping his teaching duties within reasonable bounds is also
gratefully acknowledged. Special thanks must go to the Alexander von
Humboldt Foundation of Germany and the European Union Commission in
Brussels for the research fellowships granted to the author in the past,

but whether you believe it or not -- that is exactly what this book is all about.

X Preface

which have significantly helped him enrich himself as a scientist through
the international dimensions of research.

In addition, the author would be unfair not to mention Bon Jovi,
Nickelback and the likes for providing the musical entertainment during the
long and boring typing process as well as his colleagues Sion Reynolds,
Patrick Beullens and Luke Stutters from the University of Portsmouth rock
band ‘Infra Rouge’ for the relaxing musical practices and the inspirational
live performances over the last couple of years. And finally, the spiritual
support and encouragement of his family members and closest relatives has

become a reality.

Portsmouth, UK Alexander Gegov
July 2006

been second to none -- a big thanks to all of them for helping a dream

Contents

1 Introduction... 1

1.1 Quantitative and Qualitative Complexity .. 1

1.2 Time and Safety Critical Implications ... 2

1.3 Speed and Intelligence of Computers .. 2

1.4 Past and Current Research in Fuzzy Logic 3

1.5 Complexity Issues in Fuzzy Systems... 4

1.6 From Complexity Reduction to Complexity Management.............. 5

1.7 Description of Book Chapters ... 6

2 Basic Types of Fuzzy Rule Based Systems.. 7

2.1 Mamdami, Sugeno and Tsukamoto Systems 7

2.2 Conjunctive and Disjunctive Systems ... 9

2.3 Multiple Output and Single Output Systems 10

2.4 Feedforward and Feedback Systems.. 11

2.5 Single Rule Base and Multiple Rule Base Systems....................... 12

2.6 Complexity Analysis in Fuzzy Systems .. 14

3 Rule Base Reduction Methods for Fuzzy Systems 17

3.1 Removal and Merging of Linguistic Values 17

3.2 Removal and Fusion of Inputs ... 19

3.3 Singular Value Decomposition of Output Matrix.......................... 21

3.4 Conversion into Union Rule Configuration................................... 23

3.5 Spatial Decomposition into Subsystems.. 25

3.6 Decomposition into Multilayer Hierarchical Structure.................. 26

3.7 Comparative Analysis of Reduction Methods 29

4 Formal Presentation of Fuzzy Rule Based Systems 33

4.1 Basic Properties of Fuzzy Rule Bases.. 33

4.2 Analysis of Rule Base Properties... 36

4.3 Presentation of Rule Bases by Boolean Matrices 39

4.4 Presentation of Rule Bases by Binary Relations............................ 46

4.5 Comparative Analysis of Formal Presentation Techniques 53

4.6 Application Range of Formal Presentation Techniques................. 55

Abbreviations .. xv

XII Contents

5 Formal Manipulation of Fuzzy Rule Based Systems 65

5.2 Vertical Merging Manipulation of Rule Bases 65

5.3 Vertical Splitting Manipulation of Rule Bases 73

5.4 Horizontal Merging Manipulation of Rule Bases 81

5.5 Horizontal Splitting Manipulation of Rule Bases 87

5.6 Output Merging Manipulation of Rule Bases 92

5.7 Output Splitting Manipulation of Rule Bases 102

5.8 Comparative Analysis of Formal Manipulation Techniques 112

5.9 Application Range of Formal Manipulation Techniques............. 113

6 Formal Manipulation with Special Rule Bases............................... 115

6.1 Preliminaries on Special Rule Bases.. 115

6.2 Manipulation with Identity Rule Bases.. 119

6.3 Manipulation with Transpose Rule Bases.................................... 127

6.4 Manipulation with Permutation Rule Bases................................. 138

6.5 Specific Cases with Special Rule Bases 144

6.6 Analysis of Manipulation Techniques

 with Special Rule Bases... 150

7 Formal Transformation of Fuzzy Rule Based Systems 153

7.1 Preliminaries on Rule Base Transformation 153

7.2 Repetitive Merging Manipulations .. 153

7.3 Combined Merging Manipulations .. 158

7.4 Self Standing Inputs and Outputs .. 164

7.5 Total and Partial Identity Lines.. 173

7.6 Comparative Analysis of Formal Transformation Techniques.... 181

7.7 Application Range of Formal Transformation Techniques 182

8 Formal Transformation of Feedback Rule Bases........................... 185

8.1 Preliminaries on Feedback Rule Bases 185

8.2 Transformation of Rule Bases with Simple Feedback 185

8.3 Transformation of Rule Bases with Local Feedback 190

8.4 Transformation of Rule Bases with Global Feedback 201

8.5 Transformation of Rule Bases with Nested Feedback 211

8.6 Transformation of Rule Bases with Overlapping Feedback 226

8.7 Transformation of Rule Bases with Crossed Feedback 234

8.8 Transformation of Rule Bases with Multiple Feedback.............. 249

8.9 Feedback Rule Base Design.. 257

8.10 Canonical Rule Base Networks.. 264

8.11 Analysis of Transformation Techniques

 for Feedback Rule Bases.. 268

5.1 Preliminaries on Rule Base Manipulation 65

Contents XIII

9 Formal Simplification of Fuzzy Rule Based Systems................... 269

9.1 Preliminaries on Rule Base Simplification................................ 269

9.2 Rule Base Simplification by Aggregation

 of Inconsistent Rules ... 274

9.3 Rule Base Simplification by Filtration

 of Non-monotonic Rules ... 287

9.4 Complexity Evaluation of Formal Simplification

 Techniques... 328

9.5 Comparative Analysis of Formal Simplification Techniques.... 338

9.6 Application Range of Formal Simplification Techniques 339

10 Conclusion.. 341

10.1 Formal Approach for Fuzzy Rule Base Compression 341

10.2 Theoretical Significance of Fuzzy Rule Base Compression.... 341

10.3 Application Framework for Fuzzy Rule Base Compression ... 342

10.4 Future Directions for Related Research in Fuzzy Systems...... 343

10.5 Overall Book Evaluation ... 344

.

References .. 345

Index... 349

Abbreviations

SRB – single rule base
IRB – identity rule base
TRB – transpose rule base
PRB – permutation rule base
MRB – multiple rule base
FF – feedforward
FB – feedback
CADR – conjunctive antecedents in disjunctive rules
DADR – disjunctive antecedents in disjunctive rules
CACR – conjunctive antecedents in conjunctive rules
DACR – disjunctive antecedents in conjunctive rules
CON – conjunctive
DIS – disjunctive
MIMO – multiple input multiple output
MISO – multiple input single output
MO – multiple output
SO – single output
IFS – initial fuzzy system
RFS – reduced fuzzy system
ERB – equivalent rule base

P-T RB – permutation-transpose rule base
FRB – feedback rule base
ARBN – arbitrary rule base network
CRBN – canonical rule base network
MRBO – multiple rule base output
SRBO – single rule base output
CS – conventional system
AS – aggregated system
SS – sorted system
FS – filtered system
HS – hierarchical system
EO – elementary operations

I/T/P RB – identity/transpose/permutation rule base

1 Introduction

1.1 Quantitative and Qualitative Complexity

Complexity is a common attribute of the world that we live in. Although
the recent advances in different technologies have made our life easier in
many aspects, these advances also bring new challenges that add to the
overall complexity in this world. A typical example in this respect is global
warming which is a direct consequence of our habits to consume products
that require the use of large amounts of energy. Without a doubt, global
warming has already become a very complex environmental problem that
requires urgent and coordinated actions by international institutions if we
want to save our world for future generations.

In general, complexity can be characterised by two main aspects –
quantitative and qualitative. The quantitative aspect usually has to do with
concepts such as number and scale. For example, if we look at the Internet,
it has been growing at an enormous rate as a result of which the number of
web pages has increased dramatically over the recent years. Apart from
that, more and more geographic areas are acquiring access to the Internet
almost every day and this has contributed significantly to the overall
enlargement of its scale. The qualitative aspect is usually related to
concepts such as uncertainty and ambiguity. If we take again the example
with the Internet, it is obvious that as the level of its quantitative
complexity increases in terms of the number of web pages and scale, it
becomes more difficult to understand and interpret its behaviour, i.e. its
level of qualitative complexity also increases.

Usually, as the level of quantitative complexity in a man-made system
such as the Internet increases, it leads to a corresponding increase in the
level of its qualitative complexity. This is due to the fact that the growth in
number and scale is accompanied by the formation of new relations among
the building blocks in the system as a result of which it becomes more
difficult to describe and predict these relations, i.e. the system becomes
more difficult for perception and more uncertain in its behaviour.
Therefore, we may assume that the quantitative aspect of complexity
implies the qualitative aspect and this assumption is completely in line with
the dialectical philosophical idea that any quantitative changes in a system
gradually lead to corresponding qualitative changes.

Alexander
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

Gegov: Complexity Management in Fuzzy Systems, StudFuzz 211, 1–6 (2007)

2 1 Introduction

1.2 Time and Safety Critical Implications

In order to be able to cope with the challenges of complexity, we need to
identify its possible implications. In this respect, two of the most important
implications are time critical and safety critical problems.

In the case of a time critical problem, we need to find a solution to the
problem within a limited period of time – otherwise the solution may
become irrelevant. For example, an industrial robot that classifies and
assembles different particles according to their size and shape has to do
these tasks in a way that matches the speed at which the conveyor carrying
these particles is moving. Otherwise, the robot would be late for the
corresponding assembly operations and the whole manufacturing process
may have to be stopped temporarily so that the particles affected by the
slow operations of the robot can be rearranged accordingly. Obviously, an
increased level of the quantitative and the qualitative complexity in terms of
the number of particles carried by the conveyor and the uncertainty in their
size or shape, respectively, would make this time critical problem more
difficult.

In the case of a safety critical problem, if we do not find a solution to this
problem then this could lead to loss of human life. For example, an on-
board aircraft collision avoidance system is supposed to detect other
aircrafts within a certain radius, determine their location and speed, and if
necessary, instruct the pilot to change course. Otherwise, the aircraft would
continue to follow the preset course, which may lead to a collision with
another aircraft. Here again, an increased level of the quantitative and the
qualitative complexity in terms of the number of other closely flying
aircrafts and some uncertainty in their location or speed would obviously
make this safety critical problem quite difficult.

Usually, a safety critical problem such as the one with the aircraft is also
a time critical problem. In this case, the location and the speed of all closely
flying aircrafts have to be determined within a limited time period as
otherwise the aircraft may collide with another one while the associated
computations are still running. Therefore, we may assume that a safety
critical problem usually implies a time critical problem and that is not
surprising bearing in mind that safety related issues often have explicit time
limits.

1.3 Speed and Intelligence of Computers

Having looked at the main aspects of complexity and its implications, it
would be interesting to see how we could possibly minimise the undesirable
impact of this complexity. As the world today is becoming more dominated
by computers that assist people in their everyday activities, it would be

1.4 Past and Current Research in Fuzzy Logic 3

reasonable to assume that computer hardware and software are the main
factors determining the potential impact of complexity on these activities.
What really matters in this case is the relevant attributes of computer
hardware and software such as speed and intelligence.

The speed of computers is usually associated with the clock frequency at
which the basic arithmetic operations are performed at the hardware level
and the algorithmic efficiency at the software level which represents the
amount of computations as a function of the size of the problem to be
solved. Obviously, the speed of computers can affect directly the
quantitative aspects of complexity by reducing the time that it takes to carry
out a certain amount of computations.

As opposed to speed, intelligence in computers is still something quite
unclear and hard to quantify but by this term we usually mean the ability of
computer hardware and software to behave in a way that resembles
intelligent human beings, e.g. to be able to learn and reason. In this case,
there is a clear link with the qualitative aspects of complexity because
learning and reasoning are especially helpful in an environment that is
characterised by uncertainty, i.e. where the ability to see ‘invisible’ objects
and to predict ‘unexpected’ events could make a big difference.

It would be interesting to see to what extent the speed and intelligence of
computer hardware and software could affect the quantitative and
qualitative aspects of complexity. There has been an ongoing argument and
rivalry on this issue between hardware and software professionals but the
actual facts so far appear to be more in favour of the opinion held by the
second group. For example, it has been shown that the algorithmic
efficiency of software is usually more critical for the reduction of the
computational times associated with large scale problems than the clock
frequency of hardware. Also, as far as the computer market is concerned, it
has been much easier to incorporate ‘intelligent’ attributes in software than
in hardware.

1.4 Past and Current Research in Fuzzy Logic

Research in the field of fuzzy logic has gone a long way since the idea
about fuzzy sets was first introduced in the mid 60’s of the 20th century by
Lotfi Zadeh. Since then, we have witnessed a number of trends most of
which have lasted for about a decade.

The late 60’s and the 70’s were characterised mainly by theoretical
works that helped fuzzy logic establish itself as a separate discipline
alongside deterministic mathematics and statistics. The main drawback of
this period was the highly abstract nature of research, which made many
applied scientists ignore fuzzy logic before even making themselves
familiar with it to some extent. It was not unusual at that time to hear

4 1 Introduction

statements describing fuzzy logic as a totally useless theory that would
never work in practice.

However, in the 80’s, scientists from Japan started to implement fuzzy
logic in a number of domestic appliances such as vacuum cleaners,
refrigerators and cookers. Later on, in the 90’s, we were able to witness the
first successful industrial applications of fuzzy logic. But despite the big
number of successful applications of fuzzy logic in this period, the criticism
against fuzzy logic did not stop – it has even got bigger in the recent years.
This time, the main object of attack coming from both outside and inside of
the fuzzy academic community has been the empirical nature of fuzzy
logic.

As a whole, the main focus of the criticism on fuzzy logic has been on its
inability to behave as a systematic science. A scientific method is usually
expected to be applicable for solving a particular problem with a guaranteed
success. Unfortunately, that is not the case for most of the known fuzzy
logic methods, which are empirical and therefore not quite reliable in terms
of the expected results.

So, the way forward for fuzzy logic research in the 21st century looks
much clearer now. We have to make fuzzy logic science, which is both
fundamental and applied, i.e. a powerful and universal theory that can be
also validated and justified in practice. Hopefully, the lessons learned from
the mistakes made in the past can help us achieve this goal in the
foreseeable future. And the sooner we stop swinging into one or another
extreme – the better.

1.5 Complexity Issues in Fuzzy Systems

Fuzzy systems are usually good at capturing the qualitative aspect of
complexity by means of their linguistic modeling and approximate
reasoning capabilities. However, this comes with a price because the
associated fuzzy operations in the fuzzification, the inference and the
defuzzification stages increase the level of quantitative complexity of the
problem. This increase becomes even more embarrassing as the number of
inputs in the fuzzy system gets bigger because the amount of these
operations is a function of the number of rules which, on its turn, depends
on the number of inputs.

Apart from the increased level of their quantitative complexity, the
transparency and interpretability of fuzzy systems tends to deteriorate as the
number of fuzzy rules increases. In this case, it is harder to observe and
explain what is happening in the system. In other words, although the
qualitative complexity of the environment is usually well accounted for by
the fuzzy system, the system itself appears to generate ‘new’ qualitative
complexity by its existence. So, it turns out that the problem has been

1.6 From Complexity Reduction to Complexity Management 5

actually moved from the environment that the fuzzy system is supposed to
model, to the system itself.

There has been a steadily growing interest in complexity issues of fuzzy
systems in recent years [1, 3, 4, 13, 14, 15, 18, 19, 24, 36, 40, 42, 44, 62,
69, 75, 77]. This is due to the fact that fuzzy systems have become more
widely used in applications of a larger scale as a result of which the
associated complexity becomes more apparent. For example, many recent
papers and books on fuzzy logic discuss the complexity aspects of the
proposed fuzzy methods in separate sections or even chapters. However,
the focus of these discussions is usually on quantitative complexity whereas
qualitative complexity is often ignored.

1.6 From Complexity Reduction to Complexity Management

It is not surprising that research in fuzzy systems has been focused mainly
on quantitative complexity issues. After all, it is normal to expect current
research methodologies to be strongly affected by the dominant profit
orientated values in our society and the associated material targets such as
improved efficiency and increased productivity. That is why most of the
known methods dealing with complexity in fuzzy systems are aimed
primarily at reducing the time for the completion of the required
computations.

This book preaches a different philosophy. It argues that we have to
change our narrow minded and conservative way of thinking only within
‘the box’. Our duty as academics is to open new horizons and suggest
viable alternatives to the existing ‘status quo’ in our subjects as well as in
the world in general. Trying to break this ‘status quo’ would be the best
way of not only discovering new knowledge but also of demonstrating a
broad, progressive and independent attitude.

As far as fuzzy systems are concerned, we have to start addressing the
complexity issues in these systems from a different angle. The idea of
reducing complexity by actually ignoring it in a semi-mechanistic way may
suit the market needs but it does not speak well about academia. Before
reducing complexity, we need to be able to identify, analyse and understand
it properly. This is what planned complexity management is all about and
this book argues that such an approach must replace the current approach of
chaotic complexity reduction.

The use of this new approach would guarantee that if and when we
decide to reduce the quantitative complexity, this process will lead to a
systematically correct and scientifically justified result even if we can not
achieve big financial gains. Last but not least important, by following this
approach we would be in the position to also reduce the qualitative
complexity in fuzzy systems which will make them more transparent to us

6 1 Introduction

as well as more enjoyable to work with. Because after all, apart from the
material things in life, there are spiritual things that matter too, and with
that in mind we can hopefully make another ‘fuzzy’ world possible.

1.7 Description of Book Chapters

This book is organised in 10 chapters. The current Chapter 1 is an
introduction to the topic of complexity in general and in the context of
fuzzy logic. Chapter 2 discusses the most common types of fuzzy rule
based systems and analyses their impact on complexity. Chapter 3 reviews
most of the existing rule base reduction methods for fuzzy systems and
summarises their attributes. Chapter 4 introduces advanced techniques for
formal presentation of fuzzy systems based on Boolean matrices and binary
relations, which facilitate the overall management of complexity. Chapters
5 and 6 present techniques for formal manipulation of single rule base
(SRB) fuzzy systems with general and special rule bases, which reduce the
qualitative complexity. Among the manipulation techniques presented are
vertical, horizontal and output merging as well as splitting of rule bases
whereas among the special rule bases considered are the identity rule base
(IRB), the transpose rule base (TRB) and the permutation rule base (PRB).
Chapters 7 and 8 describe techniques for formal transformation of multiple
rule base (MRB) fuzzy systems with feedforward (FF) and feedback (FB)
interconnections, which also reduce the qualitative complexity. Among the
transformation techniques described are repetitive and combined merging
manipulations in the context of self standing inputs and outputs as well as
total and partial identity lines whereas among the FB interconnections
considered are single, local, global, nested, overlapping, crossed and
multiple interconnections. Chapter 9 proposes techniques for formal
simplification of fuzzy rule based systems, which reduce the quantitative
complexity by aggregation of inconsistent rules and filtration of non-
monotonic rules. It also shows case studies with complex fuzzy systems
and gives a comparative evaluation of the complexity of these techniques.
The last Chapter 10 is a conclusion highlighting the theoretical significance
of the formal methodology for complexity management in fuzzy systems,
an application framework for this methodology and some possible related
future research directions.

2 Basic Types of Fuzzy Rule Based Systems

2.1 Mamdami, Sugeno and Tsukamoto Systems

A common type of fuzzy system is the Mamdami system, which is
represented by the if-then rules

If i1 is vi1,1 and/or … and/or im is vim,1 then o1 is vo1,1 also … also on is von,1

and/or
.………………………………………………………………………

and/or
If i1 is vi1,r and/or … and/or im is vim,r then o1 is vo1,r also … also on is von,r

(2.1)

where m is the number of inputs, n is the number of outputs and r is the
number of fuzzy rules in the system [43, 66, 81]. In this case, ip, p = 1,..,m
represents the p-th input, vip,s p = 1,..,m, s = 1,..,r is the linguistic value of
the p-th input in the s-th rule, oq, q = 1,..,n represents the q-th output and
voq,s q = 1,..,n, s = 1,..,r is the linguistic value of the q-th output in the s-th
rule.

Sometimes, the term ‘fuzzy set’ is used as a synonym of the term
‘linguistic value’. Both terms are suitable for modelling the uncertainty
available in many systems by means of the concept of a fuzzy membership
degree. This concept is based on the assumption that an object can belong
to a fuzzy set with a membership degree that can take any value in the
interval [0,1].

The terms with the inputs and their linguistic values in the ‘if’ part of the
rule base are also called antecedents whereas the terms with the outputs and
their linguistic values in the ‘then’ part of the rule base are called
consequents. Usually, the ‘if’ part of the rule base contains all possible
permutations of linguistic values of the inputs. As far as the ‘then’ part of
the rule base is concerned, it is unlikely to contain all possible permutations
of linguistic values of the outputs.

Generally, the number and the meaning of the linguistic values that each
input can take vary as inputs usually have different crisp variation range
and specific crisp physical meaning. Although this peculiarity is not
reflected explicitly in the rule base represented by Eq. (2.1), it can be easily
accounted for.

Also, each rule in the rule base represented by Eq. (2.1) may be allocated
a specific weight that reflects the importance of this particular rule.

Alexander
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

Gegov: Complexity Management in Fuzzy Systems, StudFuzz 211, 7–16 (2007)

8 2 Basic Types of Fuzzy Rules Based Systems

However, in most cases the individual rules are assumed to have equal
weight and by default this fact is not reflected explicitly in the rule base.

Apart from its weight, each rule has a firing strength that reflects the
extent to which the antecedent terms in the rule are satisfied. In other
words, the firing strength of a rule is a measure of the relative impact of this
rule on the outputs of the fuzzy system.

The Mamdami system is the most widely used fuzzy system. The main
advantages of this type of system are its widespread acceptance, intuitive
character and capability to formalise inputs in the form of expert
knowledge. In some cases, when there is no sufficient or sensible data
available, using expert knowledge is the only way to collect information
about the system that we want to model. Therefore, a Mamdami system is a
100% fuzzy system in which the fuzziness spreads from the inputs to the
outputs during the stages of fuzzification, inference and defuzzification.

Another type of fuzzy system is the Sugeno system, which is represented
by if-then rules in the form:

If i1 is vi1,1 and/or … and/or im is vim,1 then o1 = f1,1(i1,..,im) also … also on = fn,1(i1,..,im)
and/or

 ……………………………………………………………………….…….
and/or

If i1 is vi1,r and/or … and/or im is vim,r then o1 = f1,r(i1,..,im) also … also on = fn,r(i1,..,im)

(2.2)

The ‘if’ part of the rule base in a Sugeno system is the same as the one in
a Mamdami system. However, the outputs oq, q = 1,n in the ‘then’ part of
the rule base are not represented by linguistic values but as polynomial
functions fq,s (..), q = 1,..,n, s = 1,..,r of the inputs ip, p = 1,..,m [43, 66]. In
most cases, these are first-order polynomials in the form of linear functions.
All other considerations made for Mamdami systems are also valid for
Sugeno systems.

The Sugeno system is less popular than the Mamdami system but it is
also widely used. The main advantages of this type of fuzzy system are its
computational efficiency and capability to work well with linear techniques
such as proportional-integral-derivative control. In a Sugeno system, the
inference and the defuzzification stage are simplified due to the
presentation of the outputs as crisp functions of the inputs as a result of
which many of the fuzzy operations are replaced with more efficient crisp
operations. In other words, a Sugeno system uses a crisp approximation of
the outputs and therefore can be viewed as a hybrid between a fuzzy and a
crisp system.

A third type of fuzzy system is the Tsukamoto system which is
represented by the same if-then rules as the ones used in a Mamdami
system. The main difference here is that the fuzzy membership functions
for the outputs are monotonic functions with a single shoulder which map
the firing strength of each rule to a unique crisp value of the output [43, 66].

2.2 Conjunctive and Disjunctive Systems 9

In a sense, the Tsukamoto system is a hybrid between the Mamdami and
the Sugeno system because the outputs are represented by linguistic values
similar to the ones in a Mamdami system whereas the crisp values of the
outputs are obtained as functional mappings similar to the ones in a Sugeno
system. All other considerations made for Mamdami systems are also valid
for Tsukamoto systems.

The Tsukamoto system is the least popular fuzzy system. Although its
purpose is to combine the advantages of the Mamdami and the Sugeno
system, it has found only limited application due to the constraint imposed
by the special type of monotonic fuzzy membership functions for the
outputs. Obviously, these functions are not capable of representing
adequately the variables in most of the available real systems.

2.2 Conjunctive and Disjunctive Systems

There are four possible variations on each of the fuzzy rule bases
represented by Eqs. (2.1)–(2.2)

conjunctive antecedents in disjunctive rules (CADR),
disjunctive antecedents in disjunctive rules (DADR),
conjunctive antecedents in conjunctive rules (CACR),
disjunctive antecedents in conjunctive rules (DACR),

where the terms ‘conjunction’ and ‘disjunction’ in these variations are
denoted by the logical ‘and’ and ‘or’ operator, respectively [61, 81].

Sometimes, a fuzzy rule base is called conjunctive (CON) or disjunctive
(DIS), depending on whether the reference is made to the antecedents or the
rules. For example, a CADR fuzzy system is usually referred to as a CON
system in an antecedent related context and a DIS system in a rule related
context.

All types of fuzzy systems, i.e. Mamdami, Sugeno and Tsukamoto, can
have any of the above four possible variations of their rule bases.
Depending on the type of variation for the rule base, Eqs. (2.1)–(2.2) must
be amended appropriately by replacing each ‘and/or’ operator either with an
‘and’ or an ‘or’ operator.

In the case of CON antecedents, all antecedent terms in each rule must be
satisfied together. For DIS antecedents, at least one antecedent term in each
rule is satisfied. In the case of DIS rules, at least one rule in the rule base is
satisfied. For CON rules, all rules in the rule base must be satisfied
together.

DIS rules appear to be more common than CON rules. This is due to the
fact that it is usually harder to find real systems in which all fuzzy rules can
be satisfied together. On the contrary, CON antecedents are more common

10 2 Basic Types of Fuzzy Rules Based Systems

than DIS ones because the antecedent terms are usually expected to be
satisfied together.

The above four variations reflect the different ways in which the
antecedent terms in each rule and the individual rules in the rule base are
connected. As far as the consequent terms in the rule base are concerned,
the operator ‘also’ is identical with the logical ‘and’ operator, i.e. all
consequent terms in each rule must be satisfied.

2.3 Multiple Output and Single Output Systems

Most fuzzy systems are multiple input multiple output (MIMO) systems, i.e.
they have more than one input and more than one output. The fuzzy
systems represented by Eqs. (2.1)–(2.2) are precisely of this type. However,
it is usually necessary to decompose a MIMO fuzzy system into a number
of multiple input single output (MISO) systems in order to facilitate the
processes of inference and defuzzification [61, 81].

This decomposition can be done in a series of simple manipulations
based on the laws of Boolean logic. By definition, each ‘if-then’ rule in a
fuzzy rule base represents a logical implication that can be formally
described with the logical ‘imp’ operator. In this case, if the antecedent and
the consequent part in the rule are true, then the whole rule must be true.

Therefore, each rule in Eqs. (2.1)–(2.2) may be represented in the form

If (A1 and/or … and/or Am) then (C1 and … and Cn) (2.3)

where Ap, p=1,..,m and Cq, q=1,..,n are the logical propositions describing
the antecendent and the consequent terms, respectively.

Equation (2.3) may be rewritten in the following equivalent forms:

(A
1
 and/or … and/or A

m
) imp (C

1
 and … and C

n
) (2.4)

[not (A
1
 and/or … and/or A

m
)] or (C

1
 and … and C

n
) (2.5)

[not (A
1
 and/or … and/or A

m
) or C

1
] and … and [not (A

1
 and/or … and/or A

m
) or C

n
] (2.6)

[(A
1
 and/or … and/or A

m
) imp C

1
] and … and [(A

1
 and/or … and/or A

m
) imp C

n
] (2.7)

[If (A
1
 and/or … and/or A

m
) then C

1
] and…and [If (A

1
 and/or … and/or A

m
) then C

n
] (2.8)

Therefore, the MIMO fuzzy system in Eq. (2.3) can be represented by
the n logically equivalent MISO fuzzy systems in Eq. (2.8). This result is

2.4 Feedforward and Feedback Systems 11

obviously of great importance as it allows us to decompose any multiple
output (MO) fuzzy system into a number of single output (SO) fuzzy
systems where the output for each SO system can be processed separately.

While the above decomposition reduces the qualitative complexity in a
fuzzy system by presenting it in a simpler form, it also tends to make us
forget the fact that there is usually more than one output in the system. In
other words, we usually do not take into account the quantitative
complexity in the fuzzy system that is added by the application of all fuzzy
operations associated with the other outputs.

All types of MO fuzzy systems, i.e. Mamdami, Sugeno and Tsukamoto,
can be decomposed into a number of logically equivalent SO systems. In
this case, the fuzzification process is carried out only once but the processes
of inference and defuzzification must be repeated for each output.

So, the MO fuzzy system in Eq. (2.1) can be represented by the
following n logically equivalent SO fuzzy systems:

If i1 is vi1,1 and/or … and/or im is vim,1 then oq is vq1,1

and/or
 ..………………………………………………….

and/or
If i1 is vi1,r and/or … and/or im is vim,r then oq is vq1,r

(2.9)

Similarly, the MO fuzzy system in Eq. (2.2) can be represented by the
following n logically equivalent SO fuzzy systems:

If i1 is vi1,1 and/or … and/or im is vim,1 then oq = fq,1(i1,..,im)
and/or

 .…………………………………………………………
and/or

If i1 is vi1,r and/or … and/or im is vim,r then oq = fq,r(i1,..,im)

(2.10)

Equations. (2.9)–(2.10) show the impact on the outputs in Eqs. (2.1)–(2.2).
In this case, the q-th output oq, q =1,..,n in the MO fuzzy system has become
the only output in the q-th SO fuzzy system.

2.4 Feedforward and Feedback Systems

Most fuzzy systems are FF systems, i.e. the flow of information in these
systems is only from the inputs to the outputs. The fuzzy systems

q = 1,..,n

q = 1,..,n

12 2 Basic Types of Fuzzy Rules Based Systems

represented by Eqs. (2.1)–(2.2) are precisely of this type. However, some
fuzzy systems may have partial flow of information in the opposite
direction, i.e. from some outputs to some inputs. Such systems are called
FB systems and they have at least one output, which is fed back into a
corresponding input [2, 38, 59]. In this case, the input and the output
represent the same variable but their linguistic values usually describe this
variable at different moments in time due to the delay in the flow of
information in both directions.

All types of fuzzy systems, i.e. Mamdami, Sugeno and Tsukamoto, can
have either one or the other pattern of information flow. In the case of FB
pattern, Eqs. (2.1)–(2.2) must be amended appropriately by specifying
explicitly which output-input pairs represent the same variable. For
example, if the first output is fed back into the second input, this can be
represented by o1 = i2.

2.5 Single Rule Base and Multiple Rule Base Systems

Most fuzzy systems are SRB systems. They have either one rule base, e.g. a
MO fuzzy system, or a number of independent rule bases, e.g. SO fuzzy
systems. For example, the MO systems and their SO counterparts
represented by Eqs. (2.1)–(2.2) and Eqs. (2.9)–(2.10), respectively, are all
SRB systems. In this sense, the most distinctive feature of a SRB system is
the isolated nature of its rule bases.

However, some processes can be better modelled by a MRB system, i.e.
a system with some interconnections between its rule bases [7, 11, 53, 55].
This is usually the case of multi-stage processes where the outputs from a
particular stage are also inputs to one or more subsequent stages. The MRB
systems used for describing such processes are usually referred to as
‘chained fuzzy systems’ but we will be using the newly introduced and
more general term ‘MRB systems’ instead throughout this book for
completeness and consistency.

A MRB system can be described by a network whereby all rule bases in
a horizontal row represent a level and all rule bases in a vertical column
represent a layer. The numbering of levels is from top to bottom whereas
the numbering of layers is from left to right. Interconnections may exist
between rule bases residing in the same layer as well as between rule bases,
which are in different layers. Some of these interconnections can be in a
forward direction, i.e. from a particular layer to one or more subsequent
layers. Other interconnections can be in a backward direction, i.e. from a
particular layer to the same layer or to preceding layers. The
interconnections reflect the nature of the multi-stage process being
modelled, i.e. the outputs from each rule base which are also inputs to other
rule bases in the same layer, preceding layers or subsequent layers.

2.5 Single Rule Base and Multiple Rule Base Systems 13

The layers in a MRB system represent a temporal hierarchy, i.e.
processes that take place sequentially in time. As opposed to this, the levels

to each other. Although this spatial subordination is relevant mainly within
a particular layer, it is often propagated across the whole network structure
in the context of the interconnected rule bases.

The above two types of network hierarchy are often used for modelling
systems with the purpose of reducing their quantitative and qualitative
complexity. In this sense, the network structure of the fuzzy rule base is
either a straightforward reflection of the system being modeled or a design
decision aimed at achieving better effectiveness or higher efficiency.

A MRB system with s levels and q layers can be represented by the
matrix

level/layer layer 1 layer 2 … layer q-1 layer q

level 1 RB1,1 RB1,2 … RB1,q-1 RB1,q

level 2 RB2,1 RB2,2 … RB2,q-1 RB2,q

 … … … … … …

level s-1 RBs-1,1 RBs-1,2 … RBs-1,q-1 RBs-1,q

level s RBs,1 RBs,2 … RBs,q-1 RBs,q

(2.11)

whose elements RBi,j I = 1,..,s, j = 1,..,q are rule bases. Quite often some of
the blocks in Eq. (2.11) may not occupied by rule bases and in this case the

Eq. (2.10). Also, the interconnections between the rule bases must be given
by specifying which outputs from which rule bases are which inputs to
which rule bases. This can also be done by the block matrix represented in
Eq. (2.12) where the output-input interconnections are given arbitrarily for
illustration purposes. In this case, all output-input interconnections
are of FF type apart from the ones originating from outputs in the last layer,
which are of FB type. If a rule base is missing from the network structure of
a MRB system, then the corresponding block in the matrix in Eq. 2.12 will
be empty but some of the other blocks must reflect any existing
interconnections between rule bases in layers preceding or subsequent to
the layer with the missing rule base.

in a MRB system represent a spatial hierarchy, i.e. processes that are subordinated

matrix may have a sparse structure.
In order to define a MRB system fully, each of the existing rule bases in

Eq. (2.11) must be given in a form similar to Eq. (2.1), Eq. (2.2), Eq. (2.9) or

14 2 Basic Types of Fuzzy Rules Based Systems

Usually, the outputs and inputs which are not part of any
inter

connections are not reflected explicitly in the corresponding matrix

 for the MRB system. Such inputs and outputs stand on their own, i.e.
 are self standing, and as it can be seen from Eq. (2.12), each rule base from
 the first to the last but one layer inclusive has only one output which is
 not self standing. Similarly, each rule base from the second to the last but
 one layer inclusive has only one input which is not self standing whereas
 each rule base in the last layer has two inputs which are not self standing.

level/layer layer 1 layer 2 … layer q-1 layer q

level 1 o1 = i1

2,2 o1 = i1

2,3 … o1 = i1

2,q o1 = i2

1,q

level 2 o1 = i1

1,2 o1 = i1

1,3 … o1 = i1

1,q o2 = i2

2,q

… … … … … …

level s-1 o1 = i1

s,2 o1 = i1

s,3 … o1 = i1

s,q o1 = i2

s-1,q

level s o1 = i1

s-1,2 o1 = i1

s-1,3 … o1 = i1

s-1,q o1 = i2

s,q

(2.12)

Interconnections can be either local or global. If an output from a rule
base is fed back into an input to the same rule base, the interconnection is
local. However, if an output from a rule base is fed back into an input
to

interconnections for the last layer are local.
In general, the individual rule bases in a MRB system may be of any type

such as Mamdami, Sugeno or Tsukamoto systems, CON or DIS systems,
FF or FB systems, as well as MO or SO systems. In this case, each output-
input interconnection assumes defuzzification and fuzzification of the
corresponding output and input, respectively.

2.6 Complexity Analysis in Fuzzy Systems

The type of fuzzy system used may have some impact on the level of
complexity of the system being modeled. For example, Sugeno and
Tsukamoto systems are usually more efficient than Mamdami systems but
they are often less transparent, i.e. what is gained in terms of quantitative
complexity is lost in terms of qualitative complexity. CON and DIS
systems are not in anyway different from each other in relation to both

connection is global. In this context, in Eq. (2.12) the interconnections
 for all

another rule base residing in the same or in a different layer, the
 inter

layers from the first to the last but one inclusive are global whereas
 the

2.6 Complexity Analysis in Fuzzy Systems 15

aspects of complexity. SO systems seem to have slightly better
transparency than MO systems but in terms of efficiency they are the same.
FB systems are more complex than FF systems in terms of both quantitative
and qualitative complexity. And finally, SRB systems are usually less
complex than MRB systems in both quantitative and qualitative terms.

Usually, the maximum number of rules in a fuzzy system r is an
exponential function of the number of the inputs m and the number of
linguistic values w that each of these inputs can take [37, 48, 51, 60, 66]. In
most cases, this exponential function is in the form:

r = w m (2.13)

However, if the number of linguistic values per input is not a constant,
then the maximum number of rules in a fuzzy system is given by the
arithmetic product

r = w1 … wm
(2.14)

where wp, p = 1,.., m, is the number of linguistic values that the p-th input
can take. In this case, although Eq. (2.14) is not in an explicit exponential
form, the number of rules r is still an implicit exponential function.

It is obvious from Eqs. (2.1)–(2.2) and Eqs. (2.9)–(2.10) that for a fuzzy
system with 2 inputs which can take 5 linguistic values each, the number of
rules is only 25. However, for 3 inputs this number is 125, whereas in the
case of 4 inputs it becomes 625. This phenomenon is illustrated in a wider
context in Fig. 2.1 where each of the 2, 3 or 4 inputs is supposed to take 3,
5, 7, 9 or 11 linguistic values. So, it is not hard to imagine what the impact
of more inputs or more linguistic values per input would be on the number
of rules.

The considerations presented above show clearly the level of quantitative
complexity associated with multivariable fuzzy systems, even for the case
of a fairly small number of inputs. Bearing in mind that many real life
systems are usually characterised by a much larger number of inputs and
often have to be operated in real-time, it is obvious that the resulting
quantitative complexity has to be taken very seriously.

Besides this, as the number of rules gets bigger, it usually becomes
harder to understand what is happening in the fuzzy system because the
transparency of the rules reduces and our ability to interpret them suffers
from that. Therefore, the level of qualitative complexity in the fuzzy system
also increases with the increase of the number of rules.

16 2 Basic Types of Fuzzy Rules Based Systems

0

2000

4000

6000

8000

10000

12000

14000

16000

2 3 4

Number of inputs

N
u

m
b

e
r
 o

f
r
u

le
s

3 linguistic values 5 linguistic values

7 linguistic values 9 linguistic values

11 linguistic values

Fig. 2.1. Number of rules as an exponential function of number of inputs

It must be noted that the number of rules in a fuzzy system is only a
rough indicator of the quantitative complexity in the system. The exact
level of this complexity is a function of the overall amount of fuzzy
operations during fuzzification, inference and defuzzification, and this
amount itself depends on the number of rules. However, for the purpose of
reducing the quantitative complexity in a fuzzy system, it may be sufficient
to reduce the number of fuzzy rules without analysing the precise impact of
this reduction on the amount of the associated fuzzy operations. In this
case, the fuzzy system with the initial number of rules is usually referred to
as initial fuzzy system (IFS) whereas the fuzzy system with the reduced
number of rules is called reduced fuzzy system (RFS).

Most of the known methods for complexity reduction in fuzzy systems
reduce the number of fuzzy rules by either reducing the number of inputs or
the number of linguistic values that these inputs can take. These methods
are classified into several groups and are discussed in the next chapter.

3 Rule Base Reduction Methods for Fuzzy Systems

3.1 Removal and Merging of Linguistic Values

The first group of methods for rule base reduction are aimed at removing
less significant or merging similar linguistic values [67, 68]. For simplicity,
this group of methods and all other methods in the current chapter will be
illustrated by integer tables such that the linguistic values of the inputs are
coded by integers whereas the outputs are either skipped as irrelevant or
presented in a general form.

For example, if the IFS is described by the two inputs i1 and i2, and if
each of these inputs can take the three linguistic values small (S), medium
(M) and big (B), we may decide to remove the value M in which case the
values S and B will cover all crisp input values that would otherwise be
classified as M. So, if S = 1, M = 2 and B = 3 in the IFS, and if S = 1 and
B=3 in the RFS, then these two systems will be illustrated in Figs. 3.1–3.2
and the antecedent parts of their rule bases will be represented by
Tables 3.1–3.2.

Fig. 3.1. Initial fuzzy system

Alexander
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

 i1 (S, B)

 i2 (S, B)

Fig. 3.2. Reduced fuzzy system after removal of linguistic value M

RFS

Gegov: Complexity Management in Fuzzy Systems, StudFuzz 211, 17–31 (2007)

i1 (S, M, B)

i2 (S, M, B)
 IFS

18 3 Rule Base Reduction Methods for Fuzzy Systems

Table 3.2. Reduced fuzzy system after removal of linguistic value M = 2

Rule number Linguistic value of i1 Linguistic value of i2

1 1 1
2 1 3
3 3 1
4 3 3

Alternatively, we may decide to merge some of the linguistic values from
the IFS in Table 3.1 into new linguistic values, e.g. the values M and B can
be merged into a new value called between medium and big (MB). So, if
S = 1 and MB = 4 in the RFS, then this system will be illustrated in Fig. 3.3
and the antecedent part of its rule base will be represented by Table 3.3.

 i1 (S, MB)

 i2 (S, MB)

Fig. 3.3. Reduced fuzzy system after merging of linguistic values M and B into MB

Table 3.3. Reduced fuzzy system after merging of linguistic values M and B into
MB = 4

Rule number Linguistic value of i1 Linguistic value of i2

1 1 1
2 1 4
3 4 1
4 4 4

RFS

Table 3.1. Initial fuzzy system

Rule number Linguistic value of i1 Linguistic value of i2

1 1 1
2 1 2
3 1 3
4 2 1
5 2 2
6 2 3
7 3 1
8 3 2
9 3 3

3.2 Removal and Fusion of Inputs 19

linguistic values. On the other hand, the method based on merging of
linguistic values is more difficult to apply due to the necessity to define a
new fuzzy set for each of the merged linguistic values but it is less risky.

As a whole, the process of removing and merging of linguistic values is
usually associated with loss or aggregation of information. In other words,
although the number of rules in the IFS can be substantially reduced, this
reduction usually comes with a price because the RFS may not represent
adequately the IFS.

3.2 Removal and Fusion of Inputs

The second group of methods for complexity reduction are aimed at
removing less significant or fusing similar inputs [42, 50].

For example, if the IFS is described by the three inputs i1 (position),
i2 (velocity) and i3 (acceleration), and if each of these inputs can take the
two linguistic values small (S) and big (B), we may decide to remove input
i3. So, if S = 1and B = 2 in both the IFS and the RFS, then these two
systems will be illustrated in Figs. 3.4–3.5 and the antecedent parts of their

 i1 (S, B)

 i2 (S, B)

 i3 (S, B)

Fig. 3.4. Initial fuzzy system

 IFS

From the two methods presented above, the one based on removal of
linguistic values is more straightforward but it involves a higher risk as a
result of the removal of the corresponding fuzzy set for each of the removed

rule bases will be represented by Tables 3.4--3.5.

Fig. 3.5. Reduced fuzzy system after removal of input i3

i1 (S, B)

i2 (S, B)
RFS

20 3 Rule Base Reduction Methods for Fuzzy Systems

Table 3.5. Reduced fuzzy system after removal of input i3

Rule number Linguistic value of i1 Linguistic value of i2

1 1 1
2 1 2
3 2 1
4 2 2

Alternatively, we may decide to fuse some of the inputs from the IFS in
Table 3.4 into a new input, e.g. the inputs i2 and i3 can be fused into a new
hybrid input i4 (velocity/acceleration). In this case, the RFS will be
illustrated in Fig. 3.6 and the antecedent part of its rule base will be
represented by Table 3.6.

Fig. 3.6. Reduced fuzzy system after fusion of inputs i2 and i3 into i4

Table 3.6. Reduced fuzzy system after fusion of inputs i2 and i3 into i4

Rule number Linguistic value of i1 Linguistic value of i4

1 1 1
2 1 2
3 2 1
4 2 2

inputs is more straightforward but it involves a higher risk as a result of the
removal of the corresponding variable. On the other hand, the method based

Table 3.4. Initial fuzzy system

Rule number Linguistic value of i1 Linguistic value of i2 Linguistic value of i3

1 1 1 1
2 1 1 2
3 1 2 1
4 1 2 2
5 2 1 1
6 2 1 2
7 2 2 1
8 2 2 2

From the two methods presented above, the one based on removal of

 i1 (S, B)

i4 (S, B) RFS

3.3 Singular Value Decomposition of Output Matrix 21

on fusion of inputs is more difficult to apply due to the necessity to justify
the fusion of particular variables but it is less risky.

As in the case of removal and merging of linguistic values, removal and
fusion of inputs is usually associated with loss or aggregation of
information. In other words, although the number of rules in the IFS can be
substantially reduced, this reduction usually comes with a price because the
RFS may not represent adequately the IFS.

3.3 Singular Value Decomposition of Output Matrix

The third group of methods are based on singular value decomposition of
the matrix representing the crisp values of the output in a fuzzy system [70,
72, 80]. As a result of this, the number of linguistic values for the inputs in
the system is reduced.

For example, if the IFS is described by the two inputs i1 and i2, and if
each of these inputs can take the five linguistic values negative big (NB),
negative small (NS), zero (Z), positive small (PS) and positive big (PB),
then the RFS will have the same inputs but each of them will possibly take
only two linguistic values such as negative (N) and positive (P). So, if
NB = 1, NS = 2, Z = 3, PS = 4 and PB = 5 in the IFS, and if N = 6 and P = 7
in the RFS, then these two systems will be illustrated in Figs. 3.7–3.9 and
the antecedent parts of their rule bases will be represented by Tables 3.7–3.8.

 i1 (NB, NS, Z, PS, PB)

 i2 (NB, NS, Z, PS, PB)

Fig. 3.7. Initial fuzzy system

 i1 (N, P)

 i2 (N, P)

Fig. 3.8. Reduced fuzzy system by singular value decomposition with linguistic
values N and P

 IFS

RFS

22 3 Rule Base Reduction Methods for Fuzzy Systems

Table 3.7. Initial fuzzy system

Rule number Linguistic value of i1 Linguistic value of i2

1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 2 1
7 2 2
8 2 3
9 2 4
10 2 5
11 3 1
12 3 2
13 3 3
14 3 4
15 3 5
16 4 1
17 4 2
18 4 3
19 4 4
20 4 5
21 5 1
22 5 2
23 5 3
24 5 4
25 5 5

 i1 (N, Z, P)
 o1

 i2 (N, Z, P)

Fig. 3.9. Initial fuzzy system

 IFS

3.4 Conversion into Union Rule Configuration 23

Even in the case of two inputs, the RFS only approximates the behaviour
of the IFS and the quality of this approximation can not be guaranteed in
advance. Therefore, additional analysis must be carried out to ensure that
the RFS is a good approximation of the IFS.

3.4 Conversion into Union Rule Configuration

The fourth group of methods are based on converting the intersection rule
configuration of a fuzzy system into a union rule configuration with a
smaller number of rules [12, 56, 73]. In this case, the behaviour of the RFS
is similar to the one of the IFS.

For example, if the IFS is described by the two inputs i1, i2 and the output
o1, and if its rule base is in the intersection rule configuration (i1 and i2) then
o1, then it may be possible to convert this configuration into the union rule
configuration if (i1 then o1) or if (i2 then o1). So, if each of the inputs can
take the three linguistic values negative (N), zero (Z) and positive (P), and
if N = 1, Z = 2 and P = 3 for both the IFS and the RFS, then these two
systems will be illustrated in Figs. 3.9–3.10 and their rule bases will be
represented by Tables 3.9–3.11.

As in the case of singular value decomposition, the conversion into union
rule configuration can be very effective in reducing the number of rules in
the IFS. However, this type of conversion can only be applied to a special
class of systems called ‘additively separable’. But even in this case, the
RFS only approximates the behaviour of the IFS and the quality of this
approximation can not be guaranteed in advance. For this reason, additional
analysis must be carried out to ensure that the RFS is a good approximation

Although this group of methods can be very effective in reducing the
number of rules in a fuzzy system, they are applicable mainly for systems
with two inputs. In the case of more than two inputs, the singular value
decomposition procedure becomes quite complex as the dimension of the
space in which the associated matrix is defined increases accordingly. For
example, for a system with three inputs, the associated matrix will be
defined in a three-dimensional space.

Table 3.8. Reduced fuzzy system by singular value decomposition with linguistic
values N = 6 and P = 7

Rule number Linguistic value of i1 Linguistic value of i2

1 6 6
2 6 7
3 7 6
4 7 7

of the IFS.

24 3 Rule Base Reduction Methods for Fuzzy Systems

Table 3.9. Initial fuzzy system

Rule number Linguistic value of i1 Linguistic value of i2 Linguisticvalue of o1

1 1 1 vo1,1

2 1 2 vo1,2

3 1 3 vo1,3

4 2 1 vo1,4

5 2 2 vo1,5

6 2 3 vo1,6

7 3 1 vo1,7

8 3 2 vo1,8

9 3 3 vo1,9

 i1 (N, Z, P)

 o1

or

 i2 (N, Z, P)

Fig. 3.10. First and second term in the reduced fuzzy system with union rule
configuration

Table 3.10. First term in the reduced fuzzy system with union rule configuration

Rule number Linguistic value of i1 Linguistic value of o1

1 1 vo1,1

2 2 vo1,2

3 3 vo1,3

Table 3.11. Second term in the reduced fuzzy system with union rule configuration

Rule number Linguistic value of i2 Linguistic value of o1

1 1 vo1,1

2 2 vo1,2

3 3 vo1,3

1

2

3.5 Spatial Decomposition into Subsystems 25

3.5 Spatial Decomposition into Subsystems

The fifth group of methods convert a fuzzy system into spatially
decomposed subsystems as a result of which the overall number of rules is
reduced [6, 9, 10, 17, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 39, 49, 54, 57, 63, 65, 71, 74, 78, 79, 83, 84]. In this case, the stronger
interactions among the subsystems are usually partially compensated
whereas the weaker ones are ignored. Depending on the decomposition
approach used, the resulting decomposed system has a distributed,
decentralised, decoupled or multilevel structure.

For example, if the IFS is described by the two inputs i1, i2 and the two
output o1, o2, then this system can be decomposed into two subsystems such
that i1 and o1 are the input and the output for the first subsystem whereas i2

and o2 are the input and the output for the second subsystem. So, if each of
the inputs can take the three linguistic values negative (N), zero (Z) and
positive (P), and if N = 1, Z = 2 and P = 3 for both the IFS and the RFS,
then these two systems will be illustrated in Figs. 3.11–3.12 and their rule
bases will be represented by Tables 3.12–3.14.

 i1 (N, Z, P) o1

 i2 (N, Z, P) o2

Fig. 3.11. Initial fuzzy system

 IFS

 i1 (N, Z, P) o1

and

 i2 (N, Z, P) o2

Fig. 3.12. First and second subsystem in the reduced fuzzy system with spatial
decomposition

1

2

26 3 Rule Base Reduction Methods for Fuzzy Systems

Table 3.13. First subsystem in the reduced fuzzy system with spatial
decomposition

Rule number Linguistic value of i1 Linguistic value of o1

1 1 vo1,1

2 2 vo1,2

3 3 vo1,3

Table 3.14. Second subsystem in the reduced fuzzy system with spatial
decomposition

Rule number Linguistic value of i2 Linguistic value of o2

1 1 vo2,1

2 2 vo2,2

3 3 vo2,3

Although these methods have been widely used for quite a long time,
they have some serious drawbacks. The ability of the RFS to approximate
the behaviour of the IFS depends on the strength of the interactions among
subsystems and the effectiveness of their compensation, which can not be
guaranteed in advance. Therefore, additional analysis must be carried out to
ensure that the RFS is a good approximation of the IFS.

3.6 Decomposition into Multilayer Hierarchical Structure

The last group of methods rearrange the inputs in a fuzzy system in a way
that leads to the reduction of the number of rules [5, 8, 41, 45, 46, 52, 64,
76, 82]. Actually, the fuzzy system is decomposed into a multilayer
hierarchical structure such that each layer has only two inputs and one
output.

Table 3.12. Initial fuzzy system

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 1 vo1,1 vo2,1

2 1 2 vo1,2 vo2,2

3 1 3 vo1,3 vo2,3

4 2 1 vo1,4 vo2,4

5 2 2 vo1,5 vo2,5

6 2 3 vo1,6 vo2,6

7 3 1 vo1,7 vo2,7

8 3 2 vo1,8 vo2,8

9 3 3 vo1,9 vo2,9

3.6 Decomposition into Multilayer Hierarchical Structure 27

For example, if the IFS is described by the three inputs i1, i2, i3 and the
output o1, then this system can be decomposed into two layers. In this case,
i1 and i2 are the inputs to the first layer, a new variable z1 is an intermediate
output from the first layer and an intermediate input to the second layer, i3

is the other input to the second layer and o1 is its output. So, if each of the
inputs i1, i2, i3 and the intermediate input z1 can take the three linguistic
values negative (N), zero (Z) and positive (P), and if N = 1, Z = 2 and P = 3

Figs. 3.13–3.14 and their rule bases will be represented by Table 3.15–3.17.

 i1 (N, Z, P)

 i2 (N, Z, P) o1

 i3 (N, Z, P)

Fig. 3.13. Initial fuzzy system

 i1 (N, Z, P)
 z1 (N, Z, P)
 i2 (N, Z, P)
 o1

 i3 (N, Z, P)

Fig. 3.14. First and second layer in the reduced fuzzy system with multilayer
hierarchical structure

Although these methods have become quite popular recently, they have
some serious drawbacks such as the unclear interpretation of the
intermediate variables and the poor transparency of the rules in the
multilayer hierarchical structure. Apart from that, the overall behaviour of
the layers in the RFS is only an approximation of the behaviour of the
IFS. This is due to the fact that each layer has only two inputs while the
other inputs from the IFS are actually ignored. Also, the intermediate
variables are usually defuzzified as outputs from one layer and then

 IFS

1

2

for both the IFS and the RFS, then these two systems will be illustrated in

28 3 Rule Base Reduction Methods for Fuzzy Systems

fuzzified as inputs to the next layer, which leads to further deviation from
the behaviour of the IFS. Therefore, additional analysis must be carried out
to ensure that the RFS is a good approximation of the IFS.

Table 3.15. Initial fuzzy system

Rule
number

Linguistic
value of i1

Linguistic value
of i2

Linguistic value
of i3

Linguistic value
of o1

1 1 1 1 vo1,1

2 1 1 2 vo1,2

3 1 1 3 vo1,3

4 1 2 1 vo1,4

5 1 2 2 vo1,5

6 1 2 3 vo1,6

7 1 3 1 vo1,7

8 1 3 2 vo1,8

9 1 3 3 vo1,9

10 2 1 1 vo1,10

11 2 1 2 vo1,11

12 2 1 3 vo1,12

13 2 2 1 vo1,13

14 2 2 2 vo1,14

15 2 2 3 vo1,15

16 2 3 1 vo1,16

17 2 3 2 vo1,17

18 2 3 3 vo1,18

19 3 1 1 vo1,19

20 3 1 2 vo1,20

21 3 1 3 vo1,21

22 3 2 1 vo1,22

23 3 2 2 vo1,23

24 3 2 3 vo1,24

25 3 3 1 vo1,25

26 3 3 2 vo1,26

27 3 3 3 vo1,27

3.7 Comparative Analysis of Reduction Methods 29

Table 3.16. First layer in the reduced fuzzy system with multilayer hierarchical
structure

Rule number Linguistic value of i1 Linguistic value of i2 Linguisticvalue of z1

1 1 1 vz1,1

2 1 2 vz1,2

3 1 3 vz1,3

4 2 1 vz1,4

5 2 2 vz1,5

6 2 3 vz1,6

7 3 1 vz1,7

8 3 2 vz1,8

9 3 3 vz1,9

Table 3.17. Second layer in the reduced fuzzy system with multilayer hierarchical
structure

Rule number Linguistic value of z1 Linguistic value of i3 Linguisticvalue of o1

1 1 1 vo1,1

2 1 2 vo1,2

3 1 3 vo1,3

4 2 1 vo1,4

5 2 2 vo1,5

6 2 3 vo1,6

7 3 1 vo1,7

8 3 2 vo1,8

9 3 3 vo1,9

3.7 Comparative Analysis of Reduction Methods

Most of the known methods for rule base reduction in fuzzy systems have
serious drawbacks such as empirical nature, limited scope and
approximated behaviour of the IFS. A brief comparison of these methods in
terms of their attributes is given in Table 3.18.

The empirical nature of most of the methods assumes the use of a ‘trial
and error’ approach. The latter is generally unreliable in that the quality of
the RFS depends mainly on the good or the bad luck during the trials.
Besides this, the limited scope of some of the methods makes them
inapplicable to a large group of fuzzy systems. Also, the approximation of
the behaviour of the IFS usually compromises the overall quality of the
RFS. And finally, although all these methods reduce the quantitative

complexity.complexity of the IFS, they do not reduce its qualitative

30 3 Rule Base Reduction Methods for Fuzzy Systems

Table 3.18. Comparison of rule base reduction methods

Method/Attribute Nature Scope Behaviour Quantitative
complexity

Qualitative
complexity

First Group empirical universal approximate reduced unaffected
Second Group empirical universal approximate reduced unaffected
Third Group systematic limited approximate reduced unaffected
Fourth Group systematic limited approximate reduced unaffected
Fifth Group empirical universal approximate reduced unaffected
Sixth Group empirical universal approximate reduced unaffected

Obviously, it would be ideal to find a universal and systematic approach
to simplifying the IFS, which also guarantees that the behaviour of the
simplified system is equivalent to the one of the IFS. The main advantages
of this novel approach in comparison to most of the known rule based
reduction methods would be its wide applicability irrespective of the
properties of the IFS, its capability to lend itself easily to mathematical
formalisation and its ability to guarantee that the simplification made to the
IFS does not come at a price. On top of that, the quantitative and the
qualitative complexity of the IFS would be reduced. A brief description of
the attributes of such an approach is shown in Table 3.19.

Table 3.19. Attributes of the novel approach

Approach/
Attribute

Nature Scope Behaviour Quantitative
complexity

Qualitative
complexity

Novel systematic universal equivalent reduced reduced

The underlying philosophy of this novel approach deals with complexity
related issues in fuzzy systems not only by reducing the number of fuzzy
rules which has an impact mainly on the quantitative complexity of the
fuzzy system but from a much wider perspective. This perspective takes
into account factors that contribute to the qualitative complexity of the
fuzzy system, e.g. the way in which the rules are handled. For this reason,
the more general term ‘complexity management’ is used here instead of the
relatively specific term ‘complexity reduction’.

In summary, the potential advantages of such an approach in comparison
to the known rule base reduction methods are that:

it would not require any underlying knowledge about the real system that
is modelled by the fuzzy system,
it would guarantee that the behaviour of the RFS is not approximate but
equivalent to the behaviour of the IFS,

3.7 Comparative Analysis of Reduction Methods 31

it would be applicable to a fuzzy system with any number of
 inputs/ outputs and any type of linguistic values that these inputs/outputs
 can take,
it would be based on systematic rather than empirical considerations that
justify the approach and guarantee a successful result,
it would use a simple formal model that is easy to use by people with
different mathematical background,
it would be applicable to a fuzzy system with any type of rule base in
terms of the CON and DIS properties of the antecedent terms and the
rules,
it would be applicable for a variable number and meaning of the
linguistic values of the inputs and the outputs.

In order to develop such an approach, we need to be able to formally
present fuzzy systems and their rule bases. Moreover, such an approach
would be in line with the recent trend of using formal methods for fuzzy
modelling and control [16, 24]. However, the integer tables used in this
chapter are quite simplistic and not suitable for formal handling. For this
reason, the next chapter introduces more advanced techniques for formal
presentation of fuzzy rule based systems.

4 Formal Presentation of Fuzzy Rule Based Systems

4.1 Basic Properties of Fuzzy Rule Bases

The management of complexity in fuzzy systems relies on the basic
properties of fuzzy rule bases. These properties reflect the extent to which
of the permutations of linguistic values of inputs and outputs are available
as well as the type of mapping between the permutations of linguistic
values of the inputs in the antecedent part of the rule base and the
corresponding permutations of linguistic values of the outputs in the
consequent part.

Four basic properties of fuzzy rule bases are introduced here. Definitions
for these properties and examples illustrating them are given below. For
consistency with the notation used in the previous chapter, the formal
presentation of the properties and the corresponding examples are made
initially by integer tables. However, these same properties and examples are
represented by more advanced formal techniques in Sects. 4.3–4.4.

Definition 4.1
A fuzzy rule base is complete if and only if all possible permutations of

linguistic values of the inputs are present in the antecedent part of the rule
base.

Example 4.1
A fuzzy system is described by the two inputs i1, i2 and the two outputs

o1, o2. Each of the inputs can take the two linguistic values small (S) and big
(B), whereas each of the outputs can take the three linguistic values
negative (N), zero (Z) and positive (P). So, if S = 1, B = 2, N = 1, Z = 2 and
P = 3, then a complete rule base for this system will be represented by
Table 4.1.

Table 4.1. Complete rule base for a fuzzy system

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 1 1 1
2 1 2 1 2
3 2 1 1 3
4 2 2 2 1

Alexander
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

Gegov: Complexity Management in Fuzzy Systems, StudFuzz 211, 33–63 (2007)

34 4 Formal Presentation of Fuzzy Rule Based Systems

Definition 4.2
A fuzzy rule base is exhaustive if and only if all possible permutations of

linguistic values of the outputs are present in the consequent part of the rule
base.

Example 4.2
A fuzzy system is described by the two inputs i1, i2 and the two outputs

o1, o2. Each of the inputs can take the three linguistic values small (S),
medium (M) and big (B), whereas each of the outputs can take the two
linguistic values negative (N) and positive (P). So, if S = 1, M = 2, B = 3,
N = 1 and P = 2, then an exhaustive rule base for this system will be
represented by Table 4.2.

Table 4.2. Exhaustive rule base for a fuzzy system

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 1 1 1
2 1 2 1 2
3 1 3 2 1
4 2 1 2 2

Definition 4.3
A fuzzy rule base is consistent if and only if every available permutation

of linguistic values of the inputs is mapped onto only one permutation of
linguistic values of the outputs.

Example 4.3
A fuzzy system is described by the two inputs i1, i2 and the two outputs

o1, o2. Each of the inputs can take the three linguistic values small (S),
medium (M) and big (B), whereas each of the outputs can take the two
linguistic values negative (N) and positive (P). So, if S = 1, M = 2, B = 3,
N = 1 and P = 2, then a consistent rule base for this system will be
represented by Table 4.3.

Definition 4.4
A fuzzy rule base is monotonic if and only if every available permutation

of linguistic values of the outputs is mapped from only one permutation of
linguistic values of the inputs.

4.1 Basic Properties of Fuzzy Rule Bases 35

Table 4.3. Consistent rule base for a fuzzy system

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 1 1 1
2 1 2 1 1
3 1 3 1 1
4 2 1 1 2
5 2 2 1 2
6 2 3 2 1
7 3 1 2 1
8 3 2 2 2
9 3 3 2 2

Example 4.4
A fuzzy system is described by the two inputs i1, i2 and the two outputs

o1, o2. Each of the inputs can take the two linguistic values small (S) and big
(B) whereas each of the outputs can take the three linguistic values negative
(N), zero (Z) and positive (P). So, if S = 1, B = 2, N = 1, Z = 2 and P = 3,
then a monotonic rule base for this system will be represented by Table 4.4.

Table 4.4. Monotonic rule base for a fuzzy system

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 1 1 1
2 1 1 1 2
3 1 1 1 3
4 1 2 2 1
5 1 2 2 2
6 2 1 2 3
7 2 1 3 1
8 2 2 3 2
9 2 2 3 3

If a fuzzy rule base does not have some of the four basic properties, then
some or more of Definitions 4.1–4.4 will not hold. In this case, the fuzzy
rule base will have some of the corresponding dual properties, which are
described by the definitions below.

Definition 4.5
A fuzzy rule base is incomplete if and only if at least one of all possible

permutations of linguistic values of the inputs is missing from the
antecedent part of the rule base.

36 4 Formal Presentation of Fuzzy Rule Based Systems

Definition 4.6
A fuzzy rule base is non-exhaustive if and only if at least one of all

possible permutations of linguistic values of the outputs is missing from the
consequent part of the rule base.

Definition 4.7
A fuzzy rule base is inconsistent if and only if at least one of all available

permutations of linguistic values of the inputs is mapped onto more than
one permutation of linguistic values of the outputs.

Definition 4.8
A fuzzy rule base is non-monotonic if and only if at least one of all

available permutations of linguistic values of the outputs is mapped from
more than one permutation of linguistic values of the inputs.

4.2 Analysis of Rule Base Properties

There is an obvious duality between Definitions 4.1–4.4 and Definitions

base that has a specific property, each definition from the last four ones
describes a fuzzy rule base that does not have this property.

For completeness, a fuzzy rule base must be described by its full
property status which shows which of the four basic properties are available
using the Boolean values true (T) and false (F). Such a description for the
four fuzzy rule bases from Sect. 4.1 is given in Table 4.5.

