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Chapter 1
Introduction

Abstract This monograph provides an introduction to a class of linear fitting pro-
cedures that employ the sum of the absolute residuals (or L1-norm), the minimax
absolute residual (or L∞-norm) and the median squared residual as optimality crite-
ria in the context of the standard linear statistical model. The least absolute residuals
procedure was proposed by Boscovich in 1757 and again in 1760 and discussed by
Laplace, Gauss and Edgeworth; the least squares procedure was probably used by
Gauss in 1794 or 1795 but first proposed in print by Legendre in 1805 before being
discussed by Gauss, Laplace and many other leading scientists; finally, the minimax
absolute residual procedure was proposed by Laplace in 1786, 1793 and 1799 before
being discussed by Cauchy, Fourier, Chebyshev and others. The least squares and
least absolute residuals procedures are widely used in statistical applications but the
minimax procedure had received little support in this area until a variant, the least
median of squares procedure, was proposed by Rousseeuw in 1984. Almost by def-
inition, this last procedure is more robust to the presence of outlying observations
than are the other two fitting procedures.

Keywords Rogerius Josephus Boscovich (1711–1787) · Carl Friedrich Gauss
(1777–1855) · Pierre-Simon Laplace (1749–1827)

The years 2010 and 2011 respectively mark the 250th anniversary of Boscovich’s
constrained variant of the least sum of absolute residuals or L1-norm line fitting
procedure and the 225th anniversary of Laplace’s unconstrained minimax absolute
residual or L∞-norm line fitting procedure. It therefore seems appropriate to celebrate
this double anniversary by taking the opportunity of drawing the close relationship
between these two fitting procedures to the attention of a wider audience.

Some practitioners might argue that, whilst the L1-norm fitting procedure may
have a peripheral role in statistics, the use of the L∞-norm criterion (sometimes
named for Chebyshev) is properly restricted to the fields of approximation theory
and game theory. But this is not the case, as, in Chap. 6, we shall define a variant of
the L∞-norm procedure, known as the Least Median of Squares or L M S procedure,
which incorporates the high-breakdown feature of the L1-norm procedure and plays

R. W. Farebrother, L1-Norm and L∞-Norm Estimation, 1
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2 1 Introduction

an increasingly significant role in the field of robust statistical analysis. For further
details of this and other robust fitting procedures, see the relevant articles in the
volumes edited by Dodge (1987, 1992, 1997, 2002).

The author has published three books, two of which relate to aspects of the subject
covered by this brief. In his first book, Farebrother (1988a) was concerned with com-
putational aspects of the least sum of squared residuals or L2-norm fitting procedure
and is thus of little immediate interest to readers of the present brief.

In his second book, Farebrother 1999 gives a detailed account of the history (to
1930) of the L1-norm, L2-norm and L∞-norm fitting procedures. We shall therefore
not address this topic in this brief but shall refer interested readers to the relevant
chapters of Farebrother (1999) or to the alternative texts published by Hald (1998) and
Stigler (1986) for more detailed accounts of this facet of the history of the calculus
of observations. Readers may also like to consult Heyde and Seneta (2001) for brief
accounts of the lives of Boscovich, Chebychev, Edgeworth, Gauss and Laplace and
Stigler (1999) for related material.

Similarly, in his third book, Farebrother (2002) has given a fairly detailed
account of the various geometrical and mechanical models of the L1-norm, L2-norm,
L∞-norm and L M S fitting procedures. Our account of mechanical models in Chap. 7
of this brief is therefore restricted to a summary of models of four variants of
the L1-norm fitting procedure supplemented by brief notes on two variants of the
L2 -norm and L∞-norm fitting procedures.

Finally, we note that, in a conventional textbook, algebraic expressions of the
type discussed in this brief are usually illustrated by means of graphical figures or
diagrams but, unfortunately, the author has been blind for some twenty years and
is thus not able to use the relevant graphical software, so, perforce, readers will be
obliged to follow Laplace’s prescription by abstaining from the use of diagrams when
studying these fitting procedures. Alternatively, they may prefer to read the present
brief in conjunction with the relevant illustrations from Farebrother (2002).
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Chapter 2
Point Fitting Problems in One and Two
Dimensions

Abstract We begin our analysis by considering the fitting of a single point to a
number of point observations in one-dimensional space. Using the Lt -norm as
optimality criterion with t = 1, t = 2 or t = ∞, we obtain the median, mean
and midrange of a set of observations respectively. Similarly, applying the same
three optimality criteria in the two-dimensional case, we obtain the mediancentre
or centre of population, the centroid or centre of gravity and the unnamed centre
of the circle of smallest radius respectively. Moreover, if we omit some of the more
extreme observations then we obtain truncated variants of these procedures. As noted
in Chap. 7, the midrange and its generalisations may be associated with a set of more
or less familiar geometrical instruments: The univariate midrange with a pair of
callipers, the bivariate midrange with a pair of compasses and the minimax fitted line
of Chap. 3 with a pair of parallel rules.

Keywords Centre of gravity · Centre of population · Centroid · L1-norm ·
L2-norm · L∞-norm · Linear programming · Mean · Median · Midrange ·
Mediancentre · Oja’s bivariate median · Truncated midrange

2.1 Point Fitting Problems in One Dimension

Let y1, y2, . . . , yn represent a set of n observations on a single variable Y , then these
n observations may be represented by the n points at y = y1, y = y2, . . . , y = yn

on the y-axis of a Cartesian diagram. Moreover, we may identify a point of best fit
to these n points by choosing a value for a in such a way that the sum of the squared
distances

n∑

i=1

(yi − a)2

is minimised.

R. W. Farebrother, L1-Norm and L∞-Norm Estimation, 5
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6 2 Point Fitting Problems in One and Two Dimensions

Taking square roots in this optimality function, we find that we may alternatively
choose a value for a to minimise the root mean squared deviation function

[
n∑

i=1

|yi − a|2
] 1

2

.

and, replacing 2 by p with 0 < p ≤ ∞, in this expression, we have the optimality
criterion employed in the more general Lt -norm point fitting problem

[
n∑

i=1

|yi − a|t
] 1

t

.

In this brief, we shall be largely concerned with two special cases of the Lt -norm
problem: the first is identified by setting t = 1, when we have the sum of absolute
deviations optimality criterion employed in the L1-norm point fitting problem:

n∑

i=1

|yi − a|

and, in the limit as p tends to ∞, we have the minimax absolute residual optimality
criterion employed in the corresponding L∞-norm point fitting problem:

maxn
i=1|yi − a|.

Both of these special cases of the general point fitting problem are readily solved: the
Lt -norm optimality criterion defines the median (or middlemost) observation when
t = 1, the arithmetic mean of the observations ȳ = ∑n

i=1 yi/n when t = 2, and the
midrange (or midpoint of the shortest line segment containing all n observations) in
the limit as t tends to ∞.

To define the median and the conventional midrange of the n observations,
y1, y2, . . . , yn , we arranged these observations in increasing order as y[1] ≤ y[2] ≤
. . . ≤ y[n], then the median value of these n observations is given by (y[m]+y[m])/2 =
y[m] when n = 2m − 1 is odd and by (y[m] + y[m+1])/2 when n = 2m is even. Sim-
ilarly, the conventional midrange is given by (y[1] + y[n])/2.

Now, all three of these expressions take the form (y[r+1] + y[n−r ])/2 where 0 ≤
r ≤ n/2, which we shall call the (r, r)-level symmetrically truncated midrange as
its computation ignores the r smallest values and the r largest values of yi .

As a more general variant of this expression, we may define the (r, s)-level non-
symmetrically truncated midrange (y[r+1] + y[n−s])/2 whose computation ignores
the r smallest values and the s largest values of yi . In particular, if we wish to retain
m observations in the nonsymmetric case, then we have to choose values for r and
s in such a way as to exclude r + s = n − m observations from the computation so
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that the remaining n − r − s = m observations define the midpoint of the shortest
line segment covering m of the observations. Moreover, if n = 2m or n = 2m − 1
then this expression excludes one-half (or almost one-half) of the observations from
the computation, and the optimal nonsymmetric truncated midrange is known as the
‘shortest half’.

2.2 Point Fitting Problems in Two Dimensions

Generalising the representation of Sect. 2.1 to the 2-dimensional case, we find that we
have n observations on the two variables X and Y . Let (x1, y1), (x2, y2), . . . , (xn, yn)

represent a set of n matched pairs of observations on the two variables X and Y , then,
for i = 1, 2, . . . , n, the i th observation may be represented by a point at (x, y) =
(xi , yi ) in the xy-plane of a two-dimensional Cartesian diagram.

In this context, and for each choice of t > 0, two definitions of the point of best fit
become available: we may either separately minimise the Lt -norm of the distances
measured perpendicular to the x-axis (and thus parallel to the y-axis)

[
n∑

i=1

|xi − c|t
] 1

t

to obtain an optimal value for c at the same time as minimising the Lt -norm of the
absolute distances measured perpendicular to the y-axis (and thus parallel to the
x-axis)

[
n∑

i=1

|yi − a|t
] 1

t

to obtain an optimal value for a.
Alternatively, we may simultaneously choose values for a and c to minimise the

Lt -norm of the n Euclidean distances

{
n∑

i=1

[
(xi − c)2 + (yi − a)2

]} 1
t

.

In the special case when t = 2 the square of this last expression may be written as

[
n∑

i=1

(xi − c)2

]
+

[
n∑

i=1

(yi − a)2

]

so that we obtain the same values c = x̄ and a = ȳ in this context as in the
componentwise case mentioned above, where ȳ = ∑n

i=1 yi/n and x̄ = ∑n
i=1 xi/n.
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Thus, this alternative expression defines the mediancentre or centre of population
of the n observations when t = 1, the centroid or centre of gravity when t = 2, and
the unnamed centre of the circle of smallest area (and hence smallest radius) which
just covers all n points in the limit as t tends to ∞.

As in Sect. 2.1, and for all values of m ≤ n, we may readily generalise our
definition of the one-dimensional nonsymmetrically truncated midrange to the two-
dimensional case by replacing the midpoint of the shortest line segment which just
covers m ≤ n points by the centre of the circle with smallest area which just covers
m ≤ n points. Indeed, and for all values of p ≥ 1, this last definition may be further
generalised to the centre of the p-dimensional sphere with minimal p-dimensional
volume which just covers m ≤ n points.

2.3 Truncated Point Fitting Problems in Two Dimensions

The mediancentre of a set of two-dimensional observations is a point (x0, y0) or (c, a)

chosen in such a way that the sum of the lengths (or Euclidean distances) of the line
segments joining the n given points to this arbitrary point takes its minimum value.
[Gower (1974) has supplied an algorithm for performing the necessary calculations.]

Now, the line segments in this definition of the mediancentre may be replaced by
triangles, triangular pyramids, ..., that is, by p-dimensional simplices where p = 2,
3, .... Thus an alternative definition of a central point of a set of two-dimensional
observations is a point (x0, y0) chosen in such a way as to minimise the sum of the
areas of the nC2 = n(n −1)/2 triangles defined by any two of the n given points and
the arbitrary point. The centre defined in this way is known as Oja’s (1983) bivariate
median.

