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Preface

Probabilistic graphical models, such as Bayesian networks and Markov net-
works, have been around for awhile by now, and have seen a remarkable rise
in their popularity within the scientific community during the past decade.
This community is strikingly broad and includes computer scientists, statis-
ticians, mathematicians, physicists, and, to an increasing extent, researchers
from various fields of application, such as psychology, biomedicine and finance.

With the increase of their popularity, the range of graphical models be-
ing investigated and used has also expanded. Bayesian networks, previously
also called belief networks and probabilistic networks – terms used nowadays
less commonly – remain popular as ever. They have the advantage that joint
probability distributions can be specified locally, in terms of variables cor-
responding to the vertices in the associated acyclic directed graph and the
variables corresponding to the parents of these vertices. This facilitates the
development of real-world probabilistic models. Furthermore, prior and pos-
terior univariate marginal probability distributions can be computed quickly
if the associated acyclic directed graph is sparse, and easily visualised as plots
associated with the vertices, and this has offerred a convenient basis for the
development of intuitive, easy to understand user interfaces. Much of the suc-
cess of the formalisms can be attributed to these features. Despite of this,
there is an increasing tendency of researchers to go beyond Bayesian networks
as we know them. A number of these extensions are discussed in this book.
The most important ones are now briefly reviewed.

Whereas the graphical part of a Bayesian network has the form of an
acyclic directed graph, which has the advantage of supporting an interpreta-
tion of the graph in terms of cause-effect relationships, a disadvantage is that
many of the arcs in the graph can be reversed without affecting the meaning
of the graph in terms of encoded independence information. Taking this into
account has an impact on the number of different graphical representations
of independence information to be considered, and, as a consequence, fewer
graphs need to be visited when exploring the search space of possibilities when
learning graphical representations from data. Chain graphs allow for encoding
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such information, by representing arcs that can be reversed as lines; arcs that
cannot be revered without changing the meaning of the graph are kept un-
changed. Thus, chain graphs are mixed graphs that offer a clear picture of the
independence information that is represented graphically.

The assessment and representation of probabilistic information is another
important issue in the area of probabilistic graphical models. Whereas in early
work, there was an emphasis on discrete probability distributions, in recent
years, various ways of specifying and reasoning with continuous probability
distributions and mixtures of discrete and continuous distributions have at-
tracted a great deal of attention.

Bayesian networks and other probabilistic graphical models are suitable
for computing conditional and marginal (joint) probability distributions. How-
ever, in order to use probabilistic models for decision making some additional
information needs to be available, such as ways to represent decisions or ac-
tions and ways to distinguish between the possible outcomes of the decisions
or actions. Originally, influence diagrams were the formalism of choice, as they
could be viewed as Bayesian networks extended with a sequence of decision
vertices and a utility vertex. A range of techniques is available nowadays to
deal with such decision problems, all offering special features supporting the
development of specific decision-making models. The techniques are either
extensions to the original influence diagram formalism, or based on so-called
Markov decision processes, which is a versatile technique to model decision
making over time.

Issues of representation lie at the heart of research in the area of probabilis-
tic graphical models. However, any representation runs the risk of being useless
if not properly supported by algorithm for its manipulation. This, therefore,
also holds for probabilistic graphical models. The design of sophisticated in-
ference algorithms for probabilistic graphical models remains an important
research area.

Finally, whereas the research in probabilistic graphical models was origi-
nally done by a small group of researchers within their own community, there
are now several research groups outside the probabilistic graphical models
community that wish to exploit these models for problem solving in their
area and this is also reflected by the content of the present book.

The aim of the present book is twofold. On the one hand, the reader is
given an overview of a number of important topics in probabilistic graphical
models. This has been accomplished by inviting researchers in the area of
probabilistic graphical models to write a survey chapter on a topic on which
they have special expertise. On the other hand, the book includes a number
research papers on a variety of topics, based on earlier papers presented at
the European Workshop on Probabilistic Graphical Models (PGM) 2004, in
Leiden, the Netherlands. Based on reviews of papers for PGM 2004, revised
and extended versions of the papers were requested from some of the authors.

The book starts with a part on foundations of probabilistic graphical mod-
els. This is followed by parts on probabilistic inference, on the learning of



Preface VII

probabilistic graphical models, and on representation and algorithmic issue of
decision processes. The book is rounded off by a part where various applica-
tions of probabilistic graphical models, in particular Bayesian networks, are
described.

This book on Probabilistic Graphical will, therefore, give a good, repre-
sentative impression of the state of the art of the research in probabilistic
graphical models and we hope the reader will appreciate our effort in getting
the contributions to this book together.

Nijmegen, Peter J.F. Lucas
Albacete, José A. Gámez
Almeŕıa, Antonio Salmerón
May 2006
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Jiř́ı Vomlel, Milan Studený . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bayesian Network Models with Discrete and Continuous
Variables
Barry R. Cobb, Rafael Rumı́, Antonio Salmerón . . . . . . . . . . . . . . . . . . . . . 81

Sensitivity Analysis of Probabilistic Networks
Linda C. van der Gaag, Silja Renooij, Veerle M.H. Coupé . . . . . . . . . . . . . 103
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Markov Equivalence in Bayesian Networks

Ildikó Flesch and Peter J.F. Lucas

Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands,
{ildiko,peterl}@cs.ru.nl

Summary. Probabilistic graphical models, such as Bayesian networks, allow repre-
senting conditional independence information of random variables. These relations
are graphically represented by the presence and absence of arcs and edges between
vertices. Probabilistic graphical models are nonunique representations of the inde-
pendence information of a joint probability distribution. However, the concept of
Markov equivalence of probabilistic graphical models is able to offer unique repre-
sentations, called essential graphs. In this survey paper the theory underlying these
concepts is reviewed.

1 Introduction

During the past decade Bayesian-network structure learning has become an
important area of research in the field of Uncertainty in Artificial Intelligence
(UAI). In the early years of Bayesian-network research at the end of the
1980s and during the 1990s, there was considerable interest in the process of
manually constructing Bayesian networks with the help of domain experts.
In recent years, with the increasing availability of data and the associated
rise of the field of data-mining, Bayesian networks are now seen by many
researchers as promising tools for data analysis and statistical model building.
As a consequence, a large number of papers discussing structure learning
related topics have been published during the last couple of years, rendering
it hard for the novice to the field to appreciate the relative importance of the
various research contributions, and to develop a balanced view on the various
aspects of the field. The present paper was written in an attempt to provide
a survey of the issue lying at the very heart of Bayesian-network structure
learning: (statistical) independence and its representation in graphical form.

The goal of structure learning is to find a good generative structure relative
to the data and to derive the generative joint probability distribution over the
random variables of this distribution. Nowadays, graphical models are widely
used to represent generative joint probability distributions.

I. Flesch and P.J.F. Lucas: Markov Equivalence in Bayesian Networks, StudFuzz 213, 3–38
(2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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A graphical model is a knowledge-representation formalism providing a
graph representation of structural properties of uncertain knowledge. Bayesian
networks are special cases of graphical models; they offer a representation that
is both powerful and easy to understand, which might explain their current
high level of popularity among UAI, machine-learning and data-mining re-
searchers.

Structure learning consists of two main, interrelated, problems:

(i) the evaluation problem, and
(ii) the identification problem.

The evaluation problem amounts to finding a suitable way of judging the
quality of generated network structures. Using a scoring criterion we can in-
vestigate how well a structure with its associated constraints fits the data.
Note that a scoring criterion allows comparing structures with each other in
such way that a structure-ordering becomes possible. As we compare Bayesian
networks comprising the same vertices, scoring criteria are based only on re-
lationships modelled by means of arcs. One expects that the better the inde-
pendence relations implied by the graph representation match the knowledge
hidden in the data the higher the score obtained by a scoring criterion, and
this should be taken as one of a set of requirements when designing a scoring
criterion.

The identification problem concentrates on finding efficient methods to
identify at least one, maybe more, network structures given a scoring crite-
rion. The total number of possible graph representations for a problem grows
superexponentially with the total number of random variables [11]. As a conse-
quence, the application of brute-force algorithms is computationally speaking
infeasible. Thus practical methods for learning Bayesian networks use heuris-
tic search techniques to find a graph with a high score in the space of all
possible network structures.

In this survey paper we do not go into details of network scoring criteria;
rather we focus on another, however closely related, important element in all
modern research regarding the learning of Bayesian networks: the identifica-
tion of Bayesian networks that represent the same joint probability distribu-
tion, i.e. they are Markov equivalent. Exploiting the notion of Markov equiv-
alence can yield computational savings by making the search space that must
be explored more compact [4]. There are various proposals in the literature
to represent Markov equivalent Bayesian networks. One of them, a proposal
by Andersson et al, [1], uses a special type of graph, called an essential graph,
to act as a class representative for Bayesian networks that encodes the same
probabilistic independence information. Markov independence is therefore a
key issue in learning Bayesian networks. This paper summarises the theory
underlying equivalence of graphical models in terms of the underlying inde-
pendence relationship.

The paper is organised as follows. In the next section, basic notions
from graph theory and the logical notion of (statistical) independence are



Markov Equivalence in Bayesian Networks 5

introduced. These act as the basis for the graph representation of indepen-
dence information as described in Section 3. Equivalence of Bayesian networks
is studied in depth in Section 4, where we are also concerned with the prop-
erties of essential graphs. The paper is rounded off with remarks with respect
to the consequences of the theory summarised in this paper for the area of
Bayesian-network structure learning.

2 Preliminaries

We start by introducing some elementary notions from graph theory in Section
2.1. Next, we review the foundation of the stochastic (or statistical) indepen-
dence relation as defined in probability theory in Section 2.2. We assume that
the reader has access to a basic textbook on probability theory (cf. [6]).

2.1 Basic Concepts from Graph Theory

This subsection introduces some notions from graph theory based on Ref. [5];
it can be skipped by readers familiar with these notions.

Sets of objects will be denoted by bold, upright uppercase letters, e.g. V .
For singleton sets {v}, we will often only write the element v instead of the set
{v}. A graph is defined as a pair G = (V,E), with V a finite set of vertices,
where a vertex is denoted by an lowercase letter such as v, u and w, and
E ⊆ V × V is a finite set of edges. A graph G′ = (V ′, E′) is called an induced
subgraph of graph G = (V,E) if V ′ ⊆ V and E′ = E ∩ (V ′ × V ′). A graph
G = (V,E) for which it holds that for each (u, v) ∈ E: (v, u) ∈ E, u �= v, is
called an undirected graph (UG). An edge (u, v) ∈ E in an undirected graph is
also denoted by u− v and called an undirected edge. However, we will usually
refer to undirected edges simply as edges if this will not give rise to confusion.
A graph G = (V,A) is called a directed graph if it comprises a finite set of
vertices V , but, in contrast to an undirected graph, contains a finite set of
arcs, by some authors called arrows or directed edges, A ⊆ V × V for which
it holds that for each (u, v) ∈ A: (v, u) �∈ A. An arc (u, v) ∈ A is also denoted
by u → v in the following.

A route in a graph G is a sequence v1, v2, . . . , vk of vertices in V , where
either vi → vi+1, or vi ← vi+1, and possibly vi−vi+1, for i = 1, . . . , k−1, k ≥ 1;
k is the length of the route. Note that a vertex may appear more than once on
a route. A section of a route v1, v2, . . . , vk is a maximal undirected subroute
vi − · · · − vj , 1 ≤ i ≤ j ≤ k, k ≥ 1, where vi resp. vk is called a tail terminal
if vi−1 ← vi resp. vk → vk−1, and vi resp. vk is called a head terminal if
vi−1 → vi resp. vk ← vk−1. A path in a graph is a route, where vertices vi

and vi+1 are connected either by an arc vi → vi+1 or by an edge vi − vi+1.
A path is a directed path, if it contains at least one arc. A trail in a graph is
a route where each arc appears at most once and, in addition, the vertices in
each section of the trail appear at most once in the section. A slide is a special
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directed path with v1 → v2 and vi − vi+1 for all 2 ≤ i ≤ k − 1. A graph has
a directed cycle if it contains a directed path, which begins and ends at the
same vertex, i.e. v1 = vk.

A graph G = (V,E) is called a chain graph if it contains no directed cycles.
An acyclic directed graph (ADG) is a chain graph that is a directed graph.
Note that undirected graphs are special cases of chain graphs as well. Due to
the acyclicity property of chain graphs, the vertex set of a chain graph can
be partitioned into subsets V1 ∪ V2 ∪ · · · ∪ VL, L ≥ 1, such that each partition
only consists of edges and if u → v, then u ∈ Vi and v ∈ Vj , i �= j. Based on
this we can define a total order ≤ on vertices in a chain graph, such that if
u ∈ Vi and v ∈ Vj , with i < j, then u < v, and if i = j, then u = v (i.e. they
are in the same Vi). This order can be generalised to sets such that U ≤ V ,
if for each u ∈ U and v ∈ V we have that u ≤ v. Subsets V1, V2, . . . , VL are
called the chain components of the graph. A set of concurrent variables of Vl

is defined as Cl = V1 ∪ V2 ∪ · · · ∪ Vl, 1 ≤ l ≤ L. Any vertex u in an ADG that
is connected by a directed path to a vertex v is called a predecessor of v; the
set of predecessors of v is denoted by pr(u).

We say that the vertex u ∈ V is a parent of v ∈ V if u → v ∈ A; the set
of parents of v is denoted by π(v). Furthermore, v is then called u’s child ;
the set of children of vertex u is denoted by ch(u). Two vertices u, v ∈ V are
neighbours, if there is an edge between these two vertices. The boundary of
vertex u ∈ V , denoted by bd(u), is the set of parents and neighbours of u,
while the closure of u, denoted by cl(u), is defined as cl(u) = bd(u)∪{u}. Note
that the boundary of a vertex u in an undirected graph is equal to its set of
neighbours. The set of ancestors of a vertex u is the set of vertices α(u) ⊆ V
where there exists a path from each v ∈ α(u) to u, but there exists no path
from u to v, whereas the set of descendants of u, denoted by δ(u), is the set of
vertices δ(u) ⊆ V , where there exists a path from u to each v ∈ δ(u), but no
path from v to u. The set of non-descendants of u, denoted by δ̄(u), is equal
to V \ (δ(u) ∪ {u}). If for some W ⊆ V it holds that bd(u) ⊆ W , for each
u ∈ W , then W is called an ancestral set. By an(W ) is denoted the smallest
ancestral set containing W .

From the chain graph G we can derive the moral graph Gm by the following
procedure, called moralisation:

(i) add edges to all non-adjacent vertices, which have children in a common
chain component, and

(ii) replace each arc with an edge in the resulting graph.

A moral graph is therefore an undirected graph.
A chord is an edge or arc between two non-adjacent vertices of a path. A

graph is called chordal if every cycle of length k ≥ 4 has a chord.
As mentioned above, two vertices can be connected by an arc or an edge.

If two distinct vertices u, v ∈ V are connected but it is unknown whether by
an edge or arc, we write u · · · v, where the symbol · · · denotes this connection.
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2.2 Axiomatic Basis of the Independence Relation

Let V be a finite set and let Xv be a discrete random variable corresponding
to v ∈ V ; thus v acts as index to X. Define XW = (Xv)v∈W for any subset
W ⊆ V ; in particular X = XV = (Xv)v∈V . Let P denote a joint probability
distribution, or JPD for short, of X. We continue by providing the basic defin-
ition of (conditional) independence that underlies almost all theory presented
in this paper. The idea that conditional independence is a unifying notion of
relationships among components of many mathematical structures was first
expressed by Dawid [2].

Definition 1. (conditional independence) Let XV be a set of random vari-
ables with U,W,Z ⊆ V disjoint sets of vertices, and let P be a joint probability
distribution defined on X, then XU is said to be conditionally independent of
XW given XZ , denoted by XU ⊥⊥P XW | XZ , if

P (XU | XW , XZ) = P (XU | XZ). (1)

Conditional independence can be also interpreted as follows: learning about
XW has no effect on our knowledge concerning XU given our beliefs concerning
XZ , and vice versa. If Definition 1 does not hold, then XU and XW are said
to be conditionally dependent given XZ , which is written as follows:

XU �⊥⊥P XW | XZ . (2)

As an abbreviation, conditional independence XU ⊥⊥P XW | XZ and
conditional dependence XU �⊥⊥P XW | XZ will also be denoted by U ⊥⊥P W |
Z and U �⊥⊥P W | Z, respectively. We will often write X ⊥⊥P Y | Z instead
of {X} ⊥⊥P {Y } | {Z}.

Next, we will introduce the five most familiar axioms, called the indepen-
dence axioms or independence properties, which the independence relation⊥⊥P

satisfies. An example is provided for each of the axioms, freely following Ref.
[3]. As the independence axioms are valid for many different mathematical
structures, and we are concerned in this paper with independence properties
represented by graphs–examples of such mathematical structures–we will use
graphs to illustrate the various axioms. However, a discussion on how such
graphs should be interpreted in the context of probability theory is postponed
to the next section. In the example graphs of this paper, the first set XU in
the triple XU ⊥⊥P XW | XZ is coloured lightly grey, the second set XW is
coloured medium grey and the set XZ dark grey. If a vertex in the graph does
not participate in an independence property illustrated by the example, it is
left unshaded.

The independence relation ⊥⊥P satisfies the following independence axioms
or independence properties:1

1 Here and in the following we will always assume that the sets participating in the
various independence relations ⊥⊥ are disjoint, despite the fact that this is not
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• P1: Symmetry. Let XV be a set of random variables and U,W,Z ⊆ V be
disjoint sets of vertices, then

U ⊥⊥P W | Z ⇐⇒W ⊥⊥P U | Z.

If knowing U is irrelevant to our knowledge about W given that we believe
Z, then the reverse also holds. An example is given in Figure 1(a).

• P2: Decomposition. Let XV be a set of random variables and U,W,Z,Q ⊆
V be disjoint sets of vertices, then

U ⊥⊥P W ∪Q | Z ⇒ U ⊥⊥P W | Z ∧ U ⊥⊥P Q | Z.

This property states that if both W and Q are irrelevant with regard to our
knowledge of U assuming that we believe Z, then they are also irrelevant
separately. See the example in Figure 1(b).

• P3: Weak union. Let XV be a set of random variables and U,W,Z,Q ⊆ V
be disjoint sets of vertices, then

U ⊥⊥P W ∪Q | Z ⇒ U ⊥⊥P Q | W ∪ Z ∧ U ⊥⊥P W | Z ∪Q.

It expresses that when learning about W and Q is irrelevant with respect
to our knowledge about U given our beliefs about Z, then Q will remain
irrelevant when our beliefs do not only include Z but also W (the same
holds for Q). The weak union relation is illustrated by Figure 1(c).

• P4: Contraction. Let XV be a set of random variables and U,W,Z,Q ⊆ V
be disjoint sets of vertices, then

U ⊥⊥P W | Z ∧ U ⊥⊥P Q | W ∪ Z ⇒ U ⊥⊥P Q ∪W | Z.

Contraction expresses the idea that if learning about W is irrelevant to
our knowledge about U given that we believe Z and in addition learning
about Q does not change our knowledge with respect to U either, then the
irrelevance of Q with respect to U is not dependent on our knowledge of
W , but only on Z. The notion of contraction is illustrated by Figure 1(d).

• P5: Intersection. Let XV be a set of random variables and U, V, Z,Q ⊆ V
be disjoint sets of vertices, then

U ⊥⊥P W | Z ∪Q ∧ U ⊥⊥P Q | Z ∪W ⇒ U ⊥⊥P W ∪Q | Z.

The intersection property states that if learning about W has no effect on
our knowledge about U assuming that we believe Z and Q, knowing, in
addition, that our knowledge of Q does not affect our knowledge concerning
U if we also know W , then learning about W and Q together has also no

strictly necessary. However, as disjoint and non-disjoint sets bear a completely
different meaning, and it does not appear to be a good idea to lump these two
meanings together, we have decided to restrict our treatment to disjoint sets, as
this seems to offer the most natural interpretation of (in)dependence.
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Fig. 1. Example graphs illustrating the following independence axioms: (a) Sym-
metry, (b) Decomposition, (c) Weak union, (d) Contraction and (e) Intersection.
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effect on U . This property only holds for strictly positive joint probability
distributions. An example of the intersection property is shown in Figure
1(e).

Any model satisfying the independence axioms P1 to P4 is called a semi-
graphoid, whereas any model of the axioms P1 to P5 is called a graphoid.
Any joint probability distribution P satisfies axioms P1 to P4, while a joint
probability distribution only satisfies P5 if its co-domain is restricted to the
open interval (0, 1), i.e. it is a joint probability distribution that does not
represent logical relationships. A counterexample of the intersection property
is shown in Table 1. Here, each random variable can take values a or b. There
are only four possibilities, each having a probability equal to 1

4 , and the other
possibilities have probability equal to 0. It holds that U ⊥⊥P Q | Z ∪W and
U ⊥⊥P W | Z ∪Q, however U �⊥⊥P W ∪Q | Z.

Table 1. Counterexample to the intersection property.

U W Q Z
a a a a
a a a a
b a a a
b b b a

The independence axioms P1 to P4 were first introduced by Pearl (cf.
[10]); he claimed that they offered a finite characterisation of the independence
relation (Pearl’s famous “completeness conjecture”). This statement, however,
was shown to be incorrect by Studený after he discovered an axiom which
indeed appeared to be a property of the independence relation, yet could not
be deduced from axioms P1 to P4 [12]. Subsequently, Studený proved that
no finite axiomatisation of the independence relation exists [13].

The five axioms mentioned above are well known by researchers in proba-
bilistic graphical models; however, there are a number of other axioms which
are also worth mentioning. We mention four of these axioms:

• P6: Strong union. Let XV be a set of random variables and U,W,Z,Q ⊆ V
be disjoint sets of vertices, then

U ⊥⊥P W | Z ⇒ U ⊥⊥P W | Z ∪Q.

This property says that if learning about W does no convey any knowledge
with regard to U given our beliefs concerning Z, then this knowledge
concerning W remains irrelevant if our beliefs also include Q. An example
is shown in Figure 2(a).
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(d) Chordality

Fig. 2. Example graphs illustrating the following independence axioms: (a) Strong
union, (b) Strong transitivity, (c) Weak transitivity and (d) Chordality.

It holds that strong union implies weak union [3].
• P7: Strong transitivity. Let XV be a set of random variables and U,W,Z,

Q ⊆ V be disjoint sets of vertices, then

U �⊥⊥P Q | Z ∧ W �⊥⊥P Q | Z ⇒ U �⊥⊥P W | Z.

This property says that if based on our beliefs concerning Z, observing Q
will learn us something about both U and W , then our beliefs concerning
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Z already made U and W relevant to each other. Applying the equivalence
a ⇒ b ≡ ¬b ⇒ ¬a, strong transitivity can be rewritten to

U ⊥⊥P W | Z ⇒ U ⊥⊥P Q | Z ∨ W ⊥⊥P Q | Z.

For an example see Figure 2(b).
• P8: Weak transitivity. Let XV be a set of random variables and U,W,Z,

Q ⊆ V be disjoint sets of vertices, then

U �⊥⊥P Q | Z ∧ W �⊥⊥P Q | Z ⇒ U �⊥⊥P W | Z ∨ U �⊥⊥P W | Z ∪Q.

Weak transitivity is an extension of strong transitivity and states that if
U and W are separately dependent of Q given our beliefs about Z, then
it holds that knowledge exchange between U and W is accomplished via
Z or Z and Q. Applying the equivalence a ⇒ b ≡ ¬b ⇒ ¬a the above
mentioned dependence relation can also be written as

U ⊥⊥P W | Z ∧ U ⊥⊥P W | Z ∪Q⇒ U ⊥⊥P Q | Z ∨ W ⊥⊥P Q | Z.

This property is illustrated in Figure 2(c).
It holds that strong transitivity implies weak transitivity [3].

• P9: Chordality. Let XV be a set of random variables and U,W,Z,Q ⊆ V
be disjoint sets of vertices, then

U �⊥⊥P W | Z ∧ U �⊥⊥P W | Q ⇒ U �⊥⊥P W | Z ∪Q ∨ Z �⊥⊥P Q | U ∪W.

It implies that if learning about W yields knowledge about U , having
beliefs concerning Z, and the same holds when we have beliefs about Q,
then our knowledge about W is still relevant to our knowledge about U if
we know both Z and Q, or our knowledge about both Z and Q makes Z
and Q exchange knowledge. It is equivalent to

U ⊥⊥P W | Z ∪Q ∧ Z ⊥⊥P Q | U ∪W ⇒ U ⊥⊥P W | Z ∨ U ⊥⊥P W | Q.

An example of chordality is depicted in Figure 2(d).

3 Graphical Representation of Independence

In this section, we discuss the representation of the independence relation
by means of graphs, the rest of this paper will be devoted to this topic. In
the previous section, the conditional independence relationship was defined
in terms of a joint probability distribution P . In Section 3.1 closely related
notions of graph separation are defined and informally linked to conditional
independence. In Section 3.2, various special Markov properties are introduced
and discussed, building upon the separation criteria from Section 3.1. Finally,
in Section 3.3, possible relationships between conditional (in)dependences in
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joint probability distributions and the graph separation properties introduced
earlier are established formally. This provides a semantic foundation for the
various types of graphs in terms of the theory of statistical independence.

Let G = (V,E) be an undirected graph and let V be a finite set and Xv be
a discrete random variable corresponding to v ∈ V . Define XW = (Xv)v∈W

for any subset W ⊆ V ; in particular X = XV = (Xv)v∈V . Let P denote a
joint probability distribution of X.

3.1 Graph Separation and Conditional Independence

The independence relation defined earlier can be represented as a graphical
model, where arcs and edges represent the dependences, and absence of arcs
and edges represents the (conditional) independences. Arcs and edges repre-
sent roughly the same (in)dependence information; however, there are some
differences between the meaning of arcs and edges. The actual interpretation
is subtle, and is the topic of this and subsequent sections. In this section,
we provide the foundation for representing conditional independence state-
ments by graphs, and we cover the similarities between these principles for
undirected, acyclic directed as well as for chain graphs.

In an undirected graph G = (V,E) two vertices u, v ∈ V are dependent if
u−v ∈ E; if u and v are connected by a single path containing an intermediate
vertex z ∈ V , z �= u, v, then u and v are conditionally independent given z.
This is the underlying idea of the following separation criterion (cf. [3]):

Definition 2. (u-separation) Let G = (V,E) be an undirected graph, and
U,W,S ⊆ V be disjoint sets of vertices. Then if each path between a vertex in
U and a vertex in W contains a vertex in S, then it is said that U and W are
u-separated by S, denoted by U ⊥⊥G W | S. Otherwise, it is said that U and
W are u-connected by S, denoted by U �⊥⊥G W | S.

The basic idea of u-separation can be illustrated by Figure 3; for example, p
is u-separated from {r, t} by {q, w}, i.e. p ⊥⊥G {r, t} | {q, w}, whereas p and
{r, t} are u-connected by vertex q, i.e. p �⊥⊥G {r, t} | {q}.

The independence relation represented by means of an ADG can be un-
covered by means of one of the following two procedures:

• d-separation, as introduced by Pearl (cf. [10]);
• moralisation, as introduced by Lauritzen (cf. [7]).

First we discuss d-separation based on Ref. [9]. Let the distinct vertices
u, v, z ∈ V constitute an induced subgraph of the ADG G = (V,A), with
(u · · · z), (w · · · z) ∈ A and u and v are non-adjacent. Because the direction
of the arcs between u, z and w, z is unspecified, there are four possible in-
duced subgraphs, which we call connections, illustrated in Figure 4.2 These
2 The terminology used in Figure 4 varies in different papers. Here the meaning

of serial connection corresponds to head-to-tail meeting, divergent connection to
tail-to-tail meeting and convergent connection to head-to-head meeting.
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Fig. 3. Graphical illustration of u-separation. Vertex p and vertices {r, t} are u-
separated by vertices {q, w}, while vertex p and vertices {r, t} are u-connected by
q.

u

z

w

(a) serial
connection
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(b) serial
connection

u

z

w

(c) divergent
connection

u

z

w

(d) convergent
connection

Fig. 4. The four possible connections for acyclic directed graph G = (V, A) given
vertices u, w, z ∈ V with arcs (u · · · z), (w · · · z) ∈ A.

four possible connections offer the basis for the representation of conditional
dependence and independence in ADGs. The two serial connections shown in
Figure 4(a) and Figure 4(b) represent exactly the same independence infor-
mation; this is also the case for the divergent connection represented in Figure
4(c). Figure 4(d) illustrates the situation where random variables Xu and Xv

are initially independent, but become dependent once random variable Xz is
instantiated.

Let S ⊆ V , and u,w ∈ (V \ S) be distinct vertices, which are connected
to each other by the trail τ . Then τ is said to be blocked by S if one of the
following conditions is satisfied:

• z ∈ S appears on the trail τ , and the arcs of τ meeting at z constitute a
serial or divergent connection;

• z �∈ S, δ(z)∩S = ∅ and the arcs meeting at z on τ constitute a convergent
connection, i.e. if z appears on the trail τ then neither z nor any of its
descendants occur in S.
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The notion of d-separation exploits this notion of blocking, taking into account
that vertices can be connected by more than one trail:

Definition 3. (d-separation) Let G = (V,A) be an ADG, and let U,W,S ⊆
V be disjoint sets of vertices. Then U and W are said to be d-separated by
S, denoted by U ⊥⊥d

G W | S, if each trail τ in G between each u ∈ U and each
w ∈W is blocked by S; otherwise, U and W are said to be d-connected by S,
denoted by U �⊥⊥d

G W | S.

As an example, consider the graph in Figure 5(a), where the vertices z and
p are connected by the following three trails: τ1 = z → u → w ← p; τ2 =
z → u → w → q ← p and τ3 = z → u → w → r → t ← q ← p. Then
trail τ1 is blocked by S = {u, v}; since v does not appear on this trail and
the arcs on τ1 meeting at u form a serial connection. As u blocks τ2 and τ3

following Definition 3, we conclude that S d-separates z and p. On the other
hand, neither S′ = {v, w} nor S′′ = {v, t} block τ1, because u → w ← p is a
convergent connection, w ∈ S′; and t is a descendant of vertex w which occurs
in S′′; it also participates in a convergent connection with respect to τ3. Thus
not every trail between z and p in G is blocked by S′ or S′′, and z and p are
d-connected by S′ or S′′.

Next, we discuss the procedure of moralisation. Recall that the procedure
of moralisation of a graph G consists of two steps:

(i) non-adjacent parents of a common chain component become connected to
each other by an edge, and

(ii) each arc becomes an edge by removing its direction, resulting in an undi-
rected graph.

An example of moralisation is presented in Figure 5. Since acyclic directed
graphs are chain graphs, moralisation can also be applied to ADGs, where
each chain component contains exactly one vertex. Observe that during the
first step of the moralisation procedure, there may be extra edges inserted into
the graph. Since edges between vertices create a dependence between random
variables, vertices which became connected in the first step have a dependence
relation in the resulting undirected graph. For example, as u and p have a
common child w, and r and q have a common child t, the graph in Figure
5(a) is extended by two extra edges u− p and r− q. The resulting graph after
the first step of moralisation is depicted in Figure 5(b). The moral graph,
obtained by replacing arcs by edges, is shown in Figure 5(c). Observe that
moralisation transforms the independences and dependences represented by
d-separation (d-connection) into u-separation (u-connection). In the resulting
moral graph, the vertices u and p and the vertices r and q have become
dependent of one another, and thus, some independence information is now
lost. This independence information, however, can still be represented in the
underlying joint probability distribution such that it still holds that z ⊥⊥P p |
v. However, it is also possible to parametrise the moralisation procedure on the
vertices which potentially gives rise to extra dependences. This possibility is a
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Fig. 5. An example of the moralisation procedure as applied to the graph shown in
Figure (a). Graph (b) depicts the resulting graph after application of the first step of
moralisation. Note that the vertices u and p and the vertices r and q are non-adjacent
parents of the same child, therefore they became connected by an edge. Graph (c)
results after changing the arcs in graph (b) into edges. Applying the definition of
d-separation, it holds that z ⊥⊥d

G p | v in graph (a); however for the moral graph in
(c) we have that z �⊥⊥Gm p | v.

consequence of the meaning of a convergent connection u → z ← v, because
u and v are independent if z is not instantiated, and only become dependent
if we know z. If this is the case, and if we also assume that we know u (or v),
the dynamically created dependence between u and v gives rise to a type of
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reasoning known as explaining away [10]: v (u) becomes less or more likely if
we know for certain that u (v) is the cause of z.

The moralisation procedure takes the presence of created dependences
into account by means of the ancestral set, introduced in Section 2.1. Hence,
this form of moralisation preserves all relevant (independence) information
represented in the original ADG. The correspondence between d-separation
and u-separation after moralisation is established in the following proposition:

Proposition 1. Let G = (V,A) be an acyclic directed graph with disjoint sets
of vertices U,W,S ⊆ V . Then U and W are d-separated by S iff U and W
are u-separated in the moral graph Gm

an(U∪W∪S), where an(U ∪W ∪ S) is the
smallest ancestral set of U ∪W ∪ S.

Proof: See Ref. [5], page 72. �

Figure 6 illustrates Proposition 1 by means of the conditional independence
z ⊥⊥d

G p | {u, v} and the conditional dependence z �⊥⊥d
G p | {y, w} represented

in the graph shown in Figure 5(a). We start by investigating the conditional
independence z ⊥⊥d

P p | {u, v}. The smallest ancestral set of {z}∪{p}∪{u, v}
is an({z, p, u, v}) = {z, p, u, v}; the graph depicted in Figure 6(a) contains all
vertices of an({z, p, u, v}) for the graph shown in Figure 5(a). We see that
vertex p is disconnected from the subgraph v → z → u. The moral graph
of this smallest ancestral set is shown in Figure 6(b). Observe that in graph
(b) the vertices z and p are (unconditionally) independent, as there is no
path between them. Therefore, z ⊥⊥d

G p | {u, v} still holds, although now as
z ⊥⊥Gm p | {u, v}, as in the original graph in Figure 5(a). The situation where
we wish to keep the conditional dependence z �⊥⊥d

P p | {v, w} is illustrated
by Figures 6(c) and 6(d). In Figure 6(c) the subgraph associated with the
smallest ancestral set an(z ∪ p∪ {v, w}) = {z, p, u, v, w} is shown, and Figure
6(d) gives the resulting moral graph of Figure 6(c). In the graph (d) we can
see that vertices z and p are connected by a path, therefore, the created
dependence between u and p is now represented in the moral graph of G.

Moralisation can also be applied to chain graphs; however, there is also
another read-off procedure, called c-separation, introduced by Studený and
Bouckhaert [8]. The concept of c-separation generalises both u-separation and
d-separation.

The concept of c-separation takes into account the chain graph property
that vertices may be connected by either edges or arcs. Let G = (V,E) be a
chain graph and let σ denote a section of the trail τ in G. Then σ is blocked
by S ⊆ V , if one of the following conditions holds:

• z ∈ S appears on the section σ, where σ has one head and one tail ter-
minal and every slide of the tail terminal is mediated by z, or σ has two
tail terminals and every slide of at least one of the two tail terminals is
mediated by z;

• z ∈ S does not appear on the section σ, where σ has two head terminals
and z �∈ δ(σ).
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Fig. 6. Illustration of Proposition 1 with regard to the conditional independence
z ⊥⊥d

G p | {u, v} and the conditional dependence z �⊥⊥d
G p | {v, w} which holds for

the graph G shown in Figure 5(a). The induced subgraph H of this graph shown in
Figure (a) above corresponds to an({z, p, u, v}); in (b) its associated moral graph is
represented. We see that the conditional independence z ⊥⊥Hm p | {u, v} still holds.
Figure (c) above shows the induced subgraph L of graph 5(a) corresponding to the
smallest ancestral set of {z}∪{p}∪{v, w}. The graph Lm in (d) is the moral version
of this graph. We see that the conditional dependence z �⊥⊥Lm p | {v, w} holds for
this moral graph. Hence, in both cases, all relevant (in)dependence information is
preserved.

Based on these conditions we define the c-separation as follows.

Definition 4. (c-separation) Let G = (V,E) be a chain graph. Then two
distinct vertex sets U,W ∈ V are c-separated by S ⊆ (V \ {U ∪W}), if at
least one of the sections of each trail τ between any vertices u ∈ U and v ∈ V
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is blocked by S, written as U ⊥⊥κ
G W | S. Otherwise, U and W are c-connected

by S and we write U �⊥⊥κ
G W | S.

As an example we use the chain graph presented in Figure 7(a). We exam-
ine whether z ⊥⊥κ

G t | {u, q, r} (i.e. we have S = {u, q, r}). The following three
trails between z and t will be investigated: τ1 = z → u − w ← p → q → t
with sections σ11 = u− w and σ12 = q; τ2 = z → u− w −q → t with section
σ21 = u − w − q and τ3 = z → u − w → r → t with sections σ31 = u − w
and σ32 = r. In trail τ1 section u − w has two head-terminals and because
u ∈ S section σ11 does not block trail τ1. In contrast to σ11, σ12 has one head
and one tail terminal (the terminals are both equal to vertex q) and slide
p → q is mediated and therefore blocked by q. Since a trail is blocked if at
least one of its sections is blocked by S, we conclude that trail τ1 is blocked
by S = {u, q, r}. Section u − w − q in trail τ2 has one head and one tail ter-
minal, and satisfies the first blocking condition, because the slides p→ q and
z → u−w− q are both mediated by q ∈ S. Therefore, trail τ2 is also blocked
by S. This is also the case for trail τ3 with section u−w, which has one head
and one tail terminal and slides z → u−w → r and p → q −w → r are both
mediated by r ∈ S, thus τ3 is also blocked by S. There are also other trails
between vertices z and t (e.g. z → u−w−q ← p → q−w → r → t), which are
not mentioned here, because their sections are the same as in trails τ1, τ2 and
τ3. Therefore, these trails are also blocked by S. Thus, following Definition 4,
the conditional independence relation contains z ⊥⊥κ

G t | {u, q, r}.

3.2 Markov Properties of Graphical Models

The dependence and independence relations determined by a joint probability
distribution defined on the random variables corresponding to the vertices of
a graph are graphically represented by the so-called Markov properties. We
start by examining Markov properties for chain graphs, and next consider
Markov properties for undirected and acyclic directed graphs, as these are
special cases of chain graphs.

Each chain Markov property introduced below is illustrated by an example
based on the chain graph shown in Figure 7(a). Vertices in the figures are
presented using various shades depending on the role they play in visualising
conditional independence properties.

A chain graph G = (V,E) is said to obey:

• the pairwise chain Markov property, relative to G, if for any non-adjacent
distinct pair u, v ∈ V with v ∈ δ̄(u):

u ⊥⊥κ
G v | δ̄(u) \ {v}. (3)

Recall that δ̄(u) is the set of non-descendants of u. For the corresponding
example shown in Figure 7(b) it holds that δ̄(u) = {z, v, p, w} and therefore
this property expresses that u ⊥⊥κ

G v | {z, p, w}.
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Fig. 7. Graphical illustration of the chain Markov properties, taking the chain
graph in (a) as an example. Shown are (b): the pairwise chain Markov property
u ⊥⊥κ

G v | {z, p, w}; (c): the local chain Markov property u ⊥⊥κ
G {v, p} | {z, w}; (d):

the global chain Markov property {u, w, p, q, r, t} ⊥⊥κ
G v | z; (e): the block-recursive

Markov property u ⊥⊥κ
G r | {v, z, w, p, q}.
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• the local chain Markov property, relative to G, if for any vertex v ∈ V :

v ⊥⊥κ
G δ̄(v) \ bd(v) | bd(v). (4)

Figure 7(c) illustrates this property by u ⊥⊥κ
G {v, p} | {z, w}.

• the global chain Markov property, relative to G, if for any triple of disjoint
sets U, V, Z ⊆ V :

U ⊥⊥κ
G V | Z. (5)

Figure 7(d) includes the following example of the global chain Markov
property: {u, w, p, q, r, t} ⊥⊥κ

G v | z.
• the block-recursive chain Markov property, relative to G, if for any non-

adjacent distinct pair u, v ∈ V :

u ⊥⊥κ
G v | Cl∗ \ {u, v}, (6)

where Cl is the set of concurrent variables of Vl and l∗ is the smallest l
with u, v ∈ Cl. This is shown in Figure 7(e). The well-ordered partitioning
of a chain graph is not unique. In our example we take the following
order of the partitioning: {v} < {z} < {p} < {u,w, q} < {r} < {t},
where corresponding to Section 2.1 V1 = {v}, V2 = {z}, . . . , V6 = {t}
(hence, by this ordering l = 6). Then based on this partitioning, the block-
recursive chain Markov property states for example that it holds that
u ⊥⊥κ

G r | {v, z, w, p, q} with l∗ = 5.

Based on the Markov properties for chain graphs, we will derive the related
properties for undirected graphs, followed by acyclic directed graphs. As be-
fore, the undirected Markov properties are illustrated by means of figures.
Here the graph in Figure 8(a) is taken as the example undirected graph.

Let G = (V,E) be an undirected graph. Due to the fact that undirected
graphs do not include arcs we cannot distinguish between ancestors and de-
scendants of vertices; non-descendants δ̄(v) in the chain Markov properties
have to be replaced by the entire vertex set V \ {v}. In addition, the block-
recursive chain Markov property makes no sense for the undirected graphs,
because they do not have directionality. The undirected graph G is said to
obey:

• the pairwise undirected Markov property, relative to G, if for any non-
adjacent vertices u, v ∈ V :

u ⊥⊥G v | V \ {u, v}. (7)

In this case the set of non-descendants δ̄(u) from the chain property case
is replaced by V \ {u}. The example in Figure 8(b) shows that u ⊥⊥G v |
{Z,W,P,Q,R, T}.
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(a) The undirected graph
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(b) Pairwise undirected Markov property
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(d) Global undirected Markov property

Fig. 8. Graphical illustration of the undirected Markov properties, taking the UG
from (a) as an example. Shown are: (b): the pairwise undirected Markov prop-
erty u ⊥⊥G v | {z, w, p, q, r, t}; (c): the local undirected Markov property as u ⊥⊥G

{v, p, q, r, t} | {z, w}; (d): the global chain Markov property {u, w, p, q, r, t} ⊥⊥G v | z.
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• the local undirected Markov property relative to G, if for any u ∈ V :

u ⊥⊥G V \ cl(u) | bd(u), (8)

where bd(u) is the boundary or undirected Markov blanket (the minimal
boundary) of u and cl(u) is the closure of u defined in Section 2.1. As was
mentioned above δ̄(u) of the chain property is replaced by V . Observe that
in the local chain Markov property the expression δ̄(u) \ bd(u) does not
contain the random variable u, which would not be the case for V \ bd(u).
Therefore, the boundary set bd(u) is replaced by cl(u). Graph (c) in Figure
8 depicts u ⊥⊥G {v, p, q, r, t} | {z, w}, i.e. bd(u) = {z, w}.

• the global undirected Markov property, relative to G, if for any triple of
disjoint sets U,W, Z ⊆ V :

U ⊥⊥G W | Z. (9)

For this property no changes need to be made with regard to the corre-
sponding chain Markov property. An example for this property is given in
Figure 8(d); here:
{u, w, p, q, r, t} ⊥⊥G v | z.

Finally we consider Markov properties for ADGs, i.e. directed Markov proper-
ties. These are visualised using the ADG shown in Figure 9(a) as a basis. For
the acyclic directed graph G = (V,A) the local and global directed Markov
properties are derived from the local, respectively global chain Markov prop-
erties, replacing the boundary by the parents of a vertex. Furthermore, the
local chain Markov property generalises the blanket directed Markov property,
and the ordered directed Markov property is derived from the block-recursive
chain Markov property. The ADG G is said to obey:

• the local directed Markov property, relative to G, if for any v ∈ V :

v ⊥⊥d
G (δ̄(v) \ π(v)) | π(v). (10)

Note that the set bd(v) from the chain property is replaced by π(v) and,
in addition, the expression δ̄(v) \ bd(v) in the local chain Markov property
is simplified to δ̄(v) \ π(v). This property is illustrated in Figure 9(b); it
expressed the conditional independence u ⊥⊥d

G {v, p} | z.
• the blanket directed Markov property, relative to G, which is derived from

the local Markov property for chain graphs if we assume that for any
v ∈ V :

v ⊥⊥d
G V \ (β(v) ∪ v) | β(v), (11)

where β(v) is the directed Markov blanket, defined as follows:

β(v) = π(v) ∪ ch(v) ∪ {u : ch(u) ∩ ch(u) �= ∅;u ∈ V }. (12)
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(a) The directed graph
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(c) Blanket directed Markov property
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(e) Ordered directed Markov property

Fig. 9. Graphical illustration of the acyclic directed Markov properties, taking the
ADG shown in (a) as an example. Shown are (b): the local directed Markov property
u ⊥⊥d

G {v, p} | z; (c): the blanket directed Markov property X ⊥⊥d
G {v, q, r, t} |

{z, w, p}; (d): the global directed Markov property {u, w, p, q, r, t} ⊥⊥d
G v | z; (e): the

ordered directed Markov property u ⊥⊥d
G {v, p} | z.
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This property can be derived from the blanket undirected Markov property
easily, as v’s children, parents and children’s parents constitute the directed
Markov blanket. An example is given in Figure 9(c); here we have for
example u ⊥⊥d

G {v, q, r, t} | {z, w, p}.
• the global directed Markov property, relative to G, if for any triple of disjoint

sets U,W, Z ⊆ V :

U ⊥⊥d
G W | Z. (13)

This property need not be changed. Graph (d) in Figure 9 illustrates this
property; for example, we have: {u, w, p, q, r, t} ⊥⊥d

G v | z.
• the ordered directed Markov property, relative to G, if for any v ∈ V :

v ⊥⊥d
G (pr(v) \ π(v)) | π(v), (14)

where pr(v) denotes the predecessor set of v. This property can be derived
from the block-recursive chain property by the following idea: the acyclicity
of graph G provides a well-ordering of its vertex set, in which each vertex
can be seen as a chain component containing exactly one element. Figure
9(e) gives an example; based on the well-ordering v < z < p < u < w <
q < r < t it holds that u ⊥⊥d

G {v, p} | z.

3.3 D-map, I-map and P-map

In a graphical model it is not always the case that all independence infor-
mation is represented, and it may also not be the case that all dependence
information is represented. In this section the relationship between the rep-
resentation of conditional dependence and independence by joint probability
distributions and graphs is explored.

Let ⊥⊥P be an independence relation defined on XV for joint probability
distribution P , then for each U,W,Z ⊆ V , where U,W and Z are disjoint:

• G is called an undirected dependence map, D-map for short, if

U ⊥⊥P W | Z ⇒ U ⊥⊥G W | Z,

• G is called an undirected independence map, I-map for short, if

U ⊥⊥G W | Z ⇒ U ⊥⊥P W | Z.

• G is called an undirected perfect map, or P-map for short, if G is both a
D-map and an I-map, or, equivalently

U ⊥⊥P W | Z ⇐⇒ U ⊥⊥G W | Z.

Observe that in a D-map each independence encoded in the joint probability
distribution P has to be represented in the graph G. Using the equivalence
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a ⇒ b ≡ ¬b ⇒ ¬a, it holds for D-maps that each dependence encoded by
the graph G has to be represented in the joint probability distribution P .
This does not mean that each dependence represented in the joint probability
distribution P is also discerned in the D-map. In contrast to D-maps, in I-maps
each independence relationship modelled in the graph G has to be consistent
with the joint probability distribution P and each dependence relationship
represented in the joint probability distribution P has to be present in the
graph representation G. Clearly, a perfect map is just a combination of a
D-map and an I-map.

The notions of D-map, I-map and P-map can easily be adapted to similar
notions for ADGs and chain graphs, and thus we will not include the def-
initions here. Consider the following example, illustrated by Figure 10. Let
V = {u, v, z, w} be the set of random variables with joint probability distri-
bution: P (Xu, Xv, Xz, Xw) = P (Xu | Xz)P (Xv | Xz)P (Xw | Xz)P (Xz). The
associated conditional independence set consists of three members: Xu ⊥⊥P

{Xv, Xw} | Xz, Xv ⊥⊥P {Xu, Xw} | Xz and Xw ⊥⊥P {Xu, Xv} | Xz. Then,

u
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v w

(a)

u

z

v w

(b)

u

z

v w

(c)

u

z

v w

(d)

u

z

v w
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Fig. 10. Given the joint probability distribution P (Xu, Xv, Xz, Xw) = P (Xu |
Xz) P (Xv | Xz)P (Xw | Xz)P (Xz) with conditional independence set: Xu ⊥⊥P

{Xv, Xw} | Xz, Xv ⊥⊥P {Xu, Xw} | Xz and Xw ⊥⊥P {Xu, Xv} | Xz, graph (a) is a
D-map, graph (b) is neither a D-map nor an I-map, graph (c) is an I-map, graph
(d) is neither a D-map nor an I-map and graph (e) is a perfect map.
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the graph in Figure 10(a) is a D-map of P whereas graph (b) is not a D-map
of P , since it describes a dependence v → w, which is not in P . Graph (b) is
also not an I-map, since it does not include the arc z → v. Graph (c) is an
I-map of P but not a perfect map, because it includes the dependence v → w,
which is not part of P . Graph (d) is not an I-map by the fact that it does not
represent the dependence between vertices z and w (i.e. it does not contain
arc z → w) and it is also not a D-map. Graph (e) is a perfect map of the joint
probability distribution P . In the remainder of this section we investigate the
correspondence between the above-mentioned properties of conditional inde-
pendence and undirected, respectively, directed perfect maps. The following
theorem establishes conditions for the existence of an undirected perfect map
for any joint probability distribution.

Theorem 1. The conditional independence relations associated with a joint
probability distribution P need to satisfy the necessary and sufficient condi-
tions of (i) symmetry, (ii) decomposition, (iii) intersection, (iv) strong union,
and (v) strong transitivity, to allow their representation as an undirected per-
fect map.

As mentioned above, any joint probability distribution obeys the semi-
graphoid properties (symmetry, decomposition, weak union and contraction).
According to Theorem 1 in addition to the properties of symmetry and decom-
position, the properties of intersection, strong union and strong transitivity
should hold, which however, are not semi-graphoid properties. Thus, not every
joint probability distribution will have a corresponding undirected graphical
representation as a perfect map. Furthermore, for directed perfect maps we
have a number of necessary conditions, but these are not always sufficient.

Theorem 2. Necessary conditions for the conditional independence relations
associated with a joint probability distribution P to allow representation as a
directed perfect map are: (i) symmetry, (ii) contraction, (iii) decomposition,
(iv) weak union, (v) intersection, (vi) weak transitivity, and (vii) chordality.

Theorem 2 indicates that similar to the undirected case, the independence
relations corresponding to a joint probability distribution need not always
allow representation as a directed perfect map. In many practical situations,
it will not be possible to find a perfect map of a joint probability distribution.
Therefore we wish to focus on graphical representations that are as sparse as
possible, and thus do not encode spurious dependences, which is something
offered by minimal I-maps.

Definition 5. (minimal I-map) A graph is called a minimal I-map of the
set of independence relations of the joint probability distribution P , if it is an
I-map and removing any arc of the graph will yield a graph which is no longer
an I-map.

Minimising the number of arcs in a graphical model is not only important
for representation reasons, i.e. in order to keep the amount of probabilistic
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information that has to be specified to the minimum, but also for compu-
tational reasons. It has been shown that every joint probability distribution
P for which the conditional independence relations satisfy the conditions of
symmetry, decomposition, and intersection has a minimal undirected I-map,
whereas any joint probability distribution P with associated conditional inde-
pendence relations satisfying the conditions of symmetry, decomposition, weak
union and contraction has a minimal directed I-map representation [3]. This
implies that each graphoid has a corresponding minimal undirected I-map,
as well as a minimal directed I-map, and each semi-graphoid has a minimal
directed I-map as graphical representation. As for every joint probability dis-
tribution the semi-graphoid properties hold, we can conclude that each joint
probability distribution has a directed minimal I-map.

4 Equivalence of Bayesian Networks

In this section we return to the question which acted as the main motivation
for writing this paper: how can equivalence of Bayesian networks be charac-
terised best? It appears that in particular the concept of essential graphs plays
a pivotal role in this. Before discussing essential graphs, we start by reviewing
the definition of a Bayesian network in Section 4.1. Subsequently, in Sections
4.2 and 4.3, the equivalence relation on Bayesian networks which forms the
basis for the concept of essential graphs will be studied.

4.1 Bayesian Networks

As before, let V be a finite set and let Xv be a discrete random variable
corresponding to v ∈ V . Define XW = (Xv)v∈W for any subset W ⊆ V ; in
particular X = XV = (Xv)v∈V . Let P denote a joint probability distribution,
or JPD for short, of X.

Formally, a Bayesian network is a pair B = (G,P ), where G = (V,A) is
an acyclic directed graph and P is a joint probability distribution defined on
a set of random variables X.

As mentioned above, the set of arcs A describes the dependence and in-
dependence relationships between groups of vertices in V corresponding to
random variables. If a joint probability distribution P admits a recursive fac-
torisation then P can be defined on the set of random variables XV as follows:

P (X) =
∏

v∈V

P (Xv | Xπ(v)). (15)

Equation (15) implies that a joint probability distribution over a set of ran-
dom variables can be defined in terms of local (conditional) joint probability
distributions P (Xv | Xπ(v)). Considerable research efforts have been made
to exploit the structure of such a joint probability distribution for achieving
computational savings. A Bayesian network is by definition a directed I-map.
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What is interesting about Bayesian networks, and which is a main dif-
ference between directed and undirected graphical models, is that by instan-
tiating vertices in the directed structure independences may change to de-
pendences, i.e. stochastic independence has specific dynamic properties. In
Section 3.1 we have called the type of reasoning associated with this ‘explain-
ing away’. This dynamic property is illustrated by Figure 4(d), where random
variables X1 and X2, V = {1, 2, 3} are independent of one another if random
variable X3 is unknown, but as soon as Xw becomes instantiated, a depen-
dence between X1 and X2 is created. However, similar to undirected graphs,
part of the independence information represented in the graphical part of a
Bayesian network is static. The structure of a Bayesian network allows reading
off independence statements, essentially by using the notions of d-separation
and moralisation treated in the previous section.

Our motivation to study the Markov properties associated with graphs
arises from our wish to understand the various aspects regarding the repre-
sentation of independence in Bayesian networks. The following proposition
establishes a very significant relationship between Markov properties on the
one hand, and joint probability distributions on the other hand; it is due to
Lauritzen [5]:

Proposition 2. If the joint probability distribution admits a recursive fac-
torisation according to the acyclic directed graph G = (V,A), it factorises
according to the moral graph Gm and therefore obeys the global Markov prop-
erty.

Proof: See Ref. [5], page 70. �

Proposition 2 implies an important correspondence between a recursive fac-
torisation according to graph G and the global Markov property. This propo-
sition can be extended resulting in the following theorem, also by Lauritzen
[5]:

Theorem 3. Let G = (V,A) be an acyclic directed graph. For the joint prob-
ability distribution P the following conditions are equivalent:

• P admits a recursive factorisation according to G;
• P obeys the global directed Markov property, relative to G;
• P obeys the local directed Markov property, relative to G;
• P obeys the ordered directed Markov property, relative to G.

Proof: See Ref. [5], page 74. �

Theorem 3 establishes the relation between a recursive factorisation of
joint probability distribution P and the directed Markov properties introduced
in Section 3.2, and therefore explains why the Markov properties and their
relations are relevant in the context of Bayesian networks and thus to structure
learning.
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4.2 The Equivalence Relation on Acyclic Directed Graphs

In this section we introduce some notions required to study equivalence among
Bayesian networks. We start by the definition of Markov constraints [14].

Definition 6. (Markov constraints) Let G = (V,A) be an ADG. Then the
Markov independence constraints, Markov constraints for short, are the set
of independence relations defined by the global directed Markov property.

The Markov independence constraints allow us to define an equivalence
relation on ADGs, as follows:

Definition 7. (Markov equivalent) Two ADGs are Markov equivalent if
they have the same set of Markov constraints.

However, this definition is far removed from a procedural recipe: it is difficult
to imagine how we can actually determine whether two ADGs are equivalent
without enumerating all triples in the independence relations defined using
these graphs. However, the following two definitions allow us to look at the
problem from a different, and practically more useful, angle.

Definition 8. (skeleton) Let G be an ADG. The undirected version of G is
called the skeleton of G.

For example, the graph in Figure 11(b) is the skeleton of graph (a).

u v

z

w

(a)

u v

z

w

(b)

Fig. 11. An acyclic directed graph (a) and its skeleton (b).

Definition 9. (immorality) An induced subgraph in an ADG G with u, v, z ∈
V is called an immorality, if the graph contains the arcs u → z and v → z,
and vertices u and v are non-adjacent.

Definition 9 implies that the concept of immorality is equivalent to that of
convergence connection (cf. Figure 4(d)); both describe conditional depen-
dence between random variables. (Immorality is synonymous with v-structure
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introduced by Verma and Pearl (cf. [14]).) However, immoralities are also the
smallest induced subgraphs for the representation of conditional dependence.
Observe that if the direction of one or both arcs of an immorality is reversed,
the conditional dependence would turn into conditional independence, and
thus would destroy the original meaning of the graph. Therefore to keep the
independence relation defined on the random variables unchanged, it is not
allowed to reverse the direction of these arcs.

Definition 10. (essential arcs) Arcs that cannot be reversed without chang-
ing the conditional dependence and independence relations are called essential
arcs.

By Definition 10 both arcs of an immorality are essential arcs.
Applying Definition 8 and Definition 9, Markov equivalence is redefined in

terms of the concepts of skeleton and immoralities by the following theorem,
originally introduced by Verma and Pearl, which establishes the connection
between these notions (cf. [14]):

Theorem 4. Two ADGs are Markov equivalent with each other if and only if
they have the same skeleton and they consist of the same set of immoralities.

An example of Markov equivalence is given in Figure 12. Graph (a), (b) and
(c) are equivalent by Theorem 4, but graph (d) is not equivalent to graphs (a),
(b) and (c) since it contains, in contrast to the other graphs, the immorality
u → z ← w.

Let us try to explain why Theorem 4 plays a significant role in the field
of structure learning. Recall that an immorality describes an independence
relationship between random variables and it is also the smallest induced sub-
graph reflecting conditional dependence. The purpose of structure learning is
to find the relations between the random variables of the problem domain
based on the data. Thus, if we have the entire set of independence relation-
ships (the Markov constraints) or the entire set of dependence relationships
over the random variables our aim has been achieved. In the graphical rep-
resentation of dependence there are two kinds of dependences that can be
distinguished:

(i) static, and
(ii) dynamic dependence.

By static dependences we mean the existence of a direct connection (i.e. an
arc or edge) between vertices. Since the joint probability distribution on two
static dependent random variables u → v is the same as v → u, according to
Bayes’ theorem, this dependence can be represented by an arc. In contrast to
static dependences, dynamic dependences are conditionally dependent on the
instantiation of random variables associated with vertices with convergent
connections. Therefore, these arcs have to preserve their direction. This is
exactly what is said by Theorem 4.
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Fig. 12. An example of Markov equivalence. Graph (a), (b) and (c) are equivalent
since they have the same skeleton and the same set of immoralities. Graph (d) has
also the same skeleton as graph (a), (b) and (c), but graph (d) also contains an
immorality u → z ← w which does not occur in the other graphs. Therefore graph
(d) is not equivalent to graph (a), (b) and (c).

4.3 Essential Graphs

Taking Theorem 4 as a foundation, in this section we will study the important
problem of equivalence of ADGs. Recall that equivalent ADGs have the same
immoralities, and these immoralities consist of essential arcs, which in each
equivalent ADG have the same direction. In contrast, if one wishes to build
an ADG from a skeleton and a collection of immoralities, there are normally
different choices possible for edges which do not participate in an immoral-
ity, to the extent that choices that give rise to a directed cycle or to a new
immorality are not allowed. We can therefore conclude that the difference be-
tween equivalent ADGs is entirely based on the difference in the direction of
their non-essential arcs.
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It now appears that classes of Markov equivalent ADGs can be uniquely
described by means of chain graphs, called essential graphs, which thus act as
class representatives [1]; they are defined as follows:

Definition 11. (essential graph) Let E denote the equivalence class of
ADGs that are Markov equivalent. The essential graph G∗

E is then the smallest
graph larger than any of the ADGs G in the equivalence class E; formally:

G∗
E :=

⋃
{G | G ∈ E}. (16)

This definition implies that any of the non-essential arcs in any of the ADGs
G ∈ E is replaced by an edge (which means that to the arc (u, v) ∈ A an arc
(v, u) is added), and this explains why an essential graph is as large or larger
than any of the members of the equivalence class E which it represents. Of
course, as an essential graph is a chain graph, it may not be (and usually is
not) an ADG, and therefore usually not a member of the equivalence class it
represents.

It has been established that if an arc is part of a particular subgraph with
a specific structure, then we know that the arc must be essential. There are
four different (sub)graphs where u → v will always be an essential arc; these
are shown in Figure 13. As mentioned above, a serial or divergent connection
mirrors conditional independence, while a convergent connection reflects a
potential dependence relationship between random variables (see Figure 4).
Clearly, it is not allowed to express a dependence represented in the ADGs
of an equivalence class as an independence in the associated essential graph,
and vice versa. This is illustrated by the subgraphs (a) and (b) in Figure 13.
Case (a) means that we have a serial connection, which would be turned into
convergent connection if the direction of u → v is reversed. Therefore u → v
is an essential arc. In contrast, changing the direction of u → v in case (b)
would destroy an immorality, as a convergent connection would be changed
into a serial connection. Even though any graph G ∈ E is acyclic, reversing an
arc might create a directed cycle. Clearly, reversing the direction of such arcs
is not allowed, i.e. it is also an essential arc. This is shown in Figure 13(c).

u v

z

(a)

u v

z

(b)

u v

z

(c)

u v

z1

z2

(d)

Fig. 13. The four possible induced subgraphs, where arc u → v is strongly protected.
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Finally, in case (d) u → v is an essential arc and the two other essential arcs
z1 → v and z2 → v are participating in the immorality z1 → v ← z2 (i.e. they
are irreversible), the direction of the arc u → v cannot be reversed to ensure
that vertices z1 and z2 will not become dependent when conditioning on u.

Definition 12. (strongly protected) An arc u → v is called strongly pro-
tected if it is part of one of the four induced subgraphs shown in Figure 13.

In the next part of this section we turn our attention to the characteri-
sation of essential graphs. First of all we consider two of the most significant
properties of essential graphs.

Lemma 1. The essential graph G∗
E representing the equivalence class E is a

chain graph, i.e. G∗
E comprises no directed cycles.

Proof: In this proof we suppose that the essential graph G∗
E has a directed

cycle and then show that this assumption results in a contradiction.
Suppose that G∗

E has a directed cycle u, v, z1, . . . , zk ≡ u with k ≥ 2.
Observe that this directed cycle has at least: (i) one arc, which follows from
the definition of directed cycle and (ii) one edge, otherwise some G ∈ E would
have a directed cycle which does not fit their property of acyclicity. Thus the
cycle can be written as u → v, z1, . . . , zk ≡ u, with k ≥ 2, as shown in Figure
14(a). Because there is at least one edge inside this cycle, assume that this
is the edge zi−1 − zi in G∗

E with i ≤ k. Due to the fact that zi−2 and zi−1

can be connected by an edge (i.e. zi−2 − zi−1) or by an arc directioned into
zi−1 (i.e. zi−2 → zi−1) there must exist at least one G ∈ E with substructure
zi−2 → zi−1 ← zi (deduced from zi−2 → zi−1 − zi). As this cannot be an
immorality there has to be a connection zi−2 · · · zi (hence, the open possibility
for either an edge or an arc directed to zi is denoted by · · · ). But this means
that there is a smaller cycle such that u → v, z1, . . . , zi−2, zi, . . . , zk ≡ u, with
k ≥ 2. If we continue to reduce this directed cycle using the same idea, we
observe that u → v · · · z1 · · · z2 ≡ u which is equivalent to u → v · · · z · · ·u with
z1 = z. Figure 14(b) depicts the reduced variant of the original directed cycle
in Figure 14(a).

Next we show that u → v · · · z · · ·u cannot be an induced subgraph of the
essential graph G∗

E. Our assumption says that G∗
E contains a directed cycle.

Then there exist four possible structures in G∗
E deduced from u → v · · · z · · ·u,

shown in Figure 15. For each of these cases there exists at least one G ∈ E
equivalent to G∗

E containing a directed cycle, thus contradicting the acyclicity
property: case (a) ∃G ∈ E containing arc v → z; case (b) ∃G ∈ E containing
arc z → u; case (c) ∃G ∈ E containing arcs v → z and z → u; case (d) is
already a directed cycle.
Due to the fact that each G ∈ E should be an ADG, G∗

E cannot contain any
of the substructures from Figure 15; therefore, the essential graph is an chain
graph, which completes our proof. �
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Fig. 14. The directed cycle (a) and the reduced variant (b).
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Fig. 15. The possible graphs obtained by replacing the symbol · · · in u →
v · · · z · · ·u by an edge or an arc, taking the requirement into account that the
resulting graph should contain a directed cycle.

The essential graph has another very important property which is stated in
the following lemma.

Lemma 2. Let G∗
E be the essential graph which represents the equivalence

class E and let V (l) be a the chain component of G∗
E, then V (l) is chordal.

Proof: Suppose that there is an undirected cycle with k ≥ 4 in chain compo-
nent V (l), l ≤ L. Then there should exists at least one ADG G ∈ E, which
by its property of being acyclic should consist of an immorality. Since G∗

E

has to represent each immorality of E, thus the assumption above results in a
contradiction. Therefore the chain components of the graph G∗ are chordal. �

Lemma 1 and Lemma 2 concern two fundamental properties of essential
graphs. In addition, an essential graph is meant to preserve dependence in-
formation from the ADGs it represents. As mentioned above, immoralities
are meant to represent conditional dependence information. To preserve these
immoralities in an essential graph, the concept of strongly protected arcs have
been introduced. In the following lemma, this notion is used to further char-
acterise essential graphs.
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Lemma 3. Let G∗
E be the essential graph corresponding to the equivalence

class E. Then each arc in G∗
E is a strongly protected arc.

Proof: Suppose that u → v is not a strongly protected arc in G∗
E. This means

that its direction is reversible. Thus, there exists a graph G ∈ E with arc
u ← v. But then G∗

E should comprise u− v, leading to a contradiction. �

As was discussed above in relationship to Figure 13(a) and 13(b) it is not
permitted that an immorality is changed into a divergent or serial connection,
and vice versa.

Lemma 4. Let G∗
E be the essential graph corresponding to the equivalence

class E. Then G∗
E cannot contain the structure u → v − z as an induced

subgraph.

Proof: Suppose u → v − z is an induced subgraph in G∗
E. Then, there exists

a G ∈ E such that u → v ← z. But this is an immorality which should be
included in G∗

E, leading to a contradiction; this completes the proof. �

Combining the lemmas (1), (2), (3) and (4) leads to a full characterisation of
essential graphs in the next theorem.

Theorem 5. Let G∗
E be the essential graph corresponding to the equivalence

class E. Then G∗
E satisfies the following four conditions:

• G∗
E is a chain graph;

• each chain component of G∗
E is chordal;

• each arc in G∗
E is strongly protected;

• there exists no induced subgraph u → v − z in G∗
E.

Proof: The lemmas 1, 2, 3 and 4 are used subsequently to prove the statements
mentioned above, exactly in this order.

5 Conclusions

This paper is meant as a guide to the field of probabilistic graphical models,
where in particular we have tried to offer a balanced view of the various issues
involved in the study of stochastic dependence and independence, and its role
in Bayesian-network structure learning. As there are many different ways in
which (in)dependence information can be represented, e.g. as a joint proba-
bility distribution, as logical statements, or in the form of different types of
graphs, we have focused on the relationships between these different represen-
tations.

There were a number of key results given attention to in the paper that are
worth recalling. The independence relation may be looked upon as a logical
relation, where special properties of the relation can be defined axiomatically.
Unfortunately, the Independence relation does not permit finite axiomatisa-
tion. Nevertheless, there are a number of axioms that are worth knowing,
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as they support our understanding of the nature of independence; the most
familiar axioms were covered in the paper.

The subtle differences between representing stochastic independence using
undirected, acyclic directed and chain graphs was another related topic also
studied in this paper. The process of moralisation transforms acyclic directed
graphs and chain graphs into undirected graphs, which allows us to determine
the semantic relationships between these different graphical ways to represent
stochastic independence. Linked to this topic, a number of reading-off meth-
ods specific for particular types of graph were discussed, which supported
reasoning about the independence information represented in a graph solely
in terms of the graph structure.

Ways to identify and represent Markov equivalence in Bayesian networks
were the last topics studied. In particular, the concept of the essential graph
yields a significant insight into this matter, as an essential graph summarises a
class of Markov equivalent networks, and thus renders it possible to determine
which arcs in a Bayesian network are really significant. Bayesian networks
contain static and dynamic dependences. For the case of static dependences
changing directionality of arcs has no effect on the dependences in the entire
network, as long as it does not give rise to the creation of immoralities. On
the other hand, dynamic dependences are captured by the structure of the
immoralities and as these cannot be changed without changing the meaning
of a probabilistic graphical model, we have to maintain the direction of arcs in
this case. Therefore, the equivalent relation on Bayesian networks is defined
in terms of the structure of the skeleton and the associated set of immoralities
contained in the graphs. The concept the of essential graph has given rise to
much research activity, in particular in areas devoted to the development of
algorithms for searching the equivalence space of Bayesian networks (instead
of the entire space of Bayesian networks) to determine the Bayesian network
that best fits the data from a given domain. What is clear is that probabilistic
graphical models offer a rich and complicated landscape of probabilistic rep-
resentations, which will remain a topic of research in the future.
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Summary. Over the past decades there has been considerable research to develop
various dynamic forms of Bayesian Networks (BNs) and a parallel development in
the field of causal BNs. However, linking these two fields is subtle. In this paper we
demonstrate that, for classes of models exhibiting mass balance, it is necessary to
first redefine the stochastic variables in a process using a decomposition which gives
rise to a class of particular Dynamic Linear Models. These models on the transformed
space can be interpreted as a dynamic form of a causal BN. A manipulation algebra
is then defined to enable the prediction of effects of interventions that would not have
been obtainable using the current Causal algebras. The necessary deconstruction of
the processes and the algorithms to determine the effects of manipulations on the
original process are demonstrated using a simple example of a supply chain in a
hypothetical product market.

1 Introduction

There are now many classes of dynamic Bayesian Networks developed for a
variety of uses (see for example [14]). These can be used purely to describe
the dynamics of a multivariate time series. However, if we intend to use these
models for on-line decision making and forecasting, then, ideally, we would like
such models to support forecasts when the system is externally manipulated.
For example, if a model described the trade of a commodity around the world
and there was a conflict such as an embargo or a war which disrupted this
trade, it would be very useful if the model was formulated in such a way that its
forecasts could be simply adapted to accommodate this external information.

In a non-dynamic setting these issues have been addressed through the
construction of Causal Bayesian Networks (CBN) ([15] and [13]). Explicitly,
let X1, X2, .., Xn be random variables whose density p(x) is defined through
a BN Γ on these variables so that

p(x) =
n∏

i=1

p(xi|pai) ,

J.Q. Smith and L.J. Figueroa: A Causal Algebra for Dynamic Flow Networks, StudFuzz 213,
39–54 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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where pai denote the parents of Xi in Γ, 1 ≤ i ≤ n. If Γ is a CBN and
x = (xĵ , xj), then the density p( xĵ ||xj) of the remaining variables xĵ given
you manipulate the variable Xj to the value xj is given by

p(xĵ ||xj) =
n∏

i=1,i�=j

p(xi|pai(xj))

for 1 ≤ j ≤ n where pai(xj) denotes the parents of Xi with the value of Xj

set to xj . This formula is the one you would naturally adopt if you believed
that the variables after Xj in the partial order induced by Γ , i.e. those that
might be affected by the “cause” Xj , were changed in the same way as if
you had observed xj , whilst other variables – not downstream of the cause –
would be unaffected by this manipulation. A stochastic analogue of this nat-
ural rule, i.e. the study of the effects of manipulations of variables in time
series, has been studied for a long time in the context of the Dynamic Linear
Model –see e.g. the work of Harrison and Stevens [9], and West and Harrison
[18; 19; 20].

In this paper we demonstrate a new technology which draws together
these two areas for multivariate systems. We illustrate that it is very often
necessary to preprocess a multivariate time series, transforming the processes
appropriately so that the model can be used for causal as well as observational
inferences. Here we illustrate this technique with a hierarchical supply chain
time series model, utilising formal methodologies developed in [4] and [6] for
assessing the effects of a manipulation in such time series. A particular feature
of series in the more general flow network model, previously studied in relation
to unmanipulated transport problems in [17; 21] and [22], is mass balance:
the quantity of mass leaving an outlet must equal the mass going in [10].
Mass balance complicates the dependence structure across the component
time series and makes the naive use of dynamic BNs inappropriate in this
context.

The transformation we propose defines states in terms of the paths of a
graph called a Flow Graph. The associated decomposition leads to a conven-
tional dynamic BN [11]. Although its associated recurrences are non-standard,
fast closed-form solutions for the prediction of Gaussian processes of this type
are now available [6]. With some important caveats, it is also possible to build
a causal algebra for these processes which is analogous, but not the same as,
the causal algebras developed in [13] and [15] using this transformed space. We
demonstrate below how very different predictions of the effects of manipula-
tion are from their naive analogues associated with untransformed processes,
and how they often need additional external information before they can be
successfully accommodated.
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2 Flow Graphs of Supply Chains

The types of supply chain we study below have been used in traffic, education,
environmental and medical models as well as for commodities. Such chains
regularly experience traumatic disruption, provoked by events external to the
definition of the chain, changing the flows between elements of the chain.
Here our running example will be of a hypothetical product market. Monthly
output of the product is sold on by a producer to a consumer through an
intermediary – a trading company. This results in a supply chain with a strict
hierarchy: a purchaser at one level of this hierarchy buying from a supplier at
the previous level, i.e. the market is a hierarchical flow network (HFN).

Thus suppose such a product supply chain has 3 producers z(1, i), 1 ≤
i ≤ 3, (at level 1); 2 traders z(2, i), 1 ≤ i ≤ 2, (at level 2), and 2 consumers
z(3, i), 1 ≤ i ≤ 2, (at level 3). Although not necessary for the development
of this general architecture, for simplicity we assume in this paper that the
movement of the product from a seller to a purchaser takes one unit of time.

In general, not all purchasers in the HFN will be able to buy from all
sellers in the level below. This gives an underlying structure to a market in
a HFN which can be conveniently represented by a Flow Graph. Thus in
our example, if, under current circumstances, trader z(2, 1) buys only from
producers z(1, 1) and z(1, 2), selling to both market consumers z(3, 1) and
z(3, 2), whilst trader z(2, 2) buys only from z(1, 2) and z(1, 3) and sells only
to z(3, 2), then this would be represented by the Flow Graph Gf of Fig. (1).

©
z(1,1)

−→ ©
z(2,1)

−→ ©
z(3,1)

↗ ↘
©

z(1,2)

−→ ©
z(2,2)

−→ ©
z(3,2)

↗
©

z(1,3)

Fig. 1. Flow Graph Gf

Unanticipated external events such as wars, embargoes, unusual weather
conditions, can disrupt trading of the product, provoking knock-on effects
between the market players and their associated purchases and sales. Such
external manipulations of the chain cannot systematically feature in a time
series model but may well need to be accommodated when they are imminent
or immediately after they have happened.

The first question to ask is whether the Flow Graph, itself a directed
acyclic graph, is in fact a valid dynamic analogue of a BN and if this is so,
whether it is also causal. This would then allow us to deduce how to adapt the
distributions of flows in the light of a disrupting event and be of significant
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value to an observer of the market. Unfortunately, this conjecture falls at the
first hurdle. Although it has been suggested in the past that a flow graph
like the one above is a BN [21], this is not so in general for standard dynamic
analogues of BNs. To appreciate this, suppose the total amount of the product
sold by the three producers in our example were known to you at time t− 1.
Then you would know for sure the total amount of product all traders owned
at time t: a law of mass conservation. So, on being told how much z(2, 1)
held at time t would then give you perfect information about the amount held
by z(2, 2). Therefore, for the Flow Graph to be a BN, you would certainly
appear to need an edge between z(2, 1) and z(2, 2). Although it is important
to show care with definitions here, since we are dealing with processes and not
random variables, there appears no way in which the flow graph above can be
simply interpreted as a BN (see [6] for a formal treatment) even when there
is no intervention. Therefore, some further work needs to be done before the
machinery of BNs can be used successfully.

3 A Path Decomposition of Gf

Let φ
′

t[l] = (φt(l, 1), φt(l, 2), ..., φt(l, nl)) be the node states vector for level l,
1 ≤ l ≤ m, where φt(l, jl) represents the mass owned by player z(l, jl) during
time t in Gf , 1 ≤ jl ≤ nl, and φ′

t = (φ′
t[1],φ′

t[2], . . . ,φ′
t[m]). In the example

above, n1 = 3, n2 = 2, n3 = 2, and m = 3.
Suppose we have available time series of a vector X′

t = (X′
t[1],X′

t[2],X′
t[3])

of noisy observations of the vector of actual product amounts φt at time t
owned by each of the players, so that

Xt[l] = φt[l] + vt[l]; vt[l] ∼ N(0,Vt[l]) . (1)

Our problem here is the mass conservation in the system: it induces severe
dependencies between the component processes of φt. An important insight
is that a unit of the product can only pass from one producer to a consumer
along one path. Thus, to obtain functional independence, we simply need to
represent the processes above as aggregates of the product amounts taking the
different root-to-sink paths π(j) of Gf . In the example, these trading routes
are:

π(1) = {z(1, 1), z(2, 1), z(3, 1)}
π(2) = {z(1, 1), z(2, 1), z(3, 2)}
π(3) = {z(1, 2), z(2, 1), z(3, 1)}
π(4) = {z(1, 2), z(2, 1), z(3, 2)}
π(5) = {z(1, 2), z(2, 2), z(3, 2)}
π(6) = {z(1, 3), z(2, 2), z(3, 2)} .

This motivates the following definition.
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Definition 1. The outlet-path incidence matrix S(Gf ) of Flow Graph Gf ,
called the superposition matrix, is an (n×ρ) matrix whose rows correspond to
the n nodes of Gf and whose columns correspond to its ρ root-to-sink paths
(in the order specified above), and in which {S(Gf )}(i,j) = 1 iff the ith listed
node lies on the jth path, and zero otherwise.

The superposition matrix for the flow graph in Fig. (1) is given by

S(Gf ) =





1 1 0 0 0 0
0 0 1 1 1 0
0 0 0 0 0 1
1 1 1 1 0 0
0 0 0 0 1 1
1 0 1 0 0 0
0 1 0 1 1 1





.

Because of the hierarchical structure of the system, S(Gf ) can be de-
composed into full-rank matrices S[1], ...,S[m], where S[l] (1 ≤ l ≤ m) is of
dimension (nl × ρ) and has columns with exactly one non-zero entry. These
submatrices represent the outlet-path incidence over level l of Gf (1 ≤ l ≤ m).
In the example above, S[1],S[2] and S[3] are the first three, the fourth and
fifth, and the last two rows, respectively, of S(Gf ).

If to each of the paths π(j) of Gf we assign a time series of path-flow state
components ϕt(j) of the mass emerging from a root node over the time period
t and sold along the path π(j), then we can write

φt[l] = S[l]ϕt−l+1; t ≥ 1, l = 1, 2, ...m, (2)

where ϕ′
t = (ϕt(1), ϕt(2), . . . , ϕt(ρ)).

By re-expressing φt in terms of the functionally independent vector ϕt we
can write this process as a Gaussian multivariate multilevel Dynamic Linear
Model [7] with observation equation as in (1). Path flows are expressed as
noisy linear functions of a second vector of descriptive states {θt}t≥1, called
core states, representing levels, seasonal factors and so on, which are assumed
to evolve through time as a Markov chain. Thus, for each time t ≥ 1,

ϕt = F′
tθt + ut; ut∼ N(0,Ut)

θt = Gtθt−1+wt; wt ∼ N(0,Wt) , (3)

with prior
(θ0|D0) ∼ N(a0,R0) (4)

and error sequences {ut}t≥1, {vt}t≥1, {wt}t≥1 mutually and internally inde-
pendent. Note that in the above, Ft is a known (r×ρ) design matrix, specifying
the relationships between path flows and the underlying core states; Gt is a
known (r×r) block matrix, governing the dynamic evolution of the core states.
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The model defined by (1)-(4) is analogous to the Hierarchical Dynamic
Model with aggregation [7], the difference being that in our model some of
the information is delayed. For instance, in our illustrative market, we only
learn about the amount of material sold by z(1, 1) to z(3, 1) (via traders) once
z(3, 1) receives it, i.e. two time steps after the material left its first source. This
fact makes this new model different to the standard Dynamic Linear Model
[9] in that the state θt no longer summarises the information relevant for
forecasting at time t. Nonetheless, new forecasting and updating recurrences
for an external observer can be obtained based on a reparameterisation of the
core states [6]. Note also that in practice the external observer will usually
only have a proper subset of the information available to all producers, traders
and consumers [4].

4 Dynamic Bayesian Networks of Flow Systems

The new state space representation can now be used to define a slightly
adapted 2-time-slice BN (2-TBN) ([2; 11]) – one of the more useful classes
of dynamic BN for multiple time series.

Let the real state vector αt of an HFN be the vector of states which retains
the usual Markov property

{Xs}s≥t⊥⊥{Xs}1≤s≤t−1 | αt (5)

of the Dynamic Linear Model, where A⊥⊥B | C reads “A is independent of B
given C”. Note from the defining equations above that, because of the delays
in learning about aggregated flows, a real state vector αt for an m-level HFN
is

αt = (θt, . . . ,θt−m+1,ϕt, . . . ,ϕt−m+1) . (6)

So although Gf is not a BN, we are able to define a (slightly adapted) 2-TBN
for our HFN using the real state vector components as arguments. Like the
Flow Graph Gf for an HFN at untraumatic times, this 2-TBN is time ho-
mogeneous and gives sufficient information to reconstruct the original infinite
BN, since it gives the BN of state relationships from time t− 1 to time t and
the relationships between states and observations at time t.

The relevant 2-TBN for the three level HFN in Fig. (1) is given in Fig. (2)
below.

The tree structure of this BN means that dynamic propagation algorithms
can be designed to be extremely quick [12]. Also, in contrast to the 2-TBNs
studied in [11], because of the overlap of components in the real state vector,
the graphical structure of these HFNs does not degenerate over time. The BN
architecture also allows us to adapt these algorithms painlessly when observa-
tion on some of the components of the observation vector are systematically
missing (for details, see [5]).
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θt−3 → θt−2 → ϕt−2 → Xt[3]
↓

θt−1 → ϕt−1 → Xt[2]
↓
θt → ϕt → Xt[1]

Fig. 2. 2-TBN for 3-level HFN

5 Causality in Supply Chains

In a forecasting system for a Flow System, we will be interested in a variety of
interventions along the different stages of the model hierarchy. For example, we
will be concerned with interventions at time t on the subaggregate φT (l, jl)
that might arise due to an event that modifies the supply of material. A
different situation occurs when players in a market decide to stop trading
through a specific supply chain route (an embargo is a typical example of this
type of intervention). In this case, a path flow ϕT (j) is to be manipulated.
Another type of intervention on unobservable processes to be considered will
be on the core states. This is the usual intervention described in [20] and is
that concerned with changes in level, seasonal patterns, growth, etc.

In this manipulation context, we maintain the necessity of transforming
the series through the path decomposition of Sect. 3. Take our running ex-
ample: if z(1, 2) were prevented from trading, this situation could be easily
incorporated into a model in which only relationships between states φ were
used. Notice that this could be represented by erasing the node z(1, 2) and
its two connecting edges from Gf in Fig. (1) to give new flow graph G+

f , rep-
resented in Fig. (3) below. However, there is no obvious and simple way to
represent an embargo by z(3, 1) on trade from z(1, 2) solely through relation-
ships between node states. The path decomposition becomes paramount in
this setting.