Table 4.5. Full property status for fuzzy rule bases represented by integer tables

Fuzzy rule base/Property Complete Exhaustive Consistent Monotonic
Table 4.1 T F T T
Table 4.2 F T T T
Table 4.3 T T T F
Table 4.4 T T F T

The full property status in Table 4.5 reveals the impact of some changes
in the input-output mappings of the fuzzy rule bases on their properties. For
example, the integer table in Table 4.2 is an inverse image of the integer
table in Table 4.1 whereby the Boolean values for completeness and
exhaustiveness in the rule base from the first table are actually inverted
with respect to the values in the rule base from the second table. Similarly,
the integer table in Table 4.4 is an inverse image of the integer table in
Table 4.3 whereby the Boolean values for consistency and monotonousness

4.5--4.8. While each definition from the first four ones describes a fuzzy rule

4.2 Analysis of Rule Base Properties 37

in the rule base from the first table are inverted with respect to the ones in
the rule base from the second table.

It is useful to know to what extent a fuzzy rule base is likely to have each
of the four basic properties. Usually, a fuzzy rule base is expected to be
complete, i.e. with all possible permutations of linguistic values of inputs
available, although that may not always be the case. As far as the
permutations of linguistic values of the outputs are concerned, it is fairly
common for some of them to be missing and therefore a fuzzy rule base is
likely to be non-exhaustive. Ideally, a fuzzy rule base must be consistent,
i.e. with each available permutation of linguistic values of inputs yielding
only one permutation of linguistic values of outputs. And finally, it is quite
common for some permutations of linguistic values of outputs to be yielded
by more than one permutation of linguistic values of inputs and therefore a
fuzzy rule base is likely to be non-monotonic.

Theoretically speaking, there are 16 possible permutations of Boolean
values of properties for a fuzzy rule bases but not all of these permutations
are equally desirable. If the level of desirability for the permutations is
described by the linguistic values low (L), medium (M) and high (H), then
these permutations can be represented by Table 4.6.

Table 4.6. Permutations of properties for a fuzzy rule base

Permutation/
Property

Complete Exhaustive Consistent Monotonic Desirability

1 T T T T H
2 T T T F H
3 T T F T L
4 T T F F L
5 T F T T H
6 T F T F H
7 T F F T L
8 T F F F L
9 F T T T M
10 F T T F M
11 F T F T L
12 F T F F L
13 F F T T M
14 F F T F M
15 F F F T L
16 F F F F L

It is worth noting that some of the permutations of Boolean values of
properties in Table 4.6 may not be possible for some fuzzy rule bases. For
example, if a fuzzy system has two inputs and one output whereby each of
them can take three linguistic values, then permutation 1 will be impossible,
i.e. the rule base can not be complete, exhaustive, consistent and monotonic

38 4 Formal Presentation of Fuzzy Rule Based Systems

at the same time. In particular, if the rule base is complete, it will have 9
rules and therefore some of the linguistic values for the output will appear
more than once, i.e. the rule base will be non-monotonic. On the other
hand, if the rule base is monotonic with 3 rules such that each linguistic
value for the output appears only once, then 6 permutations of linguistic
values for the inputs will be missing and therefore the rule base will be
incomplete.

It is obvious from Table 4.6 that a complete and consistent fuzzy rule
base is very desirable not only because it provides detailed information
about the fuzzy system by means of all possible permutations of linguistic
values of inputs but also because its inference mechanism is

 non
 rule base is still desirable due to its non-contradictory inference mechanism
although it does not provide detailed information about the fuzzy system
(see permutations 9-10, 13-14). However, an inconsistent fuzzy rule base is
not desirable irrespective of whether it is complete or not because its
inference mechanism is contradictory (see permutations 3-4, 7-8, 11-12,

 15-16).
A deeper analysis of Table 4.6 shows that the permutations with high

level of desirability are the ones that correspond to a complete and
consistent fuzzy rule base. These properties relate to the antecedent part of
the rule base over which we usually have some control. In this respect, we
can make additional observations on the inputs in order to add the rules
with the missing permutations of linguistic values and to make the rule base
complete. Also, we can make additional observations on the outputs in
order to remove the redundant rules with the same antecedent part and to
make the rule base consistent.

Therefore, if a fuzzy rule base is initially in a ‘low’ property status, we
should be able to achieve a ‘high’ status by means of additional
observations on the inputs and the outputs. However, if a ‘high’ property
status is not achievable from a ‘low’ status for some reason, e.g. due to time
constraints on the additional observations, then we should be able to
achieve at least a ‘medium’ status by means of additional observations on
the outputs. Obviously, if a fuzzy rule base is initially in a ‘medium’
property status, then we should be able to achieve a ‘high’ status by means
of additional observations on the inputs.

The required types of additional observations for achieving transitions
from one property status to another for fuzzy rule bases areshowninTable 4.7.
In this case, a transition is desirable only if it is from a lower to a higher
property status although such a transition may not always be possible due to
inability to make sufficient additional observations. On the other hand, a
transition from a higher to a lower property status is always possible, e.g. it
is easy to remove rules or add contradictory rules, but such a transition is
undesirable as it actually deteriorates the inference mechanism of the fuzzy
system.

-contradictory (see permutations 1-2, 5-6). An incomplete but consistent

4.3 Presentation of Rule Bases by Boolean Matrices 39

Property status To low To medium To high
From low – output observations input and output

observations
From medium undesirable – input observations
From high undesirable undesirable –

The considerations made above show that if a fuzzy rule base is not in a
‘high’ or at least in a ‘medium’ property status, we are very likely to be
able to achieve a higher status using additional observations on the inputs
or the outputs. Such a transition will improve the inference mechanism of
the fuzzy system.

4.3 Presentation of Rule Bases by Boolean Matrices

Although integer tables can be quite useful for formal presentation of fuzzy
rule bases in relation to their properties, they also have some serious
drawbacks. For example, they may contain repetitive information such as
rules with the same antecedent parts in inconsistent rule bases or rules with
the same consequent parts in non-monotonic rule bases. Also, as integer
tables are a bit rigid, they do not appear to be suitable for formal
manipulation of fuzzy rule bases, e.g. during a transition to a higher
property status. And finally, it may be quite difficult and time consuming to
define the property status by means of integer tables, especially in the case
of large fuzzy rule bases.

Obviously, more advanced techniques for formal presentation of fuzzy
rule bases would be quite helpful. For this purpose, one such technique is
introduced here. This technique is based on Boolean matrices that have
been thoroughly studied by mathematicians and applied by engineers in a
number of areas such as transport networks and communication networks
[47]. Some basic definitions for Boolean matrices are given below.

Definition 4.9
An m × n Boolean matrix is a matrix with m rows and n columns whose

elements can take only the values 0 and 1.

Definition 4.10
An m × n null Boolean matrix is a matrix with m rows and n columns all

of whose elements are equal to 0.

Table 4.7. Transitions from one property status to another for fuzzy rule bases

40 4 Formal Presentation of Fuzzy Rule Based Systems

Definition 4.11
An m × n universal Boolean matrix is a matrix with m rows and n

columns all of whose elements are equal to 1.

Definition 4.12
A Boolean matrix is square if and only if the number of its rows is equal

to the number of its columns.

Definition 4.13
A Boolean matrix is homogenous if and only if its row and column labels

are of the same type.

Definition 4.14
An element in a Boolean square matrix is on-diagonal if and only if its

row and column index are the same.

Definition 4.15
An element in a Boolean square matrix is off-diagonal if and only if its

row and column index are different.

Definition 4.16
An identity Boolean matrix is a square homogenous Boolean matrix all

of whose on-diagonal elements are equal to 1 and all of whose off-diagonal
elements are equal 0.

The basic operations that can be applied to elements of Boolean matrices
are ‘addition’ and ‘multiplication’. They are both binary operations as they
can only be applied to two operands. In the case of more than two elements,
each of the two operations can be applied in a sequential manner, i.e. step
by step, whereby only two elements are considered at each step and the
result from the step becomes an operand in the next step.

The ‘addition’ operation has the effect of taking the ‘maximum’ of the
elements whereas the ‘multiplication’ operation has the effect of taking the
‘minimum’ of the elements. Both operations are commutative, i.e. the result
is not affected if the positions of the two elements are swapped.

In terms of the values of the first and the second element, there are four
different permutations for the ‘addition’ operation which are described by
the following equations:

1 + 1 = max (1, 1) = 1 (4.1)

0 + 1 = max (0, 1) = 1 (4.2)

4.3 Presentation of Rule Bases by Boolean Matrices 41

1 + 0 = max (1, 0) = 1 (4.3)

0 + 0 = max (0, 0) = 0 (4.4)

Similarly, there are four different permutations for the ‘multiplication’
operation which are described by the following equations:

1 . 1 = min (1, 1) = 1 (4.5)

0 . 1 = min (0, 1) = 0 (4.6)

1 . 0 = min (1, 0) = 0 (4.7)

0 . 0 = min (0, 0) = 0 (4.8)

Boolean matrices are multiplied in almost the same way as conventional
matrices, i.e. matrices whose elements can take any values. Each element in
a Boolean matrix product A*B can be obtained by multiplying each row
from the first matrix A with its counterpart column from the second matrix

the corresponding row from the matrix A, whereas the column index of an
element in A*B is the same as the index of the corresponding column from
the matrix B.

The multiplication compatibility rule for Boolean matrices is the same as
the rule for conventional matrices, i.e. the number of columns in the first
matrix must be equal to the number of rows in the second matrix. The only
difference is that instead of applying the arithmetic ‘addition’ and
‘multiplication’ operations on elements of the matrices, we apply the
‘maximum’ and ‘minimum’ operations, respectively.

The ‘addition’ and ‘multiplication’ operations on elements of Boolean
matrices are valid in the context of matrix multiplication only if the two
matrices are compatible. Obviously, Boolean matrix multiplication is non-
commutative because the swapping of the two matrices may violate the
multiplication compatibility rule.

By replacing ‘max’ with ‘or’, ‘0’ with ‘false’ and ‘1’ with ‘true’ in
Eqs. (4.1)–(4.4), the latter can be represented by the following equivalent
form:

T or T = T (4.9)

F or T = T (4.10)

B. In this case, the row index of an element in A*B is the same as the index of

42 4 Formal Presentation of Fuzzy Rule Based Systems

T or F = T (4.11)

F or F = F (4.12)

Similarly, by replacing ‘min’ with ‘and’, ‘0’ with ‘false’ and ‘1’ with
‘true’ in Eqs. (4.5)–(4.8), the latter can be represented by the following
equivalent form:

T and T = T (4.13)

F and T = F (4.14)

T and F = F (4.15)

F and F = F (4.16)

Obviously, there exists a clear duality between Eqs. (4.1)–(4.8) and
Eqs. (4.9)–(4.16). The first group of equations is based on a set theoretic
approach to operations on elements in Boolean matrices while the second
group of equations is based on a Boolean logic approach. This specific type
of duality is a reflection of the general type of duality that is known to exist
between set theory and Boolean logic.

The above duality facilitates the manipulation and the interpretation of
fuzzy rule bases, which are presented formally. For example, a set theoretic
based presentation of a fuzzy rule base can be easily converted into an
equivalent Boolean logic based presentation if this conversion is expected
to improve the transparency of the fuzzy rules. In other cases, the opposite
type of conversion may be required, i.e. from a Boolean logic based
presentation into a set theoretic based presentation.

The process of presenting a fuzzy rule base by a Boolean matrix is
almost straightforward when the rule base is already presented by an integer
table. The following algorithm gives a step by step description of the
process of converting an integer table into a Boolean matrix:

Algorithm 4.1

1. Sort all possible permutations of linguistic values of inputs from
the integer table in an ascending order.

2. Sort all possible permutations of linguistic values of outputs
from the integer table in an ascending order.

3. Label the rows of the Boolean matrix with the sorted
permutations of linguistic values of inputs.

4.3 Presentation of Rule Bases by Boolean Matrices 43

4. Label the columns of the Boolean matrix with the sorted
permutations of linguistic values of outputs.

5. Go through all the elements of the Boolean matrix and set each
element equal to 1 or 0 using steps 6 and 7.

6. If an element of the Boolean matrix reflects an existing mapping
from an input onto an output permutation, set it equal to 1.

7. If an element of the Boolean matrix reflects a non-existing
mapping from an input onto an output permutation, set it equal to
0.

By means of Algorithm 4.1, the four examples of fuzzy rule bases
presented by the integer tables in Tables 4.1–4.4 can be presented
equivalently by the Boolean matrices in Eqs. (4.17)–(4.20), respectively.

Inputs/Outputs 11 12 13 21 22 23 31 32 33

 11 1 0 0 0 0 0 0 0 0
 12 0 1 0 0 0 0 0 0 0
 21 0 0 1 0 0 0 0 0 0
 22 0 0 0 1 0 0 0 0 0

(4.17)

Inputs/Outputs 11 12 21 22

 11 1 0 0 0
 12 0 1 0 0
 13 0 0 1 0
 21 0 0 0 1
 22 0 0 0 0
 23 0 0 0 0
 31 0 0 0 0
 32 0 0 0 0
 33 0 0 0 0

(4.18)

Inputs/Outputs 11 12 21 22

 11 1 0 0 0
 12 1 0 0 0
 13 1 0 0 0
 21 0 1 0 0
 22 0 1 0 0
 23 0 0 1 0
 31 0 0 1 0
 32 0 0 0 1
 33 0 0 0 1

(4.19)

44 4 Formal Presentation of Fuzzy Rule Based Systems

Inputs/Outputs 11 12 13 21 22 23 31 32 33

 11 1 1 1 0 0 0 0 0 0
 12 0 0 0 1 1 0 0 0 0
 21 0 0 0 0 0 1 1 0 0
 22 0 0 0 0 0 0 0 1 1

(4.20)

The full property status of the four fuzzy rule bases described by the

conversion of an integer table into a Boolean matrix does not change the basic
properties and the associated property status of the fuzzy rule base, we can
use Table 4.5 to represent the same rule base by only changing the row
labels appropriately. In this case, the table numbers in Table 4.5 will be
replaced by the corresponding equation numbers, as shown in Table 4.8.

Table 4.8. Full property status for fuzzy rule bases represented by Boolean
matrices

Fuzzy rule base / Property Complete Exhaustive Consistent Monotonic
Equation 4.17 T F T T
Equation 4.18 F T T T
Equation 4.19 T T T F
Equation 4.20 T T F T

As in the case of integer tables, the full property status in Table 4.8
reveals the impact of some changes in the input-output mappings of the
fuzzy rule bases on their properties. For example, the Boolean matrix in
Eq. (4.18) is the transpose of the Boolean matrix in Eq. (4.17) whereby the
Boolean values for completeness and exhaustiveness for the rule base from
the second equation are actually inverted with respect to the values for the
rule base from the first equation. Similarly, the Boolean matrix in Eq. (4.20)
is the transpose of the Boolean matrix in Eq. (4.19) whereby the Boolean
values for consistency and monotonousness in the rule base from the

The conversion of an integer table into a Boolean matrix does not affect
the permutations of properties and the transitions from one property status

valid for any fuzzy rule base irrespective of whether it is presented by an
integer table or a Boolean matrix.

One of the advantages of Boolean matrices with respect to integer tables
is that it is very easy to define the properties of the associated fuzzy rule
base on the basis of the properties of the corresponding matrix. This is so
because the properties of a fuzzy rule base can be implied directly from

integer tables in Tables 4.1-- 4.4 was given earlier in Table 4.5. As the

second equation are inverted with respect to the corresponding values for

to another for the associated fuzzy rule base. Therefore, Tables 4.6–4.7 are

the rule base from the first equation.

4.3 Presentation of Rule Bases by Boolean Matrices 45

some properties of the corresponding matrix such as the number of
 non-zero elements in its rows and columns. The following definitions show
 how this works.

Definition 4.17
A fuzzy rule base is complete if and only if each row in its Boolean

matrix contains at least one non-zero element.

Definition 4.18
A fuzzy rule base is incomplete if and only if at least one row in its

Boolean matrix contains only zero elements.

Definition 4.19
A fuzzy rule base is exhaustive if and only if each column in its Boolean

matrix contains at least one non-zero element.

Definition 4.20
A fuzzy rule base is non-exhaustive if and only if at least one column in

its Boolean matrix contains only zero elements.

Definition 4.21
A fuzzy rule base is consistent if and only if each row in its Boolean

matrix contains not more than one non-zero element.

Definition 4.22
A fuzzy rule base is inconsistent if and only if at least one row in its

Boolean matrix contains more than one non-zero element.

Definition 4.23
A fuzzy rule base is monotonic if and only if each column in its Boolean

matrix contains not more than one non-zero element.

Definition 4.24
A fuzzy rule base is non-monotonic if and only if at least one column in

its Boolean matrix contains more than one non-zero element.

The validity of the definitions above can be checked by examining Table 4.8
and Eqs. (4.17)–(4.20). Obviously, the contents of Table 4.8 can be inferred

Tables 4.1–4.4. This is so because Boolean matrices compress the
information from integer tables, e.g. the matrix labels do not duplicate
permutations of linguistic values of inputs in inconsistent rule bases and
permutations of linguistic values of outputs in non-monotonic rule bases.

much more easily from the properties of the Boolean matrices in
Eqs. (4.17)–(4.20) than from the structure of the corresponding integer tables

 in

46 4 Formal Presentation of Fuzzy Rule Based Systems

Also, scanning elements in a Boolean matrix works much faster and easier
than scanning permutations in integer tables.

4.4 Presentation of Rule Bases by Binary Relations

Although Boolean matrices are superior to integer tables for formal
presentation of fuzzy rule bases, they also have some drawbacks. For
example, the row and column labels in these matrices contain all possible
permutations of linguistic values of inputs and outputs although some of
these labels may be redundant, especially in the case of large fuzzy rule
bases. This redundancy becomes even more obvious in large sparse
Boolean matrices describing incomplete and non-exhaustive fuzzy rule
bases.

Obviously, a more advanced technique for formal presentation of fuzzy
rule bases would be useful. Ideally, this technique should combine the
advantages of integer tables and Boolean matrices by:

not containing redundant row and column labels for the
permutations of linguistic values of inputs in inconsistent rule
 bases and the permutations of linguistic values of outputs in

 non-monotonic rule bases,

defining the properties of the associated fuzzy rule base.

One such technique is introduced here. The technique is based on binary

engineers in a number of application areas [47]. Some basic definitions for
binary relations and other related terms are given below.

Definition 4.25
An m set is a collection of m distinct objects of the same type with

arbitrary ordering.

By ‘objects’ we mean items, numbers, permutations of linguistic values,
etc. By ‘distinct’ we mean that each object can appear not more than once
in a set. By the ‘same type’ we mean that all objects in a set must be of the
same nature, i.e. only items, only numbers, only permutations of linguistic
values, etc. By ‘arbitrary ordering’ we mean that the order of the objects in
a set does not matter, i.e. the changing of the ordering of the objects in a set
does not change the set itself. By ‘collection’ we mean that a set is expected
to contain at least one object although in some cases the collection could be
empty.

allowing fast and easy scanning of elements for the purpose of

not containing redundant rows and columns for the permutations
of

relations that have been thoroughly studied by mathematicians and used by

exhaustive fuzzy rule bases,
linguistic values of inputs and outputs in incomplete and

non-

4.4 Presentation of Rule Bases by Binary Relations 47

Definition 4.26
A null set is an empty collection of objects.

Very often, the term ‘element’ is used when we make a reference to an
object in a set related context. In this case, an element is either a member or
not a member of the set, i.e. it either belongs to or does not belong to the
set.

Definition 4.27
An m × n binary relation is a set all of whose elements are pairs whereby

the first element in each pair belongs to an m set and the second element in
the pair belongs to an n set.

Definition 4.28
A null binary relation is an empty collection of pairs of elements.

Definition 4.29
An m × n universal binary relation is a set that contains all possible pairs

of elements from an m set and an n set.

Definition 4.30
A binary relation is square if and only if the number of elements in the

two participating sets is equal.

Definition 4.31
A binary relation is homogenous if and only if the two participating sets

are of the same type.

Definition 4.32
A pair in a square binary relation is on-diagonal if and only if its

individual elements are in the same position in the two participating sets.

Definition 4.33
A pair in a square binary relation is off-diagonal if and only if its

individual elements are in different positions in the two participating sets.

Definition 4.34
An identity binary relation is a square homogenous binary relation that

contains all the on-diagonal pairs and none of the off-diagonal pairs from
the two participating sets.

48 4 Formal Presentation of Fuzzy Rule Based Systems

Usually, the term maplet is used when we make a reference to a pair in a
binary relation related context. In this sense, a pair is either a member or
not a member of the relation, i.e. it either belongs to or does not belong to
the relation.

A subset of a set may contain only elements, which are members of the
set. Similarly, a subrelation of a binary relation may contain only maplets,
which are members of the binary relation. Therefore, any set is a subset of
itself and any binary relation is a subrelation of itself. Also, by definition a
null set is a subset of any set and a null binary relation is a subrelation of
any binary relation.

Definition 4.35
The domain of a binary relation is the subset of all individual elements

from the first participating set in the relation, which belong to maplets in
this relation.

Definition 4.36
The range of a binary relation is the subset of all individual elements

from the second participating set in the relation, which belong to maplets in
this relation.

The basic operations that can be applied to maplets of binary relations
are ‘aggregation’ and ‘composition’. They are both binary operations as
they can only be applied to two operands. In the case of more than two
maplets, each of the two operations can be applied in a sequential manner,
i.e. step by step, whereby only two maplets are considered at each step and
the result from the step becomes an operand in the next step.

The ‘aggregation’ operation has the effect of replacing two identical
maplets standing in parallel with only one of them, i.e. one of the two
maplets is removed. The following equation describes the ‘aggregation’
operation:

(e1, e2) + (e1, e2) = (e1, e2) (4.21)

The ‘composition’ operation has the effect of replacing two maplets
standing in a sequence with a new maplet. The ‘composition’ operation has
the effect of putting the first element from the first maplet and the second
element from the second maplet in a new maplet provided that the second
element from the first maplet and the first element from the second maplet
are identical.

As opposed to the ‘aggregation’ operation, the ‘composition’ operation is
not commutative, i.e. it may not be possible to apply the operation if the
positions of the two maplets are swapped. The following equation describes
the ‘composition’ operation:

(e1, e2) . (e2, e3) = (e1, e3) (4.22)

4.4 Presentation of Rule Bases by Binary Relations 49

If we swap the positions of the two maplets in Eq. (4.22), it will not be
possible to apply the ‘composition’ operation and merge these maplets into
a new one. In other words, the operation will not have any effect and the
two initial maplets will remain unchanged.

The ‘aggregation’ and ‘composition’ operations can also be applied
when one of the maplets or even both of them are empty. In particular, the

The following equations describe all possible cases for the ‘aggregation’

 () + (e1, e2) = (e1, e2) (4.23)

(e1, e2) + () = (e1, e2) (4.24)

() + () = () (4.25)

 () . (e1, e2) = () (4.26)

(e1, e2) . () = () (4.27)

() . () = () (4.28)

The ‘aggregation’ and ‘composition’ operations are the building blocks
for the composition of binary relations just as the ‘addition’ and
‘multiplication’ operations are the building blocks for the multiplication of
Boolean matrices. Each maplet in a binary relation product A*B can be
obtained by composing a set of maplets with an identical first element from
the first relation A with its counterpart set of maplets with an identical
second element from the second relation B. In this case, the first element of
a maplet in A*B is the same as the first element of the corresponding
maplets from the relation A, whereas the second element of a maplet in A*B
is the same as the second element of the corresponding maplets from the
relation B.

The composition compatibility rule for binary relations requires the set of
second elements in the maplets from the first relation to be equal to the set
of first elements in the maplets from the second relation. The ‘aggregation’
and ‘composition’ operations on maplets of binary relations are valid in the
context of relational composition only if the two relations are compatible.
Obviously, binary relational composition is non-commutative because the
swapping of the relations may violate the composition compatibility rule.

As an empty maplet reflects a non-existing maplet in a binary relation,
 it can be represented formally by the Boolean value ‘false’. Similarly, a
 non-empty maplet that reflects an existing maplet in a binary relation can
 be represented formally by the Boolean value ‘true’. As the ‘aggregation’

and the ‘composition’ operations when at least one of the maplets is empty:

result of aggregating or composing two empty maplets is the empty maplet
whereas the result of aggregating or composing a non-empty maplet with an
empty maplet is either the non-empty maplet or the empty maplet.

50 4 Formal Presentation of Fuzzy Rule Based Systems

operation describes maplets standing in parallel, it can be represented by
the Boolean logical disjunction ‘or’. As opposed to this, the ‘composition’

by the Boolean logical conjunction ‘and’.
Therefore, by replacing ‘+’ with ‘or’, ‘.’ with ‘and’, all empty maplets

(1 2

follows:

(4.21) by (4.1),
(4.22) by (4.5),
(4.23) by (4.2),
(4.24) by (4.3),
(4.25) by (4.4),
(4.26) by (4.6),
(4.27) by (4.7),
(4.28) by (4.8).

As in the case of Boolean matrices, the above equivalences show the
obvious duality between Eqs. (4.21)–(4.28) and Eqs. (4.9)–(4.16). The first
group of equations is based on a set theoretic approach to operations on
maplets in binary relations, whereas the second group of equations is based
on a Boolean logic approach. This specific type of duality is a reflection of
the general type of duality between set theory and Boolean logic, and as
already mentioned in Sect. 4.3, it facilitates the manipulation and the
interpretation of fuzzy rule bases which are presented formally.

The process of presenting a fuzzy rule base by a binary relation is almost
straightforward when the rule base is already represented by an integer
table. The following algorithm gives a step by step description of the
process of converting an integer table into a binary relation:

Algorithm 4.2
1. Go through all the rows of the integer table from top to bottom

by mapping the pair of permutations of linguistic values of
inputs and outputs from each row onto a maplet (as described by
steps 2 and 3).

2. Make the permutation of linguistic values of inputs in each table
row the first element of the maplets corresponding to this row.

3. Make the permutation of linguistic values of outputs in each
table row the second element of the maplets corresponding to
this row.

operation which describes maplets standing in sequence can be represented

(4.28), the latter can be represented equivalently by
Eqs. (4.1)– (4.8) as

) with ‘false’ and all non-empty maplets (e , e) with ‘true’ in
–Eqs. (4.21)

4.4 Presentation of Rule Bases by Binary Relations 51

4. Generate a binary relation containing all the maplets created in
the previous steps of this algorithm.

By means of Algorithm 4.2, the four examples of fuzzy rule bases
presented by the integer tables in Tables 4.1-4.4 can be presented
equivalently by the binary relations in Eqs. (4.29)–(4.32), respectively.

{(11, 11), (12, 12), (21, 13), (22, 21)} (4.29)

{(11, 11), (12, 12), (13, 21), (21, 22)} (4.30)

{(11, 11), (12, 11), (13, 11), (21, 12), (22, 12), (23, 21), (31, 21),
(32, 22), (33, 22)}

(4.31)

{(11, 11), (11, 12), (11, 13), (12, 21), (12, 22), (21, 23), (21, 31),
(22, 32), (22, 33)}

(4.32)

In the binary relations presented by Eqs. (4.28)–(4.32), the maplets are
separated by commas and surrounded by a pair of square brackets. In this
case, the opening and the closing square bracket mark the beginning and the
end of the binary relation, respectively.

As the conversion of an integer table into a binary relation does not
change the basic properties and the associated property status of the fuzzy
rule base, we can use Table 4.5 to present the same rule base by only
changing the row labels appropriately. In this case, the table numbers in
Table 4.5 will be replaced by the corresponding equation numbers, as
shown in Table 4.9.

Table 4.9. Full property status for fuzzy rule bases represented by binary relations

Fuzzy rule base / Property Complete Exhaustive Consistent Monotonic
T F T T
F T T T
T T T F
T T F T

status in Table 4.9 reveals the impact of some changes in the input-output
mappings of the fuzzy rule bases on their properties. For example, the

Eq. (4.29) whereby the Boolean values for completeness and

inverted with respect to the corresponding values for the rule base from the
first equation. Similarly, the binary relation in Eq. (4.32) is the inverse of

Equation 4.29

As in the case of integer tables and Boolean matrices, the full property

Equation 4.30

binary relation in Eq. (4.30) is the inverse of the binary relation in

Equation 4.31

exhaustiveness of the rule base from the second equation are actually

Equation 4.32

52 4 Formal Presentation of Fuzzy Rule Based Systems

the binary relation in Eq. (4.31) whereby the Boolean values for
consistency and monotonousness for the rule base from the second equation
are inverted with respect to the corresponding values for the rule base from

Here again, the conversion of an integer table into a binary relation does
not affect the permutations of properties and the transitions from one
property status to another for the associated fuzzy rule base. Therefore,
Tables 4.6–4.7 are valid for any fuzzy rule base irrespective of whether it is
presented by an integer table or a binary relation.

One of the advantages of binary relations with respect to integer tables is
that it is very easy to define the properties of the associated fuzzy rule base
on the basis of the properties of the corresponding relation. This is so
because the properties of a fuzzy rule base can be implied directly from
some properties of the corresponding relation such as total, partial, onto,
into, one-to-many and many-to-one mappings. The following definitions
show how this works.

Definition 4.37
A fuzzy rule base is complete if and only if its binary relation is a total

mapping.

Definition 4.38
A fuzzy rule base is incomplete if and only if its binary relation is a

partial mapping.

Definition 4.39
A fuzzy rule base is exhaustive if and only if its binary relation is an onto

mapping.

Definition 4.40
A fuzzy rule base is non-exhaustive if and only if its binary relation is an

into mapping.

Definition 4.41
A fuzzy rule base is consistent if and only if its binary relation does not

contain any one-to-many mappings.

Definition 4.42
A fuzzy rule base is inconsistent if and only if its binary relation contains

at least one one-to-many mapping.

Definition 4.43
A fuzzy rule base is monotonic if and only if its binary relation does not

contain any many-to-one mappings.

the first equation.

4.5 Comparative Analysis of Formal Presentation Techniques 53

Definition 4.44
A fuzzy rule base is non-monotonic if and only if its binary relation

contains at least one many-to-one mapping.

The validity of the definitions above can be checked by examining
Table 4.9 and Eqs. (4.29)–(4.32). Obviously, the contents of Table 4.9 can

from integer tables, as already explained in the beginning of the current
section. Also, scanning maplets in a binary relation works much faster and

4.5 Comparative Analysis of Formal Presentation Techniques

Both Boolean matrices and binary relations are advanced techniques for
formal presentation of fuzzy systems, which facilitate the analysis of fuzzy
rule bases and improve their transparency. As these techniques are actually
two different ways of describing the same rule base, there exists an obvious
duality between them. For example, with regard to the analysis of
properties of fuzzy rule bases by Boolean matrices and binary relations,

Also, with regard to the basic operations on elements of Boolean matrices
and maplets in binary relations, Eqs. (4.1)–(4.8) are the dual counterparts of
Eqs. (4.21)–(4.28).

Boolean matrices and binary relations are superior to integer tables in
terms of representing fuzzy rule bases not only because they compress the
information held by integer tables but also because they provide more
reliable and efficient ways of analysing this information. Binary relations
are possibly better than Boolean matrices as they do not contain empty
maplets for non-existent input-output mappings of permutations of
linguistic values. As opposed to this, zero elements in Boolean matrices
reflect such mappings and this represents some redundancy.

Algorithms 4.1–4.2 show how an integer table presenting a fuzzy rule
base can be converted into an equivalent formal presentation as a Boolean
matrix or a binary relation. In some cases, however, it may be more
sensible to obtain a binary relation from a Boolean matrix rather than from
an integer table. The following algorithm gives a step by step description of
the process of converting a Boolean matrix into a binary relation:

Algorithm 4.3
1. Go through all the elements of the Boolean matrix and map them

onto the maplets of the binary relation using steps 2-3.

be derived more easily from the properties of the binary relations in

in Tables 4.1-4.4. This is so because binary relations compress the information

easier than scanning permutations in integer tables.

Eqs. (4.29)–(4.32) than from the structure of the corresponding integer tables

Definitions 4.17–4.24 are the dual counterparts of Definitions 4.37–4.44.

54 4 Formal Presentation of Fuzzy Rule Based Systems

2. If an element is equal to 1, map it onto a maplet such that the
row label of the element is the first element in the maplet and the
column label of the element is the second element in the maplet.

3. If an element is equal to 0, do nothing.

By means of Algorithm 4.3, the four examples of fuzzy rule bases
represented by the Boolean matrices in Eqs. (4.17)–(4.20) can be
represented equivalently by the binary relations in Eqs. (4.29)–(4.32),
respectively.

rule base into a more advanced one, i.e. from an integer table into a
Boolean matrix, from an integer table into a binary relation, and from a
Boolean matrix into a binary relation. These conversions are summarised in
Table 4.10 and illustrated in Fig. 4.1. The conversions facilitate
significantly the analysis of rule bases.

Table 4.10. Conversions between formal presentation techniques for fuzzy rule
bases

From / To Integer table Boolean matrix Binary relation
Integer table – Algorithm 4.1 Algorithm 4.2
Boolean matrix unnecessary – Algorithm 4.3
Binary relation unnecessary unnecessary –

The opposite conversions of the ones described in Table 4.10 are
possible but they do not make much sense. This is so because the aim of
conversion is to represent a fuzzy rule base with a more advanced formal
technique, which would allow us to better analyse the rule base. For this
reason, the opposite conversions are indicated in Table 4.10 as unnecessary.

Fig. 4.1. Conversions between formal presentation techniques for fuzzy rule bases

Integer table

Boolean matrix Binary relation

Algorithms 4.1-- 4.3 allow us to convert a formal presentation of a fuzzy

4.6 Application Range of Formal Presentation Techniques 55

Finally, although binary relations are usually a better formal presentation
technique of fuzzy rule bases than Boolean matrices, the latter are
underpinned by a matrix theory that appears to be more powerful than the
corresponding relational theory. Therefore, Boolean matrices may
sometimes be preferred to binary relations as more suitable for a specific
task.

4.6 Application Range of Formal Presentation Techniques

The two advanced formal presentation techniques introduced in this chapter
are applicable to a wide range of fuzzy rule based systems. These
techniques can be applied to Mamdami, Sugeno and Tsukamoto systems,
CON and DIS systems, MO and SO systems, FF and FB systems, as well as
SRB and MRB systems.

The following paragraphs demonstrate the wide application range of
Boolean matrices and binary relations. Integer tables are also considered as
part of the formal presentation process of fuzzy rule bases by Boolean
matrices or binary relations because the latter can be obtained under the
assumption that the corresponding integer table is already available (see

fuzzy rule bases described by Tables 4.1-4.4 and some variations of them,
which take into account explicitly different cases.

Example 4.1 describes explicitly a fuzzy system of Mamdami or
Tsukamoto type. If this system is of CADR type, i.e. with CON antecedents
and DIS rules, then it will be represented by the following ‘if-then’ rules:

The presentation of this type of fuzzy system by an integer table,
Boolean matrix and binary relation was given earlier in Table 4.1,

not show explicitly the way in which the antecedents and the rules are
connected. This was done on purpose for simplicity and on the assumption
that we can always find these connections from the if-then rules in
Eq. (4.33). However, we may want to show the connections for this fuzzy
system explicitly by including them in the corresponding integer table,
Boolean matrix and binary relation as follows:

If i1 is Sand i2 is S then o1 is Nalso o2 is N
or

If i1 is Sand i2 is B then o1 is Nalso o2 is Z
or

If i1 is B and i2 is S then o1 is Nalso o2 is P
or

 If i1 is B and i2 is B then o1 is Z also o2 is N

(4.33)

Algorithms 4.1--4.2). The demonstration is based on one or more of the four

Eq. (4.17) and Eq. (4.29), respectively. These three formal presentations did

56 4 Formal Presentation of Fuzzy Rule Based Systems

Table 4.11. Integer table with connections for a Mamdami/Tsukamoto fuzzy
system

Rule
number

Linguistic
value of i1

 Linguistic
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 and 1 1 1
or
2 1 and 2 1 2
or
3 2 and 1 1 3
or
4 2 and 2 2 1

Inputs/Outputs 11 12 13 21 22 23 31 32 33

 and 11 1 0 0 0 0 0 0 0 0
 or
 and 12 0 1 0 0 0 0 0 0 0
 or
 and 21 0 0 1 0 0 0 0 0 0
 or
 and 22 0 0 0 1 0 0 0 0 0

(4.34)

{[and (11, 11)] or [and (12, 12)] or [and (21, 13)] or [and (22, 21)]} (4.35)

We can show explicitly the connections between the antecedents and the
rules in any CON/DIS fuzzy system, i.e. CADR, DADR, CACR and
DACR, which is of Mamdami or Tsukamoto type. This can be done by
including the corresponding ‘and’ or ‘or’ operator in the designated places
in the integer table, the Boolean matrix and the binary relation, as shown by
Table 4.11, Eq. (4.34) and Eq. (4.35), respectively.

As a Sugeno fuzzy system differs from a Mamdami/Tsukamoto system
in the consequent part of the rule base, some variations have to be
introduced to account for this difference. For this purpose, we may consider
a variation of Example 4.1 describing a Sugeno fuzzy system of CADR
type, i.e. with CON antecedents and DIS rules, and with linear functions for
the outputs. This system will be represented by the following ‘if-then’
rules:

4.6 Application Range of Formal Presentation Techniques 57

If i1 is Sand i2 is S then o1 = 3. i1 + 4. i2 + 5 also o2 = 6. i1 + 7. i2 + 8
or

If i1 is Sand i2 is B then o1 = 5. i1 + 4. i2 + 3 also o2 = 8. i1 + 7. i2 + 6
or

If i1 is B and i2 is S then o1 = 4. i1 + 5. i2 + 6 also o2 = 7. i1 + 8. i2 + 9
or

If i1 is B and i2 is B then o1 = 6. i1 + 5. i2 + 4 also o2 = 9. i1 + 8. i2 + 7

(4.36)

This type of fuzzy system can be represented by an integer table, a
Boolean matrix and a binary relation similar to the ones given by Table 4.1,
Eq. (4.17) and Eq. (4.29), respectively. We can show explicitly the way in
which the antecedents and the rules are connected by including the
corresponding ‘and’ or ‘or’ operator in the designated places of the above
three formal presentations, as already shown for a Mamdami/Tsukamoto

corresponding integer table, Boolean matrix and binary relation will be as
follows:

Table 4.12. Integer table with connections for a Sugeno fuzzy system

Rule
number

Linguistic
value of i1

 Linguistic
value of i2

Linear function
coefficients for o1

Linear function
coefficients for o2

1 1 and 1 3, 4, 5 6, 7, 8
or
2 1 and 2 5, 3, 4 8, 7, 6
or
3 2 and 1 4, 5, 6 7, 8, 9
or
4 2 and 2 6, 5, 4 9, 8, 7

Inputs/Outputs 3:4:5-6:7:8 5:3:4-8:7:6 4:5:6-7:8:9 6:5:4-9:8:7

and 11 1 0 0 0
 or
and 12 0 1 0 0
 or
and 21 0 0 1 0
 or
and 22 0 0 0 1

(4.37)

system by Table 4.11, Eq. (4.34) and Eq. (4.35). In this case, the

58 4 Formal Presentation of Fuzzy Rule Based Systems

{[and (11, 3:4:5-6:7:8)] or [and (12, 5:3:4-8:7:6)] or

[and (21, 4:5:6-7:8:9)] or [and (22, 6:5:4-9:8:7)]}

(4.38)

As far as some of the notations for the above Sugeno fuzzy system are
concerned, the dots (.) in Eq. (4.36) stand for arithmetic multiplication in
the linear functions. The commas (,) in Table 4.12, the semi-colons (:) in
Eq. (4.37) and the dashes (-) in Eq. (4.38) are used as separators for the
coefficients of the linear functions in the integer table, the Boolean matrix,
and the binary relation, respectively.

It can be seen from Eq. (4.37) that the Boolean matrix for a Sugeno fuzzy
system contains only the column labels that reflect existing permutations of
coefficient values for the linear functions. This is so because it would be
theoretically unjustifiable and practically impossible to include all possible
permutations of such values. This variation can be reflected in the
conversion process of an integer table into a Boolean matrix by introducing
appropriate changes in Algorithm 4.1.

We can show explicitly the connections between the antecedents and the
rules in any CON/DIS fuzzy system, i.e. CADR, DADR, CACR and
DACR, which is of Sugeno type. This can be done by including the
corresponding ‘and’ or ‘or’ operator in the designated places in the integer
table, the Boolean matrix and the binary relation, as shown by Table 4.12,
Eq. (4.37) and Eq. (4.38), respectively.

The Mamdami/Tsukamoto and the Sugeno fuzzy system described by the
‘if-then’ rules in Eq. (4.33) and Eq. (4.36) are both with two outputs, i.e.
they are MO systems. Therefore, each of these MO systems can be
represented by two logically equivalent SO systems as follows

 If i1 is Sand i2 is S then o1 is N
or

If i1 is Sand i2 is B then o1 is N
or

If i1 is B and i2 is S then o1 is N
or

 If i1 is B and i2 is B then o1 is Z

(4.39)

If i1 is Sand i2 is S then o2 is N
or

If i1 is Sand i2 is B then o2 is Z
or

If i1 is B and i2 is S then o2 is P
or

 If i1 is B and i2 is B then o2 is N

(4.40)

4.6 Application Range of Formal Presentation Techniques 59

If i1 is Sand i2 is S then o1 = 3. i1 + 4. i2 + 5
or

If i1 is Sand i2 is B then o1 = 5. i1 + 4. i2 + 3
or

If i1 is B and i2 is S then o1 = 4. i1 + 5. i2 + 6
or

If i1 is B and i2 is B then o1 = 6. i1 + 5. i2 + 4

(4.41)

If i1 is Sand i2 is S then o2 = 6. i1 + 7. i2 + 8
or

If i1 is Sand i2 is B then o2 = 8. i1 + 7. i2 + 6
or

If i1 is B and i2 is S then o2 = 7. i1 + 8. i2 + 9
or

 If i1 is B and i2 is B then o2 = 9. i1 + 8. i2 + 7

(4.42)

where Eqs. (4.39)–(4.40) and Eqs. (4.41)–(4.42) are the SO counterparts of
Eq. (4.33) and Eq. (4.36), respectively.

The formal presentation of the above two fuzzy systems by integer
tables, Boolean matrices and binary relations is fairly straightforward, as
shown below. In this case, Tables 4.13–4.14 and Eqs. (4.43)–(4.46)
represent the Mamdami/Tsukamoto fuzzy system whereas Tables 4.15-4.16
and Eqs. (4.47)–(4.50) represent the Sugeno system.

Table 4.13. Integer table with connections for the first SO Mamdami/Tsukamoto
fuzzy system

Rule
number

Linguistic value
of i1

 Linguistic value
of i2

Linguistic value
of o1

1 1 and 1 1
or
2 1 and 2 1
or
3 2 and 1 1
or
4 2 and 2 2

Table 4.14. Integer table with connections for the second SO Mamdami/
Tsukamoto fuzzy system

Rule
number

Linguistic value
of i1

 Linguistic value
of i2

Linguistic value
of o2

1 1 and 1 1
or
2 1 and 2 2
or
3 2 and 1 3
or
4 2 and 2 1

60 4 Formal Presentation of Fuzzy Rule Based Systems

Inputs/Outputs 1 2 3

 and 11 1 0 0
 or
 and 12 1 0 0
 or
 and 21 1 0 0
 or
 and 22 0 1 0

(4.43)

Inputs/Outputs 1 2 3

 and 11 1 0 0
 or
 and 12 0 1 0
 or
 and 21 0 0 1
 or
 and 22 1 0 0

(4.44)

{[and (11, 1)] or [and (12, 1)] or [and (21, 1)] or [and (22, 2)]} (4.45)

{[and (11, 1)] or [and (12, 2)] or [and (21, 3)] or [and (22, 1)]} (4.46)

Table 4.15. Integer table with connections for the first SO Sugeno fuzzy system

Rule
number

Linguistic value
of i1

 Linguistic value
of i2

Linear function
coefficients for o1

1 1 and 1 3, 4, 5
or
2 1 and 2 5, 3, 4
or
3 2 and 1 4, 5, 6
or
4 2 and 2 6, 5, 4

Table 4.16. Integer table with connections for the second SO Sugeno fuzzy system

Rule
number

Linguistic value
of i1

 Linguistic value
of i2

Linear function
coefficients for o2

1 1 and 1 6, 7, 8
or
2 1 and 2 8, 7, 6
or
3 2 and 1 7, 8, 9
or
4 2 and 2 9, 8, 7

4.6 Application Range of Formal Presentation Techniques 61

Inputs/Outputs 3:4:5 5:3:4 4:5:6 6:5:4

 and 11 1 0 0 0
 or
 and 12 0 1 0 0
 or
 and 21 0 0 1 0
 or
 and 22 0 0 0 1

(4.47)

Inputs/Outputs 6:7:8 8:7:6 7:8:9 9:8:7

 and 11 1 0 0 0
 or
 and 12 0 1 0 0
 or
 and 21 0 0 1 0
 or
 and 22 0 0 0 1

(4.48)

{[and (11, 3:4:5)] or [and (12, 5:3:4)] or [and (21, 4:5:6)] or [and
(22, 6:5:4)]}

(4.49)

{[and (11, 6:7:8)] or [and (12, 8:7:6)] or [and (21, 7:8:9)] or [and
(22, 9:8:7)]}

(4.50)

It has been demonstrated so far that Boolean matrices and binary
relations can be used for representing formally all basic types of SRB
systems of FF type. They can also be used for representing MRB systems
of either FF or FB type. For this purpose, let us assume that the four rule
bases from Examples 4.1-4.4 are located and interconnected in a MRB
system as follows:

the rule base in Example 4.1 is in level 1 of layer 1, i.e. it is
denoted by RB11,
the rule base in Example 4.2 is in level 1 of layer 2, i.e. it is
denoted by RB12,
the rule base in Example 4.3 is in level 2 of layer 1, i.e. it is
denoted by RB21,
the rule base in Example 4.4 is in level 2 of layer 2, i.e. it is
denoted by RB22,
the outputs of RB11 are fed forward into the inputs to RB12,
the outputs of RB21 are fed forward into the inputs to RB22,

62 4 Formal Presentation of Fuzzy Rule Based Systems

the outputs of RB12 are fed back into the inputs to RB21,
the outputs of RB22 are fed back into the inputs to RB11.

Therefore, the MRB system can be represented by the following block
matrices:

 level 1 RB11 RB12

 level 2 RB21 RB22

(4.51)

level/layer layer 1 layer 2

 level 1 oi= ii

1,2, i=1,2 oi= ii

2,1, i=1,2

 level 2 oi= ii

2,2, i=1,2 oi= ii

1,1, i=1,2

(4.52)

The block matrices in Eqs. (4.51)–(4.52) are private cases of the block
matrices in Eqs. (2.11)–(2.12) for the four rule bases in Examples 4.1-4.4.
In this context, the block matrix in Eq. (4.51) specifies the location of
individual rule bases in the network structure of the MRB system and the
block matrix in Eq. (4.52) specifies the output-input interconnections
between individual rule bases.

Equations (4.51)–(4.52) represent a structural description of a MRB
system which is a general type of description. Therefore, it must be
accompanied by a detailed description of each individual rule base in the
form of an integer table, Boolean matrix or binary relation. As far as the
individual rule bases are concerned, they can be of any type, i.e. Mamdami,
Sugeno or Tsukamoto systems, CON or DIS systems, FF or FB systems, as
well as MO or SO systems.

is for a SRB system. In particular, the integer table represents the
 input-output mappings in a rule base while the block matrix represents the
 output-input mappings between rule bases. Therefore, the block matrix
 in Eq. (4.52) can be converted into an equivalent Boolean matrix and
 binary relation by means of algorithms similar to Algorithms 4.1–4.2. In
 this case, the Boolean matrix and the binary relation will be represented by
 Eq. (4.53) and Eq. (4.54), respectively.

Undoubtedly, both Boolean matrices and binary relations are advanced
techniques for formal presentation of fuzzy rule bases, which facilitate the
complexity management in fuzzy systems. These techniques compress the
information about the rule base contained by the corresponding integer
table and this compression reduces the quantitative complexity in the fuzzy
system. At the same time, the qualitative complexity of the system is also
reduced because the rule base is represented in a more transparent way that
makes the rules easier for interpretation.

level/layer layer 1 layer 2

The block matrix in Eq. (4.52) is for a MRB system whereas an integer
 table

4.6 Application Range of Formal Presentation Techniques 63

However, both Boolean matrices and binary relations have been
demonstrated so far only in the context of passive analysis of the associated
fuzzy system. In order to make an active impact on the fuzzy system, e.g.
when we want to simplify it or change some of its properties, we need to be
able to manipulate the formal presentation of the system appropriately. This
issue is discussed in detail in the next chapter.

Rule base / Rule base RB11 RB21 RB12 RB22

RB11 0 0 1 0
RB21 0 0 0 1
RB12 0 1 0 0
RB22 1 0 0 0

(4.53)

{(RB11, RB12), (RB21, RB22), (RB12, RB21), (RB22, RB11)} (4.54)

5 Formal Manipulation of Fuzzy Rule Based Systems

5.1 Preliminaries on Rule Base Manipulation

The advanced techniques for formal presentation of fuzzy rule bases
introduced in the previous chapter are essential to the complexity
management in fuzzy systems. These techniques not only compress the
information contained by the fuzzy system but they also facilitate the
identification of the properties of the fuzzy rule base. However, sometimes
we may want to change the properties of a fuzzy rule base by manipulating
its formal presentation appropriately. For example, we may want to make
an inconsistent rule base consistent or an incomplete rule base complete.

Six techniques for formal manipulation of fuzzy rule bases are
introduced in this chapter. These techniques can be applied mainly in the
context of MRB systems as the corresponding manipulations usually affect
the interconnections between individual rule bases at some stage of the
manipulation process. However, we may have to deal only with SRB
systems at other stages of the manipulation process.

Integer tables are not used in this chapter because they do not lend
themselves easily to formal manipulation. On the contrary, Boolean
matrices and binary relations are very convenient for formal manipulation
and therefore they are used for demonstrating the basic operations for
formal manipulation of fuzzy rule bases, as shown further in Sects. 5.2–5.7.

Numerous examples are presented further in this chapter. Their purpose
is to demonstrate the rule base manipulation techniques and to show the
impact of the manipulation on the properties of the rule bases involved, i.e.
which properties of the participating rule bases are preserved or lost in the
resultant rule bases.

5.2 Vertical Merging Manipulation of Rule Bases

The process of merging two fuzzy rule bases in parallel into a single fuzzy
rule base is called ‘vertical merging’ and it is shown in Fig. 5.1. This type
of manipulation can be applied to rule bases residing at different levels
within the same layer of a MRB system. Obviously, the number of levels in
this layer will be reduced as a result of this manipulation.

Alexander
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

Gegov: Complexity Management in Fuzzy Systems, StudFuzz 211, 65–114 (2007)

66 5 Formal Manipulation of Fuzzy Rule Based Systems

 i1 o1

 i1
o1

+ =
 i2 o2

 i2 o2

Fig. 5.1. Vertical merging of rule bases RB1 and RB2 into rule base RB

In order to illustrate the vertical merging manipulation, we introduce an
operation called ‘vertical composition’. This operation is binary and it can
be applied to only two operands at a time. The operands in this case are the
Boolean matrices or the binary relations representing the operand rule
bases. The result from the application of this operation is a single Boolean
matrix or binary relation representing the product rule base.

Algorithms 5.1 and 5.2 demonstrate the application of the vertical
composition operation to Boolean matrices and binary relations,
respectively.

Algorithm 5.1

1. Construct all possible permutations of row labels from the
operand matrices and sort them.

2. Construct all possible permutations of column labels from the
operand matrices and sort them.

3. Label the rows of the product matrix with the sorted
permutations of row labels from the operand matrices.

4. Label the columns of the product matrix with the sorted
permutations of column labels from the operand matrices.

5. Go through all the elements of the operand matrices and set each
element of the product matrix equal to 1 or 0, as described in
steps 6 and 7.

6. If an element of the product matrix is mapped from a pair of
non-zero elements in the product matrices, set this element equal
to 1.

7. If an element of the product matrix is mapped from a pair of
elements in the product matrices at least one of which is zero, set
this element equal to 0.

RB1

RB2

RB

RB2

5.2 Vertical Merging Manipulation of Rule Bases 67

Algorithm 5.2
1. Construct all possible pairs of maplets from the operand relations

such that the first maplet in each pair comes from the first
relation and the second maplet comes from the second relation.

2. Merge each of these pairs of maplets into a new maplet, as
described in steps 3 and 4.

3. Make the first element in each new maplet equal to the
corresponding permutation of first elements from the associated
pair of maplets.

4. Make the second element in each new maplet equal to the
corresponding permutation of second elements from the
associated pair of maplets.

5. Generate the product binary relation containing all new maplets
created in the previous two steps of this algorithm.

Example 5.1
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(5.1)

RB1: {(1, 2), (2, 1)} (5.2)

RB2: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(5.3)

RB2: {(1, 2), (2, 2)} (5.4)

The vertical merging of RB1 and RB2 into a product rule base RB will be
1 2

Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 0 0 1
 21 0 1 0 0
 22 0 1 0 0

(5.5)

denoted by RB + RB = RB where RB will be presented by the following

68 5 Formal Manipulation of Fuzzy Rule Based Systems

 RB: {(11, 22), (12, 22), (21, 12), (22, 12)} (5.6)

The rule bases above have the following properties:

RB1 – complete, consistent, exhaustive, monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic,
RB – complete, consistent, non-exhaustive, non-monotonic.

Example 5.2
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(5.7)

RB1: {(1, 2), (2, 2)} (5.8)

RB2: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(5.9)

RB2: {(1, 1), (2, 1)} (5.10)

The vertical merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1+RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 1 0
 12 0 0 1 0
 21 0 0 1 0
 22 0 0 1 0

(5.11)

 RB: {(11, 21), (12, 21), (21, 21), (22, 21)} (5.12)

5.2 Vertical Merging Manipulation of Rule Bases 69

The rule bases above have the following properties:

RB1 – complete, consistent, non-exhaustive, non-monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic,
RB – complete, consistent, non-exhaustive, non-monotonic.

Example 5.3
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 0 0
 2 1 1

(5.13)

RB1: {(2, 1), (2, 2)} (5.14)

RB2: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(5.15)

RB2: {(1, 2), (2, 1)} (5.16)

The vertical merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1 +RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 0 0
 12 0 0 0 0
 21 0 1 0 1
 22 1 0 1 0

(5.17)

 RB: {(21, 12), (22, 11), (21, 22), (22, 21)} (5.18)

The rule bases above have the following properties:
RB1 – incomplete, inconsistent, exhaustive, monotonic,
RB2 – complete, consistent, exhaustive, monotonic,
RB – incomplete, inconsistent, exhaustive, monotonic.

70 5 Formal Manipulation of Fuzzy Rule Based Systems

Example 5.4
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 1 1
 2 0 0

(5.19)

RB1: {(1, 1), (1, 2)} (5.20)

RB2: Inputs/Outputs 1 2

 1 0 0
 2 1 1

(5.21)

RB2: {(2, 1), (2, 2)} (5.22)

The vertical merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1 + RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 0 0
 12 1 1 1 1
 21 0 0 0 0
 22 0 0 0 0

(5.17)

 RB: {(12, 11), (12, 12), (12, 21), (12, 22)} (5.24)

The rule bases above have the following properties:

RB1 – incomplete, inconsistent, exhaustive, monotonic,
RB2 – incomplete, inconsistent, exhaustive, monotonic,
RB – incomplete, inconsistent, exhaustive, monotonic.

Example 5.5
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

5.2 Vertical Merging Manipulation of Rule Bases 71

RB1: Inputs/Outputs 1 2 3

 1 1 0 0
 2 1 1 0
 3 0 0 0

(5.25)

 RB1: {(1, 1), (2, 1), (2, 2)} (5.26)

RB2: Inputs/Outputs 1 2 3

 1 0 0 0
 2 0 0 1
 3 0 1 1

(5.27)

 RB2: {(2, 3), (3, 2), (3, 3)} (5.28)

The vertical merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1+ RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 13 21 22 23 31 32 33

 11 0 0 0 0 0 0 0 0 0
 12 0 0 1 0 0 0 0 0 0
 13 0 1 1 0 0 0 0 0 0
 21 0 0 0 0 0 0 0 0 0
 22 0 0 1 0 0 1 0 0 0
 23 0 1 1 0 1 1 0 0 0
 31 0 0 0 0 0 0 0 0 0
 32 0 0 0 0 0 0 0 0 0
 33 0 0 0 0 0 0 0 0 0

(5.29)

RB: {(12, 13), (13, 12), (13, 13),

 (22, 13), (23, 12), (23, 13),

 (22, 23), (23, 22), (23, 23)}

(5.30)

The rule bases above have the following properties:

RB1 – incomplete, inconsistent, non-exhaustive, non-monotonic,
RB2 – incomplete, inconsistent, non-exhaustive, non-monotonic,
RB – incomplete, inconsistent, non-exhaustive, non-monotonic.

72 5 Formal Manipulation of Fuzzy Rule Based Systems

Example 5.6
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2 3

 1 0 1 0
 2 1 0 0
 3 0 0 1

(5.31)

 RB1: {(1, 2), (2, 1), (3, 3)} (5.32)

RB2: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 0 1
 3 0 1 0

(5.33)

 RB2: {(1, 1), (2, 3), (3, 2)} (5.34)

The vertical merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1 + RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 13 21 22 23 31 32 33

 11 0 0 0 1 0 0 0 0 0
 12 0 0 0 0 0 1 0 0 0
 13 0 0 0 0 1 0 0 0 0
 21 1 0 0 0 0 0 0 0 0
 22 0 0 1 0 0 0 0 0 0
 23 0 1 0 0 0 0 0 0 0
 31 0 0 0 0 0 0 1 0 0
 32 0 0 0 0 0 0 0 0 1
 33 0 0 0 0 0 0 0 1 0

(5.35)

RB: {(11, 21), (12, 23), (13, 22),

 (21, 11), (22, 13), (23, 12),

 (31, 31), (32, 33), (33, 32)}

(5.36)

5.3 Vertical Splitting Manipulation of Rule Bases 73

The rule bases above have the following properties:
RB1 – complete, consistent, exhaustive, monotonic,
RB2 – complete, consistent, exhaustive, monotonic,
RB – complete, consistent, exhaustive, monotonic.

The examples above show that if at least one of the two operand matrices
does not have a specific property then the product matrix does not have this
property either. In particular, the second operand matrix in Example 5.1 and
the two operand matrices in Example 5.2 are non-exhaustive and non-
monotonic as are the associated product matrices. Also, the first operand
matrix in Example 5.3 and the two operand matrices in Example 5.4 are
incomplete and inconsistent as are the associated product matrices. And
finally, the two operand matrices in Example 5.5 are incomplete,
inconsistent, non-exhaustive and non-monotonic as is the associated
product matrix.

In addition, the examples above show that if each of the two operand
matrices has a specific property then the product matrix has this property
too. In particular, the two operand matrices in Examples 5.1–5.2 are
complete and consistent as are the associated product matrices. Also, the
two operand matrices in Examples 5.3–5.4 are exhaustive and monotonic as
are the associated product matrices. And finally, the two operand matrices
in Example 5.6 are complete, consistent, exhaustive and monotonic as is the
associated product matrix.

5.3 Vertical Splitting Manipulation of Rule Bases

The process of splitting a single fuzzy rule base into two fuzzy rule bases in
parallel is called ‘vertical splitting’ and it is shown in Fig. 5.2. This type of
manipulation can be applied to a rule base of a SRB system or a rule base
that is part of a MRB system. Obviously, as a result of this manipulation a
SRB system will be represented as a number of smaller SRB systems,
whereas for a MRB system the number of levels in the corresponding layer
will be increased.

 i1 o1 i1 o1

 = -
 i2 o2 i2

o2

Fig. 5.2. Vertical splitting of rule base RB into rule bases RB1 and RB2

RB1

RB

RB2

74 5 Formal Manipulation of Fuzzy Rule Based Systems

In order to illustrate the vertical splitting manipulation, we introduce an
operation called ‘vertical decomposition’. This operation is unary and it can
be applied to only one operand at a time. The operand in this case is the
Boolean matrix or the binary relation representing the operand rule base.
The result from the application of this operation is a couple of Boolean
matrices or binary relations representing the product rule bases.

Algorithms 5.3 and 5.4 demonstrate the application of the vertical
decomposition operation to Boolean matrices and binary relations,
respectively.

Algorithm 5.3
1. Construct a pair of all possible sub-permutations of row labels

from the operand matrix and sort them.
2. Construct a pair of all possible sub-permutations of column

labels from the operand matrix and sort them.
3. Label the rows of the first product matrix with the first element

from the pair of all possible sorted sub-permutations of row
labels from the operand matrix.

4. Label the columns of the first product matrix with the first
element from the pair of all possible sorted sub-permutations of
column labels from the operand matrix.

5. Label the rows of the second product matrix with the second
element from the pair of all possible sorted sub-permutations of
row labels from the operand matrix.

6. Label the columns of the second product matrix with the second
element from the pair of all possible sorted sub-permutations of
column labels from the operand matrix.

7. Go through all the elements of the operand matrix and set each
element of the two product matrices equal to 1 or 0, as described
in steps 8 and 9.

8. If an element of a product matrix is mapped from a non-zero
element in the operand matrix, set this element equal to 1.

9. If an element of the product matrix is mapped from a zero
element in the operand matrix, set this element equal to 0.

Algorithm 5.4
1. Construct all pairs of maplets from the operand relation such that

2. The first sub-element of the first element in each pair of maplets
is the same.

3. The first sub-element of the second element in each pair of
maplets is the same.

4. The second sub-element of the first element in each pair of
maplets is the same.

the conditions in steps 2-5 are satisfied.

5.3 Vertical Splitting Manipulation of Rule Bases 75

5. The second sub-element of the second element in each pair of
maplets is the same.

6. If any of the conditions from the previous four steps of this
algorithm can not be satisfied, then vertical splitting is not
possible.

7. Rearrange the maplets from the operand relation following the

8. Make each first sub-element of a first element in each pair of
maplets the first element in a pair of the first product relation.

9. Make each first sub-element of a second element in each pair of
maplets the second element in a pair of the first product relation.

10. Make each second sub-element of a first element in each pair of
maplets the first element in a pair of the second product relation.

11. Make each second sub-element of a second element in each pair
of maplets the second element in a pair of the second product
relation.

12. Generate the two product binary relations containing all maplets
created in the previous four steps of this algorithm.

Example 5.7
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 0 0 1
 21 0 1 0 0
 22 0 1 0 0

(5.37)

 RB: {(11, 22), (12, 22), (21, 12), (22, 12)} (5.38)

The vertical splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1 – RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(5.39)

RB1: {(1, 2), (2, 1)} (5.40)

procedure in steps 8-11.

76 5 Formal Manipulation of Fuzzy Rule Based Systems

RB2: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(5.41)

RB2: {(1, 2), (2, 2)} (5.42)

The rule bases above have the following properties:

RB – complete, consistent, non-exhaustive, non-monotonic,
RB1 – complete, consistent, exhaustive, monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic.

Example 5.8
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 1 0
 12 0 0 1 0
 21 0 0 1 0
 22 0 0 1 0

(5.43)

 RB: {(11, 21), (12, 21), (21, 21), (22, 21)} (5.44)

The vertical splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1 2 1 2

following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(5.45)

RB1: {(1, 2), (2, 2)} (5.46)

RB2: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(5.47)

-- RB where RB and RB will be presented by the

5.3 Vertical Splitting Manipulation of Rule Bases 77

RB2: {(1, 1), (2, 1)} (5.48)

The rule bases above have the following properties:

RB – complete, consistent, non-exhaustive, non-monotonic,
RB1 – complete, consistent, non-exhaustive, non-monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic.

Example 5.9
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 0 0
 12 0 0 0 0
 21 0 1 0 1
 22 1 0 1 0

(5.49)

 RB: {(21, 12), (22, 11), (21, 22), (22, 21)} (5.50)

The vertical splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1 2 1 2

following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 0 0
 2 1 1

(5.51)

RB1: {(2, 1), (2, 2)} (5.52)

RB2: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(5.53)

RB2: {(1, 2), (2, 1)} (5.54)

The rule bases above have the following properties:
RB – incomplete, inconsistent, exhaustive, monotonic,

--RB where RB and RB will be presented by the

78 5 Formal Manipulation of Fuzzy Rule Based Systems

RB1 – incomplete, inconsistent, exhaustive, monotonic,
RB2 – complete, consistent, exhaustive, monotonic.

Example 5.10
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 0 0
 12 1 1 1 1
 21 0 0 0 0
 22 0 0 0 0

(5.55)

 RB: {(12, 11), (12, 12), (12, 21), (12, 22)} (5.56)

The vertical splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1 – RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 1 1
 2 0 0

(5.57)

RB1: {(1, 1), (1, 2)} (5.58)

RB2: Inputs/Outputs 1 2

 1 0 0
 2 1 1

(5.59)

RB2: {(2, 1), (2, 2)} (5.60)

The rule bases above have the following properties:

RB – incomplete, inconsistent, exhaustive, monotonic,
RB1 – incomplete, inconsistent, exhaustive, monotonic,
RB2 – incomplete, inconsistent, exhaustive, monotonic.

5.3 Vertical Splitting Manipulation of Rule Bases 79

Example 5.11
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 13 21 22 23 31 32 33

 11 0 0 0 0 0 0 0 0 0
 12 0 0 1 0 0 0 0 0 0
 13 0 1 1 0 0 0 0 0 0
 21 0 0 0 0 0 0 0 0 0
 22 0 0 1 0 0 1 0 0 0
 23 0 1 1 0 1 1 0 0 0
 31 0 0 0 0 0 0 0 0 0
 32 0 0 0 0 0 0 0 0 0
 33 0 0 0 0 0 0 0 0 0

(5.61)

RB: {(12, 13), (13, 12), (13, 13),

 (22, 13), (23, 12), (23, 13),

 (22, 23), (23, 22), (23, 23)}

(5.62)

The vertical splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1– RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2 3

 1 1 0 0
 2 1 1 0
 3 0 0 0

(5.63)

 RB1: {(1, 1), (2, 1), (2, 2)} (5.64)

RB2: Inputs/Outputs 1 2 3

 1 0 0 0
 2 0 0 1
 3 0 1 1

(5.65)

 RB2: {(2, 3), (3, 2), (3, 3)} (5.66)

80 5 Formal Manipulation of Fuzzy Rule Based Systems

The rule bases above have the following properties:

RB – incomplete, inconsistent, non-exhaustive, non-monotonic,
RB1 – incomplete, inconsistent, non-exhaustive, non-monotonic,
RB2 – incomplete, inconsistent, non-exhaustive, non-monotonic.

