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Preface

Doing research is a great adventure 
As any adventure sometimes it is hard 
You may feel alone and with no idea where to go 
But if you have courage and press onwards 
You will eventually stand where no one has stood 
And see the world as no one has seen it 
There can be no better feeling than this! 
Adaptation from ‘Introduction to Research’,

 Tom Addis (2004) 

The idea about this book has been on the author’s mind for almost a decade 
but it was only about a couple of years ago when the underlying research 
process was actually started. The reason for this delay has been the 
insufficient spare time for research being a lecturer in a ‘new’ UK 
university where the emphasis is mainly on teaching. And maybe this book 
would have never been written if the author had not been presented with the 
chance of developing new teaching modules in fuzzy logic that have given 
him food for thought in a research related context and have helped him 
combine efficiently his teaching and research activities. 

The title of this book may sound too specialised but it has a much wider 
meaning. Fuzzy systems are any systems for modelling, simulation, control, 
prediction, diagnosis, decision making, pattern recognition, image 
processing, etc. which use fuzzy logic. Although fuzzy logic is an advanced 
extension of binary logic, the latter is still used predominantly today. The 
main reason for this anachronism is the high level of complexity that is 
usually associated with the use of fuzzy logic. So, if we were able to solve 
this problem by means of a suitable complexity management approach, 
fuzzy logic would gradually replace binary logic. In this context, the book 
is aimed at anyone who wants to explore new possibilities for using fuzzy 
logic more effectively and more efficiently. 

Complexity has always been an important attribute in research methods. 
Even nowadays, in the age of supercomputers capable of performing 
computations at a very high speed, there are still open problems in many 
research areas which are due to computational complexity, and in 
particular, to the lack of adequate methods for managing this complexity. 
For example, some large scale problems in cosmology and genetics are still 
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unsolvable within a reasonable time with the computational power available 
at present. In the case of threat from terrorism or natural disasters, the 
amount of information that is relevant to the decision making process can 
be so large that it may not be possible to process this information reliably 
within a reasonable time even with the help of the fastest computers.

We could possibly wait for computer technology to become more 
powerful to hopefully cope with the current challenges of complexity. 
Unfortunately, this process may take too long, and if and when it has been 
finally completed, the expected result may still be quite unreliable. The 
reason for this is that complexity as an attribute of the world that we live in 
has not only a quantitative dimension in terms of number and scale but also 
a qualitative dimension in terms of uncertainty and ambiguity. And until we 
learn how to deal with the qualitative aspects of complexity, we may never 
be in the position to solve some of the current problems however advanced 
the computer technology is. Also, we must bear in mind that efficiency of 
computer software usually has a much greater impact on computational 
times associated with large scale problems than the speed of computer 
hardware on which the software is running. 

So, if we want to tackle successfully the current challenges of 
complexity, we need to be able to develop and implement efficient and 
intelligent computational algorithms. These algorithms must be capable of 
not only dealing with the quantitative aspects of complexity on the basis of 
their efficiency but also with its qualitative aspects by means of their 
intelligence. In this context, fuzzy systems in the form of rule bases are 
possibly the best tool available for accounting qualitative aspects of 
complexity such as the uncertainty of the environment. However, the 
processes of fuzzification, inference and defuzzification usually make these 
systems suffer from some quantitative aspects of complexity such as the 
large number of fuzzy rules and associated operations on the fuzzy 
membership functions of the inputs and the outputs. 

The focus of this book is on the management of complexity in fuzzy rule 
based systems. This problem has been pushed from a marginal location into 
the mainstream of fuzzy logic research in recent years. The reason for this 
move is due to the ever more increasing demand for using fuzzy logic not 
only for small scale domestic purposes but also in large scale industrial and 
other applications. As a result, many papers and books on fuzzy logic have 
started to discuss the complexity aspects of the proposed methods in 
separate paragraphs or even whole sections. Moreover, a number of specific 
methods for complexity reduction in fuzzy systems have already been 
developed and used. 

This work is possibly a first attempt to deal with the problems of 
complexity in fuzzy rule based systems at a monographic level. The 
underlying philosophy is based on the idea of managing complexity rather 
than only reducing it. In this context, management is viewed as a group of 
activities such as perception, understanding, and analysis of complexity 
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with the intention of simplifying it formally in a universal and systematic 
way. This type of approach is quite different from most of the existing 
complexity reduction methods, which are usually characterised by a limited 
application scope and empirical nature. In fact, many of these methods 
simplify the complexity in fuzzy systems by actually ignoring it without 
adequate justification and with the hope that the resultant simplified system 
would behave similarly to the original complex one.

As opposed to the complexity reduction methods mentioned above, this 
book does not rely on semi-mechanistic simplifications and hopes for good 
luck in a gamble. It is based on the assumption that the inherent redundancy 
in fuzzy systems should be exploited not by empirical trials but through a 
sound and formal systematic process. This redundancy and the resulting 
complexity are attributes of the virtual fuzzy world created by us for the 
purpose of dealing with the uncertainty in the real crisp world. So, it is only 
up to us to identify this redundancy accurately, remove it safely and then 
arrive quickly at the desired destination in the real world once the job has 
been done. It may look a bit like the plot in the famous movie ‘The Matrix’ 

The author would like to thank some people and institutions without 
whom this book possibly would not have been what it is. He is very grateful 
to Prof Robert Babuska from the Systems and Control Centre at the Delft 
University of Technology, The Netherlands, for the enlightening 
discussions on the topic, and to the Editor-in-chief for this book series Prof 
Janusz Kacprzyk for the kind invitation to submit this work which had a 
stimulating effect on the overall research and writing process. He is also 
quite indebted to his senior colleague Prof Tom Addis for being an 
inspirational example with his passion for research, for advising him how to 
reduce the impact of academic paperwork on his research activities and for 
encouraging him to challenge the widely spread perception in UK 
universities that the most important research indicators are the amount of 
external funding secured and the score achieved in the Research 
Assessment Exercise. The author would like to thank his junior colleague 
Dr Bart-Floris Visscher for the constructive feedback on some of the initial 
drafts of this book, his BSc project student Neelamugilan Gobalakrishnan 
for the software validation of some of the theoretical results and the 
copyright holder for some of the material presented in Chapter 9, the 
University of Portsmouth, for giving him the permission to use this material 
in the book. The cooperation of Jane Chandler, former Head of the 
Department of Computer Science and Software Engineering, and Prof Ajit 
Narayanan, Head of the School of Computing, University of Portsmouth, 
UK, for keeping his teaching duties within reasonable bounds is also 
gratefully acknowledged. Special thanks must go to the Alexander von 
Humboldt Foundation of Germany and the European Union Commission in 
Brussels for the research fellowships granted to the author in the past, 

but whether you believe it or not -- that is exactly what this book is all about. 
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which have significantly helped him enrich himself as a scientist through 
the international dimensions of research. 

In addition, the author would be unfair not to mention Bon Jovi, 
Nickelback and the likes for providing the musical entertainment during the 
long and boring typing process as well as his colleagues Sion Reynolds, 
Patrick Beullens and Luke Stutters from the University of Portsmouth rock 
band ‘Infra Rouge’ for the relaxing musical practices and the inspirational 
live performances over the last couple of years. And finally, the spiritual 
support and encouragement of his family members and closest relatives has 

become a reality. 

Portsmouth, UK Alexander Gegov
July 2006 

been second to none -- a big thanks  to  all  of  them  for  helping  a dream
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1  Introduction 

1.1  Quantitative and Qualitative Complexity 

Complexity is a common attribute of the world that we live in. Although 
the recent advances in different technologies have made our life easier in 
many aspects, these advances also bring new challenges that add to the 
overall complexity in this world. A typical example in this respect is global 
warming which is a direct consequence of our habits to consume products 
that require the use of large amounts of energy. Without a doubt, global 
warming has already become a very complex environmental problem that 
requires urgent and coordinated actions by international institutions if we 
want to save our world for future generations.

In general, complexity can be characterised by two main aspects – 
quantitative and qualitative. The quantitative aspect usually has to do with 
concepts such as number and scale. For example, if we look at the Internet, 
it has been growing at an enormous rate as a result of which the number of 
web pages has increased dramatically over the recent years. Apart from 
that, more and more geographic areas are acquiring access to the Internet 
almost every day and this has contributed significantly to the overall 
enlargement of its scale. The qualitative aspect is usually related to 
concepts such as uncertainty and ambiguity. If we take again the example 
with the Internet, it is obvious that as the level of its quantitative 
complexity increases in terms of the number of web pages and scale, it 
becomes more difficult to understand and interpret its behaviour, i.e. its 
level of qualitative complexity also increases. 

Usually, as the level of quantitative complexity in a man-made system 
such as the Internet increases, it leads to a corresponding increase in the 
level of its qualitative complexity. This is due to the fact that the growth in 
number and scale is accompanied by the formation of new relations among 
the building blocks in the system as a result of which it becomes more 
difficult to describe and predict these relations, i.e. the system becomes 
more difficult for perception and more uncertain in its behaviour. 
Therefore, we may assume that the quantitative aspect of complexity 
implies the qualitative aspect and this assumption is completely in line with 
the dialectical philosophical idea that any quantitative changes in a system 
gradually lead to corresponding qualitative changes. 

Alexander
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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2 1  Introduction

1.2  Time and Safety Critical Implications 

In order to be able to cope with the challenges of complexity, we need to 
identify its possible implications. In this respect, two of the most important 
implications are time critical and safety critical problems.

In the case of a time critical problem, we need to find a solution to the 
problem within a limited period of time – otherwise the solution may 
become irrelevant. For example, an industrial robot that classifies and 
assembles different particles according to their size and shape has to do 
these tasks in a way that matches the speed at which the conveyor carrying 
these particles is moving. Otherwise, the robot would be late for the 
corresponding assembly operations and the whole manufacturing process 
may have to be stopped temporarily so that the particles affected by the 
slow operations of the robot can be rearranged accordingly. Obviously, an 
increased level of the quantitative and the qualitative complexity in terms of 
the number of particles carried by the conveyor and the uncertainty in their 
size or shape, respectively, would make this time critical problem more 
difficult.

In the case of a safety critical problem, if we do not find a solution to this 
problem then this could lead to loss of human life. For example, an on-
board aircraft collision avoidance system is supposed to detect other 
aircrafts within a certain radius, determine their location and speed, and if 
necessary, instruct the pilot to change course. Otherwise, the aircraft would 
continue to follow the preset course, which may lead to a collision with 
another aircraft. Here again, an increased level of the quantitative and the 
qualitative complexity in terms of the number of other closely flying 
aircrafts and some uncertainty in their location or speed would obviously 
make this safety critical problem quite difficult. 

Usually, a safety critical problem such as the one with the aircraft is also 
a time critical problem. In this case, the location and the speed of all closely 
flying aircrafts have to be determined within a limited time period as 
otherwise the aircraft may collide with another one while the associated 
computations are still running. Therefore, we may assume that a safety 
critical problem usually implies a time critical problem and that is not 
surprising bearing in mind that safety related issues often have explicit time 
limits.

1.3  Speed and Intelligence of Computers 

Having looked at the main aspects of complexity and its implications, it 
would be interesting to see how we could possibly minimise the undesirable 
impact of this complexity. As the world today is becoming more dominated 
by computers that assist people in their everyday activities, it would be 
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reasonable to assume that computer hardware and software are the main 
factors determining the potential impact of complexity on these activities. 
What really matters in this case is the relevant attributes of computer 
hardware and software such as speed and intelligence. 

The speed of computers is usually associated with the clock frequency at 
which the basic arithmetic operations are performed at the hardware level 
and the algorithmic efficiency at the software level which represents the 
amount of computations as a function of the size of the problem to be 
solved. Obviously, the speed of computers can affect directly the 
quantitative aspects of complexity by reducing the time that it takes to carry 
out a certain amount of computations.

As opposed to speed, intelligence in computers is still something quite 
unclear and hard to quantify but by this term we usually mean the ability of 
computer hardware and software to behave in a way that resembles 
intelligent human beings, e.g. to be able to learn and reason. In this case, 
there is a clear link with the qualitative aspects of complexity because 
learning and reasoning are especially helpful in an environment that is 
characterised by uncertainty, i.e. where the ability to see ‘invisible’ objects 
and to predict ‘unexpected’ events could make a big difference. 

It would be interesting to see to what extent the speed and intelligence of 
computer hardware and software could affect the quantitative and 
qualitative aspects of complexity. There has been an ongoing argument and 
rivalry on this issue between hardware and software professionals but the 
actual facts so far appear to be more in favour of the opinion held by the 
second group. For example, it has been shown that the algorithmic 
efficiency of software is usually more critical for the reduction of the 
computational times associated with large scale problems than the clock 
frequency of hardware. Also, as far as the computer market is concerned, it 
has been much easier to incorporate ‘intelligent’ attributes in software than 
in hardware. 

1.4  Past and Current Research in Fuzzy Logic

Research in the field of fuzzy logic has gone a long way since the idea 
about fuzzy sets was first introduced in the mid 60’s of the 20th century by 
Lotfi Zadeh. Since then, we have witnessed a number of trends most of 
which have lasted for about a decade.

The late 60’s and the 70’s were characterised mainly by theoretical 
works that helped fuzzy logic establish itself as a separate discipline 
alongside deterministic mathematics and statistics. The main drawback of 
this period was the highly abstract nature of research, which made many 
applied scientists ignore fuzzy logic before even making themselves 
familiar with it to some extent. It was not unusual at that time to hear 
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statements describing fuzzy logic as a totally useless theory that would 
never work in practice.

However, in the 80’s, scientists from Japan started to implement fuzzy 
logic in a number of domestic appliances such as vacuum cleaners, 
refrigerators and cookers. Later on, in the 90’s, we were able to witness the 
first successful industrial applications of fuzzy logic. But despite the big 
number of successful applications of fuzzy logic in this period, the criticism 
against fuzzy logic did not stop – it has even got bigger in the recent years. 
This time, the main object of attack coming from both outside and inside of 
the fuzzy academic community has been the empirical nature of fuzzy 
logic.

As a whole, the main focus of the criticism on fuzzy logic has been on its 
inability to behave as a systematic science. A scientific method is usually 
expected to be applicable for solving a particular problem with a guaranteed 
success. Unfortunately, that is not the case for most of the known fuzzy 
logic methods, which are empirical and therefore not quite reliable in terms 
of the expected results.

So, the way forward for fuzzy logic research in the 21st century looks 
much clearer now. We have to make fuzzy logic science, which is both 
fundamental and applied, i.e. a powerful and universal theory that can be 
also validated and justified in practice. Hopefully, the lessons learned from 
the mistakes made in the past can help us achieve this goal in the 
foreseeable future. And the sooner we stop swinging into one or another 
extreme – the better.

1.5  Complexity Issues in Fuzzy Systems 

Fuzzy systems are usually good at capturing the qualitative aspect of 
complexity by means of their linguistic modeling and approximate 
reasoning capabilities. However, this comes with a price because the 
associated fuzzy operations in the fuzzification, the inference and the 
defuzzification stages increase the level of quantitative complexity of the 
problem. This increase becomes even more embarrassing as the number of 
inputs in the fuzzy system gets bigger because the amount of these 
operations is a function of the number of rules which, on its turn, depends 
on the number of inputs.

Apart from the increased level of their quantitative complexity, the 
transparency and interpretability of fuzzy systems tends to deteriorate as the 
number of fuzzy rules increases. In this case, it is harder to observe and 
explain what is happening in the system. In other words, although the 
qualitative complexity of the environment is usually well accounted for by 
the fuzzy system, the system itself appears to generate ‘new’ qualitative 
complexity by its existence. So, it turns out that the problem has been 
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actually moved from the environment that the fuzzy system is supposed to 
model, to the system itself. 

There has been a steadily growing interest in complexity issues of fuzzy 
systems in recent years [1, 3, 4, 13, 14, 15, 18, 19, 24, 36, 40, 42, 44, 62, 
69, 75, 77]. This is due to the fact that fuzzy systems have become more 
widely used in applications of a larger scale as a result of which the 
associated complexity becomes more apparent.  For example, many recent 
papers and books on fuzzy logic discuss the complexity aspects of the 
proposed fuzzy methods in separate sections or even chapters. However, 
the focus of these discussions is usually on quantitative complexity whereas 
qualitative complexity is often ignored.

1.6  From Complexity Reduction to Complexity Management

It is not surprising that research in fuzzy systems has been focused mainly 
on quantitative complexity issues. After all, it is normal to expect current 
research methodologies to be strongly affected by the dominant profit 
orientated values in our society and the associated material targets such as 
improved efficiency and increased productivity. That is why most of the 
known methods dealing with complexity in fuzzy systems are aimed 
primarily at reducing the time for the completion of the required 
computations.

This book preaches a different philosophy. It argues that we have to 
change our narrow minded and conservative way of thinking only within 
‘the box’. Our duty as academics is to open new horizons and suggest 
viable alternatives to the existing ‘status quo’ in our subjects as well as in 
the world in general. Trying to break this ‘status quo’ would be the best 
way of not only discovering new knowledge but also of demonstrating a 
broad, progressive and independent attitude.

As far as fuzzy systems are concerned, we have to start addressing the 
complexity issues in these systems from a different angle. The idea of 
reducing complexity by actually ignoring it in a semi-mechanistic way may 
suit the market needs but it does not speak well about academia. Before 
reducing complexity, we need to be able to identify, analyse and understand 
it properly. This is what planned complexity management is all about and 
this book argues that such an approach must replace the current approach of 
chaotic complexity reduction.

The use of this new approach would guarantee that if and when we 
decide to reduce the quantitative complexity, this process will lead to a 
systematically correct and scientifically justified result even if we can not 
achieve big financial gains. Last but not least important, by following this 
approach we would be in the position to also reduce the qualitative 
complexity in fuzzy systems which will make them more transparent to us 
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as well as more enjoyable to work with. Because after all, apart from the 
material things in life, there are spiritual things that matter too, and with 
that in mind we can hopefully make another ‘fuzzy’ world possible. 

1.7  Description of Book Chapters 

This book is organised in 10 chapters. The current Chapter 1 is an 
introduction to the topic of complexity in general and in the context of 
fuzzy logic. Chapter 2 discusses the most common types of fuzzy rule 
based systems and analyses their impact on complexity. Chapter 3 reviews 
most of the existing rule base reduction methods for fuzzy systems and 
summarises their attributes. Chapter 4 introduces advanced techniques for 
formal presentation of fuzzy systems based on Boolean matrices and binary 
relations, which facilitate the overall management of complexity. Chapters 
5 and 6 present techniques for formal manipulation of single rule base
(SRB) fuzzy systems with general and special rule bases, which reduce the 
qualitative complexity. Among the manipulation techniques presented are 
vertical, horizontal and output merging as well as splitting of rule bases 
whereas among the special rule bases considered are the identity rule base
(IRB), the transpose rule base (TRB) and the permutation rule base (PRB). 
Chapters 7 and 8 describe techniques for formal transformation of multiple
rule base (MRB) fuzzy systems with feedforward (FF) and feedback (FB) 
interconnections, which also reduce the qualitative complexity. Among the 
transformation techniques described are repetitive and combined merging 
manipulations in the context of self standing inputs and outputs as well as 
total and partial identity lines whereas among the FB interconnections 
considered are single, local, global, nested, overlapping, crossed and 
multiple interconnections. Chapter 9 proposes techniques for formal 
simplification of fuzzy rule based systems, which reduce the quantitative 
complexity by aggregation of inconsistent rules and filtration of non-
monotonic rules. It also shows case studies with complex fuzzy systems 
and gives a comparative evaluation of the complexity of these techniques. 
The last Chapter 10 is a conclusion highlighting the theoretical significance 
of the formal methodology for complexity management in fuzzy systems, 
an application framework for this methodology and some possible related 
future research directions. 



2  Basic Types of Fuzzy Rule Based Systems 

2.1  Mamdami, Sugeno and Tsukamoto Systems 

A common type of fuzzy system is the Mamdami system, which is 
represented by the if-then rules

If i1 is vi1,1 and/or … and/or im is vim,1 then o1  is vo1,1 also … also on is von,1

and/or
.………………………………………………………………………

and/or
If i1 is vi1,r and/or … and/or im is vim,r then o1  is vo1,r also … also on is von,r

(2.1)

where m is the number of inputs, n is the number of outputs and r is the 
number of fuzzy rules in the system [43, 66, 81]. In this case, ip, p = 1,..,m
represents the p-th input, vip,s p = 1,..,m, s = 1,..,r is the linguistic value of 
the p-th input in the s-th rule, oq, q = 1,..,n represents the q-th output and 
voq,s q = 1,..,n, s = 1,..,r is the linguistic value of the q-th output in the s-th
rule.

Sometimes, the term ‘fuzzy set’ is used as a synonym of the term 
‘linguistic value’. Both terms are suitable for modelling the uncertainty 
available in many systems by means of the concept of a fuzzy membership 
degree. This concept is based on the assumption that an object can belong 
to a fuzzy set with a membership degree that can take any value in the 
interval [0,1]. 

The terms with the inputs and their linguistic values in the ‘if’ part of the 
rule base are also called antecedents whereas the terms with the outputs and 
their linguistic values in the ‘then’ part of the rule base are called 
consequents. Usually, the ‘if’ part of the rule base contains all possible 
permutations of linguistic values of the inputs. As far as the ‘then’ part of 
the rule base is concerned, it is unlikely to contain all possible permutations 
of linguistic values of the outputs. 

Generally, the number and the meaning of the linguistic values that each 
input can take vary as inputs usually have different crisp variation range 
and specific crisp physical meaning. Although this peculiarity is not 
reflected explicitly in the rule base represented by Eq. (2.1), it can be easily 
accounted for.

Also, each rule in the rule base represented by Eq. (2.1) may be allocated 
a specific weight that reflects the importance of this particular rule. 

Alexander
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However, in most cases the individual rules are assumed to have equal 
weight and by default this fact is not reflected explicitly in the rule base.

Apart from its weight, each rule has a firing strength that reflects the 
extent to which the antecedent terms in the rule are satisfied. In other 
words, the firing strength of a rule is a measure of the relative impact of this 
rule on the outputs of the fuzzy system. 

The Mamdami system is the most widely used fuzzy system. The main 
advantages of this type of system are its widespread acceptance, intuitive 
character and capability to formalise inputs in the form of expert 
knowledge. In some cases, when there is no sufficient or sensible data 
available, using expert knowledge is the only way to collect information 
about the system that we want to model. Therefore, a Mamdami system is a 
100% fuzzy system in which the fuzziness spreads from the inputs to the 
outputs during the stages of fuzzification, inference and defuzzification. 

Another type of fuzzy system is the Sugeno system, which is represented 
by if-then rules in the form: 

If i1 is vi1,1 and/or … and/or im is vim,1 then o1 = f1,1(i1,..,im) also … also on = fn,1(i1,..,im)
and/or

      ……………………………………………………………………….……. 
and/or

If i1 is vi1,r and/or … and/or im is vim,r then o1 = f1,r(i1,..,im) also … also on = fn,r(i1,..,im)

(2.2)

The ‘if’ part of the rule base in a Sugeno system is the same as the one in 
a Mamdami system. However, the outputs oq, q = 1,n in the ‘then’ part of 
the rule base are not represented by linguistic values but as polynomial 
functions  fq,s (..), q = 1,..,n, s = 1,..,r of the inputs ip, p = 1,..,m [43, 66]. In 
most cases, these are first-order polynomials in the form of linear functions.
All other considerations made for Mamdami systems are also valid for 
Sugeno systems. 

The Sugeno system is less popular than the Mamdami system but it is 
also widely used. The main advantages of this type of fuzzy system are its 
computational efficiency and capability to work well with linear techniques 
such as proportional-integral-derivative control. In a Sugeno system, the 
inference and the defuzzification stage are simplified due to the 
presentation of the outputs as crisp functions of the inputs as a result of 
which many of the fuzzy operations are replaced with more efficient crisp 
operations. In other words, a Sugeno system uses a crisp approximation of 
the outputs and therefore can be viewed as a hybrid between a fuzzy and a 
crisp system.

A third type of fuzzy system is the Tsukamoto system which is 
represented by the same if-then rules as the ones used in a Mamdami 
system. The main difference here is that the fuzzy membership functions 
for the outputs are monotonic functions with a single shoulder which map 
the firing strength of each rule to a unique crisp value of the output [43, 66]. 
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In a sense, the Tsukamoto system is a hybrid between the Mamdami and 
the Sugeno system because the outputs are represented by linguistic values 
similar to the ones in a Mamdami system whereas the crisp values of the 
outputs are obtained as functional mappings similar to the ones in a Sugeno 
system. All other considerations made for Mamdami systems are also valid 
for Tsukamoto systems. 

The Tsukamoto system is the least popular fuzzy system. Although its 
purpose is to combine the advantages of the Mamdami and the Sugeno 
system, it has found only limited application due to the constraint imposed 
by the special type of monotonic fuzzy membership functions for the 
outputs. Obviously, these functions are not capable of representing 
adequately the variables in most of the available real systems. 

2.2  Conjunctive and Disjunctive Systems 

There are four possible variations on each of the fuzzy rule bases 
represented by Eqs. (2.1)–(2.2) 

conjunctive antecedents in disjunctive rules (CADR), 
disjunctive antecedents in disjunctive rules (DADR), 
conjunctive antecedents in conjunctive rules (CACR), 
disjunctive antecedents in conjunctive rules (DACR), 

where the terms ‘conjunction’ and ‘disjunction’ in these variations are 
denoted by the logical ‘and’ and ‘or’ operator, respectively [61, 81].

Sometimes, a fuzzy rule base is called conjunctive (CON) or disjunctive
(DIS), depending on whether the reference is made to the antecedents or the 
rules. For example, a CADR fuzzy system is usually referred to as a CON 
system in an antecedent related context and a DIS system in a rule related 
context.

All types of fuzzy systems, i.e. Mamdami, Sugeno and Tsukamoto, can 
have any of the above four possible variations of their rule bases. 
Depending on the type of variation for the rule base, Eqs. (2.1)–(2.2) must 
be amended appropriately by replacing each ‘and/or’ operator either with an 
‘and’ or an ‘or’ operator. 

In the case of CON antecedents, all antecedent terms in each rule must be 
satisfied together. For DIS antecedents, at least one antecedent term in each 
rule is satisfied. In the case of DIS rules, at least one rule in the rule base is 
satisfied. For CON rules, all rules in the rule base must be satisfied 
together.

DIS rules appear to be more common than CON rules. This is due to the 
fact that it is usually harder to find real systems in which all fuzzy rules can 
be satisfied together. On the contrary, CON antecedents are more common 
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than DIS ones because the antecedent terms are usually expected to be 
satisfied together.

The above four variations reflect the different ways in which the 
antecedent terms in each rule and the individual rules in the rule base are 
connected. As far as the consequent terms in the rule base are concerned, 
the operator ‘also’ is identical with the logical ‘and’ operator, i.e. all 
consequent terms in each rule must be satisfied.

2.3  Multiple Output and Single Output Systems

Most fuzzy systems are multiple input multiple output (MIMO) systems, i.e. 
they have more than one input and more than one output. The fuzzy 
systems represented by Eqs. (2.1)–(2.2) are precisely of this type. However, 
it is usually necessary to decompose a MIMO fuzzy system into a number 
of multiple input single output (MISO) systems in order to facilitate the 
processes of inference and defuzzification [61, 81].

This decomposition can be done in a series of simple manipulations 
based on the laws of Boolean logic. By definition, each ‘if-then’ rule in a 
fuzzy rule base represents a logical implication that can be formally 
described with the logical ‘imp’ operator. In this case, if the antecedent and 
the consequent part in the rule are true, then the whole rule must be true.

Therefore, each rule in Eqs. (2.1)–(2.2) may be represented in the form 

If (A1  and/or … and/or Am)  then (C1 and … and Cn) (2.3) 

where Ap, p=1,..,m and Cq, q=1,..,n are the logical propositions describing 
the antecendent and the consequent terms, respectively.

Equation (2.3) may be rewritten in the following equivalent forms: 

(A
1
 and/or … and/or A

m
) imp (C

1
 and … and C

n
) (2.4)

[not (A
1
 and/or … and/or A

m
)] or (C

1
 and … and C

n
) (2.5)

[not (A
1
 and/or … and/or A

m
) or C

1
] and … and [not (A

1
 and/or … and/or A

m
) or C

n
] (2.6)

[(A
1
 and/or … and/or A

m
) imp C

1
] and … and [(A

1
 and/or … and/or A

m
) imp C

n
] (2.7)

[If (A
1
 and/or … and/or A

m
) then C

1
] and…and [If (A

1
 and/or … and/or A

m
) then C

n
] (2.8)

Therefore, the MIMO fuzzy system in Eq. (2.3) can be represented by 
the n logically equivalent MISO fuzzy systems in Eq. (2.8). This result is 
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obviously of great importance as it allows us to decompose any multiple
output (MO) fuzzy system into a number of single output (SO) fuzzy 
systems where the output for each SO system can be processed separately. 

While the above decomposition reduces the qualitative complexity in a 
fuzzy system by presenting it in a simpler form, it also tends to make us 
forget the fact that there is usually more than one output in the system. In 
other words, we usually do not take into account the quantitative 
complexity in the fuzzy system that is added by the application of all fuzzy 
operations associated with the other outputs. 

All types of MO fuzzy systems, i.e. Mamdami, Sugeno and Tsukamoto, 
can be decomposed into a number of logically equivalent SO systems. In 
this case, the fuzzification process is carried out only once but the processes 
of inference and defuzzification must be repeated for each output.

So, the MO fuzzy system in Eq. (2.1) can be represented by the 
following n logically equivalent SO fuzzy systems:

If i1 is vi1,1 and/or … and/or im is vim,1 then oq is vq1,1

and/or
           ..………………………………………………….  

and/or
If i1 is vi1,r and/or … and/or im is vim,r then oq is vq1,r

(2.9)

Similarly, the MO fuzzy system in Eq. (2.2) can be represented by the 
following n logically equivalent SO fuzzy systems:

If i1 is vi1,1 and/or … and/or im is vim,1 then oq = fq,1(i1,..,im)
and/or

        .………………………………………………………… 
and/or

If i1 is vi1,r and/or … and/or im is vim,r then oq = fq,r(i1,..,im)

(2.10)

Equations. (2.9)–(2.10) show the impact on the outputs in Eqs. (2.1)–(2.2). 
In this case, the q-th output oq, q =1,..,n in the MO fuzzy system has become 
the only output in the q-th SO fuzzy system. 

2.4  Feedforward and Feedback Systems 

Most fuzzy systems are FF systems, i.e. the flow of information in these 
systems is only from the inputs to the outputs. The fuzzy systems 

q = 1,..,n

q = 1,..,n
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represented by Eqs. (2.1)–(2.2) are precisely of this type. However, some 
fuzzy systems may have partial flow of information in the opposite 
direction, i.e. from some outputs to some inputs. Such systems are called 
FB systems and they have at least one output, which is fed back into a 
corresponding input [2, 38, 59]. In this case, the input and the output 
represent the same variable but their linguistic values usually describe this 
variable at different moments in time due to the delay in the flow of 
information in both directions. 

All types of fuzzy systems, i.e. Mamdami, Sugeno and Tsukamoto, can 
have either one or the other pattern of information flow. In the case of FB 
pattern, Eqs. (2.1)–(2.2) must be amended appropriately by specifying 
explicitly which output-input pairs represent the same variable. For 
example, if the first output is fed back into the second input, this can be 
represented by o1 = i2.

2.5  Single Rule Base and Multiple Rule Base Systems 

Most fuzzy systems are SRB systems. They have either one rule base, e.g. a 
MO fuzzy system, or a number of independent rule bases, e.g. SO fuzzy 
systems. For example, the MO systems and their SO counterparts 
represented by Eqs. (2.1)–(2.2) and Eqs. (2.9)–(2.10), respectively, are all 
SRB systems. In this sense, the most distinctive feature of a SRB system is 
the isolated nature of its rule bases. 

However, some processes can be better modelled by a MRB system, i.e. 
a system with some interconnections between its rule bases [7, 11, 53, 55]. 
This is usually the case of multi-stage processes where the outputs from a 
particular stage are also inputs to one or more subsequent stages. The MRB 
systems used for describing such processes are usually referred to as 
‘chained fuzzy systems’ but we will be using the newly introduced and 
more general term ‘MRB systems’ instead throughout this book for 
completeness and consistency. 

A MRB system can be described by a network whereby all rule bases in 
a horizontal row represent a level and all rule bases in a vertical column 
represent a layer. The numbering of levels is from top to bottom whereas 
the numbering of layers is from left to right. Interconnections may exist 
between rule bases residing in the same layer as well as between rule bases, 
which are in different layers. Some of these interconnections can be in a 
forward direction, i.e. from a particular layer to one or more subsequent 
layers. Other interconnections can be in a backward direction, i.e. from a 
particular layer to the same layer or to preceding layers. The 
interconnections reflect the nature of the multi-stage process being 
modelled, i.e. the outputs from each rule base which are also inputs to other 
rule bases in the same layer, preceding layers or subsequent layers. 
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The layers in a MRB system represent a temporal hierarchy, i.e. 
processes that take place sequentially in time. As opposed to this, the levels 

to each other. Although this spatial subordination is relevant mainly within 
a particular layer, it is often propagated across the whole network structure 
in the context of the interconnected rule bases. 

The above two types of network hierarchy are often used for modelling 
systems with the purpose of reducing their quantitative and qualitative 
complexity. In this sense, the network structure of the fuzzy rule base is 
either a straightforward reflection of the system being modeled or a design 
decision aimed at achieving better effectiveness or higher efficiency. 

A MRB system with s levels and q layers can be represented by the 
matrix

level/layer      layer 1      layer 2   …   layer q-1      layer q 

level 1 RB1,1          RB1,2 …    RB1,q-1 RB1,q

level 2 RB2,1          RB2,2 … RB2,q-1 RB2,q

   …               …             …         …     …                … 

level s-1 RBs-1,1        RBs-1,2 … RBs-1,q-1 RBs-1,q

level s RBs,1          RBs,2 …    RBs,q-1 RBs,q

(2.11)

whose elements RBi,j I = 1,..,s, j = 1,..,q are rule bases. Quite often some of 
the blocks in Eq. (2.11) may not occupied by rule bases and in this case the 

Eq. (2.10). Also, the interconnections between the rule bases must be given 
by specifying which outputs from which rule bases are which inputs to 
which rule bases. This can also be done by the block matrix represented in 
Eq. (2.12) where the output-input interconnections are given arbitrarily for 
illustration purposes. In this case, all output-input interconnections 
are of FF type apart from the ones originating from outputs in the last layer, 
which are of FB type. If a rule base is missing from the network structure of 
a MRB system, then the corresponding block in the matrix in Eq. 2.12 will 
be empty but some of the other blocks must reflect any existing 
interconnections between rule bases in layers preceding or subsequent to 
the layer with the missing rule base. 

in a MRB system represent a spatial hierarchy, i.e. processes that are subordinated 

matrix may have a sparse structure.
In order to define a MRB system fully, each of the existing rule bases in

Eq. (2.11) must be given in a form similar to Eq. (2.1), Eq. (2.2), Eq. (2.9) or
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Usually,  the  outputs and  inputs  which  are not part of any 
inter

 
connections  are  not  reflected  explicitly  in  the corresponding matrix

 for  the MRB system.  Such inputs  and outputs stand on their own, i.e.
 are self standing, and as it can be seen from Eq. (2.12), each rule base from
 the first to the last but one layer inclusive has only one output which is
 not self standing.  Similarly,  each  rule base from the second to the last but
 one layer inclusive has only one input which is not self standing whereas
 each rule base in the last layer has two inputs which are not self standing. 

level/layer      layer 1      layer 2    …   layer q-1      layer q 

level 1 o1 = i1

2,2     o1 = i1

2,3 …   o1 = i1

2,q o1 = i2

1,q

level 2 o1 = i1

1,2     o1 = i1

1,3 … o1 = i1

1,q o2 = i2

2,q

…                …             …         …      …                … 

level s-1 o1 = i1

s,2     o1 = i1

s,3 …    o1 = i1

s,q o1 = i2

s-1,q

level s o1 = i1

s-1,2   o1 = i1

s-1,3 …    o1 = i1

s-1,q o1 = i2

s,q

(2.12)

Interconnections can be either local or global. If an output from a rule 
base is fed back into an input to the same rule base, the interconnection is 
local. However,  if an output from a  rule base is fed back into an input 
to 

interconnections for the last layer are local. 
In general, the individual rule bases in a MRB system may be of any type 

such as Mamdami, Sugeno or Tsukamoto systems, CON or DIS systems, 
FF or FB systems, as well as MO or SO systems.  In this case, each output-
input interconnection assumes defuzzification and fuzzification of the 
corresponding output and input, respectively. 

2.6  Complexity Analysis in Fuzzy Systems 

The type of fuzzy system used may have some impact on the level of 
complexity of the system being modeled. For example, Sugeno and 
Tsukamoto systems are usually more efficient than Mamdami systems but 
they are often less transparent, i.e. what is gained in terms of quantitative 
complexity is lost in terms of qualitative complexity. CON and DIS 
systems are not in anyway different from each other in relation to both 

connection  is  global.  In  this  context,  in Eq. (2.12) the interconnections
 for all

another  rule  base  residing  in  the  same or  in a  different  layer, the
 inter 

layers from the first to the last but one inclusive are global whereas
 the 
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aspects of complexity. SO systems seem to have slightly better 
transparency than MO systems but in terms of efficiency they are the same. 
FB systems are more complex than FF systems in terms of both quantitative 
and qualitative complexity. And finally, SRB systems are usually less 
complex than MRB systems in both quantitative and qualitative terms. 

Usually, the maximum number of rules in a fuzzy system r is an 
exponential function of the number of the inputs m and the number of 
linguistic values w that each of these inputs can take [37, 48, 51, 60, 66]. In 
most cases, this exponential function is in the form: 

r = w m (2.13)

However, if the number of linguistic values per input is not a constant, 
then the maximum number of rules in a fuzzy system is given by the 
arithmetic product 

r = w1 … wm
(2.14)

where wp, p = 1,.., m, is the number of linguistic values that the p-th input 
can take. In this case, although Eq. (2.14) is not in an explicit exponential 
form, the number of rules r is still an implicit exponential function. 

It is obvious from Eqs. (2.1)–(2.2) and Eqs. (2.9)–(2.10) that for a fuzzy 
system with 2 inputs which can take 5 linguistic values each, the number of 
rules is only 25. However, for 3 inputs this number is 125, whereas in the 
case of 4 inputs it becomes 625. This phenomenon is illustrated in a wider 
context in Fig. 2.1 where each of the 2, 3 or 4 inputs is supposed to take 3, 
5, 7, 9 or 11 linguistic values. So, it is not hard to imagine what the impact 
of more inputs or more linguistic values per input would be on the number 
of rules.

The considerations presented above show clearly the level of quantitative 
complexity associated with multivariable fuzzy systems, even for the case 
of a fairly small number of inputs. Bearing in mind that many real life
systems are usually characterised by a much larger number of inputs and 
often have to be operated in real-time, it is obvious that the resulting 
quantitative complexity has to be taken very seriously.

Besides this, as the number of rules gets bigger, it usually becomes 
harder to understand what is happening in the fuzzy system because the 
transparency of the rules reduces and our ability to interpret them suffers 
from that. Therefore, the level of qualitative complexity in the fuzzy system 
also increases with the increase of the number of rules. 
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Fig. 2.1. Number of rules as an exponential function of number of inputs 

It must be noted that the number of rules in a fuzzy system is only a 
rough indicator of the quantitative complexity in the system. The exact 
level of this complexity is a function of the overall amount of fuzzy 
operations during fuzzification, inference and defuzzification, and this 
amount itself depends on the number of rules. However, for the purpose of 
reducing the quantitative complexity in a fuzzy system, it may be sufficient 
to reduce the number of fuzzy rules without analysing the precise impact of 
this reduction on the amount of the associated fuzzy operations. In this 
case, the fuzzy system with the initial number of rules is usually referred to 
as initial fuzzy system (IFS) whereas the fuzzy system with the reduced 
number of rules is called reduced fuzzy system (RFS). 

Most of the known methods for complexity reduction in fuzzy systems 
reduce the number of fuzzy rules by either reducing the number of inputs or 
the number of linguistic values that these inputs can take. These methods 
are classified into several groups and are discussed in the next chapter. 



3  Rule Base Reduction Methods for Fuzzy Systems 

3.1  Removal and Merging of Linguistic Values 

The first group of methods for rule base reduction are aimed at removing 
less significant or merging similar linguistic values [67, 68]. For simplicity, 
this group of methods and all other methods in the current chapter will be 
illustrated by integer tables such that the linguistic values of the inputs are 
coded by integers whereas the outputs are either skipped as irrelevant or 
presented in a general form. 

For example, if the IFS is described by the two inputs i1 and i2, and if 
each of these inputs can take the three linguistic values small (S), medium
(M) and big (B), we may decide to remove the value M in which case the 
values S and B will cover all crisp input values that would otherwise be 
classified as M. So, if S = 1, M = 2 and B = 3 in the IFS, and if S = 1 and 
B=3 in the RFS, then these two systems will be illustrated in Figs. 3.1–3.2 
and the antecedent parts of their rule bases will be represented by 
Tables 3.1–3.2. 

Fig. 3.1. Initial fuzzy system 

Alexander
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        i1 (S, B)

        i2 (S, B)

Fig. 3.2. Reduced fuzzy system after removal of linguistic value M 

RFS

Gegov: Complexity Management in Fuzzy Systems, StudFuzz 211, 17–31 (2007)

i1 (S, M, B)

i2 (S, M, B)
 IFS 
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Table 3.2. Reduced fuzzy system after removal of linguistic value M = 2 

Rule number Linguistic value of i1 Linguistic value of i2

1 1 1 
2 1 3 
3 3 1 
4 3 3 

Alternatively, we may decide to merge some of the linguistic values from 
the IFS in Table 3.1 into new linguistic values, e.g. the values M and B can 
be merged into a new value called between medium and big (MB). So, if  
S = 1 and MB = 4 in the RFS, then this system will be illustrated in Fig. 3.3 
and the antecedent part of its rule base will be represented by Table 3.3. 

      i1 (S, MB)

      i2 (S, MB)

Fig. 3.3. Reduced fuzzy system after merging of linguistic values M and B into MB 

Table 3.3. Reduced fuzzy system after merging of linguistic values M and B into 
MB = 4 

Rule number Linguistic value of i1 Linguistic value of i2

1 1 1 
2 1 4 
3 4 1 
4 4 4 

RFS

Table 3.1. Initial fuzzy system 

Rule number Linguistic value of i1 Linguistic value of i2

1 1 1 
2 1 2 
3 1 3 
4 2 1 
5 2 2 
6 2 3 
7 3 1 
8 3 2 
9 3 3 
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linguistic values. On the other hand, the method based on merging of 
linguistic values is more difficult to apply due to the necessity to define a 
new fuzzy set for each of the merged linguistic values but it is less risky.

As a whole, the process of removing and merging of linguistic values is 
usually associated with loss or aggregation of information. In other words, 
although the number of rules in the IFS can be substantially reduced, this 
reduction usually comes with a price because the RFS may not represent 
adequately the IFS.

3.2  Removal and Fusion of Inputs 

The second group of methods for complexity reduction are aimed at 
removing less significant or fusing similar inputs [42, 50].

For example, if the IFS is described by the three inputs i1 (position),
i2 (velocity) and i3 (acceleration), and if each of these inputs can take the 
two linguistic values small (S) and big (B), we may decide to remove input 
i3. So, if S = 1and B = 2 in both the IFS and the RFS, then these two 
systems will be illustrated in Figs. 3.4–3.5 and the antecedent parts of their 

       i1 (S, B)

       i2 (S, B)

       i3 (S, B)

Fig. 3.4. Initial fuzzy system

 IFS 

From the two methods presented above, the one based on removal of 
linguistic values is more straightforward but it involves a higher risk as a 
result of the removal of the corresponding fuzzy set for each of the removed 

rule bases will be represented by Tables 3.4--3.5. 

Fig. 3.5. Reduced fuzzy system after removal of input i3

i1 (S, B)

i2 (S, B)
RFS
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Table 3.5. Reduced fuzzy system after removal of input i3

Rule number Linguistic value of i1 Linguistic value of i2

1 1 1 
2 1 2 
3 2 1 
4 2 2 

Alternatively, we may decide to fuse some of the inputs from the IFS in 
Table 3.4 into a new input, e.g. the inputs i2 and i3 can be fused into a new 
hybrid input i4 (velocity/acceleration). In this case, the RFS will be 
illustrated in Fig. 3.6 and the antecedent part of its rule base will be 
represented by Table 3.6. 

Fig. 3.6. Reduced fuzzy system after fusion of inputs i2 and i3 into i4

Table 3.6. Reduced fuzzy system after fusion of inputs i2 and i3 into i4

Rule number Linguistic value of i1 Linguistic value of i4

1 1 1 
2 1 2 
3 2 1 
4 2 2 

inputs is more straightforward but it involves a higher risk as a result of the 
removal of the corresponding variable. On the other hand, the method based 

Table 3.4. Initial fuzzy system 

Rule number Linguistic value of i1 Linguistic value of i2 Linguistic value of i3

1 1 1 1 
2 1 1 2 
3 1 2 1 
4 1 2 2 
5 2 1 1 
6 2 1 2 
7 2 2 1 
8 2 2 2 

From the two methods presented above, the one based on removal of 

      i1 (S, B)

i4 (S, B) RFS
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on fusion of inputs is more difficult to apply due to the necessity to justify 
the fusion of particular variables but it is less risky.

As in the case of removal and merging of linguistic values, removal and 
fusion of inputs is usually associated with loss or aggregation of 
information. In other words, although the number of rules in the IFS can be 
substantially reduced, this reduction usually comes with a price because the 
RFS may not represent adequately the IFS.

3.3  Singular Value Decomposition of Output Matrix 

The third group of methods are based on singular value decomposition of 
the matrix representing the crisp values of the output in a fuzzy system [70, 
72, 80]. As a result of this, the number of linguistic values for the inputs in 
the system is reduced. 

For example, if the IFS is described by the two inputs i1 and i2, and if 
each of these inputs can take the five linguistic values negative big (NB), 
negative small (NS), zero (Z), positive small (PS) and positive big (PB), 
then the RFS will have the same inputs but each of them will possibly take 
only two linguistic values such as negative (N) and positive (P). So, if  
NB = 1, NS = 2, Z = 3, PS = 4 and PB = 5 in the IFS, and if N = 6 and P = 7 
in the RFS, then these two systems will be illustrated in Figs. 3.7–3.9 and 
the antecedent parts of their rule bases will be represented by Tables 3.7–3.8. 

     i1 (NB, NS, Z, PS, PB)

     i2 (NB, NS, Z, PS, PB)

Fig. 3.7. Initial fuzzy system 

       i1 (N, P)

       i2 (N, P)

Fig. 3.8. Reduced fuzzy system by singular value decomposition with linguistic 
values N and P 

 IFS 

RFS
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Table 3.7. Initial fuzzy system 

Rule number Linguistic value of i1 Linguistic value of i2

1 1 1 
2 1 2 
3 1 3 
4 1 4 
5 1 5 
6 2 1 
7 2 2 
8 2 3 
9 2 4 
10 2 5 
11 3 1 
12 3 2 
13 3 3 
14 3 4 
15 3 5 
16 4 1 
17 4 2 
18 4 3 
19 4 4 
20 4 5 
21 5 1 
22 5 2 
23 5 3 
24 5 4 
25 5 5 

      i1 (N, Z, P)
                                             o1

      i2 (N, Z, P)

Fig. 3.9. Initial fuzzy system

 IFS 
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Even in the case of two inputs, the RFS only approximates the behaviour 
of the IFS and the quality of this approximation can not be guaranteed in 
advance. Therefore, additional analysis must be carried out to ensure that 
the RFS is a good approximation of the IFS. 

3.4  Conversion into Union Rule Configuration 

The fourth group of methods are based on converting the intersection rule 
configuration of a fuzzy system into a union rule configuration with a 
smaller number of rules [12, 56, 73]. In this case, the behaviour of the RFS 
is similar to the one of the IFS. 

For example, if the IFS is described by the two inputs i1, i2 and the output 
o1, and if its rule base is in the intersection rule configuration (i1 and i2) then 
o1, then it may be possible to convert this configuration into the union rule 
configuration if (i1 then o1) or if (i2 then o1). So, if each of the inputs can 
take the three linguistic values negative (N), zero (Z) and positive (P), and 
if N = 1, Z = 2 and P = 3 for both the IFS and the RFS, then these two 
systems will be illustrated in Figs. 3.9–3.10 and their rule bases will be 
represented by Tables 3.9–3.11. 

As in the case of singular value decomposition, the conversion into union 
rule configuration can be very effective in reducing the number of rules in 
the IFS. However, this type of conversion can only be applied to a special 
class of systems called ‘additively separable’. But even in this case, the 
RFS only approximates the behaviour of the IFS and the quality of this 
approximation can not be guaranteed in advance. For this reason, additional 
analysis must be carried out to ensure that the RFS is a good approximation 

Although this group of methods can be very effective in reducing the 
number of rules in a fuzzy system, they are applicable mainly for systems 
with two inputs. In the case of more than two inputs, the singular value 
decomposition procedure becomes quite complex as the dimension of the 
space in which the associated matrix is defined increases accordingly. For 
example, for a system with three inputs, the associated matrix will be 
defined in a three-dimensional space. 

Table 3.8. Reduced fuzzy system by singular value decomposition with linguistic 
values N = 6 and P = 7

Rule number Linguistic value of i1 Linguistic value of i2

1 6 6 
2 6 7 
3 7 6 
4 7 7 

of the IFS. 
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Table 3.9. Initial fuzzy system 

Rule number Linguistic value of i1 Linguistic value of i2 Linguisticvalue of o1

1 1 1 vo1,1

2 1 2 vo1,2

3 1 3 vo1,3

4 2 1 vo1,4

5 2 2 vo1,5

6 2 3 vo1,6

7 3 1 vo1,7

8 3 2 vo1,8

9 3 3 vo1,9

      i1 (N, Z, P)

                                                       o1

or

      i2 (N, Z, P)

Fig. 3.10. First and second term in the reduced fuzzy system with union rule 
configuration

Table 3.10. First term in the reduced fuzzy system with union rule configuration 

Rule number Linguistic value of i1 Linguistic value of o1

1 1 vo1,1

2 2 vo1,2

3 3 vo1,3

Table 3.11. Second term in the reduced fuzzy system with union rule configuration 

Rule number Linguistic value of i2 Linguistic value of o1

1 1 vo1,1

2 2 vo1,2

3 3 vo1,3

1

2
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3.5  Spatial Decomposition into Subsystems 

The fifth group of methods convert a fuzzy system into spatially 
decomposed subsystems as a result of which the overall number of rules is 
reduced [6, 9, 10, 17, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 
35, 39, 49, 54, 57, 63, 65, 71, 74, 78, 79, 83, 84]. In this case, the stronger 
interactions among the subsystems are usually partially compensated 
whereas the weaker ones are ignored. Depending on the decomposition 
approach used, the resulting decomposed system has a distributed, 
decentralised, decoupled or multilevel structure.

For example, if the IFS is described by the two inputs i1, i2 and the two 
output o1, o2, then this system can be decomposed into two subsystems such 
that i1 and o1 are the input and the output for the first subsystem whereas i2

and o2 are the input and the output for the second subsystem. So, if each of 
the inputs can take the three linguistic values negative (N), zero (Z) and 
positive (P), and if N = 1, Z = 2 and P = 3 for both the IFS and the RFS, 
then these two systems will be illustrated in Figs. 3.11–3.12 and their rule 
bases will be represented by Tables 3.12–3.14. 

     i1 (N, Z, P) o1

     i2 (N, Z, P)                        o2

Fig. 3.11. Initial fuzzy system

 IFS 

     i1 (N, Z, P) o1

and

     i2 (N, Z, P) o2

Fig. 3.12. First and second subsystem in the reduced fuzzy system with spatial 
decomposition

1

2
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Table 3.13. First subsystem in the reduced fuzzy system with spatial 
decomposition

Rule number Linguistic value of i1 Linguistic value of o1

1 1 vo1,1

2 2 vo1,2

3 3 vo1,3

Table 3.14. Second subsystem in the reduced fuzzy system with spatial 
decomposition

Rule number Linguistic value of i2 Linguistic value of o2

1 1 vo2,1

2 2 vo2,2

3 3 vo2,3

Although these methods have been widely used for quite a long time, 
they have some serious drawbacks. The ability of the RFS to approximate 
the behaviour of the IFS depends on the strength of the interactions among 
subsystems and the effectiveness of their compensation, which can not be 
guaranteed in advance. Therefore, additional analysis must be carried out to 
ensure that the RFS is a good approximation of the IFS. 

3.6  Decomposition into Multilayer Hierarchical Structure 

The last group of methods rearrange the inputs in a fuzzy system in a way 
that leads to the reduction of the number of rules [5, 8, 41, 45, 46, 52, 64, 
76, 82]. Actually, the fuzzy system is decomposed into a multilayer 
hierarchical structure such that each layer has only two inputs and one 
output.

Table 3.12. Initial fuzzy system 

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 1 vo1,1 vo2,1

2 1 2 vo1,2 vo2,2

3 1 3 vo1,3 vo2,3

4 2 1 vo1,4 vo2,4

5 2 2 vo1,5 vo2,5

6 2 3 vo1,6 vo2,6

7 3 1 vo1,7 vo2,7

8 3 2 vo1,8 vo2,8

9 3 3 vo1,9 vo2,9



3.6  Decomposition into Multilayer Hierarchical Structure     27

For example, if the IFS is described by the three inputs i1, i2, i3 and the 
output o1, then this system can be decomposed into two layers. In this case, 
i1 and i2 are the inputs to the first layer, a new variable z1 is an intermediate 
output from the first layer and an intermediate input to the second layer, i3

is the other input to the second layer and o1 is its output. So, if each of the 
inputs i1, i2, i3 and the intermediate input z1 can take the three linguistic 
values negative (N), zero (Z) and positive (P), and if N = 1, Z = 2 and P = 3 

Figs. 3.13–3.14 and their rule bases will be represented by Table 3.15–3.17. 

     i1 (N, Z, P)

     i2 (N, Z, P)  o1

     i3 (N, Z, P)

Fig. 3.13. Initial fuzzy system 

     i1 (N, Z, P)
                                            z1 (N, Z, P)
     i2 (N, Z, P)
                                                                                    o1

                                            i3 (N, Z, P)

Fig. 3.14. First and second layer in the reduced fuzzy system with multilayer 
hierarchical structure 

Although these methods have become quite popular recently, they have 
some serious drawbacks such as the unclear interpretation of the 
intermediate variables and the poor transparency of the rules in the 
multilayer hierarchical structure. Apart from that, the overall behaviour of 
the layers in the RFS is only an approximation of the behaviour of the 
IFS. This is due to the fact that each layer has only two inputs while the 
other inputs from the IFS are actually ignored. Also, the intermediate 
variables are usually defuzzified as outputs from one layer and then  

 IFS 

1

2

for both the IFS and the RFS, then these two systems will be illustrated in
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fuzzified as inputs to the next layer, which leads to further deviation from 
the behaviour of the IFS. Therefore, additional analysis must be carried out 
to ensure that the RFS is a good approximation of the IFS. 

Table 3.15. Initial fuzzy system 

Rule
number

Linguistic
value of i1

Linguistic value 
of i2

Linguistic value 
of i3

Linguistic value
of o1

1 1 1 1 vo1,1

2 1 1 2 vo1,2

3 1 1 3 vo1,3

4 1 2 1 vo1,4

5 1 2 2 vo1,5

6 1 2 3 vo1,6

7 1 3 1 vo1,7

8 1 3 2 vo1,8

9 1 3 3 vo1,9

10 2 1 1 vo1,10

11 2 1 2 vo1,11

12 2 1 3 vo1,12

13 2 2 1 vo1,13

14 2 2 2 vo1,14

15 2 2 3 vo1,15

16 2 3 1 vo1,16

17 2 3 2 vo1,17

18 2 3 3 vo1,18

19 3 1 1 vo1,19

20 3 1 2 vo1,20

21 3 1 3 vo1,21

22 3 2 1 vo1,22

23 3 2 2 vo1,23

24 3 2 3 vo1,24

25 3 3 1 vo1,25

26 3 3 2 vo1,26

27 3 3 3 vo1,27
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Table 3.16. First layer in the reduced fuzzy system with multilayer hierarchical 
structure

Rule number Linguistic value of i1 Linguistic value of i2 Linguisticvalue of z1

1 1 1 vz1,1

2 1 2 vz1,2

3 1 3 vz1,3

4 2 1 vz1,4

5 2 2 vz1,5

6 2 3 vz1,6

7 3 1 vz1,7

8 3 2 vz1,8

9 3 3 vz1,9

Table 3.17. Second layer in the reduced fuzzy system with multilayer hierarchical 
structure

Rule number Linguistic value of z1 Linguistic value of i3 Linguisticvalue of o1

1 1 1 vo1,1

2 1 2 vo1,2

3 1 3 vo1,3

4 2 1 vo1,4

5 2 2 vo1,5

6 2 3 vo1,6

7 3 1 vo1,7

8 3 2 vo1,8

9 3 3 vo1,9

3.7  Comparative Analysis of Reduction Methods 

Most of the known methods for rule base reduction in fuzzy systems have 
serious drawbacks such as empirical nature, limited scope and 
approximated behaviour of the IFS. A brief comparison of these methods in 
terms of their attributes is given in Table 3.18. 

The empirical nature of most of the methods assumes the use of a ‘trial 
and error’ approach. The latter is generally unreliable in that the quality of 
the RFS depends mainly on the good or the bad luck during the trials. 
Besides this, the limited scope of some of the methods makes them 
inapplicable to a large group of fuzzy systems. Also, the approximation of 
the behaviour of the IFS usually compromises the overall quality of the 
RFS. And finally, although all these methods reduce the quantitative 

complexity.complexity of the IFS, they do not reduce its qualitative 
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Table 3.18. Comparison of rule base reduction methods 

Method/Attribute Nature Scope Behaviour Quantitative 
complexity

Qualitative
complexity

First Group empirical universal approximate reduced unaffected 
Second Group empirical universal approximate reduced unaffected 
Third Group systematic limited approximate reduced unaffected 
Fourth Group systematic limited approximate reduced unaffected 
Fifth Group empirical universal approximate reduced unaffected 
Sixth Group empirical universal approximate reduced unaffected 

Obviously, it would be ideal to find a universal and systematic approach 
to simplifying the IFS, which also guarantees that the behaviour of the 
simplified system is equivalent to the one of the IFS. The main advantages 
of this novel approach in comparison to most of the known rule based 
reduction methods would be its wide applicability irrespective of the 
properties of the IFS, its capability to lend itself easily to mathematical 
formalisation and its ability to guarantee that the simplification made to the 
IFS does not come at a price. On top of that, the quantitative and the 
qualitative complexity of the IFS would be reduced. A brief description of 
the attributes of such an approach is shown in Table 3.19. 

Table 3.19. Attributes of the novel approach 

Approach/
Attribute

Nature Scope Behaviour Quantitative 
complexity

Qualitative
complexity

Novel systematic universal equivalent reduced reduced 

The underlying philosophy of this novel approach deals with complexity 
related issues in fuzzy systems not only by reducing the number of fuzzy 
rules which has an impact mainly on the quantitative complexity of the 
fuzzy system but from a much wider perspective. This perspective takes 
into account factors that contribute to the qualitative complexity of the 
fuzzy system, e.g. the way in which the rules are handled. For this reason, 
the more general term ‘complexity management’ is used here instead of the 
relatively specific term ‘complexity reduction’. 

In summary, the potential advantages of such an approach in comparison 
to the known rule base reduction methods are that: 

it would not require any underlying knowledge about the real system that 
is modelled by the fuzzy system, 
it would guarantee that the behaviour of the RFS is not approximate but 
equivalent to the behaviour of the IFS, 
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it  would  be  applicable  to  a  fuzzy  system  with  any  number  of
 inputs/ outputs and any type of linguistic values that these inputs/outputs
 can take,
it would be based on systematic rather than empirical considerations that 
justify the approach and guarantee a successful result, 
it would use a simple formal model that is easy to use by people with 
different mathematical background, 
it would be applicable to a fuzzy system with any type of rule base in 
terms of the CON and DIS properties of the antecedent terms and the 
rules,
it would be applicable for a variable number and meaning of the 
linguistic values of the inputs and the outputs. 

In order to develop such an approach, we need to be able to formally 
present fuzzy systems and their rule bases. Moreover, such an approach 
would be in line with the recent trend of using formal methods for fuzzy 
modelling and control [16, 24]. However, the integer tables used in this 
chapter are quite simplistic and not suitable for formal handling. For this 
reason, the next chapter introduces more advanced techniques for formal 
presentation of fuzzy rule based systems. 



4  Formal Presentation of Fuzzy Rule Based Systems 

4.1  Basic Properties of Fuzzy Rule Bases 

The management of complexity in fuzzy systems relies on the basic 
properties of fuzzy rule bases. These properties reflect the extent to which 
of the permutations of linguistic values of inputs and outputs are available 
as well as the type of mapping between the permutations of linguistic 
values of the inputs in the antecedent part of the rule base and the 
corresponding permutations of linguistic values of the outputs in the 
consequent part.

Four basic properties of fuzzy rule bases are introduced here. Definitions 
for these properties and examples illustrating them are given below. For 
consistency with the notation used in the previous chapter, the formal 
presentation of the properties and the corresponding examples are made 
initially by integer tables. However, these same properties and examples are 
represented by more advanced formal techniques in Sects. 4.3–4.4. 

Definition 4.1 
A fuzzy rule base is complete if and only if all possible permutations of 

linguistic values of the inputs are present in the antecedent part of the rule 
base.

Example 4.1
A fuzzy system is described by the two inputs i1, i2 and the two outputs 

o1, o2. Each of the inputs can take the two linguistic values small (S) and big
(B), whereas each of the outputs can take the three linguistic values 
negative (N), zero (Z) and positive (P). So, if S = 1, B = 2, N = 1, Z = 2 and 
P = 3, then a complete rule base for this system will be represented by 
Table 4.1. 

Table 4.1. Complete rule base for a fuzzy system 

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 1 1 1 
2 1 2 1 2 
3 2 1 1 3 
4 2 2 2 1 
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Definition 4.2 
A fuzzy rule base is exhaustive if and only if all possible permutations of 

linguistic values of the outputs are present in the consequent part of the rule 
base.

Example 4.2
A fuzzy system is described by the two inputs i1, i2 and the two outputs 

o1, o2. Each of the inputs can take the three linguistic values small (S), 
medium (M) and big (B), whereas each of the outputs can take the two 
linguistic values negative (N) and positive (P). So, if S = 1, M = 2, B = 3,  
N = 1 and P = 2, then an exhaustive rule base for this system will be 
represented by Table 4.2. 

Table 4.2. Exhaustive rule base for a fuzzy system 

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 1 1 1 
2 1 2 1 2 
3 1 3 2 1 
4 2 1 2 2 

Definition 4.3 
A fuzzy rule base is consistent if and only if every available permutation 

of linguistic values of the inputs is mapped onto only one permutation of 
linguistic values of the outputs.

Example 4.3
A fuzzy system is described by the two inputs i1, i2 and the two outputs 

o1, o2. Each of the inputs can take the three linguistic values small (S), 
medium (M) and big (B), whereas each of the outputs can take the two 
linguistic values negative (N) and positive (P). So, if S = 1, M = 2, B = 3,  
N = 1 and P = 2, then a consistent rule base for this system will be 
represented by Table 4.3. 

Definition 4.4 
A fuzzy rule base is monotonic if and only if every available permutation 

of linguistic values of the outputs is mapped from only one permutation of 
linguistic values of the inputs.



4.1  Basic Properties of Fuzzy Rule Bases     35

Table 4.3. Consistent rule base for a fuzzy system 

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 1 1 1 
2 1 2 1 1 
3 1 3 1 1 
4 2 1 1 2 
5 2 2 1 2 
6 2 3 2 1 
7 3 1 2 1 
8 3 2 2 2 
9 3 3 2 2 

Example 4.4
A fuzzy system is described by the two inputs i1, i2 and the two outputs 

o1, o2. Each of the inputs can take the two linguistic values small (S) and big
(B) whereas each of the outputs can take the three linguistic values negative
(N), zero (Z) and positive (P). So, if S = 1, B = 2, N = 1, Z = 2 and P = 3, 
then a monotonic rule base for this system will be represented by Table 4.4. 

Table 4.4. Monotonic rule base for a fuzzy system 

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 1 1 1 
2 1 1 1 2 
3 1 1 1 3 
4 1 2 2 1 
5 1 2 2 2 
6 2 1 2 3 
7 2 1 3 1 
8 2 2 3 2 
9 2 2 3 3 

If a fuzzy rule base does not have some of the four basic properties, then 
some or more of Definitions 4.1–4.4 will not hold. In this case, the fuzzy 
rule base will have some of the corresponding dual properties, which are 
described by the definitions below. 

Definition 4.5 
A fuzzy rule base is incomplete if and only if at least one of all possible 

permutations of linguistic values of the inputs is missing from the 
antecedent part of the rule base. 
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Definition 4.6 
A fuzzy rule base is non-exhaustive if and only if at least one of all 

possible permutations of linguistic values of the outputs is missing from the 
consequent part of the rule base. 

Definition 4.7 
A fuzzy rule base is inconsistent if and only if at least one of all available 

permutations of linguistic values of the inputs is mapped onto more than 
one permutation of linguistic values of the outputs.

Definition 4.8 
A fuzzy rule base is non-monotonic if and only if at least one of all 

available permutations of linguistic values of the outputs is mapped from 
more than one permutation of linguistic values of the inputs.

4.2  Analysis of Rule Base Properties 

There is an obvious duality between Definitions 4.1–4.4 and Definitions 

base that has a specific property, each definition from the last four ones 
describes a fuzzy rule base that does not have this property.

For completeness, a fuzzy rule base must be described by its full 
property status which shows which of the four basic properties are available 
using the Boolean values true (T) and false (F). Such a description for the 
four fuzzy rule bases from Sect. 4.1 is given in Table 4.5. 

