
123

S P R I N G E R B R I E F S I N CO M P U T E R S C I E N C E

Howard L. Weinert

Fast Compact
Algorithms and
Software for
Spline Smoothing

SpringerBriefs in Computer Science

Series Editors
Stan Zdonik

Peng Ning

Shashi Shekhar

Jonathan Katz

XindongWu

Lakhmi C. Jain

David Padua

Xuemin Shen

Borko Furht

V.S. Subrahmanian

Martial Hebert

Katsushi Ikeuchi

Bruno Siciliano

For further volumes:
http://www.springer.com/series/10028

Howard L. Weinert

Fast Compact Algorithms
and Software for Spline
Smoothing

Howard L. Weinert
Johns Hopkins University
Baltimore, MD, USA

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-1-4614-5495-3 ISBN 978-1-4614-5496-0 (eBook)
DOI 10.1007/978-1-4614-5496-0
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012948342

The Author(s) 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

For the Incomparable Cherie

Contents

1 Introduction . 1

1.1 The Continuous Problem . 1

1.2 The Solution . 2

1.3 Choosing the Smoothing Parameter . 3

1.4 A Look Ahead . 4

References . 4

2 Cholesky Algorithm . 5

2.1 Normalized Cholesky Factorization . 5

2.2 Generalized Cross Validation Score . 8

2.3 MATLAB Implementation . 11

2.4 Monte Carlo Simulations . 16

References . 18

3 QR Algorithm . 19

3.1 Condition Number of the Coefficient Matrix 19

3.2 Least-Squares Formulation and QR Factorization 20

3.3 MATLAB Implementation . 23

3.4 Monte Carlo Simulations . 28

References . 28

4 FFT Algorithm . 29

4.1 Frequency Response of the Spline Smoother 29

4.2 Computing the Spline . 32

4.3 Computing the GCV Score . 32

4.4 MATLAB Implementation . 34

4.5 Monte Carlo Simulations . 35

References . 35

vii

5 Discrete Spline Smoothing . 37

5.1 The Discrete Problem . 37

5.2 Cholesky Algorithm . 38

5.3 FFT Algorithm . 42

5.4 Discrete Versus Continuous . 45

References . 45

viii Contents

Chapter 1

Introduction

Once upon a time, the most difficult aspect of signal processing was acquiring

enough data. Nowadays, one can sample at very high rates and collect huge data

sets, but processing the data in a timely manner, without exceeding available

memory, is challenging, despite continuing advances in computer technology.

Meeting this challenge requires the full exploitation of mathematical structure to

develop an algorithm that can be implemented efficiently in software.

In this book, I investigate algorithmic alternatives for the problem of univariate

cubic spline smoothing, a popular nonparametric curve fitting technique for

extracting a signal from noise when there is little a priori information about either

the signal or the noise. There are continuous and discrete versions of cubic spline

smoothing. Discrete spline smoothing, also known as Whittaker-Henderson gradu-

ation, originated in 1899 [1] and was extensively studied in the first half of the

twentieth century, primarily by actuarial mathematicians [2, 3, 4]. Most of its recent

applications have been in economics, where it is called Hodrick-Prescott filtering

[5]. Continuous spline smoothing was first investigated in the Sixties [6,7],

and since then has largely pushed discrete spline smoothing into the background.

Continuous splines have been applied in areas as diverse as tree-ring analysis [8],

functional magnetic resonance imaging [9], and chromatography [10]. For further

background, see [11–14].

1.1 The Continuous Problem

We have a set of uniformly spaced, noisy samples of a real signal xðtÞ; t 2 0; 1½ �;

yi ¼ x i=nð Þ þ vi; i ¼ 1; 2; . . . ; n; (1.1)

and we want to estimate the signal at the sample locations. As estimates we will use

samples s i=nð Þ of the cubic smoothing spline sðtÞ that minimizes

H.L. Weinert, Fast Compact Algorithms and Software for Spline Smoothing,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4614-5496-0_1,
The Author(s) 2013

1

x
Xn

i¼1

yi � u i=nð Þð Þ2 þ
ð1

0

u00 tð Þð Þ2dt; (1.2)

among all uðtÞ with a square-integrable second derivative. The spline is a cubic

polynomial between each pair of adjacent sample locations. The positive parameter

x determines the tradeoff between smoothness and fidelity to the data. When x
is very small the spline samples will approximately lie on the least-squares regres-

sion line, and when x is very large the spline samples will be very close to the

corresponding measurements. Note that since we are working on the interval [0,1],

which we can do without loss of generality, the sampling rate is the number of

measurements n.
It turns out [12] that the vector s of spline samples is the solution to a finite-

dimensional minimization problem. Let M be the (n – 2) x n second difference

matrix, and let P be the (n – 2) x (n – 2) symmetric, tridiagonal Toeplitz matrix with

2/3 and 1/6 on the diagonal and subdiagonal, respectively. When n ¼ 8 for

example,

M ¼

1 �2 1 0 0 0 0 0

0 1 �2 1 0 0 0 0

0 0 1 �2 1 0 0 0

0 0 0 1 �2 1 0 0

0 0 0 0 1 �2 1 0

0 0 0 0 0 1 �2 1

2
6666664

3
7777775
; (1.3)

P ¼

2=3 1=6 0 0 0 0

1=6 2=3 1=6 0 0 0

0 1=6 2=3 1=6 0 0

0 0 1=6 2=3 1=6 0

0 0 0 1=6 2=3 1=6
0 0 0 0 1=6 2=3

2

6666664

3

7777775
: (1.4)

Then s minimizes

l y� uð ÞT y� uð Þ þ uTMTP�1Mu; (1.5)

among all vectors u, where y is the vector of measurements and l ¼ x=n3:Note that
M is full rank and P is positive definite.

1.2 The Solution

The minimizer s of (1.5) satisfies

lI þMTP�1M
� �

s ¼ ly: (1.6)

2 1 Introduction

Although this coefficient matrix is positive definite, persymmetric, and even quasi-

Toeplitz, there is an alternative equation with a coefficient matrix that has more

exploitable structure. Multiplying (1.6) on the left byM and letting c ¼ l�1P�1Ms;
we obtain

lPþMMT
� �

c ¼ My; (1.7)

s ¼ y�MTc: (1.8)

The coefficient matrix A ¼ lPþMMT is now positive definite, Toeplitz, and

banded (pentadiagonal). When n ¼ 8 for example,

A ¼

2

3
lþ 6

1

6
l� 4 1 0 0 0

1

6
l� 4

2

3
lþ 6

1

6
l� 4 1 0 0

1
1

6
l� 4

2

3
lþ 6

1

6
l� 4 1 0

0 1
1

6
l� 4

2

3
lþ 6

1

6
l� 4 1

0 0 1
1

6
l� 4

2

3
lþ 6

1

6
l� 4

0 0 0 1
1

6
l� 4

2

3
lþ 6

2
6666666666666666664

3
7777777777777777775

: (1.9)

The vectors s and c can be used to compute spline values (signal estimates)

between adjacent measurement locations [12,14], but for high sampling rates these

interpolated values are generally not needed.

1.3 Choosing the Smoothing Parameter

Eq. (1.7) cannot be solved until a value is assigned to the smoothing parameter l.
Ideally, l should be chosen to minimize the true mean square error, but this is

impossible since the signal is unknown. Instead, we will choose l to minimize the

generalized cross validation (GCV) score

GCV lð Þ ¼ n�1cTMMTc

n�1trace MTA�1M
� �� �2 : (1.10)

For large n, minimizing (1.10) approximately minimizes the true mean square error.