Now, for all i < j , the area of the triangle with vertices (x0, y0), (xi , yi ) and
(x j , y j ) is given by one-half of the absolute value of the determinant of the 3 × 3
matrix ⎡

⎣
1 x0 y0
1 xi yi

1 x j y j

⎤

⎦

that is, by one-half of the absolute value of

(xi y j − x j yi ) − (y j − yi )x0 + (x j − xi )y0

or one-half of wi j |ei j | where

wi j = |x j − xi |
ei j = y0 − ai j − x0bi j

ai j = (x j yi − xi y j )/(x j − xi )

bi j = (y j − yi )/(x j − xi )
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and our problem takes the form of a weighted least absolute residuals fitting problem
of the type discussed in Sect. 3.4 below provided that the coefficient of y0 is nonzero,
that is, provided that the xi are distinct.

In other words, we have to choose x0 and y0 in such a way as to minimise a
weighted sum of absolute values. Thus, the procedure for determining the value of
Oja’s bivariate median may be implemented in the form of a linear programming
problem. Niinimaa et al. (1992) have provided such an algorithm.

The concept underlying Oja’s bivariate median may readily be generalised to
higher dimensions if we choose to minimise the sum of the p-dimensional volumes
of the nC p distinct p-dimensional simplices defined by the arbitrary point and any set
of p of the n given points. In this case, we have to minimise the sum of the absolute
values of the determinants of a set of (p + 1) × (P + 1) matrices divided by p!, see
Farebrother (1992) for details.
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Chapter 3
The Hyperplane Fitting Problem
in Two or More Dimensions

Abstract We continue our analysis by considering the fitting of a p-dimensional
hyperplane to a set of point observations in (p + 1)-dimensional space. Again using
the Lt -norm as optimality criterion with t = 1, t = 2 or t = ∞, we obtain the least
absolute residuals, least squared residuals and minimax absolute residual procedures
for the fitting of the hyperplane to this set of observations. Expressing the Lt -norm
problem in matrix form, we establish that the weighted L1-norm problem is intimately
associated with a transformation of the weighted L∞-norm problem and vice versa.
Then, examining the matrix representation of the L1-norm and L∞-norm problems,
we identify a particular vector as the Lagrange multipliers of these problems. Finally,
we define the corresponding matrix expression in the L2-norm case and identify it
as the formulation of the least squares problem employed in continuum regression
analysis.

Keywords Hyperplane fitting problem ·Line fitting problem · L1-norm · L2-norm ·
L∞-norm · Matrix representation · Method of least squared residuals · Method of
least absolute residuals · Method of minimax absolute residual

3.1 Line Fitting Problems in Two Dimensions

Generalising the problem of Chap. 2, we suppose that, instead of a point of best fit,
we wish to determine a line of best fit to this set of n observations in 2-dimensional
space, then we have to determine values for the unknown parameters a and b in
such a way that the Lt -norm of the distances from the n points to the fitted line is
minimised.

Now, these distances may either be measured perpendicular to the x-axis or per-
pendicular to the fitted line. In the first (conventional) case we have to choose values
for a and b to minimise the Lt -norm of the Euclidean distances

R. W. Farebrother, L1-Norm and L∞-Norm Estimation, 11
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-36300-9_3,
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[
n∑

i=1

|yi − a − bxi |t
] 1

t

.

Similarly, in the second (orthogonal) case, we have to choose values for a and b
to minimise the scaled function

⎧
⎨

⎩

[
n∑

i=1

|yi − a − bxi |t
] 1

t

⎫
⎬

⎭
/√

(1 + b2)

where all terms under the summation sign have been divided by a common factor of√
(1 + b2) ≥ 1 to reflect the reduction in distances between the n given points and

the fitted line when the direction in which measurements are to be taken is rotated
from a line lying perpendicular to the x-axis to one lying perpendicular to the fitted
line.

Most readers will already be familiar with these optimisation criteria when t = 2.
In this context, the first criterion defines the conventional least squares line fitting
procedure whilst the latter serves as the basis of the method of orthogonal least squares
and leads on to the development of a set of (orthogonal) least squares principal
components. Unfortunately, any discussion of L1-norm and L∞-norm variants of
these orthogonal procedures is well beyond the scope of the present brief, but see
Nyquist (1988, 2002) for an introduction.

Indeed, in this brief we shall be largely concerned with two special cases of
the conventional (unweighted) Lt -norm line fitting problem: the first of which is
identified by setting t = 1, when we have the optimality criterion employed in the
conventional unweighted L1-norm line fitting problem:

n∑

i=1

|yi − a − bxi |

and, in the limit as p tends to ∞, we have the optimality criterion employed in the
conventional unweighted L∞-norm line fitting problem:

maxn
i=1|yi − a − bxi |.

Moreover, we have already solved both of these problems in Sect. 2.1 in the special
case when the slope parameter b is set equal to zero.

3.2 Hyperplane Fitting Problems in Higher Dimensions

Thus far in this brief, and for ease of exposition, we have restricted our attention to the
conventional fitting of a zero-dimensional point to n observations in one-dimensional

http://dx.doi.org/10.1007/978-3-642-36300-9_2
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or two-dimensional space and to the conventional fitting of a one-dimensional line
to n observations in two-dimensional space. In the remainder of the present Chapter
and in Chaps. 4–6 we generalise our analysis to the p-dimensional case with p ≥ 1.
That is, given a value for p ≥ 1, we address the more general problem of fitting
a p-dimensional hyperplane to n observations in (p + 1)-dimensional space which
incorporates the problem of fitting a (p−1)-dimensional hyperplane to n observations
in p-dimensional space if all observations on X1 take unit values.

For i = 1, 2, ..., n, let {xi1, xi2, ..., xip, yi } represent the i th observation on a set
of p+1 variables {X1, X2, ..., X p, Y }. Then, for t > 0, the conventional unweighted
Lt -norm hyperplane fitting procedure chooses values for b1, b2, ..., bp to minimise
the Lt -norm of the residuals

||e||t =
[

n∑

i=1

|ei |t
] 1

t

where, for i = 1, 2, ..., n, the i th residual is defined by

ei = yi − xi1b1 − xi2b2 − ... − xipbp.

As noted in Sect. 3.1, the most familiar Lt -norm fitting procedure, known as the
least squares procedure, sets t = 2 and chooses values for b1, b2, ..., bp to minimise
the sum of the squared residuals

∑n
i=1 e2

i . A second choice, known as the least
absolute residuals procedure, sets t = 1 and chooses b1, b2, ..., bp to minimise the
sum of the absolute residuals

∑n
i=1 |ei | and a third choice, known as the minimax

absolute residual procedure, sets t = ∞ and chooses b1, b2, ..., bp to minimise the
largest absolute residual maxn

i=1|ei |.

3.3 Matrix Representation of the Problem

For economy of notation, we now translate the above discussion of the general
Lt -norm fitting problem into matrix form. We consider the fitted model

y = Xb + e

where y is an n × 1 matrix of observations on the dependent variable, X is an n × p
matrix of observations on the p explanatory variables, b is a p × 1 matrix of fitted
values and e = y − Xb is an n × 1 matrix of residuals. For ease of exposition, we
shall assume that the n × p matrix X has full column rank p.

Let t be a fixed value in the range 0 < t ≤ ∞, then b is said to be a (unweighted)
Lt -norm fitting procedure if it chooses b to minimise the optimality function

http://dx.doi.org/10.1007/978-3-642-36300-9_4
http://dx.doi.org/10.1007/978-3-642-36300-9_6
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||e||t =
[

n∑

i=1

|ei |t
] 1

t

.

As noted above, the most familiar members of this class of fitting procedures
are the L1-norm fitting procedure which minimises the sum of the absolute residu-
als,

∑ |ei |, the L2-norm fitting procedure which minimises the sum of the squared
(absolute) residuals,

∑
e2

i , and the L∞-norm fitting procedure which minimises the
largest absolute residual, max |ei |.

Let w be a given n × 1 matrix of positive weights. Then these unweighted fitting
procedures may be generalised to yield the corresponding weighted L1-norm fitting
procedure which minimises the weighted sum of the absolute residuals,

∑
wi |ei |,

the weighted L2-norm fitting procedure which minimises the weighted sum of the
squared (absolute) residuals,

∑
wi e2

i , and the weighted L∞-norm fitting procedure
which minimises the largest weighted absolute residual, maxwi |ei |.

3.4 The Weighted L1-Norm and L∞-Norm Fitting Problems

A further slight generalisation of the L1-norm problem of Sect. 3.3 replaces the
common value of w by two possibly distinct n × 1 nonzero matrices wA and wB

with nonnegative elements. In this context, we suppose that we are given an n × p
matrix X of rank p, and an n×1 matrix y that is not linearly dependent on the columns
of X . Further, let eA and eB be n × 1 nonnegative matrices such that e = eA − eB ,
then our slight generalisation of the weighted L1-norm fitting problem of Sect. 3.3
may be written as:

Problem P1 :
Minimise j = w′

AeA + w′
BeB

subject to

Xb + eA − eB = y

and eA ≥ 0, eB ≥ 0.

In the familiar unweighted L1-norm problem all the elements of wA and wB take unit
values. However, in the special case of regression quantiles considered by Koenker
and Bassett (1978), all the elements of wA take the same nonnegative value and all
the elements of wB take the same (if usually distinct) nonnegative value.

If we now define T an n ×q matrix of rank q = n − p−1 satisfying T ′ X = 0 and
T ′y = 0, s a nonzero n × 1 matrix of rank 1 satisfying s′ X = 0 and s′y = m > 0,
and Q an n × p matrix of rank p such that the n × n matrix [Q s T ] is nonsingular.
Then problem P1 may be written as
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Problem P2 :
Minimise j = w′

AeA + w′
BeB

subject to

T ′eA − T ′eB = 0

s′eA − s′eB = m

Q′ Xb + Q′eA − Q′eB = Q′y
and eA ≥ 0, eB ≥ 0

or as

Problem P3 :
Minimise j = w′

AeA + w′
BeB

subject to

T ′eA − T ′eB = 0

s′eA − s′eB = m

and eA ≥ 0, eB ≥ 0

before forming

b∗ = (Q′ X)−1 Q′(y − e∗
A + e∗

B)

where the last of these equations expresses the optimal value of b in terms of the
optimal values of eA and eB .

Supposing that the corresponding optimal value of j is strictly positive (as it
usually will be), we may set eA = j f A and eB = j fB to obtain

Problem P4 :
Maximise m/j = s′ f A − s′ fB

subject to

T ′ f A − T ′ fB = 0

w′
A f A + w′

B fB = 1

and f A ≥ 0, fB ≥ 0.

Replacing each of the equalities in Problems P1–P4 by a matched pair of ≤ and ≥
inequalities and replacing each unconstrained variable by a difference between two
nonnegative variables, we find that each of Problems P1–P4 take the form of stan-
dard linear programming problems and deduce that the linear programming dual of
Problem P4 is given by
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Problem P5 :
Minimise k

subject to

g = s − T d

and − kwA ≤ g ≤ kwB .

Thus, we have established that the weighted L1-norm problem P1 is intimately
associated with a transformation of the weighted L∞-norm problem P5.