©
z(1,1)

−→ ©
z(2,1)

−→ ©
z(3,1)

↘
©

z(1,3)

−→ ©
z(2,2)

−→ ©
z(3,2)

Fig. 3. Flow Graph G+
f

The 2-TBN of Fig. (2) is certainly “causal” on its states in the coarse sense
that, for obvious physical reasons, any manipulation at a time t on trading
cannot change the amount of oil currently in the system or indeed the amounts
that have flowed along its paths to that time. So the distribution of such quan-
tities, typically concerning states not in {αs}s≥t, should not be changed by
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and at the time of the intervention. On the other hand, to reflect how manip-
ulations affect this environment, the way in which the distribution of current
and future states might change depends on the type of manipulation per-
formed and may not be achieved by simple substitution of a particular value
into some of the components of the states. Furthermore, the appropriate ma-
nipulation will typically depend on additional information not required when
for forecasting the observed time series. However, it is possible to systemati-
cally use the modularity of the structure of the process, represented both in
its flow graph and its 2-TBN with its distribution of the current states, as a
framework for revising forecasts in the light of the unexpected trauma. We
illustrate this process below and hence elaborate and extend a Spirtes/Pearl
type causal algebra, pertinent to this particular domain. Explicitly, we need
to specify the distribution of (θ+

t ,ϕ+
t ), i.e. the distribution of (θt,ϕt) after

the intervention.

5.1 The Fast Response

A Motivating Example

Assume that under our running example the market structure is such that
consumers will always be able to satisfy their demand. The simplest way of
incorporating this into our model is to let the core states θt = (θt(1), θt(2))′

satisfy θt = φt+2[3] so that θt(i) represents the purchases two steps ahead for
the level 3 players z(3, i), i = 1, 2.

Now assume that at time t− 1, z(3, 1) establishes an embargo on sales by
z(1, 2) for time t. The immediate effect of the embargo is to set to zero the
flow along path π(3), so we have set

p+(ϕt(3) | Dt−1) = N(0,H) , (7)

where H indicates our uncertainty about the perfect enactment of the can-
celled sales.

From (2), we know that, in particular, after the intervention

φ+
t+2(3, 1) = ϕ+

t (1) + ϕ+
t (3) . (8)

If the sole information available to us is that the purchases from z(1, 2)
are expected to be cancelled, then this would result in ϕ+

t (1) = ϕt(1) and
φ+

t+2(3, 1) having a distribution with the same mean as the distribution of
ϕ+

t (1) – a lower purchase level, but with increased uncertainty . However, if
we know that z(3, 1) will seek to maintain its pre-intervention purchase level
and expert knowledge indicates that z(3, 1) will actually be able to obtain ex-
tra supplies from the sellers, then we can conclude that φ+

t+2(3, 1) = φt+2(3, 1).
Therefore, if z(3, 1) seeks no new trading relationships (i.e. purchasing from
z(1, 3) through z(2, 2)), it will require z(1, 1) to increase her sales. In this
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example, we notice that, more generally, θ+
t = θt. We now update the re-

maining flows conditional on these events and have the result of the fast
dynamic, in which at the time of the intervention, only node states for
z(1, 1) and z(1, 2), and flows through paths π(1) and π(3) have different pre-
and post-manipulation marginal distributions. Post-intervention forecasts are
computed to obtain the distribution of X+. A fast elaboration of the type
described above will modify the 2-TBN to:

θt−3 → θt−2 → ϕt−2 → Xt[3]
↓

θt−1 → ϕt−1 → Xt[2]
↓

θ+
t → ϕ+

t → X+
t [1]

Fig. 4. 2-TBN for manipulated HFN at the time of intervention

Note that, because we have assumed the joint distribution of all the vari-
ables is Gaussian, this transformation is trivial to calculate.

Other considerations are the possible manipulations to data that can take
place as a consequence of manipulations to the flows in the system. In a general
embargo declared on a producer, some players might choose not to manipulate
the flows themselves, i.e. enacting the embargo, but rather simply decide to
provide data that will indicate they have done so. This type of manipulations
and their effects, i.e. the resulting distribution of X+, have to be included in
the model in order to obtain more precise forecasts.

We will show next how to compute in general the effects of manipulations
on the processes ϕ, φ and X, where the form of the intervention and its
possible additional knock-in effects are guided by expert knowledge.

Manipulation of Path Flow and Observation Processes

First notice that if at time t− 1 we solely manipulate the supply chain vector
ϕT , i.e. those root to sink flows leaving the first source at time T , the forecast
for XT = (X′

T [1],X′
T+1[2], . . . ,X′

T+m−1[m])′ will consequently differ from the
unmanipulated prediction. However, this intervention will not immediately
modify our beliefs about other (future) supply chains – as is the case when
intervention on θ is performed (see Sect. 5.2). Outlying behaviour of a flow is
accommodated into the model in this way in order not to modify (at the time
of intervention) our beliefs about the state process {θk}k≥T . This is because
we do not believe that other (future) path flows will also change.

Thus, assume first that based on new information obtained at time t − 1
relevant to a change in our beliefs about the flow through path π(j) for time
T (T > t− 1), we can represent our new beliefs by
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p+(ϕT | Dt−1) = N(a+
T ,R+

T ) . (9)

The unmanipulated distribution obtained with the routine model was

p(ϕT | Dt−1) = N(aT ,RT ).

Thus we construct the post-intervention distribution of the error term uT

in (3) as
p+(uT | Dt−1) = N(hT ,UT + HT ) (10)

so that it is consistent with (9). We further assume that the sigma-algebra
generated by uT is sufficient for the pair {p, p+}.

Thus, for instance,

p(ϕT | uT , Dt−1) = p+(ϕT | uT , Dt−1) ,

which in turn implies that

p+(ϕT | Dt−1) =
∫

p(ϕT | uT , Dt−1)p+(uT | Dt−1)duT .

We obtain the post-manipulation predictive distributions in the same way
and notice that, as desired, the distribution of the core states for time T are
not affected at time t − 1 by this manipulation since θT⊥⊥puT | Dt−1. In
general, the conditional independence conditions represented by the Dynamic
Bayesian Network defined by the 2-TBN will determine the subset of processes
that will be affected by the intervention at time t− 1.

Notice also that we will want to discriminate between the decision of an
agent to change the true level of sales (say) and to change only the observed
data – the two interventions being different in nature. As mentioned above,
including in a model the belief that data is being manipulated is relevant since
the arrival of more reliable oncoming data related to the same path flow or
state process will help to derive more accurate forecasts and revised beliefs
about the latent processes. If it is not known how data is being manipulated,
to just indicate greater uncertainty than that assumed in routine is still useful.

Following the same argument used for the manipulation of the path flow
vector ϕ, we can obtain the post-intervention distributions when manipulating
the observation XT [l] at time t − 1. This time the intervention is triggered
by the new distribution of the error vT [l] in (1) constructed in a similar way
to (10). Thus, expert knowledge postulates that our post-intervention beliefs
can be expressed by

p+(vT | Dt−1) = N(hT ,VT + HT )

and assume that the sigma-algebra generated by vT is sufficient for the pair
{p, p+}.
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Manipulation of Node Flow Processes

When considering a broader set of interventions for a Flow System, it is im-
portant to also concentrate directly on the node process {φ}t≥1 since decisions
can be directly concerned with it and, as a consequence, affect the path flow
process. For example, a player in a market might choose to decrease his sup-
ply of material and will, therefore, modify his sales through certain supply
chains. If the expert had some knowledge on how the specific path flows will
be modified, the intervention could be accommodated by the methods ex-
plained above. However, if this is not available, he needs a methodology to
manipulate directly the node processes while assuming the same path-node
structure prevailing before the player’s manipulation.

Our purpose is, therefore, to define an intervention calculus that can ex-
press the direct manipulation of the state random vectors of the true node
process. When explicitly considering the node process {φt}t≥1, however, we
note that the joint probability distribution function p(θt,ϕt,φ

t,Xt) is singu-
lar and the Markov condition alone will not entail the conditional indepen-
dence properties of the processes in the model. Thus the causal calculus of
Pearl and Spirtes et al. are inapplicable for the computation of intervention
effects.

We also note that in flow networks at certain times the path flows will
be determined first and will, therefore, perfectly determine the node flows.
On the other hand, at other times the value of a subaggregate φ(l, jl) will
be set first and will determine the value (or a set of possible values) for the
different path flows that compose it. We cannot, as a consequence, specify
a single immutable causal direction between φ and ϕ because this direction
is determined by the nature of the manipulation we employ. Obviously such
reversible causal systems, also addressed in [16], cannot be represented in the
single cross sectional DAG of [15]. The semantics we have described above,
which elaborate the description with the underlying flow graph, are however
sufficient for this purpose.

Thus, if φT [l] determines ϕT−l+1, then

ϕT−l+1⊥⊥θT−l+1 | φT [l], (11)

while if ϕT−l+1 determines φT−l+i[i] (1 ≤ i ≤ m, i �= l) then

φT−l+i[i]⊥⊥θT−l+1 | ϕT−l+1. (12)

When computing the changes motivated by a change in our beliefs about
a specific subaggregate φT (l, jl) we first note that our beliefs about flows in
the subset

E(l,jl) = {ϕT−l+1(i); 1 ≤ i ≤ ρ, (S[l])jl,i = 1} (13)

(determined by the topology of Gf ) will change, and the path flows may
become independent of θT−l+1 because our beliefs about the subaggregate
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could completely determine our new beliefs about the relevant path flows.
We can, therefore, feed this new behaviour into paths in E(l,jl), transform
the intervention to a manipulation of the error uT−l+1 and make use of the
methodology demostrated above. Afterwards we feed the resulting informa-
tion on paths bottom-up to other subaggregates in the flow network. Similar
techniques, albeit in a non-dynamic setting, are shown in [20] for the combi-
nation of forecasts with the purpose of having a consistent system across the
hierarchy. Our approach, however, does not combine independent forecasts,
but rather assumes that our beliefs about the system flows have changed and
some forecasts will not be valid anymore. Moreover, our methodology differs
from theirs in that we transform the intervention on the subaggregate into a
corresponding intervention of the error process {ut}t≥1 with the purpose of
maintaining the use of routine algorithms for deriving prior, predictive and
posterior distributions.

This is achieved by assuming simply that

p+(ϕ(l,jl)
T−l+1 | φT (l, jl), Dt−1) = p(ϕ(l,jl)

T−l+1 | φT (l, jl), Dt−1) , (14)

where ϕ
(l,jl)
T−l+1 denotes the vector of path flows in E(l,jl).

Because both pre- and post-intervention distributions share the same null
sets (namely, when φT [l] �= S[l]ϕT−l+1, 1 ≤ l ≤ m), we can compute the
post-intervention distribution p+(ϕ(l,jl)

T−l+1 | Dt−1) as
∫

p(ϕ(l,jl)
T−l+1 | φT (l, jl), Dt−1)p+(φT (l, jl) | Dt−1)dφT (l, jl) , (15)

with the marginal distributions for the path flows not in E(l,jl) not affected.
This is because the covariances between paths that belong to E(l,jl) and those
that do not can be set to zero, according to the modeller’s expectations under
his new beliefs.

Affected subaggregates at level i are signalled up by the elements of
S[l]S′[i]. That is, if element (S[l]S′[i])jl,ji

= 1, then our beliefs about sub-
aggregate φT−l+i(i, ji) will also change immediately. This is because some
path flows affected by the intervention on φT (l, jl) also pass through outlet
z(i, ji). Notice that S[l]S′[l] is a diagonal matrix indicating that intervention
on φT (l, jl) alone will not affect other contemporary subaggregates in the same
level.

Joint Interventions

One or more players in a flow network might decide to modify at the same
time the behaviour of the different processes subject to their control, possibly
as a consequence of another player’s manipulation. This situation with the
fast response of other players was exemplified above. To accommodate these
manipulations into a model we make use of joint interventions.
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Thus, for instance, if at time t − 1, φT (l, jl) and ϕT−l+1(k) (1 ≤ k ≤
ρ, t − 1 < T − l + 1) are intervened to have post-intervention distribution
p+(φT (l, jl), ϕT−l+1(k) | Dt−1), then

1. If (S[l])jl,i = 1 (1 ≤ i ≤ ρ, i �= k) and (S[l])jl,k = 0, then we simply
compute the effects following the intervention methodology shown before.
Note that for all j such that (S[l])jl,j = 0 (j �= k), then p+(ϕT−l+1(j) |
Dt−1) = p(ϕT−l+1(j) | Dt−1).

2. If (S[l])jl,i = 1 (1 ≤ i ≤ ρ, i �= k) and (S[l])jl,k = 1, and we call ϕ−k
T−l+1 the

vector of path flows in E(l,jl) not including ϕT−l+1(k), then p+(ϕ−k
T−l+1 |

Dt−1) is obtained from
∫

p(ϕ−k
T−l+1 | φT (l, jl), ϕT−l+1(k), Dt−1)

p+(φT (l, jl), ϕT−l+1(k) | Dt−1)dφT (l, jl)dϕT−l+1(k) .

With this new post-intervention distribution, we simply follow the proce-
dures to transform this intervention into an error intervention and compute,
accordingly, the effects of this intervention at t − 1 and other times on the
processes of the Flow Network.

Knowledge of the system is important here if we want to choose an appro-
priate transformation of the process after intervention. In the example above,
we needed to know that z(3, 1) would seek extra supplies from its usual sup-
plier. However, he could have decided to purchase from z(2, 2) under such
circumstances, thus creating a new path in Gf . This situation is easily ac-
commodated by extending the superposition matrix and, as a consequence,
the path flow vector ϕ, which in turn may require new core states to represent
its behaviour – see [20] for further details on the extension of the dimension
of θ.

5.2 The slow dynamic

The next stage, the adjustment of the system equation, is analogous to the
intervention methodology established in [20]. At this stage we need to model
further phenomena such as the possible depressing effect on demand of an
increase in price. This would result in a necessary change in the system equa-
tions: a change in conditional distributions of certain states given the past.
This can be achieved by changes to the system matrix Gt+1 to G+

t+1 and/or
to the distribution of wt+1. In this way,

(θ+
t+1 | θ+

t ) ∼ N(G+
t+1θ

+
t + ht,W+

t+1) ,

instead of the pre-intervention

(θ+
t+1 | θ+

t ) ∼ N(Gt+1θ
+
t ,Wt+1)
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The effects of such interventions are computed as in routine (i.e. when no
intervention has happened) through the usual forecasting and updating re-
currences of the DLM.

The total effects on the original series of this embargo are now possible to
calculate. The effects are clearly non-atomic in Pearl’s sense of the term and
furthermore act on states rather than observations. The fast effects on the
paths using this algebra are often causal in the Spirtes/Pearl sense, although
the appropriate manipulation will depend on extraneous information: is the
market currently demand or supply driven, do the players have a storage ca-
pacity, and if so how big is this? These and other considerations determine the
appropriate transformation to use. And certainly in this type of market there
is nearly always a slow dynamic, as players adapt their purchasing strategies in
the light of the new environment. Moreover, as discussed above, new processes
might be born due to the manipulation of existing processes. In the market
described above, although a systematic intervention algorithm has been built,
the distribution of no observation is set to a pre-assigned value, nor indeed
any linear function of observables.

Furthermore, the effects of the manipulation of a single player can affect
the series of transactions of every other player, whether or not they are parents
of the original enactor in Gf , in a way that is highly dependent on prior infor-
mation about the trauma scenario, and in a way that is not purely deducible
from the idle network.

A second important point to note is that the nature of the multivariate
process describing the supply system could be completely transformed after
the manipulation. This is not only true of the distributions but often the
conditional independences across the processes. For example, in the case of
a general embargo on z(1, 2) and under the situation when z(2, 1) chooses
not to sell to z(3, 2), although before the intervention the multivariate se-
ries were all dependent on each other, after intervention the market has seg-
mented. The transactions of z(1, 1), z(2, 1) and z(3, 1) are all now indepen-
dent of the transactions of z(1, 3), z(2, 2) and z(3, 2). Thus, if we write X(a)

s =
(Xs(1, 1), Xs+1(2, 1), Xs+2(3, 1)) and X(b)

s = (Xs(1, 3), Xs+1(2, 2), Xs+2(3, 2)),
then

{X(a)
s }s≥t+3⊥⊥{X(b)

s }s≥t+3 | θt .

Notice also that, unlike the causal algebra developed by Pearl, we do not
destroy the dependence structure of the processes in the Flow System, but
rather manipulate the distributions of the error processes. We are, therefore,
able to compute the post-intervention retrospective distributions of the sys-
tem, i.e. distributions of the form p+(zs | DT ), (s ≤ T ) of any flow process
{zs}s≤T after we have intervened the system at time t−1 and observed data up
to time T . These distributions will differ from the unmanipulated p(zs | DT )
for any manipulation (either on the core, path flow or node states, as will be
the case for the observations), when the relevant intervention was performed
for the state or observation for time T . Thus, we agree with the fact that
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an intervention will not change the past, either of the process or what we
observed, but it can certainly modify the way we view the past.

6 Discussion

In this paper we have demonstrated that dynamic causal structures are com-
plex and need extra machinery to help guide the appropriate adaptation of
the process before the trauma took place. In the simple supply chain model
above, for example, we saw that the appropriate transformation of the multi-
variate time series of the observed market, was certainly quite different from
one which simply plugged in certain values to the observed “causal” observa-
tions. This is because the effects of such manipulations were not considered
by the routine model – adequate for reflecting non-embargo situations.

To predict the effects of an intervention, we have used more information
than that provided by previous observations of idle series. We believe that
this suggests that routine methods of model selection (like [1] and [3]), whilst
providing a helpful role in exploring complex multivariate time series, have
rather limited scope for the analysis of market which regularly experience
trauma. These not only focus on the relationships between observations rather
than states but also because these, perforce, through their relation to Granger-
causality models [8], blur the distinction between intrinsic perturbations and
external manipulation.

However, the use of qualitative information, like that in a flow graph, can
guide us towards tailored classes of filtered series which have high predictive
power under control. Valuable external information associated with the pre-
dicted effects of an intervention can be incorporated into the moments of the
states of the system in a straightforward way and realistic predictions ob-
tained. Such methods are obviously context-specific, but provide useful and
intellectually fascinating new extensions to studies of causality within models
which have an underlying dynamic BN structure. A development of such a
systematic methodology customized to a general class of supply chain with
an application to the oil market is presented in [6].
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Summary. The topic of this chapter is conditional independence models. We review
mathematical objects that are used to generate conditional independence models in
the area of probabilistic reasoning. More specifically, we mention undirected graphs,
acyclic directed graphs, chain graphs, and an alternative algebraic approach that
uses certain integer-valued vectors, named imsets. We compare the expressive power
of these objects and discuss the problem of their uniqueness.

In learning Bayesian networks one meets the problem of non-unique graphical
description of the respective statistical model. One way to avoid this problem is
to use special chain graphs, named essential graphs. An alternative algebraic ap-
proach uses certain imsets, named standard imsets, instead. We present algorithms
that make it possible to transform graphical representatives into algebraic ones and
conversely. The algorithms were implemented in the R language.

1 Conditional Independence Models

The main motivation for this chapter is conditional independence models (CI
models). The classical concept of independence of two variables has an inter-
pretation of their mutual irrelevance, which means that knowing more about
the state of the first variable does not have any impact on our knowledge of
the state of the second variable. Similarly, the concept of conditional indepen-
dence of two variables given a third variable means, that if we know the state
of the third variable then knowing more about the state of the first variable
does not have any impact on our knowledge of the state of the second variable.
We will illustrate this concept using an example taken from Jensen [4].

Example 1 (CI model). Assume three variables:

• person’s length of hair, denoted by h,
• person’s stature, denoted by s, and
• person’s gender, denoted by g.
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We can describe relations between these three variables as follows:

• Seeing the length of hair of a person will tell us more about his/her gender
and conversely. It means, the value of g is dependent on the value of h.

• Knowing more about the gender will focus our belief on his/her stature. It
means that s is dependent on g and (through g) also on h.

• Nevertheless, if we know the gender of a person then length of hair of that
person gives us no extra clue on his/her stature, that is h is independent
of s given g.

Thus, we have indicated one (conditional) independence relation. Note that
all the observations are implicitly understood as symmetric claims. That is,
for example, the dependence between g and h is the same as the dependence
between h and g.

The conditional independence relations of the above-mentioned type can
formally be specified as conditional independence statements over a non-
empty finite set of variables N .

Definition 1 (Disjoint triplet over N). Let A,B,C ⊆ N be pairwise dis-
joint subsets of a set of variables N . This disjoint triplet over N will be denoted
by 〈A,B | C〉. The symbol T (N) will be used to denote the class of all possible
disjoint triplets over N .

Definition 2 (CI statement). Let 〈A,B | C〉 be a disjoint triplet over N .
Then the statement “A is conditionally independent of B given C” is a CI
statement (over N), written as A⊥⊥B | C. The negation of this statement,
the respective conditional dependence statement, will be denoted by A�⊥⊥B | C.

If any of the sets A,B, or C will be a one-element set we will omit the curly
brackets and write a to denote {a}.

Example 2 (CI statement). In Example 1 we have indicated only one CI state-
ment, h⊥⊥s | g. On the other hand, we have indicated two dependence state-
ments, namely g �⊥⊥h and s�⊥⊥g. These are viewed as conditional dependence
statements, namely g �⊥⊥h | ∅ and s�⊥⊥g | ∅.

Using CI statements we can create a model of a real domain/system that
describes conditional independence relations between all variables in the mod-
eled domain.

Definition 3 (CI model). A CI model is a set of CI statements.

Example 3 (CI model). The situation in Example 1 can be modelled by a CI
model containing just one non-trivial CI statement h⊥⊥s | g. However, one
should also include trivial CI statements, which have the form A⊥⊥∅ | C,
where A,C ⊆ {s, h, g} are disjoint. They correspond to an intuitively evident
statement that there cannot be any dependency on an empty set of variables.
It is implicitly understood that the disjoint triplets that are not present in the
list of CI statements are interpreted as conditional dependence statements.
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One way to describe an independence model of a real system is to provide
the list of all valid CI statements. However, for large domains of interest this
list might be terribly long. This means, humans would hardly be able to to
create, maintain, or verify the correctness of a list of this kind.

The list of CI statements can be shortened if we take into consideration
certain properties of probabilistic CI models. The CI models that satisfy five
basic axioms listed below are called semi-graphoids [8]. These axioms can be
used as rules that generate from a certain set of CI statements called the base
all valid CI statements in the modeled system. Thus, instead of storing the
whole list of CI statements we just keep the CI statements in the base.

Definition 4 (Semi-Graphoid Axioms). For each collection A,B,C,D ⊆
N of pairwise disjoint sets the following axioms are assumed:

A⊥⊥∅ | C,

A⊥⊥B | C =⇒ B⊥⊥A | C,

A⊥⊥B ∪D | C =⇒ A⊥⊥B | C,

A⊥⊥B ∪D | C =⇒ A⊥⊥B | C ∪D,

A⊥⊥B | C ∪D ∧ A⊥⊥D | C =⇒ A⊥⊥B ∪D | C.

Even if lists of CI statements are shortened so that they only contain CI
statements in a base they still might be hardly understandable by humans.
Therefore various auxiliary mathematical objects were proposed that can be
used to generate CI models.

In Section 2 we review some of these mathematical objects that are tra-
ditionally used in the area of probabilistic reasoning. More specifically, we
discuss undirected graphs, acyclic directed graphs, chain graphs, and an al-
ternative algebraic approach that uses certain integer-valued vectors, named
imsets. We compare their expressive power and discuss the problem of their
uniqueness. The discussion is a starting point for introducing imsets since they
meet two requirements:

• so-called standard imsets can represent each CI model generated by a
discrete probability distribution, and

• imsets from a special class of standard imsets are unique representatives
of CI models generated by acyclic directed graphs.

These properties play an important role in learning CI models.
In Section 3 we introduce two representatives of an equivalence class of

acyclic directed graphs – essential graphs and standard imsets. The core of
this chapter is the transition between these two representatives of Bayesian
network models. Therefore, in Section 4, we explain in detail why an algo-
rithm for this transition is desired in the area of learning Bayesian networks.
Then, in Section 5, certain graphical characteristics of chain graphs are intro-
duced that play a crucial role in the reconstruction of the essential graph on
basis of the standard imset. In Section 6 we formulate lemmas on which the
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reconstruction algorithm is based and the algorithm is given in Section 7. In
Section 8 we discuss the relation to hierarchical junction trees, which provide
a third method for representing a Bayesian network model. We implemented
all mentioned algorithms in the R language developed by R Development Core
Team [10]. In Conclusions we discuss future perspectives.

2 Objects Generating Conditional Independence Models

The main motivation for using mathematical objects to generate CI models
is that they often have much more compact form when compared with a list
of CI statements. They are also better readable by humans. By a CI object
over N we will understand a mathematical object defined over a finite set (of
variables) N that can be used to generate a CI model.

In this section we review the most popular classes of CI objects: discrete
probability distributions, undirected graphs, acyclic directed graphs, chain
graphs, and imsets. We will describe how they generate CI models and com-
pare their expressive power with respect to the collection of all CI models
generated by discrete probability distributions. All CI models discussed in
this section are semi-graphoids.

2.1 Probability Distributions

Every discrete probability distribution (PD) defined over variables from N
can be used to induce a CI model over N . In Definition 5 the concept of
conditional independence for discrete PDs is recalled.

Definition 5 (CI in PDs). Let P be a discrete PD over N . Given any
A ⊆ N , let vA denote a configuration of values of variables from A and for
B ⊆ N \A let P (vA | vB) denote the conditional probability for A = vA given
B = vB. Given 〈A,B | C〉 ∈ T (N), the CI statement A⊥⊥B | C is induced by
probability distribution P over N if for all vA, vB , vC such that P (vC) > 0

P (vA, vB | vC) = P (vA | vC) · P (vB | vC) . (1)

Example 4. Assume that h, s, g are variables from Example 1. For simplicity,
further assume that they are all discrete and binary:

• h taking states short and long,
• s taking states more than 164 cm and less than 164 cm, and
• g taking states male and female.

Let A = {h}, B = {s}, and C = {g}. If a probability distribution P (A,B,C)
satisfies equation (1) for all respective configuration of values (vA, vB , vC)
from

{short, long} × {more than 164 cm, less than 164 cm} × {male, female}
then A⊥⊥B | C (which is h⊥⊥s | g) is a CI statement induced by P .
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2.2 Undirected Graphs

Probabilistic graphical models modelled by undirected graphs are also known
as Markov networks [8].

Definition 6 (UG). An undirected graph (UG) over N is a pair (N, E),
where N is a set of nodes and E a set of undirected edges, i.e., a set of
unordered pairs a −− b where a, b ∈ N and a �= b.

Definition 7 (Undirected path). An undirected path between nodes a and
b in an UG G = (N, E) is a sequence a ≡ c1, . . . , cn ≡ b, n ≥ 2 of nodes such
that c1, . . . , cn are distinct and ci −− ci+1 ∈ E for i = 1, . . . , n − 1.

Definition 8 (Separation criterion for UGs). A⊥⊥B | C is represented
in an UG G if every path in G between a node in A and a node in B contains
a node from C.

Example 5. The UG in Figure 1 represents the CI statement h⊥⊥s | g.

Fig. 1. The UG generating h⊥⊥s | g

Definition 9 (Clique). A set of nodes K ⊆ N of an UG G = (N, E) is
complete if a −− b ∈ E for all a, b ∈ K, a �= b. A maximal complete set of G
with respect to set inclusion is called a clique.

An important concept is that of a decomposable (undirected) graph. There
are several equivalent definitions of a decomposable graph (see § 2.1.2 of Lau-
ritzen [6]), one of them is the following.

Definition 10 (Decomposable graph). An undirected graph G = (N, E) is
decomposable if its cliques can be ordered into a sequence K1, . . . , Km, m ≥ 1
satisfying the running intersection property (cf. Proposition 2.17(ii) in [6]):

∀ i ≥ 2 ∃ k < i Si ≡ Ki ∩ (
⋃

j<i

Kj) ⊆ Kk . (2)

It is a well-known fact that the collection of sets Si, 2 ≤ i ≤ m does not
depend on the choice of an ordering satisfying (2) – see Lemma 7.2 in [13].
We will call these sets separators of the graph. Moreover, the multiplicity ν(S)
of a separator S, that is, the number of indices i for which S = Si also does
not depend on the choice of an ordering satisfying (2). Note that the definition
implies that the class of cliques is disjoint with the class of separators.
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Example 6. The UG in Figure 1 has two cliques C1 = {h, g} and C2 = {g, s}.
It is decomposable and it has one separator S = {g}.

2.3 Acyclic Directed Graphs

Acyclic directed graphs are a very popular class of CI objects in the area of
probabilistic reasoning. They constitute the structural part of probabilistic
models known as Bayesian network models [8].

Definition 11 (Directed graph). A directed graph is a pair (N,F), where
N is the set of nodes and F is a set of directed edges, i.e., a set of ordered
pairs a → b where a, b ∈ N and a �= b such that if a→ b ∈ F then b→ a �∈ F .

Definition 12 (Directed path). A directed path between nodes a and b in
a directed graph G = (N,F) is a sequence a ≡ c1, . . . , cn ≡ b, n ≥ 2 such that
c1, . . . , cn are distinct and for i = 1, . . . , n− 1: ci → ci+1 ∈ F .

Definition 13 (Directed cycle). A directed cycle in a graph G = (N,F) is
a sequence c1, . . . , cn, cn+1 ≡ c1, n ≥ 3 of nodes in G such that c1, . . . , cn are
distinct and for i = 1, . . . , n− 1: ci → ci+1 ∈ F .

Definition 14 (DAG). An acyclic directed graph (DAG) is a directed graph
that has no directed cycle.

Remark 1. Researchers in the area of artificial intelligence became accustomed
to the abbreviation DAG. It is based on the phrase directed acyclic graph,
which is, however, imprecise from the grammatical point of view.

Definition 15 (Underlying graph of a DAG). Underlying graph of a
DAG G = (N,F) is undirected graph G′ = (N, E), where

E = {a −− b : a → b ∈ F ∨ a → b ∈ F} .

Definition 16 (Set of parents in a DAG). Let G = (N,F) be a DAG.
The set of parents of a node b ∈ N is the set {a ∈ N : a → b ∈ F}, denoted
by paG(b).

To introduce so-called moralization criterion for reading CI statements
from a DAG we will use graphical concepts of ancestral set and moral graph.

Definition 17 (Ancestral set in a DAG). Let G = (N,F) be a DAG.
Node a is an ancestor of node b in G if there exists a directed path from a to
b. Given B ⊆ N , the set of ancestors of nodes in a set of nodes B is called
the (least) ancestral set for B. It will be denoted anG(B).

Definition 18 (Induced subgraph for a DAG). Assume a DAG G =
(N,F) and ∅ �= M ⊆ N . The induced subgraph of G for M is graph GM =
(M,FM ), where FM = {a→ b ∈ F : a ∈M, b ∈M}.
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Note that every induced subgraph of a DAG is again a DAG.

Definition 19 (Moralization for DAGs). The moral graph of a DAG G =
(N,F) is graph Gmor, which is an undirected graph (N, E), where

E = {a −− b : (a → b ∈ F) ∨ (b → a ∈ F) ∨
(∃c ∈ N \ {a, b} : a → c, b → c ∈ F)}

Now, we can formulate the moralization criterion. To check whether a CI
statement is represented in a DAG, we first create an ancestral graph, moralize
it, and finally check the validity of the CI statement using the separation
criterion for UGs as defined in Definition 8.

Definition 20 (Moralization criterion for DAGs). A⊥⊥B | C is repre-
sented in a DAG G if A⊥⊥B | C is represented in the moral graph of induced
graph GanG(A∪B∪C).

Example 7. In Figure 2 three DAGs generating the CI statement h⊥⊥s | g are
shown. They all have the same moral graph, which is in Figure 1. Note that
there are three different DAGs that generate the same CI model.

Fig. 2. Three DAGs generating h⊥⊥s | g

2.4 Chain Graphs

Chain graphs [7] are a common generalization of both UGs and DAGs. They
form a special subclass of graphs that contain both directed and undirected
edges, so called hybrid graphs.

Definition 21 (Hybrid graph). A hybrid graph is a triplet (N, E ,F), where
N is the set of nodes, E is a set of undirected edges, i.e., a set of unordered
pairs a −− b where a, b ∈ N and a �= b and F is a set of directed edges, i.e., a
set of ordered pairs a → b where a, b ∈ N and a �= b. Moreover, it is required
that if a→ b ∈ F then b→ a �∈ F and a −− b �∈ E.

Definition 22 (Semi-directed cycle). A semi-directed cycle in a hybrid
graph H is a sequence c1, . . . , cn, cn+1 ≡ c1, n ≥ 3 of nodes in G such that
c1, . . . , cn are distinct, c1 → c2 ∈ F , and either ci → ci+1 ∈ F or ci −− ci+1 ∈
E for i = 2, . . . , n.
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Definition 23 (Chain graph). A chain graph (CG) is a hybrid graph that
has no semi-directed cycle.

Example 8. In Figure 3 we give an example of a chain graph.

Fig. 3. A chain graph

The following definitions generalize definitions of undirected and directed
paths.

Definition 24 (Path). Path in a hybrid graph H = (N, E ,F) between nodes
a and b is a sequence a ≡ c1, . . . , cn ≡ b, n > 1 such that c1, . . . , cn are distinct
and for i = 1, . . . , n− 1 one of the following three conditions holds:

(1) ci −− ci+1 ∈ E,
(2) ci → ci+1 ∈ F , or
(3) ci+1 → ci ∈ F .

If for i = 1, . . . , n − 1 either the condition (1) or (2) holds the path is called
descending.

Example 9. An example of a descending path in the chain graph in Figure 3
is the path a → b −− c→ d.

Next, we generalize the concepts of set of parents and ancestral set for
CGs.

Definition 25 (Set of parents in a CG). Let H = (N, E ,F) be a CG. The
set of parents of nodes in a set B is the set {a ∈ N : a → b ∈ F , b ∈ B}. It
will be denoted paH(B).

Definition 26 (Ancestral set in a CG). Let H = (N, E ,F) be a CG. Node
a is an ancestor of node b in H if there exists a descending path from a to b.
The set of ancestors of nodes in a set of nodes B is called the (least) ancestral
set for B. It will be denoted anH(B).
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Example 10. Let H be the chain graph from Figure 3. For example, the set of
parents of {d} is {c}, the ancestral set of {d} is {a, b, c, e, f}. The ancestral
set of {d, g} is the set of all nodes N .

Next, we generalize special concepts from DAGs to CGs.

Definition 27 (Induced subgraph for a CG). Let H = (N, E ,F) be a
CG and ∅ �= M ⊆ N . The induced subgraph of H for M is graph HM =
(M, EM ,FM ), where EM = {a −− b ∈ E : a, b ∈ M} and FM = {a → b ∈ F :
a, b ∈ M}.

Note that every induced subgraph of a CG is a CG.

Definition 28 (Components). A set of nodes C ⊆ N is connected in a CG
H = (N, E ,F) if for all a, b ∈ C there exists a path in the undirected graph
G = (N, E). Maximal connected subsets of N with respect to set inclusion are
called components in H. The class of all components in H will be denoted
C(H).

Remark 2. Observe that every induced subgraph of a CG H for a component
C ∈ C(H) is an UG. Given a C ∈ C(H), paH(C) is disjoint with C. Compo-
nents in a CG H = (N, E ,F) form a partition of N . Components in a DAG
are singletons.

Example 11. The chain graph H from Figure 3 has five components. Thus,
C(H) = { {a}, {f}, {b, c, e}, {d}, {g} }.

Definition 29 (Moralization). The moral graph of a hybrid graph H =
(N, E ,F) is graph Hmor, which is the undirected graph (N, E), where

E = {a −− b : (a → b ∈ F) ∨ (b → a ∈ F) ∨
(a −− b ∈ E) ∨ (∃C ∈ C(H) : a �= b, {a, b} ⊆ paH(C))}

Example 12. In Figure 4 we give the moral graph of the graph from Figure 3.

Fig. 4. The moral graph of the chain graph from Figure 3
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Now, we are ready to introduce the moralization criterion for reading CI
statements represented in a CG. To check a CI statement, we first create
an ancestral graph, moralize it, and finally check the CI statement using the
separation criterion for UGs as defined in Definition 8.

Definition 30 (Moralization criterion for CGs).
CI statement A⊥⊥B | C is represented in a CG H if A⊥⊥B | C is represented
in the moral graph of induced graph HanH(A∪B∪C).

Remark 3. Note that CGs are generalization of DAGs and UGs because the
moralization criterion for CGs generalizes the separation criterion for UGs
and the moralization criterion for DAGs.

Example 13. In order to verify whether the CI statement a⊥⊥d | {b, e, g} is
represented in the chain graph H in Figure 3 we check this CI statement
using the separation criterion in the moral graph G of the ancestral graph
for the set {a, b, d, e, g}, which is apparently the undirected graph in Figure 4.
Since there exist a path from a to d that does not contain a node from {b, e, g}

a −− f −− c −− d

the CI statement is not represented in the undirected graph G and, conse-
quently, it is not represented in the CG H.

2.5 Imsets

An imset [13] is an algebraic object that can be used to describe a CI model.

Definition 31 (Imset). Let N be a finite set, P(N) = {A : A ⊆ N} the
power set of N , and Z the set of all integers. An imset u is a function u :
P(N) �→ Z.

Remark 4. Let N be the set of all natural numbers. Sometimes, function m :
P(N) �→ N is called multiset. The word imset is an abbreviation for Integer
valued MultiSET.

Zero function on the power set of N will be denoted by 0. Note that every
imset can be interpreted as a vector, whose components are integers indexed
by subsets of N .

Example 14. Let N = {h, g, s}. An example of an imset over N is

B u(B)
∅ 0
{h} 0
{g} +1
{s} 0
{h, g} −1
{g, s} −1
{h, s} 0
{h, g, s} +1
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We will specify imsets using a special convention. Let us use Kronecker’s
symbol δ to denote an indicator function defined for A,B ⊆ N as follows:

δA(B) =
{

1 if A = B,
0 otherwise.

Then, given an imset u, one has

∀B ⊆ N : u(B) =
∑

A⊆N

u(A) · δA(B)

which can be abbreviated as

u =
∑

A⊆N

cA · δA

where cA = u(A) ∈ Z is a the respective coefficient for every A ⊆ N .

Example 15. Using the convention we will write the imset from Example 14
as follows:

u = δ{g} − δ{h,g} − δ{g,s} + δ{h,g,s}

Definition 32 (Elementary imset). Let K ⊆ N , a, b ∈ N \K, and a �= b.
The elementary imset corresponding to 〈a, b | K〉 is given by the formula

u〈a,b|K〉 = δ{a,b}∪K + δK − δ{a}∪K − δ{b}∪K .

The symbol E(N) will denote the set of all elementary imsets over N .

Definition 33 (Structural imset). An imset u is structural iff

n · u =
∑

v∈E(N)

kv · v ,

where n ∈ N and v ∈ E(N) : kv ∈ N ∪ {0}.

As an analogy to graphical criteria in the case of UGs, DAGs, and CGs,
we need a criterion that specifies how imsets generate CI models. This time
we have an algebraic criterion.

Definition 34. CI statement A⊥⊥B | C is represented in a structural imset
u over N if there exists k ∈ N such that k · u = u〈A,B|C〉 + w, where w is a
structural imset.
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2.6 Comparison of CI Objects

The CI objects discussed above are often used to represent CI models induced
by probability distributions. Thus, we may compare how well they can play
this role. Let

• M(P ) be a CI model generated by a discrete probability distribution P
over N ,

• M denote the class of all CI models generated by discrete probability
distributions over N ,

• O denote a considered class of CI objects (e.g., UGs, DAGs, CGs, struc-
tural imsets).

Definition 35 (Perfectly Markovian). A probability distribution P is per-
fectly Markovian with respect to an object O ∈ O if for every disjoint triplet
〈A,B | C〉 ∈ T (N)

A⊥⊥B | C is represented in P ⇐⇒ A⊥⊥B | C is represented in O .

In other words, perfect Markovness means that P and O generate the same
CI model. Now, we can raise three basic questions about the relation between
a class O of CI objects and the class M of CI models generated by discrete
probability distributions.

Definition 36 (Faithfulness). A class of CI objects O is faithfull if for
every CI object O ∈ O there exists a CI model M(P ) from M such that P is
perfectly Markovian with respect to O.

Definition 37 (Completeness). A class of CI objects O is complete if for
every CI model M(P ) from M there exists a CI object O ∈ O such that P is
perfectly Markovian with respect to O.

Definition 38 (Uniqueness). A class of CI objects O satisfies the unique-
ness property if for every CI model M(P ) from M at most one CI object
O ∈ O exists such that P is perfectly Markovian with respect to O.

Table 1 compares properties of different classes of CI objects. In contrary to
graphical probabilistic models (UGs, DAGs, and CGs) the class of structural
imsets is complete, that is, it can describe all CI models generated by discrete
PDs.

Table 2 shows the numbers of different CI models that can be generated
by different classes of CI objects. We can see that, already for N having only
four elements, only a small fraction of CI models generated by discrete PDs
over N can be represented by DAGs, UGs, and CGs. Structural imsets are
complete, which means that they can represent all CI models from M.
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Table 1. Properties of classes of CI objects

Faithfulness Completeness Uniqueness
UGs yes no yes
DAGs yes no no
CGs yes no no
structural imsets no yes no

Table 2. Comparison of the number of CI models generated by different classes of
CI objects for |N | = 3, 4, 5. The number of CI models generated by discrete PDs is
not known for |N | ≥ 5.

|N | UGs DAGs CGs |M|
3 8 11 11 22
4 64 185 200 18300
5 1024 8782 11519 ?

3 Representatives of Equivalence Classes of DAGs

We have already mentioned that several different DAGs may generate the
same CI-model, that is, DAGs do not satisfy the uniqueness property. This
unpleasant fact may cause some problems in learning Bayesian networks (see
Section 4) and motivates the need for a uniquely determined representative of
the respective CI model. In this section we present two unique representatives
of an equivalence class of DAGs that generate the same CI model. First, we
define the essential graph and note how it can be constructed from a DAG.
Second, we introduce a uniquely determined algebraic representative of an
equivalence class of DAGs – the standard imset.

Definition 39 (Independence equivalence). Two CI-objects are called in-
dependence equivalent if they define the same CI-model. We will briefly say
that they are equivalent.

Verma and Pearl [16] gave a direct graphical characterization of equivalent
DAGs. It uses the following concept.

Definition 40 (Immorality). An immorality in a DAG G = (N,F) is an
induced subgraph of G for a set {a, b, c} ⊆ N such that a→ c, b → c ∈ F and
a← b, a → b �∈ F .

Lemma 1. [16]
Two acyclic directed graphs are equivalent iff they have the same underlying
graph and immoralities.



68 Jǐŕı Vomlel and Milan Studený

3.1 Essential Graphs

Definition 41 (Essential graph). The essential graph (EG) G∗ of an equiv-
alence class G of DAGs over N is a hybrid graph over N defined as follows:

• a → b in G∗ if a → b in G for every G ∈ G,
• a −− b in G∗ if ∃G1, G2 ∈ G such that a → b in G1 and a ← b in G2.

We say that a hybrid graph H over N is an EG over N if there exists an
equivalence class G of DAGs over N such that H = G∗.

Of course, this definition is in terms of the whole equivalence class of
DAGs. Nevertheless, there exists an algorithm for getting the EG on basis
of any G ∈ G – see Studený [11]. A graphical characterization of EGs was
presented by Andersson et al. [1]. To recall it we need the following notion.

Definition 42 (Flag). A flag in a CG H = (N, E ,F) is an induced subgraph
of H for a set {a, b, c} ⊆ N such that a → b ∈ F , b −− c ∈ E, and a ← c, a →
c �∈ F , a −− c �∈ E.

Example 16. The chain graph in Figure 3 has two flags, a → b −− c and
f → e −− c.

Lemma 2. [1, Theorem 4.1]
A hybrid graph H = (N, E ,F) is an EG iff it is a CG without flags such that,
for every component C ∈ C(H), the induced subgraph HC is decomposable
and, for every a → b ∈ F , at least one of the following conditions holds:

• ∃c ∈ N : (c → a ∈ F) ∧ (c → b �∈ F),
• ∃c ∈ N : (c → b ∈ F) ∧ (c −− a �∈ E) ∧ (c → a �∈ F),
• ∃c1, c2 ∈ N : (c1 → b, c2 → b ∈ F) ∧ (c1 −− a, c2 −− a ∈ E) ∧

(c1 → c2, c2 → c1 �∈ F) ∧ (c1 −− c2 �∈ E)

Example 17. An example of an EG is given in Figure 5.

Fig. 5. Example of an EG.

Another useful result is a characterization of CGs equivalent to DAGs,
which uses the following concept.
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Definition 43 (Closure graph). If C is a component in a CG H then by
the closure graph for C we will understand the moral graph of the induced
subgraph for the set D = C ∪ paH(C). It will be denoted by H̄(C).

Lemma 3. [2, Proposition 4.2]
A chain graph H is equivalent to a DAG iff, for every component C of H, the
closure graph H̄(C) is decomposable. In particular, the induced subgraph HC

is decomposable for any C ∈ C(H).

3.2 Standard Imsets

Another uniquely determined representative of an equivalence class of DAGs
is the standard imset [13].

Definition 44 (Standard imset). Given a DAG G = (N,F), the standard
imset for G is given by the formula

uG = δN − δ∅ +
∑

a∈N

{
δpaG(a) − δ{a}∪paG(a)

}
. (3)

Note that some terms in the formula (3) can cancel each other and some
terms can be merged together. The basic observation is as follows.

Lemma 4. [13, Corollary 7.1]
Two DAGs G and H are independence equivalent iff uG = uH .

Thus, standard imsets can serve as unique representatives of the respective
CI model. Another pleasant fact is that standard imsets, viewed as vectors,
have many zero components. Therefore, they can effectively be kept in the
memory of a computer.

Now, we give a formula for the standard imset on basis of any chain graph
H over N which is equivalent to a DAG. It is based on Lemma 3. Let K̄(C)
denote the collection of cliques of H̄(C) and S̄(C) the collection of separators
in H̄(C). Further, let ν̄C(S) denote the multiplicity of a separator S in H̄(C).

The standard imset for H is given by the following formula:

uH = δN − δ∅ +
∑

C∈C(H)

{δpaH(C) −
∑

K̄∈K̄(C)

δK̄ +
∑

S̄∈S̄(C)

ν̄C(S̄) · δS̄}. (4)

The point is that the formula (4) gives the same result for equivalent chain
graphs.

Lemma 5. [14, Proposition 20]
Let G and H are equivalent chain graphs such that there exists a DAG equiv-
alent to them. Then uG = uH .

Of course, if H = G is a DAG, then (4) gives the same result as (3). On
the other hand, since the EG G∗ of an equivalence class of DAGs G is a CG
equivalent to any G ∈ G, we can conclude this:
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Corollary 1. Let G be a DAG and H the EG of the respective equivalence
class. Then the formula (4) gives the standard imset for G.

Example 18. In Table 3 we give the standard imset for the EG from Figure 5.

Table 3. The standard imset for the EG from Figure 5. The values for remaining
subsets of N are zero.

B u(B)

{a, b, c, d, e, f, g} +1
∅ +1
{a, b} +2
{d, f} +1
{a, b, c} −1
{a, b, d} −1
{d, f, g} −1
{b} −1
{a, e} −1
{e, f} −1
{e} +1

4 Learning Bayesian Networks

Specific motivation for the transition between EGs and standard imsets is
learning Bayesian networks. A Bayesian network model has two components:

• structure, determined by a DAG, whose nodes correspond to variables,
• parameters, namely the numbers in the collection of conditional probability

tables, which correspond to the DAG.

We are interested in learning structure of a Bayesian network from data.
Actually, our aim is to determine the respective statistical model, that is, the
class of probability distributions with prescribed structure.

4.1 Quality Criterion

The basic division of methods for learning Bayesian networks is as follows:

• methods based on statistical conditional independence tests.
• methods based on the maximization of a quality criterion.

In this chapter, we are interested in maximization of a quality criterion

Q : DAGS (N)× DATA (N, d) −→ R
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where DAGS (N) is the class of DAGs over N and DATA (N, d) is the collection
of databases over N of the length d ≥ 1. In this context, the graph “repre-
sents” the respective statistical model. Because the direct maximization of a
quality criterion is typically infeasible, the researchers in artificial intelligence
developed various methods of local search, see Chickering [3].

The basic idea of these methods is to introduce the concept of neighbour-
hood for representatives of considered CI models (= graphs) and search for a
local maximum of the criterion with respect to the neighbourhood structure.
Typically, the change in the value of a (common reasonable) quality criterion is
easy to compute. Natural neighbourhood concept from a mathematical point
of view is so-called inclusion neighbourhood, see Kočka and Castelo [5].

4.2 Problem of Representative Choice

This topic is related to the question of internal computer representation of a
Bayesian network model. There are two approaches:

• to use any DAG in the respective equivalence class (which need not be
unique),

• to use a suitable uniquely determined representative.

We prefer using a unique representative. This is because we believe that non-
uniqueness may lead to computational inefficiencies. Another reason is that
using a unique representative is more elegant from a mathematical point of
view. Two possible unique representatives, namely the EG and the standard
imset, were already mentioned in Section 3.

A natural question is whether one can “translate” one to the other. Our
special motivation is as follows. The inclusion neighbourhood of a given
Bayesian network model is already characterized in terms of the EG – see
Studený [12]. We would like to have its characterization in terms of the stan-
dard imset. Below we explain why we consider standard imsets particularly
suitable for this purpose.

4.3 Algebraic Approach

The basic idea of an algebraic approach (to learning Bayesian networks) is to
use the standard imset as a unique representative of the respective statistical
model – se § 8.4 in (Studený 2005). The advantage of this approach is that
every imset can be interpreted as a vector and (reasonable) quality criteria
appear to be affine (= shifted linear) functions of the standard imset.

More specifically, every criterion Q(G,D) depending on a DAG G and a
database D, which is score-equivalent and decomposable Studený [13], has the
form

Q(G,D) = sQD +
∑

S⊆N

tQD(S) · uG(S),
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where sQD is a constant depending on data and [tQD(S)]S⊆N is so-called data
vector (relative to a criterion Q).

Example 19. In the case of a well-known Bayesian information criterion (=
BIC) one has the following formula for the respective data vector:

tBIC
D (S) = d ·H(P̂S |

∏

i∈S

P̂i)−
1
2
· ln d · { |S| − 1 +

∏

i∈S

r(i)−
∑

i∈S

r(i) } ,

where ∅ �= S ⊆ N , d is the length of the database D, H(∗|∗) denotes the
relative entropy, P̂S is the marginal of the empirical measure (based on D)
for S and r(i) = |Xi|, i ∈ S are the cardinalities of the respective individual
sample spaces. Moreover, one has tBIC

D (∅) = 0.

Another pleasant fact is that, in the method of local search, the move
between two neighbouring model in the sense of inclusion neighbourhood is
characterized by a simple elementary imset, which is the difference of respec-
tive standard imsets. Therefore, the move can be interpreted in terms of a CI
statement a ⊥⊥ b |C. In particular, the respective change in the value of Q
takes a neat form of the scalar product of two vectors:

〈tQD, u〈a,b|C〉〉 =
∑

S⊆N

tQD(S) · u〈a,b|C〉(S) .

5 Graphical Characteristics of Chain Graphs

The formula (4) can be simplified for chain graphs without flags. In this sec-
tion, we introduce some characteristics of these graphs that will be used
in a simplified formula given in Section 6. The proofs of claims from Sec-
tions 5.1 and 5.2 can be found in [14].

5.1 Initial Components

Definition 45 (Initial component). A component C ∈ C(H) in a CG H
such that paH(C) = ∅ will be called an initial component in H. Let us denote
by i(H) the number of initial components in H.

Note that i(H) ≥ 1 and this number appears to be the same for equivalent
CGs.

Example 20. The chain graph H in Figure 5 has two initial components: {b}
and {a, e, f}. Thus, i(H) = 2.
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5.2 Core

Definition 46 (Idle set). We will say that a set B of nodes in a CG H =
(N, E ,F) is idle if the following two conditions hold:

• ∀ b1, b2 ∈ B, b1 �= b2, (b1 → b2 ∈ F) ∨ (b2 → b1 ∈ F) ∨ (b1 −− b2 ∈ E)
• ∀ a ∈ N \B, ∀ b ∈ B, a → b in H.

The meaning of these conditions is that no non-trivial CI statement repre-
sented in H involves variables in B. The second condition implies that ∀C ∈ C
if C ∩B �= ∅ then C ⊆ B. Therefore, every idle set is the union of some com-
ponents. One can easily show that every CG H over N has a unique maximal
idle set of nodes, possibly empty. This set can be shown to be the same for
equivalent chain graphs.

Definition 47 (Core, core-components). The complement N \ B of the
maximal idle set B will be called the core of H and denoted by core(H). The
class of core-components, that is, components in H contained in the core, will
be denoted by Ccore(H).

Observe that if the core is non-empty then every initial component is a
core-component.

5.3 Cliques and Separators

If H is a CG without flags equivalent to a DAG then every its core-component
C induces a decomposable graph HC by Lemma 3. Let us denote by K(C)
the class of its cliques, by S(C) the collection of its separators, and by νC(S)
the multiplicity of S ∈ S(C) in HC . Note that, the fact that C is connected
implies that every S ∈ S(C) is a non-empty proper subset of Ccore(H).

Example 21. The chain graph H in Figure 5 has an empty maximal idle set,
i.e., the core is core(H) = N . Its core-components are C1 = {a, e, f}, C2 =
{b}, C3 = {c}, C4 = {d} and C5 = {g}. All components except for C1

have only one clique and no separator. The set of cliques of HC1 is K(C1) =
{{a, e}, {e, f}} and the set of its separators is S(C1) = {{e}}.

5.4 Parent Sets

Definition 48 (Parent sets). A set P ⊆ N will be called a parent set in
a CG H if it is non-empty and there exists a core-component C ∈ Ccore(H)
with P = paH(C). The multiplicity τ(P ) of a parent set P is the number of
C ∈ Ccore(H) with P = paH(C). Let us denote the collection of parent sets in
H by Pcore(H).

Evidently, every P ∈ Pcore(H) is a proper subset of Ccore(H).

Example 22. The parent sets in the chain graph H in Figure 5 are {a, b} and
{d, f}. The multiplicities are τ({a, b}) = 2 and τ({d, f}) = 1.
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6 Simplified Formula for Imset of Essential Graph

For CGs without flags the formula (4) can be simplified as follows.

Lemma 6. [15, Lemma 5.1].
Let H be a CG without flags equivalent to a DAG with Ccore(H) �= ∅. Then
the standard imset for H is given by

uH = δcore(H) −
∑

C∈Ccore(H)

∑

K∈K(C)

δK∪paH(C)

+
∑

S∈S(C)

νC(S) · δS∪paH(C) +
∑

P∈Pcore(H)

τ(P ) · δP + {i(H)− 1} · δ∅ .

The point is that, in the case of a non-trivial EG H, none of the terms in
the above formula cancel each other.

Lemma 7. [15, Lemma 5.2].
Let H be the EG of an equivalence class of DAGs over N such that uH �= 0.
Then, for every L ⊆ N , exclusively one of the following six cases occurs:

(a) L = core(H) and uH(L) = +1,
(b) L = K ∪ paH(C) for K ∈ K(C), C ∈ Ccore(H) and uH(L) = −1,
(c) L = S ∪ paH(C) for S ∈ S(C), C ∈ Ccore(H) and uH(L) = νC(S) > 0,
(d) L = P for P ∈ Pcore(H) and uH(L) = τ(P ) > 0,
(e) L = ∅ and uH(L) = i(H)− 1 ≥ 0,
(f) none of the above cases occurs and uH(L) = 0.

Lemma 7 implies that, given an EG H, the class of sets

KH ≡ {K ∪ paH(C);K ∈ K(C), C ∈ Ccore(H)}

and the class of sets

Pcore(H) ∪ SH , where SH ≡ {S ∪ paH(C);S ∈ S(C), C ∈ Ccore(H)},

can be determined on basis of uH . Therefore, it follows from Lemma 7 that,
given a non-zero standard imset, one can simply determine the core of the
EG H, the number of its initial components, the collections of sets KH , and
Pcore(H) ∪ SH .

7 Reconstruction Algorithm

Lemma 7 is a basis of a two-stage reconstruction algorithm for the EG from
the standard imset; the proof of its correctness is quite long – see (Studený,
Vomlel 2005).
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Table 4. Subroutine Adapt (u over N |M, w over M).

Input: u . . . a standard imset over a non-empty set of variables N
Output: M . . . a subset of N

w . . . an adapted standard imset over M

1 find a maximal set M ⊆ N with respect to inclusion with u(M) �= 0;
2 w := the restriction of u to the class of subsets of M ;
3 return M, w;

The first stage of the algorithm is a decomposition procedure, whose output
is an ordered sequence τ of subsets of the set of variables N . The procedure,
described in Table 6, consists of repeated application of two subroutines until
one gets a zero imset. The first subroutine is an adaptation subroutine for (a
standard imset) u which is applied if u(N) = 0 – see Table 4.

The basic idea of the second subroutine, which is described in Table 5, is
to reduce the set of variables N . Thus, the original imset u over N is “de-
composed” into an imset w over a proper subset M ⊂ N and a certain set
of nodes T with M ∪ T = N . Note the set T chosen in line 4 of Table 5
plays crucial role in the reconstruction phase and one can prove that is a
clique T = K ∪ paH(C), K ∈ K(C) of the closure graph for a component
C ∈ C(H) that is a leaf-clique of a junction tree for cliques of H̄(C) – for
details see [15, Section 7]. The reduced imset w is obtained from the original
imset u by subtracting a structural imset that corresponds to a CI state-
ment (M \ T )⊥⊥(T \M) | (T ∩M) and by restricting to M – see lines 7-8 of
Table 5.

Table 5. Subroutine Reduce (u over N |T, M, w over M).

Input: u . . . an adapted standard imset over a non-empty set of variables N
Output: T . . . a proper subset of the set of variables N

M . . . a proper subset of N such that M ∪ T = N and T \ M �= ∅
w . . . a standard imset over M

1 T := {L ⊆ N ; u(L) < 0};
2 L := {L ⊂ N ; u(L) > 0, L �= ∅};
3 W :=

⋃L;
4 find T ∈ T such that T \ W �= ∅ and T ∩ W ∈ L ∪ {∅};
5 R := T \ W ;
6 M := N \ R;
7 w̃ := u − δN + δM + δT − δT\R;
8 w := the restriction of w̃ to the class of subsets of M ;
9 return T, M, w;
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Table 6. The first stage Decompose (u over N | τ over N).

Input: u . . . a standard imset over a non-empty set of variables N
Output: τ . . . an ordered sequence of subsets of N

1 Y := N ;
2 τ := empty list;
3 if u = 0 then
4 append Y as the last item in τ ;
5 return τ ;
6 if u �= 0 = u(Y ) then
7 Adapt (u over Y |M, w over M);
8 append Y as the last item in τ ;
9 go to 14;
10 if u(Y ) �= 0 then
11 Reduce (u over Y |T, M, w over M);
12 append T as the last item in τ ;
13 go to 14;
14 Y := M ;
15 u := w;
16 go to 3;
17 exit;

The decomposition procedure is illustrated by Example 23.

Example 23. The ordered sequence of subsets that is the outcome of the first
stage for the imset given in Table 3 is

{a, b, c}, {d, f, g}, {a, b, d}, {a, e}, {b}, {e, f} . (5)

Note that, in this case, only the subroutine Reduce was applied.

The basis of the dual procedure is the extension subroutine, described in
Table 7. It constructs the EG H over N on basis of its induced subgraph G for
M ⊂ N and a set T ⊆ N with M ∪ T = N . Of course, the set is assumed to
have above-mentioned special form T = K∪paH(C). The crucial step to fully
reconstruct H on basis of G and T is to decide which of two following cases
occurs: either T ∩M = paH(C) or T ∩M = Z ∪ paH(C), where Z ∈ S(C).
The condition in line 6 of Table 7 is a necessary and sufficient condition for
the second case.

Now, the second stage of the algorithm, the composition procedure, which
consists of repeated application of the subroutine Extend. It is described
in Table 8. Its input is the ordered sequence τ of sets obtained from the
decomposition procedure. However, the sequence τ is processed in the reverse
order. The procedure is illustrated by Example 24.

Example 24. The output of the second stage of the algorithm applied to the
ordered sequence (5) of subsets of N is the EG in Figure 5.
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Table 7. Subroutine Extend (G over M, T |H over M ∪ T ).

Input: G . . . a chain graph over a non-empty set of variables M
T . . . a set of variables with T \ M �= ∅

Output: H . . . a chain graph over M ∪ T

1 L := T ∩ M ;
2 R := T \ M ;
3 Z := ∅;
4 if L �= ∅ then
5 choose a terminal component X in GL;
6 if X is a complete component in GL and paG(X) = L \ X
7 then put Z := X;
8 determine the edges in H as follows:
9 HM := G;
10 ∀x ∈ L \ Z, ∀ z ∈ R include x → z in H;
11 ∀ y ∈ R ∪ Z, z ∈ R, y �= z include y −− z in H;
12 return H;

8 Construction of a Hierarchical Junction Tree

The sequence of sets that is the outcome of the first stage (Table 6) can also
be used to construct a hierarchical junction tree similar to those introduced
in [9].

Each set in the sequence defines a node of the hierarchical junction tree
whose entering edges could be labeled by sets Z or L obtained during the
second stage of the reconstruction algorithm (see Table 8). More specifically,
each node T may or may not be ascribed an entering edge and the edge can
be labeled either by a separator Z (if Z �= ∅) or by a parent set L (if Z = ∅
and L ≡ L \ Z �= ∅). These units can be used then to compose the whole

Table 8. The second stage Compose (τ over N |H over N).

Input: τ . . . an ordered sequence T1, . . . , Tn, n ≥ 1 of subsets of N
Output: H . . . a chain graph over M

1 M := Tn;
2 H := the complete undirected graph over M ;
3 G := H
4 for j = n − 1, . . . , 1 do
5 Extend (G over M, Tj |H over M ∪ Tj)
6 M := M ∪ Tj ;
7 G := H;
8 return H;
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hierarchical junction tree. Due to the lack of space we omit details of the
construction and give two examples instead.

Example 25. The nodes of a hierarchical junction tree constructed from the
sequence (5) are given in Figure 6, including their attributed separators and
parent sets. The resulting hierarchical junction tree is given in Figure 7.

Fig. 6. Units of a hierarchical junction tree.

Fig. 7. A hierarchical junction tree.

Example 26. Figure 8 gives another example of an EG H. The first stage of
the reconstruction algorithm applied to the standard imset uH ends with the
sequence of sets

{a, b, c, d}, {a, b, d, e}, {a}, {b} .

The nodes of the respective hierarchical junction tree are given in Figure 9,
including their attributed separators and parent sets. The resulting hierar-
chical junction tree is given in Figure 10. In that picture, the parent set
paH({c, d, e}) = {a, b} is attributed to just one node of the hierarchical junc-
tion tree. One can perhaps draw a picture in which every parent set is ascribed
to every node of the respective component of the hierarchical junction tree.
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Fig. 8. An EG.

Fig. 9. Units of a hierarchical junction tree.

Fig. 10. A hierarchical junction tree.

Conclusions

The presented procedures for the transition between graphical and algebraic
representatives of a CI model generated by DAG. These can be the first step
on the way towards a fully algebraic method for learning structure of Bayesian
networks. We hope that the procedures can be utilized to find a characteriza-
tion of the inclusion neighborhood of a given DAG in terms of the standard
imset. This will be a topic of a future research. We also plan to study the poly-
tope generated by standard imsets over N hoping that linear programming
maximization methods can be applied in learning Bayesian networks.
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cz/vomlel/sv.ps.

[16] Verma T and Pearl J. Equivalence and synthesis of causal models. In
PP Bonissone, M Henrion, LN Kanal, and JF Lemmer, eds., Uncertainty
in Artificial Intelligence 6 , pp. 220–227. Elsevier (1991).



Bayesian Network Models with Discrete
and Continuous Variables

Barry R. Cobb1, Rafael Rumı́2, and Antonio Salmerón2

1 Department of Economics and Business,
Virginia Military Institute,
Lexington, VA 24450, USA

2 Department of Statistics and Applied Mathematics
University of Almeŕıa,
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Summary. Bayesian networks are powerful tools for handling problems which are
specified through a multivariate probability distribution. A broad background of
theory and methods have been developed for the case in which all the variables are
discrete. However, situations in which continuous and discrete variables coexist in the
same problem are common in practice. In such cases, usually the continuous variables
are discretized and therefore all the existing methods for discrete variables can be
applied, but the price to pay is that the obtained model is just an approximation. In
this chapter we study two frameworks where continuous and discrete variables can
be handled simultaneously without using discretization. These models are based on
the CG and MTE distributions.

1 Introduction

Bayesian networks provide a framework for efficiently dealing with multivari-
ate models. One important feature of these networks is that they allow prob-
abilistic inference which takes advantage of the independence relationships
among the variables. Probabilistic inference, commonly known as probability
propagation, consists of obtaining the marginal distribution on some variables
of interest given that the values of some other variables are known.

Much attention has been paid to probability propagation in networks
where the variables are qualitative. Several exact methods have been pro-
posed in the literature for this task [11; 15; 21; 36], all of them based on local
computation. Local computation means to calculate the marginals without ac-
tually computing the joint distribution, and is described in terms of a message
passing scheme over a structure called join tree.

In hybrid Bayesian networks, where both discrete and continuous vari-
ables appear simultaneously, it is possible to apply local computation schemes
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213, 81–102 (2007)
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similar to those for discrete variables. However, the correctness of exact infer-
ence depends on the model.

The first model that allowed exact inference through local computation
in hybrid networks was based on the conditional Gaussian (CG) distribution
[16; 17; 18; 28]. However, networks where discrete variables have continuous
parents are not allowed. To avoid this restriction, Koller et al. [12] model the
distribution of discrete nodes with continuous parents by a mixture of expo-
nentials, but then inference is carried out by means of Monte Carlo methods,
and therefore the results are approximate. In a more general setting, one way
of using local computation is to discretize the continuous variables [13], and
then treat them as if they were quantitative.

Recently, the so-called MTE (Mixture of Truncated Exponentials) model
[22] has been introduced as a valid alternative for tackling problems where
discrete and continuous variables appear simultaneously. The advantage with
respect to CG is that discrete nodes with continuous parents are allowed and
inference can be carried out by means of local computations [3; 32]. Another
important feature of the MTE model is that it can approximate several known
distributions accurately [2; 23; 33].

In this chapter we review the state-of-the-art in CG and MTE models.
Section 2 describes the CG model, including issues about inference and learn-
ing from data. Section 3 is devoted to the MTE model. The application of the
MTE model to a practical situation in which discrete and continuous variables
appear is illustrated through an example in section 4. The chapter ends with
the conclusions in section 5.

2 Conditional Gaussian (CG) Distributions

Bayesian networks where the variables are continuous are difficult to manage
in a general way. The usual treatment is to discretize the variables and then
use the known methods for discrete variables. This is an approximate approach
since we introduce some error in the discretization procedure.

There are some kinds of continuous variables in which the computations
can be done in an exact way, one of which is the Multivariate Gaussian dis-
tribution [1]. In this chapter we will study a generalization of that model, the
Conditional Gaussian (CG) distribution [4; 17], in which discrete and contin-
uous variables appear simultaneously.

In Section 2.1 the model is defined, specifying the probability distribu-
tions required in the model. Section 2.2 explains the probability propagation
process, only affordable under some restrictions. These restrictions have been,
up to some degree, overcome according to different criteria [18; 20; 12]. In
Section 2.3 the problem of learning a CG network from data is studied.



Bayesian Network Models with Discrete and Continuous Variables 83

2.1 Model Definition

Since it is a mixed model, there will be discrete and continuous variables. So,
the set of variables X will be divided in two, X = Y ∪ Z, where Y represent
the discrete variables and Z the continuous, and |Y| = d and |Z| = c define
the number of continuous and discrete variables in the model respectively. So,
an element in the joint state space is denoted by:

x = (y, z) = (y1, . . . , yd, z1, . . . , zc) ,

where yi for i = 1, . . . , d are qualitative data and zj for j = 1, . . . , c are real
numbers.

In the CG model, the distribution of the continuous variables given the
discrete ones is a Multivariate Gaussian distribution:

Z|Y = y → N (ξ(y), Σ(y)) (1)

with Σ being positive definite, in the case that p(Y = y) > 0.
In general, the joint distribution of the variables in the network can be

defined as follows:

Definition 1. (CG Distribution) A mixed random variable X = (Y,Z) is
said to have a conditional Gaussian distribution if the joint distribution of
the model variables (discrete and continuous) has a density

f(x) = f(y, z) = χ(y) exp {g(y) + h(y)T z− zT K(y)z/2} , (2)

where χ(y) ∈ {0, 1} shows if f is positive on y, g is a real function, h a
function returning a vector of size c, and K a function returning a matrix
c× c.

The vector (g, h,K) is known as the canonical characteristics of the dis-
tribution, only well defined if ξ(y) > 0. We can also refer to the distribution
in terms of (p, ξ,Σ) which are the moment characteristics.

There are expressions that can be used to switch from one set of charac-
teristics to the other [17]:

• From canonical to moment characteristics:

ξ(y) = K(y)−1h(y) , Σ(y) = K(y)−1 ,

p(y) ∝ {detΣ(y)} 1
2 exp {g(y) + h(y)T Σ(y)h(y)/2} .

• From moment to canonical characteristics:

K(y) = Σ(y)−1 ,

h(y) = K(y)ξ(y) ,

g(y) = log p(y) + {log detK(y)− c log 2π − ξ(y)T K(y)ξ(y)}/2 .
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The CG distribution can be easily extended to a CG potential, which is

φ(x) = φ(y, z) = χ(y) exp {g(y) + h(y)T z− zT K(y)z/2} ,

where K(i) is only assumed to be a symmetric matrix.

2.2 Inference with CLG Model

The first probability propagation procedure developed [17] computes exact
means and variances for continuous variables and exact probabilities for dis-
crete variables. It is based on a local computation scheme over a junction tree
[1].

The operations over CG potentials are defined in terms of the canonical
characteristics, but only restriction and combination are closed; the outcome
of the marginalization operation may not be a CG potential, but a mixture
of CG potentials. Due to this problem, some restrictions have to be imposed
to the network topology in order to make sure that the propagation can be
carried out [17].

Marked graphs

A marked graph is a graph, G = (V,E) where V is a finite set of vertices, and
E a set of edges. The vertices are marked, in the sense that they are divided
in two sets, ∆ for the discrete variables and Γ for the continuous variables.

Definition 2. (Strong decomposition) A triple (A,B,C) of disjoint subsets of
the vertex set V of an undirected, marked graph G is said to form a strong
decomposition of G if V = A∪B ∪C and the following three conditions hold:

1. C separates A from B.
2. C is complete subset of V .
3. C ⊆ ∆ or B ⊆ Γ .

When this happens it is said that (A,B,C) decomposes G into the components
GA∪C and GB∪C .

A decomposable graph is one that can be successively decomposed into
cliques.

Definition 3. (Decomposable graph) An undirected, marked graph is said to
be decomposable if it is complete, or if there exists a decomposition (A,B,C),
with A, B, and C non-empty, into decomposable subgraphs GA∪C and GB∪C .

To get a decomposed graph, the marked graph must not have certain types
of paths [19]:

Proposition 1. An undirected marked graph is decomposable if and only if
it is triangulated and does not contain any path between two discrete vertices
passing through only continuous vertices, with the discrete vertices not being
neighbors.
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A decomposable graph is obtained as follows. First, the moral graph is
obtained, removing directions of the edges, and adding new edges between
parents with common children. To get from this a decomposable graph, new
edges created to to avoid paths shown in Proposition 1 need to be added.
This can be done by a variable elimination procedure, in which continuous
variables must be removed first [4].

Now it is possible to get a junction tree fulfilling the runing intersection
property [1], but to make the propagation algorithm work properly, it must
have a strong root:

Definition 4. (Strong root) A clique R on a junction tree is a strong root if
any pair A,B of neighbors of the tree, with A closer to R than B satisfies

(B \A) ⊆ Γ or (B ∩A) ⊆ ∆. (3)

Leimer in [19] shows that the cliques in a decomposable graph can always
be arranged so that at least one of them is a strong root.

First and second moment exact inference

The original graph specifies the (in)dependence relations among the variables,
and represents a factorization of the joint probability distribution of the vari-
ables in the network as the combination of the conditional distribution of each
variable given its parents in the graph. But the CG model imposes the restric-
tion that discrete nodes cannot have continuous parents. This restriction has
been partially overcome in [12; 20; 26] where the augmented CLG networks
were introduced, in which discrete nodes are allowed to have continuous par-
ents, and the corresponding conditional distribution is modelled using softmax
functions. The posterior distributions are computed by means of Monte carlo
methods in [12] and approximating the combination of a Gaussian and a
softmax function by a Gaussian distribution in [20; 26]. These new proposals
return approximate posterior distributions, except for [20], where the first and
second moment of the distributions are exact, like in the algorithm explained
here.

Once checked that the network satisfies this restriction, the first thing to
do is to specify the corresponding conditional distributions. For each discrete
variable a probability table will be specified, since its parents will always be
discrete. For each continuous variable, Zi, the conditional distribution given
its parents is

Zi|πi → N (α(y) + β(y)T z, γ(y)) , (4)

where (y, z) are the states of the parents, y the states of the discrete parents, z
the states of the continuous parents, γ(y) > 0, α(y) a real number, and β(y) a
vector of the same size as the continuous part of the parents. This assumes that
the mean of a potential depends linearly on the continuous parent variables
and that the variance does not depend on the continuous parent variables.



86 Barry R. Cobb et al.

For each configuration of the discrete parents, a different linear function of
the continuous parents is specified as the mean of the normal distribution,
and a different real number is specified as the variance.

Up to this point, the rest of the probability propagation algorithm [17] is
similar to the algorithms based on clustering [1]. They perform a message pass-
ing scheme between the cliques of the junction tree. This algorithm obtains
correct mean and variance for every continuous variable, and correct proba-
bilities for every discrete variable, whenever a strong root of the junction tree
is selected as the root in the propagation algorithm.

A modification of this algorithm was presented in [18], where the numerical
instability of the algorithm was improved by introducing some restrictions in
the junction tree. Also, this new algorithm is capable of managing determinis-
tic conditional probability distributions, i.e., distributions with null variance.

2.3 Learning a CG Model

Learning a CG model from a database D requires obtaining:

a) A structure representing the (in)dependece relations of the variables.
b) A conditional distribution for each variable given its parents.

Most of the learning algorithms search for a candidate network in the space
of all possible networks. Once a network in this space has been selected, the
corresponding parameters of the conditional distributions are first estimated,
then the network is evaluated in terms of quality in the representation of D.

Estimating the conditional distributions for a candidate network

Given a candidate network, a conditional distribution for each variable is
estimated. In the case of discrete variables, the distribution to learn is a prob-
ability table, since its parents have to be discrete as well (see Section 2.2). This
probability table can be estimated using the Maximum Likelihood Estimator
(MLE), ratio of appearance of the case, or using the Laplace correction, in
the case of a small sample.

In the case of continuous variables, the distribution to learn is a different
Gaussian distribution for each configuration of the discrete parents. First, the
sufficient statistic of the joint distribution is computed, and afterwards the
MLE of the parameters of the conditional distribution are obtained. Since
the mean of the distribution is a linear combination of the parents, it can
be obtained from a linear regression model, as explained in [25]. The EM
algorithm can be applied in the case of an incomplete database.

Measuring the quality of a candidate network

Once the parameters of the candidate network are estimated, the quality of
the network is scored, in terms of its posterior probability given a database.
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Geiger and Heckerman [8] present a metric capable of scoring a CG network,
under some restrictions in the topology of the network.

3 Mixtures of Truncated Exponentials (MTEs)

The CG model is useful in situations in which it is known that the joint distri-
bution of the continuous variables for each configuration of the discrete ones
follows a multivariate Gaussian. However, in practical applications it is possi-
ble to find scenarios where this hypothesis is violated, in which case another
model, like discretization, should be used. Since discretization is equivalent
to approximating a target density by a mixture of uniforms, the accuracy of
the final model could be increased if, instead of uniforms, other distributions
with higher fitting power were used.

This is the idea behind the so-called mixture of truncated exponentials
(MTE) model [22]. The MTE model is formally defined as follows:

Definition 5. (MTE potential) Let X be a mixed n-dimensional random vec-
tor. Let Y = (Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the discrete and continuous
parts of X, respectively, with c + d = n. We say that a function f : ΩX �→ R

+
0

is a Mixture of Truncated Exponentials potential (MTE potential) if one of
the next conditions holds:

i. Y = ∅ and f can be written as

f(x) = f(z) = a0 +
m∑

i=1

ai exp






c∑

j=1

b
(j)
i zj




 (5)

for all z ∈ ΩZ, where ai, i = 0, . . . , m and b
(j)
i , i = 1, . . . , m, j = 1, . . . , c

are real numbers.
ii. Y = ∅ and there is a partition D1, . . . , Dk of ΩZ into hypercubes such that

f is defined as
f(x) = f(z) = fi(z) if z ∈ Di ,

where each fi, i = 1, . . . , k can be written in the form of equation (5).
iii. Y �= ∅ and for each fixed value y ∈ ΩY, fy(z) = f(y, z) can be defined as

in ii.

Definition 6. (MTE density) An MTE potential f is an MTE density if

∑

y∈ΩY

∫

ΩZ

f(y, z)dz = 1 , (6)

where Y and Z are the discrete and continuous coordinates of X respectively.

In a Bayesian network, two types of probability density functions can be
found:
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1. For each variable X which is a root of the network, a density f(x) is given.
2. For each variable X with parents Y, a conditional density f(x|y) is given.

A conditional MTE density f(x|y) is an MTE potential f(x,y) such that
after fixing y to each of its possible values, the resulting function is a density
for X.

In [22] a data structure was proposed to represent MTE potentials, called
mixed probability trees or mixed trees for short. Mixed trees can represent MTE
potentials defined by parts. Each entire branch in the tree determines one sub-
region of the space where the potential is defined, and the function stored in
the leaf of a branch is the definition of the potential in the corresponding
sub-region.

Example 1. Consider the following MTE potential, defined for a discrete vari-
able (Y1) and two continuous variables (Z1 and Z2).

φ(y1, z1, z2) =






2 + e3z1+z2 if y1 = 0, 0 < z1 ≤ 1, 0 < z2 < 2
1 + ez1+z2 if y1 = 0, 0 < z1 ≤ 1, 2 ≤ z2 < 3
1
4

+ e2z1+z2 if y1 = 0, 1 < z1 < 2, 0 < z2 < 2
1
2

+ 5ez1+2z2 if y1 = 0, 1 < z1 < 2, 2 ≤ z2 < 3

1 + 2e2z1+z2 if y1 = 1, 0 < z1 ≤ 1, 0 < z2 < 2
1 + 2ez1+z2 if y1 = 1, 0 < z1 ≤ 1, 2 ≤ z2 < 3
1
3

+ ez1+z2 if y1 = 1, 1 < z1 < 2, 0 < z2 < 2
1
2

+ ez1−z2 if y1 = 1, 1 < z1 < 2, 2 ≤ z2 < 3

A possible representation of this potential by means of a mixed probability
tree is displayed in Figure 1.

Z2Z2

Z1

Z2 Z2

Z1

Y1

0 1

0<Z1≤1 1<Z1<2

0<Z2<2 2≤Z2<3

1<Z1<20<Z1≤1

0<Z2<2 0<Z2<2 0<Z2<22≤Z2<3 2≤Z2<3 2≤Z2<3

2 + e3z1+z2

1 + ez1+z2

1
4

+ e2z1+z2

1
2

+ 5ez1+2z2

1 + 2e2z1+z2

1 + 2ez1+z2

1
3

+ ez1+z2

1
2

+ ez1−z2

Fig. 1. An example of mixed probability tree.



Bayesian Network Models with Discrete and Continuous Variables 89

3.1 Inference with MTEs

The operations required for probability propagation in Bayesian networks
(restriction, marginalization and combination) can be carried out by means
of algorithms very similar to those described for discrete probability trees in
[13; 34]. Furthermore, it was shown in [22] that the class of MTE potentials
is closed for the operations above mentioned. Hence, any exact propagation
algorithm that is based in these three operations can be applied to networks
with MTEs. The use of the Shenoy-Shafer and the Penniless propagation
algorithms with MTEs is studied in [32].

3.2 Learning Bayesian Networks with MTEs

Consider a mixed random vector X = {X1, . . . , Xn}, and a sample of X,

D = {x(1), . . . ,x(m)} .

We will describe how to obtain a Bayesian network with variables X, that
agrees with the data D, following the method proposed in [31]. Basically,
the problem of learning Bayesian networks from data can be approached as
repeating the next three steps until an optimal network is obtained:

1. Selection of a candidate structure G.
2. Estimation of the conditional distributions, θ̂, for G.
3. Determination of the quality of (G, θ̂).

The method proposed in [31] consists of exploring the space of possible
networks for variables X using an optimization approach. The starting point
is a network without arcs, and considering the movement operations of arc
insertion, deletion and reversal. After each movement, the conditional distri-
butions corresponding to the families involved in the change are estimated.

Estimating the conditional distributions for a candidate network

The problem of estimating the parameters of truncated distributions has been
previously studied [38; 39], as in the case of the truncated Gamma [10; 27],
but the number of parameters is usually equal to one, and the maximum
likelihood estimator (that not always exists) or the UMVUE (Uniformly of
Minimum Variance Unbiased Estimator) is obtained by means of numerical
methods [6; 35]. In the case of the MTE model, no similar techniques have
been applied so far, due to the high number of parameters involved in the
MTE densities.

Another usual way to compute maximum likelihood estimates in mixture
models is the EM algorithm [5; 30]. The difficulty in applying this method to
learning MTE models lies in the fact that we may have negative coefficients
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for some of the densities we are combining and also in the computation of the
conditional expectations in each iteration of the algorithm.

Due to the difficulties described above, the seminal paper on estimating
MTEs from data [23], followed an approach based on regression techniques
for the case of univariate densities. Besides the estimation of the parameters,
the construction of an MTE density involves the determination of the number
of terms and the splits into which its domain is partitioned. Heuristics to
approach these issues are proposed in [23]. The estimation procedure can be
summarized in the next algorithm.

Algorithm MTE-fitting
INPUT:

• A sample x1, . . . , xn.

OUTPUT:

• Estimates of the parameters of the fitted model, â, b̂, ĉ, d̂ and k̂.

1. Using sample x1, . . . , xn, obtain two vectors (x∗
1, . . . , x

∗
n) and (y1, . . . , yn),

where the first one contains values of the variable, and the second one
contains their corresponding empirical density values.

2. Divide the range of the variable into subintervals in terms of concav-
ity/convexity and increase/decrease of the curve determined by the points
in vectors (x∗

1, . . . , x
∗
n) and (y1, . . . , yn).

3. For each subinterval do:
• Fit y = f(x) = k + a exp {bx} + c exp {dx} , using an iterative least

squares procedure.
4. Normalize the whole function to integrate up to one.
5. Let â, b̂, ĉ, d̂ and k̂ be the coefficients of the normalized function.
6. RETURN(â, b̂, ĉ, d̂,k̂).

Although the core of this algorithm is Step 3, the results strongly depend
on Step 1, in two ways:

1. The accuracy of the estimation of the empirical density using the given
sample. If the estimation is poor, the result can be a density far away
from the original one.

2. The size of the vectors obtained. Even if the empirical density is properly
captured, if the exponential regression in Step 3 is computed from a scarce
set of points, the accuracy of the approximation can be poor.

The method described in [23] used the empirical histogram as an approx-
imation of the actual density of the sample points. In [31], with the aim of
avoiding the two problems mentioned above, the estimation procedure is im-
proved using kernel approximations to the empirical density.

First of all, a Gaussian kernel density [37] is fitted to the data correspond-
ing to each leaf. The Gaussian kernel density provides a smooth approximation
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to the empirical density of the data, which is specially useful in situations in
which the amount of data is scarce, since peaks in the density owing to the
lack of data are not as rough as in the case of using histograms.

Out of the fitted Gaussian kernel density, f(x), an artificial sample consist-
ing of pairs (x1, f(x1)), . . . , (xh, f(xh)), is drawn by taking equidistant points,
and an MTE density is obtained from it using the regression-based algorithm
described in [23; 33].

The performance of Gaussian kernels versus histograms or other types
of kernels for fitting MTE densities is evaluated in Figures 2 and 3, which
respectively show the MTE density obtained through histogram and kernel
approximations out of a sample of 200 points randomly sampled from a stan-
dard normal distribution.