Generalized cross validation [11,12] is the most popular of several automatic

1.3 Choosing the Smoothing Parameter 3

adaptive procedures for choosing the smoothing parameter [15]. The best option for

minimizing (1.10) is Brent’s method [16], which is a combination of golden section

search and parabolic interpolation. Since the GCV score must be computed for each

trial value of l, algorithm efficiency is very important.

1.4 A Look Ahead

The next three chapters present algorithms for computing cubic smoothing splines

with generalized cross validation. The algorithms are based on Cholesky factoriza-

tion, QR factorization, and the fast Fourier transform (FFT). Chapter 5 deals with

discrete splines. Each chapter includes the relevant software, as well as simulation

results and algorithm comparisons. All programs were written in MATLAB

(R2012a, 64 bit) and executed on a Dell VOSTRO 3750 laptop with an Intel Core

i5-2410 M CPU (2.3 GHz) running Windows 7 Professional (64 bit).

References

[1] Bohlmann G (1899) Ein ausgleichungsproblem. Nachr GesWiss Gott Math-Phys Kl:260–271

[2] Whittaker ET (1923) On a new method of graduation. Proc Edinb Math Soc 41:63–75

[3] Henderson R (1925) Further remarks on graduation. Trans Actuar Soc Am 26:52–57

[4] Spoerl CA (1937) The Whittaker-Henderson graduation formula A. Trans Actuar Soc Am

38:403-462

[5] Hodrick RJ, Prescott EC (1997) Postwar US business cycles: an empirical investigation.

J Money Credit Bank 29:1–16

[6] Schoenberg IJ (1964) Spline functions and the problem of graduation. Proc Natl Acad Sci

52:947–950

[7] Reinsch CH (1967) Smoothing by spline functions. Numer Math 10:177–183

[8] Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest

interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53

[9] Carew JD, Wahba G, Xie X, Nordheim EV, Meyerand ME (2003) Optimal spline smoothing

of fMRI time series by generalized cross-validation. NeuroImage 18:950–961

[10] Kuligowski J, Carrion D, Quintas G, Garrigues S, de la Guardia M (2010) Cubic smoothing

splines background correction in on-line liquid chromatography-Fourier transform infrared

spectrometry. J Chromatogr. A 1217:6733–6741

[11] Wahba G (1990) Spline models for observational data. SIAM, Philadelphia

[12] Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models.

Chapman and Hall, London

[13] Weinert HL (2007) Efficient computation for Whittaker-Henderson smoothing. Comput Stat

Data Anal 52:959–974

[14] Weinert HL (2009) A fast compact algorithm for cubic spline smoothing. Comput Stat Data

Anal 53:932–940

[15] Lee TCM (2003) Smoothing parameter selection for smoothing splines: a simulation study.

Comput Stat Data Anal 42:139–148

[16] Brent RP (1973) Algorithms for minimization without derivatives. Prentice-Hall, Englewood

Cliffs

4 1 Introduction

http://dx.doi.org/10.1007/978-1-4614-5496-0_5

Chapter 2

Cholesky Algorithm

Reinsch [1] provided the first practical algorithm for the continuous case. He solved

(1.7)-(1.8) with O(n) floating point operations (flops) using a normalized Cholesky

factorization of the coefficient matrix, with a predetermined value for the smooth-

ing parameter. Hutchinson and de Hoog [2] showed that the GCV score could also

be evaluated with O(n) flops. However, both execution time and memory use can be

reduced substantially by digging deeper into the structure of the problem.

2.1 Normalized Cholesky Factorization

The coefficient matrix in (1.7) can be factored as

A ¼ LDLT ; (2.1)

where L is unit lower triangular and banded, and D is diagonal with positive

diagonal entries. When n ¼ 8 for example,

L ¼

1 0 0 0 0 0

�e1 1 0 0 0 0

f 1 �e2 1 0 0 0

0 f 2 �e3 1 0 0

0 0 f 3 �e4 1 0

0 0 0 f 4 �e5 1

2
6666664

3
7777775
; (2.2)

H.L. Weinert, Fast Compact Algorithms and Software for Spline Smoothing,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4614-5496-0_2,
The Author(s) 2013

5

D ¼

f�1
1 0 0 0 0 0

0 f�1
2 0 0 0 0

0 0 f�1
3 0 0 0

0 0 0 f�1
4 0 0

0 0 0 0 f�1
5 0

0 0 0 0 0 f�1
6

2
6666664

3
7777775
: (2.3)

As we compute the factorization we can solve the triangular system

LDy ¼ My: (2.4)

There are many ways to arrange the computations but the following requires the

fewest flops. First evaluate the right side of (2.4) with

di ¼ yiþ1 � yi; i ¼ 1; 2; . . . ; n� 1; (2.5)

and

wi ¼ diþ1 � di; i ¼ 1; 2; . . . ; n� 2: (2.6)

Then

a0 ¼ 6þ 2

3
l; a1 ¼ 4� 1

6
l;

f 1 ¼
1

a0
; y1 ¼ f 1w1; m1 ¼ a1; e1 ¼ m1f 1;

f 2 ¼
1

a0 � m1e1
; y2 ¼ f 2 w2 þ m1y1ð Þ; m2 ¼ a1 � e1; e2 ¼ m2f 2; (2.7)

and for i ¼ 3; 4; . . . ; n� 2;

f i ¼
1

a0 � mi�1ei�1 � f i�2

;

yi ¼ f i wi þ mi�1yi�1 � yi�2ð Þ;
mi ¼ a1 � ei�1; ei ¼ mif i: (2.8)

The next step is to solve the triangular system

LTc ¼ y (2.9)

as follows:

cn�2 ¼ yn�2; cn�3 ¼ yn�3 þ en�3cn�2; (2.10)

ci ¼ yi þ eiciþ1 � f iciþ2; i ¼ n� 4; n� 5; . . . ; 1: (2.11)

6 2 Cholesky Algorithm

Then evaluate MTc in (1.8) with

f1 ¼ 0; f2 ¼ c1; fi ¼ ci�1 � ci�2; fn ¼ �cn�2; fnþ1 ¼ 0; (2.12)

for i ¼ 3; 4; . . . ; n� 1; and

ci ¼ fiþ1 � fi; i ¼ 1; 2; . . . ; n: (2.13)

Finally,

si ¼ yi � ci; i ¼ 1; 2; . . . ; n: (2.14)

For large n, this method of solving (1.7)-(1.8) requires about 18n additions and

multiplications and n divisions. Since a division typically takes fifty percent

longer than an addition or multiplication, it is important to keep the number of

divisions as small as possible. In the MATLAB implementation we will conserve

memory by overwriting d with w, y with c, each mi with miþ1; c with f, f with

c, and c with s. As a result, only about 40n bytes of memory will be needed.

We can further reduce execution time and memory use by using a little-known

result [3] about convergence along the diagonals of L and D. Consider the palin-

dromic polynomial whose coefficients are the entries in the rows of A:

z4 þ l=6� 4ð Þz3 þ 2l=3þ 6ð Þz2 þ l=6� 4ð Þzþ 1: (2.15)

Its roots occur in reciprocal pairs with two inside the unit circle and two outside.