Example 5.12
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 13 21 22 23 31 32 33

 11 0 0 0 1 0 0 0 0 0
 12 0 0 0 0 0 1 0 0 0
 13 0 0 0 0 1 0 0 0 0
 21 1 0 0 0 0 0 0 0 0
 22 0 0 1 0 0 0 0 0 0
 23 0 1 0 0 0 0 0 0 0
 31 0 0 0 0 0 0 1 0 0
 32 0 0 0 0 0 0 0 0 1
 33 0 0 0 0 0 0 0 1 0

(5.67)

RB: {(11, 21), (12, 23), (13, 22),

 (21, 11), (22, 13), (23, 12),

 (31, 31), (32, 33), (33, 32)}

(5.68)

The vertical splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1 – RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2 3

 1 0 1 0
 2 1 0 0
 3 0 0 1

(5.69)

 RB1: {(1, 2), (2, 1), (3, 3)} (5.70)

RB2: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 0 1
 3 0 1 0

(5.71)

 RB2: {(1, 1), (2, 3), (3, 2)} (5.72)

5.4 Horizontal Merging Manipulation of Rule Bases 81

The rule bases above have the following properties:

RB – complete, consistent, exhaustive, monotonic,
RB1 – complete, consistent, exhaustive, monotonic,
RB2 – complete, consistent, exhaustive, monotonic.

The examples above show that if the operand matrix does not have a
specific property then at least one of the two product matrices does not have
this property either. In particular, the operand matrices in Examples 5.7–5.8
are non-exhaustive and non-monotonic as are the second product matrix in
the first example and the two product matrices in the second example. Also,
the operand matrices in Examples 5.9–5.10 are incomplete and inconsistent
as are the first product matrix in the first example and the two product
matrices in the second example. And finally, the operand matrix in
Example 5.11 is incomplete, inconsistent, non-exhaustive and non-
monotonic as are the two product matrices.

In addition, the examples above show that if the operand matrix has a
specific property then the product matrices have this property too. In
particular, the operand matrices in Examples 5.7–5.8 are complete and
consistent as are all four product matrices. Also, the operand matrices in

matrices. And finally, the operand matrix in Example 5.12 is complete,
consistent, exhaustive and monotonic as are the two product matrices.

5.4 Horizontal Merging Manipulation of Rule Bases

The process of merging two fuzzy rule bases in sequence into a single fuzzy
rule base is called ‘horizontal merging’ and it is shown in Fig. 5.3. This
type of manipulation can be applied to rule bases residing in different layers
within the same level of a MRB system. Obviously, the number of layers in
this level will be reduced as a result of this manipulation.

Fig. 5.3. Horizontal merging of rule bases RB1 and RB2 into rule base RB

In order to illustrate the horizontal merging manipulation, we introduce
an operation called ‘horizontal composition’. This operation is binary and it
can be applied to only two operands at a time. The operands in this case are

Examples 5.9--5.10 are exhaustive and monotonic as are all four product

82 5 Formal Manipulation of Fuzzy Rule Based Systems

the Boolean matrices or the binary relations representing the operand rule
bases. The result from the application of this operation is a single Boolean
matrix or binary relation representing the product rule base.

Algorithms 5.5 and 5.6 demonstrate the application of the vertical
composition operation to Boolean matrices and binary relations,
respectively.

Algorithm 5.5
1. Label the rows of the product matrix with the row labels from

the first operand matrix.
2. Label the columns of the product matrix with the column labels

from the second operand matrix.
3. Set each element of the product matrix equal to 1 or 0 by

mapping it from the corresponding row in the first operand
matrix and the corresponding column in the second operand
matrix, as described in step 4.

4. Find the product matrix by multiplying the operand matrices
using the operations for ‘addition’ and ‘multiplication’ of
elements, as defined by Eqs. (4.1)–(4.8) in Sect. 4.3.

Algorithm 5.6
1. Construct all maplets in the product relation so that the first

element in each maplet is equal to the first element in a maplet in
the first relation and the second element in each maplet is equal
to the second element in a maplet in the second relation, as
described in step 2.

2. Compose the operand relations using the operations for
‘aggregation’ and ‘composition’ of elements, as defined by
Eqs. (4.21)–(4.28) in Sect. 4.4.

Example 5.13
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 1 1
 2 0 0

(5.73)

RB1: {(1, 1), (1, 2)} (5.74)

RB2: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(5.75)

5.4 Horizontal Merging Manipulation of Rule Bases 83

RB2: {(1, 2), (2, 2)} (5.76)

The horizontal merging of RB1 and RB2 into a product rule base RB will
be denoted by RB1*RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 1 2

 1 0 1
 2 0 0

(5.77)

RB: {(1, 2)} (5.78)

The rule bases above have the following properties:
RB1 – incomplete, inconsistent, exhaustive, monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic,
RB – incomplete, consistent, non-exhaustive, monotonic.

Example 5.14
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(5.79)

RB1: {(1, 1), (2, 1)} (5.80)

RB2: Inputs/Outputs 1 2

 1 1 1
 2 0 0

(5.81)

RB2: {(1, 1), (1, 2)} (5.82)

The horizontal merging of RB1 and RB2 into a product rule base RB will
be denoted by RB1*RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

84 5 Formal Manipulation of Fuzzy Rule Based Systems

RB: Inputs/Outputs 1 2

 1 1 1
 2 1 1

(5.83)

RB: {(1, 1), (1, 2), (2, 1), (2, 2)} (5.84)

The rule bases above have the following properties:

RB1 – complete, consistent, non-exhaustive, non-monotonic,
RB2 – incomplete, inconsistent, exhaustive, monotonic,
RB – complete, inconsistent, exhaustive, non-monotonic.

Example 5.15
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

RB1: Inputs/Outputs 11 12 21 22

 11 1 1 0 0
 12 0 0 0 1
 21 0 0 1 0
 22 0 0 0 0

(5.85)

 RB1: {(11, 11), (11, 12), (12, 22), (21, 21)} (5.86)

RB2: Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 0 0 1
 21 0 0 1 0
 22 0 1 0 0

(5.87)

RB2: {(11, 22), (12, 22), (21, 21), (22, 12)} (5.88)

The horizontal merging of RB1 and RB2 into a product rule base RB will
be denoted by RB1*RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

5.4 Horizontal Merging Manipulation of Rule Bases 85

RB: Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 1 0 0
 21 0 0 1 0
 22 0 0 0 0

(5.89)

RB: {(11, 22), (12, 12), (21, 21)} (5.90)

The rule bases above have the following properties:

RB1 – incomplete, inconsistent, exhaustive, monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic,
RB – incomplete, consistent, non-exhaustive, monotonic.

Example 5.16
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

RB1: Inputs/Outputs 11 12 21 22

 11 0 1 0 0
 12 0 1 0 0
 21 0 0 1 0
 22 0 0 0 1

(5.91)

 RB1: {(11, 12), (12, 12), (21, 21), (22, 22)} (5.92)

RB2: Inputs/Outputs 11 12 21 22

 11 0 0 0 0
 12 1 1 0 0
 21 0 0 0 1
 22 0 0 1 0

(5.93)

 RB2: {(12, 11), (12, 12), (21, 22), (22, 21)} (5.94)

The horizontal merging of RB1 and RB2 into a product rule base RB will
be denoted by RB1*RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

86 5 Formal Manipulation of Fuzzy Rule Based Systems

RB: Inputs/Outputs 11 12 21 22

 11 1 1 0 0
 12 1 1 0 0
 21 0 0 0 1
 22 0 0 1 0

(5.95)

 RB: {(11, 11), (11, 12), (12, 11), (12, 12), (21, 22), (22, 21)} (5.96)

The rule bases above have the following properties:

RB1 – complete, consistent, non-exhaustive, non-monotonic,
RB2 – incomplete, inconsistent, exhaustive, monotonic,
RB – complete, inconsistent, exhaustive, non-monotonic.

The examples above show that if one of the two operand matrices does
not have a specific property, then this may be compensated by the absence
of another property in the other operand matrix, in which case the product
matrix will have one of the two lacking properties. In particular, the first
operand matrix in Examples 5.13 and 5.15 is inconsistent but the product
matrix is consistent due to the compensating effect of the second operand
matrix, which is non-monotonic. Also, the second operand matrix in
Examples 5.13 and 5.15 is non-monotonic but the product matrix is
monotonic due to the compensating effect of the first operand matrix,
which is inconsistent. In addition, the second operand matrix in Examples 5.14

 and 5.16 is incomplete but the product matrix is complete due to the
compensating effect of the first operand matrix, which is non-monotonic.
And finally, the first operand matrix in Examples 5.14 and 5.16 is

 non-exhaustive but the product matrix is exhaustive due to the compensating
effect of the second operand matrix, which is inconsistent.

In addition, the examples above show that if one of the two operand
matrices has a specific property, then this property may be preserved in the
product matrix even if the other operand matrix does not have the property.
In particular, the first operand matrix in Examples 5.13 and 5.15 is
monotonic as is the product matrix in these examples although the second
product matrix is non-monotonic. Also, the first operand matrix in
Examples 5.14 and 5.16 is complete as is the product matrix in these
examples although the second operand matrix is incomplete. In addition,
the second operand matrix in Examples 5.13 and 5.15 is consistent as is the
product matrix in these examples although the first product matrix is
inconsistent. And finally, the second operand matrix in Examples 5.14 and
5.16 is exhaustive as is the product matrix in these examples although the
first operand matrix is non-exhaustive.

5.5 Horizontal Splitting Manipulation of Rule Bases 87

5.5 Horizontal Splitting Manipulation of Rule Bases

The process of splitting a single fuzzy rule base into two fuzzy rule bases in
sequence is called ‘horizontal splitting’ and it is shown in Fig. 5.4. This
type of manipulation can be applied to a rule base of a SRB system or a rule
base that is a part of a MRB system. Obviously, as a result of this
manipulation a SRB system will be represented as a number of smaller
SRB systems whereas the number of layers in the corresponding level of a
MRB system will be increased.

Fig. 5.4. Horizontal splitting of rule base RB into rule bases RB1 and RB2

In order to illustrate the horizontal splitting manipulation, we introduce
an operation called ‘horizontal decomposition’. This operation is unary and
it can be applied to only one operand at a time. The operand in this case is
the Boolean matrix or the binary relation representing the operand rule
base. The result from the application of this operation is a couple of
Boolean matrices or binary relations representing the product rule bases.

Algorithms 5.7 and 5.8 demonstrate the application of the horizontal
decomposition operation to Boolean matrices and binary relations,
respectively.

Algorithm 5.7
1. Label the rows of the first product matrix with the row labels

from the operand matrix.
2. Label the columns of the second product matrix with the column

labels from the operand matrix.
3. Label the columns of the first product matrix as the rows of the

second product matrix.
4. Set each element of the product matrices equal to 1 or 0 by

mapping it from the corresponding row and column in the
operand matrix, as described in step 5.

5. Find the product matrices such that the result of their
multiplication using the operations for ‘addition’ and
‘multiplication’ of elements is the operand matrix, as defined by
Eqs. (4.1)–(4.8) in Sect. 4.3.

88 5 Formal Manipulation of Fuzzy Rule Based Systems

Algorithm 5.8
1. Construct all maplets in the product relations such that the first

element in each maplet in the operand relation is equal to the
first element in a maplet in the first product relation and the
second element in each maplet in the product relation is equal to
the second element in a maplet in the second operand relation, as
described by step 3.

2. Construct all maplets in the product relations so that the second
element in a maplet in the first relation is equal to the first
element in a maplet in the second relation, as described by step
3.

3. Find the product relations so that the result of their composition
using the operations for ‘aggregation’ and ‘composition’ of
elements is the operand relation, as defined by Eqs. (4.21)–(4.28)
in Sect. 4.4.

Example 5.17
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 1 2

 1 0 1
 2 0 0

(5.97)

RB: {(1, 2)} (5.98)

1 2

1 2 1 2

RB1: Inputs/Outputs 1 2

 1 1 1
 2 0 0

(5.99)

 RB1: {(1, 1), (1, 2)} (5.100)

RB2: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(5.101)

denoted by RB = RB /RB where RB and RB may be presented by the
foll

The horizontal splitting of RB into product rule bases RB and RB will be

owing Boolean matrices and binary relations:

5.5 Horizontal Splitting Manipulation of Rule Bases 89

 RB2: {(1, 2), (2, 2)} (5.102)

The rule bases above have the following properties:
RB – incomplete, consistent, non-exhaustive, monotonic,
RB1 – incomplete, inconsistent, exhaustive, monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic.

Example 5.18
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 1 2

 1 1 1
 2 1 1

(5.103)

RB: {(1, 1), (1, 2), (2, 1), (2, 2)} (5.104)

The horizontal splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1 / RB2 where RB1 and RB2 may be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(5.105)

 RB1: {(1, 1), (2, 1)} (5.106)

RB2: Inputs/Outputs 1 2

 1 1 1
 2 0 0

(5.107)

 RB2: {(1, 1), (1, 2)} (5.108)

The rule bases above have the following properties:

RB – complete, inconsistent, exhaustive, non-monotonic,
RB1 – complete, consistent, non-exhaustive, non-monotonic,
RB2 – incomplete, inconsistent, exhaustive, monotonic.

90 5 Formal Manipulation of Fuzzy Rule Based Systems

Example 5.19
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 1 0 0
 21 0 0 1 0
 22 0 0 0 0

(5.109)

RB: {(11, 22), (12, 12), (21, 21)} (5.110)

The horizontal splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1 / RB2 where RB1 and RB2 may be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 11 12 21 22

 11 1 1 0 0
 12 0 0 0 1
 21 0 0 1 0
 22 0 0 0 0

(5.111)

 RB1: {(11, 11), (11, 12), (12, 22), (21, 21)} (5.112)

RB2: Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 0 0 1
 21 0 0 1 0
 22 0 1 0 0

(5.113)

 RB2: {(11, 22), (12, 22), (21, 21), (22, 12)} (5.114)

The rule bases above have the following properties:

RB – incomplete, consistent, non-exhaustive, monotonic,
RB1 – incomplete, inconsistent, exhaustive, monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic.

5.5 Horizontal Splitting Manipulation of Rule Bases 91

Example 5.20
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 1 1 0 0
 12 1 1 0 0
 21 0 0 0 1
 22 0 0 1 0

(5.115)

 RB: {(11, 11), (11, 12), (12, 11), (12, 12), (21, 22), (22, 21)} (5.116)

The horizontal splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1 / RB2 where RB1 and RB2 may be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 11 12 21 22

 11 0 1 0 0
 12 0 1 0 0
 21 0 0 1 0
 22 0 0 0 1

(5.117)

 RB1: {(11, 12), (12, 12), (21, 21), (22, 22)} (5.118)

RB2: Inputs/Outputs 11 12 21 22

 11 0 0 0 0
 12 1 1 0 0
 21 0 0 0 1
 22 0 0 1 0

(5.119)

 RB2: {(12, 11), (12, 12), (21, 22), (22, 21)} (5.120)

The rule bases above have the following properties:

RB – complete, inconsistent, exhaustive, non-monotonic,
RB1 – complete, consistent, non-exhaustive, non-monotonic,
RB2 – incomplete, inconsistent, exhaustive, monotonic.

92 5 Formal Manipulation of Fuzzy Rule Based Systems

The examples above show that if the operand matrix does not have a
specific property then this property may be generated in one of the two
product matrices. In particular, the operand matrices in Examples 5.17 and
5.19 are incomplete and non-exhaustive but the first product matrix in these
examples is exhaustive and the second product matrix is complete. Also,
the operand matrices in Examples 5.18 and 5.20 are inconsistent and non-
monotonic but the first product matrix in these examples is consistent and
the second product matrix is monotonic.

In addition, the examples above show that if the operand matrix does not
have a specific property then one of the two product matrices does not have
this property either. In particular, the operand matrices in Examples 5.17
and 5.19 are incomplete and non-exhaustive as are the first and the second
product matrix in these examples, which are incomplete and non-
exhaustive, respectively. Also, the operand matrices in Examples 5.18 and
5.20 are inconsistent and non-monotonic as are the first and the second
product matrix in these examples, which are non-monotonic and
inconsistent, respectively.

5.6 Output Merging Manipulation of Rule Bases

The process of representing two SO systems with common inputs as a MO
system with the same inputs as the two SO systems is called ‘output
merging’ and it is shown in Fig. 5.5. This type of manipulation can be

 o1

 o1

 i1 i1

; =
o2

 o2

Fig. 5.5. Output merging of rule bases RB1 and RB2 into rule base RB

In order to illustrate the output merging manipulation, we introduce an
operation called ‘output composition’. This operation is binary and it can be
applied to only two operands at a time. The operands in this case are the
Boolean matrices or the binary relations representing the operand rule

RB

1

RB2

applied to rule bases residing at different levels within the same layer

RB

of a MRB system. Obviously, the number of levels in this layer will be
reduced as a result of this manipulation.

5.6 Output Merging Manipulation of Rule Bases 93

bases. The result from the application of this operation is a single Boolean
matrix or binary relation representing the product rule base.

Algorithms 5.9 and 5.10 demonstrate the application of the output
composition operation to Boolean matrices and binary relations,
respectively.

Algorithm 5.9
1. Label the rows of the product matrix with the common row

labels of the two operand matrices.
2. Label the columns of the product matrix with the sorted

permutations of the column labels of the two operand matrices.
3. Go through all the elements of the operand matrices and set each

element of the product matrix equal to 1 or 0, as described in
steps 4 and 5.

4. If an element of the product matrix is mapped from two non-zero
elements in the operand matrices, set this element equal to 1.

5. If an element of the product matrix is mapped from two elements
in the operand matrices such that at least one of them is zero, set
this element equal to 0.

Algorithm 5.10
1. Construct pairs of maplets from the two operand relations such

that the first maplet comes from the first relation, the second
maplet comes from the second relation and the first element of
the maplets in each pair is the same.

2. Merge each of these pairs of maplets into a new maplet for the
product relation, as described in steps 3 and 4.

3. Make the first element in each new maplet for the product
relation equal to the first element from the corresponding pair of
maplets for the operand relations.

4. Construct the second element in each new maplet for the product
relation by concatenating the second elements from the
corresponding pair of maplets for the operand relations such that
the second element from the first maplet comes first and the
second element from the second maplet comes second in the
concatenation.

5. Generate the product binary relation containing all new maplets
created in the previous two steps of this algorithm.

Example 5.21
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

94 5 Formal Manipulation of Fuzzy Rule Based Systems

RB1: Inputs/Outputs 1 2

 11 1 0
 12 0 1
 21 1 0
 22 0 0

(5.121)

RB1: {(11, 1), (12, 2), (21, 1)} (5.122)

RB2: Inputs/Outputs 1 2

 11 1 0
 12 1 0
 21 0 1
 22 0 0

(5.123)

RB2: {(11, 1), (12, 1), (21, 2)} (5.124)

The output merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1;RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 1 0 0 0
 12 0 0 1 0
 21 0 1 0 0
 22 0 0 0 0

(5.125)

RB: {(11, 11), (12, 21), (21, 12)} (5.126)

The rule bases above have the following properties:
RB1 – incomplete, consistent, exhaustive, non-monotonic,
RB2 – incomplete, consistent, exhaustive, non-monotonic,
RB – incomplete, consistent, non-exhaustive, monotonic.

Example 5.22
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

5.6 Output Merging Manipulation of Rule Bases 95

RB1: Inputs/Outputs 1 2

 11 1 0
 12 0 1
 21 0 1
 22 0 0

(5.127)

 RB1: {(11, 1), (12, 2), (21, 2)} (5.128)

RB2: Inputs/Outputs 1 2

 11 1 1
 12 1 0
 21 0 1
 22 0 0

(5.129)

 RB2: {(11, 1), (11, 2), (12, 1), (21, 2)} (5.130)

The output merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1;RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 1 1 0 0
 12 0 0 1 0
 21 0 0 0 1
 22 0 0 0 0

(5.131)

 RB: {(11, 11), (11, 12), (12, 21), (21, 22)} (5.132)

The rule bases above have the following properties:

RB1 – incomplete, consistent, exhaustive, non-monotonic,
RB2 – incomplete, inconsistent, exhaustive, non-monotonic,
RB – incomplete, inconsistent, exhaustive, monotonic.

Example 5.23
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

96 5 Formal Manipulation of Fuzzy Rule Based Systems

RB1: Inputs/Outputs 1 2

 11 1 1
 12 1 0
 21 0 1
 22 0 0

(5.133)

 RB1: {(11, 1), (11, 2), (12, 1), (21, 2)} (5.134)

RB2: Inputs/Outputs 1 2

 11 0 1
 12 1 0
 21 1 0
 22 0 0

(5.135)

 RB2: {(11, 2), (12, 1), (21, 1)} (5.136)

The output merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1;RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 1 0 1
 12 1 0 0 0
 21 0 0 1 0
 22 0 0 0 0

(5.137)

 RB: {(11, 12), (11, 22), (12, 11), (21, 21)} (5.138)

The rule bases above have the following properties:

RB1 – incomplete, inconsistent, exhaustive, non-monotonic,
RB2 – incomplete, consistent, exhaustive, non-monotonic,
RB – incomplete, inconsistent, exhaustive, monotonic.

Example 5.24
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

5.6 Output Merging Manipulation of Rule Bases 97

RB1: Inputs/Outputs 1 2

 11 1 0
 12 0 0
 21 0 0
 22 0 0

(5.139)

 RB1: {(11, 1)} (5.140)

RB2: Inputs/Outputs 1 2

 11 0 1
 12 0 0
 21 0 0
 22 0 0

(5.141)

 RB2: {(11, 2)} (5.142)

The output merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1;RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 1 0 0
 12 0 0 0 0
 21 0 0 0 0
 22 0 0 0 0

(5.143)

 RB: {(11, 12)} (5.144)

The rule bases above have the following properties:

RB1 – incomplete, consistent, non-exhaustive, monotonic,
RB2 – incomplete, consistent, non-exhaustive, monotonic,
RB – incomplete, consistent, non-exhaustive, monotonic.

Example 5.25
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

98 5 Formal Manipulation of Fuzzy Rule Based Systems

RB1: Inputs/Outputs 1 2

 11 0 1
 12 0 1
 21 0 1
 22 0 1

(5.145)

 RB1: {(11, 2), (12, 2), (21, 2), (22, 2)} (5.146)

RB2: Inputs/Outputs 1 2

 11 1 0
 12 1 0
 21 1 0
 22 1 0

(5.147)

 RB2: {(11, 1), (12, 1), (21, 1), (22, 1)} (5.148)

The output merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1;RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 1 0
 12 0 0 1 0
 21 0 0 1 0
 22 0 0 1 0

(5.149)

 RB: {(11, 21), (12, 21), (21, 21), (22, 21)} (5.150)

The rule bases above have the following properties:

RB1 – complete, consistent, non-exhaustive, non-monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic,
RB – complete, consistent, non-exhaustive, non-monotonic.

Example 5.26
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

5.6 Output Merging Manipulation of Rule Bases 99

RB1: Inputs/Outputs 1 2

 11 0 1
 12 0 1
 21 0 1
 22 1 0

(5.151)

 RB1: {(11, 2), (12, 2), (21, 2), (22, 1)} (5.152)

RB2: Inputs/Outputs 1 2

 11 0 1
 12 0 1
 21 0 1
 22 0 1

(5.153)

 RB2: {(11, 2), (12, 2), (21, 2), (22, 2)} (5.154)

The output merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1;RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 0 0 1
 21 0 0 0 1
 22 0 1 0 0

(5.155)

 RB: {(11, 22), (12, 22), (21, 22), (22, 12)} (5.156)

The rule bases above have the following properties:
RB1 – complete, consistent, exhaustive, non-monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic,
RB – complete, consistent, non-exhaustive, non-monotonic.

Example 5.27
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

100 5 Formal Manipulation of Fuzzy Rule Based Systems

RB1: Inputs/Outputs 1 2

 11 1 0
 12 1 0
 21 1 0
 22 1 0

(5.157)

 RB1: {(11, 1), (12, 1), (21, 1), (22, 1)} (5.158)

RB2: Inputs/Outputs 1 2

 11 1 0
 12 0 1
 21 0 1
 22 0 1

(5.159)

 RB2: {(11, 1), (12, 2), (21, 2), (22, 2)} (5.160)

The output merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1;RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 1 0 0 0
 12 0 1 0 0
 21 0 1 0 0
 22 0 1 0 0

(5.161)

 RB: {(11, 11), (12, 12), (21, 12), (22, 12)} (5.162)

The rule bases above have the following properties:

RB1 – complete, consistent, non-exhaustive, non-monotonic,
RB2 – complete, consistent, exhaustive, non-monotonic,
RB – complete, consistent, non-exhaustive, non-monotonic.

Example 5.28
The operand rule bases RB1 and RB2 are presented by the following

Boolean matrices and binary relations:

5.6 Output Merging Manipulation of Rule Bases 101

RB1: Inputs/Outputs 1 2

 11 1 0
 12 1 0
 21 0 1
 22 0 1

(5.163)

 RB1: {(11, 1), (12, 1), (21, 2), (22, 2)} (5.164)

RB2: Inputs/Outputs 1 2

 11 1 0
 12 1 0
 21 0 1
 22 1 0

(5.165)

 RB2: {(11, 1), (12, 1), (21, 2), (22, 1)} (5.166)

The output merging of RB1 and RB2 into a product rule base RB will be
denoted by RB1;RB2 = RB where RB will be presented by the following
Boolean matrix and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 1 0 0 0
 12 1 0 0 0
 21 0 0 0 1
 22 0 0 1 0

(5.167)

 RB: {(11, 11), (12, 11), (21, 22), (22, 21)} (5.168)

The rule bases above have the following properties:

RB1 – complete, consistent, exhaustive, non-monotonic,
RB2 – complete, consistent, exhaustive, non-monotonic,
RB – complete, consistent, non-exhaustive, non-monotonic.

The examples above show that the product matrix is complete if the
operand matrices are both complete (see Examples 5.25–5.28) but it is
incomplete otherwise, i.e. if at least one of the operand matrices is
incomplete (see Examples 5.21–5.24). As far as consistency is concerned, if
the operand matrices are both consistent then the product matrix is also

102 5 Formal Manipulation of Fuzzy Rule Based Systems

one of the operand matrices is inconsistent then the product matrix is

In addition, the examples above show that if the operand matrices are
both exhaustive then the product matrix may be exhaustive (see Examples
5.22–5.23) as well as non-exhaustive (see Example 5.21 and Example
5.28). However, if at least one of the operand matrices is non-exhaustive
then the product matrix is non-exhaustive (see Examples 5.24–5.27). As far
as monotonousness is concerned, the product matrix may be monotonic if
the operand matrices are both monotonic (see Example 5.24) or at least one
of them is non-monotonic (see Examples 5.21–5.23). However, if the
operand matrices are both non-monotonic (see Examples 5.25–5.28) then
product matrix is non-monotonic too.

5.7 Output Splitting Manipulation of Rule Bases

The process of representing a MO system with two outputs as two SO
systems with the same common inputs as the MO system is called ‘output
splitting’ and it is shown in Fig. 5.6. This type of manipulation can be
applied to a rule base of a SRB system or a rule base that is part of a MRB
system. Obviously, as a result of this manipulation a SRB system will be
represented as a number of smaller SRB systems, whereas for a MRB
system the number of levels in the corresponding layer will be increased.

 o1 o1

 i1 i1

= :
o2

 o2

Fig. 5.6. Output splitting of rule base RB into rule bases RB1 and RB2

In order to illustrate the output splitting manipulation, we introduce an
operation called ‘output decomposition’. This operation is unary and it can
be applied to only one operand at a time. The operand in this case is the
Boolean matrix or the binary relation representing the operand rule base.
The result from the application of this operation is a couple of Boolean
matrices or binary relations representing the product rule bases.

Algorithms 5.11 and 5.12 demonstrate the application of the output
decomposition operation to Boolean matrices and binary relations,
respectively.

RB

RB1

RB2

consistent (see Example 5.21 and Examples 5.24--5.28). However, if at least

inconsistent too (see Examples 5.22--5.23).

5.7 Output Splitting Manipulation of Rule Bases 103

Algorithm 5.11
1. Label the rows of each of the two product matrices with the

sorted permutations of row labels from the operand matrix.
2. Label the columns of the first product matrix with the sorted

permutations of the corresponding first element from the column
labels in the operand matrix.

3. Label the columns of the second product matrix with the sorted
permutations of the corresponding second element from the
column labels in the operand matrix.

4. Go through all the elements of the operand matrix and set each
element of the two product matrices equal to 1 or 0, as described
in steps 5 and 6.

5. If an element of a product matrix is mapped from a non-zero
element in the operand matrix, set this element equal to 1.

6. If an element of a product matrix is mapped from a zero element
in the operand matrix, set this element equal to 0.

Algorithm 5.12
1. Split each maplet from the operand relation into a pair of new

maplets for the two product relations, as described in steps 2, 3
and 4.

2. Make the first element in each new maplet for each of the
product relations equal to the first element from the
corresponding maplet for the operand relation.

3. Make the second element in each new maplet for the first
product relation equal to the corresponding first part of the
second element from the maplet for the operand relation.

4. Make the second element in each new maplet for the second
product relation equal to the corresponding second part of the
second element from the maplet for the operand relation.

5. Generate the two product binary relations containing all new
maplets created in the previous three steps of this algorithm.

Example 5.29
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 1 0 0 0
 12 0 0 1 0
 21 0 1 0 0
 22 0 0 0 0

(5.169)

104 5 Formal Manipulation of Fuzzy Rule Based Systems

RB: {(11, 11), (12, 21), (21, 12)} (5.170)

The output splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 11 1 0
 12 0 1
 21 1 0
 22 0 0

(5.171)

RB1: {(11, 1), (12, 2), (21, 1)} (5.172)

RB2: Inputs/Outputs 1 2

 11 1 0
 12 1 0
 21 0 1
 22 0 0

(5.173)

RB2: {(11, 1), (12, 1), (21, 2)} (5.174)

The rule bases above have the following properties:
RB – incomplete, consistent, non-exhaustive, monotonic,
RB1 – incomplete, consistent, exhaustive, non-monotonic,
RB2 – incomplete, consistent, exhaustive, non-monotonic.

Example 5.30
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 1 1 0 0
 12 0 0 1 0
 21 0 0 0 1
 22 0 0 0 0

(5.175)

5.7 Output Splitting Manipulation of Rule Bases 105

 RB: {(11, 11), (11, 12), (12, 21), (21, 22)} (5.176)

The output splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 11 1 0
 12 0 1
 21 0 1
 22 0 0

(5.177)

 RB1: {(11, 1), (12, 2), (21, 2)} (5.178)

RB2: Inputs/Outputs 1 2

 11 1 1
 12 1 0
 21 0 1
 22 0 0

(5.179)

 RB2: {(11, 1), (11, 2), (12, 1), (21, 2)} (5.180)

The rule bases above have the following properties:
RB – incomplete, inconsistent, exhaustive, monotonic,
RB1 – incomplete, consistent, exhaustive, non-monotonic,
RB2 – incomplete, inconsistent, exhaustive, non-monotonic.

Example 5.31
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 1 0 1
 12 1 0 0 0
 21 0 0 1 0
 22 0 0 0 0

(5.181)

106 5 Formal Manipulation of Fuzzy Rule Based Systems

 RB: {(11, 12), (11, 22), (12, 11), (21, 21)} (5.182)

The output splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 11 1 1
 12 1 0
 21 0 1
 22 0 0

(5.183)

 RB1: {(11, 1), (11, 2), (12, 1), (21, 2)} (5.184)

RB2: Inputs/Outputs 1 2

 11 0 1
 12 1 0
 21 1 0
 22 0 0

(5.185)

 RB2: {(11, 2), (12, 1), (21, 1)} (5.186)

The rule bases above have the following properties:

RB – incomplete, inconsistent, exhaustive, monotonic,
RB1 – incomplete, inconsistent, exhaustive, non-monotonic,
RB2 – incomplete, consistent, exhaustive, non-monotonic.

Example 5.32
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 1 0 0
 12 0 0 0 0
 21 0 0 0 0
 22 0 0 0 0

(5.187)

5.7 Output Splitting Manipulation of Rule Bases 107

 RB: {(11, 12)} (5.188)

The output splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 11 1 0
 12 0 0
 21 0 0
 22 0 0

(5.189)

 RB1: {(11, 1)} (5.190)

RB2: Inputs/Outputs 1 2

 11 0 1
 12 0 0
 21 0 0
 22 0 0

(5.191)

 RB2: {(11, 2)} (5.192)

The rule bases above have the following properties:

RB – incomplete, consistent, non-exhaustive, monotonic,
RB1 – incomplete, consistent, non-exhaustive, monotonic,
RB2 – incomplete, consistent, non-exhaustive, monotonic.

Example 5.33
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 1 0
 12 0 0 1 0
 21 0 0 1 0
 22 0 0 1 0

(5.193)

108 5 Formal Manipulation of Fuzzy Rule Based Systems

 RB: {(11, 21), (12, 21), (21, 21), (22, 21)} (5.194)

The output splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 11 0 1
 12 0 1
 21 0 1
 22 0 1

(5.195)

 RB1: {(11, 2), (12, 2), (21, 2), (22, 2)} (5.196)

RB2: Inputs/Outputs 1 2

 11 1 0
 12 1 0
 21 1 0
 22 1 0

(5.197)

 RB2: {(11, 1), (12, 1), (21, 1), (22, 1)} (5.198)

The rule bases above have the following properties:

RB – complete, consistent, non-exhaustive, non-monotonic,
RB1 – complete, consistent, non-exhaustive, non-monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic.

Example 5.34
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 0 0 1
 21 0 0 0 1
 22 0 1 0 0

(5.199)

5.7 Output Splitting Manipulation of Rule Bases 109

 RB: {(11, 22), (12, 22), (21, 22), (22, 12)} (5.200)

The output splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 11 0 1
 12 0 1
 21 0 1
 22 1 0

(5.201)

 RB1: {(11, 2), (12, 2), (21, 2), (22, 1)} (5.202)

RB2: Inputs/Outputs 1 2

 11 0 1
 12 0 1
 21 0 1
 22 0 1

(5.203)

 RB2: {(11, 2), (12, 2), (21, 2), (22, 2)} (5.204)

The rule bases above have the following properties:

RB – complete, consistent, non-exhaustive, non-monotonic,
RB1 – complete, consistent, exhaustive, non-monotonic,
RB2 – complete, consistent, non-exhaustive, non-monotonic.

Example 5.35
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 1 0 0 0
 12 0 1 0 0
 21 0 1 0 0
 22 0 1 0 0

(5.205)

110 5 Formal Manipulation of Fuzzy Rule Based Systems

 RB: {(11, 11), (12, 12), (21, 12), (22, 12)} (5.206)

The output splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 11 1 0
 12 1 0
 21 1 0
 22 1 0

(5.207)

 RB1: {(11, 1), (12, 1), (21, 1), (22, 1)} (5.208)

RB2: Inputs/Outputs 1 2

 11 1 0
 12 0 1
 21 0 1
 22 0 1

(5.209)

 RB2: {(11, 1), (12, 2), (21, 2), (22, 2)} (5.210)

The rule bases above have the following properties:

RB – complete, consistent, non-exhaustive, non-monotonic,
RB1 – complete, consistent, non-exhaustive, non-monotonic,
RB2 – complete, consistent, exhaustive, non-monotonic.

Example 5.36
The operand rule base RB is presented by the following Boolean matrix

and binary relation:

RB: Inputs/Outputs 11 12 21 22

 11 1 0 0 0
 12 1 0 0 0
 21 0 0 0 1
 22 0 0 1 0

(5.211)

5.7 Output Splitting Manipulation of Rule Bases 111

 RB: {(11, 11), (12, 11), (21, 22), (22, 21)} (5.212)

The output splitting of RB into product rule bases RB1 and RB2 will be
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the
following Boolean matrices and binary relations:

RB1: Inputs/Outputs 1 2

 11 1 0
 12 1 0
 21 0 1
 22 0 1

(5.213)

 RB1: {(11, 1), (12, 1), (21, 2), (22, 2)} (5.214)

RB2: Inputs/Outputs 1 2

 11 1 0
 12 1 0
 21 0 1
 22 1 0

(5.215)

 RB2: {(11, 1), (12, 1), (21, 2), (22, 1)} (5.216)

The rule bases above have the following properties:

RB – complete, consistent, non-exhaustive, non-monotonic,
RB1 – complete, consistent, exhaustive, non-monotonic,
RB2 – complete, consistent, exhaustive, non-monotonic.

The examples above show that the product matrices are both complete if
the operand matrix is complete (see Examples 5.33–5.36) but they are both
incomplete otherwise, i.e. if the operand matrix is incomplete (see
Examples 5.29–5.32). As far as consistency is concerned, if the operand
matrix is consistent then the product matrices are both consistent (see
Example 5.29 and Examples 5.32–5.36). However, if the operand matrix is
inconsistent then at least one of the product matrices is inconsistent too (see
Examples 5.30–5.31).

In addition, the examples above show that if the operand matrix is
exhaustive then the product matrices are both exhaustive (see Examples
5.30–5.31). However, if the operand matrix is non-exhaustive then either
both product matrices are exhaustive (see Example 5.29 and Example 5.36)

112 5 Formal Manipulation of Fuzzy Rule Based Systems

or at least one of them is non-exhaustive (see Examples 5.32–5.35). As far
as monotonousness is concerned, if the operand matrix is monotonic

 then the product matrices may be both monotonic (see Example 5.32) or
 non-monotonic (see Examples 5.29–5.31). However, if the operand matrix
 in non-monotonic (see Examples 5.33–5.36) then both product matrices
 are non-monotonic too.

The basic operations for formal manipulation of fuzzy rule bases introduced
in Sects. 5.2–5.7 are a powerful tool for analysis and synthesis of fuzzy
systems. In particular, the three merging operations can be used for building
complex fuzzy systems by composing simpler systems whereas the three
splitting operations can be used for studying complex fuzzy systems by
decomposing them into simpler systems. In this case, the three merging
operations have an active impact on the operand fuzzy systems whereas the
three splitting operations have a passive impact on the operand fuzzy
system.

The vertical and output operations affect the number of levels within a
particular layer whereas the horizontal operations affect the number of
layers within a particular level. Also, in the case of merging operations the
result is always guaranteed with a unique solution, whereas in the case of
splitting operations the result is not guaranteed but if it is then the solution
may be non-unique.

The considerations presented above on formal manipulation techniques
for fuzzy rule bases provide essential information about the main
characteristics of these techniques. These characteristics are summarised in
Table 5.1.

Table 5.1. Characteristics of formal manipulation techniques for fuzzy rule bases

Technique/
Characteristic

Task Impact Component Result Solution

Vertical merging synthesis active level guaranteed unique
Vertical splitting analysis passive level not

guaranteed
non-
unique

Horizontal merging synthesis active layer guaranteed unique
Horizontal splitting analysis passive layer not

guaranteed
non-
unique

Output merging synthesis active level guaranteed unique
Output splitting analysis passive level not

guaranteed
non-
unique

5.8 Comparative Analysis of Formal Manipulation Techniques

5.9 Application Range of Formal Manipulation Techniques 113

The successive application of splitting an operand rule base RBO into two
rule bases RB1 and RB2 and merging them together will give a product rule
base RBP that is equal to RBO. However, the successive application of
merging two operand rule bases into a rule base and splitting it will not
necessarily give product rule bases that are equal to the operand rule bases.
In other words, the sequence of a merging and a splitting operation is an
identity mapping only if the first operation in the sequence is the splitting
operation. This conclusion applies to vertical, horizontal and output
merging and splitting operations, as shown by Eqs. (5.217)–(5.219).

If RBO = RB1–RB2 and RB1+RB2 = RBP then RBP = RBO (5.217)

If RBO = RB1/RB2 and RB1*RB2 = RBP then RBP = RBO (5.218)

If RBO = RB1:RB2 and RB1;RB2 = RBP then RBP = RBO (5.219)

The three implications above can be easily validated by comparing all
examples from Sects. 5.3, 5.5 and 5.7 with their counterpart examples from
Sects. 5.2, 5.4 and 5.6.

5.9 Application Range of Formal Manipulation Techniques

The six formal manipulation techniques introduced in this chapter are
applicable to a wide range of fuzzy rule based systems. These techniques
can be applied to Mamdami, Sugeno and Tsukamoto systems, CON and
DIS systems, MO and SO systems, FF and FB systems, as well as SRB and
MRB systems.

Examples 5.1–5.36 describe implicitly a fuzzy system of Mamdami or
Tsukamoto type. In order to apply the associated rule base manipulation
algorithms to Sugeno systems, the crisp outputs in the operand rule bases
have to fuzzified, i.e. converted into linguistic values. In this case, the
linguistic values of the outputs in the product rule bases can be converted
back into crisp values, if necessary.

Examples 5.1–5.36 can be extended easily in accordance with the
considerations in Sect. 4.6, if we would like them to describe explicitly
Mamdami, Sugeno and Tsukamoto systems. However, this has not been
done in this chapter in order to simplify the notations and to put the
emphasis on the manipulation rather than the presentation process, which
was dealt with in the previous chapter.

114 5 Formal Manipulation of Fuzzy Rule Based Systems

As far as CON and DIS systems are concerned, the formal manipulation
techniques are directly applicable to them. In this case, the operand and the
product rule bases must be of the same type, i.e. CADR, DADR, CACR or
DACR.

With respect to MO and SO systems, the formal manipulation techniques
are also directly applicable by matching appropriately the number of
outputs in the operand and the product rule bases. For example, in the case
of vertical and output merging the number of outputs in the product rule
base is equal to the sum of the number of outputs in the operand rule bases.
Similarly, in the case of vertical and output splitting the number of outputs
in the operand rule base is equal to the sum of the number of outputs in the
product rule bases. However, in the case of horizontal merging the number
of outputs in the product rule base is equal to the number of outputs in the
second operand rule base and in the case of horizontal splitting the number
of outputs in the second product rule base is equal to the number of outputs
in the operand rule base.

In the case of FF systems, the formal manipulation techniques are
directly applicable as already demonstrated by Examples 5.1–5.36.
However, if any of the operand rule bases are of FB type, then they have to
be converted into an equivalent rule base (ERB) of FF type before the
manipulation techniques can be applied. This conversion requires the
specification of the existing output-input interconnections and their type,
e.g. local or global, and it is discussed in detail in Chapter 8.

Examples 5.1–5.36 demonstrate the application of formal manipulation
techniques in the context of both SRB and MRB systems. In merging
manipulations, the operand rule bases are usually part of a MRB system
whereas the product rule base may be a SRB system or part of a MRB
system. However, in splitting manipulations the operand rule base may be a
SRB system or part of a MRB system whereas the product rule bases are
usually part of a MRB system.

The vertical, horizontal and output manipulation techniques facilitate the
complexity management in fuzzy systems. These techniques allow the
compressed information about a fuzzy rule base in the form of a Boolean
matrix or binary relation to be manipulated appropriately for the purpose of
analysis and synthesis of fuzzy systems.

However, the manipulation techniques demonstrated so far are only with
common types of operand rule bases, which do not always make obvious
the impact on the corresponding product rule bases. Also, these common
types of rule bases may have only limited impact on the properties and the
structure of the product rule base. In order to make this impact more

in the next chapter.

obvious and significant, a specific study on formal manipulation with
some special operand rule bases is required and this is discussed in detail

6 Formal Manipulation with Special Rule Bases

6.1 Preliminaries on Special Rule Bases

The techniques for formal manipulation of fuzzy rule bases introduced in
the previous chapter facilitate the complexity management in fuzzy
systems. These techniques allow the compressed information about the
fuzzy system contained in the Boolean matrix and the binary relation to be
reorganised for the purpose of analysis or synthesis. This reorganisation is
carried out by representing a single operand rule base with a couple of
product rule bases, or alternatively, by representing a couple of operand
rule bases with a single product rule base. In either case, no special
requirements are usually placed on the corresponding operand or product
rule bases, i.e. the latter may be any arbitrary rule bases.

However, if we want to reinforce the change of the properties of a SRB
system or to change the overall structure of a MRB system by manipulating
the corresponding Boolean matrix or binary relation, we may have to use
some special rule bases. Such rule bases are the IRB, the TRB and the PRB.
These special rule bases are described by the following definitions.

Definition 6.1
A transpose Boolean matrix of a given Boolean matrix is the matrix

obtained by representing the rows and the columns of the given matrix as
columns and rows, respectively.

Definition 6.2
A transpose binary relation of a given binary relation is the relation

obtained by swapping the first and the second element in all maplets of the
given relation.

Definition 6.3
A permutation Boolean matrix is a square matrix with exactly one non-

zero element in each row and each column.

Definition 6.4
A permutation binary relation is a square relation in which each element

of the two participating sets appears only once as a first or a second element
in a maplet.

Alexander
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

Gegov: Complexity Management in Fuzzy Systems, StudFuzz 211, 115–151 (2007)

116 6 Formal Manipulation with Special Rule Bases

Definition 6.5
An IRB is denoted by RBI and is formally presented by an identity

Boolean matrix or an identity binary relation.

Definition 6.6
A TRB is denoted by RBT and is formally presented by a transpose

Boolean matrix or a transpose binary relation.

Definition 6.7
A PRB is denoted by RBP and is formally presented by a permutation

Boolean matrix or a permutation binary relation.

For completeness and consistency, Definitions 6.1–6.4 on transpose and
permutation related concepts must be considered together with Definitions
4.16 and 4.34 on identity related concepts. As far as Definitions 6.5–6.7 are
concerned, they follow directly from the above mentioned definitions in
that they state how the special rule bases are denoted and presented
formally. Integer tables are not used in this chapter because they do not
lend themselves easily to formal manipulation.

The formal manipulation techniques with special rule bases introduced
here can be applied mainly in the context of MRB systems as the
corresponding manipulations usually affect the interconnections between
individual rule bases at some stage of the manipulation process. However,
we may have to deal only with SRB systems at other stages of this process.

For generality, a special rule base which is an IRB, TRB or PRB will be
referred to as an identity / transpose / permutation rule base (I/T/P RB).
This chapter presents the following manipulation techniques with such rule
bases:

vertical merging from below and above,
vertical splitting,
horizontal merging from right and left,
horizontal splitting,
output merging from below and above,
output splitting.

The above manipulation techniques are illustrated in Figs. 6.1–6.9 and by
numerous examples further in this chapter. The purpose of the examples is
to demonstrate the manipulation techniques with special rule bases and to
show the potential impact of the manipulation on the structure of the rule
bases involved, i.e. how the patterns from the operand rule bases are
replicated or transformed in the product rule bases.

6.1 Preliminaries on Special Rule Bases 117

 i1 o1

 i1 o1

+ =

 i2 o2

 i2 o2

Fig. 6.1. Vertical merging with an identity / transpose / permutation rule base from
below

 i1 o1

 i1 o1

+ =

 i2 o2

 i2 o2

Fig. 6.2. Vertical merging with an identity / transpose / permutation rule base from
above

 i1 o1

 i1 o1

 = -
 i2 o2 i2 o2

I/T/P
RB

I/T/P
RB

I/T/P
RB

Fig. 6.3. Vertical splitting of an identity/transpose/permutation rule base

118 6 Formal Manipulation with Special Rule Bases

from right

Fig. 6.5. Horizontal merging with an identity/transpose/permutation rule base
from left

Fig. 6.6. Horizontal splitting of an identity/transpose/permutation rule base

Fig. 6.7. Output merging with an identity/transpose/permutation rule base from
below

Fig. 6.4. Horizontal merging with an identity/transpose/permutation rule base

 i
1

 z
1

z
1 o

1
o

1
 i

1

 *

 =

 I/T/P
RB

 i
1

 z
1

z
1 o

1
o

1
 i

1

 *

 =

 I/T/P
RB

 i
1

 o
1

i

1
z

1
 z

1
 o

1

 = /

I/T/P
RB

 o
1

 o
1

 i
1
 i

1 ; =
 o

2

 o
2 I/T/P

RB

6.2 Manipulation with Identity Rule Bases 119

 o1

 o1

 i1 i1

; =
o2

 o2

Fig. 6.8. Output merging with an identity/transpose/permutation rule base from
above

 o1

 o1

 i1 i1

= :
o2 o2

Fig. 6.9. Output splitting of an identity/transpose/permutation rule base

6.2 Manipulation with Identity Rule Bases

Example 6.1
This example demonstrates the technique of vertical merging with an

IRB from below. The operand rule bases RB and RBI are presented by the
following Boolean matrices and binary relations:

RB: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(6.1)

 RB: {(1, 2), (2, 1)} (6.2)

RBI: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.3)

I/T/P
RB

I/T/P
RB

120 6 Formal Manipulation with Special Rule Bases

 RBI: {(1, 1), (2, 2)} (6.4)

The vertical merging of RB and RBI into a product rule base RBM will be
denoted by RB+RBI = RBM where RBM will be presented by the following
block Boolean matrix and binary relation:

RBM: Inputs/Outputs 11 12 21 22

 11 0 0 1 0
 12 0 0 0 1

 21 1 0 0 0
 22 0 1 0 0

(6.5)

 RBM: {(11, 21), (12, 22), (21, 11), (22, 12)} (6.6)

In this case, the positions of the non-zero blocks in RBM map the
positions of the non-zero elements in the Boolean matrix from above RB
whereby each non-zero block in RBM is equal to the identity Boolean matrix
from below RBI.

Example 6.2
This example demonstrates the technique of vertical merging with an

IRB from above. The operand rule bases RBI and RB are presented by the
following Boolean matrices and binary relations:

RBI: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.7)

 RBI: {(1, 1), (2, 2)} (6.8)

RB: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(6.9)

 RB: {(1, 2), (2, 1)} (6.10)

6.2 Manipulation with Identity Rule Bases 121

The vertical merging of RBI and RB into a product rule base RBM will be
denoted by RBI +RB = RBM where RBM will be presented by the block
following Boolean matrix and binary relation:

RBM: Inputs/Outputs 11 12 21 22

 11 0 1 0 0
 12 1 0 0 0

 21 0 0 0 1
 22 0 0 1 0

(6.11)

 RBM: {(11, 12), (12, 11), (21, 22), (22, 21)} (6.12)

In this case, the positions of the non-zero blocks in RBM map the
positions of the non-zero elements in the identity Boolean matrix from
above RBI whereby each non-zero block in RBM is equal to the Boolean
matrix from below RB.

Example 6.3
This example demonstrates the technique of vertical splitting of an IRB.

The operand rule base RBI is presented by the following block Boolean
matrix and binary relation:

RBI: Inputs/Outputs 11 12 21 22

 11 1 0 0 0
 12 0 1 0 0

 21 0 0 1 0
 22 0 0 0 1

(6.13)

 RBI: {(11, 11), (12, 12), (21, 21), (22, 22)} (6.14)

The vertical splitting of RBI into product rule bases RBS1 and RBS2 will be
denoted by RBI = RBS1–RBS2 where RBS1 and RBS2 will be presented by the
following Boolean matrices and binary relations:

RBS1: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.15)

RBS1: {(1, 1), (2, 2)} (6.16)

122 6 Formal Manipulation with Special Rule Bases

RBS2: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.17)

RBS2: {(1, 1), (2, 2)} (6.18)

In this case, each of the two product Boolean matrices RBS1 and RBS2 is an
IRB that is equal to the non-zero on-diagonal blocks in the operand
Boolean matrix RBI.

Example 6.4
This example demonstrates the technique of horizontal merging with an

IRB from right. The operand rule bases RB and RBI are presented by the
following Boolean matrices and binary relations:

RB: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(6.19)

 RB: {(1, 2), (2, 1)} (6.20)

RBI: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.21)

 RBI: {(1, 1), (2, 2)} (6.22)

The horizontal merging of RB and RBI into a product rule base RBM will
be denoted by RB*RBI = RBM where RBM will be presented by the following
Boolean matrix and binary relation:

RBM: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(6.23)

 RBM: {(1, 2), (2, 1)} (6.24)

6.2 Manipulation with Identity Rule Bases 123

In this case, the product rule base RBM

and Eqs. (6.23)–(6.24).

Example 6.5
This example demonstrates the technique of horizontal merging with an

IRB from left. The operand rule bases RBI and RB are presented by the
following Boolean matrices and binary relations:

RBI: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.25)

 RBI: {(1, 1), (2, 2)} (6.26)

RB: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(6.27)

 RB: {(1, 2), (2, 1)} (6.28)

The horizontal merging of RBI and RB into a product rule base RBM will
be denoted by RBI*RB = RBM where RBM will be presented by the following
Boolean matrix and binary relation:

RBM: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(6.29)

 RBM: {(1, 2), (2, 1)} (6.30)

In this case, the product rule base RBM

and Eqs. (6.29)–(6.30).

is the same as the operand rule base

matrices and binary relations for these rule bases, as shown by Eqs. (6.19)–(6.20)
from left RB. This follows from the equality of the corresponding Boolean

is the same as the operand rule base
from right
matrices and binary relations for these rule bases, as shown by Eqs. (6.27)–(6.28)

RB. This follows from the equality of the corresponding Boolean

124 6 Formal Manipulation with Special Rule Bases

Example 6.6
This example demonstrates the technique of horizontal splitting of an

IRB. The operand rule base RBI is presented by the following Boolean
matrix and binary relation:

RBI: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 1 0
 3 0 0 1

(6.31)

 RBI: {(1, 1), (2, 2), (3, 3)} (6.32)

The horizontal splitting of RBI into product rule bases RBS1 and RBS2 will
be denoted by RBI = RBS1/RBS2 where RBS1 and RBS2 may be presented by the
following Boolean matrices and binary relations:

RBS1: Inputs/Outputs 1 2 3

 1 0 1 0
 2 0 0 1
 3 1 0 0

(6.33)

 RBS1: {(1, 2), (2, 3), (3, 1)} (6.34)

RBS2: Inputs/Outputs 1 2 3

 1 0 0 1
 2 1 0 0
 3 0 1 0

(6.35)

 RBS2: {(1, 3), (2, 1), (3, 2)} (6.36)

In this case, the product rule bases RBS1 and RBS2 are both PRBs. Also,
each of them is a TRB with respect to the other. This follows from the
comparison of the corresponding Boolean matrices and binary relations for
these rule bases, as shown by Eqs. (6.33)–(6.34) and Eqs. (6.35)–(6.36).

Example 6.7
This example demonstrates the technique of output merging with an IRB

from below. The operand rule bases RB and RBI are presented by the
following Boolean matrices and binary relations:

6.2 Manipulation with Identity Rule Bases 125

RB: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(6.37)

 RB: {(1, 2), (2, 1)} (6.38)

RBI: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.39)

 RBI: {(1, 1), (2, 2)} (6.40)

The output merging of RB and RBI into a product rule base RBM will be
denoted by RB;RBI = RBM where RBM will be presented by the following
block Boolean matrix and binary relation:

RBM: Inputs/Outputs 11 12 21 22

 1 0 0 1 0
 2 0 1 0 0

(6.41)

RBM: {(1, 21), (2, 12)} (6.42)

In this case, the positions of the non-zero 1 2 sub-blocks in the product
Boolean matrix RBM map the positions of the non-zero elements in the first
operand Boolean matrix RB whereas the positions of the non-zero elements
within these sub-blocks map the positions of the non-zero elements in the
second Boolean matrix RBI.

Example 6.8
This example demonstrates the technique of output merging with an IRB

from above. The operand rule bases RBI and RB are presented by the
following Boolean matrices and binary relations:

RBI: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.43)

126 6 Formal Manipulation with Special Rule Bases

 RBI: {(1, 1), (2, 2)} (6.44)

RB: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(6.45)

 RB: {(1, 2), (2, 1)} (6.46)

The output merging of RBI and RB into a product rule base RBM will be
denoted by RBI;RB = RBM where RBM will be presented by the following
block Boolean matrix and binary relation:

RBM: Inputs/Outputs 11 12 21 22

 1 0 1 0 0
 2 0 0 1 0

(6.47)

RBM: {(1, 12), (2, 21)} (6.48)

In this case, the positions of the non-zero 1×2 sub-blocks in the product
Boolean matrix RBM map the positions of the non-zero elements in the first
operand Boolean matrix RBI whereas the positions of the non-zero elements
within these sub-blocks map the positions of the non-zero elements in the
second Boolean matrix RB.

Example 6.9
This example demonstrates the technique of output splitting of an IRB.

The operand rule base RBI is presented by the following block Boolean
matrix and binary relation:

RBI: Inputs/Outputs 11 12 21 22

 11 1 0 0 0
 12 0 1 0 0

 21 0 0 1 0
 22 0 0 0 1

(6.49)

 RBI: {(11, 11), (12, 12), (21, 21), (22, 22)} (6.50)

6.3 Manipulation with Transpose Rule Bases 127

The output splitting of RBI into product rule bases RBS1 and RBS2 will be
denoted by RB = RBS1:RBS2 where RBS1 and RBS2 will be presented by the
following block Boolean matrices and binary relations:

RBS1: Inputs/Outputs 1 2

 11 1 0
 12 1 0

 21 0 1
 22 0 1

(6.51)

RBS1: {(11, 1), (12, 1), (21, 2), (22, 2)} (6.52)

RBS2: Inputs/Outputs 1 2

 11 1 0
 12 0 1

 21 1 0
 22 0 1

(6.53)

RBS2: {(11, 1), (12, 1), (21, 2), (22, 2)} (6.54)

In this case, the blocks in the second product Boolean matrix RBS2 map
the non-zero on-diagonal blocks in the operand Boolean matrix RBI

whereas the positions of the non-zero elements in the first product Boolean
matrix RBS1 map the positions of the non-zero 1 2 sub-blocks in RBI.

6.3 Manipulation with Transpose Rule Bases

Example 6.10
This example demonstrates the technique of vertical merging with a TRB

from below and above. In this case, the two operand rule bases RBT1 and
RBT2 are transpose to each other and they are presented by the following
Boolean matrices and binary relations:

RBT1: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(6.55)

 RBT1: {(1, 1), (2, 1)} (6.56)

×

128 6 Formal Manipulation with Special Rule Bases

RBT2: Inputs/Outputs 1 2

 1 1 1
 2 0 0

(6.57)

 RBT2: {(1, 1), (1, 2)} (6.58)

The vertical merging of RBT1 and RBT2 into a product rule base RBM will
be denoted by RBT1+RBT2 = RBM where RBM will be presented by the
following block Boolean matrix and binary relation:

RBM: Inputs/Outputs 11 12 21 22

 11 1 1 0 0
 12 0 0 0 0

 21 1 1 0 0
 22 0 0 0 0

(6.59)

 RBM: {(11, 11), (11, 12), (21, 11), (21, 12)} (6.60)

The positions of the non-zero blocks in the product Boolean matrix RBM

map the positions of the non-zero elements in the operand Boolean matrix
from above RBT1 whereby each non-zero block in RBM is equal to the
operand Boolean matrix from below RBT2.

Example 6.11
This example demonstrates the technique of vertical splitting of TRBs,

i.e. rule bases which are transpose to each other. The two operand rule
bases RBT1 and RBT2 are handled separately with the purpose to find out how
the symmetrical patterns in them are replicated in the corresponding
product rule bases.

The operand rule base RBT1 is presented by the following block Boolean
matrix and binary relation:

RBT1: Inputs/Outputs 11 12 21 22

 11 0 0 1 0
 12 0 0 1 0

 21 1 0 0 0
 22 1 0 0 0

(6.61)

 RBT1: {(11, 21), (12, 21), (21, 11), (22, 11)} (6.62)

6.3 Manipulation with Transpose Rule Bases 129

The vertical splitting of RBT1 into product rule bases RBS1 and RBS2 will be
denoted by RBT1 = RBS1–RBS2 where RBS1 and RBS2 will be presented by the
following Boolean matrices and binary relations:

RBS1: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(6.63)

RBS1: {(1, 2), (2, 1)} (6.64)

RBS2: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(6.65)

RBS2: {(1, 1), (2, 1)} (6.66)

The positions of the non-zero elements in the first product Boolean
matrix RBS1 map the positions of the two identical non-zero blocks in the
operand Boolean matrix RBT1. As far as the second product Boolean matrix
RBS2 is concerned, it is the same as each of the two identical non-zero
blocks in the operand Boolean matrix RBT1.

The operand rule base RBT2 is presented by the following block Boolean
matrix and binary relation:

RBT2: Inputs/Outputs 11 12 21 22

 11 0 0 1 1
 12 0 0 0 0

 21 1 1 0 0
 22 0 0 0 0

(6.67)

 RBT2: {(11, 21), (11, 22), (21, 11), (21, 12)} (6.68)

The vertical splitting of RBT2 into product rule bases RBS3 and RBS4 will be
denoted by RBT2 = RBS3–RBS4 where RBS3 and RBS4 will be presented by the
following Boolean matrices and binary relations:

RBS3: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(6.69)

130 6 Formal Manipulation with Special Rule Bases

RBS3: {(1, 2), (2, 1)} (6.70)

RBS4: Inputs/Outputs 1 2

 1 1 1
 2 0 0

(6.71)

RBS4: {(1, 1), (1, 2)} (6.72)

The positions of the non-zero elements in the first product Boolean
matrix RBS3 map the positions of the two identical non-zero blocks in the
operand Boolean matrix RBT2. As far as the second product Boolean matrix
RBS4 is concerned, it is the same as each of the two identical non-zero
blocks in the operand Boolean matrix RBT2.

A more detailed inspection of this example shows that the patterns from
the two operand rule bases RBT1 and RBT2 are replicated in the corresponding
product rule bases RBS1, RBS2, RBS3 and RBS4 in a manner that matches the
symmetry in RBT1 and RBT2. In particular, RBS1 is equal to RBS3 whereas RBS2

and RBS4 are transpose to each other.

Example 6.12
This example demonstrates the technique of horizontal merging of TRBs.

The two operand rule bases RBT1 and RBT2 are handled together in two
separate cases whereby in the second case their positions are swapped in
relation to the first case.

For the first case, the operand rule bases RBT1 and RBT2 are presented by
the following Boolean matrices and binary relations:

RBT1: Inputs/Outputs 1 2 3

 1 1 0 0
 2 1 0 0
 3 0 1 0

(6.73)

 RBT1: {(1, 1), (2, 1), (3, 2)} (6.74)

RBT2: Inputs/Outputs 1 2 3

 1 1 1 0
 2 0 0 1
 3 0 0 0

(6.75)

6.3 Manipulation with Transpose Rule Bases 131

 RBT2: {(1, 1), (1, 2), (2, 3)} (6.76)

The horizontal merging of RBT1 and RBT2 into a product rule base RBM12

will be denoted by RBT1*RBT = RBM12 where RBM12 will be presented by the
following block Boolean matrix and binary relation:

RBM12: Inputs/Outputs 1 2 3

 1 1 1 0
 2 1 1 0

 3 0 0 1

(6.77)

 RBM12: {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} (6.78)

For the second case, the positions of the operand rule bases RBT1 and RBT2

are swapped, i.e. RBT2 is from left and RBT1 is from right. Therefore, the
horizontal merging of RBT2 and RBT1 into a product rule base RBM21 will be
denoted by RBT2*RBT1 = RBM21 where RBM21 will be presented by the
following block Boolean matrix and binary relation:

RBM21: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 1 0

 3 0 0 0

(6.79)

RBM21: {(1, 1), (2, 2)} (6.80)

A more detailed inspection of this example shows that the symmetrical
patterns from the two operand rule bases RBT1 and RBT2 are transformed

M12 and RBM21 . In particular, RBM12

and RBM21

main block-diagonal are zeros. In the first case, the main diagonal
blocks of RBM12 are of universal type, i.e. with all elements non-zero. In the
second case, the main diagonal blocks of RBM21 are of either identity type,
i.e. with all elements on the main diagonal non-zero and the remaining
elements zeros, or of null type, i.e. with all elements zeros.

Example 6.13
This example demonstrates the technique of horizontal splitting of TRBs

whereby the two operand rule bases RBT1 and RBT2 are handled separately. In

in the corresponding product rule bases RB
both h ave a block-diagonal structure, i.e. all blocks outsid e the

132 6 Formal Manipulation with Special Rule Bases

this case, the operand rule base RBT1 is presented by the following Boolean
matrix and binary relation:

RBT1: Inputs/Outputs 1 2 3

 1 0 1 0
 2 0 0 1
 3 0 0 0

(6.81)

RBT1: {(1, 2), (2, 3)} (6.82)

The horizontal splitting of RBT1 into product rule bases RBS1 and RBS2 will
be denoted by RBT1 = RBS1 /RBS2 where RBS1 and RBS2 may be presented by the
following Boolean matrices and binary relations:

RBS1: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 1 1
 3 0 0 0

(6.83)

 RBS1: {(1, 1), (2, 2), (2, 3)} (6.84)

RBS2: Inputs/Outputs 1 2 3

 1 0 1 0
 2 0 0 1
 3 0 0 1

(6.85)

 RBS2: {(1, 2), (2, 3), (3, 3)} (6.86)

The zero row in the first product Boolean matrix RBS1 maps the zero row
in the operand Boolean matrix RBT1. As far as the second product Boolean
matrix RBS2 is concerned, its zero column maps the zero column in the
operand Boolean matrix RBT1.