Table 4.5. Full property status for fuzzy rule bases represented by integer tables

Fuzzy rule base/Property Complete Exhaustive Consistent Monotonic 
Table 4.1 T F T T 
Table 4.2 F T T T 
Table 4.3 T T T F 
Table 4.4 T T F T 

The full property status in Table 4.5 reveals the impact of some changes 
in the input-output mappings of the fuzzy rule bases on their properties. For 
example, the integer table in Table 4.2 is an inverse image of the integer 
table in Table 4.1 whereby the Boolean values for completeness and 
exhaustiveness in the rule base from the first table are actually inverted 
with respect to the values in the rule base from the second table. Similarly, 
the integer table in Table 4.4 is an inverse image of the integer table in 
Table 4.3 whereby the Boolean values for consistency and monotonousness 

4.5--4.8. While each definition from the first four ones describes a fuzzy rule 
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in the rule base from the first table are inverted with respect to the ones in 
the rule base from the second table. 

It is useful to know to what extent a fuzzy rule base is likely to have each 
of the four basic properties. Usually, a fuzzy rule base is expected to be 
complete, i.e. with all possible permutations of linguistic values of inputs 
available, although that may not always be the case. As far as the 
permutations of linguistic values of the outputs are concerned, it is fairly 
common for some of them to be missing and therefore a fuzzy rule base is 
likely to be non-exhaustive. Ideally, a fuzzy rule base must be consistent, 
i.e. with each available permutation of linguistic values of inputs yielding 
only one permutation of linguistic values of outputs. And finally, it is quite 
common for some permutations of linguistic values of outputs to be yielded 
by more than one permutation of linguistic values of inputs and therefore a 
fuzzy rule base is likely to be non-monotonic.

Theoretically speaking, there are 16 possible permutations of Boolean 
values of properties for a fuzzy rule bases but not all of these permutations 
are equally desirable. If the level of desirability for the permutations is 
described by the linguistic values low (L), medium (M) and high (H), then 
these permutations can be represented by Table 4.6. 

Table 4.6. Permutations of properties for a fuzzy rule base 

Permutation/
Property

Complete Exhaustive Consistent Monotonic Desirability 

1 T T T T H 
2 T T T F H 
3  T T F T L 
4 T T F F L 
5 T F T T H 
6 T F T F H 
7 T F F T L 
8 T F F F L 
9 F T T T M 
10 F T T F M 
11 F T F T L 
12 F T F F L 
13 F F T T M 
14 F F T F M 
15 F F F T L 
16 F F F F L 

It is worth noting that some of the permutations of Boolean values of 
properties in Table 4.6 may not be possible for some fuzzy rule bases. For 
example, if a fuzzy system has two inputs and one output whereby each of 
them can take three linguistic values, then permutation 1 will be impossible, 
i.e. the rule base can not be complete, exhaustive, consistent and monotonic 
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at the same time. In particular, if the rule base is complete, it will have 9 
rules and therefore some of the linguistic values for the output will appear 
more than once, i.e. the rule base will be non-monotonic. On the other 
hand, if the rule base is monotonic with 3 rules such that each linguistic 
value for the output appears only once, then 6 permutations of linguistic 
values for the inputs will be missing and therefore the rule base will be 
incomplete.

It is obvious from Table 4.6 that a complete and consistent fuzzy rule 
base is very desirable not only because it provides detailed information 
about the fuzzy system by means of all possible permutations of linguistic 
values  of  inputs  but  also  because  its  inference  mechanism  is

 non
 rule base is still desirable due to its non-contradictory inference mechanism 
although it does not provide detailed information about the fuzzy system 
(see permutations 9-10, 13-14). However, an inconsistent fuzzy rule base is 
not desirable irrespective of whether it is complete or not because its 
inference  mechanism  is  contradictory  (see  permutations  3-4,  7-8,  11-12,

 15-16).
A deeper analysis of Table 4.6 shows that the permutations with high 

level of desirability are the ones that correspond to a complete and 
consistent fuzzy rule base. These properties relate to the antecedent part of 
the rule base over which we usually have some control. In this respect, we 
can make additional observations on the inputs in order to add the rules 
with the missing permutations of linguistic values and to make the rule base 
complete. Also, we can make additional observations on the outputs in 
order to remove the redundant rules with the same antecedent part and to 
make the rule base consistent.

Therefore, if a fuzzy rule base is initially in a ‘low’ property status, we 
should be able to achieve a ‘high’ status by means of additional 
observations on the inputs and the outputs. However, if a ‘high’ property 
status is not achievable from a ‘low’ status for some reason, e.g. due to time 
constraints on the additional observations, then we should be able to 
achieve at least a ‘medium’ status by means of additional observations on 
the outputs. Obviously, if a fuzzy rule base is initially in a ‘medium’ 
property status, then we should be able to achieve a ‘high’ status by means 
of additional observations on the inputs.

The required types of additional observations for achieving transitions 
from one property status to another for fuzzy rule bases areshowninTable 4.7. 
In this case, a transition is desirable only if it is from a lower to a higher 
property status although such a transition may not always be possible due to 
inability to make sufficient additional observations. On the other hand, a 
transition from a higher to a lower property status is always possible, e.g. it 
is easy to remove rules or add contradictory rules, but such a transition is 
undesirable as it actually deteriorates the inference mechanism of the fuzzy 
system.

-contradictory (see permutations 1-2, 5-6).  An incomplete but consistent
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Property status  To low To medium To high 
From low – output observations input and output 

observations
From medium undesirable – input observations 
From high undesirable undesirable – 

The considerations made above show that if a fuzzy rule base is not in a 
‘high’ or at least in a ‘medium’ property status, we are very likely to be 
able to achieve a higher status using additional observations on the inputs 
or the outputs. Such a transition will improve the inference mechanism of 
the fuzzy system. 

4.3  Presentation of Rule Bases by Boolean Matrices 

Although integer tables can be quite useful for formal presentation of fuzzy 
rule bases in relation to their properties, they also have some serious 
drawbacks. For example, they may contain repetitive information such as 
rules with the same antecedent parts in inconsistent rule bases or rules with 
the same consequent parts in non-monotonic rule bases. Also, as integer 
tables are a bit rigid, they do not appear to be suitable for formal 
manipulation of fuzzy rule bases, e.g. during a transition to a higher 
property status. And finally, it may be quite difficult and time consuming to 
define the property status by means of integer tables, especially in the case 
of large fuzzy rule bases.

Obviously, more advanced techniques for formal presentation of fuzzy 
rule bases would be quite helpful. For this purpose, one such technique is 
introduced here. This technique is based on Boolean matrices that have 
been thoroughly studied by mathematicians and applied by engineers in a 
number of areas such as transport networks and communication networks 
[47]. Some basic definitions for Boolean matrices are given below. 

Definition 4.9 
An m × n Boolean matrix is a matrix with m rows and n columns whose 

elements can take only the values 0 and 1. 

Definition 4.10 
An m × n null Boolean matrix is a matrix with m rows and n columns all 

of whose elements are equal to 0. 

Table 4.7. Transitions from one property status to another for fuzzy rule bases 
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Definition 4.11 
An m × n universal Boolean matrix is a matrix with m rows and n

columns all of whose elements are equal to 1. 

Definition 4.12 
A Boolean matrix is square if and only if the number of its rows is equal 

to the number of its columns. 

Definition 4.13 
A Boolean matrix is homogenous if and only if its row and column labels 

are of the same type. 

Definition 4.14 
An element in a Boolean square matrix is on-diagonal if and only if its 

row and column index are the same. 

Definition 4.15 
An element in a Boolean square matrix is off-diagonal if and only if its 

row and column index are different. 

Definition 4.16 
An identity Boolean matrix is a square homogenous Boolean matrix all 

of whose on-diagonal elements are equal to 1 and all of whose off-diagonal 
elements are equal 0. 

The basic operations that can be applied to elements of Boolean matrices 
are ‘addition’ and ‘multiplication’. They are both binary operations as they 
can only be applied to two operands. In the case of more than two elements, 
each of the two operations can be applied in a sequential manner, i.e. step 
by step, whereby only two elements are considered at each step and the 
result from the step becomes an operand in the next step. 

The ‘addition’ operation has the effect of taking the ‘maximum’ of the 
elements whereas the ‘multiplication’ operation has the effect of taking the 
‘minimum’ of the elements. Both operations are commutative, i.e. the result 
is not affected if the positions of the two elements are swapped. 

In terms of the values of the first and the second element, there are four 
different permutations for the ‘addition’ operation which are described by 
the following equations: 

1 + 1 = max (1, 1) = 1 (4.1)

0 + 1 = max (0, 1) = 1 (4.2)
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1 + 0 = max (1, 0) = 1 (4.3) 

0 + 0 = max (0, 0) = 0 (4.4)

Similarly, there are four different permutations for the ‘multiplication’ 
operation which are described by the following equations: 

1 . 1 = min (1, 1) = 1 (4.5)

0 . 1 = min (0, 1) = 0 (4.6)

1 . 0 = min (1, 0) = 0 (4.7)

0 . 0 = min (0, 0) = 0 (4.8)

Boolean matrices are multiplied in almost the same way as conventional 
matrices, i.e. matrices whose elements can take any values. Each element in 
a Boolean matrix product A*B can be obtained by multiplying each row 
from the first matrix A with its counterpart column from the second matrix 

the corresponding row from the matrix A, whereas the column index of an 
element in A*B is the same as the index of the corresponding column from 
the matrix B.

The multiplication compatibility rule for Boolean matrices is the same as 
the rule for conventional matrices, i.e. the number of columns in the first 
matrix must be equal to the number of rows in the second matrix. The only 
difference is that instead of applying the arithmetic ‘addition’ and 
‘multiplication’ operations on elements of the matrices, we apply the 
‘maximum’ and ‘minimum’ operations, respectively.

The ‘addition’ and ‘multiplication’ operations on elements of Boolean 
matrices are valid in the context of matrix multiplication only if the two 
matrices are compatible. Obviously, Boolean matrix multiplication is non-
commutative because the swapping of the two matrices may violate the 
multiplication compatibility rule. 

By replacing ‘max’ with ‘or’, ‘0’ with ‘false’ and ‘1’ with ‘true’ in 
Eqs. (4.1)–(4.4), the latter can be represented by the following equivalent 
form:

T or T  = T (4.9)

F or  T  = T (4.10)

B. In this case, the row index of an element in A*B is the same as the index of 
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T or F  = T (4.11) 

F or F = F (4.12)

Similarly, by replacing ‘min’ with ‘and’, ‘0’ with ‘false’ and ‘1’ with 
‘true’ in Eqs. (4.5)–(4.8), the latter can be represented by the following 
equivalent form: 

T and T  = T (4.13)

F and T  = F (4.14)

T and F  = F (4.15)

F and F = F (4.16)

Obviously, there exists a clear duality between Eqs. (4.1)–(4.8) and  
Eqs. (4.9)–(4.16). The first group of equations is based on a set theoretic 
approach to operations on elements in Boolean matrices while the second 
group of equations is based on a Boolean logic approach. This specific type 
of duality is a reflection of the general type of duality that is known to exist 
between set theory and Boolean logic.

The above duality facilitates the manipulation and the interpretation of 
fuzzy rule bases, which are presented formally. For example, a set theoretic 
based presentation of a fuzzy rule base can be easily converted into an 
equivalent Boolean logic based presentation if this  conversion is expected 
to improve the transparency of the fuzzy rules. In other cases, the opposite 
type of conversion may be required, i.e. from a Boolean logic based 
presentation into a set theoretic based presentation. 

The process of presenting a fuzzy rule base by a Boolean matrix is 
almost straightforward when the rule base is already presented by an integer 
table. The following algorithm gives a step by step description of the 
process of converting an integer table into a Boolean matrix: 

Algorithm 4.1 

1. Sort all possible permutations of linguistic values of inputs from 
the integer table in an ascending order. 

2. Sort all possible permutations of linguistic values of outputs 
from the integer table in an ascending order. 

3. Label the rows of the Boolean matrix with the sorted 
permutations of linguistic values of inputs. 
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4. Label the columns of the Boolean matrix with the sorted 
permutations of linguistic values of outputs. 

5. Go through all the elements of the Boolean matrix and set each 
element equal to 1 or 0 using steps 6 and 7. 

6. If an element of the Boolean matrix reflects an existing mapping 
from an input onto an output permutation, set it equal to 1. 

7. If an element of the Boolean matrix reflects a non-existing 
mapping from an input onto an output permutation, set it equal to 
0.

By means of Algorithm 4.1, the four examples of fuzzy rule bases 
presented by the integer tables in Tables 4.1–4.4 can be presented 
equivalently by the Boolean matrices in Eqs. (4.17)–(4.20), respectively. 

Inputs/Outputs   11   12   13   21   22   23   31   32   33 

                11                 1     0     0     0     0     0     0     0     0            
                12                 0     1     0     0     0     0     0     0     0 
                21                 0     0     1     0     0     0     0     0     0 
                22                 0     0     0     1     0     0     0     0     0 

(4.17)

Inputs/Outputs   11   12   21   22 

                                    11               1     0     0     0                   
                                    12               0     1     0     0     
                                    13               0     0     1     0      
                                    21               0     0     0     1      
                                    22               0     0     0     0      
                                    23               0     0     0     0      
                                    31               0     0     0     0      
                                    32               0     0     0     0      
                                    33               0     0     0     0      

(4.18)

Inputs/Outputs   11   12   21   22 

                                    11               1     0     0     0                   
                                    12               1     0     0     0     
                                    13               1     0     0     0      
                                    21               0     1     0     0      
                                    22               0     1     0     0      
                                    23               0     0     1     0      
                                    31               0     0     1     0      
                                    32               0     0     0     1      
                                    33               0     0     0     1      

(4.19)
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Inputs/Outputs   11   12   13   21   22   23   31   32   33 

                     11              1     1     1     0     0     0     0     0     0         
                     12              0     0     0     1     1     0     0     0     0 
                     21              0     0     0     0     0     1     1     0     0 
                     22              0     0     0     0     0     0     0     1     1 

(4.20)

The full property status of the four fuzzy rule bases described by the 

conversion of an integer table into a Boolean matrix does not change the basic 
properties and the associated property status of the fuzzy rule base, we can 
use Table 4.5 to represent the same rule base by only changing the row 
labels appropriately. In this case, the table numbers in Table 4.5 will be 
replaced by the corresponding equation numbers, as shown in Table 4.8. 

Table 4.8. Full property status for fuzzy rule bases represented by Boolean 
matrices

Fuzzy rule base / Property Complete Exhaustive Consistent Monotonic 
Equation 4.17 T F T T 
Equation 4.18 F T T T 
Equation 4.19 T T T F 
Equation 4.20 T T F T 

As in the case of integer tables, the full property status in Table 4.8 
reveals the impact of some changes in the input-output mappings of the 
fuzzy rule bases on their properties. For example, the Boolean matrix in 
Eq. (4.18) is the transpose of the Boolean matrix in Eq. (4.17) whereby the 
Boolean values for completeness and exhaustiveness for the rule base from 
the second equation are actually inverted with respect to the values for the 
rule base from the first equation. Similarly, the Boolean matrix in Eq. (4.20) 
is the transpose of the Boolean matrix in Eq. (4.19) whereby the Boolean 
values for consistency and monotonousness in the rule base from the 

The conversion of an integer table into a Boolean matrix does not affect 
the permutations of properties and the transitions from one property status 

valid for any fuzzy rule base irrespective of whether it is presented by an 
integer table or a Boolean matrix.

One of the advantages of Boolean matrices with respect to integer tables 
is that it is very easy to define the properties of the associated fuzzy rule 
base on the basis of the properties of the corresponding matrix. This is so 
because the properties of a fuzzy rule base can be implied directly from 

integer tables in Tables 4.1-- 4.4 was given earlier in Table 4.5. As the 

second equation are inverted with respect to the corresponding values for 

to another for the associated fuzzy rule base. Therefore, Tables 4.6–4.7 are 

the rule base from the first equation. 
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some  properties  of  the  corresponding  matrix  such  as  the  number  of
 non-zero  elements in its rows and columns. The following definitions show
 how this works. 

Definition 4.17 
A fuzzy rule base is complete if and only if each row in its Boolean 

matrix contains at least one non-zero element. 

Definition 4.18 
A fuzzy rule base is incomplete if and only if at least one row in its 

Boolean matrix contains only zero elements. 

Definition 4.19 
A fuzzy rule base is exhaustive if and only if each column in its Boolean 

matrix contains at least one non-zero element. 

Definition 4.20 
A fuzzy rule base is non-exhaustive if and only if at least one column in 

its Boolean matrix contains only zero elements.

Definition 4.21 
A fuzzy rule base is consistent if and only if each row in its Boolean 

matrix contains not more than one non-zero element. 

Definition 4.22 
A fuzzy rule base is inconsistent if and only if at least one row in its 

Boolean matrix contains more than one non-zero element. 

Definition 4.23 
A fuzzy rule base is monotonic if and only if each column in its Boolean 

matrix contains not more than one non-zero element. 

Definition 4.24 
A fuzzy rule base is non-monotonic if and only if at least one column in 

its Boolean matrix contains more than one non-zero element. 

The validity of the definitions above can be checked by examining Table 4.8 
and Eqs. (4.17)–(4.20). Obviously, the contents of Table 4.8 can be inferred 

Tables 4.1–4.4. This is so because Boolean matrices compress the 
information from integer tables, e.g. the matrix labels do not duplicate 
permutations of linguistic values of inputs in inconsistent rule bases and 
permutations of linguistic values of outputs in non-monotonic rule bases. 

much more easily from the properties of the Boolean matrices in
Eqs. (4.17)–(4.20) than from the  structure of the corresponding integer tables

 in 
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Also, scanning elements in a Boolean matrix works much faster and easier 
than scanning permutations in integer tables. 

4.4 Presentation of Rule Bases by Binary Relations 

Although Boolean matrices are superior to integer tables for formal 
presentation of fuzzy rule bases, they also have some drawbacks. For 
example, the row and column labels in these matrices contain all possible 
permutations of linguistic values of inputs and outputs although some of 
these labels may be redundant, especially in the case of large fuzzy rule 
bases. This redundancy becomes even more obvious in large sparse 
Boolean matrices describing incomplete and non-exhaustive fuzzy rule 
bases.

Obviously, a more advanced technique for formal presentation of fuzzy 
rule bases would be useful. Ideally, this technique should combine the 
advantages of integer tables and Boolean matrices by: 

not containing redundant row and column labels for the 
permutations  of  linguistic  values  of  inputs  in  inconsistent  rule
 bases and the permutations of linguistic values of outputs in

 non-monotonic rule bases, 

defining the properties of the associated fuzzy rule base. 

One such technique is introduced here. The technique is based on binary 

engineers in a number of application areas [47]. Some basic definitions for 
binary relations and other related terms are given below. 

Definition 4.25 
An m set is a collection of m distinct objects of the same type with 

arbitrary ordering.

By ‘objects’ we mean items, numbers, permutations of linguistic values, 
etc. By ‘distinct’ we mean that each object can appear not more than once 
in a set. By the ‘same type’ we mean that all objects in a set must be of the 
same nature, i.e. only items, only numbers, only permutations of linguistic 
values, etc. By ‘arbitrary ordering’ we mean that the order of the objects in 
a set does not matter, i.e. the changing of the ordering of the objects in a set 
does not change the set itself. By ‘collection’ we mean that a set is expected 
to contain at least one object although in some cases the collection could be 
empty.

allowing fast and easy scanning of elements for the purpose of 

not containing redundant  rows and columns for the permutations 
of  

relations that have been thoroughly studied by mathematicians and used by 

exhaustive fuzzy rule bases, 
linguistic values of inputs and outputs in  incomplete and 

non- 
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Definition 4.26 
A null set is an empty collection of objects. 

Very often, the term ‘element’ is used when we make a reference to an 
object in a set related context. In this case, an element is either a member or 
not a member of the set, i.e. it either belongs to or does not belong to the 
set.

Definition 4.27 
An m × n binary relation is a set all of whose elements are pairs whereby 

the first element in each pair belongs to an m set and the second element in 
the pair belongs to an n set. 

Definition 4.28 
A null binary relation is an empty collection of pairs of elements. 

Definition 4.29 
An m × n universal binary relation is a set that contains all possible pairs 

of elements from an m set and an n set. 

Definition 4.30 
A binary relation is square if and only if the number of elements in the 

two participating sets is equal. 

Definition 4.31 
A binary relation is homogenous if and only if the two participating sets 

are of the same type. 

Definition 4.32 
A pair in a square binary relation is on-diagonal if and only if its 

individual elements are in the same position in the two participating sets. 

Definition 4.33 
A pair in a square binary relation is off-diagonal if and only if its 

individual elements are in different positions in the two participating sets. 

Definition 4.34 
An identity binary relation is a square homogenous binary relation that 

contains all the on-diagonal pairs and none of the off-diagonal pairs from 
the two participating sets. 
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Usually, the term maplet is used when we make a reference to a pair in a 
binary relation related context. In this sense, a pair is either a member or 
not a member of the relation, i.e. it either belongs to or does not belong to 
the relation. 

A subset of a set may contain only elements, which are members of the 
set. Similarly, a subrelation of a binary relation may contain only maplets, 
which are members of the binary relation. Therefore, any set is a subset of 
itself and any binary relation is a subrelation of itself. Also, by definition a 
null set is a subset of any set and a null binary relation is a subrelation of 
any binary relation. 

Definition 4.35 
The domain of a binary relation is the subset of all individual elements 

from the first participating set in the relation, which belong to maplets in 
this relation. 

Definition 4.36 
The range of a binary relation is the subset of all individual elements 

from the second participating set in the relation, which belong to maplets in 
this relation. 

The basic operations that can be applied to maplets of binary relations 
are ‘aggregation’ and ‘composition’. They are both binary operations as 
they can only be applied to two operands. In the case of more than two 
maplets, each of the two operations can be applied in a sequential manner, 
i.e. step by step, whereby only two maplets are considered at each step and 
the result from the step becomes an operand in the next step.

The ‘aggregation’ operation has the effect of replacing two identical 
maplets standing in parallel with only one of them, i.e. one of the two 
maplets is removed. The following equation describes the ‘aggregation’ 
operation:

(e1, e2) + (e1, e2)  = (e1, e2) (4.21) 

The ‘composition’ operation has the effect of replacing two maplets 
standing in a sequence with a new maplet. The ‘composition’ operation has 
the effect of putting the first element from the first maplet and the second 
element from the second maplet in a new maplet provided that the second 
element from the first maplet and the first element from the second maplet 
are identical.

As opposed to the ‘aggregation’ operation, the ‘composition’ operation is 
not commutative, i.e. it may not be possible to apply the operation if the 
positions of the two maplets are swapped. The following equation describes 
the ‘composition’ operation: 

(e1, e2) . (e2, e3) = (e1, e3) (4.22) 
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If we swap the positions of the two maplets in Eq. (4.22), it will not be 
possible to apply the ‘composition’ operation and merge these maplets into 
a new one. In other words, the operation will not have any effect and the 
two initial maplets will remain unchanged. 

The ‘aggregation’ and ‘composition’ operations can also be applied 
when one of the maplets or even both of them are empty. In particular, the 

The following equations describe all possible cases for the ‘aggregation’ 

 ( ) + (e1, e2)  = (e1, e2) (4.23) 

(e1, e2) + ( ) = (e1, e2) (4.24) 

( ) + ( ) = ( ) (4.25) 

 ( ) . (e1, e2)  = ( ) (4.26) 

(e1, e2) . ( ) = ( ) (4.27) 

( ) . ( ) = ( ) (4.28) 

The ‘aggregation’ and ‘composition’ operations are the building blocks 
for the composition of binary relations just as the ‘addition’ and 
‘multiplication’ operations are the building blocks for the multiplication of 
Boolean matrices. Each maplet in a binary relation product A*B can be 
obtained by composing a set of maplets with an identical first element from 
the first relation A with its counterpart set of maplets with an identical 
second element from the second relation B. In this case, the first element of 
a maplet in A*B is the same as the first element of the corresponding 
maplets from the relation A, whereas the second element of a maplet in A*B
is the same as the second element of the corresponding maplets from the 
relation B.

The composition compatibility rule for binary relations requires the set of 
second elements in the maplets from the first relation to be equal to the set 
of first elements in the maplets from the second relation. The ‘aggregation’ 
and ‘composition’ operations on maplets of binary relations are valid in the 
context of relational composition only if the two relations are compatible. 
Obviously, binary relational composition is non-commutative because the 
swapping of the relations may violate the composition compatibility rule. 

As  an  empty maplet  reflects  a non-existing maplet in a binary relation,
 it can  be  represented  formally  by  the  Boolean  value  ‘false’. Similarly, a
 non-empty maplet that reflects an existing maplet in a binary relation can
 be represented formally by the Boolean value ‘true’. As the ‘aggregation’ 

and the ‘composition’ operations when at least one of the maplets is empty: 

result of aggregating or composing two empty maplets is the empty maplet  
whereas the result of aggregating or composing a non-empty maplet with an 
empty maplet is either the non-empty maplet or the empty maplet.
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operation describes maplets standing in parallel, it can be represented by 
the Boolean logical disjunction ‘or’. As opposed to this, the ‘composition’ 

by the Boolean logical conjunction ‘and’. 
Therefore, by replacing ‘+’ with ‘or’, ‘.’ with ‘and’, all empty maplets 

( 1 2

follows:

(4.21) by (4.1), 
(4.22) by (4.5), 
(4.23) by (4.2), 
(4.24) by (4.3), 
(4.25) by (4.4), 
(4.26) by (4.6), 
(4.27) by (4.7), 
(4.28) by (4.8). 

As in the case of Boolean matrices, the above equivalences show the 
obvious duality between Eqs. (4.21)–(4.28) and Eqs. (4.9)–(4.16). The first 
group of equations is based on a set theoretic approach to operations on 
maplets in binary relations, whereas the second group of equations is based 
on a Boolean logic approach. This specific type of duality is a reflection of 
the general type of duality between set theory and Boolean logic, and as 
already mentioned in Sect. 4.3, it facilitates the manipulation and the 
interpretation of fuzzy rule bases which are presented formally.

The process of presenting a fuzzy rule base by a binary relation is almost 
straightforward when the rule base is already represented by an integer 
table. The following algorithm gives a step by step description of the 
process of converting an integer table into a binary relation: 

Algorithm 4.2 
1. Go through all the rows of the integer table from top to bottom 

by mapping the pair of permutations of linguistic values of 
inputs and outputs from each row onto a maplet (as described by 
steps 2 and 3). 

2. Make the permutation of linguistic values of inputs in each table 
row the first element of the maplets corresponding to this row. 

3. Make the permutation of linguistic values of outputs in each 
table row the second element of the maplets corresponding to 
this row. 

operation which describes maplets standing in sequence can be represented 

(4.28), the latter can be represented equivalently by 
Eqs.  (4.1)– (4.8) as 

) with ‘false’ and all non-empty maplets ( e , e ) with ‘true’ in 
–Eqs. (4.21)
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4. Generate a binary relation containing all the maplets created in 
the previous steps of this algorithm. 

By means of Algorithm 4.2, the four examples of fuzzy rule bases 
presented by the integer tables in Tables 4.1-4.4 can be presented 
equivalently by the binary relations in  Eqs. (4.29)–(4.32), respectively. 

{(11, 11), (12, 12), (21, 13), (22, 21)} (4.29)

{(11, 11), (12, 12), (13, 21), (21, 22)} (4.30)

{(11, 11), (12, 11), (13, 11), (21, 12), (22, 12), (23, 21), (31, 21), 
(32, 22), (33, 22)} 

(4.31)

{(11, 11), (11, 12), (11, 13), (12, 21), (12, 22), (21, 23), (21, 31), 
(22, 32), (22, 33)} 

(4.32)

In the binary relations presented by Eqs. (4.28)–(4.32), the maplets are 
separated by commas and surrounded by a pair of square brackets. In this 
case, the opening and the closing square bracket mark the beginning and the 
end of the binary relation, respectively. 

As the conversion of an integer table into a binary relation does not 
change the basic properties and the associated property status of the fuzzy 
rule base, we can use Table 4.5 to present the same rule base by only 
changing the row labels appropriately. In this case, the table numbers in 
Table 4.5 will be replaced by the corresponding equation numbers, as 
shown in Table 4.9. 

Table 4.9. Full property status for fuzzy rule bases represented by binary relations 

Fuzzy rule base / Property Complete Exhaustive Consistent Monotonic 
T F T T 
F T T T 
T T T F 
T T F T 

status in Table 4.9 reveals the impact of some changes in the input-output 
mappings of the fuzzy rule bases on their properties. For example, the 

Eq. (4.29) whereby the Boolean values for completeness and 

inverted with respect to the corresponding values for the rule base from the 
first equation. Similarly, the binary relation in Eq. (4.32) is the inverse of 

Equation 4.29 

As in the case of integer tables and Boolean matrices, the full property 

Equation 4.30 

binary relation in Eq. (4.30) is the inverse of the binary relation in 

Equation 4.31 

exhaustiveness of the rule base from the second equation are actually 

Equation 4.32 
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the binary relation in Eq. (4.31) whereby the Boolean values for 
consistency and monotonousness for the rule base from the second equation 
are inverted with respect to the corresponding values for the rule base from 

Here again, the conversion of an integer table into a binary relation does 
not affect the permutations of properties and the transitions from one 
property status to another for the associated fuzzy rule base. Therefore, 
Tables 4.6–4.7 are valid for any fuzzy rule base irrespective of whether it is 
presented by an integer table or a binary relation. 

One of the advantages of binary relations with respect to integer tables is 
that it is very easy to define the properties of the associated fuzzy rule base 
on the basis of the properties of the corresponding relation. This is so 
because the properties of a fuzzy rule base can be implied directly from 
some properties of the corresponding relation such as total, partial, onto, 
into, one-to-many and many-to-one mappings. The following definitions 
show how this works. 

Definition 4.37 
A fuzzy rule base is complete if and only if its binary relation is a total 

mapping.

Definition 4.38 
A fuzzy rule base is incomplete if and only if its binary relation is a 

partial mapping. 

Definition 4.39 
A fuzzy rule base is exhaustive if and only if its binary relation is an onto 

mapping.

Definition 4.40 
A fuzzy rule base is non-exhaustive if and only if its binary relation is an 

into mapping. 

Definition 4.41 
A fuzzy rule base is consistent if and only if its binary relation does not 

contain any one-to-many mappings.

Definition 4.42 
A fuzzy rule base is inconsistent if and only if its binary relation contains 

at least one one-to-many mapping. 

Definition 4.43 
A fuzzy rule base is monotonic if and only if its binary relation does not 

contain any many-to-one mappings. 

the first equation. 
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Definition 4.44 
A fuzzy rule base is non-monotonic if and only if its binary relation 

contains at least one many-to-one mapping. 

The validity of the definitions above can be checked by examining 
Table 4.9 and Eqs. (4.29)–(4.32). Obviously, the contents of Table 4.9 can 

from integer tables, as already explained in the beginning of the current 
section. Also, scanning maplets in a binary relation works much faster and 

4.5  Comparative Analysis of Formal Presentation Techniques 

Both Boolean matrices and binary relations are advanced techniques for 
formal presentation of fuzzy systems, which facilitate the analysis of fuzzy 
rule bases and improve their transparency. As these techniques are actually 
two different ways of describing the same rule base, there exists an obvious 
duality between them. For example, with regard to the analysis of 
properties of fuzzy rule bases by Boolean matrices and binary relations, 

Also, with regard to the basic operations on elements of Boolean matrices 
and maplets in binary relations, Eqs. (4.1)–(4.8) are the dual counterparts of 
Eqs. (4.21)–(4.28). 

Boolean matrices and binary relations are superior to integer tables in 
terms of representing fuzzy rule bases not only because they compress the 
information held by integer tables but also because they provide more 
reliable and efficient ways of analysing this information. Binary relations 
are possibly better than Boolean matrices as they do not contain empty 
maplets for non-existent input-output mappings of permutations of 
linguistic values. As opposed to this, zero elements in Boolean matrices 
reflect such mappings and this represents some redundancy.

Algorithms 4.1–4.2 show how an integer table presenting a fuzzy rule 
base can be converted into an equivalent formal presentation as a Boolean 
matrix or a binary relation. In some cases, however, it may be more 
sensible to obtain a binary relation from a Boolean matrix rather than from 
an integer table. The following algorithm gives a step by step description of 
the process of converting a Boolean matrix into a binary relation: 

Algorithm 4.3 
1. Go through all the elements of the Boolean matrix and map them 

onto the maplets of the binary relation using steps 2-3. 

be derived more easily from the properties of the binary relations in

in Tables 4.1-4.4. This is so because binary relations compress the information 

easier than scanning permutations in integer tables. 

Eqs. (4.29)–(4.32) than from the structure of the corresponding integer tables

Definitions 4.17–4.24 are the dual counterparts of Definitions 4.37–4.44. 
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2. If an element is equal to 1, map it onto a maplet such that the 
row label of the element is the first element in the maplet and the 
column label of the element is the second element in the maplet.

3. If an element is equal to 0, do nothing. 

By means of Algorithm 4.3, the four examples of fuzzy rule bases 
represented by the Boolean matrices in Eqs. (4.17)–(4.20) can be 
represented equivalently by the binary relations in Eqs. (4.29)–(4.32), 
respectively.

rule base into a more advanced one, i.e. from an integer table into a 
Boolean matrix, from an integer table into a binary relation, and from a 
Boolean matrix into a binary relation. These conversions are summarised in 
Table 4.10 and illustrated in Fig. 4.1. The conversions facilitate 
significantly the analysis of rule bases. 

Table 4.10. Conversions between formal presentation techniques for fuzzy rule 
bases

From / To Integer table Boolean matrix Binary relation 
Integer table – Algorithm 4.1 Algorithm 4.2 
Boolean matrix unnecessary – Algorithm 4.3 
Binary relation unnecessary unnecessary – 

The opposite conversions of the ones described in Table 4.10 are 
possible but they do not make much sense. This is so because the aim of 
conversion is to represent a fuzzy rule base with a more advanced formal 
technique, which would allow us to better analyse the rule base. For this 
reason, the opposite conversions are indicated in Table 4.10 as unnecessary. 

Fig. 4.1. Conversions between formal presentation techniques for fuzzy rule bases 

Integer table

Boolean matrix Binary relation

Algorithms 4.1-- 4.3 allow us to convert a formal presentation of a fuzzy 
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Finally, although binary relations are usually a better formal presentation 
technique of fuzzy rule bases than Boolean matrices, the latter are 
underpinned by a matrix theory that appears to be more powerful than the 
corresponding relational theory. Therefore, Boolean matrices may 
sometimes be preferred to binary relations as more suitable for a specific 
task.

4.6 Application Range of Formal Presentation Techniques 

The two advanced formal presentation techniques introduced in this chapter 
are applicable to a wide range of fuzzy rule based systems. These 
techniques can be applied to Mamdami, Sugeno and Tsukamoto systems, 
CON and DIS systems, MO and SO systems, FF and FB systems, as well as 
SRB and MRB systems. 

The following paragraphs demonstrate the wide application range of 
Boolean matrices and binary relations. Integer tables are also considered as 
part of the formal presentation process of fuzzy rule bases by Boolean 
matrices or binary relations because the latter can be obtained under the 
assumption that the corresponding integer table is already available (see 

fuzzy rule bases described by Tables 4.1-4.4 and some variations of them, 
which take into account explicitly different cases. 

Example 4.1 describes explicitly a fuzzy system of Mamdami or 
Tsukamoto type. If this system is of CADR type, i.e. with CON antecedents 
and DIS rules, then it will be represented by the following ‘if-then’ rules:

The presentation of this type of fuzzy system by an integer table, 
Boolean matrix and binary relation was given earlier in Table 4.1, 

not show explicitly the way in which the antecedents and the rules are 
connected. This was done on purpose for simplicity and on the assumption 
that we can always find these connections from the if-then rules in 
Eq. (4.33). However, we may want to show the connections for this fuzzy 
system explicitly by including them in the corresponding integer table, 
Boolean matrix and binary relation as follows: 

If i1 is Sand i2 is S then o1 is Nalso o2 is N 
or

If i1 is Sand i2 is B then o1 is Nalso o2 is Z 
or

If i1 is B and i2 is S then o1 is Nalso o2 is P 
or

                 If i1 is B and i2 is B then o1 is Z also o2 is N 

(4.33)

Algorithms 4.1--4.2). The demonstration is based on one or more of the four 

Eq. (4.17) and Eq. (4.29), respectively. These three formal presentations did 
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Table 4.11. Integer table with connections for a Mamdami/Tsukamoto fuzzy 
system

Rule
number

Linguistic
value of i1

 Linguistic 
value of i2

Linguistic
value of o1

Linguistic
value of o2

1 1 and 1 1 1 
or      
2 1 and 2 1 2 
or      
3 2 and 1 1 3 
or      
4 2 and 2 2 1 

Inputs/Outputs   11   12   13   21   22   23   31   32   33 

                 and  11          1     0     0     0     0     0     0     0     0
                         or
                 and  12          0     1     0     0     0     0     0     0     0 
                         or 
                 and  21          0     0     1     0     0     0     0     0     0 
                         or 
                 and  22          0     0     0     1     0     0     0     0     0 

(4.34)

{[and (11, 11)] or [and (12, 12)] or [and (21, 13)] or [and (22, 21)]} (4.35) 

We can show explicitly the connections between the antecedents and the 
rules in any CON/DIS fuzzy system, i.e. CADR, DADR, CACR and 
DACR, which is of Mamdami or Tsukamoto type. This can be done by 
including the corresponding ‘and’ or ‘or’ operator in the designated places 
in the integer table, the Boolean matrix and the binary relation, as shown by 
Table 4.11, Eq. (4.34) and Eq. (4.35), respectively. 

As a Sugeno fuzzy system differs from a Mamdami/Tsukamoto system 
in the consequent part of the rule base, some variations have to be 
introduced to account for this difference. For this purpose, we may consider 
a variation of Example 4.1 describing a Sugeno fuzzy system of CADR 
type, i.e. with CON antecedents and DIS rules, and with linear functions for 
the outputs. This system will be represented by the following ‘if-then’ 
rules:
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If i1 is Sand i2 is S then o1 = 3. i1 + 4. i2 + 5 also o2 = 6. i1 + 7. i2 + 8 
or

If i1 is Sand i2 is B then o1 = 5. i1 + 4. i2 + 3 also o2 = 8. i1 + 7. i2 + 6 
or

If i1 is B and i2 is S then o1 = 4. i1 + 5. i2 + 6 also o2 = 7. i1 + 8. i2 + 9 
or

If i1 is B and i2 is B then o1 = 6. i1 + 5. i2 + 4 also o2 = 9. i1 + 8. i2 + 7 

(4.36)

This type of fuzzy system can be represented by an integer table, a 
Boolean matrix and a binary relation similar to the ones given by Table 4.1, 
Eq. (4.17) and Eq. (4.29), respectively. We can show explicitly the way in 
which the antecedents and the rules are connected by including the 
corresponding ‘and’ or ‘or’ operator in the designated places of the above 
three formal presentations, as already shown for a Mamdami/Tsukamoto 

corresponding integer table, Boolean matrix and binary relation will be as 
follows:

Table 4.12. Integer table with connections for a Sugeno fuzzy system 

Rule
number

Linguistic
value of i1

 Linguistic 
value of i2

Linear function
coefficients for o1

Linear function
coefficients for o2

1 1 and 1 3, 4, 5 6, 7, 8 
or      
2 1 and 2 5, 3, 4 8, 7, 6 
or      
3 2 and 1 4, 5, 6 7, 8, 9 
or      
4 2 and 2 6, 5, 4 9, 8, 7 

Inputs/Outputs   3:4:5-6:7:8   5:3:4-8:7:6   4:5:6-7:8:9   6:5:4-9:8:7 

and  11                 1                   0                   0                  0
        or
and  12                 0                   1                   0                  0
        or 
and  21                 0                   0                   1                  0
       or 
and  22                 0                   0                   0                  1

(4.37)

system by Table 4.11, Eq. (4.34) and Eq. (4.35). In this case, the 
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{[and (11, 3:4:5-6:7:8)] or [and (12, 5:3:4-8:7:6)] or 

[and (21, 4:5:6-7:8:9)] or [and (22, 6:5:4-9:8:7)]} 

(4.38)

As far as some of the notations for the above Sugeno fuzzy system are 
concerned, the dots (.) in Eq. (4.36) stand for arithmetic multiplication in 
the linear functions. The commas (,) in Table 4.12, the semi-colons (:) in 
Eq. (4.37) and the dashes (-) in Eq. (4.38) are used as separators for the 
coefficients of the linear functions in the integer table, the Boolean matrix, 
and the binary relation, respectively.

It can be seen from Eq. (4.37) that the Boolean matrix for a Sugeno fuzzy 
system contains only the column labels that reflect existing permutations of 
coefficient values for the linear functions. This is so because it would be 
theoretically unjustifiable and practically impossible to include all possible 
permutations of such values. This variation can be reflected in the 
conversion process of an integer table into a Boolean matrix by introducing 
appropriate changes in Algorithm 4.1. 

We can show explicitly the connections between the antecedents and the 
rules in any CON/DIS fuzzy system, i.e. CADR, DADR, CACR and 
DACR, which is of Sugeno type. This can be done by including the 
corresponding ‘and’ or ‘or’ operator in the designated places in the integer 
table, the Boolean matrix and the binary relation, as shown by Table 4.12, 
Eq. (4.37) and Eq. (4.38), respectively. 

The Mamdami/Tsukamoto and the Sugeno fuzzy system described by the 
‘if-then’ rules in Eq. (4.33) and Eq. (4.36) are both with two outputs, i.e. 
they are MO systems. Therefore, each of these MO systems can be 
represented by two logically equivalent SO systems as follows 

                               If i1 is Sand i2 is S then o1 is N 
or

If i1 is Sand i2 is B then o1 is N 
or

If i1 is B and i2 is S then o1 is N 
or

                          If i1 is B and i2 is B then o1 is Z 

(4.39)

If i1 is Sand i2 is S then o2 is N 
or

If i1 is Sand i2 is B then o2 is Z 
or

If i1 is B and i2 is S then o2 is P 
or

                          If i1 is B and i2 is B then o2 is N 

(4.40)
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If i1 is Sand i2 is S then o1 = 3. i1 + 4. i2 + 5 
or

If i1 is Sand i2 is B then o1 = 5. i1 + 4. i2 + 3 
or

If i1 is B and i2 is S then o1 = 4. i1 + 5. i2 + 6 
or

If i1 is B and i2 is B then o1 = 6. i1 + 5. i2 + 4 

(4.41)

If i1 is Sand i2 is S then o2 = 6. i1 + 7. i2 + 8 
or

If i1 is Sand i2 is B then o2 = 8. i1 + 7. i2 + 6 
or

If i1 is B and i2 is S then o2 = 7. i1 + 8. i2 + 9 
or

               If i1 is B and i2 is B then o2 = 9. i1 + 8. i2 + 7 

(4.42)

where Eqs. (4.39)–(4.40) and Eqs. (4.41)–(4.42) are the SO counterparts of  
Eq. (4.33) and Eq. (4.36), respectively. 

The formal presentation of the above two fuzzy systems by integer 
tables, Boolean matrices and binary relations is fairly straightforward, as 
shown below. In this case, Tables 4.13–4.14 and Eqs. (4.43)–(4.46) 
represent the Mamdami/Tsukamoto fuzzy system whereas Tables 4.15-4.16 
and Eqs. (4.47)–(4.50) represent the Sugeno system. 

Table 4.13. Integer table with connections for the first SO Mamdami/Tsukamoto 
fuzzy system

Rule
number

Linguistic value
of i1

 Linguistic value  
of i2

Linguistic value
of o1

1 1 and 1 1 
or     
2 1 and 2 1 
or     
3 2 and 1 1 
or     
4 2 and 2 2 

Table 4.14. Integer table with connections for the second SO Mamdami/ 
Tsukamoto fuzzy system

Rule
number

Linguistic value
of i1

 Linguistic value  
of i2

Linguistic value
of o2

1 1 and 1 1 
or     
2 1 and 2 2 
or     
3 2 and 1 3 
or     
4 2 and 2 1 
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Inputs/Outputs     1     2     3 

                                     and  11           1     0     0
                                             or
                                     and  12           1     0     0
                                             or 
                                     and  21           1     0     0
                                              or 
                                     and  22           0      1     0

(4.43)

Inputs/Outputs     1     2     3 

                                      and  11           1     0     0
                                              or
                                      and  12           0      1     0
                                               or 
                                      and  21           0      0      1
                                                or 
                                      and  22           1     0     0

(4.44)

{[and (11, 1)] or [and (12, 1)] or [and (21, 1)] or [and (22, 2)]} (4.45) 

{[and (11, 1)] or [and (12, 2)] or [and (21, 3)] or [and (22, 1)]} (4.46) 

Table 4.15. Integer table with connections for the first SO Sugeno fuzzy system 

Rule
number

Linguistic value
of i1

 Linguistic value  
of i2

Linear function
coefficients for o1

1 1 and 1 3, 4, 5 
or     
2 1 and 2 5, 3, 4 
or     
3 2 and 1 4, 5, 6 
or     
4 2 and 2 6, 5, 4 

Table 4.16. Integer table with connections for the second SO Sugeno fuzzy system

Rule
number

Linguistic value
of i1

 Linguistic value  
of i2

Linear function
coefficients for o2

1 1 and 1 6, 7, 8 
or     
2 1 and 2 8, 7, 6 
or     
3 2 and 1 7, 8, 9 
or     
4 2 and 2 9, 8, 7 
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Inputs/Outputs      3:4:5      5:3:4      4:5:6      6:5:4 

                    and  11               1            0            0             0
                             or
                    and  12               0            1            0             0
                             or 
                    and  21               0            0            1             0
                             or 
                    and  22               0            0            0             1

(4.47)

Inputs/Outputs      6:7:8      8:7:6      7:8:9      9:8:7 

                    and  11                1            0            0            0
                            or
                    and  12                0            1            0            0
                            or 
                    and  21                0            0            1            0
                            or 
                    and  22                0            0            0            1

(4.48)

{[and (11, 3:4:5)] or [and (12, 5:3:4)] or [and (21, 4:5:6)] or [and 
(22, 6:5:4)]} 

(4.49)

{[and (11, 6:7:8)] or [and (12, 8:7:6)] or [and (21, 7:8:9)] or [and 
(22, 9:8:7)]} 

(4.50)

It has been demonstrated so far that Boolean matrices and binary 
relations can be used for representing formally all basic types of SRB 
systems of FF type. They can also be used for representing MRB systems 
of either FF or FB type. For this purpose, let us assume that the four rule 
bases from Examples 4.1-4.4 are located and interconnected in a MRB 
system as follows: 

the rule base in Example 4.1 is in level 1 of layer 1, i.e. it is 
denoted by RB11,
the rule base in Example 4.2 is in level 1 of layer 2, i.e. it is 
denoted by RB12,
the rule base in Example 4.3 is in level 2 of layer 1, i.e. it is 
denoted by RB21,
the rule base in Example 4.4 is in level 2 of layer 2, i.e. it is 
denoted by RB22,
the outputs of RB11 are fed forward into the inputs to RB12,
the outputs of RB21 are fed forward into the inputs to RB22,
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the outputs of RB12 are fed back into the inputs to RB21,
the outputs of RB22 are fed back into the inputs to RB11.

Therefore, the MRB system can be represented by the following block 
matrices:

                                  level 1 RB11          RB12       

                                  level 2 RB21          RB22        

(4.51)

level/layer       layer 1                         layer 2 

                        level 1 oi= ii

1,2, i=1,2 oi= ii

2,1, i=1,2

                        level 2 oi= ii

2,2, i=1,2 oi= ii

1,1, i=1,2

(4.52)

The block matrices in Eqs. (4.51)–(4.52) are private cases of the block 
matrices in Eqs. (2.11)–(2.12) for the four rule bases in Examples 4.1-4.4. 
In this context, the block matrix in Eq. (4.51) specifies the location of 
individual rule bases in the network structure of the MRB system and the 
block matrix in Eq. (4.52) specifies the output-input interconnections 
between individual rule bases.

Equations (4.51)–(4.52) represent a structural description of a MRB 
system which is a general type of description. Therefore, it must be 
accompanied by a detailed description of each individual rule base in the 
form of an integer table, Boolean matrix or binary relation. As far as the 
individual rule bases are concerned, they can be of any type, i.e. Mamdami, 
Sugeno or Tsukamoto systems, CON or DIS systems, FF or FB systems, as 
well as MO or SO systems. 

is for a SRB system. In particular, the integer table represents  the
 input-output mappings in a rule base while the block matrix represents the
 output-input mappings between rule bases. Therefore, the block matrix
 in Eq. (4.52) can be converted into an equivalent Boolean matrix and
 binary relation by means  of algorithms similar  to Algorithms 4.1–4.2.  In
 this case, the Boolean matrix and the binary relation will be represented by
 Eq. (4.53) and Eq. (4.54), respectively. 

Undoubtedly, both Boolean matrices and binary relations are advanced 
techniques for formal presentation of fuzzy rule bases, which facilitate the 
complexity management in fuzzy systems. These techniques compress the 
information about the rule base contained by the corresponding integer 
table and this compression reduces the quantitative complexity in the fuzzy 
system. At the same time, the qualitative complexity of the system is also 
reduced because the rule base is represented in a more transparent way that 
makes the rules easier for interpretation. 

level/layer      layer 1      layer 2 

The  block  matrix  in  Eq.  (4.52)  is  for  a  MRB system  whereas  an integer
 table 
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However, both Boolean matrices and binary relations have been 
demonstrated so far only in the context of passive analysis of the associated 
fuzzy system. In order to make an active impact on the fuzzy system, e.g. 
when we want to simplify it or change some of its properties, we need to be 
able to manipulate the formal presentation of the system appropriately. This 
issue is discussed in detail in the next chapter. 

Rule base / Rule base RB11      RB21 RB12      RB22

RB11          0           0           1           0 
RB21                     0           0           0           1 
RB12 0           1           0           0 
RB22                     1           0           0           0 

(4.53)

{(RB11, RB12), (RB21, RB22), (RB12, RB21), (RB22, RB11)} (4.54) 
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5.1  Preliminaries on Rule Base Manipulation 

The advanced techniques for formal presentation of fuzzy rule bases 
introduced in the previous chapter are essential to the complexity 
management in fuzzy systems. These techniques not only compress the 
information contained by the fuzzy system but they also facilitate the 
identification of the properties of the fuzzy rule base. However, sometimes 
we may want to change the properties of a fuzzy rule base by manipulating 
its formal presentation appropriately. For example, we may want to make 
an inconsistent rule base consistent or an incomplete rule base complete.

Six techniques for formal manipulation of fuzzy rule bases are 
introduced in this chapter. These techniques can be applied mainly in the 
context of MRB systems as the corresponding manipulations usually affect 
the interconnections between individual rule bases at some stage of the 
manipulation process. However, we may have to deal only with SRB 
systems at other stages of the manipulation process. 

Integer tables are not used in this chapter because they do not lend 
themselves easily to formal manipulation. On the contrary, Boolean 
matrices and binary relations are very convenient for formal manipulation 
and therefore they are used for demonstrating the basic operations for 
formal manipulation of fuzzy rule bases, as shown further in Sects. 5.2–5.7.

Numerous examples are presented further in this chapter. Their purpose 
is to demonstrate the rule base manipulation techniques and to show the 
impact of the manipulation on the properties of the rule bases involved, i.e. 
which properties of the participating rule bases are preserved or lost in the 
resultant rule bases.

5.2  Vertical Merging Manipulation of Rule Bases 

The process of merging two fuzzy rule bases in parallel into a single fuzzy 
rule base is called ‘vertical merging’ and it is shown in Fig. 5.1. This type 
of manipulation can be applied to rule bases residing at different levels 
within the same layer of a MRB system. Obviously, the number of levels in 
this layer will be reduced as a result of this manipulation.

Alexander
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       i1 o1

                                                                  i1
o1

+ =
                                                                      i2                       o2

       i2 o2

Fig. 5.1. Vertical merging of rule bases RB1 and RB2 into rule base RB

In order to illustrate the vertical merging manipulation, we introduce an 
operation called ‘vertical composition’. This operation is binary and it can 
be applied to only two operands at a time. The operands in this case are the 
Boolean matrices or the binary relations representing the operand rule 
bases. The result from the application of this operation is a single Boolean 
matrix or binary relation representing the product rule base.

Algorithms 5.1 and 5.2 demonstrate the application of the vertical 
composition operation to Boolean matrices and binary relations, 
respectively.

Algorithm 5.1 

1. Construct all possible permutations of row labels from the 
operand matrices and sort them. 

2. Construct all possible permutations of column labels from the 
operand matrices and sort them. 

3. Label the rows of the product matrix with the sorted 
permutations of row labels from the operand matrices. 

4. Label the columns of the product matrix with the sorted 
permutations of column labels from the operand matrices. 

5. Go through all the elements of the operand matrices and set each 
element of the product matrix equal to 1 or 0, as described in 
steps 6 and 7. 

6. If an element of the product matrix is mapped from a pair of 
non-zero elements in the product matrices, set this element equal 
to 1. 

7. If an element of the product matrix is mapped from a pair of 
elements in the product matrices at least one of which is zero, set 
this element equal to 0. 

RB1

RB2

RB

RB2
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Algorithm 5.2
1. Construct all possible pairs of maplets from the operand relations 

such that the first maplet in each pair comes from the first 
relation and the second maplet comes from the second relation. 

2. Merge each of these pairs of maplets into a new maplet, as 
described in steps 3 and 4. 

3. Make the first element in each new maplet equal to the 
corresponding permutation of first elements from the associated 
pair of maplets. 

4. Make the second element in each new maplet equal to the 
corresponding permutation of second elements from the 
associated pair of maplets. 

5. Generate the product binary relation containing all new maplets 
created in the previous two steps of this algorithm. 

Example 5.1
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 

RB1:     Inputs/Outputs     1     2 

                                                  1                   0     1
                                                   2                  1      0

(5.1)

RB1: {(1, 2), (2, 1)} (5.2)

RB2:     Inputs/Outputs     1     2 

                                                   1                  0     1
                                                   2                  0     1

(5.3)

RB2: {(1, 2), (2, 2)} (5.4)

The vertical merging of RB1 and RB2 into a product rule base RB will be 
1 2

Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                       11                 0       0       0       1
                                       12                 0       0       0       1
                                       21                 0       1       0       0
                                       22                 0       1       0       0

(5.5)

denoted by RB + RB  =  RB  where RB will be presented by the following 
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    RB: {(11, 22), (12, 22), (21, 12), (22, 12)} (5.6)

The rule bases above have the following properties: 

RB1 – complete, consistent, exhaustive, monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic, 
RB – complete, consistent, non-exhaustive, non-monotonic. 

Example 5.2
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 

RB1:     Inputs/Outputs      1     2 

                                                   1                  0     1
                                                   2                  0     1

(5.7)

RB1: {(1, 2), (2, 2)} (5.8)

RB2:     Inputs/Outputs      1     2 

                                                   1                  1     0
                                                   2                  1     0

(5.9)

RB2: {(1, 1), (2, 1)} (5.10)

The vertical merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1+RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                      11                 0       0       1       0
                                      12                 0       0       1       0
                                      21                 0       0       1       0
                                      22                 0       0       1       0

(5.11)

    RB: {(11, 21), (12, 21), (21, 21), (22, 21)} (5.12)
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The rule bases above have the following properties: 

RB1 – complete, consistent, non-exhaustive, non-monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic, 
RB – complete, consistent, non-exhaustive, non-monotonic. 

Example 5.3
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 

RB1:     Inputs/Outputs      1     2 

                                                  1                  0     0
                                                  2                  1     1

(5.13)

RB1: {(2, 1), (2, 2)} (5.14)

RB2:     Inputs/Outputs      1     2 

                                                   1                  0     1
                                                   2                  1     0

(5.15)

RB2: {(1, 2), (2, 1)} (5.16)

The vertical merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1 +RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                      11                 0       0       0       0
                                      12                 0       0       0       0
                                      21                 0       1       0       1
                                      22                 1       0       1       0

(5.17)

    RB: {(21, 12), (22, 11), (21, 22), (22, 21)} (5.18)

The rule bases above have the following properties: 
RB1 – incomplete, inconsistent, exhaustive, monotonic, 
RB2 – complete, consistent, exhaustive, monotonic, 
RB – incomplete, inconsistent, exhaustive, monotonic. 
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Example 5.4
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 

RB1:     Inputs/Outputs      1     2 

                                                  1                  1     1
                                                  2                  0     0

(5.19)

RB1: {(1, 1), (1, 2)} (5.20)

RB2:     Inputs/Outputs      1     2 

                                                  1                  0     0
                                                  2                  1     1

(5.21)

RB2: {(2, 1), (2, 2)} (5.22)

The vertical merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1 + RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                      11                 0       0       0       0
                                      12                 1       1       1       1
                                      21                 0       0       0       0
                                      22                 0       0       0       0

(5.17)

    RB: {(12, 11), (12, 12), (12, 21), (12, 22)} (5.24)

The rule bases above have the following properties: 

RB1 – incomplete, inconsistent, exhaustive, monotonic, 
RB2 – incomplete, inconsistent, exhaustive, monotonic, 
RB – incomplete, inconsistent, exhaustive, monotonic. 

Example 5.5
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 
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RB1:     Inputs/Outputs     1     2     3 

                                               1                 1     0     0
                                               2                 1     1     0
                                               3                 0     0     0 

(5.25)

  RB1: {(1, 1), (2, 1), (2, 2)} (5.26)

RB2:     Inputs/Outputs     1     2     3 

                                                1                 0     0     0            
                                                2                 0     0     1 
                                                3                 0     1     1 

(5.27)

  RB2: {(2, 3), (3, 2), (3, 3)} (5.28)

The vertical merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1+ RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:   Inputs/Outputs   11   12    13     21     22     23     31     32     33 

             11               0     0       0       0       0       0       0       0       0
             12               0     0       1       0       0       0       0       0       0   
             13               0     1       1       0       0       0       0       0       0
             21               0     0       0       0       0       0       0       0       0
             22               0     0       1       0       0       1       0       0       0 
             23               0     1       1       0       1       1       0       0       0
             31               0     0       0       0       0       0       0       0       0
             32               0     0       0       0       0       0       0       0       0
             33               0     0       0       0       0       0       0       0       0

(5.29)

RB: {(12, 13), (13, 12), (13, 13), 

                                      (22, 13), (23, 12), (23, 13),

                                      (22, 23), (23, 22), (23, 23)} 

(5.30)

The rule bases above have the following properties: 

RB1 – incomplete, inconsistent, non-exhaustive, non-monotonic, 
RB2 – incomplete, inconsistent, non-exhaustive, non-monotonic, 
RB – incomplete, inconsistent, non-exhaustive, non-monotonic. 
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Example 5.6
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 

RB1:     Inputs/Outputs     1     2     3 

                                                1                 0     1     0
                                                2                 1     0     0
                                                3                 0     0     1 

(5.31)

  RB1: {(1, 2), (2, 1), (3, 3)} (5.32)

RB2:     Inputs/Outputs     1     2     3 

                                               1                 1     0     0
                                               2                 0     0     1 
                                               3                 0     1     0 

(5.33)

  RB2: {(1, 1), (2, 3), (3, 2)} (5.34)

The vertical merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1 + RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:    Inputs/Outputs      11     12     13     21     22     23     31     32     33 

               11                  0       0       0       1       0       0       0       0       0
               12                  0       0       0       0       0       1       0       0       0 
               13                  0       0       0       0       1       0       0       0       0 
               21                  1       0       0       0       0       0       0       0       0
               22                  0       0       1       0       0       0       0       0       0 
               23                  0       1       0       0       0       0       0       0       0
               31                  0       0       0       0       0       0       1       0       0
               32                  0       0       0       0       0       0       0       0       1
               33                  0       0       0       0       0       0       0       1       0

(5.35)

RB: {(11, 21), (12, 23), (13, 22), 

                                      (21, 11), (22, 13), (23, 12), 

                                      (31, 31), (32, 33), (33, 32)} 

(5.36)
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The rule bases above have the following properties: 
RB1 – complete, consistent, exhaustive, monotonic, 
RB2 – complete, consistent, exhaustive, monotonic, 
RB – complete, consistent, exhaustive, monotonic. 

The examples above show that if at least one of the two operand matrices 
does not have a specific property then the product matrix does not have this 
property either. In particular, the second operand matrix in Example 5.1 and 
the two operand matrices in Example 5.2 are non-exhaustive and non-
monotonic as are the associated product matrices. Also, the first operand 
matrix in Example 5.3 and the two operand matrices in Example 5.4 are 
incomplete and inconsistent as are the associated product matrices. And 
finally, the two operand matrices in Example 5.5 are incomplete, 
inconsistent, non-exhaustive and non-monotonic as is the associated 
product matrix. 

In addition, the examples above show that if each of the two operand 
matrices has a specific property then the product matrix has this property 
too. In particular, the two operand matrices in Examples 5.1–5.2 are 
complete and consistent as are the associated product matrices. Also, the 
two operand matrices in Examples 5.3–5.4 are exhaustive and monotonic as 
are the associated product matrices.  And finally, the two operand matrices 
in Example 5.6 are complete, consistent, exhaustive and monotonic as is the 
associated product matrix. 

5.3  Vertical Splitting Manipulation of Rule Bases 

The process of splitting a single fuzzy rule base into two fuzzy rule bases in 
parallel is called ‘vertical splitting’ and it is shown in Fig. 5.2. This type of 
manipulation can be applied to a rule base of a SRB system or a rule base 
that is part of a MRB system. Obviously, as a result of this manipulation a 
SRB system will be represented as a number of smaller SRB systems, 
whereas for a MRB system the number of levels in the corresponding layer 
will be increased.

                                                                  i1                       o1       i1   o1

                                                   =                           -                                                    
           i2                       o2 i2

o2

Fig. 5.2. Vertical splitting of rule base RB into rule bases RB1 and RB2

RB1

RB

RB2
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In order to illustrate the vertical splitting manipulation, we introduce an 
operation called ‘vertical decomposition’. This operation is unary and it can 
be applied to only one operand at a time. The operand in this case is the 
Boolean matrix or the binary relation representing the operand rule base. 
The result from the application of this operation is a couple of Boolean 
matrices or binary relations representing the product rule bases.

Algorithms 5.3 and 5.4 demonstrate the application of the vertical 
decomposition operation to Boolean matrices and binary relations, 
respectively.

Algorithm 5.3 
1. Construct a pair of all possible sub-permutations of row labels 

from the operand matrix and sort them. 
2. Construct a pair of all possible sub-permutations of column 

labels from the operand matrix and sort them. 
3. Label the rows of the first product matrix with the first element 

from the pair of all possible sorted sub-permutations of row 
labels from the operand matrix. 

4. Label the columns of the first product matrix with the first 
element from the pair of all possible sorted sub-permutations of 
column labels from the operand matrix. 

5. Label the rows of the second product matrix with the second 
element from the pair of all possible sorted sub-permutations of 
row labels from the operand matrix. 

6. Label the columns of the second product matrix with the second 
element from the pair of all possible sorted sub-permutations of 
column labels from the operand matrix. 

7. Go through all the elements of the operand matrix and set each 
element of the two product matrices equal to 1 or 0, as described 
in steps 8 and 9. 

8. If an element of a product matrix is mapped from a non-zero 
element in the operand matrix, set this element equal to 1. 

9. If an element of the product matrix is mapped from a zero 
element in the operand matrix, set this element equal to 0. 

Algorithm 5.4
1. Construct all pairs of maplets from the operand relation such that 

2. The first sub-element of the first element in each pair of maplets 
is the same.

3. The first sub-element of the second element in each pair of 
maplets is the same. 

4. The second sub-element of the first element in each pair of 
maplets is the same.

the conditions in steps 2-5 are satisfied. 
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5. The second sub-element of the second element in each pair of 
maplets is the same. 

6. If any of the conditions from the previous four steps of this 
algorithm can not be satisfied, then vertical splitting is not 
possible.

7. Rearrange the maplets from the operand relation following the 

8. Make each first sub-element of a first element in each pair of 
maplets the first element in a pair of the first product relation. 

9. Make each first sub-element of a second element in each pair of 
maplets the second element in a pair of the first product relation. 

10. Make each second sub-element of a first element in each pair of 
maplets the first element in a pair of the second product relation. 

11. Make each second sub-element of a second element in each pair 
of maplets the second element in a pair of the second product 
relation.

12. Generate the two product binary relations containing all maplets 
created in the previous four steps of this algorithm. 

Example 5.7
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                      11                 0       0       0       1
                                      12                 0       0       0       1
                                      21                 0       1       0       0
                                      22                 0       1       0       0

(5.37)

    RB: {(11, 22), (12, 22), (21, 12), (22, 12)} (5.38)

The vertical splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1 – RB2  where RB1 and RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs      1     2 

                                                  1                  0     1
                                                  2                  1     0

(5.39)

RB1: {(1, 2), (2, 1)} (5.40)

procedure in steps 8-11. 
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RB2:     Inputs/Outputs      1     2 

                                                  1                  0     1
                                                  2                  0     1

(5.41)

RB2: {(1, 2), (2, 2)} (5.42)

The rule bases above have the following properties: 

RB – complete, consistent, non-exhaustive, non-monotonic, 
RB1 – complete, consistent, exhaustive, monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic. 

Example 5.8
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                      11                 0       0       1       0
                                      12                 0       0       1       0
                                      21                 0       0       1       0
                                      22                 0       0       1       0

(5.43)

    RB: {(11, 21), (12, 21), (21, 21), (22, 21)} (5.44)

The vertical splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1 2 1 2

following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs      1     2 

                                                  1                  0     1
                                                  2                  0     1

(5.45)

RB1: {(1, 2), (2, 2)} (5.46)

RB2:     Inputs/Outputs      1     2 

                                                  1                  1     0
                                                  2                  1     0

(5.47)

-- RB  where RB and  RB will be presented by the 
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RB2: {(1, 1), (2, 1)} (5.48)

The rule bases above have the following properties: 

RB – complete, consistent, non-exhaustive, non-monotonic, 
RB1 – complete, consistent, non-exhaustive, non-monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic. 

Example 5.9
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                      11                 0       0       0       0
                                      12                 0       0       0       0
                                      21                 0       1       0       1
                                      22                 1       0       1       0

(5.49)

    RB: {(21, 12), (22, 11), (21, 22), (22, 21)} (5.50)

The vertical splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1 2 1 2

following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs      1     2 

                                                  1                  0     0
                                                  2                  1     1

(5.51)

RB1: {(2, 1), (2, 2)} (5.52)

RB2:     Inputs/Outputs      1     2 

                                                  1                  0     1
                                                  2                  1     0

(5.53)

RB2: {(1, 2), (2, 1)} (5.54)

The rule bases above have the following properties: 
RB – incomplete, inconsistent, exhaustive, monotonic, 

--RB  where RB and RB will be presented by the 
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RB1 – incomplete, inconsistent, exhaustive, monotonic, 
RB2 – complete, consistent, exhaustive, monotonic. 