The method described so far for constructing estimators for the parameters
of the univariate MTE density is not valid for the conditional case, since
more restrictions should be imposed over the parameters in order to force
the MTE potential to integrate up to 1 for each combination of values of
the conditioning variables, i.e. to force the MTE potential to actually be a
conditional density. This problem was approached in [24] by partitioning the
domain of the conditioning variables and then fitting a univariate density
in each one of the splits using the method described above. More precisely,

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Histogram 5 bins
N(0,1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Histogram 10 bins
N(0,1)

5 bins 10 bins

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Histogram 20 bins
N(0,1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Histogram 30 bins
N(0,1)

20 bins 30 bins

Fig. 2. Results of fitting an MTE from 5, 10, 20 and 30 bin histograms.
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Fig. 3. Results of fitting an MTE from Gaussian, Biweight and Epanechnikov ker-
nels.

the algorithm learns a mixed tree in which the leaves contain MTE densities
that depend only on the child variable, and that represents the density of the
child variable given by the values contained in the region determined by the
corresponding branch of the mixed tree. The tree is learnt in such a way that
the leaves discriminate as much as possible, following a schema similar to the
construction of decision trees [29].

Measuring the quality of a candidate network

The metric used in [31] to measure the quality of a candidate networks is
defined as:

Q(G|D, θ̂) = log L(D;G, θ̂)− log m

2
Dim(G), (7)

where L(D;G, θ̂) is the likelihood of the data given the current network and
Dim(G) is the number of parameters needed to specify the network G that
must be learnt from the data.

The number of parameters that are learnt from data for the conditional
density of any variable given its parents in the network, is the result of adding
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the number of parameters in the leaves of the corresponding mixed tree that
will be used to represent the density, and the number of points that determine
the partition of the domain of each continuous variable.

Once the metric is defined, it can be used to guide the process of learning
the network from data. The problem can be viewed as the optimization of the
metric defined in equation (7) within the space of candidate networks. In this
direction, hill climbing and simulated annealing algorithms have been used
[31].

4 Example

This section presents an example of a Bayesian network with discrete and
continuous variables where MTE potentials are used to model continuous
distributions.

4.1 Description

The following example is adapted from a problem used by Cobb et al. [2]. A
refinery has entered into a forward contract to sell 1,000 barrels of gasoline
in five months at a price of $67 per barrel. In four months, the refinery will
buy a futures contract for 1,000 barrels of crude oil to be delivered in one
month in order to produce the contracted output. The futures price (X) is
currently $59 and the price is expected to evolve for the next four months (90
business days) according to a geometric Brownian motion stochastic process
if cetain market factors (M) are favorable (M = 0). If market factors are
unfavorable (M = 1), the price is expected to evolve according to a jump
diffusion stochastic process. Market factors are expected to be favorable with
probability 0.80. The probabilities for the two states of M are denoted by
η(M = 0) = P (M = 0) and η(M = 1) = P (M = 1).

Using 65 daily price observations, the mean (drift) and the standard de-
viation (volatility) of the both the GBM and jump diffusion process (the
mean and standard deviation of the daily returns) are estimated as −0.00172
and 0.02089. The terminal distribution for the GBM process is a lognormal
distribution with a mean of 50.465 and a variance of 102.056. The corre-
sponding parameters of the lognormal distribution for the terminal price
(X) given a favorable market (M = 0) are µ = 3.90 and σ2 = 0.20, i.e.
X | {M = 0} ∼ LN(3.90, 0.20). A distribution for the terminal price (X)
given an unfavorable market (M = 1) has no standard form. Using Monte
Carlo simulation, a histogram for this distribution is simulated (see Figure 4).
The jump diffusion process is simulated by using

Xt+τ = Xt · exp{(µ− σ2/2)τ + σ
√

τZ0 +
∑N(τ)

i=1 (γZi − γ2/2)} , (8)



94 Barry R. Cobb et al.

20 40 60 80 100 120

0.005

0.01

0.015

0.02

0.025

0.03

Fig. 4. A simulated histogram for the distribution of oil prices (X) given M = 1.

where Zi ∼ N(0, 1) i.i.d., N(τ) ∼ Poisson(λτ), and the jump sizes are i.i.d.
lognormally distributed LN(αi, β

2
i ), with αi = −γ2/2 and βi = γ (γ > 0); in

this example, we assume γ = 0.20. The Poisson random variable represents
the number of jumps within each interval of length τ ; in this case, we assume
an average of four annual jumps, or λ = 4 and τ = 1/252 (where there are an
average of 252 business days per year).

The company incurs fixed costs per month of $5,000 and additional vari-
able costs of $4 per barrel; additionally, the cost has a random compo-
nent that can be modeled using a normal distribution with a mean of zero
and a standard deviation of 8000. Because the random component is nor-
mally distributed, the conditional distribution of profits (Y ) given a value
for oil price is normally distributed with a mean that is a linear function
of oil prices, g(X) = 58000 − 1000X with an independent variance, i.e.
Y | x ∼ N(g(x), 80002). The Bayesian network for this example is shown
in Figure 5.

Market (M) Oil Price (X) Profits (Y)

Fig. 5. The Bayesian network for the example problem.

4.2 Fitting MTE Potentials

Standard PDF’s

Cobb et al. [2] describe a method for fitting an MTE potential to approximate
a standard PDF with known parameters. Using this method with the lognor-
mal distribution requires dividing the domain of the potential into pieces
according to the absolute maximum and inflection points of the function. The
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absolute maximum, m, is defined where the first derivative of the lognormal
PDF equals zero, or m = exp{µ− σ2}. The inflection points, d±, are defined
where the second derivative of the lognormal PDF equals zero, or

d± = exp
{

1
2
(2µ− 3σ2 ± σ

√
4 + σ2)

}
.

In this example, the lognormal PDF with µ = 3.90 and σ2 = 0.20 has an
absolute maximum of m = 40.4473 and inflection points of d− = 23.1442 and
d+ = 57.8734. The MTE approximation captures the same area under the
lognormal PDF as is contained in the normal PDF within three standard de-
viations of the mean, or 0.9973. Define x0

min = 12.9146 and x0
max = 188.9799.

The LN(3.9, 0.2) PDF will have an MTE approximation defined with sepa-
rate pieces for the intervals [x0

min, d−),[d−,m),[m, d+), and [d+, x0
max]. Within

each interval, we use a nonlinear optimization procedure to select parameters
for the MTE potential that minimize the Kullback-Leibler (KL) divergence
[14] between the PDF and the MTE approximation. For the LN(3.9, 0.2) dis-
tribution, this results in the MTE approximation

φ0(x) = P (X | {M = 0}) =






−0.005157 + 0.065997 exp{0.088333(x− 40.4473)}
+0.101073 exp{1.419659(x− 40.4473)}

if 12.9146 ≤ x < 23.1442

0.110188− 0.070500 exp{ − 0.016903(x− 40.4473)}
−0.019732 exp{0.063467(x− 40.4473)}

if 23.1442 ≤ x < 40.4473

0.021151 + (1.221457E− 14) exp{1.399310(x− 40.4473)}
−0.001195 exp{0.102630(x− 40.4473)}

if 40.4473 ≤ x < 57.8734

−0.100751 + 0.028812 exp{ − 0.368836(x− 40.4473)}
+0.099982 exp{0.000049(x− 40.4473)}

if 57.8734 ≤ x ≤ 188.9799 .

(9)
All MTE potentials in this section are equal to zero in unspecified regions. The
MTE approximation is shown graphically in Figure 6 overlayed on a graph of
the actual LN(3.9, 0.2) distribution.

Estimation from Data

Using the simulated data from the jump diffusion process, the least squares
regression estimation procedure [23] described in Section 3.2 is used to fit an
MTE approximation (φ1) for the distribution of oil prices (X) given M = 1.
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Fig. 6. The MTE approximation to the distribution for X given M = 0 overlayed
on the actual LN(3.9, 0.2) distribution.

Given a partition of the domain of the simulated data, the procedure is used to
estimate the following function for the m-th piece of the MTE approximation
(denoted φ1m):

φ1m = Km + am exp {bmx}+ cm exp {dmx} . (10)

The mid-points of the bins in the empirical density (estimated from a fre-
quency distribution or histogram) in the domain of the m-th piece of the
MTE approximation are denoted as x = (xm1, xm2, . . . , xmn) and the val-
ues of the empirical density at the corresponding points are denoted as
y = (f(xm1), f(xm2), . . . , f(xmn)). Since two exponential terms are used in
(10), a two-stage exponential regression is used to estimate the parameters for
the MTE potential. First, the following model is estimated via least squares
regression:

ln {y} = ln am exp {bmx} = ln {am}+ bmx . (11)

Next, a similar regression is performed to fit the additional exponential term
cm exp {dmx} to the differences between the empirical distribution and the
values of am exp {bmx}. A constant term is then determined as the average of
the remaining differences between the MTE approximation and the empirical
density.

The MTE potential φ1 for oil prices (X) given M = 1 is shown in Figure 7,
overlayed on the empirical histogram constructed from the simulated data.

MTE approximation to the Normal PDF

Moral et al. [24] describe a mixed tree structure that can be used to de-
fine an MTE potential for a conditional distribution. The domain of the
continuous parent variables are divided into hypercubes and an MTE po-
tential is defined within each hypercube for the continuous child. Define
xmax = Max[x0

max, x1
max] and xmin = Min[x0

min, x1
min], where x1

max and
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Fig. 7. The MTE potential for X given M = 1 fit to the simulated data from the
jump diffusion process.

x1
min are the endpoints of the domain for the MTE potential fragment φ1

for X given M = 1. The hypercube for X contains 12 intervals, with
the endpoints of the intervals defined as xlim

0 , xlim
1 , . . . , xlim

12 , where xlim
i =

xmin + i · (xmax − xmin) /12 for i = 0, . . . , 12. An MTE approximation to the
normal PDF is defined by Cobb and Shenoy [3] in terms of the parameters
µ and σ2. For this example, define µi = 58000 − 1000

((
xlim

i + xlim
i−1

)
/2
)

for
i = 1, . . . , 12 and σ2 = 80002.

The MTE potential for profits (Y ) given oil price (X) is defined as

ϕi(x, y) =






8000−1
(
−0.010564 + 197.055720 exp{2.2568434(y−µi

8000 )}

−461.439251 exp{2.3434117(y−µi

8000 )}

+264.793037 exp{2.4043270(y−µi

8000 )}
)

if
(
xlim

i−1 ≤ x ≤ xlim
i

)
∩ (µi − 24000 ≤ y < µi)

8000−1
(
−0.010564 + 197.055720 exp{ − 2.2568434(y−µi

8000 )}

−461.439251 exp{ − 2.3434117(y−µi

8000 )}

+264.793037 exp{ − 2.4043270(y−µi

8000 )}
)

if
(
xlim

i−1 ≤ x ≤ xlim
i

)
∩ (µi ≤ y ≤ µi + 24000) .

(12)
for i = 1, . . . , 12.

4.3 Solution

Calculating marginal MTE potentials for X and Y requires using the opera-
tions of restriction (if evidence is available), combination and marginalization
in a message passing scheme over a join tree structure. The Shenoy-Shafer
architecture is used because the class of MTE potentials is closed under the
operations of restriction, combination and marginalization, and these are the
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only three operations required in this architecture. Combination of MTE po-
tentials is pointwise multiplication of functions and marginalization is inte-
gration over the continuous variables being removed and summation over the
discrete variables being removed.

To calculate the marginal distribution for X, the potentials η and φ (which
consists of the potential fragments φ0 and φ1) are combined via pointwise
multiplication, then the variable M is removed by summation. This operation
is denoted by ξ = (η ⊗ φ)↓X , with ξ calculated as

ξ(x) = η(M = 0) · φ0(x) + η(M = 1) · φ1(x) .

This results in the MTE potential shown graphically in Figure 8, which has
a mean and variance of 53.8757 and 552.6200, respectively.
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Fig. 8. The marginal distribution for X calculated by removing M from the com-
bination of η and φ.

The marginal distribution for Y is calculated by combining the poten-
tials ξ and ϕ via pointwise multiplication, then removing the variable X by
integration. This operation is denoted by ρ = (ξ ⊗ ϕ)↓Y , with ρ calculated as

ρ(y) =
∫ xmax

xmin

ξ(x) · ϕ(x, y) dx .

This results in the MTE potential shown graphically in Figure 9, which has a
mean and standard deviation of 4106.5735 and 25111.9326, respectively. The
probability that the firm earns a positive profit is calculated as

P (Y > 0) =
∫ ∞

0

ρ(y) dy = 0.6737 .

5 Conclusions

In this chapter we have reviewed two frameworks for handling hybrid Bayesian
networks, based on the CG and MTE distributions. In both cases, we have
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Fig. 9. The marginal distribution for Y calculated by removing X from the combi-
nation of ξ and ϕ.

studied how inference and learning from data can be carried out. Also, the
behavior of the MTE model is illustrated through an extensive example.

The CG model relies on a very solid theoretical development and it allows
efficient inference, but with the restriction that discrete nodes cannot have
continuous parents. On the other hand, the MTE model fits more naturaly to
local computation schemes for inference, since it is closed for the basic opera-
tions used in inference regardless the structure of the network. Furthermore,
it is a good tool for approximating other distributions more accurately than
discretization.
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Summary. Sensitivity analysis is a general technique for investigating the robust-
ness of the output of a mathematical model and is performed for various different
purposes. The practicability of conducting such an analysis of a probabilistic net-
work has recently been studied extensively, resulting in a variety of new insights and
effective methods, ranging from properties of the mathematical relation between a
parameter and an output probability of interest, to methods for establishing the ef-
fects of parameter variation on decisions based on the output distribution computed
from a network. In this paper, we present a survey of some of these research results
and explain their significance.

1 Introduction

Sensitivity analysis is a general technique for investigating the effects of inac-
curacies in the parameters of a mathematical model on the model’s output. As
a mathematical model, a probabilistic network can also be subjected to such
an analysis. The basic idea of the analysis then is to systematically vary the
assessments for the network’s parameter probabilities over a plausible interval
and study the effects on the output computed from the network.

Sensitivity analysis of a probabilistic network can be performed for various
different purposes. The parameter probabilities for a network are generally
estimated from statistical data or assessed by human experts in the domain of
application. As a consequence of incompleteness of data and partial knowledge
of the domain, the assessments obtained inevitably are inaccurate [11]. Since
the output probabilities of a network are built from these assessments, they
may be sensitive to the inaccuracies involved and may even be unreliable. In
general, however, not every parameter will require the same level of accuracy
to arrive at satisfactory behaviour of the network; some probabilities will
typically have more impact on the network’s output than others. During model
construction, therefore, sensitivity analysis can be used to gain detailed insight
into the level of accuracy that is required for the various parameters and to

L.C. van der Gaag et al.: Sensitivity Analysis of Probabilistic Networks, StudFuzz 213, 103–124
(2007)
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guide further knowledge elicitation efforts [7]. Moreover, if during an initial
evaluation of the network with real-life data, the output of the network is
different from what is expected based upon knowledge of the domain, then
sensitivity analysis can be used to identify which parameters can be changed
to arrive at the expected output [2; 3; 4]. Furthermore, upon using the network
in a real-life setting, sensitivity analysis can be used to gain insight into the
robustness of an output probability of interest as well as of a decision based
upon this probability. The analysis thereby reveals the range of parameter
values for which the network’s output is valid.

For a probabilistic network, the simplest type of analysis is to system-
atically vary one of the network’s parameter probabilities while keeping all
other parameters fixed. Such an analysis serves to reveal the effect of just
the parameter whose assessment is being varied, on the output probability of
interest. A sensitivity analysis in which a single parameter is varied, is termed
a one-way sensitivity analysis. In a two-way sensitivity analysis of a prob-
abilistic network, two parameters are varied simultaneously. In addition to
the separate effects of variation of the two parameters, a two-way sensitivity
analysis reveals the joint effect of their variation on a probability of interest.
In essence, it is also possible to systematically vary more than two parameters
at the same time. The results of such an n-way sensitivity analysis, however,
are often hard to interpret.

In recent years, one-way sensitivity analysis of probabilistic networks has
been studied extensively, which has resulted in practicable methods for per-
forming such an analysis. In this paper, we present a survey of some of the
recent research results and explain their significance. The paper is organised
as follows. In Sect. 2, we introduce some preliminaries on probabilistic net-
works and introduce our running example. Section 3 describes the functional
relationship between a parameter being varied and the output probability
computed from a network; this section further discusses the computation of
these sensitivity functions and presents some bounds on the effects of para-
meter variation. In Sect. 4, we discuss the application of sensitivity analysis
to study the robustness of output probabilities computed from a probabilistic
network on the one hand, and the robustness of decisions based upon these
probabilities on the other hand. The paper ends with our concluding remarks
and some directions for further research in Sect. 5.

2 Preliminaries

A probabilistic network basically is a representation of a joint probability dis-
tribution Pr over a set of stochastic variables. It consists of a qualitative part
and an associated quantitative part. The network’s qualitative part takes the
form of an acyclic directed graph. Each node in this digraph represents a vari-
able that takes its value from a finite set of discrete values. The arcs in the
digraph model the influential relationships among the represented variables;
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p(mc) = 0.20 p(isc | mc) = 0.80
p(isc | mc ) = 0.20

p(b | mc) = 0.20
p(b | mc ) = 0.05 p(ct | b) = 0.95

p(ct | b ) = 0.10
p(c | b, isc) = 0.80
p(c | b, isc) = 0.80 p(sh | b) = 0.80
p(c | b, isc ) = 0.80 p(sh | b ) = 0.60
p(c | b, isc ) = 0.05

Fig. 1. The Brain tumour network.

more specifically, they capture independence by means of the d-separation
criterion [20]. The strengths of the influential relationships are described by
conditional probability distributions: for each variable V , conditional distri-
butions p(V | π(V )) over its values are specified conditional on the various
possible combinations of values for its set of parents π(V ) in the digraph. The
specified probabilities are often referred to as the network’s parameters. A
probabilistic network in essence allows for the computation of any probability
of interest over its variables. For this purpose, various efficient algorithms are
available [20; 18; 15; 23], which we will refer to as the (standard) propagation
algorithms. In the sequel, we will explicitly distinguish computed probabili-
ties, written as Pr, from the parameter probabilities specified in the network,
which are denoted by p.

For our running example we consider the Brain tumour network shown in
Fig. 1. The network captures some (fictitious and incomplete) medical knowl-
edge, adapted from [5]. It describes the problems associated with metastatic
cancer for an arbitrary patient in oncology. Metastatic cancer (modelled by
the variable MC ) may lead to the development of a brain tumour (B) and
typically gives rise to an increased level of serum calcium (ISC ). The presence
of a brain tumour can be established from a CT scan (CT ). Severe headaches
(SH ) may also be indicative of the presence of a brain tumour. Either a brain
tumour or an increased level of serum calcium are likely to ultimately cause
a patient to fall into a coma (C ). The digraph modelling the relationships
among the six variables is shown on the left of the figure. In the network, all
variables V are binary, taking one of the values true and false; we write v
if V has the value true and v if it has the value false. The various parame-
ter probabilities associated with the digraph are shown on the right of the
figure. The probabilities specified for the variable ISC, for example, express
that knowing whether or not metastatic cancer is present has a considerable
influence on the probability of finding an increased level of serum calcium in
an arbitrary patient. On the other hand, severe headaches are expressed as
being quite common in both patients with and without a brain tumour.
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3 Sensitivity Functions and Their Computation

Sensitivity analysis in general is a technique for investigating the effects of
inaccuracies in the parameters of a mathematical model on its output. For a
probabilistic network, more specifically, sensitivity analysis amounts to study-
ing the effects of variation of the network’s parameter probabilities on the out-
put probabilities computed from the network. In this section, we will argue
that any output probability of interest can be expressed as a simple mathe-
matical function in the parameter under study. We further review the com-
putational issues involved in establishing such a function.

3.1 Sensitivity Functions

Performing a sensitivity analysis of a probabilistic network in essence amounts
to establishing, for each parameter and each output probability of interest, the
sensitivity function that expresses this output probability in terms of the pa-
rameter being varied [6]. These sensitivity functions have a highly constrained
functional form as a result of the graphical structure of a probabilistic network.
Before elaborating on this functional form, we introduce some further nota-
tional conventions. We will denote a probability of interest by Pr(A = a | e),
or Pr(a | e) for short, where a is a specific value of a variable A of interest
and e denotes the available (possibly compound) evidence. A parameter under
study will be denoted by x = p(bi | π), where bi is a value of a variable B
and π is a combination of values for the parents of B. We use fPr(a|e)(x) to
denote the function that expresses the probability Pr(a | e) in terms of the
parameter x; we often omit the subscript for the function symbol f , as long
as ambiguity cannot occur.

In a one-way sensitivity analysis, a single parameter x = p(bi | π) for
some variable B is varied. Upon varying this parameter, the other parameters
p(bj | π), j �= i, specified for the same variable need be co-varied to ensure
that the parameters from the same distribution keep summing to one. Each
such parameter p(bj | π) can thus be seen as a function p(bj | π)(x) of the
parameter x under study. We assume that the parameters p(bj | π) are co-
varied with p(bi | π) in such a way that their mutual proportional relationship
is kept constant, that is,

p(bj | π)(x) = p(bj | π) · 1− x

1− p(bi | π)

for p(bi | π) < 1. This scheme of proportional co-variation has been shown to
result in the smallest change, given the variation of the parameter x under
study, in the output distribution [3].

Now, under the assumption of proportional co-variation, any sensitivity
function fPr(a|e)(x) is a quotient of two functions that are linear in the para-
meter x under study [1; 9]. More formally, the function takes the form
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fPr(a|e)(x) =
c1 · x + c2

c3 · x + c4

where the constants c1, . . . , c4 are built from the original assessments for the
parameters that are not being varied. The numerator of the function in essence
describes the probability Pr(a, e) as a function of the parameter x; its denom-
inator describes Pr(e) as a function of x. We observe that the probability
distribution Pr defined by a probabilistic network can be written as a product
of its parameter distributions. From the property of marginalisation, it then
follows that both Pr(a, e) and Pr(e) can be written as a sum of products of
parameters, one of which is the parameter under study.

We illustrate the form of a sensitivity function in general by studying, for
the Brain tumour network, the sensitivity functions that describe the effects
of varying the parameter probabilities p(b | mc ) and p(sh | b ) on the output
probabilities Pr(b) and Pr(b | sh), respectively; the four functions are shown in
Fig. 2. Fig. 2(c) and (d) show the sensitivity functions that express the output
probability Pr(b | sh) in terms of the two separate parameters. Both functions
are non-linear and monotone, and can in fact be written as a quotient of two
linear functions. The sensitivity function expressing Pr(b | sh) in terms of
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Fig. 2. Some sensitivity functions for the Brain tumour network; the effects of
varying the parameters p(b | mc ) and p(sh | b ), respectively, on the prior probability
Pr(b) (a,b) and on the posterior probability Pr(b | sh) (c,d) are shown.
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x = p(b | mc ), for example, equals

fPr(b|sh)(x) =
0.640 · x + 0.032
0.160 · x + 0.608

=
4.0 · x + 0.2

x + 3.8

Both sensitivity functions reveal that varying the parameter under study can
have a considerable effect on the output probability of interest. We consider,
for example, smaller values of the parameter p(sh | b ), meaning that it is be-
coming less likely to find severe headaches in patients without a brain tumour.
If severe headaches then are found in a particular patient, this finding becomes
more indicative of the presence of a brain tumour. This type of sensitivity is
commonly found in real-life diagnostic networks [14].

Fig. 2(a) and (b) show the sensitivity functions that express the prior prob-
ability Pr(b) in terms of the two separate parameters. We observe that both
functions are linear in the parameter under study. The sensitivity function
expressing Pr(b) in terms of x = p(b | mc ), for example, equals

fPr(b)(x) = 0.8 · x + 0.04

In the absence of evidence, any probability of interest relates linearly to any
network parameter. Linear functions are also found if the parameter under
study pertains to an ancestor of the variable of interest and the parameter’s
variable has no observed descendants in the network’s qualitative part. From
Fig. 2(b) we further observe that variation of the parameter p(sh | b ) has
no effect at all on our probability of interest; the associated sensitivity func-
tion is a constant function. If no information is available about the presence
or absence of severe headaches, varying the diagnostic weight of headaches
cannot have any impact on the output. In general, the sensitivity function
is a constant function for any parameter associated with a variable that is
not included in the sensitivity set of the variable of interest. This set of vari-
ables whose parameters may affect the probability of interest upon variation,
is readily identified by simple inspection of the network’s qualitative part [9].

From the four sensitivity functions in Fig. 2 we note that by entering
evidence into a network, the exhibited sensitivities may change. While the
observation of the presence of severe headaches hardly influences the effect of
varying the parameter associated with the variable B, for example, we find that
this same evidence changes the effect of varying the parameter associated with
SH to a considerable extent. In general, quite different patterns of sensitivity
may arise for different profiles of evidence.

For our discussion in the subsequent sections, it is convenient to observe
that a sensitivity function is either a linear function or a fragment of a rec-
tangular hyperbola. A rectangular hyperbola takes the general form

f(x) =
r

x− s
+ t

where, for a hyperbolic sensitivity function, we have that
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Fig. 3. Hyperbolas and their constants (specific for sensitivity functions).

s = −c4

c3
, t =

c1

c3
, and r =

c2

c3
+ s · t

with c1, . . . , c4 as before. A rectangular hyperbola has two branches and two
asymptotes. Fig. 3 illustrates the locations of the possible hyperbola branches
relative to the two asymptotes. For r < 0, the branches lie in the second (II)
and fourth (IV) quadrants relative to the asymptotes x = s and f(x) = t; for
r > 0, the branches are found in the first (I) and third (III) quadrants. Since
any sensitivity function is well-defined for x ∈ [0, 1], a hyperbolic sensitivity
function is a fragment of one of the four possible hyperbola branches; the area
with 0 ≤ x ≤ 1 and 0 ≤ f(x) ≤ 1 that defines the fragment, is called the unit
window for the function. The vertical asymptote x = s of the hyperbola lies
either to the left of the unit window or to the right, that is, we have that s < 0
or s > 1. For first- and fourth-quadrant sensitivity functions more specifically
we find s < 0, while for second- and third-quadrant functions we have that
s > 1. In addition, the horizontal asymptote f(x) = t of the hyperbola lies
below f(1) for first-quadrant functions and below f(0) for second-quadrant
functions; we then have that t < 1. The horizontal asymptote lies above
f(0) for third-quadrant and above f(1) for fourth-quadrant functions, which
implies that t > 0. Note that the horizontal asymptote of the hyperbola not
necessarily lies within the unit window for the sensitivity function: for a first-
quadrant function, for example, negative values of t are possible and for a
fourth-quadrant function values of t larger than 1 can be found.

We illustrate the hyperbolic form by writing the sensitivity function for
the posterior probability Pr(b | sh) and the parameter x = p(b | mc ) as a
hyperbolic function:

fPr(b|sh)(x) = − 15.0
x + 3.8

+ 4.0

The three constants s = −3.8, t = 4.0, and r = −15.0 indicate that the
sensitivity function is a fourth-quadrant function and, hence, is monotonically
increasing. The vertical asymptote x = −3.8 is located at some distance to
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the left of the unit window; the horizontal asymptote f(x) = 4.0, moreover,
is located at some distance above the unit window. These properties indicate
that no major changes in the derivative of the function are expected within
the unit window, as is confirmed by Fig. 2(c). For the first-quadrant function
from Fig. 2(d) in contrast, the constants s = −0.07 and t = 0 are found.

3.2 Computing Sensitivity Functions

In the previous subsection, we argued that the effect of varying a single pa-
rameter upon an output probability computed from a probabilistic network
can be described by a highly constrained mathematical function. The major
advantage of this constrained form is that any sensitivity function can be
established by computing just its constants.

The simplest method of determining the constants of a sensitivity function
amounts to computing, from the network, the probability of interest for up to
three values for the parameter under study; using the functional form of the
function to be established, a system of linear equations is obtained, which can
subsequently be solved [9]. For the network computations, any of the stan-
dard propagation algorithms can be used. With this method, the sensitivity
function for a single parameter and a single output probability is established.
A more efficient method determines the required constants by propagating
information through a junction tree, similar to the standard junction-tree
propagation algorithm [16]. This method requires a very small number of in-
ward and outward propagations in the tree to determine either the constants
of all sensitivity functions that relate the probability of interest to any one
of the network parameters, or to determine the sensitivity functions for any
output probability in terms of a single parameter.

In a full sensitivity analysis, the effects of varying all parameter prob-
abilities of a network on all output probabilities of interest are investigated.
From the example sensitivity functions for the Brain tumour network, we have
seen that the effect of varying a particular parameter can change considerably
for different output probabilities. For a full analysis, therefore, all sensitivity
functions of interest need be established explicitly, for which purpose the two
methods outlined above need be applied multiple times. Although the concept
of sensitivity set can be used to forestall some of the computations involved,
performing a full sensitivity analysis of a probabilistic network of realistic size
is highly time consuming.

3.3 Bounding Sensitivity Functions

For real-life probabilistic networks, performing a full sensitivity analysis is
infeasible in practice, mostly as a consequence of the large range of evidence
profiles to be studied. Recent research therefore focused on the derivation of
general bounds for sensitivity functions. These bounds provide for selecting,
without actually performing the analysis for the full range of profiles, the
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sensitivity functions that are the most likely to reveal high sensitivities; we
will return to this observation in Sect. 4.

Within a given network, we consider a parameter x for which the value
x0 is specified. We are interested in some prior or posterior probability p, for
which the value p0 is computed from the network, using the value x0 for the
parameter x. We will refer to the values x0 and p0 as the original values of
the parameter and of the output probability, respectively; we assume that
neither x0 nor p0 is equal to zero or one. Without any further knowledge of
the network, we only know that the sensitivity function for x and p passes
through the point (x0, p0). Now, any sensitivity function through this point
is bounded by the two rectangular hyperbola’s i(x) and d(x) [21], with

i(x) =
p0 · (1− x0) · x

(p0 − x0) · x + (1− p0) · x0
and d(x) =

p0 · x0 · (1− x)
(1− p0 − x0) · x + p0 · x0

These bounds follow from the observation that an increasing rectangular hy-
perbola can, in the most extreme case, pass through the points (0, 0) and
(1, 1); a decreasing hyperbola may pass through (0, 1) and (1, 0).

For any sensitivity function f(x) with f(x0) = p0, we now have that

min{i(xj), d(xj)} ≤ f(xj) ≤ max{i(xj), d(xj)}

for all xj ∈ [0, 1]. From the bounding hyperbolas, we can readily establish
numerical bounds on the new value p1 of the probability of interest that
results from varying the parameter x from its original value x0 to x1. More
specifically, these bounds are given by [3]:

p0 · e−δ

p0 · (e−δ − 1) + 1
≤ p1 ≤

p0 · eδ

p0 · (eδ − 1) + 1

where

δ =
∣∣∣∣ln

x1

1− x1
− ln

x0

1− x0

∣∣∣∣

We would like to note that, if we know that a sensitivity function is linear in
the parameter under study, we can also establish linear bounding functions
that may lead to tighter numerical bounds. These linear bounding functions
also pass through the point (x0, p0). Since both functions moreover should be
well-defined within the unit window, the increasing bounding function further
passes through either (0, 0) or (1, 1), and the decreasing bounding function
goes through (0, 1) or (1, 0) [21].

To illustrate the various functions, Fig. 4 depicts two sets of bounding
functions for the Brain tumour network. Given the original value x0 = 0.05
for the parameter x = p(b | mc ), the posterior probability p = Pr(b | sh)
equals p0 = 0.10. Fig. 4(a) now depicts the increasing and decreasing bound-
ing hyperbolas through the point (x0, p0) = (0.05, 0.10); the true sensitivity
function for x and p is shown in the figure by a dashed curve. For the prior
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Fig. 4. Bounds on hyperbolic sensitivity functions through (x0, p0) = (0.05, 0.10)
(a) and on linear sensitivity functions through (x0, p0) = (0.05, 0.08) (b); example
sensitivity functions for the Brain tumour network are also shown (dashed).

probability Pr(b), we know that the sensitivity function that expresses this
probability in terms of the same parameter x is a linear function. Fig. 4(b)
now depicts the linear bounding functions established for this function; the
true sensitivity function again is shown by a dashed line. Note that knowl-
edge of the sensitivity function being linear leads to tighter bounds than the
bounding hyperbolas would give.

The bounding functions introduced above all depend on the original values
of the parameter and of the probability of interest, but are independent of
any other aspect of the network under study. The bounds therefore apply
to any pair (x0, p0) for any network. Their computation, moreover, does not
require any network propagations, except for establishing the value p0. For a
given profile of evidence, the bounds on the sensitivity function can be further
tightened. To this end, the probability of the evidence Pr(e) is expressed as
a linear function fPr(e)(x) = c3 · x + c4 of the parameter under study; this
function is readily computed using the junction-tree algorithm outlined in the
previous subsection. The two constants c3 and c4 now determine the constant
s = − c4

c3
in the hyperbolic form of any sensitivity function passing through

the point (x0, p0) and thereby constrain the space of feasible functions [22].

4 Applications of Sensitivity Analysis

One of the purposes to which a sensitivity analysis is performed of a proba-
bilistic network, is to study the robustness of the network’s output. We thereby
distinguish between the output probabilities that are computed from the net-
work and the decisions based upon these probabilities.

4.1 Robustness of Output Probabilities

In the previous section, we argued that a sensitivity function f(x) provides for
establishing the change in the output probability of interest that is occasioned
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by a shift in the value of the parameter x under study. For the Brain tumour
network, for example, we have from Fig. 2(c) that a shift in the value of the
parameter p(b | mc ) occasions a more or less proportional shift in the output
probability Pr(b | sh). A shift in the value of the parameter p(sh | b ) may have
quite a considerable effect on this posterior probability; small deviations from
the original value 0.60 for the parameter, however, will have little effect. The
change in the output probability that is occasioned by a shift in the value of a
parameter under study is indicative of the robustness of the output. Different
concepts have been designed to measure this robustness. We discuss for this
purpose the concepts of sensitivity value, which describes the change in an
output probability for infinitesimally small shifts in a parameter under study,
and vertex proximity, which indicates potential effects of larger shifts.

Sensitivity value

We consider a parameter x with an original value of x0. We further consider
an output probability p and the sensitivity function f(x) that expresses p
in terms of x. The sensitivity value of x and p now describes the effect of
infinitesimally small shifts in the parameter’s original value on the probability
of interest. It is defined as |f ′(x0)|, that is, as the absolute value of the first
derivative of the sensitivity function at the original value x0 of the parameter.
The sensitivity value of the parameter x and the output probability of interest
can be established analytically by computing the sensitivity function from the
network, taking its first derivative

f ′(x) =
c1 · c4 − c2 · c3

(c3 · x + c4)2

and filling in the original value x0 for the parameter under study. Alterna-
tively, the sensitivity value can be established directly from the network by
performing two network propagations [17; 10].

To illustrate the concept of sensitivity value, we establish, for our Brain
tumour network, the derivative of the sensitivity function that expresses the
output probability Pr(b | sh) in terms of the parameter x = p(b | mc ). We
find that

f ′(x) =
0.384

(0.16 · x + 0.608)2

Since the parameter x has an original value of 0.05, we find a sensitivity value
of |f ′(0.05)| = 1.01. This sensitivity value indicates that small shifts in the
parameter under study will induce a more or less similar change in the output
probability. For the parameter x = p(sh | b ) having an original value of 0.60,
in contrast, we find a sensitivity value equal to

∣∣∣∣
−0.059

(0.92 · 0.60 + 0.064)2

∣∣∣∣ = 0.16
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Fig. 5. The upper bound on the sensitivity value as a function of x0 and p0, for a
hyperbolic sensitivity function (a) and for a linear sensitivity function (b).

which indicates that small shifts in the parameter’s original value will hardly
have any effect on the output probability of interest. We note that these
observations are confirmed by Fig. 2(c) and (d).

In the previous section we argued that for a real-life probabilistic network
it is generally infeasible to compute sensitivity functions given all profiles
of evidence. By building upon the bounding functions for a sensitivity func-
tion, however, it is relatively straightforward to establish an upper bound on
the sensitivity value [21; 2]. By taking the first derivatives of the hyperbolic
bounding functions i(x) and d(x) for a parameter x with an original value of
x0 and an output probability with an original value of p0, we find the following
upper bound on the sensitivity value of x and p:

|f ′(x0)| ≤
p0 · (1− p0)
x0 · (1− x0)

Fig 5(a) depicts this upper bound as a function of x0 and p0. The figure
reveals that large sensitivity values are expected only for the more extreme
values of x0. For the sensitivity functions from Fig. 2(c) and (d), for example,
with p0 = 0.10, and x0 = 0.05 for the parameter p(b | mc ) and x0 = 0.60 for
the parameter p(sh | b ), we find that the parameter with the smaller original
value will have a sensitivity value of at most 1.96, whereas the less extreme
value of the other parameter results in a bound of 0.39 on the sensitivity value.
Note that the actual sensitivity values 1.01 and 0.16 for these parameters and
the probability of interest are indeed below the established bounds.

We recall from the previous section that, if a sensitivity function is known
to be linear in a parameter under study, then linear bounding functions can
be established. From these linear bounding functions, also an upper bound
on the sensitivity value can be computed. This bound will in general be
tighter than the upper bound that is found from hyperbolic bounding func-
tions [22]. Fig. 5(b) depicts the upper bound as a function of x0 and p0. As
an example, we consider for our Brain tumour network the sensitivity func-
tion that describes the prior probability Pr(b) as a function of the parameter
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x = p(b | mc ); recall that this function is depicted in Fig. 2(a). With x0 = 0.05
and p0 = 0.08, we find that the sensitivity value of this parameter and output
probability is at most 0.97; the actual sensitivity value equals 0.80. Note that
the sensitivity value for a linear function never exceeds 1.0, that is, a shift
in the parameter under study can never result in a larger shift in the out-
put probability of interest. Further note that the surface from Fig. 5(b) can
be placed underneath that of Fig. 5(a), which confirms that knowledge of a
sensitivity function being linear allows for tighter bounds.

In a full sensitivity analysis of a probabilistic network, typically a large
range of different profiles of evidence need be studied, which renders the analy-
sis infeasible in practice. The bounds on the sensitivity value established above
can now be exploited for selecting the parameters for which a detailed analy-
sis indeed is useful. We consider, as an example, a parameter with an original
value of 0.5. From the bounds established above, we have that any output
probability will be quite insensitive to small shifts in this parameter, regard-
less of the evidence profile under study. For such a parameter, therefore, a
more detailed analysis is not required.

Vertex proximity

The concept of sensitivity value reviewed above has been designed to give
insight in the effect of very small parameter variations. As the initial assess-
ments for the parameters of a probabilistic network may be highly inaccurate,
however, we are interested in the effects of larger parameter shifts as well. We
observe that for linear sensitivity functions, the sensitivity value in essence is
a constant function in the value of the parameter under study. The computed
sensitivity value therefore remains valid also for larger parameter shifts. For
hyperbolic sensitivity functions, this property does not hold. In fact, the sensi-
tivity value can strongly differ for two values of the parameter under study. To
illustrate this observation, we consider again, for our Brain tumour network,
the sensitivity function from Fig. 2(d) which expresses the output probability
p = Pr(b | sh) in terms of the parameter x = p(sh | b ). The sensitivity value of
x and p, that is, the absolute value of the function’s first derivative, is depicted
in Fig. 6 as a function of the value of x. The figure reveals that the sensitivity
value of x and p equals at most 1.0 if the parameter adopts a value within
the interval [0.2, 1]. For smaller values of the parameter, the sensitivity value
rapidly grows to infinity. Now, if the original value of the parameter would be
slightly larger than x0 = 0.2, we would find a relatively small sensitivity value
which would be interpreted as indicating that the output probability is not
very sensitive to variation of the parameter. Yet, if a more accurate value for
the parameter would be slightly smaller than 0.2, we would conclude that the
network’s output is not very robust as a result of the larger sensitivity value
found.

For a hyperbolic sensitivity function, we now take the point (xv, f(xv))
where the first derivative |f ′(xv)| equals 1.0 as the point that marks the



116 Linda C. van der Gaag et al.

0

5

10

15

0 0.2 0.4 0.6 0.8 1
|f’

(x
0)

|

x0

1

Fig. 6. The sensitivity value for the parameter x = p(sh | b ) and the output
probability Pr(b | sh), as a function of x.

transition from large sensitivity values to small ones, and vice versa. This
point is called the vertex of the hyperbola branch under study and can easily
be computed from the constants of the sensitivity function using

xv =
{

s +
√
|r|, if s < 0

s−
√
|r|, if s > 1

Now, if the original value x0 of a parameter lies close to the x-value of the
hyperbola’s vertex, then the output probability of interest may be quite sen-
sitive to variation of the parameter even if just a small sensitivity value is
found. We say that the parameter’s original value exhibits vertex proximity.

To illustrate the concept of vertex proximity, we consider again, for our
Brain tumour network, the two sensitivity functions from Fig. 2(c) and (d).
For the hyperbola branch that describes the output probability of interest as a
function of the parameter p(b | mc ), with an original value of 0.05, we find that
xv = −3.8+

√
15 = 0.07. The vertex of the hyperbola branch thus is quite close

to the parameter’s original value. Since the sensitivity function is a fourth-
quadrant hyperbolic function and x0 < xv, we conclude that the sensitivity
value for values of x larger than xv will be smaller than the sensitivity value of
1.01 computed for x0; note that this observation is confirmed by Fig. 2(c). For
the parameter p(sh | b ), the x-value of the vertex of the hyperbola branch is
found around 0.20, which can be considered quite distant from the parameter’s
original value of 0.60. Both the sensitivity value of 0.16 and the lack of vertex
proximity thus indicate that the output probability is not highly sensitivity to
shifts in the parameter; note that this observation is confirmed by Fig. 2(d).
If its original value had been 0.25, for example, then we would have found a
sensitivity value of 0.68. The property of vertex proximity would then have
been indicative of possibly significant effects of variation of the parameter to
smaller values.
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4.2 Robustness of Decisions

More and more, probabilistic networks are used within decision-support sys-
tems, where decisions are recommended based upon some probability dis-
tribution established from the network. In such a system, robustness of the
recommended decision is often more important than robustness of the out-
put probabilities themselves. Now, for some network parameters variation
will have a considerable effect on an output probability and yet not induce a
change in decision; for other parameters, variation will show little effect on the
output probability and nonetheless result in a different decision. For studying
the robustness of a recommended decision, therefore, studying the effects of
parameter variation on an output probability no longer suffices: the effects on
the decision itself need be taken into consideration explicitly. We discuss to
this end the issue of output robustness in view of the threshold model for deci-
sion making, where a decision is based upon an output probability computed
from the network, and in view of a model for decision making that is based
upon the most likely value for a variable of interest.

Threshold decision making

The threshold model has been designed to support decision making for di-
agnostic problems in which the decision maker has to choose between gath-
ering further evidence and acting without acquiring additional information.
Although generally applicable, the model is used most notably for patient
management in medical applications [19]. In such an application, the proba-
bility of disease is generally taken by an attending physician to decide upon
management of a patient under consideration. The physician may decide to
start treatment rightaway, or to withhold treatment altogether. Alternatively,
if a diagnostic test can provide additional information which may affect the
patient’s probability of disease, then the physician may defer the treatment
decision until this information has become available.

To support choosing among the various decision alternatives, the thresh-
old model builds upon three threshold probabilities of disease. The treat-
ment threshold probability P ∗(d ) of a disease d being present, is the prob-
ability at which the physician is indifferent between giving treatment and
withholding treatment; the no treatment-test threshold probability P−(d ) is
the probability at which the physician is indifferent between the decision to
withhold treatment and the decision to obtain additional diagnostic infor-
mation; and the test-treatment threshold probability P+(d ) is the probability
at which the physician is indifferent between obtaining further information
and starting treatment rightaway. Now, as long as not all possible diagnos-
tic tests have been performed, a physician has three decision alternatives
at his disposal. Given the probability of disease Pr(d ) for a patient, the
model recommends the physician to withhold treatment if Pr(d ) < P−(d ),
to start treatment if Pr(d ) > P+(d ), and to perform a diagnostic test if
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Fig. 7. The threshold model for patient management, indicating three threshold
probabilities and the various decision alternatives at a physician’s disposal.

P−(d ) ≤ Pr(d ) ≤ P+(d ). If no further tests are available, the physician has to
choose between only two alternative decisions. The model recommends to start
treatment if Pr(d ) > P ∗(d ) and to withhold treatment if Pr(d ) ≤ P ∗(d ).
Fig. 7 summarises the basic idea of the threshold model.

For studying output robustness of a probabilistic network in view of the
threshold model for decision making, the various threshold probabilities em-
ployed by the model should be taken into consideration [12]. More specifi-
cally, the effects of parameter variation on the recommended decision should
be analysed. We consider an output probability of disease Pr(d | e) computed
from the probabilistic network and suppose that P−(d ) ≤ Pr(d | e) ≤ P+(d ).
Assuming that an appropriate diagnostic test is still available, the threshold
model thus recommends to gather additional information. We further con-
sider a parameter x from the network and the sensitivity function f(x) that
expresses the posterior probability of disease in terms of the parameter. We
compute the values x− and x+ for the parameter x such that

f(x−) = P−(d ) and f(x+) = P+(d )

Note that these values can be readily established from the sensitivity function.
We now have that the decision to gather additional information remains un-
altered as long as the original value of the parameter is not varied beyond the
interval [x−, x+]. Similar bounds on variation can be computed for an output
probability of disease smaller than P−(d ) or larger than P+(d ).

We illustrate investigating the robustness of decisions for our Brain tu-
mour network. We assume that the threshold probabilities of a brain tumour
being present have been set at P−(b) = 0.045 and P+(b) = 0.56. The prior
probability of the presence of a brain tumour in an arbitrary patient in on-
cology is computed from the network to be Pr(b) = 0.08. For this probability,
we have that P−(b) ≤ Pr(b) ≤ P+(b). For a patient about whom no further
information is available, therefore, the threshold model recommends to gather
additional evidence. We now study the robustness of this decision in terms
of variation of the parameter x = p(sh | b ). The sensitivity function that
expresses the prior probability Pr(b) in terms of x is a constant function; we
recall that the function is depicted in Fig. 2(b). We thus find that the para-
meter can be varied within the entire [0, 1]-interval without inducing a change
in decision. The decision to gather further evidence therefore is insensitive to
variation of this parameter. Now suppose that the patient complains of severe
headaches. From the network, the posterior probability of a brain tumour
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being present is computed to be Pr(b | sh) = 0.10. For this probability, we
find that P−(b) ≤ Pr(b | sh) ≤ P+(b) which again results in the recommenda-
tion to gather further information, for example by performing a CT scan. We
again investigate the robustness of this decision in terms of variation of the
parameter x. The sensitivity function that expresses the output probability
Pr(b | sh) in terms of x no longer is a constant function; we recall that the
function is shown in Fig. 2(d). The function equals

fPr(b|sh)(x) =
0.064

0.92 · x + 0.064

From the intersections of the sensitivity function with the two threshold prob-
abilities, we find that x+ = 0.055 and x− = 1.476 > 1.0. We thus find that the
decision to gather additional information is robust to variation of the parame-
ter x within the interval [0.055, 1]. Since the original value of the parameter
equals x0 = 0.60, we conclude that the decision is quite robust to variation of
the parameter under study.

We would like to note that by building upon the bounding functions for
a sensitivity function a cautious interval for variation of a parameter under
study can be established. This interval provides boundaries between which
the parameter can at least be safely varied. If the parameter is varied be-
yond these boundaries, however, robustness is no longer guaranteed and the
recommended decision may change.

Most likely value

For classification problems, decision making with a probabilistic network often
amounts to selecting the value that is the most likely for an output variable
of interest, based upon the computed probability distribution. For studying
output robustness of the network in view of this model for decision making, the
effects of parameter variation on the most likely value of the output variable
need be studied. For this purpose, the concept of admissible deviation has been
designed. An admissible deviation captures the extent of the variation that
can be applied to a parameter without changing the most likely value of the
output variable [13]. It is a pair of real numbers (α, β) that describe the shifts
to smaller values and to larger values, respectively, that are allowed in the
parameter under study without inducing a change in the most likely value of
the output variable; often the symbols ← and → are used to express that the
parameter can be varied as far as the boundaries of the probability interval.
For a parameter with an original value of x0, the admissible deviation (α, β)
thus indicates that the parameter can be safely varied within the interval
[x0 − α, x0 + β].

We consider a parameter x with an original value of x0, and an output
variable A; we suppose that, given the available evidence e, the most likely
value of A is the value ak. We observe that, if we compare just the two
values ak and ai of A, then the intersection of the two sensitivity functions
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Fig. 8. Sensitivity functions for the possible values of the variable B, in terms of
the parameters p(b | mc) (a) and p(sh | b ) (b).

fPr(ak|e)(x) and fPr(ai|e)(x) marks the value of the parameter x at which the
value ai becomes more likely than the value ak. Based upon this observation,
the admissible deviation for the parameter x is now readily established from
the intersections of the sensitivity function fPr(ak|e)(x) for the most likely value
ak with the functions fPr(ai|e)(x) pertaining to the other values ai, i �= k, of A.
If the intersections are found at the values xi for the parameter x with x1 ≤
. . . ≤ xj ≤ x0 ≤ xj+1 ≤ . . . ≤ xn, then we can conclude that the parameter
can be varied between the values xj and xj+1 without inducing a change in
the most likely value of the output variable. The admissible deviation then
equals [x0 − xj , xj+1 − x0].

To illustrate the concept of admissible deviation, we consider, in the Brain
tumour network, the output variable B and its two values. For an arbitrary
patient, the probability of a brain tumour being present equals Pr(b) = 0.08.
The absence of a brain tumour, therefore, is the most likely value of B. We
now study the effects of varying the parameter x = p(b | mc), with an original
value of x0 = 0.05, on this most likely value. The sensitivity functions that
describe the prior probabilities of the two values of B in terms of x are

fPr(b)(x) = 0.80 · x + 0.04 and fPr(b)(x) = −0.80 · x + 0.96

These functions are depicted in Fig. 8(a). The two sensitivity functions in-
tersect at x = 0.575. For the original value of x, we thus find an admissible
deviation of (←, 0.525). We conclude that the diagnosis of this patient not
having a brain tumour is quite robust to variation of the parameter x. We
now consider a patient with severe headaches. For this patient, the probability
of a brain tumour being present equals Pr(b | sh) = 0.10. Again, the absence
of such a tumour is the most likely value of the variable B. The effects of
varying the parameter x = p(sh | b ), with an original value of x0 = 0.60, on
the posterior probabilities for B are described by the two sensitivity functions

fPr(b|sh)(x) =
0.064

0.92 · x + 0.064
and fPr(b|sh)(x) =

0.92 · x
0.92 · x + 0.064
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These functions are shown in Fig. 8(b). The two sensitivity functions intersect
at x = 0.07, resulting in an admissible deviation of (0.53,→). We conclude
that the most likely value of the output variable again is quite robust to
variation of the parameter under study.

We would like to note that by building upon the bounding functions for
a sensitivity function a cautious interval for variation of a parameter under
study can be established. This interval provides boundaries between which
the parameter can at least be safely varied. If the parameter is varied be-
yond these boundaries, however, robustness is no longer guaranteed and the
recommended decision may change. From this interval, a minimal admissible
deviation is established [13].

5 Concluding Observations

Recent research in sensitivity analysis of probabilistic networks has resulted
in a variety of new insights and effective methods. The insight that has proved
to be most significant, is that the mathematical properties of a probabilistic
network strongly constrain the functional form of the relation between a para-
meter probability and an output probability of interest. In fact, this so-called
sensitivity function is a fraction of two linear functions in the parameter under
study, taking the form of either a linear function or a fragment of a hyperbola
branch. Because of this constrained functional form, any sensitivity function
can be established analytically from a probabilistic network by computing just
its constants using a limited number of network propagations.

The significance of the sensitivity function lies in that it provides for easy
computation of various sensitivity properties pertaining to the robustness of
the output of a network. We detailed the concepts of sensitivity value and
vertex proximity as giving insight into the effects of parameter variation on
an output probability of interest. These concepts can be used during model
construction, for example, to gain detailed insight into the level of accuracy
that is required for the various parameters and to guide further elicitation
efforts. We further discussed the issue of output robustness in view of two
different models for decision making that build upon the output distribution
computed from a network, and presented methods that give insight into the
effects of parameter variation on a recommended decision. These methods
reveal the range of parameter values for which a decision based upon the
network’s output distribution is valid when used in a real-life setting.

Another use of the sensitivity function is for parameter tuning. Parameter
tuning is typically employed if the output of a probabilistic network differs
from what is expected based upon knowledge of the domain and amounts
to changing the values of one or more of the network’s parameters. Sensi-
tivity functions can then be used to identify which parameters had best be
changed to arrive at the expected output. Parameter tuning, however, should
be performed with care since changing even a single parameter may easily
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have unwanted effects over the large range of evidence profiles. We feel that
further research into the global effects of local changes is still required.

To conclude, we focused in this paper on one-way sensitivity analysis.
In essence it is possible to also perform a more general n-way analysis of
a probabilistic network. Compared to one-way sensitivity analysis, however,
higher-order analysis of probabilistic networks has so far received far less at-
tention [8; 4]. Since a higher-order analysis is particularly useful for uncovering
and studying synergistic effects of variation of the parameter probabilities of
a network, we feel that it is worthwhile to direct further research efforts to
gaining new insights and developing effective methods for conducting such
analyses and interpreting their results.
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Summary. Triangulation of a Bayesian network (BN) is somehow a necessary step
in order to perform inference in a more efficient way, either if we use a secondary
structure as the join tree (JT) or implicitly when we try to use other direct techniques
on the network. If we focus on the first procedure, the goodness of the triangulation
will affect on the simplicity of the join tree and therefore on a quicker and easier
inference process.

The task of obtaining an optimal triangulation (in terms of producing the min-
imum number of triangulation links a.k.a. fill-ins) has been proved as an NP-hard
problem. That is why many methods of distinct nature have been used with the pur-
pose of getting as good as possible triangulations for any given network, especially
important for big structures, that is, with a large number of variables and links.

In this chapter, we attempt to introduce the problem of triangulation, locat-
ing it in the compilation process and showing first its relevance for inference, and
consequently for working with Bayesian networks. After this introduction, the most
popular and used strategies to cope with the triangulation problem are reviewed,
grouped into two main categories: heuristics and stochastic algorithms. Finally, an-
other family of techniques could be understood as those based in decomposing the
problem.

1 Introduction: the Compilation Process

If we consider that an expert system is composed of two main elements: Knowl-
egde Base (KB) + Inference Engine (IE), then a probabilistic expert system
could be interpreted as a Bayesian network that models the particular prob-
lem (KB) and a secondary structure where inference is performed, normally
an associated join tree1 (IE).

1 Also known as junction tree.
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A Bayesian network[38] is made up of two elements:

• The directed graph G = (V, E), where V are the variables/nodes in the
graph and E the set of edges present in the graph from which dependencies
and independencies between domain variables can be extracted.

• The probability distribution, which is usually stored in the form of tables,
including for every variable Xi its probability P (Xi|pa(Xi)) or just the
prior probability P (Xi) if the node has no parents2. This is because of the
factorisation rule that states:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|pa(Xi)) (1)

When inference is performed for Bayesian networks we normally want to
obtain the posterior probability for the problem variables given some facts
or evidence e that we have previously observed. Then, we wish to obtain the
value of P (Xi|e) either for all variables or for a subset of them. Computing this
marginal and posterior probability is not always a simple task. The structure
of the JT is a representation of the network, and being free of cycles, it allows
certain algorithms to propagate probabilities that result in general quite more
efficient. JT is also used for other inference tasks as the search of explanations
or abductive inference [19; 37].

There exist efficient algorithms to propagate evidence in acyclic networks
(polytrees) [38], but unfortunately this is not common to have networks under
this constraint. What has been broadly used in order to propagate in an
exact manner for any kind of network is some form of the so-called clustering
method, which basically entails grouping in a single node (cluster) variables
that are strongly related together. Then, these groups/clusters are organised
as a tree and sophisticated adaptations to the evidence propagation algorithm
can also be done such as Lauritzen & Spiegelhalter method [32], Shenoy &
Shafer propagation [43] or Hugin architecture [26]. A more recent technique
is Lazy propagation [34].

We can find many other methods based on the previous ones that seek a
more efficient evidence propagation and whose main feature is the possibility
of an approximate inference to improve even more the speed-up, for instance
Penniless propagation [9]. There is even a combination of two different tech-
niques as Lazy Propagation with Penniless [10].

As a means to obtain this tree of clusters the BN has to be compiled. Com-
pilation is the process of transforming a Bayesian network into a secondary
structure called junction tree and it is a step to preprocess the network in
order to make inference in a more efficient way on the whole. However, the
resulting join tree from the compilation process is not unique for a given BN.
Thus, a quite interesting feature is to have the ability of choosing the best

2 pa(Xi) is the set of parent nodes for variable Xi, i.e. the nodes which have a link
pointing to Xi.
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(a) Graph. (b) Moral graph.

Fig. 1. Moralising graph for Asia network. Double lines indicate moral links.

tree among all possible ones for a particular BN. When using the join tree for
inference, it is clear that the better this tree is the better our inference engine
will work. Inference leads to a considerable number of operations, being our
target to find a valid tree for our network, but also as simple as possible.
We should note that a JT captures (in)dependence relations between vari-
ables. Nevertheless the groups of dependent variables might be bigger than
necessary. Comparing two valid join trees, JT1 and JT2 related to the same
network, the more complex the tree is, the more unnecessary dependencies it
is actually including.

Let us indicate the four basic steps included in the compilation process[32]:

1. Obtain the moral graph from the original DAG that represented the BN .
2. Triangulate this moral graph.
3. Identify all the cliques.
4. Connect these cliques in order to form a valid join tree JT .

1.- Moralise the graph
The first step about moralisation takes the initial DAG G that forms

the graphical part of the network and makes it undirected following these
two rules: join those nodes with common parents by introducing a moral
link3, and drop directions of the directed edges. We show the graph for the
classical network Asia or chest-clinic [32], originally directed (figure 1.(a)) and
afterwards moralised (Figure 1.(b)).

3 The origin of the term moral comes from marrying nodes with common children.
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2.- Triangulate the moral graph
Second phase for compilation is the most problematic step: triangulation,

since finding an optimal triangulation is an NP-hard problem [49]. To triangu-
late a graph it is needed to introduce a chord in those cycles of length greater
than 3.

Normally, this process is done as the search of a deletion (or elimination)
sequence σ which represents an ordering for all nodes in V. Then, σ can also
be seen as a function which relates every node vi ∈ V with a unique number
between 1 and |V|. Therefore every node will have a position in the deletion
sequence. Using this deletion sequence σ the necessary links to add (called
fill-ins) will be obtained. If adj(Xi) denotes the set of nodes adjacent to Xi

in the undirected graph, then by deleting Xi we refer to the process of adding
the necessary fill-ins in order to make Xi ∪ adj(Xi) a complete subgraph,
and subsequently remove it and all its incident edges from the graph. The
triangular graph GT will be the result of adding to the moral graph the set
(F) of fill-ins added during the deletion process. That is, if GM = (V, EM ) is
the moral graph, then GT = (V, EM ∪ F). Let us show one example for the
moral graph of Asia network (Figure 2).

In Figures 2.(a)-(e) we proceed to use the deletion sequence σ showing
the different steps for this ordering. So, as explained above, triangulation
can be viewed as finding the deletion sequence. The method described in the
previous paragraph is not complex, but the determination of a good dele-
tion sequence is the most important step. For example, a sequence σ2 as
{D,S,L,B,E, T,A,X} would produce the resulting triangulated graph shown
in Figure 3.

As we can see in Figure 3 the graph is correctly triangulated, since there are
no cycles of length 4 or greater without a chord. However, we have introduced
4 fill-ins instead of the only one needed with σ sequence. That introduces more
unnecessary relations among nodes that will make a more dense triangulated
graph, and will construct bigger clusters. The size of a cluster is crucial for
the efficiency of join tree-based algorithms. Notice that the triangulation could
still introduce many more fill-ins, for example if variable E is the first to be
removed, 8 fill-ins in only one step will be introduced!!. And Asia network is a
very simple one, since it presents only 8 nodes. It is obvious that the number
of possible sequences is equal to all the possible permutations (|V|!), that is,
it increases more than exponentially in the number of nodes.

3.- Identify the cliques
Once the graph is triangulated it is time to determine which are the cliques

(clusters) in this triangulated graph. Now we can give a proper definition:

Definition 1. (Clique) Let G be an undirected graph, then all the maximal
complete subgraphs in G are called cliques.

In our particular case we will be interested in identifying the cliques corre-
sponding to the triangulated graph, GT . As we have already explained, these
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Fig. 2. Obtaining one possible triangulated graph for Asia. The used deletion se-
quence is σ = {A, T, X, D, S, B, L, E}.

cliques will be the nodes of the join tree. Since they are extracted from the
triangulated graph they will also be dependent on the triangulation carried
out, that is, on the introduced fill-ins.

Apart from determining the cliques we have to place them in a tree-shaped
structure. And that leads us directly to the next step.
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Fig. 3. Resulting triangulated graph when using deletion sequence σ2 =
{D, S, L, B, E, T, A, X}.

4.- Build the tree
It implies the establishment of the connections between cliques. From a

triangulated graph there can be different possible join trees depending on the
clique chosen as root, and sometimes a clique could be connected to different
parents.

In order to guarantee that the running intersection property holds (see
def. 2), we could use for example the maximum cardinality search [45] (MCS)
with the aim of identifying the cliques and then connecting them in a tree.

Definition 2. Running Intersection Property: For every pair of clusters
C1 and C2 whose intersection is not empty, that is, V = C1 ∩ C2 �= ∅, it is
verified that V is contained in all nodes included in the path between C1 and
C2.

Apart from MCS there are other alternative methods of ordering the
cliques if no deletion sequence is available. And, on the other hand, it is
possible to construct the tree from a deletion sequence if we know the cliques
formed when deleting vi and taking the reverse order of these. Figure 4 shows
this second procedure for the Asia example with the previous deletion se-
quence σ. In any case, all these methods use he same idea: when identifying
the cliques we need to have them ordered in a certain way that will assure
the running intersection property. So that, this order will lead to an iterative
way of constructing the tree.
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i vi Cliquei

1 A {A, T}
2 T {T, L, E}
3 X {E, X}
4 D {E, B, D}
5 S {S, L, B}
6 B {L, B, E}
7 L
8 E

(a) σ order

i: vi Cliquei Sepi parents
8: E -
7: L -
6: B {L, B, E} ∅ -
5: S {S, L, B} [L, B] 6
4: D {B, E, D} [B, E] 6
3: X {E, X} [E] 6,4
2: T {T, L, E} [L, E] 6
1: A {A, T} [T ] 2

(b) Inverse order

T,L,E S,L,B

A,T

B,E,D

E,X

L,B,E

2 5 4

3

6

1

L,E

T

L,B E,B

E

(c) Resulting join tree

Fig. 4. Ordering of the cliques from the triangulation σ = {A, T, X, D, S, B, L, E}
in Figure 2, identification of cliques and tree construction. Boldface when several
options are possible indicates the randomly chosen one.

2 The Problem of Triangulation

As previously reviewed, the usual technique to triangulate a graph is selecting
a deletion/ elimination/ removing/ triangulation sequence containing all the
nodes in the graph. The method consists of an elimination process, following
the sequence order, which will remove all the nodes. As pointed out before,
finding an optimal deletion sequence is known to be an NP -hard problem
and coping with it involves a search over the space defined by all possible
permutations of |V|. Several approaches [40; 45; 28; 29; 8; 30; 24; 2; 1; 7;
20], most of them based on heuristics, have been proposed to search optimal
solutions for this triangulation problem. Hence, these algorithms attempt to
solve the problem of obtaining a good join tree from a BN, as next sections
will show.

We should remark that these procedures to generate elimination sequences
do not guarantee that we get an optimal triangulation either in terms of
amount of added edges or in terms of the state space size when nodes are
chosen randomly. Moreover, on average these measures in random sequences
would normally be much larger than those corresponding to a minimum tri-
angulation.

The question here is: what we understand by an optimal triangulation? If
we refer to early work in graph triangulation what is understood by optimal
triangulation is a minimal triangulation:

Definition 3. (Minimal Triangulation)
If we have a triangulation F for an undirected graph G, GT = (V,E ∪F), de-
noting the set of fill-ins adding during triangulation, F is said to be minimal
if ∃/ F ′ so that F ′ ⊂ F and F ′ is a valid triangulation for G.

That is, a triangulation F is minimal if for each fill-in f ∈ F , the graph,
(V, E ∪ F − {f}) is not any more triangulated. Strongly related with this
concept are those deletion sequences that constitute perfect orderings:

Definition 4. (Perfect ordering)
Given an undirected graph G = (V,E) and a sequence σ for V, σ it is said to
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be a perfect ordering if its use as deletion sequence to triangulate G does not
produce any fill-in.

In fact, perfect orderings exist only for triangulated graphs and this is a
way of checking if a given graph G is already triangulated.

In literature we can find many methods and studies for getting a mini-
mal triangulation. The most known and first one is lexicographical search,
LEX-M[40], providing a way of obtaining directly a minimal triangulation.
The method consists of a particularly designed Breadth First Search (BFS),
but labelling vertices (nodes) in a lexicographical way, LEX-BFS. LEX-M ap-
plies this labelling procedure along paths. More recent studies and (sometimes
more efficient) methods have been designed [3; 6; 23; 39]. Among them, there
is a recent successful technique [4] called MCS-M. This is a simplification of
LEX-M where cardinality labels are used instead of lexicographical ones. In an
analogical way, it applies the cardinality labelling of (neighbour) nodes along
the path. MCS-M, as LEX-M, produces a minimal elimination ordering4. Even
if both techniques could give different orderings it has been proved [47] that
they create the same set of triangulations. LB-triang [5] is another recent algo-
rithm that computes minimal triangulations with a computation complexity
equal to the most efficient methods, and presenting certain properties that
could make it especially interesting, such as it can also be implemented as an
elimination scheme.

A different approach of obtaining a minimal triangulation is to follow
an indirect path, that is, the method starts with a valid but non necessary
minimal triangulation and then, it identifies the redundant fill-ins, so that
eliminating them a minimal triangulation is obtained. If F is a set of fill-ins
that make a graph G triangulated, G = (V, E ∪ F), these methods identify
a set of links Rmin ⊂ F , so that Gmin = (V, E ∪ (F \ Rmin)) is minimally
triangulated. The resulting minimal triangulation is therefore Fmin = F \
Rmin. Among them, we find the method called recursive thinning designed
by Kjærulf [28] and the algorithm proposed in [6].

The previous paragraphs discuss the problem of searching for minimal
triangulations in the field of graph theory, however, when we move to the field
of BNs triangulation things change. Now, the number of states of the variables
plays a crucial role in the concept of optimal deletion sequences. Thus, in BNs
triangulation a deletion sequence is optimal if it produces a triangulated graph
whose associated join tree has minimal state space size. From this point of
view a minimal triangulation does not need to be an optimal triangulation.
As an example let us consider the Asia network previously introduced, where
it is clear that triangulations F1 = {(L,B)} and F2 = {(S,E)} are minimal.
If all the variables have two states (as it is the case) both triangulations are
also optimal in the sense of state space size, but if we add an extra state
to any of these variables, the two triangulations continue being minimal, but

4 A deletion sequence that provides a minimal triangulation.
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only one of them will be optimal with respect to the state space size criteria.
In fact, Kjærulff [28] pointed out that most classical algorithms to look for
a minimal triangulation are found to be highly ineffective when state space
size is used as optimality criteria, being clearly surpassed by simple greedy
heuristics (discussed in Section 3).

Although there is no general technique to perform always an optimal trian-
gulation for any graph, there exist attempts to go as closer as possible as the
algorithm QuickTree in [44], stated by the authors as the first algorithm that
can optimally triangulate graphs with a hundred nodes in a reasonable time
frame. In [21] we find a more modern branch and bound method, QuickBB
with similar purposes. In [12] graph triangulation is interestingly stated and
solved as a constraint satisfaction problem. Another an more recent example
is found in the commercial tool Hugin5 where one technique for optimal trian-
gulation has been implemented. This particular method, as indicated in [25]
is a combined exact/heuristic method capable of producing an optimal tri-
angulation, but only if sufficient computational resources (primarily storage)
are available.

Finally, as a remark, several research works have shown that all existing
methods for local computation will imply (maybe in a hidden way) a trian-
gulation task. Besides, those methods not using a secondary structure like
the junction tree either are less efficient or present another problem of NP-
hardness [27].

3 Heuristic Greedy Methods

This group of techniques is characterised by establishing an ordering criterion
based on the search rule “the next node to be deleted is that one minimising
f()” where f() is in function of one or several measures over the set of nodes
within the graph G = (V, E). The most used measures [28] are based on:

1. Nodes i ∈ V:
• Size.- the number of variables: s(i) = 1.
• Weight.- logarithm of the natural size: w(i) = log2c(i), where natural

size, c(i) = |ΩXi
|, i.e. the number of states of variable Xi. Depending

on the author Weight is seen directly as c(i)6.
• Incident.- number of incident links in node/variable i within the moral

graph: |adj(Xi)|.
2. Groups or clusters Ci ∈ P(V ):

• Size of the group: V (Ci) = Σ
j∈Ci

s(j) = |Ci|. Then it refers to the number

of variables in the group (or clique).

5 http://www.hugin.com
6 And that will be the approach when minWeight is referred in this chapter.
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• Weight: W (Ci) = Σ
j∈Ci

w(j).

As it happened with the nodes, sometimes this name is used for de-

noting the natural size: S(Ci) = Π
j∈Ci

c(j).

• (Fill-ins).- number of introduced edges while the triangulation process:
F (Ci). That is, the number of edges necessary to make the group
complete except those links already belonging to the moral graph.

We should indicate that other authors use the term size also for the weight
measure. In this work we will try to write clearly which criterion we are
referring to.

From these enumerated measures a set of criteria appear that give rise
(among other) to the following heuristics7:

• Minimum size.- This criterion is based on selecting as the next node
to be deleted that one which minimises the function f(Ci) = V (Ci). That is,
at each step, it chooses the next variable, among those not yet deleted, which
produces a clique of minimum size.

As Rose[42] noted minimum size heuristics is fast8, but it presents some
drawbacks:

- It does not produce, in general, a perfect ordering (see def. 4) if the graph
is already triangulated.

- It does not generally produce minimal triangulations.
- There exist examples for which the produced triangulation is arbitrarily

greater than the triangulation obtained by minimum fill (see below).

• Minimum weight.- This criterion is based on selecting as the next
node to be deleted that one which minimises the function f(Ci) = S(Ci).
This heuristics presents exactly the same advantages and disadvantages as
minimum size. Note that when all nodes have the same weight both heuristics
are identical.

This heuristics gives good results on the whole. It tries to minimise the
total sum of the cliques sizes by minimising, at each step, the size of every
clique which is being created. This does not guarantee that the total tree space
state size (or weight) is optimal, since choosing one variable that produces a
minimal clique could force us to produce bigger cliques when other variables
are deleted later. However, in general, this method provides trees which are
relatively manageable.

In [8] another particular heuristics based on the same idea arise, but at-
tempting to avoid its weak points. The main underlying idea of these heuristics
is that in the moment of deleting a variable it should be sought to minimise

7 we will assume that Ci = {Xi} ∪ adj(Xi)
8 It can be implemented in a computation time of order O(|V| + E′), where E′ =

E + |F|, being E the initial links and F those links added during triangulation.



A Review on Triangulation of Bayesian Networks 137

the corresponding9 S(Ci). However, at the same time, the variable and all its
corresponding links are deleted, which simplifies the resultant graph. There-
fore, what they pursue is that this simplification for the resultant graph could
also be taken into account.

Among the several heuristics that Cano and Moral [8] propose in their
work, we find this approach called H2. This is very similar to minimum weight,
at each case it chooses the variable Xi, among all the possible variables to be
deleted, which minimises S(i)/|Ω(Xi)|. With this feature when there are ties
in (natural) size we remove first those variables of larger number of states,
which leads to less complex cliques in the future formation of the tree.
• Minimum fill.- This criterion is based on selecting as the next node to

be deleted that one which minimises the function f(Ci) = F (Ci). In each case,
it chooses the variable, among those not yet deleted, for which its elimination
introduces a smaller number of fill-ins. This method presents the advantage
of producing a perfect ordering when the graph is triangulated, but provokes
the following drawbacks:

- It is slightly slower than the minimum weight heuristics, that is because
the adjacency set for every node has to be explored regarding edges.

- In general it does not produce minimal triangulations.
There exist other heuristic techniques which attempt to tackle the problem

of graph triangulation. In [24] they are classified in several groups:

1. Heuristics based on the relation between measures for nodes and clusters.
They try to establish algebraic relationships between these two types of
measures.

2. Heuristics based on measures for clusters and environments of nodes. They
define the k-neighbourhood of a node by a distance k, which is determined
as the minimum number of edges to go from one node to the other.

3. Compound heuristics. This sort of heuristics can be conceived as a hybridi-
sation where the criterion to be used will vary on the different temporal
stages of the triangulation process.

4. Iterative heuristics. Instead of using a single heuristic criterion to elimi-
nate a node, they can make several iterations (each one with a different
measure) in order to decide. They could be of k-iterations, where k could
go from 1 (classical approach) until n (n = |V|)). 2-iterations methods are
studied in [24].

Since the complexity of finding a minimal triangulation grows as n!, it is
not possible to carry out an exhaustive search directly, except when n is very
small. Nevertheless, to construct an elimination order successively and to stop
the execution when the total sum of the weights for the cliques (produced until
this moment) exceeds the current smallest weight of a complete ordering could
be of use to make an exhaustive search even for moderate-size graphs. Being

9 Each deleted variable produces a group of variables, and when this is maximal it
will therefore produce a clique.
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triangulation an NP-complete problem, we can not generally expect that a
branch-and-bound algorithm could find an optimal ordering within certain
time limits. That is, the algorithm should finish either when the number of
vertices exceeds a certain limit or when the number of the permutations left as
discarded increases too slowly. Of course, the initial ordering will have a huge
impact on the algorithm success. Thus, a branch-and-bound algorithm should
be preferably used combining it with another quite faster algorithm (the first
would be the last to apply) able of setting a “good” initial ordering for it with
the goal of avoiding examining too many useless orderings and also with the
goal of minimising the distance to some minimum ordering (we assume that
low cost orderings are closer to a minimum one than a high cost ordering).

We could observe that the mentioned heuristics are only one-step looka-
head, i.e., they just take into account that node which minimises a certain
criterion if this node was deleted in the next step. We could then think of
other heuristics able to look further than the next step. Unlike the heuristics
above explained, about those looking beyond the next step, there is not much
literature. This makes us think that, although they must produce better trian-
gulations than the former, this improvement is not very significant in contrast
to the complexity increase.

4 Methods Based on Stochastic Heuristics

The methods reviewed in section 3 present a good trade-off between the qual-
ity of the obtained deletion sequence (i.e. its associated join tree size) and
the amount of computational resources (CPU time) required. Therefore, this
kind of methods are suitable for on-line triangulation, that is, when there is a
direct interaction between the user (knowledge engineer) and the compilation
process and so a quick response is required. However, there are some occasions
in which compilation can be carried out off-line and the time requirement can
accordingly be relaxed. This is the case of compiling the final product (join
tree or inference engine) to be given to the final user. At this stage, our goal
should be to produce a junction tree as good as possible, because hundreds
or thousands of propagations will be carried out over it. Thus, at this stage
we can spend more time in the compilation process in order to achieve a bet-
ter junction tree, and as a result algorithms requiring more CPU time are
suitable.

When CPU time is not a strong constraint a family of algorithms arise
as a good choice: stochastic heuristic algorithms. These algorithms are (in
general) instances of metaheuristics that include stochastic behaviour so as to
try to escape from local optima. Below we review some different approaches to
the triangulation problem by using three outstanding representatives of this
family of algorithms.
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4.1 Simulated Annealing

Simulated annealing was (to our knowledge) the first stochastic heuristic used
to solve the problem of Bayesian networks triangulation [29; 48].

Simulated annealing (SA) [50] is a stochastic optimisation algorithm used
to look for global optima of NP-complete combinatorial problems having many
local optima. SA is similar to a hill climbing algorithm, but sometimes it ac-
cepts to move to a worst solution in order to avoid to be trapped at local
optima. The probability of accepting bad moves is controlled by a parameter
t called temperature. Initially, during the exploration phase the temperature
should be high in order to easily accept bad moves (exploration phase), but
in successive iterations the temperature is decreased according to a cooling
procedure and the probability of accepting cost-increases also decreases (ex-
ploitation phase).

When designing a SA algorithm for a given problem, different components
have to be specified. Here we describe the algorithm proposed in [29].

• The search space is defined as all the possible elimination orderings for V
(i.e., |V|! permutations).

• The neighbourhood of a deletion sequence σ is defined as all the deletion
sequences {σ′} obtained from σ by interchanging two of its nodes (posi-
tions).

• The cost/fitness of a deletion sequence is measured as the state space size
of its associated join tree.

These three design decisions together with an appropriate cooling schedule
are enough to have a SA algorithm that solves the triangulation problem,
however Kjærulff [29] adds the following improvements in order to enhance
the performance of the algorithm:

• Local computation of neighbour configurations (sequences). An efficient
method is proposed that evaluates a new deletion sequence by only con-
sidering the cliques obtained when deleting the variables between the two
interchanged positions.

• An additional parameter is introduced: the radius. The idea is to define
a window w (length), such that, only positions inside this window can
be interchanged. Initially a large window is set, so that free motion in
the search space can be done (exploration). However, when the search
process advances the window is reduced and so uniquely close neighbours
are explored (exploitation). Because of the local evaluation proposed, this
parameter is strongly related with the CPU time efficiency of the algo-
rithm, since the smaller the window is the more efficiently the neighbours
are evaluated.

The experiments carried out in [29] show that depending on the graph,
on the average the state-space size of the join trees obtained by minWeight
heuristics are 3 or 5.5 times larger than those obtained by SA.
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4.2 Genetic Algorithms

SA carried out a local search that tries to escape from local optima by using
a Monte Carlo method. On the contrary, Genetic Algorithms [22; 35] (GAs)
do a global search by using a population of candidate solutions instead of
a single one. In a GA we start with an initial population having solutions
distributed over all the search space, then all the solutions are evaluated and
a new population is obtained by: (1) selecting some of the individuals of the
previous population (usually, higher fitness implies higher probability of being
selected); (2) recombining some of the individuals of the previous population,
that is, two individuals (parents) are selected and two off-spring are obtained
by applying a crossover operator that mixes the representation of the parents;
and (3) mutating some of the selected individuals (with low probability a
small change is carried out over the individuals).

In the case of Bayesian networks triangulation the first contributions based
on GAs are [24; 30]. The main features of the GA developed in [30] (that
obtains similar results to the SA algorithm described in [29]) are:

• Individuals are represented by permutations (deletion sequences).
• The initial population is randomly generated in order to have initial points

distributed uniformly through the search space.
• The selection mechanism is based on the rank of the individuals according

to their fitness.
• A steady state GA is used. That is, in each generation instead of replac-

ing the whole population, only a pair of off-spring are generated (selec-
tion+crossover+mutation) and (only if they are better) they replace the
two worst individuals of the current population.

• Among the different specific operators for the case of permutations, Larra-
ñaga et al. [30] found the combination of CX as crossover and ISM for
mutation to be the best ones.

After these initial proposals different authors have used GAs to look for op-
timal deletion sequences. Concretely, Gámez and Puerta [20] slightly modified
the algorithm proposed in [30] (where simplicial nodes are previously removed
and informed initialisation of the population is used) obtaining better results
(in terms of CPU time and join tree size).

4.3 Ant Colony Algorithms

The third stochastic heuristics we are going to review is Ant Colony Optimi-
sation (ACO) [14].

Combinatorial optimisation based on ant colony systems is a recent meta-
heuristics that takes its basis on one aspect of ant behaviour, the ability to
find shortest paths. Thus, in ACO a set of artificial ants (or agents) is used to
look for the shortest paths in the same way as a real ant will do it: following the
pheromone track. Concretely, when an artificial ant is located in a branch and
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has to take a decision, it makes a probabilistic decision biased by the amount
of pheromone deposited on the different branches. Due to the fact that the
shortest paths are more frequently visited, they receive a higher amount of
pheromone and thereby become more attractive for the subsequent ants. In
this way the amount of pheromone plays the role of memoristic information,
but in ACO the decisions are based as well on heuristic information. Thus, in
the initial Ant System when an ant k is located at node i, it chooses node j
as the following node to be visited with a probability proportional to:

pk(i, j) =

{
[τij ]

α·[νij ]
β

∑
u∈Jk(i)[τiu]α·[νiu]β

if j ∈ Jk(i)

0 otherwise
(2)

where τij is the amount of pheromone in edge (i, j); νij represents heuristic
information (knowledge) about the problem; Jk(i) is the set of nodes for which
there is a direct path from node i and not yet visited by ant k; and α and
β are two parameters used to control the relative importance of pheromone
with respect to heuristic information.

Although this is not a complete description of ACO-based algorithms (see
e.g. [14]), one of the main differences in regard to previous discussed meta-
heuristics is already evident: in ACO algorithms is very easy to integrate
problem domain knowledge. The use of heuristic knowledge in ACO algo-
rithms helps to focus upon the search process (and speed it up), and this
is just the point studied in [20] where ACO algorithms are applied to the
Bayesian networks triangulation problem. Below, we describe the main points
of the approach presented in [20]:

• Representation. The first thing we need is a graph over which ants will
walk. In [20] the complete graph defined over the network variables is
used in such a way that it is always possible to reach a node i from a
node j for every pair of nodes (i,j). In consequence, there is a graph-form
representation equivalent to the one used for the TSP (Travelling Salesman
Problem [13]), but in the asymmetrical case, on account of the fact that it
is not generally the same deleting Xi before deleting Xj as in the reverse
order.

• Reduction. In this work simplicial nodes are removed before starting the
combinatorial optimisation problem. In this way the search space is (in
general) drastically reduced and the search results faster.

• Heuristic knowledge. In ACO algorithms the heuristic knowledge is usually
static, that is, it can be calculated before any ant is launched. This is not
the case in the triangulation problem, because the knowledge associated
to edge (i, j) does not only depend on itself, but on the nodes previously
visited (deleted). In [20] each ant implements a greedy heuristics (minSize,
minWeight, ...), that is, each ant carries out a triangulation over its own
copy of the graph. In this way, the matrix of pheromone will be a global
structure, while the heuristic knowledge will be local to each ant.
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• Origin nodes. As solutions are permutations any node will be valid as
the starting point. However in triangulation it has no sense to consider
(equally) all the nodes as possible origins. Thus, in [20] the probability of
a node to be chosen as origin is calculated as a function of its heuristic
value (minFill, minSize, ...).

• Transition rule. A variant of the rule described in eq. 2 is used in [20]:

j =
{

arg maxu∈Jk(i)

{
[τiu] · [νiu]β

}
if q ≤ q0

J if q > q0
(3)

where q is a random number uniformly distributed in [0,1], and J ∈ Jk(i) is
a node selected according to Eq. (2) with α = 1. This is the rule proposed
in Ant Colony Systems algorithms and it explicitly allows tuning (q0) the
amount of effort devoted to exploration/ exploitation.

Different experiments over a set of real and artificially generated net-
works are carried out in [20]. The obtained results turned out to be quite
successful, regarding both accuracy and efficiency. Thus, ACO algorithms al-
ways obtain (on average) deletion sequences better that GAs, and due to the
heuristic knowledge they use, the number of evaluated permutations (deletion
sequences) is considerably smaller, making this approach faster than the one
based on GAs. Furthermore, it presents also the advantage of having an ant-
autonomy feature that could make them fit perfectly in a parallel environment
with the aim of gaining efficiency.

5 Methods Based on Decomposition Techniques

Apart from the two previous approaches which are probably the most widely
used, other triangulation techniques can be found in the literature, such as
divide and conquer techniques based on the concept of treewidth10 [1; 2]. The
idea here is to use a different algorithm to triangulate in which the minimum
vertex cut method is needed [15]. At each iteration it finds a minimum set of
vertices X which being removed from graph G splits it into two disconnected
components A and B such that A ∪ B ∪ X = V . This set X is then called
the minimum vertex cut. This general algorithm proceeds in the two smaller
problems G[A ∪X] and G[B ∪X], that is, those subgraphs obtained by pro-
jecting G on A∪X and B∪X respectively. And it goes on in this way so that
each subgraph is triangulated such that X becomes a clique in it. As we will
see MPSD is somehow based on this principle as well.