We now consider a similar slight variant of the weighted L∞-norm problem of
Sect. 3.3 which chooses a value for b to minimise max(wi |ei |) where e = y − Xb.
For expository purposes, it is convenient to change notation and replace p, y, X, b
and e by q, s, T, d and g and to replace the i th weight wi by its reciprocal 1/wi .
In this context, we may suppose that we are given an n × q matrix T of rank q,

and an n × 1 nonzero matrix s that is not linearly dependent on the columns of T .
Then, in this revised notation, our slight generalisation of the weighted L∞-norm
fitting problem chooses d to minimise max |gi |/wi which may be written as problem
P5 above. Where wA and wB are again n × 1 nonzero matrices with nonnegative
elements, In particular, all the elements of wA and wB take unit values in the familiar
unweighted L∞-norm problem. [For a statement of the weighted L∞-norm problem
in its original notation, see Problem P#

5 in Sect. 5.5.]
If we now define X , an n× p matrix of rank p = n−q −1 satisfying X ′T = 0 and

X ′s = 0, y, a nonzero n × 1 matrix of rank 1 satisfying y′T = 0 and y′s = m > 0,
and Z , an n × q matrix of rank q such that the n × n matrix [X y Z ] is nonsingular.
Then our slight generalisation of the weighted L∞-norm fitting problem may be
written as Problem P5 above, or as

Problem P6 :
Minimise k

subject to

X ′g = 0

y′g = m

Z ′g = Z ′s − Z ′T d

and − kwA ≤ g ≤ kwB

or as

http://dx.doi.org/10.1007/978-3-642-36300-9_5
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Problem P7 :
Minimise k

subject to

X ′g = 0

y′g = m

and − kwA ≤ g ≤ kwB

before forming

d∗ = (Z ′T )−1 Z ′(s − g∗)

where the last of these equations again expresses the optimal value of d in terms of
the optimal value of g.

Supposing that the corresponding optimal value of k is strictly positive (as it
usually will be), we may set g = kh to obtain

Problem P8 :
Maximise m/k = y′h
subject to

X ′h = 0

and − wA ≤ h ≤ wB .

Again, replacing each of the equalities in Problems P5–P8 by a matched pair
of ≤ and ≥ inequalities and replacing each unconstrained variable by a difference
between two nonnegative variables, we find that each of Problems P5–P8 take the
form of standard linear programming problems and deduce that the linear program-
ming dual of Problem P8 is given by Problem P1 or

Problem P9 :
Minimise j = w′

AeA + w′
BeB

subject to

Xb + eA − eB = y

and eA ≥ 0, eB ≥ 0

Thus, we have established that the weighted L∞-norm problem P5 is intimately
associated with a transformation of the weighted L1-norm problem P9 = P1 and
deduce that either of these problems may be solved directly or indirectly by solving
any one of the eight linear programming problems identified above.

Indeed, Farebrother (2002) has used these relationships to convert Laplace′s
(1786) original L∞-norm fitting problem with n = 4 observations on q = 2 explana-
tory variables into an equivalent L1-norm fitting problem with n = 4 observations
on p = 1 explanatory variable, noting that the latter problem is easily solved. [For
related work on the L1-norm fitting problem, see Seneta and Steiger (1984).]
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3.5 Relation to the L2-Norm Fitting Problem

Before embarking on our account of the computational procedures to be employed
in the solution of Problems P1–P9, we must discuss an L2-norm variant of Problems
P4 and P8. On setting wA = wB equal to an n ×1 column of ones and f = f A − fB ,
we find that problem P4 may be rewritten as:

Problem P#
4 :

Maximise m/j = s′ f

subject to

T ′ f = 0

and || f ||1 = 1

where || f ||1 = ∑n
i=1 | fi |, so that this revised problem takes the same form as

problem P8 except that the former employs the L1-norm condition || f ||1 = 1 whilst
the latter employs the L∞-norm condition ||h||∞ = 1.

This similarity between these two variants of problems P4 and P8 prompts us to
examine the corresponding L2-norm problem:

Problem P10 :
Maximise y′h
subject to

X ′h = 0

and ||h||2 = 1

where ||h||2 =
√

(
∑n

i=1 h2
i ). This constrained function is clearly optimised by setting

h equal to h∗ = y∗/r where y∗ is the n × 1 matrix of least squares residuals
y∗ = y − X (X ′ X)−1 X ′y and r = ||y∗||2 = √

(y∗′y∗).
Further, let Zo be an n × (n − p) matrix of rank n − p satisfying Z ′

o X = 0, then
X ′h = 0 implies that h = Zoc for some (n − p) × 1 matrix c, and, on squaring the
(nonnegative) objective function, we have the problem

Problem P∗
10 :

Maximise c′Z ′
o yy′Zoc

subject to

c′Z ′
o Zoc = 1

which is a variant of the characterisation of the normalised conventional least squares
fitting procedure c∗ = (Z ′

o Zo)
−1 Z ′

o y/r employed in continuum regression analysis
by Stone and Brooks (1990) and Sundberg (1993) where r2 = y′My and
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M = Zo(Z ′
o Zo)

−1 Z ′
o = In − X (X ′ X)−1 X ′

In this context, h∗ = Zoc∗ = My/r is clearly a scalar multiple of the least squares
residuals e∗ = My.

Finally, we note that f in Problem P4 and h in Problem P8 may each be identified
as the n × 1 matrices of Lagrange multipliers associated with the solution of the
L1-norm fitting problem P1 and the L∞-norm fitting problem P5 respectively.
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Chapter 4
Linear Programming Computations

Abstract After sketching the graphical solution of the L1 -norm and L∞-norm
fitting problems based on a plot of lines in parameter space, we survey the perti-
nent literature on modern standard and improved linear programming solutions to
these problems. We investigate the possibility that a variant of the familiar simplex
procedure could have been developed some thirty years before it actually appeared
in the late 1940s. Finally, we survey a range of possible alternatives to using the
Lt -norm procedure in the limit as t tends to 1 or ∞ as possible practical solutions
to the problem of non-uniqueness of the solution to the L1-norm and L∞-norm
procedures.

Keywords Computational procedures · Euclidean geometry · Graphical solution ·
Linear programming · Linear programming duality · Non-uniqueness · Primal
and dual simplex · Projective geometry · Projective geometry duality · Charles-
Jean-Gustave-Nicolas de la Vallée Poussin (1866–1962) · Francis Ysidro Edgeworth
(1845–1926) · Jean Baptiste Joseph Fourier (1768–1830).

4.1 Regular and Projective Geometry Solutions
of the L1-Norm Problem

Nowadays, it is well-known that the solution of the unweighted L1-norm fitting
problem of Sect. 3.2 is characterised by a set of p or more zero residuals and that
the solution of the unweighted L∞-norm fitting problem is characterised by a set of
p + 1 or more residuals of the same absolute size (not all of which take the same
sign). The first of these conditions was first stated by Gauss (for the general case
p ≥ 1) in 1809 and the second by Laplace (for the special case p = 2) in 1786.

Setting the n × 1 matrices wA and wB equal to columns of ones in Sect. 3.4, we
find that the solution of the unweighted L1-norm fitting Problem P1 is characterised
by a set of p or more zero residuals whilst the solution of the unweighted L∞-norm
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fitting problem P5 is characterised by a set of q + 1 = n − p or more residuals
of the same absolute size (not all of which take the same sign). [These two sets of
optimality conditions are clearly closely related as noted by Farebrother (2002b).]

Temporarily restricting our analysis to the case of p = 2 unknown parameters, we
know that the solution of the unweighted L1-norm fitting problem is characterised
by a set of two zero residuals ei = 0 and e j = 0. Thus, any fitted line satisfying
these two conditions must pass through the points (xi , yi ) and (x j , y j ). We thus have
n(n − 1)/2 pairs of points (xi , yi ) and (x j , y j ) in xy-observation space and thus
n(n − 1)/2 lines passing through any pair of such points from which to make our
choice.

An alternative geometrical exposition of this solution procedure may be made in
the context of the dual space of parameters. This form of duality, known as projective
geometry duality, is clearly distinct from linear programming duality employed in
Sect. 3.4 above. In this context, the observation formerly associated with the point
(xi , yi ) in xy -observation space is also associated with the equation ei = 0 or
yi = a + bxi and thus with the line a = yi − bxi in dual ba-parameter space. In
a similar way, the (fitted) line y = a + bx in xy -observation space is associated
with the point (b, a) in ba-parameter space, see Farebrother (1989, 2002) for further
details.

These two statements define a familiar duality transformation, and one which has
been used implicitly or explicitly by statisticians for more than 200 years. However,
this is not the only representation of the projective geometry transformation as some
authors including Souvaine and Steele (1987) and Owen and Shiau (1988) prefer to
employ a variant which negates the coefficient of b.

Returning to our analysis of the solution of the unweighted L1-norm problem
characterised by a set of two zero residuals ei = 0 and e j = 0. In the present (dual)
context, we find that we have n lines ei = 0 and n(n − 1)/2 points of intersection
between pairs of these n lines. Thus, as noted by Edgeworth (1887a, b, 1888), in ba-
parameter space, our solution procedure passes from point of intersection to point
of intersection until the objective function

∑ |ei | takes its minimal value. Although
mentioned by Schwartz (1989) and Bloomfield and Steiger (1983), this simple fitting
procedure was not implemented by Gauss in 1809 but Boscovich had developed a
geometrical procedure in 1760 which Laplace cast in algebraic form in 1793. Both
of these procedures artificially imposed the requirement that the fitted line passed
through the centroid of the observations (x̄, ȳ) equivalent to imposing the adding-up
condition

∑
ei = 0 on their solution procedure. Gauss removed this unnecessary

constraint in 1809 but no further progress was made with the practical solution
of this problem until Edgeworth (1887a, b, 1888), latterly under the influence of
Turner (1887), developed a simple procedure which Rhodes (1930) further simplified.
Moreover, Farebrother (1988, 1992) has found that his implementation of Rhodes’s
(1930) algorithm with p = 2 unknowns can yield a more efficient fitting procedure
than some of the better known modern algorithms mentioned in Sect. 4.3 below.

http://dx.doi.org/10.1007/978-3-642-36300-9 _3
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4.2 Projective Geometry Solution of the L∞-Norm Problem

Turning our attention to the unweighted L∞-norm fitting problem of Sect. 3.2 when
there are p = 2 unknown parameters, and noting that the solution of this problem
is characterised by a set of three residuals

{
ei , e j , ek

}
of the same absolute size,

two of which take one sign whilst the third takes the opposite sign. Consider the
same n observations represented by the same n residuals ei or a = yi − bxi in
ba-parameter space. Now, we have n(n − 1)(n − 2)/6 distinct sets of three residuals{
ei , e j , ek

}
, one of which must be the negative of the other two. Thus, each set of

three residuals
{
ei , e j , ek

}
yields three points in ba-parameter space defined by the

double equalities −ei = e j = ek, ei = −e j = ek and ei = e j = −ek , which may
represent the optimal solution of an L∞-norm problem. Thus, as described by Fourier
(1827), we again have to proceed from point to point in ba-parameter space until the
objective function max |ei | takes its minimal value. Laplace (1793, 1799, 1812), de
Prony (1804), Cauchy (1824, 1831), Fourier (1827) and de la Vallée Poussin (1911)
have all discussed possible solution procedures, see Farebrother (1987, 1997, 1999)
for details. but, so far as the author is aware, no solution procedure based on any of
these algorithms have been developed as a modern computer program.

In this contest, we refer interested readers to Franksen (1985a), Grattan-Guinness
(1970) and Williams (1986) for further details of Fourier’s contributions to linear
programming and to Franksen (1985b) and Brentjes (1994) for detailed accounts of
the early history of nonlinear programming and the so-called Kuhn-Tucker theorem.