Example 5.10
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                      11                 0       0       0       0
                                      12                 1       1       1       1
                                      21                 0       0       0       0
                                      22                 0       0       0       0

(5.55)

    RB: {(12, 11), (12, 12), (12, 21), (12, 22)} (5.56)

The vertical splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1 – RB2 where RB1 and RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs      1     2 

                                                  1                  1     1
                                                  2                  0     0

(5.57)

RB1: {(1, 1), (1, 2)} (5.58)

RB2:     Inputs/Outputs      1     2 

                                                  1                  0     0
                                                  2                  1     1

(5.59)

RB2: {(2, 1), (2, 2)} (5.60)

The rule bases above have the following properties: 

RB – incomplete, inconsistent, exhaustive, monotonic, 
RB1 – incomplete, inconsistent, exhaustive, monotonic, 
RB2 – incomplete, inconsistent, exhaustive, monotonic. 
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Example 5.11
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:   Inputs/Outputs    11    12   13    21     22     23     31     32     33 

               11               0      0     0      0       0       0       0       0       0
               12               0      0     1      0       0       0       0       0       0
               13               0      1     1      0       0       0       0       0       0
               21               0      0     0       0       0       0       0       0       0  
               22               0      0     1       0       0       1       0       0       0 
               23               0      1     1       0       1       1       0       0       0  
               31               0      0     0       0       0       0       0       0       0  
               32               0      0     0       0       0       0       0       0       0  
               33               0      0    0       0       0       0       0       0       0  

(5.61)

RB: {(12, 13), (13, 12), (13, 13), 

                                      (22, 13), (23, 12), (23, 13), 

                                      (22, 23), (23, 22), (23, 23)} 

(5.62)

The vertical splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1– RB2  where RB1 and  RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs     1     2     3 

                                                1                 1     0     0
                                                2                 1     1     0
                                                3                 0     0     0 

(5.63)

  RB1: {(1, 1), (2, 1), (2, 2)} (5.64)

RB2:     Inputs/Outputs     1     2     3 

                                               1                 0     0     0
                                               2                 0     0     1 
                                               3                 0     1     1 

(5.65)

  RB2: {(2, 3), (3, 2), (3, 3)} (5.66)
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The rule bases above have the following properties: 

RB – incomplete, inconsistent, non-exhaustive, non-monotonic, 
RB1 – incomplete, inconsistent, non-exhaustive, non-monotonic, 
RB2 – incomplete, inconsistent, non-exhaustive, non-monotonic. 

Example 5.12
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11    12    13    21    22    23     31     32     33 

                  11               0      0      0      1      0      0       0       0       0
                  12               0      0      0      0      0      1       0       0       0
                  13               0      0      0      0      1      0       0       0       0
                  21               1      0      0      0      0      0       0       0       0
                  22               0      0      1      0      0      0       0       0       0 
                  23               0      1      0      0      0      0       0       0       0
                  31               0      0      0      0      0      0       1       0       0
                  32               0      0      0      0      0      0       0       0       1
                  33               0      0      0      0      0      0       0       1       0

(5.67)

RB: {(11, 21), (12, 23), (13, 22), 

                                     (21, 11), (22, 13), (23, 12),

                                     (31, 31), (32, 33), (33, 32)} 

(5.68)

The vertical splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1 – RB2 where RB1 and RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs     1     2     3 

                                               1                 0     1     0
                                               2                 1     0     0
                                               3                 0     0     1 

(5.69)

  RB1: {(1, 2), (2, 1), (3, 3)} (5.70)

RB2:     Inputs/Outputs     1     2     3 

                                               1                 1     0     0
                                               2                 0     0     1 
                                               3                 0     1     0 

(5.71)

  RB2: {(1, 1), (2, 3), (3, 2)} (5.72)
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The rule bases above have the following properties: 

RB – complete, consistent, exhaustive, monotonic, 
RB1 – complete, consistent, exhaustive, monotonic, 
RB2 – complete, consistent, exhaustive, monotonic. 

The examples above show that if the operand matrix does not have a 
specific property then at least one of the two product matrices does not have 
this property either. In particular, the operand matrices in Examples 5.7–5.8 
are non-exhaustive and non-monotonic as are the second product matrix in 
the first example and the two product matrices in the second example. Also, 
the operand matrices in Examples 5.9–5.10 are incomplete and inconsistent 
as are the first product matrix in the first example and the two product 
matrices in the second example. And finally, the operand matrix in 
Example 5.11 is incomplete, inconsistent, non-exhaustive and non-
monotonic as are the two product matrices. 

In addition, the examples above show that if the operand matrix has a 
specific property then the product matrices have this property too. In 
particular, the operand matrices in Examples 5.7–5.8 are complete and 
consistent as are all four product matrices. Also, the operand matrices in 

matrices.  And finally, the operand matrix in Example 5.12 is complete, 
consistent, exhaustive and monotonic as are the two product matrices. 

5.4 Horizontal Merging Manipulation of Rule Bases 

The process of merging two fuzzy rule bases in sequence into a single fuzzy 
rule base is called ‘horizontal merging’ and it is shown in Fig. 5.3. This 
type of manipulation can be applied to rule bases residing in different layers 
within the same level of a MRB system. Obviously, the number of layers in 
this level will be reduced as a result of this manipulation.

Fig. 5.3. Horizontal merging of rule bases RB1 and RB2 into rule base RB

In order to illustrate the horizontal merging manipulation, we introduce 
an operation called ‘horizontal composition’. This operation is binary and it 
can be applied to only two operands at a time. The operands in this case are 

Examples 5.9--5.10 are exhaustive and monotonic as are all four product 
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the Boolean matrices or the binary relations representing the operand rule 
bases. The result from the application of this operation is a single Boolean 
matrix or binary relation representing the product rule base.

Algorithms 5.5 and 5.6 demonstrate the application of the vertical 
composition operation to Boolean matrices and binary relations, 
respectively.

Algorithm 5.5 
1. Label the rows of the product matrix with the row labels from 

the first operand matrix. 
2. Label the columns of the product matrix with the column labels 

from the second operand matrix. 
3. Set each element of the product matrix equal to 1 or 0 by 

mapping it from the corresponding row in the first operand 
matrix and the corresponding column in the second operand 
matrix, as described in step 4. 

4. Find the product matrix by multiplying the operand matrices 
using the operations for ‘addition’ and ‘multiplication’ of 
elements, as defined by Eqs. (4.1)–(4.8) in Sect. 4.3. 

Algorithm 5.6
1. Construct all maplets in the product relation so that the first 

element in each maplet is equal to the first element in a maplet in 
the first relation and the second element in each maplet is equal 
to the second element in a maplet in the second relation, as 
described in step 2. 

2. Compose the operand relations using the operations for 
‘aggregation’ and ‘composition’ of elements, as defined by 
Eqs. (4.21)–(4.28) in Sect. 4.4. 

Example 5.13
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 

RB1:     Inputs/Outputs      1     2 

                                                  1                  1     1
                                                  2                  0     0

(5.73)

RB1: {(1, 1), (1, 2)} (5.74)

RB2:     Inputs/Outputs      1     2 

                                                  1                  0     1
                                                  2                  0     1

(5.75)
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RB2: {(1, 2), (2, 2)} (5.76)

The horizontal merging of RB1 and RB2 into a product rule base RB will 
be denoted by RB1*RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs      1     2 

                                                 1                   0     1
                                                 2                   0     0

(5.77)

RB: {(1, 2)} (5.78)

The rule bases above have the following properties: 
RB1 – incomplete, inconsistent, exhaustive, monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic, 
RB – incomplete, consistent, non-exhaustive, monotonic. 

Example 5.14
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 

RB1:     Inputs/Outputs      1     2 

                                                  1                  1     0
                                                  2                  1     0

(5.79)

RB1: {(1, 1), (2, 1)} (5.80)

RB2:     Inputs/Outputs      1     2 

                                                   1                 1     1
                                                   2                 0     0

(5.81)

RB2: {(1, 1), (1, 2)} (5.82)

The horizontal merging of RB1 and RB2 into a product rule base RB will 
be denoted by RB1*RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 
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RB:     Inputs/Outputs     1     2 

                                                 1                  1     1
                                                 2                  1     1

(5.83)

RB: {(1, 1), (1, 2), (2, 1), (2, 2)} (5.84)

The rule bases above have the following properties: 

RB1 – complete, consistent, non-exhaustive, non-monotonic, 
RB2 – incomplete, inconsistent, exhaustive, monotonic, 
RB – complete, inconsistent, exhaustive, non-monotonic. 

Example 5.15
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 

RB1:     Inputs/Outputs     11     12     21     22 

                                      11                  1       1       0       0
                                      12                  0       0       0       1
                                      21                  0       0       1       0
                                      22                  0       0       0       0

(5.85)

    RB1: {(11, 11), (11, 12), (12, 22), (21, 21)} (5.86)

RB2:     Inputs/Outputs       11     12     21     22 

                                       11                  0       0       0       1
                                       12                  0       0       0       1
                                       21                  0       0       1       0
                                       22                  0       1       0       0

(5.87)

RB2: {(11, 22), (12, 22), (21, 21), (22, 12)} (5.88)

The horizontal merging of RB1 and RB2 into a product rule base RB will 
be denoted by RB1*RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 
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RB:     Inputs/Outputs     11     12     21     22 

                                      11                 0       0       0       1
                                      12                 0       1       0       0
                                      21                 0       0       1       0
                                      22                 0       0       0       0

(5.89)

RB: {(11, 22), (12, 12), (21, 21)} (5.90)

The rule bases above have the following properties: 

RB1 – incomplete, inconsistent, exhaustive, monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic, 
RB – incomplete, consistent, non-exhaustive, monotonic. 

Example 5.16
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 

RB1:     Inputs/Outputs     11     12     21     22 

                                      11                  0       1       0       0
                                      12                  0       1       0       0
                                      21                  0       0       1       0
                                      22                  0       0       0       1

(5.91)

    RB1: {(11, 12), (12, 12), (21, 21), (22, 22)} (5.92)

RB2:     Inputs/Outputs     11     12     21     22 

                                      11                  0       0       0       0
                                      12                  1       1       0       0
                                      21                  0       0       0       1
                                      22                  0       0       1       0

(5.93)

    RB2: {(12, 11), (12, 12), (21, 22), (22, 21)} (5.94)

The horizontal merging of RB1 and RB2 into a product rule base RB will 
be denoted by RB1*RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 
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RB:     Inputs/Outputs     11     12     21     22 

                                      11                 1       1       0       0
                                      12                 1       1       0       0
                                      21                 0       0       0       1
                                      22                 0       0       1       0

(5.95)

    RB: {(11, 11), (11, 12), (12, 11), (12, 12), (21, 22), (22, 21)} (5.96) 

The rule bases above have the following properties: 

RB1 – complete, consistent, non-exhaustive, non-monotonic, 
RB2 – incomplete, inconsistent, exhaustive, monotonic, 
RB – complete, inconsistent, exhaustive, non-monotonic. 

The examples above show that if one of the two operand matrices does 
not have a specific property, then this may be compensated by the absence 
of another property in the other operand matrix, in which case the product 
matrix will have one of the two lacking properties. In particular, the first 
operand matrix in Examples 5.13 and 5.15 is inconsistent but the product 
matrix is consistent due to the compensating effect of the second operand 
matrix, which is non-monotonic. Also, the second operand matrix in 
Examples 5.13 and 5.15 is non-monotonic but the product matrix is 
monotonic due to the compensating effect of the first operand matrix, 
which is inconsistent. In addition, the second operand matrix in Examples 5.14

 and 5.16  is incomplete  but  the  product  matrix  is  complete  due  to  the 
compensating effect of the first operand matrix, which is non-monotonic. 
And  finally,  the  first  operand  matrix  in  Examples  5.14  and  5.16  is

 non-exhaustive but the product matrix is exhaustive due to the compensating 
effect of the second operand matrix, which is inconsistent. 

In addition, the examples above show that if one of the two operand 
matrices has a specific property, then this property may be preserved in the 
product matrix even if the other operand matrix does not have the property. 
In particular, the first operand matrix in Examples 5.13 and 5.15 is 
monotonic as is the product matrix in these examples although the second 
product matrix is non-monotonic. Also, the first operand matrix in 
Examples 5.14 and 5.16 is complete as is the product matrix in these 
examples although the second operand matrix is incomplete. In addition, 
the second operand matrix in Examples 5.13 and 5.15 is consistent as is the 
product matrix in these examples although the first product matrix is 
inconsistent. And finally, the second operand matrix in Examples 5.14 and 
5.16 is exhaustive as is the product matrix in these examples although the 
first operand matrix is non-exhaustive. 
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5.5  Horizontal Splitting Manipulation of Rule Bases 

The process of splitting a single fuzzy rule base into two fuzzy rule bases in 
sequence is called ‘horizontal splitting’ and it is shown in Fig. 5.4. This 
type of manipulation can be applied to a rule base of a SRB system or a rule 
base that is a part of a MRB system. Obviously, as a result of this 
manipulation a SRB system will be represented as a number of smaller 
SRB systems whereas the number of layers in the corresponding level of a 
MRB system will be increased.

Fig. 5.4. Horizontal splitting of rule base RB into rule bases RB1 and RB2

In order to illustrate the horizontal splitting manipulation, we introduce 
an operation called ‘horizontal decomposition’. This operation is unary and 
it can be applied to only one operand at a time. The operand in this case is 
the Boolean matrix or the binary relation representing the operand rule
base. The result from the application of this operation is a couple of 
Boolean matrices or binary relations representing the product rule bases.

Algorithms 5.7 and 5.8 demonstrate the application of the horizontal 
decomposition operation to Boolean matrices and binary relations, 
respectively.

Algorithm 5.7 
1. Label the rows of the first product matrix with the row labels 

from the operand matrix. 
2. Label the columns of the second product matrix with the column 

labels from the operand matrix. 
3. Label the columns of the first product matrix as the rows of the 

second product matrix. 
4. Set each element of the product matrices equal to 1 or 0 by 

mapping it from the corresponding row and column in the 
operand matrix, as described in step 5. 

5. Find the product matrices such that the result of their 
multiplication using the operations for ‘addition’ and 
‘multiplication’ of elements is the operand matrix, as defined by 
Eqs. (4.1)–(4.8) in Sect. 4.3. 
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Algorithm 5.8
1. Construct all maplets in the product relations such that the first 

element in each maplet in the operand relation is equal to the 
first element in a maplet in the first product relation and the 
second element in each maplet in the product relation is equal to 
the second element in a maplet in the second operand relation, as 
described by step 3. 

2. Construct all maplets in the product relations so that the second 
element in a maplet in the first relation is equal to the first 
element in a maplet in the second relation, as described by step 
3.

3. Find the product relations so that the result of their composition 
using the operations for ‘aggregation’ and ‘composition’ of 
elements is the operand relation, as defined by Eqs. (4.21)–(4.28) 
in Sect. 4.4. 

Example 5.17
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     1     2 

                                                  1                 0     1
                                                  2                 0     0

(5.97)

RB: {(1, 2)} (5.98)

1 2

1 2 1 2

RB1:     Inputs/Outputs      1     2 

                                                  1                  1     1
                                                  2                  0     0

(5.99)

   RB1: {(1, 1), (1, 2)} (5.100)

RB2:     Inputs/Outputs     1     2 

                                                  1                 0     1
                                                  2                 0     1

(5.101)

denoted by RB = RB /RB  where RB and RB may  be presented by  the 
foll  

The horizontal splitting of RB into product rule bases RB and RB will be 

owing Boolean matrices and binary relations: 
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 RB2: {(1, 2), (2, 2)} (5.102)

The rule bases above have the following properties: 
RB – incomplete, consistent, non-exhaustive, monotonic, 
RB1 – incomplete, inconsistent, exhaustive, monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic. 

Example 5.18
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     1     2 

                                               1                   1     1
                                               2                   1     1

(5.103)

RB: {(1, 1), (1, 2), (2, 1), (2, 2)} (5.104)

The horizontal splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1 / RB2 where RB1 and RB2 may be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs    1     2 

                                                 1                 1     0
                                                 2                 1     0

(5.105)

  RB1: {(1, 1), (2, 1)} (5.106)

RB2:     Inputs/Outputs    1     2 

                                                 1                 1     1
                                                 2                 0     0

(5.107)

 RB2: {(1, 1), (1, 2)} (5.108)

The rule bases above have the following properties: 

RB – complete, inconsistent, exhaustive, non-monotonic, 
RB1 – complete, consistent, non-exhaustive, non-monotonic, 
RB2 – incomplete, inconsistent, exhaustive, monotonic. 
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Example 5.19
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 0       0       0       1
                                     12                 0       1       0       0
                                     21                 0       0       1       0
                                     22                 0       0       0       0

(5.109)

RB: {(11, 22), (12, 12), (21, 21)} (5.110)

The horizontal splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1 / RB2 where RB1 and RB2 may be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs     11     12     21     22 

                                      11                 1       1       0       0
                                      12                 0       0       0       1
                                      21                 0       0       1       0
                                      22                 0       0       0       0

(5.111)

    RB1: {(11, 11), (11, 12), (12, 22), (21, 21)} (5.112) 

RB2:     Inputs/Outputs     11     12     21     22 

                                      11                 0       0       0       1
                                      12                 0       0       0       1
                                      21                 0       0       1       0
                                      22                 0       1       0       0

(5.113)

    RB2: {(11, 22), (12, 22), (21, 21), (22, 12)} (5.114) 

The rule bases above have the following properties: 

RB – incomplete, consistent, non-exhaustive, monotonic, 
RB1 – incomplete, inconsistent, exhaustive, monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic. 
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Example 5.20
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 1       1       0       0
                                     12                 1       1       0       0
                                     21                 0       0       0       1
                                     22                 0       0       1       0

(5.115)

    RB: {(11, 11), (11, 12), (12, 11), (12, 12), (21, 22), (22, 21)} (5.116) 

The horizontal splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1 / RB2 where RB1 and RB2 may be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs     11     12     21     22 

                                      11                 0       1       0       0
                                      12                 0       1       0       0
                                      21                 0       0       1       0
                                      22                 0       0       0       1

(5.117)

    RB1: {(11, 12), (12, 12), (21, 21), (22, 22)} (5.118) 

RB2:     Inputs/Outputs     11     12     21     22 

                                      11                 0       0       0       0
                                      12                 1       1       0       0
                                      21                 0       0       0       1
                                      22                 0       0       1       0

(5.119)

    RB2: {(12, 11), (12, 12), (21, 22), (22, 21)} (5.120) 

The rule bases above have the following properties: 

RB – complete, inconsistent, exhaustive, non-monotonic, 
RB1 – complete, consistent, non-exhaustive, non-monotonic, 
RB2 – incomplete, inconsistent, exhaustive, monotonic. 
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The examples above show that if the operand matrix does not have a 
specific property then this property may be generated in one of the two 
product matrices. In particular, the operand matrices in Examples 5.17 and 
5.19 are incomplete and non-exhaustive but the first product matrix in these 
examples is exhaustive and the second product matrix is complete. Also, 
the operand matrices in Examples 5.18 and 5.20 are inconsistent and non-
monotonic but the first product matrix in these examples is consistent and 
the second product matrix is monotonic.

In addition, the examples above show that if the operand matrix does not 
have a specific property then one of the two product matrices does not have 
this property either. In particular, the operand matrices in Examples 5.17 
and 5.19 are incomplete and non-exhaustive as are the first and the second 
product matrix in these examples, which are incomplete and non-
exhaustive, respectively. Also, the operand matrices in Examples 5.18 and 
5.20 are inconsistent and non-monotonic as are the first and the second 
product matrix in these examples, which are non-monotonic and 
inconsistent, respectively.

5.6 Output Merging Manipulation of Rule Bases 

The process of representing two SO systems with common inputs as a MO 
system with the same inputs as the two SO systems is called ‘output 
merging’ and it is shown in Fig. 5.5. This type of manipulation can be 

                                           o1

                                                                                                     o1

        i1                                                                  i1

; =
o2

                                           o2

Fig. 5.5. Output merging of rule bases RB1 and RB2 into rule base RB

In order to illustrate the output merging manipulation, we introduce an 
operation called ‘output composition’. This operation is binary and it can be 
applied to only two operands at a time. The operands in this case are the 
Boolean matrices or the binary relations representing the operand rule 

RB

1

RB2

applied to rule bases residing at different levels within the same layer  

RB

of a MRB system. Obviously, the number of levels in this layer will be 
reduced  as a result of this manipulation. 
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bases. The result from the application of this operation is a single Boolean 
matrix or binary relation representing the product rule base.

Algorithms 5.9 and 5.10 demonstrate the application of the output 
composition operation to Boolean matrices and binary relations, 
respectively.

Algorithm 5.9 
1. Label the rows of the product matrix with the common row 

labels of the two operand matrices. 
2. Label the columns of the product matrix with the sorted 

permutations of the column labels of the two operand matrices. 
3. Go through all the elements of the operand matrices and set each 

element of the product matrix equal to 1 or 0, as described in 
steps 4 and 5. 

4. If an element of the product matrix is mapped from two non-zero 
elements in the operand matrices, set this element equal to 1. 

5. If an element of the product matrix is mapped from two elements 
in the operand matrices such that at least one of them is zero, set 
this element equal to 0. 

Algorithm 5.10
1. Construct pairs of maplets from the two operand relations such 

that the first maplet comes from the first relation, the second 
maplet comes from the second relation  and the first element of 
the maplets in each pair is the same. 

2. Merge each of these pairs of maplets into a new maplet for the 
product relation, as described in steps 3 and 4. 

3. Make the first element in each new maplet for the product 
relation equal to the first element from the corresponding pair of 
maplets for the operand relations. 

4. Construct the second element in each new maplet for the product 
relation by concatenating the second elements from the 
corresponding pair of maplets for the operand relations such that 
the second element from the first maplet comes first and the 
second element from the second maplet comes second in the 
concatenation.

5. Generate the product binary relation containing all new maplets 
created in the previous two steps of this algorithm. 

Example 5.21
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 
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RB1:     Inputs/Outputs     1     2 

                                                 11                1     0                          
                                                 12                0     1                          
                                                 21                1     0                          
                                                 22                0     0                          

(5.121)

RB1: {(11, 1), (12, 2), (21, 1)} (5.122)

RB2:     Inputs/Outputs     1     2 

                                                 11                1     0                          
                                                 12                1     0                          
                                                 21                0     1                          
                                                 22                0     0                          

(5.123)

RB2: {(11, 1), (12, 1), (21, 2)} (5.124)

The output merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1;RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 1       0       0       0
                                     12                 0       0       1       0
                                     21                 0       1       0       0
                                     22                 0       0       0       0

(5.125)

RB: {(11, 11), (12, 21), (21, 12)} (5.126)

The rule bases above have the following properties: 
RB1 – incomplete, consistent, exhaustive, non-monotonic, 
RB2 – incomplete, consistent, exhaustive, non-monotonic, 
RB – incomplete, consistent, non-exhaustive, monotonic. 

Example 5.22 
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 
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RB1:     Inputs/Outputs     1     2 

                                                 11                1     0
                                                 12                0     1
                                                 21                0     1
                                                 22                0     0

(5.127)

   RB1: {(11, 1), (12, 2), (21, 2)} (5.128)

RB2:     Inputs/Outputs     1     2 

                                                 11                1     1
                                                 12                1     0
                                                 21                0     1
                                                 22                0     0

(5.129)

   RB2: {(11, 1), (11, 2), (12, 1), (21, 2)} (5.130)

The output merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1;RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 1       1       0       0
                                     12                 0       0       1       0
                                     21                 0       0       0       1
                                     22                 0       0       0       0

(5.131)

    RB: {(11, 11), (11, 12), (12, 21), (21, 22)} (5.132) 

The rule bases above have the following properties: 

RB1 – incomplete, consistent, exhaustive, non-monotonic, 
RB2 – incomplete, inconsistent, exhaustive, non-monotonic, 
RB – incomplete, inconsistent, exhaustive, monotonic. 

Example 5.23 
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 
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RB1:     Inputs/Outputs     1     2 

                                                 11                1     1
                                                 12                1     0
                                                 21                0     1
                                                 22                0     0

(5.133)

   RB1: {(11, 1), (11, 2), (12, 1), (21, 2)} (5.134)

RB2:     Inputs/Outputs     1     2 

                                                 11                0     1
                                                 12                1     0
                                                 21                1     0
                                                 22                0     0

(5.135)

   RB2: {(11, 2), (12, 1), (21, 1)} (5.136)

The output merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1;RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 0       1       0       1
                                     12                 1       0       0       0
                                     21                 0       0       1       0
                                     22                 0       0       0       0

(5.137)

    RB: {(11, 12), (11, 22), (12, 11), (21, 21)} (5.138) 

The rule bases above have the following properties: 

RB1 – incomplete, inconsistent, exhaustive, non-monotonic, 
RB2 – incomplete, consistent, exhaustive, non-monotonic, 
RB – incomplete, inconsistent, exhaustive, monotonic. 

Example 5.24 
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 
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RB1:     Inputs/Outputs     1     2 

                                                 11                1     0
                                                 12                0     0
                                                 21                0     0
                                                 22                0     0

(5.139)

   RB1: {(11, 1)} (5.140)

RB2:     Inputs/Outputs     1     2 

                                                 11                0     1
                                                 12                0     0
                                                 21                0     0
                                                 22                0     0

(5.141)

   RB2: {(11, 2)} (5.142)

The output merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1;RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 0       1       0       0
                                     12                 0       0       0       0
                                     21                 0       0       0       0
                                     22                 0       0       0       0

(5.143)

    RB: {(11, 12)} (5.144)

The rule bases above have the following properties: 

RB1 – incomplete, consistent, non-exhaustive, monotonic, 
RB2 – incomplete, consistent, non-exhaustive, monotonic, 
RB – incomplete, consistent, non-exhaustive, monotonic. 

Example 5.25 
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 
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RB1:     Inputs/Outputs     1     2 

                                                 11                0     1
                                                 12                0     1
                                                 21                0     1
                                                 22                0     1

(5.145)

   RB1: {(11, 2), (12, 2), (21, 2), (22, 2)} (5.146)

RB2:     Inputs/Outputs    1     2 

                                                11                1     0
                                                12                1     0
                                                21                1     0
                                                22                1     0

(5.147)

   RB2: {(11, 1), (12, 1), (21, 1), (22, 1)} (5.148)

The output merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1;RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 0       0       1       0
                                     12                 0       0       1       0
                                     21                 0       0       1       0
                                     22                 0       0       1       0

(5.149)

    RB: {(11, 21), (12, 21), (21, 21), (22, 21)} (5.150) 

The rule bases above have the following properties: 

RB1 – complete, consistent, non-exhaustive, non-monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic, 
RB – complete, consistent, non-exhaustive, non-monotonic. 

Example 5.26 
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 
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RB1:     Inputs/Outputs     1     2 

                                                 11                0     1
                                                 12                0     1
                                                 21                0     1
                                                 22                1     0

(5.151)

   RB1: {(11, 2), (12, 2), (21, 2), (22, 1)} (5.152)

RB2:     Inputs/Outputs     1     2 

                                                 11                0     1
                                                 12                0     1
                                                 21                0     1
                                                 22                0     1

(5.153)

   RB2: {(11, 2), (12, 2), (21, 2), (22, 2)} (5.154)

The output merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1;RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 0       0       0       1
                                     12                 0       0       0       1
                                     21                 0       0       0       1
                                     22                 0       1       0       0

(5.155)

    RB: {(11, 22), (12, 22), (21, 22), (22, 12)} (5.156) 

The rule bases above have the following properties: 
RB1 – complete, consistent, exhaustive, non-monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic, 
RB – complete, consistent, non-exhaustive, non-monotonic. 

Example 5.27 
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 
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RB1:     Inputs/Outputs     1     2 

                                                 11                1     0
                                                 12                1     0
                                                 21                1     0
                                                 22                1     0

(5.157)

   RB1: {(11, 1), (12, 1), (21, 1), (22, 1)} (5.158)

RB2:     Inputs/Outputs     1     2 

                                                 11                1     0
                                                 12                0     1
                                                 21                0     1
                                                 22                0     1

(5.159)

   RB2: {(11, 1), (12, 2), (21, 2), (22, 2)} (5.160)

The output merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1;RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 1       0       0       0
                                     12                 0       1       0       0
                                     21                 0       1       0       0
                                     22                 0       1       0       0

(5.161)

    RB: {(11, 11), (12, 12), (21, 12), (22, 12)} (5.162) 

The rule bases above have the following properties: 

RB1 – complete, consistent, non-exhaustive, non-monotonic, 
RB2 – complete, consistent, exhaustive, non-monotonic, 
RB – complete, consistent, non-exhaustive, non-monotonic. 

Example 5.28 
The operand rule bases RB1 and RB2 are presented by the following 

Boolean matrices and binary relations: 
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RB1:     Inputs/Outputs     1     2 

                                                 11                1     0                        
                                                 12                1     0                        
                                                 21                0     1                        
                                                 22                0     1                        

(5.163)

   RB1: {(11, 1), (12, 1), (21, 2), (22, 2)} (5.164)

RB2:     Inputs/Outputs     1     2 

                                                 11                1     0                       
                                                 12                1     0                        
                                                 21                0     1                        
                                                 22                1     0                        

(5.165)

   RB2: {(11, 1), (12, 1), (21, 2), (22, 1)} (5.166)

The output merging of RB1 and RB2 into a product rule base RB will be 
denoted by RB1;RB2 = RB where RB will be presented by the following 
Boolean matrix and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 1       0       0       0
                                     12                 1       0       0       0
                                     21                 0       0       0       1
                                     22                 0       0       1       0

(5.167)

    RB: {(11, 11), (12, 11), (21, 22), (22, 21)} (5.168) 

The rule bases above have the following properties: 

RB1 – complete, consistent, exhaustive, non-monotonic, 
RB2 – complete, consistent, exhaustive, non-monotonic, 
RB – complete, consistent, non-exhaustive, non-monotonic. 

The examples above show that the product matrix is complete if the 
operand matrices are both complete (see Examples 5.25–5.28) but it is 
incomplete otherwise, i.e. if at least one of the operand matrices is 
incomplete (see Examples 5.21–5.24). As far as consistency is concerned, if 
the operand matrices are both consistent then the product matrix is also 
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one of the operand matrices is inconsistent then the product matrix is 

In addition, the examples above show that if the operand matrices are 
both exhaustive then the product matrix may be exhaustive (see Examples 
5.22–5.23) as well as non-exhaustive (see Example 5.21 and Example 
5.28). However, if at least one of the operand matrices is non-exhaustive 
then the product matrix is non-exhaustive (see Examples 5.24–5.27). As far 
as monotonousness is concerned, the product matrix may be monotonic if 
the operand matrices are both monotonic (see Example 5.24) or at least one 
of them is non-monotonic (see Examples 5.21–5.23). However, if the 
operand matrices are both non-monotonic (see Examples 5.25–5.28) then 
product matrix is non-monotonic too. 

5.7 Output Splitting Manipulation of Rule Bases 

The process of representing a MO system with two outputs as two SO 
systems with the same common inputs as the MO system is called ‘output 
splitting’ and it is shown in Fig. 5.6. This type of manipulation can be 
applied to a rule base of a SRB system or a rule base that is part of a MRB 
system. Obviously, as a result of this manipulation a SRB system will be 
represented as a number of smaller SRB systems, whereas for a MRB 
system the number of levels in the corresponding layer will be increased.

                                                                                                       o1                             o1

      i1                                                            i1

= :
o2

                                                                                                       o2

Fig. 5.6. Output splitting of rule base RB into rule bases RB1 and RB2

In order to illustrate the output splitting manipulation, we introduce an 
operation called ‘output decomposition’. This operation is unary and it can 
be applied to only one operand at a time. The operand in this case is the 
Boolean matrix or the binary relation representing the operand rule base. 
The result from the application of this operation is a couple of Boolean 
matrices or binary relations representing the product rule bases.

Algorithms 5.11 and 5.12 demonstrate the application of the output 
decomposition operation to Boolean matrices and binary relations, 
respectively.

RB

RB1

RB2

consistent (see Example 5.21 and Examples 5.24--5.28). However, if at least 

inconsistent too (see Examples 5.22--5.23). 



5.7 Output Splitting Manipulation of Rule Bases 103

Algorithm 5.11 
1. Label the rows of each of the two product matrices with the 

sorted permutations of row labels from the operand matrix. 
2. Label the columns of the first product matrix with the sorted 

permutations of the corresponding first element from the column 
labels in the operand matrix. 

3. Label the columns of the second product matrix with the sorted 
permutations of the corresponding second element from the 
column labels in the operand matrix. 

4. Go through all the elements of the operand matrix and set each 
element of the two product matrices equal to 1 or 0, as described 
in steps 5 and 6. 

5. If an element of a product matrix is mapped from a non-zero 
element in the operand matrix, set this element equal to 1. 

6. If an element of a product matrix is mapped from a zero element 
in the operand matrix, set this element equal to 0. 

Algorithm 5.12
1. Split each maplet from the operand relation into a pair of new 

maplets for the two product relations, as described in steps 2, 3 
and 4. 

2. Make the first element in each new maplet for each of the 
product relations equal to the first element from the 
corresponding maplet for the operand relation. 

3. Make the second element in each new maplet for the first 
product relation equal to the corresponding first part of the 
second element from the maplet for the operand relation. 

4. Make the second element in each new maplet for the second 
product relation equal to the corresponding second part of the 
second element from the maplet for the operand relation. 

5. Generate the two product binary relations containing all new 
maplets created in the previous three steps of this algorithm. 

Example 5.29
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                      11                1       0       0       0
                                      12                0       0       1       0
                                      21                0       1       0       0
                                      22                0       0       0       0

(5.169)
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RB: {(11, 11), (12, 21), (21, 12)} (5.170)

The output splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs    1     2 

                                                11                1     0
                                                12                0     1
                                                21                1     0
                                                22                0     0

(5.171)

RB1: {(11, 1), (12, 2), (21, 1)} (5.172)

RB2:     Inputs/Outputs    1     2 

                                                11                1     0
                                                12                1     0
                                                21                0     1
                                                22                0     0

(5.173)

RB2: {(11, 1), (12, 1), (21, 2)} (5.174)

The rule bases above have the following properties: 
RB – incomplete, consistent, non-exhaustive, monotonic, 
RB1 – incomplete, consistent, exhaustive, non-monotonic, 
RB2 – incomplete, consistent, exhaustive, non-monotonic. 

Example 5.30
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 1       1       0       0
                                     12                 0       0       1       0
                                     21                 0       0       0       1
                                     22                 0       0       0       0

(5.175)
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    RB: {(11, 11), (11, 12), (12, 21), (21, 22)} (5.176) 

The output splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs    1     2 

                                                11                1     0
                                                12                0     1
                                                21                0     1
                                                22                0     0

(5.177)

   RB1: {(11, 1), (12, 2), (21, 2)} (5.178)

RB2:     Inputs/Outputs    1     2 

                                                11                1     1
                                                12                1     0
                                                21                0     1
                                                22                0     0

(5.179)

   RB2: {(11, 1), (11, 2), (12, 1), (21, 2)} (5.180)

The rule bases above have the following properties: 
RB – incomplete, inconsistent, exhaustive, monotonic, 
RB1 – incomplete, consistent, exhaustive, non-monotonic, 
RB2 – incomplete, inconsistent, exhaustive, non-monotonic. 

Example 5.31
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 0       1       0       1
                                     12                 1       0       0       0
                                     21                 0       0       1       0
                                     22                 0       0       0       0

(5.181)
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    RB: {(11, 12), (11, 22), (12, 11), (21, 21)} (5.182) 

The output splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs     1     2 

                                                 11                1     1
                                                 12                1     0
                                                 21                0     1
                                                 22                0     0

(5.183)

   RB1: {(11, 1), (11, 2), (12, 1), (21, 2)} (5.184)

RB2:     Inputs/Outputs     1     2 

                                                 11                0     1
                                                 12                1     0
                                                 21                1     0
                                                 22                0     0

(5.185)

   RB2: {(11, 2), (12, 1), (21, 1)} (5.186)

The rule bases above have the following properties: 

RB – incomplete, inconsistent, exhaustive, monotonic, 
RB1 – incomplete, inconsistent, exhaustive, non-monotonic, 
RB2 – incomplete, consistent, exhaustive, non-monotonic. 

Example 5.32
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 0       1       0       0
                                     12                 0       0       0       0
                                     21                 0       0       0       0
                                     22                 0       0       0       0

(5.187)
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    RB: {(11, 12)} (5.188)

The output splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs    1     2 

                                                11                1     0
                                                12                0     0
                                                21                0     0
                                                22                0     0

(5.189)

   RB1: {(11, 1)} (5.190)

RB2:     Inputs/Outputs     1     2 

                                                 11                0     1
                                                 12                0     0
                                                 21                0     0
                                                 22                0     0

(5.191)

   RB2: {(11, 2)} (5.192)

The rule bases above have the following properties: 

RB – incomplete, consistent, non-exhaustive, monotonic, 
RB1 – incomplete, consistent, non-exhaustive, monotonic, 
RB2 – incomplete, consistent, non-exhaustive, monotonic. 

Example 5.33
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 0       0       1       0
                                     12                 0       0       1       0
                                     21                 0       0       1       0
                                     22                 0       0       1       0

(5.193)
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    RB: {(11, 21), (12, 21), (21, 21), (22, 21)} (5.194) 

The output splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs    1     2 

                                                11                0     1
                                                12                0     1
                                                21                0     1
                                                22                0     1

(5.195)

   RB1: {(11, 2), (12, 2), (21, 2), (22, 2)} (5.196)

RB2:     Inputs/Outputs    1     2 

                                                11                1     0
                                                12                1     0
                                                21                1     0
                                                22                1     0

(5.197)

   RB2: {(11, 1), (12, 1), (21, 1), (22, 1)} (5.198)

The rule bases above have the following properties: 

RB – complete, consistent, non-exhaustive, non-monotonic, 
RB1 – complete, consistent, non-exhaustive, non-monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic. 

Example 5.34
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 0       0       0       1
                                     12                 0       0       0       1
                                     21                 0       0       0       1
                                     22                 0       1       0       0

(5.199)
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    RB: {(11, 22), (12, 22), (21, 22), (22, 12)} (5.200) 

The output splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs    1     2 

                                                11                0     1
                                                12                0     1
                                                21                0     1
                                                22                1     0

(5.201)

   RB1: {(11, 2), (12, 2), (21, 2), (22, 1)} (5.202)

RB2:     Inputs/Outputs    1     2 

                                                11                0     1
                                                12                0     1
                                                21                0     1
                                                22                0     1

(5.203)

   RB2: {(11, 2), (12, 2), (21, 2), (22, 2)} (5.204)

The rule bases above have the following properties: 

RB – complete, consistent, non-exhaustive, non-monotonic, 
RB1 – complete, consistent, exhaustive, non-monotonic, 
RB2 – complete, consistent, non-exhaustive, non-monotonic. 

Example 5.35
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 1       0       0       0
                                     12                 0       1       0       0
                                     21                 0       1       0       0
                                     22                 0       1       0       0

(5.205)
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    RB: {(11, 11), (12, 12), (21, 12), (22, 12)} (5.206) 

The output splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs     1     2 

                                                 11                1     0
                                                 12                1     0
                                                 21                1     0
                                                 22                1     0

(5.207)

   RB1: {(11, 1), (12, 1), (21, 1), (22, 1)} (5.208)

RB2:     Inputs/Outputs     1     2 

                                                 11                1     0
                                                 12                0     1
                                                 21                0     1
                                                 22                0     1

(5.209)

   RB2: {(11, 1), (12, 2), (21, 2), (22, 2)} (5.210)

The rule bases above have the following properties: 

RB – complete, consistent, non-exhaustive, non-monotonic, 
RB1 – complete, consistent, non-exhaustive, non-monotonic, 
RB2 – complete, consistent, exhaustive, non-monotonic. 

Example 5.36
The operand rule base RB is presented by the following Boolean matrix 

and binary relation: 

RB:     Inputs/Outputs     11     12     21     22 

                                     11                 1       0       0       0
                                     12                 1       0       0       0
                                     21                 0       0       0       1
                                     22                 0       0       1       0

(5.211)
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    RB: {(11, 11), (12, 11), (21, 22), (22, 21)} (5.212) 

The output splitting of RB into product rule bases RB1 and RB2 will be 
denoted by RB = RB1:RB2 where RB1 and RB2 will be presented by the 
following Boolean matrices and binary relations: 

RB1:     Inputs/Outputs    1     2 

                                                11                1     0
                                                12                1     0
                                                21                0     1
                                                22                0     1

(5.213)

   RB1: {(11, 1), (12, 1), (21, 2), (22, 2)} (5.214)

RB2:     Inputs/Outputs     1     2 

                                                 11                1     0
                                                 12                1     0
                                                 21                0     1
                                                 22                1     0

(5.215)

   RB2: {(11, 1), (12, 1), (21, 2), (22, 1)} (5.216)

The rule bases above have the following properties: 

RB – complete, consistent, non-exhaustive, non-monotonic, 
RB1 – complete, consistent, exhaustive, non-monotonic, 
RB2 – complete, consistent, exhaustive, non-monotonic. 

The examples above show that the product matrices are both complete if 
the operand matrix is complete (see Examples 5.33–5.36) but they are both 
incomplete otherwise, i.e. if the operand matrix is incomplete (see 
Examples 5.29–5.32). As far as consistency is concerned, if the operand 
matrix is consistent then the product matrices are both consistent (see 
Example 5.29 and Examples 5.32–5.36). However, if the operand matrix is 
inconsistent then at least one of the product matrices is inconsistent too (see 
Examples 5.30–5.31). 

In addition, the examples above show that if the operand matrix is 
exhaustive then the  product matrices are both exhaustive (see Examples 
5.30–5.31). However, if the operand matrix is non-exhaustive then either 
both product matrices are exhaustive (see Example 5.29 and Example 5.36) 
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or at least one of them is non-exhaustive (see Examples 5.32–5.35). As far 
as  monotonousness  is  concerned,  if  the  operand  matrix  is  monotonic

 then the product matrices may be both monotonic (see Example 5.32) or
 non-monotonic (see Examples 5.29–5.31). However, if the operand matrix
 in non-monotonic  (see Examples  5.33–5.36)  then both product matrices
 are non-monotonic too. 

The basic operations for formal manipulation of fuzzy rule bases introduced 
in Sects. 5.2–5.7 are a powerful tool for analysis and synthesis of fuzzy 
systems. In particular, the three merging operations can be used for building 
complex fuzzy systems by composing simpler systems whereas the three 
splitting operations can be used for studying complex fuzzy systems by 
decomposing them into simpler systems. In this case, the three merging 
operations have an active impact on the operand fuzzy systems whereas the 
three splitting operations have a passive impact on the operand fuzzy 
system.

The vertical and output operations affect the number of levels within a 
particular layer whereas the horizontal operations affect the number of 
layers within a particular level. Also, in the case of merging operations the 
result is always guaranteed with a unique solution, whereas in the case of 
splitting operations the result is not guaranteed but if it is then the solution 
may be non-unique.

The considerations presented above on formal manipulation techniques 
for fuzzy rule bases provide essential information about the main 
characteristics of these techniques. These characteristics are summarised in 
Table 5.1. 

Table 5.1. Characteristics of formal manipulation techniques for fuzzy rule bases 

Technique/
Characteristic

Task Impact Component Result Solution 

Vertical merging synthesis active level guaranteed unique 
Vertical splitting analysis passive level not 

guaranteed
non-
unique

Horizontal merging synthesis active layer guaranteed unique 
Horizontal splitting analysis passive layer not 

guaranteed
non-
unique

Output merging synthesis active level guaranteed unique 
Output splitting analysis passive level not 

guaranteed
non-
unique

5.8 Comparative Analysis of Formal Manipulation Techniques 
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The successive application of splitting an operand rule base RBO into two 
rule bases RB1 and RB2 and merging them together will give a product rule 
base RBP that is equal to RBO. However, the successive application of 
merging two operand rule bases into a rule base and splitting it will not 
necessarily give product rule bases that are equal to the operand rule bases. 
In other words, the sequence of a merging and a splitting operation is an 
identity mapping only if the first operation in the sequence is the splitting 
operation. This conclusion applies to vertical, horizontal and output 
merging and splitting operations, as shown by Eqs. (5.217)–(5.219).

If RBO = RB1–RB2 and RB1+RB2 = RBP then RBP = RBO (5.217) 

If RBO = RB1/RB2 and RB1*RB2 = RBP then RBP = RBO (5.218) 

If RBO = RB1:RB2 and RB1;RB2 = RBP then RBP = RBO (5.219) 

The three implications above can be easily validated by comparing all 
examples from Sects. 5.3, 5.5 and 5.7 with their counterpart examples from 
Sects. 5.2, 5.4 and 5.6. 

5.9  Application Range of Formal Manipulation Techniques 

The six formal manipulation techniques introduced in this chapter are 
applicable to a wide range of fuzzy rule based systems. These techniques 
can be applied to Mamdami, Sugeno and Tsukamoto systems, CON and 
DIS systems, MO and SO systems, FF and FB systems, as well as SRB and 
MRB systems. 

Examples 5.1–5.36 describe implicitly a fuzzy system of Mamdami or 
Tsukamoto type. In order to apply the associated rule base manipulation 
algorithms to Sugeno systems, the crisp outputs in the operand rule bases 
have to fuzzified, i.e. converted into linguistic values. In this case, the 
linguistic values of the outputs in the product rule bases can be converted 
back into crisp values, if necessary. 

Examples 5.1–5.36 can be extended easily in accordance with the 
considerations in Sect. 4.6, if we would like them to describe explicitly 
Mamdami, Sugeno and Tsukamoto systems. However, this has not been 
done in this chapter in order to simplify the notations and to put the 
emphasis on the manipulation rather than the presentation process, which 
was dealt with in the previous chapter. 
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As far as CON and DIS systems are concerned, the formal manipulation 
techniques are directly applicable to them. In this case, the operand and the 
product rule bases must be of the same type, i.e. CADR, DADR, CACR or 
DACR.

With respect to MO and SO systems, the formal manipulation techniques 
are also directly applicable by matching appropriately the number of 
outputs in the operand and the product rule bases. For example, in the case 
of vertical and output merging the number of outputs in the product rule 
base is equal to the sum of the number of outputs in the operand rule bases. 
Similarly, in the case of vertical and output splitting the number of outputs 
in the operand rule base is equal to the sum of the number of outputs in the 
product rule bases. However, in the case of horizontal merging the number 
of outputs in the product rule base is equal to the number of outputs in the 
second operand rule base and in the case of horizontal splitting the number 
of outputs in the second product rule base is equal to the number of outputs 
in the operand rule base. 

In the case of FF systems, the formal manipulation techniques are 
directly applicable as already demonstrated by Examples 5.1–5.36. 
However, if any of the operand rule bases are of FB type, then they have to 
be converted into an equivalent rule base (ERB) of FF type before the 
manipulation techniques can be applied. This conversion requires the 
specification of the existing output-input interconnections and their type, 
e.g. local or global, and it is discussed in detail in Chapter 8. 

Examples 5.1–5.36 demonstrate the application of formal manipulation 
techniques in the context of both SRB and MRB systems. In merging 
manipulations, the operand rule bases are usually part of a MRB system 
whereas the product rule base may be a SRB system or part of a MRB 
system. However, in splitting manipulations the operand rule base may be a 
SRB system or part of a MRB system whereas the product rule bases are 
usually part of a MRB system. 

The vertical, horizontal and output manipulation techniques facilitate the 
complexity management in fuzzy systems. These techniques allow the 
compressed information about a fuzzy rule base in the form of a Boolean 
matrix or binary relation to be manipulated appropriately for the purpose of 
analysis and synthesis of fuzzy systems.

However, the manipulation techniques demonstrated so far are only with 
common types of operand rule bases, which do not always make obvious 
the impact on the corresponding product rule bases. Also, these common 
types of rule bases may have only limited impact on the properties and the 
structure of the product rule base. In order to make this impact more 

in the next chapter. 

obvious and significant, a specific study on formal manipulation with
some special operand rule bases is required and this is discussed in detail
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6.1  Preliminaries on Special Rule Bases 

The techniques for formal manipulation of fuzzy rule bases introduced in 
the previous chapter facilitate the complexity management in fuzzy 
systems. These techniques allow the compressed information about the 
fuzzy system contained in the Boolean matrix and the binary relation to be 
reorganised for the purpose of analysis or synthesis. This reorganisation is 
carried out by representing a single operand rule base with a couple of 
product rule bases, or alternatively, by representing a couple of operand 
rule bases with a single product rule base. In either case, no special 
requirements are usually placed on the corresponding operand or product 
rule bases, i.e. the latter may be any arbitrary rule bases. 

However, if we want to reinforce the change of the properties of a SRB 
system or to change the overall structure of a MRB system by manipulating 
the corresponding Boolean matrix or binary relation, we may have to use 
some special rule bases. Such rule bases are the IRB, the TRB and the PRB. 
These special rule bases are described by the following definitions. 

Definition 6.1 
A transpose Boolean matrix of a given Boolean matrix is the matrix 

obtained by representing the rows and the columns of the given matrix as 
columns and rows, respectively. 

Definition 6.2 
A transpose binary relation of a given binary relation is the relation 

obtained by swapping the first and the second element in all maplets of the 
given relation. 

Definition 6.3 
A permutation Boolean matrix is a square matrix with exactly one non-

zero element in each row and each column.

Definition 6.4 
A permutation binary relation is a square relation in which each element 

of the two participating sets appears only once as a first or a second element 
in a maplet. 
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Definition 6.5 
An IRB is denoted by RBI and is formally presented by an identity 

Boolean matrix or an identity binary relation.

Definition 6.6 
A TRB is denoted by RBT and is formally presented by a transpose 

Boolean matrix or a transpose binary relation.

Definition 6.7 
A PRB is denoted by RBP and is formally presented by a permutation 

Boolean matrix or a permutation binary relation.

For completeness and consistency, Definitions 6.1–6.4 on transpose and 
permutation related concepts must be considered together with Definitions 
4.16 and 4.34 on identity related concepts. As far as Definitions 6.5–6.7 are 
concerned, they follow directly from the above mentioned definitions in 
that they state how the special rule bases are denoted and presented 
formally. Integer tables are not used in this chapter because they do not 
lend themselves easily to formal manipulation. 

The formal manipulation techniques with special rule bases introduced 
here can be applied mainly in the context of MRB systems as the 
corresponding manipulations usually affect the interconnections between 
individual rule bases at some stage of the manipulation process. However, 
we may have to deal only with SRB systems at other stages of this process. 

For generality, a special rule base which is an IRB, TRB or PRB will be 
referred to as an identity / transpose / permutation rule base (I/T/P RB). 
This chapter presents the following manipulation techniques with such rule 
bases:

vertical merging from below and above, 
vertical splitting, 
horizontal merging from right and left, 
horizontal splitting, 
output merging from below and above, 
output splitting. 

The above manipulation techniques are illustrated in Figs. 6.1–6.9 and by 
numerous examples further in this chapter. The purpose of the examples is 
to demonstrate the manipulation techniques with special rule bases and to 
show the potential impact of the manipulation on the structure of the rule 
bases involved, i.e. how the patterns from the operand rule bases are 
replicated or transformed in the product rule bases. 
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Fig. 6.1. Vertical merging with an identity / transpose / permutation rule base from 
below
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Fig. 6.2. Vertical merging with an identity / transpose / permutation rule base from 
above
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Fig. 6.3. Vertical splitting of an identity/transpose/permutation rule base
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from right 

Fig. 6.5. Horizontal merging with an identity/transpose/permutation rule base 
from left

Fig. 6.6. Horizontal splitting of an identity/transpose/permutation rule base 

Fig. 6.7. Output merging with an identity/transpose/permutation rule base from 
below

Fig. 6.4. Horizontal merging with an identity/transpose/permutation rule base 
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Fig. 6.8. Output merging with an identity/transpose/permutation rule base from 
above
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Fig. 6.9. Output splitting of an identity/transpose/permutation rule base 

6.2  Manipulation with Identity Rule Bases

Example 6.1
This example demonstrates the technique of vertical merging with an 

IRB from below. The operand rule bases RB and RBI are presented by the 
following Boolean matrices and binary relations: 

RB:     Inputs/Outputs     1     2 

                                                   1                 0     1
                                                   2                 1     0

(6.1)

   RB: {(1, 2), (2, 1)} (6.2)

RBI:     Inputs/Outputs     1     2 

                                                  1                  1     0
                                                  2                  0     1

(6.3)

I/T/P
RB

I/T/P
RB
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  RBI: {(1, 1), (2, 2)} (6.4)

The vertical merging of RB and RBI into a product rule base RBM will be 
denoted by RB+RBI = RBM where RBM  will be presented by  the following 
block Boolean matrix and binary relation: 

RBM:     Inputs/Outputs      11     12          21     22 

                                     11                  0       0            1       0
                                     12                  0       0            0       1

                                     21                  1       0            0       0
                                     22                  0       1            0       0

(6.5)

   RBM: {(11, 21), (12, 22), (21, 11), (22, 12)} (6.6)

In this case, the positions of the non-zero blocks in RBM map the 
positions of the non-zero elements in the Boolean matrix from above RB
whereby each non-zero block in RBM is equal to the identity Boolean matrix 
from below RBI.

Example 6.2
This example demonstrates the technique of vertical merging with an 

IRB from above. The operand rule bases RBI and RB are presented by the 
following Boolean matrices and binary relations: 

RBI:     Inputs/Outputs     1     2 

                                                  1                  1     0
                                                  2                  0     1

(6.7)

  RBI: {(1, 1), (2, 2)} (6.8)

RB:     Inputs/Outputs     1     2 

                                                   1                 0     1
                                                   2                 1     0

(6.9)

  RB: {(1, 2), (2, 1)} (6.10)
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The vertical merging of RBI and RB into a product rule base RBM will be 
denoted by RBI +RB = RBM where RBM  will be presented by the block 
following Boolean matrix and binary relation: 

RBM:     Inputs/Outputs      11     12          21     22 

                                     11                  0       1            0       0
                                     12                  1       0            0       0

                                     21                  0       0            0       1
                                     22                  0       0            1       0

(6.11)

   RBM: {(11, 12), (12, 11), (21, 22), (22, 21)} (6.12)

In this case, the positions of the non-zero blocks in RBM map the 
positions of the non-zero elements in the identity Boolean matrix from 
above RBI whereby each non-zero block in RBM is equal to the Boolean 
matrix from below RB.

Example 6.3
This example demonstrates the technique of vertical splitting of an IRB. 

The operand rule base RBI is presented by the following block Boolean 
matrix and binary relation: 

RBI:     Inputs/Outputs     11     12          21     22 

                                     11                 1       0            0       0
                                     12                 0        1            0       0

                                     21                 0       0            1       0
                                     22                 0       0            0       1

(6.13)

   RBI: {(11, 11), (12, 12), (21, 21), (22, 22)} (6.14)

The vertical splitting of RBI into product rule bases RBS1 and RBS2 will be 
denoted by RBI = RBS1–RBS2 where RBS1 and RBS2 will be presented by the 
following Boolean matrices and binary relations: 

RBS1:     Inputs/Outputs     1     2 

                                                  1                  1     0
                                                  2                  0     1

(6.15)

RBS1: {(1, 1), (2, 2)} (6.16)
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RBS2:     Inputs/Outputs     1     2 

                                                  1                  1     0
                                                  2                  0     1

(6.17)

RBS2: {(1, 1), (2, 2)} (6.18)

In this case, each of the two product Boolean matrices RBS1 and RBS2 is an 
IRB that is equal to the non-zero on-diagonal blocks in the operand 
Boolean matrix RBI.

Example 6.4
This example demonstrates the technique of horizontal merging with an 

IRB from right. The operand rule bases RB and RBI are presented by the 
following Boolean matrices and binary relations: 

RB:     Inputs/Outputs    1     2 

                                                  1                 0     1
                                                  2                 1     0

(6.19)

   RB: {(1, 2), (2, 1)} (6.20)

RBI:     Inputs/Outputs      1     2 

                                                  1                  1     0
                                                  2                  0     1

(6.21)

  RBI: {(1, 1), (2, 2)} (6.22)

The horizontal merging of RB and RBI into a product rule base RBM will 
be denoted by RB*RBI = RBM where RBM will be presented by the following 
Boolean matrix and binary relation: 

RBM:     Inputs/Outputs       1     2 

                                                  1                   0     1
                                                  2                   1     0

(6.23)

  RBM: {(1, 2), (2, 1)} (6.24)
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In this case, the product rule base RBM

and Eqs. (6.23)–(6.24). 

Example 6.5
This example demonstrates the technique of horizontal merging with an 

IRB from left. The operand rule bases RBI and RB are presented by the 
following Boolean matrices and binary relations: 

RBI:     Inputs/Outputs      1     2 

                                                  1                  1     0
                                                  2                  0     1

(6.25)

  RBI: {(1, 1), (2, 2)} (6.26)

RB:     Inputs/Outputs       1     2 

                                                 1                   0     1
                                                 2                   1     0

(6.27)

   RB: {(1, 2), (2, 1)} (6.28)

The horizontal merging of RBI and RB into a product rule base RBM will 
be denoted by RBI*RB = RBM where RBM will be presented by the following 
Boolean matrix and binary relation: 

RBM:     Inputs/Outputs       1     2 

                                                  1                   0     1
                                                  2                   1     0

(6.29)

  RBM: {(1, 2), (2, 1)} (6.30)

In this case, the product rule base RBM

and Eqs. (6.29)–(6.30). 

is the same as the operand rule base 

matrices and binary relations for these rule bases, as shown by Eqs. (6.19)–(6.20) 
from left RB. This follows from the equality of the corresponding Boolean

is the same as the  operand rule base 
from right 
matrices and binary relations for these rule bases, as shown by Eqs. (6.27)–(6.28) 

RB. This follows from the equality of the corresponding Boolean
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Example 6.6
This example demonstrates the technique of horizontal splitting of an 

IRB. The operand rule base RBI is presented by the following Boolean 
matrix and binary relation: 

RBI:     Inputs/Outputs      1     2     3 

                                              1                  1     0     0
                                              2                  0     1     0 
                                              3                  0     0     1

(6.31)

             RBI: {(1, 1), (2, 2), (3, 3)} (6.32)

The horizontal splitting of RBI into product rule bases RBS1 and RBS2 will
be denoted by RBI = RBS1/RBS2 where RBS1 and RBS2 may be presented by the 
following Boolean matrices and binary relations: 

RBS1:     Inputs/Outputs      1     2     3 

                                               1                  0     1     0
                                               2                  0     0     1 
                                               3                  1     0     0 

(6.33)

            RBS1: {(1, 2), (2, 3), (3, 1)} (6.34)

RBS2:     Inputs/Outputs      1     2     3 

                                               1                  0     0     1
                                               2                  1     0     0 
                                               3                  0     1     0 

(6.35)

            RBS2: {(1, 3), (2, 1), (3, 2)} (6.36)

In this case, the product rule bases RBS1 and RBS2 are both PRBs. Also, 
each of them is a TRB with respect to the other. This follows from the 
comparison of the corresponding Boolean matrices and binary relations for 
these rule bases, as shown by Eqs. (6.33)–(6.34) and Eqs. (6.35)–(6.36). 

Example 6.7
This example demonstrates the technique of output merging with an IRB 

from below. The operand rule bases RB and RBI are presented by the 
following Boolean matrices and binary relations: 



6.2  Manipulation with Identity Rule Bases     125

RB:     Inputs/Outputs       1     2 

                                                 1                   0     1
                                                 2                   1     0

(6.37)

   RB: {(1, 2), (2, 1)} (6.38)

RBI:     Inputs/Outputs      1     2 

                                                  1                  1     0
                                                  2                  0     1

(6.39)

  RBI: {(1, 1), (2, 2)} (6.40)

The output merging of RB and RBI into a product rule base RBM will be 
denoted by RB;RBI = RBM where RBM will be presented by the following 
block Boolean matrix and binary relation: 

RBM:     Inputs/Outputs      11     12          21     22 

                                      1                   0       0            1       0
                                      2                   0       1            0       0

(6.41)

RBM: {(1, 21), (2, 12)} (6.42)

In this case, the positions of the non-zero 1 2 sub-blocks in the product 
Boolean matrix RBM map the positions of the non-zero elements in the first 
operand Boolean matrix RB whereas the positions of the non-zero elements 
within these sub-blocks map the positions of the non-zero elements in the 
second Boolean matrix RBI.

Example 6.8
This example demonstrates the technique of output merging with an IRB 

from above. The operand rule bases RBI and RB are presented by the 
following Boolean matrices and binary relations: 

RBI:     Inputs/Outputs      1     2 

                                                  1                  1     0
                                                  2                  0     1

(6.43)



126     6 Formal Manipulation with Special Rule Bases 

  RBI: {(1, 1), (2, 2)} (6.44)

RB:     Inputs/Outputs       1     2 

                                                 1                   0     1
                                                 2                   1     0

(6.45)

   RB: {(1, 2), (2, 1)} (6.46)

The output merging of RBI and RB into a product rule base RBM will be 
denoted by RBI;RB = RBM where RBM will be presented by the following 
block Boolean matrix and binary relation: 

RBM:     Inputs/Outputs      11     12          21     22 

                                      1                   0       1            0       0
                                      2                   0       0            1       0

(6.47)

RBM: {(1, 12), (2, 21)} (6.48)

In this case, the positions of the non-zero 1×2 sub-blocks in the product 
Boolean matrix RBM map the positions of the non-zero elements in the first 
operand Boolean matrix RBI whereas the positions of the non-zero elements 
within these sub-blocks map the positions of the non-zero elements in the 
second Boolean matrix RB.

Example 6.9
This example demonstrates the technique of output splitting of an IRB. 

The operand rule base RBI is presented by the following block Boolean 
matrix and binary relation: 

RBI:     Inputs/Outputs     11     12          21     22 

                                     11                 1       0            0       0
                                     12                 0       1            0       0

                                     21                 0      0            1       0               
                                     22                 0       0            0       1

(6.49)

   RBI: {(11, 11), (12, 12), (21, 21), (22, 22)} (6.50)
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The output splitting of RBI into product rule bases RBS1 and RBS2 will be 
denoted by RB = RBS1:RBS2 where RBS1 and RBS2 will be presented by the 
following block Boolean matrices and binary relations: 

RBS1:     Inputs/Outputs       1     2 

                                                 11                  1     0
                                                 12                  1     0

                                                 21                  0     1
                                                 22                  0     1

(6.51)

RBS1: {(11, 1), (12, 1), (21, 2), (22, 2)} (6.52)

RBS2:     Inputs/Outputs       1     2 

                                                 11                  1     0
                                                 12                  0     1 

                                                 21                  1     0
                                                 22                  0     1

(6.53)

RBS2: {(11, 1), (12, 1), (21, 2), (22, 2)} (6.54)

In this case, the blocks in the second product Boolean matrix RBS2 map
the non-zero on-diagonal blocks in the operand Boolean matrix RBI

whereas the positions of the non-zero elements in the first product Boolean 
matrix RBS1 map the positions of the non-zero 1 2 sub-blocks in RBI.

6.3  Manipulation with Transpose Rule Bases 

Example 6.10
This example demonstrates the technique of vertical merging with a TRB 

from below and above. In this case, the two operand rule bases RBT1 and 
RBT2 are transpose to each other and they are presented by the following 
Boolean matrices and binary relations: 

RBT1:     Inputs/Outputs      1     2 

                                                   1                  1     0
                                                   2                  1     0

(6.55)

 RBT1: {(1, 1), (2, 1)} (6.56)

×
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RBT2:     Inputs/Outputs      1     2 

                                                   1                  1     1
                                                   2                  0     0

(6.57)

 RBT2: {(1, 1), (1, 2)} (6.58)

The vertical merging of RBT1 and RBT2 into a product rule base RBM will 
be denoted by RBT1+RBT2 = RBM where RBM will be presented by the 
following block Boolean matrix and binary relation: 

RBM:     Inputs/Outputs      11     12          21     22 

                                     11                  1       1            0       0
                                     12                  0       0            0       0

                                     21                  1       1            0       0
                                     22                  0       0            0       0

(6.59)

   RBM: {(11, 11), (11, 12), (21, 11), (21, 12)} (6.60)

The positions of the non-zero blocks in the product Boolean matrix RBM

map the positions of the non-zero elements in the operand Boolean matrix 
from above RBT1 whereby each non-zero block in RBM is equal to the 
operand Boolean matrix from below RBT2.

Example 6.11
This example demonstrates the technique of vertical splitting of TRBs, 

i.e. rule bases which are transpose to each other. The two operand rule 
bases RBT1 and RBT2 are handled separately with the purpose to find out how 
the symmetrical patterns in them are replicated in the corresponding 
product rule bases. 

The operand rule base RBT1 is presented by the following block Boolean 
matrix and binary relation: 

RBT1:     Inputs/Outputs      11     12          21     22 

                                     11                  0       0            1       0
                                     12                  0       0            1       0

                                     21                  1       0           0       0              
                                     22                  1       0            0       0

(6.61)

  RBT1: {(11, 21), (12, 21), (21, 11), (22, 11)} (6.62)
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The vertical splitting of RBT1 into product rule bases RBS1 and RBS2 will be 
denoted by RBT1 = RBS1–RBS2 where RBS1 and RBS2 will be presented by the 
following Boolean matrices and binary relations: 

RBS1:     Inputs/Outputs     1     2 

                                                  1                  0     1
                                                  2                  1     0

(6.63)

RBS1: {(1, 2), (2, 1)} (6.64)

RBS2:     Inputs/Outputs      1     2 

                                                   1                  1     0
                                                   2                  1     0

(6.65)

RBS2: {(1, 1), (2, 1)} (6.66)

The positions of the non-zero elements in the first product Boolean 
matrix RBS1 map the positions of the two identical non-zero blocks in the 
operand Boolean matrix RBT1. As far as the second product Boolean matrix 
RBS2 is concerned, it is the same as each of the two identical non-zero 
blocks in the operand Boolean matrix RBT1.