Within these techniques based on decomposition another related research
line is the socalled recursive hypergraph partitioning (or simply hypergraph
partitioning). They are quite broadly used in the context of VLSI design [41],
but we can find some example of its application to join trees [11].
10 Treewidth = number of variables, minus one, included in the biggest clique in the

join tree



A Review on Triangulation of Bayesian Networks 143

There exists another method capable of simplifying the triangulation task.
In this case, it deals with a process to be performed prior to triangulate with
the chosen method. In bibliography we can find it with different names, being
simplicial (def. 5) the most broadly used. In [24] it is presented as reduction,
and consists in eliminating all those nodes that, together with their neigh-
bours, form a complete subgraph, i.e., no fill-in has to be added. This part
of the network is then already triangulated and deleting them is not going to
add any new fill-in. Another approach uses the application of preprocessing
rules in order to reduce the graph [7]. In this approach the authors have devel-
oped a set of sophisticated safe reduction rules (being the first one removing
simplicial nodes as well) to apply onto the graph before triangulation. The
results are good, since a smaller (sub)graph has to be triangulated, but the
technique requires more computation time than greedy heuristics.

Definition 5. (Simplicial node)
Let G = (V, E) be an undirected graph. A node N ∈ V is said to be simpli-
cial if this node N together with its set of neighbours,{N ∪ adj(N)}, form a
complete node set.

5.1 A Recent Triangulation Approach Based on the Divide &
Conquer Methodology

In this section we are going to describe the method triangulation by re-
triangulation which combines some of the philosophies previously noted.
Firstly, as treewidth-oriented techniques, it uses a method for dividing the
total graph in smaller components. Olesen and Madsen[36] launched the pos-
sibility of applying the Maximal Prime Subgraph (MPS) Decomposition to
the problem of triangulation. So, the idea is to retriangulate separately each
MPS, since it has been proved to be perfectly valid for the final result. And,
secondly, for those portions it will apply some methods of triangulation based
on the procedures to get a elimination sequence reviewed above. Then, the
work in [16] exploited the previous idea by using both greedy heuristic algo-
rithms and stochastic ones (genetic algorithms).

5.2 Maximal Prime Subgraph Decomposition

It is clear that the decomposition of an undirected graph can be used as a
tool for the triangulation procedure. We can consider the problem as a set of
solvable subgraphs, following divide and conquer philosophy (see Fig. 5).

In this particular case the Decomposition using Maximal Prime Subgraphs
(MPSD)11 of an undirected graph constitute an intermediate step in a new
approach for triangulation. This idea [36] consists of working separately on
different parts of the initial graph. The triangulation for each graph will be
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Fig. 5. Trying to reduce the problem of triangulating a network with n nodes to a
set of k smaller subproblems: triangulate each subgraph Sk separately.

done separately and the global solution will then be the sum/combination of
local solutions for smaller and independent graphs.

Let us just formalise the concept of maximal prime subgraph, for that,
we also introduce the definition for decomposition (def. 6) of a graph and the
characteristic for a graph of being decomposable (def. 7). Both of them can be
easily related from previously presented ideas, since for constructing the JT
we have made some kind of decomposition (MPS Tree will be the one which
accomplishes the complete separators condition) whereas triangulated graphs
are guaranteed to be decomposable [31] and that is somehow the justification
for the necessity for a triangulation step. That is the reason why from here,
we will refer to a decomposable graph as a triangulated graph.

Definition 6. (Graph decomposition)
Let G = (V, E) be an undirected graph, and let A and B be two sets of
vertices in G, G can be decomposed in A and B if and only if the following
conditions are satisfied:

- A ∪B = V,
- A \B �= ∅,
- B \A �= ∅,
- Both A \B and B \A are separated by A ∩B and
- And A ∩B is a complete subset (called clique separator).

Definition 7. (Decomposable graph)
If a graph G and its subgraphs can be decomposed recursively until all the
subgraphs are complete, then the graph is decomposable12.

11 Also known as decomposition by clique separators.
12 Note that a graph can be decomposed without being decomposable.
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Fig. 6. A simple example of graph decomposition where {B, E} is the clique sepa-
rator for the BN in Fig. 8.a.

Then, it is said that a graph is reducible if it can be decomposed, that is,
its set of nodes contains a clique separator, otherwise the graph is said to be
irreducible/prime/non-separable. And this leads directly to def. 8:

Definition 8. (Maximal Prime Subgraph)
A subgraph G(A) = (V, E)↓A of a graph G is a Maximal Prime Subgraph of
G if G(A) is irreducible and G(B) is not irreducible ∀B so that A ⊂ B ⊆ V.

Finally, from the previous concepts it just remains to indicate what the
Maximal Prime Subgraph Decomposition is13:

Definition 9. (Maximal Prime Subgraph Decomposition)
Let G = (V, E) be an undirected graph. Its Maximal Prime Subgraph Decom-
position is the set of induced maximal prime subgraphs of G resulting from a
recursive decomposition of G.

G � GM � GTmin � T � TMPD

Fig. 7. Graphical process that indicates how to reach the MPST TMPD from a
Bayesian network BN = (G,P), using as an intermediate step the join tree T .

To obtain the MPSD of an undirected graph [45; 46; 33], the method in
[36] is especially interesting for us, since it is based on the join tree constructed
from a BN. The decomposition of the graph in MPSs is returned in a form
of a tree: the Maximal Prime Subgraph Decomposition Tree (MPST), some-
times denoted as TMPD. Figure 7 shows graphically this process to obtain the
MPST in an schematic way. The MPST will express by itself a decomposition
(every tree node will denote a group of variables belonging to the same MPS).
We could say basically that once the triangulation from which a join tree is
13 It can be proved that this decomposition is unique for an undirected graph, as it

is the moral graph.
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Fig. 8. Example of a Bayesian network (a), its associated moral graph (b) and a
possible triangulation for it (c). Numbers next to each node indicate the number of
states for the corresponding variable
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Fig. 9. Construction of the MPSs tree and the obtained result.

obtained is assured to be minimal, if we aggregate those cliques whose sepa-
rators are not complete in GM , we obtain the corresponding maximal prime
subgraphs. If we have the network, moral graph and triangulated graph from
Figure 8, then Figure 9 will show a corresponding join tree and the associ-
ated MPS tree. Since this is the necessary to guarantee that triangulations
are minimal (def. 3), this can be achieved simply by using recursive thinning.

5.3 Triangulation of Bayesian networks by
re-triangulation

It has been proved that is perfectly valid [18] to triangulate every subgraph
in an independent way from the rest, and make a global triangulation of
the graph by the combination of these partial triangulations. Retriangulating
a graph can be worthy, even when the same triangulation method is used
twice. That is to say, the same triangulation method is applied (first) when
triangulating the moral graph, and (secondly) when triangulating each MPS
separately.

The algorithm of ReTriangulation is as listed here:

1. Obtain moral graph GM from BN .
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First step.
Initial Triangulation to get MPSD

(MPSD is unique)

Quick Heuristic method

minFill
minSize

{minFill,minSize,CanoMoral} = FSCM
Genetic Algorithm

CanoMoral

Second step. Re−Triangulation

Fig. 10. Scheme for the retriangulation experiments: first step provides the de-
composition and second step varies on the method Mi used to retriangulate the
subgraphs Si, giving place to the set of partial triangulations Fi.

2. Using whichever triangulation method obtain the MPS decomposition
D = {S1, S2, . . . Sk}

3. Triangulate each Si from D using a certain triangulation method Mi. Let
Fi be the obtained triangulation for subgraph Si.

4. Return the obtained result F = ∪k
i=1Fi.

An experimental evaluation of this technique using it for real networks [16]
was carried out, following the sketch in Figure 10. The obtained results have
been quite satisfactory and should be regarded from two different points of
view or goals:

1. Join Tree state space size:
• Considering the heuristic techniques the tree size is generally better

(smaller) when using the re-triangulation method, this difference is
even bigger when we use a combined method called FSCM14.

• With respect to GA, the sizes of the obtained trees are quite similar.
2. CPU time:
• Performing re-triangulation for heuristics implies a little more time,

but this is due to the extra task of constructing the MPS Tree. This
difference is only slightly noticeable for the heuristics because they are
normally quicker.

• FSCM is obviously three times slower than the rest (it tries the three
methods), but since heuristic techniques are really quick and selecting
the best one produces much better global results, it is a low price worth
paying.

• And the most important consequence related to time measuring is that
a huge speed up is provided to GA. For example, in the case of Network
Munin4 it can reduce (in this experiment settings) triangulation time
from more than one day to less than 4 hours.

14 It denotes a greedy technique that for every subgraph Sk tries the 3 different
heuristics (minFill,minSize and CanoMoral) and it chooses the one that gives the
best result, i.e., the smallest size. Since there is no an optimal heuristic for all
cases, FSCM selects the best method M∗

i for every subgraph.
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From these experiments and results we can mainly conclude that there
exist some possibilities to optimise these results and to explore new combina-
tions to get even better triangulations.

5.4 MPSD-based Incremental Compilation

In the last explained case, following the idea of divide and conquer, the nat-
ural decomposition of a graph into its prime subgraphs was exploited. In any
manner, this decomposition tool is not reserved for triangulation itself, it
can become even more powerful. The use of MPSD can be extended to the
whole process of compilation. Since triangulation is the most expensive phase
of compilation and this can be correctly and separately distributed among
MPSs, we could sketch other techniques so that compilation could be less
“dependent” on the global triangulation. For that, there exist a proposal to
look more closely into the possibility of retriangulating some portions of the
BN, and to use MPSD in order to perform incremental triangulations. This
idea led directly to work on developing the approach of MPSD-Incremental
Compilation of Bayesian networks [17]).

6 Main Conclusions

From this whole chapter and the analysed issues we can draw some main
conclusions.

First, triangulation is still an unsolved problem, at least for a general case.
There good techniques that might be adjusted depending on the problem, but
not an optimal one (produced in a reasonable amount of time).

But on the other hand, triangulating has also been proved to be an un-
avoidable step in the computation of Bayesian networks. As a consequence, for
solving queries and perform inference we must cope with this problem. This
necessity for triangulating has brought about several endeavours to handle
this problem, and the techniques found in literature are of distinct nature. So,
we have shown most of the known approaches to tackle triangulation classify-
ing them mainly in heuristic, stochastic algorithms and also techniques based
on the division/decomposition of the problem. The last described algorithm
(ReTriangulation) is of interest because it covers and integrates these three
discussed manners of undertaking and solving the triangulation task.

Even though we find strong foundations for triangulation on the theory
of graphs in literature, it is obvious that triangulation is still a quite open
field to optimisation. It is illustrative to point out how this problem is already
being studied in diverse mathematical and computing disciplines apart from
Bayesian networks (probabilistic systems) such as the area of graph theory,
VLSI (Very Large Scale Integration) circuits, data bases, constraint processing
and graph algorithms.
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Janneke H. Bolt and Linda C. van der Gaag

Department of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Summary. When Pearl’s algorithm for reasoning with singly connected Bayesian
networks is applied to a network with loops, the algorithm is no longer guaranteed
to result in exact probabilities. We identify the two types of error that can arise
in the probabilities yielded by the algorithm: the cycling error and the convergence
error. We then focus on the cycling error and analyse its effect on the decisiveness
of the approximations that are computed for the inner nodes of simple loops. More
specifically, we detail the factors that induce the cycling error to push the exact
probabilities towards over- or underconfident approximations.

1 Introduction

Bayesian networks [1] by now are being applied for a range of problems in
a variety of domains. Successful applications are being realised for example
for medical diagnosis, for traffic prediction, for technical troubleshooting and
for information retrieval. In these applications, probabilistic inference plays
an important role. Probabilistic inference with a Bayesian network amounts
to computing (posterior) probability distributions for the variables involved.
For networks without any topological restrictions, inference is known to be
NP-hard [2]. For various classes of networks of restricted topology, however,
efficient algorithms are available, such as Pearl’s propagation algorithm for
singly connected networks. The availability of these algorithms accounts to a
large extent for the success of current Bayesian-network applications.

For Bayesian networks of complex topology for which exact inference is
infeasible, the question arises whether good approximations can be computed
in reasonable time. Unfortunately, also the problem of establishing approx-
imate probabilities with guaranteed error bounds is NP-hard in general [3].
Although their results are not guaranteed to lie within specific error bounds,
various approximation algorithms have been designed for which good perfor-
mance has been reported. One of these algorithms is the loopy-propagation
algorithm. The basic idea of this algorithm is to apply Pearl’s propagation
algorithm to a Bayesian network regardless of its topological structure. From
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an experimental point of view, Murphy et al. [4] reported good approxima-
tion behaviour of the loopy-propagation algorithm used on Bayesian networks
whenever there was rapid convergence. Excellent performance has also been
reported for algorithms equivalent to the loopy-propagation algorithm [5; 6; 7].

Several researchers have analysed the approximation behaviour of the
loopy-propagation algorithm from a more fundamental point of view. Weiss
and Freeman, more specifically, studied the performance of an equivalent al-
gorithm on Markov networks [8; 9]; their use of Markov networks was mo-
tivated by the relatively easier analysis of these networks and justified by
the observation that any Bayesian network can be converted into a pairwise
Markov network. For pairwise Markov networks with a single loop, Weiss in
fact derived an analytical relationship between the exact probabilities and the
approximate probabilities computed for the nodes in the loop [8].

In this paper we study the performance properties of the loopy-propagation
algorithm on Bayesian networks directly, and thereby provide further insights
in the errors that it generates. We argue that two different types of error
are introduced in the computed approximate probabilities, which we term the
convergence error and the cycling error. A convergence error arises whenever
messages that originate from dependent variables within a loop are combined
as if they were independent. Such an error emerges in a convergence node
only, that is, in a node with two or more incoming arcs on the loop under
study. A cycling error arises when messages are being passed on within a loop
repetitively and old information is mistaken for new by the variables involved.
Cycling of information can occur as soon as for all the convergence nodes of a
loop, either the convergence node itself or one of its descendants is observed.
A cycling error arises in all nodes of the loop.

Weiss notes that the approximate probabilities found upon loopy prop-
agation are overconfident as a result of double counting of evidence [8]. We
observe, however, that overconfident as well as underconfident approximations
can result. We use the term decisiveness to refer to the over- or underconfi-
dence of an approximation. Decisiveness is an important concept as knowledge
of the over- or underconfidence of an approximate probability provides an in-
dication of where the exact probability lies. In this paper, we study the effect
of the cycling error on the decisiveness of the approximations found for the
inner nodes of a simple loop in a binary Bayesian network. We show that the
effect depends on the qualitative influence between the parents of the loop’s
convergence node and the additional intercausal influence that is induced be-
tween these parents by the entered evidence. If the two influences have equal
signs, the cycling error pushes the exact probabilities to overconfident approx-
imations; otherwise, the approximations are pushed towards underconfidence.

The paper is organised as follows. In Sect. 2, we provide some preliminaries
on Bayesian networks and on Pearl’s propagation algorithm. In Sect. 3, we de-
scribe the two types of error that may be introduced by loopy propagation. In
Sect. 4, we derive the relationship between the exact and approximate proba-
bilities for the inner loop nodes and in Sect. 5 we investigate the decisiveness



Decisiveness in Loopy Propagation 155

of the approximations. The paper is rounded off with some conclusions and
directions for further research in Sect. 6.

2 Preliminaries

In Sect. 2.1 we provide some preliminaries on Bayesian networks; in Sect. 2.2
we review Pearl’s algorithm for probabilistic inference with singly connected
networks.

2.1 Bayesian Networks

A Bayesian network is a model of a joint probability distribution Pr over a
set of stochastic variables, consisting of a directed acyclic graph and a set of
conditional probability distributions. In this paper we assume all variables of
the network to be binary, taking one of the values true and false. We will
write a for A = true and ā for A = false. We use ai to denote any value
assignment to A, that is ai ∈ {a, ā}. Each variable is represented by a node
in the network’s digraph; from now on, we will use the terms node and vari-
able interchangeably. The probabilistic relationships between the variables are
captured by the digraph’s set of arcs according to the d-separation criterion
[1]. Associated with the graphical structure are numerical quantities from the
modelled distribution: for each variable A, conditional probability distribu-
tions Pr(A | p(A)) are specified, where p(A) denotes the set of parents of A
in the digraph. Fig. 1 depicts a small example Bayesian network.

In the sequel, we distinguish between singly connected and multiply con-
nected Bayesian networks. A network is singly connected if there is at most
one trail between any two variables in its digraph. If there are multiple trails

A

B

C

D

Pr(a) = x

Pr(b | a) = p
Pr(b | ā) = q

Pr(c | ab) = r
Pr(c | ab̄) = s
Pr(c | āb) = t
Pr(c | āb̄) = u

Pr(d | c) = y
Pr(d | c̄) = z

Fig. 1. A multiply connected Bayesian network with a convergence node C having
the dependent parents A and B and the child D.
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between variables, then the network is multiply connected. A multiply con-
nected network includes one or more loops, that is, one or more cycles in its
underlying undirected graph. We say that a loop is simple if none of its nodes
are shared by another loop. A node that has two or more incoming arcs on
a loop will be called a convergence node of this loop; the other nodes of the
loop will be termed inner nodes. The network from Fig. 1 is an example of a
multiply connected network. The trail A→ B → C ← A constitutes a simple
loop in the network’s digraph. Node C is the only convergence node of this
loop; nodes A and B are the loop’s inner nodes.

2.2 Pearl’s Propagation Algorithm

We briefly review Pearl’s propagation algorithm [1]. This algorithm was de-
signed for exact inference with singly connected Bayesian networks. The term
loopy propagation used throughout the literature, refers to the application
of this algorithm to networks with loops. In the algorithm, each node X is
provided with a limited set of rules that enable the node to calculate its prob-
ability distribution Pr(X | e) given the available evidence e, from messages
it receives from its neighbours. These rules are applied in parallel by the var-
ious nodes at each time step. The rule used by node X for establishing the
probability distribution Pr(X | e) at time t is

Prt(X | e) = cst · λt(X) · πt(X)

where the compound diagnostic parameter λt(X) is computed from the diag-
nostic messages λt

Y j (X) it receives from each of its children Y j :

λt(X) =
∏

Y j

λt
Y j (X)

and the compound causal parameter πt(X) is computed from the causal mes-
sages πt

X(U i) it receives from each of its parents U i:

πt(X) =
∑

U

Pr(X | U) ·
∏

Ui

πt
X(U i)

where U denotes the set of all parents of node X. The rule for computing the
diagnostic messages to be sent to its parent U i is

λt+1
X (U i) = cst ·

∑

X

λt(X) ·
∑

U/Ui

Pr(X | U) ·
∏

Uk, k �=i

πt
X(Uk)

and the rule for computing the causal messages to be sent to its child Y j is

πt+1
Y j (X) = cst · πt(X) ·

∏

Y k, k �=j

λt
Y k(X)
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where cst denotes a normalisation constant. Note that, in general, the number
of messages that a node sends in each time step to a child equals the number
of its own values; the number of messages that it sends to a parent equals the
number of values of this parent. From here on, we will denote a diagnostic pa-
rameter λX(U i) and a causal parameter πY j (X) by the term message vector.
For a binary parent U i, we write the diagnostic messages as (λX(ui), λX(ūi));
for a binary child X, we write the causal messages as (πY j (x), πY j (x̄)). All
message vectors are initialised to contain just 1s. An observation for a node
X now is entered into the network by multiplying the components of λ0(X)
and π1

Y j (X) by 1 for the observed value of X and by 0 for the other value(s).

3 Errors in Loopy Propagation

Pearl’s propagation algorithm results in exact probabilities whenever it is ap-
plied to a singly connected Bayesian network. After a finite number of time
steps, proportional to the diameter of the network’s digraph, the probabilistic
information present in the network will have been passed on to all nodes. The
network then reaches an equilibrium state in which the computed probabili-
ties and messages do no longer change upon further message passing. When
applied to a multiply connected Bayesian network, that is, upon performing
loopy propagation, the algorithm will often converge as well; we will consider
the algorithm to have converged as soon as all causal and diagnostic messages
and all computed probabilities change by less than a prespecified threshold
value in the next time step. The resulting probabilities may then deviate from
the probabilities of the modelled distribution, however.

The probabilities that result from performing loopy propagation on a mul-
tiply connected network, may include two different types of error. The first
type of error originates at the convergence node(s) of a loop. In Pearl’s al-
gorithm, a node with two or more parents combines the messages from its
parents as if these messages come from independent variables. In a singly
connected network the parents of a node indeed are always independent. The
parents of a convergence node, however, may be dependent. By assuming in-
dependence upon combining the causal messages from dependent variables,
an error is introduced. A convergence error may be propagated to neighbours
outside the loop. Given compound loops, a convergence error may enter the
loop; for simple loops, however, this error does not affect the probabilities
computed for the inner nodes of the loop. In our previous work [10], we stud-
ied the convergence error in detail; in this paper, we focus on the effect of the
second type of error, called the cycling error. This type of error arises when
messages are being passed on repetitively in the loop, where old information is
mistaken for new by the nodes involved. This cycling of information can occur
as soon as for each convergence node of the loop either the node itself or one
of its descendants is observed. A cycling error arises in all loop nodes and is
propagated to nodes outside the loop. Note that at the convergence node both
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types of error emerge upon loopy propagation, whereas at the inner nodes of
simple loops only the cycling error originates. In the sequel we will denote the
probabilities that result upon loopy propagation with P̃r to distinguish them
from the exact probabilities which are denoted by Pr.

4 The Relationship Between the Exact
and Approximate Probabilities

Upon performing loopy propagation on a Bayesian network with a simple
loop, a cycling error may arise in the probabilities computed for all the nodes
of the loop, as argued in the previous section. In this section we will derive,
for the network from Fig. 1, an expression that relates the exact probabili-
ties for the inner loop nodes to the computed approximate probabilities. Our
derivation is analogous to the one constructed by Weiss [8] for an equivalent
algorithm applied to binary Markov networks with a single loop. From the re-
lationship between the exact and approximate probabilities, we then identify
the factors, in terms of a network’s specification, that determine whether the
exact probabilities for the inner loop nodes are pushed towards overconfident
or underconfident approximations. We will study these factors in Sect. 5.

We consider the Bayesian network from Fig. 1 and suppose that the evi-
dence d has been entered. We now build upon the observation that the updat-
ing of a message vector during propagation can be captured by a transition
matrix. We begin by deriving the matrices that describe the information that
is included into a message vector during one clockwise cycle and during one
counterclockwise cycle respectively, from node A back to itself. We will then
use the eigenvalues of these matrices to express the relationship between the
exact and approximate probabilities found at node A.

To derive the transition matrix that captures the information that is added
during one clockwise cycle from node A back to itself, we consider the updating
of the message vector (1, 1) during the first cycle of the algorithm; we recall
that node A initially receives this vector. In the first step of the algorithm,
node A sends the vector

πB(A) =
[

x
1− x

]

to node B, which subsequently sends the message vector

πC(B) =
[

p · x + q · (1− x)
(1− p) · x + (1− q) · (1− x)

]

to node C. The diagnostic message that C receives from node D is

λD(C) =
[

y
z

]

Since node C does not have any other children, its compound diagnostic pa-
rameter also equals



Decisiveness in Loopy Propagation 159

λ(C) =
[

y
z

]

This compound diagnostic parameter and the causal message that node C
receives from node B are combined with the information that node C has
about its own conditional probabilities into the following diagnostic message
from node C to node A:

λC(A) =
[

λ(c) · [r · πC(b) + s · πC(b̄)] + λ(c̄) · [(1− r) · πC(b) + (1− s) · πC(b̄)]
λ(c) · [t · πC(b) + u · πC(b̄)] + λ(c̄) · [(1− t) · πC(b) + (1− u) · πC(b̄)]

]

After the first clockwise cycle of the algorithm, therefore, the initial message
vector (1, 1) has been updated to the vector given above. We now derive the
transition matrix

M�A,d =
[

l m
n o

]

that captures this update. We observe that the entries l, m, n and o of this
matrix should adhere to

[
l m
n o

]
·
[

1
1

]
= λC(A)

from which we find that
l + m = λC(a)
n + o = λC(ā)

We now split the expression for λC(a) into separate terms for l and m and
the expression for λC(ā) into separate terms for n and o. To this end, we
observe that in the analysis above, the first component of the message vector
from node A to node B pertains to a and the second component pertains to
ā. Roughly speaking, now, since the first component is multiplied by l and n,
these entries have to collect all information at node B concerning a. As p =
Pr(b | a) pertains to a, therefore, all terms containing p are assigned to l and
n. Likewise, all terms containing q are assigned to m and o. After rearranging
the various terms in the expressions for λC(a) and λC(ā) accordingly, we find
that

l = [(y · r + z · (1− r)) · p + (y · s + z · (1− s)) · (1− p)] · x
m = [(y · r + z · (1− r)) · q + (y · s + z · (1− s)) · (1− q)] · (1− x)
n = [(y · t + z · (1− t)) · p + (y · u + z · (1− u)) · (1− p)] · x
o = [(y · t + z · (1− t)) · q + (y · u + z · (1− u)) · (1− q)] · (1− x)

The matrix that captures the information that is included during a single
counterclockwise cycle into the messages from node A back to itself, is found
to be
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M�A,d =
[

l n · 1−x
x

m · x
1−x o

]

Upon loopy propagation, the information captured by the above two transi-
tion matrices is included repeatedly in every cycle. We would like to observe
that all message vectors are normalised, as described in Sect. 2.2. As a con-
sequence, repeated multiplication by the transition matrices will not result in
convergence to (0, 0).

Example We consider the example Bayesian network from Fig. 2 and address
the approximate probabilities found for the inner node A upon performing
loopy propagation. We consider the probabilities after the evidence d and d̄
have been entered, respectively, during the first five cycles of the algorithm.
The subsequent approximations are shown in Figs. 3 and 4; for comparison,
the exact probabilities are depicted as well. We observe that the approximate
probabilities asymptotically approach a particular value. The approximate
probabilities given d oscillate around the final value, whereas given d̄ the
approximations go steadily towards the final value. In Sect. 5, we will return
to this difference in approximation behaviour. �

The example demonstrates that upon loopy propagation the computed
probabilities converge towards an equilibrium value. We now will exploit the
eigenvalues of the transition matrices to relate the approximate probabilities
in the equilibrium state to the exact probabilities. The eigenvalues λ1 and λ2

of the matrix M�A,d are the solutions of

λ =
1
2
· [(l + o)±

√
(l + o)2 − 4 · (l · o−m · n)]

where λ1 is the largest of the two values. For M�A,d the same eigenvalues
are found. Note that since the entries of the two matrices are positive, the
eigenvalues λ1 and λ2 are real numbers and both λ1 and λ1 + λ2 are positive.

A

B

C

D

Pr(a) = 0.2

Pr(b | a) = 1.0
Pr(b | ā) = 0.2

Pr(c | ab) = 0.9
Pr(c | ab̄) = 0.0
Pr(c | āb) = 0.4
Pr(c | āb̄) = 0.3

Pr(d | c) = 0.2
Pr(d | c̄) = 0.9

Fig. 2. An example Bayesian network.



Decisiveness in Loopy Propagation 161

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 1 2 3 4 5

# cycles

~Pr(a|d)
~Pr(a|d) at convergence

Pr(a|d)

Fig. 3. The approximate probabilities given d found for node A in the network of
Fig. 2 during the first five cycles of the loopy propagation algorithm.
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Fig. 4. The approximate probabilities given d̄ found for node A in the network of
Fig. 2 during the first five cycles of the loopy propagation algorithm.

The relationship between the exact and the approximate probability of ai

given d now is expressed by

Pr(ai | d) = P̃r(ai | d)− λ2

λ1 + λ2
· (2 · P̃r(ai | d)− 1)

To prove this property, we begin by observing that for each eigenvalue of
M�A,d and for each eigenvalue of M�A,d, an eigenvector direction is found.
For M�A,d, we denote the normalised principal eigenvector by (α1, β1) and we
denote a fixed arbitrary vector in the second eigenvector direction by (γ1, δ1);
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for M�A,d we denote the normalised principal eigenvector by (α2, β2). In the
equilibrium state, now, node A receives the message λC(A) = (α1, β1) from
node C and the message λB(A) = (α2, β2) from node B, cf. [11]. These two
messages are combined by node A with its own knowledge π(A) = (x, 1− x)
of the prior distribution over its values, which results in the approximate
probabilities

P̃r(A | d) = cst1 ·
[

α1 · α2 · x
β1 · β2 · (1− x)

]

where cst1 is a normalisation constant.
We now relate the computed approximate probability P̃r(ai | d) to the

exact probability Pr(ai | d). We begin by observing that for the entries l and o

of the transition matrices M�A,d and M�A,d, we have that l = Pr(d | a)·Pr(a)
and o = Pr(d | ā) · Pr(ā). For the exact probabilities Pr(ai | d) we thus find
that Pr(a | d) = l/(l + o) and Pr(ā | d) = o/(l + o). To express Pr(ai | d) and
P̃r(ai | d) in similar terms, we now relate the entries l and o to the expressions
α1 · α2 · x and β1 · β2 · (1− x). To this end, we diagonalise the matrix M�A,d

into

M�A,d =
[

α1 γ1

β1 δ1

]
·
[

λ1 0
0 λ2

]
·
[
A B
C D

]

=
[

α1 · A · λ1 + γ1 · C · λ2 α1 · B · λ1 + γ1 · D · λ2

β1 · A · λ1 + δ1 · C · λ2 β1 · B · λ1 + δ1 · D · λ2

]

where
[
A B
C D

]
=

[
α1 γ1

β1 δ1

]−1

. We thus have that

l = α1 · A · λ1 + γ1 · C · λ2

o = β1 · B · λ1 + δ1 · D · λ2

From
[

α1 γ1

β1 δ1

]
·
[
A B
C D

]
=

[
1 0
0 1

]
we find that γ1 ·C = β1 ·B and δ1 ·D = α1 ·A.

The entries l and o can therefore also be written as

l = α1 · A · λ1 + β1 · B · λ2

o = β1 · B · λ1 + α1 · A · λ2

To express A and B in terms of α2, β2 and x, we now rewrite the matrix
M�A,d as

M�A,d =
[

1
x 0
0 1

1−x

]
· (M�A,d)T ·

[
x 0
0 1− x

]

=
[

1
x 0
0 1

1−x

]
·
[
A C
B D

]
·
[

λ1 0
0 λ2

]
·
[

α1 β1

γ1 δ1

]
·
[

x 0
0 1− x

]
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The first column of the product
[

1
x 0

0 1
1−x

]
·
[
A C

B D

]
=

[
1
x · A

1
x · C

1
1−x · B

1
1−x · D

]

now is a vector in the direction of the principal eigenvector (α2, β2) of M�A,d.
We thus find that A = cst2 · α2 · x and B = cst2 · β2 · (1− x), where 1/cst2 is
a normalisation constant. We conclude that

l = cst2 · (α1 · α2 · x · λ1 + β1 · β2 · (1− x) · λ2)

= cst2/cst1 · (P̃r(a | d) · λ1 + P̃r(ā | d) · λ2)
o = cst2 · (β1 · β2 · (1− x) · λ1 + α1 · α2 · x · λ2)

= cst2/cst1 · (P̃r(ā | d) · λ1 + P̃r(a | d) · λ2)

With Pr(a | d) = l/(l + o) and Pr(ā | d) = o/(l + o), we now find that

Pr(ai | d) = P̃r(ai | d)− λ2

λ1 + λ2
· (2 · P̃r(ai | d)− 1)

For d̄, the derivation is analogous. For node B similar expressions are found.
We would like to note that the transition matrices for nodes A and B have the
same eigenvalues. The transition matrix for an entire cycle may, more or less,
be viewed as the result of multiplication of the transition matrices between the
neighbouring nodes in the cycle. Eventually, the clockwise matrices for nodes
A and B result from the multiplication of the same two 2 by 2 matrices, yet
in different order. The same applies to the counterclockwise matrices. As a
consequence, the transition matrices per cycle for nodes A and B have the
same eigenvalues.

Example We consider again the Bayesian network from Fig. 2. Upon per-
forming loopy propagation on this network, a single clockwise cycle serves to
include the information

M�A,d =
[

0.0540 0.6192
0.1240 0.5408

]

into the message vector of node A back to itself. The eigenvalues of this matrix
are λ1 ≈ 0.6662 and λ2 ≈ −0.0714. Its normalised principal eigenvector is

[
α1

β1

]
≈

[
0.5028
0.4972

]

A single counterclockwise cycle serves to include the information

M�A,d =
[

0.0540 0.4960
0.1548 0.5408

]
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into the message vector of node A back to itself. The eigenvalues of this
matrix are again λ1 ≈ 0.6662 and λ2 ≈ −0.0714. Its normalised the principal
eigenvector is [

α2

β2

]
≈

[
0.4476
0.5524

]

The approximate probabilities found for node A upon loopy propagation given
d now are equal to

cst1 ·
[

0.5028 · 0.4476 · 0.2
0.4972 · 0.5524 · 0.8

]
≈

[
0.17
0.83

]

We thus find that P̃r(a | d) ≈ 0.17 and P̃r(ā | d) ≈ 0.83. We recall that the
exact probability Pr(a | d) equals l/(l + o) and can be read from the diagonal
of the transition matrices to be 0.0540/0.5948 ≈ 0.09. For the relationship
between Pr(a | d) and P̃r(a | d) we indeed observe that Pr(a | d) = P̃r(a | d)−
λ2/(λ1 + λ2) · (2 · P̃r(a | d) − 1) holds as 0.09 ≈ 0.17 + 0.0714/0.5948 · (2 ·
0.17− 1). Note that the error in P̃r(a | d) computed from the network equals
0.09− 0.17 = −0.06 and hence is small. Moreover, given a threshold value of
0.0001, the algorithm had converged within just five cycles. �

5 The Decisiveness of the Approximations

In the previous section we studied, for a Bayesian network with a simple loop,
the cycling error that may arise in the probabilities computed upon loopy
propagation for the inner loop nodes. More specifically, we derived an ex-
pression that relates the exact probabilities for the inner loop nodes to the
computed approximate probabilities. We now build upon this analysis to state
some properties of the approximations in terms of the specification of the net-
work. We say that an approximation is overconfident if it is closer to one of the
extremes, that is to 0 or 1, than the exact probability; the approximation is
underconfident if it is closer to 0.5. We use the term decisiveness to refer to the
over- or underconfidence of an approximation. As an example, Fig. 5 depicts,
for the network from Fig. 2, the exact and approximate probabilities Pr(a | d)
and P̃r(a | d) as a function of Pr(a); Fig. 6 depicts Pr(a | d̄) and P̃r(a | d̄). We
observe that the evidence d results in underconfident approximations, while
the evidence d̄ gives overconfident approximations for all possible values of
Pr(a). We argue that the approximations for the inner nodes of a loop are ei-
ther all pushed towards overconfidence or all pushed towards underconfidence
as soon as the convergence node of the loop has an observed descendant. We
further show that the decisiveness of the approximations depends on the sign
of the qualitative influence between the parents of the convergence node and
the sign of the intercausal influence that is induced between these parents by
the entered evidence.



Decisiveness in Loopy Propagation 165

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
r(

a|
d)

Pr(a)

exact
approximate

Fig. 5. Pr(a | d) and P̃r(a | d) as a function of Pr(a) for the network from Fig. 2.
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Fig. 6. Pr(a | d̄) and P̃r(a | d̄) as a function of Pr(a) for the network from Fig. 2.

We begin by introducing the two types of influence that we will exploit in
the sequel. A qualitative influence [12] between two neighbouring nodes ex-
presses how the values of the one node influence the probabilities of the values
of the other node along their common arc. A positive qualitative influence of
a parent B on its child C is found if

Pr(c | bx)− Pr(c | b̄x) ≥ 0

for any combination of values x for the set p(C) \ {B} of parents of C other
than B. In Fig. 1, for example, a positive influence of B on C is found if both
r−s ≥ 0 and t−u ≥ 0. A negative and a zero qualitative influence are defined
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Table 1. The ⊗- operator for combining signs.

⊗ + − 0 ?
+ + − 0 ?
− − + 0 ?
0 0 0 0 0
? ? ? 0 ?

analogously. When no consistent sign can be found for the influence given the
different combinations of values x, we say that the influence is ambiguous.
Positive, negative, zero and ambiguous qualitative influences are indicated by
the signs +, −, 0 and ?, respectively. Qualitative influences are symmetric,
that is, a positive qualitative influence of B on C implies a positive influence of
C on B. Qualitative influences further adhere to the property of transitivity,
that is, influences along a trail with at most one incoming arc for each variable
combine into a net influence whose sign is defined by the ⊗-operator from
Table 1.

Intercausal influences [13] are dynamic in nature and can only arise after
evidence has been entered into the network. In the prior state of a network,
that is, when no evidence has been entered as yet, the parents of a node
are d-separated from one another along the trail that includes their common
child. As soon as evidence is entered for this child or for one of its descendants,
however, the two parents may become dependent along this trail. The influence
that is thus induced, is termed an intercausal influence. For example, for a
node C with the independent parents A and B we find a positive intercausal
influence of node B on node A with respect to c, if

Pr(a | bc)− Pr(a | b̄c) ≥ 0

Intercausal influences, like qualitative influences, adhere to the properties of
symmetry and transitivity. We informally review the effect of the intercausal
influence. For a node C with the parents A and B, entering evidence will
influence the probability distribution for node A along the trail A → C and
the probability distribution for node B along the trail B → C. The influence of
node C on the one parent now typically may change with a subsequent change
of the probability distribution for the other parent. A positive intercausal
influence between nodes A and B with respect to c implies that, given the
evidence c, an increase in the probability of b will result in an increase, in
terms of positivity, of the influence of node C on node A along the trail
A→ C. ’An increase in positivity’ will say that a negative influence becomes
weaker and a positive influence becomes stronger. Given a positive intercausal
influence, moreover, an increase of a, will result in an increase in positivity
of the influence of node C on node B along the trail B → C. Analogously, a
negative intercausal influence implies that an increase in the probability of b



Decisiveness in Loopy Propagation 167

will result in a decrease of positivity of the influence of C on A along the trail
A → C and that an increase in the probability of a will result in a decrease
in positivity of the influence of C on B along the trail B → C.

For the network from Fig. 1 we now derive an expression that captures
the intercausal influence that is induced between the nodes A and B by the
evidence d. We assume that the exact probability distributions for nodes A and
B are non-degenerate; note that for degenerate distributions in fact no loop
is present. To separate the intercausal influence from the direct influence, we
suppose that A and B are independent in the prior network. The intercausal
influence then is captured by

Pr(a | bd)− Pr(a | b̄d) =
Pr(abd)
Pr(bd)

− Pr(ab̄d)
Pr(b̄d)

We find that
Pr(abd)
Pr(bd)

=
x · e

x · e + (1− x) · g
and that

Pr(ab̄d)
Pr(b̄d)

=
x · f

x · f + (1− x) · h
and hence that

Pr(a | bd)− Pr(a | b̄d) =
(x− x2) · (e · h− f · g)

(x · e + (1− x) · g) · (x · f + (1− x) · h)

where

e = r · y + (1− r) · z
f = s · y + (1− s) · z
g = t · y + (1− t) · z
h = u · y + (1− u) · z

Because the denominator in the expression for Pr(a | bd) − Pr(a | b̄d) is
positive, we have that the sign of the intercausal influence that is induced
between nodes A and B, is equal to the sign of the numerator (x − x2) · (e ·
h − f · g). Because x = Pr(a) ∈ (0, 1), moreover, the sign of the intercausal
influence equals the sign of e · h− f · g, that is, the sign of

(y − z)2 · (r · u− s · t) + z · (y − z) · (r + u− s− t)

Similarly, we find that the sign of the intercausal influence induced by the
evidence d̄ equals the sign of

(z − y)2 · (r · u− s · t) + (1− z) · (z − y) · (r + u− s− t)

We will use II(A,B | dj) to denote these expressions for dj ∈ {d, d̄ }.
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We now relate the two qualitative features reviewed above to the over-
or underconfidence of the approximations computed for the inner loop nodes
by the loopy-propagation algorithm. We recall that, since all entries of the
transition matrix M�A,d are positive, we have that its eigenvalues λ1 and λ2

are real numbers and both λ1 and λ1 + λ2 are positive. From the relationship

Pr(ai | dj) = P̃r(ai | dj)−
λ2

λ1 + λ2
· (2 · P̃r(ai | dj)− 1)

established in the previous section, we therefore find that overconfident ap-
proximations will be computed for the probability Pr(ai | dj) whenever λ2 ≥ 0;
underconfident approximations are found if λ2 ≤ 0. With λ2 = 0, the exact
probabilities are computed. From λ = 1

2 ·[(l+o)±
√

(l + o)2 − 4 · (l · o−m · n)]
we observe that the sign of the eigenvalue λ2 equals the sign of the expression
l · o −m · n. By simple manipulation of the terms involved, we find that, for
Pr(a) ∈ (0, 1), the sign of this expression is equal to the sign of

(p− q) · II(A,B | dj)

We thus find that the approximate probabilities given the evidence dj , es-
tablished for node A, are overconfident if the sign of p − q is equal to the
sign of II(A,B | dj), that is, if the sign of the qualitative influence between
nodes A and B is equal to the sign of the intercausal influence that is induced
between A and B by the evidence dj ; the approximations are underconfident
otherwise. We recall that the transition matrices of A and B have the same
eigenvalues. These nodes therefore will have the same decisiveness.

Example We consider once again the network from Fig. 2. The sign of
the qualitative influence between the nodes A and B equals the sign of
1.0 − 0.2 = 0.8 and hence is positive. The sign of the intercausal influence
between nodes A and B that is induced by the evidence d, equals the sign of
(0.2−0.9)2 ·(0.9 ·0.3−0.0 ·0.4)+0.9 ·(0.2−0.9) ·(0.9+0.3−0.0−0.4) ≈ −0.37
and thus is negative. The qualitative and intercausal influences between nodes
A and B therefore have opposite signs and the approximations established for
the inner loop nodes will be underconfident. Indeed, we find the undercon-
fident approximations P̃r(a | d) ≈ 0.17 and P̃r(b | d) ≈ 0.30 for the exact
probabilities Pr(a | d) ≈ 0.09 and Pr(b | d) ≈ 0.26 upon loopy propagation.
Given the evidence d̄, on the other hand, the sign of the intercausal influence
between A and B equals the sign of (0.9− 0.2)2 · (0.9 · 0.3− 0.0 · 0.4) + (1.0−
0.9) · (0.9 − 0.2) · (0.9 + 0.3 − 0.0 − 0.4) ≈ 0.19 and hence is positive. The
qualitative and intercausal influences now have equal signs and overconfident
approximations will result. Upon loopy propagation, we indeed find the over-
confident approximations P̃r(a | d̄) ≈ 0.28 and P̃r(b | d̄) ≈ 0.52 for the exact
probabilities Pr(a | d̄) ≈ 0.36 and Pr(b | d̄) ≈ 0.51. �

We found that loopy propagation will result in exact probabilities whenever
λ2 = 0, that is, whenever (p− q) · II(A,B | dj) = 0. If the factor p− q equals
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zero, then the nodes A and B are a priori independent and in fact no loop is
present. If the factor II(A,B | dj) equals zero, then the messages that node C
sends to node B are independent of the probabilities for A and the messages
that C sends to A are independent of the probabilities for B. Nodes A and B
therefore receive the correct messages from node C. These messages, moreover,
do not change in a next cycle of the algorithm. The algorithm will therefore
converge and yield exact probabilities in just a single cycle. We would further
like to note that for the probabilities Pr(ai | dj) = 0.5, loopy propagation will
result in exact probabilities, irrespective of the eigenvalues of the transition
matrices. This observation can easily be verified by calculating P̃r(a | dj) from
the previously established relationship Pr(ai | dj) = P̃r(ai | dj) − λ2/(λ1 +
λ2) · (2 · P̃r(ai | dj)− 1) for Pr(a | dj) = 0.5.

We are now also able to explain the different approximation behaviour
of the loopy-propagation algorithm demonstrated in Figs. 3 and 4. We recall
that Fig. 3 pertains to the algorithm’s approximation behaviour for node A
given the evidence d in the network from Fig. 2. The qualitative influence
between A and B is positive; the evidence d, moreover, serves to induce a
negative intercausal influence between the two nodes. We now first consider
the algorithm’s behaviour during a clockwise cycle. If, in a particular cycle,
the influence of entering the evidence d on the probability of a along the trail
D ← C ← A is positive, then, because of the positive qualitative influence
between A and B, the influence on the probability of b along the trail D ←
C ← A → B will be positive as well. Because of the negative intercausal
influence between nodes A and B, this positive influence on b will result in a
decrease in the strength of the positive influence of C on A. In the next cycle,
therefore, the increase in the probabilities of a and b induced by the clockwise
process, will be less than in the previous cycle. In the subsequent cycle, the
positive influence between of C on A, induced by the clockwise process again
will be stronger than in the previous cycle, and so on. Such an oscillating
behaviour would also be found given a negative influence of D on A along the
trail D ← C ← A. In the counterclockwise cycles of the algorithm a similar
behaviour is observed. Both processes add up to the oscillating behaviour that
we observed in Fig. 3 for our example network. Alternatively, if the qualitative
influence and the intercausal influence have equal signs, the approximations
will go steadily towards their final values. If, for example, both influences
between the nodes A and B are positive, the increase in the probability of b
induced in the clockwise cycle, will result in an even stronger positive influence
of C on A. In the next cycle, the increase of the probability of b induced by
the clockwise process will further increase, and so on.

So far, we addressed the situation where evidence is entered for node D
in the network from Fig. 1. If the convergence node C itself is observed, a
similar analysis holds. The expressions for the intercausal influence between
the nodes A and B then reduce to r ·u−s ·t and r ·u−s ·t−(r+u−s−t) after
the observation of c and c̄, respectively. Although we analysed the influence



170 Janneke H. Bolt and Linda C. van der Gaag

of the cycling error for the simple network from Fig. 1 only, the essence of
our analysis extends to networks of more complex topology. Our analysis, for
example, extends directly to networks with simple loops with more than two
inner nodes, to networks with multiple simple loops, and to networks with
simple loops in which the inner nodes have additional neighbours outside the
loop. The essence of our analysis also extends to networks with simple loops
having more than one convergence node. In such a network, a cycling error
occurs only if for each convergence node of a loop, either the node itself or
one of its descendants is observed. An intercausal influence is then found
between the parent nodes of each convergence node. We address an arbitrary
convergence node C with parents A and B on the loop. Because we consider
simple loops only, there will be exactly two trails between A and B in the loop.
By exploiting the property of transitivity, we can derive the sign of the indirect
influence between A and B along the trail not containing C. We consider this
influence to be ’the’ qualitative influence between A and B. The intercausal
influence between the nodes A and B that is induced by evidence for C or for
one of its descendants now can be looked upon as ’the’ intercausal influence
between A and B. The decisiveness of the approximations established for
the inner loop nodes then can be derived, as before, from the signs the two
influences mentioned above. Because, effectively this procedure comes down
to ⊗-combining the signs of all influences along the loop, the convergence node
C, used for establishing the decisiveness, indeed can be chosen arbitrarily.

Example We consider the example network with a loop with multiple conver-
gence nodes from Fig. 7. Given the evidence d and f , the loopy-propagation
algorithm will compute approximate probabilities for the inner loop nodes A
and B. To establish the decisiveness of these approximations, we compute
the signs of the two influences between A and B. We choose C to be ’the’
convergence node of the loop. The sign of ’the’ intercausal influence between

A B

C E

D F

Pr(a) = 0.2

Pr(c | ab) = 0.9
Pr(c | ab̄) = 0.0
Pr(c | āb) = 0.4
Pr(c | āb̄) = 0.3

Pr(d | c) = 0.2
Pr(d | c̄) = 0.9

Pr(b) = 0.3

Pr(e | ab) = 0.7
Pr(e | ab̄) = 0.2
Pr(e | āb) = 0.5
Pr(e | āb̄) = 1.0

Pr(f | e) = 0.2
Pr(f | ē) = 0.8

Fig. 7. An example Bayesian network, containing a loop with two convergence
nodes.
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A and B given d, then equals the sign of (0.2− 0.9)2 · (0.9 · 0.3− 0.0 · 0.4) +
0.9 · (0.2 − 0.9) · (0.9 + 0.3 − 0.0 − 0.4) ≈ −0.37 and hence is negative. The
sign of ’the’ qualitative influence between A and B now equals the sign of the
intercausal influence between A and B given f . This sign equals the sign of
(0.2−0.8)2 ·(0.7·1.0−0.2·0.5)+0.8·(0.2−0.8)·(0.7+1.0−0.2−0.5) ≈ −0.26 and
hence also is negative. Since the two signs are equal, we derive that the approx-
imations for the inner loop nodes A and B will be overconfident. We indeed
find the overconfident approximations P̃r(a | d) ≈ 0.36 and P̃r(b | d) ≈ 0.31
for the probabilities Pr(a | d) ≈ 0.38 and Pr(b | d) ≈ 0.40. �

We would like to note that in networks of more complex topology, the probabil-
ities that are needed to determine the signs of the qualitative and intercausal
influences between the parents of a convergence node, are not necessarily part
of the specification of the network. In some situations, however, these signs
can be derived by qualitative reasoning with an abstraction of the network
[14; 15].

6 Conclusions

When Pearl’s propagation algorithm for singly connected networks is applied
to networks with loops, the algorithm is no longer exact and approximate
probabilities are yielded. In this paper, we identified the two types of error
that may be introduced into the approximations: the convergence error and
the cycling error. For binary Bayesian networks with simple loops, we identi-
fied the factors that determine the effect of the cycling error on the decisiveness
of the approximations calculated for the inner loop nodes. We found that this
effect depends on the sign of the qualitative influence between the parents
of the convergence node of the loop and the sign of the intercausal influence
that is induced between these parents; the approximations are overconfident
if these signs are equal and underconfident otherwise. Knowledge of the speci-
fication of the network thus provides directly for establishing properties of the
approximate probabilities computed for the inner loop nodes. So far, we stud-
ied the effect of the cycling error on the decisiveness of the approximations
for the nodes of a loop in isolation. An overall analysis, involving multiple
compound loops, unfortunately, is much more complicated. In a network with
multiple loops, for example, approximate probabilities may enter a loop as a
result of errors introduced in other parts of the network and will have their
own effect on the resulting approximations. In future research, we will focus on
gaining further insight into the general performance of the loopy-propagation
algorithm by means of controlled experiments. The insights yielded by our
study of simple loops will serve to set up such experiments.
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Lazy Inference in Multiply Sectioned Bayesian
Networks Using Linked Junction Forests

Yang Xiang and Xiaoyun Chen
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Summary. Lazy propagation reduces the space complexity from HUGIN inference.
Multiply Sectioned Bayesian Networks extend Bayesian Networks a cooperative mul-
tiagent paradigm. To combine the benefits of the two, a framework was proposed
earlier to apply lazy propagation to inference in MSBNs. We propose an alternative
framework with a simpler compiled structure. The issues of lazy communication
and observation entering in a multiagent setting are considered. We prove that the
inference is exact.

1 Introduction

Multiply Sectioned Bayesian Networks (MSBNs) [8] extend BNs [4] to the mul-
tiagent paradigm. The inference method is an extension of HUGIN method for
BNs using the junction tree (JT) representation. Lazy propagation [3] extends
the applicability of HUGIN inference method to larger domains. It uses a fac-
torized representation for belief, performs only the necessary multiplication
and marginalization, and results in reduced space complexity.

A framework was proposed earlier [6] to apply lazy propagation to infer-
ence in MSBNs. The compiled runtime representation requires the mainte-
nance of multiple local graphical structures for each subnet. In this work, we
propose an alternative framework for multiagent systems where only a single
local structure is needed. We propose a set of algorithms for local lazy infer-
ence at each agent, for lazy communication among agents, and for entering
observations. We prove that the lazy inference is autonomous and exact.

The alternative framework has the following advantages: Its local structure
is isomorphic to that for standard inference in MSBNs. Hence, the same set of
structure compilation algorithms [8] are applicable and the same compilation
software components (such as those in WEBWEAVR [1]) can be reused. It
can also lead to space savings (one local structure versus several) and resul-
tant simplified control. Experimental evidence is expected from our ongoing
research.

Y. Xiang and X. Chen: Lazy Inference in Multiply Sectioned Bayesian Networks Using Linked
Junction Forests, StudFuzz 213, 175–190 (2007)
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We briefly overview the framework of MSBNs and lazy propagation in Sec-
tions 2 and 3. Our overview assumes the knowledge on HUGIN and Shafer-
Shenoy inference methods in JT representations of BNs. Readers unfamiliar
with these are directed to [2; 5]. Readers who desire in-depth understanding
of MSBNs are directed to [8]. The remaining sections develop the lazy propa-
gation based new inference scheme for MSBNs. MSBNs are intended for large
and complex domains. However, many relevant concepts can and should be
illustrated with simple examples. Readers are reminded of the discrepancy
between the complexity of the examples in the paper and that of intended
applications.

2 Overview of MSBNs

2.1 Multiply Sectioned Bayesian Networks

A BN [4] can be used to structure the knowledge of a single agent. What
is its counterpart for a cooperative multiagent system? From a small set of
assumptions, it has been shown [7] that the resultant representation of a
cooperative multiagent system is an MSBN:

1. exact probability measure of belief,
2. communication by belief over small sets of shared variables,
3. a simpler organization of agents,
4. DAG domain structuring, and
5. joint belief admitting agents’ beliefs on internal variables and combining

their beliefs on shared variables.

Although an MSBN can be applied under the single agent paradigm, our
presentation follows the multiagent paradigm.

An MSBN M is a collection of Bayesian subnets, one from each agent,
that together defines a BN. M represents probabilistic dependence of a total
universe partitioned into multiple subdomains each of which is represented by
a subnet. Agents cooperate to reason about what is going on [8]. Without
confusion, we refer to an agent, its subdomain, and its subnet interchange-
ably from time to time. To ensure correct, distributed inference, subnets are
required to satisfy certain conditions [7] described below:

Let Gi = (Ni, Ei) (i = 0, 1) be two graphs (directed or undirected). G0

and G1 are said to be graph-consistent if the subgraphs of G0 and G1 spanned
by N0 ∩ N1 are identical. Given two graph-consistent graphs Gi = (Ni, Ei)
(i = 0, 1), the graph G = (N0 ∪N1, E0 ∪E1) is referred to as the union of G0

and G1, denoted by G = G0 "G1. Given a graph G = (N,E), a partition of
N into N0 and N1 such that N0 ∪N1 = N and N0 ∩N1 �= ∅, and subgraphs
Gi of G spanned by Ni (i = 0, 1), G is said to be sectioned into G0 and G1.
Sectioning is useful in defining the dependence between variables shared by
subdomains in a graphical model:
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Definition 1 Let G = (N,E) be a connected graph sectioned into subgraphs
{Gi = (Ni, Ei)}. Let the subgraphs be organized into an undirected tree Ψ
where each node is uniquely labeled by a Gi and each link between Gk and Gm

is labeled by the non-empty interface Nk ∩ Nm such that for each i and j,
Ni ∩ Nj is contained in each subgraph on the path between Gi and Gj in Ψ .
Then Ψ is a hypertree over G. Each Gi is a hypernode and each interface
is a hyperlink. A pair of hypernodes connected by a hyperlink is said to be
adjacent.

Each hyperlink serves as the information channel between subnets con-
nected and is referred to as an agent interface. Agents communicate by ex-
changing beliefs over their interfaces. An interface must be a d-sepset, as
defined below:

Definition 2 Let G be a directed graph such that a hypertree over G exists.
A node x contained in more than one subgraph with its parents π(x) in G
is a d−sepnode if there exists at least one subgraph that contains π(x). An
interface I is a d−sepset if every x ∈ I is a d-sepnode.

The overall structure of an MSBN is a hypertree MSDAG:

Definition 3 A hypertree MSDAG G =
⊔

i Gi, where each Gi is a DAG, is a
connected DAG such that (1) there exists a hypertree ψ over G, and (2) each
hyperlink in ψ is a d-sepset.

Graphically, a hyperlink separates the hypertree MSDAG into two sub-
trees. Semantically, this corresponds to conditional independence given the
d-sepset. An MSBN is then defined as follows:

Definition 4 An MSBN M is a triplet M = (N ,G,P). N =
⋃

i Ni is the
total universe where each Ni is a set of variables. G =

⊔
i Gi (a hypertree

MSDAG) is the structure where nodes of each DAG Gi are labeled by ele-
ments of Ni. Let x be a variable and π(x) be all the parents of x in G. For each
x, exactly one of its occurrences (in a Gi containing {x} ∪ π(x)) is assigned
P (x|π(x)), and each occurrence in other DAGs is assigned a constant table.
P =

∏
i Pi(Ni) is the jpd, where each Pi(Ni) is the product of probability

tables associated with nodes in Gi. Each triplet Si = (Ni, Gi, Pi) is called a
subnet of M . Two subnets Si and Sj are said to be adjacent if Gi and Gj

are adjacent on the hypertree MSDAG.

An example MSBN is shown in Fig. 1.

2.2 Linked Junction Forest

Inference in an MSBN is performed based on message passing. Local infer-
ence within each agent passes intra-subnet messages which bring a subnet
into consistency. Communication among agents passes inter-subnet messages
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Fig. 1. A trivial MSBN where each d-sepnode is shown with a dashed circle. The
hypertree has the structure G1 − G0 − G2 and each d-sepset is {a, b, c}.

which brings the system into global consistency. These messages are marginal
probability distributions. The key issue is to use messages over small subsets
of variables so that inference is efficient.

To compute intra-subnet messages and propagate them effectively, each
agent compiles its subnet into a junction tree (JT), where variables are
grouped into clusters with intersection of adjacent clusters referred to as sep-
arators. Note that the hypertree of a MSDAG is a JT if each hypernode is
labeled by the corresponding subdomain Ni. Without confusion, we simply
refer to this JT as hypertree.

Similarly, to facilitate computation of inter-subnet messages, agents com-
pile each d-sepset into a JT, called a linkage tree. With local JTs and linkage
trees combined, the resultant representation is called a linked junction forest
(LJF). For details on compilation, see [8]. See Fig. 2 for linkage trees L1 be-
tween T0 and T1 and L2 between T0 and T2. Each cluster in a linkage tree
is called a linkage. Linkage {b, c} is an information channel between cluster
{b, c, f} in T1 and cluster {b, c, n} in T0. They are referred to as the linkage
hosts of {b, c}.

Parallel to the structure compilation, probability tables in MSBN are con-
verted to potentials (non-normalized probability distributions) associated with
clusters, separators and linkages. From them, the joint system potential of LJF
is defined that is equivalent to the jpd P of the MSBN. When observations
are available, each agent performs local inference in its local JT using the
HUGIN method. Communication among agents is performed by propagation
on hypertree along hyperlinks (technically along linkages). After the commu-
nication, probabilistic queries posed to any agent can be answered exactly
relative to observations entered in the entire LJF. We refer to the inference
method as HUGIN-like inference with LJFs.
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Fig. 2. JTs and linkage trees obtained from Fig. 1. Each linkage host is labeled by
*. The thick links show the relation between each linkage and its hosts.

3 Overview of Lazy Propagation

Lazy propagation [3] is performed using the JT structure of a BN. Each cluster
is associated with a set of potentials from the BN. We refer to the cluster of
current focus by C and its set of potentials by β. When no potential is assigned
to a cluster, β = ∅. The joint system potential of the JT is then the product
of all potentials in all clusters, denoted as B(N).

Each separator S between two adjacent clusters C and C ′ is associated
with two buffers. One buffer is used to store the message from C to C ′ and
the other from C ′ to C. We formalize lazy propagation below as pseudo-code
algorithms so that we can refer to them in the new inference algorithms for
MSBNs. Given a cluster C, for each separator S, we shall refer to the two
buffers locally as the in-buffer and the out-buffer relative to C.

A cluster executes the following algorithm to compute and send a message
to an adjacent cluster, where \ is the set difference operator.

Algorithm 1 (SendPotential) Let C be a cluster with β. Let adjacent clus-
ters be C1, ..., Cm. Let βi be the set of potentials in the in-buffer from Ci. When
SendPotential relative to Ck is called in C, C does the following:

(1) β′ = β ∪i�=k βi.
(2) Marginalize out variables C \Ck from β′ . (To marginalize out variable

x, multiply potentials with x in the domain and apply marginalization to the
product.)
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(3) Send the resultant set of potentials to the out-buffer to Ck.

In the following two algorithms, C is a cluster and caller is an adjacent
cluster or the JT. The following algorithm is executed recursively by each
cluster for inward message passing.

Algorithm 2 (CollectPotential) When caller calls CollectPotential in clus-
ter C, C does the following:

(1) If caller is the only adjacent cluster, perform SendPotential relative to
caller.

(2) Otherwise, for each adjacent cluster Q except caller, call CollectPo-
tential in Q. After all calls are completed, perform SendPotential relative to
caller if it is an adjacent cluster.

The following algorithm is executed recursively by each cluster for outward
message passing.

Algorithm 3 (DistributePotential) When caller calls DistributePotential
in C, for each adjacent cluster Q except caller, C performs SendPotential
relative to Q followed by a call of DistributePotential in Q.

The following algorithm is executed by a JT for a full round of message
passing.

Algorithm 4 (UnifyPotential) Select a cluster C arbitrarily. Call Collect-
Potential in C. Call DistributePotential in C.

The following proposition establishes the effect of UnifyPotential, where
const denotes a constant:

Proposition 5 (Proposition 3.4 in [5]) Let UnifyPotential be performed
in a JT. For any cluster C with β and in-buffer messages βi (i = 1, ...,m)
from separators Ri with adjacent clusters, denote the product of potentials in
β as β(C) and the product of potentials in βi as βi(Ri). Then

β(C)
m∏

i=1

βi(Ri) = const
∑

N\C

B(N).

When observations are available, for each cluster, update each potential
whose domain contains observed variables and remove the observed variables
from the domain. Store the observed values for subsequent queries. The fol-
lowing algorithm is used to enter the observation on a variable to the JT.

Algorithm 5 (EnterObservation) When a variable x is observed at value
x0, for each cluster C (with β) containing x, do the following:

(1) Remove each potential f(x) from β.
(2) For each potential f(x, Y ) in β, where Y �= ∅, replace it by

g(Y ) = f(x = x0, Y ).
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The effect of EnterObservation is such that the new joint system potential
corresponds to the posterior distribution given the observation. After Enter-
Observation is performed for each observed variable, followed by an UnifyPo-
tential, the posterior probabilities for each variable can be obtained from any
cluster that contains it.

4 Lazy Inference With LJFs

We apply lazy propagation to inference in MSBNs. The on-line message com-
putation will be guided by LJFs, but factorized beliefs and messages will be
used as in lazy propagation. Each agent Ai is associated with the subnet Si

and local JT Ti.

4.1 Potential Assignment

Conditional probability tables (CPTs) in an MSBN are assigned to clusters in
its LJF as potentials: For each node x in each subnet Si, if it is assigned with
a non-constant CPT (see Def 4), then assign the CPT to a cluster in local JT
Ti that contains x and its parents in Si. The potential associated with a local
JT Ti is then

BTi
(Ni) =

∏

j

∏

k

βi,j,k,

where j indexes clusters, βi,j denotes the set of potentials assigned to the jth
cluster, and βi,j,k is the kth potential in the set. The joint system potential of
the LJF is

BF (N ) =
∏

i

BTi
(Ni).

BF (N ) is identical to jpd of the MSBN.

4.2 Lazy Inference: An Example

Lazy inference consists of lazy communication among agents followed by local
lazy propagation. During lazy communication, inter-subnet messages are sent
through linkage trees. Messages are passed through a linkage tree in both
directions. Hence, a linkage between subnets S and R is associated with two
message buffers, one for each direction.

Fig. 3 illustrates inward propagation with root agent A0. First, UnifyPo-
tential is performed by A1 and A2. At T1, it causes message

B(b, c) =
∑

h

P (c|h)B(b, h)

to be sent from cluster {b, c, h} to {b, c, f}, where
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Fig. 3. Inward propagation in LJF.

B(b, h) = P (h)
∑

g

P (b|g, h)P (g).

Similarly, messages P (a) and B(b) =
∑

h B(b, h) are sent from clusters {a, d}
and {b, c, h} to cluster {a, b, e}, respectively. At linkage host {b, c, f}, message
to linkage {b, c} is computed based on local potentials plus the message from
cluster {b, c, h}. The resultant message is B(b, c). At linkage host {a, b, e},
message P (a)B(b) to linkage {a, b} is computed. As a consequence, both link-
ages in L0,1 contain information on variable b: a duplication. To remove the
duplication, A1 examines potentials at linkage {a, b} and identify B(b) as the
duplicated information on b. After B(b) is deleted, messages from L0,1 to T0

become B(b, c) through linkage {b, c} and P (a) through linkage {a, b}.
At A2, UnifyPotential generates only empty messages among clusters. Mes-

sages from linkage hosts {b, c, k} and {a, b, j} to linkages are also empty. This
concludes inward propagation.

Outward propagation follows, during which A0 sends messages to A1 and
A2. To calculate messages to A1, A0 performs UnifyPotential using linkage
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messages (empty) from A2 but not those from A1. All messages (intra as well
as inter-subnet) are empty in this case.

Figure 4 shows outward propagation from A0 to A2. A0 performs UnifyPo-
tential using linkage messages from A1 but not those from A2. Message from
cluster {b, c, n} to {a, b, l} is B′(b) =

∑
c B(b, c) and all other intra-subnet

messages are empty. Message from linkage host {b, c, n} through linkage {b, c}
to A2 is B(b, c). The message through linkage {a, b} to A2 is P (a)B′(b). Again,
information on variable b is duplicated in the two linkage messages. After du-
plication B′(b) is deleted from the message to linkage {a, b}, the resultant
messages from A0 to A2 are B(b, c) through linkage {b, c} and P (a) through
{a, b}. Lazy communication is now complete.

After communication, each agent performs inference in its JT, which al-
lows the prior probability of each variable x to be obtained from any cluster
containing x in any subnet. The local inference extends UnifyPotential by in-
cluding messages from linkages. For instance, to perform UnifyPotential in T2,
cluster {b, c, k} includes linkage message B(b, c) in computing the message to
cluster {a, b, j}. To answer a query on P (b), A2 picks a cluster that contains
b, say, {b, c, k}, and marginalizes the product of local potential P (k|b, c), mes-
sage from cluster {a, b, j} (empty in this case) and linkage message B(b, c).
Below, we present inference algorithms of which the above example is a trace.

4.3 Local Lazy Propagation

The most primitive operation is SendPotential. To take into account message
passing over linkages, we extend SendPotential (Algorithm 1) by extending
the notion of adjacency: Two clusters are adjacent if

(1) they are directly connected in a JT, or
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(2) they are hosts of a linkage between two JTs.
We refer to the extended Algorithm 1 as SendPotential∗.

We redefine CollectPotential (Algorithm 2) and DistributePotential (Al-
gorithm 3) to process messages over linkages. They use extended adjacency.
In the algorithms, C is a cluster in a JT and caller is the local agent or an
adjacent cluster not connected through a linkage.

Algorithm 6 (CollectPotential∗) When caller calls CollectPotential∗ in
cluster C, C does the following:

(1) If caller is the only adjacent cluster, perform SendPotential∗ relative
to caller.

(2) Otherwise, for each adjacent cluster Q not connected through a linkage
except caller, call CollectPotential∗ in Q. After all calls are completed, perform
SendPotential∗ relative to caller if it is an adjacent cluster.

Note that CollectPotential∗ only receives messages from linkage in-buffers
and does not send to linkage out-buffers because calling CollectPotential∗

across linkages is disallowed. Under the multiagent paradigm, CollectPotential∗

is a local operation of an agent, while sending messages across linkages involves
a remote agent. CollectPotential∗ can be executed autonomously to answer
local queries, while message passing across linkages requires coordination and
incurs communication cost. Next, we redefine DistributePotential.

Algorithm 7 (DistributePotential∗) When the caller calls operation
DistributePotential∗ in cluster C, for each adjacent cluster Q not connected
through a linkage except caller, C performs SendPotential∗ relative to Q fol-
lowed by a call of DistributePotential∗ in Q.

Local lazy propagation uses Algorithm 4, with CollectPotential∗ and
DistributePotential∗, which we refer to as UnifyPotential∗.

4.4 Lazy Communication

During communication, messages are sent from one agent with JT T to an
adjacent agent with JT T ′ through their linkage tree. The messages are orig-
inated from linkage hosts in T . To ensure that each linkage host has the
necessary information, UnifyPotential∗ must be performed before these mes-
sages are computed. This renders T locally consistent. As a result, for every
two linkages adjacent in the linkage tree, the same information on their shared
variables will be sent by their hosts. If such messages are directly passed to
T ′, the new belief in T ′ will be incorrect due to information duplication. We
consider below how to compute cross-linkage messages without information
duplication.

To compute messages going from a source JT T to a destination JT T ′, the
linkage tree L can be directed. For each linkage Q in L, the following message
buffers are then allocated.
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in-buffer1 in-buffer from the host cluster in T .
in-buffer2 in-buffer from the parent linkage in L. If Q has no parent linkage,

its in-buffer2 is null.
out-buffer1 out-buffer to the host cluster in T ′.
out-buffer2, out-buffer3, ... out-buffers to child linkages in L.

The message from Q to T ′ is computed as follows:

Algorithm 8 (SendLinkageMsg)
For each linkage Q, Q requests its linkage host to fill in-buffer1 by
SendPotential∗ relative to Q. After both in-buffers are filled, Q does the fol-
lowing:

(1) For each child linkage Q′, marginalize out variables Q \ Q′ from po-
tentials in in-buffer1, and send resultant potentials to the out-buffer to Q′.

(2) Divide the set α of potentials in in-buffer1 by the set γ of potentials in
in-buffer2 as follows and sends the resultant α to out-buffer1:

(2.1) If a potential appears in both α and γ, delete it from both.
(2.2) For each potential f in γ, delete f from γ, multiply the set θ of

potentials in α whose domains overlop with that of f , and divide the product
by f . Replace θ in α by the result of the division.

Note that sending to out-buffer1 involves inter-agent message transmis-
sion. Using SendLinkageMsg, algorithms below perform lazy communication
in LJFs. In the algorithms, A is an agent and caller is the MSBN or an
adjacent agent of A. CollectBeliefLLJF defines inward lazy communication
along hypertree.

Algorithm 9 (CollectBeliefLLJF) When caller calls CollectBeliefLLJF in
agent A, A does the following:

(1) If caller is not the only adjacent agent, call CollectBeliefLLJF in each
adjacent agent except caller. After all calls are completed, receive linkage mes-
sages from each adjacent agent except caller.

(2) If caller is an adjacent agent, do UnifyPotential∗ using linkage mes-
sages from each adjacent agent except caller, followed by SendLinkageMsg
relative to caller.

The inward propagation described in Section 4.2 is a trace of a call of
CollectBeliefLLJF in A0. A0 then calls in A1 and A2. DistributeBeliefLLJF
below defines outward lazy communication along hypertree.

Algorithm 10 (DistributeBeliefLLJF) When caller calls DistributeBe-
liefLLJF in A, for each adjacent agent A′ except caller, A does UnifyPotential∗

using linkage messages from each adjacent agent except A′, followed by
SendLinkageMsg relative to A′ and a call of DistributeBeliefLLJF in A′.

The outward propagation described in Section 4.2 is a trace of a call of
DistributeBeliefLLJF in A0. A0 then calls it in A1 and A2. Since A1 and A2
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have no adjacent agents except A0, recursive calls terminate. Communicate-
BeliefLLJF below combines above algorithms to accomplish lazy inference in
a LJF.

Algorithm 11 (CommunicateBeliefLLJF) Select an agent A arbitrarily.
Call CollectBeliefLLJF in A. Call DistributeBeliefLLJF in A. Each agent
performs UnifyPotential∗ using linkage messages from all adjacent agents.

An agent A calls UnifyPotential∗ before sending messages to each adjacent
agent. If A has k adjacent agents, then one call is made during CollectBe-
liefLLJF, k− 1 calls are made during DistributeBeliefLLJF, and a final call is
made at the end of CommunicateBeliefLLJF. Hence, a total of k + 1 rounds
of local lazy propagations are needed to complete CommunicateBeliefLLJF.

5 Soundness

In the following, we use const to denote a positive constant. Proposition 6
says that messages sent over a linkage tree define the marginal potential over
the d-sepset.

Proposition 6 Let T over N be a local JT, T ′ be a local JT adjacent of T ,
I be their d-sepset, and L be the linkage tree over I. Let UnifyPotential∗ be
performed in T followed by SendLinkageMsg relative to T ′. Let B(N) be the
potential

B(N) =
∏

C∈T

β(C)
∏

Q′ �∈L

β(Q′),

where β(C) is the product of potentials assigned to a cluster C, β(Q′) is the
product of potentials received from a linkage Q′, and only linkages other than
those in L are included. For each linkage Q ∈ L, let α(Q) be the product of
potentials that Q sends to T ′ by SendLinkageMsg. Then

∏

Q∈L

α(Q) = const
∑

N\I

B(N).

Proof:
First, we consider the effect of UnifyPotential∗ by applying Proposition 5.

To do so, for each cluster C in T , we define the equivalent cluster potential
of C as

β′(C) = β(C)
∏

Q′→C

β(Q′),

where Q′ → C means that Q′ is a linkage that feeds a message to C. We
can then disregard each Q′ in the remaining proof and Proposition 5 is now
directly applicable.

Next, for any linkage Q ∈ L, consider its linkage host X. From Proposi-
tion 5, after UnifyPotential∗, the set of potentials (including those from its
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in-buffers) associated with X defines the marginal of B(N) onto X. This set,
marginalized onto Q, is sent to in-buffer1 of Q. Denote the product of poten-
tials in in-buffer1 by α′(Q) and the product of potentials in in-buffer2 by θ′(Z),
where Z is the separator between Q and its parent linkage. By Proposition
7.5 of reference [8], a linkage tree is a JT. Hence,

∏

Q∈L

α′(Q)/
∏

Q∈L

θ′(Z) = const
∑

N\I

B(N).

The proposition follows since the message that Q sends to out-buffer1 is

α(Q) = α′(Q)/θ′(Z).

�

The following theorem says that the local potential of an agent and linkage
tree messages it receives define the marginal of the joint system potential:

Theorem 7 Let F over N be the LJF of an MSBN with the joint system
potential BF (N ) and let CommunicateBeliefLLJF be performed in F . Let T
be any local JT over N and B(N) be the potential

B(N) =
∏

C∈T

β(C)
∏

Q→T

β(Q),

where β(C) is the product of potentials assigned to a cluster C, β(Q) is the
product of potentials received from a linkage Q into T (denoted by Q → T ).
Then,

B(N) = const
∑

N\N

BF (N ).

Proof:
Denote the agent in charge of T as A. Given T , F can be viewed as

a directed hypertree with A at the root. During CommunicateBeliefLLJF,
only inter-agent messages directed towards A has an impact on B(N). These
messages are sent in semi-parallel order from leaves to the root. We analyze
the impact of these messages by letting agents send one by one starting from
any leaf agent A′.

Since A′ (with subdomain N ′) is a leaf, it is adjacent to only one agent
A′′ (with subdomain N ′′). By Proposition 6, messages A′ sent to A′′ define
the marginal of B(N ′) onto their d-sepset. Since these messages are the only
impact that A′ has on B(N) and they are received by A′′, agent A′ is effectively
removed from the system. The new joint system potential defined by the local
potentials in the remaining agents and the messages A′′ received is

const
∑

N ′\N ′′

BF (N ).
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By applying the above argument recursively to each leaf agent, eventually,
all other agents in F will be removed except A. The result follows. �

The following corollary states that the local potentials in a cluster and
its in-buffer messages define the marginal of the joint system potential. In
the corollary, in-buffers include both those from adjacent clusters in the same
local JT and those from linkages.

Corollary 8 Let F over N be the LJF of an MSBN with the joint system
potential BF (N ) and let CommunicateBeliefLLJF be performed in F . Let C
be any cluster in any local JT and B(C) be the potential

B(C) = β(C)
∏

R→C

β(R)
∏

Q→C

β(Q),

where β(C) is the product of potentials assigned to C, β(R) is the product of
potentials received from the in-buffer associated with a separator R with an
adjacent cluster of C, and β(Q) is the product of potentials received from a
linkage Q into C. Then,

B(C) = const
∑

N\C

BF (N ).

Proof:
It follows from Theorem 7 and Proposition 5. Theorem 7 ensures the mar-

ginal of BF (N ) onto the subdomain of the local JT and Proposition 5 ensures
further marginalization onto C. �

6 Enter Observations

When observation is obtained on a private variable, it can be entered using En-
terObservation (Algorithm 5). The effect is that the new joint system poten-
tial corresponds to the posterior distribution given the observation. Consider
a variable x with its value x0 observed. If x is a root variable, EnterObserva-
tion does two things: (a) It removes P (x). (b) For each child variable y of x,
it replaces P (y|x, π(y) \ {x}) by P (y|x = x0, π(y) \ {x}). Hence, the new joint
system potential corresponds to P (N \ {x}|x = x0).

If x is not a root variable, (a) is not applicable. EnterObservation will, in
addition to (b), replace P (x|π(x)) by P (x = x0|π(x)). This is equivalent to
an operation

∑

x

P (N \ {x}, x = x0) = P (N \ {x}|x = x0).

When observation is obtained by an agent A on a public variable, how-
ever, the above is not sufficient. By performing EnterObservation in A, the
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local belief of A is updated. However, x may have parents or children in
other agents.1 Unless they take corresponding actions, the joint system po-
tential has not been updated correctly. We do not require other agents to do
so immediately following A’s observation as agent communication is costly.
Instead, it’s desirable that the coordinated observation entering is delayed
until the next communication. We therefore modify CollectBeliefLLJF into
CollectBeliefLLJF∗ below.

• For (1), receive observations on d-sepnodes as well as linkage messages.
• For (2), EnterObservation before UnifyPotential∗, and send observations

on d-sepnodes to caller before SendLinkageMsg.

Similarly, DistributeBeliefLLJF is modified into DistributeBeliefLLJF∗ by
performing EnterObservation before UnifyPotential∗.

We refer to Algorithm 11, modified with CollectBeliefLLJF∗ and
DistributeBeliefLLJF∗, as CommunicateBeliefLLJF∗. The following theorem
establishes its effect whose proof is straightforward given Corollary 8 and the
above discussion.

Theorem 9 Let F over N be the LJF of an MSBN with jpd P (N ). Let Obs
be the set of variables observed at value obs. Let CommunicateBeliefLLJF∗

be performed in F after observations on Obs have been entered by the corre-
sponding agents through EnterObservation. Let C be any cluster in any local
JT and BC be the potential

BC = β(C)
∏

R→C

β(R)
∏

Q→C

β(Q),

where β(C) is the product of potentials associated with C, β(R) is the product
of those received from the in-buffer associated with a separator R with an
adjacent cluster of C, and β(Q) is the product of potentials received from a
linkage Q into C. Then,

BC = const
∑

C∩Obs

∑

N\C

P (N|obs).

Note that we have used word ‘associated’ instead of ’assigned’ regarding
potentials in C to emphasize the possible change of these potentials due to
EnterObservation. We have also used notation BC instead of B(C) to em-
phasize that the product does not include observed variables in its domain.
The inner summation above marginalizes P (N|obs) to variables in C and the
outer summation marginalizes out any variable in C that has been observed.

The following theorem establishes inference autonomy for each agent. Its
proof is trivial given Theorem 9 and Proposition 5.

1 See [8] for reasons why x may not be observed by all relevant agents.
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Theorem 10 Let observations Obs′ = obs′ be obtained by agent A after global
observations Obs = obs followed by CommunicateBeliefLLJF∗. Let A perform
EnterObservation relative to obs′ followed by UnifyPotential∗. Then, for each
cluster C in A’s local JT,

BC = const
∑

C∩Obs∩Obs′

∑

N\C

P (N|obs, obs′).

7 Remarks

We presented an alternative exact method for multiagent inference in MSBNs
with a simpler run-time structure than a previously proposed method. In the
worst case, the complexity of lazy inference in MSBNs is upper-bounded by
that of HUGIN-like inference. However, in average cases, it is expected to
be much reduced due to factorized representation of cluster potentials. Fur-
ther experimental investigation will provide empirical evidence on the actual
complexity and comparison among the three inference methods: HUGIN-like
inference, that of [6], and the method presented.
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Summary. Bayesian Networks (BN) are often sought as useful descriptive and
predictive models for the available data. Learning algorithms trying to ascertain
automatically the best BN model (graph structure) for some input data are of the
greatest interest for practical reasons. In this paper we examine a number of evolu-
tionary programming algorithms for this network induction problem. Our algorithms
build on recent advances in the field and are based on selection and various kinds of
mutation operators (working at both the directed acyclic and essential graph level).
A review of related evolutionary work is also provided. We analyze and discuss
the merit and computational toll of these EP algorithms in a couple of benchmark
tasks. Some general conclusions about the most efficient algorithms, and the most
appropriate search landscapes are presented.

1 Introduction

A Bayesian Network (BN) is a graphical model postulating a joint distribution
for a target set of discrete random variables. Critical qualitative aspects relate
to stochastic dependencies and are determined by the underlying graphical
structure, a Directed Acyclic Graph (DAG). To deal with the problem of
learning sensible BN models from data (a problem known to be NP-hard),
a number of algorithms have been considered to search various target spaces,
including most notably the space of DAG structures (b-space) and the space
of equivalence classes of DAG structures (e-space), see e.g. [33; 2]. The field is
very active and further representation schemes keep emerging in the literature,
see e.g. Studený’s algebraic approach [42]. For the most familiar search spaces,
some key insights and guiding principles of interest have emerged over time
[25; 11; 9; 36]. We adhere here to these principles as we try to evaluate their
components in a rich evolutionary framework.

Evolutionary algorithms have been successful by now in many applications;
in particular, they have been considered in this context as well [31]. This family
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of algorithms can be seen as an interesting class of population-based score-
and-search methods, where the fitness measure is equated to some standard
scoring metric like the marginal likelihood [25], and we can enjoy the benefits
of our experience and theoretical results in the evolutionary computation field.
We focus here on the evolutionary programming (EP) paradigm, see [18; 17]
for general reference. The EP paradigm is based on the pressure exerted by
selection and mutation alone, i.e., no recombination is used. Recombination
is of course an important, often useful heuristic for mixing genetic material
and indeed it has been often explored in b-space [31; 14; 43]. To the best of
our knowledge, however, no previously proposed evolutionary algorithm (be
it EP or otherwise) follows the aforementioned theoretical principles as our
EP algorithms do.

The specific approaches we consider differ in either search space or type of
neighborhood. The latter turns out to be a key concept for search algorithms:
the neighborhood of a graph (in b- or e-space) equals the set of DAGs that
can be reached from that DAG in a single mutation. This clearly depends on
the battery of operators available. In this work, we consider on one hand the
approach based on essential graphs (equivalence classes or e-space) suggested
by the results of [11]. On the other hand, we consider two families of algorithms
working directly in b-space inspired by the results of [9]. We denote these
three algorithms as EPQ, EPNR and EPAR respectively. We are specifically
interested in analyzing the relative performance of these approaches, and the
computational tradeoffs involved in their application to the induction of BN
structures.

2 Learning Bayesian Networks

A Bayesian Network (G, θ) encompasses the Directed Acyclic Graph (DAG)
G and a set of probability distributions attached to G, say θ = θ(G). The
DAG is the set of links or arcs among variables or nodes. If we denote the
whole set of discrete variables as X = {X1, X2, ..., Xn}, each Xi has a set of
parents denoted by Πi = {Xj ∈ X | (Xj → Xi) ∈ G}. Then, the DAG G
represents the joint distribution

P (X) =
n∏

i=1

P (Xi | Πi)

with the parameterization P (Xi = k | Πi = j) = θijk, j = 1, ..., qi; k =
1, ..., ri; ri is the number of distinct values that Xi can assume, and qi is the
number of different configurations that Πi can present.

Two DAGs are (Markov) equivalent if they encode the same set of inde-
pendence and conditional independence statements. Each equivalence class,
say [G], can be represented by the essential graph [2; 11], a unique partially
directed acyclic graph or PDAG, say Ḡ. If an arc X → Y shows up in all
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H ∈ [G], then that arc is compelled in [G]. If an arc is not compelled, then it
is reversible, i.e., there exist H,K ∈ [G] such that H contains X → Y and K
contains Y → X. The unique PDAG Ḡ representing [G] contains a directed
arc for each compelled arc in [G] and an undirected arc for each reversible
arc in [G]. Our e-space refers precisely to the space of those PDAGs which
represent some [G], see below.