4.3 Linear Programming Computations

As noted above, all eight of the problems discussed in Sect. 3.4 may be expressed
in the form of standard linear programming problems. We may therefore obtain a
solution by applying any one of the standard primal or dual simplex algorithms to
the chosen formulation of the problem.

On the other hand, more efficient algorithms may be obtained by incorporating
the special features reflecting the particular structure of the L1-norm and L∞-norm
fitting problems in the relevant solution procedures. The relations between the various
standard and improved linear programming algorithms has been ably summarised by
Arthanari and Dodge (1981) and by Bloomfield and Steiger (1983) and their relative
merits discussed in detail by Watson (2000).

The best known algorithms for the general L1-norm problem are Barrodale and
Roberts (1970, 1974), Bartels et al. (1978), (Bloomfield, 1980), and the interior
method of Karmarkar (1984) which came too late to be included in either of the first
two surveys, but L1-norm implementations of Karmarkar’s interior method have been
analysed by Koenker (1997) and Portnoy and Koenker (1997). For an analysis of the
same algorithm in the context of the corresponding quantile regression problem, see
Portnoy (1997).

http://dx.doi.org/10.1007/978-3-642-36300-9 _3
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However, as noted by Koenker (1997, pp. 16–17)

With the advent of George Dantzig’s simplex algorithm in the late 1940’s this situation
changed dramatically, and by the mid-50’s there were several formulations of the L1 estimator
for regression as a linear program and explicit simplex-based programs to compute it. The
paper by Wagner (1959) clarified the important role of the L1 dual problem. These efforts
culminated in the algorithm of Barrodale and Roberts (1974) which still serves as the L1
algorithm of choice for most statistical computing environments. Contrary to a plethora of
dire warnings throughout the literature, about the difficulty of L1 computation this algorithm
actually delivers least absolute error regression estimates faster than the corresponding least
squares algorithms in many packages, including Splus and Stata, for problems of moderate
size, up to a few hundred observations. However, for larger problems the Barrodale and
Roberts algorithm exhibits O(n2) growth in execution time and thus quickly lives up to its
slothful reputation.

Although Watson’s (2000) comparison of the various computer programs was
comprehensive in scope, he did not feel able to come to any very firm conclusions
as to which algorithm was best. In particular, Watson (2000, p. 8) has noted that:

Numerical experiments were reported by Osborne and Watson in 1996, where the secant-
based method was seen to be as good as fast median methods on randomly generated prob-
lems, and to perform considerably better on problems with systematic data. Comparisons
of other types of method with simplex methods really need to take this into account before
definitive conclusions can be drawn.

4.4 A Hypothetical General Procedure

As noted by Farebrother (1987, 1997, 1999), procedures for solving constrained
or unconstrained variants of the weighted or unweighted L1 -norm problem were
proposed by Boscovich in his notes to Stay (1760), Laplace (1793, 1799, 1812,
1818), Gauss (1809), Edgeworth (1887a, b, 1888, 1923), Bowley (1902, 1928),
Rhodes (1930) and Singleton (1940), and procedures for solving the unconstrained
and unweighted L∞-norm problem were proposed by Laplace (1786, 1793, 1799,
1812), de Prony (1804), Cauchy (1824, 1831), Fourier (1827), and de la Vallée
Poussin (1911).

In this connection, it is pertinent to note that, contrary to Grattan-Guinness’s (1994,
p. 46) assertion, Laplace did not impose the adding-up constraint on the unweighted
L∞-norm fitting procedure. Indeed, the author does not know of any early proposal
to this effect.

Despite the fact that these early L1-norm and L∞-norm procedures exhibited
many of the now-familiar features of linear programming problems, the relevant
details do not seem to have been rediscovered until too late for them to make any sig-
nificant contribution to the development of linear programming theory. Indeed, these
historical procedures do not seem to have warranted citation in the mainstream liter-
ature of linear programming until after the publication of Dantzig’s (1963) treatise
on the subject.

In this connection, it seems reasonable to suggest that a careful analysis of
any one of these historical approaches to the solution of the unweighted L1-norm
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or L∞-norm fitting problems by a careful researcher could have lead to the devel-
opment of a general (or, at least, a more general) variant of the simplex algorithm
some thirty years before it was actually proposed by Dantzig in the late 1940s. More
precisely, it seems reasonable to conjecture that an early variant of the simplex pro-
cedure could have been developed at any time after the publication of de la Vallée
Poussin′s L∞-norm procedure in 1911. Indeed, Farebrother (2006) has suggested a
possible route by which this end might have been achieved on the initial assumption
that, after suitable transformations, the problem of interest could be expressed in the
form of a linear programming problem concerned with the minimisation of a linear
objective function subject to a set of linear inequality constraints of the same type
(≤ or ≥) and that the coefficients attached to one of the variables in the objective
function and in the inequality constraints are all strictly positive. Of course, these
initial specifications would have been relaxed as practitioners became familiar with
the workings of the hypothetical fitting procedure.

Grattan-Guinness (1994, p. 69) has suggested that the principal reason that practi-
tioners made little progress in this direction may simply have been because civil and
military engineers were not interested in the solution of linear optimisation problems
of the type employed in linear programming analysis much before the outbreak of
the Second World War. On this point, also see Brentjes (1994).

Once the simplex algorithm had been brought to the attention of practitioners, there
was a burgeoning activity in the statistical literature represented by the publication of
articles by Harris (1950), Charnes et al. (1955), Karst (1958), Wagner (1959), Stiefel
(1959, 1960), Dolby (1960) and Fisher (1961), many of which reveal a deplorable
lack of awareness of the prehistory of their subject.

There was also a parallel interest in linear programming theory in the field of
economics associated with the names of Koopmans and Kantorovich, who were
awarded the Nobel Prize in Economics in 1975. Much to the annoyance of Koopmans,
the name of Dantzig was omitted from the prize citation as he was not an economist.
see Charnes and Cooper (1962) for an early account of the contributions to linear
programming in economics made by Koopmans and Kantorovich.

Some years later, Dorfman (1984), one of the authors of Dorfman et al. (1958),
a leading economics text on the subject, has asserted that Kantorovich, Koopmans
and Dantzig were the three joint discoverers of linear programming. But Dorfman’s
thesis has been disputed by Schwartz (1989) who claimed "that Kantorovich and
Koopmans were prediscoverers, and Dantzig alone qualifies as the discoverer." And
Gass (1989) endorsed this point of view in his companion piece.

4.5 Non-Uniqueness of the Solution

An unfortunate feature of all linear programming problems including the L1 -norm
and L∞-norm fitting problems is that there may be several solutions to any given
problem. that is, there may be several distinct values for the unknown parameters
b1, b2, ..., Bp corresponding to the same optimal value of the objective function.
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Following Hawkins (1993), we shall call any p-dimensional point in parameter
space that correspond to a set of p (or more) zero residuals an elemental set solution.
Identifying the set of all such solutions, we may obtain their convex hull by forming
all nonnegative weighted sums of these elemental set solutions.

In this context, Ben-Tal and Teboulle (1990) have shown that, for any member of a
class of strictly isotone functions including the L1-norm (or sum of absolute values)
and the L2-norm (or sum of squared absolute values) functions, every solution to
the problem which chooses values for the parameters b1, b2, ..., bp to minimise the
chosen function of the residuals necessarily lies within the convex hull of the set
of elemental set solutions. Further, for any member of a class of isotone (but not
strictly isotone) functions including the L∞-norm (or the largest absolute value) and
the median (or middlemost) of the (squared) absolute values functions, these authors
have shown that at least one of the solutions to the problem which chooses values for
the parameters b1, b2, ..., bp to minimise the chosen function of the residuals must
lie within the convex hull of the elemental set solutions. It is not necessary for our
purposes to know the precise meaning of the terms ‘isotone’ and ‘strictly isotone’;
we therefore refer interested readers to the article by Ben-Tal and Teboulle (1990)
for definitions.

A possible solution to the problem of non-uniqueness is to consider the family of
Lt -norm functions for 1 < t < ∞. Since each of these functions is strictly convex,
the corresponding Lt -norm problems have a unique solution and we may identify the
‘true’ L1 -norm solution with the value of the (unique) Lt -norm solution in the limit
as t tends to unity from above and the ‘true’ L∞-norm solution with the value of the
(unique) Lt -norm solution in the limit as t tends to infinity from below. Although
of considerable theoretical interest, this solution to the problem of non-uniqueness
is hardly practical as, in each case, it requires that the nonlinear Lt -norm fitting
problem be solved for a range of values of t in the vicinity of the desired limiting
value.

A second possible solution to the problem of non-uniqueness is to identify the
p-dimensional set of solutions to the L1-norm (or L∞ -norm) problems and to
identify the optimal solution with the centre of gravity of this set. This was the
solution proposed by Edgeworth (1923, pp. 1076–1077).

As a variation on this theme, Planitz and Gates (1991) have suggested that the
optimal solution should be identified with the point in the set of all possible solutions
to the L1-norm (or L∞-norm) problem which minimizes the sum of the squared
residuals. This alternative solution lacks the directness of Edgeworth’s approach but
it has the advantage that the resulting estimator is unbiased.

And a third possible solution to the problem of non-uniqueness is to replace
Edgeworth’s deterministic mixture of two or more of the possible solutions with a
probabilistic mixture, See Sect. 5.4 below for details.
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Chapter 5
Statistical Theory

Abstract Supposing that the disturbance terms in the standard linear statistical
model are independent and follow a common Laplacian, Gaussian, or rectangu-
lar distribution, then the principle of maximum likelihood suggests that we should
choose estimates of the slope parameters to minimise the Lt -norm of the residuals
with t = 1, t = 2 or t = ∞ respectively. In this context, we outline the small sam-
ple and asymptotic theory relating to these maximum likelihood estimators and the
related Likelihood Ratio, Lagrange Multiplier and Wald tests of linear restrictions
on the parameters of the model. We also demonstrate that a simple modification of
the standard linear programming implementation of the l1 -norm or L∞-norm fitting
problem yields (pseudo-unbiased) estimators that are symmetrically distributed about
the true parameter values when the disturbances are symmetrically distributed about
zero.

Keywords Gaussian disturbances · Gauss-Markov linear model · Huber’s
M-estimation · L p-norm estimation · Laplacian disturbances · Linear statistical
model · Maximum likelihood estimation · Pseudo-Unbiased estimation · Uniform
disturbances.

5.1 Linear Statistical Model

Having progressed thus far in this brief without the aid of a formal statistical
model, we now generalise the algebraic scheme of Chap. 3 by supposing that, For
i = 1, 2, ..., n, the set {xi1, xi2, ..., xip, yi } represents the i th observation on a set of
p+1 variables {X1, X2, ..., X p, Y }, and suppose that we wish to fit a linear statistical
model of the form

yi = xi1β1 + xi2β2 + · · · + xipβp + εi
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to these n observations, where β1, β2, ..., βp are a set of p fixed but unknown
parameters and ε1, ε2, ..., εn are a set of n stochastic disturbance terms whose statis-
tical properties will be discussed below.

Expressing this model in matrix form, we have

y = Xβ + ε

where y, X, β and ε are n × 1, n × p, p × 1 and n × 1 matrices respectively.