The operand rule base RBT2 is presented by the following block Boolean 
matrix and binary relation: 

RBT2:     Inputs/Outputs      11     12          21     22 

                                     11                  0       0            1       1
                                     12                  0       0            0       0

                                     21                  1       1            0       0
                                     22                  0       0            0       0

(6.67)

  RBT2: {(11, 21), (11, 22), (21, 11), (21, 12)} (6.68)

The vertical splitting of RBT2 into product rule bases RBS3 and RBS4 will be 
denoted by RBT2 = RBS3–RBS4 where RBS3 and RBS4 will be presented by the 
following Boolean matrices and binary relations: 

RBS3:     Inputs/Outputs     1     2 

                                                  1                  0     1
                                                  2                  1     0

(6.69)
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RBS3: {(1, 2), (2, 1)} (6.70)

RBS4:     Inputs/Outputs     1     2 

                                                  1                  1     1
                                                  2                  0     0

(6.71)

RBS4: {(1, 1), (1, 2)} (6.72)

The positions of the non-zero elements in the first product Boolean 
matrix RBS3 map the positions of the two identical non-zero blocks in the 
operand Boolean matrix RBT2. As far as the second product Boolean matrix 
RBS4 is concerned, it is the same as each of the two identical non-zero 
blocks in the operand Boolean matrix RBT2.

A more detailed inspection of this example shows that the patterns from 
the two operand rule bases RBT1 and RBT2 are replicated in the corresponding 
product rule bases RBS1, RBS2, RBS3 and RBS4 in a manner that matches the 
symmetry in RBT1 and RBT2. In particular, RBS1 is equal to RBS3 whereas RBS2

and RBS4 are transpose to each other. 

Example 6.12
This example demonstrates the technique of horizontal merging of TRBs. 

The two operand rule bases RBT1 and RBT2 are handled together in two 
separate cases whereby in the second case their positions are swapped in 
relation to the first case.

For the first case, the operand rule bases RBT1 and RBT2 are presented by 
the following Boolean matrices and binary relations: 

RBT1:     Inputs/Outputs     1     2     3 

                                                1                 1     0     0
                                                2                 1     0     0 
                                                3                 0     1     0 

(6.73)

            RBT1: {(1, 1), (2, 1), (3, 2)} (6.74)

RBT2:     Inputs/Outputs     1     2     3 

                                                1                 1     1     0
                                                2                 0     0     1 
                                                3                 0     0     0 

(6.75)
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            RBT2: {(1, 1), (1, 2), (2, 3)} (6.76)

The horizontal merging of RBT1 and RBT2 into a product rule base RBM12

will be denoted by RBT1*RBT = RBM12 where RBM12 will be presented by the 
following block Boolean matrix and binary relation: 

RBM12:     Inputs/Outputs       1     2          3 

                                             1                   1     1          0
                                             2                   1     1          0 

                                             3                   0     0          1

(6.77)

                                 RBM12: {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} (6.78) 

For the second case, the positions of the operand rule bases RBT1 and RBT2

are swapped, i.e. RBT2 is from left and RBT1 is from right. Therefore, the 
horizontal merging of RBT2 and RBT1 into a product rule base RBM21 will be 
denoted by RBT2*RBT1 = RBM21 where RBM21 will be presented by the 
following block Boolean matrix and binary relation: 

RBM21:     Inputs/Outputs       1     2          3 

                                             1                   1     0          0
                                             2                   0     1          0 

                                             3                   0     0          0 

(6.79)

RBM21: {(1, 1), (2, 2)} (6.80)

A more detailed inspection of this example shows that the symmetrical 
patterns from the two operand rule bases RBT1 and RBT2 are transformed 

M12 and RBM21 . In particular, RBM12

and RBM21

main block-diagonal are zeros. In the first case, the main diagonal 
blocks of RBM12 are of universal type, i.e. with all elements non-zero. In the 
second case, the main diagonal blocks of RBM21 are of either identity type, 
i.e. with all elements on the main diagonal non-zero and the remaining 
elements zeros, or of null type, i.e. with all elements zeros. 

Example 6.13 
This example demonstrates the technique of horizontal splitting of TRBs 

whereby the two operand rule bases RBT1 and RBT2 are handled separately. In 

in the corresponding product rule bases RB
both h ave a  block-diagonal structure, i.e. all blocks outsid e the
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this case, the operand rule base RBT1 is presented by the following Boolean 
matrix and binary relation: 

RBT1:     Inputs/Outputs     1     2     3 

                                              1                   0     1     0
                                              2                   0     0     1 
                                              3                   0     0     0 

(6.81)

RBT1: {(1, 2), (2, 3)} (6.82)

The horizontal splitting of RBT1 into product rule bases RBS1 and RBS2 will
be denoted by RBT1 = RBS1 /RBS2 where RBS1 and RBS2 may be presented by the 
following Boolean matrices and binary relations: 

RBS1:     Inputs/Outputs      1     2     3 

                                               1                  1     0     0
                                               2                  0     1     1 
                                               3                  0     0     0 

(6.83)

            RBS1: {(1, 1), (2, 2), (2, 3)} (6.84)

RBS2:     Inputs/Outputs      1     2     3 

                                               1                  0     1     0
                                               2                  0     0     1 
                                               3                  0     0     1 

(6.85)

            RBS2: {(1, 2), (2, 3), (3, 3)} (6.86)

The zero row in the first product Boolean matrix RBS1 maps the zero row 
in the operand Boolean matrix RBT1. As far as the second product Boolean 
matrix RBS2 is concerned, its zero column maps the zero column in the 
operand Boolean matrix RBT1.

The operand rule base RBT2 is presented by the following Boolean matrix 
and binary relation: 

RBT2:     Inputs/Outputs      1     2     3 

                                               1                  0     0     0
                                               2                  1     0     0 
                                               3                  0     1     0 

(6.87)
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                                      RBT2: {(2, 1), (3, 2)} (6.88)

The horizontal splitting of RBT2 into product rule bases RBS3 and RBS4 will
be denoted by RBT2 = RBS3 / RBS4 where RBS3 and RBS4 may be presented by the 
following Boolean matrices and binary relations: 

RBS3:     Inputs/Outputs      1     2     3 

                                               1                  0     0     0
                                               2                  1     0     0 
                                               3                  0     1     1 

(6.89)

            RBS3: {(2, 1), (3, 2), (3, 3)} (6.90)

RBS4:     Inputs/Outputs      1     2     3 

                                               1                  1     0     0
                                               2                  0     1     0 
                                               3                  0     1     0 

(6.91)

            RBS4: {(1, 1), (2, 2), (3, 2)} (6.92)

The zero row in the first product Boolean matrix RBS3 maps the zero row 
in the operand Boolean matrix RBT2. As far as the second product Boolean 
matrix RBS4 is concerned, its zero column maps the zero column in the 
operand Boolean matrix RBT2.

A more detailed inspection of this example shows that the patterns from 
the two operand rule bases RBT1 and RBT2 are transformed in the 
corresponding product rule bases RBS1, RBS2, RBS3 and RBS4 in a manner that 
matches the symmetry in RBT1 and RBT2. In particular, RBS2 and RBS3 are
transpose to each other as are RBS1 and RBS4. In other words, the 
transposition of the operand Boolean matrix RBT1 into RBT2 has an inverse 
transformation effect on the corresponding product Boolean matrices, i.e. 
RBS1 and RBS2 must be transposed and have their positions swapped in order 
to obtain their counterparts RBS3 and RBS4.

Example 6.14
This example demonstrates the technique of output merging with a TRB 

from below and above. In this case, the two operand rule bases RBT1 and 
RBT2 are transpose to each other and they are presented by the following 
Boolean matrices and binary relations: 
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RBT1:     Inputs/Outputs      1     2 

                                                   1                  0     1
                                                   2                  0     1

(6.93)

  RBT1: {(1, 2), (2, 2)} (6.94)

RBT2:     Inputs/Outputs      1     2 

                                                   1                  0     0
                                                   2                  1     1

(6.95)

RBT2: {(2, 1), (2, 2)} (6.96)

The output merging of RBT1 and RBT2 into a product rule base RBM will be 
denoted by RBT1; RBT2 = RBM where RBM will be presented by the following 
block Boolean matrix and binary relation: 

RBM:     Inputs/Outputs      11     12          21     22 

                                      1                   0       0            0       0
                                      2                   0       0            1       1

(6.97)

   RBM: {(2, 21), (2, 22)} (6.98)

The position of the non-zero block in the product Boolean matrix RBM

maps the position of the non-zero 2×1 sub-block in the operand Boolean 
matrix from above RBT1 whereby this non-zero block is equal to the operand 
Boolean matrix from below RBT2.

Example 6.15
This example demonstrates the technique of output splitting of TRBs 

whereby the two operand rule bases RBT1 and RBT2 are handled separately. In 
this case, the operand rule base RBT1 is presented by the following block 
Boolean matrix and binary relation: 

RBT1:     Inputs/Outputs      11     12          21     22 

                                     11                  0       1            0       0
                                     12                  0       0            1       0

                                     21                  0       0            0       1
                                     22                  0       1            0       0             

(6.99)
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  RBT1: {(11, 12), (12, 21), (21, 22), (22, 12)} (6.100) 

The output splitting of RBT1 into product rule bases RBS1 and RBS2 will be 
denoted by RBT1 = RBS1:RBS2 where RBS1 and RBS2 will be presented by the 
following Boolean matrices and binary relations: 

RBS1:     Inputs/Outputs    1     2 

                                                11                 1     0
                                                12                 0     1
                                                21                 0     1
                                                22                 1     0

(6.101)

RBS1: {(11, 1), (12, 2), (21, 2), (22, 1)} (6.102)

RBS2:     Inputs/Outputs     1     2 

                                                11                 0     1
                                                12                 1     0
                                                21                 0     1
                                                22                 0     1

(6.103)

RBS2: {(11, 2), (12, 1), (21, 2), (22, 2)} (6.104)

It is obvious that the rows in the first product Boolean matrix RBS1 map
the non-zero 1×2 sub-blocks in the operand Boolean matrix RBT1. As far as 
the second product Boolean matrix RBS2 is concerned, its non-zero elements 
map the non-zero 1×2 sub-blocks in a Boolean matrix that is obtained by 
swapping the second and the third column in RBT1 together with their labels. 
This new matrix stands for a new rule base RBT1N in which the positions of 
the two outputs have been swapped, i.e. the second output from RBT1 has
become first whereas its first output has become second. Obviously, the 
corresponding binary relation does not change as a result of this column 
swap because the column labels are swapped as well. 

The new rule base RBT1N is presented by the following block Boolean 
matrix and binary relation: 

RBT1N:     Inputs/Outputs     11     21          12     22 

                                     11                 0       0            1       0
                                     12                 0       1            0       0
                                     21                 0       0            0       1
                                     22                 0       0            1       0

(6.105)
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RBT1N: {(11, 12), (12, 21), (21, 22), (22, 12)} (6.106) 

The operand rule base RBT2 is presented by the following block Boolean 
matrix and binary relation: 

RBT2:     Inputs/Outputs     11     12          21     22 

                                     11                 0       0            0       0
                                     12                 1       0            0       1

                                     21                 0       1            0       0
                                     22                 0       0            1       0

(6.107)

  RBT2: {(12, 11), (12, 22), (21, 12), (22, 21)} (6.108) 

The vertical splitting of RBT2 into product rule bases RBS3 and RBS4 will be 
denoted by RBT2 = RBS3:RBS4 where RBS3 and RBS4 will be presented by the 
following block Boolean matrices and binary relations: 

RBS3:     Inputs/Outputs      1     2 

                                                 11                 0     0
                                                 12                 1     1

                                                 21                 1     0
                                                 22                 0     1

(6.109)

RBS3: {(12, 1), (12, 2), (21, 1), (22, 2)} (6.110)

RBS4:     Inputs/Outputs      1     2 

                                                 11                 0     0
                                                 12                 1     1 

                                                 21                 0     1
                                                 22                 1     0

(6.111)

RBS4: {(12, 1), (12, 2), (21, 2), (22, 1)} (6.112)

It is obvious that the rows in the first product Boolean matrix RBS3 map
the non-zero 1×2 sub-blocks in the operand Boolean matrix RBT2. As far as 
the second product Boolean matrix RBS4 is concerned, its non-zero elements 
map the non-zero 1×2 sub-blocks in a Boolean matrix that is obtained by 
swapping the second and the third column in RBT2 together with their labels. 
This new matrix stands for a new rule base RBT2N in which the positions of 
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the two outputs have been swapped, i.e. the second output from RBT2 has
become first whereas its first output has become second. Here again, the 
corresponding binary relation does not change as a result of this column 
swap because the column labels are swapped as well. 

The new rule base RBT2N is presented by the following block Boolean 
matrix and binary relation: 

RBT2N:     Inputs/Outputs     11     21          12     22

                                     11                 0       0            0       0
                                     12                 1       0            0       1

                                     21                 0       0            1       0
                                     22                0       1            0       0             

(6.113)

 RBT2N: {(12, 11), (12, 22), (21, 12), (22, 21)} (6.114) 

A more detailed inspection of this example shows that the patterns from 
the two operand rule bases RBT1 and RBT2 are replicated in the corresponding 
product rule bases RBS1 and RB in a manner that matches the symmetry
in RBT1 and RBT2 .  In  particular,  the rows  in RBS3

map the 
  in RB

T2 which are obtained  by  transposing the corresponding 2×1 blocks in 
RBT1 as part of the transposition process from RBT1 to RBT2

.  Similarly, the 
rows in RBS1 map the 1×2 sub-blocks in RBT1  which are  obtained by 
transposing  the corresponding 2×1 blocks in  RBT2 as part of the transposition
process from RBT2 to RBT1.

The above conclusions become more obvious when RBT1 and RBT2 are 
presented in a form that makes their  blocks explicit, i.e.:  

RBT1:     Inputs/Outputs     11          12          21          22 

                               11                 0            1            0            0
                               12                 0            0            1            0

                               21                 0            0            0            1
                               22                 0            1            0            0

(6.115)

RBT2:     Inputs/Outputs     11          12          21          22 

                                11                 0            0            0            0        
                                12                 1            0            0            1 

                                21                 0            1            0            0
                                22                 0            0            1            0

(6.116)

 2 × 1

S3

1×2 sub-blocks
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6.4  Manipulation with Permutation Rule Bases 

Example 6.16
This example demonstrates the technique of vertical merging with a PRB 

from below and above. The two operand rule bases RBP1 and RBP2 are 
presented by the following Boolean matrices and binary relations: 

RBP1:     Inputs/Outputs    1     2     3 

                                              1                 0     0     1
                                              2                 1     0     0
                                              3                 0     1     0 

(6.117)

 RBP1: {(1, 3), (2, 1), (3, 2)} (6.118)

RBP2:     Inputs/Outputs     1     2     3 

                                               1                 1     0     0
                                               2                 0     0     1 
                                               3                 0     1     0 

(6.119)

 RBP2: {(1, 1), (2, 3), (3, 2)} (6.120)

The vertical merging of RBP1 and RBP2  into a product rule base RBM will 
be denoted by RBP1 + RBP2 = RBM where RBM  will be presented by the 
following block Boolean matrix and binary relation: 

RBM:  Inputs/Outputs  11    12    13     21    22     23     31    32     33 

              11               0      0     0      0      0       0         1      0       0
              12               0      0     0      0      0       0         0      0       1 
              13               0      0     0      0      0       0         1      0       0 

                  21               1      0     0      0      0       0         0      0       0
             22               0       0     1      0      0       0        0       0       0 
             23               0       1     0      0      0       0         0      0       0

             31               0       0     0      1      0       0         0      0       0
             32               0       0     0      0      0       1         0      0       0
             33               0       0     0      0      1       0         0      0       0

(6.121)
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RBM: {(11, 31), (12, 33), (13, 31), 

                                     (21, 11), (22, 13), (23, 12),

                                     (31, 21), (32, 23), (33, 22)} 

(6.122)

In this case, the permutation pattern from the two operand rule bases 
RBP1 and RBP2 is replicated in the product rule base RBM, i.e. the latter is a 
PRB.

Example 6.17
This example demonstrates the technique of vertical splitting of a PRB. 

The operand rule base RBP is presented by the following block Boolean 
matrix and binary relation: 

RBP:     Inputs/Outputs      11     12          21     22 

                                    11                  0       0           0       1             
                                    12                  0       0            1       0

                                    21                  0       1            0       0
                                    22                  1       0            0       0

(6.123)

   RBP: {(11, 22), (12, 21), (21, 12), (22, 11)} (6.124) 

The vertical splitting of RBP into product rule bases RBS1 and RBS2 will be 
denoted by RBP = RBS1–RBS2 where RBS1 and RBS2 will be presented by the 
following Boolean matrices and binary relations: 

RBS1:     Inputs/Outputs     1     2 

                                                11                 0     1
                                                12                 1     0 

(6.125)

RBS1: {(11, 2), (12, 1)} (6.126)

RBS2:     Inputs/Outputs      1     2 

                                                 11                 0     1
                                                 12                 1     0 

(6.127)

RBS2: {(11, 2), (12, 1)} (6.128)
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In this case, the permutation pattern from the operand rule base RBP is 
replicated in the  product rule bases RBS1 and RBS2, i.e. each of them is a 
PRB.

Example 6.18
This example demonstrates the technique of horizontal merging with a 

PRB from right and left. The operand rule bases RBP1 and RBP2 are 
presented by the following Boolean matrices and binary relations: 

RBP1:     Inputs/Outputs      1     2     3 

                                               1                  0     0     1
                                               2                  1     0     0 
                                               3                  0     1     0 

(6.129)

             RBP1: {(1, 3), (2, 1), (3, 2)} (6.130)

RBP2:     Inputs/Outputs      1     2     3 

                                              1                  1     0     0
                                              2                  0     0     1 
                                              3                  0     1     0 

(6.131)

             RBP2: {(1, 1), (2, 3), (3, 2)} (6.132)

The horizontal merging of RBP1 and RBP2 into a product rule base RBM will 
be denoted by RBP1*RBP2 = RBM where RBM will be presented by the 
following block Boolean matrix and binary relation: 

RBM:     Inputs/Outputs     1     2     3 

                                              1                 0     1     0
                                              2                 1     0     0 
                                              3                 0     0     1 

(6.133)

              RBM: {(1, 2), (2, 1), (3, 3)} (6.134)

In this case, the permutation pattern from the two operand rule bases 
RBP1 and RBP2 is replicated in the product rule base RBM, the latter is a PRB. 
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Example 6.19
This example demonstrates the technique of horizontal splitting of a 

PRB. The operand rule base RBP is presented by the following Boolean 
matrix and binary relation: 

RBP:     Inputs/Outputs      1     2     3 

                                              1                  0     1     0
                                              2                  0     0     1 
                                              3                  1     0     0 

(6.133)

P (6.134)

The horizontal splitting of RBP into product rule bases RBS1 and RBS2 will
be denoted by RBP = RBS1 / RBS2 where RBS1 and RBS2 may be presented by the 
following Boolean matrices and binary relations: 

RBS1:     Inputs/Outputs     1     2     3 

                                               1                 1     0     0
                                               2                 0     0     1 
                                               3                 0     1     0 

(6.135)

            RBS1: {(1, 1), (2, 3), (3, 2)} (6.136)

RBS2:     Inputs/Outputs     1     2     3 

                                               1                 0     1     0
                                               2                 1     0     0 
                                               3                 0     0     1 

(6.137)

            RBS2: {(1, 2), (2, 1), (3, 3)} (6.138)

In this case, the permutation pattern from the operand rule base RBP is
replicated in the product rule bases RBS1 and RBS2, i.e. each of them is a 
PRB.

Example 6.20
This example demonstrates the technique of output merging with a PRB 

from below and above. The operand rule bases RBP1 and RBP2 are presented 
by the following Boolean matrices and binary relations: 

              RB : {(1, 2), (2, 3), (3, 1)} 
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RBP1:     Inputs/Outputs     1     2     3 

                                               1                 0     0     1
                                               2                 1     0     0 
                                               3                 0     1     0 

(6.139)

             RBP1: {(1, 3), (2, 1), (3, 2)} (6.140)

RBP2:     Inputs/Outputs     1     2     3 

                                               1                 1     0     0
                                               2                 0     0     1 
                                               3                 0     1     0 

(6.141)

             RBP2: {(1, 1), (2, 3), (3, 2)} (6.142)

The output merging of RBP1 and RBP2 into a product rule base RBM will be 
denoted by RBP1;RBP2 = RBM where RBM will be presented by the following 
block Boolean matrix and binary relation: 

RBM:   Inputs/Outputs    11   12   13     21    22    23     31    32     33 

               1                   0    0      0       0     0       0       1      0      0 
               2                   0    0      1       0     0       0       0       0     0 
               3                   0    0      0        0     1       0       0       0     0 

(6.143)

RBM: {(1, 31), (2, 13), (3, 22)} (6.144)

In this case, the permutation pattern from the two operand rule bases 
RBP1 and RBP2 is replicated in the non-zero 1×3 sub-blocks in the product 
rule base RBM, as shown by Eqs. (6.143)–(6.144). In particular, the 
positions of these blocks map the positions of the non-zero elements from 
the first operand matrix whereby the positions of the non-zero elements in 
the sub-blocks map the positions of the non-zero elements from the second 
operand matrix. 

Example 6.21
This example demonstrates the technique of output splitting of a PRB. 

The operand rule base RBP is presented by the following block Boolean 
matrix and binary relation: 
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RBP:     Inputs/Outputs      11     12          21     22 

                                    11                  0       0            1       0
                                    12                  1       0            0       0            

                                    21                  0       1            0       0
                                    22                  0       0            0       1

(6.145)

   RBP: {(11, 21), (12, 11), (21, 12), (22, 22)} (6.146) 

The output splitting of RBP into product rule bases RBS1 and RBS2 will be 
denoted by RBP = RBS1:RBS2 where RBS1 and RBS2 will be presented by the 
following block Boolean matrices and binary relations: 

RBS1:     Inputs/Outputs      1     2 

                                                 11                 0     1
                                                 12                 1     0

                                                 21                 1     0
                                                 22                 0     1

(6.147)

RBS1: {(11, 2), (12, 1), (21, 1), (22, 2)} (6.148)

RBS2:     Inputs/Outputs      1     2 

                                                 11                 1     0
                                                 12                 1     0

                                                 21                 0     1
                                                 22                 0     1

(6.149)

RBS2: {(11, 1), (12, 1), (21, 2), (22, 2)} (6.150)

In this case, the non-zero elements in the first product Boolean matrix 
RBS1 map the non-zero 1×2 sub-blocks in the operand Boolean matrix RBP.
As far as the second product Boolean matrix RBS2 is concerned, its non-zero 
elements map the non-zero 1×2 sub-blocks in a Boolean matrix that is 
obtained by swapping the second and the third column in RBP together with 
their labels. This new matrix stands for a new rule base RBPN in which the 
positions of the two outputs have been swapped, i.e. the second output from 
RBP has become first whereas its first output has become second. Obviously, 
the corresponding binary relation does not change as a result of this column 
swap because the column labels are swapped as well. 



144     6 Formal Manipulation with Special Rule Bases 

The new rule base RBPN is presented by the following block Boolean 
matrix and binary relation: 

RBPN:     Inputs/Outputs      11     21          12     22 

                                    11                  0       1            0       0
                                    12                  1       0            0       0

                                    21                  0       0            1       0
                                    22                  0       0            0       1

(6.151)

RBPN: {(11, 21), (12, 11), (21, 12), (22, 22)} (6.152)

A more detailed inspection of this example shows that the patterns from 
the operand rule base RBP are replicated and transformed in the 
corresponding product rule bases RBS1 and RBS2 in a manner that matches the 
permutation pattern in RBP. In particular, this permutation pattern is 
replicated in the blocks of RBS1 as well as in a new Boolean matrix RBS2N

that is obtained by swapping the second and the third row of RBS2 together
with their labels. This new matrix stands for a new rule base RBS2N in which 
the positions of the two inputs have been swapped, i.e. the second input 
from RBS2 has become first whereas its first output has become second. 
Obviously, the corresponding binary relation does not change as a result of 
this row swap because the row labels are swapped as well. 

The new rule base RBS2N is presented by the following block Boolean 
matrix and binary relation: 

RBS2N:     Inputs/Outputs     1     2 

                                                 11                 1     0
                                                 21                 0     1

                                                 12                 1     0
                                                 22                 0     1

(6.153)

RBS2N: {(11, 1), (21, 2), (12, 1), (22, 2)} (6.154)

6.5  Specific Cases with Special Rule Bases 

The techniques for formal manipulation with special rule bases introduced 
in the previous sections of this chapter relate to the most common cases.  
However, sometimes we may have some specific cases such as: 
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horizontal merging of two IRBs, 

horizontal merging of two rule bases such that each of them is a 

as a TRB.

The above specific cases are illustrated in Figs. 6.10–6.13 and by several 
examples further in this section. The purpose of the examples is to 
demonstrate the specific cases with special rule bases and to show the 
potential impact of the manipulation on the structure of the rule bases 
involved, i.e. how the patterns from the operand rule bases are replicated or 
transformed in the product rule bases. 

       i1 o1

                                                                  i1                       o1

                                                                                                                                         
+ =

                                                                      i2                       o2

       i2 o2

Fig. 6.10. Vertical merging of two identity rule bases

Fig. 6.11. Horizontal merging of two identity rule bases 

Fig. 6.12. Horizontal splitting of an identity rule base 

 IRB 

 IRB 

vertical merging of two IRBs, 

horizontal  splitting of an IRB, 

permutation-transpose rule base (P-T RB), i.e. a PRB as well 

i1 z1 z1 o1                o1i1
* =

 IRB IRB

i1 o1 o1i1

                                  

z1 z1= /

 IRB 
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Fig. 6.13. Horizontal merging of two permutation-transpose rule bases 

Example 6.22
This example demonstrates the technique of vertical merging of two 

IRBs. The operand rule bases RBI1 and RBI2 are presented by the following 
Boolean matrices and binary relations: 

RBI1:     Inputs/Outputs     1     2 

                                                 1                  1     0
                                                 2                  0     1

(6.155)

 R I1: {(1, 1), (2, 2)} (6.156)

RBI2:     Inputs/Outputs     1     2 

                                                 1                  1     0
                                                 2                  0     1

(6.157)

 RBI2: {(1, 1), (2, 2)} (6.158)

The product rule base RBM for the vertical merging of RBI1 and RBI2 will 
be denoted by RBM = RB

I1
/ RB

I2
and will be presented by the following block 

Boolean matrix and binary relation: 

RBM:     Inputs/Outputs      11     12          21     22 

                                     11                 1       0            0       0
                                     12                 0       1            0      0             

                                     21                 0       0            1       0
                                     22                 0       0            0       1

(6.159)

      i1 z1                              
z1

                                 

o1                
i1 o1

* =
P-T
RB

P-T
RB
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   RBM: {(11, 11), (12, 12), (21, 21), (22, 22)} (6.160) 

In this case, the product rule base RBM is an IRB, as shown by 

Example 6.23
This example demonstrates the technique of horizontal merging of two 

IRBs. The operand rule bases RBI1 and RBI2 are presented by the following 
Boolean matrices and binary relations: 

RBI1:     Inputs/Outputs      1     2 

                                                  1                  1     0
                                                  2                  0     1

(6.161)

 R I1: {(1, 1), (2, 2)} (6.162)

RBI2:     Inputs/Outputs       1     2 

                                                  1                  1     0
                                                  2                  0     1

(6.163)

 RBI2: {(1, 1), (2, 2)} (6.164)

The product rule base RBM for the vertical merging of RBI1 and RBI2 will 
be denoted by RBM = RBI1*RBI2 and will be presented by the following 
Boolean matrix and binary relation: 

RBM:     Inputs/Outputs      1     2 

                                                  1                  1     0
                                                  2                  0     1

(6.165)

  RBM: {(1, 1), (2, 2)} (6.166)

Example 6.24
This example demonstrates the technique of horizontal splitting of an 

I

and binary relation: 

Eqs. (6.159)–(6.160).

In this case, the product rule base RBM is an IRB, as shown by 
Eqs. (6.165)–(6.166).

IRB .  The operand rule base RB is presented by the following Boolean matrix 
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RBI:     Inputs/Outputs      1     2     3 

                                             1                  1     0     0
                                             2                  0     1     0 
                                             3                  0     0     1

(6.167)

             RBI: {(1, 1), (2, 2), (3, 3)} (6.168)

The product rule bases RBS1 and RBS2 for the horizontal splitting of RB1

will be denoted by RBS1;RBS2 = RBI  and may be presented by the following 
Boolean matrices and binary relations: 

RBS1:     Inputs/Outputs     1     2     3 

                                               1                 1     0     0
                                               2                 0     1     0 
                                               3                 0     0     1 

(6.169)

            RBS1: {(1, 1), (2, 2), (3, 3)} (6.170)

RBS2:     Inputs/Outputs     1     2     3 

                                               1                 1     0     0
                                               2                 0     1     0 
                                               3                 0     0     1 

(6.171)

            RBS2: {(1, 1), (2, 2), (3, 3)} (6.172)

It is obvious that the product rule bases RBS1 and RBS2 are both IRBs, as 
shown by Eqs. (6.169)–(6.170) and Eqs. (6.171)–(6.172). 

Example 6.25 
This example demonstrates the technique of horizontal merging of two 

PT1 and RBPT2 are handled 
together in two separate cases whereby in the second case their positions 

For the first case, the operand rule bases RBPT1 and RBPT2 are presented by 
the following Boolean matrices and binary relations: 

P-T RBs. The two operand rule bases RB

are swapped in relation to the first case.
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RBPT1:     Inputs/Outputs     1     2     3 

                                               1                 0     0     1
                                               2                 1     0     0
                                               3                 0     1     0 

(6.173)

RBPT1: {(1, 3), (2, 1), (3, 2)} (6.174)

RBPT2:     Inputs/Outputs    1     2     3 

                                               1                 0     1     0
                                               2                 0     0     1 
                                               3                 1     0     0 

(6.175)

RBPT2: {(1, 2), (2, 3), (3, 1)} (6.176)

.
The product rule base RBM12 for the horizontal merging of RBPT1 and RBPT2

will be denoted by RBM12 = RBPT1*RBPT2 and will be presented by the 
following Boolean matrix and binary relation: 

RBM12:     Inputs/Outputs      1     2     3 

                                                1                 1     0     0
                                                2                 0     1     0 
                                                3                 0     0     1 

(6.177)

            RBM12: {(1, 1), (2, 2), (3, 3)} (6.178)

For the second case, the positions of the operand rule bases RBPT1 and 
RBPT2 are swapped, i.e. RBPT2 is from left and RBPT1 is from right. Therefore, 
the product rule base RBM21 for the vertical merging of RBPT2 and RBPT1 will 
be denoted by RBM21 = RBPT2*RBPT1 and will be presented by the following 
block Boolean matrix and binary relation: 

RBM21:     Inputs/Outputs     1     2     3 

                                                1                 1     0     0
                                                2                 0     1     0 
                                                3                 0     0     1 

(6.179)

            RBM21: {(1, 1), (2, 2), (3, 3)} (6.180)
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As shown by Eqs. (6.177)–(6.178) and Eqs. (6.179)–(6.180), the 
symmetrical patterns from the two operand rule bases RBPT1 and RBPT2 are
transformed in the corresponding product rule bases RBM12 and RBM21 in a 
specific way. In particular, RBM12 and RBM21 are IRBs and are equal to each 
other. Therefore, the product rule base is not affected by the positions of the 
operand rule bases, i.e. the horizontal merging of two PRB-TRBs is 
commutative.

The examples from the previous sections on formal manipulation with 
special rule bases provide a valuable insight into how patterns from operand 
rule bases are replicated and transformed in the corresponding product rule 
bases. It is obvious in this case that patterns in a rule base define its 
properties uniquely whereas the opposite is not true, i.e. a property may be 
reflected in more than one pattern. For example, an identity pattern in a rule 
base implies uniquely that it is complete, consistent, exhaustive and 
monotonic. However, a rule base with all these properties does not 
necessarily imply that it has the identity pattern as it could have the 
permutation pattern instead. 

Also, patterns are more general and flexible descriptors of fuzzy systems 
than properties. While properties can be either preserved or lost during 
formal manipulation, patterns can be replicated or even transformed. In 
addition, patterns are more structurally orientated descriptors than 
properties. This structural orientation makes patterns more relevant to MRB 
systems whereas properties remain more relevant to SRB systems or MRB 
systems represented equivalently by SRB systems. All this shows that 
patterns are more suitable for synthesis of rule bases while properties are 
more suitable for analysis. 

As far as the general study of patterns in rule bases is concerned, 
Boolean matrices are a more suitable tool than binary relations and that is 
why the latter have been marginalised in this chapter. For example, it is 
much easier to recognise a pattern in a rule base by inspecting its Boolean 
matrix rather than the corresponding binary relation. 

The three merging manipulations introduced in the current and the 
previous chapter usually lead to a unique product rule base, i.e. the patterns 
and the properties of the operand rule bases determine uniquely the patterns 
and the properties of the product rule base. However, in the three splitting 
manipulations, the patterns and the properties of the operand rule base often 
do not determine uniquely the patterns and the properties of the product 
rule bases. For example, an arbitrary rule base can be horizontally split such 
that either the first or the second product rule base is an IRB whereas the 
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other product rule base is equal to the operand rule base. Also, a 3×3 IRB 
can be vertically split such that either the first or the second product rule 
base is a 2×2 IRB whereas the other product rule base is a 1×1 IRB. And 
finally, a 3×3 IRB can be output split such that either the first or the 
second product rule base is a 3×2 rule base whereas the other product rule 
base is a 3×1 rule base. 

As far as the impact of the different manipulation techniques on the 
structure of the rule base is concerned, it can be summarised as follows: 

vertical merging removes a level within a layer, 
vertical splitting generates a level within a layer, 
horizontal merging removes a layer within a level, 
horizontal splitting generates a layer within a level, 
output merging removes a level within a layer, 
output splitting generates a level within a layer. 

The above conclusions are valid for manipulation with arbitrary rule 
bases as well as special rule bases. They are usually valid for MRB systems 
although in some cases either the operand or the product rule base may be a 
SRB system.

Also, bearing in mind that merging operations remove cells such as 
layers or levels while splitting operations generate cells, the conclusion can 
be made that merging is more relevant to synthesis of rule bases whereas 
splitting is more relevant to analysis. This conclusion is also completely in 
line with the general assumption that synthesis is an active approach 
leading to a deterministic result whereas analysis is a passive approach that 
may not yield a deterministic result. 

The manipulation techniques with arbitrary and special rule bases have 
been demonstrated in the previous and the current chapter in a relatively 
isolated context, i.e. with product rule bases, which are SRB systems. In the 
case of complex fuzzy systems, i.e. systems containing rule bases 
interconnected within a fairly complex structure, the product rule bases 
themselves may turn out to be interconnected with other rule bases and as 
such will be parts of a MRB system. In order to account for these 
circumstances, a special study on the resulting transformation of the 
associated rule bases is needed and this is discussed in detail in the next 
chapter.



7 Formal Transformation of Fuzzy Rule Based Systems 

The techniques for formal manipulation with arbitrary and special rule 
bases introduced in the previous two chapters are a powerful tool for 
complexity management in fuzzy systems. However, due to their basic 
nature, these techniques can be used only in SRB systems or very simple 
MRB systems. So, if we want to deal with complex MRB systems, we have 
to use more advanced formal manipulation techniques.

To distinguish these advanced techniques from the basic manipulation 
techniques, they will be referred to as formal transformation techniques. As 
opposed to formal manipulation, formal transformation deals with more 
complex types of reorganisation in a fuzzy system whereby a single 
operand rule base is represented by more than just a couple of product rule 
bases, or alternatively, a fairly complex structure of operand rule bases is 
represented by a single product rule base. In either case, no special 
requirements are usually put on the corresponding operand or product rule 
bases, i.e. the latter may be any arbitrary rule bases. 

For consistency, the formal transformation techniques for fuzzy systems 
are introduced in the current chapter by examples whereby the technique 
highlighted in a particular example uses techniques from some preceding 
examples as prerequisites. As opposed to the previous three chapters, the 
notations here are not presented at the same level of detail but they are 
sufficient for understanding the underlying process for each transformation 
technique. And finally, although the range of transformation techniques 
presented in this chapter is not exhaustive, it provides a fairly good basis 
for the development of new transformation techniques, if necessary. 

7.2 Repetitive Merging Manipulations 

The most basic type of formal transformation in a fuzzy rule based system 
is the one in which a merging manipulation operation is applied in a 
repetitive manner. For example, if we have three or more operand rule 
bases standing in parallel within a particular layer of a MRB system, we 
may want to merge them vertically into a single operand rule base. Also, if 
we have three or more operand rule bases standing in sequence within a 
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particular level of a MRB system, we may want to merge them horizontally 
into a single operand rule base. Therefore, it is useful to know if the 
merging manipulations involved are commutative and associative, as 
discussed in Examples 7.1–7.2. 

Example 7.1 
Vertical and horizontal merging manipulations are both non-

commutative and therefore it is not allowed to swap the positions of 
operand rule bases in repetitive merging. In particular, the swapping of the 
positions of the operand rule bases RB1 and RB2 will affect the product rule 
base, as shown briefly in Figs. 7.1–7.2 and in more detail by Eqs. (7.1)–(7.2).

+                          +

Fig. 7.1. Non-commutativity of vertical merging 

If RB1+2 = RB1 + RB2 and RB2+1 = RB2 + RB1 then RB1+2  RB2+1 (7.1) 

* *

**

Fig. 7.2. Non-commutativity of horizontal merging 

If RB1*2 = RB1 * RB2 and RB2*1 = RB2 * RB1 then RB1*2  RB2*1 (7.2) 

To illustrate the above implications, we consider the operand rule bases 
RB1 and RB2, which are presented by the following Boolean matrices and 
binary relations: 

 RB1

 RB2

 RB2

RB1

RB1 RB2 RB2  RB1
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RB1:     Inputs/Outputs      1     2 

                                                   1                  0     1
                                                   2                  1     0

(7.3)

  RB1: {(1, 2), (2, 1)} (7.4)

RB2:     Inputs/Outputs      1     2 

                                                   1                  1     0
                                                   2                  1     0

(7.5)

  RB2: {(1, 1), (2, 1)} (7.6)

In this case, the product rule bases RB1+2 and RB2+1 for the vertical 
merging of RB1 and RB2 will be presented by the following different 
Boolean matrices and binary relations: 

RB1+2:     Inputs/Outputs      11     12     21     22 

                                          11                 0       0       1       0
                                          12                 0       0       1       0
                                          21                 1       0       0       0
                                          22                 1       0       0       0

(7.7)

       RB1+2: {(11, 21), (12, 21), (21, 11), (22, 11)} (7.8) 

RB2+1:     Inputs/Outputs      11     12     21     22 

                                          11                 0       1       0       0
                                          12                 1       0       0      0                
                                          21                 0       1       0       0
                                          22                 1       0       0       0

(7.9)

       RB2+1: {(11, 12), (12, 11), (21, 12), (22, 11)} (7.10) 

Similarly, the product rule bases RB1*2 and RB2*1 for the horizontal 
merging of RB1 and RB2 will be presented by the following different 
Boolean matrices and binary relations: 
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RB1*2:     Inputs/Outputs      1     2 

                                                    1                 1     0
                                                    2                 1     0

(7.11)

      RB1*2: {(1, 1), (2, 1)} (7.12)

RB2*1:     Inputs/Outputs      1     2 

                                                    1                 0     1
                                                    2                 0     1

(7.13)

     RB2*1: {(1, 2), (2, 2)} (7.14)

Example 7.2 
Vertical and horizontal merging manipulations are both associative and 

therefore it is possible to change the order of operations on operand rule 
bases in repetitive merging. In other words, the changing of the order of 
operations on the operand rule bases RB1, RB2 and RB3 will not affect the 
product rule base, as shown briefly in Figs. 7.3–7.4 and in more detail by 
Eqs. (7.15)–(7.16). 

                                                                                                                                       
+     =                           +

Fig. 7.3. Associativity of vertical merging 

If RB(1+2)+3 = (RB1 + RB2) + RB3 and RB1+(2+3) = RB1 + (RB2 + RB3)

then RB(1+2)+3 = RB1+(2+3)

(7.15)

 RB1 + RB2

      RB3

     RB1

RB2 + RB3
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* = *

*

Fig. 7.4. Associativity of horizontal merging 

If RB(1*2)*3 = (RB1 * RB2) * RB3 and RB1*(2*3) = RB1 * (RB2 * RB3)

then RB(1*2)*3 = RB1*(2*3)

(7.16)

To illustrate the above implications, we consider the operand rule bases 
RB1, RB2 and RB3, which are presented by the following Boolean matrices 
and binary relations: 

RB1:     Inputs/Outputs       1     2 

                                                   1                  1     0
                                                   2                  1     0

(7.17)

  RB1: {(1, 1), (2, 1)} (7.18)

RB2:     Inputs/Outputs       1     2 

                                                   1                  0     1
                                                   2                  1     0

(7.19)

  RB2: {(1, 2), (2, 1)} (7.20)

RB3:     Inputs/Outputs       1     2 

                                                   1                  0     1
                                                   2                  0     1

(7.21)

  RB3: {(1, 2), (2, 2)} (7.22)

In this case, both product rule bases RB(1+2)+3 and RB1+(2+3) for the vertical 
merging of RB1, RB2 and RB3 will be presented by the following Boolean 
matrix and binary relation: 

RB1 * RB2 RB3 RB1 RB2 * RB3
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RB
(1+2)+3

= RB
1+(2+3)

:  Inputs/Outputs    111   112   121   122   211   212   221   222 

                                  111                0       0       0       1       0       0       0       0 
                                  112                0       0       0       1       0       0       0       0
                                  121                0       1       0       0       0       0       0       0
                                 122                0       1       0       0       0       0       0       0          
                                  211                0       0       0       1       0       0       0       0
                                  212                0       0       0       1       0       0       0       0 
                                  221                0       1       0       0       0       0       0       0
                                  222                0       1       0       0       0       0       0       0

(7.23)

RB(1+2)+3 = RB1+(2+3): {(111, 122), (112, 122), (121, 112), (122, 112), 

                                   (211, 122), (212, 122), (221, 112), (222, 112)} 

(7.24)

Similarly, both product rule bases RB(1*2)*3 and RB1*(2*3) for the horizontal 
merging of RB1, RB2 and RB3 will be presented by the following Boolean 
matrix and binary relation: 

RB(1*2)*3 = RB1*(2*3):     Inputs/Outputs      1     2 

                                                             1                  0     1
                                                             2                  0     1

(7.25)

RB1*(2*3) = RB1*(2*3): {(1, 2), (2, 2)} (7.26)

7.3  Combined Merging Manipulations 

A more advanced type of formal transformation in a fuzzy rule based 
system is the one in which a merging manipulation operation is combined 
with a splitting manipulation operation or vice versa. For example, if we 
have an operand rule base with one input and two outputs residing in a 
particular layer as well as two other operand rule bases with one input and 
one output each residing in the next layer, we could then feed each of the 
two outputs from the first rule base as an input to each of the other two rule 
bases. Also, if we have an operand rule base with one input and one output 
residing in a particular level as well as two other operand rule bases with 
one input and one output each such that they both reside in the next level, 
we could then form a rule base whose inputs are the inputs to the first and 
the second rule base and whose outputs are outputs from the first and the 
third rule base. Therefore, it is useful to know if the merging and splitting 
manipulations involved are distributive and interchangeable, as discussed in 
Examples 7.3–7.4. 
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Example 7.3 
Vertical and horizontal merging manipulations are both non-distributive 

with respect to each other. Therefore, it is not allowed to expand any 
brackets specifying the order in which these operations are to be applied. In 
particular, if the operand rule base RB1 stands separately from the rule bases 
RB2 and RB3, the combining of RB1 with RB2 and RB3 in a distributive 
context will affect the product rule base, as shown briefly in Figs. 7.5–7.6 
and in more detail by Eqs. (7.27)–(7.28).

*                             +

Fig. 7.5. Non-distributivity of vertical merging with respect to horizontal merging 

If RB1*(2+3) = RB1 * (RB2 + RB3)

and RB(1*2)+(1*3)
                 = (RB1* RB2 ) + (RB1* RB3)

then RB1*(2+3) RB(1*2)+(1*3)

(7.27)

                          + *

Fig. 7.6. Non-distributivity of horizontal merging with respect to vertical merging 

RB1 RB2 + RB3

 RB1 * RB2

 RB1 * RB3

RB1 + RB3

 RB2 * RB3

RB1 + RB2

RB1
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If RB1+(2*3) = RB1 + (RB2 * RB3)

and RB(1+2)*(1+3)      = (RB1+ RB2 )* (RB1+ RB3)

then RB1+(2*3) RB(1+2)*(1+3)

(7.28)

To illustrate the implications in Eq. (7.27), we consider the operand rule 
bases RB1, RB2 and RB3, which are presented by the following Boolean 
matrices and binary relations: 

RB1:     Inputs/Outputs      11     12     21     22 

                                        1                   0       0       1       0
                                        2                   0       1       0       0

(7.29)

RB1: {(1, 21), (2, 12)} (7.30)

RB2:     Inputs/Outputs      1     2 

                                                  1                  0     1
                                                  2                  0     1

(7.31)

   RB2: {(1, 2), (2, 2)} (7.32)

RB3:     Inputs/Outputs      1     2 

                                                  1                  1     0
                                                  2                  1     0

(7.33)

  RB3: {(1, 1), (2, 1)} (7.34)

The product rule base RB1*(2+3) for the combined merging of RB1, RB2 and 
RB3 will be presented by the following Boolean matrix and binary relation: 

RB1*(2+3):     Inputs/Outputs     11     12     21     22 

                                           1                  0       0       1       0
                                           2                  0       0       1       0

(7.35)

RB1*(2+3): {(1, 21), (2, 21)} (7.36)
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In this case, the product rule base RB(1*2)+(1*3) for the combined merging of 
RB1, RB2 and RB3 will not exist due to the dimensional mismatch between 
the rule base RB1 and the other two rule bases RB2 and RB3. In other words, 
the number of outputs for RB1 is different from the number of inputs for RB2

and RB3.
To illustrate the implications in Eq. (7.28), we consider the operand rule 

bases RB1, RB2 and RB3, which are presented by the following Boolean 
matrices and binary relations: 

RB1:     Inputs/Outputs      1     2 

                                                  1                  0     1
                                                  2                  1     0

(7.37)

   RB1: {(1, 2), (2, 1)} (7.38)

RB2:     Inputs/Outputs      1     2 

                                                  1                  1     0
                                                  2                  1     0

(7.39)

   RB2: {(1, 1), (2, 1)} (7.40)

RB3:     Inputs/Outputs      1     2 

                                                  1                  0     1
                                                  2                  0     1

(7.41)

   RB3: {(1, 2), (2, 2)} (7.42)

In this case, the product rule bases RB1+(2*3) and RB(1+2)*(1+3) for the 
combined merging of RB1, RB2 and RB3 will be presented by the following 
different Boolean matrices and binary relations: 

RB1+(2*3):     Inputs/Outputs     11     12     21     22 

                                          11                 0       0       0       1
                                          12                 0       0       0       1
                                          21                 0       1       0       0
                                          22                0       1       0       0               

(7.43)
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RB1+(2*3): {(11, 22), (12, 22), (21, 12), (22, 12)} (7.44) 

RB(1+2)*(1+3):     Inputs/Outputs      11     12     21     22 

                                            11                 0       1       0       0            
                                            12                  0       1       0       0
                                            21                  0       0       0       1
                                            22                  0       0       0       1

(7.45)

RB(1+2)*(1+3): {(11, 12), (12, 12), (21, 22), (22, 22)} (7.46) 

Example 7.4 
Vertical and horizontal merging manipulations are interchangeable and 

therefore it is possible to change accordingly the order of operations on 
operand rule bases in combined merging. In other words, the changing of 
the order of operations on the operand rule bases RB1, RB2, RB3 and RB4 will
not affect the product rule base, as shown briefly in Fig. 7.7 and in more 
detail by Eq. (7.47). 

* =                          +

Fig. 7.7. Interchangeability of vertical and horizontal merging 

    If RB(1+2)*(3+4) = (RB1 + RB2)*(RB3 + RB4)

and RB(1*3)+(2*4) = (RB1 * RB3)+(RB2 * RB4)

then RB(1+2)*(3+4) = RB(1*3)+(2*4)

(7.47)

To illustrate the above implication, we consider the operand rule bases 
RB1, RB2, RB3 and RB4, which are presented by the following Boolean 
matrices and binary relations: 

RB3 + RB4

 RB1 * RB3

 RB2 * RB4

RB1 + RB2
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RB1:     Inputs/Outputs      1     2 

                                                  1                  0     1
                                                  2                  1     0

(7.48)

   RB1: {(1, 2), (2, 1)} (7.49)

RB2:     Inputs/Outputs      1     2 

                                                  1                  1     0
                                                  2                  1     0

(7.50)

    RB2: {(1, 1), (2, 1)} (7.51)

RB3:     Inputs/Outputs      1     2 

                                                  1                  0     1
                                                  2                  0     1

(7.52)

   RB3: {(1, 2), (2, 2)} (7.53)

RB4:     Inputs/Outputs      1     2 

                                                  1                  0     1
                                                  2                  1     0

(7.54)

    RB4: {(1, 2), (2, 1)} (7.55)

Both product rule bases RB(1+2)*(3+4) and RB(1*3)+(2*4) for the combined 
merging of RB1, RB2, RB3 and RB4 will be presented by the following 
Boolean matrix and binary relation: 

RB(1+2)*(3+4) = RB(1*3)+(2*4):     Inputs/Outputs     11     12     21     22 

                                                   11                 0       0       0       1
                                                   12                 0       0       0       1
                                                   21                 0       0       0       1
                                                   22                0       0       0       1      

(7.56)

RB(1+2)*(3+4) = RB(1*3)+(2*4): {(11, 22), (12, 22), (21, 22), (22, 22)} (7.57) 
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7.4  Self Standing Inputs and Outputs 

As already mentioned in Chapter 2, a MRB system may be presented by a 
sparse matrix with empty cells for the missing rule bases. In this context, 
inputs or outputs spanning across at least one but not all layers are referred 
to as ‘self standing’. Such inputs and outputs describe identity mappings, 
which may be presented by IRBs. In this case, the dimension of the 
corresponding identity Boolean matrix and binary relation RBI is equal to 
the number of inputs and outputs in the rule base, i.e. an IRB with two 
inputs and two outputs will be denoted by RBI2.

Alternatively, identity mappings may also be presented by a couple of 
P-T RBs. As already mentioned in Chapter 6, the horizontal merging of 
two P-T RBs yields an IRB.  In this case, the dimension of the 
corresponding permutation Boolean matrix and binary relation RBP is equal 
to the number its inputs and outputs, i.e. a PRB with three inputs and three 
outputs will be denoted by RBP3.

The number of inputs to a MRB system is equal to the sum of the 
number of inputs to each rule base in the first layer, including any self 
standing inputs. Similarly, the number of outputs from a MRB system is 
equal to the sum of the number of outputs from each rule base in the last 
layer, including any self standing outputs. 

Any inputs to a MRB system which are fed directly into a rule base 
residing in a layer after the first one are self standing. In this case, the 
number of layers through which a self standing input passes before being 
fed into a rule base gives the length of this input. This length is always 
greater than or equal to 1 and less than or equal to the number of layers in 
the MRB system minus 1. In this context, Example 7.5 shows how a self 
standing input can be presented by an IRB RBI1 and how an ERB RBE for the 
entire MRB system can be derived. In addition, Example 7.6 shows how an 
ERB RBE can be derived in accordance with the interchangeability property, 
by either vertical-horizontal or horizontal-vertical merging. 

Any outputs from a rule base residing in a layer before the last one in a 
MRB system which are fed directly as outputs from the MRB system are 
self standing. In this case, the number of layers through which a self 
standing output passes after being fed from a rule base gives the length of 
this output. This length is always greater than or equal to 1 and less than or 
equal to the number of layers in the MRB system minus 1. In this context, 
Example 7.7 shows how a self standing output can be presented by an IRB 
RBI1 and how an ERB RBE for the entire MRB system can be derived. In 
addition, Example 7.8 shows how an ERB RBE can be derived in accordance 
with the interchangeability property, by either vertical-horizontal or 
horizontal-vertical merging. 
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Example 7.5
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer        layer 1        layer 2 

                          level 1 RB1x1

1,1 RB2x1

1,2

                          level 2 RBI1

2,1

(7.58)

The output-input interconnections for the above MRB system are given 
by the following matrix: 

level/layer        layer 1          layer 2 

                                level 1 o1

1,1= i1

1,2      o1

1,2

                                level 2 o1

2,1= i2

1,2

(7.59)

Equation (7.58) shows that the MRB system has two inputs and one 
output. It also shows that the rule base in level 1 of layer 1 has one input 
and one output, the IRB in level 2 of layer 1 has one input and one output, 
the rule base in level 1 of layer 2 has two inputs and one output whereas the 
rule base in level 2 of layer 2 is missing. In addition, Eq. (7.59) shows that 
the first output from the rule base in level 1 of layer 1 is the same as the 
first input to the rule base in level 1 of layer 2 whereas the self standing 
input which is also the first output from the IRB in level 2 of layer 1 is the 
same as the second input to the rule base in level 1 of layer 2. 

Although the only purpose of the IRB is to represent a self standing input 
in level 2 of layer 1, this rule base must be counted separately. Therefore, 
the MRB system consists of three rule bases, as shown in Fig. 7.8. 

                                     o1

1,1         i1

1,2                                                                                   o1

1,2

                                                    i2

1,2

                                     o1

2,1

Fig. 7.8. Multiple rule base system with three rule bases and self standing input in 
level 2 of layer 1 

 RB1x1

1,1  RB2x1

1,2

RBI1

2,1
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The rule bases RB1x1

1,1, RBI1

2,1 and RB2x1

1,2 are presented by the following 
Boolean matrices and binary relations: 

RB1x1

1,1 :     Inputs/Outputs      1     2 

                                                     1                  0     1
                                                     2                  1     0

(7.60)

RB1x1

1,1 : {(1, 2), (2, 1)} (7.61)

RBI1

2,1:     Inputs/Outputs     1     2 

                                                    1                 1     0
                                                    2                 0     1

(7.62)

RBI1

2,1: {(1, 1), (2, 2)} (7.63)

RB2x1

1,2:     Inputs/Outputs      1     2 

                                                    11                 0     1
                                                    12                 0     1
                                                    21                 1     0 
                                                    22                 1     0 

(7.64)

RB2x1

1,2: {(11, 2), (12, 2), (21, 1), (22, 1)} (7.65)

The ERB RBE for the MRB system is derived by the formula in Eq. (7.66) 
and  is  presented  by  the  Boolean  matrix  and  the  binary  relation  in

 Eqs. (7.67)–(7.68).

        RBE = (RB1x1

1,1 + RBI1

2,1) * RB2x1

1,2 (7.66) 

RBE:     Inputs/Outputs     1     2 

                                                  11                1     0
                                                  12                1     0
                                                  21                0     1 
                                                  22                0     1 

(7.67)

                                 RBE: {(11, 1), (12, 1), (21, 2), (22, 2)} (7.68) 
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Example 7.6
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer        layer 1        layer 2 

                          level 1 RBI1

1,1 RB1x1

1,2

                          level 2 RB1x1

2,1      RB1x1

2,2

(7.69)

The output-input interconnections for the above MRB system are given 
by the following matrix: 

level/layer        layer 1          layer 2 

                         level 1 o1

1,1= i1

1,2 o1

1,2

                         level 2 o1

2,1= i1

2,2      o1

2,2

(7.70)

Equation (7.69) shows that the MRB system has two inputs and two 
outputs. It also shows that each of the rule bases including the IRB in level 
1 of layer 1 has one input and one output. In addition, Eq. (7.70) shows that 
the self standing input which is also the first output from the IRB in level 1 
of layer 1 is the same as the first input to the rule base in level 1 of layer 2 
whereas the the first output from the rule base in level 2 of layer 1 is the 
same as the first input to the rule base in level 2 of layer 2. 

Although the only purpose of the IRB is to represent a self standing input 
in level 1 of layer 1, this rule base must be counted separately. Therefore, 

                                     o1

1,1         i1

1,2                          o1

1,2

                                     o1

2,1 i2

2,2 o1

2,2

Fig. 7.9. Multiple rule based system with four rule bases and self standing input in 
level 1 of layer 1 

RBI1

1,1 RB1x1

1,2

RB1x1

2,1 RB1x1

2,2

the MRB system consists of four rule bases, as shown in Fig. 7.9. 

                         o1

2,2
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The rule bases RBI1

1,1, RB1x1

2,1, RB1x1

1,2 and RB1x1

2,2 are presented by the 
following Boolean matrices and binary relations: 

RBI1

1,1:    Inputs/Outputs     1     2 

                                                   1                  1     0
                                                   2                  0     1

(7.71)

RBI1

1,1: {(1, 1), (2, 2)} (7.72)

RB1x1

2,1 :     Inputs/Outputs      1     2 

                                                     1                  1     0
                                                     2                  1     0

(7.73)

RB1x1

2,1 : {(1, 1), (2, 1)} (7.74)

RB1x1

1,2 :     Inputs/Outputs      1     2 

                                                     1                  0     1
                                                     2                  1     0

(7.75)

RB1x1

1,2 : {(1, 2), (2, 1)} (7.76)

RB1x1

2,2 :     Inputs/Outputs      1     2 

                                                     1                  0     1
                                                     2                  0     1

(7.77)

RB1x1

2,2 : {(1, 2), (2, 2)} (7.78)

The ERB RBE for the MRB system is derived as either RB(1+2)*(3+4) or
RB(1*3)+(2*4) from Eq. (7.47). By using a superscript notation that is consistent 
with the subscript notation for the above four rule bases, RBE will be 
obtained from Eq. (7.79). 

RBE = RB(1,1+2,1)*(1,2+2,2) = RB(1,1*1,2)+(2,1*2,2)  (7.79) 
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In this case, the ERB RBE for both the vertical-horizontal and the 
horizontal-vertical merging of RBI1

1,1, RB1x1

2,1, RB1x1

1,2 and RB1x1

2,2 will be 
presented by the following Boolean matrix and binary relation:

RBE:     Inputs/Outputs      11     12     21     22 

                                    11                  0       0       0       1
                                    12                  0       0       0       1
                                    21                  0       1       0       0
                                    22                  0       1       0       0

(7.80)

RBE: {(11, 22), (12, 22), (21, 12), (22, 12)} (7.81)

Example 7.7
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer        layer 1        layer 2 

                          level 1 RBI1

1,2

                          level 2 RB1x2

2,1 RB1x1

2,2

(7.82)

The output-input interconnections for the above MRB system are given 
by the following matrix: 

level/layer        layer 1          layer 2 

                                 level 1 o1

1,2

                                 level 2 o1

2,1= i1

1,2       o1

2,2

                                                     o2

2,1= i1

2,2

(7.83)

Equation (7.82) shows that the MRB system has one input and two 
outputs. It also shows that the rule base in level 1 of layer 1 is missing, the 
rule base in level 2 of layer 1 has one input and two outputs, the rule base in 
level 1 of layer 2 is an IRB with one input and one output whereas the rule 

(7.83) shows that the first output from the rule base in level 2 of layer 1
 is self standing as it the same as the first input to the IRB in level 1 of layer 2 
whereas the second output from the rule base in level 2 of layer 1 is the 
same as the input to the rule base in level 2 of layer 2. 

base in  level 2  of layer 2 has  one input and  one output.  In addition, 
Eq. 



170     7 Formal Transformation of Fuzzy Rule Based Systems 

Although the only purpose of the IRB is to represent a self standing 
output in level 1 of layer 2, this rule base must be counted separately. 
Therefore, the MRB system consists of three rule bases, as shown in 
Fig. 7.10. 

                                                     i1

1,2                         o1

1,2

                                     o1

2,1

                                                                                   o1

2,2

                                     o2

2,1         i1

2,2

Fig. 7.10. Multiple rule base system with three rule bases and self standing output 
in level 1 of layer 2 

The rule bases RB1x2

2,1, RBI1

1,2 and RB1x1

2,2 are presented by the following 
Boolean matrices and binary relations: 

RB2x1

1,2:     Inputs/Outputs     11     12     21     22 

                                           1                  0       0       0       1 
                                           2                  1       0       0       0

(7.84)

RB2x1

1,2: {(1, 22), (2, 11)} (7.85)

RBI1

1,2:     Inputs/Outputs      1     2 

                                                    1                  1     0
                                                    2                  0     1

(7.86)

RBI1

1,2: {(1, 1), (2, 2)} (7.87)

RB1x1

2,2 :     Inputs/Outputs      1     2 

                                                     1                  0     1
                                                     2                  1     0

(7.88)

 RB1x1

2,2

RBI1

1,2

 RB1x2

2,1
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RB1x1

2,2 : {(1, 2), (2, 1)} (7.89)

The ERB RBE for the MRB system is derived by the formula in Eq. (7.90) 
and is presented by the Boolean matrix and the binary relation in Eqs. 
(7.91)–(7.92).

  RBE = RB1x2

2,1 * (RBI1

1,2 + RB1x1

2,2)  (7.90) 

RBE:     Inputs/Outputs      11     12     21     22 

                                        1                   0       0       1       0 
                                        2                   0       1       0       0

(7.91)

RBE: {(1, 21), (2, 12)} (7.92)

Example 7.8
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer        layer 1        layer 2 

                          level 1 RB1x1

1,1 RB1x1

1,2

                          level 2 RB1x1

2,1       RBI1

2,2

(7.93)

The output-input interconnections for the above MRB system are given 
by the following matrix: 

level/layer        layer 1          layer 2 

                         level 1 o1

1,1= i1

1,2 o1

1,2

                         level 2 o1

2,1= i1

2,2       o1

2,2

(7.94)

Equation (7.93) shows that the MRB system has two inputs and two 
outputs. It also shows that each of the rule bases including the IRB in level 
2 of layer 2 has one input and one output. In addition, Eq. (7.94) shows that 
the first output from the rule base in level 2 of layer 1 is self standing as it 
is the same as the first input to the IRB in level 2 of layer 2 whereas the 
first output from the rule base in level 1 of layer 1 is the same as the first 
input to the rule base in level 1 of layer 2. 
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Although the only purpose of the IRB is to represent a self standing 
output in level 2 of layer 2, this rule base must be counted separately. 
Therefore, the MRB system consists of four rule bases, as shown in 
Fig. 7.11. 

                                     o1

1,1         i1

1,2                          o1

1,2

                                                                                                                           

                                     o1

2,1 i1

2,2 o1

2,2

1x1

1,1, RB1x1

2,1, RB1x1

1,2 and RBI1

2,2 are presented by the 
following Boolean matrices and binary relations: 

RB1x1

1,1 :     Inputs/Outputs      1     2 

                                                     1                  0     1
                                                     2                  0     1

(7.95)

RB1x1

1,1 : {(1, 2), (2, 2)} (7.96)

RB1x1

2,1 :     Inputs/Outputs      1     2 

                                                     1                  0     1
                                                     2                  1     0

(7.97)

RB1x1

2,1 : {(1, 2), (2, 1)} (7.98)

RB1x1

1,2 :     Inputs/Outputs      1     2 

                                                     1                  1     0
                                                     2                  1     0

(7.99)

RB1x1

1,2 : {(1, 1), (2, 1)} (7.100)

RB1x1

1,1 RB1x1

1,2

RB1x1

2,1 RBI1

2,2                         o1

Fig. 7.11. Multiple rule base system with four rule bases and self standing output 

The rule bases RB

in level 2 of layer 2 

2,2
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RBI1

2,2:     Inputs/Outputs     1     2 

                                                    1                1     0
                                                    2                0     1

(7.101)

RBI1

2,2: {(1, 1), (2, 2)} (7.102)

The ERB RBE for the MRB system is derived again as either RB(1+2)*(3+4) or
RB (1*3)+(2*4)  from  Eq.  (7.47).  In  particular, RBE will  be  obtained  from

So, the ERB RBE for both the vertical-horizontal and the horizontal-
vertical merging of RBI1

1,1, RB1x1

2,1, RB1x1

1,2 and RBI1

2,2 will be presented by the 
following Boolean matrix and binary relation:

RBE:     Inputs/Outputs      11     12     21     22 

                                   11                  0       1       0       0
                                   12                  1       0       0       0
                                   21                  0       1       0       0
                                   22                  1       0       0       0

(7.103)

RBE: {(11, 12), (12, 11), (21, 12), (22, 11)} (7.104)

7.5  Total and Partial Identity Lines 

As shown in the previous section, self standing inputs and outputs in a 
MRB system can be presented by IRBs. In this case, the corresponding 
identity mappings are at either side of the MRB system and spanning across 
one or more successive layers starting with the first layer or ending with the 
last layer.

However, sometimes we may have identity mappings across the whole of 
a MRB system, which are referred to as identity lines. As these lines span 
all the layers of the MRB system, they are called total lines. In this case, 
any linguistic value of an input at the beginning of a total line propagates 
unchanged as an output at the end of the line. The number of layers spanned 
by a total line gives the length of the line and it is always equal to the 
number of layers in the MRB system. 

Similarly, we may have identity mappings somewhere in the middle of a 
MRB system, which are also referred to as identity mapping lines. As the 
inputs of these lines are the same as the outputs from a particular rule base 

Eq. (7.79) using the superscript notation introduced there. 
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and their outputs are the same as the inputs to another rule base, such lines 
are called partial lines. In this case, any linguistic value of an input in the 
beginning of a partial line propagates unchanged as an output at the end of 
the line. The number of layers spanned by a partial line gives the length of 
this line and it is always greater than or equal to 1 and less than or equal to 
the overall number of layers in the MRB system minus 2.

Examples 7.9–7.10 show how a total line of length 2 can be presented by 
a couple of IRBs RBI1 and a couple of P-T RBs RBPT1, respectively. Example 
7.11 shows how a partial line of length 1 can be presented by an IRB RBI1.
Also, all three examples show how an ERB RBE can be derived by either 
vertical-horizontal or horizontal-vertical merging in accordance with the 
interchangeability property.