If z1 and z2 denote the roots inside the unit circle, then as i; n ! 1; ei ! e0 and

f i ! f 0 at the same rate, where

e0 ¼ z1 þ z2; f 0 ¼ z1z2: (2.16)

Consequently, if we compute the ei and fi only until they converge to within

machine precision (unit roundoff of 1:1 x 10�16), the number N of required

iterations is

N ¼ ceil
log10 1:1ð Þ � 16

2log10 rð Þ
� �

; (2.17)

where r ¼ max z1j j; z2j jð Þ:
Eq. (2.17) allows us to determine in advance the number of iterations required to

carry out the Cholesky factorization, so that we don’t have to test for convergence at

each iteration. However, we must still find polynomial roots for each choice of l.
We can avoid that task by replacing (2.17) with a simple formula that expresses the

number of required iterations directly in terms of l. First, one can determine

empirically that log10ðNÞ depends almost linearly on log10ðlÞ for l � 100; and

2.1 Normalized Cholesky Factorization 7

that 9 � N � 14 for l> 100:A formula for the approximate number N1 of required

iterations is thus

N1 ¼ ceil 26l�1=4
� �

; l � 100

14; l> 100

(
: (2.18)

Fig. 2.1 and Table 2.1 compare N and N1 for l � 100 . If we exploit the

convergence, then for large n, solving (1.7)-(1.8) requires about 13n + 5N1

additions and multiplications and N1 divisions, and 24n + 16N1 bytes of memory.

2.2 Generalized Cross Validation Score

Because M is sparse, the trace in (1.10) depends on only a few entries in A�1: If gi,
di, and pi respectively denote the entries on the diagonal and first and second

superdiagonals of A�1; then

Fig. 2.1 Number of iterations for convergence

Table 2.1 Number of iterations for convergence

l 10-12 10-10 108 10-6 10-4 10-2 1 100

N 25973 8215 2598 822 260 83 26 9

N1 26000 8222 2600 823 260 83 26 9

8 2 Cholesky Algorithm

trace MTA�1M
� � ¼ 6

Xn�2

i¼1

gi � 8
Xn�3

i¼1

di þ 2
Xn�4

i¼1

pi: (2.19)

The time required to compute this trace can be reduced by about fifty percent

because the persymmetry of A�1 means that the gi, di, and pi sequences are

symmetric. When n ¼ 8 for example,

A�1 ¼

g1 d1 p1 x x x
d1 g2 d2 p2 x x
p1 d2 g3 d3 p2 x
x p2 d3 g3 d2 p1
x x p2 d2 g2 d1
x x x p1 d1 g1

2

6666664

3

7777775
: (2.20)

Therefore, (2.19) can be replaced by

trace MTA�1M
� � ¼ 6 2

Xn0�1

i¼1

gi � agn0�1

 !

� 8 2
Xn0�1

i¼1

di � aþ 1ð Þdn0�1

 !

þ 2 2
Xn0�2

i¼1

pi � apn0�2

 !
; (2.21)

where

n0 ¼
n

2
; n even

nþ 1

2
; n odd

8
><

>:
; (2.22)

a ¼ 0; n even
1; n odd

�
: (2.23)

To compute just the required entries in A�1; start with the identity

LTA�1 ¼ D�1L�1: (2.24)

Note that the matrix on the right hand side is lower triangular with the fi on the

diagonal. Equate the (n-2, n-2) entries on both sides to get an equation for g1. Then
equate the (n-3, n-2) entries to get d1, the (n-3, n-3) entries to get g2, the (n-4, n-2)

2.2 Generalized Cross Validation Score 9

entries to get p1, the (n-4, n-3) entries to get d2, and so on. The resulting equations

are

g1 ¼ f n�2; d1 ¼ en�3g1; g2 ¼ f n�3 þ en�3d1; (2.25)

and for i ¼ 3; 4; . . . ; n0 � 1;

pi�2 ¼ en�i�1di�2 � f n�i�1gi�2;

di�1 ¼ en�i�1gi�1 � f n�i�1di�2;

gi ¼ en�i�1di�1 þ 1� pi�2ð Þf n�i�1; (2.26)

and finally,

pn0�2 ¼ en�n0�1dn0�2 � f n�n0�1gn0�2;

dn0�1 ¼ en�n0�1gn0�1 � f n�n0�1dn0�2: (2.27)

Evaluating the GCV score (1.10) using (2.21) and (2.25)-(2.27) requires about

8.5n additions and multiplications for large n. Only a trivial amount of memory is

needed since we can successively overwrite each gi, di, pi, and accumulate the sums

in (2.21) as we proceed.

Interestingly, the gi, di, and pi sequences also converge to within machine

precision in N (or N1) iterations. The theoretical limits, obtained from (2.26), are

g0 ¼
f 0 1þ f 0ð Þ

1� f 0ð Þ 1þ f 0ð Þ2 � e20

� � ;

d0 ¼ e0 f 0

1� f 0ð Þ 1þ f 0ð Þ2 � e20

� � ;

p0 ¼
e20 f 0 � 1þ f 0ð Þf 20

1� f 0ð Þ 1þ f 0ð Þ2 � e20

� � : (2.28)

As long as N1 � n0 � 2 , we can truncate the iterations in (2.26) to reduce

computation time. The GCV score evaluation will then require only about

2n + 13N1 additions and multiplications. In all, the computation of the spline vector

and the GCV score for large n and for a single value of l entails at most 26.5n
additions and multiplications and n divisions, and at least 15n + 18N1 additions and

multiplications and N1 divisions.

When the GCV score is minimized, most of the computations must be repeated

for each new choice of l. If m values of l are used, we will need at most

3n + 23.5mn additions and multiplications and mn divisions, and at least

10 2 Cholesky Algorithm

3n + 12mn + 18mN1 additions and multiplications and mN1 divisions to compute

the spline vector corresponding to the optimal l. Typically with Brent’s method,

10 � m � 20:When n�N1 truncating the ei, fi, gi, di, pi iterations reduces the total
flop count by about 50 %without affecting the signal estimation accuracy. Only 24n
bytes of memory are required in this case.

2.3 MATLAB Implementation

The Cholesky-based algorithm is implemented in a MATLAB function named

splinechol. The input is the column vector of measurements y. The output is the

column vector of spline values s. The minimization of the GCV score is carried out

by the MATLAB function fminbnd which is based on Brent’s method. The mini-

mization is faster and more accurate if fminbnd searches for the best s instead of the

best l, where

l ¼ 4s4

1� s2
: (2.29)

Note that s 2 0; 1ð Þ:All computations that must be repeated when s is changed are

in the nested function gcv. After fminbnd terminates, an extra call to gcv is

necessary to compute, using the optimal s, those quantities that determine the

spline.

function s ¼ splinechol(y)
%
n ¼ length(y);
nc ¼ ceil(n/2);
rmndr ¼ rem(n,2);
w ¼ diff(y,2);
sig ¼ fminbnd(@gcv, 0, 1);
gcv(sig);
s ¼ y-s;
%

function score ¼ gcv(sig)
%

s ¼ zeros(n-2,1);
lam ¼ 4*sig^4/(1-sig^2);
a0 ¼ 6+lam*2/3;
a1 ¼ 4-lam/6;
if lam > 100

N ¼ 14;
else

N ¼ ceil(26*lam^-.25);