5.2 Maximum Likelihood Estimation

In the context of the model of Sect. 5.1 with n independent disturbance terms each
of which is known (or supposed) to follow a common law of distribution, most
readers will know that the Principle of Maximum Likelihood often suggests a
suitable estimation procedure.

In the most familiar case, if we know (or suppose) that the disturbance terms are
independently and identically distributed with a Gaussian or normal distribution
with a zero mean and a finite variance, then the maximum likelihood principle
suggests that we should choose an (L2-norm) estimator β̃(2) for β in such a way as
to minimise the sum of the squared estimated disturbances (or residuals)

n∑

i=1

e2
i .

Similarly, if we know (or suppose) that the disturbance terms are independently
and identically distributed with a Laplacian or double exponential distribution with a
zero mean and a finite variance, then the maximum likelihood principle suggests that
we should choose an (L1 -norm) estimator β̃(1) for β in such a way as to minimise
the sum of the absolute estimated disturbances (or residuals)

n∑

i=1

|ei |.

Finally, if we know (or suppose) that the disturbance terms are independently and
identically distributed with a uniform or rectangular distribution with a zero mean
and a finite range, then the maximum likelihood principle suggests that we should
choose an (L∞-norm) estimator β̃(∞) for β in such a way as to minimise the largest
absolute estimated disturbance term (or residual)

maxn
i=1|ei |.
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Thus, in the context of maximum likelihood estimation, the L2-norm and
L1-norm fitting procedures are intimately associated with the Gaussian (normal)
and the Laplacian (double exponential) distributions respectively. In addition, Gauss
had developed much of the finite sample theory relating to the L2-norm estimator
β̂ = β̃(2) whilst Laplace had performed a similar service in respect of the asymp-
totic theory for the L1-norm estimator β̃(1). and, for this reason, Portnoy (1997) and
Portnoy and Koenker (1997) have suggested that we should associate the L2-norm
fitting procedure with the name of Gauss and the L1-norm procedure with that of
Laplace.

Further, with conventional computational techniques, the L2-norm fitting proce-
dure is usually much faster than the L1-norm procedure, and these authors again
thought it natural to associate these procedures with the hare and the tortoise from
Aesop′s fable, whence the exotic element in the titles of the articles by Portnoy
(1997), Portnoy and Koenker (1997) and Farebrother (2002b).

Unfortunately, Portnoy and Koenker’s statistical bestiary breaks down when we
turn to the L∞-norm fitting procedure. Although anyone wishing to extend this
scheme to the L∞-norm procedure will have little difficulty in identifying the turtle
as the ‘dual’ of a tortoise, it is not possible to suggest a single name to associate with
both the uniform (or rectangular) distribution and the L∞-norm fitting procedure.
On the other hand, it seems sensible to make a virtue of necessity by following the
practice of approximation theory and associating the name of Chebyshev with the
L∞-norm fitting procedure if not with that of the uniform distribution.

5.3 Asymptotic Theory

It is well-known that the unweighted Lt -norm estimator β̃(t) of β with wA = wB

equal to a column of ones is a member of Huber′s class of M-estimators. For suffi-
ciently small values of t > 1, we may therefore deduce that the function

√
n[β̃(t)−β]

is asymptotically normally distributed with mean 0 and variance σ 2
t �−1 where

� = Limn→∞(
1

n
X ′ X)

is a p × p positive definite matrix and where σ 2
t is a positive scalar. Applying this

general result in the limit as t tends to unity from above we find that the function√
n[β̃(1) − β] is asymptotically normally distributed with mean 0 and variance

σ 2
1 �−1 where β̃(1) is the unique L1-norm estimator of β defined in Sect. 4.5 and σ 2

1 is

the asymptotic variance of the sample median from random samples of n disturbance
terms generated by the model of Sect. 5.1 (as may readily be established by setting
p = 1 and X equal to an n × 1 column of ones).

In this connection, Koenker and Bassett (1982) have shown that the L1-norm
equivalents of the familiar Lagrange Multiplier, Likelihood Ratio and Wald tests
of a set of linear constraints on the β parameters of the linear statistical model of

http://dx.doi.org/10.1007/978-3-642-36300-9_4
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Sect. 5.1 have an asymptotic chi-squared distribution. For further details, see Bassett
and Koenker (1978), Koenker and Bassett (1985) and Koenker (1987).

5.4 Pseudo-Unbiased Weighted L1-Norm Procedures

If we restrict ourselves to the class of symmetrically weighted Lt -norm estimators
of β, that is, to the case in which wA = wB = w is an n ×1 matrix with nonnegative
elements, possibly an n × 1 column of ones, define β̂ = c∗ = (X ′ X)−1 X ′y and
subtract X β̂ from both sides of the equality constraint in Problem P1 of Sect. 3.4,
set y∗ = y − X β̂ = My and a = aA − aB = b − β̂ where aA and aB are p × 1
nonnegative matrices, then our first variant of Problem P1 may be written as

Problem P(1)
1 :

Minimise w′eA + w′eB

subject to
XaA − XaB + eA − eB = y∗

and aA ≥ 0, aB ≥ 0, eA ≥ 0, eB ≥ 0.

Interchanging the roles of the p × 1 matrices aA and aB at the same time as
interchanging the roles of the n×1 matrices eA and eB , we have a second (equivalent)
variant of Problem P1:

Problem P(2)
1 :

Minimise w′eB + w′eA

subject to
XaB − XaA + eB − eA = −y∗

and aB ≥ 0, aA ≥ 0, eB ≥ 0, eA ≥ 0.

Replacing the n ×1 matrix of disturbance terms ε by its negation −ε in the above
problems, we find that the formulation of Problem P(1)

1 is the same as that of Problem

P(2)
1 except that the roles of aA and aB have been reversed as have those of eA and eB .

In this context, we may readily establish that the L1-norm estimator of β implied by
the solution of the joint problem is symmetrically distributed about β provided that
these two variants of Problem P1 are each chosen with probability 0.5 and provided
that, for each choice of an n × 1 matrix v, the n × 1 matrix of disturbances ε is
equally likely to take the values ε = +v and ε = −v.

In this context, the n × 1 matrices ε and y∗ = My = Mε are both symmetrically
distributed about the n × 1 matrix 0, the p × 1 matrix a = aA − aB is symmetri-
cally distributed about the p × 1 matrix 0, and the p × 1 matrix b = a + β̂ is
symmetrically distributed about β. Thus, the L1-norm estimator b = a + β̂ is nec-
essarily an unbiased estimator of β provided that its mean exists.

For more general results on the unbiasedness of the L1-norm estimator,
see Sielken and Hartley (1973), Harvey (1978) and Sposito (1982).

http://dx.doi.org/10.1007/978-3-642-36300-9_3
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5.5 Pseudo-Unbiased Weighted L∞-Norm Procedures

Contrary to expectations, the technique employed in 5.4 is not restricted to Lt -norm
procedures with t in the range 0 < t ≤ 2. To see this, we first restore the traditional
notation to Problem P5 of Sect. 3.3 before rewriting it as

Problem P#
5 :

Minimise k
subject to

Xb + kwB ≥ y
−Xb + kwA ≥ −y.

Again, setting wA = wB = w and subtracting X β̂ from both sides of both
inequality constraints in Problem P#

5 , then our first variant of this Problem may be
written as

Problem P(1)
5 :

Minimise k
subject to

XaA − XaB + kw ≥ y∗
−XaA + XaB + kw ≥ −y∗

and aA ≥ 0, aB ≥ 0.

Again, interchanging the roles of the p × 1 matrices aA and aB at the same time
as interchanging the roles of the n × 1 matrices eA and eB , we have our second
(equivalent) variant of Problem P#

5 :

Problem P(2)
5 :

Minimise k
subject to

XaB − XaA + kw ≥ −y∗
−XaB + XaA + kw ≥ y∗

and aB ≥ 0, aA ≥ 0.

Again, as in Sect. 5.4, we may readily show that the L∞-norm estimator of β

is symmetrically distributed about β when ε is symmetrically distributed about 0
provided that we choos Problems P(1)

5 and P(2)
5 with probability 0.5.

Finally, it is of interest to note that the simple idea outlined in Sects. 5.4 and 5.5
may also be extended to the case in which wA is a scale multiple of wB , and, in
particular, to the case in which wA and wB are both positive multiples of the n × 1
column of ones, that is, to the family of regression quantiles defined in Sect. 3.3, see
Farebrother (1985a) for details.
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http://dx.doi.org/10.1007/978-3-642-36300-9_3


36 5 Statistical Theory

References

Bassett, G. W., & Koenker, R. (1978). The asymptotic theory of the least absolute error estimator.
Journal of the American Statistical Association, 73, 618–622.

Dodge, Y. (Ed.). (1987). Statistical Data Analysis Based on the L1-Norm and Related Methods.
Amsterdam: North-Holland Publishing Company.

Dodge, Y. (Ed.). (1997). L1-Statistical Procedures and Related Topics. Hayward: Institute of
Mathematical Statistics.

Dodge, Y. (Ed.). (2002). Statistical Data Analysis based on the L1-Norm and Related Methods.
Basel: Birkhäuser Publishing.

Farebrother, R. W. (2002b). Whose hare and whose tortoise, in Y. Dodge (Ed.) (pp. 253–256).
Farebrother, R. W. (1985a). Unbiased L1 and L∞ estimation. Communications in Statistics (Series

A), 14, 1941–1962.
Harvey, A. C. (1978). On the unbiasedness of robust regression estimators. Communications in

Statistics (Series A), 7, 779–783.
Koenker, R. (1987). A comparison of asymptotic testing methods for L1 regression, in Y. Dodge

(Ed.) (287–296).
Koenker, R., & Bassett, G. W. (1982). Tests of Linear Hypotheses and L1 Estimation. Econometrica,

50, 1577–1583.
Koenker, R., & Bassett, G. W. (1985). On Boscovich′s estimator. Annals of Statistics, 13,

1625–1628.
Portnoy, S. (1997). On computation of regression quantiles: Making the Laplacian tortoise faster,

in Y. Dodge (Ed.) (pp. 187–200).
Portnoy, S., & Koenker, R. (1997). The Gaussian hare and the Laplacian tortoise: Computability of

squared-error v. absolute-error estimators. Statistical Science, 12, 279–300.
Sielken, R. L., & Hartley, H. O. (1973). Two linear programming algorithms for unbiased estimation

of linear models. Journal of the American Statistical Association, 68, 639–641.
Sposito, V. A. (1982). On unbiased L1 regression estimators. Journal of the American Statistical

Association,77, 652–653.



Chapter 6
The Least Median of Squared
Residuals Procedure

Abstract The formal results outlined in Chap. 5 cease to be valid if the disturbance
terms depart from a strict adherence to the assumptions underlying the statistical
model of Chap. 5. In the present chapter we seek to extend the robustness properties
of the L1-norm estimator to a variant of the L∞-norm estimator by ignoring about
one-half of the available data and applying the L∞-norm procedure to the remaining
observations. The estimator defined in this way is known as the least median of
squares (L M S) estimator and has excellent statistical properties provided that no
more than one-half of the observations are outliers. Unfortunately, it can be extremely
expensive to determine the true L M S estimates and practitioners often resort to
techniques which identify a close approximation to these estimates from a random
sample of elemental set (or subset) estimates.