Example 7.9
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer        layer 1        layer 2 

                         level 1 RBI1

1,1 RBI1

1,2

                         level 2 RB1x1

2,1       RB1x1

2,2

(7.105)

The output-input interconnections for the above MRB system are given 
by the following matrix: 

level/layer        layer 1          layer 2 

                        level 1 o1

1,1= i1

1,2 o1

1,2

                        level 2 o1

2,1= i1

2,2       o1

2,2

(7.106)

Equation (7.105) shows that the MRB system has two inputs and two 
outputs. It also shows that each of the rule bases including the IRB in level 
1 of layers 1 and the IRB in level 1 of layer 2 has one input and one output. 
In addition, Eq. (7.106) shows that the two IRBs in level 1 of layers 1 and 2 
represent a total line whereas the first output from the rule base in level 2 of 
layer 1 is the same as the first input to the rule base in level 2 of layer 2. 

Although the only purpose of the two IRBs is to represent a total line in 
level 1 of layers 1 and 2, these rule bases must be counted separately. 
Therefore, the MRB system consists of four rule bases, as shown in 
Fig. 7.12. 
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                                     o1

1,1         i1

1,2                          o1

1,2

                                                                                                                            

                                     o1

2,1 i1

2,2 o1

2,2

Fig. 7.12. Multiple rule base system with four rule bases and total line in level 1 of 
layers 1 and 2 

The rule bases RBI1

1,1, RB1x1

2,1, RBI1

1,2 and RB1x1

2,2 are presented by the 
following Boolean matrices and binary relations: 

                        RBI1

1,1:     Inputs/Outputs     1     2 

                                                   1                 1     0
                                                   2                 0     1

(7.107)

RBI1

1,1: {(1, 1), (2, 2)} (7.108)

                             RB1x1

2,1 :     Inputs/Outputs     1     2 

                                                        1                 1     0
                                                        2                 1     0

(7.109)

RB1x1

2,1 : {(1, 1), (2, 1)} (7.110)

RBI1

1,2:    Inputs/Outputs     1     2 

                                                   1                 1     0
                                                   2                 0     1

(7.111)

RBI1

1,2: {(1, 1), (2, 2)} (7.112)

RBI1

1,1 RBI1

1,2

RB1x1

2,1 RB1x1

2,2                         o1

2,2
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RB1x1

2,2 :     Inputs/Outputs     1     2 

                                                     1                 0     1
                                                     2                 0     1

(7.113)

RB1x1

2,2 : {(1, 2), (2, 2)} (7.114)

The ERB RBE for the MRB system is derived as either RB(1+2)*(3+4) or
RB (1*3)+(2*4)  from  Eq.  (7.47).  In  particular, RBE will  be  obtained  from

So, the ERB RBE for the vertical-horizontal and the horizontal-vertical 
merging of RBI1

1,1, RB1x1

2,1, RBI1

1,2 and RB1x1

2,2 will be presented by the 
following Boolean matrix and binary relation:

RBE:     Inputs/Outputs     11     12     21     22 

                                    11                0       1       0       0
                                    12                0       1       0       0
                                    21                0       0       0       1
                                    22                0       0       0       1

(7.115)

                                 RBE: {(11, 12), (12, 12), (21, 22), (22, 22)}  (7.116) 

Example 7.10 
A MRB system with 2 levels and 2 layers is presented by the following

matrix:

level/layer        layer 1        layer 2 

                         level 1 RBPT1

1,1 RBPT1

1,2

                         level 2 RB1x1

2,1      RB1x1

2,2

(7.117)

The output-input interconnections for the above MRB system are given 
by the following matrix: 

level/layer        layer 1          layer 2 

                        level 1 o1

1,1= i1

1,2 o1

1,2

                        level 2 o1

2,1= i1

2,2      o1

2,2

(7.118)

Equation (7.117) shows that the MRB system has two inputs and two 
outputs. It also shows that each of the rule bases including the P-T RB in 

Eq. (7.79) using the superscript notation introduced there. 
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level 1 of layer 1 and the P-T RB in level 1 of layer 2 has one input and 
one output. In addition, Eq. (7.118) shows that the two P-T RBs in level 
1 of layers 1 and 2 represent a total line whereas the first output from the 
rule base in level 2 of layer 1 is the same as the first input to the rule base in 
level 2 of layer 2. 

Although the only purpose of the two P-T RBs is to represent a total 
line in level 1 of layers 1 and 2, these rule bases must be counted 
separately. Therefore, the MRB system consists of four rule bases, as 

                                     o1

1,1         i1

1,2                          o1

1,2

                                                                                                                               

                                     o1

2,1 i1

2,2 o1

2,2

Fig. 7.13. Multiple rule base system with four rule bases and total line in level 1 of 
layers 1 and 2 

The rule bases RBPT1

1,1, RB1x1

2,1, RBPT1

1,2, and RB1x1

2,2 are presented by the 
following Boolean matrices and binary relations: 

RBPT1

1,1:     Inputs/Outputs      1     2     3 

                                                 1                  0     0     1
                                                 2                  1     0     0 
                                                 3                  0     1     0 

(7.119)

RBPT1

1,1: {(1, 3), (2, 1), (3, 2)} (7.120)

RB1x1

2,1:     Inputs/Outputs      1     2     3 

                                                 1                 1     0     0
                                                 2                 1     0     0 
                                                 3                 0     1     0 

(7.121)

RB1x1

2,1: {(1, 1), (2, 1), (3, 2)} (7.122)

 RBPT1

1,1 RBPT1

1,2

RB1x1

2,1 RB1x1

2,2                         o1

shown in Fig. 7.13. 

2,2



178     7 Formal Transformation of Fuzzy Rule Based Systems 

RBPT1

1,2:     Inputs/Outputs      1     2     3 

                                                 1                  0     1     0 
                                                 2                  0     0     1 
                                                 3                  1     0     0 

(7.123)

RBPT1

1,2: {(1, 2), (2, 3), (3, 1)} (7.124)

RB1x1

2,2:     Inputs/Outputs      1     2     3 

                                                 1                  0     1     0
                                                 2                  0     0     1 
                                                 3                  0     0     1 

(7.125)

RB1x1

2,2: {(1, 2), (2, 3), (3, 3)} (7.126)

The ERB RBE for the MRB system is derived as either RB(1+2)*(3+4) or
RB (1*3)+(2*4)  from  Eq.  (7.47).  In  particular, RBE will be obtained from

So, the ERB RBE for both vertical-horizontal and the horizontal-vertical 
merging of RBPT1

1,1, RB1x1

2,1, RBPT1

1,2 and RB1x1

2,2 will be presented by the 
following Boolean matrix and binary relation:

RBE:     Inputs/Outputs     11     12     13     21     22     23     31     32     33 

                  11                 0       1       0       0       0       0       0       0       0
                  12                 0       1       0       0       0       0       0       0       0
                  13                 0       0       1       0       0       0       0       0       0
                  21                 0       0       0       0       1       0       0       0       0
                  22                 0       0       0       0       1       0       0       0       0 
                  23                 0       0       0       0       0       1       0       0       0
                  31                 0       0       0       0       0       0       0       1       0
                  32                 0       0       0       0       0       0       0       1       0
                  33                 0       0       0       0       0       0       0       0      1   

(7.127)

RBE: {(11, 12), (12, 12), (13, 13), 

                                     (21, 22), (22, 22), (23, 23),

                                     (31, 32), (32, 32), (33, 33)} 

(7.128)

Eq. (7.79) using the superscript notation introduced there. 
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Example 7.11
A MRB system with 2 levels and 3 layers is presented by the following

matrix:

level/layer        layer 1        layer 2        layer 3 

                level 1 RB1x1

1,1 RB1x1

1,2 RB1x1

1,3

                level 2 RB1x1

2,1   RBI1

2,2      RB1x1

2,3

(7.129)

The output-input interconnections for the above MRB system are given 
by the following matrix: 

level/layer        layer 1          layer 2          layer 3 

                             level 1 o1

1,1= i1

1,2 o1

1,2= i1

1,3 o1

1,3

                             level 2 o1

2,1= i1

2,2      o1

2,2= i1

2,3      o1

2,3

(7.130)

Equation (7.129) shows that the MRB system has two inputs and two 
outputs. It also shows that each of the rule bases including the IRB in level 
2 of layer 2 has one input and one output. In addition, Eq. (7.130) shows 
that the IRB in level 1 of layer 2 represents a partial line as the input at its 
beginning is the same as the output from the rule base in level 2 of layer 1 
while the output at its end is the same as the input to the rule base in level 2 
of layer 3. Also, the first output from the rule base in level 1 of layer 1 is 
the same as the first input to the rule base in level 1 of layer 2 and the first 
output from the rule base in level 1 of layer 2 is the same as the first input 
to the rule base in level 1 of layer 3. 

Although the only purpose of the IRB is to represent a partial line in 
level 2 of layer 2, this rule base must be counted separately. Therefore, the 
MRB system consists of six rule bases, as shown in Fig. 7.13. 

Fig. 7.14. Multiple rule base system with six rule bases and partial line in level 2 of 
layer 2 

o1

1,1     i1

1,2 o1

1,2 i1

1,3 o1

1,3

o1

2,1 i1

2,2 o1

2,2 i1

2,3 o1

2,3

RB1x1

1,1 RB1x1

1,2

RB1x1

2,1 RBI1

2,2

RB1x1

1,3

RB1x1

2,3
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The rule bases RB1x1

1,1, RB1x1

2,1, RB1x1

1,2, RBI1

2,2, RB1x1

1,3 and RB1x1

2,3 are
presented by the following Boolean matrices and binary relations: 

RB1x1

1,1 :     Inputs/Outputs     1     2 

                                                     1                1     0
                                                     2                1     0

(7.131)

RB1x1

1,1 : {(1, 1), (2, 1)} (7.132)

RB1x1

2,1 :     Inputs/Outputs     1     2 

                                                     1                0     1
                                                     2                1     0

(7.133)

RB1x1

2,1 : {(1, 2), (2, 1)} (7.134)

RB1x1

1,2 :     Inputs/Outputs     1     2 

                                                     1                 0     1
                                                     2                 1     0

(7.135)

RB1x1

1,2 : {(1, 2), (2, 1)} (7.136)

RBI1

2,2:     Inputs/Outputs     1     2 

                                                    1                 1     0
                                                    2                 0     1

(7.137)

RBI1

2,2: {(1, 1), (2, 2)} (7.138)

RB1x1

1,3 :     Inputs/Outputs     1     2 

                                                     1                 0     1
                                                     2                 0     1

(7.139)

RB1x1

1,3 : {(1, 2), (2, 2)} (7.140)

RB1x1

2,3 :     Inputs/Outputs     1     2 

                                                    1                 0     1
                                                    2                 1     0

(7.141)
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RB1x1

2,3 : {(1, 2), (2, 1)} (7.142)

The ERB RBE for the MRB system is derived as either RB(1+2)*(3+4)*(5+6) or
RB(1*3*5)+(2*4*6)

E

So, the ERB RBE for the vertical-horizontal and the horizontal-vertical 
merging of RB1x1

1,1, RB1x1

2,1, RB1x1

1,2, RBI1

2,2, RB1x1

1,3 and RB1x1

2,3 will be presented 
by the following Boolean matrix and binary relation:

E  11     12     21     22 

                                    11                 0       0       1       0
                                    12                 0       0       0       1
                                    21                 0       0       1       0
                                    22                 0       0       0       1

(7.143)

RBE: {(11, 21), (12, 22), (21, 21), (22, 22)} (7.144)

7.6  Comparative Analysis of Formal Transformation Techniques 

The basic operations for formal manipulation of fuzzy rule bases introduced 
in Sects. 7.2–7.5 provide a powerful tool for analysis and synthesis of fuzzy 
systems. In particular, the repetitive merging manipulations and the 
associated combined merging manipulations can be used for simplifying 
complex MRB systems by representing them with equivalent SRB systems. 
In this context, the associative and interchangeable features of merging 
manipulations make the underlying formal transformation process quite 
flexible. In addition, the self standing inputs, self standing outputs, total 
identity lines and partial identity lines are effective means of converting 
MRB systems from an arbitrarily complex form into a simpler canonical 
form, as shown further in Chapter 8. In this case, the ability of rule bases to 
represent the above topological peculiarities facilitates significantly the 
associated formal transformation process. 

The repetitive and combined merging manipulations affect actively 
levels and layers within a MRB system as part of the design process, i.e. 
during synthesis, whereas the self standing inputs, self standing outputs, 
total identity lines and partial identity lines affect passively only levels in 
this system as part of the study process, i.e. during analysis. Also, the result 
in all cases above is guaranteed whereby both merging manipulations as 
well as inputs, outputs, total and partial lines lead to unique solutions. The 

by extending Eq. (7.47) for a rule base with three layers. In
 particular, RB will be obtained from Eq. (7.79) using the superscript nota- 

RB :     Inputs/Outputs

tion introduced there. 
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only requirement is that repetitive merging is applied in the context of 
associativity whereas combined merging is applied in the context in 
interchangeability.

The considerations presented above on formal transformation techniques 
for fuzzy rule bases provide essential information about the main 
characteristics of these techniques. These characteristics are summarised in 
Table 7.1. 

Table 7.1. Characteristics of formal transformation techniques for fuzzy rule bases 

Technique/
Characteristic

Task Impact Component Result Solution 

Repetitive merging synthesis active level/layer guaranteed unique 
Combined merging synthesis active level/layer guaranteed unique 
Self standing inputs analysis passive level guaranteed unique 
Self standing outputs analysis passive guaranteed unique 
Total identity lines analysis passive guaranteed unique 
Partial identity lines analysis passive level guaranteed unique 

The formal transformation techniques introduced in this chapter are 
applicable to a wide range of MRB systems. These techniques can be 
applied to Mamdami, Sugeno and Tsukamoto systems, most CON and DIS 
systems, MO and SO systems, as well as FF and FB systems.

Examples 7.1–7.11 describe implicitly a fuzzy system of Mamdami or 
Tsukamoto type. In order to apply the associated rule base manipulation 
algorithms to Sugeno systems, the crisp outputs from all rule bases residing 
in all layers from the first to the last but one have to fuzzified, i.e. converted 
into linguistic values. Obviously, the outputs from the rule bases in the last 
layer can be kept with their crisp values. 

Examples 7.1–7.11 can be extended easily in accordance with the 
considerations in Sect.4.6, if we would like them to describe explicitly 
Mamdami, Sugeno and Tsukamoto systems. However, this has not been 
done in this chapter in order to simplify the notations and to put the 
emphasis on the transformation rather than the presentation process, which 
was dealt with in the Chapter 4. 

As far as CON and DIS systems are concerned, the formal manipulation 
techniques are directly applicable to most of them. In this case, almost all 
rule bases in the MRB system must be of the same CADR or CACR type, 
i.e. with CON antecedents and either DIS or CON rules. This is so because 
when the antecedents in a particular rule base are of DIS type, they can not 
be merged horizontally with the consequents in another rule base on the left 
of it due to the CON type of consequents by definition. The only exception 

level

7.7  Application Range of Formal Transformation Techniques 

lavel
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in this case can be made for the rule bases in the first layer of a MRB 
system whose antecedents can be of any type because they do not take part 
in any horizontal merging manipulations. 

The formal transformation techniques presented in this chapter facilitate 
the complexity management in fuzzy systems. These techniques allow the 
compressed information about the fuzzy rule bases in a MRB system in the 
form of Boolean matrices or binary relations to be transformed 
appropriately for the purpose of analysis and synthesis of fuzzy systems.

However, the formal transformation techniques demonstrated so far deal 
with MRB systems, which contain only FF rule bases. In order to show how 
these techniques can be used for MRB systems containing also FB rule 
bases, a detailed study is presented in the next chapter. 



8 Formal Transformation of Feedback Rule Bases 

8.1  Preliminaries on Feedback Rule Bases 

As already mentioned in Sect. 2.4, the information flow in a SRB system is 
usually in a forward direction, i.e. from the inputs to the outputs of the rule 
base, but sometimes there may also be information flow in a backward 
direction, i.e. from some outputs to some inputs. This FB may be as simple 
as an identity mapping line whereby an output is fed back unchanged 
directly into an input. In other cases, the FB may be of a more complex 
nature whereby the output passes through a feedback rule base (FRB) that 
changes it before it is fed into the corresponding input. 

As discussed in Sect. 2.5, some of the information flow in a MRB system 
may be in a backward direction, i.e. from an output of a rule base residing 
in a particular layer to an input of the same rule base or another rule base 
residing in the same or a preceding layer. In analogy with the SRB system 
case above, this FB could be either simple or complex, i.e. the output is 
either unchanged or changed before being fed into the corresponding input. 

Several types of FB interconnections are considered further in this 
chapter and illustrated by examples. Most of these examples are about 
MRB systems in which the FB is more complex than in SRB systems. In 
these cases, the ERB of the MRB system is derived by transforming the FB 
interconnections into FF interconnections, wherever possible, and then 
applying the techniques introduced in Chapter 7, or by transforming all 
complex feedback interconnections into simple feedback interconnections 
and then checking the ERB accordingly.

8.2  Transforsmation of Rule Bases with Simple Feedback 

In a fuzzy rule based system with simple feedback, the linguistic value of 
the corresponding output in each rule is identical with the linguistic value 
of the associated input in the same rule. In this case, the rule base is 
constrained by this identity type of FB and therefore it is necessary to check 
if the constraints are met. A general case with simple FB is presented in 
Fig. 8.1. 

Alexander
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Fig.  8.1. Simple feedback 

The notion of simple FB is illustrated further by six basic examples with 
SRB systems. It is assumed that each input and output in these examples 
can take three linguistic values, e.g. small, medium and big. As already 
shown in Chapter 3, these linguistic values can be coded by the positive 
integers 1, 2 and 3, respectively. In particular, Example 8.1 shows how a 
1×1 rule base can be presented by a simple FB pattern, Examples 8.2–8.3 
refer to two diagonal patterns of simple FB in a 2×1 and a 1×2 rule base, 
respectively, whereas Examples 8.4–8.6 deal with three patterns of simple 
FB in a 2×2 rule base.

In all six examples, the question marks (?) in the Boolean matrices 
represent elements, which may be but are not necessarily 1’s. Similarly, the 
subscript question marks (?) of the associated pairs in the corresponding 
binary relations represent only possible but not necessarily existing 
maplets. In the case when all question marks in a Boolean matrix represent 
1’s and all associated subscript question marks in the corresponding binary 
relation represent existing maplets, the underlying rule base is both 
complete and exhaustive. Otherwise, it is either incomplete or non-
exhaustive.

Example 8.1
This example illustrates a simple FB pattern for a 1×1 rule base. The 

rule base RB1x1 has one input (i1) and one output (o1) whereby o1 is fed back 
unchanged into i1, i.e. for each rule the linguistic value of o1 is the same as 
the linguistic value of i1. The Boolean matrix and the binary relation for this 
rule base must reflect this FB constraint, as shown by Eqs. (8.1)–(8.2). 

RB1x1: i1 /o1      1     2     3 

                                                 1         ?     0     0
                                                 2         0     ?     0 
                                                 3         0     0     ? 

(8.1)

RB1x1: {(1, 1)?, (2, 2)?, (3, 3)?} (8.2) 
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Example 8.2
This example illustrates a simple FB pattern for a 2×1 rule base. The 

rule  base RB2x1 1 2 1 1

2 1 is the 
same as the linguistic value of i2. The block Boolean matrix and the binary 
relation for this rule base must reflect this FB constraint, as shown by 
Eqs. (8.3)–(8.4). 

RB2x1: i1 i2 / o1     1     2     3 

                                                   11        ?     0     0
                                                   12        0     ?     0 
                                                   13        0     0     ? 

                                                   21        ?     0     0
                                                   22        0     ?     0 
                                                   23        0     0     ? 

                                                   31        ?     0     0
                                                   32        0     ?     0 
                                                   33        0     0     ? 

(8.3)

RB2x1: {(11, 1)?, (12, 2)?, (13, 3)?,

                                          (21, 1)?, (22, 2)?, (23, 3)?,

                                          (31, 1)?, (32, 2)?, (33, 3)?}

(8.4)

Example 8.3
This example illustrates a simple FB pattern for a 1×2 rule base. The 

rule base RB1x2 has one input (i1) and two outputs (o1 and o2) whereby o2 is
fed back unchanged into i1, i.e. for each rule, the linguistic value of o2 is the 
same as the linguistic value of i1. The block Boolean matrix and the binary 
relation for this rule base must reflect this FB constraint, as shown by 
Eqs. (8.5)–(8.6). 

RB1x2: i1 / o1 o2      11     12     13          21     22     23          31     32     33 

            1               ?       0       0            ?       0       0            ?       0       0 
            2               0       ?       0            0       ?       0            0       ?       0 
            3               0       0       ?            0       0       ?            0       0       ?

(8.5)

RB1x2: {(1, 11)?, (2, 12)?, (3, 13)?,

                                               (1, 21)?, (2, 22)?, (3, 23)?,

                                               (1, 31)?, (2, 32)?, (3, 33)?}

(8.6)

has  two inputs (i and i ) and one output (o ) whereby o is 
fed back unchanged into i , i. e. for each rule  the  linguistic value of o
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Example 8.4
This example illustrates a simple FB pattern for a 2×2 rule base. The 

rule base RB2x2 has two inputs (i1 and i2) and two outputs (o1 and o2) whereby 
o1 is fed back unchanged into i2, i.e. for each rule, the linguistic value of o1 is
the same as the linguistic value of i2. The block Boolean matrix and the 
binary relation for this rule base must reflect this FB constraint, as shown 
by Eqs. (8.7)–(8.8). 

RB2x2: i1 i2 / o1 o2      11     12     13          21     22     23          31     32     33 

               11             ?       ?       ?             0       0       0            0       0       0 
               12             0       0       0             ?       ?       ?            0       0       0 
               13             0       0       0             0       0       0            ?       ?       ? 

               21             ?       ?       ?             0       0       0            0       0       0 
               22             0       0       0             ?       ?       ?            0       0       0 
               23             0       0       0             0       0       0            ?       ?       ?

               31             ?       ?       ?             0       0       0            0       0       0 
               32             0       0       0             ?       ?       ?            0       0       0 
               33             0       0       0             0       0       0            ?       ?       ?

(8.7)

RB2x2: {(11, 11)?, (11, 12)?, (11, 13)?,

                                       (12, 21)?, (12, 22)?, (12, 23)?,

                                       (13, 31)?, (13, 32)?, (13, 33)?,

                                       (21, 11)?, (21, 12)?, (21, 13)?,

                                       (22, 21)?, (22, 22)?, (22, 23)?,

                                   (23, 31)?, (23, 32)?, (23, 33)?,

                                       (31, 11)?, (31, 12)?, (31, 13)?,

                                       (32, 21)?, (32, 22)?, (32, 23)?,

                                   (33, 31)?, (33, 32)?, (33, 33)?}

(8.8)

Example 8.5
This example illustrates a simple FB pattern for a 2×2 rule base. The 

rule base RB2x2 has two inputs (i1 and i2) and two outputs (o1 and o2) whereby 
o2 is fed back unchanged into i1, i.e. for each rule, the linguistic value of o2 is
the same as the linguistic value of i1. The block Boolean matrix and the 
binary relation for this rule base must reflect this FB constraint, as shown 
by Eqs. (8.9)–(8.10). 
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RB2x2: i1 i2 / o1 o2      11     12     13          21     22     23          31     32     33 

              11              ?       0       0            ?       0       0            ?       0       0 
              12              ?       0       0            ?       0       0            ?       0       0 
              13              ?       0       0            ?       0       0            ?       0       0 

              21              0       ?       0            0       ?       0            0       ?       0 
              22              0       ?       0            0       ?       0            0       ?       0 
              23              0       ?       0            0       ?       0            0       ?       0

              31              0       0       ?            0       0       ?            0       0       ? 
              32              0       0       ?            0       0       ?            0       0       ? 
              33              0       0       ?            0       0       ?            0       0       ?

(8.9)

RB2x2: {(11, 11)?, (12, 11)?, (13, 11)?,

                                           (11, 21)?, (12, 21)?, (13, 21)?,

                                           (11, 31)?, (12, 31)?, (13, 31)?,

                                           (21, 12)?, (22, 12)?, (23, 12)?,

                                           (21, 22)?, (22, 22)?, (23, 22)?,

                                      (21, 32)?, (22, 32)?, (23, 32)?,

                                           (31, 13)?, (32, 13)?, (33, 13)?,

                                           (31, 23)?, (32, 23)?, (33, 23)?,

                                      (31, 33)?, (32, 33)?, (33, 33)?}

(8.10)

Example 8.6
This example illustrates a simple FB pattern for a 2×2 rule base. The 

rule base RB2x2 has two inputs (i1 and i2) and two outputs (o1 and o2) whereby 
o1 is fed back unchanged into i2 and o2 is fed back unchanged into i1, i.e. for 
each rule, the linguistic value of o1 is the same as the linguistic value of i2

and the linguistic value of o2 is the same as the linguistic value of i1. The 
block Boolean matrix and the binary relation for this rule base must reflect 
this FB constraint, as shown by Eqs. (8.11)–(8.12). 

RB2x2: i1 i2 / o1 o2     11     12     13          21     22     23          31     32     33 

              11             ?       0       0            0       0       0            0       0       0 
              12             0       0       0            ?       0       0            0       0       0 
              13             0       0       0            0       0       0            ?       0       0 

              21             0       ?       0            0       0       0            0       0       0 
              22             0       0       0            0       ?       0            0       0       0 
              23             0       0       0            0       0       0            0       ?       0

              31             0       0       ?            0       0       0            0       0       0 
              32             0       0       0            0       0       ?            0       0       0 
              33             0       0       0            0       0       0            0       0       ?

(8.11)
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RB2x2: {(11, 11)?, (12, 21)?, (13, 31)?,

                                           (21, 12)?, (22, 22)?, (23, 32)?,

                                           (31, 13)?, (32, 23)?, (33, 33)?}

(8.12)

8.3  Transformation of Rule Bases with Local Feedback 

Local feedback is the most basic type of complex feedback. A fuzzy rule 
based system with local FB is constrained because the linguistic value of 
the corresponding output in each rule is mapped by a FB function onto a 
linguistic value of the associated input in the same rule. However, these two 
linguistic values are not supposed to be the same as in the case of simple 
FB because the FB function is usually a non-identity function. In the private 
case of an identity FB function, the local FB is reduced to the simple FB 
discussed in the previous section. In the general case of local FB, it is 
necessary to check that the associated rule base satisfies the constraints 
imposed by this FB. This general case is presented in Fig. 8.2.

Fig.  8.2. Local feedback 

The notion of local FB is illustrated further by six basic examples with 
SRB systems. These examples are similar to the ones from the previous 
section whereby the only difference here is the non-identity type of FB. In 
particular, Example 8.7 shows how local FB can be presented in a 1×1 
rule base, Examples 8.8–8.9 refer to two types of local FB in a 2×1 and a 
1×2 rule base, respectively, whereas Examples 8.10–8.12 deal with three 
types of local FB in a 2×2 rule base.

The presence of a non-identity FB function in these examples is not 
sufficient to classify the corresponding rule bases as MRB systems. 
Although such a function has an underlying FRB, there must be at least two 
rule bases interconnected in a FF manner in order to have a MRB system. 
In this context, the procedure described in the examples below starts with a  

FRB
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SRB system which is transformed into a MRB system by moving the FB 
function from the FB loop to a newly introduced FF path and representing 
this function as a rule base. Once the FB loop has been removed, the MRB 
system is transformed into an equivalent SRB system by vertical and 
horizontal merging manipulations.

For consistency, the notation used further in this section and in the whole 
current chapter is the same for both SRB and MRB systems, i.e. with an 
explicit presentation of each level and layer. In order to trace all FB and FF 
interconnections during the formal transformation procedure, the matrices 
used in the examples contain not only references to all individual rule bases 
but also to all inputs and outputs for each rule base as well as to all output-
input FB functions available. 

Example 8.7 
A 1×1 rule base with local FB is presented by the followingmatrix:

level/layer        layer 1 

                                       level 1 RB, i1, o1

(8.13)

The output-input interconnections for this rule base are given by the 
matrix:

level/layer        layer 1 

                                       level 1 F(o1) = i1

(8.14)

Equation (8.13) shows that the rule base RB has one input (i1) and one 
output (o1). In addition, Eq. (8.14) shows that the output from the rule base 
o1 is mapped by the FB function F onto the input to the rule base i1.

By introducing a second layer with a rule base RBF that replaces the FB 
function F, the initial SRB system with complex FB is transformed into an 
equivalent MRB system with simple FB that embraces the two rule bases in 
sequence RB and RBF.

The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1        layer 2 

                             level 1 RB, i1, o1 RBF, iF, oF

(8.15)

The output-input interconnections for this MRB system are given by the 
matrix:
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level/layer        layer 1        layer 2 

                             level 1 o1 = iF oF = i1

(8.16)

The transformation of the SRB system into an equivalent MRB system 
has led to the appearance of the rule base RBF in the FF part of the MRB 
system as well as the appearance of two new interconnection variables iF

and oF. In this context, Eq. (8.15) shows that the MRB system has one input 
(i1) and one output (oF). In addition, Eq. (8.16) shows that the output o1 from
RB is the same as the input iF to RBF whereas the output oF from RBF is  the 
same as the input i1 to RB.

The MRB system can be further transformed into an equivalent SRB 
system with a rule base RBE which is derived from Eq. (8.17). 

  RBE = RB* RBF  (8.17) 

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RBE, i1, oF

(8.18)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 oF = i1

(8.19)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby the linguistic values of the output oF are fed back unchanged into 
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB1x1 from Example 8.1, as 
specified by Eqs. (8.1)–(8.2). 

Example 8.8 
A 2×1 rule base with localFB is presented by the followingmatrix:

level/layer        layer 1 

                                       level 1 RB, i1, i2, o1

(8.20)

The output-input interconnections for this rule base are given by the 
matrix:
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level/layer        layer 1 

                                       level 1 F(o1) = i2

(8.21)

Equation (8.20) shows that the rule base RB has two inputs (i1 and i2) and
one output (o1). In addition, Eq. (8.21) shows that the output from the rule 
base o1 is mapped by the FB function F onto the input to the rule base i2.

By introducing a second layer with a rule base RBF that replaces the FB 
function F, the initial SRB system with complex FB is transformed into an 
equivalent MRB system with simple FB that embraces the two rule bases in 
sequence RB and RBF.

The MRB system is presented by the following matrix: 

level/layer        layer 1            layer 2 

                             level 1 RB, i1, i2, o1 RBF, iF, oF

(8.22)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2 

                              level 1 o1 = iF oF = i2

(8.23)

The transformation of the SRB system into an equivalent MRB system 
has led to the appearance of RBF in the FF part of the MRB system as well 
as the appearance of the two new interconnection variables iF and oF. In this 
context, Eq. (8.22) shows that the MRB system has two inputs (i1 and i2) and
one output (oF). In addition, Eq. (8.23) shows that the output o1 from RB is
the same as the input iF to RBF whereas the output oF from RBF is  the same 
as the input i2 to RB.

The MRB system can be further transformed into an equivalent SRB 
system with a rule base RBE which is derived from Eq. (8.24).

  RBE = RB* RBF  (8.24) 

The SRB system is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RBE, i1, i2, oF

(8.25)

The output-input interconnections for this SRB system are given by the 
matrix:
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level/layer        layer 1 

                                       level 1 oF = i2

(8.26)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby the linguistic values of the output oF are fed back unchanged into 
the input i2 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB2x1 from Example 8.2, as 
specified by Eqs. (8.3)–(8.4). 

Example 8.9 
A 1 2 rule base with local FB is presented by the following matrix:

level/layer        layer 1 

                                       level 1 RB, i1, o1, o2

(8.27)

The output-input interconnections for this rule base are given by the 
matrix:

level/layer        layer 1 

                                       level 1 F(o2) = i1

(8.28)

Equation (8.27) shows that the rule base RB has one input (i1) and two 
outputs (o1 and o2). In addition, Eq. (8.28) shows that the output from the 
rule base o2 is mapped by the FB  function F onto the input to the rule 
base i1.

By introducing a second layer with two levels such that the first level is 
occupied by an IRB RBI mapping the output o1 and the second level is 
occupied by a rule base RBF replacing the FB function F, the initial SRB 
system with complex FB is transformed into an equivalent MRB system 
with simple FB and three rule bases (RB, RBI and RBF). In this case, RBI

and RBF are standing in parallel in layer 2 whereas RB and RBF are standing 
in  sequence in level 2. 

The MRB system is presented by the following matrix: 

level/layer        layer 1                layer 2 

                         level 1 RBI, iI, oI

level 2 RB, i1, o1, o2 RBF, iF, oF

(8.29)

The output-input interconnections for this MRB system are given by the 
matrix:

×
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level/layer        layer 1        layer 2 

                             level 1 oI

level 2 o1 = iI oF = i1

      o2 = iF

(8.30)

The transformation of the SRB system into an equivalent MRB system 
has led to the appearance of RBI and RBF in the FF part of the MRB system 
as well as the appearance the four new interconnection variables iI, oI, iF and
oF. In this context, Eq. (8.29) shows that the MRB system has one input (i1)
and two outputs (oI and oF). In addition, Eq. (8.30) shows that the output o1

from RB is the same as the input iI to RBI and the output o2 from RB is the 
same as the input iF to RBF, whereas the output oF from RBF is  the same as 
the input i1 to RB.

The MRB system can be further transformed into an equivalent SRB 
system with a rule base RBE which is derived from Eq. (8.31).

  RBE = RB * (RBI + RBF) (8.31) 

The SRB system is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RBE, i1, o1, oF

(8.32)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 oI

                          oF = i1

(8.33)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby the linguistic values of the output oF are fed back unchanged into 
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB1x2 from Example 8.3, as 
specified by Eqs. (8.5)–(8.6). 

Example 8.10 
A 2×2 rule base with local FB is presented by the following matrix:

.
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level/layer        layer 1 

                                       level 1 RB, i1, i2, o1, o2

(8.34)

The output-input interconnections for this rule base are given by the 
matrix:

level/layer        layer 1 

                                       level 1 F(o1) = i2

(8.35)

Equation (8.34) shows that the rule base RB has two inputs (i1 and i2) and
two outputs (o1 and o2). In addition, Eq. (8.35) shows that the output from 
the rule base o1 is mapped by the FB  function F onto the input to the rule 
base i2.

By introducing a second layer with two levels such that the first level is 
occupied by a rule base RBF replacing the FB function F and the second 
level is occupied by an IRB RBI mapping the output o2, the initial SRB 
system with complex FB is transformed into an equivalent MRB system 
with simple FB and three rule bases (RB, RBF  and RBI). In this case, RBF

and RBI are standing in parallel in layer 2 whereas RB and RBF are standing 
in sequence in level 1. 

The MRB system is presented by the following matrix: 

level/layer        layer 1                  layer 2 

                        level 1 RB, i1, i2, o1, o2 RBF, iF, oF

level 2 RBI, iI, oI

(8.36)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2 

                             level 1 o1 = iF oF = i2

      o2 = iI

level 2 oI

(8.37)

The transformation of the SRB system into an equivalent MRB system 
has led to the appearance of RBF and RBI in the FF part of the MRB system 
as well as the appearance the four new interconnection variables iF , oF, iI and
oI . In  this  context,  Eq. (8.36) shows that the  MRB system has two inputs

 (i1
and i2) and two outputs (oF and oI). In addition,  Eq. (8.37) shows that the 

output o1 from RB is the same as the input iF to RBF and the output o2 from



8.3  Transformation of Rule Bases with Local Feedback     197

RB is the same as the input iI to RBI, whereas the output oF from RBF is  the 
same as the input i2 to RB.

The MRB system can be further transformed into an equivalent SRB 
system with a rule base RBE which is derived from Eq. (8.38).

  RBE = RB * (RBF + RBI) (8.38) 

The SRB system is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RBE, i1, i2, oF, oI

(8.39)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 oF = i2

                   oI

(8.40)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby the linguistic values of the output oF are fed back unchanged into 
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB2x2 from Example 8.4, as 
specified by Eqs. (8.7)–(8.8). 

Example 8.11 
A 2 2 rule base with local FB is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RB, i1, i2, o1, o2

(8.41)

The output-input interconnections for this rule base are given by the 
matrix:

level/layer        layer 1 

                                       level 1 F(o2) = i1

(8.42)

Equation (8.41) shows that the rule base RB has two inputs (i1 and i2) and
two outputs (o1 and o2). In addition, Eq. (8.42) shows that the output from 

×
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the rule base o2 is mapped by the FB  function F onto the input to the rule 
base i1.

By introducing a second layer with two levels such that the first level is 
occupied by an IRB RBI mapping the output o1 and the second level is 
occupied by a rule base RBF replacing the FB function F, the initial SRB 
system with complex FB is transformed into an equivalent MRB system 
with simple FB and three rule bases (RB, RBI and RBF). In this case, RBI

and RBF are standing in parallel in layer 2 whereas RB and RBF are standing 
in  sequence in level 2. 

The MRB system is presented by the following matrix: 

level/layer        layer 1                    layer 2 

                       level 1 RBI, iI, oI

level 2 RB, i1, i2, o1, o2 RBF, iF, oF

(8.43)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2 

                             level 1 oI

level 2 o1 = iI oF = i1

       o2 = iF

(8.44)

The transformation of the SRB system into an equivalent MRB system 
has led to the appearance of RBI and RBF in the FF part of the MRB system 
as well as the appearance the four new interconnection variables iI, oI, iF and
oF. In this context, Eq. (8.43) shows that the MRB system has two inputs

 (i1
and i2) and two outputs (oI and oF). In addition, Eq. (8.44) shows that the 

output o1 from RB is the same as the input iI to RBI and the output o2 from RB
is the same as the input iF to RBF, whereas the output oF from RBF is  the 
same as the input i1 to RB.

The MRB system can be further transformed into an equivalent SRB 
system with a rule base RBE which is derived from Eq. (8.45).

  RBE = RB * (RBI + RBF) (8.45) 

The SRB system is presented by the following matrix: 
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level/layer        layer 1 

                                       level 1 RBE, i1, i2, oI, oF

(8.46)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 oI

                          oF = i1

(8.47)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby the linguistic values of the output oF are fed back unchanged into 
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB2x2 from Example 8.5, as 
specified by Eqs. (8.9)–(8.10). 

Example 8.12 
A 2×2 rule base with local FB  is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RB, i1, i2, o1, o2

(8.48)

The output-input interconnections for this rule base are given by the 
matrix:

level/layer        layer 1 

                                       level 1 F1(o1) = i2

                               F2(o2) = i1

(8.49)

Equation (8.48) shows that the rule base RB has two inputs (i1 and i2) and
two outputs (o1 and o2). In addition, Eq. (8.49) shows that the output from 
the rule base o1 is mapped by the FB  function F1 onto the input to the rule 
base i2 whereas the output from the rule base o2 is mapped by the FB  
function F2 onto the input to the rule base i1.

By introducing a second layer with two levels such that the first level is 
occupied by a rule base RBF1 replacing the FB function F1 and the second 
level is occupied by a rule base RBF2 replacing the FB function F2, the 
initial SRB system with complex FB is transformed into an equivalent 
MRB system with simple FB and three rule bases (RB, RBF1 and RBF2). In 
this case, RBF1 and RBF2 are standing in parallel in layer 2 whereas RB and
RBF2 are standing in sequence in level 2. 
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The MRB system is presented by the following matrix: 

level/layer        layer 1                    layer 2 

                       level 1 RBF1, iF1, oF1

level 2 RB, i1, i2, o1, o2 RBF2, iF2, oF2

(8.50)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2 

                              level 1 oF1 = i2

level 2 o1 = iF1 oF2 = i1

         o2 = iF2

(8.51)

The transformation of the SRB system into an equivalent MRB system 
has led to the appearance of RBF1 and RBF2 in the FF part of the MRB 
system as well as the appearance the four new interconnection variables iF1,
oF1, iF2 and oF2. In this context, Eq. (8.50) shows that the MRB system has 
two inputs (i1 and i2) and two outputs (oF1 and oF2). In addition, Eq. (8.51) 
shows that the output o1 from RB is the same as the input iF1 to RBF1 and the 
output o2 from RB is the same as the input iF2 to RBF2, whereas the output oF1

from RBF1 is  the same as the input i2 to RB and the output oF2 from RBF2 is  
the same as the input i1 to RB.

The MRB system can be further transformed into an equivalent SRB 
system with a rule base RBE which is derived from Eq. (8.52).

  RBE = RB * (RBF1 + RBF2) (8.52) 

The SRB system is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RBE, i1, i2, oF1, oF2

(8.53)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer         layer 1 

                                       level 1 oF1 = i2

                            oF2 = i1

(8.54)
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The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby the linguistic values of the outputs oF1 and oF2 are fed back 
unchanged into the inputs i2 and i1, respectively, for each of the fuzzy rules. 
In other words, the rule base RBE must have the same structure as the rule 
base RB2x2 from Example 8.6, as specified by Eqs. (8.11)–(8.12). 

8.4  Transformation of Rule Bases with Global Feedback 

Global feedback is a fairly basic type of complex FB that can be viewed as 
an extension of simple or local FB. While simple and local FB embrace 
only one rule base in a particular level and layer of the network structure 
for a MRB system, global FB embraces at least two rule bases residing in 
adjacent levels or layers. Three general cases with global FB are presented 
in Figs. 8.3–8.5. 

Fig.  8.3. Global feedback for rule bases in sequence 

          

Fig.  8.4. Global downward feedback for rule bases in parallel 

FRB

FRB
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Fig.  8.5. Global upward feedback for rule bases in parallel 

A fuzzy rule based system with global FB is constrained because the 
linguistic value of the corresponding output in each rule is mapped by a FB 
function onto a linguistic value of the associated input in the same rule. 
Depending on whether this FB function is an identity function or another 
type of function, these two linguistic values may be the same, as in the case 
of simple FB, or different, as in the case of local FB.

systems. In particular, Examples 8.13–8.14 show how global FB can be 
presented for two 1×1 rule bases standing in sequence in adjacent layers, 
whereas Examples 8.15–8.16 and Examples 8.17–8.18 describe downward 
and upward global FB, respectively, for two 1×1 rule bases standing in 
parallel in adjacent levels. 

The procedure described in the examples below starts with a MRB 
system. In the case of identity FB function, the MRB system is first 
transformed into an equivalent SRB system by means of appropriate 
merging manipulations on the rule bases in the FF path. The rule base of the 
equivalent SRB system is then checked to ensure that the FB constraints are 
met, as described in Sect. 8.2. When the FB function is not an identity 
function, it is first replaced by a corresponding rule base in the FF path, as 
described in Sect. 8.3. Then, the resultant MRB system is transformed into 
an equivalent SRB system by means of appropriate merging manipulations. 
Finally, the rule base of the equivalent SRB system is checked to ensure 
that any FB constraints are met. 

Example 8.13 
A MRB system with two 1×1 rule bases in sequence and global simple 

feedback is presented by the following matrix:

FRB

The notion of global FB is illustrated by six basic examples with MRB 
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level/layer        layer 1          layer 2 

                           level 1 RB1, i1, o1 RB2, i2, o2

(8.55)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2 

                             level 1 o1 = i2 o2 = i1

(8.56)

Equation (8.55) shows that both rule bases RB1 and RB2 have one input 
(i1 and i2, respectively) and one output (o1 and o2, respectively). In addition, 
Eq. (8.56) shows that the output o1 from RB1 is fed forward unchanged into 
the input i2 to RB2 whereas the output o2 from RB2 is fed back unchanged 
into the input i1 to RB1.

The MRB system can be transformed into an equivalent SRB system 
with a rule base RBE which is derived from Eq. (8.57). 

  RBE = RB1 * RB2  (8.57) 

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RBE, i1, o2

(8.58)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 o2 = i1

(8.59)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby the linguistic values of the output o2 are fed back unchanged into 
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB1x1 from Example 8.1, as 
specified by Eqs. (8.1)–(8.2). 

Example 8.14 
A MRB system with two 1 1 rule bases in sequence and global complex 

feedback is presented by the following matrix:
×
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level/layer        layer 1          layer 2 

                             level 1 RB1, i1, o1 RB2, i2, o2

(8.60)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2 

                              level 1 o1 = i2 F(o2)= i1

(8.61)

Equation (8.60) shows that both rule bases RB1 and RB2 have one input 
(i1 and i2, respectively) and one output (o1 and o2, respectively). In addition, 
Eq. (8.61) shows that the output o1 from RB1 is fed forward unchanged into 
the input i2 to RB2 whereas the output o2 from RB2 is mapped by the FB  
function F onto the input i1 to RB1.

By introducing a third layer with a rule base RBF that replaces the FB 
function F, the initial MRB system with complex FB is transformed into an 
equivalent MRB system with simple FB that embraces the three rule bases 
standing in sequence RB1, RB2 and RBF.

The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1          layer 2          layer 3 

                  level 1 RB1, i1, o1 RB2, i2, o2      RBF, iF, oF

(8.62)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                    level 1 o1 = i2 o2 = iF oF = i1

(8.63)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF in the FF part of the system as well 
as the appearance of the two new interconnection variables iF and oF. In this 
context, Eq. (8.62) shows that the equivalent MRB system has one input (i1)
and one output (oF). In addition, Eq. (8.63) shows that the output o1 from RB
is the same as the input i2 to RB2, the output o2 from RB2 is the same as the 
input iF to RBF, whereas the output oF from RBF is  the same as the input i1 to 
RB1.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.64). 
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  RBE = RB1 * RB2 * RBF (8.64) 

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RBE, i1, oF

(8.65)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 oF = i1

(8.66)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby the linguistic values of the output oF are fed back unchanged into 
the input i1 for each of the fuzzy rules. In other words, the rule base RBE

must have the same structure as the rule base RB1x1 from Example 8.1, as 
specified by Eqs. (8.1)–(8.2). 

Example 8.15 
A MRB system with two 1×1 rule bases in parallel and global simple 

downward feedback is presented by the following matrix:

level/layer        layer 1 

                                       level 1 RB1, i1, o1

level 2 RB2, i2, o2

(8.67)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 o1 = i2

level 2 o2

(8.68)

Equation (8.67) shows that both rule bases RB1 and RB2 have one input (i1

and i2, respectively) and one output (o1 and o2, respectively). In addition, 
Eq. (8.68) shows that the output o1 from RB1 is fed back unchanged into the 
input i2 to RB2.
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By introducing layer 2 that replaces level 2 and moving RB2 from its old 
location in level 2 to its new location in layer 2, the initial MRB system 
with global simple downward FB is transformed into an equivalent MRB 
system without FB and with the two rule bases RB1 and RB2 standing in 
sequence.

The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1          layer 2 

                             level 1 RB1, i1, o1 RB2, i2, o2

(8.69)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2 

                              level 1 o1 = i2 o2

(8.70)

Equation (8.69) shows that the equivalent MRB system has one input (i1)
and one output (o2). In addition, Eq. (8.70) shows that the output o1 from
RB1 is the same as the input i2 to RB2.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.71). 

  RBE = RB1 * RB2  (8.71) 

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RBE, i1, o2

(8.72)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 o2

(8.73)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.
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Example 8.16 
A MRB system with two 1×1 rule bases in parallel and global complex 

downward feedback is presented by the following matrix:

level/layer        layer 1 

                                       level 1 RB1, i1, o1

level 2 RB2, i2, o2

(8.74)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 F(o1)= i2

level 2 o2

(8.75)

Equation  (8.74)  shows  that  both  rule bases RB1 and RB2 have one input 
(i1 and i2) and one output (o1 and o2). In addition, Eq. (8.75) shows that the 
output o1 from RB1 is mapped by the FB  function F onto the input i2 to RB2.

By introducing layer 2 with a rule base RBF that replaces the FB function 
F and layer 3 that replaces level 2 as well as moving RB2 from its old 
location in level 2 to its new location in layer 3, the initial MRB system 
with global complex downward FB is transformed into an equivalent MRB 
system without FB and with the three rule bases RB1, RBF and RB2 standing 
in sequence. 

The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1          layer 2          layer 3 

                  level 1 RB1, i1, o1 RBF, iF, oF     RB2, i2, o2

(8.76)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                    level 1 o1 = iF oF = i2 o2

(8.77)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF in the FF part of the system as well 
as the appearance of the two new interconnection variables iF and oF. In this 
context, Eq. (8.76) shows that the equivalent MRB system has one input (i1)
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and one output (o2). In addition, Eq. (8.77) shows that the output o1 from
RB1 is the same as the input iF to RBF whereas the output oF from RBF is the 
same as the input i2 to RB2.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.78). 

  RBE = RB1 * RBF * RB2  (8.78) 

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RBE, i1, o2

(8.79)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 o2

(8.80)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.17 
A MRB system with two 1×1 rule bases in parallel and global simple 

upward feedback is presented by the following matrix:

level/layer        layer 1 

                                       level 1 RB1, i1, o1

level 2 RB2, i2, o2

(8.81)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 o1

level 2 o2 = i1

(8.82)
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Equation (8.81) shows that both rule bases RB1 and RB2 have one input 
(i1 and i2, respectively) and one output (o1 and o2, respectively). In addition, 
Eq. (8.82) shows that the output o2 from RB2 is fed back unchanged into the 
input i1 to RB1.

By introducing layer 2 and moving RB1 from level 1of layer 1 to its new 
location in level 1 of layer 2 as well as moving RB2 from level 2 of layer 1 
to its new location in level 1 of layer 1 and removing level 2, the initial 
MRB system with global simple upward FB is transformed into an 
equivalent MRB system without FB and with the two rule bases RB2 and
RB1 standing in sequence. 

The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1          layer 2 

                             level 1 RB2, i2, o2 RB1, i1, o1

(8.83)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2 

                              level 1 o2 = i1 o1

(8.84)

Equation (8.83) shows that the equivalent MRB system has one input (i2)
and one output (o1). In addition, Eq. (8.84) shows that the output o2 from
RB2 is the same as the input i1 to RB1.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from Eq. 
(8.85).

  RBE = RB2 * RB1  (8.85) 

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RBE, i2, o1

(8.86)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 o1

(8.87)
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Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.18 
A MRB system with two 1×1 rule bases in parallel and global complex 

upward feedback is presented by the following matrix:

level/layer        layer 1 

                                       level 1 RB1, i1, o1

level 2 RB2, i2, o2

(8.88)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 o1

 level 2 F(o2)= i1

(8.89)

Equation  (8.88)  shows  that  both  rule  bases RB1 and RB2 have one input
 (i1 and i2, respectively) and  one  output (o1 and o2, respectively). In addition,
 Eq.

 
(8.89) shows that the output o2 from RB2 is mapped by the FB  function F

onto the input i1 to RB1.
By introducing layer 3 and moving RB1 from level 1of layer 1 to its new 

location in level 1 of layer 3, introducing layer 2 with a rule base RBF that 
replaces the FB function F, as well as moving RB2 from level 2 of layer 1 to 
its new location in level 1 of layer 1 and removing level 2, the initial MRB 
system with global complex upward FB is transformed into an equivalent 
MRB system without FB and with the three rule bases RB2, RBF and RB1

standing in sequence. 
The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1          layer 2          layer 3 

                  level 1 RB2, i2, o2 RBF, iF, oF        RB1, i1, o1

(8.90)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                    level 1 o2 = iF oF = i1 o1

(8.91)
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The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF in the FF part of the system as well 
as the appearance of the two new interconnection variables iF and oF. In this 
context, Eq. (8.90) shows that the equivalent MRB system has one input (i2)
and one output (o1). In addition, Eq. (8.91) shows that the output o2 from
RB2 is the same as the input iF to RBF whereas the output oF from RBF is the 
same as the input i1 to RB1.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (7.236). 

  RBE = RB2 * RBF * RB1  (8.92) 

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                       level 1 RBE, i2, o1

(8.93)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 o1

(8.94)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

8.5  Transformation of Rule Bases with Nested Feedback 

Nested feedback is a type of complex FB, which is usually a combination 
of local and global FB. While local FB embraces only one rule base in a 
particular level and layer of the network structure for a MRB system and 
global FB embraces at least two rule bases residing in adjacent levels or 
layers, nested FB does both at the same time. In particular, nested FB has at 
least two FB loops such that either at least one of the FB outputs is from a 
rule base that is not a departure port for any of the other FB outputs or at 
least one of the FB inputs is to a rule base that is not an entry port for any of 
the other FB inputs. Three general cases with nested FB are presented in 
Figs. 8.6–8.8. 

Therefore, if two or more FB loops do not satisfy the above condition, 
i.e. their FB outputs are from only one rule base and their FB inputs are to 
only one rule base, then the FB for these particular loops is not nested even 
though the loops may appear to be visually nested. In this case, the FB is 
either local or global depending on whether it embraces only one or at least 
two rule bases. This type of FB is a multi-output-multi-input extension of the 
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Fig.  8.6. Nested feedback for rule bases in sequence 

Fig.  8.7. Nested downward feedback for rule bases in parallel 

and such an extension is usually straightforward. 
A fuzzy rule based system with nested FB is constrained because the 

linguistic value of the corresponding outputs in each rule is mapped by a 
FB function onto a linguistic value of the associated input in the same rule. 
Depending on whether this FB function is an identity function or another 
type of function, these two linguistic values may be the same, as in the case 
of simple FB, or different, as in the case of local FB.

single-output-single-input FB discussed in most examples from Sects. 8.3–8.4

FRB

FRB
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Fig.  8.8. Nested upward feedback for rule bases in parallel 

The notion of nested FB is illustrated further by six basic examples with 
MRB systems. In particular, Examples 8.19–8.20 show how nested FB can 
be presented for two rule bases standing in sequence in adjacent layers, 
whereas Examples 8.21–8.22 and Examples 8.23–8.24 describe downward 
and upward nested FB, respectively, for three rule bases standing in parallel 
in adjacent levels. All examples consider non-identity type of FB because 
identity FB cases would be quite easy to deal with. 

The procedure described in Examples 8.19–8.24 starts with a MRB 
system whose FB function is replaced by a corresponding rule base in the 
FF path, as described in Sect. 8.3. Then, the resultant MRB system is 
transformed into an equivalent SRB system by means of appropriate 
merging manipulations. Finally, the rule base of the equivalent SRB system 
is checked to ensure that any FB constraints are met. 

Example 8.19 
A MRB system with two rule bases in sequence and left-nested feedback

is presented by the following matrix:

FRBFRB
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level/layer        layer 1                         layer 2 

                    level 1 RB1, i11, i12, o11, o12 RB2, i2, o2

(8.95)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1               layer 2 

                         level 1 o11 = i2 F2(o2)= i11

                                                 F1(o12)= i12

(8.96)

By introducing level 1 in a new layer 3 with a rule base RBF2 that 
replaces the FB function F2, introducing level 2 in layer 2 with a rule base 
RBF1 that replaces the FB function F1, as well as introducing level 2 in layer 3

 with  an IRB RBI representing a  self standing output, the  initial MRB 
system with complex FB is transformed into an equivalent MRB system 
with simple FB. This FB consists of two nested loops whereby the inner 
loop embraces the sequence of rule bases RB1, RBF1, RBI and the outer loop 
embraces the sequence of rule bases RB1, RB2, RBF2.

The equivalent MRB system is presented by the following matrix: 

     level/layer        layer 1                  layer 2               layer 3 

       level 1 RB1, i11, i12, o11, o12 RB2, i2, o2            RBF2, iF2, oF2

level 2 RBF1, iF1, oF1        RBI, iI, oI

(8.97)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                    level 1 o11 = i2 o2 = iF2 oF2 = i11

                                        o12 = iF1

level 2 oF1 = iI oI = i12

(8.98)

Equation (8.95) shows that RB
1
 has two inputs and two outputs 

 (i
11

, i
12

, o
11

, o
12

) whereas RB
2
 has one input and one output (i

2
, o

2
). In 

addition, Eq. (8.96) shows that the output o
11

from RB
1

is fed forward 

unchanged into the input i
2
 to RB

2
 whereas the output o

12
from RB

1
is

mapped by the FB  function F1 onto the input i
12

to RB
1

and the output o
2

from RB
2
is mapped by the FB  function F2 onto the input i

11
to RB

1
.
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The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF2, RBF1 and RBI in the FF part of the 
system as well as the appearance of the new interconnection variables iF2,
oF2, iF1, oF1, iI, oI. In this context, Eq. (8.97) shows that the equivalent MRB 
system has two inputs (i11, i12) and two outputs (oF2, oI). In addition, 
Eq. (8.98) shows that the output o11 from RB1 is the same as the input i2 to 
RB2, the output o12 from RB1 is the same as the input iF1 to RBF1, the output o2

from RB2 is the same as the input iF2 to RBF2, the output oF1 from RBF1 is the 
same as the input iI to RBI, whereas the output oF2 from RBF2 is the same as 
the input i11 to RB1 and the output oI from RBI is the same as the input i12 to 
RB1.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.99). 

  RBE = RB1 * (RB2 + RBF1) * (RBF2 + RBI) (8.99)

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                      level 1 RBE, i11, i12, oF2, oI

(8.100)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 oF2 = i11

                          oI = i12

(8.101)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby for each of the fuzzy rules the linguistic values of the output oF2

are fed back unchanged into the input i11 and the linguistic values of the 
output oI are fed back unchanged into the input i12. In this case, the rule base 
RBE must have a structure in accordance with Eqs. (8.102)–(8.103). 

RB
E
: i

11
i

12
/ o

F2
o

I
      11     12     13          21     22     23          31     32     33 

                  11               ?       0       0            0       0       0            0       0       0 
                  12               0       ?       0            0       0       0            0       0       0 
                  13               0       0       ?            0       0       0            0       0       0 

                   21               0       0       0            ?       0       0            0       0       0 
                   22               0       0       0            0       ?       0            0       0       0 
                   23               0       0       0            0       0       ?            0       0       0

(8.102)

                   31               0       0       0            0       0       0            ?       0       0 
                   32               0       0       0            0       0       0            0       ?       0 
                   33               0       0       0            0       0       0            0       0       ?
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RBE: {(11, 11)?, (12, 12)?, (13, 13)?,

                                    (21, 21)?, (22, 22)?, (23, 23)?,

                                    (31, 31)?, (32, 32)?, (33, 33)?}

(8.103)

Example 8.20 
A MRB system with two rule bases in sequence and right-nested 

feedback is presented by the following matrix:

level/layer        layer 1            layer 2 

                           level 1 RB1, i1, o1 RB2, i21, i22, o21, o22

(8.104)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2 

                             level 1 o1 = i21 F2(o21)= i1

                                               F1(o22)= i22

(8.105)

Equation (8.104) shows that RB1 has one input and one output (i1, o1)
whereas RB2  has  two  inputs  and two  outputs  (i21, i22, o21, o22).  In  addition, 

1 1

input i21 to RB2 whereas the output o21 from RB2 is mapped by the FB  
function F2 onto the input i1 to RB1 and the output o22 from RB2 is mapped by 
the FB  function F1 onto the input i22 to RB2.

By introducing level 1 in a new layer 3 with a rule base RBF2 that 
replaces the FB function F2, introducing level 2 in layer 1 with an IRB RBI

representing a self standing input, as well as introducing level 2 in layer 3 
with a rule base RBF1 that replaces the FB function F1, the initial MRB 
system with complex FB is transformed into an equivalent MRB system 
with simple FB. This FB consists of two nested loops whereby the inner 
loop embraces the sequence of rule bases RBI, RB2, RBF1 and the outer loop 
embraces the sequence of rule bases RB1, RB2, RBF2.

Eq. (8.105) shows that the output o from RB is fed forward unchanged into the 
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The equivalent MRB system is presented by the following matrix: 

           level/layer        layer 1            layer 2     layer 3 

        level 1 RB1, i1, o1 RB2, i21, i22, o21, o22  RBF2, iF2, oF2

level 2 RBI, iI, oI RBF1, iF1, oF1

(8.106)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                   level 1 o1 = i21 o21 = iF2 oF2 = i1

                            o22 = iF1

level 2 oI = i22                   oF1 = iI

(8.107)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF2, RBI and RBF1 in the FF part of the 
system as well as the appearance of the new interconnection variables iF2,
oF2, iI, oI, iF1, oF1. In this context, Eq. (8.106) shows that the equivalent MRB 
system has two inputs (i1, iI) and two outputs (oF2, oF1). In addition, 
Eq. (8.107) shows that the output o1 from RB1 is the same as the input i21 to 
RB2, the output oI from RBI is the same as the input i22 to RB2, the output o21

from RB2 is the same as the input iF2 to RBF2, the output o22 from RB2 is the 
same as the input iF1 to RBF1, whereas the output oF2 from RBF2 is the same as 
the input i1 to RB1 and the output oF1 from RBF1 is the same as the input iI to 
RBI.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.108). 

  RBE = (RB1 + RBI) * RB2 * (RBF2 + RBF1) (8.108)

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                      level 1 RBE, i1, iI, oF2, oF1

(8.109)

The output-input interconnections for this SRB system are given by the 
matrix:
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level/layer        layer 1 

                                      level 1 oF2 = i1

                         oF1 = iI

(8.110)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby for each of the fuzzy rules the linguistic values of the output oF2

are fed back unchanged into the input i1 and the linguistic values of the 
output oF1 are fed back unchanged into the input iI. In this case, the rule base 
RBE must have the same structure as the rule base RBE from Example 8.19, 
as specified by Eqs. (8.102)–(8.103). 

Example 8.21 
A MRB system with three rule bases in parallel and top-nested 

downward feedback is presented by the following matrix:

level/layer         layer 1 

                                      level 1 RB1, i1, o11, o12

level 2     RB2, i2, o2

level 3     RB3, i3, o3

(8.111)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 F2(o11)= i3

                               F1(o12)= i2

level 2 o2

level 3 o3

(8.112)

Equation  (8.111)  shows  that RB1  has  one  input  and  two  outputs
 (i1, o11, o12) whereas  both RB2  and RB3 have  one  input  and  one  output
 (i2, o2 and i3, o3, respectively). In addition, Eq. (8.112) shows that the  output 
o11 from RB1

is mapped by the FB  function F2 onto the input i3 to RB3 whereas
 the  output o12 from RB1 is  mapped  by  the  FB  function F1  onto  the input 
i2 to RB2.

By introducing level 1 in a new layer 2 with a rule base RBF2 that 
replaces the FB function F2, introducing level 2 in layer 2 with a rule base 
RBF1 that replaces the FB function F1, moving RB2 from level 2 of layer 1 to 

3

3 from layer 1, the initial MRB system with complex FB is transformed 

level 2 of a new layer 3 and removing level 2 from layer 1, as well as 
moving RB  from level 3 of layer 1 to level 1 of layer 3 and removing level 
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into an equivalent MRB system without FB. This system consists of two 
groups of rule bases standing sequence, i.e. (RB1,RBF2,RB3) and (RB1, RBF1,RB2).

The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1                  layer 2                 layer 3 

     level 1 RB1, i1, o11, o12 RBF2, iF2, oF2             RB3, i3, o3

level 2 RBF1, iF1, oF1              RB2, i2, o2

(8.113)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                   level 1 o11 = iF2 oF2 = i3 o3

                                        o12 = iF1

level 2 oF1 = i2 o2

(8.114)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF2 and RBF1 in the FF part of the 
system as well as the appearance of the new interconnection variables iF2,
oF2, iF1, oF1. In this context, Eq. (8.113) shows that the equivalent MRB 
system has one input (i1) and two outputs (o3, o2). In addition, Eq. (8.114) 
shows that the output o11 from RB1 is the same as the input iF2 to RBF2, the
output o12 from RB1 is the same as the input iF1 to RBF1, the output oF2 from
RBF2 is the same as the input i3 to RB3, and the output oF1 from RBF1 is the 
same as the input i2 to RB2.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.115). 

  RBE = RB1 * (RBF2 + RBF1) * (RB3 + RB2) (8.115)

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                      level 1 RBE, i1, o3, o2

(8.116)

The output-input interconnections for this SRB system are given by the 
matrix:
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level/layer        layer 1 

                                      level 1 o3

                 o2

(8.117)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.22 
A MRB system with three rule bases in parallel and bottom-nested 

downward feedback is presented by the following matrix:

level/layer        layer 1 

                                      level 1 RB1, i1, o1

level 2   RB2, i2, o2

level 3  RB3, i31 32 3

(8.118)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 F2(o1)= i31

level 2 F1(o2)= i32

level 3 o3

(8.119)

Equation (8.118) shows that both RB1 and RB2 have one input and one 
output (i1, o1 and i2, o2, respectively) whereas RB3 has two inputs and one 
output (i31, i32, o3). In addition, Eq. (8.119) shows that the output o1 from RB1

is mapped by the FB  function F2 onto the input i31 to RB3 whereas the 
output o2 from RB2 is mapped by the FB  function F1 onto the input i32 to
RB3.

By introducing level 1 in a new layer 2 with a rule base RBF2 that 
replaces the FB function F2, introducing level 2 in layer 2 with a rule base 
RBF1 that replaces the FB function F1, as well as moving RB3 from level 3 
of layer 1 to level 1 of a new layer 3 and removing level 3 from layer 1, the 
initial MRB system with complex FB is transformed into an equivalent 
MRB system without FB. This system consists of two groups of rule bases 

1 F2, RB3) and (RB2, RBF1, RB3).

, i  , o

sequence, i.e. (RB , RBstanding in
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The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1              layer 2                  layer 3 

           level 1 RB1, i1, o1 RBF2, iF2, oF2         RB3, i31, i32, o3

level 2 RB2, i2, o2 RBF1, iF1, oF1

(8.120)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                   level 1 o1 = iF2 oF2 = i31 o3

level 2 o2 = iF1 oF1 = i32

(8.121)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF2 and RBF1 in the FF part of the 
system as well as the appearance of the new interconnection variables iF2,
oF2, iF1, oF1. In this context, Eq. (8.120) shows that the equivalent MRB 
system has two inputs (i1, i2) and one output (o3). In addition, Eq. (8.121) 
shows that the output o1 from RB1 is the same as the input iF2 to RBF2, the
output o2 from RB2 is the same as the input iF1 to RBF1, the output oF2 from
RBF2 is the same as the input i31 to RB3, and the output oF1 from RBF1 is the 
same as the input i32 to RB3.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.122). 

  RBE = (RB1 + RB2) * (RBF2 + RBF1) * RB3 (8.122)

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                      level 1 RBE, i1, i2, o3

(8.123)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 o3

(8.124)
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Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.23 
A MRB system with three rule bases in parallel and top-nested upward 

feedback is presented by the following matrix:

level/layer        layer 1 

                                      level 1 RB1, i11, i12, o1

level 2    RB2, i2, o2

level 3   RB3, i3, o3

(8.125)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 o1

level 2 F1(o2)= i11

level 3 F2(o3)= i12

(8.126)

Equation (8.125) shows that RB1 has two inputs and one output (i11, i12, o1)
whereas both RB2 and RB3 have one input and one output (i2, o2 and i3, o3,
respectively). In addition, Eq. (8.126) shows that the output o2 from RB2 is
mapped by the FB  function F1 onto the input i11 to RB1 whereas the output 
o3 from RB3 is mapped by the FB  function F2 onto the input i12 to RB1.