2.3 MATLAB Implementation 11

end
if N > n-5 % No truncation

e ¼ zeros(1,n-2);
f ¼ zeros(1,n-2);
f(1) ¼ 1/a0;
s(1) ¼ f(1)*w(1);
e(1) ¼ a1*f(1);
f(2) ¼ 1/(a0-a1*e(1));
s(2) ¼ f(2)*(w(2)+a1*s(1));
mu ¼ a1-e(1);
e(2) ¼ mu*f(2);
for k ¼ 3:n-2

f(k) ¼ 1/(a0-mu*e(k-1)-f(k-2));
s(k) ¼ f(k)*(w(k)+mu*s(k-1)-s(k-2));
mu ¼ a1-e(k-1);
e(k) ¼ mu*f(k);

end
s(n-3) ¼ s(n-3)+e(n-3)*s(n-2);
for k ¼ n-4:-1:1

s(k) ¼ s(k)+e(k)*s(k+1)-f(k)*s(k+2);
end
g2 ¼ f(n-2);
tr1 ¼ g2;
d ¼ e(n-3)*g2;
tr2 ¼ d;
g1 ¼ f(n-3)+e(n-3)*d;
tr1 ¼ tr1+g1;
tr3 ¼ 0;
for k ¼ n-4:-1:n-nc

p ¼ e(k)*d-f(k)*g2;
tr3 ¼ tr3+p;
d ¼ e(k)*g1-f(k)*d;
tr2 ¼ tr2+d;
g2 ¼ g1;
g1 ¼ f(k)*(1-p)+e(k)*d;
tr1 ¼ tr1+g1;

end
p ¼ e(n-nc-1)*d-f(n-nc-1)*g2;
tr3 ¼ tr3+p;
d ¼ e(n-nc-1)*g1-f(n-nc-1)*d;
tr2 ¼ tr2+d;

else % Truncate e,f iterations
e ¼ zeros(1,N);
f ¼ zeros(1,N);
f(1) ¼ 1/a0;

12 2 Cholesky Algorithm

s(1) ¼ f(1)*w(1);
e(1) ¼ a1*f(1);
f(2) ¼ 1/(a0-a1*e(1));
s(2) ¼ f(2)*(w(2)+a1*s(1));
mu ¼ a1-e(1);
e(2) ¼ mu*f(2);
for k ¼ 3:N

f(k) ¼ 1/(a0-mu*e(k-1)-f(k-2));
s(k) ¼ f(k)*(w(k)+mu*s(k-1)-s(k-2));
mu ¼ a1-e(k-1);
e(k) ¼ mu*f(k);

end
flim ¼ f(N);
elim ¼ e(N);
mu ¼ a1-elim;
for k ¼ N+1:n-2

s(k) ¼ flim*(w(k)+mu*s(k-1)-s(k-2));
end
s(n-3) ¼ s(n-3)+elim*s(n-2);
for k ¼ n-4:-1:N

s(k) ¼ s(k)+elim*s(k+1)-flim*s(k+2);
end
for k ¼ N-1:-1:1

s(k) ¼ s(k)+e(k)*s(k+1)-f(k)*s(k+2);
end
g2 ¼ flim;
tr1 ¼ g2;
d ¼ elim*g2;
tr2 ¼ d;
g1 ¼ flim+elim*d;
tr1 ¼ tr1+g1;
tr3 ¼ 0;
if N < nc-1 % Truncate g,d,p iterations

for k ¼ 3:N
p ¼ elim*d-flim*g2;
tr3 ¼ tr3+p;
d ¼ elim*g1-flim*d;
tr2 ¼ tr2+d;
g2 ¼ g1;
g1 ¼ flim*(1-p)+elim*d;
tr1 ¼ tr1+g1;

end
tr1 ¼ tr1+(nc-N-1)*g1;
tr2 ¼ tr2+(nc-N)*d;
tr3 ¼ tr3+(nc-N)*p;

2.3 MATLAB Implementation 13

else % Don’t truncate g,d,p iterations
for k ¼ n-4q:-1:N

p ¼ elim*d-flim*g2;
tr3 ¼ tr3+p;
d ¼ elim*g1-flim*d;
tr2 ¼ tr2+d;
g2 ¼ g1;
g1 ¼ flim*(1-p)+elim*d;
tr1 ¼ tr1+g1;

end
for k ¼ N-1:-1:n-nc

p ¼ e(k)*d-f(k)*g2;
tr3 ¼ tr3+p;
d ¼ e(k)*g1-f(k)*d;
tr2 ¼ tr2+d;
g2 ¼ g1;
g1 ¼ f(k)*(1-p)+e(k)*d;
tr1 ¼ tr1+g1;

end
p ¼ e(n-nc-1)*d-f(n-nc-1)*g2;
tr3 ¼ tr3+p;
d ¼ e(n-nc-1)*g1-f(n-nc-1)*d;
tr2 ¼ tr2+d;

end
end
tr ¼ 6*(2*tr1-rmndr*g1)-8*(2*tr2-(1+rmndr)*d). . .

+2*(2*tr3-rmndr*p);
s ¼ diff([0; 0; s; 0; 0],2);
score ¼ n*(s’*s)/tr^2;
end

end

For comparison purposes, I also created a stripped-down version of splinechol,
named csplineopt, which does not use iteration truncation.

function s ¼ csplineopt(y)
%
n ¼ length(y);
nc ¼ ceil(n/2);
rmndr ¼ rem(n,2);
w ¼ diff(y,2);
sig ¼ fminbnd(@cgcv, 0, 1);
cgcv(sig);
s ¼ y-s;

function score ¼ cgcv(sig)
s ¼ zeros(n-2,1);

14 2 Cholesky Algorithm

lam ¼ 4*sig^4/(1-sig^2);
a0 ¼ 6+lam*2/3;
a1 ¼ 4-lam/6;
e ¼ zeros(1,n-2);
f ¼ zeros(1,n-2);
f(1) ¼ 1/a0;
s(1) ¼ f(1)*w(1);
e(1) ¼ a1*f(1);
f(2) ¼ 1/(a0-a1*e(1));
s(2) ¼ f(2)*(w(2)+a1*s(1));
mu ¼ a1-e(1);
e(2) ¼ mu*f(2);
for j ¼ 3:n-2

f(j) ¼ 1/(a0-mu*e(j-1)-f(j-2));
s(j) ¼ f(j)*(w(j)+mu*s(j-1)-s(j-2));
mu ¼ a1-e(j-1);
e(j) ¼ mu*f(j);

end
s(n-3) ¼ s(n-3)+e(n-3)*s(n-2);
for j ¼ n-4:-1:1

s(j) ¼ s(j)+e(j)*s(j+1)-f(j)*s(j+2);
end
g2 ¼ f(n-2);
d ¼ e(n-3)*g2;
tr2 ¼ d;
g1 ¼ f(n-3)+e(n-3)*d;
tr1 ¼ g2+g1;
tr3 ¼ 0;
for j ¼ n-4:-1:n-nc

p ¼ e(j)*d-f(j)*g2;
tr3 ¼ tr3+p;
d ¼ e(j)*g1-f(j)*d;
tr2 ¼ tr2+d;
g2 ¼ g1;
g1 ¼ f(j)*(1-p)+e(j)*d;
tr1 ¼ tr1+g1;

end
p ¼ e(n-nc-1)*d-f(n-nc-1)*g2;
d ¼ e(n-nc-1)*g1-f(n-nc-1)*d;
tr ¼ 6*(2*tr1-rmndr*g1)-8*(2*tr2+(1-rmndr)*d). . .
+2*(2*tr3+(2-rmndr)*p);
s ¼ diff([0; 0; s; 0; 0],2);
score ¼ n*(s’*s)/tr^2;
end

end

2.3 MATLAB Implementation 15

Finally, splinesimple neither computes nor minimizes the GCV score and does

not truncate the iterations. The user must input a specific l.