There exist two different approaches to learning graphical structure from
data, namely, those based on prior conditional independence testing and those
usually referred to as score-and-search approaches. The first approach seeks to
establish well-founded constraints on the graphical structure, thus simplifying
the search space considerably, see [19; 23; 3]. Score-and-search methods omit
this step and proceed directly to evaluate all tentative graph structures pro-
vided by some method via a suitable scoring metric [25; 24; 12; 7]. While there
are also proposals that try to combine the best from each class of methods,
here we shall be concerned with the latter class of methods almost exclusively.
Besides the scoring metric itself, which is known not to make a big difference
in practice for large sample size N , we need to specify the set of traversal
operators that will be used to search for better solutions locally.

Given a BN (G, θ) and a data matrix D with n columns and N (exchange-
able) rows, there are several ways to measure the quality of fit to the data
[24]. We focus here on the marginal likelihood :

P (D|G) =
∫

P (D|G, θ)π(θ|G)dθ .

A closed-form expression is available for P (D|G) in the case of suitable
Dirichlet-based priors π(θ|G) under certain assumptions [25]. Specifically, we
take

π(θ|G) ∝
∏

i,j

∏

k

θ
αijk−1
ijk

where α = {αijk} is the virtual count hyperparameter (αijk > 0). These αijk

must be supplied by the user (just like the complete data set D), but we denote
our fitness or basic DAG scoring metric as Ψ = Ψ(G;D) = log P (D|G) for
simplicity.

A given measure Ψ is called score-equivalent if it is constant over each
equivalence class [G]. The present Ψ is score-equivalent if αi =

∑
j,k αijk ≡ α

for some α > 0, the so-called BDe metric [25]. We consider below the BDeu(α)
metric αijk = α/riqi, see e.g. [8]. Another typical option is αijk = 1, the well-
known (but not score-equivalent) K2 metric [13]. Note that the score of a
given PDAG Ḡ is taken as the constant value assumed by members of the
associated [G]; genuine equivalence class metrics can be defined too [10].

2.1 Learning Equivalence Classes

Let Ḡ denote the unique PDAG structure representing some equivalence class
[G]. Among other things, we know that Ḡ and any G ∈ [G] share the same
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skeleton or connectivity pattern (ignoring directionality) and the same v-
structures. A v-structure is a substructure X → Z ← Y where X is not
linked to Y directly. Note that not all PDAGs represent equivalence classes,
only completed PDAGs (CPDAGs) do. A related class of PDAG models is
discussed in [1]; however, this class does not exhibit the nice one-to-one cor-
respondence that we have between equivalence classes and CPDAGs.

Chickering [11] presents six operators for introducing local variation in
existing CPDAGs, namely, InsertU, DeleteU, InsertD, DeleteD, ReverseD
and MakeV. The first five operators are rather self-explanatory. As to the sixth,
it transforms a substructure X −Z −Y (where X is not linked to Y directly)
into the v-structure X → Z ← Y . Note that each of these operators changes
either the skeleton or the number of v-structures and thus guarantees that
a new equivalence class is visited. An example of the application of each of
these operators is provided in Figure 1.

The modified CPDAGs need not be evaluated from scratch: efficient score-
updating formulae are provided for each operator [11]. The key idea behind
this local scoring is that a decomposable, score-equivalent metric Ψ is typically
used (for example, both K2 and BDeu(α) are decomposable). A metric Ψ
is said decomposable if, for some function σ (and implicit data), Ψ(G) =∑n

i=1 σ(Xi,Πi), where calculation is restricted in each summand to a single
node Xi and its parents Πi. Thus, only those nodes whose Πi is changed by
the operator need to be updated. To illustrate, the change in score attributed
to a particular (valid) move deleting X → Y in Ḡ (and leading to some H̄)
can be expressed as Ψ(H̄) − Ψ(Ḡ) = σ(Y, Λ1) − σ(Y, Λ2), where Λ1 ⊂ X is
the set of nodes connected to Y (with either a directed or undirected arc),
and Λ2 = Λ1∪{X}. Similar or slightly more complex expressions hold for the
remaining operators.

While the six operators are all local in principle, there may be “cascading”
implications in some moves. For example, as seen in Figure 1, DeleteD and
ReverseD may make other directed arcs undirected. Or, after applying MakeV,
many arcs may switch from undirected to directed. Hence, it is difficult to
predict the behavior of the tentative graphs produced along the way, and
indeed surprises may arise in some cases, see [15] and below. In practice, we
find the outcome H̄ = ω(Ḡ) by applying two key algorithms in turn [11]. We
first use the PDAG-to-DAG routine to extract a member DAG H from the
raw result of the mutation, say H̄r. If no such H can be found, the intended
mutation is not valid (the PDAG can not be completed; a compact validity test
is provided for each operator to prevent unnecessary computations). Otherwise
we call the DAG-to-CPDAG routine (with input this H) to determine the
resulting (validated) H̄. As discussed below, these two routines can be used in
reverse order to move within the same equivalence class in a random way (we
have included a stochastic component in the PDAG-to-DAG routine, namely,
the order in which the nodes will be traversed so as to assign directionality to
undirected arcs).
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Fig. 1. Operators for traversing e-space.

2.2 Inclusion-Driven Learning

Castelo and Kočka [9] and others argue that traversal operators which respect
the inclusion boundary (IB) condition or principle have appealing theoretical
properties. Briefly, if the true distribution generating the data can be ex-
pressed as a BN model, and if certain reasonable assumptions concerning the
score function are made, then, in the long run (for large sample size N) we
are guaranteed to reach the target model when we use traversal operators
that verify this principle. A traversal operator respects the IB condition if
the neighborhood associated to a given G always contains its IB, say IB(G).
The IB(G) collection of models contains all those “immediately next” to G
in a precise distributional sense. The bottom line is that traversal operators
should be designed so that they possibly visit any “sufficiently close neighbor”
in this sense. On this matter, the standard NR and AR (No and All Reversals



198 Jorge Muruzábal and Carlos Cotta

respectively) neighborhoods are a primary reference. In the case of NR, only
the usual InsertD (Insert directed arc at a random valid location, that
is, wherever the insertion does not form a cycle) and the similarly defined
DeleteD operators are allowed, whereas AR incorporates also ReverseD. Nat-
ural questions are: How well do the basic NR and AR neighborhoods do with
regard to the IB condition? Can we find a traversal operator whose neigh-
borhood coincides exactly with IB(G)? If so, how much should IB(G) be
augmented (if at all)?

The answer to the second question is given by the particular neighborhood
ENR (Equivalence class-based NR jump), see e.g. [9]. For a given G, this con-
sists of the union of all DAGs that belong to the standard NR neighborhood
of G together with all DAGs that belong to the same neighborhood of all
other H ∈ [G]. The idea in the implicit intra-class navigation is that certain
areas of [G] may be closer to some intermediate equivalence classes of interest
than others. A tentative improvement over ENR is provided by the ENCR
neighborhood [9]. This is defined just like ENR, except now the ReverseD
operator is allowed and restricted to non-covered arcs. A given arc Y → X is
said to be covered in the DAG G if ΠX = {Y } ∪ΠY holds. In other words,
if there exists another arc Z → X then Z → Y must also exist (and vice
versa). Hence, a covered Y → X can not be part of any v-structure. It follows
that the reversal of a covered arc does not change neither the skeleton nor the
number of v-structures. Therefore, non-covered arc reversals are guaranteed
to leave the current equivalence class.

Of course ENR encompasses a huge number of graphs and hence needs to
be simulated by a random walk or otherwise. Given a DAG G, we can move
within [G] by iterated (random) covered arc reversal. Let r the number of calls
to be made for each move. It is argued in [9] that r need not be very large
because equivalence classes contain an average of less than four DAGs [21]. In
practice, the algorithms will need to handle (DAGs from) equivalence classes
close to the target. Hence, if the target equivalence class is believed to be
large, then r may need to be larger. In any case, once the r stipulated random
reversals have taken place, the resulting structure is modified according to the
standard NR (implementing ENR) or whatever neighborhood is implied by
the traversal operators (implementing also ENCR).

Note that there exist other learning algorithms which also respect the IB
condition. These include the GES algorithm proposed by Chickering [12] (a
fully greedy algorithm which begins with an empty graph) and the KES gen-
eralization considered by Nielsen et al. [36]. Furthermore, complying Markov
Chain Monte Carlo (MCMC) algorithms can also be devised [9]. We believe
that our current EP approach is likely to cooperate effectively along these
alternative lines too, see the concluding section.
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3 Evolutionary Approaches to Network Induction

Several evolutionary algorithms have been proposed for the present graphical
model induction task. The seminal paper by Larrañaga et al. [31] presents the
first genetic algorithm (GA) in b-space, see also [41]. The parallel paper by
Larrañaga and coworkers [29] examines the role of the GA when restricted
to explore the space of topological orderings (essentially permutations) of the
variables. A popular heuristic algorithm like K2 [13] takes one such topological
order as input and returns a fitted BN that respects that order.

More recent work in the area by this research team involves the so-called
Estimation of Distribution Algorithms, see e.g. [7]. Evolutionary algorithms
of this sort replace crossover with sampling from a model fitted to the best
individuals in the current population [39; 30]. Model distributions here refer in
principle to the space of DAGs; hence, they must remain relatively simple to
be tractable. For example, it is not uncommon to model univariate (marginal)
arc behavior or simple arc-to-arc dependencies. It follows that graphs sampled
from these models may include cycles and thus need repairing [7].

Wong et al. [44] use an EP approach that aims to enjoy the advantages of
both the prior testing and the score-and-search approaches mentioned earlier.
They preprocess the data and use the standard Mutual Independence measure
to compute a matrix that evaluates the strength of every possible arc in the
emerging DAG. Mutation operators include the classical operators considered
here as well as other, less frequent operators. These operators are sensitive to
the MI information, in the sense that, for instance, the weakest arc is more
likely to be deleted when the deletion operator is called and so on. This bias
acts in the same way throughout the run. Note that the MI measure can only
capture the value of a given arc taken in isolation. In actual learning runs,
however, we should find that the value of a given arc Y → X depends more
naturally on whether and which other arc(s) Z → X are concurrent. In fact,
it has been pointed out that the offspring produced by this so-called MDLEP
method are often worse than their parents [46]. We shall explicitly consider
this improvement rate in our experiments below.

Harwood and Scheines [23] propose an annealed GA to search over the
space of equivalence classes of DAGs or e-space. These authors provide a
good discussion of the pros and cons of the various strategies available for
inducing networks from data. They handle the slightly different problem in
which variables are continuous and linear local regressions are computed at
each node so as to provide arcs with a certain coefficient. These coefficients
come along with the graph and play the role of the conditional distributions θ
in the discrete setting. Harwood and Scheines suggest to improve the standard
evolutionary process by adding an annealing scheme that slowly increases the
penalty for complex models in the fitness function (so that the system works
initially with relatively dense networks). They further prune the search space
along the run by permanently banning adjacencies from future consideration
if these adjacencies become extinct in the current population. Harwood and
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Scheines also tackle the issue of dealing with relatively few data (compared
to the number of available variables, N # n).

Cotta and Muruzábal [14] propose various crossover operators in b-space.
Their approach is based on preventing the formation of cycles (to avoid the
costly repairing, see [16]). It also involves a (surrogate of) the conditional
mutual independence measure, which assesses the value of arcs in the context
of their relevant parent sets Π in the parent DAGs. This measure is used to
rank the goodness of the various arcs possibly transmitted from parents to
offspring. The proposed crossover operators exploit this information in various
ways making important arcs more likely to be transmitted from parent to
offspring DAGs. Cotta and Muruzábal also suggest that respectful strategies
(transmitting routinely all arcs shared by both parent DAGs) might prove
advantageous to crossover operators in this setting.

Wong and Leung [46] present the hybrid evolutionary algorithm HEA.
Their HEA is based on the so-called merge operator, a parent-set-based ver-
sion of crossover. Given two parent DAG structures, merge chooses the parent
set Πi of variable i in the offspring from the corresponding Πi in the parent
DAGs, with the goal that offspring exhibit better overall scores than their
progenitors. HEA is also based on cycle-prevention. The merge operator is
given priority over the mutation operators used in [44] since it exhibits several
desirable properties, most notably, that score information related to conserved
Πi can be reused economically.

Van Dijk and Thierens [43] recognize the potential gain provided by the
PDAG-based non-redundant encoding and discuss a GA that allows searching
in e-space. They point out that the standard DAG representation may jeo-
pordize the fusion of useful building blocks and thus lead to a poor crossover
operator in general. However, in their implementation PDAGs are instantiated
as DAGs prior to crossover; then the DAG offspring are cleaned up (cycles
are broken) and reinserted as PDAGs. Van Dijk and Thierens [43] dismiss
the framework of Chickering [11] (adopted here) arguing that this “requires
a more complicated implementation and is only of practical interest”. While
they also acknowledge the computational cost of the numerous DAG-to-PDAG
and CPDAG-to-DAG calls in their proposal, the type of neighborhood imple-
mented by the set of traversal (and/or crossover) operators is crucial for our
score-and-search algorithms to be able to escape local optima.

Another type of parent-set-based evolutionary algorithm has been pro-
posed by Wong et al. [45], namely the cooperative co-evolutionary GA or
CCGA. This builds upon the two-phase approach discussed earlier [44], so
that the search space is constrained by the “verified assertions” made in
the prior testing phase. The idea is then to search (separately) over the
space of parent configurations Πi in each case. The maximum size of Π is
kept limited throughout. The optimal parent sets for the different variables
(species) are assembled together to form the final complete DAGs (again,
some postprocessing may be needed for cycle removal). The fitness measure
for the individual search processes does include a component that evaluates the
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degree of cooperation of tentative Πi. This component is based on the scores
of the “collaborative structures” assembled from good representatives of each
species along the way. Similar ideas have been known for a while in the wider
evolutionary context, see e.g. [34].

To summarize, evolutionary approaches have flourished in recent years for
the graph induction problem. These algorithms can be tailored to deal with
this problem in various ways, and a host of ideas frequently found useful
are brought to play to our advantage. However, no conclusive assessment has
been reached yet, so more detailed comparative work and benchmarking are
in order.

4 Evolutionary Search Landscapes
for Optimal Network Induction

In this section we review the details of our evolutionary algorithms. We first
review EPQ in e-space, then continue with EPNR and EPAR in b-space. It
is useful to begin by describing the common skeleton in these EP algorithms.

4.1 Standard EP Setting

The common steps in our algorithms are the following: (i) we begin with
a population of P randomly initialized graphs and we evaluate them using
the fitness or scoring metric Ψ . (ii) At each generation, P members of the
current population are selected by means of binary tournament (two graphs
are randomly drawn and the highest score wins). (iii) Each selected graph may
be preprocessed. (iv) Either the original or the preprocessed graph is mutated
once by selecting an operator ω from the available battery Ξ according to
some distribution Ω, and applying it at a random (valid) entry point in the
target graph. (v) All P mutated graphs are (locally) evaluated and stored.
(vi) Finally, the best P out of the 2P available structures at this point are
selected for the next generation, the remaining P are discarded and a new
iteration takes place.

The probability distribution Ω over the battery Ξ may be fixed in evolu-
tionary time, or it may be dynamic (in various ways). At the moment, we use
a stationary, uniform Ω throughout the process and for all individuals.

Initialization of DAG structures can be pursued either in a purely random
way or heuristically. In the first case, we have devised a simple randomization
routine in which parameter δ ∈ [0, 1] controls the arc density of the resulting
graph. More sophisticated approaches to uniformly distributed DAG genera-
tion exist, see e.g. [27]. In the second case, the K2 heuristic is used, taking
a random permutation of the variables as seed. The process is further con-
trolled by πmax, the maximum number of parents allowed per variable. Note
that this limit is set only on the initial structures, it is not enforced along the
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run. Initial (valid) PDAGs are easily generated from random DAGs by using
the DAG-to-CPDAG routine mentioned in Section 2.1.

4.2 Neighborhoods in E-Space and B-Space

No preprocessing is carried out in the case of EPQ. The particular neighbor-
hood used here does not quite contain the target ENR (although it typically
contains many other DAGs), so EPQ does not really enjoy the convergence
property discussed in Section 2.2. Recall that the operators analyzed in [11]
are InsertU, DeleteU, InsertD, DeleteD, ReverseD and MakeV. It was shown
in [35] that all operators are needed for best performance, so we allow all in
Ξ here. Recall also that all of them change the current equivalence class and
all can be scored efficiently.

Note that some operators may not find a suitable entry point in the selected
CPDAG and hence may become non-applicable (in which case a different op-
erator should be selected etc.). If, on the other hand, one or more appropriate
entry points can be found for the selected ω, then the operator is tentatively
applied at a randomly selected point. If the mutated CPDAG H̄ =ω(Ḡ) passes
the corresponding validity test, it is incorporated to the offspring population.
We track the success ratio of each operator ε = ε(ω) during the replacement
stage, i.e., the number of CPDAGs that ω produced and made it to the next
population.

We now continue with our EP algorithms in b-space, EPNR and EPAR.
Note that preprocessing of a selected DAG G refers to the navigation within
the class [G] containing G. As explained in Section 2.2, this navigation is
achieved via a series of covered arc reversals.

Castelo and Kočka [9] discuss implementations of the ENR, ENCR and
other neighborhoods. They refer to the version covering ENR as RCARNRr
(for r Repeated Covered Arc Reversals followed by a NR jump); it goes hand
by hand with our EPNR(r) algorithm. As noted above, ENCR is simulated
similarly and the corresponding algorithm is denoted as RCARRr. We adopt
below a simpler implementation of ENCR allowing all arc reversals, which we
call EPAR(r). The case r = 0 (no navigation at all) transforms radically the
associated neighborhoods, with the result that the theoretical support is lost
[9]. However, we still consider EPNR(0) (equal, of course, to the standard NR)
and EPAR(0) for the sake of reference. We also consider the case in which
all navigation steps are collapsed into two as follows: firstly DAG-to-CPDAG
is applied to G to obtain Ḡ; then, PDAG-to-DAG is used on Ḡ to extract
another DAG H ∈ [G]. This scheme is denoted as r = ∞. It had not been
proposed previously, although we feel it is a natural competitor for the r > 0
alternatives [35].
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5 Experiments and Results

The algorithms described above have been deployed on two conspicuous net-
works: ALARM –a 37-variable network for monitoring patients in intensive
care [4]– and INSURANCE –a 27-variable network for evaluating car insur-
ance risks [6]. The equivalence class [ALARM] is represented by a CPDAG
with 4 undirected and 42 directed arcs. As to [INSURANCE], it is a larger
and denser equivalence class, represented by a CPDAG with 18 undirected
arcs and 34 directed arcs. In both cases, a training set of N = 10, 000 exam-
ples was created once by random probabilistic sampling as customary. The
BDeu(α = 1) metric Ψ(G|D, α) = log P (D|G) is the fitness function (to be
maximized). Previous work [35] indicates that this setting α = 1 provides
the best results (fake dependencies abound for larger values of α, whereas for
lower values some true dependencies are lost).

All experiments have been performed using a population size of P = 100
individuals. The termination criterion is reaching a number of 500 genera-
tions, i.e., 50,000 networks generated. Such a termination criterion follows the
common practice in evolutionary computation, where fitness computation is
the basic cost unit. Nevertheless, this particular application has a distinctive
feature: the goodness of a generated structure is not calculated from scratch,
but by means of local evaluations (recall the decomposability of our fitness
function). Since the number of such local evaluations depends on the operator
and on the value of r, we have monitored the accumulated number of local
evaluations across the run, to obtain another –possibly more representative–
figure of cost. Two different initialization settings have been considered: ran-
dom initialization using density value δ = 0.05, and K2 initialization with
maximum number of parents per variable πmax = 2.

The results are shown in Figure 2. Notice firstly the results of EPNR(0).
These are remarkably inferior to those of any EPNR(r > 0) for both networks.
This confirms the limitations of the basic NR neighborhood. As soon as r > 0,
there is a sharp performance improvement. This improvement clearly supports
the usefulness (for this particular neighborhood) of intra-class navigation, for
it increases the connectivity of the search space (and hence decreases the
number of local optima). This is also true for EPAR, although the difference
among the several values of r is not so large in this case. The effect of using
the denser AR neighborhood is here dominant. Indeed, by taking r > 0 new
paths in b-space are possible, although the enhanced inter-class navigation
capability offered by ReverseD remains the prime feature (as it can be noted
by comparing the behavior of EPAR(0) with that of EPNR(r)). Actually, the
performance of EPAR(r) is always superior to that of its EPNR(r) counter-
part. EPQ is also better than EPNR(0) and tends to perform similarly to
EPAR. Since the connectivity in e-space is very rich, it is worth investigating
which operators are most useful.

As can be seen in Figure 3, there exists naturally a general decreasing
trend in success rates (improvements are less frequent in the latter stages of
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Fig. 2. Results by the proposed EP algorithms (each boxplot summarizes ten runs).
(Top) Random initialization (bottom) Heuristic initialization. For each value of r,
the left boxplot corresponds to EPNR, and the right one to EPAR. Notice the use
of different scales in each plot.

the run). Also for this reason, lower success levels are obtained when using
heuristic initialization (the algorithm performs its run at a higher fitness level).
The different decreasing rates shed some light on the relative contribution
of operators. In particular, note that the undirected-arc-based, “brick and
mortar” operators InsertU and MakeV tend to maintain the highest success
ratios by the end of the run. The injection of v-structures appears thus crucial
for balancing the adequate proportion of directed and undirected arcs. Indeed,
if MakeV were removed from the set of available operators, directed arcs would
begin to vanish very quickly [35]. On the other hand, DeleteD, ReverseD and
DeleteU are the ultimately least useful.

This overall success picture may suggest the following EPQ dynamics. It
appears that the typical behavior of this algorithm is to first trim massively
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Fig. 3. Mean success ratio (averaged for ten runs) of e-space operators when using
random initialization (two upper rows) and heuristic initialization (two lower rows).
Results correspond to the ALARM network.
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Fig. 4. Mean success ratio (averaged for ten runs) of b-space operators when using
random initialization (upper row) and heuristic initialization (lower row). Results
correspond to the ALARM network.

all irrelevant arcs, ending up with a relatively small structure with mostly
undirected arcs. As the structure grows from this basis, some useful set of both
compelled and reversible arcs is secured. Tentative directionality is assigned by
MakeV and a higher number of sensible directed arcs and v-structures emerge
over time.

It must also be noted that ReverseD plays an important role in helping
the networks size down appropriately, as indicated by the denser networks
obtained when this operator is removed [35]. This important role is also clear
in the case of traversing b-space –see Figure 4– where its removal results in
handicapped search capabilities as indicated by the poor results of EPNR
with respect to EPAR.

Tables 1 and 2 show the structural properties of the networks evolved using
heuristic initialization. Two facts must be highlighted: firstly, the number of
recovered arcs (in the true equivalence class) is always bigger for EPAR; also,
networks tend there to be smaller (like in the case of EPQ). The best run for
ALARM recovers all but one of the arcs. For INSURANCE, the best network
has a Hamming distance of 11 with respect to the original one. From an
absolute point of view, the quality of these results is high, and comparable to
the state-of-the-art.

A final comment must be done regarding the somewhat hidden cost of
performing intra-class navigation, namely the fact that local score-updates
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Table 1. Structure of the networks generated by EPNR and EPAR using heuristic
initialization (averaged for ten runs). From left to right in each case: number of
recovered undirected arcs, number of recovered directed arcs, and total number of
arcs.

EPNR EPAR
ALARM INSURANCE ALARM INSURANCE

r SU SD narcs SU SD narcs SU SD narcs SU SD narcs

0 2.4 17.8 66.0 4.9 15.4 53.3 3.8 32.8 50.2 6.4 24.5 47.5
2 3.4 34.1 50.9 7.3 23.6 48.5 3.7 38.5 48.5 7.4 25.9 46.7
4 3.4 35.3 51.9 6.0 25.6 47.4 3.9 38.0 48.0 9.9 27.2 46.6
7 3.2 34.2 52.7 5.9 23.8 48.0 4.0 39.4 46.7 9.4 27.9 46.2
10 3.0 34.6 54.0 8.3 24.5 47.3 4.0 40.5 46.3 10.0 28.2 46.2
∞ 3.0 32.4 53.6 6.9 23.7 48.1 3.8 35.0 48.7 7.9 25.9 46.7

Table 2. Structure of the networks generated by EPQ using heuristic initialization
(averaged for ten runs). Interpretation is as before.

ALARM INSURANCE
SU SD narcs SU SD narcs

4.0 36.4 48.0 10.6 27.0 46.4

are required whenever a covered arc is reversed. Recall that, while the sum
of local scores

∑
σ(Xi,Πi) would remain unchanged, the inner terms would

change. That is, when reversing the covered arc Xi → Xj we would have

σ(Xi,Πi) + σ(Xj ,Πj) = σ(Xi,Πi ∪ {Xj}) + σ(Xj ,Πj \ {Xi}) , (1)

but each summand would be different in general (and hence they need being
computed in order to keep the consistency of the overall score, see [40] for a
related argument). Figure 5 shows the evolution of fitness for the first 70,000
such local evaluations. It turns out that EPAR(0) provides the best tradeoff
between computational cost and quality achieved. The difference is remarkable
for ALARM; in the case of INSURANCE, EPAR(∞) manages to catch up with
EPAR(0) at around 60,000 local evaluations. The remaining settings of r result
in slower convergence. Slightly better networks may be attained at the end
of the run, but each new network generated required a larger computational
effort.

6 Conclusions, Discussion, and Future Work

We have considered a variety of EP algorithms for learning Bayesian Net-
work graph structures from data. Our primary aim has been to investigate
the role of intra-class navigation in the enhanced AR and NR neighborhoods,
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Fig. 5. Evolution of fitness in EPAR as a function of the number of local evaluations.
(Right) ALARM (left) INSURANCE.

and the adequacy of the corresponding fitness landscapes for evolutionary
exploration. We have reproduced and confirmed in this new context previ-
ously reported phenomena such as the poor performance of EPNR(0) and the
usefulness of intra-class navigation in this case. Our assessment of the behav-
ior of EPAR indicates that the inter-class navigation capability featured by
ReverseD dominates the situation though. Furthermore, the extra cost due to
intra-class navigation needs to be taken into account. As a result, it might be
profitable to disable this latter feature when using the enhanced AR neigh-
borhood, at least during the initial stages of evolution. After all, it is only in
the latter stages of the run when the algorithm is more likely to be in a local
optimum (or in the basin of attraction thereof), and the increased connectiv-
ity provided by covered arc reversals may be more useful. In earlier stages, the
benefit would be probably overcome by its associated computational cost. A
related computational concern refers to r, the number of covered arc reversals
made at each step. Precisely because there appears to be some uncertainty
about the best values for this parameter, we believe that the use of an adap-
tive (or even self-adaptive [5]) scheme for varying r across the run may be
highly interesting. This is a line for future developments.

There is also a huge potential for exploiting phenotypic information in this
context. Our current operators are essentially genotypic (all decisions are fully
randomized), and hence blind to quality. The usage of such information can
have a positive effect in the convergence properties of the learning algorithms
[14]. Confirming the results obtained in this work for these phenotypic opera-
tors, and indeed inquiring about their limits with respect to the IB condition,
is another appealing line of work.

Another interesting approach mimics the chain irreducibility requirement
in MCMC algorithms [33; 20]. MCMC algorithms constitute a major reference
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for EP and other evolutionary algorithms in the graphical model induction
arena [32; 22]. The reason is perhaps best seen by noticing that, in the
multiple-chain case, valid jump proposal distributions can be advantageously
based on information from several individuals (chains), see e.g. [26]. The idea
is then close to the recombination aim of GA-based algorithms. It may be
suspected that insights provided in either area can transfer profitably to the
other. Specifically, to encompass the basic ENR neighborhood in our simula-
tion, we can use algorithms that behave like EPNR with probability p < 1
only, jumping to e-space and following (selected operators in) EPQ with prob-
ability 1 − p. Perhaps the most useful operators InsertU and MakeV should
be given priority here, at least for the various initialization methods that we
have implemented. Again, parameter p can vary along the evolutionary run.

Switching to more practical matters, it is often acknowledged that, for the
purpose of data mining, not one but several good candidate graphs will have
to be produced. The idea is to first train a diverse set of BN models, then
isolate recurring features in these models. The significance of these features
(not only single edges but also more complex constructs like Markov blan-
kets, see below) can be assessed reliably, see e.g. [38]. This problem seems
also particularly prone to benefit from an evolutionary approach, since many
techniques have been proposed to maintain diversity in the population [17]. In
[28], for example, speciation based on the so-called fitness-sharing technique
is enforced in b-space. The basic similarity measure between DAGs is based
on the number of recovered, reversed and missing arcs. Several representa-
tive models are extracted from the final population, and these models are
combined leading to more robust predictions.

Finally, it has been argued sometimes that, when the main goal is feature
extraction and classification, Markov blanket learning may be more appro-
priate (perhaps the only hope for scalability in some cases) than full BN
learning. Given a DAG G, the Markov blanket (or boundary, MB) of a given
variable X (with respect to G), say MB(X), is defined as the union of all
X’s parents, all X’s children, and all parents of X’s children. It is always the
case that X is conditionally independent of all other variables given MB(X).
Thus, if explaining and predicting the behavior of X is the primary concern,
then the graphical substructure depicting the dependencies between X and
variables in its MB is all we care about. This observation simplifies the prob-
lem considerably. For examples of techniques capable of searching for MB
directly and critical reviews of the literature on this subject, see the recent
contributions [3] and [37]. The authors of the latter paper also argue that,
conversely, full BN learning can be greatly facilitated by learning first each
MB separately. In a similar vein, Riggelsen [40] has recently suggested that a
MB-based MCMC approach improves upon the more usual, single-arc-based
variants. These ideas appear indeed likely to continue to play an important
role in future developments in the area.
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[30] P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms.
A New Tool for Evolutionary Computation. Kluwer Academic, 2002.
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[41] B. Sierra and P. Larrañaga. Predicting survival in malignant skin
melanoma using Bayesian Networks automatically induced by Genetic
Algorithms. an empirical comparison between different approaches. Ar-
tificial Intelligence in Medicine, 142:215–230, 1998.
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Summary. In this paper we present an approximation to the mutual information
between a single variable and a set of variables. The main aim of our approach is to
reduce the amount of sufficient statistics (i.e. frequency counts) required to calcu-
late the mutual information. To do so, we use the chain rule and assume different
independence statements between variables. We will use our approximation to cal-
culate the MDL of a given Bayesian network. We will show that our approximated
approach to the MDL measure is score equivalent and we will use it in order to learn
Bayesian networks from data. We will experimentally see that learning algorithms
that use our approach obtain high quality Bayesian networks. We also note that our
approach can be used in any information based measures.

1 Introduction

We will present, in this work, an approximation to the mutual information,
I(X;Y ) =

∑
XY P (XY ) log P (XY )/P (X)P (Y ), between a single variable Y

and a set of variables X that avoids estimating, from data, joint probabilities
of large set of variables. We will use our approach to calculate the MDL score
and learn Bayesian networks.

It is widely reported in the statistical pattern recognition literature, see [1],
that the performance of a classifier depends on the interrelationship between
sample sizes, number of features, and classifier complexity. It has been often
observed in practice that adding variables to a classifier may actually degrade
its performance if the number of data instances that are used to learn the
classifier is small relative to the number of variables. This is known as the
peaking phenomenon which is a consequence of the curse of dimensionality
[1], usually stated as follows: in order to estimate a joint probability, the
number of required data instances grows exponentially with the number of
variables. This is due to the fact that the required number of parameters in
order to estimate a joint probability distribution grows exponentially with the
number of variables, i.e the number of counts of a contingency table. This is
also illustrated by Hastie et al. [2], when they state that the sampling density
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is proportional to N1/p, where p is the number of variables and N is the
sample size. Thus, if N1 = 100 represents a dense sample for a single input
problem, then N10 = 10010 is the sample size required for the same sampling
density with 10 inputs. Thus in high dimensions all feasible training samples
sparsely populate the input space.

The main aim of our approach is to reduce the memory required to store
sufficient statistics. This is very important in some learning environments. In
incremental environments, where new data are processed as long as they are
available without re-processing the previously learned ones, it is required to
store all the sufficient statistics [3]. In these sort of environments, in order
to scale up learning algorithms, it is very important to reduce the amount of
sufficient statistics required.

Also algorithms that learn from very large data streams, see [4], can ben-
efit from our approach. In this environment, learning algorithms attempt to
minimize the number of data instances used to produce the model. For doing
so, algorithms iteratively learn models increasing the number of data instances
used and stop when they observe that the model quality does not grow when
additional data is used. Some works, like Meek et al. [5], observe that to gather
the number of data to be used it suffices to use an approximated algorithm
that is cheap in computing time, and to learn the final model with the full
learning algorithm using the appropriate number of data instances.

In this paper, we will use the chain rule to obtain another expression for the
mutual information that has two desirable properties. Firstly, the expression
is incremental in the number of variables, that is, we will be able to express
the mutual information when a new variable Z is added to the set of variables
X as the mutual information between Y and X plus the information due to
the variable Z. Secondly, the obtained expression will allow us to drastically
reduce the number of variables considered at each term but still take into
account all the relationships between pairs of variables in X and variable Y .
The first property is useful for Bayesian network learning since algorithms
build networks from arc-less structures by incrementally adding variables to
the sets of parents.

The rest of the paper is organized as follows. In the rest of this section we
introduce Bayesian networks and a well-known learning algorithm. We also
introduce the MDL based quality measure for Bayesian networks that uses the
mutual information between a variable Xi and the set of its parents Pai. In
Section 2, we will use the chain rule to obtain the above mentioned expression
for the mutual information. In Section 3, we will introduce the approximated
mutual information and compare it to the exact one. In Section 4, we will use
our approach to obtain an approximated MDL measure and we will show that
it is score equivalent. In Section 5 we will study the error introduced by our
approximation and how it may affect learning Bayesian networks. Finally, we
give some experimental results.
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1.1 Learning Bayesian Networks

A Bayesian network is an annotated directed acyclic graph that encodes a joint
probability distribution of a set of random variables X = {X1, . . . , Xn} each
of which has a domain of possible values. Formally, a Bayesian network for X
is a pair BN = (BS , BP ) where the first component, BS , is a directed acyclic
graph (DAG) whose vertexes correspond to the random variables X1, . . . , Xn,
and whose edges represent directed dependencies between variables. The par-
ents of Xi, denoted as Pai, is the set of variables with an arc to Xi in the
graph. The model structure yields to a factorization of the joint probability
distribution for X, P (X) =

∏n
i=1 P (Xi|Pai). The structure, BS , encodes a

set of independence statements I(BS) that can be read using the notion of
d-separation. We will say that, in a network structure BS , the sets of variables
X and Y are independent given the set Z, (X ⊥ Y|Z) ∈ I(BS), if X and Y
are d-separated given Z. In order to define d-separation we need to classify the
connections between different sets of variables into three categories:

• Serial connection X → Y → Z , or Markov chain, where a variable
X has an influence to a variable Y which in turn has an influence to a
variable Z

• Converging connection X → Y ← Z, or V-structure, where variables
X and Z have and influence to Y

• Diverging connection X ← Y → Z, where Y has an influence to both
X and Z.

Definition 1. Let X, Y and Z be three sets of variables in BS. We say that
X and Y are d-separated given Z if for all paths between any node X ∈ X
and Y ∈ Y there is an intermediate variable Z ∈ Z such that either the
connection is serial or diverging and the state of Z is known; or the connection
is converging and neither Z nor any of Z’s descendants have received evidence.

The second component of a Bayesian network, BP , represents the parame-
ters that quantifies the network. It has a parameter θijk = P (Xi = xk

i |Pai =
paj

i ) for each possible state xk
i of Xi and for each configuration paj

i of Pai.
Most of the learning algorithms found in the literature are hill-climbing

searchers that begin with the arc-less network and perform the operator that
most increases the score of the resulting structure and does not introduce a
cycle into the network. Algorithms stop when the use of a single operator
cannot increase the network’s score. The most common operators are add,
delete and reverse a single arc. The difference between the algorithms is the
domain of models and the operators they use. For our experiments we will
use algorithm B [6] that yields full DAG structures and the neighborhood of
a given network structure, BS , is the set of all networks that can be obtained
from BS by adding a single arc Xi → Xj to BS such that does not introduce
a cycle,

NH(BS) = {(X, E′)|E′ = E ∪ {(Xi, Xj)} ∧ (Xi, Xj) �∈ E ∧B′
S is a DAG}
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In order to measure the quality of the alternative structures we will use
the MDL quality measure that we explain in the following subsection.

1.2 MDL Scoring Function

MDL approach to scoring functions for Bayesian networks is based on the idea
that the best model of a database is the model that minimizes the sum of the
encoding length of the model plus the encoding length of the data given the
model, MDL(B|D) = K(B)+DL(D|B). Friedman et al. [7] used − log PB(u)
the encoding length of each instance u, and obtained the following expression
for the encoding length, DL(D|B), of the whole dataset D given the Bayesian
network B,

DL(D|B) = −
N∑

j=1

log PB(uj) (1)

where N is the number of data instances in D. Now, if we sum over the
different possible instances u and we denote ND(u) as the number of instances
equal to u in the dataset D, we obtain

DL(D|B) = −
∑

u

N(u) log
∏

i=1

P (xi|pai)

−
∑

i

∑

xi,pai

ND(xi,pai) log P (xi|pai) (2)

Now, using standard arguments, we note that the parameters values that
minimize this expression are θxi|pai

= P̂ (xi|pai), that is, we need to compute
the appropriate fractions from data. We can re-write this expression in a
more convenient way in terms of conditional entropy: NH(Xi|Pai), where
H(X|Y ) = −

∑
x,y P (x, y)logP (x|y) is the conditional entropy of X given Y .

So, following again [7], we can re-write the expression above (Equation 2) as

DL(D|B) = N
n∑

i=1

H(Xi|Pai) = N [
n∑

i

H(Xi)− I(Xi;Pai)] (3)

where n is the number of variables, H(X) = −P (X) log P (X) is the entropy
of variable X and I(X;Y ) is the mutual information between variables X
and Y . Note, that term H(Xi) in Equation 3 does not depend on the net-
work structure and therefore to minimize DL(D|B) we only need to maximize
I(Xi;Pai). Lam and Bacchus [8] took the Kullback-Leibler divergence as a
measure of the encoding length of the data given the Bayesian network. They
observed that the Kullback-Leibler divergence is a monotonically decreasing
function of

∑n
i I(Xi;Pai) arriving to a similar expression.

The encoding length of the network structure is usually expressed as the
total number of parameters that we need to store for the network. Note that
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for each variable Xi we need to store |Pai|(|Xi|− 1) parameters. The number
of bits used for each of these parameters is usually taken to be 1/2 log N , and
so, the encoding length, K(B), for the whole Bayesian network structure is

K(B) =
1
2

log N

n∑

i=1

|Pai|(|Xi| − 1)

Note that the MDL measure is factored, or equivalently, the sum property
holds. That is, the encoding length of the whole Bayesian network is expressed
as the sum of the encoding length of each variable and its parent set.

MDL(B|D) =
n∑

i=1

MDL(Xi,Pai)

This property if very important for learning algorithms since it localizes the
score effect of an addition (or removal) of an arc to the families affected (i.e. a
variable and its parent set). This property also holds for the Bayesian approach
to quality measures [9].

Another property that is usually required for scoring measures is that they
give the same quality score to Bayesian network structures that are equivalent,
that is, structures that define the same probability distribution, or in other
words, network structures that state the same set of (in)dependencies between
variables. When this property holds for a given quality measure it is said to
be score equivalent. Note that the MDL approach to quality functions is score
equivalent [10].

2 Incremental Mutual Information

The mutual information I(X;Y ) and the joint entropy H(X, Y ) can be incre-
mentally expressed using the chain rule [11]. Let X(n) = {X1, X2, . . . , Xn},

I(X(n);Y ) = I(X1;Y ) + I(X2;Y |X1) + · · ·+ I(Xn;Y |X(n−1))

which can be expressed as

I(X(n);Y ) = I(X1;Y ) +
n∑

i=2

I(Xi;Y |X(i−1)) (4)

Note that this expression is incremental in the number of variables, that
is, when a new variable, Z, is added to a set of variables, X, we can express
the mutual information as

I(X(n)Z;Y ) = I(X(n);Y ) + I(Z;Y |X(n)) (5)
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Now we will further decompose the mutual information using the following
identity I(X;Y |Z) = I(X;Y ) + I(X;Z|Y ) − I(X;Z) and reordering terms,
from Equation (4) we obtain

I(X(n);Y ) =
n∑

i=1

I(Xi;Y )

+
n−1∑

i=2

I(X(i−1);Xi|Y ) + I(X(n−1);Xn|Y ) (6)

+
n−1∑

i=2

−I(X(i−1);Xi)− I(X(n−1);Xn) (7)

Using the chain rule and the identity stated above to the last two terms
(6 and 7) of the former equation, we obtain

I(X(n);Y ) =
n∑

i=1

I(Xi;Y ) +
n−1∑

i=1

[I(Xi;Xn|Y )− I(Xi;Xn)]

+
n−2∑

i=2

I(X(i−1);Xi|Y Xn) + I(X(n−2);Xn−1|Y Xn)

+
n−2∑

i=2

−I(X(i−1);Xi)− I(X(n−2);Xn−1)

Performing repeatedly the same substitutions, we obtain

I(X(n);Y ) =
n∑

i=1

I(Xi;Y )

+
n∑

i=2

i−1∑

j=1

I(Xi;Xj |Y Xn . . . Xi+1)

−
n∑

i=2

i−1∑

j=1

I(Xi;Xj |Xn . . . Xi+1)

and where the incremental expression is
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I(X(n)Z;Y ) = I(X(n);Y )
+ I(Z;Y ) (8)

+
n∑

i=1

I(Z;Xi|Y Xn . . . Xi+1) (9)

−
n∑

i=1

I(Z;Xi|Xn . . . Xi+1) (10)

Let us take a look at this last expression. We can see that the contribution
to the mutual information between a set of variables X(n) and a variable Y
when a new variable, Z, is added to X(n) can be divided into three parts,
two of them positive and one negative. The first one, term (8), measures
the contribution of the new variable to the mutual information with Y . The
second one, term (9), measures the relationship between Z, X(n) and Y . The
third one, term (10), measures the relationship between Z and X(n) when
no additional information is known. This last term is negative, and roughly
speaking, it measures the amount of information Z provides with that is
already provided by the set of variables X(n).

To take a closer look let us consider the terms (9) and (10) when i = n,
I(Xn;Z|Y ) − I(Xn;Z). We note that this term may be positive or negative
[12]: when the joint probability distribution of variables forms a Markov
chain (see Figure 1 (a)), then I(Xn;Z|Y ) ≤ I(Xn;Z). Further note that, in
this case, I(Xn;Z|Y ) = 0 and that I(Y ;Xn) ≥ I(Z;Xn). On the contrary,
when the joint probability distribution forms a V-structure (see Figure 1
(b)), then I(Xn;Z|Y ) ≥ I(Xn;Z), and also that I(Xn;Z|Y ) is maximum.
A typical example of this joint probability structure is The Burglar Alarm
problem [13].

So, from the considerations stated above, we can see that the contribution
of a new variable Z to the mutual information I(X(n)Z;Y ):

• The higher the mutual information between Y and the new variable Z is,
the higher its contribution to the whole mutual information, I(X(n)Z;Y ),
is. That is, the more coupled is Z to Y the more it contributes to the
mutual information.

• The more similar the joint probability distribution of X(n), Z, and Y is
to a V-structure the higher the contribution of Z to the whole mutual

ZXn

Y

Xn Y Z

(b) V−structure(a) Markov chain

Fig. 1. Joint probability distribution structures
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information is. That is, the more coupled is Z to X(n) given Y the more
Z contributes to the mutual information.

• The higher the mutual information between Z and X(n) is, the lower its
contribution to the whole mutual information is. That is the more coupled
Z is to X(n) the lower is its contribution to the mutual information since
the fewer new information it contributes with.

We also want to stress that the contribution of a variable to the mutual
information is never negative, I(X(n);Y ) ≤ I(X(n)Z;Y ) [11]. This can easily
be seen in Equation (4) where each variable contributes with a non-negative
amount since the mutual information is always non-negative. See also that
when the underlying joint probability of Z, X(n) and Y form a Markov chain
that the contribution of the variable Z to I(X(n)Z;Y ) is zero. It is easily seen
form Equation 5 since, in this case, P (Z, Y |X(n)) = P (Z|X(n))P (Y |X(n)), i.e.
Z and Y are independent given X(n).

For notational simplicity, the sum of terms (8), (9) and (10) will be noted
by ∆(Z).

3 Approximated Mutual Information

In this section we present an approximation to the mutual information. The
aim of our approximation is to drastically reduce the number of variables
involved in the joint probabilities in order to reduce the memory space used
to store the sufficient statistics.

To avoid using joint probabilities of large set of variables in the mutual
information I(X(n);Y ), we will discard conditioning the mutual information
with variables in X(n),

I(X(n); Y ) =

n∑

i=1

I(Xi; Y )

+
n∑

i=1

i−1∑

j=i+1

I(Xi; Xj |Y )

−
n∑

i=1

i−1∑

j=i+1

I(Xi; Xj)

and where the incremental expression is

I(X(n)Z; Y ) = I(X(n); Y )

+ I(Z; Y ) (11)

+
n∑

i=1

I(Z; Xi|Y ) (12)

−
n∑

i=1

I(Z; Xi) (13)
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Note that in our approximation we are calculating joint probabilities of
sets of three variables at most. This reduces the amount of sufficient statistics
(e.g. counts) used from kn+2, in the full version of the mutual information,
to k3, where k is the arity of the variables, we assume that all variables have
the same arity without loss of generality, and n+2 is the number of variables
involved: X(n), Z, Y .

Thus, we are assuming in each term i that the variable Xi is independent
of the set of variables Xn, . . . , Xi+1. Obviously terms (12) and (13) will, in
general, give different results than the corresponding terms, (9) and (10), of
the full mutual information. Observe though, that this new expression keeps
the three contributions of a new variable Z to the mutual information that
measures different aspects of the dependencies between the variables, or sets
of variables, involved.

We will note as ∆a(Z) the sum of terms (11), (12) and (13). See that
while 0 ≤ ∆(Z), it does not hold for ∆a(Z). Furthermore, observe that the
approximated measure may be either equal, greater or lower than the exact
measure. Let us analyze the error introduced in our approximated measure.
Using Equation 5 and the equality above (Equations 11, 12 and 13) we obtain

∆(Z)−∆a(Z) = I(Z;Y |X(n)) + (n− 1)I(Z;Y )−
n∑

i=1

I(Z;Y |Xi)

To show that this error can be either equal, higher or lower than zero,
consider again the case where the underlying joint probability of Z, X(n)

and Y forms a Markov chain, then ∆(Z) = 0 and ∆a(Z) = I(Z;Y ) +∑n
i=1[I(Z;Y |Xi) − I(Z;Y )] and since in this case I(Z;Y |Xi) << I(Z;Y ),

∆a(Z) =≤ 0. Here we used the equality I(Z;X|Y )− I(Z;X) = I(Z;Y |X)−
I(Z;Y ).

Let us further illustrate this fact with some examples. Take two variables,
Y and Z, with uniform probabilities over binary words of length n. Note that
since both distributions are uniform we have that H(Y ) = H(Z) = log2(2n) =
n, in other words, we need n bits to represent 2n equally probable symbols.
We will now consider different cases that will rise different values of the error.
The first two examples show two cases in which both measures are equal.

Example 1 (∆(Z) = ∆a(Z) = 0). Let Y = Z and let each variable Xi ∈ X(n)

be a copy of the i-th bit of variable Y . So, on the one hand we have that
∆(Z) = I(Z;Y |X(n)) = 0 since Z and Y are independent given X(n). And,
on the other, we have that I(Z;Y ) = H(Y ) = H(Z) = n, ∆a(Z) = (n −
1)I(Z;Y ) −

∑n
i=1 I(Z;Y |Xi) = (n − 1)n − n log2(2n−1) = 0. Note that the

mutual information between Z and Y given Xi is reduced by the single bit
provided by Xi, I(Z;Y |Xi) = n− 1. Thus, we have that ∆(Z) = ∆a(Z) = 0.
Note that Z does not provide with any new information once X(n) is known
so ∆(Z) = 0. In this case, our approximation also captures this fact and yields
the same result. We want to stress that all variables in X(n) are independent
of each other.
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Example 2 (∆(Z) = ∆a(Z) �= 0). Let Y and Z be independent variables as
before and let each variable Xi ∈ X(n) represent the logic or operator of the
i-th bits of variables Z and Y . In this case we have that ∆(Z) = ∆a(Z) since
I(Z;Y |X(n)) =

∑n
i=1 I(Z;Y |Xi). This last equality holds because H(X(n)) =∑n

i=1 H(Xi) when variables in X(n) are independent of each other.

The following two cases are similar to the ones above but now variables in
X(n) will not be independent anymore. In this two new examples our approx-
imated measure introduces an error.

Example 3 (∆(Z) = 0 ≤ ∆a(Z)). As in the first example let Y = Z, and so
I(Z;Y ) = n. Now let Xi ∈ X(n) be a variable the values of which are a copy of
all bits of variable Y but the i-th one, and so the values of Xi are represented
by n − 1 bits. As in the first example we have that ∆(Z) = I(Z;Y |X(n)) =
0, but now

∑n
i=1 I(Z;Y |Xi) = n · 1 since each Xi already provides with

information about n−1 bits of variable Y . Thereof 0 ≤ ∆a(Z) = (n−1)n−n =
n2 − 2n and the inequality holds when n ≥ 2.

Example 4 (∆(Z) �= 0 ≤ ∆a(Z)). As in the second example let Y and Z be
independent, frow where I(Z;Y ) = 0. Now let each variable Xi ∈ X(n) be a
variable the values of which represent the logical or operator of all but the
i-th bit of variables Z and Y . So the values of Xi are binary words of length
n − 1. We know that when X(n) is a function of Z and Y then I(Z;Y ) <
I(Z;Y |X(n)) (see Example 6). We also can see that Xi and X(n) share n− 1
bits and that ∀i, j ∈ [1, n], i �= j,Xi and Xj share n − 2 bits. So, we have
that I(Z;Y |Xi) is only slightly lower than I(Z;Y |X(n)) and that ∀i, j ∈
[1, n], I(Z;Y |Xi) = I(Z;Y |Xj). Thereof, we can see that I(Z;Y |X(n)) <∑n

i=1 I(Z;Y |Xi), and thus ∆(Z) < ∆a(Z)

Note that in these two last examples variables Xi ∈ X(n) are not indepen-
dent and also that ∀i, j ∈ [1, n] : i < j, I(Xi;Xj) = n − 2 since any pair of
variables will share n− 2 bits.

Unfortunately, we have not been able to give an analytical bound for the
error introduced by our approximated mutual information yet. However, since
our approximated measure assumes that variables in X(n) are independent,
the less independent they are the bigger the error will be. In Section 5 we will
study the effect of the error introduced in learning Bayesian networks.

4 Approximated MDL

In this section we will use our approximated mutual information in order
to obtain an approximated MDL measure. First we express the mutual in-
formation in an incremental way. Given a variable, Xi, and its parent set,
Pai = {Pai1, . . . , Pain}, when a new parent, Z, is added the MDL can be
expressed as
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MDL(Xi,PaiZ) =

K(Xi,Pai) + DL(D|Xi,Pai) (14)

+(
1

2
log N)|Pai|(|Xi| − 1)(|Z| − 1) (15)

−NI(Z; Xi) (16)

−N

n∑

j=1

I(Z; Paij |XiPain . . . Paij+1) (17)

+N
n∑

j=1

I(Z; Paij |Pan . . . Paij+1) (18)

Note that in this equation we state the MDL for a given variable Xi and
its parent set {Pai} ∪ {Z}. The MDL for the whole Bayesian network struc-
ture can be easily obtained summing the MDL over all variables and their
parent sets, since the MDL is factored. See that the term (14) corresponds
to MDL(Xi,Pai), term (15) corresponds to the new encoding length when
a parent is added and the last three terms, (16), (17) and (18), correspond
to −N∆(Z). Note that the MDL measure is a trade-off between Delta(Z),
which needs to be maximized, and the number of new parameters introduced.

Now we state our approximated version of the MDL using the notation
from the former section,

MDLa(Xi,PaiZ) =

K(Xi,Pai) + DLa(D|Xi,Pai) (19)

+(
1

2
log N)|Pai|(|Xi| − 1)(|Z| − 1) (20)

−NI(Z; Xi) (21)

−N

n∑

j=1

I(Z; Paij |Xi) (22)

+N
n∑

j=1

I(Z; Paij) (23)

where DLa(D|Xi,Pai) corresponds to the encoding length of data given the
network structure using our approximation to mutual information. Note again
that the last three term of the equation – (21), (22) and (23) – correspond to
−N∆a(Z).

Now we will show that our approach is score equivalent. First, we need to
define the notion of covered arc.

Definition 2. An arc, Y → X, in a network structure is covered if Pax =
Pay ∪ {Y } (see Figure 2).

Chickering et al. [10] showed that between any pair of equivalent Bayesian
networks, there exists a sequence of distinct covered arc reversals that make
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Pa1

XtXs

. . . . . . Pan

Fig. 2. Xs ← Xt is a covered arc

both structures identical. Thus, to show that a scoring function is score equiv-
alent, it suffices to see that it gives the same score to two structures that differ
in a single covered arc reversal.

Lemma 1. Let U be a set of variables, and let D be a database over U . Let
B1 and B2 be two network structures over U . Furthermore, let Xs and Xt

be two nodes in B1 and B2, where PaXs
= {Pa1, . . . , Pan} and PaXt

=
{Pa1, . . . , Pan}∪{Xs} in B1 and PaXs

= {Pa1, . . . , Pan}∪{Xt} and PaXt
=

{Pa1, . . . , Pan} in B2, and the parent sets for the rest of variables in U are
the same in both structures. Then,

MDLa(B1, D) = MDLa(B2, D)

Proof:

Since our approach measures in the same way the number of parameters of
Bayesian networks than the full approach, we only need to show that the
scoring length of the data given both structures, B1 and B2, is the same,
DL(B1, D) = DL(B2, D).

DLa(B1, D) = DLa(B2, D)
⇔
MLa(Xs, {Pa1, . . . , Pan}) + MLa(Xt, {Pa1, . . . , Pan}) + ∆a(Xs))
=
MLa(Xs, {Pa1, . . . , Pan}) + ∆a(Xt) + MLa(Xt, {Pa1, . . . , Pan})
⇔
∆a(Xs) = ∆a(Xt)
⇔

I(Xt;Xs) +
n∑

i=1

I(Xs;Pai|Xt)− I(Xs;Pai)

=
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I(Xs;Xt) +
n∑

i=1

I(Xt;Pai|Xs)− I(Xt;Pai)

⇔
∀ i ∈ [1, . . . , n] I(Xs;Pai|Xt)− I(Xs;Pai) = I(Xt;Pai|Xs)− I(Xt;Pai)
⇔

∑

XsXtPai

P (XsXtPai) log
P (XsXtPai)P (Pai)P (Xs)P (Xt)

P (PaiXt)P (XsXt)P (PaiXs)
=
∑

XsXtPai

P (XsXtPai) log
P (XsXtPai)P (Pai)P (Xs)P (Xt)

P (PaiXt)P (XsXt)P (PaiXs)

�

Once that we know that our approximated measure behaves well in the
sense that it equally scores networks that encode the same independence state-
ments, we will compare its scores with the ones of the exact MDL measure
when measures are used to learn Bayesian networks.

5 Comparing MDL and MDLa in learning Bayesian
networks

In Section 3 we have seen that the error introduced by our approximated
measure depends on the dependency degree of variables in X(n). Now, we
will analyze the effects of the error introduced by our approximated MDL in
learning Bayesian networks from data.

The fact that the MDL measure is factorized allows us to restrict our study
to a given family of variables, that is, to a variable Y and its parent set PaY .
Observe also that our measure is exact when considering sets of tree variables,
i.e. a variable and two parents. In our experiments, see Section 6 we use
algorithm B [6] that performs a greedy search. It introduces to the structure
the arc that most reduces the MDL score. Since the MDL is factored and
algorithm B tries one arc at a time we can, without lost of generality, restrict
our study to the introduction of the third parent to a given variable.

We will compare the value yield by the MDL and the MDLa when given
a variable Y with two parents, PaY = {X1, X2}, the learning algorithm
is looking for the best variable, Z, to be introduced as the third parent.
We assume that X1 is the first parent introduced by algorithm B, that is,
MDL(X1 → Y ) ≤ MDL(X2 → Y ). Note that the exact MDL measure and
the approximated one equally encode the length of the model and so the dif-
ference between them is due to the measure of the encoding length of the
data given the model. Thereof, we need to compare the contribution of a new
parent in the encoding length of data given the model. Recall that the bigger
∆(Z) or ∆a(Z) the more minimized MDL and MDLa respectively are and
the better Z is supposed to be as parent of Y when PaY = {X1, X2}. In the
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next cases we are going to compare both exact and approximated measures as-
suming different true underlying probabilities over variables. What we would
like to see is that our approximated measure never over scores, compared to
the exact measure, a variable Z that is considered to be a bad parent of Y
and that it never under scores a variable that is considered to be a good one.

Case 1:

The network structure shown in Figure 3 (Case 1) encodes the following
set of independence statements, {(X1 ⊥ X2|Z), (Z ⊥ Y |X1, X2)}. See that
∆(Z) = I(Z;Y |X1, X2) = 0 since (Z ⊥ Y |X1, X2). So now we need to an-
alyze ∆a(Z) = I(Z;Y ) − I(Z;Y |X1) − I(Z;Y |X2). In a general case this
quantity could be either equal, lower or bigger than zero. If we take a closer
look we see that ∆a(Z) > 0 would imply that I(Z;Y |X1) and I(Z;Y |X2) are
both zero or very close to zero, which in turn would imply that (Z ⊥ Y |X1)
and (Z ⊥ Y |X2). In Lemma 2 we sate that (Z ⊥ Y |X1) and (Z ⊥ Y |X2) im-
plies that (X2 ⊥ Y |X1). See that if this had happened, variable X2 would not
have been introduced as the second parent since ∆(X2) = I(X2;Y |X1) ≈ 0
and thus the MDL score would grow, instead of decrease, considering the
encoding length of the network. Thereof, in this case where Z is a bad parent
of Y we have observed that ∆a(Z) ≤ ∆(Z), that is, our approximated MDLa

under scores Y → Z.

Z
X1

X2

Y
X1

X2

YZ

X1

Z

X2

Case 1 Case 2 Case 3

Y

Fig. 3. Underlying true structures

Lemma 2. Let BS be the structure of a Bayesian network, where MDL(BS∪
{X1 → Y }) < MDL(BS ∪ {X2 → Y }) and let {(Z ⊥ Y |X1), (Z ⊥ Y |X2)} ∈
I(Bs) where I(Bs) stands for the set of independence statements encoded by
the network, then (X2 ⊥ Y |X1) ∈ I(Bs)

Proof: (Z ⊥ Y |X2) means that there is a serial connection between Z and Y
in which X2 is in the middle. Suppose ¬(X2 ⊥ Y |X1) and since (Z ⊥ Y |X2),
then there is a serial connection between X2 and Y in which X1 is not in the
middle. Thereof, X1 is either in the serial connection between Z and X2 or in
a different one. Note that none of the two serial connections are possible. The
first would mean that MDL(BS ∪ {X1 → Y }) < MDL(BS ∪ {X2 → Y }),
and the second would mean that Z and Y were not d-separated given X1 or
given X2.
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Case 2:

The structure shown in Figure 3 (Case 2), encodes {(X1 ⊥ X2), (X1 ⊥
Z|Y ), (X2 ⊥ Z|Y )} as independence statements. Using this statements we
obtain the following difference between measures,

∆(Z)−∆a(Z) = I(Z;Y |X1, X2)− I(Z;X1|X2)− I(Z;X1|Y ) + I(Z;X1)
= −I(X1;X2|Z) ≤ 0

See that I(Z;Y |X1, X2) = I(Z;X1, X2) = 0 where we obtained the first
equality using (X2 ⊥ Z|Y ) and the second equality using {(X1 ⊥ Z|Y ), (X2 ⊥
Z|Y )}. See also that I(Z;X1|Y ) = 0 since (X1 ⊥ Z|Y ), and finally we ob-
tained −I(Z;X1|X2) + I(Z;X1) = −I(X1;X2|Z) using (X1 ⊥ X2). Thus
this is a case in which MDLa over scores a variable Z that is not a good
parent of Y . However, note that when Z has no parents then the approxi-
mated measure will score Z as a better parent of Y than Y parent of Z since
−I(Z;Y |X1)− I(Z;Y |X2) ≤ 0. When Z and Y have the same set of parents
{X1, X2} then the arc Z → Y is covered and the measure will correctly give
the same score to both directions. And finally, when Z has a set of parents
{T1, T2} where neither T1 nor T2 belongs to {X1, X2} then the direction of the
arc Z → Y will depend on how coupled is Z to {X1, X2} and Y to {T1, T2}.

Case 3:

The structure shown in Figure 3 (Case 3) encodes {(X1 ⊥ X2), (X1 ⊥
Z), (X2 ⊥ Z)}. Because we want to explore different situations we will only
consider {(X1 ⊥ X2)}, at this moment, in order to obtain a more general
expression of the difference between both measures. If we only use that (X1 ⊥
X2) we obtain, ∆(Z)−∆a(Z) = I(X1;X2|ZY )− I(X1;X2|Y )− I(X1;X2|Z).
Let us now consider three different cases:

• When {(X1 ⊥ Z), (X2 ⊥ Z)} we see that I(X1;X2|Z) = I(X1;X2) and
now using that X1 and X2 are independent we obtain that I(X1;X2|Z) =
0. Finally we obtain: ∆(Z)−∆a(Z) = I(X1;X2|ZY )− I(X1;X2|Y )

• Let us take a second case where (X1 ⊥ X2|Z), that is, we add the arcs
Z → X1 and Z → X2 to the network structure in Figure 3 (Case 3). With
these two independence statements, we obtain again the former expression
since I(X1;X2|Z) = 0 follows from the independence statement.

• Now we add the arcs X2 → Z and X2 → Z to the network structure
of Figure 3 (Case 3). In this case we cannot further reduce the expres-
sion for the difference and so we keep ∆(Z)−∆a(Z) = I(X1;X2|Z, Y )−
I(X1;X2|Y )− I(X1;X2|Z)

Note that the two expressions for the difference between measures we just
obtained can again be either equal, lower or greater than zero. We claim that
when Z is independent of X1 and X2 the difference will be positive. In other
words, when Z is independent of the other parents and thus is a good parent
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of Z since it provides with new information, the approximated measure will
under score its contribution. On the contrary, when Z is not independent of
the other parents the difference between the measures will be negative. That
is, the approximated measure over scores a parent that is not so good. We can
illustrate this fact with two examples.

Example 5. [Z is independent of X1 and X2] Let X1, X2 and Z be independent
random binary variables, and let variable Y be the or logic operator of the
former ones. Table 1 summarizes all the possible values of such a configuration
of variables. Since all parents of Y are independent of each other we have that
∆(Z)−∆a(Z) = I(X1;X2|Z, Y )− I(X1;X2|Y ). From the configuration table
we can calculate I(X1;X2|Z, Y ) = 2/8 log 1/3

2/3·1/3 + 1/8 log 1/3
2/3·2/3 = 0.02840

and I(X1;X2|Y ) = 1/8 log 1/7
3/7·3/7 +4/8 log 2/7

4/7·3/7 +2/8 log 2/7
4/7·4/7 = 0.00533.

Thus, we obtained ∆(Z)−∆a(Z) > 0

Table 1. Configurations of variables: Y = X1 ∨ X2 ∨ Z

X1 X2 Z Y
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Example 6. [Z is dependent of X1 and X2] Let X1 and X2 be two independent
binary random variables, let variable Z be a copy of X1, and finally Y = X1∨
X2∨Z as before. So, we have that the difference between measures is ∆(Z)−
∆a(Z) = I(X1;X2|Z, Y ) − I(X1;X2|Y ) = H(X1|Z, Y ) − H(X1|Z, Y,X2) −
I(X1;X2|Y ), where H(X1|Z, Y ) = H(X1|Z, Y,X2) = 0 since variable X1 is
completely determined given Z. Thereof, ∆(Z)−∆a(Z) = −I(X1;X2|Y ) ≤ 0.

Even the analytical results of this section showed that our approximated mea-
sure does not always favor good parents, in the next section we will experimen-
tally see that the Bayesian network structures obtained with it are reasonably
similar to those obtained with the exact MDL measure.

6 Experimental Results

In this section we compare the performance of algorithm B (see Section 1.1)
when it uses the full MDL and the approximated MDLa. We used the
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datasets Adult(48.842 instances and 13 variables), Car (1.728 inst. and 7 var.),
DNA (3.190 inst. and 61 var.), Letter Recognition (20.000 inst. and 16 var.)
Mushroom (8.124 inst. and 23 var.) and Nursery (12.960 inst. and 9 var.) from
the UCI machine learning repository [14], the Alarm dataset (20.000 inst. and
37 var.) [9] that is a standard benchmark in the Bayesian network literature
and a synthetic dataset that were kindly donated by Robert Castelo [15], that
we will call Synthetic (100.000 inst. and 25 var.). We used the discretization
utility of MLC++ [16] in order to discretize the attributes of the Adult and
Letter Recognition data sets.

In Table 2, we show the results obtained with both approaches. On the
left side, there are the results for the structures learned using the full MDL
as the scoring function, while on the right side we show the results learned
using the approximated MDL. We measure all the structures with both the
MDL and the MDLa scores in order to compare their quality. We also show
the number of arcs, columns #a, in order to see the complexity of the yielded
networks.

Table 2. Comparing MDL vs. MDLa

Learned with MDL Learned with MDLa

MDL MDLa #a MDL MDLa #a
Adult 617584 617816 21 617609 617609 20
Alarm 217760 216785 48 223069 205982 63
Car 13710 13710 5 13710 13710 5
DNA 258291 258291 60 258291 258291 60
Letters 472021 472021 20 472021 472021 20
Mushroom 97350 84379 52 115722 59014 74
Nursery 126345 126345 9 126345 126345 9
Synthetic 1.3574e+6 1.3475e+6 78 1.34998e+6 1.31531e+6 103

At a first glance, we can see that for half of the datasets (Alarm, Mush-
room, and Synthetic), the algorithms learn different structures. The ones
learned with the MDLa are significantly more complex the the ones learned
with the MDL. This is due to the fact the the MDLa measure over scores
good parents and thus tends to introduce into the network structures more
arcs than the exact MDL measure. We observed that the variables of these
datasets are related to each other (i.e P (XY ) �= P (X)P (Y )). Note that the
rest of the network structures are very sparse, that is, there are almost the
same number of arcs than number of variables. This indicates that the vari-
ables of these datasets are very independent (i.e. P (XY ) ≈ P (X)P (Y )) and
thus the MDL and the MDLa are very similar, as shown in Table 2.

We also compared the structures of the networks and observed that the
arcs of the structures learned with the MDL are a subset of the arcs of the
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structures obtained with MDLa. That is, the structures learned with the
MDLa are (almost) the same than the ones learned with MDL with addi-
tional arcs. In the experiments we observed that the structure learned for the
Alarm dataset with the MDLa score (Alarm-MDLa) has 15 additional arcs.
Mushroom-MDLa has 24 additional arcs, and Mushroom-MDL has 9 arcs not
found in Mushroom-MDLa. Finally, Synthetic-MDLa has 25 additional arcs,
and Synthetic-MDL has 10 arcs not found in the former structure.

We also compared the time spent by both algorithms. See that our approx-
imated measure is cheaper, in computing time, than the exact one since the
number of iterations performed to compute the mutual information is reduced
from kn−i+2 to k3 for the i− th term of the MDL expression, see Equations
(9) and (12). Table 3 shows the number of clock ticks spent by the algorithm
with the exact MDL (row E) and by the algorithm with the approximated
MDL (row A). We can see that the exact MDL spends more time than the
MDLa when the complexity of the structure is the same, but that it is faster
than the MDLa when the structure complexity of the later is higher.

Table 3. Clock ticks

Adult Alarm Car DNA Letter Mushroom Nursery Synthetic
Exact 937 7468 15 4562 609 984 79 15531
Appr. 906 8531 1 4734 781 1750 62 18422

7 Conclusions and Future Work

In this work we have introduced an incremental expression for the mutual
information between a variable, Y , and a set of variables, X(n), when a new
variable, Z, is added to the set. We also decomposed the contribution of the
new variable into three terms each considering different aspects of its contri-
bution to the mutual information. From this decomposition we obtained an
approximation that maintained the three aspects of the contributed informa-
tion.

We analyzed the error introduced by our approximated measure and saw
that there are cases in which good parents are over scored and other cases
where they are under scored. Even though, we experimentally showed that
in general good parents are over scored since the structures learned with our
approximated MDL are usually the same than those obtained with the exact
measure with some added arcs.

We think that there is still a lot of work to be done in order to further un-
derstand the error introduced with our approximation. We will quantitatively
study the error introduced by our approach and to study in which situations,
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underlying probability distributions of data, this error is highest and lowest.
We would also like to use our approximation to other non hill climbing strate-
gies to learn Bayesian networks [17] and to relate our approach to others like
[18].
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Learning of Latent Class Models by Splitting
and Merging Components
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Summary. A problem in learning latent class models (also known as naive Bayes
models with a hidden class variable) is that local maximum parameters are of-
ten found. The standard solution of having many random starting points for the
EM algorithm is often too expensive computationally. We propose to obtain better
starting points for EM by splitting and merging components in models with already
estimated parameters. This way we extend our previous work, where only a com-
ponent splitting was used and the need for a component merging was noticed. We
discuss theoretical properties of a component merging. We propose an algorithm
that learns latent class models by performing component splitting and merging. In
the experiments with real-world data sets, our algorithm in a majority of cases per-
forms better than the standard algorithm. A promising extension would be to apply
our method for learning cardinalities and parameters of hidden variables in Bayesian
networks.

1 Introduction

Latent class analysis [9; 5] is a method for finding classes of similar cases from
multivariate categorical data. The data is assumed to be generated by a latent
class (LC) model, which has a structure shown in Fig. 1. An LC model consists

Fig. 1. Latent class model.
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of a hidden class variable (H) and observed manifest variables (D1, . . . , Dk).
Each state of the class variable corresponds to a different component (class).
Manifest variables are assumed to be conditionally independent given the class
variable. An LC model is also known as a naive Bayes model with a hidden
class variable. Parameters of an LC model consist of a marginal probability
distribution for the class variable and conditional probability distributions for
each manifest variable given the class variable.

The goal in latent class analysis is for a given data over manifest variables
to determine the optimal number of components (|H|) and model parameters.
This is done by learning parameters for different |H| and then selecting |H|
that gave the best model according to some criteria. Usually model parameters
are learned by using the EM algorithm [3]. The well-known problem of EM
is that local rather than global maximum parameters can be found [5; 10].
The standard way of dealing with this problem is to run EM many times
from random starting points (starting parameterizations). The more starting
points are used, the closer to the global maximum the parameters should be.
However, often a high number of starting points is required, thus making the
algorithm computationally very expensive. A more feasible computationally
is a multiple restart EM approach [2], where many different starting points
are used, but repeatedly, after a specified number of EM iterations, only pa-
rameterizations giving the highest likelihood are retained. Even though this
algorithm is faster, often it still requires much time.

One could try to find better parameters in a much shorter time by using
an information about parameters of an LC model with different |H|. The idea
of splitting and merging components to obtain starting points for EM has
already been applied in learning various models [11; 4; 12].

In this paper, we propose a method for learning LC models by repeatedly
splitting and merging components. Starting points for EM are obtained only
by performing a component splitting or merging in an LC model. This way,
we extend a work of Karčiauskas et al. [7], where only a component splitting
was used and the need for a component merging was noticed. After introduc-
ing a component merging, we discuss its theoretical properties. By combining
a component splitting and merging, we introduce an operation for adjusting
model parameters. In addition, we improve the implementation of a compo-
nent splitting of Karčiauskas et al. [7] by introducing a partial EM. We use 20
real-world data sets to compare our algorithm with those that use standard
starting points for EM.

In Sect. 2, we describe the operations on components and the algorithm
based on them. In Sect. 3, we report the experiments performed. And in
Sect. 4, we discuss the results of the experiments, relations between our and
other similar work, and a possible future work.
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2 Component Splitting and Merging

2.1 Notation and Definitions

A variable is denoted by an upper-case letter (for example, Di), a state of a
variable by a lower-case letter (for example, di). A vector of states for a set of
variables is denoted by a bold lower-case letter (for example, d). Training data
over discrete variables D1, . . . , Dk is D = (〈d1, n1〉, . . . , 〈dN , nN 〉), where di

is a k-dimensional vector, ni is a non-negative count, and di �= dj for i �= j.
L is a latent class model with components h1, . . . , hm. The probability of
d = (d1, . . . , dk) given L is

PL(d) =
m∑

i=1

PL(hi)PL(d|hi) =
m∑

i=1

PL(hi)
k∏

j=1

PL(dj |hi), (1)

where PL is specified by parameters of L. The log-likelihood of data D given
model L is denoted as

LL(D|L) =
N∑

i=1

ni lnPL(di). (2)

Dhs
denotes the part of D that probabilistically belongs to component

hs. Formally, Dhs
= (〈d1, nl1〉, . . . , 〈dN , nlN 〉), where nli = ni PL(hs|di) (so,∑m

l=1 nli = ni,∀i = 1, . . . , N). Here PL(hs|di) = PL(hs)PL(di|hs)/PL(di).

2.2 Component Splitting

Here we overview a component splitting. We say that model L∗ is obtained
from model L by splitting a component hs if L∗ instead of hs contains compo-
nents h1

s and h2
s that are both similar to hs, and all the other components are

identical in both models. More formally, if L contains components h1, . . . , hm,
L∗ contains components h1, . . . , hs−1, h

1
s, h

2
s, hs+1, . . . , hm and the following is

true:

• PL∗(hi) = PL(hi), PL∗(Dj |hi) = PL(Dj |hi), i = 1, . . . , m, i �= s,
j = 1, . . . , k,

• PL∗(h1
s) = PL∗(h2

s) = 1
2PL(hs),

• ||PL∗(Dj |h1
s)− PL(Dj |hs)|| < ε, ||PL∗(Dj |h2

s)− PL(Dj |hs)|| < ε,
j = 1, . . . , k, where || · || is an L2-norm of a vector and ε ∈ R is chosen in
advance and is close to 0.

Component splitting, defined in this way, has the following good property,
proved in our previous work [7; 6]. If for D large enough, a penalized likelihood
score1 of an LC model is not maximal, then with probability 1 it is possible
to increase the model score by splitting a component.
1 A penalized likelihood score of model L consists of two terms, one of which is the

log-likelihood LL(D|L), and another – a penalty for the complexity of L.
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2.3 Component Merging

Now we introduce a component merging. We say that model L∗ is obtained
from model L by merging components hs and ht if hs in L∗ is a weighted
average of hs and ht in L, there is no component ht in L∗, and all the other
components are identical in both models. More formally, if L contains compo-
nents h1, . . . , hm, L∗ contains components h1, . . . , ht−1, ht+1, . . . , hm and the
following is true:

• PL∗(hi) = PL(hi), PL∗(Dj |hi) = PL(Dj |hi), i = 1, . . . , m, i �= s,
i �= t, j = 1, . . . , k,

• PL∗(hs) = PL(hs) + PL(ht),
• PL∗(Dj |hs) = PL(Dj |hs)PL(hs)/PL∗(hs) + PL(Dj |ht)PL(ht)/PL∗(hs),

j = 1, . . . , k.

Next we discuss theoretical properties of the component merging. First,
let us see what properties we would like the component merging operation
to have. We would use this operation when a model contains too many com-
ponents. That is, when merging components, we expect that training data
D can be described equally well (or almost equally well) by a model with
one component less. If D is described perfectly by our current m–component
model and it is possible to describe D perfectly by an m-1–component model
as well, then we would obviously like the component merging operation to be
able to obtain this m-1–component model from our current model.

We performed some experiments to check the properties of component
merging. We parameterized randomly an m–component model L and gener-
ated perfectly described by L data D (that is, the distributions P (D1, . . . , Dk)
defined by L and by D are identical). Then we estimated the maximum like-
lihood (ML) parameters of an m+1–component model L′ given D. That is,
D is described perfectly by L′ as well. For estimating the ML parameters,
we have run the standard EM algorithm from a random starting point (for
some L′ having many parameters, this required running EM more than once,
until the ML parameters with some precision have been found). We did this
for small models L, because when L gets larger it becomes computationally
difficult to find the ML parameters for L′.2 Each time, we checked if it is pos-
sible to obtain model L from model L′ by merging two components of L′. In
some cases it was possible, and in some not. The results of these experiments
are summarized in Table 1. Here a:kx2 indicates the structure with k binary
manifest variables and a components, a-b:kx2 indicates all the structures with
k binary manifest variables where the number of components ranges from a
to b, dim(L′) indicates the standard dimension of model L′ (i.e., the number

2 Even for small models, we had to use iterative methods, such as the EM algorithm,
for finding ML parameters with some precision. We have tried to find exact ML
parameters with MapleTM , but already for an LC model with two components and
four binary manifest variables the number of equations and unknowns becomes
too high.
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Table 1. Results of experiments about properties of component merging.

Structure of L Structure of L′ dim(L′) ≤ dc
2:4x2 3:4x2 yes

2-4:5x2 3-5:5x2 yes
2-8:6x2 3-9:6x2 yes
2:3x2 3:3x2 no
3:4x2 4:4x2 no
5:5x2 6:5x2 no
9:6x2 10:6x2 no

of independent parameters in L′), and dc indicates the complete dimension
of D1 × . . . × Dk (i.e., dc = |D1| · . . . · |Dk| − 1). For the models above the
middle line, it is possible to obtain model L from model L′ by merging some
two components of L′. For the models below the middle line, it is not possible.
Here we did not include the trivial case when L has only one component, be-
cause then merging the two components of L′ always produces L. Also, we did
not test models with 7 or more manifest variables, because then it becomes
computationally too difficult to find the ML parameters for L′.

Based on these results, we make the following conjecture.

Conjecture 1. Assume that data D is described perfectly by an LC model L
with binary manifest variables and that model L is unique (i.e., there is no
other LC model having the same number of components as L and describing
D perfectly)3. Assume that for an LC model L′, having one component more
than L, we have dim(L′) ≤ dc. Then, if D is described perfectly by L′, model
L can be obtained by merging two components of L′.

We have also explored the case where L contains manifest variables with
more than two states. In Karčiauskas et al. [8], we have made a similar con-
jecture about this more general case. There, we have used the concept of
model identifiability [5]. However, for this more general conjecture we have
later found a counter-example [6].

In general, it seems that the component merging works for models where
the number of manifest variables k is high enough or, alternatively, the number
of components m is low enough. Our conjectures are the attempts of specifying
conditions for m and k under which the component merging works.

So far, we have assumed that the current model contains one component
too much. In practice, it can of course differ from the true model by more
than one component. Can we expect that under some conditions it is possible
to arrive to the true model by repeatedly performing a pairwise component
merging and always keeping the maximum log-likelihood? We have made the

3 It is assumed that models, which differ only in the ordering of components, are
the same.
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following test. The same way as in the experiments above, for a randomly
parameterized model L with two components and five binary manifest vari-
ables, we estimated the ML parameters of model L′ having four components.
We repeated this several times for different parameterizations of L. In some
cases, it was possible to arrive to model L by performing a pairwise compo-
nent merging in L′ and thus obtaining a 3–component model L′′, which had
the ML parameters, and then performing a pairwise component merging in
L′′. However, in other cases the parameters of L′′ were not those of maximum
likelihood, and model L could be obtained only by merging three components
at once in L′ (when more than two components are merged, they are com-
bined into one new component the same way as hs and ht are combined in
the definition of the component merging above). So, it seems that when the
number of components is too high by more than one, a pairwise merging is not
enough. In our algorithm, we use a pairwise merging because it has a lower
complexity and because we believe that it does not make a big difference for
practical data.

Finally, we should remind that all these results about the component merg-
ing are based on estimation of the ML parameters with some precision (and
the larger the model, the lower the precision). Our judgments on whether the
parameters are those of ML and whether merging some particular components
leads to some particular model are based on those estimates of parameters.

In our algorithm, models obtained by the component splitting and merging
will be used as starting points for EM.

2.4 Parameter Adjustment

Now we introduce an operation that tries to improve model parameters for a
fixed |H|. First, we give a motivation for such an operation. It is possible to
learn an LC model by repeatedly incrementing or decrementing |H|, where
starting points for EM are obtained only by splitting or merging components,
and it is required that any single increment or decrement of |H| increases
the model score. The algorithm would stop when neither incrementing nor
decrementing |H| increases the model score. However, the following situation
can occur. The best model G has m components, and by incrementing and
decrementing |H| we have arrived at model L with m components that has
however a lower score than G because of not optimal parameters. It can be
that neither incrementing nor decrementing |H| increases the score of L, and
so L would be the final model. However, it can be that by both incrementing
and decrementing |H| we obtain model L′ (with m components) that has a
higher score than L.

So, we introduce an operation that we call parameter adjustment. It con-
sists of the successive component splitting and merging (or component merg-
ing and splitting) with no requirement that a single increment or decrement of
|H| would increase the model score. More formally, we say that L′ is obtained
from L by a parameter adjustment if there exists model L∗ such that:
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• L∗ is obtained from L by the component splitting and then running EM,
and L′ is obtained from L∗ by the component merging and then running
EM,
or

• L∗ is obtained from L by the component merging and then running EM,
and L′ is obtained from L∗ by the component splitting and then running
EM.

For an m-component model L, there are O(m3) possible ways to perform
the parameter adjustment, because for each of m ways to split there are

(
m+1

2

)

ways to merge, or alternatively for each of
(
m
2

)
ways to merge there are m− 1

ways to split. However, in our implementation we will consider only O(m2)
ways to perform the parameter adjustment, as described in the next section.

Even if all the O(m3) ways to perform the parameter adjustment are tried,
there are no guarantees that such an operation will improve the parameters
of L when they are not optimal. Also, the only reason for choosing a single
splitting and a single merging rather than changing |H| by more than 1 is
that this approach is the fastest. However, in the experiments this operation
often helped to find higher scoring models.

2.5 Algorithm

Here we provide our algorithm for learning LC models. Procedure LearnLC
takes training data D as an input and returns an LC model. It tries to find an
LC model that is the best according to function score, which can be any penal-
ized likelihood scoring function. The algorithm starts with a one component
model L, for which the maximum likelihood parameters are deterministically
computed from D. The algorithm repeatedly tries to increase the score of
L by either incrementing |H| (procedure Split), decrementing |H| (procedure
Merge), or adjusting parameters (procedure Adjust). In phase 1, |H| is repeat-
edly incremented until the score of L does not increase. Similarly, in phase 2,
|H| is repeatedly decremented until the score of L does not increase. Phases
1 and 2 are performed repeatedly one after another until none of them in-
creases the score of L. Then one attempt to adjust parameters of L is made.
If adjusting parameters increases the score of L, the algorithm goes back to
running phases 1 and 2. Otherwise, model L is returned.

Procedure Split increments |H| by splitting a component in L. For each
component hs, a prespecified number (|L0|) of independent random splits
is performed. Component hs is split randomly by making PL∗(Dj |h1

s) −
PL(Dj |hs) = rj and PL∗(Dj |h2

s)− PL(Dj |hs) = −rj . Each element of vector
rj is a random number from [−p; p] (and at least one of them is exactly p or
−p), where p ∈ R is a small positive parameter.4 Also, ∀j :

∑|Dj |
i=1 rj,i = 0.

4 If rj causes any parameter from PL∗(Dj |h1
s) or PL∗(Dj |h2

s) to be outside
[0.000001; 0.999999], rj is scaled down so that all the parameters are inside this
interval. If already PL(Dj |hs) contains parameters outside this interval, rj is set
to 0.
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Procedure 1 LearnLC (D)
Let L be an LC model with one component.
doPhase1 ← true, doPhase2 ← true.
loop

if doPhase1 then
L0 ← L.
repeat

L′ ← Split(L,D).
if score(L′) > score(L) then

L← L′.
end if

until L �= L′.
if score(L) > score(L0) then

doPhase2 ← true.
end if
doPhase1 ← false.

end if
if doPhase2 then

L0 ← L.
repeat

L′ ← Merge(L,D).
if score(L′) > score(L) then

L← L′.
end if

until L �= L′.
if score(L) > score(L0) then

doPhase1 ← true.
end if
doPhase2 ← false.

end if
if not doPhase1 and not doPhase2 then

L′ ← Adjust(L,D).
if score(L′) > score(L) then

L← L′, doPhase1 ← true, doPhase2 ← true.
else

Return L.
end if

end if
end loop
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After splitting hs, a partial EM is run – that is, only parameters for the two
new components are updated. This can be understood as running a normal
EM for a model containing only two new components and after that substi-
tuting hs in L with those two components.5 A model that has the highest
score after a partial EM is selected and parameters of that model are updated
by running a normal EM.