By moving RB1 from level 1 of layer 1 to level 2 of a new layer 3, 
moving RB2 from level 2 of layer 1 to level 1 of layer 1, introducing level 2 
in a new layer 2 with a rule base RBF2 that replaces the FB function F2,
introducing level 1 in layer 2 with a rule base RBF1 that replaces the FB 
function F1, as well as moving RB3 from level 3 of layer 1 to level 2 of 
layer 1 and removing level 3 from layer 1, the initial MRB system with 
complex FB is transformed into an equivalent MRB system without FB. 
This system consists of two groups of rule bases standing in sequence, i.e. 
(RB2, RBF1, RB1) and (RB3, RBF2, RB1).

The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1              layer 2            layer 3 

           level 1 RB2, i2, o2 RBF1, iF1, oF1

level 2 RB3, i3, o3 RBF2, iF2, oF2 RB1, i11, i12, o1

(8.127)
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The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                   level 1 o2 = iF1 oF1 = i11

level 2 o3 = iF2 oF2 = i12 o1

(8.128)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF1 and RBF2 in the FF part of the 
system as well as the appearance of the new interconnection variables iF1,
oF1, iF2, oF2. In this context, Eq. (8.127) shows that the equivalent MRB 
system has two inputs (i2, i3) and one output (o1). In addition, Eq. (8.128) 
shows that the output o2 from RB2 is the same as the input iF1 to RBF2, the
output o3 from RB3 is the same as the input iF2 to RBF2, the output oF1 from
RBF1 is the same as the input i11 to RB1 and the output oF2 from RBF2 is the 
same as the input i12 to RB1.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.129). 

  RBE 2 3 1 (8.129)

level/layer        layer 1 

                                      level 1 RBE, i2, i3, o1

(8.130)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 o1

(8.131)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.24 
A MRB system with three rule bases in parallel and bottom-nested 

upward feedback is presented by the following matrix:

= (RB + RB ) * (RB + RB ) * RB

The equivalent SRB system is presented by the following matrix: 

F1 F2
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level/layer        layer 1 

                                      level 1 RB1, i1, o1

level 2   RB2, i2, o2

level 3   RB3, i3, o31, o32

(8.132)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 o1

level 2 o2

level 3  F1(o31)= i2

                                 F2(o32)= i1

(8.133)

Equation (8.132) shows that both RB1 and RB2 have one input and one 
output (i1, o1 and i2, o2, respectively) whereas RB3 has one input and two 
outputs (i3, o31, o32). In addition, Eq. (8.133) shows that the output o31 from
RB3 is mapped by the FB  function F1 onto the input i2 to RB2 whereas the 
output o32 from RB3 is mapped by the FB  function F2 onto the input i1 to
RB1.

By moving RB1 from level 1 of layer 1 to level 2 of a new layer 3, 
moving RB2 from level 2 of layer 1 to level 1 of layer 3, introducing level 1 
in a new layer 2 with a rule base RBF1 that replaces the FB function F1,
introducing level 2 in layer 2 with a rule base RBF2 that replaces the FB 
function F2, as well as moving RB3 from level 3 of layer 1 to level 2 of 
layer 1 and removing level 3 from layer 1, the initial MRB system with 
complex FB is transformed into an equivalent MRB system without FB. 
This system consists of two groups of rule bases standing in sequence, i.e. 
(RB3, RBF1, RB2) and (RB3, RBF2, RB1).

The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1         layer 2                 layer 3 

         level 1 RBF1, iF1, oF1        RB2, i2, o2

level 2 RB3, i3, o31, o32 RBF2, iF2, oF2         RB1, i1, o1

(8.134)
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The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                   level 1 oF1 = i2 o2

level 2 o31 = iF1         oF2 = i1 o1

                                         o32 = iF2

(8.135)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF1 and RBF2 in the FF part of the 
system as well as the appearance of the new interconnection variables iF1,
oF1, iF2, oF2. In this context, Eq. (8.134) shows that the equivalent MRB 
system has one input (i3) and two outputs (o2, o1). In addition, Eq. (8.135) 
shows that the output o31 from RB3 is the same as the input iF1 to RBF1, the
output o32 from RB3 is the same as the input iF2 to RBF2, the output oF1 from
RBF1 is the same as the input i2 to RB2 and the output oF2 from RBF2 is the 
same as the input i1 to RB1.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RB E which is derived from 

  RBE = RB3 * (RBF1 + RBF2) * (RB2 + RB1) (8.136)

The equivalent SRB system is presented by the following matrix: 

level/layer        layer 1 

                                      level 1 RBE, i3, o2, o1

(8.137)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 o2

                    o1

(8.138)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Eq. (8.136).
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8.6  Transformation of Rule Bases with Overlapping Feedback 

Overlapping feedback is a type of complex FB, which is usually a 
combination of global FB with itself that includes at least two non-nested 
FB loops with partial overlap. In this case, each of the FB outputs is from a 
rule base that is not a departure port for any of the other FB outputs and 
each of the FB inputs is to a rule base that is not an entry port for any of the 
other FB inputs. Therefore, if two or more FB loops do not satisfy the 
above condition, i.e. their FB outputs are from only one rule base or their 
FB inputs are to only one rule base, then the FB for these particular loops is 
nested and not overlapping. Three general cases with overlapping FB are 
presented in Figs. 8.9–8.11. 

A fuzzy rule based system with overlapping FB is constrained because 
the linguistic value of the corresponding outputs in each rule is mapped by 
a FB function onto a linguistic value of the associated input in the same 
rule. Depending on whether this FB function is an identity function or 
another type of function, these two linguistic values may be the same, as in 
the case of global simple FB, or different, as in the case of global complex 
FB.

The notion of overlapping FB is illustrated by three basic examples with 
MRB systems. In particular, Examples 8.25 shows how overlapping FB can 
be presented for three rule bases standing in sequence in adjacent layers, 
whereas Examples 8.26-8.27 describe downward and upward overlapping 
FB, respectively, for four rule bases standing in parallel in adjacent levels. 
All examples consider non-identity type of FB because identity FB cases 
would be quite easy to deal with. 

                                                                                                                               

Fig.  8.9. Overlapping feedback for rule bases in sequence 

FRB FRB
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Fig.  8.10. Overlapping downward feedback for rule bases in parallel 

system whose FB function is replaced by a corresponding rule base in the 
FF path, as described in Sect. 8.3. Then, the resultant MRB system is 
transformed into an equivalent SRB system by means of appropriate 
merging manipulations. Finally, the rule base of the equivalent SRB system 
is checked to ensure that any FB constraints are met. 

Example 8.25 
A MRB system with three rule bases in sequence and overlapping 

feedback  is presented by the following matrix:

level/layer        layer 1            layer 2                   layer 3 

          level 1 RB1, i1, o1 RB2, i21, i22, o21, o22 RB3, i3, o3

(8.139)

FRB

FRB

The procedure described in Examples 8.25-8.27 starts with a MRB 
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Fig.  8.11. Overlapping upward feedback for rule bases in parallel 

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1          layer 2              layer 3 

               level 1 o1 = i21 o21 = i3 F2(o3)= i22

                                                              F1(o22)= i1

(8.140)

Equation (8.139) shows that both RB1 and RB3 have one input and one 
output (i1, o1 and i3, o3, respectively), whereas RB2 has two inputs and two 
outputs (i21, i22, o21, o22). In addition, Eq. (8.140) shows that the output o1

from RB1 is fed forward unchanged into the input i21 to RB2, the output o21

from RB2 is fed forward unchanged into the input i3 to RB3, whereas the 
output o22 from RB2 is mapped by the FB  function F1 onto the input i1 to RB1

and the output o3 from RB3 is mapped by the FB  function F2 onto the input 
i22 to RB2.

By introducing level 1 in a new layer 4 with a rule base RBF2 that 
replaces the FB function F2, introducing level 2 in layer 3 with a rule base 
RBF1 that replaces the FB function F1, introducing level 2 in layer 1 with an 
IRB RBI1 representing a self standing input, as well as introducing level 2 in 

FRB

FRB
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layer 4 with an IRB RBI2 representing a self standing output, the initial 
MRB system with complex FB is transformed into an equivalent MRB 
system with simple FB. This FB consists of two global simple loops 
embracing  the  two  groups  of  rule  bases  standing  in  a  sequence 
(RB1, RB2, RB3, RBF2) and (RBI1, RB2, RBF1, RBI2).

The equivalent MRB system is presented by the following matrix: 

  level/layer       layer 1          layer 2                  layer 3               layer 4 

    level 1 RB1, i1, o1      RB2, i21, i22, o21, o22      RB3, i3, o3       RBF2, iF2, oF2

level 2 RBI1, iI1, oI1
RBF1, iF1, oF1      RBI2, iI2, oI2

(8.141)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3        layer 4 

         level 1 o1 = i21 o21 = i3 o3 = iF2 oF2 = iI1

   o22 = iF1

level 2 oI1 = i22 oF1 = iI2 oI2 = i1

(8.142)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF2, RBI2, RBF1 and RBI2 in the FF part 
of the system as well as the appearance of the new interconnection 
variables iF2, oF2, iI1, oI1, iF1, oF1, iI2, oI2. In this context, Eq. (8.141) shows that 
the equivalent MRB system has two inputs (i1, iI1) and two outputs (oF2, oI2).
In addition, Eq. (8.142) shows that the output o1 from RB1 is the same as the 
input i21 to RB2, the output oI1 from RBI1 is the same as the input i22 to RB2, the
output o21 from RB2 is the same as the input i3 to RB3, the output o22 from RB2

is the same as the input iF1 to RBIF1, the output o3 from RB3 is the same as the 
input iF2 to RBF2, the output oF1 from RBF1 is the same as the input iI2 to RBI2,
whereas the output oF2 from RBF2 is the same as the input iI1 to RBI and the 
output oI2 from RBI2 is the same as the input i1 to RB1.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.143). 

  RBE = (RB1 + RBI1) * RB2 * (RB3 + RBF1) * (RBF2 + RBI2) (8.143)

The equivalent SRB system is presented by the following matrix: 
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level/layer         layer 1 

                                      level 1 RBE, i1, iI1, oF2, oI2

(8.144)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 oF2 = iI1

                         oI2 = i1

(8.145)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby for each of the fuzzy rules the linguistic values of the output oF2

are fed back unchanged into the input iI1 and the linguistic values of the 
output oI2 are fed back unchanged into the input i1. In other words, the rule 
base RBE must have the same structure as the rule base RB2x2 from
Example 8.6, as specified by Eqs. (8.11)–(8.12). 

Example 8.26 
A MRB system with four rule bases in parallel and overlapping 

downward feedback is presented by the following matrix:

level/layer         layer 1 

                                     level 1 RB1, i1, o1

                                     level 2 RB2, i2, o2

level 3 RB3, i3, o3

                                     level 4 RB4, i4, o4

(8.146)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 F1(o1)= i3

                                      level 2 F2(o2)= i4

level 3 o3

level 4 o4

(8.147)
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i

each (ii, oi, i =1,4). In addition, Eq. (8.147) shows that the output o1 from RB1

is mapped by the FB  function F1 onto the input i3 to RB3 and the output o2

from RB2 is mapped by the FB  function F2 onto the input i4 to RB4.
By introducing level 1 in a new layer 2 with a rule base RBF1 that 

replaces the FB function F1, introducing level 2 in layer 2 with a rule base 
RBF2 that replaces the FB function F2, moving RB3 from level 3 of layer 1 to 
level 1 of a new layer 3 and removing level 3 from layer 1, as well as 
moving RB4 from level 4 of layer 1 to level 2 of layer 3 and removing level 
4 from layer 1, the initial MRB system with complex FB is transformed 
into an equivalent MRB system without FB. This system consists of two 
groups of rule bases standing in sequence, i.e. (RB1, RBF1, RB3) and (RB2,
RBF2, RB4).

The equivalent MRB system is presented by the following matrix: 

level/layer         layer 1            layer 2                layer 3 

             level 1 RB1, i1, o1       RBF1, iF1, oF1 RB3, i3, o3

level 2 RB3, i3, o3       RBF2, iF2, oF2 RB4, i4, o4

(8.148)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer         layer 1       layer 2        layer 3 

                  level 1 o1 = iF1 oF1 = i3 o3

level 2 o2 = iF2 oF2 = i4 o4

(8.149)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF1 and RBF2 in the FF part of the 
system as well as the appearance of the new interconnection variables iF1,
oF1, iF2, oF2. In this context, Eq. (8.148) shows that the equivalent MRB 
system has two inputs (i1, i2) and two outputs (o3, o4). In addition, Eq. (8.149) 
shows that the output o1 from RB1 is the same as the input iF1 to RBF1, the
output o2 from RB2 is the same as the input iF2 to RBF2, the output oF1 from
RBF1 is the same as the input i3 to RB3 and the output oF2 from RBF2 is the 
same as the input i4 to RB4.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.150). 

  RBE = (RB1 + RB2) * (RBF1 + RBF2) * (RB3 + RB4) (8.150)

Equation (8.146) shows that RB , i = 1,4 have one input and one output 
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The equivalent SRB system is presented by the following matrix: 

level/layer         layer 1 

                                     level 1 RBE, i1, i2, o3, o4

(8.151)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 o3

                   o4

(8.152)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.27 
A MRB system with four rule bases in parallel and overlapping upward 

feedback is presented by the following matrix:

level/layer         layer 1 

                                     level 1 RB1, i1, o1

                                     level 2 RB2, i2, o2

level 3 RB3, i3, o3

                                     level 4 RB4, i4, o4

(8.153)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 o1

                                      level 2 o2

level 3 F2(o3)= i1

level 4 F1(o4)= i2

(8.154)
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RB3 is mapped by the FB  function F2 onto the input i1 to RB1 and the output 
o4 from RB4 is mapped by the FB  function F1 onto the input i2 to RB2.

By moving RB1 from level 1 of layer 1 to level 1 of a new layer 3, 
moving RB2 from level 2 of layer 1 to level 2 of layer 3, introducing level 1 
in a new layer 2 with a rule base RBF2 that replaces the FB function F2,
introducing level 2 in layer 2 with a rule base RBF1 that replaces the FB 
function F1, moving RB3 from level 3 of layer 1 to level 1 of layer 1 and 
removing level 3 from layer 1, as well as moving RB4 from level 4 of layer 
1 to level 2 of layer 1 and removing level 4 from layer 1, the initial MRB 
system with complex FB  is transformed into an equivalent MRB system 
without FB . This system consists of two groups of rule bases standing in 
sequence, i.e. (RB3, RBF2, RB1) and (RB4, RBF1, RB2).

The equivalent MRB system is presented by the following matrix: 

level/layer         layer 1            layer 2                layer 3 

             level 1 RB3, i3, o3       RBF2, iF2, oF2 RB1, i1, o1

level 2 RB4, i4, o4        RBF1, iF1, oF1 RB2, i2, o2

(8.155)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                       level 1 o3 = iF2 oF2 = i1 o1

level 2 o4 = iF1 oF1 = i2 o2

(8.156)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF2 and RBF1 in the FF part of the 
system as well as the appearance of the new interconnection variables iF2,
oF2, iF1, oF1. In this context, Eq. (8.155) shows that the equivalent MRB 
system has two inputs (i3, i4) and two outputs (o1, o2). In addition, Eq. (8.156) 
shows that the output o3 from RB3 is the same as the input iF2 to RBF2, the
output o4 from RB4 is the same as the input iF1 to RBF1, the output oF2 from
RBF2 is the same as the input i1 to RB1 and the output oF1 from RBF1 is the 
same as the input i2 to RB2.

Equation (8.153) shows that RBi, I = 1,4 have one input and one output 
each (ii, oi, I = 1,4). In addition, Eq. (8.154) shows that the output o3 from
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The equivalent SRB system is presented by the following matrix: 

level/layer         layer 1 

                                     level 1 RBE, i3, i4, o1, o2

(8.158)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 o1

                   o2

(8.159)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

8.7  Transformation of Rule Bases with Crossed Feedback 

Crossed feedback is a type of complex FB, which is an extension of 
overlapping FB. As opposed to overlapping FB which includes at least two 
overlapping loops embracing a number of layers across a single level or a 
number of levels across a single layer, crossed FB includes at least two 
crossed loops embracing at least two layers and two levels from the 
network structure of a MRB system. In this case, each of the FB outputs is 

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.157). 

  RBE = (RB3 + RB4) * (RBF2 + RBF1) * (RB1 + RB2) (8.157)

base for any of the other FB outputs and each of the FB inputs is to a rule base  

FB inputs. Therefore, if two or more FB loops do not satisfy the above 

from a rule base that is not in the same level or layer as the departure rule  

that is not in the same level or layer as the arrival rule base for any of the other  

condition, i.e. their FB outputs are from rule bases in the same level or layer  
or their FB inputs are to rule base in the same level or layer, then the FB for  

with crossed FB are presented in Figs. 8.12--8.14. 
these particular loops is overlapping and not crossed. Three general cases  
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Fig.  8.12. Crossed symmetric feedback for rule bases in parallel and sequence 

                                                                                                                               

Fig.  8.13. Crossed non-symmetric mid-upward feedback for rule bases in parallel 
and sequence 

FRB

FRB

FRB

FRB
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Fig.  8.14. Crossed non-symmetric mid-downward feedback for rule bases in 
parallel and sequence 

A fuzzy rule based system with crossed FB is constrained because the 
linguistic value of the corresponding outputs in each rule is mapped by a 
FB function onto a linguistic value of the associated input in the same rule. 
Depending on whether this FB function is an identity function or another 
type of function, these two linguistic values may be the same, i.e. crossed 
simple FB, or different, i.e. crossed complex FB.

The notion of crossed FB is illustrated by five basic examples with MRB 
systems. In particular, Example 8.28 shows how crossed symmetric FB can 
be presented for four rule bases standing in parallel and sequence in 
adjacent levels and layers, whereas Examples 8.29–8.32 describe four 
different types of non-symmetric FB for six rule bases standing in parallel 
and sequence in adjacent levels and layers. All examples consider non-
identity type of FB because identity FB cases would be quite easy to deal 
with.

whose FB function is replaced by a corresponding rule base in the FF path, 

FRB

FRB

The procedure described in Examples 8.28–8.32 starts with a MRB system 
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as described in Sect. 8.3. Then, the resultant MRB system is transformed 
into an equivalent SRB system by means of appropriate merging 
manipulations. Finally, the rule base of the equivalent SRB system is 
checked to ensure that any FB constraints are met. 

Example 8.28 
A MRB system with crossed symmetric feedback involving four rule 

bases in parallel and sequence is presented by the following matrix:

level/layer         layer 1            layer 2 

                          level 1 RB1, i1, o1 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i4, o4

(8.160)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer         layer 1        layer 2 

                           level 1 o1 = i2 F1(o2)= i3

level 2 o3 = i4 F2(o4)= i1

(8.161)

i

i i 1

RB1 is fed forward unchanged into the input i2 to RB2 and the output o3 from
RB3 is fed forward unchanged into the input i4 to RB4, whereas the output o2

from RB2 is mapped by the FB  function F1 onto the input i3 to RB3 and the 
output o4 from RB4 is mapped by the FB  function F2 onto the input i1 to RB1.

By introducing level 1 in a new layer 3 with a rule base RBF1 that 
replaces the FB function F1 and introducing level 2 in layer 3 with a rule 
base RBF2 that replaces the FB function F2, the initial MRB system with 
complex FB is transformed into an equivalent MRB system with simple 
FB. This FB consists of two crossed simple loops embracing the two groups 
of rule bases standing in sequence (RB1, RB2, RBF1) and (RB3, RB4, RBF2).

The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1            layer 2            layer 3 

               level 1 RB1, i1, o1 RB2, i2, o2  RBF1, iF1, oF1

level 2 RB3, i3, o3         RB4, i4, o4 RBF2, iF2, oF2

(8.162)

each (i , o , i = 1,4). In addition, Eq. (8.161) shows that the output o from
Equation (8.160) shows that RB , i = 1,4 have one input and one output 
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The output-input interconnections for this MRB system are given by the 
matrix:

level/layer         layer 1        layer 2        layer 3 

                  level 1 o1 = i2 o2 = iF1 oF1= i3

level 2 o3 = i4 o4 = iF2        oF2 = i1

(8.163)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF1 and RBF2 in the FF part of the 
system as well as the appearance of the new interconnection variables iF1,
oF1, iF2, oF2. In this context, Eq. (8.162) shows that the equivalent MRB 
system has  two inputs (i1, i3) and  two outputs  (oF1, oF2).  In addition, 
Eq. 

1 1 2 2

the output o3 from RB3 is the same as the input i4 to RB4, the output o2 from
RB2 is the same as the input iF1 to RBF1, the output o4 from RB4 is the same as 
the input iF2 to RBF2, whereas the output oF1 from RBF1 is the same as the 
input i3 to RB3 and the output oF2 from RBF2 is the same as the input i1 to RB1.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.164). 

  RBE = (RB1 + RB3) * (RB2 + RB4) * (RBF1 + RBF2) (8.164)

The equivalent SRB system is presented by the following matrix: 

level/layer         layer 1 

                                      level 1 RBE, i1, i3, oF1, oF2

(8.165)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer         layer 1 

                                      level 1 oF1 = i3

                          oF2 = i1

(8.166)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby for each of the fuzzy rules the linguistic values of the output oF1

are fed back unchanged into the input i3 and the linguistic values of the 
output oF2 are fed back unchanged into the input i1. In this case, the rule 
base RBE must have the same structure as the rule base RBE from Example 
8.6, as specified by Eqs. (8.11)–(8.12). 

(8.163) shows that the output o from RB is the same as the input i  to RB ,
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Example 8.29 
A MRB system with crossed non-symmetric top-upward feedback 

involving six rule bases in parallel and sequence is presented by the 
following matrix:

level/layer         layer 1            layer 2 

                          level 1 RB1, i1, o1 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i4, o4

level 3 RB5, i5, o5 RB6, i6, o6

(8.167)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer         layer 1        layer 2 

                            level 1 o1 = i2 F1(o2)= i5

level 2 o3 = i4 F2(o4)= i1

level 3 o5 = i6 o6

(8.168)

Equation (8.167) shows that RBi, i=1,6 have one input and one output 
each (ii, oi, i=1,6). In addition, Eq. (8.168) shows that the output o1 from RB1

is fed forward unchanged into the input i2 to RB2, the output o3 from RB3 is
fed forward unchanged into the input i4 to RB4, the output o5 from RB5 is fed 
forward unchanged into the input i6 to RB6, whereas the output o2 from RB2

is mapped by the FB function F1 onto the input i5 to RB5 and the output o4

from RB4 is mapped by the FB function F2 onto the input i1 to RB1.
By introducing level 1 in a new layer 3 with a rule base RBF1 that 

replaces the FB function F1, introducing level 2 in layer 3 with a rule base
RBF2 that replaces the FB function F2, as well as introducing level 3 in layer 
3 with an IRB RBI representing a self standing output, the initial MRB 
system with complex FB is transformed into an equivalent MRB system 
with simple FB. This FB consists of two crossed simple loops embracing 
the  three  groups  of  rule  bases  standing  in  sequence   (RB1 , RB2, RBF1), 
(RB3, RB4, RBF2) and (RB5, RB6, RBI).
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The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1            layer 2             layer 3 

               level 1 RB1, i1, o1 RB2, i2, o2  RBF1, iF1, oF1

level 2 RB3, i3, o3        RB4, i4, o4 RBF2, iF2, oF2

level 3 RB5, i5, o5        RB6, i6, o6 RBI, iI, oI

(8.169)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                   level 1 o1 = i2 o2 = iF1 oF1= i5

level 2 o3 = i4 o4 = iF2     oF2 = i1

level 3 o5 = i6 o6 = iI          oI

(8.170)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF1, RBF2 and RBI in the FF part of the 
system as well as the appearance of the new interconnection variables iF1,
oF1, iF2, oF2, iI, oI. In this context, Eq. (8.169) shows that the equivalent MRB 
system has three inputs (i1, i3, i5) and three outputs (oF1, oF2, oI). In addition, 
Eq. (8.170) shows that the output o1 from RB1 is the same as the input i2 to 
RB2, the output o3 from RB3 is the same as the input i4 to RB4, the output o5

from RB5 is the same as the input i6 to RB6, the output o2 from RB2 is the 
same as the input iF1 to RBF1, the output o4 from RB4 is the same as the input 
iF2 to RBF2, the output o6 from RB6 is the same as the input iI to RBI, whereas 
the output oF1 from RBF1 is the same as the input i5 to RB5 and the output oF2

from RBF2 is the same as the input i1 to RB1.
The equivalent MRB system can be further transformed into an 

equivalent SRB system with a rule base RBE which is derived from Eq. 
(8.171).

  RBE = (RB1 + RB3+ RB5) * (RB2 + RB4+ RB6) * (RBF1 + RBF2+ RBI) (8.171)

The equivalent SRB system is presented by the following matrix: 

level/layer         layer 1 

                                      level 1 RBE, i1, i3, i5, oF1, oF2, oI

(8.172)
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The output-input interconnections for this SRB system are given by the 
matrix:

level/layer         layer 1 

                                     level 1 oF1 = i5

                           oF2 = i1

                   oI

(8.173)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby for each of the fuzzy rules the linguistic values of the output oF1

are fed back unchanged into the input i5 and the linguistic values of the 
output oF2 are fed back unchanged into the input i1. In this case, the rule 
base RBE must have a structure in accordance with Eqs. (8.174)–(8.175).

RB
E
: i

1
i

3
 i

5
/ o

F1
o

F2
o

I
     111    112      121    122      211    212      221    222 

                   111                  ?       ?           0       0           0       0           0       0
                   112                  0       0           0       0           ?       ?           0       0 

                   121                  ?       ?           0       0            0       0           0       0
                   122                  0       0           0       0            ?       ?           0       0

                   211                  0       0           ?       ?            0       0           0       0
                   212                  0       0           0       0            0       0          ?       ?         

                   221                  0       0           ?       ?            0       0           0       0
                   222                  0       0           0       0            0       0           ?       ?

(8.174)

RBE: {(111, 111)?, (111, 112)?, (112, 211)?, (112, 212)?,

                    (121, 111)?, (121, 112)?, (122, 211)?, (122, 212)?,

                    (211, 121)?, (211, 122)?, (212, 221)?, (212, 222)?,

                (221, 121)?, (221, 122)?, (222, 221)?, (222, 222)?}

(8.175)

Example 8.30 
A MRB system with crossed non-symmetric bottom-upward feedback 

involving six rule bases in parallel and sequence is presented by the 
following matrix:

level/layer        layer 1            layer 2 

                          level 1 RB1, i1, o1 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i4, o4

level 3 RB5, i5, o5 RB6, i6, o6

(8.176)
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The output-input interconnections for this MRB system are given by the 
matrix:

level/layer         layer 1        layer 2 

                            level 1 o1 = i2 F1(o2)= i5

level 2 o3 = i4 o4

level 3 o5 = i6 F2(o6)= i3

i

i i 1

RB1 is fed forward unchanged into the input i2 to RB2, the output o3 from RB3

is fed forward unchanged into the input i4 to RB4, the output o5 from RB5 is
6 6 2

RB2 is mapped by the FB  function F1 onto the input i5 to RB5 and the output 
o6 from RB6 is mapped by the FB  function F2 onto the input i3 to RB3.

By introducing level 1 in a new layer 3 with a rule base RBF1 that 
replaces the FB function F1, introducing level 2 in layer 3 with an IRB RBI

representing a self standing output, as well as introducing level 3 in layer 3 
with a rule base RBF2 that replaces the FB  function F2, the initial MRB 
system with complex FB  is transformed into an equivalent MRB system 
with simple FB. This FB consists of two crossed simple loops embracing 
the three groups of rule bases standing in sequence (RB1, RB2, RBF1), 
(RB3, RB4, RBI) and (RB5, RB6, RBF2).

The equivalent MRB system is presented by the following matrix: 

level/layer         layer 1            layer 2            layer 3 

              level 1 RB1, i1, o1 RB2, i2, o2  RBF1, iF1, oF1

level 2 RB3, i3, o3        RB4, i4, o4 RBI, iI, oI

level 3 RB5, i5, o5        RB6, i6, o6 RBF2, iF2, oF2

(8.178)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                   level 1 o1 = i2 o2 = iF1 oF1= i5

level 2 o3 = i4 o4 = iI           oI

level 3 o5 = i6 o6 = iF2        oF2= i3

(8.179)

Equation (8.176) shows that RB , i = 1,6 have one input and one output 

fed forward unchanged into the input i  to RB , whereas the output o from

each (i , o , i = 1,6). In addition, Eq. (8.187) shows that the output o from

(8.177)
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The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF1, RBI and RBF2 in the FF  part of the 
system as well as the appearance of the new interconnection variables iF1,
oF1, iI, oI, iF2, oF2. In this context, Eq. (8.178) shows that the equivalent MRB 
system has three inputs (i1, i3, i5) and three outputs (oF1, oI, oF2). In addition, 
Eq. (8.179) shows that the output o1 from RB1 is the same as the input i2 to 
RB2, the output o3 from RB3 is the same as the input i4 to RB4, the output o5

from RB5 is the same as the input i6 to RB6, the output o2 from RB2 is the 
same as the input iF1 to RBF1, the output o4 from RB4 is the same as the input 
iI to RBI, the output o6 from RB6 is the same as the input iF2 to RBF2, whereas 
the output oF1 from RBF1 is the same as the input i5 to RB5, and the output oF2

from RBF2 is the same as the input i3 to RB3.
The equivalent MRB system can be further transformed into an 

equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.180). 

  RBE = (RB1 + RB3+ RB5) * (RB2 + RB4+ RB6) * (RBF1 + RBI+ RBF2) (8.180)

The equivalent SRB system is presented by the following matrix: 

level/layer         layer 1 

                                     level 1 RBE, i1, i3, i5, oF1, oI, oF2

(8.181)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer         layer 1 

                                      level 1 oF1 = i5
                   oI

                           oF2 = i3

(8.182)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby for each of the fuzzy rules the linguistic values of the output oF1

are fed back unchanged into the input i5 and the linguistic values of the 
output oF2 are fed back unchanged into the input i3. In this case, the rule 
base RBE must have a structure in accordance with Eqs. (8.183)–(8.184).

RB
E
: i

1
i

3
 i

5
/ o

F1
o

I
o

F2
     111    112      121    122      211    212      221    222 

                   111                    ?       0           ?       0           0       0           0       0
                   112                    0       0           0       0           ?       0           ?       0 

                   121                    0       ?           0       ?            0       0           0       0
                   122                    0       0           0       0            0        ?            0       ?

(8.183)

                   211                    ?       0           ?       0            0       0           0       0
                   212                    0       0           0       0            ?       0           ?       0

                   221                    0       ?           0       ?            0       0           0       0
                   222                    0       0           0       0            0       ?           0       ?



244     8 Formal Transformation of Feedback Rule Bases 

RBE: {(111, 111)?, (111, 121)?, (112, 211)?, (112, 221)?,

                    (121, 112)?, (121, 122)?, (122, 212)?, (122, 222)?,

                    (211, 111)?, (211, 121)?, (212, 211)?, (212, 221)?,

                (221, 112)?, (221, 122)?, (222, 212)?, (222, 222)?}

(8.184)

Example 8.31 
A MRB system with crossed non-symmetric top-downward feedback 

involving six rule bases in parallel and sequence is presented by the 
following matrix:

level/layer         layer 1             layer 2 

                           level 1 RB1, i1, o1 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i4, o4

level 3 RB5, i5, o5 RB6, i6, o6

(8.185)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer         layer 1        layer 2 

                            level 1 o1 = i2 F1(o2)= i3

level 2 o3 = i4 o4

level 3 o5 = i6 F2(o6)= i1

(8.186)

i

i i 1

RB1 is fed forward unchanged into the input i2 to RB2, the output o3 from RB3

is fed forward unchanged into the input i4 to RB4, the output o5 from RB5 is
fed forward unchanged into the input i6 to RB6, whereas the output o2 from
RB2 is mapped by the FB  function F1 onto the input i3 to RB3 and the output 

6 6 1 1

Equation (8.185) shows that RB , i = 1,6 have one input and one output 

o from RB is mapped by the FB  function F2 onto the input i to RB .

each (i , o , i = 1,6). In addition, Eq. (8.186) shows that the output o from
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By introducing level 1 in a new layer 3 with a rule base RBF1 that 
replaces the FB function F1, introducing level 2 in layer 3 with an IRB RBI

representing a self standing output, as well as introducing level 3 in layer 3 
with a rule base RBF2 that replaces the FB function F2, the initial MRB 
system with complex FB is transformed into an equivalent MRB system 
with simple FB. This FB consists of two crossed simple loops embracing 
the  three  groups  of  rule  bases  standing  in  a sequence (RB1, RB2, RBF1), 
(RB3, RB4, RBI) and (RB5, RB6, RBF2).

The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1             layer 2            layer 3 

              level 1 RB1, i1, o1 RB2, i2, o2  RBF1, iF1, oF1

level 2 RB3, i3, o3   RB4, i4, o4 RBI, iI, oI

level 3 RB5, i5, o5          RB6, i6, o6 RBF2, iF2, oF2

(8.187)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer         layer 1        layer 2        layer 3 

                  level 1 o1 = i2 o2 = iF1 oF1= i3

level 2 o3 = i4 o4 = iI          oI

level 3 o5 = i6 o6 = iF2         oF2= i1

(8.188)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF1, RBI and RBF2 in the FF part of the 
system as well as the appearance of the new interconnection variables iF1,
oF1, iI, oI, iF2, oF2. In this context, Eq. (8.187) shows that the equivalent MRB 
system has three inputs (i1, i3, i5) and three outputs (oF1, oI, oF2). In addition, 
Eq. (8.188) shows that the output o1 from RB1 is the same as the input i2 to 
RB2, the output o3 from RB3 is the same as the input i4 to RB4, the output o5

from RB5 is the same as the input i6 to RB6, the output o2 from RB2 is the 
same as the input iF1 to RBF1, the output o4 from RB4 is the same as the input 
iI to RBI, the output o6 from RB6 is the same as the input iF2 to RBF2, whereas 
the output oF1 from RBF1 is the same as the input i3 to RB3, and the output oF2

from RBF2 is the same as the input i1 to RB1.
The equivalent MRB system can be further transformed into an 

equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.189). 
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  RBE = (RB1 + RB3+ RB5) * (RB2 + RB4+ RB6) * (RBF1 + RBI+ RBF2) (8.189)

The equivalent SRB system is presented by the following matrix: 

level/layer         layer 1 

                                      level 1 RBE, i1, i3, i5, oF1, oI, oF2

(8.190)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 oF1 = i3

                oI

                        oF2 = i1

(8.191)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby for each of the fuzzy rules the linguistic values of the output oF1

are fed back unchanged into the input i3 and the linguistic values of the 
output oF2 are fed back unchanged into the input i1. In this case, the rule 
base RBE must have a structure in accordance with Eqs. (8.192)–(8.193).

RB
E
: i

1
i

3
 i

5
/ o

F1
o

I
o

F2
     111    112      121    122      211    212      221    222 

                   111                    ?       0           ?       0           0       0           0       0
                   112                    ?       0           ?       0           0       0           0       0 

                   121                    0       0           0       0           ?       0           ?       0
                   122                    0       0           0       0           ?       0           ?       0

                   211                    0       ?           0       ?           0       0           0       0
                   212                    0       ?           0       ?           0       0           0       0

                   221                    0       0           0       0           0       ?           0       ?
                   222                    0       0           0       0           0       ?           0       ?

(8.192)

RBE: {(111, 111)?, (112, 111)?, (111, 121)?, (112, 121)?,

                    (121, 211)?, (122, 211)?, (121, 221)?, (122, 221)?,

                    (211, 112)?, (212, 112)?, (211, 122)?, (212, 122)?,

                (221, 212)?, (222, 212)?, (221, 222)?, (222, 222)?}

(8.193)
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Example 8.32 
A MRB system with crossed non-symmetric bottom-downward feedback 

involving six rule bases in parallel and sequence is presented by the 
following matrix:

level/layer         layer 1            layer 2 

                         level 1 RB1, i1, o1 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i4, o4

level 3 RB5, i5, o5 RB6, i6, o6

(8.194)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer         layer 1        layer 2 

                           level 1 o1 = i2 o2

level 2 o3 = i4 F1(o4)= i5

level 3 o5 = i6 F2(o6)= i1

(8.195)

Equation (8.194) shows that RBi, i = 1,6 have one input and one output 
each (ii, oi, i = 1,6). In addition, Eq. (8.195) shows that the output o1 from
RB1 is fed forward unchanged into the input i2 to RB2, the output o3 from RB3

is fed forward unchanged into the input i4 to RB4, the output o5 from RB5 is
fed forward unchanged into the input i6 to RB6, whereas the output o4 from
RB4 is mapped by the FB  function F1 onto the input i5 to RB5 and the output 
o6 from RB6 is mapped by the FB  function F2 onto the input i1 to RB1.

By introducing level 1 in a new layer 3 with an IRB RBI   representing a 
self standing output, introducing level 2 in layer 3 with a rule base RBF1 that 
replaces the FB function F1, as well as introducing level 3 in layer 3 with a 
rule base RBF2 that replaces the FB function F2, the initial MRB system 
with complex FB is transformed into an equivalent MRB system with 

 groups  of rule bases  standing in sequence  (RB1, RB2, RBI), (RB3, RB4, RBF1)
 and

 
(RB5, RB6, RBF2).

The equivalent MRB system is presented by the following matrix: 

simple FB. This FB consists of two crossed simple loops embracing the three 
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level 2 RB3, i3, o3             RB4, i4, o4 RBF1, iF1, oF1

level 3 RB5, i5, o5            RB6, i6, o6 RBF2, iF2, oF2

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                  level 1 o1 = i2 o2 = iI oI

level 2 o3 = i4 o4 = iF1          oF1= i5

level 3 o5 = i6 o6 = iF2          oF2= i1

(8.197)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBI, RBF1 and RBF2 in the FF part of the 
system as well as the appearance of the new interconnection variables iI, oI,
i

F1, oF1, iF2, oF2. In this context, Eq. (8.196) shows that the equivalent MRB 
system has three inputs (i1, i3, i5) and three outputs (oI, oF1, oF2). In addition, 
Eq. (8.197) shows that the output o1 from RB1 is the same as the input i2 to 
RB2, the output o3 from RB3 is the same as the input i4 to RB4, the output o5

from RB5 is the same as the input i6 to RB6, the output o2 from RB2 is the 
same as the input iI to RBI, the output o4 from RB4 is the same as the input iF1

to RBF1, the output o6 from RB6 is the same as the input iF2 to RBF2, whereas 
the output oF1 from RBF1 is the same as the input i5 to RB5 and the output oF2

from RBF2 is the same as the input i1 to RB1.
The equivalent MRB system can be further transformed into an 

equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.198). 

  RBE = (RB1 + RB3+ RB5) * (RB2 + RB4+ RB6) * (RBI + RBF1+ RBF2) (8.198)

The equivalent SRB system is presented by the following matrix: 

level/layer         layer 1 

                                     level 1 RBE, i1, i3, i5, oI, oF1, oF2

(8.199)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1             layer 2            layer 3 

              level 1 RB1, i1, o1 RB2, i2, o2  RBI, iI, oI

(8.196)
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level/layer        layer 1 

                                      level 1 oI

                             oF1 = i5

                            oF2 = i1

(8.200)

The rule base RBE must satisfy the constraints imposed by the simple FB 
whereby for each of the fuzzy rules the linguistic values of the output oF1

are fed back unchanged into the input i5 and the linguistic values of the 
output oF2 are fed back unchanged into the input i1. In this case, the rule 
base RBE must have a structure in accordance with Eqs. (8.201)–(8.202).

RB
E
: i

1
i

3
 i

5
/ o

I
o

F1
o

F2
     111    112      121    122      211    212      221    222 

                   111                    ?       0           0       0           ?       0           0       0
                   112                    0       0           ?       0           0       0           ?       0 

                   121                    ?       0           0       0           ?       0           0       0
                   122                    0       0           ?       0           0       0           ?       0

                   211                    0       ?           0       0           0       ?           0       0
                   212                    0       0           0       ?           0       0           0       ?       

                   221                    0       ?           0       0           0       ?           0       0
                        222                    0       0           0       ?           0       0           0       ?

(8.201)

RBE: {(111, 111)?, (112, 121)?, (111, 211)?, (112, 221)?,

                    (121, 111)?, (122, 121)?, (121, 211)?, (122, 221)?,

                    (211, 112)?, (212, 122)?, (211, 212)?, (212, 222)?,

                (221, 112)?, (222, 122)?, (221, 212)?, (222, 222)?}

(8.202)

8.8  Transformation of Rule Bases with Multiple Feedback 

Multiple feedback is an extension of all other types of FB considered so far. 
In this sense, the latter are assumed to have only single-output-single-input
FB loops whereas multiple FB has single-output-multiple-input,

A fuzzy rule based system with multiple FB is constrained because the 

FB function onto a linguistic value of the associated input in the same rule. 
Depending on whether this FB function is an identity function or another 

multiple-output-single-input or multiple-output-multiple-input FB loops.
Therefore, multiple FB always comes from or goes to at least two rule bases

linguistic value of the corresponding outputs in each rule is mapped by a 

general cases with multiple FB are presented in Figs. 8.15–8.17. 
in parallel or sequence in the network structure of a MRB system. Three  
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type of function, these two linguistic values may be the same, i.e. multiple 
simple FB, or different, i.e. multiple complex FB.

                                                                                                                                                         

Fig.  8.15. Multiple feedback for rule bases in a single level 

Fig.  8.16. Multiple feedback for rule bases in a single layer 

The notion of multiple FB is illustrated by three basic examples with 
MRB systems. In particular, Example 8.33 illustrates multiple FB from one 
to another couple of rule bases such that all rule bases are standing in 
sequence in a single level. Example 8.34 describes multiple FB from one to 
another couple of rule bases such that all rule bases are standing in parallel 
in a single layer.  Finally, Example 8.35 describes multiple FB from one to 
another couple of rule bases such that the rule bases in each couple are 

FRB

FRB
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standing in sequence in a level different from the level of the other couple 
but also in parallel with respect to the rule bases in the other couple.

                                                                                                                                        

Fig.  8.17. Multiple feedback for rule bases in different levels and layers 

All examples consider non-identity type of FB because identity FB cases 

two-output-single-input FB. 
The procedure described in Examples 8.33–8.35 starts with a MRB 

system whose FB function is replaced by a corresponding rule base in the 
FF path, as described in Sect. 8.3. Then, the resultant MRB system is 
transformed into an equivalent SRB system by means of appropriate 
merging manipulations. Finally, the rule base of the equivalent SRB system 
is checked to ensure that any FB constraints are met. 

Example 8.33 
A MRB system with multiple FB from and to rule bases in sequence in a 

single level is presented by the following matrix:

level/layer        layer 1            layer 2                  layer 3          layer 4 

   level 1 RB1, i1, o1 RB2, i21, i22, o2 RB3, i3, o31, o32 RB4, i4, o4

(8.203)

The output-input interconnections for this MRB system are given by the 
matrix:

FRB

would be quite easy to deal with. Also, all examples consider two-output-two-input
FB, which is a straightforward extension of single-output-two-input or 
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level/layer        layer 1        layer 2        layer 3        layer 4 

       level 1 o1 = i21 o2 = i o31 = i4 F(o4)= i1

                                                                   F(o32) = i1           F(o4) = i22

                                              F(o 32)= i22

(8.204)

Equation (8.203) shows that RB1 has one input and one output (i1, o1), RB2

has two inputs and one output (i21, i22, o2), RB3 has one input and two outputs 
(i3, o31, o32), whereas RB4 has one input and one output (i4, o4). In addition, 
Eq. (8.204) shows that the output o1 from RB1 is fed forward unchanged into 
the input i21 to RB2, the output o2 from RB2 is fed forward unchanged into the 
input i3 to RB3, the output o31 from RB3 is fed forward unchanged into the 

4 4 3 4 4

are mapped by the FB  function F onto the input i1 to RB1 and the input i22 to
RB2.

By introducing level 1 in a new layer 5 with a rule base RBF that replaces 
the FB function F, introducing level 2 in layer 1 with a rule base RBI1

representing a self standing input, as well as introducing level 2 in layer 4 
I2

with simple FB. This FB consists of two nested simple loops whereby the 
I1 2 3 I2 F

the outer loop embraces the sequence of rule bases RB1, RB2, RB3, RB4, RBF.
The equivalent MRB system is presented by the following matrix: 

level/layer   layer 1   layer 2         layer 3             layer 4      layer 5 

  level 1 RB1,i1,o1   RB2,i21,i22,o2   RB3,i3,o31, o32 RB4,i4,o4 RBF,iF1,oF2,iF1,oF2

level 2 RBI1,iI1,oI1 RBI2,iI2,oI2

(8.205)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3        layer 4         layer 5 

      level 1 o1 = i21 o2 = i3 o31 = i4 o4 = iF1 oF1 = i1

                                                              o32 = iI2 oF2 = iI1

level 2 oI1 = i22 oI2 = iF2

(8.206)

The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF, RBI1 and RBI2 in the FF part of the 
system as well as the appearance of the new interconnection variables iF1, iF2,
oF1, oF2, iI1, oI1, iI2, oI2. In this context, Eq. (8.205) shows that the equivalent 

3

input i  to RB , whereas the outputs o from RB  and the output o from RB
32

system with complex FB is transformed into an equivalent MRB system 

inner loop embraces the sequence of rule bases RB , RB , RB , RB , RB  and 

with a rule base RB  representing a  identity partial  line, the initial MRB 
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MRB system has two inputs (i1, iI1) and two outputs (oF1, oF2). In addition, 
Eq. (8.206) shows that the output o1 from RB1 is the same as the input i21 to 
RB2, the output oI1 from RBI1 is the same as the input i22 to RB2, the output o2

from RB2 is the same as the input i3 to RB3, the output o31 from RB3 is the 
same as the input i4 to RB4, the output o32 from RB3 is the same as the input iI2

to RBI2, the output o4 from RB4 is the same as the input iF1 to RBF, the output 
oI2  from RBI2 is the same as the input iF2 to RBF, whereas the output oF1 from
RBF is the same as the input i1 to RB1 and the output oF2 from RBF is the same 
as the input iI1 to RBI1.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.207). 

  RBE = (RB1 + RBI1) * RB2 * RB3 * (RB4 + RBI2) * RBF (8.207)

The equivalent SRB system is presented by the following matrix: 

level/layer         layer 1 

                                      level 1 RBE, i1, iI1, oF1, oF2

(8.208)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 oF1 = i1

                          oF2 = iI1

(8.209)

The rule base RBE must satisfy the constraints imposed by the simple 
FB whereby for each of the fuzzy rules the linguistic values of the output 
oF1 are fed back unchanged into the input i1 and the linguistic values of 
the output oF2 are fed back unchanged into the input iI1. In other words, the 
rule base RBE must have the same structure as the rule base RBE from
Example 8.19, as specified by Eqs. (8.102)–(8.103). 

Example 8.34 
A MRB system with multiple FB  from and to rule bases in parallel in a 

single layer is presented by the following matrix:

level/layer          layer 1 

                                     level 1 RB1, i1, o1

                                     level 2 RB2, i2, o2

(8.210)

level 3 RB3, i3, o3

                                    level 4 RB4, i4, o4
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The output-input interconnections for this MRB system are given by the 
matrix:

level/layer         layer 1 

                                     level 1 F(o1)= i3

                               F(o1)= i4

                                     level 2 F(o2)= i3

                               F(o2)= i4

level 3 o3

level 4 o4

(8.211)

Equation (8.210) shows that RBi, i = 1,4 have one input and one output 
each (ii, oi, i = 1,4). In addition, Eq. (8.211) shows that the output o1 from
RB1 and the output o2 from RB2 are mapped by the FB  function F onto the 
input i3 to RB3 and the input i4 to RB4.

By moving RB3 from level 3 of layer 1 to level 1 of a new layer 3 and 
removing level 3 from layer 1, moving RB4 from level 4 of layer 1 to level 2 
of layer 3 and removing level 4 from layer 1, as well as introducing level 1 
in a new layer 2 with a rule base RBF that replaces the FB function F, the 
initial MRB system with complex FB is transformed into an equivalent 
MRB system without FB. This system consists of two groups of rule bases 
standing in sequence, i.e. (RB1, RBF, RB3) and (RB2, RBF, RB4).

The equivalent MRB system is presented by the following matrix: 

level/layer        layer 1            layer 2                           layer 3 

        level 1 RB1, i1, o1       RBF, iF1, iF2, oF1, oF2            RB3, i3, o3

level 2 RB2, i2, o2 RB4, i4, o4

(8.212)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1        layer 2        layer 3 

                   level 1 o1 = iF1 oF1 = i3 o3

                            oF2 = i4

level 2 o2 = iF2 o4

(8.213)
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The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF in the FF part of the system as well 
as the appearance of the new interconnection variables iF1, iF2, oF1, oF2. In this 
context, Eq. (8.212) shows that the equivalent MRB system has two inputs 
(i1, i2) and two outputs (o3, o4). In addition, Eq. (8.213) shows that the output 
o1 from RB1 is the same as the input iF1 to RBF, the output o2 from RB2 is the 
same as the input iF2 to RBF, the output oF1 from RBF is the same as the input 
i3 to RB3 and the output oF2 from RBF is the same as the input i4 to RB4.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.214). 

  RBE = (RB1 + RB2) * RBF * (RB3 + RB4) (8.214)

The equivalent SRB system is presented by the following matrix: 

level/layer         layer 1 

                                      level 1 RBE, i1, i2, o3, o4

(8.215)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                      level 1 o3

                    o4

(8.216)

Due to the lack of FB in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

Example 8.35 
A MRB system with multiple FB from rule bases in sequence in one 

level to rule bases in sequence in another level is presented by the following
matrix:

     level/layer         layer 1            layer 2           layer 3 

          level 1 RB1, i1,o11, o12 RB2, i2, o2

level 2 RB3, i3, o3 RB4, i41, i42, o4

(8.217)
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The output-input interconnections for this MRB system are given by the 
matrix:

level/layer        layer 1         layer 2            layer 3 

                level 1 o11 = i2

F(o12)= i3 F(o )= i
                                                            F(o12)= i41

level 2 o3 = i42 o4

(8.218)

Equation (8.217) shows that RB1 has one self standing input and two 
outputs (i1, o11, o12), 2 2 2 3

input and one output (i3, o3), whereas RB4 has two inputs and one self 
standing output (i41, i42, o4). In addition, Eq. (8.218) shows that the output o3

from RB3 is fed forward unchanged into the input i42 to RB4, the output o11

from RB1 is fed forward unchanged into the input i2 to RB2, whereas the 
output o12 from RB1 and the output o2 from RB2 are mapped by the FB  
function F onto the input i3 to RB3 and the input i41 to RB4.

By moving RB1 from level 1 of layer 2 to level 1 of layer 1, moving RB2

from level 1 of layer 3 to level 1 of layer 2, moving RB3 from level 2 of 
layer 1 to level 2 in a new layer 4, moving RB4 from level 2 of layer 2 to 
level 1 in a new layer 5, introducing in level 1 of layer 3 a rule base RBF

that replaces the FB function F, as well as introducing a rule base RBI1 in 
level 2 of layer 2 and a rule base RBI2 in level 1 of layer 4 representing 

identity partial  lines, the initial MRB system with complex FB  is 
transformed into an equivalent MRB system without FB. This system 
consists of two groups of rule bases standing in sequence, i.e.  

 (RB1, RB2, RBF, RBI2, RB4) and (RB1, RBI1, RBF, RB3, RB4).
The equivalent MRB system is presented by the following matrix: 

level/layer    layer 1             layer 2      layer 3                    layer 4        layer 5 

    level 1 RB
1
,i

1
,o

11
,o

12
  RB

2
,i

2
,o

2
      RB

F
,i

F1
,i

F2
,o

F1
,o

F2
       RB

I2
,i

I2
,o

I2
     RB

4
,i

41
,i

42
,o

4

level 2 RB
I1
,i

I1
,o

I1
                                    RB

3
,i

3
,o

3

(8.219)

The output-input interconnections for this MRB system are given by the 
matrix:

level/layer         layer 1        layer 2        layer 3        layer 4        layer 5 

   level 1 o11 = i2 o2 = iF1 oF1 = iI2 oI2 = i41 o4

o12 = iI1 oF2 = i3

level 2 oI1 = iF2 o3 = i42

(8.220)

F(o )= i
2

2 41

3

RB has one input and one output  (i , o ), RB  has one 
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The transformation of the initial MRB system into an equivalent MRB 
system has led to the appearance of RBF, RB  and RB in the FF part of the 
system as well as the appearance of the new interconnection variables iF1, iF2,
oF1, oF2, iI2, oI2, iI1, oI1. In this context, Eq. (8.219) shows that the equivalent 
MRB system has one inputs (i1) and one output (o4). In addition, Eq. (8.220) 
shows that the output o11 from RB1 is the same as the input i2 to RB2, the
output o12 from RB1 is the same as the input iI1 to RBI1, the output o2 from RB2

is the same as the input iF1 to RBF, the output oI1 from RBI1 is the same as the 
input iF2 to RBF, the output oF1 from RBF is the same as the input iI2 to RBI2,
the output oF2 from RBF is the same as the input i3 to RB3, the output oI2  from
RBI2 is the same as the input i41 to RB4 and the output o3 from RB3 is the 
same as the input i42 to RB4.

The equivalent MRB system can be further transformed into an 
equivalent SRB system with a rule base RBE which is derived from 
Eq. (8.221). 

  RBE = RB1 * (RB2 + RBI1) * RBF * (RBI2 + RB3) * RB4 (8.221)

The equivalent SRB system is presented by the following matrix: 

level/layer         layer 1 

                                      level 1 RBE, i1, o4

(8.222)

The output-input interconnections for this SRB system are given by the 
matrix:

level/layer        layer 1 

                                       level 1 o4

(8.223)

Due to the lack of FB  in the equivalent SRB system, its rule base RBE

may have an arbitrary structure.

8.9  Feedback Rule Base Design 

Sections 8.2–8.8 consider FB interconnections in a MRB system in the 
context of analysis whereby all FB loops are given and we have to study the 
system for the purpose of formal transformation. In this case, we have to 
ensure that the rule base RBE of the equivalent SRB system does not violate 
the constraints imposed by the FB function F.

I2 I1
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with specific features from scratch or by expanding an existing fuzzy 
system. In either case, we may have to derive a FB rule base RBF

representing the FB interconnections. Therefore, RBF must guarantee that 
the rule base RBE of the equivalent SRB system does not violate the 
constraints imposed by the FB. 

In general, the FRB design problem can be presented by the equation 

  RBG * RBF = RBE (8.224)

where RBG is the given rule base for an existing fuzzy system, RBE is the 
ERB  for the expanded fuzzy system and RBF is the FB  rule base, as shown 
in Fig. 8.18. In this case, RBG is known and it reflects the features of the 
existing fuzzy system that we want to expand, RBE is also known and it 
reflects the features of the target fuzzy system into which we want to 
expand the existing system, whereas RBF is unknown and it reflects the FB 
interconnections in the target fuzzy system.

RBE

         

Fig.  8.18. Feedback rule base design 

In other words, we have to solve the Boolean matrix equation (8.224) 
with respect to the unknown rule base RBF. In this case, the three rule bases 
will have the form 

           e11 e12 ... e1c

                                    RBE:    e21 e22 ... e2c

                                            .…………  
                                              ea1 ea2 ... eac

(8.225)

             g11 g12 ... g1b

                                     RBG:   g21 g22 ... g2b

                                            .………….  
                                             ga1 ga2 ... gab

(8.226)

RBG

RBF

However, in the context of design we may have to build a MRB system 
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            f11 f12 ... f1c

                                    RBF:     f21 f22 ... f2c

                                           ………… 
                                               fb1 fb2 ... fbc

(8.227)

where a is the number of permutations of linguistic values of inputs for RBG

and RBE, c is the number of permutations of linguistic values of outputs for 
RBF and RBE, whereas b is the number of permutations of linguistic values 
of outputs for RBG and the number of permutations of linguistic values of 
inputs for RBF.

On the basis of Eqs. (8.225)–(8.227), the Boolean matrix equation 
(8.224) can be presented in the expanded form 

g11 . f11 + g12 . f21+…+ g1b . fb1= e11

                       .……………………………….. 
                        ga1 . f11 + ga2 . f21+…+ gab . fb1= ea1

                         .……………………………….. 

g11 . f1c + g12 . f2c+…+ g1b . fbc= e1c

                      
                         ga1 . f1c + ga2 . f2c+…+ gab . fbc = eac

(8.228)

with c systems of Boolean equations whereby each of these systems 
consists of a equations with b unknowns. 

In this case, a unique solution to Eq. (8.228) would imply the existence 
of only one FB  rule base RBF whereas a non-unique solution would imply 
the existence of more than one FB  rule bases. Also, the lack of solution 
would imply the non-existence of a FB rule base.

The derivation of a FB rule base RBF with a specific structure is required 
only when the initial system with complex FB is transformed into an 
equivalent system with simple FB. Otherwise, i.e. when the initial system 
with complex FB is transformed into an equivalent system without FB, the 

F

The concept of FB rule base design is illustrated further by

derivation procedure is irrelevant because the  FB  rule base  RB  may  have 
an arbitrary structure.

Examples 8.36–8.41 which are based on Examples 8.7–8.12. The examples 
are fairly simple but quite representative and therefore an extension to more 
complex cases would be straightforward. 

  .……………………………….. 
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Example 8.36 
This example is based on the 1 1 rule base RB from Example 8.7. In this 

case, RB is the given rule base for the existing fuzzy system. This rule base 
is known and it is represented by Eqs. (8.13)–(8.16). RBE is the ERB for the 
expanded fuzzy system, which is also known. This rule base is represented 
by Eqs. (8.18)–(8.19) and its structure is in accordance with Eqs. (8.1)–(8.2)

F

be derived from the following Boolean matrix equation: 

  RB* RBF = RBE (8.229) 

Equation (8.229) is of the same type as Eq. (8.224) and can be solved 
using Eqs. (8.225)–(8.228). 

Example 8.37 
This example is based on the 2×1 rule base RB from Example 8.8. In 

this case, RB is the given rule base for the existing fuzzy system. This rule 
base is known and it is represented by Eqs. (8.20)–(8.23). RBE is the ERB 
for the expanded fuzzy system, which is also known. This rule base is 
represented by Eqs. (8.25)–(8.26) and its structure is in accordance with 
Eqs. (8.3)–(8.4) from Example 8.2. RBF is the FB rule base, which is 
unknown and can be derived from the following Boolean matrix equation: 

  RB* RBF = RBE (8.230) 

Equation (8.230) is of the same type as Eq. (8.224) and can be solved 
using Eqs. (8.225)–(8.228). 

Example 8.38 
This example is based on the 1x2 rule base RB from Example 8.9. In this 

case, RB is the given rule base for the existing fuzzy system. This rule base 
is known and it is represented by Eqs. (8.27)–(8.30). RBE is the ERB for the 
expanded fuzzy system, which is also known. This rule base is represented 

from Example 8.3. RBF

RB * (RBI + RBF) = RBE  (8.231) 

Equation (8.231) is not of the same type as Eq. (8.224) and has to be 
simplified by separating the FB  loop before it can be solved. In particular, 
Eq. (8.231) can be decomposed into the following two Boolean matrix 
equations

×

from Example 8.1. RB is the FB rule base, which is unknown and can 

by Eqs. (8.32)–(8.33) and its structure is in accordance with Eqs. (8.5)–(8.6)
is the FB rule base, which is unknown and is part 

of the following Boolean matrix equation:
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RB1 * RBI = RBE1 (8.232)

  RB2 * RBF = RBE2 (8.233)

where the rule bases RB1 and RB2 are the product rule bases from the output 
slitting of RB, i.e. RB = RB1:RB2.

Equations (8.232)–(8.233) show that the ERB  RBE from Eq. (8.231) has 
been replaced by the two rule bases RBE1 and RBE2 such that the FB  rule 
base RBF appears only in Eq. (8.233). In this case, RBE1 is obtainable from 
Eq. (8.232) by merging RB1 and RBI horizontally, whereas RBE2 has a 
structure in accordance with Eqs. (8.1)–(8.2) from Example 8.1 and is used 
for the derivation of RBF from Eq. (8.233). The latter is of the same type as 
Eq. (8.224) and therefore can be solved using Eqs. (8.225)–(8.228). 

Example 8.39 
This example is based on the 2×2 rule base RB from Example 8.10. In 

this case, RB is the given rule base for the existing fuzzy system. This rule 
base is known and it is represented by Eqs. (8.34)–(8.37). RBE is the ERB 
for the expanded fuzzy system, which is also known. This rule base is 
represented by Eqs. (8.39)–(8.40) and its structure is in accordance with 
Eqs. (8.7)–(8.8) from Example 8.4. RBF is the FB rule base, which is 
unknown and is part of the following Boolean matrix equation:

RB * (RB + RB ) = RBE  (8.234) 

Equation (8.234) is not of the same type as Eq. (8.224) and has to be 
simplified by separating the FB  loop before it can be solved. In particular, 
Eq. (8.234) can be decomposed into the following two Boolean matrix 
equations

RB  * RB  = RBE1 (8.235)

  RB2 * RBI = RBE2 (8.236)

where the rule bases RB1 and RB2 are the product rule bases from the output 
slitting of RB, i.e. RB = RB1:RB2.

Equations (8.235)–(8.236) show that the ERB  RBE from Eq. (8.234) has 
been replaced by the two rule bases RBE1 and RBE2 such that the FB  rule 
base RBF appears only in Eq. (8.235). In this case, RBE2 is obtainable from 
Eq. (8.236) by merging RB2 and RBI horizontally, whereas RBE1 has a 
structure in accordance with Eqs. (8.3)–(8.4) from Example 8.2 and is used 

F I

F I
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for the derivation of RBF from Eq. (8.235). The latter is of the same type as 
Eq. (8.224) and therefore can be solved using Eqs. (8.225)–(8.228). 

Example 8.40 
This example is based on the 2×2 rule base RB from Example 8.11. In 

this case, RB is the given rule base for the existing fuzzy system. This rule 
base is known and it is represented by Eqs. (8.41)–(8.44). RBE is the ERB 
for the expanded fuzzy system, which is also known. This rule base is 
represented by Eqs. (8.46)–(8.47) and its structure is in accordance with 
Eqs. (8.9)–(8.10) from Example 8.5. RBF is the FB rule base, which is 
unknown and is part of the following Boolean matrix equation:

RB * (RBI + RBF) = RBE  (8.237) 

Equation (8.237) is not of the same type as Eq. (8.224) and has to be 
simplified by separating the FB  loop before it can be solved. In particular, 
Eq. (8.237) can be decomposed into the following two Boolean matrix 
equations

RB1 * RBI = RBE1 (8.238)

  RB2 * RBF = RBE2 (8.239)

where the rule bases RB1 and RB2 are the product rule bases from the output 
slitting of RB, i.e. RB = RB1:RB2.

Equations (8.238)–(8.239) show that the ERB  RBE from Eq. (8.237) has 
been replaced by the two rule bases RBE1 and RBE2 such that the FB  rule 
base RBF appears only in Eq. (8.239). In this case, RBE1 is obtainable from 
Eq. (8.238) by merging RB1 and RBI horizontally, whereas RBE2 has a 
structure in accordance with Eqs. (8.240)–(8.241) further below and is used 
for the derivation of RBF from Eq. (8.239). The latter is of the same type as 
Eq. (8.224) and therefore can be solved using Eqs. (8.225)–(8.228). 

RBE2: i1 i2 / oF     1     2     3 

                                              11        ?     0     0
                                              12        ?     0     0 
                                              13        ?     0     0 

                                              21         0     ?     0
                                              22         0     ?     0 
                                              23         0     ?     0 

(8.240)

                                               31         0     0     ?
                                               32         0     0     ? 
                                               33         0     0     ? 
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RBE2: {(11, 1)?, (12, 1)?, (13, 1)?,

                                        (21, 2)?, (22, 2)?, (23, 2)?,

                                        (31, 3)?, (32, 3)?, (33, 3)?}

(8.241)

Example 8.41 
This example is based on the 2×2 rule base RB from Example 8.12. In 

this case, RB is the given rule base for the existing fuzzy system. This rule 
base is known and it is represented by Eqs. (8.48)–(8.51). RBE is the ERB 
for the expanded fuzzy system, which is also known. This rule base is 
represented by Eqs. (8.53)–(8.54) and its structure is in accordance with 
Eqs. (8.11)–(8.12) from Example 8.6. RBF is the FB rule base, which is 
unknown and is part of the following Boolean matrix equation:

RB * (RBF1 + RBF2) = RBE  (8.242) 

Equation (8.242) is not of the same type as Eq. (8.224) and has to be 
simplified by separating the two FB  loops from each other before it can be 
solved. In particular, Eq. (8.242) can be decomposed into the following two 
Boolean matrix equations 

RB1 * RBF1 = RBE1 (8.243)

  RB2 * RBF2 = RBE2 (8.244)

where the rule bases RB1 and RB2 are the product rule bases from the output 
slitting of RB, i.e. RB = RB1:RB2.

Equations  (8.243)–(8.244) show that the ERB  RBE from Eq. (8.242) has 
been replaced by the two rule bases RBE1 and RBE2 such that the first FB  
rule base RBF1 appears only in Eq. (8.243) and the second FB  rule base 
RBF2 appears only in Eq. (8.244). In this case, RBE1 has the same structure 
as the rule base RBE1 from Example 8.39 and is used for the derivation of 
RBF1 from Eq. (8.243), whereas RBE2 has the same structure as the rule base 
RBE2 from Example 8.40 and is used for the derivation of RBF2 from 
Eq. (8.244). Eqs. (8.243)–(8.244) are both of the same type as Eq. (8.224) 
and therefore each of them can be solved using Eqs. (8.225)–(8.228). 
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8.10  Canonical Rule Base Networks 

The formal transformation process of MRB systems with FB considered in 
this chapter includes the following two main stages:

transformation of the initial MRB system with complex FB into an 
equivalent  MRB system with simple FB  or without FB, 
transformation of the equivalent MRB system into an equivalent 
SRB system with simple FB or without FB .  