function s ¼ splinesimple(y,lam)
%
n ¼ length(y);
s ¼ zeros(n-2,1);
w ¼ diff(y,2);
a0 ¼ 6+lam*2/3;
a1 ¼ 4-lam/6;
e ¼ zeros(1,n-2);
f ¼ zeros(1,n-2);
f(1) ¼ 1/a0;
s(1) ¼ f(1)*w(1);
e(1) ¼ a1*f(1);
f(2) ¼ 1/(a0-a1*e(1));
s(2) ¼ f(2)*(w(2)+a1*s(1));
mu ¼ a1-e(1);
e(2) ¼ mu*f(2);
for j ¼ 3:n-2

f(j) ¼ 1/(a0-mu*e(j-1)-f(j-2));
s(j) ¼ f(j)*(w(j)+mu*s(j-1)-s(j-2));
mu ¼ a1-e(j-1);
e(j) ¼ mu*f(j);

end
s(n-3) ¼ s(n-3)+e(n-3)*s(n-2);
for j ¼ n-4:-1:1

s(j) ¼ s(j)+e(j)*s(j+1)-f(j)*s(j+2);
end
s ¼ diff([0; 0; s; 0; 0],2);
s ¼ y-s;

2.4 Monte Carlo Simulations

First, splinecholwill be compared to csplineopt in terms of speed and accuracy. This

will show the advantage to be gained by allowing truncation of the ei, fi, gi, di, pi
iterations. Measurements were generated as in (1.1) by sampling three different

signals:

x1ðtÞ ¼ 2þ sin 2200ptð Þ;
x2ðtÞ ¼ 2þ 0:3e�64 t�0:25ð Þ2 þ 0:7e�256 t�0:75ð Þ2 ;

x3ðtÞ ¼ 4� 48tþ 218t2 � 315t3 þ 145t4: (2.30)

16 2 Cholesky Algorithm

The noise vector added to the vector of signal samples was v ¼ br; where b> 0

and r ¼ randn n; 1ð Þ: The MATLAB function randn generates pseudorandom

values from a standard normal distribution. The parameter b was chosen to produce

a specific signal-to-noise ratio (SNR). Since

SNR ¼ 10log10
xTx

b2rTr

� �
; (2.31)

we have

b ¼ 10�SNR 20=

ffiffiffiffiffiffiffi
xTx

rTr

r
: (2.32)

For each signal, two values of n (104, 106) and two values of SNR (20 dB, 40 dB)

were used. Execution time was measured with MATLAB’s tic and toc functions,

and the RMS error (RMSE) was used to determine accuracy:

RMSE ¼
ffi
1

n
s� xð ÞT s� xð Þ

r
: (2.33)

With the first signal in (2.30), splinechol and csplineopt had the same RMSE; for

the other two signals, splinechol and csplineopt had the same RMSE for n ¼ 104,

but splinechol was more accurate for n ¼ 106. See Table 2.2. In all cases,

splinechol was about twice as fast as csplineopt and required as little as 60% of

the memory. We can conclude that allowing truncation of the ei, fi, gi, di, pi
iterations significantly reduces execution time and memory use without

compromising accuracy.

The best commercially available software for computing cubic smoothing

splines is the function csaps in MATLAB’s Curve Fitting Toolbox. This function

is based on a normalized Cholesky factorization and takes account of the sparseness

of the coefficient matrix to reduce memory use, but it does not attempt to find the

best smoothing parameter. Instead, the user must input a value for a normalized

parameter p 2 0; 1ð Þ; where p is related to l via

Table 2.2 RMS error for n ¼ 106

signal

SNR ¼ 20 dB

splinechol
SNR ¼ 20 dB

csplineopt
SNR ¼ 40 dB

splinechol
SNR ¼ 40 dB

csplineopt

x1 1.7x10-2 1.7x10-2 2.2x10-3 2.2x10-3

x2 4.4x10-3 6.1x10-3 2.4x10-4 6.3x10-4

x3 3.5x10-3 8.9x10-3 3.6x10-4 9.0x10-4

2.4 Monte Carlo Simulations 17

p ¼ n3l
n3lþ 1

: (2.34)

The function splinesimple, which also produces the spline for a single value of the

smoothing parameter, is much more efficient. In fact, splinesimple is 20 times faster

than csaps and uses only 11 % of the memory, without degrading estimation

accuracy. The function splinechol, which does much more than csaps, is still

about twice as fast and uses only 7-11 % of the memory.

References

[1] Reinsch CH (1967) Smoothing by spline functions. Numer Math 10:177–183

[2] Hutchinson MF, de Hoog FR (1985) Smoothing noisy data with spline functions. Numer Math

47:99–106

[3] Bauer FL (1955) Ein direktes iterationsverfahren zur Hurwitz-zerlegung eines polynoms. Arch

Elektr Ubertragung 9:285–290

18 2 Cholesky Algorithm

Chapter 3

QR Algorithm

The coefficient matrix A (1.9) in the normal equations (1.7) will be ill-conditioned

for small l, causing the number of correct digits in the computed spline to be small.

To try to compensate for this problem, one can reformulate spline smoothing as a

basic least-squares problem and solve it using a QR factorization. De Hoog and

Hutchinson [1], building on earlier work [2, 3, 4] on general banded least-squares

problems, presented a QR algorithm for spline smoothing. In this chapter we will

evaluate the condition number of the coefficient matrix, present a faster and more

compact QR algorithm, and determine whether this alternative is preferable to

solving the normal equations.

3.1 Condition Number of the Coefficient Matrix

The (2-norm) condition number of A, denoted kðAÞ , is the ratio of the largest

singular value to the smallest. AskðAÞ increases, the perturbation sensitivity of (1.7)
increases. For each order of magnitude increase in kðAÞ; there is one less correct

digit in the computed spline [5, 6, 7]. While there is no exact formula for kðAÞ, an
approximate formula can be found. First note that

lim
l!0

kðAÞ ¼ k MMT
� �

;

lim
l!1

kðAÞ ¼ kðPÞ: (3.1)

Using the cond function in MATLAB, one can determine that

k MMT
� � ffi 0:032n4;

kðPÞ � 3; for all n; (3.2)

H.L. Weinert, Fast Compact Algorithms and Software for Spline Smoothing,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4614-5496-0_3,
The Author(s) 2013

19

and for a wide range of intermediate l values, log10kðAÞ is approximately a linear

function of log10 lð Þ: An approximate condition number k1ðAÞ is given by

k1ðAÞ ¼ max min 0:032n4; 16l�1
� �

; 3
� �

: (3.3)

See Fig. 3.1 for a comparison of kðAÞ and k1ðAÞwhen n ¼ 5000. Clearly, A is very

ill-conditioned when l is very small (as it often is in practice). We will investigate

whether a QR approach improves the RMS error of the spline.

3.2 Least-Squares Formulation and QR Factorization

With the Cholesky factorization

P ¼ BTB; (3.4)

we can write

A ¼ FTF; (3.5)

Fig. 3.1 Condition number for n ¼ 5000

20 3 QR Algorithm

where

F ¼ MT

ffiffiffi
l

p
B

" #
: (3.6)

Therefore, if

c ¼ argmin
z

Fz� y

0

" #�����

�����; (3.7)

then c satisfies (1.7) and the spline can be obtained from (1.8). Suppose we can find

an orthogonal matrix Q (QTQ ¼ I) such that

F ¼ Q
R

0

" #
; (3.8)

where R is upper triangular. If

QT y

0

" #
¼ r

b

" #
; (3.9)

then

Fz� y

0

" #�����

�����

2

¼ QTFz� QT y

0

" #�����

�����

2

¼ R

0

" #
z� r

b

" #�����

�����

2

¼ Rz� rk k2 þ bk k2; (3.10)

and c can be found by solving the triangular system

Rc ¼ r: (3.11)

Note that

A ¼ FTF ¼ RTR; (3.12)

so R is a Cholesky factor of A and, like the normalized Cholesky factor L in (2.1), it

is banded with bandwidth two. Since

R ¼ D
1
2LT ; (3.13)

3.2 Least-Squares Formulation and QR Factorization 21

r is related to y in (2.9) via

r ¼ D
1
2y: (3.14)

We can construct Q as a product of (4n – 9) Givens (plane) rotations [1]:

QT ¼ VT
n�2U

T
n�2 � � �VT

1U
T
1 ; (3.15)

whereUT
i ; 1 � i � n� 3; is the product of two Givens rotations which zero entries

(i + n, i) and (i + n, i + 1) of F, UT
n�2 is a single Givens rotation which zeros entry

(2n - 2, n - 2), and VT
i ; 1 � i � n� 2; is the product of two Givens rotations which

zero the (i + 1, i) and (i + 2, i) entries while placing two nonzero numbers in

positions (i, i + 1) and (i, i + 2). De Hoog and Hutchinson [1] do not store or use

R, but instead storeQ and compute c and s using alternatives to (3.11) and (1.8). Our
algorithm will require less storage and execute more quickly. Note also that the

Cholesky factorization of P can be carried out to within machine precision in just 14

iterations regardless of n [8].