The operand rule base RBT2 is presented by the following Boolean matrix
and binary relation:

RBT2: Inputs/Outputs 1 2 3

 1 0 0 0
 2 1 0 0
 3 0 1 0

(6.87)

6.3 Manipulation with Transpose Rule Bases 133

 RBT2: {(2, 1), (3, 2)} (6.88)

The horizontal splitting of RBT2 into product rule bases RBS3 and RBS4 will
be denoted by RBT2 = RBS3 / RBS4 where RBS3 and RBS4 may be presented by the
following Boolean matrices and binary relations:

RBS3: Inputs/Outputs 1 2 3

 1 0 0 0
 2 1 0 0
 3 0 1 1

(6.89)

 RBS3: {(2, 1), (3, 2), (3, 3)} (6.90)

RBS4: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 1 0
 3 0 1 0

(6.91)

 RBS4: {(1, 1), (2, 2), (3, 2)} (6.92)

The zero row in the first product Boolean matrix RBS3 maps the zero row
in the operand Boolean matrix RBT2. As far as the second product Boolean
matrix RBS4 is concerned, its zero column maps the zero column in the
operand Boolean matrix RBT2.

A more detailed inspection of this example shows that the patterns from
the two operand rule bases RBT1 and RBT2 are transformed in the
corresponding product rule bases RBS1, RBS2, RBS3 and RBS4 in a manner that
matches the symmetry in RBT1 and RBT2. In particular, RBS2 and RBS3 are
transpose to each other as are RBS1 and RBS4. In other words, the
transposition of the operand Boolean matrix RBT1 into RBT2 has an inverse
transformation effect on the corresponding product Boolean matrices, i.e.
RBS1 and RBS2 must be transposed and have their positions swapped in order
to obtain their counterparts RBS3 and RBS4.

Example 6.14
This example demonstrates the technique of output merging with a TRB

from below and above. In this case, the two operand rule bases RBT1 and
RBT2 are transpose to each other and they are presented by the following
Boolean matrices and binary relations:

134 6 Formal Manipulation with Special Rule Bases

RBT1: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(6.93)

 RBT1: {(1, 2), (2, 2)} (6.94)

RBT2: Inputs/Outputs 1 2

 1 0 0
 2 1 1

(6.95)

RBT2: {(2, 1), (2, 2)} (6.96)

The output merging of RBT1 and RBT2 into a product rule base RBM will be
denoted by RBT1; RBT2 = RBM where RBM will be presented by the following
block Boolean matrix and binary relation:

RBM: Inputs/Outputs 11 12 21 22

 1 0 0 0 0
 2 0 0 1 1

(6.97)

 RBM: {(2, 21), (2, 22)} (6.98)

The position of the non-zero block in the product Boolean matrix RBM

maps the position of the non-zero 2×1 sub-block in the operand Boolean
matrix from above RBT1 whereby this non-zero block is equal to the operand
Boolean matrix from below RBT2.

Example 6.15
This example demonstrates the technique of output splitting of TRBs

whereby the two operand rule bases RBT1 and RBT2 are handled separately. In
this case, the operand rule base RBT1 is presented by the following block
Boolean matrix and binary relation:

RBT1: Inputs/Outputs 11 12 21 22

 11 0 1 0 0
 12 0 0 1 0

 21 0 0 0 1
 22 0 1 0 0

(6.99)

6.3 Manipulation with Transpose Rule Bases 135

 RBT1: {(11, 12), (12, 21), (21, 22), (22, 12)} (6.100)

The output splitting of RBT1 into product rule bases RBS1 and RBS2 will be
denoted by RBT1 = RBS1:RBS2 where RBS1 and RBS2 will be presented by the
following Boolean matrices and binary relations:

RBS1: Inputs/Outputs 1 2

 11 1 0
 12 0 1
 21 0 1
 22 1 0

(6.101)

RBS1: {(11, 1), (12, 2), (21, 2), (22, 1)} (6.102)

RBS2: Inputs/Outputs 1 2

 11 0 1
 12 1 0
 21 0 1
 22 0 1

(6.103)

RBS2: {(11, 2), (12, 1), (21, 2), (22, 2)} (6.104)

It is obvious that the rows in the first product Boolean matrix RBS1 map
the non-zero 1×2 sub-blocks in the operand Boolean matrix RBT1. As far as
the second product Boolean matrix RBS2 is concerned, its non-zero elements
map the non-zero 1×2 sub-blocks in a Boolean matrix that is obtained by
swapping the second and the third column in RBT1 together with their labels.
This new matrix stands for a new rule base RBT1N in which the positions of
the two outputs have been swapped, i.e. the second output from RBT1 has
become first whereas its first output has become second. Obviously, the
corresponding binary relation does not change as a result of this column
swap because the column labels are swapped as well.

The new rule base RBT1N is presented by the following block Boolean
matrix and binary relation:

RBT1N: Inputs/Outputs 11 21 12 22

 11 0 0 1 0
 12 0 1 0 0
 21 0 0 0 1
 22 0 0 1 0

(6.105)

136 6 Formal Manipulation with Special Rule Bases

RBT1N: {(11, 12), (12, 21), (21, 22), (22, 12)} (6.106)

The operand rule base RBT2 is presented by the following block Boolean
matrix and binary relation:

RBT2: Inputs/Outputs 11 12 21 22

 11 0 0 0 0
 12 1 0 0 1

 21 0 1 0 0
 22 0 0 1 0

(6.107)

 RBT2: {(12, 11), (12, 22), (21, 12), (22, 21)} (6.108)

The vertical splitting of RBT2 into product rule bases RBS3 and RBS4 will be
denoted by RBT2 = RBS3:RBS4 where RBS3 and RBS4 will be presented by the
following block Boolean matrices and binary relations:

RBS3: Inputs/Outputs 1 2

 11 0 0
 12 1 1

 21 1 0
 22 0 1

(6.109)

RBS3: {(12, 1), (12, 2), (21, 1), (22, 2)} (6.110)

RBS4: Inputs/Outputs 1 2

 11 0 0
 12 1 1

 21 0 1
 22 1 0

(6.111)

RBS4: {(12, 1), (12, 2), (21, 2), (22, 1)} (6.112)

It is obvious that the rows in the first product Boolean matrix RBS3 map
the non-zero 1×2 sub-blocks in the operand Boolean matrix RBT2. As far as
the second product Boolean matrix RBS4 is concerned, its non-zero elements
map the non-zero 1×2 sub-blocks in a Boolean matrix that is obtained by
swapping the second and the third column in RBT2 together with their labels.
This new matrix stands for a new rule base RBT2N in which the positions of

6.3 Manipulation with Transpose Rule Bases 137

the two outputs have been swapped, i.e. the second output from RBT2 has
become first whereas its first output has become second. Here again, the
corresponding binary relation does not change as a result of this column
swap because the column labels are swapped as well.

The new rule base RBT2N is presented by the following block Boolean
matrix and binary relation:

RBT2N: Inputs/Outputs 11 21 12 22

 11 0 0 0 0
 12 1 0 0 1

 21 0 0 1 0
 22 0 1 0 0

(6.113)

 RBT2N: {(12, 11), (12, 22), (21, 12), (22, 21)} (6.114)

A more detailed inspection of this example shows that the patterns from
the two operand rule bases RBT1 and RBT2 are replicated in the corresponding
product rule bases RBS1 and RB in a manner that matches the symmetry
in RBT1 and RBT2 . In particular, the rows in RBS3

map the
 in RB

T2 which are obtained by transposing the corresponding 2×1 blocks in
RBT1 as part of the transposition process from RBT1 to RBT2

. Similarly, the
rows in RBS1 map the 1×2 sub-blocks in RBT1 which are obtained by
transposing the corresponding 2×1 blocks in RBT2 as part of the transposition
process from RBT2 to RBT1.

The above conclusions become more obvious when RBT1 and RBT2 are
presented in a form that makes their blocks explicit, i.e.:

RBT1: Inputs/Outputs 11 12 21 22

 11 0 1 0 0
 12 0 0 1 0

 21 0 0 0 1
 22 0 1 0 0

(6.115)

RBT2: Inputs/Outputs 11 12 21 22

 11 0 0 0 0
 12 1 0 0 1

 21 0 1 0 0
 22 0 0 1 0

(6.116)

 2 × 1

S3

1×2 sub-blocks

138 6 Formal Manipulation with Special Rule Bases

6.4 Manipulation with Permutation Rule Bases

Example 6.16
This example demonstrates the technique of vertical merging with a PRB

from below and above. The two operand rule bases RBP1 and RBP2 are
presented by the following Boolean matrices and binary relations:

RBP1: Inputs/Outputs 1 2 3

 1 0 0 1
 2 1 0 0
 3 0 1 0

(6.117)

 RBP1: {(1, 3), (2, 1), (3, 2)} (6.118)

RBP2: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 0 1
 3 0 1 0

(6.119)

 RBP2: {(1, 1), (2, 3), (3, 2)} (6.120)

The vertical merging of RBP1 and RBP2 into a product rule base RBM will
be denoted by RBP1 + RBP2 = RBM where RBM will be presented by the
following block Boolean matrix and binary relation:

RBM: Inputs/Outputs 11 12 13 21 22 23 31 32 33

 11 0 0 0 0 0 0 1 0 0
 12 0 0 0 0 0 0 0 0 1
 13 0 0 0 0 0 0 1 0 0

 21 1 0 0 0 0 0 0 0 0
 22 0 0 1 0 0 0 0 0 0
 23 0 1 0 0 0 0 0 0 0

 31 0 0 0 1 0 0 0 0 0
 32 0 0 0 0 0 1 0 0 0
 33 0 0 0 0 1 0 0 0 0

(6.121)

6.4 Manipulation with Permutation Rule Bases 139

RBM: {(11, 31), (12, 33), (13, 31),

 (21, 11), (22, 13), (23, 12),

 (31, 21), (32, 23), (33, 22)}

(6.122)

In this case, the permutation pattern from the two operand rule bases
RBP1 and RBP2 is replicated in the product rule base RBM, i.e. the latter is a
PRB.

Example 6.17
This example demonstrates the technique of vertical splitting of a PRB.

The operand rule base RBP is presented by the following block Boolean
matrix and binary relation:

RBP: Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 0 1 0

 21 0 1 0 0
 22 1 0 0 0

(6.123)

 RBP: {(11, 22), (12, 21), (21, 12), (22, 11)} (6.124)

The vertical splitting of RBP into product rule bases RBS1 and RBS2 will be
denoted by RBP = RBS1–RBS2 where RBS1 and RBS2 will be presented by the
following Boolean matrices and binary relations:

RBS1: Inputs/Outputs 1 2

 11 0 1
 12 1 0

(6.125)

RBS1: {(11, 2), (12, 1)} (6.126)

RBS2: Inputs/Outputs 1 2

 11 0 1
 12 1 0

(6.127)

RBS2: {(11, 2), (12, 1)} (6.128)

140 6 Formal Manipulation with Special Rule Bases

In this case, the permutation pattern from the operand rule base RBP is
replicated in the product rule bases RBS1 and RBS2, i.e. each of them is a
PRB.

Example 6.18
This example demonstrates the technique of horizontal merging with a

PRB from right and left. The operand rule bases RBP1 and RBP2 are
presented by the following Boolean matrices and binary relations:

RBP1: Inputs/Outputs 1 2 3

 1 0 0 1
 2 1 0 0
 3 0 1 0

(6.129)

 RBP1: {(1, 3), (2, 1), (3, 2)} (6.130)

RBP2: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 0 1
 3 0 1 0

(6.131)

 RBP2: {(1, 1), (2, 3), (3, 2)} (6.132)

The horizontal merging of RBP1 and RBP2 into a product rule base RBM will
be denoted by RBP1*RBP2 = RBM where RBM will be presented by the
following block Boolean matrix and binary relation:

RBM: Inputs/Outputs 1 2 3

 1 0 1 0
 2 1 0 0
 3 0 0 1

(6.133)

 RBM: {(1, 2), (2, 1), (3, 3)} (6.134)

In this case, the permutation pattern from the two operand rule bases
RBP1 and RBP2 is replicated in the product rule base RBM, the latter is a PRB.

6.4 Manipulation with Permutation Rule Bases 141

Example 6.19
This example demonstrates the technique of horizontal splitting of a

PRB. The operand rule base RBP is presented by the following Boolean
matrix and binary relation:

RBP: Inputs/Outputs 1 2 3

 1 0 1 0
 2 0 0 1
 3 1 0 0

(6.133)

P (6.134)

The horizontal splitting of RBP into product rule bases RBS1 and RBS2 will
be denoted by RBP = RBS1 / RBS2 where RBS1 and RBS2 may be presented by the
following Boolean matrices and binary relations:

RBS1: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 0 1
 3 0 1 0

(6.135)

 RBS1: {(1, 1), (2, 3), (3, 2)} (6.136)

RBS2: Inputs/Outputs 1 2 3

 1 0 1 0
 2 1 0 0
 3 0 0 1

(6.137)

 RBS2: {(1, 2), (2, 1), (3, 3)} (6.138)

In this case, the permutation pattern from the operand rule base RBP is
replicated in the product rule bases RBS1 and RBS2, i.e. each of them is a
PRB.

Example 6.20
This example demonstrates the technique of output merging with a PRB

from below and above. The operand rule bases RBP1 and RBP2 are presented
by the following Boolean matrices and binary relations:

 RB : {(1, 2), (2, 3), (3, 1)}

142 6 Formal Manipulation with Special Rule Bases

RBP1: Inputs/Outputs 1 2 3

 1 0 0 1
 2 1 0 0
 3 0 1 0

(6.139)

 RBP1: {(1, 3), (2, 1), (3, 2)} (6.140)

RBP2: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 0 1
 3 0 1 0

(6.141)

 RBP2: {(1, 1), (2, 3), (3, 2)} (6.142)

The output merging of RBP1 and RBP2 into a product rule base RBM will be
denoted by RBP1;RBP2 = RBM where RBM will be presented by the following
block Boolean matrix and binary relation:

RBM: Inputs/Outputs 11 12 13 21 22 23 31 32 33

 1 0 0 0 0 0 0 1 0 0
 2 0 0 1 0 0 0 0 0 0
 3 0 0 0 0 1 0 0 0 0

(6.143)

RBM: {(1, 31), (2, 13), (3, 22)} (6.144)

In this case, the permutation pattern from the two operand rule bases
RBP1 and RBP2 is replicated in the non-zero 1×3 sub-blocks in the product
rule base RBM, as shown by Eqs. (6.143)–(6.144). In particular, the
positions of these blocks map the positions of the non-zero elements from
the first operand matrix whereby the positions of the non-zero elements in
the sub-blocks map the positions of the non-zero elements from the second
operand matrix.

Example 6.21
This example demonstrates the technique of output splitting of a PRB.

The operand rule base RBP is presented by the following block Boolean
matrix and binary relation:

6.4 Manipulation with Permutation Rule Bases 143

RBP: Inputs/Outputs 11 12 21 22

 11 0 0 1 0
 12 1 0 0 0

 21 0 1 0 0
 22 0 0 0 1

(6.145)

 RBP: {(11, 21), (12, 11), (21, 12), (22, 22)} (6.146)

The output splitting of RBP into product rule bases RBS1 and RBS2 will be
denoted by RBP = RBS1:RBS2 where RBS1 and RBS2 will be presented by the
following block Boolean matrices and binary relations:

RBS1: Inputs/Outputs 1 2

 11 0 1
 12 1 0

 21 1 0
 22 0 1

(6.147)

RBS1: {(11, 2), (12, 1), (21, 1), (22, 2)} (6.148)

RBS2: Inputs/Outputs 1 2

 11 1 0
 12 1 0

 21 0 1
 22 0 1

(6.149)

RBS2: {(11, 1), (12, 1), (21, 2), (22, 2)} (6.150)

In this case, the non-zero elements in the first product Boolean matrix
RBS1 map the non-zero 1×2 sub-blocks in the operand Boolean matrix RBP.
As far as the second product Boolean matrix RBS2 is concerned, its non-zero
elements map the non-zero 1×2 sub-blocks in a Boolean matrix that is
obtained by swapping the second and the third column in RBP together with
their labels. This new matrix stands for a new rule base RBPN in which the
positions of the two outputs have been swapped, i.e. the second output from
RBP has become first whereas its first output has become second. Obviously,
the corresponding binary relation does not change as a result of this column
swap because the column labels are swapped as well.

144 6 Formal Manipulation with Special Rule Bases

The new rule base RBPN is presented by the following block Boolean
matrix and binary relation:

RBPN: Inputs/Outputs 11 21 12 22

 11 0 1 0 0
 12 1 0 0 0

 21 0 0 1 0
 22 0 0 0 1

(6.151)

RBPN: {(11, 21), (12, 11), (21, 12), (22, 22)} (6.152)

A more detailed inspection of this example shows that the patterns from
the operand rule base RBP are replicated and transformed in the
corresponding product rule bases RBS1 and RBS2 in a manner that matches the
permutation pattern in RBP. In particular, this permutation pattern is
replicated in the blocks of RBS1 as well as in a new Boolean matrix RBS2N

that is obtained by swapping the second and the third row of RBS2 together
with their labels. This new matrix stands for a new rule base RBS2N in which
the positions of the two inputs have been swapped, i.e. the second input
from RBS2 has become first whereas its first output has become second.
Obviously, the corresponding binary relation does not change as a result of
this row swap because the row labels are swapped as well.

The new rule base RBS2N is presented by the following block Boolean
matrix and binary relation:

RBS2N: Inputs/Outputs 1 2

 11 1 0
 21 0 1

 12 1 0
 22 0 1

(6.153)

RBS2N: {(11, 1), (21, 2), (12, 1), (22, 2)} (6.154)

6.5 Specific Cases with Special Rule Bases

The techniques for formal manipulation with special rule bases introduced
in the previous sections of this chapter relate to the most common cases.
However, sometimes we may have some specific cases such as:

6.5 Specific Cases with Special Rule Bases 145

horizontal merging of two IRBs,

horizontal merging of two rule bases such that each of them is a

as a TRB.

The above specific cases are illustrated in Figs. 6.10–6.13 and by several
examples further in this section. The purpose of the examples is to
demonstrate the specific cases with special rule bases and to show the
potential impact of the manipulation on the structure of the rule bases
involved, i.e. how the patterns from the operand rule bases are replicated or
transformed in the product rule bases.

 i1 o1

 i1 o1

+ =

 i2 o2

 i2 o2

Fig. 6.10. Vertical merging of two identity rule bases

Fig. 6.11. Horizontal merging of two identity rule bases

Fig. 6.12. Horizontal splitting of an identity rule base

 IRB

 IRB

vertical merging of two IRBs,

horizontal splitting of an IRB,

permutation-transpose rule base (P-T RB), i.e. a PRB as well

i1 z1 z1 o1 o1i1
* =

 IRB IRB

i1 o1 o1i1

z1 z1= /

 IRB

146 6 Formal Manipulation with Special Rule Bases

Fig. 6.13. Horizontal merging of two permutation-transpose rule bases

Example 6.22
This example demonstrates the technique of vertical merging of two

IRBs. The operand rule bases RBI1 and RBI2 are presented by the following
Boolean matrices and binary relations:

RBI1: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.155)

 R I1: {(1, 1), (2, 2)} (6.156)

RBI2: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.157)

 RBI2: {(1, 1), (2, 2)} (6.158)

The product rule base RBM for the vertical merging of RBI1 and RBI2 will
be denoted by RBM = RB

I1
/ RB

I2
and will be presented by the following block

Boolean matrix and binary relation:

RBM: Inputs/Outputs 11 12 21 22

 11 1 0 0 0
 12 0 1 0 0

 21 0 0 1 0
 22 0 0 0 1

(6.159)

 i1 z1
z1

o1
i1 o1

* =
P-T
RB

P-T
RB

6.5 Specific Cases with Special Rule Bases 147

 RBM: {(11, 11), (12, 12), (21, 21), (22, 22)} (6.160)

In this case, the product rule base RBM is an IRB, as shown by

Example 6.23
This example demonstrates the technique of horizontal merging of two

IRBs. The operand rule bases RBI1 and RBI2 are presented by the following
Boolean matrices and binary relations:

RBI1: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.161)

 R I1: {(1, 1), (2, 2)} (6.162)

RBI2: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.163)

 RBI2: {(1, 1), (2, 2)} (6.164)

The product rule base RBM for the vertical merging of RBI1 and RBI2 will
be denoted by RBM = RBI1*RBI2 and will be presented by the following
Boolean matrix and binary relation:

RBM: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(6.165)

 RBM: {(1, 1), (2, 2)} (6.166)

Example 6.24
This example demonstrates the technique of horizontal splitting of an

I

and binary relation:

Eqs. (6.159)–(6.160).

In this case, the product rule base RBM is an IRB, as shown by
Eqs. (6.165)–(6.166).

IRB . The operand rule base RB is presented by the following Boolean matrix

148 6 Formal Manipulation with Special Rule Bases

RBI: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 1 0
 3 0 0 1

(6.167)

 RBI: {(1, 1), (2, 2), (3, 3)} (6.168)

The product rule bases RBS1 and RBS2 for the horizontal splitting of RB1

will be denoted by RBS1;RBS2 = RBI and may be presented by the following
Boolean matrices and binary relations:

RBS1: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 1 0
 3 0 0 1

(6.169)

 RBS1: {(1, 1), (2, 2), (3, 3)} (6.170)

RBS2: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 1 0
 3 0 0 1

(6.171)

 RBS2: {(1, 1), (2, 2), (3, 3)} (6.172)

It is obvious that the product rule bases RBS1 and RBS2 are both IRBs, as
shown by Eqs. (6.169)–(6.170) and Eqs. (6.171)–(6.172).

Example 6.25
This example demonstrates the technique of horizontal merging of two

PT1 and RBPT2 are handled
together in two separate cases whereby in the second case their positions

For the first case, the operand rule bases RBPT1 and RBPT2 are presented by
the following Boolean matrices and binary relations:

P-T RBs. The two operand rule bases RB

are swapped in relation to the first case.

6.5 Specific Cases with Special Rule Bases 149

RBPT1: Inputs/Outputs 1 2 3

 1 0 0 1
 2 1 0 0
 3 0 1 0

(6.173)

RBPT1: {(1, 3), (2, 1), (3, 2)} (6.174)

RBPT2: Inputs/Outputs 1 2 3

 1 0 1 0
 2 0 0 1
 3 1 0 0

(6.175)

RBPT2: {(1, 2), (2, 3), (3, 1)} (6.176)

.
The product rule base RBM12 for the horizontal merging of RBPT1 and RBPT2

will be denoted by RBM12 = RBPT1*RBPT2 and will be presented by the
following Boolean matrix and binary relation:

RBM12: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 1 0
 3 0 0 1

(6.177)

 RBM12: {(1, 1), (2, 2), (3, 3)} (6.178)

For the second case, the positions of the operand rule bases RBPT1 and
RBPT2 are swapped, i.e. RBPT2 is from left and RBPT1 is from right. Therefore,
the product rule base RBM21 for the vertical merging of RBPT2 and RBPT1 will
be denoted by RBM21 = RBPT2*RBPT1 and will be presented by the following
block Boolean matrix and binary relation:

RBM21: Inputs/Outputs 1 2 3

 1 1 0 0
 2 0 1 0
 3 0 0 1

(6.179)

 RBM21: {(1, 1), (2, 2), (3, 3)} (6.180)

150 6 Formal Manipulation with Special Rule Bases

As shown by Eqs. (6.177)–(6.178) and Eqs. (6.179)–(6.180), the
symmetrical patterns from the two operand rule bases RBPT1 and RBPT2 are
transformed in the corresponding product rule bases RBM12 and RBM21 in a
specific way. In particular, RBM12 and RBM21 are IRBs and are equal to each
other. Therefore, the product rule base is not affected by the positions of the
operand rule bases, i.e. the horizontal merging of two PRB-TRBs is
commutative.

The examples from the previous sections on formal manipulation with
special rule bases provide a valuable insight into how patterns from operand
rule bases are replicated and transformed in the corresponding product rule
bases. It is obvious in this case that patterns in a rule base define its
properties uniquely whereas the opposite is not true, i.e. a property may be
reflected in more than one pattern. For example, an identity pattern in a rule
base implies uniquely that it is complete, consistent, exhaustive and
monotonic. However, a rule base with all these properties does not
necessarily imply that it has the identity pattern as it could have the
permutation pattern instead.

Also, patterns are more general and flexible descriptors of fuzzy systems
than properties. While properties can be either preserved or lost during
formal manipulation, patterns can be replicated or even transformed. In
addition, patterns are more structurally orientated descriptors than
properties. This structural orientation makes patterns more relevant to MRB
systems whereas properties remain more relevant to SRB systems or MRB
systems represented equivalently by SRB systems. All this shows that
patterns are more suitable for synthesis of rule bases while properties are
more suitable for analysis.

As far as the general study of patterns in rule bases is concerned,
Boolean matrices are a more suitable tool than binary relations and that is
why the latter have been marginalised in this chapter. For example, it is
much easier to recognise a pattern in a rule base by inspecting its Boolean
matrix rather than the corresponding binary relation.

The three merging manipulations introduced in the current and the
previous chapter usually lead to a unique product rule base, i.e. the patterns
and the properties of the operand rule bases determine uniquely the patterns
and the properties of the product rule base. However, in the three splitting
manipulations, the patterns and the properties of the operand rule base often
do not determine uniquely the patterns and the properties of the product
rule bases. For example, an arbitrary rule base can be horizontally split such
that either the first or the second product rule base is an IRB whereas the

6.6 Analysis of Manipulation Techniques with Special Rule Bases

6.6 Analysis of Manipulation Techniques with Special Rule Bases 151

other product rule base is equal to the operand rule base. Also, a 3×3 IRB
can be vertically split such that either the first or the second product rule
base is a 2×2 IRB whereas the other product rule base is a 1×1 IRB. And
finally, a 3×3 IRB can be output split such that either the first or the
second product rule base is a 3×2 rule base whereas the other product rule
base is a 3×1 rule base.

As far as the impact of the different manipulation techniques on the
structure of the rule base is concerned, it can be summarised as follows:

vertical merging removes a level within a layer,
vertical splitting generates a level within a layer,
horizontal merging removes a layer within a level,
horizontal splitting generates a layer within a level,
output merging removes a level within a layer,
output splitting generates a level within a layer.

The above conclusions are valid for manipulation with arbitrary rule
bases as well as special rule bases. They are usually valid for MRB systems
although in some cases either the operand or the product rule base may be a
SRB system.

Also, bearing in mind that merging operations remove cells such as
layers or levels while splitting operations generate cells, the conclusion can
be made that merging is more relevant to synthesis of rule bases whereas
splitting is more relevant to analysis. This conclusion is also completely in
line with the general assumption that synthesis is an active approach
leading to a deterministic result whereas analysis is a passive approach that
may not yield a deterministic result.

The manipulation techniques with arbitrary and special rule bases have
been demonstrated in the previous and the current chapter in a relatively
isolated context, i.e. with product rule bases, which are SRB systems. In the
case of complex fuzzy systems, i.e. systems containing rule bases
interconnected within a fairly complex structure, the product rule bases
themselves may turn out to be interconnected with other rule bases and as
such will be parts of a MRB system. In order to account for these
circumstances, a special study on the resulting transformation of the
associated rule bases is needed and this is discussed in detail in the next
chapter.

7 Formal Transformation of Fuzzy Rule Based Systems

The techniques for formal manipulation with arbitrary and special rule
bases introduced in the previous two chapters are a powerful tool for
complexity management in fuzzy systems. However, due to their basic
nature, these techniques can be used only in SRB systems or very simple
MRB systems. So, if we want to deal with complex MRB systems, we have
to use more advanced formal manipulation techniques.

To distinguish these advanced techniques from the basic manipulation
techniques, they will be referred to as formal transformation techniques. As
opposed to formal manipulation, formal transformation deals with more
complex types of reorganisation in a fuzzy system whereby a single
operand rule base is represented by more than just a couple of product rule
bases, or alternatively, a fairly complex structure of operand rule bases is
represented by a single product rule base. In either case, no special
requirements are usually put on the corresponding operand or product rule
bases, i.e. the latter may be any arbitrary rule bases.

For consistency, the formal transformation techniques for fuzzy systems
are introduced in the current chapter by examples whereby the technique
highlighted in a particular example uses techniques from some preceding
examples as prerequisites. As opposed to the previous three chapters, the
notations here are not presented at the same level of detail but they are
sufficient for understanding the underlying process for each transformation
technique. And finally, although the range of transformation techniques
presented in this chapter is not exhaustive, it provides a fairly good basis
for the development of new transformation techniques, if necessary.

7.2 Repetitive Merging Manipulations

The most basic type of formal transformation in a fuzzy rule based system
is the one in which a merging manipulation operation is applied in a
repetitive manner. For example, if we have three or more operand rule
bases standing in parallel within a particular layer of a MRB system, we
may want to merge them vertically into a single operand rule base. Also, if
we have three or more operand rule bases standing in sequence within a

Alexander
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

Gegov: Complexity Management in Fuzzy Systems, StudFuzz 211, 153–183 (2007)

7.1 Preliminaries on Rule Base Transformation

154 7 Formal Transformation of Fuzzy Rule Based Systems

particular level of a MRB system, we may want to merge them horizontally
into a single operand rule base. Therefore, it is useful to know if the
merging manipulations involved are commutative and associative, as
discussed in Examples 7.1–7.2.

Example 7.1
Vertical and horizontal merging manipulations are both non-

commutative and therefore it is not allowed to swap the positions of
operand rule bases in repetitive merging. In particular, the swapping of the
positions of the operand rule bases RB1 and RB2 will affect the product rule
base, as shown briefly in Figs. 7.1–7.2 and in more detail by Eqs. (7.1)–(7.2).

+ +

Fig. 7.1. Non-commutativity of vertical merging

If RB1+2 = RB1 + RB2 and RB2+1 = RB2 + RB1 then RB1+2 RB2+1 (7.1)

* *

**

Fig. 7.2. Non-commutativity of horizontal merging

If RB1*2 = RB1 * RB2 and RB2*1 = RB2 * RB1 then RB1*2 RB2*1 (7.2)

To illustrate the above implications, we consider the operand rule bases
RB1 and RB2, which are presented by the following Boolean matrices and
binary relations:

 RB1

 RB2

 RB2

RB1

RB1 RB2 RB2 RB1

7.2 Repetitive Merging Manipulations 155

RB1: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.3)

 RB1: {(1, 2), (2, 1)} (7.4)

RB2: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(7.5)

 RB2: {(1, 1), (2, 1)} (7.6)

In this case, the product rule bases RB1+2 and RB2+1 for the vertical
merging of RB1 and RB2 will be presented by the following different
Boolean matrices and binary relations:

RB1+2: Inputs/Outputs 11 12 21 22

 11 0 0 1 0
 12 0 0 1 0
 21 1 0 0 0
 22 1 0 0 0

(7.7)

 RB1+2: {(11, 21), (12, 21), (21, 11), (22, 11)} (7.8)

RB2+1: Inputs/Outputs 11 12 21 22

 11 0 1 0 0
 12 1 0 0 0
 21 0 1 0 0
 22 1 0 0 0

(7.9)

 RB2+1: {(11, 12), (12, 11), (21, 12), (22, 11)} (7.10)

Similarly, the product rule bases RB1*2 and RB2*1 for the horizontal
merging of RB1 and RB2 will be presented by the following different
Boolean matrices and binary relations:

156 7 Formal Transformation of Fuzzy Rule Based Systems

RB1*2: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(7.11)

 RB1*2: {(1, 1), (2, 1)} (7.12)

RB2*1: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(7.13)

 RB2*1: {(1, 2), (2, 2)} (7.14)

Example 7.2
Vertical and horizontal merging manipulations are both associative and

therefore it is possible to change the order of operations on operand rule
bases in repetitive merging. In other words, the changing of the order of
operations on the operand rule bases RB1, RB2 and RB3 will not affect the
product rule base, as shown briefly in Figs. 7.3–7.4 and in more detail by
Eqs. (7.15)–(7.16).

+ = +

Fig. 7.3. Associativity of vertical merging

If RB(1+2)+3 = (RB1 + RB2) + RB3 and RB1+(2+3) = RB1 + (RB2 + RB3)

then RB(1+2)+3 = RB1+(2+3)

(7.15)

 RB1 + RB2

 RB3

 RB1

RB2 + RB3

7.2 Repetitive Merging Manipulations 157

* = *

*

Fig. 7.4. Associativity of horizontal merging

If RB(1*2)*3 = (RB1 * RB2) * RB3 and RB1*(2*3) = RB1 * (RB2 * RB3)

then RB(1*2)*3 = RB1*(2*3)

(7.16)

To illustrate the above implications, we consider the operand rule bases
RB1, RB2 and RB3, which are presented by the following Boolean matrices
and binary relations:

RB1: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(7.17)

 RB1: {(1, 1), (2, 1)} (7.18)

RB2: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.19)

 RB2: {(1, 2), (2, 1)} (7.20)

RB3: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(7.21)

 RB3: {(1, 2), (2, 2)} (7.22)

In this case, both product rule bases RB(1+2)+3 and RB1+(2+3) for the vertical
merging of RB1, RB2 and RB3 will be presented by the following Boolean
matrix and binary relation:

RB1 * RB2 RB3 RB1 RB2 * RB3

158 7 Formal Transformation of Fuzzy Rule Based Systems

RB
(1+2)+3

= RB
1+(2+3)

: Inputs/Outputs 111 112 121 122 211 212 221 222

 111 0 0 0 1 0 0 0 0
 112 0 0 0 1 0 0 0 0
 121 0 1 0 0 0 0 0 0
 122 0 1 0 0 0 0 0 0
 211 0 0 0 1 0 0 0 0
 212 0 0 0 1 0 0 0 0
 221 0 1 0 0 0 0 0 0
 222 0 1 0 0 0 0 0 0

(7.23)

RB(1+2)+3 = RB1+(2+3): {(111, 122), (112, 122), (121, 112), (122, 112),

 (211, 122), (212, 122), (221, 112), (222, 112)}

(7.24)

Similarly, both product rule bases RB(1*2)*3 and RB1*(2*3) for the horizontal
merging of RB1, RB2 and RB3 will be presented by the following Boolean
matrix and binary relation:

RB(1*2)*3 = RB1*(2*3): Inputs/Outputs 1 2

 1 0 1
 2 0 1

(7.25)

RB1*(2*3) = RB1*(2*3): {(1, 2), (2, 2)} (7.26)

7.3 Combined Merging Manipulations

A more advanced type of formal transformation in a fuzzy rule based
system is the one in which a merging manipulation operation is combined
with a splitting manipulation operation or vice versa. For example, if we
have an operand rule base with one input and two outputs residing in a
particular layer as well as two other operand rule bases with one input and
one output each residing in the next layer, we could then feed each of the
two outputs from the first rule base as an input to each of the other two rule
bases. Also, if we have an operand rule base with one input and one output
residing in a particular level as well as two other operand rule bases with
one input and one output each such that they both reside in the next level,
we could then form a rule base whose inputs are the inputs to the first and
the second rule base and whose outputs are outputs from the first and the
third rule base. Therefore, it is useful to know if the merging and splitting
manipulations involved are distributive and interchangeable, as discussed in
Examples 7.3–7.4.

7.3 Combined Merging Manipulations 159

Example 7.3
Vertical and horizontal merging manipulations are both non-distributive

with respect to each other. Therefore, it is not allowed to expand any
brackets specifying the order in which these operations are to be applied. In
particular, if the operand rule base RB1 stands separately from the rule bases
RB2 and RB3, the combining of RB1 with RB2 and RB3 in a distributive
context will affect the product rule base, as shown briefly in Figs. 7.5–7.6
and in more detail by Eqs. (7.27)–(7.28).

* +

Fig. 7.5. Non-distributivity of vertical merging with respect to horizontal merging

If RB1*(2+3) = RB1 * (RB2 + RB3)

and RB(1*2)+(1*3)
 = (RB1* RB2) + (RB1* RB3)

then RB1*(2+3) RB(1*2)+(1*3)

(7.27)

 + *

Fig. 7.6. Non-distributivity of horizontal merging with respect to vertical merging

RB1 RB2 + RB3

 RB1 * RB2

 RB1 * RB3

RB1 + RB3

 RB2 * RB3

RB1 + RB2

RB1

160 7 Formal Transformation of Fuzzy Rule Based Systems

If RB1+(2*3) = RB1 + (RB2 * RB3)

and RB(1+2)*(1+3) = (RB1+ RB2)* (RB1+ RB3)

then RB1+(2*3) RB(1+2)*(1+3)

(7.28)

To illustrate the implications in Eq. (7.27), we consider the operand rule
bases RB1, RB2 and RB3, which are presented by the following Boolean
matrices and binary relations:

RB1: Inputs/Outputs 11 12 21 22

 1 0 0 1 0
 2 0 1 0 0

(7.29)

RB1: {(1, 21), (2, 12)} (7.30)

RB2: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(7.31)

 RB2: {(1, 2), (2, 2)} (7.32)

RB3: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(7.33)

 RB3: {(1, 1), (2, 1)} (7.34)

The product rule base RB1*(2+3) for the combined merging of RB1, RB2 and
RB3 will be presented by the following Boolean matrix and binary relation:

RB1*(2+3): Inputs/Outputs 11 12 21 22

 1 0 0 1 0
 2 0 0 1 0

(7.35)

RB1*(2+3): {(1, 21), (2, 21)} (7.36)

7.3 Combined Merging Manipulations 161

In this case, the product rule base RB(1*2)+(1*3) for the combined merging of
RB1, RB2 and RB3 will not exist due to the dimensional mismatch between
the rule base RB1 and the other two rule bases RB2 and RB3. In other words,
the number of outputs for RB1 is different from the number of inputs for RB2

and RB3.
To illustrate the implications in Eq. (7.28), we consider the operand rule

bases RB1, RB2 and RB3, which are presented by the following Boolean
matrices and binary relations:

RB1: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.37)

 RB1: {(1, 2), (2, 1)} (7.38)

RB2: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(7.39)

 RB2: {(1, 1), (2, 1)} (7.40)

RB3: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(7.41)

 RB3: {(1, 2), (2, 2)} (7.42)

In this case, the product rule bases RB1+(2*3) and RB(1+2)*(1+3) for the
combined merging of RB1, RB2 and RB3 will be presented by the following
different Boolean matrices and binary relations:

RB1+(2*3): Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 0 0 1
 21 0 1 0 0
 22 0 1 0 0

(7.43)

162 7 Formal Transformation of Fuzzy Rule Based Systems

RB1+(2*3): {(11, 22), (12, 22), (21, 12), (22, 12)} (7.44)

RB(1+2)*(1+3): Inputs/Outputs 11 12 21 22

 11 0 1 0 0
 12 0 1 0 0
 21 0 0 0 1
 22 0 0 0 1

(7.45)

RB(1+2)*(1+3): {(11, 12), (12, 12), (21, 22), (22, 22)} (7.46)

Example 7.4
Vertical and horizontal merging manipulations are interchangeable and

therefore it is possible to change accordingly the order of operations on
operand rule bases in combined merging. In other words, the changing of
the order of operations on the operand rule bases RB1, RB2, RB3 and RB4 will
not affect the product rule base, as shown briefly in Fig. 7.7 and in more
detail by Eq. (7.47).

* = +

Fig. 7.7. Interchangeability of vertical and horizontal merging

 If RB(1+2)*(3+4) = (RB1 + RB2)*(RB3 + RB4)

and RB(1*3)+(2*4) = (RB1 * RB3)+(RB2 * RB4)

then RB(1+2)*(3+4) = RB(1*3)+(2*4)

(7.47)

To illustrate the above implication, we consider the operand rule bases
RB1, RB2, RB3 and RB4, which are presented by the following Boolean
matrices and binary relations:

RB3 + RB4

 RB1 * RB3

 RB2 * RB4

RB1 + RB2

7.3 Combined Merging Manipulations 163

RB1: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.48)

 RB1: {(1, 2), (2, 1)} (7.49)

RB2: Inputs/Outputs 1 2

 1 1 0
 2 1 0

(7.50)

 RB2: {(1, 1), (2, 1)} (7.51)

RB3: Inputs/Outputs 1 2

 1 0 1
 2 0 1

(7.52)

 RB3: {(1, 2), (2, 2)} (7.53)

RB4: Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.54)

 RB4: {(1, 2), (2, 1)} (7.55)

Both product rule bases RB(1+2)*(3+4) and RB(1*3)+(2*4) for the combined
merging of RB1, RB2, RB3 and RB4 will be presented by the following
Boolean matrix and binary relation:

RB(1+2)*(3+4) = RB(1*3)+(2*4): Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 0 0 1
 21 0 0 0 1
 22 0 0 0 1

(7.56)

RB(1+2)*(3+4) = RB(1*3)+(2*4): {(11, 22), (12, 22), (21, 22), (22, 22)} (7.57)

164 7 Formal Transformation of Fuzzy Rule Based Systems

7.4 Self Standing Inputs and Outputs

As already mentioned in Chapter 2, a MRB system may be presented by a
sparse matrix with empty cells for the missing rule bases. In this context,
inputs or outputs spanning across at least one but not all layers are referred
to as ‘self standing’. Such inputs and outputs describe identity mappings,
which may be presented by IRBs. In this case, the dimension of the
corresponding identity Boolean matrix and binary relation RBI is equal to
the number of inputs and outputs in the rule base, i.e. an IRB with two
inputs and two outputs will be denoted by RBI2.

Alternatively, identity mappings may also be presented by a couple of
P-T RBs. As already mentioned in Chapter 6, the horizontal merging of
two P-T RBs yields an IRB. In this case, the dimension of the
corresponding permutation Boolean matrix and binary relation RBP is equal
to the number its inputs and outputs, i.e. a PRB with three inputs and three
outputs will be denoted by RBP3.

The number of inputs to a MRB system is equal to the sum of the
number of inputs to each rule base in the first layer, including any self
standing inputs. Similarly, the number of outputs from a MRB system is
equal to the sum of the number of outputs from each rule base in the last
layer, including any self standing outputs.

Any inputs to a MRB system which are fed directly into a rule base
residing in a layer after the first one are self standing. In this case, the
number of layers through which a self standing input passes before being
fed into a rule base gives the length of this input. This length is always
greater than or equal to 1 and less than or equal to the number of layers in
the MRB system minus 1. In this context, Example 7.5 shows how a self
standing input can be presented by an IRB RBI1 and how an ERB RBE for the
entire MRB system can be derived. In addition, Example 7.6 shows how an
ERB RBE can be derived in accordance with the interchangeability property,
by either vertical-horizontal or horizontal-vertical merging.

Any outputs from a rule base residing in a layer before the last one in a
MRB system which are fed directly as outputs from the MRB system are
self standing. In this case, the number of layers through which a self
standing output passes after being fed from a rule base gives the length of
this output. This length is always greater than or equal to 1 and less than or
equal to the number of layers in the MRB system minus 1. In this context,
Example 7.7 shows how a self standing output can be presented by an IRB
RBI1 and how an ERB RBE for the entire MRB system can be derived. In
addition, Example 7.8 shows how an ERB RBE can be derived in accordance
with the interchangeability property, by either vertical-horizontal or
horizontal-vertical merging.

7.4 Self Standing Inputs and Outputs 165

Example 7.5
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer layer 1 layer 2

 level 1 RB1x1

1,1 RB2x1

1,2

 level 2 RBI1

2,1

(7.58)

The output-input interconnections for the above MRB system are given
by the following matrix:

level/layer layer 1 layer 2

 level 1 o1

1,1= i1

1,2 o1

1,2

 level 2 o1

2,1= i2

1,2

(7.59)

Equation (7.58) shows that the MRB system has two inputs and one
output. It also shows that the rule base in level 1 of layer 1 has one input
and one output, the IRB in level 2 of layer 1 has one input and one output,
the rule base in level 1 of layer 2 has two inputs and one output whereas the
rule base in level 2 of layer 2 is missing. In addition, Eq. (7.59) shows that
the first output from the rule base in level 1 of layer 1 is the same as the
first input to the rule base in level 1 of layer 2 whereas the self standing
input which is also the first output from the IRB in level 2 of layer 1 is the
same as the second input to the rule base in level 1 of layer 2.

Although the only purpose of the IRB is to represent a self standing input
in level 2 of layer 1, this rule base must be counted separately. Therefore,
the MRB system consists of three rule bases, as shown in Fig. 7.8.

 o1

1,1 i1

1,2 o1

1,2

 i2

1,2

 o1

2,1

Fig. 7.8. Multiple rule base system with three rule bases and self standing input in
level 2 of layer 1

 RB1x1

1,1 RB2x1

1,2

RBI1

2,1

166 7 Formal Transformation of Fuzzy Rule Based Systems

The rule bases RB1x1

1,1, RBI1

2,1 and RB2x1

1,2 are presented by the following
Boolean matrices and binary relations:

RB1x1

1,1 : Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.60)

RB1x1

1,1 : {(1, 2), (2, 1)} (7.61)

RBI1

2,1: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(7.62)

RBI1

2,1: {(1, 1), (2, 2)} (7.63)

RB2x1

1,2: Inputs/Outputs 1 2

 11 0 1
 12 0 1
 21 1 0
 22 1 0

(7.64)

RB2x1

1,2: {(11, 2), (12, 2), (21, 1), (22, 1)} (7.65)

The ERB RBE for the MRB system is derived by the formula in Eq. (7.66)
and is presented by the Boolean matrix and the binary relation in

 Eqs. (7.67)–(7.68).

 RBE = (RB1x1

1,1 + RBI1

2,1) * RB2x1

1,2 (7.66)

RBE: Inputs/Outputs 1 2

 11 1 0
 12 1 0
 21 0 1
 22 0 1

(7.67)

 RBE: {(11, 1), (12, 1), (21, 2), (22, 2)} (7.68)

7.4 Self Standing Inputs and Outputs 167

Example 7.6
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer layer 1 layer 2

 level 1 RBI1

1,1 RB1x1

1,2

 level 2 RB1x1

2,1 RB1x1

2,2

(7.69)

The output-input interconnections for the above MRB system are given
by the following matrix:

level/layer layer 1 layer 2

 level 1 o1

1,1= i1

1,2 o1

1,2

 level 2 o1

2,1= i1

2,2 o1

2,2

(7.70)

Equation (7.69) shows that the MRB system has two inputs and two
outputs. It also shows that each of the rule bases including the IRB in level
1 of layer 1 has one input and one output. In addition, Eq. (7.70) shows that
the self standing input which is also the first output from the IRB in level 1
of layer 1 is the same as the first input to the rule base in level 1 of layer 2
whereas the the first output from the rule base in level 2 of layer 1 is the
same as the first input to the rule base in level 2 of layer 2.

Although the only purpose of the IRB is to represent a self standing input
in level 1 of layer 1, this rule base must be counted separately. Therefore,

 o1

1,1 i1

1,2 o1

1,2

 o1

2,1 i2

2,2 o1

2,2

Fig. 7.9. Multiple rule based system with four rule bases and self standing input in
level 1 of layer 1

RBI1

1,1 RB1x1

1,2

RB1x1

2,1 RB1x1

2,2

the MRB system consists of four rule bases, as shown in Fig. 7.9.

 o1

2,2

168 7 Formal Transformation of Fuzzy Rule Based Systems

The rule bases RBI1

1,1, RB1x1

2,1, RB1x1

1,2 and RB1x1

2,2 are presented by the
following Boolean matrices and binary relations:

RBI1

1,1: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(7.71)

RBI1

1,1: {(1, 1), (2, 2)} (7.72)

RB1x1

2,1 : Inputs/Outputs 1 2

 1 1 0
 2 1 0

(7.73)

RB1x1

2,1 : {(1, 1), (2, 1)} (7.74)

RB1x1

1,2 : Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.75)

RB1x1

1,2 : {(1, 2), (2, 1)} (7.76)

RB1x1

2,2 : Inputs/Outputs 1 2

 1 0 1
 2 0 1

(7.77)

RB1x1

2,2 : {(1, 2), (2, 2)} (7.78)

The ERB RBE for the MRB system is derived as either RB(1+2)*(3+4) or
RB(1*3)+(2*4) from Eq. (7.47). By using a superscript notation that is consistent
with the subscript notation for the above four rule bases, RBE will be
obtained from Eq. (7.79).

RBE = RB(1,1+2,1)*(1,2+2,2) = RB(1,1*1,2)+(2,1*2,2) (7.79)

7.4 Self Standing Inputs and Outputs 169

In this case, the ERB RBE for both the vertical-horizontal and the
horizontal-vertical merging of RBI1

1,1, RB1x1

2,1, RB1x1

1,2 and RB1x1

2,2 will be
presented by the following Boolean matrix and binary relation:

RBE: Inputs/Outputs 11 12 21 22

 11 0 0 0 1
 12 0 0 0 1
 21 0 1 0 0
 22 0 1 0 0

(7.80)

RBE: {(11, 22), (12, 22), (21, 12), (22, 12)} (7.81)

Example 7.7
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer layer 1 layer 2

 level 1 RBI1

1,2

 level 2 RB1x2

2,1 RB1x1

2,2

(7.82)

The output-input interconnections for the above MRB system are given
by the following matrix:

level/layer layer 1 layer 2

 level 1 o1

1,2

 level 2 o1

2,1= i1

1,2 o1

2,2

 o2

2,1= i1

2,2

(7.83)

Equation (7.82) shows that the MRB system has one input and two
outputs. It also shows that the rule base in level 1 of layer 1 is missing, the
rule base in level 2 of layer 1 has one input and two outputs, the rule base in
level 1 of layer 2 is an IRB with one input and one output whereas the rule

(7.83) shows that the first output from the rule base in level 2 of layer 1
 is self standing as it the same as the first input to the IRB in level 1 of layer 2
whereas the second output from the rule base in level 2 of layer 1 is the
same as the input to the rule base in level 2 of layer 2.

base in level 2 of layer 2 has one input and one output. In addition,
Eq.

170 7 Formal Transformation of Fuzzy Rule Based Systems

Although the only purpose of the IRB is to represent a self standing
output in level 1 of layer 2, this rule base must be counted separately.
Therefore, the MRB system consists of three rule bases, as shown in
Fig. 7.10.

 i1

1,2 o1

1,2

 o1

2,1

 o1

2,2

 o2

2,1 i1

2,2

Fig. 7.10. Multiple rule base system with three rule bases and self standing output
in level 1 of layer 2

The rule bases RB1x2

2,1, RBI1

1,2 and RB1x1

2,2 are presented by the following
Boolean matrices and binary relations:

RB2x1

1,2: Inputs/Outputs 11 12 21 22

 1 0 0 0 1
 2 1 0 0 0

(7.84)

RB2x1

1,2: {(1, 22), (2, 11)} (7.85)

RBI1

1,2: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(7.86)

RBI1

1,2: {(1, 1), (2, 2)} (7.87)

RB1x1

2,2 : Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.88)

 RB1x1

2,2

RBI1

1,2

 RB1x2

2,1

7.4 Self Standing Inputs and Outputs 171

RB1x1

2,2 : {(1, 2), (2, 1)} (7.89)

The ERB RBE for the MRB system is derived by the formula in Eq. (7.90)
and is presented by the Boolean matrix and the binary relation in Eqs.
(7.91)–(7.92).

 RBE = RB1x2

2,1 * (RBI1

1,2 + RB1x1

2,2) (7.90)

RBE: Inputs/Outputs 11 12 21 22

 1 0 0 1 0
 2 0 1 0 0

(7.91)

RBE: {(1, 21), (2, 12)} (7.92)

Example 7.8
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer layer 1 layer 2

 level 1 RB1x1

1,1 RB1x1

1,2

 level 2 RB1x1

2,1 RBI1

2,2

(7.93)

The output-input interconnections for the above MRB system are given
by the following matrix:

level/layer layer 1 layer 2

 level 1 o1

1,1= i1

1,2 o1

1,2

 level 2 o1

2,1= i1

2,2 o1

2,2

(7.94)

Equation (7.93) shows that the MRB system has two inputs and two
outputs. It also shows that each of the rule bases including the IRB in level
2 of layer 2 has one input and one output. In addition, Eq. (7.94) shows that
the first output from the rule base in level 2 of layer 1 is self standing as it
is the same as the first input to the IRB in level 2 of layer 2 whereas the
first output from the rule base in level 1 of layer 1 is the same as the first
input to the rule base in level 1 of layer 2.

172 7 Formal Transformation of Fuzzy Rule Based Systems

Although the only purpose of the IRB is to represent a self standing
output in level 2 of layer 2, this rule base must be counted separately.
Therefore, the MRB system consists of four rule bases, as shown in
Fig. 7.11.

 o1

1,1 i1

1,2 o1

1,2

 o1

2,1 i1

2,2 o1

2,2

1x1

1,1, RB1x1

2,1, RB1x1

1,2 and RBI1

2,2 are presented by the
following Boolean matrices and binary relations:

RB1x1

1,1 : Inputs/Outputs 1 2

 1 0 1
 2 0 1

(7.95)

RB1x1

1,1 : {(1, 2), (2, 2)} (7.96)

RB1x1

2,1 : Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.97)

RB1x1

2,1 : {(1, 2), (2, 1)} (7.98)

RB1x1

1,2 : Inputs/Outputs 1 2

 1 1 0
 2 1 0

(7.99)

RB1x1

1,2 : {(1, 1), (2, 1)} (7.100)

RB1x1

1,1 RB1x1

1,2

RB1x1

2,1 RBI1

2,2 o1

Fig. 7.11. Multiple rule base system with four rule bases and self standing output

The rule bases RB

in level 2 of layer 2

2,2

7.5 Total and Partial Identity Lines 173

RBI1

2,2: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(7.101)

RBI1

2,2: {(1, 1), (2, 2)} (7.102)

The ERB RBE for the MRB system is derived again as either RB(1+2)*(3+4) or
RB (1*3)+(2*4) from Eq. (7.47). In particular, RBE will be obtained from

So, the ERB RBE for both the vertical-horizontal and the horizontal-
vertical merging of RBI1

1,1, RB1x1

2,1, RB1x1

1,2 and RBI1

2,2 will be presented by the
following Boolean matrix and binary relation:

RBE: Inputs/Outputs 11 12 21 22

 11 0 1 0 0
 12 1 0 0 0
 21 0 1 0 0
 22 1 0 0 0

(7.103)

RBE: {(11, 12), (12, 11), (21, 12), (22, 11)} (7.104)

7.5 Total and Partial Identity Lines

As shown in the previous section, self standing inputs and outputs in a
MRB system can be presented by IRBs. In this case, the corresponding
identity mappings are at either side of the MRB system and spanning across
one or more successive layers starting with the first layer or ending with the
last layer.

However, sometimes we may have identity mappings across the whole of
a MRB system, which are referred to as identity lines. As these lines span
all the layers of the MRB system, they are called total lines. In this case,
any linguistic value of an input at the beginning of a total line propagates
unchanged as an output at the end of the line. The number of layers spanned
by a total line gives the length of the line and it is always equal to the
number of layers in the MRB system.

Similarly, we may have identity mappings somewhere in the middle of a
MRB system, which are also referred to as identity mapping lines. As the
inputs of these lines are the same as the outputs from a particular rule base

Eq. (7.79) using the superscript notation introduced there.

174 7 Formal Transformation of Fuzzy Rule Based Systems

and their outputs are the same as the inputs to another rule base, such lines
are called partial lines. In this case, any linguistic value of an input in the
beginning of a partial line propagates unchanged as an output at the end of
the line. The number of layers spanned by a partial line gives the length of
this line and it is always greater than or equal to 1 and less than or equal to
the overall number of layers in the MRB system minus 2.

Examples 7.9–7.10 show how a total line of length 2 can be presented by
a couple of IRBs RBI1 and a couple of P-T RBs RBPT1, respectively. Example
7.11 shows how a partial line of length 1 can be presented by an IRB RBI1.
Also, all three examples show how an ERB RBE can be derived by either
vertical-horizontal or horizontal-vertical merging in accordance with the
interchangeability property.

Example 7.9
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer layer 1 layer 2

 level 1 RBI1

1,1 RBI1

1,2

 level 2 RB1x1

2,1 RB1x1

2,2

(7.105)

The output-input interconnections for the above MRB system are given
by the following matrix:

level/layer layer 1 layer 2

 level 1 o1

1,1= i1

1,2 o1

1,2

 level 2 o1

2,1= i1

2,2 o1

2,2

(7.106)

Equation (7.105) shows that the MRB system has two inputs and two
outputs. It also shows that each of the rule bases including the IRB in level
1 of layers 1 and the IRB in level 1 of layer 2 has one input and one output.
In addition, Eq. (7.106) shows that the two IRBs in level 1 of layers 1 and 2
represent a total line whereas the first output from the rule base in level 2 of
layer 1 is the same as the first input to the rule base in level 2 of layer 2.

Although the only purpose of the two IRBs is to represent a total line in
level 1 of layers 1 and 2, these rule bases must be counted separately.
Therefore, the MRB system consists of four rule bases, as shown in
Fig. 7.12.

7.5 Total and Partial Identity Lines 175

 o1

1,1 i1

1,2 o1

1,2

 o1

2,1 i1

2,2 o1

2,2

Fig. 7.12. Multiple rule base system with four rule bases and total line in level 1 of
layers 1 and 2

The rule bases RBI1

1,1, RB1x1

2,1, RBI1

1,2 and RB1x1

2,2 are presented by the
following Boolean matrices and binary relations:

 RBI1

1,1: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(7.107)

RBI1

1,1: {(1, 1), (2, 2)} (7.108)

 RB1x1

2,1 : Inputs/Outputs 1 2

 1 1 0
 2 1 0

(7.109)

RB1x1

2,1 : {(1, 1), (2, 1)} (7.110)

RBI1

1,2: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(7.111)

RBI1

1,2: {(1, 1), (2, 2)} (7.112)

RBI1

1,1 RBI1

1,2

RB1x1

2,1 RB1x1

2,2 o1

2,2

176 7 Formal Transformation of Fuzzy Rule Based Systems

RB1x1

2,2 : Inputs/Outputs 1 2

 1 0 1
 2 0 1

(7.113)

RB1x1

2,2 : {(1, 2), (2, 2)} (7.114)

The ERB RBE for the MRB system is derived as either RB(1+2)*(3+4) or
RB (1*3)+(2*4) from Eq. (7.47). In particular, RBE will be obtained from

So, the ERB RBE for the vertical-horizontal and the horizontal-vertical
merging of RBI1

1,1, RB1x1

2,1, RBI1

1,2 and RB1x1

2,2 will be presented by the
following Boolean matrix and binary relation:

RBE: Inputs/Outputs 11 12 21 22

 11 0 1 0 0
 12 0 1 0 0
 21 0 0 0 1
 22 0 0 0 1

(7.115)

 RBE: {(11, 12), (12, 12), (21, 22), (22, 22)} (7.116)

Example 7.10
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer layer 1 layer 2

 level 1 RBPT1

1,1 RBPT1

1,2

 level 2 RB1x1

2,1 RB1x1

2,2

(7.117)

The output-input interconnections for the above MRB system are given
by the following matrix:

level/layer layer 1 layer 2

 level 1 o1

1,1= i1

1,2 o1

1,2

 level 2 o1

2,1= i1

2,2 o1

2,2

(7.118)

Equation (7.117) shows that the MRB system has two inputs and two
outputs. It also shows that each of the rule bases including the P-T RB in

Eq. (7.79) using the superscript notation introduced there.

7.5 Total and Partial Identity Lines 177

level 1 of layer 1 and the P-T RB in level 1 of layer 2 has one input and
one output. In addition, Eq. (7.118) shows that the two P-T RBs in level
1 of layers 1 and 2 represent a total line whereas the first output from the
rule base in level 2 of layer 1 is the same as the first input to the rule base in
level 2 of layer 2.

Although the only purpose of the two P-T RBs is to represent a total
line in level 1 of layers 1 and 2, these rule bases must be counted
separately. Therefore, the MRB system consists of four rule bases, as

 o1

1,1 i1

1,2 o1

1,2

 o1

2,1 i1

2,2 o1

2,2

Fig. 7.13. Multiple rule base system with four rule bases and total line in level 1 of
layers 1 and 2

The rule bases RBPT1

1,1, RB1x1

2,1, RBPT1

1,2, and RB1x1

2,2 are presented by the
following Boolean matrices and binary relations:

RBPT1

1,1: Inputs/Outputs 1 2 3

 1 0 0 1
 2 1 0 0
 3 0 1 0

(7.119)

RBPT1

1,1: {(1, 3), (2, 1), (3, 2)} (7.120)

RB1x1

2,1: Inputs/Outputs 1 2 3

 1 1 0 0
 2 1 0 0
 3 0 1 0

(7.121)

RB1x1

2,1: {(1, 1), (2, 1), (3, 2)} (7.122)

 RBPT1

1,1 RBPT1

1,2

RB1x1

2,1 RB1x1

2,2 o1

shown in Fig. 7.13.

2,2

178 7 Formal Transformation of Fuzzy Rule Based Systems

RBPT1

1,2: Inputs/Outputs 1 2 3

 1 0 1 0
 2 0 0 1
 3 1 0 0

(7.123)

RBPT1

1,2: {(1, 2), (2, 3), (3, 1)} (7.124)

RB1x1

2,2: Inputs/Outputs 1 2 3

 1 0 1 0
 2 0 0 1
 3 0 0 1

(7.125)

RB1x1

2,2: {(1, 2), (2, 3), (3, 3)} (7.126)

The ERB RBE for the MRB system is derived as either RB(1+2)*(3+4) or
RB (1*3)+(2*4) from Eq. (7.47). In particular, RBE will be obtained from

So, the ERB RBE for both vertical-horizontal and the horizontal-vertical
merging of RBPT1

1,1, RB1x1

2,1, RBPT1

1,2 and RB1x1

2,2 will be presented by the
following Boolean matrix and binary relation:

RBE: Inputs/Outputs 11 12 13 21 22 23 31 32 33

 11 0 1 0 0 0 0 0 0 0
 12 0 1 0 0 0 0 0 0 0
 13 0 0 1 0 0 0 0 0 0
 21 0 0 0 0 1 0 0 0 0
 22 0 0 0 0 1 0 0 0 0
 23 0 0 0 0 0 1 0 0 0
 31 0 0 0 0 0 0 0 1 0
 32 0 0 0 0 0 0 0 1 0
 33 0 0 0 0 0 0 0 0 1

(7.127)

RBE: {(11, 12), (12, 12), (13, 13),

 (21, 22), (22, 22), (23, 23),

 (31, 32), (32, 32), (33, 33)}

(7.128)

Eq. (7.79) using the superscript notation introduced there.

7.5 Total and Partial Identity Lines 179

Example 7.11
A MRB system with 2 levels and 3 layers is presented by the following

matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1x1

1,1 RB1x1

1,2 RB1x1

1,3

 level 2 RB1x1

2,1 RBI1

2,2 RB1x1

2,3

(7.129)

The output-input interconnections for the above MRB system are given
by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1

1,1= i1

1,2 o1

1,2= i1

1,3 o1

1,3

 level 2 o1

2,1= i1

2,2 o1

2,2= i1

2,3 o1

2,3

(7.130)

Equation (7.129) shows that the MRB system has two inputs and two
outputs. It also shows that each of the rule bases including the IRB in level
2 of layer 2 has one input and one output. In addition, Eq. (7.130) shows
that the IRB in level 1 of layer 2 represents a partial line as the input at its
beginning is the same as the output from the rule base in level 2 of layer 1
while the output at its end is the same as the input to the rule base in level 2
of layer 3. Also, the first output from the rule base in level 1 of layer 1 is
the same as the first input to the rule base in level 1 of layer 2 and the first
output from the rule base in level 1 of layer 2 is the same as the first input
to the rule base in level 1 of layer 3.

Although the only purpose of the IRB is to represent a partial line in
level 2 of layer 2, this rule base must be counted separately. Therefore, the
MRB system consists of six rule bases, as shown in Fig. 7.13.

Fig. 7.14. Multiple rule base system with six rule bases and partial line in level 2 of
layer 2

o1

1,1 i1

1,2 o1

1,2 i1

1,3 o1

1,3

o1

2,1 i1

2,2 o1

2,2 i1

2,3 o1

2,3

RB1x1

1,1 RB1x1

1,2

RB1x1

2,1 RBI1

2,2

RB1x1

1,3

RB1x1

2,3

180 7 Formal Transformation of Fuzzy Rule Based Systems

The rule bases RB1x1

1,1, RB1x1

2,1, RB1x1

1,2, RBI1

2,2, RB1x1

1,3 and RB1x1

2,3 are
presented by the following Boolean matrices and binary relations:

RB1x1

1,1 : Inputs/Outputs 1 2

 1 1 0
 2 1 0

(7.131)

RB1x1

1,1 : {(1, 1), (2, 1)} (7.132)

RB1x1

2,1 : Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.133)

RB1x1

2,1 : {(1, 2), (2, 1)} (7.134)

RB1x1

1,2 : Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.135)

RB1x1

1,2 : {(1, 2), (2, 1)} (7.136)

RBI1

2,2: Inputs/Outputs 1 2

 1 1 0
 2 0 1

(7.137)

RBI1

2,2: {(1, 1), (2, 2)} (7.138)

RB1x1

1,3 : Inputs/Outputs 1 2

 1 0 1
 2 0 1

(7.139)

RB1x1

1,3 : {(1, 2), (2, 2)} (7.140)

RB1x1

2,3 : Inputs/Outputs 1 2

 1 0 1
 2 1 0

(7.141)

7.6 Comparative Analysis of Formal Transformation Techniques 181

RB1x1

2,3 : {(1, 2), (2, 1)} (7.142)

The ERB RBE for the MRB system is derived as either RB(1+2)*(3+4)*(5+6) or
RB(1*3*5)+(2*4*6)

E

So, the ERB RBE for the vertical-horizontal and the horizontal-vertical
merging of RB1x1

1,1, RB1x1

2,1, RB1x1

1,2, RBI1

2,2, RB1x1

1,3 and RB1x1

2,3 will be presented
by the following Boolean matrix and binary relation:

E 11 12 21 22

 11 0 0 1 0
 12 0 0 0 1
 21 0 0 1 0
 22 0 0 0 1

(7.143)

RBE: {(11, 21), (12, 22), (21, 21), (22, 22)} (7.144)

7.6 Comparative Analysis of Formal Transformation Techniques

The basic operations for formal manipulation of fuzzy rule bases introduced
in Sects. 7.2–7.5 provide a powerful tool for analysis and synthesis of fuzzy
systems. In particular, the repetitive merging manipulations and the
associated combined merging manipulations can be used for simplifying
complex MRB systems by representing them with equivalent SRB systems.
In this context, the associative and interchangeable features of merging
manipulations make the underlying formal transformation process quite
flexible. In addition, the self standing inputs, self standing outputs, total
identity lines and partial identity lines are effective means of converting
MRB systems from an arbitrarily complex form into a simpler canonical
form, as shown further in Chapter 8. In this case, the ability of rule bases to
represent the above topological peculiarities facilitates significantly the
associated formal transformation process.