In this context, the initial MRB system is in the form of an arbitrary rule 
base network (ARBN) such that individual rule bases reside in particular 
layers and levels of this network. The ARBN may include FF 
interconnections to subsequent layers as well as simple or complex FB 
interconnections to the same or preceding layers.

As opposed to the initial MRB system, the equivalent MRB system is in 
the form of a canonical rule base network (CRBN), which may include 
only FF interconnections and global simple FB interconnections from the 
last to the first layer. In this case, individual rule bases also reside in 
particular layers and levels of the CRBN but their location there is usually 
different from the associated location in the corresponding ARBN due to 
the rearrangement of layers and levels during the first stage of the 
transformation process. 

The second stage of the transformation process is based on repetitive 
manipulations for vertical and horizontal merging of rule bases. However, 
in the case of more complex topology of the FF interconnections in the 
CRBN, a few additional steps may be required before the equivalent MRB 
system can be transformed into an equivalent SRB system. This process is 
illustrated by Example 8.42 and Algorithm 8.1. 

Example 8.42
A MRB system is presented by the following matrix:

level/layer         layer 1                    layer 2 

                      level 1 RB1, i1, o11, o12 RB2, i21, i22, o2

level 2 RB3, i3, o31, o32 RB4, i41, i42, o4

(8.245)

The output-input interconnections for this MRB system are given by the 
matrix:
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level/layer        layer 1        layer 2 

                             level 1 o11 = i21 o2

         o12 = i41

level 2 o31 = i22 o4

   o32 = i42

(8.246)

The MRB system is in ARBN form, as shown in Fig. 8.19. 

                                    o11              i21

       i1                                                                           o2

                                        o12 i22

                                    o31 i41

       i3                                                                           o4

                                    o32              i42

Fig.  8.19. Multiple rule base system in arbitrary rule base network form 

This MRB system is with complex topology because of the crossing of 
the FF interconnections o12 = i41 and o31 = i22. In this case, it is not possible to 
merge horizontally the rule bases in the first layer RB1 and RB3 with the rule 
bases in the second layer RB1 and RB3. Therefore, it is necessary to convert 
this multiple rule base output (MRBO) system into a collection of 
equivalent single rule base output (SRBO) systems. If any of these SRBO 
systems are MO systems, i.e. with more than one output, they can be easily 
represented by a collection of equivalent SO systems, as described in Sect. 
2.3.

The following algorithm describes the process of converting the MRBO 
system from Eqs. (8.245)–(8.246) into a collection of equivalent SRBO 
systems:

       Algorithm 8.1 
1. Find rule bases RB11 and RB12 such that RB1 = RB11:RB12.
2. Find rule bases RB31 and RB32 such that RB3 = RB31:RB32.
3. Find a rule base RBE1 such that (RB11 + RB31)*RB2 = RBE1.
4. Find a rule base RBE2 such that (RB12 + RB32)*RB4 = RBE2.
5. Find the rule base RBE such that RBE1;RBE2 = RBE.

    RB4

    RB2

    RB3

    RB1
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In the above algorithm, RBE is the ERB for the MRBO system from 
Eqs. (8.245)–(8.246), whereas RBE1 and RBE1 are the ERBs for the two 
SRBO systems which are obtained as a result of the conversion of the 
MRBO system. In particular, steps 1-2 illustrate the output splitting of the 
rule bases RB1 and RB3 into the two couples of rule bases (RB11, RB12) and 
(RB31, RB32), steps 3-4 show the derivation of the two ERBs RBE1 and RBE2

by vertical and horizontal merging manipulations on the four new and two 
of the initial rule bases, whereas step 5 describes the output merging of RBE1

and RBE2 into RBE.

can be presented by the following matrix:

level/layer        layer 1              layer 2 

                         level 1 RB11, i1, o11 RB2, i21, i22, o2

                         level 2 RB12, i1, o12

                         level 3 RB31, i3, o31

level 4 RB32, i3, o32 RB4, i41, i42, o4

(8.247)

In this case, the output-input interconnections for this MRB system are 
given by the matrix: 

level/layer        layer 1        layer 2 

                            level 1 o11 = i21 o2

                            level 2 o12 = i41

level 3 o31 = i22

level 4 o32 = i42 o4     

(8.248)

The MRB system is in CRBN form, as shown in Fig. 8.20. 
The topology of CRBNs is described by a number of indicators, which 

provide useful information for the analysis and design of such networks. 
These indicators are as follows: 

in-degree and out-degree for a node, i.e. the number of inputs to 
and outputs from an individual rule base in the CRBN, 
overall in-degree and out-degree for a layer, i.e. the number of 
inputs to and outputs from the rule bases in a particular layer of 
the CRBN, 

On the basis of Algorithm 8.1, the MRB system from Eqs. (8.245)–(8.246)
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                                    o11              i21

        i1                                                                          o2

i22

        i1 o12

        i3 o31

i41

        i3                                                                          o4
                                    o32              i42

Fig.  8.20. Multiple rule base system in canonical rule base network form 

overall in-degree and out-degree for a level, i.e. the number of 
inputs to and outputs from the rule bases in a particular level of 
the CRBN, 
degree of completeness for a layer, i.e. the number of occupied 
level positions in a particular layer of the CRBN as a proportion 
of the overall number of level positions in this layer, 
degree of completeness for a level, i.e. the number of occupied 
layer positions in a particular level of the CRBN as a proportion 
of the overall number of layer positions in this level, 
overall degree of completeness for a CRBN, i.e. the number of 
occupied  positions as a proportion of the overall number of 
positions in the network. 

In general, FF interconnections in CRBNs can be classified as either 
local, i.e. to rule bases in the adjacent subsequent layer, or global, i.e. to 
rule bases in non-adjacent subsequent layers. However, global FF 
interconnections must be converted into local FF interconnections by 

    RB4

    RB2

   RB32

   RB11

   RB12

   RB31
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introducing IRBs in all unoccupied positions, which are part of self 
standing inputs and outputs as well as partial or total identity lines. This 
type of conversion is required for the derivation of the rule base for the 
equivalent SRB system and it can be done by horizontal splitting of any 
rule base into the same rule base and an IRB. 

8.11  Analysis of Transformation Techniques for Feedback Rule Bases 

Examples 8.1-8.42 from the previous sections provide a detailed insight 
into how FB interconnections in MRB systems can be dealt with for the 
purpose of formal transformation. In this case, the ultimate goal is to 
transform a fairly complex ARBN form of the initial system into a simpler 
CRBN form, which can be further transformed into an equivalent SRB 
system. Depending on the type of transformation approach used, i.e. 
analysis or synthesis, the equivalent SRB system is either checked to ensure 
that any constraints imposed by the FB interconnections are not violated or 
derived such that the structure of the FB interconnections is determined in 
advance with the same purpose, i.e. to ensure that any FB constraints are 
met.

As far as the overall study of formal transformation of MRB systems is 
concerned, Boolean matrices are a more suitable tool than binary relations 
and that is why the latter are marginalised in this chapter. For example, it is 
much easier to transform a MRB system from an ARBN form into a CRBN 
form and then transform the latter further into an equivalent SRB system 
using Boolean matrices rather than the corresponding binary relations. 

The transformation techniques with FF and FB rule bases have been 
demonstrated in the previous and the current chapter only in the context of 
qualitative complexity, i.e. for the purpose of improving the transparency 
and facilitating the interpretation of fuzzy systems. However, these 
transformation techniques can be also used in the context of quantitative 
complexity, i.e. to reduce the overall number of computations during 
the fuzzy inference process. A detailed study on this subject is presented in 
the next chapter. 
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9.1  Preliminaries on Rule Base Simplification 

As opposed to Chapters 4–8, which deal mainly with qualitative complexity 
in fuzzy systems, the current chapter is dedicated to the problem of 
quantitative complexity. However, the material presented here is a natural 
extension of the concepts introduced earlier in relation to qualitative 
complexity. In this context, the overall complexity management process in 
fuzzy systems has to be seen as a general framework whereby we first use 
formal presentation, manipulation and transformation techniques to address 
the qualitative complexity in fuzzy systems and then use formal 
simplification techniques to deal with the quantitative complexity. 

The underlying idea of formal simplification of fuzzy rule based systems 
is to remove all redundant operations during the stages of fuzzification, 
inference and defuzzification. This redundancy is usually caused by 
inconsistent and non-monotonic rules. Therefore, the formal simplification 
process has to identify such rules and remove them safely, i.e. without 
affecting the output from the fuzzy system. This approach is quite different 
from the available rule base reduction methods in the sense that it is aimed 
at reducing the quantitative complexity in fuzzy systems without 
compromising the quality of the solution. 

In order to identify the redundancy in a fuzzy rule based system, it is 
necessary to consider the stages of fuzzification, inference and 
defuzzification, as shown in Fig. 9.1. This consideration is done further in 
the current section whereby the inference stage is represented as a sequence 
of three substages – application, implication and aggregation. The consi-
derations presented are about SRB systems, which are either given as such 
or have been transformed from a MRB system using the techniques 
introduced in some of the previous chapters. These considerations describe 
MISO systems, which are either given as such or are a logically equivalent 
collection of MISO systems representing a MIMO system, as described in 
Sect. 2.3. 

The fuzzification stage in a fuzzy system maps the crisp value of each 
input to the system onto a fuzzy value by means of a fuzzy membership 
degree [58, 66]. This degree can be obtained from the fuzzy membership 
functions for the inputs to the fuzzy system. The considerations presented 
here are based on normal triangular fuzzy membership functions, which 
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have a unique maximum equal to 1 and appear to be most commonly used 
for the fuzzification stage in fuzzy systems due to their simplicity. 

                                            Crisp inputs 

Fuzzy system 

                                                                      Inference 

                                            Crisp outputs 

Fig.  9.1. Main operation stages and substages in a fuzzy system 

The fuzzy membership degree fps for an input can be obtained by the 
formula

fps = 0, if xps aps

fps = ( xps - aps ) / ( bps – aps ), if aps   xps bps

fps = ( cps – xps ) / ( cps – bps ), if bps   xps cps

fps = 0, if cps  xps

(9.1)

Fuzzification

Application

Implication

Aggregation

Defuzzification
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where xps, p=1,..,m, s=1,..,r is the continuous crisp value of the p-th input in 
the s-th rule of the fuzzy system and aps, bps, cps are the parameters of the 
triangular fuzzy membership function used for the fuzzification of this 
input. The fuzzy membership degree fps can take only values in the interval 
[0, 1] whereas xps can take any values within the crisp variation range for 
the input, i.e. the continuous universe of discourse. The values of the 
parameters aps, bps, cps must be also within this universe of discourse. In 
particular, aps is the point at which the membership function becomes 
greater than 0, bps is the point at which the membership function reaches its 
maximum at 1 and cps is the point at which the membership function 
becomes equal to 0 again. The symbol ‘/’ in Eq. (9.1) denotes arithmetic 
division and it is used mainly in this context in the current chapter. 

The application substage in a fuzzy system maps the fuzzy membership 
degrees of the inputs in each rule in the system onto a firing strength for 
this rule [58, 66]. The considerations presented here are based on CON 
fuzzy rule bases, i.e. rule bases with CON   antecedents. Such rule bases 
appear to be most commonly used in fuzzy systems as they allow the 
consideration of all possible permutations of linguistic values of inputs. 

The firing strength gs for a rule can be obtained by the formula

g1 = min ( f11 ,…, fm1 )

……………………

gr = min ( f1r ,…, fmr )

(9.2)

where fps, p = 1,..,m, s = 1,..,r is the fuzzy membership degree for the p-th
input in the s-th rule of the fuzzy system. Obviously, the firing strength gs

can take only values in the interval [0, 1]. 
The implication substage in a fuzzy system maps the firing strength for 

each rule of the system onto a fuzzy membership function for the output in 
this rule [58, 66]. The considerations presented here are based on horizontal 
truncation, which usually cuts the normal fuzzy triangular membership 
function for the output in each rule to a subnormal fuzzy trapezoidal 
membership function whose maximum is equal to the firing strength for 
this rule. This type of truncation is most commonly used for the implication 
substage in fuzzy systems due to its simplicity. 

The fuzzy membership function Fsq for an output is usually defined by 

Fsq = { f1sq / y1sq ,…, ftsq / ytsq } (9.3)

where fksq, k = 1,..,t, s = 1,..,r, q=1,..,n is the fuzzy membership degree for 
the k-th element from the discrete universe of discourse for the q-th output 
in the s-th rule of the fuzzy system, whereas yksq is the associated element 
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from this universe of discourse. As an exception, the ‘forward slash’ 
symbol ‘/’ in Eq. (9.3) denotes binary association, i.e. the fuzzy 
membership degree fksq is associated with the element yksq from the universe 
of discourse. 

When any of the subscripts in Eq. (9.3) are not quite relevant, they will 
be omitted in any further considerations of fksq and yksq for simplicity. This 

sq are mapped 
onto their fuzzy membership degrees fsq by the formula

fsq = 0, if ysq asq

fsq = ( ysq – asq ) / ( bsq – asq ), if asq   ysq bsq

fsq =  gs, if bsq   ysq csq

fsq = ( dsq – ysq ) / ( csq – bsq ), if csq   ysq dsq

fsq = 0, if dsq  ysq

(9.4)

where ysq, s = 1,..,r, q = 1,..,n is the discrete crisp value of the q-th output in 
the s-th rule of the fuzzy system and asq, bsq, csq, dsq are the parameters of the 
trapezoidal fuzzy membership function for this output obtained during the 
implication substage from the initial triangular fuzzy membership function 
for the output. The fuzzy membership degree fsq can take only values in the 
interval [0, 1] whereas ysq can take any values within the crisp variation 
range for the output, i.e. the discrete universe of discourse. The values of 
the parameters asq, bsq, csq, dsq must be also within this universe of discourse. 
In particular, asq is the point at which the membership function becomes 
greater than 0, bsq is the point at which the membership function becomes 
equal to its maximum gs, csq is the point at which the membership function 
becomes less than its maximum at gs and dps is the point at which the 
membership function becomes equal to 0 again. 

The aggregation substage in a fuzzy system maps the fuzzy membership 
functions for all rules in the system onto an aggregated fuzzy membership 
function representing the overall output for all the rules [58, 66]. The 
considerations presented here are based on DIS fuzzy rule bases, i.e. rule 
bases with DIS  rules. Such rule bases appear to be most commonly used in 
fuzzy systems as they are more realistic, i.e. they only assume that at least 
one rule is satisfied at a time.

The aggregated fuzzy membership function Fq for an output can be 
obtained by the formula

Fq = F1q  … Frq
(9.5)

 elements yapplies here to the subscript k and therefore the
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where Fsq, s = 1,..,r, q = 1,..,n is the fuzzy membership function for the q-th
output in the s-th rule of the fuzzy system. In this case, the symbol ‘ ’
denotes a ‘fuzzy set union operation’ that is applied by taking the minimum 
of the fuzzy membership degrees from the fuzzy membership functions for 
all rules. This minimum is taken with respect to the fuzzy membership 
degrees for all the elements from the discrete universe of discourse for this 
output.

The defuzzification stage in a fuzzy system maps the aggregated fuzzy 
membership function for an output in the system onto a crisp value from the 
universe of discourse for this output [58, 66]. This value is usually of 
continuous type, which implies that the associated discrete universe of 
discourse is mapped onto its continuous image. The considerations 
presented here are based the so-called ‘centroid method’ whereby the 
defuzzified value of the output is the centre of gravity for the aggregated 
fuzzy membership function for this output. This defuzzification method is 
most commonly used in fuzzy systems due to its applicability for any shape 
or type of aggregated fuzzy membership function for the output. 

The defuzzified value Dq for an output can be obtained by the formula

Dq = ( f1q . y1q+ … + ftq . ytq ) / ( f1q + … + ftq ) (9.6)

where fkq, k = 1,..,t, q = 1,..,n is the aggregated fuzzy membership degree 
for the k-th element from the discrete universe of discourse for the q-th
output of the fuzzy system, whereas ykq is the associated element from this 
universe of discourse. In this case, Eq. (9.6) represents fksq and yksq from Eq. 
(9.3) with the index s being omitted due to the fact that the fuzzy rules do 
not appear as variables during the defuzzification stage. Obviously, Dq can
take any values within the crisp variation range for the output, i.e. the so-
called continuous image of the discrete universe of discourse for this 
output. In Eq. (9.6), the symbol ‘.’ denotes arithmetic multiplication, the 
symbol ‘+’ denotes arithmetic addition and the symbol ‘/’ denotes again 
arithmetic division. 

Two formal simplification techniques are introduced in the following 
sections of this chapter. Both techniques are based on the abstract 
considerations of the stages of fuzzification, inference and defuzzification 
in fuzzy systems made so far. The techniques are illustrated by examples 
with SRB systems, which are either given as such or have been transformed 
from a MRB system using the techniques introduced in some of the 
previous chapters.

The examples in the next section describe SISO systems, which are either 
given as such or are part of a logically equivalent collection of SISO systems  
representing a SIMO system, as described in Sect. 2.3. The examples can be  

forward and therefore is not considered here. In the case of a MISO system, the 
extended  to incorporate MISO systems. This type of extension is straight-
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antecedent part of the rule base represents more than one input and this is 
the only difference in comparison to a rule base with one input.

What makes the examples distinctive is the number of fuzzy membership 
functions for the output and the number of rules in the fuzzy rule base. In 
this context, Examples 9.1–9.2 consider in some detail inconsistent rule 
bases whose outputs have three fuzzy membership functions each whereas 
Examples 9.3–9.12 deal briefly with inconsistent rule bases whose outputs 
have five fuzzy membership functions each. Similarly, Example 9.13 

of Inconsistent Rules 

The formal simplification technique introduced here is based on the idea of 
removing the inherent redundancy in an inconsistent fuzzy rule base. This 
type of redundancy is expressed by the presence of inconsistent rules and it 
can be removed by aggregating such rules with the aim of making the rule 
base consistent.

The overall process of aggregating inconsistent rules is illustrated by the 
following algorithm: 

Algorithm 9.1
1. Put all inconsistent rules in groups whereby the rules in each 

group have the same permutation of linguistic values of inputs 
and different permutations of linguistic values of outputs. 

2. For each group of rules, find a single equivalent rule whose 
effect on the defuzzified output is the same as the effect of all 
rules.

3. If it is not possible to apply step 2, then find a subset of 
equivalent rules whose effect on the defuzzified output is the 
same as the effect of the whole set of rules for this group. 

4. For each group of rules, keep either the single equivalent rule or 
the subset of equivalent rules and remove all other rules. 

It follows from Algorithm 9.1 that there may still be some inconsistency 
left in a fuzzy rule base after the completion of the aggregation process. It is 
suggested that such a rule base is left as it is rather than being generated 
again through a new modelling process. In other words, inconsistency is 
something natural in a fuzzy rule base and although it would be desirable to 
remove it, sometimes we may only be able to reduce it. Moreover, the 
quality compromising effect of any residual inconsistency on the 
defuzzified output would possibly be negligible compared to the time 

Example 9.14 deals briefly with a non-monotonic rule base with 27 rules. 

9.2  Rule Base Simplification by Aggregation 

considers in some detail a non-monotonic rule base with 20 rules whereas 
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consuming effect of a new modelling process which may lead again to an 
inconsistent rule base. 

Algorithm 9.1 describes the aggregation process for inconsistent rules 
but it does not say when this process can be applied with full success, i.e. 
without any residual inconsistency being left. In other words, the question 
is when it would be possible to aggregate all inconsistent rules from each 
group into a single equivalent rule. This would be possible if the following 
conditions are fulfilled with respect to the fuzzy membership functions for 
the output: 

the number of these fuzzy membership functions is odd, i.e. 
there is a fuzzy membership function in the middle, 
the fuzzy membership function in the middle is symmetrical, i.e. 
it has an axis of symmetry, 
each of the remaining fuzzy membership functions has a 
symmetrical image with respect to the axis of symmetry of 
another symmetrical fuzzy membership function. 

The above three conditions guarantee that the aggregation process will 
lead to a single equivalent rule for each group of inconsistent rules. In this 
case, the relative contribution of the single equivalent rule in each group to 
the defuzzified output would be the same as the relative contribution of the 
associated inconsistent rules in the group. Although the conditions may 
appear to be restrictive, they are actually not as most fuzzy systems meet 
these conditions anyway as part of the requirements for spreading the fuzzy 
membership functions for the output uniformly across its universe of 
discourse.

The implementation of Algorithm 9.1 can be done easily using Boolean 
matrices or binary relations, as shown by Algorithms 9.2–9.3. 

Algorithm 9.2 
1. Go through all the rows of the Boolean matrix from top to bottom, 

as described by the steps 2-6. 
2. Count the number of non-zero elements in the current row. 
3. If there is more than one non-zero element in the current row, go to 

step 4, otherwise move to the next row and go back to step 2. 
4. Moving from left to right in the current row, find all non-zero 

elements in odd columns and aggregate these elements into a single 
non-zero equivalent element, if possible, or alternatively, into a set 
of non-zero equivalent elements. 

5. Moving from left to right in the current row, find all non-zero 
elements in even columns and aggregate these elements into a 
single non-zero equivalent element, if possible, or alternatively, 
into a set of non-zero equivalent elements. 

6. 
otherwise stop. 
If there are any rows left, move to the next row and go back to step 2, 
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Algorithm 9.3 
1. Put all maplets from the binary relation into groups whereby the 

first element in all maplets from each group is the same but also 
different from the first element in any maplet from any other group. 

2. Go through all groups of maplets in an increasing order with 
respect to the first elements in the associated maplets, as described 
by the steps 3-7. 

3. Count the number of maplets in the current group of maplets. 
4. If there is more than one maplet in the current group, go to step 5, 

otherwise move to the next group of maplets and go back to step 3. 
5. Moving from left to right in the current group, find all maplets with 

an odd second element and aggregate these maplets into a single 
equivalent maplet, if possible, or alternatively, into a set of 
equivalent  maplets. 

6. Moving from left to right in the current group, find all maplets with 
an even second element and aggregate these maplets into a single 
equivalent maplet, if possible, or alternatively, into a set of 
equivalent maplets. 

7. If there are any groups left, move to the next group and go back to 
step 3, otherwise stop. 

 Algorithms 9.2–9.3 show that the process of aggregating inconsistent 
rules in a fuzzy system is equivalent to representing a one-to-many 
mapping as a one-to-one mapping. A theoretical justification of this 
representation based on the laws of Boolean logic is shown below. By 
definition, each ‘if-then’ rule in a fuzzy rule base is a logical implication 
whereby if the antecedent and the consequent part in the rule are true then 
the whole rule must be true.

Therefore, a group of inconsistent rules may be represented in the form 

If (A1s and … and Ams) then Cq1

or
                             ……………………………… 

or
                             If (A1s and … and Ams) then Cqz

(9.7)

where Aps= (ip is vip,s), p = 1,..,m and Cqz = (oq is voq,z), q = 1,..,n are the 
logical propositions describing the antecendent terms for the p-th input and 
the consequent term for the q-th output, respectively. In this case, s is a 

It is obvious from Algorithms 9.2–9.3 that a single non-zero equivalent element 
in a Boolean matrix or a single equivalent maplet in a binary relation represent 
a single equivalent rule in a fuzzy rule base. Likewise, a set of non-zero
equivalent elements in a Boolean matrix or a set of equivalent maplets in a 
binary relation represent a set of equivalent rules in the rule base. 
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label for the group being considered whereas z is the number of inconsistent 
rules in this group. 

Equation (9.7) may be rewritten in the following equivalent forms: 

[(A1s and … and Ams) imp Cq1] or … or [(A1s and … and Ams) imp Cqz] (9.8)

[not (A1s and … and Ams) or Cq1] or … or [not (A1s and … and Ams) or Cqz] (9.9)

[not (A1s and … and Ams)] or … or [not (A1s and … and Ams)] or 
(Cq1 or … or Cqz)

(9.10)

[not (A1s and … and Ams)] or (Cq1 or … or Cqz) (9.11) 

[not (A1s and … and Ams)] imp (Cq1 or … or Cqz) (9.12) 

If (A1s and … and Ams) then (Cq1 or … or Cqz) (9.13) 

So, the one-to-many mapping described by Eq. (9.7) has been 
represented equivalently as a one-to-one mapping described by Eq. (9.13). 
In this case, the z simple logical propositions Cq1 … Cqz in the consequent 
part of the inconsistent rules in Eq. (9.7) have been represented by a single 
compound proposition (Cq1 or … or Cqz) in the aggregated consequent part 
of the single equivalent rule in Eq. (9.13). 

Example 9.1 
A SISO system has the following group of two inconsistent rules 

                                          If i1 is P then o1 is S 
                                                        or 
                                          If i1 is P then o1 is B 

(9.14)

where the simple linguistic terms P, S and B denote the linguistic values 
positive, small and big, respectively.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

If i1 is P then o1 is M (9.15)

in which the simple linguistic term M denoting the linguistic value medium
has replaced the compound term (S or B). 
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‘conventional’
 whereas the fuzzy system from Eq. (9.15) will be referred 

to as ‘aggregated’. In order to show the equivalence of these two systems, 
we will need to go for each of them through the implication substage, the 
aggregation substage and the defuzzification stage. The fuzzification stage 
and the application substage are assumed to have been done in advance for 
each of the two systems because they would lead to the same results due to 
the identical antecendent parts for the input, as shown by Eq. (9.14)–(9.15).

As the antecedent parts of the two rules in the conventional system (CS) 
are identical, the firing strength gS for the first rule and the firing strength gB

for the second rule in this system are assumed to have been found to be 
equal to 0.66. Likewise, due to the identity between the antecedent part of 
the single rule in the aggregated system (AS) and the antecedent parts of 
the two rules in the CS, the firing strength gM for this single rule must also 
have been found to be equal to 0.66. 

At the implication substage, the fuzzy membership functions FS and FB

for the output from the CS are obtained as 

FS = {0/0 , 0.33/1, 0.66/2, 0.66/3, 0.66/4, 0.33/5, 0/6, 0/7, 0/8, 0/9, 
          0/10, 0/11, 0/12} 

(9.16)

FB = {0/0 , 0/1, 0/2, 0/3, 0/4, 0/5, 0/6, 0.33/7, 0.66/8, 0.66/9,  
0.66/10, 0.33/11, 0/12} 

(9.17)

where FS and FB represent the linguistic values S and B, respectively. 
Due to the trapezoidal shape FS and FB, the associated fuzzy membership 

degrees fS and fB for any element y from the discrete universe of discourse 
for the output will be mapped by 

fS = 0, if y aS

fS = ( y – aS ) / ( bS – aS ), if aS   y bS

fS = 0.66, if bS   y cS

fS = ( dS – y ) / ( dS – cS ), if cS   y dS

fS = 0, if dS  y 

(9.18)

For clarity, the fuzzy system from Eq. (9.14) will be called 
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fB = 0, if y aB

fB = ( y – aB ) / ( bB – aB ), if aB   y bB

fB = 0.66, if bB   y cB

fB = ( dB – y ) / ( dB – cB ), if cB   y dB

fB = 0, if dB  y 

(9.19)

where the parameters of the membership functions FS and FB are the 
following

aS = 0, bS = 2, cS = 4, dS = 6 (9.20)

aB = 6, bB = 8, cB = 10, dB = 12 (9.21)

At the aggregation substage, the aggregated fuzzy membership functions 
FSB for the output from the CS is obtained as follows 

FSB = FS FB =

{0/0 , 0.33/1, 0.66/2, 0.66/3, 0.66/4, 0.33/5, 0/6, 
0.33/7, 0.66/8, 0.66/9, 0.66/10, 0.33/11, 0/12} 

(9.22)

At the defuzzification stage, the defuzzified value DSB for the output from 
the CS is obtained as follows 

  DSB = [(0 . 0) + (0.33 . 1) + (0.66 . 2) + (0.66 . 3) + (0.66 . 4)

           + (0.33 . 5) + (0 . 6) + (0.33 . 7)

        

   + (0.66 . 8)

 + (0.66 . 9) + (0.66 . 10) + (0.33 . 11) 

          

 + (0 . 12)] /

 (0 + 0.33 + 0.66 + 0.66 + 0.66 + 0.33 

      + 0 + 0.33 + 0.66 + 0.66 + 0.66 + 0.33 + 0 ) = 32 / 5.33 = 6 

(9.23)

At the implication substage, the fuzzy membership function FM for the 
output from the AS is obtained as 

FM = {0/0, 0/1, 0/2, 0/3, 0.33/4, 0.66/5, 0.66/6, 0.66/7, 0.33/8, 0/9, 
0/10, 0/11, 0/12} 

(9.24)

where FM represents the linguistic value M. 



280 Formal Simplification of Fuzzy Rule Based Systems 

Due to the trapezoidal shape of FM, the associated fuzzy membership 
degree fM for any element y from the discrete universe of discourse for the 
output will be mapped by 

fM = 0, if y aM

fM = ( y – aM ) / ( bM – aM ), if aM   y bM

fM = 0.66, if bM   y cM

fM = ( dM – y ) / ( dM – cM ), if cM   y dM

fM = 0, if dM  y 

(9.25)

where the parameters of the membership functions FM and FB are the 
following

aM = 3, bM = 5, cM = 7, dM = 9 (9.26)

At the aggregation substage, the aggregated fuzzy membership function 
for the output from the AS is equal to FM because there is only one rule in 
this system. 

At the defuzzification stage, the defuzzified value DM for the output from 
the AS is obtained as follows 

DM = [(0 . 0) + (0 . 1) + (0 . 2) + (0 . 3) + (0.33 . 4) + (0.66 . 5) 

       + (0.66 . 6) + (0.66 . 7) + (0.33 . 8) + (0 . 9) + (0 . 10) 

       + (0 . 11) + (0 . 12)] /

 (0 + 0 + 0 + 0 + 0.33 + 0.66 

         + 0.66 + 0.66 + 0.33 + 0 + 0 + 0 + 0 ) =16 / 2.66 = 6 

(9.27)

It follows from Eq. (9.23) and Eq. (9.27) that the defuzzified value DSB

for the output from the CS is equal to the defuzzified value DM for the same 

are equivalent in terms of their behaviour. In other words, the 
inconsistent rule base has been simplified to a consistent rule base by 
aggregating the inconsistent rules in a way, which removes the inherent 
redundancy without any effect on the final result. 

The considerations above can be generalised easily using Boolean 
matrices and binary relations. If the input i1 can take the linguistic values 
negative (N), zero (Z) and positive (P) and the output o1 can take the 
linguistic values small (S), medium (M) and big (B), then we could make 
the substitutions N = 1, Z = 2 and P = 3 and S = 1, M = 2 and B = 3.

output from the AS. This shows that the two systems from Eqs. (9.14)–(9.15)
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If we assume that there is only one inconsistent group in the CS, its 
Boolean matrix and binary relation RBSB will look like 

  RBSB: i1 /o1        1     2     3 

                                                 1           ?     ?     ?
                                                 2           ?     ?     ? 
                                                 3           1     0     1 

(9.28)

RBSB: {?, (3, 1), (3, 3)} (9.29) 

where only the elements reflecting the considerations in this example are 
designated with valid values. The remaining elements are designated with 
the symbol ‘?’ to avoid confusion.

 The Boolean matrix and binary relation RBM for the consistent AS will 
look like 

  RBM: i1 /o1        1     2     3 

                                              1           ?     ?     ? 
                                              2           ?     ?     ? 
                                              3           0     1     0 

(9.30)

RBM: {?, (3, 2)} (9.31) 

Here again, only the elements reflecting the considerations in this 
example are designated with valid values whereas the remaining elements 
are designated with the symbol ‘?’. 

Example 9.2 
A SISO system has the following group of three inconsistent rules 

                                        If i1 is P then o1 is S 
or

                                        If i1 is P then o1 is M 
or

                                        If i1 is P then o1 is B 

(9.32)

where the simple linguistic terms P, S, M and B denote the linguistic values 
positive, small, medium and big, respectively.
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In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

If i1 is P then o1 is M (9.33) 

in which the simple linguistic term M has replaced the compound term

If we repeat the considerations from Example 9.1, we will see that the 
defuzzified outputs for the fuzzy rule bases described by Eq. (9.32) and 
Eq. (9.33) have the same value. 

matrix and binary relation RBSMB will look like 

  RBSMB: i1 /o1        1     2     3 

                                                1           ?     ?     ?
                                                2           ?     ?     ? 
                                                3           1     1     1 

(9.34)

RBSMB: {?, (3, 1), (3, 2), (3, 3)} (9.35) 

The Boolean matrix and binary relation RBM for the consistent AS will 
look like 

  RBM: i1 /o1        1     2     3 

                                                1           ?     ?     ? 
                                                2           ?     ?     ? 
                                                3           0     1     0 

(9.36)

RBM: {?, (3, 2)} (9.37) 

Example 9.3 
A SISO system with the set of fuzzy output membership functions

                                     If i1 is P then o1 is VS 
or

                                     If i1 is P then o1 is M 

(9.38)

(S or M or B). 

If we assume that there is only one inconsistent group in the CS, its 
Boolean

 

{VS, S, M, B, VB} has the following group of inconsistent rules 
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where the simple linguistic terms P, VS, S, M, B and VB denote the 
linguistic values positive, very small, small, medium, big and very big,
respectively.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

If i1 is P then o1 is S (9.39)

in which the simple linguistic term S has replaced the compound term

Example 9.4 
A SISO system with the set of fuzzy output membership functions 

                                    If i1 is P then o1 is VS 
or

                                    If i1 is P then o1 is S 
or

                                    If i1 is P then o1 is M 

(9.40)

where the simple linguistic terms P, VS, S, M, B and VB denote the same 
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

If i1 is P then o1 is S (9.41)

in which the simple linguistic term S has replaced the compound term 

Example 9.5 
A SISO system with the set of fuzzy output membership functions

                                     If i1 is P then o1 is M 
or

                                     If i1 is P then o1 is VB 

(9.42)

where the simple linguistic terms P, VS, S, M, B and VB denote the same 
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

(VS or M). 

{VS, S, M, B, VB} has the following group of inconsistent rules 

(VS or S or M). 

{VS, S, M, B, VB} has the following group of inconsistent rules 
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If i1 is P then o1 is B (9.43) 

in which the simple linguistic term B has replaced the compound term 

Example 9.6 
A SISO system with the set of fuzzy output membership functions 

                                    If i1 is P then o1 is M 
or

                                    If i1 is P then o1 is B 
or

                                    If i1 is P then o1 is VB 

(9.44)

where the simple linguistic terms P, VS, S, M, B and VB denote the same 
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

If i1 is P then o1 is B (9.45)

in which the simple linguistic term B has replaced the compound term 

Example 9.7 
A SISO system with the set of fuzzy output membership functions 

                                               If i1 is P then o1 is S 
or

                                               If i1 is P then o1 is B 

(9.46)

where the simple linguistic terms P, VS, S, M, B and VB denote the same 
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

If i1 is P then o1 is M (9.47)

in which the simple linguistic term M has replaced the compound term 
(S or B). 

(M or VB). 

{VS, S, M, B, VB} has the following group of inconsistent rules 

(M or B or VB). 

{VS, S, M, B, VB} has the following group of inconsistent rules 
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Example 9.8 
A SISO system with the set of fuzzy output membership functions 

                                       If i1 is P then o1 is S 
or

                                       If i1 is P then o1 is M 
or

                                       If i1 is P then o1 is B 

(9.48)

where the simple linguistic terms P, VS, S, M, B and VB denote the same 
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

If i1 is P then o1 is M (9.49)

in which the simple linguistic term M has replaced the compound term 

Example 9.9 
A SISO system with the set of fuzzy output membership functions 

                                     If i1 is P then o1 is VS 
or

                                     If i1 is P then o1 is VB 

(9.50)

where the simple linguistic terms P, VS, S, M, B and VB denote the same 
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

If i1 is P then o1 is M (9.51)

in which the simple linguistic term M has replaced the compound term 

{VS, S, M, B, VB} has the following group of inconsistent rules 

(S or M or B). 

{VS, S, M, B, VB} has the following group of inconsistent rules 

(VS or VB). 
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Example 9.10 
A SISO system with the set of fuzzy output membership functions 

                                 If i1 is P then o1 is VS 
or

                                 If i1 is P then o1 is M 
or

                                 If i1 is P then o1 is VB 

(9.52)

where the simple linguistic terms P, VS, S, M, B and VB denote the same 
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

If i1 is P then o1 is M (9.53) 

in which the simple linguistic term M has replaced the compound term 

Example 9.11 
A SISO system with the set of fuzzy output membership functions 

                                               If i1 is P then o1 is VS 
or

                                               If i1 is P then o1 is S 
or

                                               If i1 is P then o1 is B 
or

                                               If i1 is P then o1 is VB 

(9.54)

where the simple linguistic terms P, VS, S, M, B and VB denote the same 
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

If i1 is P then o1 is M (9.55)

in which the simple linguistic term M has replaced the compound term                   
(VS or S or B or VB). 

{VS, S, M, B, VB} has the following group of inconsistent rules 

(VS or M or VB). 

{VS, S, M, B, VB} has the following group of inconsistent rules 
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Example 9.12 
A SISO system with the set of fuzzy output membership functions 

                                               If i1 is P then o1 is VS 
or

                                               If i1 is P then o1 is S 
or

                                               If i1 is P then o1 is M 
or

                                               If i1 is P then o1 is B 
or

                                               If i1 is P then o1 is VB 

(9.56)

where the simple linguistic terms P, VS, S, M, B and VB denote the same 
linguistic values as the ones in Example 9.3.

In accordance with Eqs. (9.7)–(9.13), this system can be represented with 
the single equivalent rule

If i1 is P then o1 is M (9.57)

in which the simple linguistic term M has replaced the compound term                   
(VS or S or M or B or VB). 

9.3  Rule Base Simplification by Filtration of Non-monotonic Rules 

The formal simplification technique introduced here is based on the idea of 
removing the inherent redundancy in a non-monotonic fuzzy rule base. This 
type of redundancy is expressed by the presence of non-monotonic rules 
and it can be removed by filtering such rules with the aim of making the 
rule base monotonic.

The overall process of filtering non-monotonic rules is illustrated by the 
following algorithm: 

Algorithm 9.4 
1. Put all non-monotonic rules in groups sorted in an increasing 

order with respect to the permutations of linguistic values of 
outputs, whereby the rules in each group have the same 
permutation of linguistic values of outputs and different 
permutations of linguistic values of inputs. 

{VS, S, M, B, VB} has the following group of inconsistent rules 
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2. For each group of rules, find a single equivalent rule whose 
effect on the defuzzified output is the same as the effect of all 
rules.

3. For each group of rules, keep the single equivalent rule and 
remove all other rules. 

Algorithm 9.4 guarantees that there will be only monotonic rules left in a 
fuzzy rule base after the completion of the filtering process. In this case, the 
number of monotonic rules is equal to the number of groups and the 
number of different permutations of linguistic values of outputs. Therefore, 
the filtering process can be always applied with full success, i.e. without 
any residual non-monotonousness being left.

As opposed to the aggregation process for inconsistent rules which can 
be carried out entirely off-line, i.e. before the fuzzification of inputs, the 
filtering process for non-monotonic rules must be carried out partially on-
line, i.e. after the fuzzification of inputs. In this case, step 1 in Algorithm 
9.4 can still be applied off-line but steps 2-3 can only be applied on-line. 
This is due to the fact that the single equivalent rule in Algorithm 9.4 is like 
a dominant rule which can be found only after the completion of the 
fuzzification stage and the application substage. This dominancy is 
expressed in terms of the rule with the maximal firing strength for each 
group as a result of which the effect of all other rules from the group on the 
defuzzified output will be completely neutralised. Obviolusly, when there is 
more than one dominant rule in a group, i.e. two or more rules with 
maximal firing strength for the group, one of these rules should be selected 
arbitrarily as a single equivalent rule. 

The implementation of Algorithm 9.4 can be done easily using Boolean 
matrices or binary relations, as shown by Algorithms 9.5–9.6. 

Algorithm 9.5 
1. Sort the rows of the Boolean matrix in groups such that the rows in 

each group have a non-zero element in the same column and this 
column is to the left of any other columns with non-zero elements 
from any subsequent groups. 

2. Filter the rows in each group such that only the row representing 
the dominant rule is left in the group. 

Algorithm 9.6 
1. Sort the maplets from the binary relation in groups such that the 

2. Filter the maplets in each group such that only the maplet 
representing the dominant rule is left in the group. 

second elements in the maplets from each group are the same with 
respect to each other and smaller than the second elements in the 
maplets from any subsequent groups.
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Algorithms 9.5–9.6 show that the process of filtering non-monotonic 
rules in a fuzzy system is equivalent to representing a many-to-one 
mapping as a one-to-one mapping. A theoretical justification of this 
representation based on the laws of Boolean logic is shown below. Here 
again, each ‘if-then’ rule in a fuzzy rule base is a logical implication 
whereby if the antecedent and the consequent part in the rule are true then 
the whole rule must be true. 

Therefore, a group of non-monotonic rules may be represented in the 
form

                                If (A11 and … and Am1) then Cq

or
                                ……………………………… 

or
                                If (A1z and … and Amz) then Cq

(9.58)

where Apj= (ip is vip,j), p = 1,..,m, j = 1,..,z and Cq = (oq is voq), q = 1,..,n are 
the logical propositions describing the antecendent terms for the p-th input 
in the j-th rule and the consequent term for the q-th output, respectively. In 
this case, q is also a label for the group being considered whereas z is the 
number of non-monotonic rules in this group. 

Equation (9.58) may be rewritten in the following equivalent forms: 

[(A11 and … and Am1) imp Cq] or … or [(A1z and … and Amz) imp Cq] (9.59) 

[not (A11 and … and Am1) or Cq] or … or [not (A11 and … and Am1) or Cq] (9.60)

[not (A11 and … and Am1)] or … or [not (A1z and … and Amz)] or 
(Cq or … or Cq)

(9.61)

not [(A11 and … and Am1)] and … and (A1z and … and Amz)] or Cq (9.62) 

[(A11 and … and Am1)] and … and (A1z and … and Amz)] imp Cq (9.63) 

If [(A11 and … and Am1)] and … and (A1z and … and Amz)] then Cq (9.64) 

So, the many-to-one mapping described by Eq. (9.58) has been 
represented equivalently as a one-to-one mapping described by Eq. (9.64). 
In this case, the z compound logical propositions   (A11 and … and Am1) …
(A1z and … and Amz) in the antecedent part of the non-monotonic rules in 

 
[(A11  and … and Am1)  and  …  and  (A1z  and  … and Amz)]  in the filtered

 antecedent part of the single equivalent rule in Eq. (9.64). 

Eq. (9.58) have been represented by a single compound proposition
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Example 9.13
A fuzzy system for aircraft landing control is described by the inputs i1, i2

and the output o1 where i1 is the relative height (h) of the aircraft in feet (ft), 
i2 is the vertical velocity (v) of the aircraft in feet per second (ft/s) and o1 is
the control effort (e) in libras (lb) that must be applied to the aircraft [66]. 
In this case, i1 can take the four linguistic values near zero (NZ), small (S), 
medium (M) and large (L), whereas both i2 and o1 can take the five linguistic 
values down large (DL), down small (DS), zero (Z), up small (US) and up
large (UL). 

By making the substitutions NZ = 1, S = 2, M = 3, L = 4 for i1 as well as 
the substitutions DL = 1, DS = 2, Z = 3, US = 4, UL = 5 for both i1 and o1,
we can construct the integer table for the fuzzy rule base of this CS, as 
shown in Table 9.1. Then, by applying step 1 from Algorithm 9.4, we can 
construct the integer table for the rule base of the sorted system (SS), as 
shown in Table 9.2. The empty rows in these tables are used only for visual 
separation of the rules in different groups, which facilitates the analysis of 
the contents of the tables. 

Table 9.1. Integer table for the rule base of the conventional system 

Rule number Linguistic value 
of i1

Linguistic value 
of i2

Linguistic value 
of o1

1 1 1 5 
2 1 2 5 
3 1 3 3 
4 1 4 2 
5 1 5 2 
    
6 2 1 5 
7 2 2 4 
8 2 3 3 
9 2 4 2 
10 2 5 1 
    
11 3 1 4 
12 3 2 3 
13 3 3 2 
14 3 4 1 
15 3 5 1 
    
16 4 1 3 
17 4 2 2 
18 4 3 1 
19 4 4 1 
20 4 5 1 
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Table 9.2. Integer table for the rule base of the sorted system 

Rule number Linguistic value 
of i1

Linguistic value 
of i2

Linguistic value 
of o1

10 2 5 1 
14 3 4 1 
15 3 5 1 
18 4 3 1 
19 4 4 1 
20 4 5 1 
    
4 1 4 2 
5 1 5 2 
9 2 4 2 
13 3 3 2 
17 4 2 2 
    
3 1 3 3 
8 2 3 3 
12 3 2 3 
16 4 1 3 
    
7 2 2 4 
11 3 1 4 
    
1 1 1 5 
2 1 2 5 
6 2 1 5 

By applying steps 2-3 from Algorithm 9.4, we can now construct the 
integer table for the fuzzy rule base of the filtered system (FS), as shown in 
Table 9.3.

The integer table for the fuzzy rule base of the FS contains only the 
single equivalent rule from each of the sorted five groups of rules. The 
process leading to these single equivalent rules is described further in the 
current section and therefore the contents of this integer table must be taken 
for granted at this stage. 

Table 9.3. Integer table for the rule base of the filtered system 

Rule number Linguistic value 
of i1

Linguistic value 
of i2

Linguistic value 
of o1

10 2 5 1 
17 4 2 2 
12 3 2 3 
11 3 1 4 
1 1 1 5 
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Algorithm 9.4 can be implemented much easier using Boolean matrices 
or binary relations, as described by Algorithms 9.5–9.6. This is shown 
briefly by Eqs. (9.65)–(9.70) which are associated with the integer tables 
from Tables 9.1–9.3. In particular, Eqs. (9.65)–(9.66) relate to Table 9.1, 
Eqs. (9.67)–(9.68) relate to Table 9.2, whereas Eqs. (9.69)–(9.70) relate to 
Table 9.3. 

The Boolean matrix and the binary relation for the fuzzy rule base RBCS

of the CS are given by 

RBCS: i1 i2 / o1        1     2     3     4     5 

                                         11          0     0     0     0     1
                                         12          0     0     0     0     1 
                                         13          0     0     1     0     0 
                                         14          0     1     0     0     0
                                          15          0     1     0     0     0

                                          21         0     0     0     0     1
                                          22         0     0     0     1     0 
                                          23         0     0     1     0     0 
                                          24         0     1     0     0     0
                                          25         1     0     0     0     0

                                          31         0     0     0     1     0
                                          32         0     0     1     0     0 
                                          33         0     1     0     0     0 
                                          34         1     0     0     0     0
                                          35         1     0     0     0     0

                                          41         0     0     1     0     0
                                          42         0     1     0     0     0 
                                          43         1     0     0     0     0 
                                          44         1     0     0     0     0
                                          45         1     0     0     0     0

(9.65)

RBCS: {(11, 5), (12, 5), (13, 3), (14, 2), (15, 2), 

                              (21, 5), (22, 4), (23, 3), (24, 2), (25, 1), 

                              (31, 4), (32, 3), (33, 2), (34, 1), (35, 1), 

                              (41, 3), (42, 2), (43, 1), (44, 1), (45, 1)} 

(9.66)

The Boolean matrix and the binary relation for the fuzzy rule base RBSS

of the SS are given by 
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RBSS: i1 i2 / o1       1     2     3     4     5 

                                        25          1     0     0     0     0
                                        34          1     0     0     0     0 
                                        35          1     0     0     0     0 
                                        43          1     0     0     0     0
                                        44          1     0     0     0     0
                                        45          1     0     0     0     0

                                        14          0     1     0     0     0 
                                        15          0     1     0     0     0 
                                        24          0     1     0     0     0
                                        33          0     1     0     0     0
                                        42          0     1     0     0     0

                                        13          0     0     1     0     0 
                                        23          0     0     1     0     0 
                                        32          0     0     1     0     0
                                        41          0     0     1     0     0

                                        22          0     0     0     1     0
                                        31          0     0     0     1     0 

                                        11          0     0     0     0     1 
                                        12          0     0     0     0     1
                                        21          0     0     0     0     1

(9.67)

RBSS: {(25, 1), (34, 1), (35, 1), (43, 1), (44, 1), (45, 1), 

                       (14, 2), (15, 2), (24, 2), (33, 2), (42, 2), 

                       (13, 3), (23, 3), (32, 3), (41, 3), 

                       (22, 4), (31, 4), 

                       (11, 5), (12, 5), (21, 5)} 

(9.68)

The Boolean matrix and the binary relation for the fuzzy rule base RBFS

of the FS are given by 

RBFS: i1 i2 / o1     1     2     3     4     5 

                                        25         1     0     0     0     0
                                        42         0     1     0     0     0 
                                        32         0     0     1     0     0 
                                        31         0     0     0     1     0
                                        11        0     0     0     0     1                        

(9.69)
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RBFS: {(25, 1), (42, 2), (32, 3), (31, 4), (11, 5)}   (9.70) 

The next steps in the current example consider the fuzzification, 
inference and defuzzification stages for the CS and the FS. The aim of this 
consideration is to show the behavioural equivalence of the two systems, 
i.e. that the defuzzified output is the same for any crisp values of the inputs. 
In the current example, these values are taken as h = 980 and   v = –14.2. 
Therefore, when we have to deal with an arbitrarily complex CS 
represented by an integer table, Boolean matrix or binary relation, we can 
formally simplify this system to a fairly simple FS and use the associated 
integer table, Boolean matrix or binary relation instead. 

At the fuzzification stage for the CS, we have to consider all possible 
linguistic values for each input. In this context, we need to specify how the 
fuzzy membership degree for a particular linguistic value of a given input 
can be obtained. This specification is based on the parameters of the fuzzy 
membership functions for the fuzzification of the inputs, as shown further 
below.

The fuzzy membership degree fh

NZ for the linguistic value near zero of the 
input height can be obtained by the formula  

fh

NZ = 0, if h ah

NZ

fh

NZ = 1, if ah

NZ   h bh

NZ

fh

NZ = ( ch

NZ – h ) / ( ch

NZ – bh

NZ ), if bh

NZ   h ch

NZ

fh

NZ = 0, if ch

NZ h

(9.71)

where ah

NZ, bh

NZ, ch

NZ are the parameters of the associated triangular fuzzy 
membership function whose values are given by

ah

NZ = 0, bh

NZ = 0, ch

NZ = 500 (9.72) 

Equation (9.71) differs slightly from Eq. (9.1). In particular, the 
inequality sign in the first line of Eq. (9.1) has been strengthened in 

Also, the arithmetic division in the second line of Eq. (9.1) has been 
removed from Eq. (9.71) to avoid a division by zero due to the equality of 
the parameters ah

NZ and bh

NZ.
The fuzzy membership degree fh

S for the linguistic value small of the 
input height can be obtained by the formula

Eq. (9.71) to account for the vertical left shoulder of the membership function. 
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fh

S = 0, if h ah

S

fh

S = ( h – ah

S ) / ( bh

S – ah

S ), if ah

S   h bh

S

fh

S = ( ch

S – h ) / ( ch

S – bh

S ), if bh

S   h ch

S

fh

S = 0, if ch

S h

(9.73)

where ah

S, bh

S, ch

S are the parameters of the associated triangular fuzzy 
membership function whose values are given by

ah

S = –200, bh

S = 300, ch

S = 800 (9.74) 

The fuzzy membership degree fh

M for the linguistic value medium of the 
input height can be obtained by the formula

fh

M = 0, if h ah

M

fh

M = ( h – ah

M ) / ( bh

M – ah

M ), if ah

M   h bh

M

fh

M = ( ch

M – h ) / ( ch

M – bh

M ), if bh

M   h ch

M

fh

M = 0, if ch

M h

(9.75)

where ah

M, bh

M, ch

M are the parameters of the associated triangular fuzzy 
membership function whose values are given by

ah

M = 300, bh

M = 800, ch

M = 1300 (9.76) 

The fuzzy membership degree fh

L for the linguistic value large of the 
input height can be obtained by the formula

fh

L = 0, if h ah

L

fh

L = ( h – ah

L ) / ( bh

L – ah

L ), if ah

L   h bh

L

fh

L = 1, if bh

L   h ch

L

fh

L = 0, if ch

L h

(9.77)

where ah

L, bh

L, ch

L are the parameters of the associated triangular fuzzy 
membership function whose values are given by
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ah

L = 500, bh

L = 1000, ch

L = 1000 (9.78) 

arithmetic division in the third line of Eq. (9.1) has been removed from 
.

 

h

L and ch

L. Also, the inequality sign in the fourth line of Eq. (9.1) has been 
strengthened in Eq. (9.77) to account for the vertical right shoulder of the 
membership function. 

The parameters of the fuzzy membership functions for the first input to 
the fuzzy system are summarised in Table 9.4. 

Table 9.4. Fuzzy membership function parameters for the first input 

Linguistic value / Input  Relative height 
Near zero [0   0   500] 
Small [-200   300   800] 
Medium [300   800   1300] 
Large [500   1000   1000] 

The fuzzy membership degree fv

DL for the linguistic value down large of the 
input velocity can be obtained by the formula

fv

DL = 0, if v av

DL

fv

DL = 1, if av

DL   v bv

DL

fv

DL = 1, if bv

DL   v cv

DL

fv

DL = ( dv

DL – v ) / ( dv

DL – cv

DL ), if cv

DL   v dv

DL

fv

DL = 0, if dv

DL v

(9.79)

where av , bv

DL, cv

DL, dv

DL are the parameters of the associated trapezoidal 
fuzzy membership function whose values are given by

av

DL = –30, bv

DL = –30, cv

DL = –20, dv

DL= –10 (9.80) 

Equation (9.79) differs slightly from the standard formula for a 
trapezoidal fuzzy membership. In particular, the inequality sign in the first 
line of the standard formula has been strengthened in Eq. (9.79) to account 
for the vertical left shoulder of the membership function. Also, the 
arithmetic division in the second line of the standard formula has been 
removed from Eq. (9.79) to avoid a division by zero due to the equality of 
the parameters av

DL and bv

DL.

Equation (9.77) differs slightly from Eq. (9.1). In particular, the 

Eq (9.77) to avoid a division by zero due to the equality of the parameters 
b
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The fuzzy membership degree fv

DS for the linguistic value down small of 
the input velocity can be obtained by the formula

fv

DS = 0, if v av

DS

fv

DS = ( v – av

DS ) / ( bv

DS – av

DS ),  if av

DS   v bv

DS

fv

DS = ( cv

DS – v ) / ( cv

DS – bv

DS ), if bv

DS   v cv

DS

fv

DS = 0, if cv

DS v

(9.81)

where av

DS, bv

DS, cv

DS are the parameters of the associated triangular fuzzy 
membership function whose values are given by

av

DS = –20, bv

DS = –10, cv

DS = 0 (9.82) 

The fuzzy membership degree fv

Z for the linguistic value zero of the input 
velocity can be obtained by the formula

fv

Z = 0, if v av

Z

fv

Z = ( v – av

Z ) / ( bv

Z – av

Z ),  if av

Z   v bv

Z

fv

Z = ( cv

Z – v ) / ( cv

Z – bv

Z ), if bv

Z   v cv

Z

fv

Z = 0, if cv

Z v

(9.83)

where av

Z, bv

Z, cv

Z are the parameters of the associated triangular fuzzy 
membership function whose values are given by

av

Z = –10, bv

Z = 0, cv

Z = 10 (9.84) 

The fuzzy membership degree fv

US for the linguistic value up small of the 
input velocity can be obtained by the formula

fv

US = 0, if v av

US

fv

US = ( v – av

US ) / ( bv

US – av

US ),  if av

US   v bv

US

fv

US = ( cv

US – v ) / ( cv

US – bv

US ), if bv

US   v cv

US

fv

US = 0, if cv

US v

(9.85)
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where av

US, bv

US, cv

US are the parameters of the associated triangular fuzzy 
membership function whose values are given by

av

US = 0, bv

US = 10, cv

US = 20 (9.86) 

The fuzzy membership degree fv

UL for the linguistic value up large of the 
input velocity can be obtained by the formula

fv

UL = 0, if v av

UL

fv

UL = ( v – av

UL ) / ( bv

UL – av

UL ), if av

UL   v bv

UL

fv

UL = 1, if bv

UL   v cv

UL

fv

UL = 1, if cv

UL   v dv

UL

fv

UL = 0, if dv

UL v

(9.87)

where av

UL, bv

UL, cv

UL, dv

UL are the parameters of the associated trapezoidal 
fuzzy membership function whose values are given by

av

UL = 10, bv

UL = 20, cv

UL = 30, dv

UL= 30 (9.88) 

Equation (9.87) differs slightly from the standard formula for a 
trapezoidal fuzzy membership function. In particular, the arithmetic 
division in the fourth line of the standard formula has been removed from 
Eq. (9.87) to avoid a division by zero due to the equality of the parameters 
cv

UL and dv

UL. Also, the inequality sign in the fifth line of the standard 
formula has been strengthened in Eq. (9.87) to account for the vertical right 
shoulder of the membership function. 

The parameters of the fuzzy membership functions for the second input 
to the fuzzy system are summarised in Table 9.5. 

Table 9.5. Fuzzy membership function parameters for the second input 

Linguistic value / Input  Vertical velocity 
Down large [-30   -30   -20   -10] 
Down small [-20   -10   0] 
Zero [-10   0   10] 
Up small [0   10   20] 
Up large [10   20   30   30] 
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At the application substage of the inference stage for the CS, we have to 
find the firing strength for each rule. For this purpose, we assume to have 
converted the crisp values of the inputs into fuzzy membership degrees 
during the fuzzification stage. The result of this conversion is used
in the application substage which is applied to each rule, as shown by 

–

g1

UL = min ( fh

NZ, fv

DL ) = min (0, 0) = 0 (9.89) 

g2

UL = min ( fh

NZ, fv

DS ) = min (0, 0) = 0 (9.90) 

g3

Z = min ( fh

NZ, fv

Z ) = min (0, 0) = 0 (9.91) 

g4

DS = min ( fh

NZ, fv

US ) = min (0, 0) = 0 (9.92) 

g5

DS = min ( fh

NZ, fv

UL ) = min (0, 0) = 0 (9.93) 

g6

UL = min ( fh

S, fv

DL ) = min (0, 0) = 0 (9.94) 

g7

US = min ( fh

S, fv

DS ) = min (0, 0) = 0 (9.95) 

g8

Z = min ( fh

S, fv

Z ) = min (0, 0) = 0 (9.96) 

g9

DS = min ( fh

S, fv

US ) = min (0, 0) = 0 (9.97) 

g10

DL = min ( fh

S, fv

UL ) = min (0, 0) = 0 (9.98) 

g11

US = min ( fh

M, fv

DL ) = min (0.64, 0.42) = 0.42 (9.99) 

g12

Z = min ( fh

M, fv

DS ) = min (0.64, 0.58) = 0.58 (9.100) 

g13

DS = min ( fh

M, fv

Z ) = min (0, 0) = 0 (9.101) 

g14

DL = min ( fh

M, fv

US ) = min (0, 0) = 0 (9.102) 

g15

DL = min ( fh

M, fv

UL ) = min (0, 0) = 0 (9.103) 

g16

Z = min ( fh

L, fv

DL ) = min (0.96, 0.42) = 0.42 (9.104) 

g17

DS = min ( fh

L, fv

DS ) = min (0.96, 0.58) = 0.58 (9.105) 

g18

DL = min ( fh

L, fv

Z ) = min (0, 0) = 0 (9.106) 

g19

DL = min ( fh

L, fv

US ) = min (0, 0) = 0 (9.107) 

Eqs. (9.89) (9.108).
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g20

DL = min ( fh

L, fv

UL ) = min (0, 0) = 0 (9.108) 

It is obvious that only four rules have a firing strength greater than zero 
for the considered crisp values of the inputs. These rules are 11, 12, 16 and 
17, as shown by Eq. (9.99), Eq. (9.100), Eq. (9.104) and Eq. (9.105), 
respectively. In this context, Eq. (9.99) shows that in rule 11 the linguistic 
value medium of the input height contributes with a fuzzy membership 
degree of 0.64 to the linguistic value up small of the output whereas the 
linguistic value down large of the input velocity contributes with a fuzzy 
membership degree of 0.42 to the same linguistic value of the output. 
Similar considerations apply to the other rules. 

At the implication substage of the inference stage for the CS, we have to 
find the truncated fuzzy membership function for the output in each rule. 
For this purpose, we assume to have represented the output with fuzzy 
membership functions, which happen to be the same as the ones for the 
second input. The only difference is in the physical meaning of the universe 
of discourse, which is not continuous but discrete and represents not 
vertical velocity but control effort. The implication substage is described by 
Eqs. (9.109)–(9.123). 

The fuzzy membership degree fe,s

DL, s = 10,14,15,18,19,20 for the 
linguistic value down large of the output effort in the s-th rule can be 
obtained by the formula

fe,s

DL = 0, if e ae,s

DL

fe,s

DL = gs

DL, if ae,s

DL   e be,s

DL

fe,s

DL = gs

DL, if be,s

DL   e ce,s

DL

fe,s

DL = ( de,s

DL – e ) / ( de,s

DL – ce,s

DL ), if ce,s

DL   e de,s

DL

fe,s

DL = 0, if de,s

DL e

(9.109)

where ae,s

DL, be,s

DL, ce,s

DL, de,s

DL, s = 10,14,15,18,19,20 are the parameters of the 
truncated trapezoidal fuzzy membership function for the output in the s-th
rule and gs

DL, s = 10,14,15,18,19,20 is firing strength of the s-th rule. The 
values of these parameters can be obtained by the formula 

ae,s

DL = ae

DL

be,s

DL = ae

DL + ( be

DL – ae

DL ) . gs

DL

ce,s

DL = de

DL – ( de

DL – ce

DL ) . gs

DL

de,s

DL = de

DL

(9.110)
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where ae

DL, be

DL, ce

DL, de

DL are the parameters of the original trapezoidal fuzzy 
membership function for the linguistic value down large of the output. The 
values of these parameters are given by

ae

DL = –30, be

DL = –30, ce

DL = –20, de

DL = –10 (9.111) 

Equation (9.109) differs slightly from Eq. (9.4). In particular, the 
inequality sign in the first line of Eq. (9.4) has been strengthened in 

function. Also, the arithmetic division in the second line of Eq. (9.4) has 
been removed from Eq. (9.109) to avoid a division by zero due to the 
equality of the parameters ae,s

DL  and b
e,s

DL.

The fuzzy membership degree fe,s

DS

, s = 4,5,9,13,17 for the linguistic 
value down small of the output effort in the s-th rule can be obtained by the 
formula

fe,s

DS = 0, if e ae,s

DS

fe,s

DS = ( e – ae,s

DS ) / ( be,s

DS – ae,s

DS ), if ae,s

DS   e be,s

DS

fe,s

DS = gs

DS, if be,s

DS   e ce,s

DS

fe,s

DS = ( de,s

DS – e ) / ( de,s

DS – ce,s

DS ), if ce,s

DS   e de,s

DS

fe,s

DS = 0, if de,s

DS e

(9.112)

where ae,s

DS, be,s

DS, ce,s

DS, de,s

DS, s = 4,5,9,13,17 are the parameters of the 
truncated trapezoidal fuzzy membership function for the output in the s-th
rule and gs

DS, s = 4,5,9,13,17 is firing strength of the s-th rule. The values of 
these parameters can be obtained by the formula 

ae,s

DS = ae

DS

be,s

DS = ae

DS + ( be

DS – ae

DS ) . gs

DS

ce,s

DS = ce

DS – ( ce

DS – be

DS ) . gs

DS

de,s

DS = ce

DS

(9.113)

where ae

DS, be

DS, ce

DS are the parameters of the original triangular fuzzy 
membership function for the linguistic value down small of the output. The 
values of these parameters are given by

ae

DS = –20, be

DS = –10, ce

DS = 0 (9.114) 

Eq. (9.109) to account for the vertical left shoulder of the truncated membership 
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The fuzzy membership degree fe,s

Z, s = 3,8,12,16 for the linguistic value 
zero of the output effort in the s-th rule can be obtained by the formula

fe,s

Z = 0, if e ae,s

Z

fe,s

Z = ( e – ae,s

Z ) / ( be,s

Z – ae,s

Z ), if ae,s

Z   e be,s

Z

fe,s

Z = gs

Z, if be,s

Z   e ce,s

Z

fe,s

Z = ( de,s

Z – e ) / ( de,s

Z – ce,s

Z ), if ce,s

Z   e de,s

Z

fe,s

Z = 0, if de,s

Z e

(9.115)

where ae,s

Z, be,s

Z, ce,s

Z, de,s

Z, s = 3,8,12,16 are the parameters of the truncated 
trapezoidal fuzzy membership function for the output in the s-th rule and 
gs

Z, s = 3,8,12,16 is firing strength of the s-th rule. The values of these 
parameters can be obtained by the formula 

ae,s

Z = ae

Z

be,s

Z = ae

Z + ( be

Z – ae

Z ) . gs

Z

ce,s

Z = ce

Z – ( ce

Z – be

Z ) . gs

Z

de,s

Z = ce

Z

(9.116)

where ae

Z, be

Z, ce

Z are the parameters of the original triangular fuzzy 
membership function for the linguistic value zero of the output. The values 
of these parameters are given by

ae

Z = –10, be

Z = 0, ce

Z = 10 (9.117) 

The  fuzzy membership  degree fe,s

US , s  =  7,11 for the  linguistic value 

fe,s

US = 0, if e ae,s

US

fe,s

US = ( e – ae,s

US ) / ( be,s

US – ae,s

US ), if ae,s

US   e be,s

US

fe,s

US = gs

US, if be,s

US   e ce,s

US

fe,s

US = ( de,s

US – e ) / ( de,s

US – ce,s

US ), if ce,s

US   e de,s

US

fe,s

US = 0, if de,s

US e

(9.118)

up small of the output effort in the s-th rule can be obtained by the formula
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where ae,s

US, be,s

US, ce,s

US, de,s

US, s = 7,11 are the parameters of the truncated 
trapezoidal fuzzy membership function for the output in the s-th rule and 
gs

US, s = 7,11 is firing strength of the s-th rule. The values of these 
parameters can be obtained by the formula 

ae,s

US = ae

US

be,s

US = ae

US + ( be

US – ae

US ) . gs

US

ce,s

US = ce

US – ( ce

US – be

US ) . gs

US

de,s

US = ce

US

(9.119)

where ae

US, be

US, ce

US are the parameters of the original triangular fuzzy 
membership function for the linguistic value up small of the output. The 
values of these parameters are given by

ae

US = 0, be

US = 10, ce

US = 20 (9.120) 

The fuzzy membership degree fe,s

UL, s = 1,2,6 for the linguistic value

fe,s

UL = 0, if e ae,s

UL

fe,s

UL = ( e – ae,s

UL ) / ( be,s

UL – ae,s

UL ), if ae,s

UL   e be,s

UL

fe,s

UL = gs

UL, if be,s

UL   e ce,s

UL

fe,s

UL = gs

UL, if ce,s

UL   e de,s

UL

fe,s

UL = 0, if de,s

UL e

(9.121)

where ae,s

UL, be,s

UL, ce,s

UL, de,s

UL, s = 1,2,6 are the parameters of the truncated 
trapezoidal fuzzy membership function for the output in the s-th rule and 
gs

UL, s = 1,2,6 is firing strength of the s-th rule. The values of these 
parameters can be obtained by the formula 

ae,s

UL = ae

UL

be,s

UL = ae

UL + ( be

UL – ae

UL ) . gs

UL

ce,s

UL = de

UL – ( de

UL – ce

UL ) . gs

UL

de,s

UL = de

UL

(9.122)

up large of the output effort in the s-th rule can be obtained by the formula
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where ae

UL, be

UL, ce

UL, de

UL are the parameters of the original trapezoidal fuzzy 
membership function for the linguistic value up large of the output. The 
values of these parameters are given by

ae

UL = 10, be

UL = 20, ce

UL = 30, de

UL = 30 (9.123) 

Equation (9.121) differs slightly from Eq. (9.4). In particular, the 
arithmetic division in the fourth line of Eq. (9.4) has been removed from 
Eq. (9.121) to avoid a division by zero due to the equality of the parameters 
ce,s

UL and de,s

UL. Also, the inequality sign in the fifth line of Eq. (9.4) has been 
strengthened in Eq. (9.121) to account for the vertical right shoulder of the 
truncated membership function. 