To see how (3.15) produces R from F, let n ¼ 7. Then

F ¼

1 0 0 0 0

�2 1 0 0 0

1 �2 1 0 0

0 1 �2 1 0

0 0 1 �2 1

0 0 0 1 �2

0 0 0 0 1

x x 0 0 0

0 x x 0 0

0 0 x x 0

0 0 0 x x

0 0 0 0 x

2

666666666666666666666664

3

777777777777777777777775

!

x 0 0 0 0

x x 0 0 0

1 �2 1 0 0

0 1 �2 1 0

0 0 1 �2 1

0 0 0 1 �2

0 0 0 0 1

0 0 0 0 0

0 x x 0 0

0 0 x x 0

0 0 0 x x

0 0 0 0 x

2

666666666666666666666664

3

777777777777777777777775

!

x x x 0 0

0 x 0 0 0

0 x x 0 0

0 1 �2 1 0

0 0 1 �2 1

0 0 0 1 �2

0 0 0 0 1

0 0 0 0 0

0 x x 0 0

0 0 x x 0

0 0 0 x x

0 0 0 0 x

2

666666666666666666666664

3

777777777777777777777775

!

x x x 0 0

0 x 0 0 0

0 x x 0 0

0 1 �2 1 0

0 0 1 �2 1

0 0 0 1 �2

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 x x 0

0 0 0 x x
0 0 0 0 x

2

6666666666666666664

3

7777777777777777775

!

x x x 0 0

0 x x x 0

0 0 x 0 0

0 0 x x 0

0 0 1 �2 1

0 0 0 1 �2

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 x x 0

0 0 0 x x
0 0 0 0 x

2

6666666666666666664

3

7777777777777777775

!

x x x 0 0

0 x x x 0

0 0 x 0 0

0 0 x x 0

0 0 1 �2 1

0 0 0 1 �2

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 x x
0 0 0 0 x

2

6666666666666666664

3

7777777777777777775

!

x x x 0 0

0 x x x 0

0 0 x x x
0 0 0 x 0

0 0 0 x x
0 0 0 1 �2

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 x x
0 0 0 0 x

2

6666666666666666664

3

7777777777777777775

22 3 QR Algorithm

!

x x x 0 0

0 x x x 0

0 0 x x x
0 0 0 x 0

0 0 0 x x
0 0 0 1 �2

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 x

2

6666666666666666664

3

7777777777777777775

!

x x x 0 0

0 x x x 0

0 0 x x x
0 0 0 x x
0 0 0 0 x
0 0 0 0 x
0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 x

2

6666666666666666664

3

7777777777777777775

!

x x x 0 0

0 x x x 0

0 0 x x x
0 0 0 x x
0 0 0 0 x
0 0 0 0 x
0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2

6666666666666666664

3

7777777777777777775

!

x x x 0 0

0 x x x 0

0 0 x x x
0 0 0 x x
0 0 0 0 x
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2

6666666666666666664

3

7777777777777777775

¼ R

0

" #
:

3.3 MATLAB Implementation

The QR algorithm is implemented in the MATLAB function splineqr. To keep the

comparison with the Cholesky algorithm as simple as possible, no iteration trunca-

tion was used even though R exhibits the same convergence along diagonals as L.
Therefore, splineqr will be compared to the function csplineopt given in

Section 2.3. Both functions have the same general structure and use the same

quantities to compute the GCV score.

function s ¼ splineqr(y)
%
n ¼ length(y);
nc ¼ ceil(n/2);
rmndr ¼ rem(n,2);
nn ¼ min(n-2,15);
sig ¼ fminbnd(@gcvqr, 0, 1);
gcvqr(sig);
s ¼ y-s;
%

function score ¼ gcvqr(sig)
%

s ¼ y;
f ¼ zeros(1,nn);
e ¼ zeros(1,nn-1);
lam ¼ 4*sig^4/(1-sig^2);
lamrt ¼ sqrt(lam);
f(1) ¼ sqrt(2/3);
for k ¼ 2:nn

e(k-1) ¼ 1/(6*f(k-1));
f(k) ¼ sqrt(2/3-e(k-1)^2);

end
f ¼ f*lamrt;

3.3 MATLAB Implementation 23

e ¼ e*lamrt;
f ¼ [f,f(nn)*ones(1,n-17)];
e ¼ [e,e(nn-1)*ones(1,n-17)];
tm1 ¼ -2;
tm2 ¼ 1;
tm3 ¼ 1;
for k ¼ 1:n-3

a ¼ tm3;
b ¼ e(k);
if abs(b) > abs(a)

tg ¼ a/b;
tt ¼ sqrt(1+tg^2);
sn ¼ 1/tt;
cn ¼ tg*sn;
tm3 ¼ tt*b;

else
tg ¼ b/a;
tt ¼ sqrt(1+tg^2);
cn ¼ 1/tt;
sn ¼ tg*cn;
tm3 ¼ tt*a;

end
tm4 ¼ cn*f(k)-sn*tm1;
tm1 ¼ cn*tm1+sn*f(k);
t2 ¼ -sn*s(k+1);
s(k+1) ¼ cn*s(k+1);
a ¼ tm2;
b ¼ tm4;
if abs(b) > abs(a)

tg ¼ a/b;
tt ¼ sqrt(1+tg^2);
sn ¼ 1/tt;
cn ¼ tg*sn;
tm2 ¼ tt*b;

else
tg ¼ b/a;
tt ¼ sqrt(1+tg^2);
cn ¼ 1/tt;
sn ¼ tg*cn;
tm2 ¼ tt*a;

end
s(k) ¼ cn*s(k)+sn*t2;
a ¼ tm2;
b ¼ tm1;
if abs(b) > abs(a)

24 3 QR Algorithm

tg ¼ a/b;
tt ¼ sqrt(1+tg^2);
sn ¼ 1/tt;
cn ¼ tg*sn;
tm2 ¼ tt*b;

else
tg ¼ b/a;
tt ¼ sqrt(1+tg^2);
cn ¼ 1/tt;
sn ¼ tg*cn;
tm2 ¼ tt*a;

end
tm1 ¼ sn*tm3;
tm3 ¼ cn*tm3;
t1 ¼ cn*s(k)+sn*s(k+1);
s(k+1) ¼ -sn*s(k)+cn*s(k+1);
s(k) ¼ t1;
a ¼ tm2;
if abs(a) < 1

tt ¼ sqrt(1+a^2);
sn ¼ 1/tt;
cn ¼ a*sn;
f(k) ¼ tt;

else
tg ¼ 1/a;
tt ¼ sqrt(1+tg^2);
cn ¼ 1/tt;
sn ¼ tg*cn;
f(k) ¼ tt*a;

end
e(k) ¼ (-cn*tm1+2*sn)/f(k);
tm1 ¼ -2*cn-sn*tm1;
if k < n-3

tm2 ¼ tm3;
tm3 ¼ cn;

else
end
t1 ¼ cn*s(k)+sn*s(k+2);
s(k+2) ¼ -sn*s(k)+cn*s(k+2);
s(k) ¼ t1/f(k);
f(k) ¼ 1/(f(k)^2);

end
a ¼ tm3;
b ¼ f(n-2);
if abs(b) > abs(a)