The repetitive and combined merging manipulations affect actively
levels and layers within a MRB system as part of the design process, i.e.
during synthesis, whereas the self standing inputs, self standing outputs,
total identity lines and partial identity lines affect passively only levels in
this system as part of the study process, i.e. during analysis. Also, the result
in all cases above is guaranteed whereby both merging manipulations as
well as inputs, outputs, total and partial lines lead to unique solutions. The

by extending Eq. (7.47) for a rule base with three layers. In
 particular, RB will be obtained from Eq. (7.79) using the superscript nota-

RB : Inputs/Outputs

tion introduced there.

182 7 Formal Transformation of Fuzzy Rule Based Systems

only requirement is that repetitive merging is applied in the context of
associativity whereas combined merging is applied in the context in
interchangeability.

The considerations presented above on formal transformation techniques
for fuzzy rule bases provide essential information about the main
characteristics of these techniques. These characteristics are summarised in
Table 7.1.

Table 7.1. Characteristics of formal transformation techniques for fuzzy rule bases

Technique/
Characteristic

Task Impact Component Result Solution

Repetitive merging synthesis active level/layer guaranteed unique
Combined merging synthesis active level/layer guaranteed unique
Self standing inputs analysis passive level guaranteed unique
Self standing outputs analysis passive guaranteed unique
Total identity lines analysis passive guaranteed unique
Partial identity lines analysis passive level guaranteed unique

The formal transformation techniques introduced in this chapter are
applicable to a wide range of MRB systems. These techniques can be
applied to Mamdami, Sugeno and Tsukamoto systems, most CON and DIS
systems, MO and SO systems, as well as FF and FB systems.

Examples 7.1–7.11 describe implicitly a fuzzy system of Mamdami or
Tsukamoto type. In order to apply the associated rule base manipulation
algorithms to Sugeno systems, the crisp outputs from all rule bases residing
in all layers from the first to the last but one have to fuzzified, i.e. converted
into linguistic values. Obviously, the outputs from the rule bases in the last
layer can be kept with their crisp values.

Examples 7.1–7.11 can be extended easily in accordance with the
considerations in Sect.4.6, if we would like them to describe explicitly
Mamdami, Sugeno and Tsukamoto systems. However, this has not been
done in this chapter in order to simplify the notations and to put the
emphasis on the transformation rather than the presentation process, which
was dealt with in the Chapter 4.

As far as CON and DIS systems are concerned, the formal manipulation
techniques are directly applicable to most of them. In this case, almost all
rule bases in the MRB system must be of the same CADR or CACR type,
i.e. with CON antecedents and either DIS or CON rules. This is so because
when the antecedents in a particular rule base are of DIS type, they can not
be merged horizontally with the consequents in another rule base on the left
of it due to the CON type of consequents by definition. The only exception

level

7.7 Application Range of Formal Transformation Techniques

lavel

 183

in this case can be made for the rule bases in the first layer of a MRB
system whose antecedents can be of any type because they do not take part
in any horizontal merging manipulations.

The formal transformation techniques presented in this chapter facilitate
the complexity management in fuzzy systems. These techniques allow the
compressed information about the fuzzy rule bases in a MRB system in the
form of Boolean matrices or binary relations to be transformed
appropriately for the purpose of analysis and synthesis of fuzzy systems.

However, the formal transformation techniques demonstrated so far deal
with MRB systems, which contain only FF rule bases. In order to show how
these techniques can be used for MRB systems containing also FB rule
bases, a detailed study is presented in the next chapter.

8 Formal Transformation of Feedback Rule Bases

8.1 Preliminaries on Feedback Rule Bases

As already mentioned in Sect. 2.4, the information flow in a SRB system is
usually in a forward direction, i.e. from the inputs to the outputs of the rule
base, but sometimes there may also be information flow in a backward
direction, i.e. from some outputs to some inputs. This FB may be as simple
as an identity mapping line whereby an output is fed back unchanged
directly into an input. In other cases, the FB may be of a more complex
nature whereby the output passes through a feedback rule base (FRB) that
changes it before it is fed into the corresponding input.

As discussed in Sect. 2.5, some of the information flow in a MRB system
may be in a backward direction, i.e. from an output of a rule base residing
in a particular layer to an input of the same rule base or another rule base
residing in the same or a preceding layer. In analogy with the SRB system
case above, this FB could be either simple or complex, i.e. the output is
either unchanged or changed before being fed into the corresponding input.

Several types of FB interconnections are considered further in this
chapter and illustrated by examples. Most of these examples are about
MRB systems in which the FB is more complex than in SRB systems. In
these cases, the ERB of the MRB system is derived by transforming the FB
interconnections into FF interconnections, wherever possible, and then
applying the techniques introduced in Chapter 7, or by transforming all
complex feedback interconnections into simple feedback interconnections
and then checking the ERB accordingly.

8.2 Transforsmation of Rule Bases with Simple Feedback

In a fuzzy rule based system with simple feedback, the linguistic value of
the corresponding output in each rule is identical with the linguistic value
of the associated input in the same rule. In this case, the rule base is
constrained by this identity type of FB and therefore it is necessary to check
if the constraints are met. A general case with simple FB is presented in
Fig. 8.1.

Alexander
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

Gegov: Complexity Management in Fuzzy Systems, StudFuzz 211, 185–268 (2007)

186 8 Formal Transformation of Feedback Rule Bases

Fig. 8.1. Simple feedback

The notion of simple FB is illustrated further by six basic examples with
SRB systems. It is assumed that each input and output in these examples
can take three linguistic values, e.g. small, medium and big. As already
shown in Chapter 3, these linguistic values can be coded by the positive
integers 1, 2 and 3, respectively. In particular, Example 8.1 shows how a
1×1 rule base can be presented by a simple FB pattern, Examples 8.2–8.3
refer to two diagonal patterns of simple FB in a 2×1 and a 1×2 rule base,
respectively, whereas Examples 8.4–8.6 deal with three patterns of simple
FB in a 2×2 rule base.

In all six examples, the question marks (?) in the Boolean matrices
represent elements, which may be but are not necessarily 1’s. Similarly, the
subscript question marks (?) of the associated pairs in the corresponding
binary relations represent only possible but not necessarily existing
maplets. In the case when all question marks in a Boolean matrix represent
1’s and all associated subscript question marks in the corresponding binary
relation represent existing maplets, the underlying rule base is both
complete and exhaustive. Otherwise, it is either incomplete or non-
exhaustive.

Example 8.1
This example illustrates a simple FB pattern for a 1×1 rule base. The

rule base RB1x1 has one input (i1) and one output (o1) whereby o1 is fed back
unchanged into i1, i.e. for each rule the linguistic value of o1 is the same as
the linguistic value of i1. The Boolean matrix and the binary relation for this
rule base must reflect this FB constraint, as shown by Eqs. (8.1)–(8.2).

RB1x1: i1 /o1 1 2 3

 1 ? 0 0
 2 0 ? 0
 3 0 0 ?

(8.1)

RB1x1: {(1, 1)?, (2, 2)?, (3, 3)?} (8.2)

8.2 Transforsmation of Rule Bases with Simple Feedback 187

Example 8.2
This example illustrates a simple FB pattern for a 2×1 rule base. The

rule base RB2x1 1 2 1 1

2 1 is the
same as the linguistic value of i2. The block Boolean matrix and the binary
relation for this rule base must reflect this FB constraint, as shown by
Eqs. (8.3)–(8.4).

RB2x1: i1 i2 / o1 1 2 3

 11 ? 0 0
 12 0 ? 0
 13 0 0 ?

 21 ? 0 0
 22 0 ? 0
 23 0 0 ?

 31 ? 0 0
 32 0 ? 0
 33 0 0 ?

(8.3)

RB2x1: {(11, 1)?, (12, 2)?, (13, 3)?,

 (21, 1)?, (22, 2)?, (23, 3)?,

 (31, 1)?, (32, 2)?, (33, 3)?}

(8.4)

Example 8.3
This example illustrates a simple FB pattern for a 1×2 rule base. The

rule base RB1x2 has one input (i1) and two outputs (o1 and o2) whereby o2 is
fed back unchanged into i1, i.e. for each rule, the linguistic value of o2 is the
same as the linguistic value of i1. The block Boolean matrix and the binary
relation for this rule base must reflect this FB constraint, as shown by
Eqs. (8.5)–(8.6).

RB1x2: i1 / o1 o2 11 12 13 21 22 23 31 32 33

 1 ? 0 0 ? 0 0 ? 0 0
 2 0 ? 0 0 ? 0 0 ? 0
 3 0 0 ? 0 0 ? 0 0 ?

(8.5)

RB1x2: {(1, 11)?, (2, 12)?, (3, 13)?,

 (1, 21)?, (2, 22)?, (3, 23)?,

 (1, 31)?, (2, 32)?, (3, 33)?}

(8.6)

has two inputs (i and i) and one output (o) whereby o is
fed back unchanged into i , i. e. for each rule the linguistic value of o

188 8 Formal Transformation of Feedback Rule Bases

Example 8.4
This example illustrates a simple FB pattern for a 2×2 rule base. The

rule base RB2x2 has two inputs (i1 and i2) and two outputs (o1 and o2) whereby
o1 is fed back unchanged into i2, i.e. for each rule, the linguistic value of o1 is
the same as the linguistic value of i2. The block Boolean matrix and the
binary relation for this rule base must reflect this FB constraint, as shown
by Eqs. (8.7)–(8.8).

RB2x2: i1 i2 / o1 o2 11 12 13 21 22 23 31 32 33

 11 ? ? ? 0 0 0 0 0 0
 12 0 0 0 ? ? ? 0 0 0
 13 0 0 0 0 0 0 ? ? ?

 21 ? ? ? 0 0 0 0 0 0
 22 0 0 0 ? ? ? 0 0 0
 23 0 0 0 0 0 0 ? ? ?

 31 ? ? ? 0 0 0 0 0 0
 32 0 0 0 ? ? ? 0 0 0
 33 0 0 0 0 0 0 ? ? ?

(8.7)

RB2x2: {(11, 11)?, (11, 12)?, (11, 13)?,

 (12, 21)?, (12, 22)?, (12, 23)?,

 (13, 31)?, (13, 32)?, (13, 33)?,

 (21, 11)?, (21, 12)?, (21, 13)?,

 (22, 21)?, (22, 22)?, (22, 23)?,

 (23, 31)?, (23, 32)?, (23, 33)?,

 (31, 11)?, (31, 12)?, (31, 13)?,

 (32, 21)?, (32, 22)?, (32, 23)?,

 (33, 31)?, (33, 32)?, (33, 33)?}

(8.8)

Example 8.5
This example illustrates a simple FB pattern for a 2×2 rule base. The

rule base RB2x2 has two inputs (i1 and i2) and two outputs (o1 and o2) whereby
o2 is fed back unchanged into i1, i.e. for each rule, the linguistic value of o2 is
the same as the linguistic value of i1. The block Boolean matrix and the
binary relation for this rule base must reflect this FB constraint, as shown
by Eqs. (8.9)–(8.10).

8.2 Transforsmation of Rule Bases with Simple Feedback 189

RB2x2: i1 i2 / o1 o2 11 12 13 21 22 23 31 32 33

 11 ? 0 0 ? 0 0 ? 0 0
 12 ? 0 0 ? 0 0 ? 0 0
 13 ? 0 0 ? 0 0 ? 0 0

 21 0 ? 0 0 ? 0 0 ? 0
 22 0 ? 0 0 ? 0 0 ? 0
 23 0 ? 0 0 ? 0 0 ? 0

 31 0 0 ? 0 0 ? 0 0 ?
 32 0 0 ? 0 0 ? 0 0 ?
 33 0 0 ? 0 0 ? 0 0 ?

(8.9)

RB2x2: {(11, 11)?, (12, 11)?, (13, 11)?,

 (11, 21)?, (12, 21)?, (13, 21)?,

 (11, 31)?, (12, 31)?, (13, 31)?,

 (21, 12)?, (22, 12)?, (23, 12)?,

 (21, 22)?, (22, 22)?, (23, 22)?,

 (21, 32)?, (22, 32)?, (23, 32)?,

 (31, 13)?, (32, 13)?, (33, 13)?,

 (31, 23)?, (32, 23)?, (33, 23)?,

 (31, 33)?, (32, 33)?, (33, 33)?}

(8.10)

Example 8.6
This example illustrates a simple FB pattern for a 2×2 rule base. The

rule base RB2x2 has two inputs (i1 and i2) and two outputs (o1 and o2) whereby
o1 is fed back unchanged into i2 and o2 is fed back unchanged into i1, i.e. for
each rule, the linguistic value of o1 is the same as the linguistic value of i2

and the linguistic value of o2 is the same as the linguistic value of i1. The
block Boolean matrix and the binary relation for this rule base must reflect
this FB constraint, as shown by Eqs. (8.11)–(8.12).

RB2x2: i1 i2 / o1 o2 11 12 13 21 22 23 31 32 33

 11 ? 0 0 0 0 0 0 0 0
 12 0 0 0 ? 0 0 0 0 0
 13 0 0 0 0 0 0 ? 0 0

 21 0 ? 0 0 0 0 0 0 0
 22 0 0 0 0 ? 0 0 0 0
 23 0 0 0 0 0 0 0 ? 0

 31 0 0 ? 0 0 0 0 0 0
 32 0 0 0 0 0 ? 0 0 0
 33 0 0 0 0 0 0 0 0 ?

(8.11)

190 8 Formal Transformation of Feedback Rule Bases

RB2x2: {(11, 11)?, (12, 21)?, (13, 31)?,

 (21, 12)?, (22, 22)?, (23, 32)?,

 (31, 13)?, (32, 23)?, (33, 33)?}

(8.12)

8.3 Transformation of Rule Bases with Local Feedback

Local feedback is the most basic type of complex feedback. A fuzzy rule
based system with local FB is constrained because the linguistic value of
the corresponding output in each rule is mapped by a FB function onto a
linguistic value of the associated input in the same rule. However, these two
linguistic values are not supposed to be the same as in the case of simple
FB because the FB function is usually a non-identity function. In the private
case of an identity FB function, the local FB is reduced to the simple FB
discussed in the previous section. In the general case of local FB, it is
necessary to check that the associated rule base satisfies the constraints
imposed by this FB. This general case is presented in Fig. 8.2.

Fig. 8.2. Local feedback

The notion of local FB is illustrated further by six basic examples with
SRB systems. These examples are similar to the ones from the previous
section whereby the only difference here is the non-identity type of FB. In
particular, Example 8.7 shows how local FB can be presented in a 1×1
rule base, Examples 8.8–8.9 refer to two types of local FB in a 2×1 and a
1×2 rule base, respectively, whereas Examples 8.10–8.12 deal with three
types of local FB in a 2×2 rule base.

The presence of a non-identity FB function in these examples is not
sufficient to classify the corresponding rule bases as MRB systems.
Although such a function has an underlying FRB, there must be at least two
rule bases interconnected in a FF manner in order to have a MRB system.
In this context, the procedure described in the examples below starts with a

FRB

8.3 Transformation of Rule Bases with Local Feedback 191

SRB system which is transformed into a MRB system by moving the FB
function from the FB loop to a newly introduced FF path and representing
this function as a rule base. Once the FB loop has been removed, the MRB
system is transformed into an equivalent SRB system by vertical and
horizontal merging manipulations.

For consistency, the notation used further in this section and in the whole
current chapter is the same for both SRB and MRB systems, i.e. with an
explicit presentation of each level and layer. In order to trace all FB and FF
interconnections during the formal transformation procedure, the matrices
used in the examples contain not only references to all individual rule bases
but also to all inputs and outputs for each rule base as well as to all output-
input FB functions available.

Example 8.7
A 1×1 rule base with local FB is presented by the followingmatrix:

level/layer layer 1

 level 1 RB, i1, o1

(8.13)

The output-input interconnections for this rule base are given by the
matrix:

level/layer layer 1

 level 1 F(o1) = i1

(8.14)

Equation (8.13) shows that the rule base RB has one input (i1) and one
output (o1). In addition, Eq. (8.14) shows that the output from the rule base
o1 is mapped by the FB function F onto the input to the rule base i1.

By introducing a second layer with a rule base RBF that replaces the FB
function F, the initial SRB system with complex FB is transformed into an
equivalent MRB system with simple FB that embraces the two rule bases in
sequence RB and RBF.

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RB, i1, o1 RBF, iF, oF

(8.15)

The output-input interconnections for this MRB system are given by the
matrix:

192 8 Formal Transformation of Feedback Rule Bases

level/layer layer 1 layer 2

 level 1 o1 = iF oF = i1

(8.16)

The transformation of the SRB system into an equivalent MRB system
has led to the appearance of the rule base RBF in the FF part of the MRB
system as well as the appearance of two new interconnection variables iF

and oF. In this context, Eq. (8.15) shows that the MRB system has one input
(i1) and one output (oF). In addition, Eq. (8.16) shows that the output o1 from
RB is the same as the input iF to RBF whereas the output oF from RBF is the
same as the input i1 to RB.

The MRB system can be further transformed into an equivalent SRB
system with a rule base RBE which is derived from Eq. (8.17).

 RBE = RB* RBF (8.17)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, oF

(8.18)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oF = i1

(8.19)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby the linguistic values of the output oF are fed back unchanged into
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB1x1 from Example 8.1, as
specified by Eqs. (8.1)–(8.2).

Example 8.8
A 2×1 rule base with localFB is presented by the followingmatrix:

level/layer layer 1

 level 1 RB, i1, i2, o1

(8.20)

The output-input interconnections for this rule base are given by the
matrix:

8.3 Transformation of Rule Bases with Local Feedback 193

level/layer layer 1

 level 1 F(o1) = i2

(8.21)

Equation (8.20) shows that the rule base RB has two inputs (i1 and i2) and
one output (o1). In addition, Eq. (8.21) shows that the output from the rule
base o1 is mapped by the FB function F onto the input to the rule base i2.

By introducing a second layer with a rule base RBF that replaces the FB
function F, the initial SRB system with complex FB is transformed into an
equivalent MRB system with simple FB that embraces the two rule bases in
sequence RB and RBF.

The MRB system is presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RB, i1, i2, o1 RBF, iF, oF

(8.22)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o1 = iF oF = i2

(8.23)

The transformation of the SRB system into an equivalent MRB system
has led to the appearance of RBF in the FF part of the MRB system as well
as the appearance of the two new interconnection variables iF and oF. In this
context, Eq. (8.22) shows that the MRB system has two inputs (i1 and i2) and
one output (oF). In addition, Eq. (8.23) shows that the output o1 from RB is
the same as the input iF to RBF whereas the output oF from RBF is the same
as the input i2 to RB.

The MRB system can be further transformed into an equivalent SRB
system with a rule base RBE which is derived from Eq. (8.24).

 RBE = RB* RBF (8.24)

The SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, i2, oF

(8.25)

The output-input interconnections for this SRB system are given by the
matrix:

194 8 Formal Transformation of Feedback Rule Bases

level/layer layer 1

 level 1 oF = i2

(8.26)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby the linguistic values of the output oF are fed back unchanged into
the input i2 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB2x1 from Example 8.2, as
specified by Eqs. (8.3)–(8.4).

Example 8.9
A 1 2 rule base with local FB is presented by the following matrix:

level/layer layer 1

 level 1 RB, i1, o1, o2

(8.27)

The output-input interconnections for this rule base are given by the
matrix:

level/layer layer 1

 level 1 F(o2) = i1

(8.28)

Equation (8.27) shows that the rule base RB has one input (i1) and two
outputs (o1 and o2). In addition, Eq. (8.28) shows that the output from the
rule base o2 is mapped by the FB function F onto the input to the rule
base i1.

By introducing a second layer with two levels such that the first level is
occupied by an IRB RBI mapping the output o1 and the second level is
occupied by a rule base RBF replacing the FB function F, the initial SRB
system with complex FB is transformed into an equivalent MRB system
with simple FB and three rule bases (RB, RBI and RBF). In this case, RBI

and RBF are standing in parallel in layer 2 whereas RB and RBF are standing
in sequence in level 2.

The MRB system is presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RBI, iI, oI

level 2 RB, i1, o1, o2 RBF, iF, oF

(8.29)

The output-input interconnections for this MRB system are given by the
matrix:

×

8.3 Transformation of Rule Bases with Local Feedback 195

level/layer layer 1 layer 2

 level 1 oI

level 2 o1 = iI oF = i1

 o2 = iF

(8.30)

The transformation of the SRB system into an equivalent MRB system
has led to the appearance of RBI and RBF in the FF part of the MRB system
as well as the appearance the four new interconnection variables iI, oI, iF and
oF. In this context, Eq. (8.29) shows that the MRB system has one input (i1)
and two outputs (oI and oF). In addition, Eq. (8.30) shows that the output o1

from RB is the same as the input iI to RBI and the output o2 from RB is the
same as the input iF to RBF, whereas the output oF from RBF is the same as
the input i1 to RB.

The MRB system can be further transformed into an equivalent SRB
system with a rule base RBE which is derived from Eq. (8.31).

 RBE = RB * (RBI + RBF) (8.31)

The SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, o1, oF

(8.32)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oI

 oF = i1

(8.33)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby the linguistic values of the output oF are fed back unchanged into
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB1x2 from Example 8.3, as
specified by Eqs. (8.5)–(8.6).

Example 8.10
A 2×2 rule base with local FB is presented by the following matrix:

.

196 8 Formal Transformation of Feedback Rule Bases

level/layer layer 1

 level 1 RB, i1, i2, o1, o2

(8.34)

The output-input interconnections for this rule base are given by the
matrix:

level/layer layer 1

 level 1 F(o1) = i2

(8.35)

Equation (8.34) shows that the rule base RB has two inputs (i1 and i2) and
two outputs (o1 and o2). In addition, Eq. (8.35) shows that the output from
the rule base o1 is mapped by the FB function F onto the input to the rule
base i2.

By introducing a second layer with two levels such that the first level is
occupied by a rule base RBF replacing the FB function F and the second
level is occupied by an IRB RBI mapping the output o2, the initial SRB
system with complex FB is transformed into an equivalent MRB system
with simple FB and three rule bases (RB, RBF and RBI). In this case, RBF

and RBI are standing in parallel in layer 2 whereas RB and RBF are standing
in sequence in level 1.

The MRB system is presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RB, i1, i2, o1, o2 RBF, iF, oF

level 2 RBI, iI, oI

(8.36)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o1 = iF oF = i2

 o2 = iI

level 2 oI

(8.37)

The transformation of the SRB system into an equivalent MRB system
has led to the appearance of RBF and RBI in the FF part of the MRB system
as well as the appearance the four new interconnection variables iF , oF, iI and
oI . In this context, Eq. (8.36) shows that the MRB system has two inputs

 (i1
and i2) and two outputs (oF and oI). In addition, Eq. (8.37) shows that the

output o1 from RB is the same as the input iF to RBF and the output o2 from

8.3 Transformation of Rule Bases with Local Feedback 197

RB is the same as the input iI to RBI, whereas the output oF from RBF is the
same as the input i2 to RB.

The MRB system can be further transformed into an equivalent SRB
system with a rule base RBE which is derived from Eq. (8.38).

 RBE = RB * (RBF + RBI) (8.38)

The SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, i2, oF, oI

(8.39)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oF = i2

 oI

(8.40)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby the linguistic values of the output oF are fed back unchanged into
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB2x2 from Example 8.4, as
specified by Eqs. (8.7)–(8.8).

Example 8.11
A 2 2 rule base with local FB is presented by the following matrix:

level/layer layer 1

 level 1 RB, i1, i2, o1, o2

(8.41)

The output-input interconnections for this rule base are given by the
matrix:

level/layer layer 1

 level 1 F(o2) = i1

(8.42)

Equation (8.41) shows that the rule base RB has two inputs (i1 and i2) and
two outputs (o1 and o2). In addition, Eq. (8.42) shows that the output from

×

198 8 Formal Transformation of Feedback Rule Bases

the rule base o2 is mapped by the FB function F onto the input to the rule
base i1.

By introducing a second layer with two levels such that the first level is
occupied by an IRB RBI mapping the output o1 and the second level is
occupied by a rule base RBF replacing the FB function F, the initial SRB
system with complex FB is transformed into an equivalent MRB system
with simple FB and three rule bases (RB, RBI and RBF). In this case, RBI

and RBF are standing in parallel in layer 2 whereas RB and RBF are standing
in sequence in level 2.

The MRB system is presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RBI, iI, oI

level 2 RB, i1, i2, o1, o2 RBF, iF, oF

(8.43)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 oI

level 2 o1 = iI oF = i1

 o2 = iF

(8.44)

The transformation of the SRB system into an equivalent MRB system
has led to the appearance of RBI and RBF in the FF part of the MRB system
as well as the appearance the four new interconnection variables iI, oI, iF and
oF. In this context, Eq. (8.43) shows that the MRB system has two inputs

 (i1
and i2) and two outputs (oI and oF). In addition, Eq. (8.44) shows that the

output o1 from RB is the same as the input iI to RBI and the output o2 from RB
is the same as the input iF to RBF, whereas the output oF from RBF is the
same as the input i1 to RB.

The MRB system can be further transformed into an equivalent SRB
system with a rule base RBE which is derived from Eq. (8.45).

 RBE = RB * (RBI + RBF) (8.45)

The SRB system is presented by the following matrix:

8.3 Transformation of Rule Bases with Local Feedback 199

level/layer layer 1

 level 1 RBE, i1, i2, oI, oF

(8.46)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oI

 oF = i1

(8.47)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby the linguistic values of the output oF are fed back unchanged into
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB2x2 from Example 8.5, as
specified by Eqs. (8.9)–(8.10).

Example 8.12
A 2×2 rule base with local FB is presented by the following matrix:

level/layer layer 1

 level 1 RB, i1, i2, o1, o2

(8.48)

The output-input interconnections for this rule base are given by the
matrix:

level/layer layer 1

 level 1 F1(o1) = i2

 F2(o2) = i1

(8.49)

Equation (8.48) shows that the rule base RB has two inputs (i1 and i2) and
two outputs (o1 and o2). In addition, Eq. (8.49) shows that the output from
the rule base o1 is mapped by the FB function F1 onto the input to the rule
base i2 whereas the output from the rule base o2 is mapped by the FB
function F2 onto the input to the rule base i1.

By introducing a second layer with two levels such that the first level is
occupied by a rule base RBF1 replacing the FB function F1 and the second
level is occupied by a rule base RBF2 replacing the FB function F2, the
initial SRB system with complex FB is transformed into an equivalent
MRB system with simple FB and three rule bases (RB, RBF1 and RBF2). In
this case, RBF1 and RBF2 are standing in parallel in layer 2 whereas RB and
RBF2 are standing in sequence in level 2.

200 8 Formal Transformation of Feedback Rule Bases

The MRB system is presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RBF1, iF1, oF1

level 2 RB, i1, i2, o1, o2 RBF2, iF2, oF2

(8.50)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 oF1 = i2

level 2 o1 = iF1 oF2 = i1

 o2 = iF2

(8.51)

The transformation of the SRB system into an equivalent MRB system
has led to the appearance of RBF1 and RBF2 in the FF part of the MRB
system as well as the appearance the four new interconnection variables iF1,
oF1, iF2 and oF2. In this context, Eq. (8.50) shows that the MRB system has
two inputs (i1 and i2) and two outputs (oF1 and oF2). In addition, Eq. (8.51)
shows that the output o1 from RB is the same as the input iF1 to RBF1 and the
output o2 from RB is the same as the input iF2 to RBF2, whereas the output oF1

from RBF1 is the same as the input i2 to RB and the output oF2 from RBF2 is
the same as the input i1 to RB.

The MRB system can be further transformed into an equivalent SRB
system with a rule base RBE which is derived from Eq. (8.52).

 RBE = RB * (RBF1 + RBF2) (8.52)

The SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, i2, oF1, oF2

(8.53)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oF1 = i2

 oF2 = i1

(8.54)

8.4 Transformation of Rule Bases with Global Feedback 201

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby the linguistic values of the outputs oF1 and oF2 are fed back
unchanged into the inputs i2 and i1, respectively, for each of the fuzzy rules.
In other words, the rule base RBE must have the same structure as the rule
base RB2x2 from Example 8.6, as specified by Eqs. (8.11)–(8.12).

8.4 Transformation of Rule Bases with Global Feedback

Global feedback is a fairly basic type of complex FB that can be viewed as
an extension of simple or local FB. While simple and local FB embrace
only one rule base in a particular level and layer of the network structure
for a MRB system, global FB embraces at least two rule bases residing in
adjacent levels or layers. Three general cases with global FB are presented
in Figs. 8.3–8.5.

Fig. 8.3. Global feedback for rule bases in sequence

Fig. 8.4. Global downward feedback for rule bases in parallel

FRB

FRB

202 8 Formal Transformation of Feedback Rule Bases

Fig. 8.5. Global upward feedback for rule bases in parallel

A fuzzy rule based system with global FB is constrained because the
linguistic value of the corresponding output in each rule is mapped by a FB
function onto a linguistic value of the associated input in the same rule.
Depending on whether this FB function is an identity function or another
type of function, these two linguistic values may be the same, as in the case
of simple FB, or different, as in the case of local FB.

systems. In particular, Examples 8.13–8.14 show how global FB can be
presented for two 1×1 rule bases standing in sequence in adjacent layers,
whereas Examples 8.15–8.16 and Examples 8.17–8.18 describe downward
and upward global FB, respectively, for two 1×1 rule bases standing in
parallel in adjacent levels.

The procedure described in the examples below starts with a MRB
system. In the case of identity FB function, the MRB system is first
transformed into an equivalent SRB system by means of appropriate
merging manipulations on the rule bases in the FF path. The rule base of the
equivalent SRB system is then checked to ensure that the FB constraints are
met, as described in Sect. 8.2. When the FB function is not an identity
function, it is first replaced by a corresponding rule base in the FF path, as
described in Sect. 8.3. Then, the resultant MRB system is transformed into
an equivalent SRB system by means of appropriate merging manipulations.
Finally, the rule base of the equivalent SRB system is checked to ensure
that any FB constraints are met.

Example 8.13
A MRB system with two 1×1 rule bases in sequence and global simple

feedback is presented by the following matrix:

FRB

The notion of global FB is illustrated by six basic examples with MRB

8.4 Transformation of Rule Bases with Global Feedback 203

level/layer layer 1 layer 2

 level 1 RB1, i1, o1 RB2, i2, o2

(8.55)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o1 = i2 o2 = i1

(8.56)

Equation (8.55) shows that both rule bases RB1 and RB2 have one input
(i1 and i2, respectively) and one output (o1 and o2, respectively). In addition,
Eq. (8.56) shows that the output o1 from RB1 is fed forward unchanged into
the input i2 to RB2 whereas the output o2 from RB2 is fed back unchanged
into the input i1 to RB1.

The MRB system can be transformed into an equivalent SRB system
with a rule base RBE which is derived from Eq. (8.57).

 RBE = RB1 * RB2 (8.57)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, o2

(8.58)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o2 = i1

(8.59)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby the linguistic values of the output o2 are fed back unchanged into
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB1x1 from Example 8.1, as
specified by Eqs. (8.1)–(8.2).

Example 8.14
A MRB system with two 1 1 rule bases in sequence and global complex

feedback is presented by the following matrix:
×

204 8 Formal Transformation of Feedback Rule Bases

level/layer layer 1 layer 2

 level 1 RB1, i1, o1 RB2, i2, o2

(8.60)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o1 = i2 F(o2)= i1

(8.61)

Equation (8.60) shows that both rule bases RB1 and RB2 have one input
(i1 and i2, respectively) and one output (o1 and o2, respectively). In addition,
Eq. (8.61) shows that the output o1 from RB1 is fed forward unchanged into
the input i2 to RB2 whereas the output o2 from RB2 is mapped by the FB
function F onto the input i1 to RB1.

By introducing a third layer with a rule base RBF that replaces the FB
function F, the initial MRB system with complex FB is transformed into an
equivalent MRB system with simple FB that embraces the three rule bases
standing in sequence RB1, RB2 and RBF.

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RB2, i2, o2 RBF, iF, oF

(8.62)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = i2 o2 = iF oF = i1

(8.63)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF in the FF part of the system as well
as the appearance of the two new interconnection variables iF and oF. In this
context, Eq. (8.62) shows that the equivalent MRB system has one input (i1)
and one output (oF). In addition, Eq. (8.63) shows that the output o1 from RB
is the same as the input i2 to RB2, the output o2 from RB2 is the same as the
input iF to RBF, whereas the output oF from RBF is the same as the input i1 to
RB1.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.64).

8.4 Transformation of Rule Bases with Global Feedback 205

 RBE = RB1 * RB2 * RBF (8.64)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, oF

(8.65)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oF = i1

(8.66)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby the linguistic values of the output oF are fed back unchanged into
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB1x1 from Example 8.1, as
specified by Eqs. (8.1)–(8.2).

Example 8.15
A MRB system with two 1×1 rule bases in parallel and global simple

downward feedback is presented by the following matrix:

level/layer layer 1

 level 1 RB1, i1, o1

level 2 RB2, i2, o2

(8.67)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1

 level 1 o1 = i2

level 2 o2

(8.68)

Equation (8.67) shows that both rule bases RB1 and RB2 have one input (i1

and i2, respectively) and one output (o1 and o2, respectively). In addition,
Eq. (8.68) shows that the output o1 from RB1 is fed back unchanged into the
input i2 to RB2.

206 8 Formal Transformation of Feedback Rule Bases

By introducing layer 2 that replaces level 2 and moving RB2 from its old
location in level 2 to its new location in layer 2, the initial MRB system
with global simple downward FB is transformed into an equivalent MRB
system without FB and with the two rule bases RB1 and RB2 standing in
sequence.

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RB1, i1, o1 RB2, i2, o2

(8.69)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o1 = i2 o2

(8.70)

Equation (8.69) shows that the equivalent MRB system has one input (i1)
and one output (o2). In addition, Eq. (8.70) shows that the output o1 from
RB1 is the same as the input i2 to RB2.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.71).

 RBE = RB1 * RB2 (8.71)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, o2

(8.72)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o2

(8.73)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

8.4 Transformation of Rule Bases with Global Feedback 207

Example 8.16
A MRB system with two 1×1 rule bases in parallel and global complex

downward feedback is presented by the following matrix:

level/layer layer 1

 level 1 RB1, i1, o1

level 2 RB2, i2, o2

(8.74)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1

 level 1 F(o1)= i2

level 2 o2

(8.75)

Equation (8.74) shows that both rule bases RB1 and RB2 have one input
(i1 and i2) and one output (o1 and o2). In addition, Eq. (8.75) shows that the
output o1 from RB1 is mapped by the FB function F onto the input i2 to RB2.

By introducing layer 2 with a rule base RBF that replaces the FB function
F and layer 3 that replaces level 2 as well as moving RB2 from its old
location in level 2 to its new location in layer 3, the initial MRB system
with global complex downward FB is transformed into an equivalent MRB
system without FB and with the three rule bases RB1, RBF and RB2 standing
in sequence.

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RBF, iF, oF RB2, i2, o2

(8.76)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = iF oF = i2 o2

(8.77)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF in the FF part of the system as well
as the appearance of the two new interconnection variables iF and oF. In this
context, Eq. (8.76) shows that the equivalent MRB system has one input (i1)

208 8 Formal Transformation of Feedback Rule Bases

and one output (o2). In addition, Eq. (8.77) shows that the output o1 from
RB1 is the same as the input iF to RBF whereas the output oF from RBF is the
same as the input i2 to RB2.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.78).

 RBE = RB1 * RBF * RB2 (8.78)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, o2

(8.79)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o2

(8.80)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.17
A MRB system with two 1×1 rule bases in parallel and global simple

upward feedback is presented by the following matrix:

level/layer layer 1

 level 1 RB1, i1, o1

level 2 RB2, i2, o2

(8.81)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1

 level 1 o1

level 2 o2 = i1

(8.82)

8.4 Transformation of Rule Bases with Global Feedback 209

Equation (8.81) shows that both rule bases RB1 and RB2 have one input
(i1 and i2, respectively) and one output (o1 and o2, respectively). In addition,
Eq. (8.82) shows that the output o2 from RB2 is fed back unchanged into the
input i1 to RB1.

By introducing layer 2 and moving RB1 from level 1of layer 1 to its new
location in level 1 of layer 2 as well as moving RB2 from level 2 of layer 1
to its new location in level 1 of layer 1 and removing level 2, the initial
MRB system with global simple upward FB is transformed into an
equivalent MRB system without FB and with the two rule bases RB2 and
RB1 standing in sequence.

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RB2, i2, o2 RB1, i1, o1

(8.83)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o2 = i1 o1

(8.84)

Equation (8.83) shows that the equivalent MRB system has one input (i2)
and one output (o1). In addition, Eq. (8.84) shows that the output o2 from
RB2 is the same as the input i1 to RB1.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from Eq.
(8.85).

 RBE = RB2 * RB1 (8.85)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i2, o1

(8.86)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o1

(8.87)

210 8 Formal Transformation of Feedback Rule Bases

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.18
A MRB system with two 1×1 rule bases in parallel and global complex

upward feedback is presented by the following matrix:

level/layer layer 1

 level 1 RB1, i1, o1

level 2 RB2, i2, o2

(8.88)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1

 level 1 o1

 level 2 F(o2)= i1

(8.89)

Equation (8.88) shows that both rule bases RB1 and RB2 have one input
 (i1 and i2, respectively) and one output (o1 and o2, respectively). In addition,
 Eq.

(8.89) shows that the output o2 from RB2 is mapped by the FB function F

onto the input i1 to RB1.
By introducing layer 3 and moving RB1 from level 1of layer 1 to its new

location in level 1 of layer 3, introducing layer 2 with a rule base RBF that
replaces the FB function F, as well as moving RB2 from level 2 of layer 1 to
its new location in level 1 of layer 1 and removing level 2, the initial MRB
system with global complex upward FB is transformed into an equivalent
MRB system without FB and with the three rule bases RB2, RBF and RB1

standing in sequence.
The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB2, i2, o2 RBF, iF, oF RB1, i1, o1

(8.90)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o2 = iF oF = i1 o1

(8.91)

8.5 Transformation of Rule Bases with Nested Feedback 211

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF in the FF part of the system as well
as the appearance of the two new interconnection variables iF and oF. In this
context, Eq. (8.90) shows that the equivalent MRB system has one input (i2)
and one output (o1). In addition, Eq. (8.91) shows that the output o2 from
RB2 is the same as the input iF to RBF whereas the output oF from RBF is the
same as the input i1 to RB1.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (7.236).

 RBE = RB2 * RBF * RB1 (8.92)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i2, o1

(8.93)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o1

(8.94)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

8.5 Transformation of Rule Bases with Nested Feedback

Nested feedback is a type of complex FB, which is usually a combination
of local and global FB. While local FB embraces only one rule base in a
particular level and layer of the network structure for a MRB system and
global FB embraces at least two rule bases residing in adjacent levels or
layers, nested FB does both at the same time. In particular, nested FB has at
least two FB loops such that either at least one of the FB outputs is from a
rule base that is not a departure port for any of the other FB outputs or at
least one of the FB inputs is to a rule base that is not an entry port for any of
the other FB inputs. Three general cases with nested FB are presented in
Figs. 8.6–8.8.

Therefore, if two or more FB loops do not satisfy the above condition,
i.e. their FB outputs are from only one rule base and their FB inputs are to
only one rule base, then the FB for these particular loops is not nested even
though the loops may appear to be visually nested. In this case, the FB is
either local or global depending on whether it embraces only one or at least
two rule bases. This type of FB is a multi-output-multi-input extension of the

212 8 Formal Transformation of Feedback Rule Bases

Fig. 8.6. Nested feedback for rule bases in sequence

Fig. 8.7. Nested downward feedback for rule bases in parallel

and such an extension is usually straightforward.
A fuzzy rule based system with nested FB is constrained because the

linguistic value of the corresponding outputs in each rule is mapped by a
FB function onto a linguistic value of the associated input in the same rule.
Depending on whether this FB function is an identity function or another
type of function, these two linguistic values may be the same, as in the case
of simple FB, or different, as in the case of local FB.

single-output-single-input FB discussed in most examples from Sects. 8.3–8.4

FRB

FRB

8.5 Transformation of Rule Bases with Nested Feedback 213

Fig. 8.8. Nested upward feedback for rule bases in parallel

The notion of nested FB is illustrated further by six basic examples with
MRB systems. In particular, Examples 8.19–8.20 show how nested FB can
be presented for two rule bases standing in sequence in adjacent layers,
whereas Examples 8.21–8.22 and Examples 8.23–8.24 describe downward
and upward nested FB, respectively, for three rule bases standing in parallel
in adjacent levels. All examples consider non-identity type of FB because
identity FB cases would be quite easy to deal with.

The procedure described in Examples 8.19–8.24 starts with a MRB
system whose FB function is replaced by a corresponding rule base in the
FF path, as described in Sect. 8.3. Then, the resultant MRB system is
transformed into an equivalent SRB system by means of appropriate
merging manipulations. Finally, the rule base of the equivalent SRB system
is checked to ensure that any FB constraints are met.

Example 8.19
A MRB system with two rule bases in sequence and left-nested feedback

is presented by the following matrix:

FRBFRB

214 8 Formal Transformation of Feedback Rule Bases

level/layer layer 1 layer 2

 level 1 RB1, i11, i12, o11, o12 RB2, i2, o2

(8.95)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o11 = i2 F2(o2)= i11

 F1(o12)= i12

(8.96)

By introducing level 1 in a new layer 3 with a rule base RBF2 that
replaces the FB function F2, introducing level 2 in layer 2 with a rule base
RBF1 that replaces the FB function F1, as well as introducing level 2 in layer 3

 with an IRB RBI representing a self standing output, the initial MRB
system with complex FB is transformed into an equivalent MRB system
with simple FB. This FB consists of two nested loops whereby the inner
loop embraces the sequence of rule bases RB1, RBF1, RBI and the outer loop
embraces the sequence of rule bases RB1, RB2, RBF2.

The equivalent MRB system is presented by the following matrix:

 level/layer layer 1 layer 2 layer 3

 level 1 RB1, i11, i12, o11, o12 RB2, i2, o2 RBF2, iF2, oF2

level 2 RBF1, iF1, oF1 RBI, iI, oI

(8.97)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o11 = i2 o2 = iF2 oF2 = i11

 o12 = iF1

level 2 oF1 = iI oI = i12

(8.98)

Equation (8.95) shows that RB
1
 has two inputs and two outputs

 (i
11

, i
12

, o
11

, o
12

) whereas RB
2
 has one input and one output (i

2
, o

2
). In

addition, Eq. (8.96) shows that the output o
11

from RB
1

is fed forward

unchanged into the input i
2
 to RB

2
 whereas the output o

12
from RB

1
is

mapped by the FB function F1 onto the input i
12

to RB
1

and the output o
2

from RB
2
is mapped by the FB function F2 onto the input i

11
to RB

1
.

8.5 Transformation of Rule Bases with Nested Feedback 215

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF2, RBF1 and RBI in the FF part of the
system as well as the appearance of the new interconnection variables iF2,
oF2, iF1, oF1, iI, oI. In this context, Eq. (8.97) shows that the equivalent MRB
system has two inputs (i11, i12) and two outputs (oF2, oI). In addition,
Eq. (8.98) shows that the output o11 from RB1 is the same as the input i2 to
RB2, the output o12 from RB1 is the same as the input iF1 to RBF1, the output o2

from RB2 is the same as the input iF2 to RBF2, the output oF1 from RBF1 is the
same as the input iI to RBI, whereas the output oF2 from RBF2 is the same as
the input i11 to RB1 and the output oI from RBI is the same as the input i12 to
RB1.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.99).

 RBE = RB1 * (RB2 + RBF1) * (RBF2 + RBI) (8.99)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i11, i12, oF2, oI

(8.100)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oF2 = i11

 oI = i12

(8.101)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby for each of the fuzzy rules the linguistic values of the output oF2

are fed back unchanged into the input i11 and the linguistic values of the
output oI are fed back unchanged into the input i12. In this case, the rule base
RBE must have a structure in accordance with Eqs. (8.102)–(8.103).

RB
E
: i

11
i

12
/ o

F2
o

I
 11 12 13 21 22 23 31 32 33

 11 ? 0 0 0 0 0 0 0 0
 12 0 ? 0 0 0 0 0 0 0
 13 0 0 ? 0 0 0 0 0 0

 21 0 0 0 ? 0 0 0 0 0
 22 0 0 0 0 ? 0 0 0 0
 23 0 0 0 0 0 ? 0 0 0

(8.102)

 31 0 0 0 0 0 0 ? 0 0
 32 0 0 0 0 0 0 0 ? 0
 33 0 0 0 0 0 0 0 0 ?

216 8 Formal Transformation of Feedback Rule Bases

RBE: {(11, 11)?, (12, 12)?, (13, 13)?,

 (21, 21)?, (22, 22)?, (23, 23)?,

 (31, 31)?, (32, 32)?, (33, 33)?}

(8.103)

Example 8.20
A MRB system with two rule bases in sequence and right-nested

feedback is presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RB1, i1, o1 RB2, i21, i22, o21, o22

(8.104)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o1 = i21 F2(o21)= i1

 F1(o22)= i22

(8.105)

Equation (8.104) shows that RB1 has one input and one output (i1, o1)
whereas RB2 has two inputs and two outputs (i21, i22, o21, o22). In addition,

1 1

input i21 to RB2 whereas the output o21 from RB2 is mapped by the FB
function F2 onto the input i1 to RB1 and the output o22 from RB2 is mapped by
the FB function F1 onto the input i22 to RB2.

By introducing level 1 in a new layer 3 with a rule base RBF2 that
replaces the FB function F2, introducing level 2 in layer 1 with an IRB RBI

representing a self standing input, as well as introducing level 2 in layer 3
with a rule base RBF1 that replaces the FB function F1, the initial MRB
system with complex FB is transformed into an equivalent MRB system
with simple FB. This FB consists of two nested loops whereby the inner
loop embraces the sequence of rule bases RBI, RB2, RBF1 and the outer loop
embraces the sequence of rule bases RB1, RB2, RBF2.

Eq. (8.105) shows that the output o from RB is fed forward unchanged into the

8.5 Transformation of Rule Bases with Nested Feedback 217

The equivalent MRB system is presented by the following matrix:

 level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RB2, i21, i22, o21, o22 RBF2, iF2, oF2

level 2 RBI, iI, oI RBF1, iF1, oF1

(8.106)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = i21 o21 = iF2 oF2 = i1

 o22 = iF1

level 2 oI = i22 oF1 = iI

(8.107)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF2, RBI and RBF1 in the FF part of the
system as well as the appearance of the new interconnection variables iF2,
oF2, iI, oI, iF1, oF1. In this context, Eq. (8.106) shows that the equivalent MRB
system has two inputs (i1, iI) and two outputs (oF2, oF1). In addition,
Eq. (8.107) shows that the output o1 from RB1 is the same as the input i21 to
RB2, the output oI from RBI is the same as the input i22 to RB2, the output o21

from RB2 is the same as the input iF2 to RBF2, the output o22 from RB2 is the
same as the input iF1 to RBF1, whereas the output oF2 from RBF2 is the same as
the input i1 to RB1 and the output oF1 from RBF1 is the same as the input iI to
RBI.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.108).

 RBE = (RB1 + RBI) * RB2 * (RBF2 + RBF1) (8.108)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, iI, oF2, oF1

(8.109)

The output-input interconnections for this SRB system are given by the
matrix:

218 8 Formal Transformation of Feedback Rule Bases

level/layer layer 1

 level 1 oF2 = i1

 oF1 = iI

(8.110)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby for each of the fuzzy rules the linguistic values of the output oF2

are fed back unchanged into the input i1 and the linguistic values of the
output oF1 are fed back unchanged into the input iI. In this case, the rule base
RBE must have the same structure as the rule base RBE from Example 8.19,
as specified by Eqs. (8.102)–(8.103).

Example 8.21
A MRB system with three rule bases in parallel and top-nested

downward feedback is presented by the following matrix:

level/layer layer 1

 level 1 RB1, i1, o11, o12

level 2 RB2, i2, o2

level 3 RB3, i3, o3

(8.111)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1

 level 1 F2(o11)= i3

 F1(o12)= i2

level 2 o2

level 3 o3

(8.112)

Equation (8.111) shows that RB1 has one input and two outputs
 (i1, o11, o12) whereas both RB2 and RB3 have one input and one output
 (i2, o2 and i3, o3, respectively). In addition, Eq. (8.112) shows that the output
o11 from RB1

is mapped by the FB function F2 onto the input i3 to RB3 whereas
 the output o12 from RB1 is mapped by the FB function F1 onto the input
i2 to RB2.

By introducing level 1 in a new layer 2 with a rule base RBF2 that
replaces the FB function F2, introducing level 2 in layer 2 with a rule base
RBF1 that replaces the FB function F1, moving RB2 from level 2 of layer 1 to

3

3 from layer 1, the initial MRB system with complex FB is transformed

level 2 of a new layer 3 and removing level 2 from layer 1, as well as
moving RB from level 3 of layer 1 to level 1 of layer 3 and removing level

8.5 Transformation of Rule Bases with Nested Feedback 219

into an equivalent MRB system without FB. This system consists of two
groups of rule bases standing sequence, i.e. (RB1,RBF2,RB3) and (RB1, RBF1,RB2).

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o11, o12 RBF2, iF2, oF2 RB3, i3, o3

level 2 RBF1, iF1, oF1 RB2, i2, o2

(8.113)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o11 = iF2 oF2 = i3 o3

 o12 = iF1

level 2 oF1 = i2 o2

(8.114)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF2 and RBF1 in the FF part of the
system as well as the appearance of the new interconnection variables iF2,
oF2, iF1, oF1. In this context, Eq. (8.113) shows that the equivalent MRB
system has one input (i1) and two outputs (o3, o2). In addition, Eq. (8.114)
shows that the output o11 from RB1 is the same as the input iF2 to RBF2, the
output o12 from RB1 is the same as the input iF1 to RBF1, the output oF2 from
RBF2 is the same as the input i3 to RB3, and the output oF1 from RBF1 is the
same as the input i2 to RB2.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.115).

 RBE = RB1 * (RBF2 + RBF1) * (RB3 + RB2) (8.115)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, o3, o2

(8.116)

The output-input interconnections for this SRB system are given by the
matrix:

220 8 Formal Transformation of Feedback Rule Bases

level/layer layer 1

 level 1 o3

 o2

(8.117)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.22
A MRB system with three rule bases in parallel and bottom-nested

downward feedback is presented by the following matrix:

level/layer layer 1

 level 1 RB1, i1, o1

level 2 RB2, i2, o2

level 3 RB3, i31 32 3

(8.118)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1

 level 1 F2(o1)= i31

level 2 F1(o2)= i32

level 3 o3

(8.119)

Equation (8.118) shows that both RB1 and RB2 have one input and one
output (i1, o1 and i2, o2, respectively) whereas RB3 has two inputs and one
output (i31, i32, o3). In addition, Eq. (8.119) shows that the output o1 from RB1

is mapped by the FB function F2 onto the input i31 to RB3 whereas the
output o2 from RB2 is mapped by the FB function F1 onto the input i32 to
RB3.

By introducing level 1 in a new layer 2 with a rule base RBF2 that
replaces the FB function F2, introducing level 2 in layer 2 with a rule base
RBF1 that replaces the FB function F1, as well as moving RB3 from level 3
of layer 1 to level 1 of a new layer 3 and removing level 3 from layer 1, the
initial MRB system with complex FB is transformed into an equivalent
MRB system without FB. This system consists of two groups of rule bases

1 F2, RB3) and (RB2, RBF1, RB3).

, i , o

sequence, i.e. (RB , RBstanding in

8.5 Transformation of Rule Bases with Nested Feedback 221

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RBF2, iF2, oF2 RB3, i31, i32, o3

level 2 RB2, i2, o2 RBF1, iF1, oF1

(8.120)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = iF2 oF2 = i31 o3

level 2 o2 = iF1 oF1 = i32

(8.121)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF2 and RBF1 in the FF part of the
system as well as the appearance of the new interconnection variables iF2,
oF2, iF1, oF1. In this context, Eq. (8.120) shows that the equivalent MRB
system has two inputs (i1, i2) and one output (o3). In addition, Eq. (8.121)
shows that the output o1 from RB1 is the same as the input iF2 to RBF2, the
output o2 from RB2 is the same as the input iF1 to RBF1, the output oF2 from
RBF2 is the same as the input i31 to RB3, and the output oF1 from RBF1 is the
same as the input i32 to RB3.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.122).

 RBE = (RB1 + RB2) * (RBF2 + RBF1) * RB3 (8.122)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, i2, o3

(8.123)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o3

(8.124)

222 8 Formal Transformation of Feedback Rule Bases

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.23
A MRB system with three rule bases in parallel and top-nested upward

feedback is presented by the following matrix:

level/layer layer 1

 level 1 RB1, i11, i12, o1

level 2 RB2, i2, o2

level 3 RB3, i3, o3

(8.125)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1

 level 1 o1

level 2 F1(o2)= i11

level 3 F2(o3)= i12

(8.126)

Equation (8.125) shows that RB1 has two inputs and one output (i11, i12, o1)
whereas both RB2 and RB3 have one input and one output (i2, o2 and i3, o3,
respectively). In addition, Eq. (8.126) shows that the output o2 from RB2 is
mapped by the FB function F1 onto the input i11 to RB1 whereas the output
o3 from RB3 is mapped by the FB function F2 onto the input i12 to RB1.

By moving RB1 from level 1 of layer 1 to level 2 of a new layer 3,
moving RB2 from level 2 of layer 1 to level 1 of layer 1, introducing level 2
in a new layer 2 with a rule base RBF2 that replaces the FB function F2,
introducing level 1 in layer 2 with a rule base RBF1 that replaces the FB
function F1, as well as moving RB3 from level 3 of layer 1 to level 2 of
layer 1 and removing level 3 from layer 1, the initial MRB system with
complex FB is transformed into an equivalent MRB system without FB.
This system consists of two groups of rule bases standing in sequence, i.e.
(RB2, RBF1, RB1) and (RB3, RBF2, RB1).

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB2, i2, o2 RBF1, iF1, oF1

level 2 RB3, i3, o3 RBF2, iF2, oF2 RB1, i11, i12, o1

(8.127)

8.5 Transformation of Rule Bases with Nested Feedback 223

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o2 = iF1 oF1 = i11

level 2 o3 = iF2 oF2 = i12 o1

(8.128)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF1 and RBF2 in the FF part of the
system as well as the appearance of the new interconnection variables iF1,
oF1, iF2, oF2. In this context, Eq. (8.127) shows that the equivalent MRB
system has two inputs (i2, i3) and one output (o1). In addition, Eq. (8.128)
shows that the output o2 from RB2 is the same as the input iF1 to RBF2, the
output o3 from RB3 is the same as the input iF2 to RBF2, the output oF1 from
RBF1 is the same as the input i11 to RB1 and the output oF2 from RBF2 is the
same as the input i12 to RB1.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.129).

 RBE 2 3 1 (8.129)

level/layer layer 1

 level 1 RBE, i2, i3, o1

(8.130)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o1

(8.131)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.24
A MRB system with three rule bases in parallel and bottom-nested

upward feedback is presented by the following matrix:

= (RB + RB) * (RB + RB) * RB

The equivalent SRB system is presented by the following matrix:

F1 F2

224 8 Formal Transformation of Feedback Rule Bases

level/layer layer 1

 level 1 RB1, i1, o1

level 2 RB2, i2, o2

level 3 RB3, i3, o31, o32

(8.132)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1

 level 1 o1

level 2 o2

level 3 F1(o31)= i2

 F2(o32)= i1

(8.133)

Equation (8.132) shows that both RB1 and RB2 have one input and one
output (i1, o1 and i2, o2, respectively) whereas RB3 has one input and two
outputs (i3, o31, o32). In addition, Eq. (8.133) shows that the output o31 from
RB3 is mapped by the FB function F1 onto the input i2 to RB2 whereas the
output o32 from RB3 is mapped by the FB function F2 onto the input i1 to
RB1.

By moving RB1 from level 1 of layer 1 to level 2 of a new layer 3,
moving RB2 from level 2 of layer 1 to level 1 of layer 3, introducing level 1
in a new layer 2 with a rule base RBF1 that replaces the FB function F1,
introducing level 2 in layer 2 with a rule base RBF2 that replaces the FB
function F2, as well as moving RB3 from level 3 of layer 1 to level 2 of
layer 1 and removing level 3 from layer 1, the initial MRB system with
complex FB is transformed into an equivalent MRB system without FB.
This system consists of two groups of rule bases standing in sequence, i.e.
(RB3, RBF1, RB2) and (RB3, RBF2, RB1).

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RBF1, iF1, oF1 RB2, i2, o2

level 2 RB3, i3, o31, o32 RBF2, iF2, oF2 RB1, i1, o1

(8.134)

8.5 Transformation of Rule Bases with Nested Feedback 225

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 oF1 = i2 o2

level 2 o31 = iF1 oF2 = i1 o1

 o32 = iF2

(8.135)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF1 and RBF2 in the FF part of the
system as well as the appearance of the new interconnection variables iF1,
oF1, iF2, oF2. In this context, Eq. (8.134) shows that the equivalent MRB
system has one input (i3) and two outputs (o2, o1). In addition, Eq. (8.135)
shows that the output o31 from RB3 is the same as the input iF1 to RBF1, the
output o32 from RB3 is the same as the input iF2 to RBF2, the output oF1 from
RBF1 is the same as the input i2 to RB2 and the output oF2 from RBF2 is the
same as the input i1 to RB1.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RB E which is derived from

 RBE = RB3 * (RBF1 + RBF2) * (RB2 + RB1) (8.136)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i3, o2, o1

(8.137)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o2

 o1

(8.138)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Eq. (8.136).

226 8 Formal Transformation of Feedback Rule Bases

8.6 Transformation of Rule Bases with Overlapping Feedback

Overlapping feedback is a type of complex FB, which is usually a
combination of global FB with itself that includes at least two non-nested
FB loops with partial overlap. In this case, each of the FB outputs is from a
rule base that is not a departure port for any of the other FB outputs and
each of the FB inputs is to a rule base that is not an entry port for any of the
other FB inputs. Therefore, if two or more FB loops do not satisfy the
above condition, i.e. their FB outputs are from only one rule base or their
FB inputs are to only one rule base, then the FB for these particular loops is
nested and not overlapping. Three general cases with overlapping FB are
presented in Figs. 8.9–8.11.

A fuzzy rule based system with overlapping FB is constrained because
the linguistic value of the corresponding outputs in each rule is mapped by
a FB function onto a linguistic value of the associated input in the same
rule. Depending on whether this FB function is an identity function or
another type of function, these two linguistic values may be the same, as in
the case of global simple FB, or different, as in the case of global complex
FB.

The notion of overlapping FB is illustrated by three basic examples with
MRB systems. In particular, Examples 8.25 shows how overlapping FB can
be presented for three rule bases standing in sequence in adjacent layers,
whereas Examples 8.26-8.27 describe downward and upward overlapping
FB, respectively, for four rule bases standing in parallel in adjacent levels.
All examples consider non-identity type of FB because identity FB cases
would be quite easy to deal with.

Fig. 8.9. Overlapping feedback for rule bases in sequence

FRB FRB

8.6 Transformation of Rule Bases with Overlapping Feedback 227

Fig. 8.10. Overlapping downward feedback for rule bases in parallel

system whose FB function is replaced by a corresponding rule base in the
FF path, as described in Sect. 8.3. Then, the resultant MRB system is
transformed into an equivalent SRB system by means of appropriate
merging manipulations. Finally, the rule base of the equivalent SRB system
is checked to ensure that any FB constraints are met.

Example 8.25
A MRB system with three rule bases in sequence and overlapping

feedback is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RB2, i21, i22, o21, o22 RB3, i3, o3

(8.139)

FRB

FRB

The procedure described in Examples 8.25-8.27 starts with a MRB

228 8 Formal Transformation of Feedback Rule Bases

Fig. 8.11. Overlapping upward feedback for rule bases in parallel

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = i21 o21 = i3 F2(o3)= i22

 F1(o22)= i1

(8.140)

Equation (8.139) shows that both RB1 and RB3 have one input and one
output (i1, o1 and i3, o3, respectively), whereas RB2 has two inputs and two
outputs (i21, i22, o21, o22). In addition, Eq. (8.140) shows that the output o1

from RB1 is fed forward unchanged into the input i21 to RB2, the output o21

from RB2 is fed forward unchanged into the input i3 to RB3, whereas the
output o22 from RB2 is mapped by the FB function F1 onto the input i1 to RB1

and the output o3 from RB3 is mapped by the FB function F2 onto the input
i22 to RB2.

By introducing level 1 in a new layer 4 with a rule base RBF2 that
replaces the FB function F2, introducing level 2 in layer 3 with a rule base
RBF1 that replaces the FB function F1, introducing level 2 in layer 1 with an
IRB RBI1 representing a self standing input, as well as introducing level 2 in

FRB

FRB

8.6 Transformation of Rule Bases with Overlapping Feedback 229

layer 4 with an IRB RBI2 representing a self standing output, the initial
MRB system with complex FB is transformed into an equivalent MRB
system with simple FB. This FB consists of two global simple loops
embracing the two groups of rule bases standing in a sequence
(RB1, RB2, RB3, RBF2) and (RBI1, RB2, RBF1, RBI2).

The equivalent MRB system is presented by the following matrix:

 level/layer layer 1 layer 2 layer 3 layer 4

 level 1 RB1, i1, o1 RB2, i21, i22, o21, o22 RB3, i3, o3 RBF2, iF2, oF2

level 2 RBI1, iI1, oI1
RBF1, iF1, oF1 RBI2, iI2, oI2

(8.141)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3 layer 4

 level 1 o1 = i21 o21 = i3 o3 = iF2 oF2 = iI1

 o22 = iF1

level 2 oI1 = i22 oF1 = iI2 oI2 = i1

(8.142)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF2, RBI2, RBF1 and RBI2 in the FF part
of the system as well as the appearance of the new interconnection
variables iF2, oF2, iI1, oI1, iF1, oF1, iI2, oI2. In this context, Eq. (8.141) shows that
the equivalent MRB system has two inputs (i1, iI1) and two outputs (oF2, oI2).
In addition, Eq. (8.142) shows that the output o1 from RB1 is the same as the
input i21 to RB2, the output oI1 from RBI1 is the same as the input i22 to RB2, the
output o21 from RB2 is the same as the input i3 to RB3, the output o22 from RB2

is the same as the input iF1 to RBIF1, the output o3 from RB3 is the same as the
input iF2 to RBF2, the output oF1 from RBF1 is the same as the input iI2 to RBI2,
whereas the output oF2 from RBF2 is the same as the input iI1 to RBI and the
output oI2 from RBI2 is the same as the input i1 to RB1.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.143).

 RBE = (RB1 + RBI1) * RB2 * (RB3 + RBF1) * (RBF2 + RBI2) (8.143)

The equivalent SRB system is presented by the following matrix:

230 8 Formal Transformation of Feedback Rule Bases

level/layer layer 1

 level 1 RBE, i1, iI1, oF2, oI2

(8.144)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oF2 = iI1

 oI2 = i1

(8.145)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby for each of the fuzzy rules the linguistic values of the output oF2

are fed back unchanged into the input iI1 and the linguistic values of the
output oI2 are fed back unchanged into the input i1. In other words, the rule
base RBE must have the same structure as the rule base RB2x2 from
Example 8.6, as specified by Eqs. (8.11)–(8.12).

Example 8.26
A MRB system with four rule bases in parallel and overlapping

downward feedback is presented by the following matrix:

level/layer layer 1

 level 1 RB1, i1, o1

 level 2 RB2, i2, o2

level 3 RB3, i3, o3

 level 4 RB4, i4, o4

(8.146)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1

 level 1 F1(o1)= i3

 level 2 F2(o2)= i4

level 3 o3

level 4 o4

(8.147)

8.6 Transformation of Rule Bases with Overlapping Feedback 231

i

each (ii, oi, i =1,4). In addition, Eq. (8.147) shows that the output o1 from RB1

is mapped by the FB function F1 onto the input i3 to RB3 and the output o2

from RB2 is mapped by the FB function F2 onto the input i4 to RB4.
By introducing level 1 in a new layer 2 with a rule base RBF1 that

replaces the FB function F1, introducing level 2 in layer 2 with a rule base
RBF2 that replaces the FB function F2, moving RB3 from level 3 of layer 1 to
level 1 of a new layer 3 and removing level 3 from layer 1, as well as
moving RB4 from level 4 of layer 1 to level 2 of layer 3 and removing level
4 from layer 1, the initial MRB system with complex FB is transformed
into an equivalent MRB system without FB. This system consists of two
groups of rule bases standing in sequence, i.e. (RB1, RBF1, RB3) and (RB2,
RBF2, RB4).

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RBF1, iF1, oF1 RB3, i3, o3

level 2 RB3, i3, o3 RBF2, iF2, oF2 RB4, i4, o4

(8.148)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = iF1 oF1 = i3 o3

level 2 o2 = iF2 oF2 = i4 o4

(8.149)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF1 and RBF2 in the FF part of the
system as well as the appearance of the new interconnection variables iF1,
oF1, iF2, oF2. In this context, Eq. (8.148) shows that the equivalent MRB
system has two inputs (i1, i2) and two outputs (o3, o4). In addition, Eq. (8.149)
shows that the output o1 from RB1 is the same as the input iF1 to RBF1, the
output o2 from RB2 is the same as the input iF2 to RBF2, the output oF1 from
RBF1 is the same as the input i3 to RB3 and the output oF2 from RBF2 is the
same as the input i4 to RB4.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.150).