Procedure 2 Split(L,D)
for all component hs of L do

Produce set L0 of two-component models by performing |L0| random in-
dependent splits of hs and for each split producing a model that contains
only new components h1

s and h2
s from L∗ (see Sect. 2.2).

Obtain model L0 by running a multiple restart EM with L0 as starting
points and data Dhs

.
Obtain model Ls from L by substituting hs with the two components
from L0.

end for
Let L′ = arg maxLs

score(Ls).
Optimize parameters of L′ by running EM with data D.
Return L′.

Procedure Merge decrements |H| by merging two components in L. All the
possible merge candidates are taken as starting points, and a multiple restart
EM determines the best pair to merge. Our initial tests showed that the pair
determined by a multiple restart EM is usually among the best pairs deter-
mined by a separate EM for each merge candidate (which is computationally
much more expensive than a multiple restart EM).

Procedure 3 Merge(L,D)
L ← ∅.
for all pair of components {hs, ht} of L do

Obtain model L∗ by merging hs and ht.
Add L∗ to L.

end for
Obtain model L′ by running multiple restart EM with L as starting points
and data D.
Return L′.

5 Both in producing a two-component model and in substituting hs is L, marginal
probabilities of those two components are scaled so that the sum of marginal
probabilities of all the components in a model is equal to 1.
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Procedure Adjust tries to increase the score of L by adjusting its parame-
ters. For an adjustment to be accepted, we require the increase in score to be
higher than a positive parameter δ. Otherwise, the algorithm may spend lots
of time making insignificant improvements in parameters of L.

First, we try to increase the score of L by decrementing and then incre-
menting |H|. If this does not succeed, then we try to increase the score of L by
incrementing and then decrementing |H|. Here, when decrementing |H|, we
consider only those pairs of components where one component has just been
obtained by splitting and the other is an “old” component inherited from L.

In the implementation of this procedure, model L′ and all models Ls are
not computed directly but taken from the last run of Merge and the last run of
Split , because in LearnLC the parameter adjustment is performed only when
L remains unchanged both in phase 1 and phase 2.

Procedure 4 Adjust(L,D)
L′ ← Merge(L,D).
L′′ ← Split(L′,D).
if score(L′′) > score(L) + δ then

Return L′′.
end if
L ← ∅.
for all component hs of L do

Obtain model Ls as in Split(L,D).
for all pair of components {ha, hb} where ha is a new component and hb

is an old component of Ls do
Obtain model L∗ by merging ha and hb in Ls.
Add L∗ to L.

end for
end for
Obtain model L′′ by running multiple restart EM with L as starting points
and data D.
if score(L′′) > score(L) + δ then

L← L′′.
end if
Return L.

3 Experiments

3.1 Algorithms Tested

In this section, we list the algorithms that are tested in the experiments. Our
algorithm, described in Sect. 2.5 and called SplitMerge, is compared with the
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algorithms that use standard starting points for EM. One of them, called
Standard has almost the same main procedure as LearnLC from Sect. 2.5.
The difference is that instead of calling Split , Merge, or Adjust it obtains L′

by running a multiple restart EM on a model that has correspondingly one
component more than L, one component less than L, or the same number of
components as L (in the latter case, the score increase by more than δ is also
required). Starting points for EM are randomly sampled from the uniform
distribution.

Since requiring to change |H| only by one can be too restrictive for a stan-
dard approach, we also compare our and standard approaches when the latter
has an unfair advantage of knowing |H| from the start. The algorithm called
StandardFixed uses standard starting points for EM and estimates model pa-
rameters when the number of components is fixed. First, it runs a multiple
restart EM from a prespecified number of starting points. After that, it re-
peatedly doubles the number of starting points, runs a multiple restart EM,
and takes the resulting model as the current one if the new parameters in-
crease the score. The algorithm is stopped at a prespecified time. Starting
points for each EM are randomly sampled from the uniform distribution. |H|
is determined by previous runs of SplitMerge.

3.2 Setup of Experiments

The setup of the experiments is the following. Function score is a well-known
BIC score, defined as BIC (L) = LL(D|L)− d

2 ln |D|, where d is the number of
independent parameters in model L, and |D| is the total number of cases in
data D. EM searches for the maximum likelihood parameters. |L0| in Split and
the initial number of starting points for EM in StandardFixed are set to 16.
The number of starting points for EM in Standard is set to 64 in order to make
a running time of SplitMerge and Standard similar. Everywhere in multiple
restart EM, 1

q th of parameterisations giving the highest likelihood are retained
after 1, 3, 7, 15, 31, ... iterations of EM, until only one best parameterisation
is left. Then EM is run until either the difference between successive values
of log-likelihood is less than 0.01 or 200 iterations are reached. q = 2 in Split ,
Standard, and StandardFixed. q = 10 in Merge and Adjust, because the number
of merge candidates is high for models with many components. Parameter p
from Sect. 2.5 is 0.001. Parameter δ from Adjust and Standard is 1.

For training data, we selected 20 classification data sets from the UCI
Machine Learning Repository [1] and discarded the class information.6 Con-
tinuous variables were converted into binary ones by performing an equal-
6 All the 20 data sets are listed in Table 2. “Credit” stands for “Credit Card Ap-

plication Approval”, “Heart” – for a processed “Cleveland” data set from “Heart
Disease”, “Image” – for “Image segmentation”, “Letter” – for “Letter Recogni-
tion”, “Pen” – for “Pen-Based Recognition of Handwritten Digits”, “Thyroid” –
for a data set from “Thyroid Disease” suited for training ANNs, “Wisconsin” –
for an original data set from “Wisconsin Breast Cancer”. “Satimage”, “Shuttle”,
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frequency binning. When separate training and test data were available, they
were joined into a single training data.

The experiments are run on a JavaTM 2 platform, 2.8 GHz Intel(R) proces-
sor. For each data set, each algorithm (SplitMerge, Standard, and Standard-
Fixed) is run 5 times. For SplitMerge and Standard, the algorithm is stopped
if it does not terminate in 5 hours, and the current model L is returned. For
StandardFixed, |H| is the same as in the highest scoring model found by Split-
Merge and the running time is equal to the mean running time of SplitMerge.

Table 2. Results.

Data set Standard SplitMerge Standard-

score time |H| score time |H| Fixed

Adult -532344.7 ± 2790.8 300 6 -520908.5 ± 375.5 300 11 -520907.8 ± 717.7

Image -15514.5 ± 35.2 32 14 -15516.5 ± 8.3 28 13 -15503.6 ± 5.5
Letter -172561.3 ± 331.1 300 19 -172432.8 ± 248.7 300 18 -172314.8 ± 39.5

Mushroom -94155.0 ± 1090.5 300 8 -82935.1 ± 722.2 300 17 -83648.2 ± 302.7

Page -22768.1 ± 39.5 5 14 -22766.6 ± 2.9 5 14 -22735.1 ± 6.9

Pen -82411.6 ± 827.9 260 30 -81454.4 ± 11.5 300 41 -81402.1 ± 16.3
Satimage -66602.9 ± 457.0 300 16 -64598.4 ± 121.9 300 25 -64419.4 ± 87.1

Shuttle -256561.5 ± 265.9 5 14 -256027.6 ± 10.4 16 21 -256073.4 ± 28.3

Spambase -83800.0 ± 192.9 300 11 -83090.0 ± 74.8 300 15 -83127.5 ± 81.8

Abalone -12389.4 ± 0.0 2 5 -12389.5 ± 0.0 1 5 -12389.4 ± 0.0

Audiology -3403.0 ± 0.1 9 2 -3403.2 ± 0.0 2 2 -3403.1 ± 0.1

Credit -7564.7 ± 3.2 16 5 -7591.3 ± 22.7 3 4 -7568.3 ± 3.2
Heart -2388.1 ± 0.0 1 2 -2388.1 ± 0.0 0 2 -2388.1 ± 0.0

Housing -3192.6 ± 5.7 2 7 -3198.3 ± 9.4 1 7 -3190.8 ± 5.7

Pima -3995.6 ± 0.2 1 4 -3995.7 ± 0.0 0 4 -3995.6 ± 0.0

Thyroid -44562.9 ± 26.1 21 6 -44542.9 ± 0.2 21 7 -44534.6 ± 18.3
Vehicle -6471.5 ± 7.4 13 10 -6471.1 ± 7.0 9 10 -6467.1 ± 1.3

Voting -3085.6 ± 0.0 5 5 -3085.6 ± 0.0 2 5 -3085.6 ± 0.0

Wisconsin -2560.7 ± 0.0 1 3 -2560.9 ± 0.0 0 3 -2560.7 ± 0.0
Yeast -6213.5 ± 0.0 0 2 -6213.7 ± 0.0 0 2 -6213.5 ± 0.0

3.3 Results

The results are summarized in Table 2. For each data set, the following is
shown: the mean score of the final model (with a 95% confidence interval for
the mean) for all the three algorithms, and the mean running time (in minutes)
with |H| in the highest scoring model for Standard and for SplitMerge (for
StandardFixed, “time” and “|H|” are the same as for SplitMerge). To make
the later discussion easier, we partitioned data sets into two groups according
to whether |H| for SplitMerge is higher than 10 or not. Bold text indicates a
significantly better (and italic – a significantly worse) score when comparing

and “Vehicle” are from the Statlog Project. For “Audiology” and “Wisconsin”,
the identifier variable has been discarded.
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pairwise SplitMerge with Standard and SplitMerge with StandardFixed. The
difference in score is considered to be significant if intervals for the mean do
not overlap and the difference in the mean values is higher than 1.

In Figs. 2–5, we display how the mean score changes during time for four
data sets. Bars at the end indicate 95% confidence intervals for the mean.
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Fig. 2. Score change during time for “Image” data set
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Fig. 3. Score change during time for “Mushroom” data set.
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Fig. 4. Score change during time for “Thyroid” data set.

-3160

-3150

-3140

-3130

-3120

-3110

-3100

-3090

-3080

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

S
co

re

Time (minutes)

Standard
SplitMerge

StandardFixed

Fig. 5. Score change during time for “Voting” data set.

4 Discussion

As seen from Table 2, SplitMerge is significantly better than Standard for
|H| > 10, and except for one data set there is no significant difference for
|H| ≤ 10. Most probably, this is because standard starting points for EM are
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more likely to lead to local maximum parameters when |H| increases [10]. And
when in case of StandardFixed the standard approach is from the start given
the best |H|, it is unable to improve significantly over SplitMerge for most of
the data sets: StandardFixed was significantly better for “Page” and “Pen”,
and significantly worse for “Shuttle”.

For some data sets, the highest scoring models found by different algo-
rithms have different |H|. For the data sets where SplitMerge is significantly
better than Standard, |H| determined by SplitMerge is much higher than |H|
determined by Standard. For “Pen” and “Shuttle”, Standard is simply unable
to increase |H|. For “Adult”, “Mushroom”, “Satimage”, and “Spambase”,
SplitMerge is faster than Standard, and both algorithms are stopped because
of a time limit.7 For “Image”, “Letter”, “Credit”, and “Thyroid”, |H| deter-
mined by Standard and by SplitMerge differ by 1. In all of them, the best
model found by Standard has a higher score than the best model found by
SplitMerge, even though for “Letter” and “Thyroid” SplitMerge performs bet-
ter on average. This is related to the fact that generally the variance of the
score is lower for SplitMerge than for Standard.

As seen from Figs. 2-5, models found by SplitMerge most of the time have
higher score than models found by Standard. And usually, towards the end
SplitMerge gets close to StandardFixed.

Now we discuss relations between our and other work where the com-
ponent splitting and merging are used. For continuous data, the component
splitting is used by Verbeek et al. [12], where Principal Component Analysis
is applied for initialising new components deterministically. In our work, we
deal with categorical data and split a component randomly. We did not find a
deterministic method that would outperform a random splitting on data that
we worked with. Searching for such a method could be a possible future work.

Concerning the component merging, our work has similarities to that of
Elidan and Friedman [4]. There, in the context of Bayesian networks, the
number of states of a hidden variable is learned by starting with a maximal
number of states possible and merging states in a greedy way. The main
difference from our method is that for each case in the training data, a “hard”
(instead of probabilistic) assignment to a particular state of a hidden variable
is maintained. Theoretical properties of such an approach are not known.

Our operation of parameter adjustment is similar to the simultaneous
splitting and merging of components used by Ueda et al. [11] to overcome
the problem of local maximum parameters in a mixture model with a fixed
number of components. The authors require the components involved in split-
ting to be different from those involved in merging and introduce a criteria
for selecting the most promising candidates for splitting and merging. We,

7 We have also performed the experiments where the number of starting points for
EM in Standard was set to 16 rather than 64. This way, Standard increases |H|
faster at a cost of worse parameters. In this setup, Standard was again significantly
worse than SplitMerge on 6 data sets.
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on the other hand, allow situations where the same component is involved in
both splitting and merging. Neither Ueda et al. [11] nor we discuss theoretical
properties of such an operation.

In this paper, we have presented a method for learning LC models by split-
ting and merging components. Even though this method generally does not
find global maximum parameters, in a majority of cases it outperforms the
standard approach. Since the problem of local maximum parameters gener-
ally becomes bigger as the number of unknown parameters to be estimated by
EM increases, a promising future work would be to apply the component split-
ting and merging for learning cardinalities and parameters of hidden variables
in Bayesian networks. In recent Ph.D. thesis [6], we have applied component
splitting and merging for learning tree-structured Bayesian networks with hid-
den variables and discussed the extensions to unrestricted Bayesian networks
with hidden variables.
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Summary. We describe an efficient sampling algorithm for solving influence dia-
grams that achieves its efficiency by testing candidate decision strategies against
the same set of samples and, effectively, reusing samples for each of the strategies.
We show how by following this procedure we not only save a significant amount
of computation but also produce better quality anytime behavior. Our algorithm
is exhaustive in the sense of computing the expected utility of each of the possible
decision strategies.

Keywords: Bayesian networks, algorithms, stochastic sampling

1 Introduction

Influence diagrams (IDs) [18] are acyclic directed graphs modeling decision
problems under uncertainty. An ID encodes three basic elements of a deci-
sion: (1) available decision options, (2) factors that are relevant to the de-
cision, including how they interact among each other and how the decisions
will impact them, and finally, (3) the decision maker’s preferences over the
possible outcomes of the decision making process. These three elements are
encoded in IDs by means of three types of nodes: decision nodes, typically
represented as rectangles, random variables, typically represented as ovals,
and value nodes, typically represented as diamonds or hexagons. Most popu-
lar type of IDs are those in which both the decision options and the random
variables are discrete. A decision node in a discrete ID is essentially a list
of labels representing decision options. Each random variable is described by
a conditional probability table (CPT) containing the probability distribution
over its outcomes conditional on its parents. Each value node encodes a utility
function that represents a numerical measure of preference over the outcomes
of its immediate predecessors. An ID that contains only random variables is
called a Bayesian network (BN) [25].

An ID is amenable to an algorithmic analysis that can yield for each pos-
sible strategy (an assignment of values to all decision nodes conditional on
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those chance nodes that are observed before the decision nodes, e.g., [5]) its
numerical measure of desirability – expected utility. It is a basic premise of
decision theory that a decision maker should maximize his or her gain by
choosing the strategy that yields the highest expected utility. Even though
this analysis is at its foundations NP-hard [7], there exist several ingenious
algorithms that make it feasible for practical ID models. Before we review
these algorithms, we will focus on four general characteristic of ID algorithms
that will be helpful in making the review more systematic.

While having an exact result is always preferable, in most cases precision
can be traded off for computation, dividing ID algorithms into exact and ap-
proximate. The latter class does not give guarantees of optimality, even though
it will typically reach or approximate the optimal solution. An important sub-
class of approximate algorithms are anytime algorithms, which are algorithms
that regardless of the complexity of the problem have an answer available
almost immediately. Subsequent computation, which gradually improves the
quality of this answer, can be interrupted at any time. An algorithm is ex-
haustive if it computes the expected utility of each of the possible decision
strategies or focused if its only goal is identification of the optimal strategy.
Focused algorithms are in general more efficient than exhaustive algorithms,
but this efficiency comes at a price. The output of a focused algorithm iden-
tifies the best next step of a strategy but it does not put it in a context of
other possible steps or other strategies. In particular, the output of a focused
algorithm does not show whether the suggested decision is a clear winner or a
close runner with other, alternative decisions. This is not important in some
applications, for example in robotics. However, in applications that include
interaction with human decision makers, exhaustive algorithms offer a consid-
erable amount of insight that helps in choosing the superior decision strategy
or assists in refining the model. Finally, algorithms can be divided into direct
and indirect, i.e., those that work on IDs directly and those that reduce the
IDs solution problem into a series of belief updating problems in its underlying
BNs.

There is a sizeable body of literature on the topic of solving IDs. Space
limitations prevent us from covering this literature with the exception of those
algorithms that are most directly relevant to our paper. The oldest among the
direct evaluation methods originates from the work of Olmsted [23], whose al-
gorithm performs a series of node removal and arc reversal operations that
successively reduce the ID into a single decision node and a single successor
utility node that holds the expected utility of each of the decision options.
Shachter [30] has later formalized this algorithm and proven its correctness.
Shenoy [32] introduced a new approach that transforms the ID into a valua-
tion network that allows for slightly more efficient calculations. Ndilikilikesha
[22] modified Olmsted’s algorithm making it computationally as efficient as
Shenoy’s.

The indirect evaluation methods are inspired by a seminal paper by Cooper
[6], who proposed transforming each decision node in an ID into a chance node
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with uniform distribution and the (single) value node into a chance node
whose probability distribution is a linear transformation of the original utility
function into the interval [0,1]. Following this transformation, the algorithm
instantiates, one by one, each of the strategies, by observing the states of
the nodes that represent the original decision nodes, solves the resulting BN
using any belief-updating algorithm, and retrieves the expected utility of the
current strategy.

Shachter and Peot [28] designed an efficient variation on Cooper’s algo-
rithm for IDs that have one decision node and one utility node. After the trans-
formation of the ID into a BN, the algorithm essentially introduces evidence
into the value node, solves the BN, and chooses the best decision alternative
by comparing the posterior probability of the outcomes of the decision node:
the most likely outcome indicates the best decision option. The algorithm is
focused, as it identifies only the best decision. A separate, optional step of
the algorithm is required to calculate the expected utility of that decision.
Zhang [34] describes another focused indirect evaluation algorithm that is an
improvement on Shachter and Peot’s algorithm. It successively divides the
ID into two parts, head and a tail, the tail containing the last decision node
and all those other nodes that are relevant to the maximization of that last
decision. It then computes the expected utility of the tail and finds the best
option for the last decision. The tail, including the last decision node, is then
substituted by a single utility node that summarizes all the uncertainty con-
tained in it. The procedure is repeated until no more decision nodes are left.
One advantage of this algorithm is that it can be based on any belief-updating
algorithm for BNs. Other techniques to solve influence diagrams were offered
by Jensen, Jensen and Dittmer [19] and Madsen and Jensen [21].

Another line of research on algorithms for IDs was started by Horvitz [17]
who identified a class of inference policies for probabilistic reasoning systems
that he called incremental refinement policies. He presented algorithms that
improve the accuracy of their solutions as a monotonically increasing function
of the allocated resources and the available information. Several algorithms
have been developed along these lines. Ramoni [26] proposed an anytime al-
gorithm for solving IDs based on Epistemic Constraint Propagation [27] that
incrementally refines the confidence in the expected utility of the decisions.
One limitation of this algorithm is that its anytime property holds only for
IDs with one decision node. Horsch and Poole [15] developed another anytime
algorithm that constructs a tree structure for each decision node in the ID.
Each of the constructed tree structures represents a decision function that is
improved incrementally. The authors show how improvements to this function
lead to the optimal decision function. Similarly to Ramoni’s algorithm, the al-
gorithm loses its anytime properties if applied to decision problems with more
than one decision node. A refinement of this algorithm, focusing on multi-stage
influence diagrams was published later [16]. Charnes and Shenoy [1] propose
an approximate sampling algorithm for solving IDs. D’Ambrosio and Burgess
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[10] performed experiments comparing a variety of real-time influence diagram
algorithms.

This paper shows how sampling algorithms can be utilized very efficiently
within an indirect evaluation method. Our approach evaluates all decision
strategies on the same set of random samples and allows for saving a signifi-
cant amount of computation while producing high quality anytime behavior.
The algorithm that we propose is suitable for very large decision models for
which exact algorithms are not feasible. Recent advances in stochastic sam-
pling algorithms for BNs (e.g., [2; 33]) have made it possible to perform infer-
ence in very large models with unlikely evidence. Because our algorithm can
be based on any simulation algorithm for BNs, it allows for taking advantage
of these developments. The algorithm is general in the sense of admitting full
IDs with multiple decision and value nodes and containing observations. As a
side-product, the algorithm computes also the posterior probability distribu-
tion of every chance node conditional on each of the possible strategies. For
example, in a system that helps to decide between medication and surgery,
the algorithm will compute not only the expected utility of both choices, but
also the probability of the patient dying in each case. We have found that this
information is useful in an interactive modeling environment. The algorithm
is, to our knowledge, the only algorithm developed for ID that exhibits any-
time behavior when the ID has an arbitrary number of decision and utility
nodes. Finally, the algorithm is very efficient and this is achieved by reusing
random samples. Practically, only one random number per node is generated
for each sample of the network. This random number is used to evaluate the
probability distribution of the node conditional on each of the strategies.

All random variables used in this paper are multiple-valued, discrete vari-
ables. Lower case letters, such as a, b, or c denote random variables. Bold
capital letters, such as A, denote sets of variables. Bold capital E denotes
the set of observed nodes and capital Q denotes the set of other nodes not
contained in E. For any node n, Pa(n) denotes the set of parents of n, De(n)
denotes the descendants of n, and O(n) denotes the set of outcomes of n.

The remainder of this paper is organized as follows. Section 2 defines some
of the terms that we will be using throughout this paper. Section 3 describes
the proposed algorithm. Section 4 contains a detailed example that will serve
us in explaining the algorithm. Section 5 reports the results of our experiment
with the algorithm, and Section 6 contains concluding remarks.

2 Some Definitions

A Bayesian network B is defined as a pair B = (G,Pr), where G(C,A) is an
acyclic directed graph consisting of a set of nodes C and a set of directed arcs
A. Each node n ∈ C has associated a conditional probability distribution,
specifying the probability of each outcome o ∈ O(n) conditional on Pa(n).
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Similarly, we denote the joint probability distribution over a set of nodes
J ⊆ C as Pr(XJ ).

Given B = (C,A) and sets J, K, L ⊆ C, we say that XL is irrelevant
[13] to XJ given XK if Pr(XJ |XK ,XL) = Pr(XJ |XK). In other words, XL

is irrelevant to XJ given XK if, once XK has been observed, we cannot learn
anything about XJ by also observing XL. We extend the notion of irrelevance
to decision nodes in the following way. Given an ID model M = (C,A,D,U)
and sets L ⊆ D and J, K ⊆ C, we say that L is irrelevant to XJ given XK

if Pr(XJ |XK ,L) = Pr(XJ |XK). In other words, L is irrelevant to XJ given
XK if, once XK has been observed, making a decision in L does not impact
XJ . Irrelevance for utility nodes U is defined analogously but with respect to
expected utility rather than probability.

An ID M = (C,A,D,U) is a BN extended with D, a set of decision
nodes, and U, a set of utility nodes. The decision nodes are ordered in time,
d1, . . . , dn, and chance nodes are stratified into sets E, I1, . . . , In+1, so that
chance nodes Ii are observed before di but after di−1. The nodes in E have
been observed a-priori while the nodes in In+1 will never be observed. Let
I = (I1, . . . , In) be nodes that are not evidence but that will be observed
before the last decision dn is made.1 From here on, we assume, without loss of
generality, that E = ∅. Dealing with evidence in sampling algorithms is quite
well understood and is not the focus of this paper. For convenience, we will
sometimes say n ∈M if n ∈ {C ∪D ∪U}.

Let us define a partial order ΨN over a set of nodes N ⊆ M such that,
given nodes n,m ∈ N, if m ∈ De(n) then n appears in ΨN before m. In other
words, in ΨN a node appears always before any of its descendants.

We say that d ∈ (D, I) is an indexing parent of n ∈ M if it precedes n in
Ψ(D,C,U) and it is relevant to n. We denote by IP(n) the set of indexing parents
of node n. Less formally, the set of indexing parents of a node n is composed
of those decision nodes and those chance nodes that will be observed before
making a decision, that have an effect on the distribution of the outcomes of
n.

A strategy is an instantiation of every node d ∈ D, conditional on I. We will
sometimes use the term strategy when making reference to an instantiation
of the set of indexing parents of a node.

For each node n ∈ M we can define the Cartesian product of the set of
outcomes of its indexing parents:

Φn = ×p∈IP(n)O(p) .

In other words, Φn contains all the possible combinations of the outcomes of
n’s indexing parents. Similarly, Φ is the set of indexing parents of the global
utility node

Φ = ×p∈
⋃

ui∈U IP(ui)
O(p) .

1 We normally indicate this order graphically by having an informational (dashed)
arc from every n ∈ Ii into di.
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We will now define the cardinality operator, ‖Φn‖, in the following way

‖Φn‖ =
{
|Φn|, Φn �= ∅
1, Φn = ∅ .

This operator, when applied to any set Φn, will return the number of elements
in Φn or 1 if Φn is empty. We will now prove a theorem stating that every
indexing parent of a node p is also an indexing parent of p’s children.

Theorem 1. Given an ID M = (C,A,D,U) and nodes c, p ∈ {C,D,U}, if
p ∈ Pa(c) then IP(p) ⊆ IP(c).

Proof. By definition, every node n ∈ IP(p) is relevant to p. Since p ∈ Pa(c), it
follows that n must also be relevant to c and, hence, be an indexing parent of
c.

3 The Algorithm

This algorithm solves an ID M = (C,A,D,U), which means that it cal-
culates the expected utility of each possible strategy and also calculates the
distribution of each chance node conditional on each of the strategies. As one
of its main features, the algorithm is capable of giving an approximate answer
at any time. We describe this algorithm in Fig. 1.

Cooper’s transformation in Step [1.1] is a two-step operation consist-
ing of replacing all decision nodes and all utility nodes with chance nodes.
Transformation of each utility node u ∈ U into a chance node, in particu-
lar, is performed by transforming the utility function V (u) = F (p1, . . . , pn),
p1, . . . , pn ∈ Pa(u) into a probability distribution by linearly mapping the
range of F onto the interval [0,1].

In order to achieve [1.2], we can use an algorithm like the one described in
Druzdzel & Suermondt [11], Lin & Druzdzel [20] or Shachter [29]. Basically,
for a given node n ∈ M, it traverses the ID, starting from n, marking each
d-connected node it finds along the way. Once the traversing is done, those
nodes marked are added to the set IP(n).

In Step [3], we iterate only through chance nodes, which means that deci-
sion nodes are ignored at this stage. Remember that utility nodes have been
transformed into chance nodes in Step [1.1]. The Steps [3.1], [3.2.1], [3.2.2],
and [3.2.3] basically follow any forward sampling scheme, such as probabilistic
logic sampling [14], likelihood weighting [12; 31], importance sampling [31],
Latin hypercube sampling [3], adaptive importance sampling [2], or estimated
posterior importance sampling [33]. This produces an unbiased estimator of
the distribution of node c. But also note that in [3.2] we are iterating through
every δk ∈ Φc and that in Steps [3.2.1] through [3.2.3] we are assuming ‘given
δk’. The net result of Step [3] is the distribution of each chance node c condi-
tional on each strategy relevant to c:
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Input: An ID M = (C,A,D,U)
Output: For every strategy δk ∈ Φ expected utility of δk.
(1) For each node n ∈M

(1.1) If n ∈ U, apply Cooper’s transformation to n and add n to
C

(1.2) Find IP(n)
(1.3) Find ‖Φn‖

(2) Determine ΨM , a partial order over M
(3) For each node c ∈ C (in ΨM order)

(3.1) Generate a random number
(3.2) For each strategy δk ∈ Φc (or once if Φc = ∅)

(3.2.1) Look up the outcome of every node p ∈ Pa(c) given δk

(3.2.2) Instantiate the outcome of c given δk

(3.2.3) Give a score and annotate the outcome of c given δk

(4) If you wish to terminate the algorithm, proceed to Step 5.
Otherwise jump to Step 3.

(5) Normalize all Pr(c), c ∈ C
(6) For each node u ∈ U

(6.1) For each δk ∈ Φu (or once if Φu = ∅)
(6.1.1) Compute EU(u|δk), δk ∈ Φu by reversing Step 1.1

(7) For each δk ∈ Φ
(7.1) Compute the global expected utility given δk.

(8) Choose the best strategy.

Fig. 1. The basic algorithm.

Pr(ci|δk), ci ∈ C, δk ∈ Φc . (1)

In [3.2.1], we say “Look up the outcome of every node p ∈ Pa(c) given δk.”
What this “outcome” means depends on the type of the parent. If p ∈ IP(c),
“outcome” means state of p in the current δk. On the other hand, if p /∈
IP(c), “outcome” means the outcome of p that we computed and annotated
in Step [3.2.3]. The fact that we are processing nodes in the order specified
by ΨM guarantees that p has been dealt with before c, so the outcome of p
is available to us. Theorem 1 guarantees that we can always find the state of
node p given the current δk.

Also, note that we are evaluating in parallel every δk ∈ Φc, reusing the
random number generated in [3.1], to compute the distribution of c condi-
tional on every strategy. A complete sample, which is a collection of node
outcomes, one for every node, describes a state of the world that we effec-
tively test our decision model on. We use the same state of the world to test
each of the possible decision strategies, but we do it in parallel as we continue
sampling. This sample reuse achieves two important objectives: (1) it saves
a large number of calls to the random number generator, and (2) with every
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sample generated, it performs the evaluation of all strategies, which is a key
to achieving anytime behavior.

The simulation can be interrupted in Step [4], at which point the algorithm
yields its best estimate of the expected utilities of each of the strategies.

If we apply an algorithm with a stopping rule, such as the bounded variance
algorithm [9], the AA algorithm [8], or the AIS-BN-µ / AIS-BN-σ algorithms
[4], we may be able to produce an estimate of the error measure for each of
the strategies. If the error bounds around the posterior distributions of the
transformed utility nodes are small enough, we may even return an exact
ordering of the decision strategies.

Step [6] performs reverse of the transformation applied in [1.1] to utility
nodes. Utility nodes, indexed by their indexing parents, contain at this point
the expected utility of each possible strategy:

EU(ui|δk), ui ∈ U, δk ∈ Φu . (2)

Step [7] is meant to deal with those cases in which U has more than one utility
node. In this case, a global multi-attribute utility function of the form

GEU(u1, u2, . . . , un) = f(U1(u1), U2(u2), . . . , Un(un)), ui ∈ U

should be provided (typically, it is a part of the model). This function is
intended to produce a global utility and, for linearly additive utility functions,
for example, it is defined as

w1 U1(u1) + w2 U2(u2) + . . . + wn Un(un) , ui ∈ U .

Our algorithm does not depend in any way on the actual form of this multi-
attribute utility function. Finally, we identify the strategy δk ∈ Φ that maxi-
mizes GEU(δk).

4 An Example

To facilitate understanding of the algorithm, we are going to introduce a
simple ID that we will use to illustrate every step of the algorithm described
in the previous section. The ID models the following decision problem.

A group of terrorists have taken control of an airplane and have threat-
ened to kill all passengers and themselves, if their demands are not
met. Information is scarce, the nationality of the assailants is unknown
and there exists a possibility of them having explosives, which may
make any rescue attempt risky. The authorities are facing two deci-
sions. First, they need to determine whether they should negotiate or
not. Second, they need to decide whether to deploy a SWAT team to
assault the airplane. Although there is a lot of uncertainty, the au-
thorities have reduced the possible nationalities of the terrorists down
to two, CountryA and CountryB.
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Fig. 2. The hijacked plane ID.

Figure 2 shows the ID for this problem.
Table 1 shows the short labels that we will use in the sequel when referring

to the nodes in the model. It also shows the number of outcomes of each of
the nodes.

Table 1. The label and the number of outcomes for each node.

Number of
Long name Label outcomes
Negotiate Neg 2
Terrorists Nationality Nat 2
Swat Action Swat 2
Terrorists Mood Mood 2
Explosives Exp 2
Terrorists Response TRes 3
Terrorist Casualties TCas 2
Passenger Casualties PCas 3
Value 1 Val1 –
Value 2 Val2 –

We will now walk step-for-step through the algorithm.
Step (1): Initialization
Below we will show, as an example, Cooper’s transformation applied to

node Val2. This node encodes the preferences of the decision-maker with re-
spect to passenger casualties. For simplicity, the decision-maker has considered
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only three possible outcomes: All, Half, or None of the passengers die and
encoded her preferences in the node Val2 by means of the following utility
function:

U(Val2 |PCas = None) = 100
U(Val2 |PCas = Half ) = 25
U(Val2 |PCas = All) = 0

We apply a linear transformation to this utility function (please note that
utility is invariant to linear transformations) mapping it to the interval [0, 1]:

Pr(Val2 |PCas = None) = 1.0
Pr(Val2 |PCas = Half ) = 0.25
Pr(Val2 |PCas = All) = 0

After applying similar transformation to Val1, we add both Val1 and Val2
to the set of chance nodes. Table 2 summarizes the results of computing the
indexing parents (Step [1.2]).

Table 2. Some initial values computed.

Node IP(node) ‖Φnode‖
Neg ∅ –
Nat ∅ 1
Swat ∅ –
Mood { Neg } 2
Exp ∅ 1
TRes { Neg, Swat } 4
TCas { Neg, Swat } 4
PCas { Neg, Swat } 4
Val1 { Neg, Swat } 4
Val2 { Neg, Swat } 4

Step (2): Determine ΨM , a partial order over M.
There are many valid partial orders for M. We will use the following

ΨM = (N eg,N at,Swat,Exp,M ood,TRes,TCas,PCas,V al1,V al2) .

Step (3): Take one sample of the network.
Generating a stochastic sample in a BN amounts to randomly instanti-

ating every node to one of its possible states, according to the probability
distribution over the node’s states, conditional the instantiated states of its
parents. In case of forward sampling, this requires every instantiation to be
performed in the topological order, i.e., parents are sampled before their chil-
dren. Supposed we pick the first chance node in ΨM , Nat, and generate a
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random number. Since ΦNat = ∅, we do not have any strategies to iterate
through. This means that we proceed as in a plain sampling algorithm for
BNs: we generate a random number R and then we pick a state indicated by
R, depending on the a-priori probability distribution over Nat, encoded in its
CPT. Let this state be Nat = CountryA. We do the same to the next chance
node, Exp, and generate Exp = Yes.

The next chance node in ΨM with a non-empty ΦMood is Mood. [3.1] First
we generate a random number, say R = 0.65. [3.2] Now we start iterating
through all δ ∈ ΦMood . We know that ΦMood = {(Neg=Yes), (Neg=No)}, so
the first δ is (Neg=Yes). [3.2.1] We need now to find the outcome of each of
Mood’s parents, only Neg in this case. Since Neg ∈ IP(Mood), its outcome is
taken from the current δ, i.e., Neg = Yes.

Assume that the CPT of Mood looks as illustrated in Fig. 3–a. [3.2.2]
Looking at the probabilities in the first column, which shows Pr(Mood |Neg =
Yes), we choose Mood = Good. [3.2.3] Annotate this result in a table similar
to the one shown in Fig. 3–b.

In [3.2], we now pick the next element of ΦMood , which is δ = (Neg = No),
and repeat the above process. In [3.2.1] the current δ tells us that Neg =
No, since Neg ∈ IP(Mood). [3.2.2] Looking at the probabilities in the second
column of Fig. 3–a, which shows Pr(Mood |Neg = No), we find that Mood =
Bad. [3.2.3] Annotate this result. Figure 3–b shows the state at this point.

Note in Fig. 3–b that we always assign a score of 1 to the sampled outcome.
The reason for this, as noted before, is that we assume that there is no prior
evidence in the network. In case there is evidence, we need to weigh these
scores.

Fig. 3. (a) CPT of node Mood. (b) Table to score samples and to annotate current
outcome. Note that this table is indexed by the indexing parents of Mood.

At this point, we have completed sampling from the node Mood. There are
two remarks that we would like to make at this point. First, note that counting
the samples within individual chance nodes allows us to calculate the poste-
rior probability distribution of that node conditional on the strategy applied.
We alluded to this earlier, when we talked about evaluating all strategies in
parallel. Second, we are reusing the same random number R for all ‖ΦFMood‖
strategies, which saves many calls to the random number generator.



266 Daniel Garcia-Sanchez and Marek J. Druzdzel

We go back to Step 3 and pick the next chance node in ΨM , TRes. Some-
thing slightly more complex happens with this node. [3.1] We generate a
new random number, say R = 0.32. [3.2] Again, we know that ΦTRes =
{(Neg=Yes, Swat=None), (Neg=Yes, Swat=Attack), (Neg=No, Swat=None),
(Neg=No, Swat=Attack)}. This means that our first strategy is δ = (Neg =
Yes, Swat = None). [3.2.1] The parents of TRes are Mood, Swat, and Exp.
Since Swat ∈ IP(TRes), its outcome is taken, as before, from the current
δ, i.e., Swat=None. Things get just a little more complex when it comes to
finding the outcome of Mood, since Mood /∈ IP(TRes). This is because Mood,
as shown in Fig. 3–b, has two sampled outcomes, not just one. We pick the
one whose configuration of indexing parents matches the configuration of the
current δ.

Fig. 4. CPT of node TResponse.

Indeed, what we want to compute now is Pr(TRes |Neg = Yes , Swat =
None), so it follows that we need to consider the distribution Pr(Mood |Neg =
Yes, Swat = None). Since we have determined in Step [1.1] that Mood is
independent of Swat, Pr(Mood |Neg = Yes,Swat = None) = Pr(Mood |Neg =
Yes). And since Neg=Yes in the current δ, we must pick the outcome of Mood
from the column indexed by Neg=Yes in Fig. 3–b. This yields Mood=Good.

We take the same approach to find the outcome of the last parent, Exp,
but in this case everything seems to be easier since Exp is independent from
both Neg and Swat and has only one sampled outcome: Exp=Yes. Looking
at the third column of Fig. 5, which shows Pr(TRes |Swat = None,Exp =
Yes,Mood = Good), we obtain TRes = Liberate.

Fig. 5. Table to score samples and to annotate current outcome of node TRes.
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[3.2] We now pick the next strategy, δ = (Neg=Yes, Swat=Attack). [3.2.1]
From δ, Swat=Attack. Exp is still Yes. Since Neg=Yes again, Mood=Good for
the same reasons explained above. [3.2.2] Looking at the seventh column of
Fig. 5, which shows Pr(TRes |Swat = Attack ,Exp = Y es,Mood = Good),
we obtain TRes=Fight. [3.2.3] Annotate and pick next strategy. [3.2] δ=
(Neg=No, Swat=None). [3.2.1] From δ, Swat=None. Exp is still Yes. Since now
Neg=No, Fig. 3–b tells us that Mood=Bad. [3.2.2] Looking at the fourth col-
umn of Fig. 4, which shows Pr(TRes |Swat = None,Exp = Yes,Mood = Bad),
we obtain TRes=Liberate. [3.2.3]. Back to [3.2], the last δ = (Neg=No,
Swat=Attack). Note that we are still reusing the same random number
R = 0.32, which, looking at column 8 in Fig. 4, yields TRes=Fight. We are
done with node TRes, and Fig. 5 shows the state at this point.

We repeat this process for all nodes in the network. At this point the
reader should have an intuitive idea of how the algorithm works. Basically, we
choose a state for every chance node until there are no more nodes left in ΨM ,
at which point we would have completed one sample of the whole network.

Step (4): Decide if we should take another sample.
As said before, we need a means to decide whether to terminate the al-

gorithm. The more samples we take, the more accurate the solution will be.
If we decide to terminate, we just go on to Step [5] below to do some final
calculations.

Step (5): Normalize distributions of chance nodes.
Normalize each of the distributions Pr(ci|δk), ci ∈ C, δk ∈ Φc so that they

add up to 1. This corresponds to the columns of the tables containing the
scores of the outcomes of each node, like those shown in Figs. 3–b and 5.

Step (6): Compute expected utility of each utility node.
Here we just need to reverse the linear transformations of the utility func-

tions that we performed in [1.1]. This step yields V (Val1 |δk), k ∈ ΦVal1 and
V (Val2 |δk), δkδ∈ΦVal2 .

Step (7): Compute the global expected utility.
Since we have two utility nodes, Val1 and Val2, we need a function that

combines both and returns a global expected utility for the whole model. Let
us assume for simplicity that it is a linear combination of the individual utility
functions with unit weights, i.e.,

GEU(Val1 ,Val2 ) = U1(Val1 ) + U2(Val2 ) .

As before, we iterate through all strategies δ ∈ Φ and compute GEU condi-
tional on every strategy. In other words, we compute:

GEU(δk) = U1(Val1 |δk) + U2(Val2 |δk), δk ∈ Φ .

Step (8): Choose the best strategy.
Choose the strategy δk ∈ Φ that maximizes GEU(δk) calculated in Step [7].
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5 Empirical Illustration

It is quite obvious that the proposed algorithm is more efficient in terms
of its use of samples and in terms of reducing the variance in results than
an algorithm that exhaustively samples all strategies. We illustrate this on
Hepar II [24], a model for diagnosis of liver disorders consisting of 73
nodes and available in Decision Systems Laboratory’s model repository at
http://genie.sis.pitt.edu/. Since Hepar II is a BN, we first performed
a modification that transformed it into an ID. Basically, Hepar II consists of
nodes representing risk factors, liver disorders, medical tests, and symptoms.
The structure of the graph is causal: arcs go from risk factors to disorders and
from disorders to tests and symptoms. First, we designated four nodes from
among the risk factors to act as decision nodes. These decision nodes repre-
sented hypothetical choices a person could have about certain risks factors.
For example, alcohol abuse can be considered a risk factor for several liver
disorders. Converting this chance node into a decision node represents the
choice a person has with respect to drinking. Since each of the transformed
decision nodes had two states, we ended up with 16 different strategies to
evaluate. The second step was to add utility nodes. We decided to add one
utility node to each of the disorder nodes such that the utility of not having
a particular disorder was 100 while the utility of having the disorder was 0.
For simplicity, we assumed that all disorders as equally severe and created an
additive linear multi-attribute utility function with weights wi = 1.0 for each
of the individual utility nodes. With a total of eight disorders in the model,
the multi-attribute utility function ranged from 0, when a patient suffers from
all eight disorders, to 800, when a patient suffers from no disorders at all.

We compared our algorithm against indirect exhaustive algorithm, with
both algorithms based on likelihood weighting as their underlying BN al-
gorithm. We ran 1,000,000 samples of the network, taking measurements of
intermediate values of expected utility for each of the 16 possible strategies.

Figure 6 shows the expected utility of each of the 16 strategies as a function
of the number of samples. In the simulation, the range of expected utilities goes
from 500 up to 800 (each horizontal line on the graph represents an increment
of 50). This wide range is due to the variations in the estimates that we
obtained during the first one hundred samples. Crossing of trajectories means
essentially a change in the ranking of the strategies. The expected utilities
converge to their exact values (verified by means of an exact algorithm) as the
number of samples increases. Figure 7 shows the same plot for the algorithm
proposed in this paper. In this simulation, the range of expected utilities goes
from 550 up to 800 (each horizontal line also represents an increment of 50).
The expected utilities converge to exactly the same values (670 for the worst
strategy and 715 for the best one).

Both figures show individual trajectories shifting up and down, but while
in the crude exhaustive algorithm each trajectory seems to do so indepen-
dently of the others, in our algorithm they all shift roughly at the same time
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Fig. 6. Expected utility as a function of the number of samples for an indirect
exhaustive algorithm based on likelihood weighting.

Fig. 7. Expected utility as a function of the number of samples for the exhaustive
algorithm based on likelihood weighting proposed in this paper.

and in the same direction. This is a simple consequence of the fact that our
simulation tests each strategy against the same sample, i.e., on the same ran-
domly generated state of the world. This greatly reduces variance and our
algorithm can rank the strategies after processing a relatively small number
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of samples. While in Fig. 6 we can find trajectory lines crossing even after as
many as 90,000 samples taken, in Fig. 7 the last crossing of trajectory lines
occurs at only 900 samples.

Reuse of samples for each of the 16 strategies reduced the number of calls
to the random number generator by 16-fold. There was a 20% to 30% com-
putational time overhead related to reuse, resulting in roughly a 12-fold re-
duction of the computation time of our algorithm compared to the exhaustive
algorithm based on likelihood weighting.

6 Conclusion

We introduced an approximate anytime sampling algorithm for IDs that com-
putes the expected utilities of all decision strategies. The algorithm is indirect,
in the sense of reducing the problem of solving an ID by first transforming
it into a BN. We have shown how by evaluation of each of the strategies on
the same set of samples we not only save much computation but also reduce
variance and, hence, produce high quality anytime behavior. The proposed
algorithm is, furthermore, amenable to parallelization and a possible further
increase in speed.

Our algorithm accommodates any forward sampling scheme. A simple em-
pirical test of the algorithm has shown that it rapidly produces the correct
order of strategies. We expect that combining this algorithm with stopping
rules (e.g., [4]) will lead to efficient algorithms for IDs that give precision
guarantees with respect to both the order and numerical expected utilities of
strategies.
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Multi-currency Influence Diagrams
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Summary. When using the influence diagrams framework for solving a decision
problem with several different quantitative utilities, the traditional approach has
been to convert the utilities into one common currency. This conversion is carried
out using a tacit transformation, under the assumption that the converted prob-
lem is equivalent to the original one. In this paper we present an extension of the
influence diagram framework. The extension allows for these decision problems to
be modelled in their original form. We present an algorithm that, given a linear
conversion function between the currencies of the original utilities, discovers a char-
acterisation of all other such functions, which induce the same optimal strategy. As
this characterisation can potentially be very complex, we give methods to present it
in an approximate way.

1 Introduction

Influence diagrams (IDs) were introduced by [4] as a compact modelling lan-
guage for decision problems with a single decision maker (DM). When a deci-
sion problem is represented using the ID framework, the specification rests on
two principal components: A graphical structure for capturing the qualitative
part of the domain, and quantitative information in the form of probabilities
for representing uncertainty and utilities for representing preferences.

The separation of the qualitative and quantitative part of the ID is one
of the appealing properties of IDs when considered as a modelling tool. First, it
helps the modeller to focus on structure rather than calculations, and second,
the structure emphasises the local relations, which govern the specification
of the probabilities. Unfortunately, this locality principle does not completely
extend to the specification of the utility function: The utility function is usu-
ally specified through a collection of local utility functions, which appear as
the additive components of the global utility function. This implies that all
local utility functions should appear on the same scale. For instance, in a
medical domain money and discomfort would need to be transformed onto
a common scale. For decision problems where several parties are affected by
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the decision making process, the utility functions for the individual stake-
holders would also have to be transformed into a single utility function before
reasoning can take place. Unfortunately, it is usually difficult to elicit the
parameters, which governs such transformations (e.g. what is the monetary
cost of one unit of discomfort?).1 Moreover, the nature of such a transforma-
tion has a direct impact on the solution of the ID, but this effect cannot be
made transparent when the transformation is tacit. Furthermore, this type of
uncertainty, or ignorance, is not easily represented in the model.

In this paper we propose a framework, termed multi-currency IDs (MCIDs),
for representing decision problems with local utility functions of different cur-
rencies.2 An MCID can be seen as an ID augmented with currency informa-
tion for the local utility functions. We propose an algorithm that, based on an
MCID representation of a decision problem and a solution corresponding to a
given set of currency transformation parameters, provides a characterisation
of all combinations of parameters, which would give rise to the same solution –
a solution being an optimal strategy composed of a policy for each decision.
The result of such an analysis thus provides an indication of how robust the
optimal strategy is in terms of the tacit conversion parameters. Regular sen-
sitivity analysis (see e.g. [3] and [8]), on the other hand, provides robustness
measures in terms of isolated deviances in one or more of the actual utility
values in the ID, with no regard to how the uncertainties in these parameters
are related. By encoding each value for which regular sensitivity analysis is
to be performed by its own currency, the analysis could be performed by the
method we propose here, and it can therefore be seen as a generalization of
regular sensitivity analysis.

As the result of the analysis may be quite complex, we provide, in addition
to this algorithm, methods for presenting the result to a DM in a comprehen-
sible manner.

Example 1 (A Motivating Example). The ID in Fig. 1 models a decision prob-
lem where a doctor is faced with a patient. The health Health1 of the patient at
the time of the initial consultation is revealed only indirectly by the symptoms
Symptoms exhibited by the patient. Based on the symptoms, the doctor must
decide whether to perform a test Test . The test will produce a result Result ,
which the doctor observes before deciding on a treatment (if any) Treat . The
health of the patient, after a possible treatment has been administered, is
represented by the variable Health2. As medical supplies are expensive both
the Test and Treat decisions are associated with a monetary cost represented
by the utility nodes U2 and U3. Furthermore, if a test is performed, it might

1 [12] considers utilities that are defined as a linear combination of cost, insult and
risk, for instance.

2 Even though the word currencies is used here, we are not restricting ourselves to
monetary currencies, but consider human lives, spare time etc. as currencies also.
Also, in decision problems with several stakeholders, each currency can be seen
as the utility for one specific stakeholder.
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Health1 Health2Results

Symptoms Test Treat

U1 U2 U3

U4

Fig. 1. Example of an ID.

be associated with a degree of pain, risk of mortality, or other side effects on
behalf of the patient. This is represented by the utility node U1. The Health2

variable also has a preferred state (corresponding to the patient being well),
which is encoded by the utility node U4. .

Now, before the doctor calculates an optimal strategy for his decision
problem, he needs to transform U1, U2, U3, and U4 onto a common scale –
say, dollars. This involves estimating the monetary equivalents of the patient
being ill and of him being subjected to a painful test. However, different
transformations might produce differing optimal strategies. Therefore it would
be advantageous to know:

1. What choice of conversion parameters has been the basis of the calculated
optimal strategy?

2. What other conversion parameters would produce the same optimal strat-
egy? If another stakeholder, such as the patient in this example, disagrees
with the parameters, we could guarantee that even though there is dis-
agreement on the exact choice of parameters, the identified set of para-
meters all render the same strategy optimal.

None of these questions can be answered from the ID alone.
As an example of how decision problems involving several stakeholders

can be interpreted as a multi-currency problem, the ID introduced above can
be seen as describing a conflict between the interests of the patient and the
hospital (and/or the patient’s medical insurance company) mediated by the
doctor: By letting the patient specify utility values corresponding to utility
nodes U1 and U4, and the hospital the ones for U2 and U3, we can investigate
how the decisions of the doctor relate to these two stakeholders; he may be
indulgent to please the patient more than the hospital or vice versa.

2 Influence Diagrams

An ID is a directed acyclic graph consisting of chance (VC), decision (VD),
and utility nodes (VU ), with the two constraints that a node has no children
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if and only if (iff) it is a utility node, and that there is a directed path encom-
passing all decision nodes in the diagram. A chance node (drawn as an ellipse)
represents a chance variable, which is a discrete variable outside the DM’s di-
rect control. A decision node (drawn as a rectangle) represents a decision
variable (or simply a decision), which is a discrete variable under the DM’s
direct control. A utility node (drawn as a diamond) represents a local utility
function, and the set of local utility functions constitute the components in
an additive factorisation of the global utility function [13]. When the meaning
is obvious from the context, we use the terms node and variable interchange-
ably and do not distinguish between a variable or local utility function and
the node representing it.

When speaking of IDs we denote by pa(V ) the set of nodes, which are
parents of the node V , and by sp(V ) we denote the set of states of variable V
– states being outcomes for chance variables and decision options for decisions.
For a set of variables, S, we denote by sp(S) the configurations ×V ∈Ssp(V ).

An arc in an ID represents either functional dependence, probabilistic de-
pendence, or temporal precedence, depending on the type of node it goes
into. In particular, an arc emanating from a node X going into a decision
node D is a temporal precedence arc and states that X is observed or decided
upon immediately before D is decided upon. No-forgetting is assumed so that
variables observed or decided upon immediately before previous decisions are
remembered at subsequent decisions. A chance variable, which is not a parent
of any decision in the ID, is either never observed or observed after the last
decision. The temporal precedence arcs impose a partial temporal ordering ≺
on VC ∪VD. Together with the requirement on a directed path through all de-
cisions, this ordering induces a total temporal ordering on VD. For notational
convenience, we assume that the decisions are labelled D1, . . . , Dn, such that
i < j implies Di ≺ Dj . Furthermore, we use the notation Ci−1 to mean the
set of chance variables observed immediately before deciding on Di. By Cn

we refer to the set of chance variables never observed (or observed after the
last decision Dn has been decided upon). In summary we have

C0 ≺ D1 ≺ C1 ≺ · · · ≺ Dn ≺ Cn ,

and no-forgetting amounts to the assumption that for any Dk all observations
of variables in ∪i<kCi and decisions taken for D1, . . . , Dk−1 are remembered
when the DM decides on Dk. We define the past of decision D to be past(D) =
{V ∈ VC ∪VD | V ≺ D}. We encode the quantitative aspects of the modelled
decision problem as a set Φ of conditional probability distributions and a set
Ψ of local utility functions:

Φ = {P (C|pa(C)) | C ∈ VC}, and
Ψ = {U(pa(U)) | U ∈ VU} .

A pair (Φ,Ψ) is called a realisation for the ID. Here, and henceforth, we have
used f(V1, . . . , Vk) to denote a function of the type f : sp(V1)×· · ·×sp(Vk) →
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R. Such a function is called a potential ; we distinguish between probability
potentials, denoted by φ’s, and utility potentials, denoted by ψ’s. Furthermore,
the set of variables {V1, . . . , Vk} is referred to as the domain of f , denoted
dom(f).

Given an ID and a decision D a function, δD : sp(past(D)) → sp(D), is
called a policy for D. A collection of policies for each decision in an ID,

∆ = {δD : sp(past(D)) → sp(D) | D ∈ VD} ,

is called a strategy for the ID. Given a policy δD for a decision D we define the
chance variable policy [2] for D PδD

(D|past(D)) as PδD
(d|c) = 1 if δD(c) = d

and 0 otherwise. An optimal strategy ∆∗ for an ID is a strategy that fulfills

∆∗ = arg max
∆

∑

c∈sp(VC∪VD)

( ∏

D∈VD

PδD
(c)

∏

φ∈Φ

φ(c)
∑

ψ∈Ψ

ψ(c)
)

. (1)

The individual policies in an optimal strategy are referred to as optimal poli-
cies. To denote that a policy for a decision D is a part of an optimal strategy,
we write it as δ∗D. The quantity that is maximised in (1) is the expected utility
of the decision problem given the strategy ∆, and it is denoted eu(∆). Not all
variables in the past of a decision D are necessarily relevant for D. Therefore,
we call a variable V required for D, if there exists a realisation and a configu-
ration c over the variables in past(D) \ {V }, such that δ∗D(c, vi) �= δ∗D(c, vj)
for two states vi and vj in sp(V ). The set of required variables for a decision
D we denote by req(D).3 We may then redefine a policy to be a function
δD : sp(req(D)) → sp(D).

When optimal policies are to be identified, it is usually easier to work with
a recursive expression for the maximum expected utility instead of (1). An
example is the variable elimination algorithm [5]: Define

Φ(n) = {φ ∈ Φ | dom(φ) ∩ (Ci ∪ {Di}) �= ∅},

and similarly for Ψ(n). Then

δ∗Dn
(c) = arg max

d∈sp(Dn)

∑

e∈sp(Cn)

∏

φ∈Φ(n)

φ(c, d, e)
∑

ψ∈Ψ(n)

ψ(c, d, e) , (2)

and we set
φn(c) =

∑

e∈sp(Cn)

∏

φ∈Φ(n)

φ(c, δ∗Dn
(c), e) , (3)

and

ψn(c) =




∑

e∈sp(Cn)

∏

φ∈Φ(n)

φ(c, δ∗Dn
(c), e)

∑

ψ∈Ψ(n)

ψ(c, δ∗Dn
(c), e)



 /φn(c) ,

(4)
3 [9] provides an operational method for determining req(D) for any decision D in

an ID.
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for all configurations c over req(Dn). For all i < n we recursively define

Φ(i) = {φ ∈ Φ ∪ {φi+1, . . . , φn} | dom(φ) ∩ (Ci ∪ {Di}) �= ∅} \ ∪j>iΦ(j) (5)

and similarly for Ψ(i) with ψi+1, . . . , ψn. We then get

δ∗Di
(c) = arg max

d∈sp(Di)

∑

e∈sp(Ci)

∏

φ∈Φ(i)

φ(c, d, e)
∑

ψ∈Ψ(i)

ψ(c, d, e) , (6)

and set
φi(c) =

∑

e∈sp(Ci)

∏

φ∈Φ(i)

φ(c, δ∗Di
(c), e) , (7)

and

ψi(c) =




∑

e∈sp(Ci)

∏

φ∈Φ(i)

φ(c, d, e)
( ∑

ψ∈Ψ(i)

ψ(c, d, e)
)


 /φi(c) , (8)

for all configurations c over req(Di). We may then write the maximum ex-
pected utility of the ID as

eu(∆∗) =
∑

e∈sp(C0)

∏

φ∈Φ(0)

φ(e)
∑

ψ∈Ψ(0)

ψ(e) .

Given an ID and a realisation, an optimal strategy may be found through the
use of any one of a number of algorithms including [5; 7; 10], and [11], which
all utilise the distributive and associative law on the expressions in (2) to (8).

3 Multi-currency Influence Diagrams

From the summations of utility potentials in (2) to (8), it is clear that these
must be of the same type, i.e. defined over the same currency; in the ID frame-
work this is tackled by transforming the different currencies into one currency
during construction of the ID. We now introduce a framework capable of han-
dling decision problems involving utilities of several currencies. We call models
in this framework Multi-currency Influence Diagrams (MCIDs).

Basically, an MCID is just an ID where each of the utility nodes is anno-
tated with the currency of the corresponding local utility function. Formally,
the syntax and semantics of IDs described in Sect. 2 carry over to MCIDs,
except for the requirement that the local utility functions must be an additive
decomposition of the global utility function. By assuming some arbitrary, but
fixed, order of the currencies in the MCID s1, . . . , sm we may refer to the
currency of a local utility function by a natural number i ∈ {1, . . . , m}.

In what follows we refer to the number of different currencies of an MCID
as the dimension of the MCID, and throughout we assume this to be m. A
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realisation of an MCID is therefore a tuple (Φ,Ψ1, . . . ,Ψm), where Ψi is the set
of local utility functions of currency i. We require that, for each Ψi, its elements
form an additive decomposition of a utility function, which encodes the same
preference ordering as if the DM had disregarded all consequences measured
in currencies different from i, and that there is some linear combination of
these utility functions describing the decision makers preferences in full. Note
that it follows that an MCID of dimension 1 is an ID, and hence from this
point on we assume m to be larger than 1.

A strategy for an MCID is the same as for an ID: A prescription of choices
given the required variables in the past. However, if we want to compute an
optimal strategy for an MCID, we need a method for comparing amounts of
one currency with amounts of another. This can be seen from the following
example.

Example 2 (A Simple Example of an MCID). Consider a simple two-dimensi-
onal MCID, over the currencies A and B, with only a single binary decision
D and two local utilities U1 and U2 defined as U1(D = d1) = 1A, U1(D =
d2) = 5A, U2(D = d1) = 2B, and U2(D = d2) = 1B.

Both choices of D can be optimal choices depending on how much the DM
values amounts of currency A relative to amounts of currency B. If D = d1

should be an optimal strategy then eu(D = d1) ≥ eu(D = d2), which is
equivalent to

1A + 2B ≥ 5A + 1B ⇔ −4A + B ≥ 0 ,

If we regard the currency name A as a real variable, representing the DM’s
degree of appreciation of amounts of A, and similarly for currency name B,
then −4 · A + B corresponds to an amount of appreciation equivalent to −4
A’s and one B. The set of all values for A and B, where −4 ·A + B ≥ 0, then
corresponds to the possible attitudes of the DM rendering d1 the optimal
choice of the decision problem modelled by the MCID. The state space of
A×B, viz. R

2, is thus partitioned into two regions, each corresponding to an
optimal strategy.

To sum up, we see that the payoff of following a specific strategy is an
element of R

m (e.g. (5, 1) in Ex. 2) rather than a scalar value as is the case
with strategies for IDs. The means we use for comparing amounts of different
currencies are called currency mappings:

Definition 1. Let I be an MCID of dimension m and α = (α1, . . . , αm) a
point in R

m, then α is a currency mapping (CM) for I.

The semantics of a CM α, reflecting a DM’s preferences, is that, for any two
amounts xi and xj of currencies i and j, respectively, we have that αixi equals
αjxj iff the DM values xi of currency i as much as xj of currency j. We also say
that the DM adheres to α. This way αi becomes a measure of appreciation for
the DM of one unit of currency i. In a multi-stakeholder setting, αi becomes
a weight of importance attributed to satisfying the i’th stakeholder compared
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to the other stakeholders. In any case, the objective of the DM is to maximize
the expected global utility of a strategy ∆ given by

α · eu(∆) =
m∑

i=1

αi

∑

c∈sp(VC∪VD)

( ∏

D∈VD

PδD
(c)

∏

φ∈Φ

φ(c)
∑

ψi∈Ψi

ψi(c)
)

. (9)

It follows that we assume the preferential relationship between currencies is
a linear one. Thus, in Ex. 2, a DM adhering to the CM (3, 2), would have an
expected global utility of 3 · 1 + 2 · 2 = 7 for choosing d1 and 3 · 5 + 2 · 1 = 17
for choosing d2. In order to maximize the expected global utility he should
therefore choose d2.

We use bold face Latin letters (f , q, etc.) to denote arbitrary points in R
m,

and Greek letters (α and β) to denote points when we want to emphasise that
they are CMs. In general, we use qi to refer to the i’th coordinate of a point
q. We shall not distinguish between a point q and the corresponding vector
going from the origin to q. In what follows we furthermore use f ·q to denote
the scalar product

∑
i fiqi.

In this paper we assume, without loss of generality, that each element of a
currency mapping is positive, i.e. a CM is an element of R

m
+ rather than R

m,
where R+ denotes the set of strictly positive reals. This assumption implies
that everybody should be able to agree on whether amounts of each currency,
i, is beneficial to be had or not, and that no-one would contest the relevance of
amounts of any currency. If a currency i is disadvantageous to be had (meaning
that αi should be negative) we expect the modelled decision problem to have
negative utilities specified for positive amounts of i, as is usually done when
costs are specified in IDs.

If for a strategy, ∆, we have that α · eu(∆) is greater than or equal to
α · eu(∆′) for all other strategies ∆′, it means that a DM adhering to α
appreciates the expected utility of following ∆ at least as much as that of
following any other strategy, and we consequently say that ∆ is optimal given
the CM α. As can be seen from (9), and the distributive law of the scalar
product, the optimal strategy for α is equivalent to the one obtained by solving
an ID resulting from multiplying the individual utilities in the MCID with α
beforehand. We denote an optimal strategy for an MCID given a CM α as
∆∗

α. As several strategies might give rise to the same expected utility, the set
of all optimal strategies corresponding to α is denoted as ∆∗

α.

4 Support Analysis of MCIDs

Clearly, if we are given a CM α in addition to an MCID we can solve it by
means of simply converting the MCID into an ID, through multiplying each
local utility function of currency i by αi, and then solving the resulting ID.
This simple solution method allows for optimal strategies to be computed for
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any α, and the distinction between MCIDs and CMs emphasises the assump-
tions leading to the results. However, we would not be closer to answering the
second question in the motivating example, viz. what other currency mappings
would lead to the same optimal strategy? In order to do this, we must render
the effect of α on the optimal strategy transparent. We would then be able
to reason about the universality of the applicability of that optimal strategy.
We obtain this transparency by postponing the conversion of utilities until it
is needed, so that we can analyse the requirements these conversions bestow
upon those CMs giving rise to the same optimal strategy.

4.1 Preliminaries

Given an MCID and a strategy ∆, we call the set su(∆) = {β ∈ R
m
+ | ∆ ∈

∆∗
β} the support of ∆. Intuitively, su(∆) is the set of CMs for which ∆ is

an optimal strategy. We refer to the process of calculating the support of an
optimal strategy as performing support analysis of the MCID. In Ex. 2 we
actually found the support of both strategies D = d1 and D = d2 (the two
partitions of R

2
+ defined by −4A+B = 0). Later it will become apparent that

any such support can be described as an intersection of partitions of R
m
+ –

each partition described by a linear inequality.
As mentioned in the beginning of this section, we postpone the conversion

of utility potentials until needed. Hence, we introduce a new type of potential,
which can represent utility functions of several currencies:4 A multi-currency
utility potential (MCUP) of dimension m over the variables in a set S is
a function θ : sp(S) → R

m attributing to each configuration c over the
variables in S a measure of utility (θ(c))i of each currency i. In Ex. 2 we could
have exchanged the two utility functions U1 and U2 with the two MCUPs
θ1 and θ2, where θ1(d1) = (1, 0), θ1(d2) = (5, 0), θ2(d1) = (0, 2), θ2(d2) =
(0, 1). For a DM whose preferences are reflected by the CM β, β · θ(S) is
a utility potential that for any configuration, c, over variables in S yields
the value β1(θ(c))1 + · · · + βm(θ(c))m, which to the DM is equivalent to
the amounts (θ(c))1, . . . , (θ(c))m of currencies 1, . . . , m, respectively. When
adding MCUPs or multiplying probability potentials onto them, we simply
treat each dimension of the MCUP as a regular utility potential, and perform
the operation on each dimension separately. For instance, in Ex. 2 we have
that θ1 +θ2 is the MCUP θ+ where θ+(d1) = (1, 2) and θ+(d2) = (5, 1), which
to a DM adhering to β = (3, 2) would be equivalent to a utility potential ψ,
where ψ(d1) = 7 and ψ(d2) = 17.

4.2 Support Analysis

We are now ready to give a procedure for performing support analysis of an
MCID. We describe the method first, and give an example of its application
4 Such potentials are not part of the MCID framework as such, but rather data

structures used by the proposed method for doing support analysis.
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afterwards. We assume the existence of an optimal strategy ∆∗
α determined

by some initial currency mapping α as well as a realisation (Φ,Ψ1, . . . ,Ψm),
and we look for the support of ∆∗

α for this realisation. The method is inspired
by that of Lazy evaluation presented in [7] and basically traces the steps of
this method while recording the requirements on α for ∆∗

α to be an optimal
strategy. The method consists of an initialisation phase and an identification
phase. The initialisation phase consists of two steps: First, two empty sets Ξ
and Θ are generated, where Ξ will hold inequalities defining su(∆∗

α), and Θ
is a container for MCUPs used in the identification phase. Second, for each
currency i each potential ψ in Ψi is converted to a MCUP θ and put into
Θ, such that θk = ψ if k = i and 0 otherwise, where 0 denotes the function
yielding the zero value for all input.

The identification phase follows the Lazy evaluation method, except for
the steps normally carried out when a variable is eliminated (see Algorithm 1).
The major difference between these steps and the corresponding steps in Lazy
evaluation is that we do not perform a maximisation to uncover an optimal
strategy. Instead we look for a set of linear inequalities (Step 4) that need
to be fulfilled if ∆∗

α is to be optimal. We refer to the inequalities in Ξ as
constraints, since they constrain the support set.

Algorithm 1: The elimination steps of the identification phase. The strategy
∆∗

α is assumed to be given apriori.

1. Let V be the variable to be eliminated, and let ΦV denote the set of
probability potentials in Φ with V in their domain, and ΘV denote the
set of MCUPs in Θ with V in their domain.

2. Let
φV =

∏

φ∈ΦV

φ, and θV =
∑

θ∈ΘV

θ .

3. If V is a chance variable, then set

Φ← (Φ \ΦV ) ∪
{
∑

V

φV

}
,

and

Θ ← (Θ \ΘV ) ∪
{∑

V (φV θV )∑
V φV

}
.

4. If V is a decision variable, then set

Φ← (Φ \ΦV ) ∪ {φ(V = v) | φ ∈ ΦV } ,

where v is some arbitrary state of V 5, and

Θ ← (Θ \ΘV ) ∪ {θV (δ∗V )} ,

5 Note that any potential in ΦV must be constant over V
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where δ∗V is the appropriate element of ∆∗
α. For each configuration c over

the variables in req(V ) and state v �= δ∗V (c) of V , set

Ξ ← Ξ ∪ {fc,v · γ ≥ 0} , (10)

where fc,v denotes θ(c, δ∗V (c))− θ(c, v).

Before proceeding, we illustrate the workings of the algorithm by an example:

Example 3. We specify the ID from Ex. 1 as an MCID. We assume that the
state space of the variables are as follows:

sp(Health1(H1)) = {bad(b1), healthy(h1)} ,

sp(Symptoms(S)) = {symptoms(sy),none(no)} ,

sp(Test(Te)) = {test(te),no test(nte)} ,

sp(Results(R)) = {positive(po),negative(ne),no result(nr)} ,

sp(Treat(Tr)) = {treat(tr),no treatment(ntr)} , and
sp(Health2(H2)) = {bad(b2), healthy(h2)} .

The three currencies we work with are, and are ordered as comfort(c), dol-
lars($), and health(h). The realization that we work with is defined by the
following parameters:

P (b1) = 0.5 , P (sy|b1) = 0.95 , P (sy|h1) = 0.1 , P (nr|nte, ·) = 1 ,

P (nr|te, ·) = 0 , P (po|te, b1) = 0.99 , P (po|te, h1) = 0.01 ,

P (b2|b1, tr) = 0.001 , P (b2|b1, ntr) = 0.999 , P (b2|h1, tr) = 0 ,

P (b2|h1, ntr)=0.0001 , U1(te, nte)=(−1c, 0) , U2(te, nte)=(−$1000, 0) ,

U3(tr, ntr) = (−$10000, 0) , and U4(b2, h2) = (−1h, 0) .

We assume that the doctor is adhering to a CM α = (10, 1, 100000) meaning
that he regards discomfort on behalf of the patient as bad as the loss of $10 and
the death of the patient as bad as a loss of $100000. The CM corresponds to
a strategy prescribing treatment either if a test was conducted, and a positive
test result was gotten, or no test was conducted and there was symptoms, and
no treatment otherwise.

In the initialization part of the algorithm, we construct an empty set Ξ
and convert the four utility potentials into a set of four MCUPs

Θ = {θ1(te, nte) = ([−1, 0, 0], [0, 0, 0]) , θ2(te, nte) = ([0,−1000, 0], [0, 0, 0]) ,

θ3(tr, ntr) = ([0,−10000, 0], [0, 0, 0]) , θ4(b2, h2) = ([0, 0,−1], [0, 0, 0])} .

Next we perform variable elimination in an order that respects the ≺-ordering
of the MCID: First Health2, then Health1, Treat , Results, Test , and lastly
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Symptoms. Marginalizing out Health2, according to Steps 2 and 3 results in
dropping P (H2|H1, T r) from the set of probability potentials and replacing
θ4 with a new MCUP:

θH1,Tr =

∑
H2

P (H2|H1, T r) · θ4∑
H2

P (H2|H1, T r)
,

in which θH1,Tr(b1, tr) = [0, 0,−10−3], θH1,Tr(b1, ntr) = [0, 0,−0.999],
θH1,Tr(h1, tr) = [0, 0, 0], and θH1,Tr(h1, ntr) = [0, 0,−10−4]. Further mar-
ginalizing out Health1 (again according to Steps 2 and 3) replaces all proba-
bility potentials with

φR,S,Te =
∑

H1

P (H1) · P (S|H1) · P (R|H1, T e)

and θH1,Tr with

θR,S,Te,Tr =

∑
H1

P (H1) · P (S|H1) · P (R|H1, T e) · θH1,Tr

φS,R,Te
.

This last potential is shown in Table 1.

Table 1. θR,S,Te,Tr

te nte
tr ntr tr ntr

po sy [0, 0,−9.99 · 10−4] [0, 0,−9.98 · 10−1] [0, 0, 0] [0, 0, 0]
no [0, 0,−8.46 · 10−4] [0, 0,−8.45 · 10−1] [0, 0, 0] [0, 0, 0]

ne sy [0, 0,−8.76 · 10−4] [0, 0,−8.76 · 10−2] [0, 0, 0] [0, 0, 0]
no [0, 0,−5.61 · 10−7] [0, 0,−6.60 · 10−4] [0, 0, 0] [0, 0, 0]

nr sy [0, 0, 0] [0, 0, 0] [0, 0,−9.05 · 10−4] [0, 0,−9.04 · 10−1]
no [0, 0, 0] [0, 0, 0] [0, 0,−5.26 · 10−5] [0, 0,−5.27 · 10−2]

When marginalizing Treat , we construct the MCUP θ+
R,S,Te,Tr = θ3 +

θR,S,Te,Tr (shown in Table 2), according to Step 2, and by marginalizing Treat
out of this, according to Step 4 and ∆∗

α, we end up with a new MCUP θR,S,Te

(not shown), but also add 12 constraints to Ξ – one for each configuration over
Results, Symptoms, and Test . For instance, for the configuration (po, sy, te),
we construct the constraint (γ = (γc, γ$, γh))

((0,−10000,−9.99 · 10−4)− (0, 0,−9.98 · 10−1))γ ≥ 0

−10000γ$ + 9.97 · 10−1γh ≥ 0 ,

which is satisfied by α, as can easily be verified. After the other 11 constraints
have been calculated the algorithm continues with elimination of the remain-
ing variables.
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Table 2. θ+
R,S,Te,Tr

te nte

tr ntr tr ntr

po sy [0,−104,−9.99 · 10−4] [0, 0,−9.98 · 10−1] [0,−104, 0] [0, 0, 0]
no [0,−104,−8.46 · 10−4] [0, 0,−8.45 · 10−1] [0,−104, 0] [0, 0, 0]

ne sy [0,−104,−8.76 · 10−4] [0, 0,−8.76 · 10−2] [0,−104, 0] [0, 0, 0]

no [0,−104,−5.61 · 10−7] [0, 0,−6.60 · 10−4] [0,−104, 0] [0, 0, 0]

nr sy [0,−104, 0] [0, 0, 0] [0,−104,−9.05 · 10−4] [0, 0,−9.04 · 10−1]

no [0,−104, 0] [0, 0, 0] [0,−104,−5.26 · 10−5] [0, 0,−5.27 · 10−2]

As presented here, the algorithm presupposes that ∆∗
α has been computed

beforehand. Alternatively, the Lazy evaluation algorithm itself can easily be
interleaved by inserting the following step prior to Step 4 in Algorithm 1:

* For each configuration c over the variables in req(V ) set

δ∗V (c) = arg max
v∈sp(V )

α · θV (c, v) .

Although the method, as presented here, follows the structure of the Lazy
evaluation method, it can easily be adapted to follow the structure of any
other solution method that is based on the expressions in (2) to (8). We
conjecture that any such adaptation would identify the support set as long as
the constraints are identified and stored. With or without this modification,
though, we have the following important result:

Theorem 1. Let β be in R
m
+ , ∆ a strategy, and Ξ the result of running the

method described above on ∆. Then β is an element of su(∆) iff β satisfies
all inequalities in Ξ.

Proof. The “if” part of the theorem is obvious. We therefore only show the
“only if” part, viz. that if β fails to satisfy at least one constraint in Ξ, then
∆ cannot be an optimal strategy for a DM adhering to β, and hence that β
is not an element of su(∆).

Without loss of generality, assume that f ∈ Ξ is the first constraint not
satisfied by β that is identified by the algorithm. This happens during elim-
ination of some decision Di in Step 4 of the algorithm, with some MCUP
θDi

having been calculated during Step 2. For some configuration c over
dom(θDi

) \ {Di} and state v �= δDi
we must have that f is

(θDi
(c, δDi

(c))− θDi
(c, v)) · γ ≥ 0 .

Since β fails to satisfy this constraint, it follows that

(θDi
(c, δDi

(c))− θDi
(c, v)) · β �≥ 0 ,

which is equivalent to
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θDi
(c, δDi

(c)) · β < θDi
(c, v) · β .

We construct the strategy ∆′ obtained from ∆ by letting δ′Di
(c) = v and

leaving all other policies intact. We then have that eu(∆′)·β is strictly greater
than eu(∆) · β, and hence that ∆ cannot be an optimal strategy for a DM
adhering to β.

Glancing over the constraints identified in Ex. 3 it is clear that each con-
straint f : aγ1+bγ2+cγ3 ≥ 0 defines a hyperplane in R

3 given by the equation
aγ1 + bγ2 + cγ3 = 0. As the zero vector 0 = (0, 0, 0) is a satisfying solution
to each equation, it follows that all these hyperplanes must pass through the
origin of R

3, and hence that the points satisfying all constraints must lie in a
bottomless pyramid extending from the origin, as illustrated in Fig. 2(a). A
corresponding visualization for a two-dimensional MCID is shown in Fig. 2(b).
That the support of a strategy extends indefinitely from the origin as a pyra-
mid, also makes sense from a purely semantical point of view: If a CM is scaled
by multiplying each entry by some positive constant, the relative difference in
appreciation between amounts of the individual currencies, for a DM adhering
to this CM, stays the same. Hence, if a CM renders some strategy optimal,
that strategy should also be optimal for any positively scaled version of this
CM. From a more formal point of view, we also have that, for any CM α and
two strategies ∆i and ∆j , if α · eu(∆i) ≥ α · eu(∆j) then it must necessarily
be the case that cα · eu(∆i) ≥ cα · eu(∆j) for any c > 0, and hence that the
pyramidal forms of support areas are what we should expect.

γ1

γ3

γ2

α

su(∆∗
α)

Ξ

(a)

α

su(∆∗
α)

Ξ

γ1

γ2

(b)

Fig. 2. Supports for a three-dimensional (a) and a two-dimensional MCID (b).

5 Finding a Minimal Support Set

The procedure described above finds the support of a strategy for a given CM
and stores it as a set of constraints Ξ. The cardinality of Ξ is given by
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|Ξ| =
∑

D∈VD

|sp(req(D))|(|sp(D)| − 1) ,

and storing it requires an amount of memory proportional to m · |Ξ|. This size
can be problematic for larger decision problems – both in terms of memory
requirements and in terms of representing the resulting Ξ to a human DM in
a comprehensible manner.

We have devised a method for keeping the size of Ξ minimal during the
analysis. By minimal we mean that Ξ does not include a constraint f , such
that the set Ξ \ {f} defines the same volume as Ξ. Conversely, if such a
constraint f is in Ξ, we call it superfluous. Traditionally, such a task would
be carried out by repeated applications of linear programming, but this can
be done more efficiently when the number of dimensions m is significantly
smaller than the number of decisions in the MCID. This seems to be the case
in most examples of multi-currency decision problems in the literature, see
e.g. [1] and [12].

The approach is purely geometric and rests on the already mentioned fact
that all constraints in Ξ define a pyramid extending from the origin of R

m (see
Figs. 2(a) and 3(a)), and a black box view of the support analysis as a simple
constraint generating process. For sake of clarity, we first describe the method
informally in the intuitively understood three dimensional setting, and then
give a formal presentation of the more general m-dimensional setting.

As the support of a strategy is a pyramid extending from the origin, we
can represent the volume defined by Ξ as a set of lines extending from the
origin, each corresponding to the intersection of two hyperplanes defined by
constraints in Ξ (see Fig. 3(a), which illustrates the support defined by the
initial set of constraints γ1 ≥ 0, γ2 ≥ 0, and γ3 ≥ 0, as well as an additional
constraint f). We refer to such lines as edges of the pyramid, and we denote
the set of them as EΞ . When a new constraint g is to be added to Ξ (see
Fig. 3(b)) it may be superfluous. With the alternative representation this
question can be restated as whether the points on any of the edges in EΞ fail
to satisfy g. If this is the case, g is not superfluous. In Fig. 3(b) we have that
there was originally a pyramid defined by the edges e1, e2, e3, and e4, but
as all points (but the origin) on e1 and e2 fail to satisfy the new constraint
g, it is not superfluous. Therefore it is added to Ξ, which now defines a new
pyramid whose edges are e3, e4, e5, and e6. Thus EΞ is updated by dropping
e1 and e2 and adding e5 and e6. This means that the original constraint γ1 ≥ 0
no longer participates in defining any of the edges in EΞ , and it is therefore
superfluous now. Consequently, γ1 ≥ 0 must be dropped from Ξ to keep it
minimal (see Fig. 3(c)). That is, in this alternative representation, we can also
detect when old constraint are rendered superfluous by new constraints.

There is one main hurdle to be overcome by an implementation: Whenever
a new constraint h is identified, the edges in EΞ need to be checked for points
not satisfying h. By storing the pyramid as a list of edges sorted according to
their angular distance to α (see Fig. 4(a)), and calculating the minimal angular
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γ1
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Fig. 3. Keeping Ξ minimal when a new constraint g is added. Edges are shown as
dashed lines.

distance from α to the hyperplane defined by h, we can quickly determine
those edges that can contain points not satisfying h, i.e. those with an angular
distance greater than the distance to the hyperplane defined by h. If no such
edges exist (as in Fig. 4(b)), h is clearly superfluous. If such edges do exist,
they have to be checked against h one at the time, and only if all of them
satisfy h, it must be superfluous. However, as the set of constraints grow, the
girth of the pyramid becomes smaller, and we would therefore expect that
more new constraints fail the initial check of being closer to α than any of
the edges in Ξ, and that this further check by enumeration can be avoided.

γ3

α

γ2
γ1

e5

e6

e7

e3

h

(a)

γ1

γ3

γ2

α α↓h

(b)

Fig. 4. Rejecting a constraint, h, because of its angular distance to α.

To describe the approach precisely, we formalize and generalize the dis-
cussion above: First, if f(γ) = f · γ ≥ 0 is a constraint in Ξ and β is some
point in R

m, then we use f(β) to state that f · β ≥ 0 and ¬f(β) to state
that f · β < 0. Furthermore, we denote the hyperplane {β ∈ R

m | f · β = 0}
as H(f), and talk of Ξ as consisting of hyperplanes when it introduces no
ambiguity. A constraint f in Ξ is then defined to be superfluous in Ξ if there
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exists no point β in R
m, such that ¬f(β) and g(β) for all g �= f in Ξ. If no

constraint in a set of constraints Ξ is superfluous, we say that Ξ is minimal.
The angular distance from β to α is given by

∠βα = cos−1 β ·α
‖β‖ · ‖α‖ .

Here and henceforth ‖q‖ denotes the Euclidean length of the vector ‖q‖.
Moreover, we say that the set of constraints Ξ constitutes a pyramid, if for
all points β in R

m, where the angular distance to α is greater than 90◦, there
exists at least one constraint f in Ξ, such that ¬f(β). The previously intro-
duced assumption of only considering CMs in R

m
+ , we restate as an inclusion

of the m constraints γi ≥ 0 in Ξ from the outset of the support analysis. This
ensures that Ξ is a pyramid at the beginning of the support analysis.

The triangle inequality ensures that the points in a pyramid having the
largest angular distance to α must lie at the intersection of a number of hyper-
planes in Ξ. We need to consider intersections of exactly m− 1 hyperplanes.
The reason is that an intersection of k non-parallel hyperplanes in R

m de-
scribe an m− k dimensional subspace of R

m, and the points in this subspace
will have varying angular distances to α unless the subspace has dimension
1, and this is only the case when k is 1. If part of such an intersection lies
within Ξ, we refer to that part as an edge. An edge determined by constraints
f1, . . . , fm−1 we represent by a pair e = (I,p), where I = {f1, . . . , fm−1} and
p ∈ R

m
+ ∩H(f1)∩ · · · ∩H(fm−1). The set of edges of a pyramid Ξ is denoted

EΞ , and we assume it to be kept sorted such that (Ii,pi) is stored before
(Ij ,pj) only if ∠piα ≤ ∠pjα. Finally, for any constraint f , we denote by
α↓f the projection of α onto the subspace H(f). With these terms specified,
we can now present the proposed method in Algorithm 2.

Algorithm 2: Takes as input a minimal pyramid Ξ with a sorted set of edges
EΞ and a constraint f . Outputs a new minimal pyramid Ξ ′, describing the
same volume as Ξ ∪ {f}, along with a sorted set of edges EΞ′ .