3.3 MATLAB Implementation 25

tg ¼ a/b;
tt ¼ sqrt(1+tg^2);
cn ¼ tg/tt;
tm3 ¼ tt*b;

else
tg ¼ b/a;
tt ¼ sqrt(1+tg^2);
cn ¼ 1/tt;
tm3 ¼ tt*a;

end
s(n-2) ¼ cn*s(n-2);
a ¼ tm3;
b ¼ tm1;
if abs(b) > abs(a)

tg ¼ a/b;
tt ¼ sqrt(1+tg^2);
sn ¼ 1/tt;
cn ¼ tg*sn;
tm3 ¼ tt*b;

else
tg ¼ b/a;
tt ¼ sqrt(1+tg^2);
cn ¼ 1/tt;
sn ¼ tg*cn;
tm3 ¼ tt*a;

end
s(n-2) ¼ cn*s(n-2)+sn*s(n-1);
a ¼ tm3;
if abs(a) < 1

tt ¼ sqrt(1+a^2);
sn ¼ 1/tt;
cn ¼ a*sn;
f(n-2) ¼ tt;

else
tg ¼ 1/a;
tt ¼ sqrt(1+tg^2);
cn ¼ 1/tt;
sn ¼ tg*cn;
f(n-2) ¼ tt*a;

end
s(n-2) ¼ (cn*s(n-2)+sn*s(n))/f(n-2);
f(n-2) ¼ 1/(f(n-2)^2);
s ¼ s(1:n-2);
s(n-3) ¼ s(n-3)+e(n-3)*s(n-2);
for k ¼ n-4:-1:1

26 3 QR Algorithm

s(k) ¼ s(k)+e(k)*s(k+1)-f(k)*s(k+2);
end
g2 ¼ f(n-2);
d ¼ e(n-3)*g2;
tr2 ¼ d;
g1 ¼ f(n-3)+e(n-3)*d;
tr1 ¼ g2+g1;
tr3 ¼ 0;
for j ¼ n-4:-1:n-nc

p ¼ e(j)*d-f(j)*g2;
tr3 ¼ tr3+p;
d ¼ e(j)*g1-f(j)*d;
tr2 ¼ tr2+d;
g2 ¼ g1;
g1 ¼ f(j)*(1-p)+e(j)*d;
tr1 ¼ tr1+g1;

end
p ¼ e(n-nc-1)*d-f(n-nc-1)*g2;
d ¼ e(n-nc-1)*g1-f(n-nc-1)*d;
tr ¼ 6*(2*tr1-rmndr*g1)-8*(2*tr2+(1-rmndr)*d). . .

+2*(2*tr3+(2-rmndr)*p);
s ¼ diff([0; 0; s; 0; 0],2);
score ¼ n*(s’*s)/tr^2;
end

end

For large n, if m values of s are used to minimize the GCV score, splineqr
requires about n + 63.5mn additions and multiplications, 11mn divisions, and 4mn
square roots, whereas csplineopt requires about 3n + 23.5mn additions and

multiplications and mn divisions. Consequently, we expect splineqr to be signifi-

cantly slower than csplineopt. On the other hand, splineqr uses 32n bytes of

memory compared to 40n bytes for csplineopt.

Table 3.1 RMS error for n ¼ 106

signal
SNR¼20 dB
csplineopt

SNR¼20 dB
splineqr

SNR¼40 dB
csplineopt

SNR¼40 dB
splineqr

x1 1.7x10-2 1.7x10-2 2.2x10-3 2.2x10-3

x2 6.1x10-3 7.0x10-3 6.3x10-4 7.3x10-4

x3 8.9x10-3 1.0x10-2 9.0x10-4 1.1x10-3

3.3 MATLAB Implementation 27

3.4 Monte Carlo Simulations

The simulation regime described in Section 2.4 was used to compare splineqr to
csplineopt in terms of speed and accuracy. For all cases, csplineopt was about four
times faster than splineqr. For the second and third signals with n ¼ 106, csplineopt
produced a smaller RMS error than splineqr. For all other cases, the RMS errors

were the same. See Table 3.1. So other than a 20% reduction in memory use, the QR

algorithm offers no advantage over the Cholesky algorithm.

References

[1] De Hoog FR, Hutchinson MF (1987) An efficient method for calculating smoothing splines

using orthogonal transformations. Numer Math 50:311-319

[2] George A, Heath MT (1980) Solution of sparse linear least squares problems using Givens

rotations. Linear Algebra Appl 34:69-83

[3] Cox MG (1981) The least squares solution of overdetermined linear equations having band or

augmented band structure. IMA J Numer Anal 1:3-22

[4] Elden L (1984) An algorithm for the regularization of ill-conditioned banded least squares

problems. SIAM J Sci Stat Comput 5:237-254

[5] Golub GH, Van Loan CF (1996) Matrix computations. The Johns Hopkins University Press,

Baltimore

[6] Stewart GW (1998) Matrix algorithms - basic decompositions. SIAM, Philadelphia

[7] Higham NJ (2002) Accuracy and stability of numerical algorithms. SIAM, Philadelphia

[8] Malcolm MA, Palmer J (1974) A fast method for solving a class of tridiagonal linear systems.

Commun. ACM 17:14-17

28 3 QR Algorithm

Chapter 4

FFT Algorithm

For a given l, the cubic spline smoother is a time-varying linear filter, but it can be

approximated by a time-invariant linear filter. It will then be amenable to frequency

domain analysis and implementation using the FFT. The FFT algorithm will be

compared to the Cholesky algorithm in terms of execution time, accuracy, and

memory use. For digital signal processing background, see [1]. Other results on

splines in the frequency domain can be found in [2].

4.1 Frequency Response of the Spline Smoother

Eq. (1.7) can be viewed as a fourth-order difference equation

ci þ ðl=6� 4Þciþ1 þ ð2l=3þ 6Þciþ2 þ ðl=6� 4Þciþ3 þ ciþ4

¼ yiþ2 � 2yiþ3 þ yiþ4; (4.1)

for 1 � i � n� 6; with left boundary conditions

2l=3þ 6ð Þc1 þ l=6� 4ð Þc2 þ c3 ¼ y1 � 2y2 þ y3;

l=6� 4ð Þc1 þ 2l=3þ 6ð Þc2 þ l=6� 4ð Þc3 þ c4 ¼ y2 � 2y3 þ y4; (4.2)

and right boundary conditions

cn�5 þ l=6� 4ð Þcn�4 þ 2l=3þ 6ð Þcn�3 þ l=6� 4ð Þcn�2 ¼ yn�3 � 2yn�2 þ yn�1;

cn�4 þ l=6� 4ð Þcn�3 þ 2l=3þ 6ð Þcn�2 ¼ yn�2 � 2yn�1 þ yn: (4.3)

Suppose we ignore the boundary conditions and consider (4.1) to be valid for all i.
We will also ignore the first two and last two equations in (1.8) and use

H.L. Weinert, Fast Compact Algorithms and Software for Spline Smoothing,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4614-5496-0_4,
The Author(s) 2013