 RBE = (RB1 + RB2) * (RBF1 + RBF2) * (RB3 + RB4) (8.150)

Equation (8.146) shows that RB , i = 1,4 have one input and one output

232 8 Formal Transformation of Feedback Rule Bases

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, i2, o3, o4

(8.151)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o3

 o4

(8.152)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.27
A MRB system with four rule bases in parallel and overlapping upward

feedback is presented by the following matrix:

level/layer layer 1

 level 1 RB1, i1, o1

 level 2 RB2, i2, o2

level 3 RB3, i3, o3

 level 4 RB4, i4, o4

(8.153)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1

 level 1 o1

 level 2 o2

level 3 F2(o3)= i1

level 4 F1(o4)= i2

(8.154)

8.6 Transformation of Rule Bases with Overlapping Feedback 233

RB3 is mapped by the FB function F2 onto the input i1 to RB1 and the output
o4 from RB4 is mapped by the FB function F1 onto the input i2 to RB2.

By moving RB1 from level 1 of layer 1 to level 1 of a new layer 3,
moving RB2 from level 2 of layer 1 to level 2 of layer 3, introducing level 1
in a new layer 2 with a rule base RBF2 that replaces the FB function F2,
introducing level 2 in layer 2 with a rule base RBF1 that replaces the FB
function F1, moving RB3 from level 3 of layer 1 to level 1 of layer 1 and
removing level 3 from layer 1, as well as moving RB4 from level 4 of layer
1 to level 2 of layer 1 and removing level 4 from layer 1, the initial MRB
system with complex FB is transformed into an equivalent MRB system
without FB . This system consists of two groups of rule bases standing in
sequence, i.e. (RB3, RBF2, RB1) and (RB4, RBF1, RB2).

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB3, i3, o3 RBF2, iF2, oF2 RB1, i1, o1

level 2 RB4, i4, o4 RBF1, iF1, oF1 RB2, i2, o2

(8.155)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o3 = iF2 oF2 = i1 o1

level 2 o4 = iF1 oF1 = i2 o2

(8.156)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF2 and RBF1 in the FF part of the
system as well as the appearance of the new interconnection variables iF2,
oF2, iF1, oF1. In this context, Eq. (8.155) shows that the equivalent MRB
system has two inputs (i3, i4) and two outputs (o1, o2). In addition, Eq. (8.156)
shows that the output o3 from RB3 is the same as the input iF2 to RBF2, the
output o4 from RB4 is the same as the input iF1 to RBF1, the output oF2 from
RBF2 is the same as the input i1 to RB1 and the output oF1 from RBF1 is the
same as the input i2 to RB2.

Equation (8.153) shows that RBi, I = 1,4 have one input and one output
each (ii, oi, I = 1,4). In addition, Eq. (8.154) shows that the output o3 from

234 8 Formal Transformation of Feedback Rule Bases

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i3, i4, o1, o2

(8.158)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o1

 o2

(8.159)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

8.7 Transformation of Rule Bases with Crossed Feedback

Crossed feedback is a type of complex FB, which is an extension of
overlapping FB. As opposed to overlapping FB which includes at least two
overlapping loops embracing a number of layers across a single level or a
number of levels across a single layer, crossed FB includes at least two
crossed loops embracing at least two layers and two levels from the
network structure of a MRB system. In this case, each of the FB outputs is

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.157).

 RBE = (RB3 + RB4) * (RBF2 + RBF1) * (RB1 + RB2) (8.157)

base for any of the other FB outputs and each of the FB inputs is to a rule base

FB inputs. Therefore, if two or more FB loops do not satisfy the above

from a rule base that is not in the same level or layer as the departure rule

that is not in the same level or layer as the arrival rule base for any of the other

condition, i.e. their FB outputs are from rule bases in the same level or layer
or their FB inputs are to rule base in the same level or layer, then the FB for

with crossed FB are presented in Figs. 8.12--8.14.
these particular loops is overlapping and not crossed. Three general cases

8.7 Transformation of Rule Bases with Crossed Feedback 235

Fig. 8.12. Crossed symmetric feedback for rule bases in parallel and sequence

Fig. 8.13. Crossed non-symmetric mid-upward feedback for rule bases in parallel
and sequence

FRB

FRB

FRB

FRB

236 8 Formal Transformation of Feedback Rule Bases

Fig. 8.14. Crossed non-symmetric mid-downward feedback for rule bases in
parallel and sequence

A fuzzy rule based system with crossed FB is constrained because the
linguistic value of the corresponding outputs in each rule is mapped by a
FB function onto a linguistic value of the associated input in the same rule.
Depending on whether this FB function is an identity function or another
type of function, these two linguistic values may be the same, i.e. crossed
simple FB, or different, i.e. crossed complex FB.

The notion of crossed FB is illustrated by five basic examples with MRB
systems. In particular, Example 8.28 shows how crossed symmetric FB can
be presented for four rule bases standing in parallel and sequence in
adjacent levels and layers, whereas Examples 8.29–8.32 describe four
different types of non-symmetric FB for six rule bases standing in parallel
and sequence in adjacent levels and layers. All examples consider non-
identity type of FB because identity FB cases would be quite easy to deal
with.

whose FB function is replaced by a corresponding rule base in the FF path,

FRB

FRB

The procedure described in Examples 8.28–8.32 starts with a MRB system

8.7 Transformation of Rule Bases with Crossed Feedback 237

as described in Sect. 8.3. Then, the resultant MRB system is transformed
into an equivalent SRB system by means of appropriate merging
manipulations. Finally, the rule base of the equivalent SRB system is
checked to ensure that any FB constraints are met.

Example 8.28
A MRB system with crossed symmetric feedback involving four rule

bases in parallel and sequence is presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RB1, i1, o1 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i4, o4

(8.160)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o1 = i2 F1(o2)= i3

level 2 o3 = i4 F2(o4)= i1

(8.161)

i

i i 1

RB1 is fed forward unchanged into the input i2 to RB2 and the output o3 from
RB3 is fed forward unchanged into the input i4 to RB4, whereas the output o2

from RB2 is mapped by the FB function F1 onto the input i3 to RB3 and the
output o4 from RB4 is mapped by the FB function F2 onto the input i1 to RB1.

By introducing level 1 in a new layer 3 with a rule base RBF1 that
replaces the FB function F1 and introducing level 2 in layer 3 with a rule
base RBF2 that replaces the FB function F2, the initial MRB system with
complex FB is transformed into an equivalent MRB system with simple
FB. This FB consists of two crossed simple loops embracing the two groups
of rule bases standing in sequence (RB1, RB2, RBF1) and (RB3, RB4, RBF2).

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RB2, i2, o2 RBF1, iF1, oF1

level 2 RB3, i3, o3 RB4, i4, o4 RBF2, iF2, oF2

(8.162)

each (i , o , i = 1,4). In addition, Eq. (8.161) shows that the output o from
Equation (8.160) shows that RB , i = 1,4 have one input and one output

238 8 Formal Transformation of Feedback Rule Bases

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = i2 o2 = iF1 oF1= i3

level 2 o3 = i4 o4 = iF2 oF2 = i1

(8.163)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF1 and RBF2 in the FF part of the
system as well as the appearance of the new interconnection variables iF1,
oF1, iF2, oF2. In this context, Eq. (8.162) shows that the equivalent MRB
system has two inputs (i1, i3) and two outputs (oF1, oF2). In addition,
Eq.

1 1 2 2

the output o3 from RB3 is the same as the input i4 to RB4, the output o2 from
RB2 is the same as the input iF1 to RBF1, the output o4 from RB4 is the same as
the input iF2 to RBF2, whereas the output oF1 from RBF1 is the same as the
input i3 to RB3 and the output oF2 from RBF2 is the same as the input i1 to RB1.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.164).

 RBE = (RB1 + RB3) * (RB2 + RB4) * (RBF1 + RBF2) (8.164)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, i3, oF1, oF2

(8.165)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oF1 = i3

 oF2 = i1

(8.166)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby for each of the fuzzy rules the linguistic values of the output oF1

are fed back unchanged into the input i3 and the linguistic values of the
output oF2 are fed back unchanged into the input i1. In this case, the rule
base RBE must have the same structure as the rule base RBE from Example
8.6, as specified by Eqs. (8.11)–(8.12).

(8.163) shows that the output o from RB is the same as the input i to RB ,

8.7 Transformation of Rule Bases with Crossed Feedback 239

Example 8.29
A MRB system with crossed non-symmetric top-upward feedback

involving six rule bases in parallel and sequence is presented by the
following matrix:

level/layer layer 1 layer 2

 level 1 RB1, i1, o1 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i4, o4

level 3 RB5, i5, o5 RB6, i6, o6

(8.167)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o1 = i2 F1(o2)= i5

level 2 o3 = i4 F2(o4)= i1

level 3 o5 = i6 o6

(8.168)

Equation (8.167) shows that RBi, i=1,6 have one input and one output
each (ii, oi, i=1,6). In addition, Eq. (8.168) shows that the output o1 from RB1

is fed forward unchanged into the input i2 to RB2, the output o3 from RB3 is
fed forward unchanged into the input i4 to RB4, the output o5 from RB5 is fed
forward unchanged into the input i6 to RB6, whereas the output o2 from RB2

is mapped by the FB function F1 onto the input i5 to RB5 and the output o4

from RB4 is mapped by the FB function F2 onto the input i1 to RB1.
By introducing level 1 in a new layer 3 with a rule base RBF1 that

replaces the FB function F1, introducing level 2 in layer 3 with a rule base
RBF2 that replaces the FB function F2, as well as introducing level 3 in layer
3 with an IRB RBI representing a self standing output, the initial MRB
system with complex FB is transformed into an equivalent MRB system
with simple FB. This FB consists of two crossed simple loops embracing
the three groups of rule bases standing in sequence (RB1 , RB2, RBF1),
(RB3, RB4, RBF2) and (RB5, RB6, RBI).

240 8 Formal Transformation of Feedback Rule Bases

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RB2, i2, o2 RBF1, iF1, oF1

level 2 RB3, i3, o3 RB4, i4, o4 RBF2, iF2, oF2

level 3 RB5, i5, o5 RB6, i6, o6 RBI, iI, oI

(8.169)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = i2 o2 = iF1 oF1= i5

level 2 o3 = i4 o4 = iF2 oF2 = i1

level 3 o5 = i6 o6 = iI oI

(8.170)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF1, RBF2 and RBI in the FF part of the
system as well as the appearance of the new interconnection variables iF1,
oF1, iF2, oF2, iI, oI. In this context, Eq. (8.169) shows that the equivalent MRB
system has three inputs (i1, i3, i5) and three outputs (oF1, oF2, oI). In addition,
Eq. (8.170) shows that the output o1 from RB1 is the same as the input i2 to
RB2, the output o3 from RB3 is the same as the input i4 to RB4, the output o5

from RB5 is the same as the input i6 to RB6, the output o2 from RB2 is the
same as the input iF1 to RBF1, the output o4 from RB4 is the same as the input
iF2 to RBF2, the output o6 from RB6 is the same as the input iI to RBI, whereas
the output oF1 from RBF1 is the same as the input i5 to RB5 and the output oF2

from RBF2 is the same as the input i1 to RB1.
The equivalent MRB system can be further transformed into an

equivalent SRB system with a rule base RBE which is derived from Eq.
(8.171).

 RBE = (RB1 + RB3+ RB5) * (RB2 + RB4+ RB6) * (RBF1 + RBF2+ RBI) (8.171)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, i3, i5, oF1, oF2, oI

(8.172)

8.7 Transformation of Rule Bases with Crossed Feedback 241

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oF1 = i5

 oF2 = i1

 oI

(8.173)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby for each of the fuzzy rules the linguistic values of the output oF1

are fed back unchanged into the input i5 and the linguistic values of the
output oF2 are fed back unchanged into the input i1. In this case, the rule
base RBE must have a structure in accordance with Eqs. (8.174)–(8.175).

RB
E
: i

1
i

3
 i

5
/ o

F1
o

F2
o

I
 111 112 121 122 211 212 221 222

 111 ? ? 0 0 0 0 0 0
 112 0 0 0 0 ? ? 0 0

 121 ? ? 0 0 0 0 0 0
 122 0 0 0 0 ? ? 0 0

 211 0 0 ? ? 0 0 0 0
 212 0 0 0 0 0 0 ? ?

 221 0 0 ? ? 0 0 0 0
 222 0 0 0 0 0 0 ? ?

(8.174)

RBE: {(111, 111)?, (111, 112)?, (112, 211)?, (112, 212)?,

 (121, 111)?, (121, 112)?, (122, 211)?, (122, 212)?,

 (211, 121)?, (211, 122)?, (212, 221)?, (212, 222)?,

 (221, 121)?, (221, 122)?, (222, 221)?, (222, 222)?}

(8.175)

Example 8.30
A MRB system with crossed non-symmetric bottom-upward feedback

involving six rule bases in parallel and sequence is presented by the
following matrix:

level/layer layer 1 layer 2

 level 1 RB1, i1, o1 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i4, o4

level 3 RB5, i5, o5 RB6, i6, o6

(8.176)

242 8 Formal Transformation of Feedback Rule Bases

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o1 = i2 F1(o2)= i5

level 2 o3 = i4 o4

level 3 o5 = i6 F2(o6)= i3

i

i i 1

RB1 is fed forward unchanged into the input i2 to RB2, the output o3 from RB3

is fed forward unchanged into the input i4 to RB4, the output o5 from RB5 is
6 6 2

RB2 is mapped by the FB function F1 onto the input i5 to RB5 and the output
o6 from RB6 is mapped by the FB function F2 onto the input i3 to RB3.

By introducing level 1 in a new layer 3 with a rule base RBF1 that
replaces the FB function F1, introducing level 2 in layer 3 with an IRB RBI

representing a self standing output, as well as introducing level 3 in layer 3
with a rule base RBF2 that replaces the FB function F2, the initial MRB
system with complex FB is transformed into an equivalent MRB system
with simple FB. This FB consists of two crossed simple loops embracing
the three groups of rule bases standing in sequence (RB1, RB2, RBF1),
(RB3, RB4, RBI) and (RB5, RB6, RBF2).

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RB2, i2, o2 RBF1, iF1, oF1

level 2 RB3, i3, o3 RB4, i4, o4 RBI, iI, oI

level 3 RB5, i5, o5 RB6, i6, o6 RBF2, iF2, oF2

(8.178)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = i2 o2 = iF1 oF1= i5

level 2 o3 = i4 o4 = iI oI

level 3 o5 = i6 o6 = iF2 oF2= i3

(8.179)

Equation (8.176) shows that RB , i = 1,6 have one input and one output

fed forward unchanged into the input i to RB , whereas the output o from

each (i , o , i = 1,6). In addition, Eq. (8.187) shows that the output o from

(8.177)

8.7 Transformation of Rule Bases with Crossed Feedback 243

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF1, RBI and RBF2 in the FF part of the
system as well as the appearance of the new interconnection variables iF1,
oF1, iI, oI, iF2, oF2. In this context, Eq. (8.178) shows that the equivalent MRB
system has three inputs (i1, i3, i5) and three outputs (oF1, oI, oF2). In addition,
Eq. (8.179) shows that the output o1 from RB1 is the same as the input i2 to
RB2, the output o3 from RB3 is the same as the input i4 to RB4, the output o5

from RB5 is the same as the input i6 to RB6, the output o2 from RB2 is the
same as the input iF1 to RBF1, the output o4 from RB4 is the same as the input
iI to RBI, the output o6 from RB6 is the same as the input iF2 to RBF2, whereas
the output oF1 from RBF1 is the same as the input i5 to RB5, and the output oF2

from RBF2 is the same as the input i3 to RB3.
The equivalent MRB system can be further transformed into an

equivalent SRB system with a rule base RBE which is derived from
Eq. (8.180).

 RBE = (RB1 + RB3+ RB5) * (RB2 + RB4+ RB6) * (RBF1 + RBI+ RBF2) (8.180)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, i3, i5, oF1, oI, oF2

(8.181)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oF1 = i5
 oI

 oF2 = i3

(8.182)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby for each of the fuzzy rules the linguistic values of the output oF1

are fed back unchanged into the input i5 and the linguistic values of the
output oF2 are fed back unchanged into the input i3. In this case, the rule
base RBE must have a structure in accordance with Eqs. (8.183)–(8.184).

RB
E
: i

1
i

3
 i

5
/ o

F1
o

I
o

F2
 111 112 121 122 211 212 221 222

 111 ? 0 ? 0 0 0 0 0
 112 0 0 0 0 ? 0 ? 0

 121 0 ? 0 ? 0 0 0 0
 122 0 0 0 0 0 ? 0 ?

(8.183)

 211 ? 0 ? 0 0 0 0 0
 212 0 0 0 0 ? 0 ? 0

 221 0 ? 0 ? 0 0 0 0
 222 0 0 0 0 0 ? 0 ?

244 8 Formal Transformation of Feedback Rule Bases

RBE: {(111, 111)?, (111, 121)?, (112, 211)?, (112, 221)?,

 (121, 112)?, (121, 122)?, (122, 212)?, (122, 222)?,

 (211, 111)?, (211, 121)?, (212, 211)?, (212, 221)?,

 (221, 112)?, (221, 122)?, (222, 212)?, (222, 222)?}

(8.184)

Example 8.31
A MRB system with crossed non-symmetric top-downward feedback

involving six rule bases in parallel and sequence is presented by the
following matrix:

level/layer layer 1 layer 2

 level 1 RB1, i1, o1 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i4, o4

level 3 RB5, i5, o5 RB6, i6, o6

(8.185)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o1 = i2 F1(o2)= i3

level 2 o3 = i4 o4

level 3 o5 = i6 F2(o6)= i1

(8.186)

i

i i 1

RB1 is fed forward unchanged into the input i2 to RB2, the output o3 from RB3

is fed forward unchanged into the input i4 to RB4, the output o5 from RB5 is
fed forward unchanged into the input i6 to RB6, whereas the output o2 from
RB2 is mapped by the FB function F1 onto the input i3 to RB3 and the output

6 6 1 1

Equation (8.185) shows that RB , i = 1,6 have one input and one output

o from RB is mapped by the FB function F2 onto the input i to RB .

each (i , o , i = 1,6). In addition, Eq. (8.186) shows that the output o from

8.7 Transformation of Rule Bases with Crossed Feedback 245

By introducing level 1 in a new layer 3 with a rule base RBF1 that
replaces the FB function F1, introducing level 2 in layer 3 with an IRB RBI

representing a self standing output, as well as introducing level 3 in layer 3
with a rule base RBF2 that replaces the FB function F2, the initial MRB
system with complex FB is transformed into an equivalent MRB system
with simple FB. This FB consists of two crossed simple loops embracing
the three groups of rule bases standing in a sequence (RB1, RB2, RBF1),
(RB3, RB4, RBI) and (RB5, RB6, RBF2).

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RB2, i2, o2 RBF1, iF1, oF1

level 2 RB3, i3, o3 RB4, i4, o4 RBI, iI, oI

level 3 RB5, i5, o5 RB6, i6, o6 RBF2, iF2, oF2

(8.187)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = i2 o2 = iF1 oF1= i3

level 2 o3 = i4 o4 = iI oI

level 3 o5 = i6 o6 = iF2 oF2= i1

(8.188)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF1, RBI and RBF2 in the FF part of the
system as well as the appearance of the new interconnection variables iF1,
oF1, iI, oI, iF2, oF2. In this context, Eq. (8.187) shows that the equivalent MRB
system has three inputs (i1, i3, i5) and three outputs (oF1, oI, oF2). In addition,
Eq. (8.188) shows that the output o1 from RB1 is the same as the input i2 to
RB2, the output o3 from RB3 is the same as the input i4 to RB4, the output o5

from RB5 is the same as the input i6 to RB6, the output o2 from RB2 is the
same as the input iF1 to RBF1, the output o4 from RB4 is the same as the input
iI to RBI, the output o6 from RB6 is the same as the input iF2 to RBF2, whereas
the output oF1 from RBF1 is the same as the input i3 to RB3, and the output oF2

from RBF2 is the same as the input i1 to RB1.
The equivalent MRB system can be further transformed into an

equivalent SRB system with a rule base RBE which is derived from
Eq. (8.189).

246 8 Formal Transformation of Feedback Rule Bases

 RBE = (RB1 + RB3+ RB5) * (RB2 + RB4+ RB6) * (RBF1 + RBI+ RBF2) (8.189)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, i3, i5, oF1, oI, oF2

(8.190)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oF1 = i3

 oI

 oF2 = i1

(8.191)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby for each of the fuzzy rules the linguistic values of the output oF1

are fed back unchanged into the input i3 and the linguistic values of the
output oF2 are fed back unchanged into the input i1. In this case, the rule
base RBE must have a structure in accordance with Eqs. (8.192)–(8.193).

RB
E
: i

1
i

3
 i

5
/ o

F1
o

I
o

F2
 111 112 121 122 211 212 221 222

 111 ? 0 ? 0 0 0 0 0
 112 ? 0 ? 0 0 0 0 0

 121 0 0 0 0 ? 0 ? 0
 122 0 0 0 0 ? 0 ? 0

 211 0 ? 0 ? 0 0 0 0
 212 0 ? 0 ? 0 0 0 0

 221 0 0 0 0 0 ? 0 ?
 222 0 0 0 0 0 ? 0 ?

(8.192)

RBE: {(111, 111)?, (112, 111)?, (111, 121)?, (112, 121)?,

 (121, 211)?, (122, 211)?, (121, 221)?, (122, 221)?,

 (211, 112)?, (212, 112)?, (211, 122)?, (212, 122)?,

 (221, 212)?, (222, 212)?, (221, 222)?, (222, 222)?}

(8.193)

8.7 Transformation of Rule Bases with Crossed Feedback 247

Example 8.32
A MRB system with crossed non-symmetric bottom-downward feedback

involving six rule bases in parallel and sequence is presented by the
following matrix:

level/layer layer 1 layer 2

 level 1 RB1, i1, o1 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i4, o4

level 3 RB5, i5, o5 RB6, i6, o6

(8.194)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2

 level 1 o1 = i2 o2

level 2 o3 = i4 F1(o4)= i5

level 3 o5 = i6 F2(o6)= i1

(8.195)

Equation (8.194) shows that RBi, i = 1,6 have one input and one output
each (ii, oi, i = 1,6). In addition, Eq. (8.195) shows that the output o1 from
RB1 is fed forward unchanged into the input i2 to RB2, the output o3 from RB3

is fed forward unchanged into the input i4 to RB4, the output o5 from RB5 is
fed forward unchanged into the input i6 to RB6, whereas the output o4 from
RB4 is mapped by the FB function F1 onto the input i5 to RB5 and the output
o6 from RB6 is mapped by the FB function F2 onto the input i1 to RB1.

By introducing level 1 in a new layer 3 with an IRB RBI representing a
self standing output, introducing level 2 in layer 3 with a rule base RBF1 that
replaces the FB function F1, as well as introducing level 3 in layer 3 with a
rule base RBF2 that replaces the FB function F2, the initial MRB system
with complex FB is transformed into an equivalent MRB system with

 groups of rule bases standing in sequence (RB1, RB2, RBI), (RB3, RB4, RBF1)
 and

(RB5, RB6, RBF2).

The equivalent MRB system is presented by the following matrix:

simple FB. This FB consists of two crossed simple loops embracing the three

248 8 Formal Transformation of Feedback Rule Bases

level 2 RB3, i3, o3 RB4, i4, o4 RBF1, iF1, oF1

level 3 RB5, i5, o5 RB6, i6, o6 RBF2, iF2, oF2

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = i2 o2 = iI oI

level 2 o3 = i4 o4 = iF1 oF1= i5

level 3 o5 = i6 o6 = iF2 oF2= i1

(8.197)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBI, RBF1 and RBF2 in the FF part of the
system as well as the appearance of the new interconnection variables iI, oI,
i

F1, oF1, iF2, oF2. In this context, Eq. (8.196) shows that the equivalent MRB
system has three inputs (i1, i3, i5) and three outputs (oI, oF1, oF2). In addition,
Eq. (8.197) shows that the output o1 from RB1 is the same as the input i2 to
RB2, the output o3 from RB3 is the same as the input i4 to RB4, the output o5

from RB5 is the same as the input i6 to RB6, the output o2 from RB2 is the
same as the input iI to RBI, the output o4 from RB4 is the same as the input iF1

to RBF1, the output o6 from RB6 is the same as the input iF2 to RBF2, whereas
the output oF1 from RBF1 is the same as the input i5 to RB5 and the output oF2

from RBF2 is the same as the input i1 to RB1.
The equivalent MRB system can be further transformed into an

equivalent SRB system with a rule base RBE which is derived from
Eq. (8.198).

 RBE = (RB1 + RB3+ RB5) * (RB2 + RB4+ RB6) * (RBI + RBF1+ RBF2) (8.198)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, i3, i5, oI, oF1, oF2

(8.199)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RB2, i2, o2 RBI, iI, oI

(8.196)

8.8 Transformation of Rule Bases with Multiple Feedback 249

level/layer layer 1

 level 1 oI

 oF1 = i5

 oF2 = i1

(8.200)

The rule base RBE must satisfy the constraints imposed by the simple FB
whereby for each of the fuzzy rules the linguistic values of the output oF1

are fed back unchanged into the input i5 and the linguistic values of the
output oF2 are fed back unchanged into the input i1. In this case, the rule
base RBE must have a structure in accordance with Eqs. (8.201)–(8.202).

RB
E
: i

1
i

3
 i

5
/ o

I
o

F1
o

F2
 111 112 121 122 211 212 221 222

 111 ? 0 0 0 ? 0 0 0
 112 0 0 ? 0 0 0 ? 0

 121 ? 0 0 0 ? 0 0 0
 122 0 0 ? 0 0 0 ? 0

 211 0 ? 0 0 0 ? 0 0
 212 0 0 0 ? 0 0 0 ?

 221 0 ? 0 0 0 ? 0 0
 222 0 0 0 ? 0 0 0 ?

(8.201)

RBE: {(111, 111)?, (112, 121)?, (111, 211)?, (112, 221)?,

 (121, 111)?, (122, 121)?, (121, 211)?, (122, 221)?,

 (211, 112)?, (212, 122)?, (211, 212)?, (212, 222)?,

 (221, 112)?, (222, 122)?, (221, 212)?, (222, 222)?}

(8.202)

8.8 Transformation of Rule Bases with Multiple Feedback

Multiple feedback is an extension of all other types of FB considered so far.
In this sense, the latter are assumed to have only single-output-single-input
FB loops whereas multiple FB has single-output-multiple-input,

A fuzzy rule based system with multiple FB is constrained because the

FB function onto a linguistic value of the associated input in the same rule.
Depending on whether this FB function is an identity function or another

multiple-output-single-input or multiple-output-multiple-input FB loops.
Therefore, multiple FB always comes from or goes to at least two rule bases

linguistic value of the corresponding outputs in each rule is mapped by a

general cases with multiple FB are presented in Figs. 8.15–8.17.
in parallel or sequence in the network structure of a MRB system. Three

250 8 Formal Transformation of Feedback Rule Bases

type of function, these two linguistic values may be the same, i.e. multiple
simple FB, or different, i.e. multiple complex FB.

Fig. 8.15. Multiple feedback for rule bases in a single level

Fig. 8.16. Multiple feedback for rule bases in a single layer

The notion of multiple FB is illustrated by three basic examples with
MRB systems. In particular, Example 8.33 illustrates multiple FB from one
to another couple of rule bases such that all rule bases are standing in
sequence in a single level. Example 8.34 describes multiple FB from one to
another couple of rule bases such that all rule bases are standing in parallel
in a single layer. Finally, Example 8.35 describes multiple FB from one to
another couple of rule bases such that the rule bases in each couple are

FRB

FRB

8.8 Transformation of Rule Bases with Multiple Feedback 251

standing in sequence in a level different from the level of the other couple
but also in parallel with respect to the rule bases in the other couple.

Fig. 8.17. Multiple feedback for rule bases in different levels and layers

All examples consider non-identity type of FB because identity FB cases

two-output-single-input FB.
The procedure described in Examples 8.33–8.35 starts with a MRB

system whose FB function is replaced by a corresponding rule base in the
FF path, as described in Sect. 8.3. Then, the resultant MRB system is
transformed into an equivalent SRB system by means of appropriate
merging manipulations. Finally, the rule base of the equivalent SRB system
is checked to ensure that any FB constraints are met.

Example 8.33
A MRB system with multiple FB from and to rule bases in sequence in a

single level is presented by the following matrix:

level/layer layer 1 layer 2 layer 3 layer 4

 level 1 RB1, i1, o1 RB2, i21, i22, o2 RB3, i3, o31, o32 RB4, i4, o4

(8.203)

The output-input interconnections for this MRB system are given by the
matrix:

FRB

would be quite easy to deal with. Also, all examples consider two-output-two-input
FB, which is a straightforward extension of single-output-two-input or

252 8 Formal Transformation of Feedback Rule Bases

level/layer layer 1 layer 2 layer 3 layer 4

 level 1 o1 = i21 o2 = i o31 = i4 F(o4)= i1

 F(o32) = i1 F(o4) = i22

 F(o 32)= i22

(8.204)

Equation (8.203) shows that RB1 has one input and one output (i1, o1), RB2

has two inputs and one output (i21, i22, o2), RB3 has one input and two outputs
(i3, o31, o32), whereas RB4 has one input and one output (i4, o4). In addition,
Eq. (8.204) shows that the output o1 from RB1 is fed forward unchanged into
the input i21 to RB2, the output o2 from RB2 is fed forward unchanged into the
input i3 to RB3, the output o31 from RB3 is fed forward unchanged into the

4 4 3 4 4

are mapped by the FB function F onto the input i1 to RB1 and the input i22 to
RB2.

By introducing level 1 in a new layer 5 with a rule base RBF that replaces
the FB function F, introducing level 2 in layer 1 with a rule base RBI1

representing a self standing input, as well as introducing level 2 in layer 4
I2

with simple FB. This FB consists of two nested simple loops whereby the
I1 2 3 I2 F

the outer loop embraces the sequence of rule bases RB1, RB2, RB3, RB4, RBF.
The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3 layer 4 layer 5

 level 1 RB1,i1,o1 RB2,i21,i22,o2 RB3,i3,o31, o32 RB4,i4,o4 RBF,iF1,oF2,iF1,oF2

level 2 RBI1,iI1,oI1 RBI2,iI2,oI2

(8.205)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3 layer 4 layer 5

 level 1 o1 = i21 o2 = i3 o31 = i4 o4 = iF1 oF1 = i1

 o32 = iI2 oF2 = iI1

level 2 oI1 = i22 oI2 = iF2

(8.206)

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF, RBI1 and RBI2 in the FF part of the
system as well as the appearance of the new interconnection variables iF1, iF2,
oF1, oF2, iI1, oI1, iI2, oI2. In this context, Eq. (8.205) shows that the equivalent

3

input i to RB , whereas the outputs o from RB and the output o from RB
32

system with complex FB is transformed into an equivalent MRB system

inner loop embraces the sequence of rule bases RB , RB , RB , RB , RB and

with a rule base RB representing a identity partial line, the initial MRB

8.8 Transformation of Rule Bases with Multiple Feedback 253

MRB system has two inputs (i1, iI1) and two outputs (oF1, oF2). In addition,
Eq. (8.206) shows that the output o1 from RB1 is the same as the input i21 to
RB2, the output oI1 from RBI1 is the same as the input i22 to RB2, the output o2

from RB2 is the same as the input i3 to RB3, the output o31 from RB3 is the
same as the input i4 to RB4, the output o32 from RB3 is the same as the input iI2

to RBI2, the output o4 from RB4 is the same as the input iF1 to RBF, the output
oI2 from RBI2 is the same as the input iF2 to RBF, whereas the output oF1 from
RBF is the same as the input i1 to RB1 and the output oF2 from RBF is the same
as the input iI1 to RBI1.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.207).

 RBE = (RB1 + RBI1) * RB2 * RB3 * (RB4 + RBI2) * RBF (8.207)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, iI1, oF1, oF2

(8.208)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 oF1 = i1

 oF2 = iI1

(8.209)

The rule base RBE must satisfy the constraints imposed by the simple
FB whereby for each of the fuzzy rules the linguistic values of the output
oF1 are fed back unchanged into the input i1 and the linguistic values of
the output oF2 are fed back unchanged into the input iI1. In other words, the
rule base RBE must have the same structure as the rule base RBE from
Example 8.19, as specified by Eqs. (8.102)–(8.103).

Example 8.34
A MRB system with multiple FB from and to rule bases in parallel in a

single layer is presented by the following matrix:

level/layer layer 1

 level 1 RB1, i1, o1

 level 2 RB2, i2, o2

(8.210)

level 3 RB3, i3, o3

 level 4 RB4, i4, o4

254 8 Formal Transformation of Feedback Rule Bases

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1

 level 1 F(o1)= i3

 F(o1)= i4

 level 2 F(o2)= i3

 F(o2)= i4

level 3 o3

level 4 o4

(8.211)

Equation (8.210) shows that RBi, i = 1,4 have one input and one output
each (ii, oi, i = 1,4). In addition, Eq. (8.211) shows that the output o1 from
RB1 and the output o2 from RB2 are mapped by the FB function F onto the
input i3 to RB3 and the input i4 to RB4.

By moving RB3 from level 3 of layer 1 to level 1 of a new layer 3 and
removing level 3 from layer 1, moving RB4 from level 4 of layer 1 to level 2
of layer 3 and removing level 4 from layer 1, as well as introducing level 1
in a new layer 2 with a rule base RBF that replaces the FB function F, the
initial MRB system with complex FB is transformed into an equivalent
MRB system without FB. This system consists of two groups of rule bases
standing in sequence, i.e. (RB1, RBF, RB3) and (RB2, RBF, RB4).

The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1, o1 RBF, iF1, iF2, oF1, oF2 RB3, i3, o3

level 2 RB2, i2, o2 RB4, i4, o4

(8.212)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o1 = iF1 oF1 = i3 o3

 oF2 = i4

level 2 o2 = iF2 o4

(8.213)

8.8 Transformation of Rule Bases with Multiple Feedback 255

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF in the FF part of the system as well
as the appearance of the new interconnection variables iF1, iF2, oF1, oF2. In this
context, Eq. (8.212) shows that the equivalent MRB system has two inputs
(i1, i2) and two outputs (o3, o4). In addition, Eq. (8.213) shows that the output
o1 from RB1 is the same as the input iF1 to RBF, the output o2 from RB2 is the
same as the input iF2 to RBF, the output oF1 from RBF is the same as the input
i3 to RB3 and the output oF2 from RBF is the same as the input i4 to RB4.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.214).

 RBE = (RB1 + RB2) * RBF * (RB3 + RB4) (8.214)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, i2, o3, o4

(8.215)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o3

 o4

(8.216)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.35
A MRB system with multiple FB from rule bases in sequence in one

level to rule bases in sequence in another level is presented by the following
matrix:

 level/layer layer 1 layer 2 layer 3

 level 1 RB1, i1,o11, o12 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i41, i42, o4

(8.217)

256 8 Formal Transformation of Feedback Rule Bases

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3

 level 1 o11 = i2

F(o12)= i3 F(o)= i
 F(o12)= i41

level 2 o3 = i42 o4

(8.218)

Equation (8.217) shows that RB1 has one self standing input and two
outputs (i1, o11, o12), 2 2 2 3

input and one output (i3, o3), whereas RB4 has two inputs and one self
standing output (i41, i42, o4). In addition, Eq. (8.218) shows that the output o3

from RB3 is fed forward unchanged into the input i42 to RB4, the output o11

from RB1 is fed forward unchanged into the input i2 to RB2, whereas the
output o12 from RB1 and the output o2 from RB2 are mapped by the FB
function F onto the input i3 to RB3 and the input i41 to RB4.

By moving RB1 from level 1 of layer 2 to level 1 of layer 1, moving RB2

from level 1 of layer 3 to level 1 of layer 2, moving RB3 from level 2 of
layer 1 to level 2 in a new layer 4, moving RB4 from level 2 of layer 2 to
level 1 in a new layer 5, introducing in level 1 of layer 3 a rule base RBF

that replaces the FB function F, as well as introducing a rule base RBI1 in
level 2 of layer 2 and a rule base RBI2 in level 1 of layer 4 representing

identity partial lines, the initial MRB system with complex FB is
transformed into an equivalent MRB system without FB. This system
consists of two groups of rule bases standing in sequence, i.e.

 (RB1, RB2, RBF, RBI2, RB4) and (RB1, RBI1, RBF, RB3, RB4).
The equivalent MRB system is presented by the following matrix:

level/layer layer 1 layer 2 layer 3 layer 4 layer 5

 level 1 RB
1
,i

1
,o

11
,o

12
 RB

2
,i

2
,o

2
 RB

F
,i

F1
,i

F2
,o

F1
,o

F2
 RB

I2
,i

I2
,o

I2
 RB

4
,i

41
,i

42
,o

4

level 2 RB
I1
,i

I1
,o

I1
 RB

3
,i

3
,o

3

(8.219)

The output-input interconnections for this MRB system are given by the
matrix:

level/layer layer 1 layer 2 layer 3 layer 4 layer 5

 level 1 o11 = i2 o2 = iF1 oF1 = iI2 oI2 = i41 o4

o12 = iI1 oF2 = i3

level 2 oI1 = iF2 o3 = i42

(8.220)

F(o)= i
2

2 41

3

RB has one input and one output (i , o), RB has one

8.9 Feedback Rule Base Design 257

The transformation of the initial MRB system into an equivalent MRB
system has led to the appearance of RBF, RB and RB in the FF part of the
system as well as the appearance of the new interconnection variables iF1, iF2,
oF1, oF2, iI2, oI2, iI1, oI1. In this context, Eq. (8.219) shows that the equivalent
MRB system has one inputs (i1) and one output (o4). In addition, Eq. (8.220)
shows that the output o11 from RB1 is the same as the input i2 to RB2, the
output o12 from RB1 is the same as the input iI1 to RBI1, the output o2 from RB2

is the same as the input iF1 to RBF, the output oI1 from RBI1 is the same as the
input iF2 to RBF, the output oF1 from RBF is the same as the input iI2 to RBI2,
the output oF2 from RBF is the same as the input i3 to RB3, the output oI2 from
RBI2 is the same as the input i41 to RB4 and the output o3 from RB3 is the
same as the input i42 to RB4.

The equivalent MRB system can be further transformed into an
equivalent SRB system with a rule base RBE which is derived from
Eq. (8.221).

 RBE = RB1 * (RB2 + RBI1) * RBF * (RBI2 + RB3) * RB4 (8.221)

The equivalent SRB system is presented by the following matrix:

level/layer layer 1

 level 1 RBE, i1, o4

(8.222)

The output-input interconnections for this SRB system are given by the
matrix:

level/layer layer 1

 level 1 o4

(8.223)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

8.9 Feedback Rule Base Design

Sections 8.2–8.8 consider FB interconnections in a MRB system in the
context of analysis whereby all FB loops are given and we have to study the
system for the purpose of formal transformation. In this case, we have to
ensure that the rule base RBE of the equivalent SRB system does not violate
the constraints imposed by the FB function F.

I2 I1

258 8 Formal Transformation of Feedback Rule Bases

with specific features from scratch or by expanding an existing fuzzy
system. In either case, we may have to derive a FB rule base RBF

representing the FB interconnections. Therefore, RBF must guarantee that
the rule base RBE of the equivalent SRB system does not violate the
constraints imposed by the FB.

In general, the FRB design problem can be presented by the equation

 RBG * RBF = RBE (8.224)

where RBG is the given rule base for an existing fuzzy system, RBE is the
ERB for the expanded fuzzy system and RBF is the FB rule base, as shown
in Fig. 8.18. In this case, RBG is known and it reflects the features of the
existing fuzzy system that we want to expand, RBE is also known and it
reflects the features of the target fuzzy system into which we want to
expand the existing system, whereas RBF is unknown and it reflects the FB
interconnections in the target fuzzy system.

RBE

Fig. 8.18. Feedback rule base design

In other words, we have to solve the Boolean matrix equation (8.224)
with respect to the unknown rule base RBF. In this case, the three rule bases
will have the form

 e11 e12 ... e1c

 RBE: e21 e22 ... e2c

 .…………
 ea1 ea2 ... eac

(8.225)

 g11 g12 ... g1b

 RBG: g21 g22 ... g2b

 .………….
 ga1 ga2 ... gab

(8.226)

RBG

RBF

However, in the context of design we may have to build a MRB system

8.9 Feedback Rule Base Design 259

 f11 f12 ... f1c

 RBF: f21 f22 ... f2c

 …………
 fb1 fb2 ... fbc

(8.227)

where a is the number of permutations of linguistic values of inputs for RBG

and RBE, c is the number of permutations of linguistic values of outputs for
RBF and RBE, whereas b is the number of permutations of linguistic values
of outputs for RBG and the number of permutations of linguistic values of
inputs for RBF.

On the basis of Eqs. (8.225)–(8.227), the Boolean matrix equation
(8.224) can be presented in the expanded form

g11 . f11 + g12 . f21+…+ g1b . fb1= e11

 .………………………………..
 ga1 . f11 + ga2 . f21+…+ gab . fb1= ea1

 .………………………………..

g11 . f1c + g12 . f2c+…+ g1b . fbc= e1c

 ga1 . f1c + ga2 . f2c+…+ gab . fbc = eac

(8.228)

with c systems of Boolean equations whereby each of these systems
consists of a equations with b unknowns.

In this case, a unique solution to Eq. (8.228) would imply the existence
of only one FB rule base RBF whereas a non-unique solution would imply
the existence of more than one FB rule bases. Also, the lack of solution
would imply the non-existence of a FB rule base.

The derivation of a FB rule base RBF with a specific structure is required
only when the initial system with complex FB is transformed into an
equivalent system with simple FB. Otherwise, i.e. when the initial system
with complex FB is transformed into an equivalent system without FB, the

F

The concept of FB rule base design is illustrated further by

derivation procedure is irrelevant because the FB rule base RB may have
an arbitrary structure.

Examples 8.36–8.41 which are based on Examples 8.7–8.12. The examples
are fairly simple but quite representative and therefore an extension to more
complex cases would be straightforward.

 .………………………………..

260 8 Formal Transformation of Feedback Rule Bases

Example 8.36
This example is based on the 1 1 rule base RB from Example 8.7. In this

case, RB is the given rule base for the existing fuzzy system. This rule base
is known and it is represented by Eqs. (8.13)–(8.16). RBE is the ERB for the
expanded fuzzy system, which is also known. This rule base is represented
by Eqs. (8.18)–(8.19) and its structure is in accordance with Eqs. (8.1)–(8.2)

F

be derived from the following Boolean matrix equation:

 RB* RBF = RBE (8.229)

Equation (8.229) is of the same type as Eq. (8.224) and can be solved
using Eqs. (8.225)–(8.228).

Example 8.37
This example is based on the 2×1 rule base RB from Example 8.8. In

this case, RB is the given rule base for the existing fuzzy system. This rule
base is known and it is represented by Eqs. (8.20)–(8.23). RBE is the ERB
for the expanded fuzzy system, which is also known. This rule base is
represented by Eqs. (8.25)–(8.26) and its structure is in accordance with
Eqs. (8.3)–(8.4) from Example 8.2. RBF is the FB rule base, which is
unknown and can be derived from the following Boolean matrix equation:

 RB* RBF = RBE (8.230)

Equation (8.230) is of the same type as Eq. (8.224) and can be solved
using Eqs. (8.225)–(8.228).

Example 8.38
This example is based on the 1x2 rule base RB from Example 8.9. In this

case, RB is the given rule base for the existing fuzzy system. This rule base
is known and it is represented by Eqs. (8.27)–(8.30). RBE is the ERB for the
expanded fuzzy system, which is also known. This rule base is represented

from Example 8.3. RBF

RB * (RBI + RBF) = RBE (8.231)

Equation (8.231) is not of the same type as Eq. (8.224) and has to be
simplified by separating the FB loop before it can be solved. In particular,
Eq. (8.231) can be decomposed into the following two Boolean matrix
equations

×

from Example 8.1. RB is the FB rule base, which is unknown and can

by Eqs. (8.32)–(8.33) and its structure is in accordance with Eqs. (8.5)–(8.6)
is the FB rule base, which is unknown and is part

of the following Boolean matrix equation:

8.9 Feedback Rule Base Design 261

RB1 * RBI = RBE1 (8.232)

 RB2 * RBF = RBE2 (8.233)

where the rule bases RB1 and RB2 are the product rule bases from the output
slitting of RB, i.e. RB = RB1:RB2.

Equations (8.232)–(8.233) show that the ERB RBE from Eq. (8.231) has
been replaced by the two rule bases RBE1 and RBE2 such that the FB rule
base RBF appears only in Eq. (8.233). In this case, RBE1 is obtainable from
Eq. (8.232) by merging RB1 and RBI horizontally, whereas RBE2 has a
structure in accordance with Eqs. (8.1)–(8.2) from Example 8.1 and is used
for the derivation of RBF from Eq. (8.233). The latter is of the same type as
Eq. (8.224) and therefore can be solved using Eqs. (8.225)–(8.228).

Example 8.39
This example is based on the 2×2 rule base RB from Example 8.10. In

this case, RB is the given rule base for the existing fuzzy system. This rule
base is known and it is represented by Eqs. (8.34)–(8.37). RBE is the ERB
for the expanded fuzzy system, which is also known. This rule base is
represented by Eqs. (8.39)–(8.40) and its structure is in accordance with
Eqs. (8.7)–(8.8) from Example 8.4. RBF is the FB rule base, which is
unknown and is part of the following Boolean matrix equation:

RB * (RB + RB) = RBE (8.234)

Equation (8.234) is not of the same type as Eq. (8.224) and has to be
simplified by separating the FB loop before it can be solved. In particular,
Eq. (8.234) can be decomposed into the following two Boolean matrix
equations

RB * RB = RBE1 (8.235)

 RB2 * RBI = RBE2 (8.236)

where the rule bases RB1 and RB2 are the product rule bases from the output
slitting of RB, i.e. RB = RB1:RB2.

Equations (8.235)–(8.236) show that the ERB RBE from Eq. (8.234) has
been replaced by the two rule bases RBE1 and RBE2 such that the FB rule
base RBF appears only in Eq. (8.235). In this case, RBE2 is obtainable from
Eq. (8.236) by merging RB2 and RBI horizontally, whereas RBE1 has a
structure in accordance with Eqs. (8.3)–(8.4) from Example 8.2 and is used

F I

F I

262 8 Formal Transformation of Feedback Rule Bases

for the derivation of RBF from Eq. (8.235). The latter is of the same type as
Eq. (8.224) and therefore can be solved using Eqs. (8.225)–(8.228).

Example 8.40
This example is based on the 2×2 rule base RB from Example 8.11. In

this case, RB is the given rule base for the existing fuzzy system. This rule
base is known and it is represented by Eqs. (8.41)–(8.44). RBE is the ERB
for the expanded fuzzy system, which is also known. This rule base is
represented by Eqs. (8.46)–(8.47) and its structure is in accordance with
Eqs. (8.9)–(8.10) from Example 8.5. RBF is the FB rule base, which is
unknown and is part of the following Boolean matrix equation:

RB * (RBI + RBF) = RBE (8.237)

Equation (8.237) is not of the same type as Eq. (8.224) and has to be
simplified by separating the FB loop before it can be solved. In particular,
Eq. (8.237) can be decomposed into the following two Boolean matrix
equations

RB1 * RBI = RBE1 (8.238)

 RB2 * RBF = RBE2 (8.239)

where the rule bases RB1 and RB2 are the product rule bases from the output
slitting of RB, i.e. RB = RB1:RB2.

Equations (8.238)–(8.239) show that the ERB RBE from Eq. (8.237) has
been replaced by the two rule bases RBE1 and RBE2 such that the FB rule
base RBF appears only in Eq. (8.239). In this case, RBE1 is obtainable from
Eq. (8.238) by merging RB1 and RBI horizontally, whereas RBE2 has a
structure in accordance with Eqs. (8.240)–(8.241) further below and is used
for the derivation of RBF from Eq. (8.239). The latter is of the same type as
Eq. (8.224) and therefore can be solved using Eqs. (8.225)–(8.228).

RBE2: i1 i2 / oF 1 2 3

 11 ? 0 0
 12 ? 0 0
 13 ? 0 0

 21 0 ? 0
 22 0 ? 0
 23 0 ? 0

(8.240)

 31 0 0 ?
 32 0 0 ?
 33 0 0 ?

8.9 Feedback Rule Base Design 263

RBE2: {(11, 1)?, (12, 1)?, (13, 1)?,

 (21, 2)?, (22, 2)?, (23, 2)?,

 (31, 3)?, (32, 3)?, (33, 3)?}

(8.241)

Example 8.41
This example is based on the 2×2 rule base RB from Example 8.12. In

this case, RB is the given rule base for the existing fuzzy system. This rule
base is known and it is represented by Eqs. (8.48)–(8.51). RBE is the ERB
for the expanded fuzzy system, which is also known. This rule base is
represented by Eqs. (8.53)–(8.54) and its structure is in accordance with
Eqs. (8.11)–(8.12) from Example 8.6. RBF is the FB rule base, which is
unknown and is part of the following Boolean matrix equation:

RB * (RBF1 + RBF2) = RBE (8.242)

Equation (8.242) is not of the same type as Eq. (8.224) and has to be
simplified by separating the two FB loops from each other before it can be
solved. In particular, Eq. (8.242) can be decomposed into the following two
Boolean matrix equations

RB1 * RBF1 = RBE1 (8.243)

 RB2 * RBF2 = RBE2 (8.244)

where the rule bases RB1 and RB2 are the product rule bases from the output
slitting of RB, i.e. RB = RB1:RB2.

Equations (8.243)–(8.244) show that the ERB RBE from Eq. (8.242) has
been replaced by the two rule bases RBE1 and RBE2 such that the first FB
rule base RBF1 appears only in Eq. (8.243) and the second FB rule base
RBF2 appears only in Eq. (8.244). In this case, RBE1 has the same structure
as the rule base RBE1 from Example 8.39 and is used for the derivation of
RBF1 from Eq. (8.243), whereas RBE2 has the same structure as the rule base
RBE2 from Example 8.40 and is used for the derivation of RBF2 from
Eq. (8.244). Eqs. (8.243)–(8.244) are both of the same type as Eq. (8.224)
and therefore each of them can be solved using Eqs. (8.225)–(8.228).

264 8 Formal Transformation of Feedback Rule Bases

8.10 Canonical Rule Base Networks

The formal transformation process of MRB systems with FB considered in
this chapter includes the following two main stages:

transformation of the initial MRB system with complex FB into an
equivalent MRB system with simple FB or without FB,
transformation of the equivalent MRB system into an equivalent
SRB system with simple FB or without FB .

In this context, the initial MRB system is in the form of an arbitrary rule
base network (ARBN) such that individual rule bases reside in particular
layers and levels of this network. The ARBN may include FF
interconnections to subsequent layers as well as simple or complex FB
interconnections to the same or preceding layers.

As opposed to the initial MRB system, the equivalent MRB system is in
the form of a canonical rule base network (CRBN), which may include
only FF interconnections and global simple FB interconnections from the
last to the first layer. In this case, individual rule bases also reside in
particular layers and levels of the CRBN but their location there is usually
different from the associated location in the corresponding ARBN due to
the rearrangement of layers and levels during the first stage of the
transformation process.

The second stage of the transformation process is based on repetitive
manipulations for vertical and horizontal merging of rule bases. However,
in the case of more complex topology of the FF interconnections in the
CRBN, a few additional steps may be required before the equivalent MRB
system can be transformed into an equivalent SRB system. This process is
illustrated by Example 8.42 and Algorithm 8.1.

Example 8.42
A MRB system is presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RB1, i1, o11, o12 RB2, i21, i22, o2

level 2 RB3, i3, o31, o32 RB4, i41, i42, o4

(8.245)

The output-input interconnections for this MRB system are given by the
matrix:

8.10 Canonical Rule Base Networks 265

level/layer layer 1 layer 2

 level 1 o11 = i21 o2

 o12 = i41

level 2 o31 = i22 o4

 o32 = i42

(8.246)

The MRB system is in ARBN form, as shown in Fig. 8.19.

 o11 i21

 i1 o2

 o12 i22

 o31 i41

 i3 o4

 o32 i42

Fig. 8.19. Multiple rule base system in arbitrary rule base network form

This MRB system is with complex topology because of the crossing of
the FF interconnections o12 = i41 and o31 = i22. In this case, it is not possible to
merge horizontally the rule bases in the first layer RB1 and RB3 with the rule
bases in the second layer RB1 and RB3. Therefore, it is necessary to convert
this multiple rule base output (MRBO) system into a collection of
equivalent single rule base output (SRBO) systems. If any of these SRBO
systems are MO systems, i.e. with more than one output, they can be easily
represented by a collection of equivalent SO systems, as described in Sect.
2.3.

The following algorithm describes the process of converting the MRBO
system from Eqs. (8.245)–(8.246) into a collection of equivalent SRBO
systems:

 Algorithm 8.1
1. Find rule bases RB11 and RB12 such that RB1 = RB11:RB12.
2. Find rule bases RB31 and RB32 such that RB3 = RB31:RB32.
3. Find a rule base RBE1 such that (RB11 + RB31)*RB2 = RBE1.
4. Find a rule base RBE2 such that (RB12 + RB32)*RB4 = RBE2.
5. Find the rule base RBE such that RBE1;RBE2 = RBE.

 RB4

 RB2

 RB3

 RB1

266 8 Formal Transformation of Feedback Rule Bases

In the above algorithm, RBE is the ERB for the MRBO system from
Eqs. (8.245)–(8.246), whereas RBE1 and RBE1 are the ERBs for the two
SRBO systems which are obtained as a result of the conversion of the
MRBO system. In particular, steps 1-2 illustrate the output splitting of the
rule bases RB1 and RB3 into the two couples of rule bases (RB11, RB12) and
(RB31, RB32), steps 3-4 show the derivation of the two ERBs RBE1 and RBE2

by vertical and horizontal merging manipulations on the four new and two
of the initial rule bases, whereas step 5 describes the output merging of RBE1

and RBE2 into RBE.

can be presented by the following matrix:

level/layer layer 1 layer 2

 level 1 RB11, i1, o11 RB2, i21, i22, o2

 level 2 RB12, i1, o12

 level 3 RB31, i3, o31

level 4 RB32, i3, o32 RB4, i41, i42, o4

(8.247)

In this case, the output-input interconnections for this MRB system are
given by the matrix:

level/layer layer 1 layer 2

 level 1 o11 = i21 o2

 level 2 o12 = i41

level 3 o31 = i22

level 4 o32 = i42 o4

(8.248)

The MRB system is in CRBN form, as shown in Fig. 8.20.
The topology of CRBNs is described by a number of indicators, which

provide useful information for the analysis and design of such networks.
These indicators are as follows:

in-degree and out-degree for a node, i.e. the number of inputs to
and outputs from an individual rule base in the CRBN,
overall in-degree and out-degree for a layer, i.e. the number of
inputs to and outputs from the rule bases in a particular layer of
the CRBN,

On the basis of Algorithm 8.1, the MRB system from Eqs. (8.245)–(8.246)

8.10 Canonical Rule Base Networks 267

 o11 i21

 i1 o2

i22

 i1 o12

 i3 o31

i41

 i3 o4
 o32 i42

Fig. 8.20. Multiple rule base system in canonical rule base network form

overall in-degree and out-degree for a level, i.e. the number of
inputs to and outputs from the rule bases in a particular level of
the CRBN,
degree of completeness for a layer, i.e. the number of occupied
level positions in a particular layer of the CRBN as a proportion
of the overall number of level positions in this layer,
degree of completeness for a level, i.e. the number of occupied
layer positions in a particular level of the CRBN as a proportion
of the overall number of layer positions in this level,
overall degree of completeness for a CRBN, i.e. the number of
occupied positions as a proportion of the overall number of
positions in the network.

In general, FF interconnections in CRBNs can be classified as either
local, i.e. to rule bases in the adjacent subsequent layer, or global, i.e. to
rule bases in non-adjacent subsequent layers. However, global FF
interconnections must be converted into local FF interconnections by

 RB4

 RB2

 RB32

 RB11

 RB12

 RB31

268 8 Formal Transformation of Feedback Rule Bases

introducing IRBs in all unoccupied positions, which are part of self
standing inputs and outputs as well as partial or total identity lines. This
type of conversion is required for the derivation of the rule base for the
equivalent SRB system and it can be done by horizontal splitting of any
rule base into the same rule base and an IRB.

8.11 Analysis of Transformation Techniques for Feedback Rule Bases

Examples 8.1-8.42 from the previous sections provide a detailed insight
into how FB interconnections in MRB systems can be dealt with for the
purpose of formal transformation. In this case, the ultimate goal is to
transform a fairly complex ARBN form of the initial system into a simpler
CRBN form, which can be further transformed into an equivalent SRB
system. Depending on the type of transformation approach used, i.e.
analysis or synthesis, the equivalent SRB system is either checked to ensure
that any constraints imposed by the FB interconnections are not violated or
derived such that the structure of the FB interconnections is determined in
advance with the same purpose, i.e. to ensure that any FB constraints are
met.

As far as the overall study of formal transformation of MRB systems is
concerned, Boolean matrices are a more suitable tool than binary relations
and that is why the latter are marginalised in this chapter. For example, it is
much easier to transform a MRB system from an ARBN form into a CRBN
form and then transform the latter further into an equivalent SRB system
using Boolean matrices rather than the corresponding binary relations.

The transformation techniques with FF and FB rule bases have been
demonstrated in the previous and the current chapter only in the context of
qualitative complexity, i.e. for the purpose of improving the transparency
and facilitating the interpretation of fuzzy systems. However, these
transformation techniques can be also used in the context of quantitative
complexity, i.e. to reduce the overall number of computations during
the fuzzy inference process. A detailed study on this subject is presented in
the next chapter.

9 Formal Simplification of Fuzzy Rule Based Systems

9.1 Preliminaries on Rule Base Simplification

As opposed to Chapters 4–8, which deal mainly with qualitative complexity
in fuzzy systems, the current chapter is dedicated to the problem of
quantitative complexity. However, the material presented here is a natural
extension of the concepts introduced earlier in relation to qualitative
complexity. In this context, the overall complexity management process in
fuzzy systems has to be seen as a general framework whereby we first use
formal presentation, manipulation and transformation techniques to address
the qualitative complexity in fuzzy systems and then use formal
simplification techniques to deal with the quantitative complexity.

The underlying idea of formal simplification of fuzzy rule based systems
is to remove all redundant operations during the stages of fuzzification,
inference and defuzzification. This redundancy is usually caused by
inconsistent and non-monotonic rules. Therefore, the formal simplification
process has to identify such rules and remove them safely, i.e. without
affecting the output from the fuzzy system. This approach is quite different
from the available rule base reduction methods in the sense that it is aimed
at reducing the quantitative complexity in fuzzy systems without
compromising the quality of the solution.

In order to identify the redundancy in a fuzzy rule based system, it is
necessary to consider the stages of fuzzification, inference and
defuzzification, as shown in Fig. 9.1. This consideration is done further in
the current section whereby the inference stage is represented as a sequence
of three substages – application, implication and aggregation. The consi-
derations presented are about SRB systems, which are either given as such
or have been transformed from a MRB system using the techniques
introduced in some of the previous chapters. These considerations describe
MISO systems, which are either given as such or are a logically equivalent
collection of MISO systems representing a MIMO system, as described in
Sect. 2.3.

The fuzzification stage in a fuzzy system maps the crisp value of each
input to the system onto a fuzzy value by means of a fuzzy membership
degree [58, 66]. This degree can be obtained from the fuzzy membership
functions for the inputs to the fuzzy system. The considerations presented
here are based on normal triangular fuzzy membership functions, which

Alexander
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

Gegov: Complexity Management in Fuzzy Systems, StudFuzz 211, 269–340 (2007)

270 Formal Simplification of Fuzzy Rule Based Systems

have a unique maximum equal to 1 and appear to be most commonly used
for the fuzzification stage in fuzzy systems due to their simplicity.

 Crisp inputs

Fuzzy system

 Inference

 Crisp outputs

Fig. 9.1. Main operation stages and substages in a fuzzy system

The fuzzy membership degree fps for an input can be obtained by the
formula

fps = 0, if xps aps

fps = (xps - aps) / (bps – aps), if aps xps bps

fps = (cps – xps) / (cps – bps), if bps xps cps

fps = 0, if cps xps

(9.1)

Fuzzification

Application

Implication

Aggregation

Defuzzification

9.1 Preliminaries on Rule Base Simplification 271

where xps, p=1,..,m, s=1,..,r is the continuous crisp value of the p-th input in
the s-th rule of the fuzzy system and aps, bps, cps are the parameters of the
triangular fuzzy membership function used for the fuzzification of this
input. The fuzzy membership degree fps can take only values in the interval
[0, 1] whereas xps can take any values within the crisp variation range for
the input, i.e. the continuous universe of discourse. The values of the
parameters aps, bps, cps must be also within this universe of discourse. In
particular, aps is the point at which the membership function becomes
greater than 0, bps is the point at which the membership function reaches its
maximum at 1 and cps is the point at which the membership function
becomes equal to 0 again. The symbol ‘/’ in Eq. (9.1) denotes arithmetic
division and it is used mainly in this context in the current chapter.

The application substage in a fuzzy system maps the fuzzy membership
degrees of the inputs in each rule in the system onto a firing strength for
this rule [58, 66]. The considerations presented here are based on CON
fuzzy rule bases, i.e. rule bases with CON antecedents. Such rule bases
appear to be most commonly used in fuzzy systems as they allow the
consideration of all possible permutations of linguistic values of inputs.

The firing strength gs for a rule can be obtained by the formula

g1 = min (f11 ,…, fm1)

……………………

gr = min (f1r ,…, fmr)

(9.2)

where fps, p = 1,..,m, s = 1,..,r is the fuzzy membership degree for the p-th
input in the s-th rule of the fuzzy system. Obviously, the firing strength gs

can take only values in the interval [0, 1].
The implication substage in a fuzzy system maps the firing strength for

each rule of the system onto a fuzzy membership function for the output in
this rule [58, 66]. The considerations presented here are based on horizontal
truncation, which usually cuts the normal fuzzy triangular membership
function for the output in each rule to a subnormal fuzzy trapezoidal
membership function whose maximum is equal to the firing strength for
this rule. This type of truncation is most commonly used for the implication
substage in fuzzy systems due to its simplicity.

The fuzzy membership function Fsq for an output is usually defined by

Fsq = { f1sq / y1sq ,…, ftsq / ytsq } (9.3)

where fksq, k = 1,..,t, s = 1,..,r, q=1,..,n is the fuzzy membership degree for
the k-th element from the discrete universe of discourse for the q-th output
in the s-th rule of the fuzzy system, whereas yksq is the associated element

272 Formal Simplification of Fuzzy Rule Based Systems

from this universe of discourse. As an exception, the ‘forward slash’
symbol ‘/’ in Eq. (9.3) denotes binary association, i.e. the fuzzy
membership degree fksq is associated with the element yksq from the universe
of discourse.

When any of the subscripts in Eq. (9.3) are not quite relevant, they will
be omitted in any further considerations of fksq and yksq for simplicity. This

sq are mapped
onto their fuzzy membership degrees fsq by the formula

fsq = 0, if ysq asq

fsq = (ysq – asq) / (bsq – asq), if asq ysq bsq

fsq = gs, if bsq ysq csq

fsq = (dsq – ysq) / (csq – bsq), if csq ysq dsq

fsq = 0, if dsq ysq

(9.4)

where ysq, s = 1,..,r, q = 1,..,n is the discrete crisp value of the q-th output in
the s-th rule of the fuzzy system and asq, bsq, csq, dsq are the parameters of the
trapezoidal fuzzy membership function for this output obtained during the
implication substage from the initial triangular fuzzy membership function
for the output. The fuzzy membership degree fsq can take only values in the
interval [0, 1] whereas ysq can take any values within the crisp variation
range for the output, i.e. the discrete universe of discourse. The values of
the parameters asq, bsq, csq, dsq must be also within this universe of discourse.
In particular, asq is the point at which the membership function becomes
greater than 0, bsq is the point at which the membership function becomes
equal to its maximum gs, csq is the point at which the membership function
becomes less than its maximum at gs and dps is the point at which the
membership function becomes equal to 0 again.

The aggregation substage in a fuzzy system maps the fuzzy membership
functions for all rules in the system onto an aggregated fuzzy membership
function representing the overall output for all the rules [58, 66]. The
considerations presented here are based on DIS fuzzy rule bases, i.e. rule
bases with DIS rules. Such rule bases appear to be most commonly used in
fuzzy systems as they are more realistic, i.e. they only assume that at least
one rule is satisfied at a time.

The aggregated fuzzy membership function Fq for an output can be
obtained by the formula

Fq = F1q … Frq
(9.5)

 elements yapplies here to the subscript k and therefore the

9.1 Preliminaries on Rule Base Simplification 273

where Fsq, s = 1,..,r, q = 1,..,n is the fuzzy membership function for the q-th
output in the s-th rule of the fuzzy system. In this case, the symbol ‘ ’
denotes a ‘fuzzy set union operation’ that is applied by taking the minimum
of the fuzzy membership degrees from the fuzzy membership functions for
all rules. This minimum is taken with respect to the fuzzy membership
degrees for all the elements from the discrete universe of discourse for this
output.

The defuzzification stage in a fuzzy system maps the aggregated fuzzy
membership function for an output in the system onto a crisp value from the
universe of discourse for this output [58, 66]. This value is usually of
continuous type, which implies that the associated discrete universe of
discourse is mapped onto its continuous image. The considerations
presented here are based the so-called ‘centroid method’ whereby the
defuzzified value of the output is the centre of gravity for the aggregated
fuzzy membership function for this output. This defuzzification method is
most commonly used in fuzzy systems due to its applicability for any shape
or type of aggregated fuzzy membership function for the output.