1. Partition EΞ into two sets E+ and E−, such that each edge in E+ has
angular distance to α less than or equal to ∠αα↓f .

2. Move each edge (I,p) in E−, where f(p), from E− to E+

3. If E− = ∅ then stop and return Ξ ′ = Ξ and EΞ′ = EΞ .
4. Let the new set of constraints be

Ξ ′ = {f} ∪
⋃

(I,p)∈E+

I ,

and the set of constraints possibly defining new edges be

ΞN =



Ξ ′ ∩
⋃

(I,p)∈E−

I



 ∪ {f} .
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Then let

EΞ′ = E+∪{(I,pI) | I ⊆ ΞN , f ∈ I, |I| = m−1, and g(pI) ∀g ∈ Ξ ′} ,

where pI is the unique point in R
m
+ ∩ (∩h∈IH(h)) for which ‖pI‖ = 1.

5. Return Ξ ′ and EΞ′ .

Proposition 1. Let Ξ constitute a minimal pyramid and f be a constraint
not in Ξ. Then the constraints in Ξ ∪ {f} define the same region as those
in Ξ ′ obtained from using Algorithm 2 to add f to Ξ. Furthermore, Ξ ′ is a
minimal pyramid.

The complexity of inserting an element in the sorted set EΞ is O(log |EΞ |),
and we have a maximum of

( |Ξ|
m−2

)
new edges to add to EΞ in Step 4,

in effect yielding a worst-case complexity of O(
( |Ξ|
m−2

)
log |EΞ |) for insertion

of a constraint. This is an improvement with respect to the complexity of
(|Ξ|+ 1)m|Ξ|+1, offered by using simplex repeatedly [6], especially when the
dimension m is low.

6 Presenting the Support to a Human DM

Given that Ξ has been identified as in Fig. 5(a), we provide two compact
abstractions, which are useful for presenting the support to a DM.6

γ1

γ2

α

γ3

Ξ

(a)

γ1

γ2

γ3

α

(b)

γ2

γ3

γ1

α

γ1 = 1

(c)

Fig. 5. Three ways of representing the result of support analysis.

An immediate approach to representing Ξ in a compact manner is to
define an m-dimensional ball centered at α with radius equal to the minimum
Euclidean distance from α to any one of the hyperplanes defined by constraints
in Ξ (see Fig. 5(b)).

The approach allows for a highly compact representation of Ξ during
computation too: Only a single scalar value (the radius of the ball) needs to
6 These techniques do not presuppose that Ξ is minimal.
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be stored. Whenever a constraint closer to α is identified, we replace the old
radius with the distance from α to this new constraint. Unfortunately this
representation can be a rather crude abstraction, as seen in Fig. 5(b).

Another, more accurate, representation technique is to present Ξ by the
largest ball that will fit into the support defined by it. That is, abandon α as a
fixed center of the representation. As Ξ describes an infinite pyramid, no such
largest ball exists, though, so we propose to make a cut through the computed
pyramid Ξ, by forcing one of the γis to be 1, and then representing the
resulting intersection by the largest ball, which can fit into it (see Fig. 5(c)).
The first step of this approach corresponds to identifying a base currency i
that all other currencies are compared to.

For the second step to be successfully completed it is necessary that the
intersection of the pyramid and the cut is a bounded volume. This is the case
if the hyperplane defined by γi = 1 intersects all hyperplanes in Ξ. This is
equivalent to that there exists no f in Ξ, such that the hyperplane defined
by f is parallel to the hyperplane defined by γi = 1. As all hyperplanes pass
through the origin, it is sufficient to choose an i where the constraint γi ≥ 0 is
not in Ξ. If no such i exists, additional linear constraints on parameters will
have to be put into Ξ, e.g. γi < k for some currency i and positive constant
k.

Once a base currency i has been chosen, each constraint f : f1γ1 + · · · +
fmγm ≥ 0 in Ξ is replaced with the constraint f1γ1 + · · · + fi−1γi−1 + fi +
fi+1γi+1 + · · · + fmγm ≥ 0, corresponding to f ’s effect on points on the
hyperplane defined by γi = 1. The resulting set of constraints we denote
Ξγi=1. To find the largest ball enclosed in the volume of R

m−1 defined by the
constraints in Ξγi=1 = {f1, . . . , fk} we solve the linear program

f1(y) , · · · , fk(y) , z ≤ dist(y,H(f1)) , · · · , z ≤ dist(y,H(fk)) ,

where y is in R
m−1 and dist(y,H(f i)) denotes the Euclidean distance from y

to the hyperplane H(f i). The function that is to be optimised is z, and upon
resolution the ball centered at y having radius z is the largest ball inscribed
in the part of the support corresponding to γi being 1.
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Parallel Markov Decision Processes

L. Enrique Sucar

ITESM Cuernavaca, Reforma 182-A, Temixco, Morelos, Mexico

Summary. We propose a framework for solving complex decision problems based on
a partition in simpler problems that can be solved independently, and then combined
to obtain an optimal, global solution. Each aspect of the problem is represented
as an MDP and solved independently. At any state of the problem, each MDP
sends its value for each possible action (its Q value) and an “arbiter” selects the
action with the greatest combined value. In contrast to previous approaches for
hierarchical MDPs, in our approach all the MDPs work in parallel, so we obtain a
reactive system based on a decision theoretical framework. We present an algorithm
for solving parallel MDPs and prove it obtains the global optimum, assuming an
additive value. We present experimental results in two cases: (i) a simulated robot
navigation problem, (ii) a real robot in a message delivery task.

1 Introduction

Our work is motivated by planning under uncertainty in robotics. Consider a
mobile robot that has to perform a complex task in an uncertain environment.
To accomplish its goal, the robot has to do several subtasks simultaneously,
such as finding the shortest route to certain location, and at the same time,
avoid obstacles and maintain its location in the map. It might also need to
recognize objects in the environment and interact with people. A popular
approach to solve this problem in robotics is based on Brooks subsumption
architecture [4], in which several processes can sense and act in parallel. The
conflicts that could arise between the different behaviors are usually solved
by a fixed priority structure. However, this way of task coordination has sev-
eral drawbacks: (i) as the number of subtasks increases, defining the priority
structure becomes very difficult, (ii) the priority is fixed, and can not change
depending on the current situation. We consider an alternative approach based
on decision–theoretic planning, in which the priority of the subtasks can be
decided dynamically such that the best action can be taken at each decision
point.

L.E. Sucar: Parallel Markov Decision Processes, StudFuzz 213, 295–309 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Markov Decision Processes (MDPs) [2; 16] have developed as a standard
method for representing uncertainty in decision-theoretic planning. They are
simple for domain experts to specify, or can be learned from data. They are
the subject of much current research, and have many well studied properties
including exact and approximate solution and learning techniques. However,
if we represent the robot task coordination problem as a single MDP, we have
to consider all possible combinations of all the possible simultaneous actions.
This implies an explosion in the action–state space and thus an important in-
crease in complexity for solving the MDP. It also becomes much more difficult
to specify or learn the model. Given that each subtask is usually implemented
as a separate software module, it is more natural to try to view each subtask
as a different MDP and then in some way combine their policies to obtain the
optimal global policy.

In this paper we propose and approach for solving several subtasks repre-
sented as MDPs and combine the results to obtain the optimal global policy,
that we call Parallel MDPs. Each aspect of the problem is represented as
an MDP an solved independently. At any state of the problem, each MDP
sends its value for each possible action (its Q value) and an “arbiter” selects
the action with the greatest combined value. So we have the advantages of
both, reactive and decision–theoretic planning: a reactive system based on a
decision theoretical framework. We present an algorithm for solving parallel
MDPs and prove it obtains the global optimum, assuming an additive value.
We illustrate our approach with a simulated robot navigation problem, and
with a real robot solving a complex task.

The paper is organized as follows. In the next section we present a formal
definition of MDPs, the standard techniques for their solution and factored
and abstract MDP representations. We review related work on hierarchical
and loosely coupled MDPs. We then give a formal definition of parallel MDPs,
and an algorithm for their solution. We present preliminary results in two
robotics applications. We conclude with a summary and directions for future
work.

2 Markov Decision Processes

A Markov Decision Processes (MDP) [16] models a sequential decision prob-
lem, in which a system evolves in time and is controlled by an agent. The
system dynamics is governed by a probabilistic transition function that maps
states an actions to states. At each time, the agents receives a reward that
depends on the current state and the applied actions. Thus, the main problem
is to find a control strategy or policy that maximizes the expected reward over
time. A graphical model representation of an MDP is depicted in Figure 1.

Formally, an MDP is a tuple M =< S,A,Φ,R >, where S is a finite set
of states {1, ..., n}. A is a finite set of actions. Φ : A× S → Π(S) is the state
transition function specified as a probability distribution. The probability of
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Fig. 1. A probabilistic graphical model representation of an MDP. The figure de-
picts the actions (ai), states (si) and rewards (ri) for several time periods, and the
dependencies between them under the Markov assumption.

reaching state s′ by performing action a in state s is written Φ(a, s, s′). R :
S × A → ' is the reward function. R(s, a) is the reward that the system
receives if it takes action a in state s.

A policy for an MDP is a mapping π : S → A that selects and action
for each state. Given a policy, we can define its finite-horizon value function
V π

n : S → ', where V π
n (s) is the expected value of applying the policy π

for n steps starting in state s. The value function is defined inductively with
V π

0 (s) = R(s, π(s)) and V π
m(s) = R(s, π(s)) + Σs′∈SΦ(π(s), s, s′)V π

m−1(s
′).

Over an infinite horizon, a discounted model is used to have a bounded ex-
pected value, where the parameter 0 ≤ γ < 1 is the discount factor, used
to discount future rewards at a geometric rate. Thus, if V π(s) is the dis-
counted expected value in state s following policy π forever, we must have
V π(s) = R(s, π(s))+γΣs′∈SΦ(π(s), s, s′)V π

m−1(s
′), which yields a set of linear

equations in the values of V π().
A solution to an MDP is a policy that maximizes its expected value. For

the discounted infinite–horizon case with any given discount factor γ ∈ [0, 1),
there is a policy V ∗ that is optimal regardless of the starting state that satisfies
the Bellman equation [2]:

V ∗(s) = maxa{R(s, a) + γΣs′∈SΦ(a, s, s′)V ∗(s′)} (1)

Two popular methods for solving this equation and finding an optimal
policy for an MDP are: (a) value iteration and (2) policy iteration [16].

In policy iteration, the current policy is repeatedly improved by finding
some action in each state that has a higher value than the action chosen
by the current policy for the state. The policy is initially chosen at random,
and the process terminates when no improvement can be found. This process
converges to an optimal policy [16].

In value iteration, optimal policies are produced for successively longer
finite horizons until they converge. It is relatively simple to find an optimal
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policy over n steps π∗
n(.), with value function V ∗

n (.) using the recurrence rela-
tion:

π∗
n(s) = arg maxa{R(s, a) + γΣs′∈S (2)

Φ(a, s, s′)V ∗
n−1(s

′)},

with starting condition V ∗
0 (.) = 0 ∀ s ∈ S, where V ∗

m is derived from the policy
π∗

m as described earlier.
An alternative formulation of an MDP can be given in terms of the action–

value function or Q function. This function, Qπ(s, a) gives the expected cu-
mulative reward of performing action a in state s and following policy π
thereafter. The optimal action value function Q∗(s, a), gives the expected cu-
mulative reward of performing action a in state s and following an optimal
policy thereafter. Note that given Q∗(s, a), we can obtain V ∗(s) by maximiz-
ing over the actions.

The main drawback of the MDP approach is that the solution complexity
is polynomial on size of the state–action space, and this can be very large for
most applications. There are two main approaches to deal with complexity:
state space abstraction and problem decomposition.

2.1 Factored and Abstract MDPs

Traditional MDP solution techniques have the drawback that they require
an explicit state space, limiting their applicability to real-world problems.
Factored representations address this drawback via compactly specifying the
state-space in factored form. In a factored MDP, the set of states is described
via a set of random variables X = {X1, .., Xn}, where each Xi takes on values
in some finite domain Dom(Xi). The framework of dynamic Bayesian net-
works (DBN) [6] gives us the tools to describe the transition model function
concisely. For each action, a two-stage DBN specifies the transition model.
An even more compact representation can be obtained by representing the
transition tables and value functions as decision trees [3] or algebraic decision
diagrams [12].

A further reduction in complexity can be obtained by state abstraction
and aggregation techniques [3]. Dean and Givan [5] describe an algorithm
that partitions the state space into a set of blocks such that the each block
is stable; that is, it preserves the same transition probabilities as the original
model. Although this algorithm produces an exact partition, this could still
be too complex. In many applications an approximate model could be suffi-
cient to construct near–optimal policies. Other approaches consider problem
decomposition, in which an MDP is partitioned in several problems that are
solved independently and then pieced together [3], called hierarchical MDPs.
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2.2 Hierarchical MDPs

Hierarchical MDPs accelerate the solution of complex problems by defining
different subtasks that correspond to intermediate goals, solving for each sub-
goal, and then combining these subprocesses to solve the overall problem.
Hierarchical MDP approaches include MAXQ [7] and HAM [15], among oth-
ers. Most of these approaches assume that the domain hierarchy is given; a
notable exception that learns the decomposition is HEXQ [11]. Although our
approach also considers a decomposition of the problem, it is a different one.
Hierarchical MDPs provide a sequential decomposition, in which different sub-
goals are solved in sequence to reach the final goal. That is, at the execution
phase, only one task is active at a given time. In Parallel MDPs, the subtasks
are concurrent, so these are executed in parallel to solve the global task.

The previous work most closely related to our approach are loosely coupled
MDPs [13]. They consider several independent subprocesses whose reward and
transition functions are independent of each other, but these are coupled due
to common resource constraints. Their solution is divided in two phases. In the
first, off–line phase, value functions are calculated for the individual subtasks.
In the second, on–line phase, the value functions are used to calculate the next
action for each process. To choose the actions, they use an iterative procedure
based on a heuristic allocation of resources to each task. There are important
differences in the types of problems we are solving and also in the solutions.
We are interested in problems in which the subtasks have a common goal,
but each consider a different aspect of the problem. Each MDP has the same
action set, and only one of these actions can be executed at any time; while in
loosely coupled MDPs each subtask executes an action at each state. So our
solution selects a single action for each state, and this is computed directly.

3 Parallel MDPs

Parallel MDPs (PMDPs) are a set of discrete time Markov decision processes
that are executed in parallel. At each time period an action is selected from
each MDP, and an arbiter selects an action among the ones proposed by each
process. These processes share a common state and action space (that is, each
MDP has access to the same set of actions), but have different rewards. A
graphical reprasentation of a parallel MDP is shown in Figure 2, considering
two MDPs. Following we define a parallel MDP and give an algorithm for its
solution.

Definition 1: A parallel MDP is a set of K Markov decision processes,
P1, P2, ..., Pk, such that each process, Pi is an MDP. All the MDPs share the
same state space, action set and transition function, that is S1 = S2 = ... = Sk;
A1 = A2 = ... = Ak; Φ1(a, s, s′) = Φ2(a, s, s′) = ... = Φk(a, s, s′). Each MDP
has a different reward function, R1, R2, ..., Rk. The total reward, RT , is the
sum of the individual rewards: RT = R1 + R2 + ... + Rk
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Fig. 2. Graphical representation of a parallel MDP. The two MDPs share the same
state space but have different rewards. The action set is shown separated for both
MDPs, but it is assumed that each one (MDP 1 and MDP 2) have the same set of
actions.

Fig. 3. Grid world. This simulated environment consists of cells that can be free
(gray), obstacle (black) and a goal (white). The robot (R) can move from each cell
to its 4 neighbors as shown.

For example, assume we have a simulated robot in a “grid world”, as
depicted in Figure 3. The robot has to go from the its actual position to the
goal, and at the same time avoid obstacles. So we can define two MDPs: (i)
a Navigation MDP, for going to the goal, (ii) an obstacle avoidance MDP,
for avoiding obstacles. They both have the same state space (each cell in the
grid) and actions (move up, down, right or left); but a different reward. The
Navigation MDP gets a positive reward when it arrives to the goal, while the
Obstacle Avoidance MDP gets a negative reward when it collides with an
obstacle. So this case corresponds to a Parallel MDP. In the results section
we present how this example is solved with our approach.
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Next we will give an algorithm to obtain the optimal policy for a Parallel
MDP, but first we present a theorem that gives the theoretical bases for the
algorithm.

Theorem 1: Given a Parallel MDP, and assuming additive reward and
value functions, the optimal value V ∗

I and optimal policy π∗
I are:

V ∗
I (s) = maxa

∑

i∈K

Q∗
i (s, a) (3)

π∗
I (s) = argmaxa

∑

i∈K

Q∗
i (s, a) (4)

Where Q∗
i (s, a) is the optimal Q value obtained by solving each individual

MDP.
Proof: The solution to the parallel MDP is given by the Bellman equation

[2]:
V ∗(s) = maxa{RT (s, a) + γΣs′∈SΦ(a, s, s′)V ∗(s′)} (5)

Where the total reward RT is given by:

RT = R1(s, a) + R2(s, a) + ... + Rk(s, a) (6)

=
∑K

i=1 Ri(s, a)

Given the additive value assumption, the total value can also be written in
terms of the individual MDP values:

V ∗(s′) = V ∗
1 (s′) + V ∗

2 (s′) + ... + V ∗
k (s′) (7)

=
∑K

i=1 V ∗
i (s′)

Substituting 6 and 7 in 5 we obtain:

V ∗(s) = maxa{ΣK
i=1Ri(s, a) (8)

+γΣs′∈SΦ(a, s, s′)ΣK
i=1V

∗
i (s′)}

which can be written as:

V ∗(s) = maxa{ΣK
i=1[Ri(s, a) + γΣs′∈S (9)

Φ(a, s, s′)V ∗
i (s′)]}

By definition:

Q∗
i (s, a) = Ri(s, a) + γΣs′∈SΦ(a, s, s′)V ∗

i (s′) (10)

so 9 can be written as:

V ∗(s) = maxa{ΣK
i=1[Q

∗
i (s, a)]} (11)

And by the definition of the Q function, Q∗(s, a) = ΣK
i=1[Q

∗
i (s, a)], so:
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π∗(s) = argmaxa{ΣK
i=1[Q

∗
i (s, a)]} (12)

Q.E.D.
By using Theorem 1, we know give an algorithm for solving a Parallel

MDP:

1. Solve each individual MDP by using value iteration [16]) and obtain the
optimal Qi values per action–state:

Q∗
i (s, a) = {ri(s, a) + γΣs′∈SΦ(a, s, s′)V ∗

i (s′)}

2. Compute the global optimal Q:

Q∗(s, a) = ΣK
i=1Q

∗
i (s, a)

3. Obtain the optimal policy:

π∗(s) = argmaxa{ΣK
i=1Q

∗
i (s, a)}

We can think that, at any state of the problem, each MDP sends its value
for each possible action (its Q value) and the “arbiter” selects the action with
the greatest combined value.

Using a flat state representation, there is not reduction in complexity by
using a parallel MDP, with respect to solving the compound problem (includ-
ing all the subtasks) as a single MDP. However, there are several important
advantages:

• In a similar way as hierarchical MDPs [7], parallel MDPs facilitate state
abstraction. For instance, in the robot grid example, Navigation only needs
to consider its position with respect to the goal; while Obstacle Avoidance
might just include a local map with the distance to obstacles. By using
these abstractions, an important reduction in the number of states can be
achieved.

• The subtask decomposition is also helpful for learning. Each subtask Q
function can be learn individually using reinforcement learning [17], and
then combined using our algorithm. In the grid world example, the robot
can independently learn to go to the goal and to avoid obstacles, which is
easier than learning both tasks simultaneously.

• From a practical perspective, in many areas such as robotics, there are
different software programs for solving different aspects of the problem,
such as path planning, obstacle avoidance, localization, etc. So it is better
to consider each module as a task and combine their policies, instead of
designing a single MDP for the complete task.

Next we illustrate our approach with an example of a simulated robot in
the grid world.
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4 Experimental Results

4.1 Navigation in a Simulated Environment

To test our approach, we consider a simulated robot in the grid world (see
Figure 3). The state is given by the coordinates (X,Y ) of robot’s location in
the grid. At each state the robot can move to its 4 neighbor locations, so there
are 4 possible actions: up, right, down, left. The uncertainty in the actions is
given by assuming that the robot has an 80% chance of going to the desired
location, and 10% to each of the two adjacent locations. So this defines the
transition function. In this experiments we consider two tasks: navigation and
obstacle avoidance. The reward for navigation is a fixed amount for reaching
the goal state and zero otherwise. The obstacle avoidance subtask receives a
negative reward for going into a cell with an obstacle, and zero otherwise.

We tested with different grid sizes, goal positions and obstacle distrib-
utions, and compared the resulting policy of: (a) a parallel MDP with two
subtasks, navigation and obstacle avoidance, and (b) a single MDP that con-
siders both aspects. To illustrate the results we choose a small grid so the
optimal value function and policy can be shown graphically. Figure 4 shows
this test case. We show the results with the parallel MDP for two different
position of the goal: (5, 5) and (1, 1). Figure 5 depicts the value and policy
functions for the goal at (5, 5). The policy is represented in terms of the gray
level of each cell, lighter represents a higher value. The policy is shown as
arrows that correspond to the optimal action per state (cell). We can see that
both, the value and the policy are optimal for this case.

Figure 6 shows the value function for the goal position at (1, 1). Again, this
corresponds to the optimal value function. In these two experiments, we solve
the navigator task two times, one for each goal, but the obstacle avoidance
only once.

Fig. 4. Test case used in the experiments. The black cells are obstacles and the
white cell is the goal (in this case at 5, 5).
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Fig. 5. Value function and policy for the goal at 5, 5. For each free cell, we show
the value (as a gray level) and the optimal action (arrow).

Fig. 6. Value function for the goal at 1, 1. For each free cell, we show the value (as
a gray level).

In the previous examples, the results are the same for the parallel MDPs
and for the single MDP. However, although in many cases the PMDP approach
gives an optimal policy, we have found that there are some cases in which
this is not true. A counter example is given in Figure 7. The combined value
function obtained with the parallel MDP approach is shown in Figure 8. In this
case the states with non-optimal policies are at the left of the obstacle, where
the action selected by the PMDP is shown (arrows). The underlying problem
is that the MDPs are not independent, they interact through a common state
and action space.

We notice that in general the combined value function (and corresponding
policy) is correct for most of the states (cells), and it fails in just a few of
them. This suggests a two phase approach to improve the policy obtained
initially by the parallel MDP:
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Fig. 7. Counter example. The black cells are obstacles and the white cell is the
goal.

Fig. 8. Parallel MDP solution to the example in Figure 7. The value function is
shown for each free cell (as a gray level). Notice that the actions for the cells at the
left of the obstacle are incorrect, as shown by the arrows.

1. An approximate optimal solution is obtained considering separate MDPs
with the parallel MDP approach.

2. The initial solution is refined considering the complete problem, taking
as starting point the solution (value function and policy) obtained in the
first phase.

We are currently working in the development of the refinement phase.

4.2 Message Delivery with Homer

We have tested a variant of parallel MDPs with a real robot in a message
delivery task. In this case we consider simultaneous actions and no conflicts, so
each MDP selects its action independently and all are executed concurrently,
coordinated implicitly with common state variables. By assuming no conflicts,
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there is, in principle, no need for an arbiter. In practice, we give priority to
one of the tasks. A detailed description of the application of multiple MDPs
for task coordination for a service robot is given in [10]. Next we just present
a brief summary of the main results.

HOMER [8], the Human Oriented MEssenger Robot, is a mobile robot
that communicates messages between humans in a workspace. The message
delivery task is a challenging domain for an interactive robot. It presents all the
difficulties associated with uncertain navigation in a changing environment, as
well as those associated with exchanging information and taking commands
from humans using a natural interface. For this task we use 3 MDPs: the
navigator, the dialogue manager and the gesture generator. Together they
coordinate 10 behaviors [9] for accomplishing the message delivery task.

Our robot, HOMER, shown in Figure 9(a), is a Real World Interface B-14
robot, and has a single sensor: a Point Grey Research BumblebeeTM stereo
vision camera [14].

Fig. 9. (a) HOMER the messenger robot interacting with a person and (b) closeup
of HOMER’s head.

HOMER’s message delivery task consists of accepting messages, finding re-
cipients and delivering messages. In his quiescent state, HOMER explores the
environment looking for a message sender. A potential sender can initiate an
interaction with HOMER by calling his name, or by presenting herself to the
robot. HOMER asks the person for her name (sender), the recipient’s name,
and the message. During the interactions, HOMER uses speech recognition,
speech generation and gesture generation to communicate with people. Once
HOMER has a message to deliver, he must find the recipient. This requires
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some model of the typical behavioral patterns of people within HOMER’s
workspace. We use a static map of person locations, which is updated when
new information is obtained about the presence or absence of persons. This
map allows HOMER to assess the most likely location to find a person at
any time. Navigation to that location is then attempted. If the location is
not reachable, HOMER finds another location and re-plans. If the location is
reached, then HOMER attempts to find a potential receiver using face and
voice detection. Upon verifying the receivers name, HOMER delivers the mes-
sage. During the entire process, HOMER will localize in the map if necessary,
or it will go home to recharge if its battery is low.

The message delivery task can be divided in 3 subtasks, each one con-
trolled by an MDP. The Navigator controls the navigation and localization of
the robot, the Dialogue Manager controls the interaction with people using
speech, and the Gesture Generator controls the interaction with people us-
ing gestures performed by an animated face. Each MDP includes the relevant
variables as its state space, and controls several behaviors through its actions.
The complete state is represented by 13 variables. The goal of the message
delivery task is encoded in the reward function: a small reward for receipt of
a message, a big reward for message delivery, and a negative reward for a low
battery. The Dialogue and Gesture planners only include rewards for message
receipt and delivery, while the navigator includes all three.

We solved the 3 MDPs using SPUDD [12] and generated the optimal poli-
cies for each one. During concurrent execution of the policies, potential con-
flicts are avoided by simply giving priority to the Navigator. Thus, if HOMER
is navigating to a location, such as home, it does not stop for an interaction.

We ran several experiments with HOMER. Each experiment involves the
robot receiving and delivering a message by visiting locations as necessary.
Initially, we performed a guided exploration task in order to build all the
necessary maps for navigation and localization. We also manually specified a
list of possible users and the most likely areas they inhabit. HOMER then
ran autonomously for the message delivery task. Although we did not try to
prove optimality for this approach, empirically, our simple solution method
works well for these examples.

5 Conclusions and Future Work

We have presented a framework for solving complex planning problems by
dividing them into several subtasks represented as MDPs. We obtain the op-
timal policy for each subtask, and then combine the results to obtain the
optimal global policy. At any state of the problem, each MDP sends its value
for each possible action (its Q value) and an “arbiter” selects the action with
the greatest combined value. So we have the advantages of both, reactive and
decision–theoretic planning: a reactive system based on a decision theoretical
framework. We present an algorithm for solving parallel MDPs and prove it



308 L. Enrique Sucar

obtains the global optimum, assuming an additive value. Initial experiments
with a simulated robot in the grid world and with a real message delivery
robot show good results.

We are currently working in improving the initial non-optimal policy by
considering a two phase approach, in which the solution of the parallel MDP
is considered as an initial solution to a second phase which considers the
global problem. We are also interested in extending the framework to consider
concurrect actions with conflicts, and apply it to complex decision problems
for service robots.
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Summary. We present an application of HUGIN to solve problems related to diag-
nosis and control of autonomous vehicles. The application is based on a distributed
architecture supporting diagnosis and control of autonomous units. The purpose of
the architecture is to assist the operator or piloting system in managing fault detec-
tion, risk assessment, and recovery plans under uncertainty. To handle uncertainty,
we focus on the use of probabilistic graphical models (PGMs) as implemented in the
HUGIN tool.

We describe the application of PGMs to three problems of diagnosis and con-
trol of autonomous vehicles. Based on the HUGIN tool, limited memory influence
diagrams (LIMIDs) are used to represent and solve complex problems of diagnosis
and control of autonomous ground and underwater vehicles. In particular, we de-
scribe how battery monitoring and control problems related to an underwater and
a ground vehicle are solved and how to solve the problem of assessing the quality of
a sonar image related to an underwater vehicle.

1 Introduction

The HUGIN tool [1; 5; 13] supports construction and deployment of complex
statistical models known as probabilistic graphical models (PGMs) for reason-
ing and decision making under uncertainty. We describe how a particular kind
of PGMs, known as limited memory influence diagrams (LIMIDs), have been
applied to solve complex reasoning and decision making problems related to
autonomous ground vehicles and autonomous underwater vehicles.

The ADVOCATE project (acronym for Advanced On-board Diagnosis and
Control of Autonomous Systems), which was formed in 1997 under the IST
program of the European Commission, had as one of its objectives to increase
the performance of unmanned underwater vehicles in terms of availability,
efficiency, and reliability of the systems and in terms of safety for the systems
themselves as well as for their environments. The aim of the follow-up project,
ADVOCATE II, was partly to design and develop a general-purpose software
architecture for Autonomous Underwater Vehicles (AUVs) and Autonomous

A.L. Madsen and U.B. Kjærulff: Applications of HUGIN to Diagnosis and Control of
Autonomous Vehicles, StudFuzz 213, 313–332 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Ground Vehicles (AGVs) and partly to develop software-based systems to
increase the degree of automation, efficiency, and reliability of the vehicles.
The interest of such a concept from the market point of view was demonstrated
by a market study.

The latter objective was reached by adding artificial intelligence (AI) into
existing and new control software to diagnose and recover from any dysfunc-
tion or failure situation of the system. To improve the management of uncer-
tainty in AUVs and AGVs it was decided that the ADVOCATE II architecture
should allow for easy incorporation and merging of different AI techniques in
a highly modular fashion.

Three end-user partners were involved in the ADVOCATE II project: Uni-
versity of Alcalá designs piloting modules for AGVs for surveillance applica-
tions, Ifremer designs AUVs for scientific applications, and ATLAS Elektronik
designs AUVs and semi-AUVs for industrial applications. Each end-user part-
ner presented diagnosis and control problems related to a single vehicle. Sev-
eral such problems were presented for each vehicle involving different kinds of
dysfunctions and failures:

• Thruster or motor failure diagnosis and recovery in case of abnormal be-
haviour of the vehicle due to thrusters or motors.

• Sensor malfunction diagnosis and recovery on sensor state in order to ac-
count for failure situations in case of corrupt sensor signals due, for in-
stance, to noise.

• Power consumption diagnosis and recovery monitoring the level of remain-
ing energy in a vehicle battery in order to avoid mission abortion.

• Motion diagnosis and recovery monitoring and assessing the motion char-
acteristics of a vehicle.

Three different AI techniques have been applied for solving these diagnosis
and control problems, namely probabilistic graphical models (PGMs), neuro-
symbolic systems (NSSs), and fuzzy logic (FL). In this chapter, we focus on the
development and application of PGMs for a selected set of the problems. We
discuss how LIMIDs have been used to represent and solve complex problems
of diagnosis and control of AGVs and AUVs. In particular, we describe how
battery monitoring and control problems related to an AUV and an AGV are
solved and how a sonar image quality assessment problem related to an AUV
is solved.

In Sect. 2, we briefly present the HUGIN tool used for constructing and
executing the LIMIDs. Section 3 introduces the problem domain of semi-
autonomous ground and underwater vehicles. The ADVOCATE II commu-
nication architecture is described in Sect. 4. Section 5 presents some prelim-
inaries and notation on the LIMID representation used to model and solve
the diagnosis and control problems. The knowledge extraction process and
method developed as part of the ADVOCATE II project is described in Sect. 6.
Section 7 describes the models developed to solve the diagnosis and control
problems, while in Sect. 8 we discuss how the developed LIMIDs are solved.
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Section 9 describes model integration and validation, and presents the results
of real world trials. Finally, Sect. 10 ends the chapter with a discussion of our
work.

2 The HUGIN Tool

The HUGIN tool [1; 5; 13] is a general purpose tool for constructing and
deploying probabilistic graphical models (PGMs) such as Bayesian networks
and influence diagrams.

In the HUGIN tool, inference in PGMs is performed through message pass-
ing in a secondary computational structure known as a junction tree [7]. The
junction tree is constructed from the PGM through processes known as mor-
alization and triangulation [12]. The nodes of a junction tree are sometimes
referred to as cliques. To each clique (containing a subset of the variables
of the PGM) is associated tables representing joint probability and utility
functions over variables of the clique. The messages passed between cliques
represent joint probability and utility functions over variables common to both
the sending and the receiving clique.

The HUGIN tool consists of a graphical user interface (HUGIN Graphi-
cal User Interface) and an inference engine (HUGIN Decision Engine). The
HUGIN Decision Engine has Application Programming Interfaces (APIs) for
four different programming languages: C, C++, Java, and Visual Basic for
Applications.

The core functionality of the HUGIN Decision Engine is implemented in
the C programming language according to the ANSI C standard. This makes
the HUGIN Decision Engine highly efficient and portable. Interfaces for C++,
Java and Visual Basic for Applications are constructed on top of the core im-
plementation. The HUGIN Graphical User Interface is implemented in Java,
which makes it highly portable.

The HUGIN Decision Engine has been deployed on a large number of
different platforms ranging from PDAs to multiprocessor mainframes.

3 Problem Domain

The transition of autonomous vehicles from experimental research tools to
real applications increases the need for reliable and safe performance of the
vehicles. This includes detection, avoidance, and recovery from any dysfunc-
tion.

Both the AGVs and the AUVs considered in the ADVOCATE II project
are supplied with energy from batteries. This poses the problem of monitoring
the remaining energy level of the battery and providing diagnosis and recov-
ery actions in order to manage the mission parameters related to the energy
consumption and to avoid unnecessary mission aborts. One AUV is equipped
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with an advanced object detection and avoidance system. This system works
well in situations where obstacles can be detected by sonar. Hence, it is impor-
tant to assess the quality of the sonar image and to suggest recovery actions
to improve the sonar image quality or to suggest reductions in speed in case
of poor image quality.

The ADVOCATE II consortium consisted of eight partners from five dif-
ferent European countries. Each partner served different roles in the consor-
tium. The roles were robot manufactures and end-users, technology providers,
marketing and communication specialists, and project coordinator. HUGIN
Expert A/S served the role as technology provider and developer of intelligent
modules.

3.1 The DeepC AUV

ATLAS Elektronik is developing a new type of underwater vehicle operating
with autonomous mission durations of up to 60 hours. This vehicle is referred
to as DeepC (see Fig. 1).

Fig. 1. The DeepC underwater vehicle.

The long mission durations impose the need for advanced AI techniques
to detect, avoid, and recover from any dysfunction. All end-users and ATLAS
Elektronik in particular were faced with problems, which could not easily be
solved by existing systems. The current approach to handle mission faults is
to abort the mission, which is, however, very expensive.

As a fully autonomous system, the DeepC vehicle has to rely on its sensors
to survive operationally. The DeepC is equipped with an advanced object
detection and avoidance system. The object detection system consists of a
mechanically scanning, forward looking sonar and its control electronics. This
system works well when the sonar image is of sufficient quality. The problem
considered is to construct a model for assessing the sonar image quality and
for suggesting actions to avoid object collisions.
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3.2 The VORTEX AUV

Ifremer has developed the remotely operated underwater vehicle VORTEX
(see Fig. 2), which for our purpose is functionally considered as an AUV, as
it allows programming of autonomous complex missions.

Fig. 2. The VORTEX underwater vehicle.

The motivation for equipping the vehicle with AI technology is much the
same as for the DeepC, including optimization of the mission plan, diagnosis of
abnormalities, recovery planning in case of abnormalities, avoidance of mission
abortion (which is very expensive), and avoidance of vehicle loss.

3.3 The BART AGV

To put the ADVOCATE II concept into practice also for autonomous ground
vehicles, University of Alcalá was deploying a telesurveillance application us-
ing the BART AGV (see Fig. 3). Two independent actuators powered by an
on-board battery drive the vehicle.

Fig. 3. The BART autonomous ground vehicle.

In order to increase the probability of mission success in case of energy
problems or in case the vehicle gets stalled, the overall mission of the vehicle
as well as other navigational issues can be managed using ADVOCATE II
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technology. The ADVOCATE II system provides the AGV with intelligent
diagnosis capabilities and ability to recommend optimal recovery actions re-
sulting in more reliable and safer operations. The diagnosis and recovery ca-
pabilities are concerned with aspects of navigation, energy system, sensors,
actuators, etc.

4 ADVOCATE II Architecture

The ADVOCATE II architecture is a distributed architecture based on a
generic communication protocol. The architecture is modular and easy to
evolve and adapt to future piloting systems.

The purpose of the architecture is to assist the operator or piloting sys-
tem in managing fault detection, risk assessment, and recovery plans under
uncertainty. The generic communication protocol is based on SOAP/XML
technology implementing HTTP for communication between different types
of modules (see Fig. 4).

Directory

Module

Decision

Module

Robot Piloting

Module

Intelligent

Module

Intelligent

Module

Http − Soap/XML documents

Fig. 4. The communication architecture.

The architecture is generic, open, and modular consisting of a set of inter-
acting modules including a decision module and a set of intelligent modules.
The decision module communicates with the intelligent modules to request
and obtain diagnosis and recovery action proposals based on data obtained
from the robot piloting module.

The architecture is designed to allow easy integration of different AI tech-
niques into preexisting systems. The decision to support the simultaneous use
of multiple AI techniques was made to allow these techniques to collaborate
on the task of reasoning and making decisions under uncertainty. This raises
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the question of how to most efficiently integrate different AI techniques into
new and existing systems. We have found that this is most efficiently done
through an open and generic architecture with a sophisticated communication
interface.

The architecture consists of four different types of modules.

4.1 Robot Piloting Module

The robot piloting module manages mission plans and communicates directly
with the sensors and actuators of the vehicle. This module also implements
recovery plans received from the decision module into actions on the vehicle.

Each end-user partner of the ADVOCATE II project was responsible for
the piloting module corresponding to the end-user vehicle.

4.2 Decision Module

The decision module manages the diagnosis and recovery action process. This
includes integration of information provided by different intelligent modules,
user validation of diagnosis and recovery actions when required by the system,
and translation of recovery actions into recovery plans.

The decision module communicates with the intelligent modules receiving
diagnoses and recovery actions, the robot piloting module, and the user.

4.3 Intelligent Module

The role of an intelligent module is to provide possible diagnoses, suggestions
for recovery actions, or both. An intelligent module encapsulates a knowledge
base to a specific problem domain and an inference engine.

A diagnosis on an operational vehicle corresponds to identification of sys-
tem state while a recovery action corresponds to performing a sequence of
actions on the vehicle (e.g., to avoid collision or to recover from any dysfunc-
tion).

The intelligent module communicates with the robot vehicle piloting mod-
ule and the decision module. The robot vehicle piloting module supplies the
intelligent module with data. These data are used in conjunction with the
knowledge base to generate diagnoses and recovery actions. The diagnosis or
recovery action is communicated to the decision module.

There may be multiple intelligent modules connected to the ADVO-
CATE II architecture. Multiple intelligent modules may consider the same or
different problems related to the vehicle. Each intelligent module implements
the communication protocol defined for the ADVOCATE II architecture.

In each application considered, the HUGIN Decision Engine is used for
both reasoning and decision making under uncertainty, i.e., both to make a
diagnosis and to generate recovery actions.
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4.4 Directory Module

The architecture is organized around the directory module. The directory
module is the central point of communication in the sense that it maintains
a list of registered and on-line modules.

5 Limited Memory Influence Diagram

Limited memory influence diagrams are used to represent and solve the se-
lected set of diagnosis and recovery action problems. An influence diagram [3]
is a compact and intuitive probabilistic graphical model for reasoning about
decision making under uncertainty. It is a graphical representation of a deci-
sion problem involving a sequence of interleaved decisions and observations. In
essence, an influence diagram is a Bayesian network [2; 6; 14; 15] augmented
with decision variables and preference (or utility) functions.

An influence diagram N = (X ,G,P,U) over random variables XC and
decision variables XD such that X = XC ∪XD consists of an acyclic, directed
graph G = (V,E) over nodes V , connected by directed links E ⊆ V × V , a
set of conditional probability distributions P, and a set of utility functions
U . The nodes V of G represent the random variables, decision variables, and
utility functions of N .

Each decision variable, D, represents a specific point in time under the
model of the problem domain where the decision maker has to make a decision.
The decision options or alternatives are the finite set of states (d1, . . . , dn)
of D where n is the size of the state space of D. The usefulness of a decision
option di is measured by local utility functions associated with D or one of
its descendants in G.

Mathematically, an influence diagram is a compact representation of a
joint expected utility (EU) function:

EU(V ) =
∏

X∈XC

P (X |π(X))
∑

u∈U
u,

where π(X) denotes the immediate predecessors (or parents) of variable X
in N .

To solve an influence diagram N is to determine an optimal strategy for
the decision maker to follow. The strategy consists of one decision policy δD

for each decision variable D ∈ XD. A policy δD is a mapping from the requisite
past of D (i.e., past observations that may impact the choice of decision option
for D) to the state space of D ∈ XD.

In the graphical representation of an influence diagram, random variables
are represented as ovals, decision variables as rectangles, and utility functions
as diamond-shaped nodes. A link into a node representing a random variable
represents a probabilistic dependence relation, a link into a utility node iden-
tifies a domain variable of the corresponding utility function, and a link into



Applications of HUGIN 321

a node representing a decision variable specifies that the parent is observed
prior to the decision is made. Links into decision nodes are referred to as
informational links.

An influence diagram supports the representation and solution of sequen-
tial decision problems under the no-forgetting assumption (i.e., assuming per-
fect recall of all observations and decisions made in the past that are influential
in a given decision situation). A LIMID [11] is an influence diagram relaxing
the no-forgetting assumption to a limited memory assumption. This implies
that all information available to the decision maker must be specified using
informational links for each decision. This is contrary to an influence diagram
where some informational links may be implicitly assumed present.

Figure 5 shows a LIMID representation of a simple decision problem in-
volving two decisions D1 and D2.

X1 X2

D1 U1

X3 U2

D2

Fig. 5. A decision problem with two decisions.

If the graph in Fig. 5 is interpreted as an influence diagram, then the
domain of the decision policy for D2 will consist of X1, D1, and X2 (due to
the no-forgetting assumption). If, on the other hand, the graph in Fig. 5 is
interpreted as a LIMID, then the domain of the decision policy for D2 will
consist only of X2. In a LIMID, all informational links are shown explicitly.

In the HUGIN tool, an influence diagram is solved by message passing in
a so-called strong junction tree [4]. A LIMID, on the other hand, is solved by
message passing in an ordinary junction tree. The difference in computational
complexity between a strong junction tree and an ordinary junction tree can
be tremendous [11].

An OO LIMID is an extension of a LIMID with support for object-oriented
constructions [10], considering a LIMID as a class of which instances can
exist in several other classes (LIMIDs). Thus, in addition to the elements of a
LIMID, an OO LIMID contains instance nodes. An instance node represents
an instantiation (or realization) of one LIMID class within another LIMID
class following the object-oriented paradigm. In graphical representations of
LIMIDs, instance nodes are represented using box-shaped nodes with rounded
corners. The interface of a class is its input and output variables (indicated as
nodes with a gray outer part, where input nodes have a dashed black border);
see Fig. 9 for an example.
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6 Knowledge Extraction Methodology

Unfortunately, the construction of a PGM can be a labour intensive task with
respect to both knowledge acquisition and formulation. LIMIDs are not excep-
tional in this respect. The knowledge acquisition and formulation process as-
sociated with building the three LIMID models in the ADVOCATE II project
involved knowledge engineers and domain experts located in four different
countries. The knowledge engineers and domain experts had limited possibil-
ities for face-to-face meetings and the domain experts had limited knowledge
of LIMIDs. Therefore, a knowledge acquisition scheme had to be developed
that did not rely on familiarity with terminology of probabilistic graphical
models and direct contact with the knowledge engineers.

The scheme is based on building a problem hierarchy for an overall prob-
lem. The problems (or causes) of the hierarchy relate to the states of the
different parts of a vehicle and its environment.

Figure 6 shows such a cause hierarchy related to the energy problem of
the BART AGV. The causes of the hierarchy are grouped into causes that
qualify as satisfactory explanations of the overall problem and causes that do
not. The first group of causes are referred to as permissible diagnoses. The
subset of these that can actually be identified based on available information
are referred to as possible diagnoses. Possible diagnoses are marked with a
“+” in Fig. 6, and permissible diagnoses that are not possible are marked
with a “−”.

The cause hierarchy acts as a road-map for describing the relevant diag-
nostic information and the possible recovery actions. A cause of a sub-tree of
the cause hierarchy that does not contain any possible diagnoses is unlikely to

Fig. 6. Cause hierarchy for the BART AGV energy problem.



Applications of HUGIN 323

provide relevant diagnostic information or error recovery information. Thus, if
there are no observable manifestations of the cause strong enough to identify a
possible diagnosis for the cause, we need not worry about it when eliciting the
diagnostic and error recovery information. In particular, none of the causes
below the dotted line in Fig. 6 contain any possible diagnoses. The domain
expert provides the relevant diagnostic information and the recovery actions
in matrix form with one row for each cause “above the dotted line” and one
column for each kind of diagnostic information (i.e., background information
and symptoms) and one column for possible recovery actions.

The qualitative knowledge elicited following such a scheme provides a suf-
ficient basis for a knowledge engineer to construct the structure of a PGM,
on the basis of which the quantitative knowledge can then be elicited.

For a detailed description of the knowledge acquisition scheme, we refer
the reader to [9].

7 Models

Using the knowledge extraction method described in Sect. 6, one LIMID model
for each of the vehicles has been developed in collaboration with the end-
user. For reasons of space limitations, we include only a subset of the cause
hierarchies and models developed.

7.1 The VORTEX AUV

The purpose of the PGM intelligent module of the VORTEX is to assess
the status of the energy consumption of the actuators and the payload sys-
tems of the AUV. The payload systems consist of various sensors for scientific
investigations. More concretely, the task of the module is to compute the
probabilities of the various possible root causes of unexpected high energy
consumption and the expected utilities of the various recovery actions given
the information available.

There are two different aspects (or sub-causes) of “Energy consumption
problem”, namely “High energy consumption” indicating that the current
level of energy consumption is significantly higher than recommended, and
“Low state of charge (SOC)” indicating either an abnormally high level of
cumulative energy consumption or a poor state of the battery (SOB). These
two aspects relate to, respectively, the present energy consumption and the
cumulative energy consumption. The present energy consumption is defined
as the average consumption over the last 10 seconds.

To identify the cause of low SOC as a high cumulative energy consump-
tion, the model should either be dynamic, capable of representing phenomena
evolving over time, or rely on a measurement of the cumulative total consump-
tion and an indication of the recommended cumulative total consumption at
any given point of the mission. We decided to go with the latter approach,
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as a dynamic model would result in serious computational complexity prob-
lems. Also, given that periodic requests are issued from the decision module
to the VORTEX intelligent module, determining that the cumulative energy
consumption is high is a straightforward task that might as well be performed
by the decision module itself.

Figure 7 shows the resulting LIMID. There are four groups of random
variables in Fig. 7: Ten diagnosis variables, eleven background information
variables, nine symptom variables, and eighteen auxiliary variables. The ten
diagnosis variables represent the following distinct root causes of an energy
consumption problem of the VORTEX: Old battery, Long-term heavy work-
ing conditions, Poor SOB, Cold battery, High cumulative energy consumption,
Obstructing object, Strong currents, Fast acceleration, Actuator problem, and
Unhealthy payload. The posterior probability distributions for these diagnoses
are computed on the basis of information provided through the twenty evi-
dence variables (symptom measurements and background information).

The domain experts identified a group of nine different actions that can
be performed in response to energy problems: Mission action (e.g., “Con-
tinue”, “Reduce velocity”, “Abort mission”, etc.), Test SOB, Replace battery,
Back/forth manoeuvre (i.e., to escape from an obstructing object), Check pay-
load sensors, etc.

Except that Replace battery must be preceded by a Test SOB action there
are no natural orderings among the actions. Also, observations will be provided
for all twenty evidence variables (symptom measurements and background
information) before any decisions are going to be made. These two facts imply

Fig. 7. The VORTEX LIMID.
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that the model is not naturally represented as an influence diagram. Also, it
would make exact inference absolutely intractable.

The LIMID framework therefore offers an ideal representation of this com-
bined diagnosis and decision problem. In fact, the size of the junction tree for
the network in Fig. 7 is only about 30K (measured as the sum of the sizes of
the clique tables). We should note, however, that the “limited memory” as-
pect of the model contributes significantly to this fact, as there are observed
variables that belong to the “relevant past” [16] of some decision variables
that do not appear as parents of these variables. For example, according to
the model in Fig. 7 the observed variables RPM of actuators and Velocity
appear to be relevant for the Mission action decision, but there are no in-
formation links from these variables to the decision variable, as the Actuator
consumption and the Ground velocity variables are assumed to cater for their
influences.

Despite the “limited memory” aspect of the model in Fig. 7, preliminary
evaluations of the model provided satisfactory results.

7.2 The BART AGV

The purpose of the PGM intelligent module of the BART AGV is very similar
to that of the VORTEX AUV. The fact that the BART carries no payload
systems and the obvious difference that the BART is an AGV and the VOR-
TEX an AUV, give rise to some differences in the two models, but for the most
part, the BART model shown in Fig. 8 constitutes a subset of the VORTEX
model. After some adjustments of the model, a preliminary evaluation of the

Fig. 8. The BART LIMID.
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model showed an almost complete agreement between expert diagnoses and
recommendations and those provided by the model.

7.3 The DeepC AUV

The purpose of the PGM intelligent module of the DeepC is to assess the
quality of the sonar image and in the case of bad sonar image quality to
suggest appropriate actions to avoid damage to the vehicle or even loss of
vehicle.

The assessment of the sonar image quality is based on the computation of
three sonar image quality indicators. The quality indicators are determined by
the robot piloting module and fed into the model as evidence. The sonar image
quality indicators are pixel entropy, pixel mean value, and pixel substance,
see [8] for details. From the above description of the problem domain, it is
clear that the amount of disturbance in the sonar image and the presence of
objects is time dependent.

The main modeling challenges were to capture the dynamics of the process
(how the quality indicators relate to the position and behaviour of the vehicle,
the noise sources, and the quality of the image), to address the inherent infinite
horizon problem, and to maintain a computationally efficient model (small
cliques and policies).

We model the problem as a discrete time, finite horizon partially observed
Markov decision process. The model is dynamic in the sense that it models the
behaviour of the system over (discrete) time. The state of the system at any
given point in time is partially observed as sensor readings are available, but
not all entities of the problem domain are observed. The process is represented
as an OO LIMID.

The top-level LIMID class N contains three instantiations, Mi, Mi+1,
and Mi+2, of the class M shown in Fig. 9; see Fig. 10 whereMi has label Ti.
The input variables are located at the top of Fig. 9, while the output variables
are located at the bottom. In N , the output variables of Mi are connected to
the input variables of the subsequent time-sliceMi+1, and similarly forMi+1

and Mi+2.
Each instantiation of M represents the system at a given point in time.

The model N represents the system at three consecutive time steps with an
8 seconds interval, which is the time the image analysis component needs to
analyze a single sonar image.

To avoid combinatorial explosion and thereby maintain computational effi-
ciency, the model specifies that Altitude, Depth, Pitch, and Speed are observed
prior to the decision Recovery Action, but not the image quality indicators.
The values computed for the image quality indicators are inserted as evidence
and subsequently policies are recomputed. Hence, the policy for the decision
in the next time-slice will only depend on the most recent observations on Alti-
tude, Depth, Pitch, and Speed. Since the image quality indicators are observed
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Fig. 9. The generic time-slice model for sonar image assessment

T0 T1 T2

Fig. 10. The top-level LIMID class for sonar image assessment is a time-sliced
model of three instances of the model (class) shown in Fig. 9.

each time a sonar image is analyzed, we need to resolve the LIMID with the
observations on the image quality indicators entered as evidence.

The decision has a potential impact on speed, altitude, and depth of the
vehicle. Deciding on a recovery action changing any of these properties will
impact the quality of the next sonar image. The probability of a collision is
modeled in the class instance Speed.

The instance Sonar Image Analysis, which is an instance of the network
class shown in Fig. 11, models the sonar image assessment process. The three
image quality indicators are represented in this class by the variables Entropy,
Mean, and Substance. The quality indicators are influenced by the presence
of disturbance or objects in the sonar image. Disturbance may be caused by
reverberation or noise.

The hierarchical construction of the LIMID enforced by the object-oriented
paradigm has simplified the knowledge acquisition phase considerably as it is
easy to focus on well-defined subparts of the LIMID in isolation. Using class
instances, it is a simple task to create and maintain multiple instances of the
same LIMID class. Furthermore, it is a simple task to change the class of an
instance to another class. This is particularly useful in the knowledge acqui-
sition phase where each LIMID class has been revised and updated multiple
times.

For further details on the DeepC model, see [8].
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Fig. 11. The model (class) representing the sonar image assessment process.

8 Solving Models

A LIMID is solved using a message passing procedure in a junction tree as
briefly described in Sect. 5. This procedure proceeds by iteratively passing
messages in a junction tree representation of the LIMID. The procedure for
solving LIMIDs differs from algorithms solving influence diagrams [4; 11]. The
procedure for solving a LIMID is an iterative procedure working on a junction
tree representation.

The complexity of solving a LIMID depends heavily on the structure of
the junction tree, i.e., the sizes of cliques in the junction tree. The structure
of the junction tree is determined by the connectivity of the graph of the
LIMID, which in turn is determined by the number of nodes and links of the
graph. The state space sizes of variables and the number of links determine
the number of parameters of the model. Table 1 shows the number of chance
and decision variables as well as the number of parameters to be specified in
the three LIMID models constructed. For the DeepC model the number of
variables in the instantiated network is shown.

Table 1. Number of variables and parameters of the three models.

Model Chance variables Decision variables Total Parameters

DeepC 121 3 124 3, 556

VORTEX 57 9 66 3, 475

BART 49 6 51 901



Applications of HUGIN 329

From Table 1 it can be seen that the DeepC model contains the largest
number of variables while the VORTEX and BART models have approx-
imately the same number of variables. The VORTEX model has a higher
number of parameters though.

Table 2 shows the total clique state space of the optimal junction trees
used for solving each LIMID where the optimality criterion is clique state
space size. The total clique state space size is defined as

∑
C∈C

∏
X∈C ‖X‖,

where C denotes the set of cliques of the junction tree and ‖X‖ denotes the
number of states of variable X.

Table 2. Total clique state space size of the three models.

Model Influence Diagram LIMID

DeepC > 232 − 1 108, 841

VORTEX > 232 − 1 26, 099

BART 14, 017, 742 39, 322

Table 2 also shows the total clique state space size when each model is
solved as an influence diagram. The table shows that the DeepC and VORTEX
models when considered as influence diagrams cannot be solved on a standard
32 bits PC platform (each vehicle is equipped with a standard 32 bits PC
platform running either Windows or Linux operating systems). Thus, applying
probabilistic graphical models to diagnosis and control of autonomous vehicles
would be infeasible without the use of LIMIDs.

9 Integration, Validation, and Real-World Trials

Each LIMID model is encapsulated in an intelligent module of the ADVO-
CATE II architecture (see Fig. 4). The intelligent module takes care of the
communication with the decision module and robot piloting modules. Module
integration was performed using a special-purpose integration tool, which has
greatly simplified the integration process as it allows developers to integrate
their modules into an architecture consisting of a mix of mock-up modules,
man-machine interfaces, and real modules. This was very helpful as module
developers were located in different countries with different working hours and
with limited possibilities for face-to-face meetings.

The validation of each module is equivalent to validation of the knowledge
bases (models). The validation of a model was performed by a careful inves-
tigation of the performance and behaviour of the system based on a selected
set of test scenarios.
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Extensive prototyping has helped to ensure appropriate performance and
behaviour of each module. The test cases used to validate and measure the
performance of a model covers all important, critical situations that possibly
can occur in realistic operations. Finally, domain expert(s) and the knowledge
engineers have evaluated the model against the test cases iteratively.

The usefulness of each LIMID was evaluated by a sequence of trials where
each LIMID was deployed as an intelligent module as part of the ADVO-
CATE II architecture on the vehicles described above. In each trial the LIMID
was deployed in an instantiation of the architecture consisting of a directory
module, a decision module, a robot piloting module, and an intelligent module.

The DeepC model had an 88.4% accuracy on image quality assessment on
the test set consisting of 1048 sonar images. The sonar images were recorded
at the ATLAS test pond in Bremen where the real sea trials were performed.

The BART model had a 93.4% accuracy on 36 selected test cases. The test
cases where hand generated to reflect operation of BART at the University of
Alcalá campus.

No real trial data was available for the VORTEX model. Preliminary re-
sults on simulated data were promising, but the data is of insufficient quality
for a proper validation.

10 Discussion

We have presented an application of HUGIN to solve reasoning and decision
making problems under uncertainty related to diagnosis and control of au-
tonomous vehicles. The application is based on the ADVOCATE II architec-
ture. The ADVOCATE II architecture is a distributed architecture supporting
diagnosis and control of autonomous vehicles.

The main objective of the ADVOCATE II project was to develop an ar-
chitecture to allow the implementation of intelligent modules for AGVs and
AUVs in order to increase their reliability and efficiency.

The performance of the ADVOCATE II architecture is constrained by
(soft) real-time requirements. This implies that the performance of the com-
munication protocol and the intelligent modules needs to be very high. This
has implied a high focus on computational performance in the model con-
struction.

Not only does the communication architecture enable efficient integration
of different AI technologies into new and existing systems, but it also allows
various AI techniques to interact (through the decision module and robot
piloting module, though). This option of interactions has been used to dedicate
PGMs to certain types of problems and to have variables in a PGM represent
the output of an NSS intelligent module (e.g., variable “NSS vehicle stalled”
of the BART LIMID; see Fig. 8). In addition, different AI techniques may
be used to solve the same problem. This will often be the case for mission
critical error handling. In our case, this raises the issue of a common scale of
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measurement of the usefulness of actions. We have chosen to use normalized
expected utility as the measurement of usefulness of recovery actions.

Even though the framework of PGMs have been available for more than
15 years, it is our experience that the efficient use of these models in certain
domains still requires some research and development. It is often a problem
for the PGM technology that only a few very convincing success stories are
available to the public. Often a PGM captures all or almost all the knowledge
a company has in a particular business area. This implies that the company
is not interested in sharing this model or even sharing the knowledge that
such a model exists. The results of the ADVOCATE II project, however, add
to the increasing number of successful applications of PGMs available to the
public.

One of our key experiences from research and development projects is that
even though graphical models are intuitive, they are difficult to build for in-
experienced domain experts. In the ADVOCATE II project, it was necessary
to develop a new methodology to solve the knowledge acquisition task. We
have developed a knowledge elicitation and formulation method, which is ap-
plicable in general to problems of reasoning and decision making on complex
machinery such as AGVs and AUVs.

The LIMID representation [11] and the object-oriented knowledge repre-
sentation paradigm [10] implemented in the HUGIN tool [1; 5] have been two
major cornerstones of the success of Bayesian modeling in the ADVOCATE II
project. Still a lot of work remains to develop the object-oriented framework
further.
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Summary. The central role played by uncertainty in medical decision making
explains why medicine was amongst the first areas where applications based on
Bayesian networks were developed. Biomedical research is firmly grounded on sta-
tistical methods; new methods are adopted only slowly by the field. During the
past decade, however, Bayesian networks have become important tools for building
decision-support systems in medicine and are now steadily becoming main stream.
More recently, Bayesian networks have also been adopted as analytic tools in human
biology, mainly in research that aims to elucidate the biological mechanisms under-
lying disease. In this paper, we review some of the applications in both medicine
and human biology and we make an attempt to unravel some of the characteristics
of Bayesian networks in biomedicine.

1 Introduction

Researchers that develop computer-based systems for use within medicine and
human biology are normally confronted by the complexity and uncertain na-
ture of processes in these areas. In many cases, the situation is even worse as
many of the processes in medicine and human biology are only partly known.
Whether partly or fully known, experience has shown that Bayesian networks
with their associated methods are geared to reasoning with uncertainty in a
way closely resembling medical doctors [45]. As uncertainty is one of the es-
sential features of medical management of patients, consisting of the establish-
ment of a diagnosis, treatment of identified disease of the patient, prediction
of treatment outcome, and monitoring of the efficacy of the treatment, it may
not come as a surprise that all of these areas have been explored using prob-
abilistic methods, in particular by means of Bayesian networks. Examples of
the deployment of Bayesian networks outside the direct clinical environment
include the use of Bayesian networks for the construction of disease models in
epidemiology and within bioinformatics for the interpretation of microarray
gene expression data.

P.J.F. Lucas: Biomedical Applications of Bayesian Networks, StudFuzz 213, 333–358 (2007)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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As the analysis of data in medicine and human biology, whether the data is
obtained from clinical trials or from experimental research, is firmly based on
statistics, one of the problems originally faced by researchers working in the
area of probabilistic graphical models was that probabilistic graphical models,
if at all familiar to the biostatistician, were considered to be unproven tech-
nology in comparison to traditional techniques, such as logistic regression. Re-
searchers interested in applying probabilistic graphical models to biomedical
problems were, therefore, working outside main-stream biomedical research.
This situation has slowly changed in the last decade.

However, whereas researchers interested in probabilistic approaches to rea-
soning with uncertainty have moved beyond Bayesian networks, studying
probabilistic graphical models based on chain graphs and maximal ances-
tral graphs, [54], biomedical applications are still mainly restricted to acyclic
directed graph representations, i.e., Bayesian networks. This may be due to
the fact that in medicine and biology it is considered to be important that
a probabilistic graphical model can be given an interpretation in terms of
cause-effect relationships. It is unclear whether or not this will remain so in
the future.

The aim of the present paper is to provide some insight into the nature of
the Bayesian-network and decision-theoretic models developed in the biomed-
ical field. To this end, we will describe some of the network modelling issues
involved in developing Bayesian networks in biomedicine. Furthermore, we will
discuss some of the additional modelling and formalisation tasks that must be
undertaken in solving biomedical problems using Bayesian networks. This will
be illustrated by actual Bayesian network models from the biomedical field.

This paper is organised as follows. In the next Section, the formalism of
Bayesian networks is introduced and methods for their construction are briefly
reviewed. In Section 3, various aspects of modelling biomedical knowledge in
Bayesian networks are discussed. Subsequently, in Section 4, we introduce the
biomedical problems involving uncertainty for which Bayesian networks are
typically employed. Next, in Section 5, some examples of Bayesian networks
are discussed. The examples are meant to give the reader an impression of
how biomedical problems are mapped to Bayesian network models. Finally,
in Section 6, we draw some conclusions.

2 Bayesian Networks

In this section, the formalism of Bayesian networks and the basic methods for
their development are reviewed. For a more thorough treatment of the topic,
the reader is referred to [11; 45].

2.1 The Formalism

A Bayesian network, or probabilistic network, B = (G,Pr) is a model of a
joint, or multivariate, probability distribution over a set of random variables;
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it consists of a graphical structure G and an associated joint probability dis-
tribution Pr. The graphical structure takes the form of an acyclic directed
graph, or ADG for short, G = (V (G), A(G)), with nodes V (G) and arcs
A(G) ⊆ V (G)×V (G). Each node v ∈ V (G) corresponds to a random variable
Xv that in the case Pr is discrete takes one of a finite set of values. The arcs in
the ADG model the probabilistic influences between the variables. Informally
speaking, an arc u → v between two nodes u and v indicates that there is
an influence between the associated variables Xu and Xv; absence of an arc
between u and v means that the corresponding variables do not influence each
other directly [11; 26].

Associated with the graphical structure of a Bayesian network is a joint
probability distribution Pr, that is taken to be factorised according to the
structure of the associated ADG. For each variable Xv in the joint probability
distribution, with v ∈ V (G), is specified a set of conditional probability distri-
butions Pr(Xv | Xπ(v)); each of these distributions describes the joint effect of
a specific combination of values for the variables Xπ(v) associated to the par-
ents π(v) of v, on the probability distribution over Xv’s values. These sets of
conditional probability distributions define together a unique joint probability
distribution that factorises over the ADG’s topology through

Pr(XV (G)) =
∏

v∈V (G)

Pr(Xv | Xπ(v)) (1)

by the local Markov property, that says that a random variable Xv is indepen-
dent of the random variables associated with the nondescendants of v given
the parents π(v) of v.

By definition, the graphical part of a Bayesian network B is assumed to
represent all dependences encoded in the joint probability distribution Pr,
and possibly more. It is said that G is an independence map, or I-map, of
Pr. As independences and dependences complement each other, the notion of
I-map means that every independence in the ADG must be preserved by the
joint probability distribution. More about the representation of independence
information in Bayesian networks can be found in [11] and in this book.

Figure 1 shows an example Bayesian network; the notations x and ¬x
are used to indicate X = true and X = false, respectively. The ADG of
the network models Cancer to be independent of Heart disease given a value
for their common parent Smoking. The conditional probability distributions
associated with the variable Cancer in the figure further demonstrate that
the local Markov property provides for a localised representation of the joint
probability distribution. The property, in fact, serves to significantly reduce
the amount of probabilistic information that has to be explicitly specified
to uniquely describe the joint distribution. The property also allows for the
design of efficient algorithms for computing any probability of interest over a
network’s variables [38; 45].

The ADG of a Bayesian network, apart from being acyclic, can have an
arbitrarily complex topology to capture the intricacies of its application do-
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Smoking

Heart
disease Cancer

· · · Survival

Pr(cancer | smoking) Pr(cancer | ¬smoking)

Pr(¬cancer | smoking) Pr(¬cancer | ¬smoking)

Fig. 1. An example Bayesian network.

main. For classification problems, however, a specific class of networks of lim-
ited topology have become popular [8; 16; 17]. In these networks, a distinction
is made between a single class variable C and one or more feature variables;
the latter variables serve to describe the characteristics of the instances to
be classified. The class variable does not have any incoming arcs, but has
arcs pointing to every feature variable. Between the feature variables, arcs
are allowed under strict topological constraints. In a naive Bayesian network,
for example, no arcs are allowed between the feature variables. In a tree-
augmented Bayesian network, or TAN, on the other hand, arcs are allowed
between the feature variables as long as these constitute a tree. In a forest-
augmented network, or FAN, to conclude, the arcs should constitute a forest
of trees [40]. The general structure of a naive Bayesian network and of a TAN
network are shown in Figure 2.

C
F1

· · ·
F2

Fm

(a)

C

F1

· · ·F2

Fm

(b)

Fig. 2. A naive Bayesian network, (a), and a tree-augmented Bayesian network,
(b); the nodes Fj indicate the feature variables and C is the class variable.

Although the variables in a Bayesian network are often assumed to be
discrete, taking a value from a finite set of values, a network may also in-
clude continuous variables that adopt a value from a range of real values [37].
Generally Gaussian, or normal, distributions are assumed for the conditional
probability distributions for such continuous variables. These distributions
then are specified in terms of a limited number of parameters, such as their
means and variance. Most Bayesian-network tools nowadays allow for a mix-
ture of discrete and continuous variables to be included in a network, under
some topological constraints.
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2.2 Manual Construction

Many of the Bayesian networks developed to date for real-life applications
in biomedicine and health-care have been constructed by hand [3; 4; 23; 28;
29; 42; 43]. Manual construction of a network involves various development
stages. For each of these stages, knowledge is acquired from experts in the
domain of application, the relevant medical literature is studied, and available
patient data are analysed. The following development stages are generally
distinguished:

(1) Selection of relevant variables. As a Bayesian network in essence is a graph-
ical model of a joint probability distribution over a set of random vari-
ables, the first stage in its construction is the identification of the im-
portant variables to be captured, along with the values they may adopt.
The selection of the relevant variables is generally based on interviews
with experts, descriptions of the domain, and an extensive analysis of the
purpose of the network under construction. Often, knowledge about the
(patho)physiological processes concerned is used to guide the identification
of the relevant variables [34; 39].

(2) Identification of the relationships among the variables. Once the variables
to be included in the network have been decided upon, the dependence
and independence relationships between them have to be analysed and
expressed in a graphical structure. For this purpose, generally the notion
of causality is employed as a guiding principle: typical questions asked
during the interviews with the domain experts are ”What could cause this
effect?” and ”What manifestations could this cause have?”. The elicited
relationships are then expressed in graphical terms by taking the direction
of causality for directing the arcs between the variables. The notion of
causality often appears to match the experts’ way of thinking about the
(patho)physiological processes in their domain [20].

(3) Identification of qualitative probabilistic and logical constraints. Knowledge
of qualitative probabilistic constraints and of logical constraints among the
variables involved can help in the assessment and verification of the prob-
abilities required for the network under construction. Qualitative proba-
bilistic constraints are derived, for example, from properties of stochastic
dominance of distributions. These constraints can be expressed as qual-
itative signs that can be used to study the reasoning behaviour of the
projected network prior to its quantification [48]. Logical constraints are
derived from functional relationships between the variables and can be
used to significantly reduce the number of probabilities that have to be
assessed for the network.

(4) Assessment of probabilities. In the next development stage, the local con-
ditional probability distributions Pr(Xv | Xπ(v)) for each variable Xv are
filled in. The required probabilities can be obtained from domain experts.
Although the elicitation of judgemental probabilities is generally consid-
ered a daunting task, elicitation methods are available that are tailored
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to obtaining the large number of probabilities required in reasonable time
[22; 23; 47]. Alternatively, the probabilities can be obtained from data.
For a network with discrete variables, the conditional probability distribu-
tions are often computed as the weighted average of a probability estimate
based on the available data and a prior Dirichlet distribution, that is, a
multinomial distribution whose parameters can be interpreted as counts
on a dataset:

Pr(Xv | Xπ(v), D) =
n

n + n0
P̂rD(Xv | Xπ(v)) +

n0

n + n0
Θ(Xv | Xπ(v))

where P̂rD is the probability distribution estimated from a given dataset
D, and Θ is the Dirichlet prior over the possible values of Xv; Θ is often
taken to be uniform. The parameter n is the size of the dataset D and
n0 is equal to an imaginary or real number of past cases on which the
contribution of Θ is based. The resulting probability distribution Pr is
again a Dirichlet distribution.

(5) Sensitivity analysis and evaluation. With the previous development stage,
a fully specified Bayesian network is obtained. Before the network can be
used in real-life practice, its quality and clinical value have to be estab-
lished. One of the techniques for assessing a network’s quality is to perform
a sensitivity analysis with patient data. Such an analysis serves to provide
insight in the robustness of the output of the network to possible inac-
curacies in the underlying probability distribution [10; 21]. Evaluation of
a Bayesian network can be done in various different ways. Examples in-
clude measuring classification performance on a given set of real patient
data and measuring similarity of structure or probability distribution to a
gold-standard network or other probabilistic model.

As developing a Bayesian network is a creative process, the various stages are
iterated in a cyclic fashion where each stage may, on each iteration, induce
further refinement of the network under construction. An ontology may be
developed to support the process [31].

2.3 Learning

In many fields of biomedicine and health-care, data have been collected and
maintained, sometimes over numerous years. Such a data collection usually
contains highly valuable information about the relationships between the vari-
ables discerned, be it implicitly. If a comprehensive dataset is available, a
Bayesian network can be learnt from the data, that is, it can be developed
without explicit access to knowledge of human experts.

To be suitable for learning purposes, a dataset has to satisfy various prop-
erties. First of all, the data contained in the dataset must have been collected
very carefully. Biases that are introduced in the dataset as a result of the
data collection strategies used will have impact on the resulting Bayesian
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network, yet may not be desirable for the purpose for which the network is
being developed. Also, the variables and associated values that occur in the
dataset should match the variables and values that are to be modelled in
the network, or should at least admit easy translation. Moreover, the dataset
should comprise enough data to allow for reliable identification of probabilis-
tic relationships among the variables discerned. In addition to these general
prerequisites, a dataset should satisfy several properties that are implicitly
assumed by most learning algorithms. One of these is the assumption that
each case in the dataset specifies a value for every variable discerned, that
is, there are no missing values. Unfortunately, for most real-life datasets this
property does not hold. To use a dataset with missing values for learning
purposes, the missing values have to be filled in, or imputated, for example
based upon (roughly) estimated probabilities for these values or with the help
of domain experts. Most learning algorithms further assume that the cases in
the dataset have been generated independently, that is, the values specified
for the variables in a case are assumed not to be influenced in any way by the
values in previously generated cases. Also, it is assumed that the process of
data generation is not time-dependent.

Learning a Bayesian network from data involves the tasks of structure
learning, that is, identifying the graphical structure of the network, and pa-
rameter learning, that is, estimating the conditional probability distributions
to be associated with the network’s ADG. In many learning algorithms, the
two tasks are performed simultaneously and, as a consequence, are not easily
distinguished.

One of the early algorithms for learning a Bayesian network from data is
the K2 algorithm [9]. Given a dataset D, this algorithm searches, in a greedy
heuristic way, for an ADG that, supplemented with maximum likelihood es-
timates for its probabilities, best explains the data at hand. More formally, it
searches for a digraph G∗ that maximises the joint probability Pr(G,D) over
all possible digraphs G. Given a topological ordering on the random variables
concerned, the algorithm constructs, for every subsequent variable Vi, an op-
timal set of parents. To this end, it starts by assuming the parental set to be
empty and then adds, iteratively, the parent whose addition most increases the
probability of the resulting structure and the dataset; it stops adding variables
to a parental set as soon as the addition of a single parent cannot increase the
probability Pr(G,D). The K2 algorithm is an example of a search & scoring
method. These methods search the space of all possible acyclic digraphs by
generating various different graphs in a heuristic way and comparing these as
to their ability to explain the data at hand. Other search & scoring methods
build, for example, upon the use of the minimum description length (MDL)
principle [35], or use a genetic algorithm for the search involved [36].

Another approach to learning a Bayesian network from data is to
build upon the use of a dependence analysis [7]. A Bayesian network in
essence models a collection of conditional dependence and independence state-
ments, through its Markov condition. By studying the available dataset, the
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dependences and independences between the various variables can be ex-
tracted, for example by means of statistical tests, and subsequently captured
in a graphical structure. The information-theoretical algorithm of Cheng and
Bell is an example of an algorithm taking this approach [7]. The algorithm
has three subsequent phases, termed drafting, thickening and thinning. In
the drafting phase, the algorithm establishes, from the data, the mutual in-
formation for each pair of variables and constructs a draft digraph from this
information. In the thickening phase, the algorithm adds arcs between pairs of
nodes if the corresponding variables are not conditionally independent given a
certain conditioning set of variables. In the thinning phase, to conclude, each
arc of the graph obtained so far is examined using conditional independence
tests, and is removed if the two variables connected by the arc prove to be
conditionally independent.

Based upon the observation that independence tests quickly become unre-
liable for larger conditioning sets and the search space of all possible digraphs
is unfeasibly large, learning algorithms have been proposed that take a hybrid
approach [15; 55]. These algorithms are composed of two phases. In the first
phase, a graph is constructed from the data, generally using lower-order de-
pendence tests only. This graph is subsequently used to explicitly restrict the
search space of graphical structures for the second phase in which a search
algorithm is employed to find an ADG that best explains the data.

To conclude, there is also a great deal of interest in estimating probabil-
ity distributions from data using maximum likelihood estimation [27]. The
expectation-maximisation (EM) algorithm is a two-step algorithm used by
many researchers for this purpose [13]. It consists of a step of computing the
expected value of the relevant parameter and a maximisation step, which are
carried out in an interleaved fashion until convergence. In contrast with the
learning algorithms reviewed above, the EM algorithm is able to deal with
missing values.

2.4 Manual Construction versus Learning

Manual construction of a Bayesian network requires access to knowledge of
human experts and, in practice, turns out to be quite time consuming. With
the increasing availability of clinical and biological data, learning evidently is
the more feasible alternative for developing a Bayesian network. Learning, as
a consequence, is attracting considerable interest, both from developers and
within the research community. Whether or not building a Bayesian network
by hand would result in a network of higher quality when compared to learn-
ing it from data, is yet an open question. One would expect that, in many
areas of biomedicine, human knowledge of the underlying (patho)physiological
processes is more robust than the knowledge embedded in a dataset of limited
size. To date there is little evidence, however, to corroborate this expectation.
It is an equally open question whether learning a Bayesian network of more
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complex topology pays off when compared to learning a simple Bayesian classi-
fier. One would expect that the more faithful the ADG of a Bayesian network
is in reflecting the dependences and independences embedded in the data,
the better its performance. Research by Domingos and Pazzani has shown,
however, that, when used for classification problems, naive Bayesian networks
tend to outperform more sophisticated networks [16]. This finding has led to
the suggestion that more complex network structures do not pay off. Friedman
et al. [17], and Cheng and Greiner [8], on the other hand, have shown that
tree-augmented networks, which in comparison to naive Bayesian networks in-
corporate extra dependences among their feature variables, often outperform
these naive Bayesian networks. Allowing for even more complex relationships
between the feature variables, as in a forest-augmented network, moreover,
has been shown to yield still better performance [40].

3 Exploiting Biomedical Knowledge in Bayesian
Network Design

So far, we have considered general properties of Bayesian network construc-
tion. Developing a Bayesian-network model for a realistic biomedical problem
is usually far from easy. Without having detailed knowledge of the problem
domain, or without access to people with biomedical domain knowledge, it is
impossible to develop Bayesian networks to solve biomedical problems, even
in the situation when lots of data are available. However, mapping biomed-
ical knowledge to the formalism of Bayesian networks is greatly facilitated if
particular principles of biomedical knowledge are followed.

As mentioned above, modelling in terms of cause-effect relationships is
particularly popular in developing biomedical applications. We will explore
some of the alternatives in this section, trying to remain as close as possible to
what we consider to be the essence of biomedical knowledge, with an emphasis
on the representation of clinical knowledge.

3.1 Signs, Symptoms and Tests

Whether concerned with the diagnosis or treatment of a disease, medical man-
agement of patients is guided by proper history taking, making observations
on the current clinical state of the patient and observing the evolution of the
patient’s disease.

Figure 3 shows a typical Bayesian network fragment, which includes nodes
representing signs, symptoms and tests. Modelled here are a disorder, flu, with
one sign (body temperature), one symptom (chills) and one test (erythrocyte
sedimentation rate, ESR). As one may see, there is no difference in the way
signs, symptoms and tests are modelled in a Bayesian network. In all cases,
there is an arc going from the disorder to the associated sign, symptom or
test. This graphical representation assumes that the signs, symptoms and tests
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Flu

Body
Temp

ESR

Chills

Fig. 3. Fictitious Bayesian network fragment concerning flu representing signs,
symptoms and tests.

are conditionally independent of each other given the disorder; this is often
not the case. For example, literature on human physiology tells us that body
temperature and chills are dependent of one another.

For some signs and symptoms, and for most tests (using T as a random
variable representing signs, symptoms or tests), it is known from literature
how often they are positive in the presence of a disorder D, i.e., Pr(t | d) is
known, and how often they are negative in the absence of the given disorder,
i.e., Pr(¬t | ¬d) is known. The probability Pr(t | d) is known as the sensitivity
or true positive rate; the probability Pr(¬t | ¬d) is known as the specificity or
true negative rate. The sensitivity and specificity of particular tests can often
be looked up in standard textbooks.

If particular symptoms or signs T are known to be uniquely associated with
a disease D, these symptoms are said to be pathognomonic. Probabilistically,
pathognomonic signs or symptoms T can be characterised by the fact that
Pr(t | d) = 1.

3.2 Causal Modelling

Figure 3 offers a typical, abstract clinical view on the clinical interpretation
of information that is used in medical decision-making. However, in many
cases much more is known about disease processes than is modelled in the
naive Bayesian network structure shown in Figure 3. If one wishes to build a
Bayesian network model for a biomedical problem, it is necessary to select the
right level of abstraction in the building process. Often this is difficult, and
much insight into the nature of biomedical knowledge is required in order to
do so properly.

Figure 4 depicts a more elaborate version of the Bayesian network struc-
ture shown in Figure 3. It now turns out that there is a hidden variable, Fever,
that is seen as a common cause of changes in the likelihood of Body Temp and
Chills. The problem here is that fever is a complex response of the body to
an infection, of which much is known, but that can only be characterised by
measuring particular molecular substances. Thus, the node Fever summarises
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Flu Fever

Body
TempESR

ChillsAntipyretic
Drugs

Fig. 4. Fictitious Bayesian network; more elaborate fragment concerning flu includ-
ing a hidden variable (fever) with associated signs, symptoms and tests.

the entire process, and it may not be easy to quantify the corresponding ran-
dom variable probabilistically. It is apparent from the figure that the changes
in ESR are a direct consequence of flu, and not of fever. Finally, the likelihood
of the occurrence of fever is moderated by the fact whether or not the patient
uses antipyretic drugs, such as aspirin or acetaminophen. The occurrence of
a fever is a common consequence of the interaction between the presence or
absence of flu and the use of antipyretic drugs, yet the role of both variables
is not the same. This is reflected in the probability distribution, not in the
structure of the independence relation modelled in the ADG; here we have
that

Pr(fever | flu, antipyretic drugs) # Pr(fever | flu,¬antipyretic drugs)

3.3 Causal Independence

In biomedical problems, often a number of causal factors interact to give rise
to an effect. If this is modelled in a Bayesian network, the resulting probabil-
ity table may be prohibitively large. The theory of causal independence has
been shown to be useful in this case, as it allows for the specification of the
interactions among variables in terms of cause-effect relationships, adopting
particular statistical independence assumptions [41]. Causal independence is
frequently used in the construction of practical networks for situations where
the underlying probability distributions are complex. The theory has also
been exploited to increase the efficiency of probabilistic inference in Bayesian
networks [56].

The global structure of a causal-independence model is shown in Figure 5;
it expresses the idea that causes C1, . . . , Cn influence a given common effect
E through intermediate variables I1, . . . , In and a deterministic function f ,
called the interaction function. The influence of each cause Ck on the com-
mon effect E is independent of each other cause Cj , j �= k. The function f
represents in which way the intermediate effects Ik, and indirectly also the
causes Ck, interact to yield a final effect E. Hence, this function f is defined
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C1 C2 . . . Cn

I1 I2 . . . In

E f

Fig. 5. Causal independence model.

in such way that when a relationship, as modelled by the function f , between
Ik, k = 1, . . . , n, and E = true is satisfied, then it holds that e = f(I1, . . . , In).
In terms of probability theory, the notion of causal independence can be for-
malised for the occurrence of effect E, i.e. E = true, as follows:

Pr(e | C1, . . . , Cn) =
∑

f(I1,...,In)=e

Pr(e | I1, . . . , In) Pr(I1, . . . , In | C1, . . . , Cn)

(2)

meaning that the causes C1, . . . , Cn influence the common effect E through the
intermediate effects I1, . . . , In only when e = f(I1, . . . , In) for certain values of
Ik, k = 1, . . . , n. Under this condition, it is assumed that Pr(e | I1, . . . , In) = 1;
otherwise, when f(I1, . . . , In) = ¬e, it holds that Pr(e | I1, . . . , In) = 0. Note
that the effect variable E is conditionally independent of C1, . . . , Cn given the
intermediate variables I1, . . . , In, and that each variable Ik is only dependent
on its associated variable Ck; hence, it holds that

Pr(e | I1, . . . , In, C1, . . . , Cn) = Pr(e | I1, . . . , In)

and

Pr(I1, . . . , In | C1, . . . , Cn) =
n∏

k=1

Pr(Ik | Ck)

Formula (2) can now be simplified to:

Pr(e | C1, . . . , Cn) =
∑

f(I1,...,In)=e

n∏

k=1

Pr(Ik | Ck) (3)

Based on the assumptions above, it also holds that

Pr(e | C1, . . . , Cn) =
∑

I1,...,In

Pr(e | I1, . . . , In)
n∏

k=1

Pr(Ik | Ck) (4)

Finally, it is assumed that Pr(ik | ¬ck) = 0 (absent causes do not contribute to
the effect); otherwise, the probabilities Pr(Ik | Ck) are assumed to be positive.
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Formula (3) is practically speaking not very useful, because the size of the
specification of the function f is exponential in the number of its arguments.
The resulting probability distribution is therefore in general computationally
intractable, both in terms of space and time requirements. An important sub-
class of causal independence models, however, is formed by models in which
the deterministic function f can be defined in terms of separate binary func-
tions gk, also denoted by gk(Ik, Ik+1). Such causal independence models have
been called decomposable causal independence models [30]; these models are
of significant practical importance. Usually, all functions gk(Ik, Ik+1) are iden-
tical for each k; a function gk(Ik, Ik+1) may therefore be simply denoted by
g(I, I ′). Typical examples of decomposable causal independence models are
the noisy-OR [14; 32; 45] and noisy-MAX [14; 30] models, where the function
g represents a logical OR and a MAX function, respectively.