Keywords Elemental set estimators · Jump discontinuity · Least median of squared
residuals · Minimum volume ellipsoid · Nonlinear programming · Robustness to
outliers · Subset estimators

6.1 Robustness to Outliers

Although the fitting techniques described in Chap. 5 are of some theoretical interest,
it does not seem reasonable to assume that the disturbance terms will exactly satisfy
any specific set of assumptions and thus our principal justification for using variants
of the L1-norm and L∞-norm fitting procedures must be on the basis of their relative
robustness to variations in the distributional assumptions underlying the statistical
model outlined in Sect. 5.1. This is an immense topic which we do not propose to
discuss here. Instead, the interested reader is referred to Huber (1981, 1987), Hampel
(1974) and Hampel (1986) for details.
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6.2 Gauss′s Optimality Conditions

Thus far, the L1-norm fitting procedure seems to has been carrying the alternative
L∞-norm procedure along in the guise of a poor relation, but now a variant of the
latter method comes into its own as a procedure that is more robust to the presence
of outlying observations.

As noted in Sect. 4.1, Gauss (1809) established a set of optimality conditions for
the unweighted L1-norm procedure (whether constrained to pass through the centroid
or not). However, he seems to have been worried that his optimality conditions
implied that, after the full set of n observations had determined which p of them
should define the optimal L1-norm estimator, the remaining n − p observations
did not participate further in the actual determination of values for the p unknown
parameters. Indeed, he noted that the y values of the n − p omitted observations
could be varied to any extent without affecting the result so long as any such variation
preserved the positive or negative signs attached to the corresponding residuals.

Conversely, Appa and Smith (1973) have shown that the L∞-norm fitting pro-
cedure is often extremely sensitive to the displacement of one (or more) of the
y-observations. That is, it is extremely non-robust to the presence of one or more
outlying observations.

To counteract the problem of outlying observations of this type, Rousseeuw (1984)
has suggested implicitly that we should transfer the property of extreme robustness
to certain types of outlying observations demonstrated by the L1-norm procedure
to the L∞-norm procedure by requiring that the resulting estimator should ignore a
large proportion (usually one-half) of the observations. Rousseeuw′s implementation
of this general idea defines the so-called Least Median of Squares (or L M S) fitting
procedure which chooses values for the parameters b1, b2, . . . , bp to minimise the
median or middlemost of any increasing function of the absolute residuals; and, in
particular, it chooses values for the parameters to minimise the median or middlemost
of the squared (absolute) residuals, Med(e2

i ), where the median or middlemost of a
set of n observations is formally defined in Sect. 2.1.

6.3 Least Median of Squares Computations

Conditional on the choice of the particular set of m observations to be retained,
we have seen that the L M S problem takes the form of a L∞-norm fitting problem
which may be expressed as a linear programming problem. However, on removing
the assumption that we know which m observations are to be retained, we find that the
full L M S procedure takes the form of a mixed integer linear programming problem
in which m of the n residuals are associated with unit indicators whilst the remaining
n − m residuals have zero indicators.

Thus, if we explicitly incorporate a set of n indicators z1, z2, . . . , zn , the i th of
which takes a unit value if the i th residual features in the calculations and a zero

http://dx.doi.org/10.1007/978-3-642-36300-9_4
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value if not, then our problem becomes one of choosing values for the parameters
b1, b2, . . . , bp to solve the mixed integer linear programming problem:

Problem LMS:

Minimise k

subject to

− k ≤ ei ≤ k when zi = 1
∑n

i=1
zi = m

and zi = 0 or zi = 1

where, for i = 1, 2, . . . , n, the i th residual is defined by

ei = yi − xi1b1 − xi2b2 − · · · − xipbp.

However, the sheer complexity of the computations associated with a formal
implementation of the L M S fitting problem implies that the computational proce-
dures are likely to be impractical. In this context, we are therefore often obliged to
substitute an approximate procedure for the full formal L M S procedure. In particular,
we might seek to approximate the optimal values of the p parameters by evaluating
the median squared residual function Med(e2

i ) for a sufficiently large sample of the
L∞-norm determinations of the p unknowns from a random sample of arbitrarily
chosen sets of p +1 equations. However, it is clear that the L∞-norm fitting of a sys-
tem of p+1 equations in p unknowns is vastly more expensive than the direct solution
of a set of p equations in p unknowns. Rousseeuw and Leroy (1987) have therefore
suggested that a sufficiently accurate approximation to the exact L M S solution may
be obtained by evaluating the median squared residual function Med(e2

i ) for a suf-
ficiently large sample of (Gaussian) elemental set determinations corresponding to
sets of p zero residuals. This conjecture was subsequently confirmed by Stromberg
(1993) whilst Hawkins (1993) has shown that this approximation technique yields
satisfactory results for a wide class of robust fitting procedures. [Note, in passing, that
this class of elemental set estimators are also employed in the detection of outlying
observations, see Farebrother (1988, 1997) and Hawkins et al. (1984).]

6.4 Minimum Volume Ellipsoid

The general Least Median of Squares hyperplane-fitting procedure of Sects. 6.2 and
6.3 may be specialised to yield the corresponding point-fitting procedure. Given a
set of n points in p-dimensional space and a suitable value for m close to n/2, we
may consider the set of all p-dimensional spheres which just contain m of these
n points, select the sphere of minimal p-dimensional volume (and hence minimal
radius), and identify the centre of this optimal sphere as our estimate of the centre of
the distribution.
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As a minor generalisation of this procedure, we may consider the set of all
p-dimensional ellipsoids which just contain m of the n given points, select the ellip-
soid of minimal p-dimensional volume, and again identify the centre of this optimal
ellipsoid as our estimate of the centre of the distribution. Rousseeuw (1984) refers to
the latter estimator as the ‘minimum volume ellipsoid’. For a further generalisation
to minimum volume cylinders, see Farebrother (1992, 1994).

In the one-dimensional case, any ellipsoid or sphere will degenerate to a one-
dimensional line segment and, as in Sect. 2.1, our general procedure defines the
midpoint of the shortest line segment which just covers m of the n points. If m is
close to n/2, then, as noted in Sect. 2.1, this midpoint is known as the ‘shortest half’.

By definition, any of the estimators described in this chapter are extremely robust
to the presence of outlying observations as almost one-half of the observations can
take arbitrarily large (positive or negative) values without much affecting the value
returned by the relevant estimation procedure. They are thus likely to command
significant roles in the area of robust statistical analysis.

On the other hand, Hettmansperger and Sheather (1992) have shown that the fitted
values returned by these procedures can exhibit jump discontinuities in response
to smooth variations in the data. But this result was already known in principle
some seventy years earlier as Whittaker and Robinson (1924, 1944, pp. 215–217)
have shown that the arithmetic mean is the only twice differentiable function of
the observations on a single variable which is equivariant to changes of location,
equivariant to changes of scale, and invariant to permutations of the order of the
observations, see Farebrother (1999, p. 80). Moreover, this result can be combined
with Farebrother′s (1989) algebraic characterisation of the least squares estimator to
yield a generalisation that applies to the linear model of Sect. 5.1 with two or more
explanatory variables.
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Chapter 7
Mechanical Representations

Abstract We describe a set of mechanical models that may be used to represent the
various L1-norm, L2-norm and L∞-norm fitting procedures: the L1-norm estima-
tion problems may be represented by the positioning of a ring or a rigid rod under
the influence of a frictionless system of strings and pulleys; the L2-norm estimation
problems may be represented by the positioning of a ring or a rigid rod under the
influence of a frictionless system of stretched springs; and, by combining disparate
aspects from these two mechanical models, we find that L∞-norm estimation prob-
lems may be represented by the positioning of a ring or a rigid rod under the influence
of a system of strings and blocks. In the first two cases the optimal position of the
ring or rigid rod is determined by a minimisation of the total potential energy of the
system. In the third case we only have to determine the physical limitations imposed
by the lengths of string attached to the ring or rod. Moreover, the mechanical model
for the L1-norm problem may be generalised to cover Oja’s bivariate median and the
L∞-norm model may be generalised to cover Rousseeuw’s least median of squares
problem.

Keywords Constrained and unconstrained estimation · Fermat’s facility location
problem · Graph theory · Influential observations · Mechanical models based on
springs · Mechanical models based on strings and blocks · Mechanical models based
on strings and pulleys ·Oja’s bivariate median ·Potential energy ·Rogerius Josephus
Boscovich (1711–1787) · William Fishburn Donkin (1814–1869) · Pierre de Fermat
(1601–1665).

7.1 Introduction

As in Chap. 2 and Sect. 3.1, we restrict ourselves to the special case in which we
suppose that we have been given a set of n matched pairs of observations on two
variables X and Y . Then, as noted in Sect. 4.1, these n observations may either be
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represented as n points in the xy -plane of observations, or as n straight lines in the
ba-plane of parameters. Further, we may be interested in fitting a single point or a
straight line to these observations. This yields a total of four distinct problems of
interest. Most of the present Chapter is concerned with outlining L1-norm methods
for fitting a point or a line to the set of points in the xy-plane of observations and a
point to this set of lines in the ba-plane of parameters. It is also possible to conceive
of fitting a line in the second case, but this problem has not yet been addressed in
the literature and we do not propose to initiate its discussion here. Instead, we shall
take the opportunity of discussing a variant of our third problem adapted for use with
Oja’s (1983) bivariate median.

Several authors have suggested that mechanical models based on strings and
pulleys can be constructed for the first of these fitting problems. In this chapter we
will show that this mechanical model can easily be extended to all three variants of
the basic L1-norm fitting problem mentioned above.

7.2 Fitting a Point to a Set of Points in the Plane
of Observations: Fermat’s Problem

For our first problem, we suppose that the n pairs of observations on the variables
X and Y are represented as n points (xi , yi ) (i = 1, 2, ..., n) in the xy-plane of
observations. Defining an additional point (x0, y0) in the same plane, we seek to
determine the values of x0 and y0 which minimize the weighted sum of the absolute
Euclidean distances

n∑

i=1

wi

√
[(xi − x0)2 + (yi − y0)2]

between this additional point and the n given points where w1, w2, ..., wn are a set
of known positive weights.

As a variant of this unconstrained problem, we may suppose that the additional
point (x0, y0) is constrained to lie on the straight line y = a0 + b0x by imposing the
condition y0 = a0+b0x0 for some suitable values of a0 and b0. Indeed, if appropriate,
we may suppose that the additional point is constrained to lie on a curved line or to
lie in a region of the xy-plane, see Farebrother (2002) for details.

The unconstrained problem was first posed by Fermat in 1638 in the case when
n = 3 and w1 = w2 = w3. However, the absence of distinct weights from the
original statement of the unconstrained problem is probably not significant as in
August 1657 and again in May 1662 Fermat proposed two constrained variants of
the problem relating to optical refraction in which n = 2 and w2 = 2w1, see
Farebrother (1990) for details. [By contrast, Kuhn (1967, 1973) has suggested that
the first weighted generalisation of Fermat’s problem is due to Simpson in 1750].
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The special case of the unconstrained and unweighted problem in which the
number of observations exceeds the number of dimensions by unity has an inter-
esting history culminating in the first dual nonlinear programming problem posed
and solved by Fasbender in 1846. The history of this problem has been ably
summarised by Kuhn (1967) . However, as a supplement to this account, it should
be noted that, for m = 2, 3, ..., n, the m vectors pointing from the centre of a regular
(m − 1)-dimensional simplex to its m vertices (which characterise the geometrical
solution of this problem) are intimately associated with the m − 1 vectors defined
by Helmert’s transformation, and thus with the associated set of recursive residuals
which are employed in the statistical detection of departures from the assumptions
underlying the linear statistical model of Sect. 5.1, see Farebrother (1985, 1988a,
1999, 2002) for further details.