The defuzzified value Dq for an output can be obtained by the formula

Dq = (f1q . y1q+ … + ftq . ytq) / (f1q + … + ftq) (9.6)

where fkq, k = 1,..,t, q = 1,..,n is the aggregated fuzzy membership degree
for the k-th element from the discrete universe of discourse for the q-th
output of the fuzzy system, whereas ykq is the associated element from this
universe of discourse. In this case, Eq. (9.6) represents fksq and yksq from Eq.
(9.3) with the index s being omitted due to the fact that the fuzzy rules do
not appear as variables during the defuzzification stage. Obviously, Dq can
take any values within the crisp variation range for the output, i.e. the so-
called continuous image of the discrete universe of discourse for this
output. In Eq. (9.6), the symbol ‘.’ denotes arithmetic multiplication, the
symbol ‘+’ denotes arithmetic addition and the symbol ‘/’ denotes again
arithmetic division.

Two formal simplification techniques are introduced in the following
sections of this chapter. Both techniques are based on the abstract
considerations of the stages of fuzzification, inference and defuzzification
in fuzzy systems made so far. The techniques are illustrated by examples
with SRB systems, which are either given as such or have been transformed
from a MRB system using the techniques introduced in some of the
previous chapters.

The examples in the next section describe SISO systems, which are either
given as such or are part of a logically equivalent collection of SISO systems
representing a SIMO system, as described in Sect. 2.3. The examples can be

forward and therefore is not considered here. In the case of a MISO system, the
extended to incorporate MISO systems. This type of extension is straight-

274 Formal Simplification of Fuzzy Rule Based Systems

antecedent part of the rule base represents more than one input and this is
the only difference in comparison to a rule base with one input.

What makes the examples distinctive is the number of fuzzy membership
functions for the output and the number of rules in the fuzzy rule base. In
this context, Examples 9.1–9.2 consider in some detail inconsistent rule
bases whose outputs have three fuzzy membership functions each whereas
Examples 9.3–9.12 deal briefly with inconsistent rule bases whose outputs
have five fuzzy membership functions each. Similarly, Example 9.13

of Inconsistent Rules

The formal simplification technique introduced here is based on the idea of
removing the inherent redundancy in an inconsistent fuzzy rule base. This
type of redundancy is expressed by the presence of inconsistent rules and it
can be removed by aggregating such rules with the aim of making the rule
base consistent.

The overall process of aggregating inconsistent rules is illustrated by the
following algorithm:

Algorithm 9.1
1. Put all inconsistent rules in groups whereby the rules in each

group have the same permutation of linguistic values of inputs
and different permutations of linguistic values of outputs.

2. For each group of rules, find a single equivalent rule whose
effect on the defuzzified output is the same as the effect of all
rules.

3. If it is not possible to apply step 2, then find a subset of
equivalent rules whose effect on the defuzzified output is the
same as the effect of the whole set of rules for this group.

4. For each group of rules, keep either the single equivalent rule or
the subset of equivalent rules and remove all other rules.

It follows from Algorithm 9.1 that there may still be some inconsistency
left in a fuzzy rule base after the completion of the aggregation process. It is
suggested that such a rule base is left as it is rather than being generated
again through a new modelling process. In other words, inconsistency is
something natural in a fuzzy rule base and although it would be desirable to
remove it, sometimes we may only be able to reduce it. Moreover, the
quality compromising effect of any residual inconsistency on the
defuzzified output would possibly be negligible compared to the time

Example 9.14 deals briefly with a non-monotonic rule base with 27 rules.

9.2 Rule Base Simplification by Aggregation

considers in some detail a non-monotonic rule base with 20 rules whereas

9.2 Rule Base Simplification by Aggregation of Inconsistent Rules 275

consuming effect of a new modelling process which may lead again to an
inconsistent rule base.

Algorithm 9.1 describes the aggregation process for inconsistent rules
but it does not say when this process can be applied with full success, i.e.
without any residual inconsistency being left. In other words, the question
is when it would be possible to aggregate all inconsistent rules from each
group into a single equivalent rule. This would be possible if the following
conditions are fulfilled with respect to the fuzzy membership functions for
the output:

the number of these fuzzy membership functions is odd, i.e.
there is a fuzzy membership function in the middle,
the fuzzy membership function in the middle is symmetrical, i.e.
it has an axis of symmetry,
each of the remaining fuzzy membership functions has a
symmetrical image with respect to the axis of symmetry of
another symmetrical fuzzy membership function.

The above three conditions guarantee that the aggregation process will
lead to a single equivalent rule for each group of inconsistent rules. In this
case, the relative contribution of the single equivalent rule in each group to
the defuzzified output would be the same as the relative contribution of the
associated inconsistent rules in the group. Although the conditions may
appear to be restrictive, they are actually not as most fuzzy systems meet
these conditions anyway as part of the requirements for spreading the fuzzy
membership functions for the output uniformly across its universe of
discourse.

The implementation of Algorithm 9.1 can be done easily using Boolean
matrices or binary relations, as shown by Algorithms 9.2–9.3.

Algorithm 9.2
1. Go through all the rows of the Boolean matrix from top to bottom,

as described by the steps 2-6.
2. Count the number of non-zero elements in the current row.
3. If there is more than one non-zero element in the current row, go to

step 4, otherwise move to the next row and go back to step 2.
4. Moving from left to right in the current row, find all non-zero

elements in odd columns and aggregate these elements into a single
non-zero equivalent element, if possible, or alternatively, into a set
of non-zero equivalent elements.

5. Moving from left to right in the current row, find all non-zero
elements in even columns and aggregate these elements into a
single non-zero equivalent element, if possible, or alternatively,
into a set of non-zero equivalent elements.

6.
otherwise stop.
If there are any rows left, move to the next row and go back to step 2,

276 Formal Simplification of Fuzzy Rule Based Systems

Algorithm 9.3
1. Put all maplets from the binary relation into groups whereby the

first element in all maplets from each group is the same but also
different from the first element in any maplet from any other group.

2. Go through all groups of maplets in an increasing order with
respect to the first elements in the associated maplets, as described
by the steps 3-7.

3. Count the number of maplets in the current group of maplets.
4. If there is more than one maplet in the current group, go to step 5,

otherwise move to the next group of maplets and go back to step 3.
5. Moving from left to right in the current group, find all maplets with

an odd second element and aggregate these maplets into a single
equivalent maplet, if possible, or alternatively, into a set of
equivalent maplets.

6. Moving from left to right in the current group, find all maplets with
an even second element and aggregate these maplets into a single
equivalent maplet, if possible, or alternatively, into a set of
equivalent maplets.

7. If there are any groups left, move to the next group and go back to
step 3, otherwise stop.

 Algorithms 9.2–9.3 show that the process of aggregating inconsistent
rules in a fuzzy system is equivalent to representing a one-to-many
mapping as a one-to-one mapping. A theoretical justification of this
representation based on the laws of Boolean logic is shown below. By
definition, each ‘if-then’ rule in a fuzzy rule base is a logical implication
whereby if the antecedent and the consequent part in the rule are true then
the whole rule must be true.

Therefore, a group of inconsistent rules may be represented in the form

If (A1s and … and Ams) then Cq1

or
 ………………………………

or
 If (A1s and … and Ams) then Cqz

(9.7)

where Aps= (ip is vip,s), p = 1,..,m and Cqz = (oq is voq,z), q = 1,..,n are the
logical propositions describing the antecendent terms for the p-th input and
the consequent term for the q-th output, respectively. In this case, s is a

It is obvious from Algorithms 9.2–9.3 that a single non-zero equivalent element
in a Boolean matrix or a single equivalent maplet in a binary relation represent
a single equivalent rule in a fuzzy rule base. Likewise, a set of non-zero
equivalent elements in a Boolean matrix or a set of equivalent maplets in a
binary relation represent a set of equivalent rules in the rule base.

9.2 Rule Base Simplification by Aggregation of Inconsistent Rules 277

label for the group being considered whereas z is the number of inconsistent
rules in this group.

Equation (9.7) may be rewritten in the following equivalent forms:

[(A1s and … and Ams) imp Cq1] or … or [(A1s and … and Ams) imp Cqz] (9.8)

[not (A1s and … and Ams) or Cq1] or … or [not (A1s and … and Ams) or Cqz] (9.9)

[not (A1s and … and Ams)] or … or [not (A1s and … and Ams)] or
(Cq1 or … or Cqz)

(9.10)

[not (A1s and … and Ams)] or (Cq1 or … or Cqz) (9.11)

[not (A1s and … and Ams)] imp (Cq1 or … or Cqz) (9.12)

If (A1s and … and Ams) then (Cq1 or … or Cqz) (9.13)

So, the one-to-many mapping described by Eq. (9.7) has been
represented equivalently as a one-to-one mapping described by Eq. (9.13).
In this case, the z simple logical propositions Cq1 … Cqz in the consequent
part of the inconsistent rules in Eq. (9.7) have been represented by a single
compound proposition (Cq1 or … or Cqz) in the aggregated consequent part
of the single equivalent rule in Eq. (9.13).

Example 9.1
A SISO system has the following group of two inconsistent rules

 If i1 is P then o1 is S
 or
 If i1 is P then o1 is B

(9.14)

where the simple linguistic terms P, S and B denote the linguistic values
positive, small and big, respectively.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

If i1 is P then o1 is M (9.15)

in which the simple linguistic term M denoting the linguistic value medium
has replaced the compound term (S or B).

278 Formal Simplification of Fuzzy Rule Based Systems

‘conventional’
 whereas the fuzzy system from Eq. (9.15) will be referred

to as ‘aggregated’. In order to show the equivalence of these two systems,
we will need to go for each of them through the implication substage, the
aggregation substage and the defuzzification stage. The fuzzification stage
and the application substage are assumed to have been done in advance for
each of the two systems because they would lead to the same results due to
the identical antecendent parts for the input, as shown by Eq. (9.14)–(9.15).

As the antecedent parts of the two rules in the conventional system (CS)
are identical, the firing strength gS for the first rule and the firing strength gB

for the second rule in this system are assumed to have been found to be
equal to 0.66. Likewise, due to the identity between the antecedent part of
the single rule in the aggregated system (AS) and the antecedent parts of
the two rules in the CS, the firing strength gM for this single rule must also
have been found to be equal to 0.66.

At the implication substage, the fuzzy membership functions FS and FB

for the output from the CS are obtained as

FS = {0/0 , 0.33/1, 0.66/2, 0.66/3, 0.66/4, 0.33/5, 0/6, 0/7, 0/8, 0/9,
 0/10, 0/11, 0/12}

(9.16)

FB = {0/0 , 0/1, 0/2, 0/3, 0/4, 0/5, 0/6, 0.33/7, 0.66/8, 0.66/9,
0.66/10, 0.33/11, 0/12}

(9.17)

where FS and FB represent the linguistic values S and B, respectively.
Due to the trapezoidal shape FS and FB, the associated fuzzy membership

degrees fS and fB for any element y from the discrete universe of discourse
for the output will be mapped by

fS = 0, if y aS

fS = (y – aS) / (bS – aS), if aS y bS

fS = 0.66, if bS y cS

fS = (dS – y) / (dS – cS), if cS y dS

fS = 0, if dS y

(9.18)

For clarity, the fuzzy system from Eq. (9.14) will be called

9.2 Rule Base Simplification by Aggregation of Inconsistent Rules 279

fB = 0, if y aB

fB = (y – aB) / (bB – aB), if aB y bB

fB = 0.66, if bB y cB

fB = (dB – y) / (dB – cB), if cB y dB

fB = 0, if dB y

(9.19)

where the parameters of the membership functions FS and FB are the
following

aS = 0, bS = 2, cS = 4, dS = 6 (9.20)

aB = 6, bB = 8, cB = 10, dB = 12 (9.21)

At the aggregation substage, the aggregated fuzzy membership functions
FSB for the output from the CS is obtained as follows

FSB = FS FB =

{0/0 , 0.33/1, 0.66/2, 0.66/3, 0.66/4, 0.33/5, 0/6,
0.33/7, 0.66/8, 0.66/9, 0.66/10, 0.33/11, 0/12}

(9.22)

At the defuzzification stage, the defuzzified value DSB for the output from
the CS is obtained as follows

 DSB = [(0 . 0) + (0.33 . 1) + (0.66 . 2) + (0.66 . 3) + (0.66 . 4)

 + (0.33 . 5) + (0 . 6) + (0.33 . 7)

 + (0.66 . 8)

 + (0.66 . 9) + (0.66 . 10) + (0.33 . 11)

 + (0 . 12)] /

 (0 + 0.33 + 0.66 + 0.66 + 0.66 + 0.33

 + 0 + 0.33 + 0.66 + 0.66 + 0.66 + 0.33 + 0) = 32 / 5.33 = 6

(9.23)

At the implication substage, the fuzzy membership function FM for the
output from the AS is obtained as

FM = {0/0, 0/1, 0/2, 0/3, 0.33/4, 0.66/5, 0.66/6, 0.66/7, 0.33/8, 0/9,
0/10, 0/11, 0/12}

(9.24)

where FM represents the linguistic value M.

280 Formal Simplification of Fuzzy Rule Based Systems

Due to the trapezoidal shape of FM, the associated fuzzy membership
degree fM for any element y from the discrete universe of discourse for the
output will be mapped by

fM = 0, if y aM

fM = (y – aM) / (bM – aM), if aM y bM

fM = 0.66, if bM y cM

fM = (dM – y) / (dM – cM), if cM y dM

fM = 0, if dM y

(9.25)

where the parameters of the membership functions FM and FB are the
following

aM = 3, bM = 5, cM = 7, dM = 9 (9.26)

At the aggregation substage, the aggregated fuzzy membership function
for the output from the AS is equal to FM because there is only one rule in
this system.

At the defuzzification stage, the defuzzified value DM for the output from
the AS is obtained as follows

DM = [(0 . 0) + (0 . 1) + (0 . 2) + (0 . 3) + (0.33 . 4) + (0.66 . 5)

 + (0.66 . 6) + (0.66 . 7) + (0.33 . 8) + (0 . 9) + (0 . 10)

 + (0 . 11) + (0 . 12)] /

 (0 + 0 + 0 + 0 + 0.33 + 0.66

 + 0.66 + 0.66 + 0.33 + 0 + 0 + 0 + 0) =16 / 2.66 = 6

(9.27)

It follows from Eq. (9.23) and Eq. (9.27) that the defuzzified value DSB

for the output from the CS is equal to the defuzzified value DM for the same

are equivalent in terms of their behaviour. In other words, the
inconsistent rule base has been simplified to a consistent rule base by
aggregating the inconsistent rules in a way, which removes the inherent
redundancy without any effect on the final result.

The considerations above can be generalised easily using Boolean
matrices and binary relations. If the input i1 can take the linguistic values
negative (N), zero (Z) and positive (P) and the output o1 can take the
linguistic values small (S), medium (M) and big (B), then we could make
the substitutions N = 1, Z = 2 and P = 3 and S = 1, M = 2 and B = 3.

output from the AS. This shows that the two systems from Eqs. (9.14)–(9.15)

9.2 Rule Base Simplification by Aggregation of Inconsistent Rules 281

If we assume that there is only one inconsistent group in the CS, its
Boolean matrix and binary relation RBSB will look like

 RBSB: i1 /o1 1 2 3

 1 ? ? ?
 2 ? ? ?
 3 1 0 1

(9.28)

RBSB: {?, (3, 1), (3, 3)} (9.29)

where only the elements reflecting the considerations in this example are
designated with valid values. The remaining elements are designated with
the symbol ‘?’ to avoid confusion.

 The Boolean matrix and binary relation RBM for the consistent AS will
look like

 RBM: i1 /o1 1 2 3

 1 ? ? ?
 2 ? ? ?
 3 0 1 0

(9.30)

RBM: {?, (3, 2)} (9.31)

Here again, only the elements reflecting the considerations in this
example are designated with valid values whereas the remaining elements
are designated with the symbol ‘?’.

Example 9.2
A SISO system has the following group of three inconsistent rules

 If i1 is P then o1 is S
or

 If i1 is P then o1 is M
or

 If i1 is P then o1 is B

(9.32)

where the simple linguistic terms P, S, M and B denote the linguistic values
positive, small, medium and big, respectively.

282 Formal Simplification of Fuzzy Rule Based Systems

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

If i1 is P then o1 is M (9.33)

in which the simple linguistic term M has replaced the compound term

If we repeat the considerations from Example 9.1, we will see that the
defuzzified outputs for the fuzzy rule bases described by Eq. (9.32) and
Eq. (9.33) have the same value.

matrix and binary relation RBSMB will look like

 RBSMB: i1 /o1 1 2 3

 1 ? ? ?
 2 ? ? ?
 3 1 1 1

(9.34)

RBSMB: {?, (3, 1), (3, 2), (3, 3)} (9.35)

The Boolean matrix and binary relation RBM for the consistent AS will
look like

 RBM: i1 /o1 1 2 3

 1 ? ? ?
 2 ? ? ?
 3 0 1 0

(9.36)

RBM: {?, (3, 2)} (9.37)

Example 9.3
A SISO system with the set of fuzzy output membership functions

 If i1 is P then o1 is VS
or

 If i1 is P then o1 is M

(9.38)

(S or M or B).

If we assume that there is only one inconsistent group in the CS, its
Boolean

{VS, S, M, B, VB} has the following group of inconsistent rules

9.2 Rule Base Simplification by Aggregation of Inconsistent Rules 283

where the simple linguistic terms P, VS, S, M, B and VB denote the
linguistic values positive, very small, small, medium, big and very big,
respectively.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

If i1 is P then o1 is S (9.39)

in which the simple linguistic term S has replaced the compound term

Example 9.4
A SISO system with the set of fuzzy output membership functions

 If i1 is P then o1 is VS
or

 If i1 is P then o1 is S
or

 If i1 is P then o1 is M

(9.40)

where the simple linguistic terms P, VS, S, M, B and VB denote the same
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

If i1 is P then o1 is S (9.41)

in which the simple linguistic term S has replaced the compound term

Example 9.5
A SISO system with the set of fuzzy output membership functions

 If i1 is P then o1 is M
or

 If i1 is P then o1 is VB

(9.42)

where the simple linguistic terms P, VS, S, M, B and VB denote the same
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

(VS or M).

{VS, S, M, B, VB} has the following group of inconsistent rules

(VS or S or M).

{VS, S, M, B, VB} has the following group of inconsistent rules

284 Formal Simplification of Fuzzy Rule Based Systems

If i1 is P then o1 is B (9.43)

in which the simple linguistic term B has replaced the compound term

Example 9.6
A SISO system with the set of fuzzy output membership functions

 If i1 is P then o1 is M
or

 If i1 is P then o1 is B
or

 If i1 is P then o1 is VB

(9.44)

where the simple linguistic terms P, VS, S, M, B and VB denote the same
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

If i1 is P then o1 is B (9.45)

in which the simple linguistic term B has replaced the compound term

Example 9.7
A SISO system with the set of fuzzy output membership functions

 If i1 is P then o1 is S
or

 If i1 is P then o1 is B

(9.46)

where the simple linguistic terms P, VS, S, M, B and VB denote the same
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

If i1 is P then o1 is M (9.47)

in which the simple linguistic term M has replaced the compound term
(S or B).

(M or VB).

{VS, S, M, B, VB} has the following group of inconsistent rules

(M or B or VB).

{VS, S, M, B, VB} has the following group of inconsistent rules

9.2 Rule Base Simplification by Aggregation of Inconsistent Rules 285

Example 9.8
A SISO system with the set of fuzzy output membership functions

 If i1 is P then o1 is S
or

 If i1 is P then o1 is M
or

 If i1 is P then o1 is B

(9.48)

where the simple linguistic terms P, VS, S, M, B and VB denote the same
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

If i1 is P then o1 is M (9.49)

in which the simple linguistic term M has replaced the compound term

Example 9.9
A SISO system with the set of fuzzy output membership functions

 If i1 is P then o1 is VS
or

 If i1 is P then o1 is VB

(9.50)

where the simple linguistic terms P, VS, S, M, B and VB denote the same
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

If i1 is P then o1 is M (9.51)

in which the simple linguistic term M has replaced the compound term

{VS, S, M, B, VB} has the following group of inconsistent rules

(S or M or B).

{VS, S, M, B, VB} has the following group of inconsistent rules

(VS or VB).

286 Formal Simplification of Fuzzy Rule Based Systems

Example 9.10
A SISO system with the set of fuzzy output membership functions

 If i1 is P then o1 is VS
or

 If i1 is P then o1 is M
or

 If i1 is P then o1 is VB

(9.52)

where the simple linguistic terms P, VS, S, M, B and VB denote the same
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

If i1 is P then o1 is M (9.53)

in which the simple linguistic term M has replaced the compound term

Example 9.11
A SISO system with the set of fuzzy output membership functions

 If i1 is P then o1 is VS
or

 If i1 is P then o1 is S
or

 If i1 is P then o1 is B
or

 If i1 is P then o1 is VB

(9.54)

where the simple linguistic terms P, VS, S, M, B and VB denote the same
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

If i1 is P then o1 is M (9.55)

in which the simple linguistic term M has replaced the compound term
(VS or S or B or VB).

{VS, S, M, B, VB} has the following group of inconsistent rules

(VS or M or VB).

{VS, S, M, B, VB} has the following group of inconsistent rules

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 287

Example 9.12
A SISO system with the set of fuzzy output membership functions

 If i1 is P then o1 is VS
or

 If i1 is P then o1 is S
or

 If i1 is P then o1 is M
or

 If i1 is P then o1 is B
or

 If i1 is P then o1 is VB

(9.56)

where the simple linguistic terms P, VS, S, M, B and VB denote the same
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with
the single equivalent rule

If i1 is P then o1 is M (9.57)

in which the simple linguistic term M has replaced the compound term
(VS or S or M or B or VB).

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules

The formal simplification technique introduced here is based on the idea of
removing the inherent redundancy in a non-monotonic fuzzy rule base. This
type of redundancy is expressed by the presence of non-monotonic rules
and it can be removed by filtering such rules with the aim of making the
rule base monotonic.

The overall process of filtering non-monotonic rules is illustrated by the
following algorithm:

Algorithm 9.4
1. Put all non-monotonic rules in groups sorted in an increasing

order with respect to the permutations of linguistic values of
outputs, whereby the rules in each group have the same
permutation of linguistic values of outputs and different
permutations of linguistic values of inputs.

{VS, S, M, B, VB} has the following group of inconsistent rules

288 Formal Simplification of Fuzzy Rule Based Systems

2. For each group of rules, find a single equivalent rule whose
effect on the defuzzified output is the same as the effect of all
rules.

3. For each group of rules, keep the single equivalent rule and
remove all other rules.

Algorithm 9.4 guarantees that there will be only monotonic rules left in a
fuzzy rule base after the completion of the filtering process. In this case, the
number of monotonic rules is equal to the number of groups and the
number of different permutations of linguistic values of outputs. Therefore,
the filtering process can be always applied with full success, i.e. without
any residual non-monotonousness being left.

As opposed to the aggregation process for inconsistent rules which can
be carried out entirely off-line, i.e. before the fuzzification of inputs, the
filtering process for non-monotonic rules must be carried out partially on-
line, i.e. after the fuzzification of inputs. In this case, step 1 in Algorithm
9.4 can still be applied off-line but steps 2-3 can only be applied on-line.
This is due to the fact that the single equivalent rule in Algorithm 9.4 is like
a dominant rule which can be found only after the completion of the
fuzzification stage and the application substage. This dominancy is
expressed in terms of the rule with the maximal firing strength for each
group as a result of which the effect of all other rules from the group on the
defuzzified output will be completely neutralised. Obviolusly, when there is
more than one dominant rule in a group, i.e. two or more rules with
maximal firing strength for the group, one of these rules should be selected
arbitrarily as a single equivalent rule.

The implementation of Algorithm 9.4 can be done easily using Boolean
matrices or binary relations, as shown by Algorithms 9.5–9.6.

Algorithm 9.5
1. Sort the rows of the Boolean matrix in groups such that the rows in

each group have a non-zero element in the same column and this
column is to the left of any other columns with non-zero elements
from any subsequent groups.

2. Filter the rows in each group such that only the row representing
the dominant rule is left in the group.

Algorithm 9.6
1. Sort the maplets from the binary relation in groups such that the

2. Filter the maplets in each group such that only the maplet
representing the dominant rule is left in the group.

second elements in the maplets from each group are the same with
respect to each other and smaller than the second elements in the
maplets from any subsequent groups.

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 289

Algorithms 9.5–9.6 show that the process of filtering non-monotonic
rules in a fuzzy system is equivalent to representing a many-to-one
mapping as a one-to-one mapping. A theoretical justification of this
representation based on the laws of Boolean logic is shown below. Here
again, each ‘if-then’ rule in a fuzzy rule base is a logical implication
whereby if the antecedent and the consequent part in the rule are true then
the whole rule must be true.

Therefore, a group of non-monotonic rules may be represented in the
form

 If (A11 and … and Am1) then Cq

or
 ………………………………

or
 If (A1z and … and Amz) then Cq

(9.58)

where Apj= (ip is vip,j), p = 1,..,m, j = 1,..,z and Cq = (oq is voq), q = 1,..,n are
the logical propositions describing the antecendent terms for the p-th input
in the j-th rule and the consequent term for the q-th output, respectively. In
this case, q is also a label for the group being considered whereas z is the
number of non-monotonic rules in this group.

Equation (9.58) may be rewritten in the following equivalent forms:

[(A11 and … and Am1) imp Cq] or … or [(A1z and … and Amz) imp Cq] (9.59)

[not (A11 and … and Am1) or Cq] or … or [not (A11 and … and Am1) or Cq] (9.60)

[not (A11 and … and Am1)] or … or [not (A1z and … and Amz)] or
(Cq or … or Cq)

(9.61)

not [(A11 and … and Am1)] and … and (A1z and … and Amz)] or Cq (9.62)

[(A11 and … and Am1)] and … and (A1z and … and Amz)] imp Cq (9.63)

If [(A11 and … and Am1)] and … and (A1z and … and Amz)] then Cq (9.64)

So, the many-to-one mapping described by Eq. (9.58) has been
represented equivalently as a one-to-one mapping described by Eq. (9.64).
In this case, the z compound logical propositions (A11 and … and Am1) …
(A1z and … and Amz) in the antecedent part of the non-monotonic rules in

[(A11 and … and Am1) and … and (A1z and … and Amz)] in the filtered

 antecedent part of the single equivalent rule in Eq. (9.64).

Eq. (9.58) have been represented by a single compound proposition

290 Formal Simplification of Fuzzy Rule Based Systems

Example 9.13
A fuzzy system for aircraft landing control is described by the inputs i1, i2

and the output o1 where i1 is the relative height (h) of the aircraft in feet (ft),
i2 is the vertical velocity (v) of the aircraft in feet per second (ft/s) and o1 is
the control effort (e) in libras (lb) that must be applied to the aircraft [66].
In this case, i1 can take the four linguistic values near zero (NZ), small (S),
medium (M) and large (L), whereas both i2 and o1 can take the five linguistic
values down large (DL), down small (DS), zero (Z), up small (US) and up
large (UL).

By making the substitutions NZ = 1, S = 2, M = 3, L = 4 for i1 as well as
the substitutions DL = 1, DS = 2, Z = 3, US = 4, UL = 5 for both i1 and o1,
we can construct the integer table for the fuzzy rule base of this CS, as
shown in Table 9.1. Then, by applying step 1 from Algorithm 9.4, we can
construct the integer table for the rule base of the sorted system (SS), as
shown in Table 9.2. The empty rows in these tables are used only for visual
separation of the rules in different groups, which facilitates the analysis of
the contents of the tables.

Table 9.1. Integer table for the rule base of the conventional system

Rule number Linguistic value
of i1

Linguistic value
of i2

Linguistic value
of o1

1 1 1 5
2 1 2 5
3 1 3 3
4 1 4 2
5 1 5 2

6 2 1 5
7 2 2 4
8 2 3 3
9 2 4 2
10 2 5 1

11 3 1 4
12 3 2 3
13 3 3 2
14 3 4 1
15 3 5 1

16 4 1 3
17 4 2 2
18 4 3 1
19 4 4 1
20 4 5 1

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 291

Table 9.2. Integer table for the rule base of the sorted system

Rule number Linguistic value
of i1

Linguistic value
of i2

Linguistic value
of o1

10 2 5 1
14 3 4 1
15 3 5 1
18 4 3 1
19 4 4 1
20 4 5 1

4 1 4 2
5 1 5 2
9 2 4 2
13 3 3 2
17 4 2 2

3 1 3 3
8 2 3 3
12 3 2 3
16 4 1 3

7 2 2 4
11 3 1 4

1 1 1 5
2 1 2 5
6 2 1 5

By applying steps 2-3 from Algorithm 9.4, we can now construct the
integer table for the fuzzy rule base of the filtered system (FS), as shown in
Table 9.3.

The integer table for the fuzzy rule base of the FS contains only the
single equivalent rule from each of the sorted five groups of rules. The
process leading to these single equivalent rules is described further in the
current section and therefore the contents of this integer table must be taken
for granted at this stage.

Table 9.3. Integer table for the rule base of the filtered system

Rule number Linguistic value
of i1

Linguistic value
of i2

Linguistic value
of o1

10 2 5 1
17 4 2 2
12 3 2 3
11 3 1 4
1 1 1 5

292 Formal Simplification of Fuzzy Rule Based Systems

Algorithm 9.4 can be implemented much easier using Boolean matrices
or binary relations, as described by Algorithms 9.5–9.6. This is shown
briefly by Eqs. (9.65)–(9.70) which are associated with the integer tables
from Tables 9.1–9.3. In particular, Eqs. (9.65)–(9.66) relate to Table 9.1,
Eqs. (9.67)–(9.68) relate to Table 9.2, whereas Eqs. (9.69)–(9.70) relate to
Table 9.3.

The Boolean matrix and the binary relation for the fuzzy rule base RBCS

of the CS are given by

RBCS: i1 i2 / o1 1 2 3 4 5

 11 0 0 0 0 1
 12 0 0 0 0 1
 13 0 0 1 0 0
 14 0 1 0 0 0
 15 0 1 0 0 0

 21 0 0 0 0 1
 22 0 0 0 1 0
 23 0 0 1 0 0
 24 0 1 0 0 0
 25 1 0 0 0 0

 31 0 0 0 1 0
 32 0 0 1 0 0
 33 0 1 0 0 0
 34 1 0 0 0 0
 35 1 0 0 0 0

 41 0 0 1 0 0
 42 0 1 0 0 0
 43 1 0 0 0 0
 44 1 0 0 0 0
 45 1 0 0 0 0

(9.65)

RBCS: {(11, 5), (12, 5), (13, 3), (14, 2), (15, 2),

 (21, 5), (22, 4), (23, 3), (24, 2), (25, 1),

 (31, 4), (32, 3), (33, 2), (34, 1), (35, 1),

 (41, 3), (42, 2), (43, 1), (44, 1), (45, 1)}

(9.66)

The Boolean matrix and the binary relation for the fuzzy rule base RBSS

of the SS are given by

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 293

RBSS: i1 i2 / o1 1 2 3 4 5

 25 1 0 0 0 0
 34 1 0 0 0 0
 35 1 0 0 0 0
 43 1 0 0 0 0
 44 1 0 0 0 0
 45 1 0 0 0 0

 14 0 1 0 0 0
 15 0 1 0 0 0
 24 0 1 0 0 0
 33 0 1 0 0 0
 42 0 1 0 0 0

 13 0 0 1 0 0
 23 0 0 1 0 0
 32 0 0 1 0 0
 41 0 0 1 0 0

 22 0 0 0 1 0
 31 0 0 0 1 0

 11 0 0 0 0 1
 12 0 0 0 0 1
 21 0 0 0 0 1

(9.67)

RBSS: {(25, 1), (34, 1), (35, 1), (43, 1), (44, 1), (45, 1),

 (14, 2), (15, 2), (24, 2), (33, 2), (42, 2),

 (13, 3), (23, 3), (32, 3), (41, 3),

 (22, 4), (31, 4),

 (11, 5), (12, 5), (21, 5)}

(9.68)

The Boolean matrix and the binary relation for the fuzzy rule base RBFS

of the FS are given by

RBFS: i1 i2 / o1 1 2 3 4 5

 25 1 0 0 0 0
 42 0 1 0 0 0
 32 0 0 1 0 0
 31 0 0 0 1 0
 11 0 0 0 0 1

(9.69)

294 Formal Simplification of Fuzzy Rule Based Systems

RBFS: {(25, 1), (42, 2), (32, 3), (31, 4), (11, 5)} (9.70)

The next steps in the current example consider the fuzzification,
inference and defuzzification stages for the CS and the FS. The aim of this
consideration is to show the behavioural equivalence of the two systems,
i.e. that the defuzzified output is the same for any crisp values of the inputs.
In the current example, these values are taken as h = 980 and v = –14.2.
Therefore, when we have to deal with an arbitrarily complex CS
represented by an integer table, Boolean matrix or binary relation, we can
formally simplify this system to a fairly simple FS and use the associated
integer table, Boolean matrix or binary relation instead.

At the fuzzification stage for the CS, we have to consider all possible
linguistic values for each input. In this context, we need to specify how the
fuzzy membership degree for a particular linguistic value of a given input
can be obtained. This specification is based on the parameters of the fuzzy
membership functions for the fuzzification of the inputs, as shown further
below.

The fuzzy membership degree fh

NZ for the linguistic value near zero of the
input height can be obtained by the formula

fh

NZ = 0, if h ah

NZ

fh

NZ = 1, if ah

NZ h bh

NZ

fh

NZ = (ch

NZ – h) / (ch

NZ – bh

NZ), if bh

NZ h ch

NZ

fh

NZ = 0, if ch

NZ h

(9.71)

where ah

NZ, bh

NZ, ch

NZ are the parameters of the associated triangular fuzzy
membership function whose values are given by

ah

NZ = 0, bh

NZ = 0, ch

NZ = 500 (9.72)

Equation (9.71) differs slightly from Eq. (9.1). In particular, the
inequality sign in the first line of Eq. (9.1) has been strengthened in

Also, the arithmetic division in the second line of Eq. (9.1) has been
removed from Eq. (9.71) to avoid a division by zero due to the equality of
the parameters ah

NZ and bh

NZ.
The fuzzy membership degree fh

S for the linguistic value small of the
input height can be obtained by the formula

Eq. (9.71) to account for the vertical left shoulder of the membership function.

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 295

fh

S = 0, if h ah

S

fh

S = (h – ah

S) / (bh

S – ah

S), if ah

S h bh

S

fh

S = (ch

S – h) / (ch

S – bh

S), if bh

S h ch

S

fh

S = 0, if ch

S h

(9.73)

where ah

S, bh

S, ch

S are the parameters of the associated triangular fuzzy
membership function whose values are given by

ah

S = –200, bh

S = 300, ch

S = 800 (9.74)

The fuzzy membership degree fh

M for the linguistic value medium of the
input height can be obtained by the formula

fh

M = 0, if h ah

M

fh

M = (h – ah

M) / (bh

M – ah

M), if ah

M h bh

M

fh

M = (ch

M – h) / (ch

M – bh

M), if bh

M h ch

M

fh

M = 0, if ch

M h

(9.75)

where ah

M, bh

M, ch

M are the parameters of the associated triangular fuzzy
membership function whose values are given by

ah

M = 300, bh

M = 800, ch

M = 1300 (9.76)

The fuzzy membership degree fh

L for the linguistic value large of the
input height can be obtained by the formula

fh

L = 0, if h ah

L

fh

L = (h – ah

L) / (bh

L – ah

L), if ah

L h bh

L

fh

L = 1, if bh

L h ch

L

fh

L = 0, if ch

L h

(9.77)

where ah

L, bh

L, ch

L are the parameters of the associated triangular fuzzy
membership function whose values are given by

296 Formal Simplification of Fuzzy Rule Based Systems

ah

L = 500, bh

L = 1000, ch

L = 1000 (9.78)

arithmetic division in the third line of Eq. (9.1) has been removed from
.

h

L and ch

L. Also, the inequality sign in the fourth line of Eq. (9.1) has been
strengthened in Eq. (9.77) to account for the vertical right shoulder of the
membership function.

The parameters of the fuzzy membership functions for the first input to
the fuzzy system are summarised in Table 9.4.

Table 9.4. Fuzzy membership function parameters for the first input

Linguistic value / Input Relative height
Near zero [0 0 500]
Small [-200 300 800]
Medium [300 800 1300]
Large [500 1000 1000]

The fuzzy membership degree fv

DL for the linguistic value down large of the
input velocity can be obtained by the formula

fv

DL = 0, if v av

DL

fv

DL = 1, if av

DL v bv

DL

fv

DL = 1, if bv

DL v cv

DL

fv

DL = (dv

DL – v) / (dv

DL – cv

DL), if cv

DL v dv

DL

fv

DL = 0, if dv

DL v

(9.79)

where av , bv

DL, cv

DL, dv

DL are the parameters of the associated trapezoidal
fuzzy membership function whose values are given by

av

DL = –30, bv

DL = –30, cv

DL = –20, dv

DL= –10 (9.80)

Equation (9.79) differs slightly from the standard formula for a
trapezoidal fuzzy membership. In particular, the inequality sign in the first
line of the standard formula has been strengthened in Eq. (9.79) to account
for the vertical left shoulder of the membership function. Also, the
arithmetic division in the second line of the standard formula has been
removed from Eq. (9.79) to avoid a division by zero due to the equality of
the parameters av

DL and bv

DL.

Equation (9.77) differs slightly from Eq. (9.1). In particular, the

Eq (9.77) to avoid a division by zero due to the equality of the parameters
b

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 297

The fuzzy membership degree fv

DS for the linguistic value down small of
the input velocity can be obtained by the formula

fv

DS = 0, if v av

DS

fv

DS = (v – av

DS) / (bv

DS – av

DS), if av

DS v bv

DS

fv

DS = (cv

DS – v) / (cv

DS – bv

DS), if bv

DS v cv

DS

fv

DS = 0, if cv

DS v

(9.81)

where av

DS, bv

DS, cv

DS are the parameters of the associated triangular fuzzy
membership function whose values are given by

av

DS = –20, bv

DS = –10, cv

DS = 0 (9.82)

The fuzzy membership degree fv

Z for the linguistic value zero of the input
velocity can be obtained by the formula

fv

Z = 0, if v av

Z

fv

Z = (v – av

Z) / (bv

Z – av

Z), if av

Z v bv

Z

fv

Z = (cv

Z – v) / (cv

Z – bv

Z), if bv

Z v cv

Z

fv

Z = 0, if cv

Z v

(9.83)

where av

Z, bv

Z, cv

Z are the parameters of the associated triangular fuzzy
membership function whose values are given by

av

Z = –10, bv

Z = 0, cv

Z = 10 (9.84)

The fuzzy membership degree fv

US for the linguistic value up small of the
input velocity can be obtained by the formula

fv

US = 0, if v av

US

fv

US = (v – av

US) / (bv

US – av

US), if av

US v bv

US

fv

US = (cv

US – v) / (cv

US – bv

US), if bv

US v cv

US

fv

US = 0, if cv

US v

(9.85)

298 Formal Simplification of Fuzzy Rule Based Systems

where av

US, bv

US, cv

US are the parameters of the associated triangular fuzzy
membership function whose values are given by

av

US = 0, bv

US = 10, cv

US = 20 (9.86)

The fuzzy membership degree fv

UL for the linguistic value up large of the
input velocity can be obtained by the formula

fv

UL = 0, if v av

UL

fv

UL = (v – av

UL) / (bv

UL – av

UL), if av

UL v bv

UL

fv

UL = 1, if bv

UL v cv

UL

fv

UL = 1, if cv

UL v dv

UL

fv

UL = 0, if dv

UL v

(9.87)

where av

UL, bv

UL, cv

UL, dv

UL are the parameters of the associated trapezoidal
fuzzy membership function whose values are given by

av

UL = 10, bv

UL = 20, cv

UL = 30, dv

UL= 30 (9.88)

Equation (9.87) differs slightly from the standard formula for a
trapezoidal fuzzy membership function. In particular, the arithmetic
division in the fourth line of the standard formula has been removed from
Eq. (9.87) to avoid a division by zero due to the equality of the parameters
cv

UL and dv

UL. Also, the inequality sign in the fifth line of the standard
formula has been strengthened in Eq. (9.87) to account for the vertical right
shoulder of the membership function.

The parameters of the fuzzy membership functions for the second input
to the fuzzy system are summarised in Table 9.5.

Table 9.5. Fuzzy membership function parameters for the second input

Linguistic value / Input Vertical velocity
Down large [-30 -30 -20 -10]
Down small [-20 -10 0]
Zero [-10 0 10]
Up small [0 10 20]
Up large [10 20 30 30]

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 299

At the application substage of the inference stage for the CS, we have to
find the firing strength for each rule. For this purpose, we assume to have
converted the crisp values of the inputs into fuzzy membership degrees
during the fuzzification stage. The result of this conversion is used
in the application substage which is applied to each rule, as shown by

–

g1

UL = min (fh

NZ, fv

DL) = min (0, 0) = 0 (9.89)

g2

UL = min (fh

NZ, fv

DS) = min (0, 0) = 0 (9.90)

g3

Z = min (fh

NZ, fv

Z) = min (0, 0) = 0 (9.91)

g4

DS = min (fh

NZ, fv

US) = min (0, 0) = 0 (9.92)

g5

DS = min (fh

NZ, fv

UL) = min (0, 0) = 0 (9.93)

g6

UL = min (fh

S, fv

DL) = min (0, 0) = 0 (9.94)

g7

US = min (fh

S, fv

DS) = min (0, 0) = 0 (9.95)

g8

Z = min (fh

S, fv

Z) = min (0, 0) = 0 (9.96)

g9

DS = min (fh

S, fv

US) = min (0, 0) = 0 (9.97)

g10

DL = min (fh

S, fv

UL) = min (0, 0) = 0 (9.98)

g11

US = min (fh

M, fv

DL) = min (0.64, 0.42) = 0.42 (9.99)

g12

Z = min (fh

M, fv

DS) = min (0.64, 0.58) = 0.58 (9.100)

g13

DS = min (fh

M, fv

Z) = min (0, 0) = 0 (9.101)

g14

DL = min (fh

M, fv

US) = min (0, 0) = 0 (9.102)

g15

DL = min (fh

M, fv

UL) = min (0, 0) = 0 (9.103)

g16

Z = min (fh

L, fv

DL) = min (0.96, 0.42) = 0.42 (9.104)

g17

DS = min (fh

L, fv

DS) = min (0.96, 0.58) = 0.58 (9.105)

g18

DL = min (fh

L, fv

Z) = min (0, 0) = 0 (9.106)

g19

DL = min (fh

L, fv

US) = min (0, 0) = 0 (9.107)

Eqs. (9.89) (9.108).

300 Formal Simplification of Fuzzy Rule Based Systems

g20

DL = min (fh

L, fv

UL) = min (0, 0) = 0 (9.108)

It is obvious that only four rules have a firing strength greater than zero
for the considered crisp values of the inputs. These rules are 11, 12, 16 and
17, as shown by Eq. (9.99), Eq. (9.100), Eq. (9.104) and Eq. (9.105),
respectively. In this context, Eq. (9.99) shows that in rule 11 the linguistic
value medium of the input height contributes with a fuzzy membership
degree of 0.64 to the linguistic value up small of the output whereas the
linguistic value down large of the input velocity contributes with a fuzzy
membership degree of 0.42 to the same linguistic value of the output.
Similar considerations apply to the other rules.

At the implication substage of the inference stage for the CS, we have to
find the truncated fuzzy membership function for the output in each rule.
For this purpose, we assume to have represented the output with fuzzy
membership functions, which happen to be the same as the ones for the
second input. The only difference is in the physical meaning of the universe
of discourse, which is not continuous but discrete and represents not
vertical velocity but control effort. The implication substage is described by
Eqs. (9.109)–(9.123).

The fuzzy membership degree fe,s

DL, s = 10,14,15,18,19,20 for the
linguistic value down large of the output effort in the s-th rule can be
obtained by the formula

fe,s

DL = 0, if e ae,s

DL

fe,s

DL = gs

DL, if ae,s

DL e be,s

DL

fe,s

DL = gs

DL, if be,s

DL e ce,s

DL

fe,s

DL = (de,s

DL – e) / (de,s

DL – ce,s

DL), if ce,s

DL e de,s

DL

fe,s

DL = 0, if de,s

DL e

(9.109)

where ae,s

DL, be,s

DL, ce,s

DL, de,s

DL, s = 10,14,15,18,19,20 are the parameters of the
truncated trapezoidal fuzzy membership function for the output in the s-th
rule and gs

DL, s = 10,14,15,18,19,20 is firing strength of the s-th rule. The
values of these parameters can be obtained by the formula

ae,s

DL = ae

DL

be,s

DL = ae

DL + (be

DL – ae

DL) . gs

DL

ce,s

DL = de

DL – (de

DL – ce

DL) . gs

DL

de,s

DL = de

DL

(9.110)

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 301

where ae

DL, be

DL, ce

DL, de

DL are the parameters of the original trapezoidal fuzzy
membership function for the linguistic value down large of the output. The
values of these parameters are given by

ae

DL = –30, be

DL = –30, ce

DL = –20, de

DL = –10 (9.111)

Equation (9.109) differs slightly from Eq. (9.4). In particular, the
inequality sign in the first line of Eq. (9.4) has been strengthened in

function. Also, the arithmetic division in the second line of Eq. (9.4) has
been removed from Eq. (9.109) to avoid a division by zero due to the
equality of the parameters ae,s

DL and b
e,s

DL.

The fuzzy membership degree fe,s

DS

, s = 4,5,9,13,17 for the linguistic
value down small of the output effort in the s-th rule can be obtained by the
formula

fe,s

DS = 0, if e ae,s

DS

fe,s

DS = (e – ae,s

DS) / (be,s

DS – ae,s

DS), if ae,s

DS e be,s

DS

fe,s

DS = gs

DS, if be,s

DS e ce,s

DS

fe,s

DS = (de,s

DS – e) / (de,s

DS – ce,s

DS), if ce,s

DS e de,s

DS

fe,s

DS = 0, if de,s

DS e

(9.112)

where ae,s

DS, be,s

DS, ce,s

DS, de,s

DS, s = 4,5,9,13,17 are the parameters of the
truncated trapezoidal fuzzy membership function for the output in the s-th
rule and gs

DS, s = 4,5,9,13,17 is firing strength of the s-th rule. The values of
these parameters can be obtained by the formula

ae,s

DS = ae

DS

be,s

DS = ae

DS + (be

DS – ae

DS) . gs

DS

ce,s

DS = ce

DS – (ce

DS – be

DS) . gs

DS

de,s

DS = ce

DS

(9.113)

where ae

DS, be

DS, ce

DS are the parameters of the original triangular fuzzy
membership function for the linguistic value down small of the output. The
values of these parameters are given by

ae

DS = –20, be

DS = –10, ce

DS = 0 (9.114)

Eq. (9.109) to account for the vertical left shoulder of the truncated membership

302 Formal Simplification of Fuzzy Rule Based Systems

The fuzzy membership degree fe,s

Z, s = 3,8,12,16 for the linguistic value
zero of the output effort in the s-th rule can be obtained by the formula

fe,s

Z = 0, if e ae,s

Z

fe,s

Z = (e – ae,s

Z) / (be,s

Z – ae,s

Z), if ae,s

Z e be,s

Z

fe,s

Z = gs

Z, if be,s

Z e ce,s

Z

fe,s

Z = (de,s

Z – e) / (de,s

Z – ce,s

Z), if ce,s

Z e de,s

Z

fe,s

Z = 0, if de,s

Z e

(9.115)

where ae,s

Z, be,s

Z, ce,s

Z, de,s

Z, s = 3,8,12,16 are the parameters of the truncated
trapezoidal fuzzy membership function for the output in the s-th rule and
gs

Z, s = 3,8,12,16 is firing strength of the s-th rule. The values of these
parameters can be obtained by the formula

ae,s

Z = ae

Z

be,s

Z = ae

Z + (be

Z – ae

Z) . gs

Z

ce,s

Z = ce

Z – (ce

Z – be

Z) . gs

Z

de,s

Z = ce

Z

(9.116)

where ae

Z, be

Z, ce

Z are the parameters of the original triangular fuzzy
membership function for the linguistic value zero of the output. The values
of these parameters are given by

ae

Z = –10, be

Z = 0, ce

Z = 10 (9.117)

The fuzzy membership degree fe,s

US , s = 7,11 for the linguistic value

fe,s

US = 0, if e ae,s

US

fe,s

US = (e – ae,s

US) / (be,s

US – ae,s

US), if ae,s

US e be,s

US

fe,s

US = gs

US, if be,s

US e ce,s

US

fe,s

US = (de,s

US – e) / (de,s

US – ce,s

US), if ce,s

US e de,s

US

fe,s

US = 0, if de,s

US e

(9.118)

up small of the output effort in the s-th rule can be obtained by the formula

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 303

where ae,s

US, be,s

US, ce,s

US, de,s

US, s = 7,11 are the parameters of the truncated
trapezoidal fuzzy membership function for the output in the s-th rule and
gs

US, s = 7,11 is firing strength of the s-th rule. The values of these
parameters can be obtained by the formula

ae,s

US = ae

US

be,s

US = ae

US + (be

US – ae

US) . gs

US

ce,s

US = ce

US – (ce

US – be

US) . gs

US

de,s

US = ce

US

(9.119)

where ae

US, be

US, ce

US are the parameters of the original triangular fuzzy
membership function for the linguistic value up small of the output. The
values of these parameters are given by

ae

US = 0, be

US = 10, ce

US = 20 (9.120)

The fuzzy membership degree fe,s

UL, s = 1,2,6 for the linguistic value

fe,s

UL = 0, if e ae,s

UL

fe,s

UL = (e – ae,s

UL) / (be,s

UL – ae,s

UL), if ae,s

UL e be,s

UL

fe,s

UL = gs

UL, if be,s

UL e ce,s

UL

fe,s

UL = gs

UL, if ce,s

UL e de,s

UL

fe,s

UL = 0, if de,s

UL e

(9.121)

where ae,s

UL, be,s

UL, ce,s

UL, de,s

UL, s = 1,2,6 are the parameters of the truncated
trapezoidal fuzzy membership function for the output in the s-th rule and
gs

UL, s = 1,2,6 is firing strength of the s-th rule. The values of these
parameters can be obtained by the formula

ae,s

UL = ae

UL

be,s

UL = ae

UL + (be

UL – ae

UL) . gs

UL

ce,s

UL = de

UL – (de

UL – ce

UL) . gs

UL

de,s

UL = de

UL

(9.122)

up large of the output effort in the s-th rule can be obtained by the formula

304 Formal Simplification of Fuzzy Rule Based Systems

where ae

UL, be

UL, ce

UL, de

UL are the parameters of the original trapezoidal fuzzy
membership function for the linguistic value up large of the output. The
values of these parameters are given by

ae

UL = 10, be

UL = 20, ce

UL = 30, de

UL = 30 (9.123)

Equation (9.121) differs slightly from Eq. (9.4). In particular, the
arithmetic division in the fourth line of Eq. (9.4) has been removed from
Eq. (9.121) to avoid a division by zero due to the equality of the parameters
ce,s

UL and de,s

UL. Also, the inequality sign in the fifth line of Eq. (9.4) has been
strengthened in Eq. (9.121) to account for the vertical right shoulder of the
truncated membership function.

The parameters of the fuzzy membership functions for the output from
the fuzzy system are summarised in Table 9.6.

Table 9.6. Fuzzy membership function parameters for the output

Linguistic value / Output Control effort
Down large [-30 -30 -20 -10]
Down small [-20 -10 0]
Zero [-10 0 10]
Up small [0 10 20]
Up large [10 20 30 30]

At the aggregation substage of the inference stage for the CS, we have to
find the aggregated fuzzy membership function representing the overall
output for all the rules. For this purpose, we assume to have represented the
fuzzy membership function for the output in each rule during the
implication substage, as shown by Eqs. (9.124)–(9.130).

 Fs = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0, 0/5, 0/10, 0/15,
 0/20, 0/25, 0/30},

s = 1,2,3,4,5,6,7,8,9,10

(9.124)

F11 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0,

 0.42/5, 0.42/10, 0.42/15, 0/20, 0/25, 0/30}

(9.125)

F12 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0.5/-5, 0.58/0,

 0.5/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.126)

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 305

Fs = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0, 0/5, 0/10, 0/15,

 0/20, 0/25, 0/30},

s = 13,14,15

(9.127)

F16 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0.42/-5, 0.42/0,

 0.42/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.128)

F17 = {0/-30, 0/-25, 0/-20, 0.5/-15, 0.58/-10, 0.5/-5, 0/0,

 0/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.129)

Fs = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0, 0/5, 0/10, 0/15,

 0/20, 0/25, 0/30},

s = 18,19,20

(9.130)

Therefore, the aggregated fuzzy membership function F for the output
for the CS can be obtained by the formula

F = F1 … F20 = {0/-30, 0/-25, 0/-20, 0.5/-15, 0.58/-10, 0.5/-5,

 0.58/0, 0.5/5, 0.42/10, 0.42/15, 0/20, 0/25, 0/30}

(9.131)

At the defuzzification stage for the CS, we have to find the crisp value
for the output, as shown by Eq. (9.132).

 D = (f1 . y1+ … + f13 . y13) / (f1 + … + f13) =

 [(0 . -30) + (0 . -25) + (0 . -20) + (0.5 . -15) + (0.58 . -10)

 + (0.5 . -5) + (0.58 . 0) + (0.5 . 5) + (0.42 . 10) + (0.42 . 15)
 + (0 . 20) + (0 . 25) + (0 . 30)] /

 (0 + 0 + 0 + 0.5 + 0.58 + 0.5
 + 0.58 + 0.5 + 0.42 + 0.42 + 0 + 0 + 0) = -2.8 / 3.5 = -0.8

(9.132)

Having found the defuzzified output for the CS, we have to find the
defuzzified output for the FS as well. For this purpose, we first put the rules
of the CS in groups in order to obtain the SS. Then, we go through the
fuzzification stage and the application substage for the SS. The results from
these will be the same as the ones already obtained for the CS because
neither the fuzzification stage nor the application substage are affected by
the rearrangement of the rules. Next, we identify the single equivalent rules

306 Formal Simplification of Fuzzy Rule Based Systems

for all groups and remove all other rules from the rule base, as shown
below.

The firing strength for each rule in the groups of the SS is given by
Eqs. (9.133)–(9.137).

Group DL: g10

DL = 0, g14

DL = 0, g15

DL = 0, g18

DL = 0, g19

DL = 0, g20

DL = 0 (9.133)

Group DS: g4

DS = 0, g5

DS = 0, g9

DS = 0, g13

DS = 0, g17

DS = 0.58 (9.134)

Group Z: g3

Z = 0, g8

Z = 0, g12

Z = 0.58, g16

Z = 0.42 (9.135)

Group US: g7

US = 0, g11

US = 0.42 (9.136)

Group UL: g1

UL = 0, g2

UL = 0, g6

UL = 0 (9.137)

The single equivalent rules for the above groups are given by
Eqs. (9.138)–(9.142).

Group DL: g10

DL = 0 (9.138)

Group DS: g17

DS = 0.58 (9.139)

Group Z: g12

Z = 0.58 (9.140)

Group US: g11

US = 0.42 (9.141)

Group UL: g1

UL = 0 (9.142)

The single equivalent rules for the first and the last group could have
been chosen arbitrarily because all rules from these two groups have firing
strength 0. However, we have decided to choose the first rule, i.e. the rule
with the lowest number, as the single equivalent rule in each of these two
groups.

Therefore, the FS will be represented by the five rules with numbers 10,
17, 12, 11 and 1. Due the reduced number of rules, the subsequent
implication and aggregation substages are significantly simplified, as
shown by Eqs. (9.143)–(9.148).

F10 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0,

 0/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.143)

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 307

F17 = {0/-30, 0/-25, 0/-20, 0.5/-15, 0.58/-10, 0.5/-5, 0/0,

 0/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.144)

F12 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0.5/-5, 0.58/0,

 0.5/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.145)

F11 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0,

 0.42/5, 0.42/10, 0.42/15, 0/20, 0/25, 0/30}

(9.146)

F1 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0,

 0/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.147)

F = F10 F17 F12 F11 F11

={0/-30, 0/-25, 0/-20, 0.5/-15, 0.58/-10, 0.5/-5, 0.58/0,

 0.5/5, 0.42/10, 0.42/15, 0/20, 0/25, 0/30}

(9.148)

The aggregated fuzzy membership function F for the output of the FS is
the same as the one for the output of the CS, as can be seen from
Eq. (9.131) and Eq. (9.148). Therefore, the five rules of the FS will yield a
defuzzified output which is the same as the twenty rules of the CS, as
shown by Eq. (9.132). This also shows that like the fuzzification stage and
the application substage of the inference stage, the defuzzification stage is
not affected by the reduced number of rules either. In spite of that, the
efficiency gained as a result of the removed redundant operations during the
implication and aggregation substages of the inference stage significantly
outweighs the complexity added by the selection process for single
equivalent rules, as shown further in this chapter.

The overall behavioural equivalence of the CS and the FS is illustrated in
Figs. 9.2–9.3. These figures show the output surfaces for the two systems,
which are identical. The surfaces are generated with 4×5 equally spaced
points in order to facilitate the analogy with the rule bases for the two
systems which are with 4×5 linguistic values for the inputs.

308 Formal Simplification of Fuzzy Rule Based Systems

Fig. 9.2. Output surface with 4×5 points for the conventional system

Fig. 9.3. Output surface with 4×5 points for the filtered system

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 309

The evidence for the overall behavioural equivalence of the CS and the
FS is given in Table 9.7. This table shows the numerical values of the 4×5
point output surfaces for the two systems, which are equal for each
permutation of crisp values of the inputs.

Table 9.7. Numerical values of the 4×5 point output surface for the two systems

Point number /
Point
component

Input 1
(Relative
height)

Input 2
(Vertical
velocity)

CS output
(Control
effort)

FS output
(Control
effort)

1 0.0 -30.0 22.4 22.4
2 0.0 -15.0 16.9 16.9
3 0.0 0.0 0.0 0.0
4 0.0 15.0 -15.6 -15.6
5 0.0 30.0 -14.7 -14.7

6 333.3 -30.0 21.5 21.5
7 333.3 -15.0 15.4 15.4
8 333.3 0.0 -0.9 -0.9
9 333.3 15.0 -16.4 -16.4
10 333.3 30.0 -19.4 -19.4

11 666.7 -30.0 10.0 10.0
12 666.7 -15.0 5.0 5.0
13 666.7 0.0 -11.3 -11.3
14 666.7 15.0 -17.9 -17.9
15 666.7 30.0 -21.8 -21.8

16 1000.0 -30.0 4.5 4.5
17 1000.0 -15.0 0.0 0.0
18 1000.0 0.0 -18.3 -18.3
19 1000.0 15.0 -21.3 -21.3
20 1000.0 30.0 -22.4 -22.4

The dominant rules for all permutations of crisp values of the inputs for
the FS are presented in Table 9.8. This table shows the corresponding rule
numbers whereby each of these numbers defines uniquely a rule from the
rule base for the CS in Table 9.1.

The overall behavioural equivalence of the CS and the FS is illustrated

the two surfaces are identical but the corresponding numerical values
and dominant rules are not shown due to the high space requirements for
representing this large number of points. A brief visual inspection of
Figs. 9.2–9.5 shows that the 10×10 fold increase of the number of points

further in Figs. 9.4–9.5. These figures show the output surfaces with 40×50
equally spaced points for the two systems. As in the case of Figs. 9.2–9.3,

310 Formal Simplification of Fuzzy Rule Based Systems

improves significantly the precision of the graphical presentation of the
output surfaces but at the same time the complexity of this presentation is
substantially increased.

Table 9.8. Dominant rules for the filtered system

Point number /
Point component

Input 1
(Relative height)

Input 2
(Vertical velocity)

Dominant rules
(Numbers)

1 0.0 -30.0 10, 4, 3, 7, 1
2 0.0 -15.0 10, 4, 3, 7, 2
3 0.0 0.0 10, 4, 3, 7, 1
4 0.0 15.0 10, 5, 3, 7, 1
5 0.0 30.0 10, 5, 3, 7, 1

6 333.3 -30.0 10, 4, 3, 11, 6
7 333.3 -15.0 10, 4, 12, 7, 6
8 333.3 0.0 10, 13, 8, 7, 1
9 333.3 15.0 10, 9, 3, 7, 1
10 333.3 30.0 10, 5, 3, 7, 1

11 666.7 -30.0 10, 4, 16, 11, 6
12 666.7 -15.0 10, 17, 12, 11, 6
13 666.7 0.0 18, 13, 8, 7, 1
14 666.7 15.0 15, 9, 3, 7, 1
15 666.7 30.0 15, 4, 3, 7, 1

16 1000.0 -30.0 10, 4, 16, 11, 1
17 1000.0 -15.0 10, 17, 16, 11, 1
18 1000.0 0.0 18, 13, 3, 7, 1
19 1000.0 15.0 20, 4, 3, 7, 1
20 1000.0 30.0 20, 4, 3, 7, 1

Example 9.14
A fuzzy system for the operation of a service center for spare parts is

described by the inputs i1, i2, i3 and the output o1 where i1 is the repair
utilisation factor, i2 is the number of servers, i3 is the mean delay of service
and o1 is the number of spare parts [58]. In this case, i1 can take the three
linguistic values low (L), medium (M) and high (H), i2 can take the three
linguistic values small (S), medium (M) and large (L), i3 can take the three
linguistic values very short (VS), short (S) and medium (M), whereas o1 can
take the seven linguistic values very small (VS), small (S), rather small
(RS), medium (M) rather large (RL), large (L) and very large (VL).

The linguistic values for the three inputs are presented by fuzzy
membership functions on a normalised continuous universe of discourse

fuzzy membership functions on a normalised discrete universe of discourse
[0, 1]. For simplicity, these membership functions are not given here
explicitly.

[0, 1]. As far as the output is concerned, its linguistic values are presented by

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 311

Fig. 9.4. Output surface with 40 50 points for the conventional system

Fig. 9.5. Output surface with points for the filtered system

×

40 50×

312 Formal Simplification of Fuzzy Rule Based Systems

By making the substitutions L = 1, M = 2, H = 3 for i1, S = 1, M = 2,
L = 3 for i2, VS = 1, S = 2, M = 3 for i3, as well as the substitutions VS = 1,
S = 2, RS = 3, M = 4, RL = 5, L = 6, VL = 7 for o1, we can construct the
integer table for the fuzzy rule base of this CS, as shown in Table 9.9. Then,
by applying step 1 from Algorithm 9.4, we can construct the integer table
for the rule base of the SS, as shown in Table 9.10. The empty rows in these
tables are used only for visual separation of the rules in different groups,
which facilitates the analysis of the contents of the tables.

Table 9.9. Integer table for the rule base of the conventional system

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of i3

Linguistic
value of o1

1 1 1 1 1
2 1 1 2 1
3 1 1 3 1

4 1 2 1 1
5 1 2 2 1
6 1 2 3 1

7 1 3 1 2
8 1 3 2 2
9 1 3 3 1

10 2 1 1 2
11 2 1 2 1
12 2 1 3 1

13 2 2 1 3
14 2 2 2 2
15 2 2 3 1

16 2 3 1 4
17 2 3 2 3
18 2 3 3 2

19 3 1 1 7
20 3 1 2 6
21 3 1 3 4

22 3 2 1 4
23 3 2 2 4
24 3 2 3 2

25 3 3 1 5
26 3 3 2 4
27 3 3 3 3

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 313

Table 9.10. Integer table for the rule base of the sorted system

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of i3

Linguistic
value of o1

1 1 1 1 1
2 1 1 2 1
3 1 1 3 1
4 1 2 1 1
5 1 2 2 1
6 1 2 3 1
9 1 3 3 1
11 2 1 2 1
12 2 1 3 1
15 2 2 3 1

7 1 3 1 2
8 1 3 2 2
10 2 1 1 2
14 2 2 2 2
18 2 3 3 2
24 3 2 3 2

13 2 2 1 3
17 2 3 2 3
27 3 3 3 3

16 2 3 1 4
21 3 1 3 4
22 3 2 1 4
23 3 2 2 4
26 3 3 2 4

25 3 3 1 5

20 3 1 2 6

19 3 1 1 7

By applying steps 2-3 from Algorithm 9.4, we can now construct the
integer table for the fuzzy rule base of the FS, as shown in Table 9.11.

The integer table for the fuzzy rule base of the FS contains only the
single equivalent rule from each of the sorted seven groups of rules. The
process leading to these single equivalent rules is not described here
because it is the same as the corresponding process from Example 9.13. For
this reason, some of the elements in Table 9.11 representing rule numbers
and linguistic values of inputs are shown only in a general form, i.e. as
compound expressions of DIS terms and not as atomic terms.