In [41], the qualitative behaviour of causal independence models is studied
when taking f to be a Boolean function. Insight into such qualitative behav-
iour may be useful when selecting the right Boolean function for a biomedical
problem.

As an example, consider the interaction between bactericidal antimicrobial
agents, i.e., drugs that kill bacteria by interference with their metabolism, and
bacteriostatic antimicrobial agents, i.e., drugs that inhibit the multiplication
of bacteria. Penicillin is an example of a bactericidal drug, whereas chlortetra-
cyclin is an example of a bacteriostatic drug. It is well known among medical
doctors that the interaction between bactericidal and bacteriostatic drugs can
have antagonistic effects; e.g., the drug combination penicillin and chlortetra-
cyclin may be have as little effect against an infection as prescribing no antimi-
crobial agent at all, even if the bacteria are susceptible to each of these drugs.
Note that here we interpret drugs as statistical variables, not as decision vari-
ables as in clinical decision making. The depiction of the causal interaction of
the relevant variables is shown in Figure 6. The interaction between penicillin
and chlortetracyclin as depicted in Figure 6 can be described my means of an
exclusive OR, as presence of either of these in the patient’s body tissues leads
to a decrease in bacterial growth, whereas if both are present or absent, there
will be little or no effect on bacterial growth.

3.4 Context and Conditioning

Not all biomedical knowledge that can be modelled in a Bayesian network is
causal in nature; another type of knowledge that is employed in biomedicine
concerns subgroup knowledge, i.e., knowledge where there is much similar-
ity in the description of a process, with the exception of some of the entries
in some probability tables. Random variables that allow taking into account
characteristics of subgroups can be looked upon as defining a context. Gen-
der and age are typical examples of contextual random variables; they are
frequently employed in real-world biomedical Bayesian networks.
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Bacterial
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Protein
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Penicillin Chlortetracyclin

Infection

Fig. 6. Example Bayesian network, modelling the interaction between the antimi-
crobial agents penicillin and chlortetracyclin on infection.

Figure 7 depicts a fragment of a Bayesian network of non-Hodgkin lym-
phoma of the stomach, where each of the variables different from the variable
‘Age’ has been modelled to be dependent of the age of the patient. Usually,
contextual nodes do not have incoming arcs, and have outgoing arcs to other
nodes in the ADG.

4 Problem Solving in Biomedicine and Health-care

Bayesian networks are increasingly used in biomedicine and health-care to
support different types of problem solving, four of which are briefly reviewed
here.

4.1 Diagnostic Reasoning

Establishing a diagnosis for an individual patient in essence amounts to con-
structing a hypothesis about the disease the patient is suffering from, based
upon a set of indirect observations from diagnostic tests. Diagnostic tests,
however, generally do not serve to unambiguously reveal the condition of a
patient: the tests typically have true-positive rates and true-negative rates
unequal to 100%. To avoid misdiagnosis, the uncertainty in the test results
obtained for a patient should be taken into consideration upon constructing
a diagnostic hypothesis. Bayesian networks offer a natural basis for this type
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GENERAL-HEALTH-STATUS

POOR 0.110

AVERAGE 0.216

GOOD 0.674

BULKY-DISEASE

YES 0.314

NO 0.686

CLINICAL-STAGE

I 0.455

II1 0.262

II2 0.160

III 0.004

IV 0.120

HISTOLOGICAL-CLASSIFICATION

LOW-GRADE 0.467

HIGH-GRADE 0.534

AGE

10-19 0.005

20-29 0.030

30-39 0.060

40-44 0.070

45-49 0.070

50-54 0.100

55-59 0.120

60-64 0.150

65-69 0.150

70-79 0.200

80-89 0.040

>=90 0.005

Fig. 7. Bayesian network fragment including some variables concerning non-
Hodgkin lymphoma of the stomach.

of reasoning with uncertainty. A significant number of network-based systems
for medical diagnosis have in fact been developed in the past and are currently
being developed.

Formally, a diagnosis may be defined as a value assignment D∗ to a subset
of the random variables concerned, such that

D∗ = arg max
D

Pr(D | E)

where E is the observed evidence, composed of symptoms, signs and test re-
sults. A diagnosis thus is a maximum a posteriori assignment, or MPA, to
a given subset of variables. Establishing a maximum a posteriori assignment
from a Bayesian network, however, is extremely hard from a computational
point of view. Since in addition combinations of disease do not occur very of-
ten, diagnostic reasoning is generally focused on single diseases. One approach
is to assume that all diseases are mutually exclusive. The different possible
diseases then are taken as the values of a single disease variable. Another ap-
proach is to capture each possible disease by a separate variable. Reasoning
then amounts to computing the probability distribution for each such vari-
able separately. The combination of the most likely values for these separate
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disease variables, however, need not be a maximum a posteriori assignment
to these variables.

To assist physicians in the complex task of diagnostic reasoning, a Bayesian
network is often equipped with a test-selection method that serves to indicate
which tests had best be ordered to decrease the uncertainty about the disease
present in a specific patient [2]. A test-selection method typically employs
an information-theoretic measure for assessing diagnostic uncertainty. Such a
measure is defined on a probability distribution over a disease variable and
expresses the expected amount of information required to establish the value
of this variable with certainty. An example measure often used for this purpose
is the Shannon entropy. The measure can be extended to include information
about the costs involved in performing a specific test and about the side effects
it can have. Since it is computationally hard to look beyond the immediate
next diagnostic test, test selection is generally carried out non-myopically, that
is, in a sequential manner. The method then suggests a test to be performed
and awaits the user’s input; after taking the test’s result into account, the
method suggests a subsequent test, and so on.

4.2 Prognostic Reasoning

Prognostic reasoning in biomedicine and health-care amounts to making a
prediction about what will happen in the future. As knowledge of the future
is inherently uncertain, in prognostic reasoning uncertainty is even more pre-
dominant than in diagnostic reasoning. Another prominent feature of prog-
nostic reasoning when compared to diagnostic reasoning is the exploitation
of knowledge about the evolution of processes over time. Even if temporal
knowledge is not represented explicitly, prognostic Bayesian networks still
have a clear general temporal structure, which is depicted schematically in
Figure 8. The outcome predicted for a specific patient is generally influenced
by the particular sequence of treatment actions to be performed, which in turn
may depend on the information that is available about the patient before the
treatment is started. The outcome is often also influenced by progress of the
underlying disease itself.

Pretreatment
observations Treatments

Outcome

Fig. 8. General structure of a prognostic Bayesian network; each box denotes a part
of the network.



Biomedical Applications of Bayesian Networks 349

Formally, a prognosis may be defined as a probability distribution

Pr(Outcome | E , T )

where E again is the available patient data, including symptoms, signs and test
results, and T denotes a selected sequence of treatment actions. The outcome
of interest may be expressed by a single variable, for example modelling life
expectancy. The outcome of interest, however, may be more complex, mod-
elling not just length of life but also various aspects pertaining to quality of
life. A subset of variables may then be used to express the outcome.

Prognostic Bayesian networks are a rather new development in medicine.
Only recently have researchers started to develop such networks, for example
in the areas of oncology [25; 42] and infectious disease [3; 43]. There is little
experience as yet with integrating ideas from, for example, traditional survival
analysis into Bayesian networks. Given the importance of prognostication in
health-care, it is to be expected, however, that more prognostic networks will
be developed in the near future.

4.3 Treatment Selection

The formalism of Bayesian networks provides only for capturing a set of ran-
dom variables and a joint probability distribution over them. A Bayesian
network therefore allows only for probabilistic reasoning, as in establishing a
diagnosis for a specific patient and in making a prediction of the effects of
treatment. For making decisions, as in deciding upon the most appropriate
treatment alternative for a specific patient, the network formalism does not
provide. Reasoning about treatment alternatives, however, involves reason-
ing about the effects to be expected from the different alternatives. It thus
involves diagnostic reasoning and, even more prominently, prognostic reason-
ing. To provide for selecting an optimal treatment, a Bayesian network and its
associated reasoning algorithms are therefore often embedded in a decision-
support system that offers the necessary constructs from decision theory to
select an optimal treatment given the predictions [3; 42]. Alternatively, the
Bayesian-network formalism can be extended to include knowledge about de-
cisions and preferences. An example of such an extended formalism is the
influence-diagram formalism [51]. Like a Bayesian network, an influence di-
agram includes an acyclic directed graph. In this graph, the set of nodes is
partitioned into a set of probabilistic nodes modelling random variables, a set
of decision nodes modelling the various different treatment alternatives, and
a value node modelling the preferences involved. Influence diagrams for treat-
ment selection once again have a clear general structure, which is depicted
schematically in Figure 9.

4.4 Discovering Functional Interactions

So far we have focused on the use of once constructed Bayesian networks for
problem solving in medicine and health-care. However, the insight obtained
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Fig. 9. General structure of an influence diagram, including a prognostic Bayesian
network and a utility node U ; each ellipse and box denotes a part of the diagram.

by the construction process itself, in particular when done automatically by
using one of the learning methods described above, may also be exploited to
solve problems. As the topology of a Bayesian network can be interpreted
as a representation of the uncertain interactions among variables, there is a
growing interest in bioinformatics to use Bayesian network for the unravelling
of molecular mechanisms at the cellular level. Such mechanisms are called
metabolic pathways. For example, finding interactions between genes based
on experimentally obtained expression data in microarrays is currently a sig-
nificant research topic [18]. Biological data are often collected over time; the
analysis of the temporal patterns may reveal how the variables interact as
a function of time. This is a typical task undertaken in molecular biology.
Bayesian networks are now also being used for the analysis of such biological
time series data [46].

5 Some Examples

In the previous sections, we have sketched some of the developments in
Bayesian-networks research in biomedicine and health-care. We conclude this
paper with a brief description of some actual systems, some old and some new.
The description of the old systems allows us to draw some new conclusions in
light of what we know today. The description of the new systems gives some
insight on how far the field has progressed. No attempt has been made to be
complete.

5.1 Clinical Diagnostic Systems

One of the earliest examples of a Bayesian network for the diagnosis of disease
is MUNIN (MUscle an Nerve Inference Network), a large Bayesian network
that is aimed at supporting clinicians in diagnosing muscle and nerve disorders
[4]. The 2001 version of MUNIN included descriptions of 22 disorders, 186
diagnostic findings and consisted of 1100 nodes in total [53]. MUNIN is a
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typical example of a Bayesian network that has been modelled on the basis
of clinical expertise and knowledge from medical literature. Similar remarks
can be made regarding Pathfinder, the other frequently cited early diagnostic
application of Bayesian networks, in this case concerned with the diagnosis of
lymphatic disease [28; 29].

The work on MUNIN and Pathfinder is related to the even earlier work
on probabilistic diagnosis, as exemplified by the work of De Dombal [12] and
Spiegelhalter and Knill-Jones [52]. In the early work, modelling was done in
the framework of naive Bayesian networks [12], sometimes by extending this
framework by incorporating ways to express dependence information [52]. As
Bayesian networks offer a systematic way to model such (possibly subjective)
dependence information, the advances in probabilistic graphical models ap-
pear to have made this early work outdated. However, on the one hand, one
needs to take into account that modelling can be very time consuming (in the
case of MUNIN it took more than 10 years), and, as mentioned in Section
2.4, restricted Bayesian network models can be hard to beat when it comes to
diagnostic performance. On the other hand, building an accurate diagnostic
Bayesian network that includes descriptions of multiple disorders may be very
difficult without resorting to the full technology, of Bayesian networks, and
this is something that may be concluded from work in the Pathfinder project.

That unrestricted Bayesian networks have certain merits has also become
clear when developing a Bayesian network for a situation when biomedical
data is scarce. In [5], Antal et al. have explored the potential of the huge
collection of information available on the World Wide Web as prior informa-
tion for learning Bayesian networks for the classification of ovarian tumours.
Such information can complement subjective clinical information and collected
clinical data. In this research, techniques developed in the area of information
retrieval were used as a basis for finding relationships among variables from
the Web.

5.2 Treatment Management Systems

Whereas it can be doubted whether unrestricted Bayesian networks offer the
best approach in all circumstances in building diagnostic systems, with sys-
tems that support treatment selection the trade-off is different. Here it is
mandatory that the resulting probabilistic model is as accurate as possible
given the resources available, and, thus, the use of restricted Bayesian net-
work topologies is not an obvious choice here.

The literature includes a number of good examples of Bayesian networks
for treatment selection, which, as discussed in Section 4.3, are normally ex-
tended to obtain a decision-theoretic model, possibly represented as an in-
fluence diagram. Decision support in the treatment of infectious disease and
various types of cancer are relevant research subjects.

A typical example of a Bayesian network for treatment selection is the
model of ventilator-associated pneumonia shown in Figure 10. The Bayesian
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Fig. 10. Detailed structure of part of the probabilistic VAP model. Only three of
the seven microorganisms included in the model are shown. Dotted arcs point to
the actual topology of the Bayesian network; boxes represent sets of similar nodes.
Abbreviations for bacteria: PA = Pseudomonas aeruginosa, HI = Haemophilus in-
fluenzae, SP = Streptococcus pneumoniae.

network models the evolution of pneumonia in patients by means of bacterial
colonisation. In addition, the signs and symptoms resulting of pneumonia are
represented in the network as is the extent to which combinations of antibiotics
are able to cover particular bacteria.

The aims of the TREAT project is to develop a decision-support system,
based on a Bayesian network, that can assist in the treatment of various causes
of bacteremia (presence of bacteria in the blood that can give rise to sepsis).
The resulting system has been one of few systems that has been extensively
evaluated using prospective data from various hospitals [44]. The Bayesian
network underlying this system has been carefully designed, guided by expert
microbiological knowledge [3].

5.3 Health Care and Epidemiology

The use of Bayesian networks in the wider scope of health care has recently
become a focus of study by some researchers. Acid at al. have carried out a
preliminary study of the use of Bayesian networks as tools for the management
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of health services [1]. This has been done by learning Bayesian network struc-
tures from data collected at a hospital.

Getoor et al. have examined the use of Bayesian models to analyse tuber-
culosis epidemiology [24]. This was done be an extended Bayesian network
formalism: statistical relational models. The difference between learning sta-
tistical relational models and ordinary Bayesian networks is that in the former
it is assumed that data are organised as a collection of tables (relations), so
that learning takes place by inspecting tables in a relational dataset that are
explicitly linked to each other.

Sebastiani et al. have studied the use of dynamic Bayesian networks, i.e.,
Bayesian networks with time-stamped variables, to develop a surveillance sys-
tem for influenza [49]. This is another example of a Bayesian network used
in health care, where its structure has been inspired by the wish to model
biological principles.

5.4 Discovering Regulatory Processes

Bayesian networks can also be employed to explore regulatory, or control,
principles of biological processes. Segal et al. have shown that by learning
Bayesian networks from data it is possible to obtain insight into the way
genes are regulated [50]. The results suggested regulatory roles for previously
uncharacterised proteins. Bulashevka et al. have used Bayesian-network learn-
ing to uncover the mechanisms underlying the progression in genetic changes
in the development of urothelial cancers of the bladder [6]. Using probabilistic
reasoning, taking into account the statistical dependences and independences
encoded in the Bayesian network, the authors were able to propose hypotheses
regarding the primary and secondary events in tumour pathogenesis.

The use of Bayesian networks in discovering protein-protein interaction
has been studied by Jansen et al. [33], using a näıve Bayesian network, as
shown in Figure 2(a), and a fully connected network, i.e. where each pair of
variables in the network is connected by a link. The first structure was used
to encode data where information about interactions between proteins were
not available; the fully connected network captures all possible interactions
among proteins.

An overview of recent successes in discovering cellular processes by means
of Bayesian networks is given in Ref. [19], which is of particular interest to clin-
ical researchers engaged in unravelling the molecular mechanisms underlying
disease.

6 Conclusions

In this paper, we have sketched the complete process of the development of
Bayesian networks and related probabilistic graphical models in biomedicine
and health care. Not only general principles – many of these are identical or
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at least similar to those in other fields – but also special features of Bayesian
network semantics in these areas were described. It was also discussed how
these representation formalisms can be deployed in the process of biomedical
decision making. Finally, a number of example systems were reviewed.

Many researchers believe that probabilistic graphical models, and in par-
ticular Bayesian networks, are the appropriate tools for medical decision sup-
port and data analysis. Whereas graphical representations seem to have found
their way in statistical data analysis, it is as yet too early to conclude any-
thing about whether or not probabilistic graphical models will be the future
formalism for building medical decision-support systems, replacing current
paper-based medical guidelines and protocols. Many researchers in the field
have recently started with such research.
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Summary. We propose a framework for learning from data and validating Bayesian
network models of gene networks. The learning phase selects multiple locally optimal
models of the data and reports the best of them. The validation phase assesses the
confidence in the model reported by studying the different locally optimal models
obtained in the learning phase. We prove that our framework is asymptotically
correct under the faithfulness assumption. Experiments with real data (320 samples
of the expression levels of 32 genes involved in Saccharomyces cerevisiae, i.e. baker’s
yeast, pheromone response) show that our framework is reliable.

1 Introduction

The cell is the functional unit or building block of all the organisms. The
cell is self-contained, as it includes the information necessary for regulating
its function. This information is encoded in the DNA of the cell, which is
divided into a set of genes, each coding for one or more proteins. Proteins are
required for practically all the functions in the cell, and they are produced
through the expression of the corresponding genes. The amount of protein
produced is determined by the expression level of the gene, which may be
regulated by the protein produced by another gene. As a matter of fact, much
of the complex behavior of the cell can be explained through the concerted
activity of genes. This concerted activity is typically represented as a network
of interacting genes. Identifying this network, which we call gene network
(GN), is crucial for understanding the behavior of the cell which, in turn, can
lead to better diagnosis and treatment of diseases. This is one of the most
exciting challenges in bioinformatics. For the last few years, there has been
an increasing interest in learning Bayesian network (BN) models of GNs [1; 9;
12; 14; 17; 20; 21; 23], mainly owing to the following two reasons. First, there
exist principled algorithms for learning BN models from data [3; 5; 19; 21; 27].
Second, BN models can represent stochastic relations between genes. This is
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particularly important when inferring models of GNs from gene expression
data, because gene expression has a stochastic component [2; 18], and because
gene expression data typically include measurement noise [9; 25].

Following the papers cited above, we view a GN as a probability distri-
bution p(U), where U is a set of random variables such that each of them
represents the expression level of a gene in the GN. And we aim to learn
about the (in)dependencies in p(U) by learning a BN model from some given
gene expression data sampled from p(U). Specifically, we define a BN model
M(G) as the set of independencies in G, where G is an acyclic directed graph
(DAG) whose set of nodes is U. The independencies in G correspond to the
d-separation statements in G: X and Y are d-separated given Z in G if for
every undirected path in G between a node in X and a node in Y there exists
a node W in the path such that either (i) W does not have two parents in the
path and W ∈ Z, or (ii) W has two parents in the path and neither W nor
any of its descendants in G is in Z. The probability distributions that do not
satisfy any other independence than those in G are called faithful to G.

In this paper, we follow the so-called model selection approach to learning
a BN model from some given data: Given a scoring criterion that evaluates
the quality of a model with respect to the data, model selection searches the
space of models for the highest scoring model. Unfortunately, model selection
is NP-complete [4]. For this reason, most algorithms for model selection are
heuristic and they only guarantee convergence to a locally optimal model.
Validating this model is crucial, as the number of locally optimal models can
be large [19]. When inferring a BN model of a GN from gene expression data,
validation becomes even more important: Gene expression data are typically
scarce and noisy [9; 25] and, thus, they may not have enough power to dis-
criminate between those locally optimal models that are close to the set of
independencies in the probability distribution of the GN and those that are
not.

In this paper, we propose a framework for learning from data and vali-
dating BN models of GNs. The learning phase consists in running repeatedly
a stochastic algorithm for model selection in order to discover multiple lo-
cally optimal models of the learning data and, then, reporting the best of
them. The validation phase assesses the confidence in some features of the
model reported by studying the different locally optimal models obtained in
the learning phase. The higher the confidence in the features of the model
reported, the more believable or valid it is. We prove that our framework is
asymptotically, i.e. in the large sample limit, correct under the faithfulness
assumption. We show with experiments on real data that our framework is
reliable.

In the sections below, we describe the learning and validation phases of our
framework (Sects. 2 and 3, respectively) and, then, we evaluate it on synthetic
and real data (Sects. 4 and 5, respectively). We conclude in Sect. 6 with a
discussion on this and related works.
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2 Learning Phase

As mentioned in the previous section, the learning phase runs repeatedly a
stochastic algorithm for model selection in order to obtain multiple locally
optimal models of the learning data and, then, reports the best of them. We
use the k-greedy equivalence search algorithm (KES) [19] for this purpose.
Like most algorithms for model selection, KES consists of three components:
A neighborhood, a scoring criterion, and a search strategy. The neighborhood
of a model restricts the search to a small part of the search space around
the model, and it is usually defined by means of local transformations of the
model. The scoring criterion evaluates the quality of a model with respect
to the learning data. The search strategy selects a new model, based on the
scoring criterion, from those in the neighborhood of the current best model.
The paragraphs below describe these components in the case of KES.

KES uses the inclusion boundary of a model as the neighborhood of the
model. The inclusion boundary of a model M(G1), IB(M(G1)), is the union of
the upper and lower inclusion boundaries, UIB(M(G1)) and LIB(M(G1)),
respectively. UIB(M(G1)) is the set of models M(G2) that are strictly in-
cluded in M(G1) and such that no model strictly included in M(G1) strictly
includes M(G2). Likewise, LIB(M(G1)) is the set of models M(G2) that
strictly include M(G1) and such that no model strictly including M(G1) is
strictly included in M(G2). IB(M(G1)) is characterized using DAGs as the
set of models represented by all the DAGs that can be obtained by adding
or removing a single edge from any representative DAG of M(G1), where a
DAG G2 is representative of M(G1) if M(G1) = M(G2) [5]. Any representa-
tive DAG G2 of a model can be obtained from any other representative DAG
G1 of the model through a sequence of covered edge reversals in G1, where
the edge X → Y is covered in G1 if X and Y share all their parents but X in
G1 [5].3

KES scores a model by scoring any representative DAG of the model. Thus,
KES requires that all the representative DAGs of a model receive the same
score. Furthermore, KES also requires that the scoring criterion is locally con-
sistent: Given an i.i.d sample from a probability distribution p(U), the scoring
criterion is locally consistent if the score assigned to a DAG G asymptotically
increases (resp. decreases) with each edge removal that adds independencies
to M(G) that hold (resp. does not hold) in p(U). The two most commonly
used scoring criteria, the Bayesian Dirichlet metric with uniform prior (BDeu)
[15] and the Bayesian information criterion (BIC) [24], satisfy the two require-
ments above and can be used with KES [5]. BDeu scores the exact marginal
likelihood of the learning data for a given DAG, whereas BIC scores an as-
ymptotic approximation to it. Finally, KES uses the following search strategy:

3 A more efficient, though more complex, characterization of IB(M(G)) using com-
pleted acyclic partially directed graphs is reported in [28; 29].
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KES (k∈[0,1])
M = model of the DAG without any edge
repeat

B = set of models in IB(M) with higher score than M
if |B| > 0 then

C = random subset of B with size max(1,|B|·k)
M = the highest scoring model in C

else return M

where |B| denotes the cardinality of the set B. For the sake of simplicity,
KES represents each model in the search space by one of its representative
DAGs. Thus, B and C are sets of DAGs. The input parameter k ∈ [0, 1] al-
lows to trade off greediness for randomness. This makes KES (k �= 1) able
to reach different locally optimal models when run repeatedly. KES (k = 1)
corresponds to the greedy equivalence search algorithm (GES) proposed in
[5].4 We refer the reader to [19] for a thorough study of KES, including the
proof of the following property.

Theorem 1. Given a fully observed i.i.d sample from a probability distribu-
tion faithful to a DAG G, KES asymptotically returns M(G).

3 Validation Phase

In the light of the experiments in [19], the learning phase described in the
previous section is very competitive. However, when the learning data are as
scarce, noisy and complex as gene expression data are, the best locally optimal
model discovered in the learning phase may not be reliable, because the learn-
ing data may lack the power to discriminate between those locally optimal
models that are close to the set of independencies in the sampled probability
distribution and those that are not. Therefore, validating the model learnt is
of much importance. Our proposal for validating it consists of two main steps.
First, extraction of relevant features from the model. Second, assessment of
the confidence in the features extracted. The higher the confidence in these
features, the more believable or valid the model is. The following sections
describe these two steps.

3.1 Feature Extraction

First of all, we need to adopt a model representation scheme that allows in-
teresting features to be extracted. Representing a model by a DAG does not

4 To be exact, GES is a two-phase algorithm that first uses only UIB(M(G)) and,
then, only LIB(M(G)). KES (k = 1) corresponds to a variant of GES described
in [5] that uses IB(M(G)) in each step.
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seem appropriate here, because there may be many representative DAGs of
the model. A completed acyclic partially directed graph (CPDAG) provides,
on the other hand, a canonical representation of a model. A CPDAG rep-
resents a model by summarizing all its representative DAGs: The CPDAG
contains the directed edge X → Y if X → Y exists in all the representa-
tive DAGs, while it contains the undirected edge X–Y if X → Y exists in
some representative DAGs and Y → X in some others. See [5] for an efficient
procedure to transform a DAG into its corresponding CPDAG.

We pay attention to four types of features in a CPDAG: Directed edges,
undirected edges, directed paths, and Markov blanket neighbors. Two nodes
are Markov blanket neighbors if there is an edge between them or if they have
a child in common. We focus on these types of features because they sug-
gest relevant features of the probability distribution of the learning data. A
directed or undirected edge suggests an unmediated dependence. A directed
path suggests a causal pathway because it appears in all the representative
DAGs of the model. Finally, the Markov blanket neighborhood of a random
variable suggests the minimal set of predictors of the probability distribution
of the random variable, because the Markov blanket neighborhood is the min-
imal set conditioned on which the random variable is independent of the rest
of random variables.

3.2 Confidence Assessment

Despite the fact that the different locally optimal models discovered in the
learning phase disagree in some features, we expect them to share some oth-
ers. In fact, the more strongly the learning data support a feature, the more
frequently it should appear in the different locally optimal models found. Like-
wise, the more strongly the learning data support a feature, the higher the
likelihood of the feature being true in the probability distribution that gener-
ated the learning data. This leads us to assess the confidence in a feature as
the fraction of models containing the feature out of the different locally opti-
mal models obtained in the learning phase. Note that we give equal weight to
all the models available, no matter their scores. Alternatively, we could weight
each model by its score. We prove below that this approach to confidence esti-
mation is asymptotically correct under the faithfulness assumption. We show
in Sect. 4 that it is accurate for finite samples as well.

Theorem 2. Given a fully observed i.i.d sample from a probability distribu-
tion faithful to a DAG G, the features in M(G) asymptotically receive confi-
dence equal to one and the rest equal to zero.

Proof. Under the conditions of the theorem, KES asymptotically returns
M(G) owing to Theorem 1. ("
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3.3 Validity Assessment

Let M∗ denote the best locally optimal model found in the learning phase.
Deciding on the validity of M∗ on the basis of the confidence values scored by
its features may be difficult. We suggest a sensible way to ease making this
decision. We call true positives (TPs) to the features in M∗ with confidence
value equal or above a given threshold value t. Likewise, we call false positives
(FPs) to the features not in M∗ with confidence value equal or above t, and
false negatives (FNs) to the features in M∗ with confidence value below t.
In order to decide on the validity of M∗, we propose studying the trade-off
between the number of FPs and FNs for each type of features under study as a
function of t. The fewer FPs and FNs for high values of t, the more believable
or valid M∗ is. In other words, we trust M∗ as a valid model of the probability
distribution of the learning data if the features in M∗ receive high confidence
values, while the features not in M∗ score low confidence values. Note that we
treat on equal basis FPs and FNs. Alternatively, we can attach different costs
to them according to our preferences, e.g. we may be less willing to accept
FPs than FNs. The following property follows directly from Theorem 2.

Theorem 3. Given a fully observed i.i.d sample from a probability distribu-
tion faithful to a DAG G, the number of FPs and FNs is asymptotically zero
for any t > 0.

Therefore, our framework for learning from data and validating BN models
of GNs is asymptotically correct under the faithfulness assumption, i.e. the
learning phase always returns the true model (Theorem 1) and the validation
phase always confirms its validity (Theorem 3). We note that, although the
faithfulness assumption may not hold in practice, the theorems above are
desirable properties for any work on BN model validation to have.

4 Evaluation on Synthetic Data

We have proven in Theorems 2 and 3 that our approach to confidence esti-
mation is asymptotically correct under the faithfulness assumption. We now
show that it is also accurate for finite samples under the faithfulness assump-
tion. The database used in the evaluation is the Alarm database [16]. This
database consists of 20000 cases sampled from a BN model representing po-
tential anesthesia problems in the operating room. The CPDAG of the BN
model sampled has 37 nodes and 46 edges, and each node has from two to
four states. We perform experiments with samples of sizes 1 %, 2 %, 5 %, 10
%, 25 %, 50 % and 100 % of the Alarm database. The results reported are
averages over five random samples of the corresponding size.

The setting for the evaluation is as follows. We consider KES (k =
0.6, 0.8, 0.9) with BIC as the scoring criterion. We avoid values of k close
to 0 so as to prevent convergence to poor locally optimal models [19]. For
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each sample in the evaluation, we first run KES 1000 independent times and
use the different locally optimal models discovered to estimate the confidence
in the features of interest, i.e. directed edges, undirected edges, directed paths,
and Markov blanket neighbors. We give equal weight to all the models used
for confidence estimation. Then, we compute the trade-off between the num-
ber of FPs and FNs for each type of features under study as a function of the
threshold value t. We treat equally FPs and FNs when computing the trade-
off. Unlike in Sect. 3.3, FPs and FNs are calculated with respect to the true
model so as to assess the accuracy of our method for confidence estimation.

We report results for k = 0.8 and omit the rest because they all lead to
the same conclusions. Out of the 1000 independent runs of KES performed for
each of the samples in the evaluation, we obtained an average of 203 different
locally optimal models for the sample size 1 %, 233 for 2 %, 161 for 5 %,
115 for 10 %, 119 for 25 %, 85 for 50 %, and 70 for 100 %. We note that
the number of different locally optimal models obtained decreases as the size
of the learning data increases, which is expected because Theorem 1 applies.
Figure 1 shows the trade-off curves between the number of FPs and FNs as a
function of the threshold value t. We note that the CPDAG of the true model
has 42 directed edges, 4 undirected edges, 196 directed paths, and 65 Markov
blanket neighbors. We do not report trade-off curves for undirected edges
because they are difficult to visualize as there are only four undirected edges
in the true model. Instead, the trade-off curves in Fig. 1 (top) summarize the
number of FPs and FNs for both directed and undirected edges. The shape of
the trade-off curves for the three types of features, concave down and closer
to the horizontal axis (FNs) than to the vertical axis (FPs), indicates that our
method for confidence estimation is reliable: For all the sample sizes except
1 %, there is a wide range of values of t such that (i) the number of TPs is
higher than the number of FNs, and (ii) the number of FNs is higher than the
number of FPs. For the sample size 1 %, these observations are true only for
Markov blanket neighbors, which indicates that these features are easier to
learn. This makes sense as Markov blanket neighbors are less sensitive than
the other types of features to whether the edge between two nodes is directed
or undirected. The trade-off curves in the figure also show that the number
of FPs and FNs decreases as the size of the learning data increases, which is
expected because Theorem 3 applies. In particular, when setting t to the value
that minimizes the sum of FPs and FNs for the sample size 100 %, there are
1 FP and 1 FN (45 TPs) for edges (t = 0.45), 1 FP and 10 FNs (186 TPs) for
directed paths (t = 0.6), and 0 FPs and 3 FNs (62 TPs) for Markov blanket
neighbors (t = 0.7). Figure 2 depicts the TP and FP edges for the sample size
100 % when t = 0.45, 0.95. Recall that t = 0.45 is the threshold value that
minimizes the sum of FPs and FNs for edges and that it implies 1 FP and 1
FN (45 TPs). The FN edge 12→ 32 is reported in [6] to be not supported by
the data. When t = 0.95, there are 0 FPs and 17 FNs (29 TPs). Therefore,
our method for confidence assessment assigns to a considerable amount of
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Fig. 2. Directed and undirected edges for the Alarm database of size 100 % (k = 0.8)
when t = 0.45 (plain and bold edges) and when t = 0.95 (bold edges). Solid edges
are TPs and dashed edges are FPs.

TPs higher confidence than to any FP. This is also true for directed paths
and Markov blanket neighbors as can be seen in Fig. 1 (middle and bottom).

5 Evaluation on Real Data

In this section, we evaluate the framework for learning from data and val-
idating BN models of GNs that we have proposed in Sects. 2 and 3. The
experimental setting is the same as in the previous section with the only ex-
ception that FPs and FNs are now calculated with respect to the best locally
optimal model found in the learning phase (recall Sect. 3.3). The data used
in the evaluation are the data in [14], which we call the Yeast database here-
inafter. This database consists of 320 records characterized by 33 attributes.
The records correspond to 320 samples of unsynchronized Saccharomyces cere-
visiae (baker’s yeast) populations observed under different experimental con-
ditions.5 The first 32 attributes of each record represent the expression levels
of 32 genes involved in yeast pheromone response. This pathway plays an
essential role in the sexual reproduction of yeast. The last attribute of each
record, named MATING TYPE, indicates the mating type of the strain of
yeast in the corresponding sample, either MATa or MATα, as some of the
32 genes measured express only in strains of a specific mating type. Gene
expression levels are discretized into four states. We refer the reader to [14]
for details on the data collection and preparation process. Table 1 reproduces
the description of the 32 genes in the database that is given in [14]. The

5 Yeast is extensively studied in molecular biology and bioinformatics because it is
considered an ideal organism: It is quick and easy to grow, and it provides insight
into the workings of other organisms, including humans.
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Table 1. Top, description of the 32 genes in the Yeast database. The genes are di-
vided into functional groups according to the current knowledge of yeast pheromone
response. Each group has a different color assigned. Bottom, description of the
groups of genes.

Gene Group Function of the protein encoded by the gene

STE2 Magenta Transmembrane receptor peptide
MFA1 Magenta a-factor mating pheromone
MFA2 Magenta a-factor mating pheromone
STE6 Magenta Responsible for the export of a-factor from MATa cells
AGA2 Magenta Binding subunit of a-agglutinin complex, involved in cell-cell adhesion

during mating by binding Sag1
BAR1 Magenta Protease degrading α-factor
STE3 Red Transmembrane receptor peptide
MFALPHA1 Red α-factor mating pheromone
MFALPHA2 Red α-factor mating pheromone
SAG1 Red Binding subunit of α-agglutinin complex, involved in cell-cell adhesion

during mating by binding Aga2 (also known as Agα1)
FUS3 Blue Mitogen-activated protein kinase (MAPK)
STE12 Blue Transcriptional activator
FAR1 Blue Substrate of Fus3 that leads to G1 arrest, known to bind to STE4 as

part of complex of proteins necessary for establishing cell polarity
required for shmoo formation after mating signal has been received

FUS1 Blue Required for cell fusion during mating
AGA1 Blue Anchor subunit of a-agglutinin complex, mediates attachment of Aga2

to cell surface
GPA1 Green Component of the heterotrimeric G-protein (Gα)
STE4 Green Component of the heterotrimeric G-protein (Gβ)
STE18 Green Component of the heterotrimeric G-protein (Gγ)
STE7 Yellow MAPK kinase (MAPKK)
STE11 Yellow MAPKK kinase (MAPKKK)
STE5 Yellow Scaffolding peptide holding together Fus3, Ste7 and Ste11 in a large

complex
KSS1 Orange Alternative MAPK for pheromone response (in some dispute)
STE20 Orange p21-activated protein kinase (PAK)
STE50 Orange Unknown function but necessary for proper function of Ste11
SNF2 Brown Implicated in induction of numerous genes in pheromone response path-

way (component of SWI-SNF global transcription activator complex)
SWI1 Brown Implicated in induction of numerous genes in pheromone response path-

way (component of SWI-SNF global transcription activator complex)
SST2 White Involved in desensitization to mating pheromone exposure
KAR3 White Essential for nuclear migration step of karyogamy
TEC1 White Transcriptional activator believed to bind cooperatively with Ste12 (mo-

re active during induction of filamentous or invasive growth response)
MCM1 White Transcription factor believed to bind cooperatively with Ste12 (more

active during induction of pheromone response)
SIN3 White Implicated in induction or repression of numerous genes in pheromone

response pathway
TUP1 White Implicated in repression of numerous genes in pheromone response

pathway

Group Description of the group

Magenta Genes expressed only in MATa cells
Red Genes expressed only in MATα cells
Blue Genes whose promoters are bound by Ste12
Green Genes coding for components of the heterotrimeric G-protein complex
Yellow Genes coding for core components of the signaling cascade (except FUS3 which is

in the group Blue)
Orange Genes coding for auxiliary components of the signaling cascade
Brown Genes coding for components of the SWI-SNF complex
White Others
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description is based on [7; 8; 22]. The table also divides the genes into groups
according to their function in the domain under study.

We first report the results of the learning phase. Out of the 1000 indepen-
dent runs of KES performed for each value of k considered in the evaluation,
we obtained 967 different locally optimal models for k = 0.6, 330 for k = 0.8,
and 159 for k = 0.9. In the three cases, the best model found was the same.
Figure 3 (top) shows its CPDAG. We remark that the graph in the figure does
not intend to represent the biological or physical GN, but the (in)dependencies
in it. We note that all the edges in the CPDAG are undirected, meaning that
each edge appears in opposite directions in at least two representative DAGs
of the model. As a matter of fact, none of the CPDAGs of the different locally
optimal models obtained in the 3000 runs of KES performed has directed
edges. This reduces the types of features to study hereinafter to only two:
Undirected edges and Markov blanket neighbors. However, when there is not
any directed edge in a CPDAG, two nodes are Markov blanket neighbors if
and only if they are connected by an undirected edge. Therefore, we only pay
attention to undirected edges hereinafter.

We now discuss the results of the validation phase. Figure 3 (bottom left)
shows the trade-off between the number of FPs and FNs for undirected edges
as a function of the threshold value t. We note that the CPDAG of the best
model found in the learning phase has 32 undirected edges. As can be appre-
ciated from the figure for each value of k considered in the evaluation, FNs
only happen for high values of t, while FPs only occur for low values of t.
Therefore, TPs receive substantially higher confidence values than FPs. For
k = 0.8, for instance, no TP scores lower than 0.60, while no FP scores higher
than 0.25. These observations support the validity and meaningfulness of the
best model discovered in the learning phase. Figure 3 (bottom right) depicts
the undirected edges for k = 0.8 when t = 0.60, 0.90. We note that all the
edges in the figure are TPs. As a matter of fact, there are 0 FPs and 0 FNs
(32 TPs) for t = 0.60, and 0 FPs and 11 FNs (21 TPs) for t = 0.90. The
figures for k = 0.6, 0.9 are similar to the one shown. We omit them for the
sake of readability.

It is worth mentioning that we repeated the experiments in this section
with a random database created by randomly reshuffling the entries of each
attribute in the Yeast database. In such a database, we did not expect to find
features scoring high confidence values. As a matter of fact, no edge was added
in any of the 3000 runs of KES performed. This leads us to believe that the
results presented above are not artifacts of the learning and validation phases
but reliable findings. We give below further evidence that the (in)dependencies
in the best model induced in the learning phase are consistent with the existing
knowledge of yeast pheromone response. This somehow confirms the results
of the validation phase, namely that the best model obtained in the learning
phase is reliable.

We first discuss consistency with respect to the knowledge in Table 1.
Magenta-colored genes are marginally dependent one on another as well as on
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MATING TYPE. Moreover, no gene from other group mediates these depen-
dencies. Likewise, red-colored genes are marginally dependent one on another
as well as on MATING TYPE, and no gene from other group mediates these
dependencies. These observations are consistent with the fact that magenta-
colored genes express only in MATa cells, while red-colored genes express only
in MATα cells. This also supports the fact that MATING TYPE is the only
node that mediates between magenta and red-colored genes. Green-colored
genes are marginally dependent one on another, and no gene from other
group mediates these dependencies. These observations are consistent with
the fact that green-colored genes code for components of the heterotrimeric
G-protein complex. Yellow-colored genes are marginally dependent one on
another, which is consistent with these genes coding for core components of
the signaling cascade. While STE5 and STE7 are adjacent, two green-colored
genes (GPA1 and STE18) mediate between them and STE11. A similar re-
sult is reported in [14]. The authors conjecture that this finding may indicate
common or serial regulatory control between green and yellow-colored genes.
Orange-colored genes are marginally dependent one on another, which is con-
sistent with the fact that they code for auxiliary components of the signaling
cascade. Only TUP1 mediates these dependencies, specifically orange-colored
genes are independent one of another given TUP1. As a matter of fact, TUP1
has the highest number of adjacencies in the model, which is consistent with
its role as repressor of numerous genes in pheromone response pathway. We
note that several nodes mediate between the core (yellow-colored) and the
auxiliary (orange-colored) components of the signaling cascade. This agrees
with [14]. The authors suggest that this finding may indicate that these two
groups of genes have different regulatory mechanisms. Brown-colored genes
are marginally dependent one on another, which is consistent with these genes
coding for components of the SWI-SNF complex. However, TUP1 and STE20
mediate this dependency. A similar result is reported in [14]. Blue-colored
genes are marginally dependent one on another, which is consistent with the
promoters of these genes being bound by Ste12. However, several other genes
mediate these dependencies.

We now discuss further evidence that does not appear in Table 1. The
edges STE2–STE6, STE3–SAG1, and SST2–AGA1 are consistent with the
genes connected by each edge being expressed similarly and being cell cycle-
regulated [26]:6 STE2 and STE6 peak at the M phase, while the rest of the
genes peak at the M/G1 transition. Likewise, the genes connected by each
of the edges MFALPHA2–STE3, MFA1–AGA2, and FAR1–TEC1 are also
substantially correlated as well as cell cycle-regulated [26], though they do

6 The cell cycle is the sequence of events by which the cell divides into two daughter
cells and, thus, it is the biological basis of life. The cell cycle is divided into four
main phases: G1, S, G2 and M. In G1 and G2, the cell grows and prepares to
enter the next phase, either S or M. In S, the DNA is duplicated. In M, the actual
cell division happens.
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k = 0.6 k = 0.8 k = 0.9
t FPs FNs FPs FNs FPs FNs

1.00 0 30 0 25 0 22
0.95 0 22 0 15 0 12
0.90 0 17 0 11 0 10
0.85 0 12 0 8 0 7
0.80 0 11 0 6 0 3
0.75 0 8 0 2 0 1
0.70 0 5 0 1 0 1
0.65 0 2 0 1 0 1
0.60 0 1 0 0 0 0
0.55 0 1 0 0 0 0
0.50 0 0 0 0 0 0
0.45 0 0 0 0 0 0
0.40 0 0 0 0 0 0
0.35 0 0 0 0 0 0
0.30 1 0 0 0 0 0
0.25 6 0 0 0 0 0
0.20 9 0 4 0 2 0
0.15 11 0 7 0 6 0
0.10 17 0 11 0 10 0
0.05 25 0 18 0 14 0

Fig. 3. Top, CPDAG of the best model learnt from the Yeast database (k = 0.8).
Bottom left, trade-off between the number of FPs and FNs for undirected edges for
the Yeast database at threshold values t = 0.05 · r, r = 1, . . . , 20. Bottom right,
undirected edges for the Yeast database (k = 0.8) when t = 0.60 (solid and dashed
edges) and when t = 0.90 (solid edges). Nodes are colored with the color of the
functional group they belong to in Table 1.
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not peak at the same phase of the cell cycle (MFALPHA2 and MFA1 peak
at the G1 phase, FAR1 at the M phase, and STE3, AGA2 and TEC1 at the
M/G1 transition). The edge STE6–FAR1 is consistent with these genes being
cell cycle-regulated, both peaking at the M phase [26]. The edge TUP1–MCM1
is consistent with the fact that these genes interact in the cell [13].

Finally, it is worth mentioning that most of the edges scoring high confi-
dence values in the validation phase are supported by the existing knowledge
of yeast pheromone response. For instance, most edges in Fig. 3 (bottom right)
with confidence values equal of above 0.90 have been discussed in the para-
graphs above. Therefore, we can conclude that the framework proposed in this
paper for learning from data and validating BN models of GNs is accurate and
reliable: The learning phase has produced a model that is consistent with the
existing knowledge of the domain under study, and the validation phase has
confirmed, independently of the existing knowledge, that the model is indeed
meaningful.

6 Discussion

There exist numerous works showing that a BN model induced from gene ex-
pression data can provide accurate biological insight into the GN underlying
the data [1; 9; 12; 14; 17; 20; 21; 23]. This work is yet another example. How-
ever, learning BN models from data is a challenging problem (NP-complete
and highly multimodal), specially if the learning data are as scarce and noisy
as gene expression data are. For these reasons, any BN model of a GN ob-
tained from gene expression data must be biologically validated before being
accepted. Validating the model through biological experiments is expensive
and, thus, the validation step typically reduces to checking whether the model
agrees with the existing biological knowledge of the domain under study. Un-
fortunately, this way of proceeding condemns models providing true but new
biological insight to be rejected. In this paper, we suggest a solution to this
problem: We propose a method for checking whether the model learnt is statis-
tically reliable, independently of the existence of biological knowledge. If the
model fails to be reliable as a whole, we can instead report the features that
are reliable, which are usually very informative. As a matter of fact, some of
the works cited above focus on learning features with confidence value above
a given threshold rather than on model selection [12; 14; 20]. A major limita-
tion of this approach is that, in general, a set of features does not represent
a (global) model of the probability distribution of the learning data but a
collection of (local) patterns, because each feature corresponds to a piece of
local information. Therefore, the reasoning about the (in)dependencies of the
probability distribution of the learning data that a set of features allows is
much less powerful than that of a model, e.g. a model can be queried about
any (in)dependence statement but a set of features cannot. For this reason,
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we prefer our framework for model selection and validation and, only if the
model selected does not pass the validation phase, we report features.

The works on learning features cited above use the methods in [10; 14]
to estimate the confidence in a feature. See [11] for yet another interesting
method. Like our method, these methods assess the confidence in a feature as
the fraction of models containing the feature out of a set of models. However,
they differ from our method in how this set of models is obtained. In [10] it
is obtained by running a greedy hill-climbing search on a series of bootstrap
samples of the learning data, in [11] by Markov chain Monte Carlo simulation,
and in [14] by selecting the highest scoring models visited during a simulated
annealing search. No proof of asymptotic correctness is reported for any of
these methods. We have proven that our method is asymptotically correct
under the faithfulness assumption. The key in the proof is that our algorithm
for model selection uses the inclusion boundary neighborhood, which takes
into account all the representative DAGs of the current best model to produce
the neighboring models. This is a major difference with the works on learning
BN models of GNs cited at the beginning of this section, which use classical
neighborhoods based on local transformations (single edge additions, removals
and reversals) of a single representative DAG of the current best model. The
inclusion boundary neighborhood outperforms the classical neighborhoods in
practice without compromising the runtime, because it reduces the risk of
getting stuck in a locally but not globally optimal model [3]. Moreover, unlike
the classical neighborhoods, the inclusion boundary neighborhood allows to
develop asymptotically optimal algorithms for model selection [3; 5; 19].

We are currently engaged in two lines of research. First, we are interested
in replacing the faithfulness assumption by a weaker assumption such as the
composition property assumption. Second, we would like to use the results
of the validation phase to design informative gene perturbations, gather new
data, and refine the models obtained in the learning phase accordingly. We
hope that by influencing the data collection process we will reduce the amount
of data required for learning a reliable model. This is important given the high
cost of gathering gene expression data. Moreover, combining observational and
interventional data will also provide insight into the causal relations in the
GN under study.
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[3] Castelo, R. and Kočka, T. (2003) On Inclusion-Driven Learning of
Bayesian Networks. Journal of Machine Learning Research 4:527-574.

[4] Chickering, D. M. (1996) Learning Bayesian Networks is NP-Complete.
In Learning from Data: Artificial Intelligence and Statistics V:121-130.

[5] Chickering, D. M. (2002) Optimal Structure Identification with Greedy
Search. Journal of Machine Learning Research 3:507-554.

[6] Cooper, G. and Herskovits, E. H. (1992) A Bayesian Method for the
Induction of Probabilistic Networks from Data. Machine Learning 9:309-
347.

[7] Costanzo, M. C., Crawford, M. E., Hirschman, J. E., Kranz, J. E., Olsen,
P., Robertson, L. S., Skrzypek, M. S., Braun, B. R., Hopkins, K. L.,
Kondu, P., Lengieza, C., Lew-Smith, J. E., Tillberg, M. and Garrels, J. I.
(2001) YPDTM, PombePDTM and WormPDTM: Model Organism Volumes
of the BioKnowledgeTM Library, an Integrated Resource for Protein In-
formation. Nucleic Acids Research 29:75-79.

[8] Elion, E. A. (2000) Pheromone Response, Mating and Cell Biology. Cur-
rent Opinion in Microbiology 3:573-581.

[9] Friedman, N. (2004) Inferring Cellular Networks Using Probabilistic
Graphical Models. Science 303:799-805.

[10] Friedman, N., Goldszmidt, M. and Wyner, A. (1999) Data Analysis with
Bayesian Networks: A Bootstrap Approach. In Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial Intelligence 196-205.

[11] Friedman, N. and Koller, D. (2003) Being Bayesian About Network Struc-
ture. A Bayesian Approach to Structure Discovery in Bayesian Networks.
Machine Learning 50:95-125.

[12] Friedman, N., Linial, M., Nachman, I. and Pe’er, D. (2000) Using Bayesian
Networks to Analyze Expression Data. Journal of Computational Biology
7:601-620.

[13] Gavin, I. M., Kladde, M. P. and Simpson, R. T. (2000) Tup1p Represses
Mcm1p Transcriptional Activation and Chromatin Remodeling of an a-
Cell-Specific Gene. The EMBO Journal 19:5875-5883.

[14] Hartemink, A. J., Gifford, D. K., Jaakkola, T. S. and Young, R. A. (2002)
Combining Location and Expression Data for Principled Discovery of Ge-
netic Regulatory Network Models. In Pacific Symposium on Biocomput-
ing 7:437-449.

[15] Heckerman, D., Geiger, D. and Chickering, D. M. (1995) Learning
Bayesian Networks: The Combination of Knowledge and Statistical Data.
Machine Learning 20:197-243.



Learning and Validating BN Models of GNs 375

[16] Herskovits, E. H. (1991) Computer-Based Probabilistic-Network Con-
struction. PhD Thesis, Stanford University.

[17] Imoto, S., Goto, T. and Miyano, S. (2002) Estimation of Genetic Networks
and Functional Structures Between Genes by Using Bayesian Network
and Nonparametric Regression. In Pacific Symposium on Biocomputing
7:175-186.

[18] McAdams, H. H. and Arkin, A. (1997) Stochastic Mechanisms in Gene
Expression. In Proceedings of the National Academy of Science of the
USA 94:814-819.
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[28] Studený, M. (2003) Characterization of Inclusion Neighbourhood in
Terms of the Essential Graph: Upper Neighbours. In Proceedings of the
Seventh European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty 161-172.
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Summary. The development of Bayesian classifiers is frequently accomplished by
means of algorithms that are highly data-driven. However, for many domains data-
availability is scarce such that the resulting classifiers show poor performance. Even
if performance is acceptable, Bayesian classifier structures are highly restricted and
may therefore be unintelligable to the user. In this paper we address both issues. In
the first part, we explore the trade-offs between classifiers constructed from clinical
background knowledge and classifiers learned from a small clinical dataset. It is
shown that the construction of classifiers from (partial) background knowledge is a
feasible approach. In the second part, we introduce a construction algorithm that
allows for a less restricted classifier structure, allowing easier clinical interpretation.

1 Introduction

The problem of representing and reasoning with expert knowledge has at-
tracted considerable attention during the last three decades; in particular,
ways of dealing with the uncertainty involved in decision making has been
identified again and again as one of the key issues in this area. Bayesian net-
works are nowadays considered as standard tools for representing and reason-
ing with uncertain knowledge [13]. A Bayesian network consists of a structural
part, representing the statistical (in)dependencies that hold among domain
variables, and a probabilistic part specifying a joint probability distribution
over these variables [16].

Learning a Bayesian network structure is NP hard [2] and manually con-
structing a Bayesian network for a realistic domain is a very laborious and
time-consuming task. When one is more interested in the classification per-
formance of a Bayesian network rather than in the accurate modeling of the
independence structure that holds in the domain, we may use Bayesian classi-
fiers. A Bayesian classifier can be identified as a Bayesian network with a fixed
or severely constrained structural part, dedicated to classification. Here, the
task is to assign the correct value to a class variable based on the available ev-
idence. Examples of such Bayesian classifiers are the naive Bayesian classifier
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[6], where evidence variables E = {E1, . . . , En} are assumed to be condition-
ally independent given the class variable C and the tree-augmented Bayesian
classifier [7], where correlations between evidence variables are represented as
arcs between evidence variables in the form of a tree.

In medicine, Bayesian classifiers have proven to be a valuable tool for au-
tomated diagnosis and prognosis, but are lacking in some respects. Although
Bayesian classifiers are robust in the presence of sufficient amounts of data
[7; 15; 11], the heavy reliance of classifier construction algorithms on available
data is not always justified, as there are many domains in which this avail-
ability is limited. For instance, in the medical domain, a substantial amount
of medical disorders has only a sporadic occurrence and, therefore, even clin-
ical research datasets may only include data of a hundred to a few hundred
patients. Clearly, in such cases there is a role for human domain knowledge
to compensate for the limited availability of data, which then may act as
background knowledge to a learning algorithm.

A second perceived difficulty with the use of Bayesian classifiers is the fact
that the restrictions on classifier structure disallow many statements of condi-
tional (in)dependence. This may severely degrade the performance of particu-
lar classification algorithms on certain datasets. Such restrictions also lead to
classifier structures that may be totally unintelligible. We feel that intelligible
classifier structures will increase the acceptance of the use of Bayesian classi-
fiers. Especially in medicine, a physician would like to see a correspondence
between his knowledge and the (in)dependence assumptions that are captured
by the structure of the Bayesian classifier.

In this paper we address the two difficulties identified above. In section 3
we examine the role of background knowledge with respect to the construction
of Bayesian classifiers for the domain of prognosis in oncology where we have
only a small amount of data at our disposal. In section 4 we address the re-
strictive nature of Bayesian classifiers by the introduction of a new algorithm
to construct Bayesian classifiers which relaxes the structural assumptions and
may therefore yield a network structure which is more intuitive from a med-
ical point of view. In order to determine the performance and interpretability
of this algorithm we make use of a clinical dataset of hepatobiliary (liver and
biliary) disorders whose reputation has been firmly established. Performance
of the algorithm is compared with an existing system for diagnosis of hepa-
tobiliary disorders and other Bayesian classifiers such as the naive Bayesian
classifier and the tree-augmented Bayesian classifier. We round off with some
conclusions concerning the role of background knowledge in Bayesian classifi-
cation.

2 Preliminaries

Prior to addressing the issues that have been mentioned in the previous sec-
tion, we discuss the preliminaries necessary for the remainder of this paper.
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A Bayesian network is defined as a pair (G,P ), where G is an acyclic
directed graph (ADG) with vertices V (G) and directed edges or arcs E(G).
P is a joint probability distribution defined over a set of random variables,
assuming a one-to-one correspondence between vertices V (G) and random
variables XV (G). We use XU with U ⊆ V (G) to refer to a subset of random
variables. If U is a singleton set {i} then we will write Xi to refer to the
random variable that corresponds to the vertex i.

The ADG G is assumed to be a (directed) independence map (I-map),
representing the independence structure between a set of random variables
[16]. Let πG(v) = {v′ | (v′, v) ∈ E(G)} be the set of parents of v in G. The
I-map property of G admits the following recursive factorization of the joint
probability distribution:

P (X1, . . . , Xn) =
∏

i∈V (G)

P (Xi | XπG(i)). (1)

As there is a one-to-one correspondence between V (G) and a set X of random
variables, we often use vertices and random variables interchangeably. In that
case, we just write P (Xi | π(Xi)) to denote P (Xi | XπG(i)) for given G. Let
SX denote the sample space of a discrete random variable or set of random
variables X.We use x as shorthand notation for a tuple (x1, . . . , xn) ∈ SX .

We call a Bayesian network that offers a task-neutral representation of
the knowledge concerning the independence structure between variables in a
domain a declarative model. In contrast, Bayesian classifiers are Bayesian net-
works with a fixed or severely constrained structural part that are specifically
suited to the classification task.

In order to systematically assess the performance of Bayesian classifiers
with structures of varying complexity we utilize the forest-augmented naive
classifier, or FAN classifier for short (Fig. 1). A FAN classifier is a modification
of the tree-augmented naive (TAN) classifier, where the topology of the result-
ing graph over evidence variables is restricted to a forest of trees [17; 11]. The
algorithm to construct FAN classifiers used in this paper is based on a modifi-
cation of the algorithm to construct TAN classifiers [7], where the conditional
mutual information

C
E1

· · ·
E2

Em

Fig. 1. A forest-augmented naive (FAN) classifier. For each evidence variable Ei

there is at most one incoming arc allowed from E \ {Ei} and exactly one incoming
arc from the class variable C. Both the naive classifier and the tree-augmented naive
classifier are extreme cases of the forest-augmented naive classifier.
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I(Ei, Ej | C) =
∑

ei,ej ,c

P (ei, ej , c) log
P (ei, ej | c)

P (ei | c)P (ej | c)
, (2)

computed from a dataset D is used to build a maximum cost spanning tree
between evidence variables E = {E1, . . . , Em}.

The performance of FAN classifiers may be determined by computing zero-
one loss. Let D be a dataset consisting of p cases and let ck be the value
of the class variable C given the k-th example ek ∈ SE . Then, L(ek) = 1 if
arg maxc P (C = c | E = ek) = ck and 0 otherwise. The classification accuracy
is defined as the percentage of correctly classified cases:

1
p

p∑

k=1

(
1− L(ek)

)
× 100%.

A disadvantage of this straightforward method of comparing the quality of
the classifiers is that the actual posterior probabilities are ignored. A more
precise indication of the behavior of Bayesian classifiers can be obtained with
the logarithmic scoring rule [3]. With each prediction generated by a Bayesian
network we associate a score sk = − log P (ck | ek), which can be interpreted
formally as the entropy and has the informal meaning of a penalty. When the
probability P (ck | ek) = 1, then sk = 0 (actually observing ck generates no
information); otherwise, sk > 0. The total score for dataset D is now defined
as the average of the individual scores:

S =
1
p

p∑

k=1

sk.

The logarithmic scoring rule is a rule which measures differences in prob-
abilities for a class ck given evidence E. A global measure of the difference
between two distributions P and Q is the Kullback-Leibler (KL) distance [8]:

D(P,Q) =
∑

x

P (x) log
P (x)
Q(x)

,

where D(P,Q) ≥ 0, with equality iff P = Q.
When classifier parameters are learned from data, we compute the condi-

tional probability distribution for a variable Xi as the weighted average of a
probability estimate and the Dirichlet prior, as follows:

P (Xi | π(Xi)) =
N

N + N0
PD(Xi | π(Xi)) +

N0

N + N0
Θi (3)

where PD is the probability distribution estimate based on a given dataset D,
and Θi is a uniform Dirichlet prior 1

|SXi
| . N is the size of the dataset and N0

accounts for the contribution of the prior to the posterior and can be thought
of as representing a number of pseudo-counts.
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2.1 Estimating Classifiers from Background Knowledge

Learning FAN classifiers directly from a declarative model is accomplished
as follows. If we have a joint probability distribution P (C,E,X) with class-
variable C, evidence variables E = {E1, . . . , Em} and remaining variables
X = {X1, . . . , Xn} underlying the declarative Bayesian network B = (G,P ),
then the following decomposition is associated with the Bayesian network:

P (C,E,X) = P (C | π(C))
m∏

i=1

P (Ei | π(Ei))
n∏

j=1

P (Xj | π(Xj)).

The joint probability distribution underlying the FAN classifier B′ = (G′, P ′)
with V (G′) = V (G) is defined as P ′(C,E). The probability distribution P is
used as a basis for the estimation of P ′, as follows:

P ′(Ei | ρ(Ei), C) =
∑

x∈SX∪E\{Ei}∪ρ(Ei)

P (Ei, x | ρ(Ei), C) (4)

with ρ(Ei) = πG′(Ei)\{C}. Building FAN classifiers based on the declarative
model amounts to estimating three-vertex networks of the form shown in
Fig. 2 using Eqn. (4) that act as input to the FAN construction algorithm.

Ei

C

Ej

Ei Ej

C

Fig. 2. Declarative model, used in computing the joint probability distributions for
a three-vertex network, where P (Ei, Ej , C) = P (Ei | Ej , C) P (Ej | C) P (C) and
P (Ei, Ej | C) = P (Ei | Ej , C)P (Ej | C).

The construction of declarative models is a difficult undertaking since ex-
perts need to state perfectly the (in)dependence structure and conditional
probability distributions associated with a given domain. Since this is a very
time-consuming task and an instantiation of the infamous knowledge acqui-
sition bottleneck [4], we will examine how background knowledge of differ-
ent degrees of completeness influences the quality of the resulting classifiers
built from this knowledge. More formally, let B = (G,P ) be a declarative
model with joint probability distribution P (X), representing full knowledge
of a domain. Let B′ = (G′, P ′) with V (G′) = V (G) be a Bayesian net-
work with P ′(X). B′ is said to represent partial background knowledge if
0 < D(P,P ′) < ε for ε > 0, where ε is the least upper-bound of D(P, P ′) for
an uninformed prior P ′. We focus on the incomplete specification of depen-
dencies as our operationalization of partial background knowledge, such that
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C

Declarative model

reduction C

Partial model

construction C

FAN model

Fig. 3. A declarative model is reduced to a partial model. Subsequently, FAN models
are constructed from the partial model. The structure of the FAN model typically
does not correspond to that of the declarative model due to the strong restrictions
placed on the resulting network structure.

for a partial model B′, E(G′) ⊆ E(G). The probability distribution P is used
to estimate P ′, as follows:

P ′(Xi | XπG′ (i)) =
∑

x′∈SX′

P (Xi | XπG′ (i), x
′)P (x′ | XπG′ (i)), (5)

with X ′ = XπG(i) \XπG′ (i). Figure 3 shows how a partial model is estimated
from a declarative model using equation (5) and employed to estimate the
probabilities for a FAN classifier.

2.2 The Maximum Mutual Information Algorithm

The maximum mutual information algorithm is a classifier construction algo-
rithm that is less restrictive than the discussed FAN algorithm. It uses both
the computed mutual information between evidence variables and the class-
variable and the computed conditional mutual information between evidence-
variables as a basis for constructing a Bayesian classifier.

Mutual information (MI) between an evidence variable Ei and the class-
variable C can be estimated from a network with structure C → Ei by:

I(Ei, C) =
∑

ei,c

P (ei | c)P (c) log
P (ei | c)
P (ei)

. (6)

Conditional mutual information between multiple evidence variables is de-
fined similarly to mutual information, where the conditional may be an arbi-
trary set of variables A = {A1, . . . , An}. It is computed as follows:

I(Ei, Ej | A) =
∑

ei,ej ,a

P (ei | ej , a)P (ej | a)P (a) log
P (ei | ej , a)
P (ei | a)

(7)

where P (ei | a) =
∑

ej
P (ei | ej , a)P (ej | a) and a ∈ SA.

Contrary to naive and TAN classifiers, the MMI algorithm makes no as-
sumptions whatsoever about the initial network structure. It starts from a
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Algorithm 1: MMI construction algorithm
input: G {empty Bayesian network structure},

D {database}, C {class variable},
E {evidence-variables}, N {number of arcs}

C ← a sequence {C1, . . . , Ck} of elements (C,E) for E ∈ E, sorted by
I(C,E)
A← an initially empty sequence {A1, . . . , Am} of pairs of evidence variables
O ← ∅ {ordering on the attributes}
for i = 0 to N do

if A = ∅ or I(C1) > I(A1 | π(E)) with A1 = (E′, E) then
Let E be the evidence variable in C1

remove C1 from C
add E to the ordering O
add (C,E) to the arcs of G
for all E′ ∈ E \ O do

add candidate (E′, E) to A
end for
sort(A) by I(E′, E | π(E))

else
add A1 to the arcs of G
remove A1 from A
for all pairs (E′, E) ∈ A do

recompute I(E′, E | π(E))
end for
sort(A)

end if
end for
return G

fully disconnected graph, whereas the FAN algorithm starts with a naive clas-
sifier structure such that (C,Ei) ∈ E(G) for all evidence variables Ei. Since
redundant attributes are not encoded, network structures are sparser, at the
same time indicating important information on the independence between
class and evidence variables. In this sense, the MMI algorithm can be said to
resemble selective Bayesian classifiers [9].

The algorithm iteratively selects the arc with highest (conditional) mutual
information from the set of candidates and adds it to the Bayesian network
B with classifier structure G (algorithm 1). It starts by computing I(C,Ei)
for a sequence C of pairs (C,Ei). From this sequence, the candidate hav-
ing highest mutual information, say (C,Ei) is selected. This candidate is
removed from C and added to the classifier structure. Subsequently, it will
construct all candidates of the form (Ej , Ei) where (C,Ej) is not yet part of
the classifier structure G and add them to A. The conditional mutual informa-
tion I(Ei, Ej | π(Ei)) is computed for these candidates. Now, the algorithm
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E1

E2

C

E3 E1

E2

C

E3 E1

E2

C

E3

E1

E2

C

E3 E1

E2

C

E3 E1

E2

C

E3

Fig. 4. An example of the MMI algorithm building a Bayesian classifier structure
from the top left to the bottom right. Dashed arrows represent candidate depen-
dencies. The final structure incorporates feature selection, orientational preference
of dependencies and the encoding of a third-order dependency P (E2 | C, E1, E3).

iteratively selects the candidate of list C or A having the highest (conditional)
mutual information. If a candidate Ei from A is chosen, then I(Ei, Ej | π(Ei))
for all pairs (Ei, Ej) ∈ A is recomputed since the parent set of Ei has changed.
By directing evidence arcs to attributes that show high mutual information
with the class variable, we enforce that the resulting structure remains an
acyclic digraph. Figure 4 shows an example of how the algorithm builds a
Bayesian classifier structure.

Looking back at Eqn. (7) a possible complication is identified. Since the
set π(Ei) of an evidence variable Ei may grow indefinitely and the number of
parent configurations grows exponentially with n, the network may become
victim of its own unrestrictedness in terms of structure. Note also that since
one has a finite (and often small) database at ones disposal, this means that
the actual conditional probability P (Ei | π(Ei)) will become increasingly
inaccurate when the number of parents grows; configurations associated with
large parent-sets cannot be reliably estimated from moderate size databases,
introducing what may be termed spurious dependencies. When we compute
conditional information over a database consisting of k records, the average
number of records providing information about a particular configuration of a
parent set of size n containing binary variables will only be k2−n on average.
So even for moderate size databases such inaccuracies will arise rather quickly.

In order to prevent the occurrence of spurious dependencies, we make use
of the following heuristic. The probability P (Ei, Ej | a) for a ∈ SA is estimated
to be equal to
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Na

Na + N c
0

P (Ei, Ej | a) +
N c

0

Na + N c
0

P (Ei | a)P (Ej | a), (8)

where P is computed according to Eqn. 3, Na is the number of times the
configuration a occurs in D and N c

0 is a parameter that is used during compu-
tation of the conditional mutual information. In this manner, the conditional
mutual information computed according to Eqn. 7 will be small if the number
of occurrences of the conditioning case is small. In the following we will use
N c

0 = 500 throughout our experiments, unless indicated otherwise.

3 Data-driven versus Model-driven Classifiers

The aim in this section is to gain insight into the quality of Bayesian classi-
fiers when learned from either data or background knowledge. Such a compar-
ison is fairly uncommon since most machine learning research is either based
on the availability of large amounts of data or on a model from which the
data is generated. These models and data are often explicitly designated for
benchmarking purposes, but it is not known and even doubted whether they
properly represent the real-world situation [11]. Therefore, we have chosen to
use both a dataset taken directly from clinical practice and a Bayesian net-
work constructed by expert clinicians. We refer to classifiers that are learned
from data as data-driven classifiers (denoted by Fd) and to classifiers that
are derived from a declarative model as model-driven classifiers (denoted by
Fm). We use Fn

k to refer to a type k FAN classifier containing n arcs of the
sort (Ei, Ej) with i �= j. Note that Fn

k is equivalent to a naive classifier when
n = 0 and equivalent to a TAN classifier when n is equal to |E| − 1, forming
a spanning tree over the evidence variables.

3.1 Non-Hodgkin Lymphoma Model and Data

In this research, we used a Bayesian network incorporating most factors rele-
vant for the management of the uncommon disease gastric non-Hodgkin lym-
phoma (NHL for short), referred to as the declarative model, which is shown
in Fig. 5. It is fully based on expert knowledge and has been developed in col-
laboration with clinical experts from the Netherlands Cancer Institute (NKI)
[12]. The model has been shown to contain a significant amount of high qual-
ity knowledge [1]. Furthermore, we are in possession of a database containing
137 patients which have been diagnosed with gastric NHL.

We excluded post-treatment variables and have built FAN classifiers as
depicted in Fig. 6, where the structure and underlying probability distribu-
tions are either learned from the available patient data or estimated directly
from the (partial) declarative model using equation (4).

Classifiers were evaluated by computing classification accuracy and log-
arithmic score for 137 patient cases for the class-variable 5-year-result.
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Fig. 5. Declarative Bayesian network as designed with the help of expert clinical
oncologists.
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represent prior probability estimates.
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This variable represents whether a patient has died from NHL (death) or
lives (alive) five years after therapy. For the classifiers learned from patient
data leave-one-out cross-validation was carried out such that test cases were
excluded during estimation of the joint probability distribution of the result-
ing classifiers. Probability distributions of the classifiers were compared with
that of the declarative model by means of the KL distance.

3.2 Data-driven and Model-driven Classification

The results for both classification accuracy and logarithmic score (Fig. 7)
show that performance was consistently better for model-driven classifiers
than for data-driven classifiers. Construction of a classifier from a database
with a limited number of cases obviously leads to a performance degradation
and the use of background knowledge considerably enhances classifier quality.
Although this is not surprising, it does show that for a realistic domain such as
prognosis for non-Hodgkin lymphoma it can be a better strategy to construct
a classifier based on expert opinion rather than on available data.
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Fig. 7. Classification accuracy (left) and logarithmic score (right) for Bayesian
classifiers with a varying number of arcs learned from either patient data (data-
driven, dotted line) or the declarative model (model-driven, solid line). Classification
accuracy and logarithmic score for the declarative model are shown for reference
(straight line).

Although model-driven classifiers perform better than data-driven clas-
sifiers for this domain, a decrease in classification accuracy and logarithmic
score can be observed for classifiers with more complex structures. This is
in agreement with previous research, where it has been shown that a clas-
sifier with high bias and low variance tends to produce higher classification
accuracy than one with low bias and high variance, due to insensitivity to
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Table 1. KL distances for model-driven and data-driven FAN classifiers.

F 0 F 1 F 2 F 3 F 4 F 5 F 6 F 7

Model-driven 0.52 0.27 0.22 0.18 0.15 0.14 0.13 0.13
Data-driven 6.56 6.58 8.40 9.24 11.55 11.56 12.36 13.77

bias in the classifier’s probability estimates [5]. On the other hand, more com-
plex structures allow a more accurate representation of the joint probability
distribution underlying the declarative model, as can be seen in Table 1.

When comparing the model-driven and data-driven classifiers we can dis-
tinguish both qualitative differences in terms of classifier structure and quan-
titative differences in terms of probability estimates. In the following, we will
discuss these differences. When structures are compared, it is found that en-
tirely different dependencies were added due to large differences in CMI when
computed either from patient data or background knowledge. The strongest
dependency computed from patient data is the dependency between ct&rt-
schedule (chemotherapy and radiotherapy schedule) and clinical-stage
having a CMI of 0.212. An indirect dependency with a CMI of 0.0112 in-
deed exists between these variables, since the two post-treatment variables
early-result and 5-year-result are mutual descendants (Fig. 5). Because
post-treatment information is unknown at the time of therapy administration,
clinicians tend to base therapy selection directly on the clinical stage of the tu-
mor. This is an example of a discrepancy between expert opinion and clinical
practice, which must be taken into account when validating a model based on
patient data. In Ref. [12] more such discrepancies are identified, which are due
to evolution in treatment policy and due to the use of indirect and inaccurate
measurements of clinically relevant variables. One should always be aware of
such discrepancies when constructing a classifier from background knowledge.

As has been remarked, classification performance decreases for both model-
driven and data-driven classifiers of increasing structural complexity. For
model-driven classifiers this cannot be attributed to a small sample size
since the declarative model is a generative model representing an infinite-
size dataset. However, this is under the assumption of a perfect estimate of
the independence structure and conditional probability distributions by the
expert physician. This is an unrealistic assumption in practice and it is to
be expected that the accurate estimation of conditional probabilities tends to
become more difficult when the size of the conditioning set grows.

For data-driven classifiers a decreasing performance for more complex
structures in case of a small sample size is to be expected and can be under-
stood as follows. Recall that a classifier structure is built by selecting those
dependencies between evidence variables with highest conditional mutual in-
formation. The probabilities that are used for computing the CMI are based
on a probability estimate based on a dataset D and on a Dirichlet prior Θi.
For small datasets the probability estimates may deviate considerably from
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the actual probability and the contribution of the prior due to the N0 pa-
rameter may lead to incorrect values for the CMI such that incorrect arcs
are added to the classifier structure. Secondly, (conditional) probabilities es-
timated from such a small dataset will also be inaccurate. These effects can
be observed in Fig. 6 where the estimated structures and prior probabilities
differ considerably between model-driven and data-driven classifiers.

3.3 Classification using Partial Models

Although the benefit of using background knowledge has been demonstrated
in previous sections, it will not usually be the case that full knowledge of
the domain is available. Instead, one expects the expert to deliver partial
knowledge about the structure and underlying probabilities of the domain. In
this section we investigate how partial specifications influence the quality of
Bayesian classifiers. To this end, we created partial models retaining 0, 5, 10,
15, 20, 25 and all 32 arcs of the original declarative model. In total 77 different
partial models were generated and the KL distances between the declarative
and partial models were computed. From these models we have generated
model-driven FAN classifiers F 0

m and F 7
m. Linear regressions on classification

accuracy and logarithmic score are shown in Fig. 8.
The outliers at the bottom right and top right of the figure were identified

to be partial models where the class-variable 5-year-result is a discon-
nected vertex and were not included in the regression. Such a model encodes
just the class-variable’s prior probabilities and can be regarded as the model
with baseline performance. Superimposed + and ) symbols represent models
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B′ = (G′, P ′).
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whose relevant dependencies can be fully represented within the conditional
probability tables of the naive classifier.

It is hard to discern a pattern in the left part of Fig. 8 and little value can
be assigned to the regression results. On average, the naive classifier does show
better classification accuracy than the TAN model with a best performance
of 73.72% for a model containing ten arcs with a KL distance of 1.75. The
large variance in classification accuracy for partial models with equal relative
entropies confirms previous results reported in Ref. [11] where it was indi-
cated that the relationship between the quality of a probability distribution,
as measured here more precisely by means of KL distance, and classification
accuracy is not straightforward. In the right part of Fig. 8 one can observe, on
average, an increase in logarithmic score with increasing KL distance, which is
more pronounced for the naive classifier. In general, the results indicate a pos-
itive effect on classification performance for increasingly detailed background
knowledge although the relationship is not straightforward. On average, par-
tial models containing 10 arcs attain performances similar to that of the model
which was learned from data, which demonstrates that the use of partial back-
ground knowledge is indeed a feasible alternative to the use of data for the
construction of Bayesian classifiers.

4 The MMI Classifier

In the previous section we have examined the performance of classifiers learned
from background knowledge when there is only a small amount of data. In
this section we focus more on the interpretability of classifier structures by
weakening the restrictions of the FAN classifier.

4.1 The COMIK Dataset

In order to validate classifier performance we made use of the COMIK dataset,
which was collected by the Copenhagen Computer Icterus (COMIK) group
and consists of data on 1002 jaundiced patients. The COMIK group has been
working for over a decade on the development of a system for diagnosing
liver and biliary disease which is known as the Copenhagen Pocket Diagnostic
Chart [14]. Using a set E of 21 evidence variables, the system classifies patients
into one of four diagnostic categories: acute non-obstructive, chronic non-
obstructive, benign obstructive and malignant obstructive. The chart offers
a compact representation of three logistic regression equations, where the
probability of acute obstructive jaundice, for instance, is computed as follows:
P (acute obstructive jaundice | E) = P (acute | E) · P (obstructive | E). The
performance of the system has been studied using retrospective patient data
and it has been found that the system is able to produce a correct diagnostic
conclusion (in accordance with the diagnostic conclusion of expert clinicians)
in about 75− 77% of jaundiced patients [10].
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4.2 Classification Results and Classifier Interpretability

In this section we will demonstrate the usefulness of the N c
0 parameter that

was introduced in Eqn. 8, compare the classification performance of both
the FAN and MMI classifiers on the COMIK dataset and give a medical
interpretation of the resulting structures.

First we present the results of varying the parameter N c
0 in order to deter-

mine whether this has an effect on the classification performance and network
structure of our classifiers. To this end, we have determined the classification
accuracy and summed squared fan-in of the nodes in the classifier for a network
of 30 arcs. Let | π(i) | denote the cardinality of the parent set of a vertex i.
The summed squared fan-in F(B) of a Bayesian network B = (G,P ) is defined
as F(B) =

∑
i∈V (G) | π(i) |2. Table 2 clearly shows that the summed squared

fan-in decreases when N c
0 increases; indicating that spurious dependencies are

removed. This removal also has a beneficial effect on the classification ac-
curacy of the classifier, which rises from 74.75% for N c

0 = 1 to 76.25% for
N c

0 = 660. A setting of N c
0 = 500 seems reasonable, for which classification

accuracy is high and the influence on structural complexity is considerable,
but not totally restrictive.

Table 2. Effects of varying parameter Nc
0 for a model consisting of 30 arcs.

N c
0 % F(B) N c

0 % F(B) N c
0 % F(B)

1 74.75 87 102 75.95 65 800 76.25 59
4 74.75 77 290 75.95 63 900 76.25 59
36 74.85 71 610 75.95 61 2000 76.25 57
56 75.15 67 660 76.25 61

We have compared the performance of the MMI algorithm with that of
the FAN algorithm. Figure 9 shows that both algorithms perform comparably
and within the bounds of the Copenhagen Pocket Diagnostic Chart. Both the
MMI and FAN algorithm show a small performance decrease for very complex
network structures, which may be explained in terms of overfitting artifacts.
The last arcs added will be arcs having very small mutual information, which
can be a database artifact instead of a real dependency within the domain,
thus leading to the encoding of spurious dependencies. Best classifier accuracy
for the MMI algorithm is 76.65% for a network of 19 arcs versus 76.45% for a
network of 27 arcs for the FAN algorithm.

In terms of classifier structure, one can observe that both algorithms repre-
sent similar dependencies, with the difference that those of the MMI algorithm
form a subset of those of the FAN algorithm. The best FAN classifier has a
structure with an arc from the class variable to every evidence variable and the
following arcs between evidence variables: biliary-colics-gallstones → upper-
abdominal-pain → leukemia-lymphoma → gall-bladder, history-ge-2-weeks →
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Fig. 9. Classification accuracy for Bayesian classifiers with a varying number of arcs
learned using the FAN algorithm or the MMI algorithm for the COMIK dataset.
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Fig. 10. Dependencies between evidence variables for the COMIK dataset using
a FAN classifier containing 41 arcs. The class-variable was fully connected with all
evidence variables (not shown).

weight-loss, ascites → liver-surface and ASAT → clotting-factors. The MMI
algorithm has left leukemia-lymphoma,congestive-heart-failure and LDH inde-
pendent of the class-variable and shows just the dependency liver-surface →
ascites between evidence variables.

Given our aim of learning Bayesian classifiers that not only display good
classification performance, but are comprehensible to medical doctors as well,
we have carried out a qualitative comparison between two of the Bayesian
networks learned from the COMIK data: Figure 10 shows a FAN classifier
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Fig. 11. Dependencies between evidence variables for the COMIK dataset using an
MMI classifier containing 41 arcs. The class-variable was fully connected with all
evidence variables (not shown).

which was learned using the FAN algorithm described previously [11], whereas
Figure 11 shows an MMI network with the same number of arcs. Clearly, the
restriction imposed by the FAN algorithm that the arcs between evidence
variables form a forest of trees does have implications with regard to the
understandability of the resulting networks. Yet, parts of the Bayesian network
shown in Figure 10 can be given a clinical interpretation. Similar remarks
can be made for the MMI network, although one would hope that giving an
interpretation is at least somewhat easier.

If we ignore the arcs between the class vertex and the evidence vertices,
there are 20 arcs between evidence vertices in the FAN and 22 arcs between
evidence vertices in the MMI network. Ignoring arc orientation, 9 of the arcs
in the MMI network are shared by the FAN classifier. As the choice of the
direction of arcs in the FAN network is arbitrary, it is worth noting that in 4 of
these arcs the direction is different; in 2 of these arcs it is medically speaking
impossible to establish the right direction of the arcs, as hidden variables are
involved, in 1 the arc direction is correct (congestive-heart-failure → ASAT),
whereas in the remaining arc (GI-cancer → LDH) the direction is incorrect.

Some of the 13 non-shared arcs of the MMI network have a clear clinical
interpretation. For example, the arcs GI-cancer → ascites, congestive-heart-
failure → ascites and GI-cancer → liver-surface are arcs that can be given a
causal interpretation, as gastrointestinal (GI) cancer and right-heart failure do
give rise to the accumulation of fluid in the abdomen (i.e. ascites), and there
are often liver metastases in that case that may change the liver surface.
Observe that the multiple causes of ascites cannot be represented in the FAN
network due to its structural restrictions. The path gallbladder→ intermittent-
jaundice → fever in the MMI network offers a reasonably accurate picture of
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the course of events of the process giving rise to fever; in contrast, the situation
depicted in the FAN, where leukemia-lymphoma acts as a common cause,
does not reflect clinical reality. However, the arc from upper-abdominal-pain
to biliary-colics-gallstones in the FAN, which is correct, is missing in the MMI
network. Overall, the MMI network seems to reflect clinical reality somewhat
better than the FAN, although not perfectly.

5 Conclusion

We have investigated the role of background knowledge with respect to
Bayesian classification. In this research we have addressed the issues of learn-
ing classifier structures in data-poor domains and the construction of a mini-
mally restrictive classifier structure.

The construction of classifiers for data-poor domains is an important issue
since many real-world problems are characterized by the absence of sufficient
statistical data and most algorithms for constructing Bayesian classifiers are
highly data-driven. In this research, we presented a method for constructing
model-driven classifiers from partial background knowledge and showed that
they outperform data-driven classifiers for a realistic clinical domain. We have
shown that in this domain, the classification performance of both data- and
model-driven classifiers decreases when the structural complexity of the clas-
sifiers increases. This is in agreement with previous research which demon-
strated that for small sample sizes, classifiers with high bias perform best.
Although structurally simple classifiers show good classification performance,
it may still be desirable to use classifiers of larger structural complexity. The
large KL distance between the declarative model and structurally simple clas-
sifiers demonstrated that high bias comes at the price of limitations on how
well the joint probability distribution underlying a declarative model can be
approximated.

The MMI algorithm makes few structural assumptions and iteratively
builds classifier structures that reflect higher-order dependencies between ev-
idence variables. In this sense, the MMI algorithm resembles Sahami’s k-
dependence classifiers [18] with the difference that we do not require the addi-
tion of an arc between the class variable and each evidence variable. Further-
more, our use of Dirichlet priors during the estimation of conditional mutual
information prevents the construction of overly complex network structures
and the introduction of spurious dependencies. As is shown, the number of
higher-order dependencies will only increase if this is warranted by sufficient
data. The experimental results show that classification performance of the
resulting classifiers is good while the less restrictive assumptions allow for a
network structure that is less ad-hoc and somewhat better to interpret from
a medical point of view.
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We hope that this research conveys the message that there are other ways
of constructing Bayesian classifiers rather than employing large amounts of
data and that classification accuracy need not be the only criterion of interest.
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