The abstract mathematical problem outlined above may be given a physical form
by associating a real horizontal plane with the Cartesian xy-plane of observations.
Given such a plane, we drill holes through it at the points (xi , yi ) corresponding to
the n observations on X and Y . We attach weighted strings running from the given
points to a ring at the arbitrary point (x0, y0). Now, the ring may be supposed to
have moved a distance √

[(xi − x0)2 + (yi − y0)2]

from the i th hole at (xi , yi ) to the arbitrary point (x0, y0), and consequently the i th
weight may be considered to have moved vertically through the same distance and
thus has gained potential energy proportional to

wi

√
[(xi − x0)2 + (yi − y0)2].

So that, the system as a whole has potential energy proportional to

n∑

i=1

wi

√
[(xi − x0)2 + (yi − y0)2].

When the ring is not at the i th hole, the i th weight will induce a force proportional
to wi tending to pull the ring from its present position towards the i th hole. And,
when the system is in a state of equilibrium, the position of the ring will identify
the values of x0 and y0 that define the mediancentre whose unweighted variant is
defined in Sect. 2.2.

By contrast with the familiar L2-norm point fitting problem outlined in Sect. 7.6
below, the present model has little to offer besides the observation that when joined
head to tail the sequence of line segments representing the n forces acting on the
ring must form a closed circuit. Thus, in the special case when all the observations
lie on a straight line, this procedure defines the weighted median whose unweighted
variant is defined in Sect. 2.1. Further, if there are just three observations in the plane
with equal weights, then, selecting one of these unit forces as our prime direction and
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resolving the three unit forces parallel to this direction and at right angles to it, reveals
that this set of vectors necessarily point to the three vertices of an equilateral triangle
(or regular two-dimensional simplex) which, as mentioned above, characterises the
geometrical solution of this problem.

A variant of this mechanical model (which took greater care to eliminate friction
by substituting pulleys for the holes drilled through the horizontal board) was first
developed by Varignon in 1687 and employed by Lamé and Clapeyron in 1829. The
model is also associated with the name of Alfred Weber (brother of Max) although
the section of his book of 1909 in which this model was developed was actually
written by his colleague Georg Pick who apparently borrowed the model from an
1883 work of the physicist Ernst Mach, see Franksen and Grattan-Guinness (1989)
for a detailed discussion of the history of this problem and an English translation of
Lamé and Clapeyron’s article.

In passing, we note that Lamé and Clapeyron were also concerned with the mod-
elling of non-Euclidean distances in the xy-plane; thus giving rise to a mechanical
representation of graph theoretical problems and the concept of the median of a
graph. Farebrother (2002) has shown that this model may easily be generalised to
higher dimensions by replacing the strings confined to certain specified paths in the
plane by strings in flexible hollow tubes in q-dimensional space.

Lamé and Clapeyron were also concerned with the effect of varying the weights
attached to the strings. Thus, in their military example, they found that the supply
depot of an army corps should not necessarily be placed at the same point as its
headquarters as the former should be weighted by the quantities of goods required
by the various constituent units and the latter by the number of staff officers attached
to these units. Further, they found that the movement of one or more army units
would affect the optimal location of these two facilities in different ways.

7.3 Fitting a Line to a Set of Points in the Plane
of Observations: Boscovich’s Problem

For our second problem, as in Sect. 3.1, we suppose that the n pairs of observations on
the variables X and Y are again represented as n points (xi , yi ) (i = 1, 2, ..., n) in
the xy-plane of observations. Defining an arbitrary line ya+bx in the same plane, we
seek to determine the values of the parameters a and b which minimize the weighted
sum of the absolute x-meridian distances from the n points to the arbitrary line

n∑

i=1

wi |yi − a − bxi |

where these x-meridian distances are measured parallel to the y -axis.

http://dx.doi.org/10.1007/978-3-642-36300-9_3
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Again, we may define a constrained variant of this second problem by supposing
that the arbitrary line must pass through the point (x0, y0) by imposing the condition
a = y0 − bx0. For example, if we set x0 = ∑

xi/n and y0 = ∑
yi/n in the

unweighted case, then this condition becomes the familiar adding-up constraint

n∑

i=1

(yi − a − bxi ) = 0

employed in the constrained variant of this problem proposed by Boscovich in a
report to the Academy of Bologna in 1757 and again in his notes to a poem in Latin
hexameters by Stay in 1760. [In this context, it is pertinent to note that these dates
refer to a period some fifty years before Legendre first published his account of the
method of least squares in 1805].

This constrained variant of the problem was also briefly examined by
Simpson in June 1760 and, at far greater length, by Laplace (1793, 1799, 1812,
1818), see Eisenhart (1961), Farebrother (1990, 1993, 1999) and Stigler (1984, 1986)
for details.

As in Sect. 7.2, we have to associate a real horizontal plane with the abstract
Cartesian plane of observations, then at each point (xi , yi ) associated with an obser-
vation, we have to drill a hole. Through this hole we pass a length of string with a
weight wi at the lower end and a small ring at the upper end. We now place a rigid
rod at an arbitrary position in the plane and pass the n small rings over this rod in
such a way that the associated strings run parallel to the y-axis from the rings to the
corresponding holes.

As in Sect. 7.2, the i th ring may be supposed to have moved a distance |yi −a−bxi |
from the i th hole at (xi , yi ) to the point (xi , a + bxi ) on the rod, and thus the i th
weight may be considered to have moved vertically through the same distance and
thus gained potential energy proportional to wi |yi − a − bxi | so that the system as
a whole has potential energy proportional to

n∑

i=1

wi |yi − a − bxi |.

When in equilibrium, the position of the rod will identify the values of a and b that
define the L1-norm fitted line.

Let ei = yi −a−bxi denote the i th residual, then the L1-norm line fitting problem
chooses a and b to minimise the sum of the weighted absolute residuals

∑
wi |ei |.

Denoting the scaled force in the i th string by si , we find that si = −1 if the i th
residual ei is negative, that si = +1 if ei is positive and that si takes a value in the
range −1 ≤ si ≤ +1 if ei is zero.

Now, the force in the i th string is proportional to wi si and the rotational couple
about the point (0, a) on the rod is proportional to wi xi si . Further, the direct
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forces must sum to zero
∑

wi si = 0 as must the rotational couples
∑

wi xi si = 0.
These L1-norm equilibrium conditions are to be compared with the more familiar
least squares (or L2-norm conditions

∑
wi ei = 0 as

∑
wi xi ei = 0 outlined in

Sect. 7.6 below.

It is to be noted that si does not represent the sign of ei as si may take a nonzero
value when ei is zero. Readers who experience some difficulty in associating a
horizontal force with a weight hanging vertically through the i th hole should consider
the case of n = 3 observations with equal weights w1 = w2 = w3. It may readily
be established that the rod will usually pass through two of the points defining these
holes. Further, since there must be a zero net force and a zero net couple acting on
the rod when it is in equilibrium, we may deduce that, if the optimal position of the
rod passes through two of the points defining these holes, then the weights hanging
vertically through these holes must be associated with horizontal forces acting on
the rod in such a way as to counterbalance the direct and rotational forces imposed
on it by the third weight.

Newcomb (1873a, b) published two abstract models for the least squares
(L2-norm) variant of the unconstrained second and third problems in 1873, The
first of these models is briefly described in Sect. 7.6 while the second (which is actu-
ally due to Donkin) serves as the basis of the L1 -norm model described in Sect. 7.4.
Readers are referred to Farebrother (1999) for a description of these L2-norm mod-
els and for a complete transcription of Newcomb’s first article. The explicit physical
models for the constrained and unconstrained variants of the L1-norm line fitting
problem described in the present section are due to Farebrother (1987, 2002).

Making small changes to the weights in the model described above gives rise
to the concept of L1-norm influence. The corresponding least squares definition of
this concept is to be found in Newcomb (1873a). And, more recently, the concept
of L1-norm influence was developed as the basis of a scheme of robust statistical
analysis proposed by Hampel (1974) and Hampel et al. (1986).

By contrast with Newcomb (1873a) who varied a single weight and with Lamé and
Clapeyron (1829) who were prepared to vary all n weights simultaneously, Koenker
and Bassett (1978) were concerned with the effect of varying the weights associated
with positive residuals differently from those associated with nonpositive residuals.
Thus giving rise to the concept of regression quantiles whose use is described in
several of the articles published in the volumes edited by Dodge (1987, 1992, 1997,
2002).

7.4 Fitting a Point to a Set of Lines in the Plane of Parameters:
L1-Norm Variants of Donkin’s Problem

For our third problem, we again suppose that we have n pairs of observations on
the variables X and Y which, as in Sect. 4.1, we choose to represent as n lines

http://dx.doi.org/10.1007/978-3-642-36300-9_4
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a = yi −bxi (i = 1, 2, ..., n) in the ba-plane of parameters. Defining an additional
point (b0, a0) in the same plane, we seek to determine the values of a0 and b0 which
minimize the weighted sum of the absolute b-meridian distances

n∑

i=1

wi |a0 − yi + b0xi |

between the arbitrary point and the n given lines where these b-meridian distances
are measured parallel to the a-axis.

Once again, we may define a constrained variant of this third problem by noting
that the elements a0 and b0 satisfy the condition a0 = y0 −b0x0 if the arbitrary point
(b0, a0) is to lie on the straight line a = y0 − bx0.

These two variants of our third problem represent the projective geometry duals
of the constrained and unconstrained variants of the problem of Sect. 7.3, so that each
of the n lines in the ba-plane corresponds to a single point in the xy-plane and vice
versa.

In principle, it is also possible to develop the corresponding dual variants of the
problem of Sect. 7.2, but, as noted in Sect. 7.1, it does not seem natural to fit a single
line to a set of n lines in the ba-plane.

We may readily obtain a simple mechanical model for the line fitting problem
in the space of parameters by passing a weighted string over each of the rigid
rods representing the lines and attaching them to a ring at an arbitrary point in the
ba-plane. If all of these strings are constrained to lie parallel to the a-axis, then,
the i th weight clearly has potential energy proportional to wi |a0 − yi + b0xi | so that
the system as a whole has potential energy proportional to

n∑

i=1

wi |a0 − yi + b0xi |.

As in Sect. 7.3, when the system is in equilibrium, the position of the ring will
identify the values of a0 and b0 that define the arbitrary point (b0, a0) and hence the
L1-norm fitted line.

Now, the requirement that the strings in this model should lie parallel to the
a-axis is inconvenient. To obtain a more natural alternative, we attach a weight of
vi = wi

√
(1 + x2

i ) at the lower end of the i th string which is unconstrained and
thus permitted to take up a position at right angles to the i th rod. In this context,
this revised third problem clearly minimises the v-weighted perpendicular distances
from the arbitrary point to the n given lines

n∑

i=1

vi
∣∣(a0 − yi + b0xi )/

√
(1 + x2

i )
∣∣.
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Thus, by the simple expedient of increasing the value of the weight attached to the
lower end of the length of string passing over the rigid rod representing the i th line by
a factor of

√
(1+xi

2) and by removing the constraint on the final position adopted by
the strings of the model, we obtain an alternative, more natural, representation of the
L1-norm line fitting problem which compares favourably with that described above.
When in equilibrium, the strings will lie at right angles to the associated rods and
the position of the ring will identify the values of a0 and b0 that define the position
of the L1-norm fitted line.