314 Formal Simplification of Fuzzy Rule Based Systems

Table 9.11. Integer table for the rule base of the filtered system

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of i3

Linguistic
value of o1

1 or 2 or 3 or 4
or 5 or 6 or 9 or
11 or 12 or 15

1 or 2 1 or 2 or 3 1 or 2 or 3 1

7 or 8 or 10 or
14 or 18 or 24

1 or 2 or 3 1 or 2 or 3 1 or 2 or 3 2

13 or 17 or 27 2 or 3 2 or 3 1 or 2 or 3 3
16 or 21 or 22
or 23 or 26

2 or 3 1 or 2 or 3 1 or 2 or 3 4

25 3 3 1 5
20 3 1 2 6
19 3 1 1 7

As in Example 9.13, Algorithm 9.4 can be implemented here much easier

This is shown briefly by Eqs. (9.149)–(9.154) which are associated with the

Eqs. (9.153)–(9.154) relate to Table 9.11.
The Boolean matrix and the binary relation for the fuzzy rule base RBCS

of the CS are given by

RBCS: i1 i2 i3 / o1 1 2 3 4 5 6 7

 111 1 0 0 0 0 0 0
 112 1 0 0 0 0 0 0
 113 1 0 0 0 0 0 0

 121 1 0 0 0 0 0 0
 122 1 0 0 0 0 0 0
 123 1 0 0 0 0 0 0

 131 0 1 0 0 0 0 0
 132 0 1 0 0 0 0 0
 133 1 0 0 0 0 0 0

 211 0 1 0 0 0 0 0
 212 1 0 0 0 0 0 0
 213 1 0 0 0 0 0 0

 221 0 0 1 0 0 0 0
 222 0 1 0 0 0 0 0
 223 1 0 0 0 0 0 0

(9.149)

using Boolean matrices or binary relations, as described by Algorithms 9.5–9.6

integer tables from Tables 9.9–9.11. In particular, Eqs. (9.149)–(9.150)
relate to Table 9.9, Eqs. (9.151)–(9.152) relate to Table 9.10, whereas

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 315

 231 0 0 0 1 0 0 0
 232 0 0 1 0 0 0 0
 233 0 1 0 0 0 0 0

 311 0 0 0 0 0 0 1
 312 0 0 0 0 0 1 0
 313 0 0 0 1 0 0

 321 0 0 0 1 0 0 0
 322 0 0 0 1 0 0 0
 323 0 1 0 0 0 0 0

 331 0 0 0 0 1 0 0
 332 0 0 0 1 0 0 0
 333 0 0 1 0 0 0 0

RBCS: {(111, 1), (112, 1), (113, 1),

 (121, 1), (122, 1), (123, 1),

 (131, 2), (132, 2), (133, 1),

 (211, 2), (212, 1), (213, 1),

 (221, 3), (222, 2), (223, 1),

 (231, 4), (232, 3), (233, 2),

 (311, 7), (312, 6), (313, 4),

 (321, 4), (322, 4), (323, 2),

 (331, 5), (332, 4), (333, 3)}

(9.150)

The Boolean matrix and the binary relation for the fuzzy rule base RBSS

of the SS are given by

RBSS: i1 i2 i3 / o1 1 2 3 4 5 6 7

 111 1 0 0 0 0 0 0
 112 1 0 0 0 0 0 0
 113 1 0 0 0 0 0 0
 121 1 0 0 0 0 0 0
 122 1 0 0 0 0 0 0
 123 1 0 0 0 0 0 0
 133 1 0 0 0 0 0 0
 212 1 0 0 0 0 0 0
 213 1 0 0 0 0 0 0

(9.151)

0

 223 1 0 0 0 0 0 0

316 Formal Simplification of Fuzzy Rule Based Systems

 131 0 1 0 0 0 0 0
 132 0 1 0 0 0 0 0
 211 0 1 0 0 0 0 0
 222 0 1 0 0 0 0 0
 233 0 1 0 0 0 0 0
 323 0 1 0 0 0 0 0

 221 0 0 1 0 0 0 0
 232 0 0 1 0 0 0 0
 333 0 0 1 0 0 0 0

 231 0 0 0 1 0 0 0
 313 0 0 0 1 0 0 0
 321 0 0 0 1 0 0 0
 322 0 0 0 1 0 0 0
 332 0 0 0 1 0 0 0

 331 0 0 0 0 1 0 0

 312 0 0 0 0 0 1 0

 311 0 0 0 0 0 0 1

 RBSS: {(111, 1), (112, 1), (113, 1), (121, 1), (122, 1),

 (123, 1), (133, 1), (212, 1), (213, 1), (223, 1),

 (131, 2), (132, 2), (211, 2), (222, 2), (233, 2), (323, 2),

 (221, 3), (232, 3), (333, 3),

 (231, 4), (313, 4), (321, 4), (322, 4), (332, 4),

 (331, 5),

 (312, 6),

 (311, 7)}

(9.152)

The Boolean matrix and the binary relation for the fuzzy rule base RBFS

of the FS are given by

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 317

123 or 133 or 212 or 213 or 223

131 or 132 or 211 or 222 or 233 or 323 0 1 0 0 0 0 0

221 or 232 or 333 0 0 1 0 0 0 0

 231 or 313 or 321 or 322 or 332 0 0 0 1 0 0 0

331 0 0 0 0 1 0 0

312 0 0 0 0 0 1 0

311 0 0 0 0 0 0 1

 RBFS: {(111 or 112 or 113 or 121 or 122 or 123 or 133 or
 212 or 213 or 223, 1),

 (131 or 132 or 211 or 222 or 233 or 323, 2),

 (221 or 232 or 333, 3),

 (231 or 313 or 321 or 322 or 332, 4),

 (331, 5),

 (312, 6),

 (311, 7)}

(9.154)

Therefore, when we have to deal with an arbitrarily complex CS
represented by an integer table, Boolean matrix or binary relation, we can
formally simplify this system to a fairly simple FS and use the associated
integer table, Boolean matrix or binary relation instead. As shown in Table
9.11, some of the elements in Eqs. (9.153)–(9.154) representing rule labels
and permutations of linguistic values of inputs are given only in a general
form, i.e. as compound expressions of DIS terms and not as atomic terms.

If we consider the fuzzification, inference and defuzzification stages for
the CS and the FS, we will see the behavioural equivalence of the two fuzzy
systems, i.e. that the defuzzified output is the same for any crisp values of
the inputs. In order to prove this equivalence, we need to specify first the
parameters of the fuzzy membership functions for the inputs and the output,
as shown in Tables 9.12–9.15.

RB
FS

: i
1
 i

2
i

3
/ o

1
 1 2 3 4 5 6 7

111 or 112 or 113 or 121 or 122 or 1 0 0 0 0 0 0
(9.153)

318 Formal Simplification of Fuzzy Rule Based Systems

Table 9.13. Fuzzy membership function parameters for the second input

Linguistic value / Input Number of servers
Small [0.0 0.0 0.15 0.35]
Medium [0.3 0.5 0.7]
Large [0.6 0.8 1.0 1.0]

Table 9.14. Fuzzy membership function parameters for the third input

Linguistic value / Input Mean delay of service
Very short [0.0 0.0 0.1 0.3]
Short [0.1 0.3 0.5]
Medium [0.4 0.6 1.0 1.0]

Table 9.15. Fuzzy membership function parameters for the output

Linguistic value / Output Number of spare parts
Very small [0.0 0.0 0.1 0.3]
Small [0.0 0.2 0.4]
Rather small [0.25 0.35 0.45]
Medium [0.3 0.5 0.7]
Rather large [0.55 0.65 0.75]
Large [0.6 0.8 1.0]
Very large [0.7 0.9 1.0 1.0]

As the output surface can show explicitly only two inputs, we have to fix
one of the inputs to a particular value in order to generate this surface. In
this context, it would be sensible to fix the first input (repair utilisation
factor) to three different values – the bottom, the middle and the top of its
range. In this case, three separate output surfaces will be generated for both
the CS and the FS. These output surfaces will be with 3×3 equally spaced

of points, i.e. with 30×30 points, will be generated to show the overall
behavioural equivalence of the two systems.

The overall behavioural equivalence of the CS and the FS is illustrated

the two systems which are pairwise identical for each fixed value of

Table 9.12. Fuzzy membership function parameters for the first input

Linguistic value / Input Repair utilisation factor
Low [0.0 0.0 0.4 0.6]
Medium [0.4 0.6 0.8]
High [0.6 0.8 1.0 1.0]

points in analogy with the rule bases for the two systems which are with

additional output surfaces with a 10×10 fold increase of the number

below. In particular, Figs. 9.6–9.11 show the 3×3 point output surfaces for

3×3×3 linguistic values for the inputs. For consistency with Example 9.13,

input 1.

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 319

Fig. 9.6. Output surface with 3×3 points for the conventional system (repair
utilisation factor = 0)

Fig. 9.7. Output surface with 3×3 points for the filtered system (repair utilisation
factor = 0)

320 Formal Simplification of Fuzzy Rule Based Systems

Fig. 9.8. Output surface with 3×3 points for the conventional system (repair
utilisation factor = 0.5)

Fig. 9.9. Output surface with 3×3 points for the filtered system (repair utilisation
factor = 0.5)

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 321

Fig. 9.10. Output surface with 3×3 points for the conventional system (repair
utilisation factor = 1)

Fig. 9.11. Output surface with 3×3 points for the filtered system (repair
utilisation factor = 1)

322 Formal Simplification of Fuzzy Rule Based Systems

The evidence for the overall behavioural equivalence of the CS and the
FS is given in Tables 9.16–9.18. These tables show the numerical values of
the 3×3 point output surfaces for the two systems which are pairwise equal
for each permutation of crisp values of the inputs.

Table 9.16. Numerical values for the 3 3 point output surfaces (repair utilisation
factor = 0)

Point number /
Point component

Input 2
(Number
of servers

Input 3
(Mean delay
of service)

CS output
(Number
of spare parts)

FS output
(Number
of spare parts

1 0.00 0.00 0.10 0.10
2 0.00 0.50 0.12 0.12
3 0.00 1.00 0.10 0.10

4 0.50 0.00 0.10 0.10
5 0.50 0.50 0.12 0.12
6 0.50 1.00 0.10 0.10

7 1.00 0.00 0.20 0.20
8 1.00 0.50 0.12 0.12
9 1.00 1.00 0.10 0.10

Table 9.17. Numerical values for the 3×3 point output surfaces (repair utilisation
factor = 0.5)

Point number /
Point component

Input 2
(Number
of servers

Input 3
(Mean delay
of service)

CS output
(Number
of spare parts)

FS output
(Number
of spare parts

1 0.00 0.00 0.17 0.17
2 0.00 0.50 0.12 0.12
3 0.00 1.00 0.12 0.12

4 0.50 0.00 0.20 0.20
5 0.50 0.50 0.12 0.12
6 0.50 1.00 0.12 0.12

7 1.00 0.00 0.35 0.35
8 1.00 0.50 0.17 0.17
9 1.00 1.00 0.17 0.17

The dominant rules for all permutations of crisp values of the inputs for the
FS are presented in Tables 9.19–9.21. These tables show the corresponding
rule numbers whereby each of these numbers defines uniquely a rule from
the rule base for the CS in Table 9.9.

×

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 323

Table 9.18. Numerical values for the 3×3 point output surfaces (repair utilisation
factor = 1)

Point number /
Point component

Input 2
(Number
of servers

Input 3
(Mean delay
of service)

CS output
(Number
of spare parts)

FS output
(Number
of spare parts

1 0.00 0.00 0.89 0.89
2 0.00 0.50 0.50 0.50
3 0.00 1.00 0.50 0.50

4 0.50 0.00 0.50 0.50
5 0.50 0.50 0.20 0.20
6 0.50 1.00 0.20 0.20

7 1.00 0.00 0.65 0.65
8 1.00 0.50 0.35 0.35
9 1.00 1.00 0.35 0.35

Table 9.19. Dominant rules for the filtered system (repair utilisation factor = 0)

Point number /
Point
component

Input 2
(Number of
servers

Input 3
(Mean delay of
service)

Dominant rules
(Numbers)

1 0.00 0.00 1, 7, 13, 16, 25, 20, 19
2 0.00 0.50 1, 7, 13, 16, 25, 20, 19
3 0.00 1.00 3, 7, 13, 16, 25, 20, 19

4 0.50 0.00 4, 7, 13, 16, 25, 20, 19
5 0.50 0.50 6, 7, 13, 16, 25, 20, 19
6 0.50 1.00 6, 7, 13, 16, 25, 20, 19

7 1.00 0.00 1, 7, 13, 16, 25, 20, 19
8 1.00 0.50 9, 7, 13, 16, 25, 20, 19
9 1.00 1.00 9, 7, 13, 16, 25, 20, 19

324 Formal Simplification of Fuzzy Rule Based Systems

Table 9.20. Dominant rules for the filtered system (repair utilisation factor = 0.5)

Point number /
Point
component

Input 2
(Number of
servers

Input 3
(Mean delay of
service)

Dominant rules
(Numbers)

1 0.00 0.00 1, 10, 13, 16, 25, 20, 19
2 0.00 0.50 12, 7, 13, 16, 25, 20, 19
3 0.00 1.00 12, 7, 13, 16, 25, 20, 19

4 0.50 0.00 4, 7, 13, 16, 25, 20, 19
5 0.50 0.50 6, 7, 13, 16, 25, 20, 19
6 0.50 1.00 6, 7, 13, 16, 25, 20, 19

7 1.00 0.00 1, 7, 13, 16, 25, 20, 19
8 1.00 0.50 9, 18, 13, 16, 25, 20, 19
9 1.00 1.00 9, 18, 13, 16, 25, 20, 19

Table 9.21. Dominant rules for the filtered system (repair utilisation factor = 1)

Point number /
Point component

Input 2
(Number of
servers

Input 3
(Mean delay of
service)

Dominant rules
(Numbers)

1 0.00 0.00 1, 7, 13, 16, 25, 20, 19
2 0.00 0.50 1, 7, 13, 21, 25, 20, 19
3 0.00 1.00 1, 7, 13, 21, 25, 20, 19

4 0.50 0.00 1, 7, 13, 22, 25, 20, 19
5 0.50 0.50 1, 24, 13, 16, 25, 20, 19
6 0.50 1.00 1, 24, 13, 16, 25, 20, 19

7 1.00 0.00 1, 7, 13, 16, 25, 20, 19
8 1.00 0.50 1, 7, 27, 16, 25, 20, 19
9 1.00 1.00 9, 7, 27, 16, 25, 20, 19

The overall behavioural equivalence of the CS and the FS is illustrated
further below. In particular, Figs. 9.12–9.17 show the 30×30 point output
surfaces for the two systems which are pairwise identical for each fixed
value of input 1.

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 325

Fig. 9.12. Output surface with 30×30 points for the conventional system (repair
utilisation factor = 0)

Fig. 9.13. Output surface with 30×30 points for the filtered system (repair
utilisation factor = 0)

326 Formal Simplification of Fuzzy Rule Based Systems

Fig. 9.14. Output surface with 30×30 points for the conventional system (repair
utilisation factor = 0.5)

Fig. 9.15. Output surface with 30×30 points for the filtered system (repair
utilisation factor = 0.5)

9.3 Rule Base Simplification by Filtration of Non-monotonic Rules 327

Fig. 9.16. Output surface with 30×30 points for the conventional system (repair
utilisation factor = 1)

Fig. 9.17. Output surface with 30×30 points for the filtered system (repair
utilisation factor = 1)

328 Formal Simplification of Fuzzy Rule Based Systems

9.4 Complexity Evaluation of Formal Simplification Techniques

This section evaluates the quantitative complexity of the two formal
simplification techniques. The evaluation approach used is based on precise
calculations and it is superior to the so called ‘BIG(O)’ approach. The latter
is based on approximate calculations and may lead to big errors in the
presence of multiple dominant terms.

In particular, the ASs from Examples 9.1–9.12 and the FSs from
Examples 9.13–9.14 are compared to the corresponding CSs in terms of the
exact amount of on-line operations. For the aggregation method, which can
be implemented entirely off-line, this task is quite simple because the
comparison can be expressed as the ratio between the number of rules in the
AS and the CS in Examples 9.1–9.12. As far as the filtration method is
concerned, most of its implementation has to be done on-line. Also, the
evaluation of its complexity is more difficult as it is expressed as a sum of
the complexity in all stages and substages in Examples 9.13–9.14 such as
fuzzification, inference, i.e. application, implication and aggregation, and
defuzzification.

the filtration method and the associated FS is compared in general to the
complexity of the conventional method and the associated CS, as well as to
the complexity of the hierarchical method from Chapter 3 and the
associated hierarchical system (HS). The latter is by far the best of all

The parameters used for evaluating the quantitative complexity of the
three methods are: m – number of inputs, w – number of linguistic values
per input, n – number of outputs, t – number of elements in the discrete
universe of discourse for the output, h – number of simulation cycles. In
some cases, e.g. in Example 9.13, the number of linguistic values per inputs
may vary and therefore the associated complexity evaluation formulas will
be modified accordingly to reflect this.

The exact amount of on-line operations for the separate stages and
substages in a fuzzy system is determined by the overall number of
elementary operations (EO) such as addition, subtraction, multiplication,
division and comparison. For simplicity, we assume that each of these
operations is equal to one computational time unit and we will quantify
each stage and substage in the fuzzy system by means of the overall number
of these units. In this case, the term on-line refers to operations carried out
after the measurement of the crisp values of the inputs and their quantitative
complexity often has time-critical implications. All other operations, i.e. the
ones carried out before the measurement of the crisp values of the inputs,
are referred to as ‘off-line operations’ and their quantitative complexity
usually does not have any time-critical implications.

Apart from the specific context of Examples 9.13–9.14, the complexity of

available fuzzy rule base reduction methods due to its wide applicability.

9.4 Complexity Evaluation of Formal Simplification Techniques 329

The quantitative complexity for the calculation of the fuzzy membership
degree fps, p = 1,..,m, s = 1,..,r during the fuzzification stage can be obtained
by the formula

fps = max { min [(xps – aps) / (bps – aps), (cps – xps) / (cps – bps)], 0 } (9.155)

which follows from Eq. (9.1). On the basis of this formula, the overall
number of EOFU

CS, EOFU

HS and EOFU

FS for a CS, HS and FS will be given by
Eq. (9.156), Eq. (9.157) and Eq. (9.158), respectively.

EOFU

CS = 6 . m . w . n . h (9.156)

EOFU

HS = (m – 1) . (12 . w . n . h) (9.157)

EOFU

FS = 6 . m . w . n . h (9.158)

Equations (9.156)–(9.158) show that in the fuzzification stage the
complexity of the FS is equal to the complexity of the CS whereas the
complexity of the HS is lower.

The quantitative complexity for the calculation of the firing strength
gs, s = 1,..,r during the application substage can be obtained from Eq. (9.2). On
the basis of this equation, the overall number of EOAP

CS, EOAP

HS and EOAP

FS

for a CS, HS and FS will be given by Eq. (9.159), Eq. (9.160) and
Eq. (9.161), respectively.

EOAP

CS = (w + m – 2) . w m-1. n . h (9.159)

EOAP

HS = (m – 1) . w 2. n . h (9.160)

EOAP

FS = (w + m – 2) . w m-1. n . h (9.161)

Equations (9.159)–(9.161) show that in the application substage the
complexity of the FS is equal to the complexity of the CS whereas the
complexity of the HS is lower.

The quantitative complexity for the calculation of the fuzzy membership
function Fsq, s = 1,..,r, q = 1,..,n during the implication substage is based on
Eq. (9.3) and can be obtained by the formula

fsq = max { min [(ysq – asq) / (bsq – asq), gs, (dsq – ysq) / (dsq – csq)], 0 } (9.162)

330 Formal Simplification of Fuzzy Rule Based Systems

which follows from Eqs. (9.4). On the basis of this formula, the overall
number of EOIM

CS, EOIM

HS and EOIM

FS for a CS, HS and FS will be given by
Eq. (9.163), Eq. (9.164) and Eq. (9.165), respectively.

EOIM

CS = 7 . w m. t . n . h (9.163)

EOIM

HS = (m – 1) . (7 . w 2. t . n . h) (9.164)

EOIM

FS = 7 . w . t . n . h (9.165)

Equations (9.163)–(9.165) show that in the implication substage the
complexity of the HS is lower than the complexity of the CS but the
complexity of the FS is even lower than the complexity of the HS.

The quantitative complexity for the calculation of the aggregated fuzzy
membership function Fsq, s = 1,..,r, q = 1,..,n during the aggregation
substage can be obtained from Eq. (9.5). On the basis of this equation, the
overall number of EOAG

CS, EOAG

HS and EOAG

FS for a CS, HS and FS will be
given by Eq. (9.166), Eq. (9.167) and Eq. (9.168), respectively.

EOAG

CS = (w m – 1) . t . n . h (9.166)

EOAG

HS = (m – 1) . (w 2 – 1) . t . n . h (9.167)

EOAG

FS = (w – 1) . t . n . h (9.168)

Equations (9.166)–(9.168) show that in the aggregation substage the
complexity of the HS is lower than the complexity of the CS whereas the
complexity of the FS is even lower than the complexity of the HS.

The quantitative complexity for the calculation of the defuzzified value
Dq , q = 1,.., n during the defuzzification stage can be obtained from

 Eq. (9.6). On the basis of this equation, the overall number of EODE

CS, EODE

HS

and EODE

FS for a CS, HS and FS will be given by Eq. (9.169), Eq. (9.170)
and Eq. (9.171), respectively.

EODE

CS = (3 . t – 1) . n . h (9.169)

EODE

HS = (m – 1) . (3 . t – 1) . n . h (9.170)

EODE

FS = (3 . t – 1) . n . h (9.171)

9.4 Complexity Evaluation of Formal Simplification Techniques 331

Equations (9.169)–(9.171) show that in the defuzzification stage the
complexity of the FS is equal to the complexity of the CS whereas the
complexity of the HS is higher.

Before we can proceed further, we must also take into account the
quantitative complexity for the identification of the single equivalent rules
for the FS, as described by step 2 in Algorithm 9.4. For consistency, these
operations may be assumed to be part of a comparison stage as the single
equivalent rules are actually identified by comparing the firing strength of
the rules in each group. So, the overall number of EOCO

FS for a FS will be
given by Eq. (9.172).

EOCO

FS = (w m – w) . n . h (9.172)

Chronologically, the comparison stage for the FS must be placed after
the application substage and before the implication substage. However, it
has been considered here last to avoid confusion because this stage is only
to be found in the FS.

The next step is to find the overall number of EO for the three systems
under consideration, i.e. for the CS, the HS and the FS. This is done by
adding the number of operations for the separate stages and substages for
each of the three systems, as shown by Eq. (9.173), Eq. (9.174) and

EOCS = EOFU

CS + EOAP

CS + EOIM

CS + EOAG

CS + EODE

CS

 = (6 . m . w . n . h) + (w + m – 2) . w m-1. n . h + (7 . w m. t . n . h)

 + (w m – 1) . t . n . h + (3 . t – 1) . n . h =

 = (6 . m . w) . n . h + (w + m – 2) . w m-1. n . h + (7 . w m. t). n . h

 + (w m. t – t) . n . h + (3 . t – 1) . n . h

 = (6 . m . w + w m + m . w m-1 – 2 . w m-1+ 7 . w m. t
m

 = [w m + 7 . t . w m + t . w m + (m – 2) . w m-1 + 6 . w . m

 + 2 . t – 1] . n . h

 = [(8 . t + 1). w m + (m – 2) . w m-1 + 6 . m . w + 2 . t – 1] . n . h

(9.173)

We can use Eqs. (9.173)–(9.175) to evaluate comparatively the quantitative

As far as Example 9.13 is concerned, the two inputs take 4 and 5
linguistic values, respectively. For this reason, the value of w has been set

 w . t – t + 3 . t – 1) . n . h +

Eq. (9.175), respectively.

complexity of the three fuzzy systems when applied to Examples 9.13–9.14.

332 Formal Simplification of Fuzzy Rule Based Systems

good approximation of the exact number of on-line operations. The results
for one simulation step in these examples are presented in Table 9.22.

EOHS = EOFU

HS + EOAP

HS + EOIM

HS + EOAG

HS + EODE

HS

= (m – 1) . (12 . w . n . h) + (m – 1) . w 2. n . h

 + (m – 1) . (7 . w 2. t . n . h) + (m – 1) . (w 2 – 1) . t . n . h

+ (m – 1) . (3 . t – 1) . n . h

 = (m – 1) . [(12 . w . n . h) + w 2. n . h + (7 . w 2. t . n . h)

 + (w 2 – 1) . t . n . h + (3 . t – 1) . n . h] =

 = (m – 1) . [12 . w . n . h + w 2. n . h + 7 . w 2. t . n . h +

 + (w 2 – 1) . t . n . h + (3 . t – 1) . n . h]

 = (m – 1) . (12 . w + w 2 + 7. t . w 2 + t . w 2 – t + 3 . t – 1) . n . h

 = (m – 1) . [(8 . t + 1) . w 2 + 12 . w + 2 . t – 1] . n . h

(9.174)

EOFS = EOFU

FS + EOAP

FS + EOIM

FS + EOAG

FS + EODE

FS + EOCO

FS

 = (6 . m . w . n . h) + (w + m – 2) . w m-1. n . h + (7 . w . t . n . h)

 + (w – 1) . t . n . h + (3 . t – 1) . n . h + (w m – w) . n . h

 = (6 . m . w) . n . h + (w + m – 2) . w m-1. n . h + (7 . w . t). n . h

 + (w . t – t). n . h + (3 . t – 1) . n . h + (w m – w) . n . h

 = (6 . m . w + w m + m . w m-1 – 2 . w m-1+ 7 . w . t

w . t – t + 3 . t – 1 + w m – w) . n . h

 = [2 . w m + (m – 2) . w m-1 + (6 . m – 1) . w + (8 . w + 2). t – 1] . n . h

(9.175)

Fuzzy system / Example Example 9.13 Example 9.14
EOCS 2205 2487
EOHS 2205 1716
EOFS 583 399

and the HS for Example 9.13. Also, the FS is more than 6 times more
efficient than the CS and more than 4 times more efficient than the HS for

+

equal to the average of the two numbers, i.e. 4.5, and this should lead to a

Table 9.22 shows that the FS is almost 4 times more efficient than the CS

Table 9.22. Quantitative complexity of the three fuzzy systems in Examples 9.13–9.14

9.4 Complexity Evaluation of Formal Simplification Techniques 333

Example 9.14. As in terms of behaviour the HS is only an approximation of
the CS whereas the FS is equivalent to the CS, it is obvious that the FS
outperforms significantly the other two systems.

Equations (9.173)–(9.175) are general formulas for the overall number of
EO for the three fuzzy systems and can therefore be used for the evaluation
of these systems in a wide context, i.e. without looking at specific
examples. By varying some of the parameters in these formulas, it would be
possible to see the dependency between the quantitative complexity for
each system and the values of its parameters.

As the increase of the parameters n and h would always lead to a similar
linear increase of the quantitative complexity for the three systems, it would
be reasonable to keep these parameters fixed. As far as the other parameters
m, w and t are concerned, it would be necessary to vary them because their
increase would usually lead to a different exponential increase of the
quantitative complexity of the three systems. Therefore, we will assume
that the parameters have the following fixed values and variation ranges:

n = 1; h = 1; m = 2,3,4; w = 3,5,7,9,11; t = 7,13,19,25,31 (9.176)

In order to reduce the number of possible permutations of values for m, w
and t, we will assume that the variation of the parameters w and t is fixed
by the formula:

t = 3 . w – 2 (9.177)

Equations (9.176)–(9.177) define a fairly wide and reasonable scope for
evaluating the quantitative complexity in fuzzy systems. In particular, most
fuzzy systems are initially considered for one simulation step of one output
before more simulation steps of this output or simulations of other outputs
are considered. Also, fuzzy systems are usually represented with up to 4
inputs as the number of rules for more inputs would be almost
unmanageable. In addition, the inputs and outputs of fuzzy systems are
often described by an odd number of linguistic values as this provides
better coverage of the associated universes of discourse. And finally, the
number of elements in the discrete universe of discourse for an output is
often between 2 and 3 times greater than the number of linguistic values for
this output, whose number is often close or even equal to the number of
linguistic values that each input can take.

Table 9.23 presents the results from a general comparative evaluation of
the quantitative complexity of the CS, the HS and the FS. This evaluation is
made using Eqs. (9.173)–(9.175) and in accordance with the assumptions
made for the values of all relevant parameters, as shown by Eqs. (9.176)–(9.177).

334 Formal Simplification of Fuzzy Rule Based Systems

Table 9.23. Quantitative complexity of the three fuzzy systems

Number of rules / Fuzzy system EOCS EOHS EOFS

32 = 9 562 562 232
33 = 27 1,615 1,124 295
34 = 81 4,756 1,686 466

52 = 25 2,710 2,710 650
53 = 125 13,265 5,420 905
54 = 625 66,020 8,130 2,160

72 = 49 7,618 7,618 1,276
73 = 343 52,691 15,236 1,955
74 = 2401 368,244 22,854 6,750

92 = 81 16,438 16,438 2,110
93 = 729 146,821 32,876 3,541
94 = 6,561 1,320,484 49,314 16,636

112 = 121 30,322 30,322 3,152
113 = 1,331 331,779 60,644 5,759
114 = 14,641 3,648,596 90,966 34,986

The figures for the HS and the FS in Table 9.23 are also illustrated
graphically in Fig. 9.18. The CS is not shown because it is very inefficient
and would obstruct the graphical interpretation of the other two systems.

Table 9.23 and Fig. 9.18 show that the FS is superior for all considered
permutations of values for the relevant parameters. In order to find the
margin and the extent of this superiority, we have to compare each of the
two inferior systems to the FS by subtracting and dividing the amount of
corresponding operations, as shown in Tables 9.24–9.25.

It can be seen from Tables 9.24–9.25 that in most cases the margin and
the extent of superiority of the FS with respect to the CS and the HS
increases with the increase of the number of inputs for a fixed number of
linguistic values per input as well as with the increase of the linguistic
values per input for a fixed number of inputs. This increase is with a fairly
big magnitude with respect the CS and with a more moderate magnitude
with respect to the HS.

9.4 Complexity Evaluation of Formal Simplification Techniques 335

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

3^
2

3^
3

3^
4

5^
2

5^
3

5^
4

7^
2

7^
3

7^
4

9^
2

9^
3

9^
4

11
^2

11
^3

11
^4

Number of rules

N
u

m
b

e
r
 o

f
o

n
-l

in
e

 o
p

e
r
a

ti
o

n
s

hierarchical system filtered system

Fig. 9.18. Quantitative complexity of the hierarchical system and the filtered
system

Table 9.24. Margin of superiority of the filtered system

Number of rules /
Comparison

EOCS - EOFS EOHS - EOFS

32 = 9 562 - 232 = 330 562 - 232 = 330
33 = 27 1,615 - 295 = 1,320 1,124 - 295 = 829
34 = 81 4,756 - 466 = 4,290 1,686 - 466 = 1,220

52 = 25 2,710 - 650 = 2,060 2,710 - 650 = 2,060
53 = 125 13,265 - 905 = 12,360 5,420 - 905 = 4,515
54 = 625 66,020 - 2,160 = 63,860 8,130 - 2,160 = 5,970

72 = 49 7,618 - 1,276 = 7,342 7,618 - 1,276 = 7,342
73 = 343 52,691 - 1,955 = 50,736 15,236 - 1,955 = 13,281
74 = 2,401 368,244 - 6,750 = 361,494 22,854 - 6,750 = 16,104

92 = 81 16,438 - 2,110 = 14,328 16,438 - 2,110 = 14,328
93 = 729 146,821 - 3,541 = 143,280 32,876 - 3,541 = 29,335
94 = 6,561 1,320,484 - 16,636 = 1,303,848 49,314 - 16,636 = 32,678

112 = 121 30,322 - 3,152 = 27,170 30,322 - 3,152 = 27,170
113 = 1,331 331,799 - 5,759 = 326,040 60,644 - 5,759 = 54,885
114 = 14,641 3,648,596 - 34,986 = 3,613,610 90,966 - 34,986 = 55,980

336 Formal Simplification of Fuzzy Rule Based Systems

Table 9.25. Extent of superiority of the filtered system

Number of rules /
Comparison

EOCS / EOFS EOHS / EOFS

32 = 9 562 / 232 = 2.42 562 / 232 = 2.42
33 = 27 1,615 / 295 = 5.47 1,124 / 295 = 3.81
34 = 81 4,756 / 466 = 10.20 1,686 / 466 = 3.61

52 = 25 2,710 / 650 = 4.16 2,710 / 650 = 4.16
53 = 125 13,265 / 905 = 14.65 5,420 / 905 = 5.98
54 = 625 66,020 / 2,160 = 30.56 8,130 / 2,160 = 3.76

72 = 49 7,618 / 1,276 = 5.97 7,618 / 1,276 = 5.97
73 = 343 52,691 / 1,955 = 26.95 15,236 / 1,955 = 7.79
74 = 2,401 368,244 / 6,750 = 54.55 22,854 / 6,750 = 3.38

92 = 81 16,438 / 2,110 = 7.79 16,438 / 2,110 = 7.79
93 = 729 146,821 / 3,541 = 41.46 32,876 / 3,541 = 9.28
94 = 6,561 1,320,484 / 16,636 =

79.37
49,314 / 16,636 =
2.96

112 = 121 30,322 / 3,152 = 9.61 30,322 / 3,152 = 9.61
113 = 1,331 331,799 / 5,759 = 57.61 60,644 / 5,759 = 10.53

114 = 14,641 3,648,596 / 34,986 =
104.28

90,966 / 34,986 =
2.60

Another thing that may be interest for the comparative complexity
evaluation of the three systems is the average margin and the average extent
of superiority of the FS with respect to the other systems for a varying
number of inputs and a fixed number of linguistic values per input. For this
purpose, we have to consider the FS in a separate pair with each of the
other two systems, as shown in Table 9.26–9.27.

Tables 9.26–9.27 show in all cases that the average margin and the

average extent of superiority of the FS with respect to the CS and the HS

increases with the increase of the linguistic values per input for a fixed

number of inputs. This increase is close to linear with respect to both the

CS and the HS. The magnitude of this increase is fairly big with respect the

CS and more moderate magnitude with respect to the HS.

9.4 Complexity Evaluation of Formal Simplification Techniques 337

Table 9.26. Average margin of superiority of the filtered system

Parameter values /
Pair

EOCS vs EOFS EOHS vs EOFS

m = 2,3,4; w = 3 (330 + 1,320 + 4,290) / 3 =
1,980

(330 + 829 + 1,220) / 3 =
793

m = 2,3,4; w = 5 (2,060 + 12,360 + 63,860) / 3
=26,093

(2,060 + 4,515 + 5,970) / 3

m = 2,3,4; w = 7 (7,342 + 50,736 + 361,494) /

3 =139,857
(7,342 + 13,281 + 16,104) /

m = 2,3,4; w = 9 (14,328 + 143,280 +
1,303,848) / 3 =487,152

(14,328 + 29,335 + 32,678)
/ 3 =25,447

m = 2,3,4; w = 11 (27,170 + 326,040 +
3,613,610) / 3 =1,322,273

(27,170 + 54,885 + 55,980)
/ 3 = 46,011

Table 9.27. Average extent of superiority of the filtered system

Parameter values /
Pair

EOCS vs EOFS EOHS vs EOFS

m = 2,3,4; w = 3 (2.42 + 5.47 + 10.20) / 3 =
6.03

(2.42 + 3.81 + 3.61) / 3 =
3.28

m = 2,3,4; w = 5 (4.16 + 14.65 + 30.56) / 3 =
16.45

(4.16 + 5.98 + 3.76) /3 =
4.63

m = 2,3,4; w = 7 (5.97 + 26.95 + 54.55) / 3 =

29.15
(5.97 + 7.79 + 3.38) / 3 =
5.71

m = 2,3,4; w = 9 (7.79 + 41.46 + 79.37) / 3 =
42.87

(7.79 + 9.28 + 2.96) / 3 =
6.67

m = 2,3,4; w = 11 (9.61 + 57.61 + 104.28) / 3 =
57.16

(9.61 + 10.53 + 2.60) / 3 =
7.58

The last thing that may be interest for the comparative complexity
evaluation of the three systems is the overall margin and the overall extent
of superiority of the FS with the respect to the other systems for a varying
number of inputs and a varying number of linguistic values per input. For
this purpose, we have to consider the FS again in a separate pair with each
of the other two systems, as shown in Tables 9.28–9.29.

3 = 12,424

= 4,181

338 Formal Simplification of Fuzzy Rule Based Systems

Table 9.28. Overall margin of superiority of the filtered system

Parameter values /
Pair

EOCS vs EOFS EOHS vs EOFS

m = 2,3,4;
w = 3,5,7,9,11

(1,980 + 26,093 + 139,857 +
+ 487,152 + 1,322,273) / 5 =
395,471

(793 + 4,181 + 12,424 +
+ 25,447 + 46,011) / 5 =
17,771

Table 9.29. Overall extent of superiority of the filtered system

Parameter values /
Pair

EOCS vs EOFS EOHS vs EOFS

m = 2,3,4;
w = 3,5,7,9,11

(6.03 + 16.45 + 29.15 +
 + 42.87 + 57.16) / 5 = 30.33

(3.28 + 4.63 + 5.71 +
 + 6.67 + 7.58) / 5 = 5.57

It can be seen from Table 9.28 that overall the FS is with more than
395,000 operations more efficient than the CS and with more than 17,000
operations more efficient than the HS. Table 9.29 show that that overall the
FS is more than 30 times more efficient than the CS and more than 5 times
more efficient than the HS.

As in terms of behaviour the HS is only an approximation of the CS
whereas the FS is equivalent to the CS, it is obvious that the FS
outperforms significantly the other two systems. Moreover, this superiority
is valid for fuzzy systems whose number of rules exceeds 14,000, as shown
in Table 9.23.

9.5 Comparative Analysis of Formal Simplification Techniques

The two formal simplification techniques introduced in Sects. 9.2–9.3 are
a powerful tool for reducing the quantitative complexity in fuzzy systems.
In particular, the aggregation of inconsistent rules and the filtration of non-
monotonic rules can be used for reducing the number of rules in SRB
systems or MRB systems represented with equivalent SRB systems. This
leads to a reduction of the overall amount of operations during the
operational stages and substages in fuzzy systems such as fuzzification,
inference, i.e. application, implication, aggregation, and defuzification.

From the two formal simplification techniques, aggregation has a fairly
limited effect because fuzzy rule bases are rarely inconsistent but if that is
the case then there is usually a small number of inconsistent rules. As
opposed to this, filtration has a much wider effect because fuzzy rule bases
almost always have a big number of non-monotonic rules. The effect of the
two techniques determines to a great extent their impact on a fuzzy system
which is fairly moderate for aggregation but quite big for filtration. As far

9.6 Application Range of Formal Simplification Techniques 339

as the solution for an AS and a FS is concerned, it is equivalent to the one
for a CS, i.e. a system whose inconsistent rules are not aggregated or a

The considerations presented above on formal simplification techniques
for fuzzy rule bases provide essential information about the main
characteristics of these techniques. These characteristics are summarised in
Table 9.30.

Table 9.30. Characteristics of formal simplification techniques for fuzzy rule bases

Technique / Characteristic Effect Impact Solution

Filtration of non-monotonic rules wide big equivalent

9.6 Application Range of Formal Simplification Techniques

The formal simplification techniques introduced in this chapter are
applicable to a wide range of SRB systems. These techniques can be
applied to Mamdami, Sugeno and Tsukamoto systems, CON and DIS
systems, MO and SO systems, as well as FF and FB systems.

Examples 9.1–9.14 describe explicitly a fuzzy system of Mamdami type.
In order to apply the associated rule base simplification algorithms to
Sugeno and Tsukamoto systems, the substages of implication and
aggregation within the inference stage have to be modified accordingly. In
particular, the outputs from the implication substage will not be
membership functions for the output but its defuzzified values for the
separate rules. These values will then have to be aggregated by a weighted
average method to give the overall defuzzified value of the output for all
the rules. In this case, inconsistent and non-monotonic rules can still be

guarantee that the overall defuzzified value for the output by using the
weighted average method will be the same as the one for a CS.

As far as CON and DIS systems are concerned, the formal simplification
techniques are directly applicable to all of them. In this case, depending on
the particular type of system, i.e. CADR, DADR, CACR or DACR,
appropriate modifications have to be made for the application and
aggregation substages of the inference stage.

The formal simplification techniques can be extended easily for other
types of fuzzification, implication or defuzzification. For example, instead
of triangular functions in the fuzzification stage, it is possible to use
trapezoidal, Gaussian or other types of membership functions. Also, instead
of a truncation type of implication, it is possible to use a scaling type of
implication or another implication. And finally, instead of centroid
defuzzification it is possible to use other types of defuzzification such as

system whose non-monotonic rules are not filtered.

aggregated and filtered but some adjustments have to be made in order to

Aggregation of inconsistent rules limited moderate equivalent

340 Formal Simplification of Fuzzy Rule Based Systems

maximum, weighted average, etc. In all these cases, appropriate
adjustments have to be made to ensure that the overall defuzzified value of
the output is the same as the one for a CS.

The formal simplification techniques have been illustrated only for single
simulation cycles of SO systems. However, they can be easily extended to
multiple simulation cycles and MO systems. In this case, all procedures
presented in this chapter should be applied in exactly the same way to each
simulation cycle of each output. This would obviously lead to a linear
increase of the associated quantitative complexity, which would be
proportional to the number of simulation cycles and the number of outputs.

Although the formal simplification techniques have been demonstrated
only for SRB systems, they can be indirectly applied to MRB systems,
which can be of either FF or FB type. In this case, the MRB system must be
transformed first into an equivalent SRB system.

The formal simplification techniques introduced in this chapter facilitate
the complexity management in fuzzy systems. These techniques allow the
information contained in the inconsistent or non-monotonic rule base of a
SRB system to be compressed in a non-lossy manner by removing the
redundancy in the rule base. As a result this compression, the rule base can
be reduced and represented equivalently as a consistent and monotonic rule
base.

The formal simplification techniques presented here are the last building
block in a series of complexity management techniques for fuzzy systems
introduced in the preceding chapters. However, all these techniques have
been discussed fairly independently from each other so far. Therefore, it
would be useful to know how we can make these building blocks stick
together in the context of a general framework for complexity management
in fuzzy systems. A detailed discussion on this issue is presented in the next
concluding chapter.

10 Conclusion

10.1 Formal Approach for Fuzzy Rule Base Compression

This book treats in detail complexity management aspects in fuzzy systems.
In particular, Chapters 4–9 are dedicated to different techniques for
complexity management. However, there is a common feature uniting most
of these techniques in that complexity management in fuzzy systems is
usually implemented by compression of the rule base.

In the case of formal presentation, the integer table of a rule base is
compressed by a Boolean matrix or binary relation. In formal manipulation,
the Boolean matrices or binary relations of two rule bases are compressed
into a single Boolean matrix or binary relation by merging. Formal
transformation is an extension of formal manipulation whereby the Boolean
matrices or binary relations describing a MRB system are compressed into
a single Boolean matrix or binary relation describing the equivalent SRB
system. And finally, in the case of formal simplification, the Boolean
matrix or binary relation of a SRB system is compressed by aggregation of
inconsistent rules or filtration of non-monotonic rules.

In this context, formal presentation, manipulation and transformation
techniques deal mainly with qualitative aspects of complexity whereby the
fuzzy rule bases become more transparent and easier for interpretation. At
the same time, formal simplification techniques are focused predominantly
on quantitative aspects of complexity whereby the amount of on-line
operations and the associated computational times in fuzzy systems are
reduced.

10.2 Theoretical Significance of Fuzzy Rule Base Compression

The formal approach of fuzzy rule base compression introduced in this
book has a big theoretical significance. It makes good use of mathematics
and its power to formalise and facilitate a particular course of action as well
as to justify and guarantee the result from this action. In this context, a
number of algorithms and numerous examples are given for illustration of
the underlying theoretical concepts.

Another interesting feature of the formal approach used is that it leads to
non-lossy compression of the rule base. In particular, the compression of

Alexander
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

Gegov: Complexity Management in Fuzzy Systems, StudFuzz 211, 341–344 (2007)

342 Conclusion

the IFS is done in a way which allows its reconstruction, if necessary, and
ensures that the solution is uncompromised, i.e. the defuzzified output from
the RFS is the same as the one from the IFS. In this sense, the approach is
very suitable for both time-critical and safety-critical applications.

Also, this formal approach undoubtedly improves the important
attributes of computer speed and intelligence. These attributes are crucial
for the successful treatment of time-critical and safety-critical applications
of fuzzy systems characterised by quantitative and qualitative complexity.

10.3 Application Framework for Fuzzy Rule Base Compression

The formal approach of fuzzy rule base compression described in this
book is applicable to a wide range of fuzzy systems. It would not be an
overstatement to say that it can be applied almost universally to any type of
fuzzy system irrespective of the number of its inputs, rules, etc. In this
context, the algorithm below describes briefly an application framework for
the formal approach.

 Algorithm 10.1
Off-line

1. Present formally a fuzzy system.
2. For a MRB system, go to step 3; for a SRB system, go to step 5.
3. Manipulate formally the constituent SRB systems of the MRB

system.
4. Transform formally the MRB system into an equivalent SRB

system.
5. For a MO SRB system, go to step 6; for a SO SRB system, go to

step 7.
6. Convert the MO SRB system into an equivalent collection of SO

SRB systems.
7. For each SO SRB system, sort the inconsistent rules in groups.
8. For each SO SRB system, aggregate the inconsistent rules from

each group.
9. For each SO SRB system, sort the non-monotonic rules in

groups.

On-line
1. For each SO SRB system, apply the fuzzification stage.
2. For each SO SRB system, apply the application substage of the

inference stage.
3. For each SO SRB system, filter the non-monotonic rules from

each group.
4. For each SO SRB system, apply the implication substage of the

inference stage.

10.4 Future Directions for Related Research in Fuzzy Systems 343

5. For each SO SRB system, apply the aggregation substage of the
inference stage.

6. For each SO SRB system, apply the defuzzification stage.

It is obvious from Algorithm 10.1 that almost all formal compression
techniques from this book are applied in off-line steps 1-9. The only
exception is the filtration of non-monotonic rules, which is applied in on-
line step 3. The remaining on-line steps, i.e. steps 1-2 and 4-6, are occupied
by standard processes in fuzzy systems such as fuzzification, application,
implication, aggregation and defuzzification. This algorithm shows that the
formal approach for rule base compression fits very well within the
established general application framework for fuzzy systems.

The on-line steps in Algorithm 10.1 reflect only one simulation cycle of
a fuzzy system. In the case of more simulation cycles, all on-line steps must
be applied for each new cycle. In this case, the computations for each SO
SRB system may be done in parallel, which would reduce the overall
computational time.

10.4 Future Directions for Related Research in Fuzzy Systems

The formal approach of fuzzy rule base compression presented in this book
is expected to encourage and stimulate new research in fuzzy systems and
related areas. This expectation is based on the fact that this formal approach
has a natural overlap with some recent research trends in other types of
complex systems, e.g. deterministic and probabilistic systems.

One possibility in this respect would be the extension of fuzzy systems to
fuzzy networks, which has already been initiated by the techniques of
formal transformation of a MRB system into an equivalent SRB system. In
this context, MRB systems can be viewed as networks whose nodes are in
the form of SRB systems and whose connections are of FF or FB type.

Another possibility would be the extension of fuzzy systems to fuzzy
multi-agent systems. This has also been initiated by the techniques of
formal transformation of fuzzy systems whereby the transformation process
exhibits features similar to the ones of multi-agent systems. In this context,
MRB systems can be viewed as multi-agent systems whose agents are in

relocation during the transformation process.
A third possibility would be the development of a new type of adaptive

fuzzy systems by means of formal simplification techniques. In this case,
the aggregation of inconsistent rules and the filtration of non-monotonic
rules can be viewed as off-line and on-line adaptation of the associated
rule base, respectively.

the form of SRB systems and whose migration is in the form of their

344 Conclusion

10.5 Overall Book Evaluation

To the best knowledge of the author, this book is a first attempt for
addressing the growing problem of complexity in fuzzy systems at a
monographic level. As such, the book possibly has some drawbacks, e.g.
theoretical bias, simplistic illustrations, partial software implementations,
etc. For this reason, the author would be very thankful to colleagues from
the international academic community who may be interested in any further
theoretical developments or practical applications of the research results
presented here.

In spite of the possible drawbacks of this work, the author believes that
the timeliness for its publication is more important than a comprehensive
coverage. Moreover, the book appears to have dealt successfully with
almost all questions raised in Chapter 1. Some of these questions are
discussed in the preceding sections of this chapter whereas others are
considered briefly below.

For example, the formal approach used can be classified as fundamental
and applied science on the basis of its theoretical foundations and suitability
for applications. In this sense, it is neither an abstract theory nor empirical
practice and it can hopefully stand the potential criticism from opponents of
fuzzy logic. Also, the book has managed to open new horizons and suggest
viable alternatives to the existing ‘status quo’ in the field of fuzzy systems
by successfully replacing the established approach of complexity reduction
with the more advanced approach of complexity management. As such, the
book has helped the better understanding and analysis of complexity in
fuzzy systems which will hopefully make these systems easier to interpret
and more enjoyable to work with.

The author believes that this book will help fuzzy logic move a bit closer
to the place that it deserves – as a main subject in university curricula and a
key area for scientific research. Because undoubtedly fuzzy systems have a
great potential that has been only partially explored. And maybe one day
fuzzy logic will replace binary logic not only in the world of computing but
also far beyond.

References

1. Alcala R, Cano J, Cordon O, Herrera F, Villar P, Zwir I (2003) Linguistic
modelling with hierarchical systems of weighted linguistic rules. International
Journal of Approximate Reasoning 32 : 187–215

2. Ascia G, Catania V, Russo M (1999) VLSI hardware architecture for complex
fuzzy systems. IEEE Transactions on Fuzzy Systems 7/5 : 553–570

3. Baboshin N, Naryshkin D (1990) On identification of multidimensional fuzzy
systems. Fuzzy Sets and Systems 35 : 325–331

4. Babuska R (1998) Fuzzy modelling for control. Kluwer, Boston
5. Bolognani S, Zigliotto M (1998) Hardware and software effective

configurations for multi-input fuzzy logic controllers. IEEE Transactions on
Fuzzy Systems 6/1 : 173–179

6. Boverie S, Demaya B, Lequellec J, Titli A (1993) Fuzzy control of high order
systems using a parallel structure of second order blocks. In: IFAC world
congress, pp 573–576

7. Bucolo M, Fortuna L, La Rosa M (2004) Complex dynamics through fuzzy
chains. IEEE Transactions on Fuzzy Systems 12/3 : 289–295

8. Burke D, Rattan K (1993) A multi-layer motion controller for a mobile robot

9. Chaudhury S, Singh T, Goswami P (2004) Distributed fuzzy case based
reasoning. Applied Soft Computing 4 : 323–343

10. Chen S, Yu F, Chung H (2002) Decoupled fuzzy controller design with single-
input fuzzy logic. Fuzzy Sets and Systems 129 : 335–342

11. Chung F, Duan J (2000) On multistage fuzzy neural network modelling. IEEE
Transactions on Fuzzy Systems 8/2 : 125–142

12. Combs W, Andrews J (1998) Combinatorial rule explosion eliminated by a
fuzzy rule configuration. IEEE Transactions on Fuzzy Systems 6/1 : 1–11

13. Cordon O, Herrera F, Zwir I (2002) Linguistic modelling by hierarchical
systems of linguistic rules. IEEE Transactions on Fuzzy Systems 10/1 : 2–20

14. Cordon O, Herrera F, Zwir I (2003) Fuzzy modelling by hierarchically built
fuzzy rule bases. International Journal of Approximate Reasoning 27 : 61–93

15. Cordon O, Herrera F, Zwir I (2003) A hierarchical knowledge-based
environment for linguistic modelling: models and iterative methodology.
Fuzzy Sets and Systems 138 : 307–341

16. De Oliveira J, Gomide F (2001) Formal methods for fuzzy modelling and
control. Fuzzy Sets and Systems 121 : 1–2

17. De Silva C (1993) Knowledge base decoupling in fuzzy logic control systems.
In: American control conference, pp 760–764

18. Dubois D, Prade H, Ughetto L (1997) Checking the coherence and redundancy
of fuzzy knowledge rule bases. IEEE Transactions on Fuzzy Systems 5/3 :
398–417

implemented with fuzzy logic. In: American control conference, pp 2248–2251

346 References

19. Endo Y, Horiuchi K (2004) Risk analysis of fuzzy control systems with
 (n+1)-inputs and 1-output FLC. Fuzzy Sets and Systems 148 : 341–361

20. Galichet S, Boukezzoula R, Foulloy L (2004) Explicit analytical formulation
and exact inversion of decomposable fuzzy systems with singleton
consequents. Fuzzy Sets and Systems 146 : 421–436

21. Gegov A (1994) Multilevel intelligent fuzzy control of oversaturated urban
traffic networks. International Journal of Systems Science 25/6 : 967–978

22. Gegov A (1995) Multilayer fuzzy control of multivariable systems by passive
decomposition. Applied Mathematics and Computer Science 5/4 : 615–633

23. Gegov A (1995) Decentralised fuzzy control of multivariable systems by direct
decomposition. Engineering Applications of Artificial Intelligence 8/2 : 201–209

24. Gegov A (1996) Distributed fuzzy control of multivariable systems. Kluwer,
Dordrecht

25. Gegov A (1997) Multilayer fuzzy control of multivariable systems by active
decomposition. International Journal of Intelligent Systems 12/1 : 83–103

26. Gegov A (1998) Multilayer fuzzy control of multivariable systems by direct
decomposition. International Journal of Systems Science 29/8 : 851–862

27. Gegov A (1998) Linguistic decomposition of MIMO fuzzy systems. Research
report, Delft University of Technology

28. Gegov A, Frank M (1994) Decentralised fuzzy control of multivariable
systems by passive decomposition. Intelligent Systems Engineering 3/4 : 194–200

29. Gegov A, Frank M (1995) Hierarchical fuzzy control of multivariable systems.
Fuzzy Sets and Systems 72 : 299–310

30. Gegov A, Frank M (1995) Decomposition of multivariable systems for
distributed fuzzy control. Fuzzy Sets and Systems 73 : 329–340

31. Gegov A, Frank M (1995) Reduction of multidimensional relational relations
in fuzzy control systems. Systems and Control Letters 25 : 307–313

32. Gegov A, Maketas D (2005) Formal presentation of fuzzy systems with
multiple sensor inputs. Sensors and Transducers Magazine 366–373

33. Gegov A, Babuska R, Verbruggen H (1998) Linguistic decoupling in MIMO
fuzzy systems. In: European congress on intelligent techniques and soft
computing, pp 1620–1624

34. Gegov A, Babuska R, Verbruggen H (1999) Linguistic analysis of interactions
in MIMO fuzzy systems. In: IFAC world congress, pp 249–254

35. Golob M (2001) Decomposed fuzzy proportional-integral-derivative
controllers. Applied Soft Computing 1 : 201–214

36. Gupta M, Kiszka J, Trojan G (1986) Multivariable structure of fuzzy control
systems. IEEE Transactions on Systems, Man and Cybernetics 16/5 : 638–655

37. Guven M, Passino K (2001) Avoiding exponential parameter growth in fuzzy
systems. IEEE Transactions on Fuzzy Systems 9/1 : 194–199

38. Hall L (2001) Rule chaining in fuzzy expert systems. IEEE Transactions on
Fuzzy Systems 9/6 : 822–828

39. Henderson M, Gill K (1993) Robotic control using fuzzy logic and parallel
processing. In: European control conference, pp 481–485

40. Hirota K, Pedrycz W (2002) Data compression with fuzzy relational equations.
Fuzzy Sets and Systems 126 : 325–335

References 347

41. Huwendiek O, Brockmann W (1999) Function approximation with
decomposed fuzzy systems. Fuzzy Sets and Systems 101 : 273–286

42. Jamshidi M (1997) Large scale systems: modelling, control and fuzzy logic.
Prentice Hall, Upper Saddle River

43. Jang J, Sun C, Mizutani E (1997) Neuro-fuzzy and soft computing: a
computational approach to learning and machine intelligence. Prentice Hall,
Upper Saddle River

44. Jia L, Zhang X (1993) Identification of multivariable fuzzy systems through
fuzzy cell mapping. In: IFAC World Congress, pp 389–393

45. Joo M, Lee J (2002) Universal approximation by hierarchical fuzzy system
with constraints on the fuzzy rule. Fuzzy Sets and Systems 130 : 175–188

46. Joo M, Lee J (2005) A class of hierarchical fuzzy systems with constraints on
the fuzzy rules. IEEE Transactions on Fuzzy Systems 13/2 : 194–203

47. Kim K (1982) Boolean matrix theory and applications. Marcel Dekker, New
York

48. Kim Y, Ahn S, Kwon W (2000) Computational complexity of general fuzzy
logic control and its simplification for a loop controller. Fuzzy Sets and
Systems 111 : 215–224

49. Koczy L, Hirota K (1993) Modular rule bases in fuzzy control. In: European
congress on fuzzy and intelligent technologies, pp 606–610

50. Lacrose, V (1997) Complexity reduction of fuzzy controllers: application to
multivariable control. PhD thesis, Toulouse Laboratory for Systems Analysis
and Architecture

51. Lazzerini B, Marcelloni F (2000) Reducing computation overhead in MISO
fuzzy systems. Fuzzy Sets and Systems 113 : 485–496

52. Lee M, Chung H, Yu F (2003) Modelling of hierarchical fuzzy systems. Fuzzy
Sets and Systems 138 : 343–361

53. Lehmke S, Temme K, Thiele H (1998) Reducing the number of inference steps
for multiple-stage fuzzy if-then rule bases. Research report, University of
Dortmund

54. Li H, Tso S (1999) Higher order fuzzy control structure for higher order or
time-delay systems. IEEE Transactions on Fuzzy Systems 7/5 : 540–552

55. Mar J, Lin HT (2005) A car-following collision prevention control device
based on the cascaded fuzzy inference system. Fuzzy Sets and Systems 150 :
457–473

56. Mendel J, Liang Q (1999) Comments on “combinatorial rule explosion
eliminated by a fuzzy rule configuration”. IEEE Transactions on Fuzzy
Systems 7/3 : 369–371

57. Mollov, S (2002) Fuzzy Control of multiple-input multiple-output processes.
PhD thesis, Delft University of Technology

58. Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems.
Pearson Education, Harlow

59. Nurnberger A (2003) A hierarchical recurrent neuro-fuzzy model for system
identification. International Journal of Approximate Reasoning 32 : 153–170

60. Pal N, Eluri V, Mandal G (2002) Fuzzy logic approaches to structure
preserving dimensionality reduction. IEEE Transactions on Fuzzy Systems
10/3 : 277–286

61. Passino K, Yurkovich S (1998) Fuzzy Control. Addison-Wesley, Menlo Park

348 References

62. Pedrycz W, Reformat M (1997) Rule-based models of multivariable functions.
Fuzzy Sets and Systems 90 : 235–253

63. Qi X, Chin T (1997) Genetic algorithms based fuzzy controller for high order
systems. Fuzzy Sets and Systems 91 : 279–284

64. Raju G, Zhou J, Kisner R (1991) Hierarchical fuzzy control. International
Journal of Control 54/5 : 1201–1216

65. Rigatos G, Tzafestas S (2002) Parallelization of a fuzzy control algorithm

66. Ross T (2004) Fuzzy logic with engineering applications. Wiley, Chichester
67. Roubos H, Setnes M (2001) Compact and transparent fuzzy models and

classifiers through iterative complexity reduction. IEEE Transactions on Fuzzy
Systems 9/4 : 516–524

68. Setnes M (1995) Fuzzy rule base simplification using similarity measures.
MSc thesis, Delft University of Technology

69. Setnes M, Babuska R, Verbruggen H (1998) Rule-based modelling: precision
and transparency. IEEE Transactions on Systems, Man and Cybernetics 28/1 :
165–169

70. Simon D (2000) Design and rule base reduction of a filter for the estimation of
motor currents. International Journal of Approximate Reasoning 25 : 145–167

71. Sun Q, Li R, Zhang P (2003) Stable and optimal adaptive fuzzy control of
complex systems using fuzzy dynamic model. Fuzzy Sets and Systems 133 :
1–17

72. Tao C (2001) Comments on “reduction of fuzzy rule base via singular value
decomposition”. IEEE Transactions on Fuzzy Systems 9/4 : 675–676

73. Trillas E, Alsina C (2002) On the law [if (p and q) then r] = [(if p then r) or

74. Tu K, Lee T, Wang W (2000) Design of a multi-layer fuzzy logic controller
for multi-input multi-output systems. Fuzzy Sets and Systems 111 : 199–214

75. Wan F, Shang H, Wang L, Sun Y (2005) How to determine the minimum
number of fuzzy rules to achieve given accuracy: a computational geometric
approach to SISO case. Fuzzy Sets and Systems 150 : 199–209

76. Wang L (1999) Analysis and design of hierarchical fuzzy systems. IEEE
Transactions on Fuzzy Systems 7/5 : 617–624

77. Xiong N, Litz L (2002) Reduction of fuzzy control rules by means of premise
learning – method and case study. Fuzzy Sets and Systems 132 : 217–231

78. Xu C (1991) Linguistic decoupling control of fuzzy multivariable processes.
Fuzzy Sets and Systems 44 : 209–217

79. Xu C, Lu Y (1989) Decoupling in fuzzy systems: a cascade compensation
approach. Fuzzy Sets and Systems 29 : 177–185

80. Yam Y, Baranyi P, Yang C (1999) Reduction of fuzzy rule base via singular
value decomposition. IEEE Transactions on Fuzzy Systems 7/2 : 120–132

81. Yan J, Ryan M, Power J (1994) Using fuzzy logic. Prentice Hall, New York
82. Yeh Z (1998) A cross-coupled bistage fuzzy controller for biaxis

servomechanism control. Fuzzy Sets and Systems 97 : 265–275
83. Yeh Z, Li K (2004) A systematic approach for designing multistage fuzzy

control systems. Fuzzy Sets and Systems 143 : 251–273
84. Zeng X, Keane J (2005) Approximation capabilities of hierarchical fuzzy

systems. IEEE Transactions on Fuzzy Systems 13/5 : 659–672

using quantum computation. IEEE Transactions on Fuzzy Systems 10/4 : 451–460

(if q then r)] in fuzzy logic. IEEE Transactions on Fuzzy Systems 10/1 : 84–88

Index

above, 116
adaptive fuzzy systems, 343
addition, 40
additively separable, 23
aggregated fuzzy membership function,

271

aggregation method, 328
antecedents, 7
application, 269
associative, 156

below, 116
binary operations, 40
binary relations, 46
Boolean logic, 10
Boolean logic approach, 42
Boolean matrices, 39
bottom-nested downward feedback,

220
bottom-nested upward feedback, 224

centre of gravity, 273
centroid method, 273
chained fuzzy systems, 12
combined, 158
commutative, 40
compatible, 31
complete, 33
complex feedback, 190
complex feedback interconnections,

185
complexity, 1
complexity management, 5
complexity reduction, 5
composition, 48
composition compatibility rule, 49
compression, 341
computational time unit, 328
computers, 2

conjunction, 6
consequents, 7
consistent, 34
continuous crisp value, 271
continuous universe of discourse, 271
crisp functions, 8
crisp physical meaning, 7
crisp variation range, 7
crossed feedback, 234
crossed non-symmetric bottom-

downward feedback, 247
crossed non-symmetric bottom-upward

feedback, 241
crossed non-symmetric top-downward

feedback, 244
crossed non-symmetric top-upward

feedback, 239
crossed symmetric feedback, 237

defuzzification, 8
degree of completeness, 267
discrete crisp value, 272
discrete universe of discourse, 272
disjunction, 9
domain, 48
duality, 36

exhaustive, 34
exponential function, 15

filtration method, 328
firing strength, 8
first-order polynomials, 8
formal manipulation, 65

formal simplification, 269
formal transformation, 153
full property status, 36
fuzzification, 8
fuzzy logic, 3
fuzzy membership degree, 7

aggregation, 48

formal presentation, 31

350 Index

fuzzy multi-agent systems, 343
fuzzy networks, 343
fuzzy set, 7
fuzzy set union operation, 273

Gaussian, 340
global, 14
global complex downward feedback,

207
global complex feedback, 204
global complex upward feedback, 210
global feedback, 201
global simple downward feedback, 205
global simple feedback, 202
global simple upward feedback, 208

homogenous, 40
horizontal composition, 81
horizontal decomposition, 87
horizontal merging, 81
horizontal splitting, 87
horizontal truncation, 271

identity, 40
identity lines, 173
implication, 269
incomplete, 36
inconsistent, 36
in-degree, 266
inference, 8
inputs, 12
integer tables, 17
intelligence, 2
interchangeable, 162
interconnections, 12
intermediate input, 27
intermediate output, 27
interpretability, 4
intersection rule configuration, 23
into, 52

layer, 12
left, 116
left-nested feedback, 213
length, 164
level, 12
linear functions, 8
linguistic value, 7
local, 14

local feedback, 190
logical implication, 10
Lotfi Zadeh, 3

Mamdami, 7
many-to-one, 52
maplet, 48
maximum, 340
monotonic, 34
monotonic functions, 8
multilayer hierarchical structure, 26
multiple feedback, 249
multiple-output-multiple-input, 249
multiple-output-single-input, 249
multiplication, 40
multiplication compatibility rule, 41

nested feedback, 212
network, 12
non-commutative, 154
non-distributive, 159
non-exhaustive, 36
non-monotonic, 36
normal triangular fuzzy membership

functions, 269
null, 40

off-diagonal, 40
off-line operations, 328
on-diagonal, 40
one-to-many, 52
on-line operations, 328
onto, 52
operands, 40
out-degree, 266
output composition, 92
output decomposition, 102
output merging, 92
output splitting, 104
outputs, 12
overlapping downward feedback, 230
overlapping feedback, 226
overlapping upward feedback, 232

partial, 52
partial lines, 174
permutation, 115
product, 41

Index 351

qualitative, 1
quantitative, 1

range, 48
repetitive, 153
right, 116
right-nested feedback, 216
rule bases, 12
rules, 4

safety critical, 2
scaling, 340
self standing, 14
set of equivalent maplets, 276
set of non-zero equivalent elements,

279
set theoretic approach, 42
set theory, 42
simple feedback, 185
simple feedback interconnections, 185
single equivalent maplet, 276
single equivalent rule, 274
single non-zero equivalent element,

275
single-output-multiple-input, 149
single-output-single-input, 149
singular value decomposition, 21
spatial hierarchy, 13
spatially decomposed subsystems, 25
special rule bases, 115
speed, 2

square, 40
subrelation, 48
subset, 48
subset of equivalent rules, 274
Sugeno, 7

temporal hierarchy, 13
time critical, 2
top-nested downward feedback, 218
top-nested upward feedback, 222
total, 52
total lines, 173
transparency, 4
transpose, 115
trapezoidal, 340
truncated fuzzy membership function,

300
truncation, 340
Tsukamoto, 7

union rule configuration, 23
universal, 40

vertical composition, 65
vertical decomposition, 74
vertical merging, 65
vertical splitting, 73

weight, 7
weighted average, 339