The parameters of the fuzzy membership functions for the output from 
the fuzzy system are summarised in Table 9.6. 

Table 9.6. Fuzzy membership function parameters for the output 

Linguistic value / Output  Control effort 
Down large [-30   -30   -20   -10] 
Down small [-20   -10   0] 
Zero [-10   0   10] 
Up small [0   10   20] 
Up large [10   20   30   30] 

At the aggregation substage of the inference stage for the CS, we have to 
find the aggregated fuzzy membership function representing the overall 
output for all the rules. For this purpose, we assume to have represented the 
fuzzy membership function for the output in each rule during the 
implication substage, as shown by Eqs. (9.124)–(9.130).

    Fs = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0, 0/5, 0/10, 0/15, 
             0/20, 0/25, 0/30},

s = 1,2,3,4,5,6,7,8,9,10

(9.124)

F11 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0,

                     0.42/5, 0.42/10, 0.42/15, 0/20, 0/25, 0/30}

(9.125)

F12 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0.5/-5, 0.58/0,

                         0.5/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.126)
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Fs = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0, 0/5, 0/10, 0/15, 

         0/20, 0/25, 0/30},

s = 13,14,15

(9.127)

F16 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0.42/-5, 0.42/0,

                0.42/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.128)

F17 = {0/-30, 0/-25, 0/-20, 0.5/-15, 0.58/-10, 0.5/-5, 0/0,

                        0/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.129)

Fs = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0, 0/5, 0/10, 0/15, 

         0/20, 0/25, 0/30},

s = 18,19,20

(9.130)

Therefore, the aggregated fuzzy membership function F for the output 
for the CS can be obtained by the formula

F = F1 … F20 = {0/-30, 0/-25, 0/-20, 0.5/-15, 0.58/-10, 0.5/-5, 

                             0.58/0, 0.5/5, 0.42/10, 0.42/15, 0/20, 0/25, 0/30}

(9.131)

At the defuzzification stage for the CS, we have to find the crisp value 
for the output, as shown by Eq. (9.132). 

  D = ( f1 . y1+ … + f13 . y13 ) / ( f1 + … + f13 ) =

  [(0 . -30) + (0 . -25) + (0 . -20) + (0.5 . -15) + (0.58 . -10) 

        + (0.5 . -5) + (0.58 . 0) + (0.5 . 5) + (0.42 . 10) + (0.42 . 15) 
        + (0 . 20) + (0 . 25) + (0 . 30)] /

 (0 + 0 + 0 + 0.5 + 0.58 + 0.5 
        + 0.58 + 0.5 + 0.42 + 0.42 + 0 + 0 + 0) = -2.8 / 3.5 = -0.8 

(9.132)

Having found the defuzzified output for the CS, we have to find the 
defuzzified output for the FS as well. For this purpose, we first put the rules 
of the CS in groups in order to obtain the SS. Then, we go through the 
fuzzification stage and the application substage for the SS. The results from 
these will be the same as the ones already obtained for the CS because 
neither the fuzzification stage nor the application substage are affected by 
the rearrangement of the rules. Next, we identify the single equivalent rules 
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for all groups and remove all other rules from the rule base, as shown 
below.

The firing strength for each rule in the groups of the SS is given by 
Eqs. (9.133)–(9.137). 

Group DL: g10

DL = 0, g14

DL = 0, g15

DL = 0, g18

DL = 0, g19

DL = 0, g20

DL = 0 (9.133) 

Group DS: g4

DS = 0, g5

DS = 0, g9

DS = 0, g13

DS = 0, g17

DS = 0.58 (9.134) 

Group Z: g3

Z = 0, g8

Z = 0, g12

Z = 0.58, g16

Z = 0.42 (9.135) 

Group US: g7

US = 0, g11

US = 0.42 (9.136) 

Group UL: g1

UL = 0, g2

UL = 0, g6

UL = 0 (9.137) 

The single equivalent rules for the above groups are given by 
Eqs. (9.138)–(9.142). 

Group DL: g10

DL = 0  (9.138) 

Group DS: g17

DS = 0.58 (9.139) 

Group Z: g12

Z = 0.58 (9.140) 

Group US: g11

US = 0.42 (9.141) 

Group UL: g1

UL = 0 (9.142) 

The single equivalent rules for the first and the last group could have 
been chosen arbitrarily because all rules from these two groups have firing 
strength 0. However, we have decided to choose the first rule, i.e. the rule 
with the lowest number, as the single equivalent rule in each of these two 
groups.

Therefore, the FS will be represented by the five rules with numbers 10, 
17, 12, 11 and 1. Due the reduced number of rules, the subsequent 
implication and aggregation substages are significantly simplified, as 
shown by Eqs. (9.143)–(9.148). 

F10 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0,

                     0/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.143)
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F17 = {0/-30, 0/-25, 0/-20, 0.5/-15, 0.58/-10, 0.5/-5, 0/0,

                        0/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.144)

F12 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0.5/-5, 0.58/0,

                          0.5/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.145)

F11 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0,

                      0.42/5, 0.42/10, 0.42/15, 0/20, 0/25, 0/30}

(9.146)

F1 = {0/-30, 0/-25, 0/-20, 0/-15, 0/-10, 0/-5, 0/0,

                     0/5, 0/10, 0/15, 0/20, 0/25, 0/30}

(9.147)

F = F10 F17 F12 F11 F11

={0/-30, 0/-25, 0/-20, 0.5/-15, 0.58/-10, 0.5/-5, 0.58/0,

                             0.5/5, 0.42/10, 0.42/15, 0/20, 0/25, 0/30}

(9.148)

The aggregated fuzzy membership function F for the output of the FS is 
the same as the one for the output of the CS, as can be seen from 
Eq. (9.131) and Eq. (9.148). Therefore, the five rules of the FS will yield a 
defuzzified output which is the same as the twenty rules of the CS, as 
shown by Eq. (9.132). This also shows that like the fuzzification stage and 
the application substage of the inference stage, the defuzzification stage is 
not affected by the reduced number of rules either. In spite of that, the 
efficiency gained as a result of the removed redundant operations during the 
implication and aggregation substages of the inference stage significantly 
outweighs the complexity added by the selection process for single 
equivalent rules, as shown further in this chapter. 

The overall behavioural equivalence of the CS and the FS is illustrated in 
Figs. 9.2–9.3. These figures show the output surfaces for the two systems, 
which are identical. The surfaces are generated with 4×5 equally spaced 
points in order to facilitate the analogy with the rule bases for the two 
systems which are with 4×5 linguistic values for the inputs. 
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Fig.  9.2. Output surface with 4×5 points for the conventional system 

Fig.  9.3.  Output surface with 4×5 points for the filtered system 
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The evidence for the overall behavioural equivalence of the CS and the 
FS is given in Table 9.7. This table shows the numerical values of the 4×5 
point output surfaces for the two systems, which are equal for each 
permutation of crisp values of the inputs.

Table 9.7. Numerical values of the 4×5 point output surface for the two systems 

Point number /
Point
component

Input 1 
(Relative
height)

Input 2 
(Vertical
velocity)

CS output
(Control
effort)

FS output
(Control
effort)

1 0.0 -30.0 22.4 22.4 
2 0.0 -15.0 16.9 16.9 
3 0.0 0.0 0.0 0.0 
4 0.0 15.0 -15.6 -15.6 
5 0.0 30.0 -14.7 -14.7 

    
6 333.3 -30.0 21.5 21.5 
7 333.3 -15.0 15.4 15.4 
8 333.3 0.0 -0.9 -0.9 
9 333.3 15.0 -16.4 -16.4 
10 333.3 30.0 -19.4 -19.4 

    
11 666.7 -30.0 10.0 10.0 
12 666.7 -15.0 5.0 5.0 
13 666.7 0.0 -11.3 -11.3 
14 666.7 15.0 -17.9 -17.9 
15 666.7 30.0 -21.8 -21.8 

    
16 1000.0 -30.0 4.5 4.5 
17 1000.0 -15.0 0.0 0.0 
18 1000.0 0.0 -18.3 -18.3 
19 1000.0 15.0 -21.3 -21.3 
20 1000.0 30.0 -22.4 -22.4 

The dominant rules for all permutations of crisp values of the inputs for 
the FS are presented in Table 9.8. This table shows the corresponding rule 
numbers whereby each of these numbers defines uniquely a rule from the 
rule base for the CS in Table 9.1. 

The overall behavioural equivalence of the CS and the FS is illustrated 

the two surfaces are identical but the corresponding numerical values 
and dominant rules are not shown due to the high space requirements for 
representing this large number of points. A brief visual inspection of 
Figs. 9.2–9.5 shows that the 10×10 fold increase of the number of points 

further in Figs. 9.4–9.5. These figures show the output surfaces with 40×50 
equally spaced points for the two systems. As in the case of Figs. 9.2–9.3,
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improves significantly the precision of the graphical presentation of the 
output surfaces but at the same time the complexity of this presentation is 
substantially increased. 

Table 9.8. Dominant rules for the filtered system 

Point number /
Point component 

Input 1 
(Relative height) 

Input 2 
(Vertical velocity) 

Dominant rules 
(Numbers)

1 0.0 -30.0 10, 4, 3, 7, 1 
2 0.0 -15.0 10, 4, 3, 7, 2 
3 0.0 0.0 10, 4, 3, 7, 1 
4 0.0 15.0 10, 5, 3, 7, 1 
5 0.0 30.0 10, 5, 3, 7, 1 

6 333.3 -30.0 10, 4, 3, 11, 6 
7 333.3 -15.0 10, 4, 12, 7, 6 
8 333.3 0.0 10, 13, 8, 7, 1 
9 333.3 15.0 10, 9, 3, 7, 1 
10 333.3 30.0 10, 5, 3, 7, 1 
    

11 666.7 -30.0 10, 4, 16, 11, 6 
12 666.7 -15.0 10, 17, 12, 11, 6 
13 666.7 0.0 18, 13, 8, 7, 1 
14 666.7 15.0 15, 9, 3, 7, 1 
15 666.7 30.0 15, 4, 3, 7, 1 
    

16 1000.0 -30.0 10, 4, 16, 11, 1 
17 1000.0 -15.0 10, 17, 16, 11, 1 
18 1000.0 0.0 18, 13, 3, 7, 1 
19 1000.0 15.0 20, 4, 3, 7, 1 
20 1000.0 30.0 20, 4, 3, 7, 1 

Example 9.14 
A fuzzy system for the operation of a service center for spare parts is 

described by the inputs i1, i2, i3 and the output o1 where i1 is the repair
utilisation factor, i2 is the number of servers, i3 is the mean delay of service
and o1 is the number of spare parts [58]. In this case, i1 can take the three 
linguistic values low (L), medium (M) and high (H), i2 can take the three 
linguistic values small (S), medium (M) and large (L), i3 can take the three 
linguistic values very short (VS), short (S) and medium (M), whereas o1 can
take the seven linguistic values very small (VS), small (S), rather small
(RS), medium (M) rather large (RL), large (L) and very large (VL). 

The linguistic values for the three inputs are presented by fuzzy 
membership functions on a normalised continuous universe of discourse 

fuzzy membership functions on a normalised discrete universe of discourse 
[0, 1]. For simplicity, these membership functions are not given here 
explicitly.

[0, 1]. As far as the output is concerned, its linguistic values are presented by 
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Fig.  9.4. Output surface with 40 50 points for the conventional system 

Fig.  9.5. Output surface with points for the filtered system 

×

40 50×
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By making the substitutions L = 1, M = 2, H = 3 for i1, S = 1, M = 2, 
L = 3 for i2, VS = 1, S = 2, M = 3 for i3, as well as the substitutions VS = 1, 
S = 2, RS = 3, M = 4, RL = 5, L = 6, VL = 7 for o1, we can construct the 
integer table for the fuzzy rule base of this CS, as shown in Table 9.9. Then, 
by applying step 1 from Algorithm 9.4, we can construct the integer table 
for the rule base of the SS, as shown in Table 9.10. The empty rows in these 
tables are used only for visual separation of the rules in different groups, 
which facilitates the analysis of the contents of the tables. 

Table 9.9. Integer table for the rule base of the conventional system 

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of i3

Linguistic
value of o1

1 1 1 1 1 
2 1 1 2 1 
3 1 1 3 1 
     
4 1 2 1 1 
5 1 2 2 1 
6 1 2 3 1 
     
7 1 3 1 2 
8 1 3 2 2 
9 1 3 3 1 
     
10 2 1 1 2 
11 2 1 2 1 
12 2 1 3 1 
     
13 2 2 1 3 
14 2 2 2 2 
15 2 2 3 1 
     
16 2 3 1 4 
17 2 3 2 3 
18 2 3 3 2 
     
19 3 1 1 7 
20 3 1 2 6 
21 3 1 3 4 
     
22 3 2 1 4 
23 3 2 2 4 
24 3 2 3 2 
     
25 3 3 1 5 
26 3 3 2 4 
27 3 3 3 3 
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Table 9.10. Integer table for the rule base of the sorted system 

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of i3

Linguistic
value of o1

1 1 1 1 1 
2 1 1 2 1 
3 1 1 3 1 
4 1 2 1 1 
5 1 2 2 1 
6 1 2 3 1 
9 1 3 3 1 
11 2 1 2 1 
12 2 1 3 1 
15 2 2 3 1 
     
7 1 3 1 2 
8 1 3 2 2 
10 2 1 1 2 
14 2 2 2 2 
18 2 3 3 2 
24 3 2 3 2 
     
13 2 2 1 3 
17 2 3 2 3 
27 3 3 3 3 
     
16 2 3 1 4 
21 3 1 3 4 
22 3 2 1 4 
23 3 2 2 4 
26 3 3 2 4 
     
25 3 3 1 5 
     
20 3 1 2 6 
     
19 3 1 1 7 

By applying steps 2-3 from Algorithm 9.4, we can now construct the 
integer table for the fuzzy rule base of the FS, as shown in Table 9.11.

The integer table for the fuzzy rule base of the FS contains only the 
single equivalent rule from each of the sorted seven groups of rules. The 
process leading to these single equivalent rules is not described here 
because it is the same as the corresponding process from Example 9.13. For 
this reason, some of the elements in Table 9.11 representing rule numbers 
and linguistic values of inputs are shown only in a general form, i.e. as 
compound expressions of DIS terms and not as atomic terms. 
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Table 9.11. Integer table for the rule base of the filtered system 

Rule
number

Linguistic
value of i1

Linguistic
value of i2

Linguistic
value of i3

Linguistic
value of o1

1 or 2 or 3 or 4 
or 5 or 6 or 9 or 
11 or 12 or 15 

1 or 2 1 or 2 or 3 1 or 2 or 3 1 

7 or 8 or 10 or 
14 or 18 or 24 

1 or 2 or 3 1 or 2 or 3 1 or 2 or 3 2 

13 or 17 or 27 2 or 3 2 or 3 1 or 2 or 3 3 
16 or 21 or 22 
or 23 or 26 

2 or 3 1 or 2 or 3 1 or 2 or 3 4 

25 3 3 1 5 
20 3 1 2 6 
19 3 1 1 7 

As in Example 9.13, Algorithm 9.4 can be implemented here much easier 

This is shown briefly by Eqs. (9.149)–(9.154) which are associated with the 

Eqs. (9.153)–(9.154) relate to Table 9.11. 
The Boolean matrix and the binary relation for the fuzzy rule base RBCS

of the CS are given by 

RBCS: i1 i2 i3 / o1        1     2     3     4     5     6     7 

                                111          1     0     0     0     0     0     0
                                112          1     0     0     0     0     0     0 
                                113          1     0     0     0     0     0     0 

                                121          1     0     0     0     0     0     0
                                122          1     0     0     0     0     0     0
                                123          1     0     0     0     0     0     0

                                131          0     1     0     0     0     0     0
                                132          0     1     0     0     0     0     0
                                133          1     0     0     0     0     0     0

                                211          0     1     0     0     0     0     0
                                212          1     0     0     0     0     0     0 
                                213          1     0     0     0     0     0     0 

                                221          0     0     1     0     0     0     0
                                222          0     1     0     0     0     0     0
                                223          1     0     0     0     0     0     0

(9.149)

using Boolean matrices or binary relations, as described by Algorithms 9.5–9.6

integer tables from Tables 9.9–9.11. In particular, Eqs. (9.149)–(9.150)
relate to Table 9.9, Eqs. (9.151)–(9.152) relate to Table 9.10, whereas 
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                                  231          0     0     0     1     0     0     0
                                  232          0     0     1     0     0     0     0
                                  233          0     1     0     0     0     0     0

                                   311          0     0     0     0     0     0     1
                                   312          0     0     0     0     0     1     0 
                                   313          0     0     0     1     0     0

                                   321          0     0     0     1     0     0     0
                                   322          0     0     0     1     0     0     0
                                   323          0     1     0     0     0     0     0

                                   331          0     0     0     0     1     0     0
                                   332          0     0     0     1     0     0     0
                                   333          0     0     1     0     0     0     0

RBCS: {(111, 1), (112, 1), (113, 1),

                                       (121, 1), (122, 1), (123, 1),

                                       (131, 2), (132, 2), (133, 1), 

                                       (211, 2), (212, 1), (213, 1),

                                       (221, 3), (222, 2), (223, 1),

                                       (231, 4), (232, 3), (233, 2), 

                                       (311, 7), (312, 6), (313, 4),

                                       (321, 4), (322, 4), (323, 2),

                                   (331, 5), (332, 4), (333, 3)} 

(9.150)

The Boolean matrix and the binary relation for the fuzzy rule base RBSS

of the SS are given by 

RBSS: i1 i2 i3 / o1        1     2     3     4     5     6     7 

                                111          1     0     0     0     0     0     0
                                112          1     0     0     0     0     0     0 
                                113          1     0     0     0     0     0     0 
                                121          1     0     0     0     0     0     0
                                122          1     0     0     0     0     0     0
                                123          1     0     0     0     0     0     0
                                133          1     0     0     0     0     0     0
                                212          1     0     0     0     0     0     0
                                213          1     0     0     0     0     0     0             

(9.151)

0

                                223          1     0     0     0     0     0     0
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                                131          0     1     0     0     0     0     0 
                                132          0     1     0     0     0     0     0 
                                211          0     1     0     0     0     0     0
                                222          0     1     0     0     0     0     0
                                233          0     1     0     0     0     0     0
                                323          0     1     0     0     0     0     0

                                221          0     0     1     0     0     0     0
                                232          0     0     1     0     0     0     0
                                333          0     0     1     0     0     0     0

                                231          0     0     0     1     0     0     0 
                                313          0     0     0     1     0     0     0 
                                321          0     0     0     1     0     0     0
                                322          0     0     0     1     0     0     0
                                332          0     0     0     1     0     0     0

                                331          0     0     0     0     1     0     0

                                312          0     0     0     0     0     1     0

                                311          0     0     0     0     0     0     1

         RBSS: {(111, 1), (112, 1), (113, 1), (121, 1), (122, 1),

                    (123, 1), (133, 1), (212, 1), (213, 1), (223, 1), 

                    (131, 2), (132, 2), (211, 2), (222, 2), (233, 2), (323, 2), 

                    (221, 3), (232, 3), (333, 3),

                (231, 4), (313, 4), (321, 4), (322, 4), (332, 4), 

                    (331, 5),

                    (312, 6),

                    (311, 7)} 

(9.152)

The Boolean matrix and the binary relation for the fuzzy rule base RBFS

of the FS are given by 
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123 or 133 or 212 or 213 or 223

131 or 132 or 211 or 222 or 233 or 323      0     1     0     0     0     0     0 

221 or 232 or 333                                        0     0     1     0     0     0     0 

    231 or 313 or 321 or 322 or 332                  0     0     0     1     0     0     0 

331                                                               0     0     0     0     1     0     0

312                                                               0     0     0     0     0     1     0

311                                                               0     0     0     0     0     0     1

    RBFS: {(111 or 112 or 113 or 121 or 122 or 123 or 133 or 
               212 or 213 or 223, 1), 

              (131 or 132 or 211 or 222 or 233 or 323, 2), 

              (221 or 232 or 333, 3),

          (231 or 313 or 321 or 322 or 332, 4), 

              (331, 5),

              (312, 6),

              (311, 7)} 

(9.154)

Therefore, when we have to deal with an arbitrarily complex CS 
represented by an integer table, Boolean matrix or binary relation, we can 
formally simplify this system to a fairly simple FS and use the associated 
integer table, Boolean matrix or binary relation instead. As shown in Table 
9.11, some of the elements in Eqs. (9.153)–(9.154) representing rule labels 
and permutations of linguistic values of inputs are given only in a general 
form, i.e. as compound expressions of DIS terms and not as atomic terms. 

If we consider the fuzzification, inference and defuzzification stages for 
the CS and the FS, we will see the behavioural equivalence of the two fuzzy 
systems, i.e. that the defuzzified output is the same for any crisp values of 
the inputs. In order to prove this equivalence, we need to specify first the 
parameters of the fuzzy membership functions for the inputs and the output, 
as shown in Tables 9.12–9.15. 

RB
FS

: i
1
 i

2
i

3
/ o

1
                         1     2     3     4     5     6     7 

111 or 112 or 113 or 121 or 122 or             1     0     0     0     0     0     0
(9.153)
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Table 9.13. Fuzzy membership function parameters for the second input 

Linguistic value / Input  Number of servers 
Small [0.0   0.0   0.15   0.35] 
Medium [0.3    0.5   0.7] 
Large [0.6   0.8   1.0   1.0] 

Table 9.14. Fuzzy membership function parameters for the third input 

Linguistic value / Input  Mean delay of service 
Very short [0.0   0.0   0.1  0.3] 
Short [0.1   0.3   0.5] 
Medium [0.4   0.6   1.0   1.0] 

Table 9.15. Fuzzy membership function parameters for the output 

Linguistic value / Output  Number of spare parts 
Very small [0.0   0.0   0.1   0.3] 
Small [0.0   0.2   0.4] 
Rather small [0.25   0.35   0.45] 
Medium [0.3   0.5   0.7] 
Rather large [0.55   0.65   0.75] 
Large [0.6   0.8   1.0] 
Very large [0.7   0.9   1.0   1.0] 

As the output surface can show explicitly only two inputs, we have to fix 
one of the inputs to a particular value in order to generate this surface. In 
this context, it would be sensible to fix the first input (repair utilisation 
factor) to three different values – the bottom, the middle and the top of its 
range. In this case, three separate output surfaces will be generated for both 
the CS and the FS. These output surfaces will be with 3×3 equally spaced 

of points, i.e. with 30×30 points, will be generated to show the overall 
behavioural equivalence of the two systems. 

The overall behavioural equivalence of the CS and the FS is illustrated 

the two systems which are pairwise identical for each fixed value of 

Table 9.12. Fuzzy membership function parameters for the first input 

Linguistic value / Input  Repair utilisation factor 
Low [0.0   0.0   0.4   0.6] 
Medium [0.4   0.6   0.8] 
High [0.6   0.8   1.0   1.0] 

points in analogy with the rule bases for the two systems which are with 

additional output surfaces with a 10×10 fold increase of the number 

below. In particular, Figs. 9.6–9.11 show the 3×3 point output surfaces for 

3×3×3 linguistic values for the inputs. For consistency with Example 9.13, 

input 1. 



9.3  Rule Base Simplification by Filtration of Non-monotonic Rules     319

Fig.  9.6. Output surface with 3×3 points for the conventional system (repair 
utilisation factor = 0) 

Fig.  9.7. Output surface with 3×3 points for the filtered system (repair utilisation 
factor = 0) 



320 Formal Simplification of Fuzzy Rule Based Systems 

Fig.  9.8. Output surface with 3×3 points for the conventional system (repair 
utilisation factor = 0.5) 

Fig.  9.9. Output surface with 3×3 points for the filtered system (repair utilisation 
factor = 0.5) 



9.3  Rule Base Simplification by Filtration of Non-monotonic Rules     321

Fig.  9.10. Output surface with 3×3 points for the conventional system (repair 
utilisation factor = 1) 

Fig.  9.11. Output surface with 3×3 points for the filtered system (repair 
utilisation factor = 1) 
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The evidence for the overall behavioural equivalence of the CS and the 
FS is given in Tables 9.16–9.18. These tables show the numerical values of 
the 3×3 point output surfaces for the two systems which are pairwise equal 
for each permutation of crisp values of the inputs.

Table 9.16. Numerical values for the 3 3 point output surfaces (repair utilisation 
factor = 0) 

Point number /
Point component 

Input 2 
(Number
of servers 

Input 3 
(Mean delay
of service) 

CS output
(Number
of spare parts) 

FS output
(Number
of spare parts

1 0.00 0.00 0.10 0.10 
2 0.00 0.50 0.12 0.12 
3 0.00 1.00 0.10 0.10 

    
4 0.50 0.00 0.10 0.10 
5 0.50 0.50 0.12 0.12 
6 0.50 1.00 0.10 0.10 

    
7 1.00 0.00 0.20 0.20 
8 1.00 0.50 0.12 0.12 
9 1.00 1.00 0.10 0.10 

Table 9.17. Numerical values for the 3×3 point output surfaces (repair utilisation 
factor = 0.5) 

Point number /
Point component 

Input 2 
(Number
of servers 

Input 3 
(Mean delay
of service) 

CS output
(Number
of spare parts) 

FS output
(Number
of spare parts

1 0.00 0.00 0.17 0.17 
2 0.00 0.50 0.12 0.12 
3 0.00 1.00 0.12 0.12 

    
4 0.50 0.00 0.20 0.20 
5 0.50 0.50 0.12 0.12 
6 0.50 1.00 0.12 0.12 

    
7 1.00 0.00 0.35 0.35 
8 1.00 0.50 0.17 0.17 
9 1.00 1.00 0.17 0.17 

The dominant rules for all permutations of crisp values of the inputs for the 
FS are presented in Tables 9.19–9.21. These tables show the corresponding 
rule numbers whereby each of these numbers defines uniquely a rule from 
the rule base for the CS in Table 9.9. 

×
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Table 9.18. Numerical values for the 3×3 point output surfaces (repair utilisation 
factor = 1) 

Point number /
Point component 

Input 2 
(Number
of servers 

Input 3 
(Mean delay
of service) 

CS output
(Number
of spare parts) 

FS output
(Number
of spare parts

1 0.00 0.00 0.89 0.89 
2 0.00 0.50 0.50 0.50 
3 0.00 1.00 0.50 0.50 

    
4 0.50 0.00 0.50 0.50 
5 0.50 0.50 0.20 0.20 
6 0.50 1.00 0.20 0.20 

    
7 1.00 0.00 0.65 0.65 
8 1.00 0.50 0.35 0.35 
9 1.00 1.00 0.35 0.35 

Table 9.19. Dominant rules for the filtered system (repair utilisation factor = 0) 

Point number /
Point
component

Input 2 
(Number of 
servers

Input 3 
(Mean delay of 
service)

Dominant rules 
(Numbers)

1 0.00 0.00 1, 7, 13, 16, 25, 20, 19 
2 0.00 0.50 1, 7, 13, 16, 25, 20, 19 
3 0.00 1.00 3, 7, 13, 16, 25, 20, 19 

   
4 0.50 0.00 4, 7, 13, 16, 25, 20, 19 
5 0.50 0.50 6, 7, 13, 16, 25, 20, 19 
6 0.50 1.00 6, 7, 13, 16, 25, 20, 19 

   
7 1.00 0.00 1, 7, 13, 16, 25, 20, 19 
8 1.00 0.50 9, 7, 13, 16, 25, 20, 19 
9 1.00 1.00 9, 7, 13, 16, 25, 20, 19 
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Table 9.20. Dominant rules for the filtered system (repair utilisation factor = 0.5) 

Point number /
Point
component

Input 2 
(Number of 
servers

Input 3 
(Mean delay of 
service)

Dominant rules 
(Numbers)

1 0.00 0.00 1, 10, 13, 16, 25, 20, 19 
2 0.00 0.50 12, 7, 13, 16, 25, 20, 19 
3 0.00 1.00 12, 7, 13, 16, 25, 20, 19 

   
4 0.50 0.00 4, 7, 13, 16, 25, 20, 19 
5 0.50 0.50 6, 7, 13, 16, 25, 20, 19 
6 0.50 1.00 6, 7, 13, 16, 25, 20, 19 

   
7 1.00 0.00 1, 7, 13, 16, 25, 20, 19 
8 1.00 0.50 9, 18, 13, 16, 25, 20, 19 
9 1.00 1.00 9, 18, 13, 16, 25, 20, 19 

Table 9.21. Dominant rules for the filtered system (repair utilisation factor = 1) 

Point number /
Point component 

Input 2 
(Number of 
servers

Input 3 
(Mean delay of 
service)

Dominant rules 
(Numbers)

1 0.00 0.00 1, 7, 13, 16, 25, 20, 19 
2 0.00 0.50 1, 7, 13, 21, 25, 20, 19 
3 0.00 1.00 1, 7, 13, 21, 25, 20, 19 
    
4 0.50 0.00 1, 7, 13, 22, 25, 20, 19 
5 0.50 0.50 1, 24, 13, 16, 25, 20, 19 
6 0.50 1.00 1, 24, 13, 16, 25, 20, 19 
    
7 1.00 0.00 1, 7, 13, 16, 25, 20, 19 
8 1.00 0.50 1, 7, 27, 16, 25, 20, 19 
9 1.00 1.00 9, 7, 27, 16, 25, 20, 19 

The overall behavioural equivalence of the CS and the FS is illustrated 
further below. In particular, Figs. 9.12–9.17 show the 30×30 point output 
surfaces for the two systems which are pairwise identical for each fixed 
value of input 1. 
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Fig.  9.12. Output surface with 30×30 points for the conventional system (repair 
utilisation factor = 0) 

Fig.  9.13. Output surface with 30×30 points for the filtered system (repair 
utilisation factor = 0) 
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Fig.  9.14. Output surface with 30×30 points for the conventional system (repair 
utilisation factor = 0.5) 

Fig.  9.15. Output surface with 30×30 points for the filtered system (repair 
utilisation factor = 0.5) 
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Fig.  9.16. Output surface with 30×30 points for the conventional system (repair 
utilisation factor = 1) 

Fig.  9.17. Output surface with 30×30 points for the filtered system (repair 
utilisation factor = 1) 



328 Formal Simplification of Fuzzy Rule Based Systems 

9.4  Complexity Evaluation of Formal Simplification Techniques 

This section evaluates the quantitative complexity of the two formal 
simplification techniques. The evaluation approach used is based on precise 
calculations and it is superior to the so called ‘BIG(O)’ approach. The latter 
is based on approximate calculations and may lead to big errors in the 
presence of multiple dominant terms. 

In particular, the ASs from Examples 9.1–9.12 and the FSs from 
Examples 9.13–9.14 are compared to the corresponding CSs in terms of the 
exact amount of on-line operations.  For the aggregation method, which can 
be implemented entirely off-line, this task is quite simple because the 
comparison can be expressed as the ratio between the number of rules in the 
AS and the CS in Examples 9.1–9.12. As far as the filtration method is 
concerned, most of its implementation has to be done on-line. Also, the 
evaluation of its complexity is more difficult as it is expressed as a sum of 
the complexity in all stages and substages in Examples 9.13–9.14 such as 
fuzzification, inference, i.e. application, implication and aggregation, and 
defuzzification.

the filtration method and the associated FS is compared in general to the 
complexity of the conventional method and the associated CS, as well as to 
the complexity of the hierarchical method from Chapter 3 and the 
associated hierarchical system (HS). The latter is by far the best of all 

The parameters used for evaluating the quantitative complexity of the 
three methods are: m – number of inputs, w – number of linguistic values 
per input, n – number of outputs, t – number of elements in the discrete 
universe of discourse for the output, h – number of simulation cycles. In 
some cases, e.g. in Example 9.13, the number of linguistic values per inputs 
may vary and therefore the associated complexity evaluation formulas will 
be modified accordingly to reflect this.

The exact amount of on-line operations for the separate stages and 
substages in a fuzzy system is determined by the overall number of 
elementary operations (EO) such as addition, subtraction, multiplication, 
division and comparison. For simplicity, we assume that each of these 
operations is equal to one computational time unit and we will quantify 
each stage and substage in the fuzzy system by means of the overall number 
of these units. In this case, the term on-line refers to operations carried out 
after the measurement of the crisp values of the inputs and their quantitative 
complexity often has time-critical implications. All other operations, i.e. the 
ones carried out before the measurement of the crisp values of the inputs, 
are referred to as ‘off-line operations’ and their quantitative complexity 
usually does not have any time-critical implications. 

Apart from the specific context of Examples 9.13–9.14, the complexity of 

available fuzzy rule base reduction methods due to its wide applicability. 
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The quantitative complexity for the calculation of the fuzzy membership 
degree fps, p = 1,..,m, s = 1,..,r during the fuzzification stage can be obtained 
by the formula

fps = max { min [( xps – aps ) / ( bps – aps ), ( cps – xps ) / ( cps – bps )], 0 } (9.155)

which follows from Eq. (9.1). On the basis of this formula, the overall 
number of EOFU

CS, EOFU

HS and EOFU

FS for a CS, HS and FS will be given by 
Eq. (9.156), Eq. (9.157) and Eq. (9.158), respectively. 

EOFU

CS =  6 . m . w . n . h (9.156)

EOFU

HS =  ( m – 1 ) . ( 12 . w . n . h ) (9.157)

EOFU

FS =  6 . m . w . n . h (9.158)

Equations (9.156)–(9.158) show that in the fuzzification stage the 
complexity of the FS is equal to the complexity of the CS whereas the 
complexity of the HS is lower.

The quantitative complexity for the calculation of the firing strength 
gs, s = 1,..,r during the application substage can be obtained from Eq. (9.2). On  
the basis of this equation, the overall number of EOAP

CS, EOAP

HS and EOAP

FS

for a CS, HS and FS will be given by Eq. (9.159), Eq. (9.160) and 
Eq. (9.161), respectively. 

EOAP

CS =  ( w + m – 2 ) . w m-1. n . h (9.159)

EOAP

HS =  ( m – 1 ) . w 2. n . h (9.160)

EOAP

FS = ( w + m – 2 ) . w m-1. n . h (9.161)

Equations (9.159)–(9.161) show that in the application substage the 
complexity of the FS is equal to the complexity of the CS whereas the 
complexity of the HS is lower.

The quantitative complexity for the calculation of the fuzzy membership 
function Fsq, s = 1,..,r, q = 1,..,n during the implication substage is based on 
Eq. (9.3) and can be obtained by the formula

fsq = max { min [( ysq – asq ) / ( bsq – asq ), gs, ( dsq – ysq ) / ( dsq – csq )], 0 } (9.162)
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which follows from Eqs. (9.4). On the basis of this formula, the overall 
number of EOIM

CS, EOIM

HS and EOIM

FS for a CS, HS and FS will be given by 
Eq. (9.163), Eq. (9.164) and Eq. (9.165), respectively. 

EOIM

CS =  7 . w m. t . n . h (9.163)

EOIM

HS =  ( m – 1 ) . ( 7 . w 2. t . n . h ) (9.164)

EOIM

FS = 7 . w . t . n . h (9.165)

Equations (9.163)–(9.165) show that in the implication substage the 
complexity of the HS is lower than the complexity of the CS but the 
complexity of the FS is even lower than the complexity of the HS.

The quantitative complexity for the calculation of the aggregated fuzzy 
membership function Fsq, s = 1,..,r, q = 1,..,n during the aggregation 
substage can be obtained from Eq. (9.5). On the basis of this equation, the 
overall number of EOAG

CS, EOAG

HS and EOAG

FS for a CS, HS and FS will be 
given by Eq. (9.166), Eq. (9.167) and Eq. (9.168), respectively. 

EOAG

CS =  ( w m – 1 ) . t . n . h (9.166)

EOAG

HS =  ( m – 1 ) . ( w 2 – 1 ) . t . n . h (9.167)

EOAG

FS = ( w – 1 ) . t . n . h (9.168)

Equations (9.166)–(9.168) show that in the aggregation substage the 
complexity of the HS is lower than the complexity of the CS whereas the 
complexity of the FS is even lower than the complexity of the HS.

The quantitative complexity for the calculation of the defuzzified value 
Dq , q =  1,.., n during  the  defuzzification  stage can  be  obtained from

 Eq. (9.6). On the basis of this equation, the overall number of EODE

CS, EODE

HS

and EODE

FS for a CS, HS and FS will be given by Eq. (9.169), Eq. (9.170) 
and Eq. (9.171), respectively. 

EODE

CS =  ( 3 . t – 1 ) . n . h (9.169)

EODE

HS =  ( m – 1 ) . ( 3 . t – 1 ) . n . h (9.170)

EODE

FS = ( 3 . t – 1 ) . n . h (9.171)
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Equations (9.169)–(9.171) show that in the defuzzification stage the 
complexity of the FS is equal to the complexity of the CS whereas the 
complexity of the HS is higher.

Before we can proceed further, we must also take into account the 
quantitative complexity for the identification of the single equivalent rules 
for the FS, as described by step 2 in Algorithm 9.4. For consistency, these 
operations may be assumed to be part of a comparison stage as the single 
equivalent rules are actually identified by comparing the firing strength of 
the rules in each group. So, the overall number of EOCO

FS for a FS will be 
given by Eq. (9.172). 

EOCO

FS = (w m – w) . n . h (9.172)

Chronologically, the comparison stage for the FS must be placed after 
the application substage and before the implication substage. However, it 
has been considered here last to avoid confusion because this stage is only 
to be found in the FS.

The next step is to find the overall number of EO for the three systems 
under consideration, i.e. for the CS, the HS and the FS. This is done by 
adding the number of operations for the separate stages and substages for 
each of the three systems, as shown by Eq. (9.173), Eq. (9.174) and 

EOCS =  EOFU

CS + EOAP

CS + EOIM

CS + EOAG

CS + EODE

CS 

 = (6 . m . w . n . h ) + (w + m – 2) . w m-1. n . h + (7 . w m. t . n . h )

     + (w m – 1) . t . n . h + (3 . t – 1) . n . h = 

 = (6 . m . w) . n . h + (w + m – 2) . w m-1. n . h + (7 . w m. t ). n . h

     + (w m. t –  t) . n . h + (3 . t – 1) . n . h

 = (6 . m . w + w m + m . w m-1 – 2 . w m-1+ 7 . w m. t
m

 = [w m + 7 . t . w m + t . w m + (m – 2) . w m-1 + 6 . w . m

     + 2 . t – 1] . n . h 

 = [(8 . t + 1). w m + (m – 2) . w m-1 + 6 . m . w + 2 . t – 1] . n . h

(9.173)

We can use Eqs. (9.173)–(9.175) to evaluate comparatively the quantitative 

As far as Example 9.13 is concerned, the two inputs take 4 and 5 
linguistic values, respectively. For this reason, the value of w has been set 

      w . t – t  + 3 . t – 1) . n . h +

Eq. (9.175), respectively. 

complexity of the three fuzzy systems when applied to Examples 9.13–9.14.
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good approximation of the exact number of on-line operations. The results 
for one simulation step in these examples are presented in Table 9.22. 

EOHS =  EOFU

HS + EOAP

HS + EOIM

HS + EOAG

HS + EODE

HS

= (m – 1) . (12 . w . n . h ) + (m – 1) . w 2. n . h

     + (m – 1) . (7 . w 2. t . n . h ) + (m – 1) . (w 2 – 1) . t . n . h

+ (m – 1) . (3 . t – 1) . n . h 

 = (m – 1) . [(12 . w . n . h ) + w 2. n . h + (7 . w 2. t . n . h )

         + (w 2 – 1) . t . n . h + (3 . t – 1) . n . h] = 

 = (m – 1) . [12 . w . n . h + w 2. n . h + 7 . w 2. t . n . h + 

         + (w 2 – 1) . t . n . h + (3 . t – 1) . n . h]

 = (m – 1) . (12 . w + w 2 + 7. t . w 2 + t . w 2 – t + 3 . t – 1) . n . h 

 = (m – 1) . [(8 . t + 1) . w 2 + 12 . w + 2 . t – 1] . n . h

(9.174)

EOFS =  EOFU

FS + EOAP

FS + EOIM

FS + EOAG

FS + EODE

FS + EOCO

FS

     = (6 . m . w . n . h ) + (w + m – 2) . w m-1. n . h + (7 . w . t . n . h )

        + (w – 1) . t . n . h + (3 . t – 1) . n . h + (w m – w) . n . h 

     = (6 . m . w) . n . h + (w + m – 2) . w m-1. n . h + (7 . w . t ). n . h

        + (w . t –  t). n . h + (3 . t – 1) . n . h + (w m – w) . n . h 

     = (6 . m . w + w m + m . w m-1 – 2 . w m-1+ 7 . w . t

w . t – t  + 3 . t – 1 + w m – w) . n . h 

     = [2 . w m + (m – 2) . w m-1 + (6 . m – 1) . w + (8 . w + 2). t – 1] . n . h

(9.175)

Fuzzy system / Example Example 9.13 Example 9.14 
EOCS 2205 2487 
EOHS 2205 1716 
EOFS 583 399 

and the HS for Example 9.13. Also, the FS is more than 6 times more 
efficient than the CS and more than 4 times more efficient than the HS for 

+

equal to the average of the two numbers, i.e. 4.5, and this should lead to a 

Table 9.22 shows that the FS is almost 4 times more efficient than the CS 

Table 9.22. Quantitative complexity of the three fuzzy systems in Examples 9.13–9.14
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Example 9.14. As in terms of behaviour the HS is only an approximation of 
the CS whereas the FS is equivalent to the CS, it is obvious that the FS 
outperforms significantly the other two systems. 

Equations (9.173)–(9.175) are general formulas for the overall number of 
EO for the three fuzzy systems and can therefore be used for the evaluation 
of these systems in a wide context, i.e. without looking at specific 
examples. By varying some of the parameters in these formulas, it would be 
possible to see the dependency between the quantitative complexity for 
each system and the values of its parameters.

As the increase of the parameters n and h would always lead to a similar 
linear increase of the quantitative complexity for the three systems, it would 
be reasonable to keep these parameters fixed. As far as the other parameters 
m, w and t are concerned, it would be necessary to vary them because their 
increase would usually lead to a different exponential increase of the 
quantitative complexity of the three systems. Therefore, we will assume 
that the parameters have the following fixed values and variation ranges: 

n = 1; h = 1; m = 2,3,4; w = 3,5,7,9,11;  t = 7,13,19,25,31 (9.176)

In order to reduce the number of possible permutations of values for m, w
and t, we will assume that the variation of the parameters w and t is fixed 
by the formula: 

t = 3 . w – 2 (9.177)

Equations (9.176)–(9.177) define a fairly wide and reasonable scope for 
evaluating the quantitative complexity in fuzzy systems. In particular, most 
fuzzy systems are initially considered for one simulation step of one output 
before more simulation steps of this output or simulations of other outputs 
are considered. Also, fuzzy systems are usually represented with up to 4 
inputs as the number of rules for more inputs would be almost 
unmanageable. In addition, the inputs and outputs of fuzzy systems are 
often described by an odd number of linguistic values as this provides 
better coverage of the associated universes of discourse. And finally, the 
number of elements in the discrete universe of discourse for an output is 
often between 2 and 3 times greater than the number of linguistic values for 
this output, whose number is often close or even equal to the number of 
linguistic values that each input can take. 

Table 9.23 presents the results from a general comparative evaluation of 
the quantitative complexity of the CS, the HS and the FS. This evaluation is 
made using Eqs. (9.173)–(9.175) and in accordance with the assumptions 
made for the values of all relevant  parameters, as shown by Eqs. (9.176)–(9.177).
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Table 9.23. Quantitative complexity of the three fuzzy systems 

Number of rules / Fuzzy system EOCS EOHS EOFS

32 = 9 562 562 232 
33 = 27 1,615 1,124 295 
34 = 81 4,756 1,686 466 

   
52 = 25 2,710 2,710 650 
53 = 125 13,265 5,420 905 
54 = 625 66,020 8,130 2,160 

   
72 = 49 7,618 7,618 1,276 
73 = 343 52,691 15,236 1,955 
74 = 2401 368,244 22,854 6,750 

   
92 = 81 16,438 16,438 2,110 
93 = 729 146,821 32,876 3,541 
94 = 6,561 1,320,484 49,314 16,636 

   
112 = 121 30,322 30,322 3,152 
113 = 1,331 331,779 60,644 5,759 
114 = 14,641 3,648,596 90,966 34,986 

The figures for the HS and the FS in Table 9.23 are also illustrated 
graphically in Fig. 9.18. The CS is not shown because it is very inefficient 
and would obstruct the graphical interpretation of the other two systems. 

Table 9.23 and Fig. 9.18 show that the FS is superior for all considered 
permutations of values for the relevant parameters. In order to find the 
margin and the extent of this superiority, we have to compare each of the 
two inferior systems to the FS by subtracting and dividing the amount of 
corresponding operations, as shown in Tables 9.24–9.25. 

It can be seen from Tables 9.24–9.25 that in most cases the margin and 
the extent of superiority of the FS with respect to the CS and the HS 
increases with the increase of the number of inputs for a fixed number of 
linguistic values per input as well as with the increase of the linguistic 
values per input for a fixed number of inputs. This increase is with a fairly 
big magnitude with respect the CS and with a more moderate magnitude 
with respect to the HS.
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Fig.  9.18. Quantitative complexity of the hierarchical system and the filtered 
system

Table 9.24. Margin of superiority of the filtered system 

Number of rules / 
Comparison

EOCS - EOFS EOHS - EOFS

32 = 9 562 - 232 = 330 562 - 232 = 330 
33 = 27 1,615 - 295 = 1,320 1,124 - 295 = 829 
34 = 81 4,756 - 466 = 4,290 1,686 - 466 = 1,220 
   
52 = 25 2,710 - 650 = 2,060 2,710 - 650 = 2,060 
53 = 125 13,265 - 905 = 12,360 5,420 - 905 = 4,515 
54 = 625 66,020 - 2,160 = 63,860 8,130 - 2,160 = 5,970 
   
72 = 49 7,618 - 1,276 = 7,342 7,618 - 1,276 = 7,342 
73 = 343 52,691 - 1,955 = 50,736 15,236 - 1,955 = 13,281 
74 = 2,401 368,244 - 6,750 = 361,494 22,854 - 6,750 = 16,104 
   
92 = 81 16,438 - 2,110 = 14,328 16,438 - 2,110 = 14,328 
93 = 729 146,821 - 3,541 = 143,280 32,876 - 3,541 = 29,335 
94 = 6,561 1,320,484 - 16,636 = 1,303,848 49,314 - 16,636 = 32,678 
   
112 = 121 30,322 - 3,152 = 27,170 30,322 - 3,152 = 27,170 
113 = 1,331 331,799 - 5,759 = 326,040 60,644 - 5,759 = 54,885 
114 = 14,641 3,648,596 - 34,986 = 3,613,610 90,966 - 34,986 = 55,980 
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Table 9.25. Extent of superiority of the filtered system 

Number of rules / 
Comparison

EOCS / EOFS EOHS / EOFS

32 = 9 562 / 232 = 2.42 562 / 232 = 2.42 
33 = 27 1,615 / 295 = 5.47 1,124 / 295 = 3.81 
34 = 81 4,756 / 466 = 10.20 1,686 / 466 = 3.61 

52 = 25 2,710 / 650 = 4.16 2,710 / 650 = 4.16 
53 = 125 13,265 / 905 = 14.65 5,420 / 905 = 5.98 
54 = 625 66,020 / 2,160 = 30.56 8,130 / 2,160 = 3.76 

72 = 49 7,618 / 1,276 = 5.97 7,618 / 1,276 = 5.97 
73 = 343 52,691 / 1,955 = 26.95 15,236 / 1,955 = 7.79 
74 = 2,401 368,244 / 6,750 = 54.55 22,854 / 6,750 = 3.38 

92 = 81 16,438 / 2,110 = 7.79 16,438 / 2,110 = 7.79 
93 = 729 146,821 / 3,541 = 41.46 32,876 / 3,541 = 9.28 
94 = 6,561 1,320,484 / 16,636 = 

79.37
49,314 / 16,636 = 
2.96

112 = 121 30,322 / 3,152 = 9.61 30,322 / 3,152 = 9.61 
113 = 1,331 331,799 / 5,759 = 57.61 60,644 / 5,759 = 10.53

114 = 14,641 3,648,596 / 34,986 = 
104.28

90,966 / 34,986 = 
2.60

Another thing that may be interest for the comparative complexity 
evaluation of the three systems is the average margin and the average extent 
of superiority of the FS with respect to the other systems for a varying 
number of inputs and a fixed number of linguistic values per input. For this 
purpose, we have to consider the FS in a separate pair with each of the 
other two systems, as shown in Table 9.26–9.27. 

Tables 9.26–9.27 show in all cases that the average margin and the 

average extent of superiority of the FS with respect to the CS and the HS 

increases with the increase of the linguistic values per input for a fixed 

number of inputs. This increase is close to linear with respect to both the 

CS and the HS. The magnitude of this increase is fairly big with respect the 

CS and more moderate magnitude with respect to the HS.
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Table 9.26. Average margin of superiority of the filtered system 

Parameter values / 
Pair

EOCS vs EOFS EOHS vs EOFS

m = 2,3,4; w = 3 (330 + 1,320 + 4,290) / 3 =
1,980

(330 + 829 + 1,220) / 3 =
793

m = 2,3,4; w = 5 (2,060 + 12,360 + 63,860) / 3 
=26,093

(2,060 + 4,515 + 5,970) / 3 

   
m = 2,3,4; w = 7 (7,342 + 50,736 + 361,494) / 

3 =139,857 
(7,342 + 13,281 + 16,104) / 

m = 2,3,4; w = 9 (14,328 + 143,280 + 
1,303,848) / 3 =487,152 

(14,328 + 29,335 + 32,678) 
/ 3 =25,447 

m = 2,3,4; w = 11 (27,170 + 326,040 + 
3,613,610) / 3 =1,322,273 

(27,170 + 54,885 + 55,980) 
/ 3 = 46,011 

Table 9.27. Average extent of superiority of the filtered system 

Parameter values / 
Pair

EOCS vs EOFS EOHS vs EOFS

m = 2,3,4; w = 3 (2.42 + 5.47 + 10.20) / 3 = 
6.03

(2.42 + 3.81 + 3.61) / 3 = 
3.28

m = 2,3,4; w = 5 (4.16 + 14.65 + 30.56) / 3 = 
16.45

(4.16 + 5.98 + 3.76) /3 = 
4.63

   
m = 2,3,4; w = 7 (5.97 + 26.95 + 54.55) / 3 = 

29.15
(5.97 + 7.79 + 3.38) / 3 = 
5.71

m = 2,3,4; w = 9 (7.79 + 41.46 + 79.37) / 3 = 
42.87

(7.79 + 9.28 + 2.96) / 3 = 
6.67

m = 2,3,4; w = 11 (9.61 + 57.61 + 104.28) / 3 = 
57.16

(9.61 + 10.53 + 2.60) / 3 = 
7.58

The last thing that may be interest for the comparative complexity 
evaluation of the three systems is the overall margin and the overall extent 
of superiority of the FS with the respect to the other systems for a varying 
number of inputs and a varying number of linguistic values per input. For 
this purpose, we have to consider the FS again in a separate pair with each 
of the other two systems, as shown in Tables 9.28–9.29. 

3 = 12,424 

= 4,181 
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Table 9.28. Overall margin of superiority of the filtered system 

Parameter values / 
Pair

EOCS vs EOFS EOHS vs EOFS

m = 2,3,4; 
w = 3,5,7,9,11

(1,980 + 26,093 + 139,857 + 
+ 487,152 + 1,322,273) / 5 =
395,471

(793 + 4,181 + 12,424 +
+ 25,447 + 46,011) / 5 =
17,771

Table 9.29. Overall extent of superiority of the filtered system 

Parameter values / 
Pair

EOCS vs EOFS EOHS vs EOFS

m = 2,3,4; 
w = 3,5,7,9,11

(6.03 + 16.45 + 29.15 +
 + 42.87 + 57.16) / 5 = 30.33 

(3.28 + 4.63 + 5.71 + 
 + 6.67 + 7.58) / 5 = 5.57

It can be seen from Table 9.28 that overall the FS is with more than 
395,000 operations more efficient than the CS and with more than 17,000 
operations more efficient than the HS. Table 9.29 show that that overall the 
FS is more than 30 times more efficient than the CS and more than 5 times 
more efficient than the HS.

As in terms of behaviour the HS is only an approximation of the CS 
whereas the FS is equivalent to the CS, it is obvious that the FS 
outperforms significantly the other two systems. Moreover, this superiority 
is valid for fuzzy systems whose number of rules exceeds 14,000, as shown 
in Table 9.23. 

9.5  Comparative Analysis of Formal Simplification Techniques 

The two formal simplification techniques introduced in Sects. 9.2–9.3 are 
a powerful tool for reducing the quantitative complexity in fuzzy systems. 
In particular, the aggregation of inconsistent rules and the filtration of non-
monotonic rules can be used for reducing the number of rules in SRB 
systems or MRB systems represented with equivalent SRB systems. This 
leads to a reduction of the overall amount of operations during the 
operational stages and substages in fuzzy systems such as fuzzification, 
inference, i.e. application, implication, aggregation, and defuzification.

From the two formal simplification techniques, aggregation has a fairly 
limited effect because fuzzy rule bases are rarely inconsistent but if that is 
the case then there is usually a small number of inconsistent rules. As 
opposed to this, filtration has a much wider effect because fuzzy rule bases 
almost always have a big number of non-monotonic rules. The effect of the 
two techniques determines to a great extent their impact on a fuzzy system 
which is fairly moderate for aggregation but quite big for filtration. As far 
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as the solution for an AS and a FS is concerned, it is equivalent to the one 
for a CS, i.e. a system whose inconsistent rules are not aggregated or a 

The considerations presented above on formal simplification techniques 
for fuzzy rule bases provide essential information about the main 
characteristics of these techniques. These characteristics are summarised in 
Table 9.30. 

Table 9.30. Characteristics of formal simplification techniques for fuzzy rule bases 

Technique / Characteristic Effect Impact Solution 

Filtration of non-monotonic rules wide big equivalent 

9.6  Application Range of Formal Simplification Techniques 

The formal simplification techniques introduced in this chapter are 
applicable to a wide range of SRB systems. These techniques can be 
applied to Mamdami, Sugeno and Tsukamoto systems, CON and DIS 
systems, MO and SO systems, as well as FF and FB systems.

Examples 9.1–9.14 describe explicitly a fuzzy system of Mamdami type. 
In order to apply the associated rule base simplification algorithms to 
Sugeno and Tsukamoto systems, the substages of implication and 
aggregation within the inference stage have to be modified accordingly. In 
particular, the outputs from the implication substage will not be 
membership functions for the output but its defuzzified values for the 
separate rules. These values will then have to be aggregated by a weighted 
average method to give the overall defuzzified value of the output for all 
the rules. In this case, inconsistent and non-monotonic rules can still be 

guarantee that the overall defuzzified value for the output by using the 
weighted average method will be the same as the one for a CS. 

As far as CON and DIS systems are concerned, the formal simplification 
techniques are directly applicable to all of them. In this case, depending on 
the particular type of system, i.e. CADR, DADR, CACR or DACR, 
appropriate modifications have to be made for the application and 
aggregation substages of the inference stage.

The formal simplification techniques can be extended easily for other 
types of fuzzification, implication or defuzzification. For example, instead 
of triangular functions in the fuzzification stage, it is possible to use 
trapezoidal, Gaussian or other types of membership functions. Also, instead 
of a truncation type of implication, it is possible to use a scaling type of 
implication or another implication. And finally, instead of centroid 
defuzzification it is possible to use other types of defuzzification such as 

system whose non-monotonic rules are not filtered.

aggregated and filtered but some adjustments have to be made in order to 

Aggregation of inconsistent rules limited moderate equivalent 
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maximum, weighted average, etc. In all these cases, appropriate 
adjustments have to be made to ensure that the overall defuzzified value of 
the output is the same as the one for a CS. 

The formal simplification techniques have been illustrated only for single 
simulation cycles of SO systems. However, they can be easily extended to 
multiple simulation cycles and MO systems. In this case, all procedures 
presented in this chapter should be applied in exactly the same way to each 
simulation cycle of each output. This would obviously lead to a linear 
increase of the associated quantitative complexity, which would be 
proportional to the number of simulation cycles and the number of outputs.

Although the formal simplification techniques have been demonstrated 
only for SRB systems, they can be indirectly applied to MRB systems, 
which can be of either FF or FB type. In this case, the MRB system must be 
transformed first into an equivalent SRB system. 

The formal simplification techniques introduced in this chapter facilitate 
the complexity management in fuzzy systems. These techniques allow the 
information contained in the inconsistent or non-monotonic rule base of a 
SRB system to be compressed in a non-lossy manner by removing the 
redundancy in the rule base. As a result this compression, the rule base can 
be reduced and represented equivalently as a consistent and monotonic rule 
base.

The formal simplification techniques presented here are the last building 
block in a series of complexity management techniques for fuzzy systems 
introduced in the preceding chapters. However, all these techniques have 
been discussed fairly independently from each other so far. Therefore, it 
would be useful to know how we can make these building blocks stick 
together in the context of a general framework for complexity management 
in fuzzy systems. A detailed discussion on this issue is presented in the next 
concluding chapter. 



10 Conclusion 

10.1  Formal Approach for Fuzzy Rule Base Compression 

This book treats in detail complexity management aspects in fuzzy systems. 
In particular, Chapters 4–9 are dedicated to different techniques for 
complexity management. However, there is a common feature uniting most 
of these techniques in that complexity management in fuzzy systems is 
usually implemented by compression of the rule base.

In the case of formal presentation, the integer table of a rule base is 
compressed by a Boolean matrix or binary relation. In formal manipulation, 
the Boolean matrices or binary relations of two rule bases are compressed 
into a single Boolean matrix or binary relation by merging. Formal 
transformation is an extension of formal manipulation whereby the Boolean 
matrices or binary relations describing a MRB system are compressed into 
a single Boolean matrix or binary relation describing the equivalent SRB 
system. And finally, in the case of formal simplification, the Boolean 
matrix or binary relation of a SRB system is compressed by aggregation of 
inconsistent rules or filtration of non-monotonic rules. 

In this context, formal presentation, manipulation and transformation 
techniques deal mainly with qualitative aspects of complexity whereby the 
fuzzy rule bases become more transparent and easier for interpretation. At 
the same time, formal simplification techniques are focused predominantly 
on quantitative aspects of complexity whereby the amount of on-line 
operations and the associated computational times in fuzzy systems are 
reduced.

10.2  Theoretical Significance of Fuzzy Rule Base Compression 

The formal approach of fuzzy rule base compression introduced in this 
book has a big theoretical significance. It makes good use of mathematics 
and its power to formalise and facilitate a particular course of action as well 
as to justify and guarantee the result from this action. In this context, a 
number of algorithms and numerous examples are given for illustration of 
the underlying theoretical concepts. 

Another interesting feature of the formal approach used is that it leads to 
non-lossy compression of the rule base. In particular, the compression of 
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the IFS is done in a way which allows its reconstruction, if necessary, and 
ensures that the solution is uncompromised, i.e. the defuzzified output from 
the RFS is the same as the one from the IFS. In this sense, the approach is 
very suitable for both time-critical and safety-critical applications. 

Also, this formal approach undoubtedly improves the important 
attributes of computer speed and intelligence. These attributes are crucial 
for the successful treatment of time-critical and safety-critical applications 
of fuzzy systems characterised by quantitative and qualitative complexity. 

10.3  Application Framework for Fuzzy Rule Base Compression 

The formal approach of fuzzy rule base compression described in this 
book is applicable to a wide range of fuzzy systems. It would not be an 
overstatement to say that it can be applied almost universally to any type of 
fuzzy system irrespective of the number of its inputs, rules, etc. In this 
context, the algorithm below describes briefly an application framework for 
the formal approach. 

             Algorithm 10.1 
Off-line

1. Present formally a fuzzy system. 
2. For a MRB system, go to step 3; for a SRB system, go to step 5. 
3. Manipulate formally the constituent SRB systems of the MRB 

system.
4. Transform formally the MRB system into an equivalent SRB 

system.
5. For a MO SRB system, go to step 6; for a SO SRB system, go to 

step 7. 
6. Convert the MO SRB system into an equivalent collection of SO 

SRB systems. 
7. For each SO SRB system, sort the inconsistent rules in groups. 
8. For each SO SRB system, aggregate the inconsistent rules from 

each group. 
9. For each SO SRB system, sort the non-monotonic rules in 

groups.

On-line
1. For each SO SRB system, apply the fuzzification stage. 
2. For each SO SRB system, apply the application substage of the 

inference stage. 
3. For each SO SRB system, filter the non-monotonic rules from 

each group. 
4. For each SO SRB system, apply the implication substage of the 

inference stage. 
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5. For each SO SRB system, apply the aggregation substage of the 
inference stage. 

6. For each SO SRB system, apply the defuzzification stage. 

It is obvious from Algorithm 10.1 that almost all formal compression 
techniques from this book are applied in off-line steps 1-9. The only 
exception is the filtration of non-monotonic rules, which is applied in on-
line step 3. The remaining on-line steps, i.e. steps 1-2 and 4-6, are occupied 
by standard processes in fuzzy systems such as fuzzification, application, 
implication, aggregation and defuzzification. This algorithm shows that the 
formal approach for rule base compression fits very well within the 
established general application framework for fuzzy systems.

The on-line steps in Algorithm 10.1 reflect only one simulation cycle of 
a fuzzy system. In the case of more simulation cycles, all on-line steps must 
be applied for each new cycle. In this case, the computations for each SO 
SRB system may be done in parallel, which would reduce the overall 
computational time. 

10.4  Future Directions for Related Research in Fuzzy Systems 

The formal approach of fuzzy rule base compression presented in this book 
is expected to encourage and stimulate new research in fuzzy systems and 
related areas. This expectation is based on the fact that this formal approach 
has a natural overlap with some recent research trends in other types of 
complex systems, e.g. deterministic and probabilistic systems. 

One possibility in this respect would be the extension of fuzzy systems to 
fuzzy networks, which has already been initiated by the techniques of 
formal transformation of a MRB system into an equivalent SRB system. In 
this context, MRB systems can be viewed as networks whose nodes are in 
the form of SRB systems and whose connections are of FF or FB type. 

Another possibility would be the extension of fuzzy systems to fuzzy 
multi-agent systems. This has also been initiated by the techniques of 
formal transformation of fuzzy systems whereby the transformation process 
exhibits features similar to the ones of multi-agent systems. In this context, 
MRB systems can be viewed as multi-agent systems whose agents are in 

relocation during the transformation process. 
A third possibility would be the development of a new type of adaptive 

fuzzy systems by means of formal simplification techniques. In this case, 
the aggregation of inconsistent rules and the filtration of non-monotonic 
rules can be viewed as off-line and on-line adaptation of the associated 
rule base, respectively.

the form of SRB systems and whose migration is in the form of their 
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10.5  Overall Book Evaluation 

To the best knowledge of the author, this book is a first attempt for 
addressing the growing problem of complexity in fuzzy systems at a 
monographic level. As such, the book possibly has some drawbacks, e.g. 
theoretical bias, simplistic illustrations, partial software implementations, 
etc. For this reason, the author would be very thankful to colleagues from 
the international academic community who may be interested in any further 
theoretical developments or practical applications of the research results 
presented here. 

In spite of the possible drawbacks of this work, the author believes that 
the timeliness for its publication is more important than a comprehensive 
coverage. Moreover, the book appears to have dealt successfully with 
almost all questions raised in Chapter 1. Some of these questions are 
discussed in the preceding sections of this chapter whereas others are 
considered briefly below. 

For example, the formal approach used can be classified as fundamental 
and applied science on the basis of its theoretical foundations and suitability 
for applications. In this sense, it is neither an abstract theory nor empirical 
practice and it can hopefully stand the potential criticism from opponents of 
fuzzy logic. Also, the book has managed to open new horizons and suggest 
viable alternatives to the existing ‘status quo’ in the field of fuzzy systems 
by successfully replacing the established approach of complexity reduction 
with the more advanced approach of complexity management. As such, the 
book has helped the better understanding and analysis of complexity in 
fuzzy systems which will hopefully make these systems easier to interpret 
and more enjoyable to work with.

The author believes that this book will help fuzzy logic move a bit closer 
to the place that it deserves – as a main subject in university curricula and a 
key area for scientific research. Because undoubtedly fuzzy systems have a 
great potential that has been only partially explored. And maybe one day 
fuzzy logic will replace binary logic not only in the world of computing but 
also far beyond. 
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