Finally, we note that we have named this section for William Fishburn Donkin
as he published an abstract least squares (L2-norm) variant of the unconstrained
third problem in 1844. Once again, the L1-norm variant of this problem and the
associated physical models are due to Farebrother (1987, 2002). However, it should
also be noted that this model is essentially a generalisation of Varignon’s model in
which the pulleys are formally replaced by small rollers or frictionless rods.

7.5 Fitting a Point to a Set of Lines in the Plane
of Observations: Oja’s Bivariate Median

An interesting variant of the model of Sect. 7.4 occurs when we suppose that we are
given m points (xi , yi ) i = 1, 2, ..., m with distinct values of xi , and that we are
interested in fitting an arbitrary point x0, y0) to these m observations in the following
indirect manner. Taking these m points in pairs, we obtain a total of n = m(m −1)/2
lines with equations of the form

y = aij + xbij

where
aij = (xj yi − xi yj)/(xj − xi)

and
bij = (yj − yi)/(xj − xi).

Defining an arbitrary point (x0, y0) in the xy- plane, we find that it is at a distance

eij = y0 − aij − x0bij

from the ijth line when all distances are measured parallel to the y-axis, and at a
distance

hij = eij/

√
(1 + b2

ij)

when the ijth distance is measured perpendicular to the ijth line.
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Further, on multiplying this ijth perpendicular distance by cij, the length of the
line segment between (xi , yi ) and (x j , y j ), we have

dij = cijhij = wijeij

where wij = |x j − xi | and

cij =
√

[(xi − x j )2 + (yi − y j )2].

The absolute value of dij corresponds to twice the area of the triangle with ver-
tices (xi , yi ), (x j , y j ) and (x0, y0). Whence we may deduce that Oja’s (1983)
bivariate median is formed by choosing values for x0 and y0 to minimise the sum of
the areas of all n such triangles

∑

i< j

|dij| =
∑

i< j

wij|eij|.

In passing, we note that this expression may also be written as:

∑

i< j

|dij| =
∑

i< j

|(x j − xi )y0 − (x j yi − xi y j ) − (y j − yi )x0|

where there is now no need to insist on distinct x-values.

To obtain a mechanical model for this procedure, we have to replace the m line
segments connecting the m pairs of points in the xy-plane by rigid rods of arbitrary
length, pass a length of string over the ijth rigid rod and attach a weight proportional
to the length of the ijth line segment cij to the lower end of the ijth string and connect
the upper ends to a ring in the xy-plane. When in equilibrium, the strings will lie at
right angles to the associated rods and the position of the ring will identify the values
of x0 and y0 that define Oja’s bivariate median.

Now, by the rules of projective geometry duality outlined in Sect. 4.1, the m
points and n = m(m − 1)/2 lines in the primal xy-plane correspond to a set of m
lines with equations

a = yi − bxi

in the dual ba-plane. And the points of intersection of these m lines define the
n = m(m − 1)/2 points (bij, aij) i < j = 1, 2, ..., m.

In this context, this problem takes the form of the weighted L1-norm fitting of a
straight line

a = y0 − bx0

to the grid of m points (bij, aij) i < j = 1, 2, ..., n in the ba-plane using the
objective function

http://dx.doi.org/10.1007/978-3-642-36300-9_4
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∑

i< j

|dij| =
∑

i< j

wij|eij|.

As in Sect. 7.3, we associate a real horizontal plane with the abstract ba-plane,
then at each point (bij, aij) in this plane we drill a hole. Through this hole we pass
a length of string with a weight wij at the lower end and a small ring at the upper
end. We now place a rigid rod at an arbitrary position in the ba-plane and pass the m
small rings over this rod in such a way that the associated strings run parallel to the
a-axis from the rings to the holes. When this rod is in equilibrium, it again identifies
the optimal values of x0 and y0 defining Oja’s bivariate median.

For further details of the strings and pulleys models described in Sects. 7.2–7.4,
see Farebrother (2002), and for further details of the models described in Sect. 7.5,
see Farebrother (2006).

7.6 L2-Norm Mechanical Models

In this Section and in the next we shall generalise the L1-norm fitting problems
outlined in Sects. 7.2 and 7.3 to the corresponding L2-norm and L∞-norm problems
respectively. [It is also possible to generalise the problems of Sects. 7.4 and 7.5 in a
similar way but these are left as exercises for the reader.]

In the first case, instead of choosing values for x0 and y0 to minimise the weighted
sum of the absolute Euclidean distances from the n points to the arbitrary point

n∑

i=1

wi

√
[(xi − x0)2 + (yi − y0)2]

or values for the parameters a and b to minimise the weighted sum of the absolute
x-meridian distances from the n points to the arbitrary line

n∑

i=1

wi |yi − a − bxi |

we choose values for x0 and y0 to minimise the weighted sum of the squared
Euclidean distances from the n points to the arbitrary point

n∑

i=1

wi [(xi − x0)
2 + (yi − y0)

2]

or values for the parameters a and b to minimise the weighted sum of the squared
x-meridian distances from the n points to the arbitrary line
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n∑

i=1

wi [yi − a − bxi ]2.

In order to develop mechanical models for these weighted least squared deviation
fitting problems, we install a second horizontal plane at unit distance below the first.
A hole is drilled through the upper horizontal plane at the point indicated by the i th
observations on the variables X and Y . A spring of unit natural length and modulus
wi (or, equivalently, a set of wi springs of unit natural length and unit modulus) is
passed through the i th hole and its lower end attached to the corresponding point on
the lower horizontal plane. Then, the upper end of this i th spring is either tied to a
ring lying at an arbitrary point in the upper horizontal plane or it is constrained to
lie parallel to the y -axis before being tied to a ring which is passed over a rigid rod
lying in an arbitrary position in the upper horizontal plane.

Now, the potential energy in a stretched spring of unit modulus is proportional
to the square of its extension, so that the potential energy of the system as a whole
is proportional to the weighted sum of the squared Euclidean distances from the n
points to the arbitrary point

n∑

i=1

wi [(xi − x0)
2 + (yi − y0)

2]

or proportional to the weighted sum of the squared x-meridian distances from the n
points to the rod

n∑

i=1

wi [yi − a − bxi ]2.

Further, the potential energy contributed by the i th spring

wi [(xi − x0)
2 + (yi − y0)

2]

corresponds to a force in the i th spring proportional to

wi

√
[(xi − x0)2 + (yi − y0)2].

And, resolving this i th force parallel to the x-axis, we have wi (xi − x0); and, resolv-
ing it parallel to the y-axis, we have wi (yi − y0). Now, when the system is in
equilibrium, these resolved forces must sum to zero, so that

∑
wi (xi − x0) = 0 and∑

wi (yi − y0) = 0. Thus, our simple mechanical model identifies the weighted
arithmetic means x0 = ∑

wi xi/
∑

wi and y0 = ∑
wi yi/

∑
wi as the optimal

values of x0 and y0 in this case.
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We now turn our attention to the familiar L2-norm line fitting problem. Let
ei = yi − a − bxi denote the i th residual, then the L2-norm line fitting problem
chooses a and b to minimise the weighted sum of the squared residuals

∑
wi e2

i .
In this case, the force in the i th spring is proportional to wi ei and the correspond-
ing rotational couple about the point (0, a) on the rod is proportional to wi xi ei .
Moreover, when the system is in equilibrium, these direct forces must sum to zero∑

wi ei = 0 as must the corresponding rotational couples
∑

wi xi ei = 0. Gilstein
and Leamer (1983) have identified a simple technique for determining the set of val-
ues of a and b for which both of these conditions are satisfied with nonnegative values
for the moduli w1, w2, ..., wn . Indeed, in the special case when all springs have the
same unit modulus w1 = w2 = ... = wn = 1 then these conditions clearly yield the
familiar optimality conditions for the simple least squares line fitting problem.

As mentioned in Sect. 7.3, the abstract models for the L2-norm line fitting
s problem are due to Newcomb, but the explicit physical models described here are
due to Farebrother (1987, 1999, 2002). [Alternative analyses of the L2-norm point
and line fitting problems which make use of the differential calculus are described
in Chap. 4 of Farebrother (2002).]

7.7 L∞-Norm and L M S Mechanical Models

In a similar way, instead of developing mechanical models for weighted L2 -norm
variants of the weighted L1-norm problems of Sects. 7.2 and 7.3, we may consider the
corresponding unweighted L∞-norm procedures which choose values for x0 and y0
to minimise the largest absolute Euclidean distance from the n points to the arbitrary
point

maxn
i=1

√
[(xi − x0)2 + (yi − y0)2]

or values for the parameters a and b to minimise the largest absolute x-meridian
distance from the n points to the arbitrary line

maxn
i=1|yi − a − bxi |

where it is convenient to ignore the possibility of differently weighted observations
in the present context.

For a mechanical model of these unweighted minimax absolute deviation
fitting problems, we have to combine the strings under tension from the models of
Sects. 7.2 –7.4 with the pair of horizontal planes from the models of Sect. 7.6. We
therefore suppose that we are given a pair of horizontal planes, the upper being fixed
in position whilst the lower is free to move in a vertical direction. Holes are drilled
through the upper horizontal plane at the n points indicated by the observations on
the variables X and Y . A piece of string of given length is passed through each of

http://dx.doi.org/10.1007/978-3-642-36300-9_4
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these holes and attached to the corresponding point on the lower horizontal plane.
The upper ends of the i th strings is either tied to a ring lying at an arbitrary point
in the upper horizontal plane or it is constrained to lie parallel to the y-axis before
being tied to a ring which is passed over a rigid rod lying in an arbitrary position in
the upper horizontal plane. As the lower (movable) plane is gradually lowered, the
strings tighten until, in the limit, it is not possible to lower this plane any further.
This situation clearly determines the position of the ring (or rod) which minimises
the largest of the absolute deviations between the ring (or rod) and the n holes. Points
associated with slack strings are clearly nearer to the ring (or rod) than those associ-
ated with taut strings, and all points associated with taut strings will be at the same
distance from the ring (or rod). The maximum deviation is thus given by the common
length of the taut strings lying in the upper horizontal plane.

Further, since the corresponding least median of squares (L M S) procedures may
be regarded as variants of the L∞-norm procedures applied to a set of m observa-
tions (where m is chosen close to n/2), these mechanical models may readily be
generalised to the corresponding least median of squares problems by selecting the
relevant set of m observations (although, of course, this model is not able to explain
the particular choice of m observations).

The explicit physical models for the L∞-norm point and line fitting problem
described here are again due to Farebrother (1987, 2002). Geometrical alterna-
tives to these mechanical models are to be found in Chaps. 6 and 7 of Farebrother
(2002). In particular, we note that the L∞-norm problems are associated with three
familiar geometrical instruments: a pair of callipers (or pincers) for determining the
line segment of minimal length containing all n observations on a one-dimensional
straight line, a pair of compasses for determining the circle of minimum radius
containing all n observations on a two-dimensional plane, and a pair of paral-
lel rules for determining the pair of parallel lines with minimal distance between
them (measured parallel to the y-axis) containing all n observations on a two-
dimensional plane.
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