29

si ¼ yi � ci�2 þ 2ci�1 � ci; (4.4)

for all i. Taking bilateral z-transforms of (4.1) and (4.4),

z4 þ ðl=6� 4Þz3 þ ð2l=3þ 6Þz2 þ ðl=6� 4Þzþ 1
� �

CðzÞ ¼ z2ðz� 1Þ2YðzÞ;
SðzÞ ¼ YðzÞ � z�2ðz� 1Þ2CðzÞ: (4.5)

The transfer function HðzÞ of the spline smoother is thus

HðzÞ ¼ SðzÞ
YðzÞ ¼

lz2ðzþ 4þ z�1Þ
6ðz� 1Þ4 þ lz2ðzþ 4þ z�1Þ : (4.6)

The denominator polynomial is a scaled version of (2.15). Since there are no

poles (denominator roots) on the unit circle, a frequency response HðoÞ exists and
can be obtained by replacing z in (4.6) with ejo. After some simplification,

HðoÞ ¼ lð2þ cosoÞ
12ð1� cosoÞ2 þ lð2þ cosoÞ : (4.7)

This frequency response is real and periodic with period 2p. It is also even so we
can restrict attention to the interval o 2 0; p½ �. Fig. 4.1 shows plots of HðoÞ for

various l.
We see thatHðoÞ is nonnegative, achieves a maximum value of one at the origin,

and decreases monotonically with increasing frequency (no ripples). Furthermore,

lim
l!1

HðoÞ ¼ 1; 8o;

lim
l!0

HðoÞ ¼
1; o ¼ 0

0; o 6¼ 0

(
;

(4.8)

H pð Þ ¼ l
lþ 48

: (4.9)

For small o,

H oð Þ ffi 1� l�1o4: (4.10)

which implies that the first three derivatives of HðoÞ are zero at the origin.

Consequently, the smoother passes cubic polynomials unchanged.

The 3 dB cutoff frequency (or bandwidth) in pi units, plotted in Fig. 4.2, is

o0

p
¼ p�1cos�1 1þ 1

24
�l�

ffi
�l �lþ 144ð Þ

p� �� �
; � ¼

ffiffiffi
2

p
� 1; (4.11)

30 4 FFT Algorithm

Fig. 4.2 Bandwidth

Fig. 4.1 Frequency response

4.1 Frequency Response of the Spline Smoother 31

which is well-defined as long as l � 48
ffiffiffi
2

p þ 1
� �

, in which case the smoother is a

(zero-phase) lowpass filter. Otherwise, it is essentially an allpass filter. To a very

good degree of approximation,

o0

p
ffi 0:2554l1=4: (4.12)

The inverse relation to (4.11) is

l ¼ 12
ffiffiffi
2

p þ 1
� �

1� coso0ð Þ2
2þ coso0

: (4.13)

4.2 Computing the Spline

Wewill compute the spline by finding its discrete Fourier transform (DFT) and then

performing an inverse DFT. The DFT sequence of the spline is

Sk ¼ HkYk; 1 � k � n; (4.14)

where Yk is the DFT sequence of the measurements and

Hk ¼ H k � 1ð Þ2p=nð Þ: (4.15)

Since the measurements and the spline are real-valued, their DFTs exhibit conju-

gate symmetry:

Sk ¼ S�n�kþ2;

Yk ¼ Y�
n�kþ2;

(4.16)

for 2 � k � n: This symmetry will reduce execution time and memory use since all

frequency domain computations can be performed with vectors of length n0, where

n0 ¼ floor n=2ð Þ þ 1: (4.17)

4.3 Computing the GCV Score

The GCV score (1.10) can be computed using frequency domain quantities. To

evaluate the numerator use (1.8), Parseval’s relation, and (4.14):

n�1cTMMTc ¼ n�1
Xn

i¼1

yi � sið Þ2 ¼ n�2
Xn

i¼1

Yi � Sij j2 ¼ n�2
Xn

i¼1

1� Hið ÞYij j2:

(4.18)

32 4 FFT Algorithm

In view of (4.16) and the fact that H1 ¼ 1;

n�1cTMMTc ¼ n�2 2
Xn0

i¼2

1� Hið ÞYij j2 � g 1� Hn0ð ÞYn0j j2
 !

: (4.19)

where

g ¼ 1; n even

0; n odd

(
: (4.20)

The matrix MTA�1M in the denominator of (1.10) maps y to y – s. With the

approximations discussed in Section 4.1, the spline can be written as the

convolution

si ¼
Xn

k¼1

hi�kyk; (4.21)

where the impulse response sequence hi is the inverse Fourier transform of the

frequency responseH oð Þ:The impulse response sequence has infinite extent, and it

is real-valued and even. In matrix form, (4.21) becomes

s ¼

h0 h1 h2 � � � hn�1

h1 h0 h1
. .
. ..

.

h2 h1 h0
. .
.

h2
..
. . .

. . .
. . .

.
h1

hn�1 � � � h2 h1 h0

2

6666664

3

7777775
y: (4.22)

Hence,

n�1trace MTA�1M
� � ¼ 1� h0 ¼ 1� 2pð Þ�1

ð2p

0

H oð Þ do: (4.23)

Since

Hk ¼ Hn�kþ2; (4.24)

for 2 � k � n; the trapezoidal integration method gives

4.3 Computing the GCV Score 33

n�1trace MTA�1M
� � ffi n�1 2

Xn0

i¼2

1� Hið Þ � g 1� Hn0ð Þ
 !

: (4.25)

To summarize,

GCV lð Þ ffi
2
Pn0
i¼2

1� Hið ÞYij j2 � g 1� Hn0ð ÞYn0j j2

2
Pn0
i¼2

1� Hið Þ � g 1� Hn0ð Þ
� �2

: (4.26)

An exact formula for the GCV score appears (modulo a typographical error)

in [3], but the formula is numerically unreliable when l is near 24.

4.4 MATLAB Implementation

The FFT algorithm is implemented in the MATLAB function splinefft. The input

is the column vector of measurements y. The output is the column vector of spline

values s. The minimization of the GCV score is carried out by the MATLAB

function fminbnd. All computations that must be repeated when the smoothing

parameter is changed are in the nested function gcvfft. After fminbnd terminates,

an extra call to gcvfft is necessary to compute, using the optimal s, those quantities
that determine the spline. The total memory requirement is 28n bytes, compared

to 24n or 40n for splinechol.
function s ¼ splinefft(y)
%
n ¼ length(y);
cw ¼ cos(0:2*pi/n:pi)’;
cw ¼ (2+cw)./(12*((1-cw).^2));
s ¼ fft(y);
s ¼ s(1:length(cw));
gamma ¼ ~mod(n,2);
sig ¼ fminbnd(@gcvfft, 0, 1);
gcvfft(sig);
m ¼ floor((n+1)/2);
s ¼ s-HE;
s ¼ ifft([s;conj(s(m:-1:2))]);
%

function score ¼ gcvfft(sig)
%

lam ¼ 4*sig^4/(1-sig^2);
HE ¼ 1./(1+lam*cw); % 1-H
tr ¼ 2*sum(HE)-gamma*HE(end);

34 4 FFT Algorithm

HE ¼ s.*HE; % Y-S
score ¼ (2*(HE’*HE)-gamma*abs(HE(end))^2)/tr^2;
end

end

4.5 Monte Carlo Simulations

The estimation accuracy of the time-domain function splinechol and the frequency-
domain function splinefft were compared for the same three signals described

in Section 2.4. Interestingly, the approximations used in splinefft do not significantly
affect the RMSE. Sometimes splinechol is a little more accurate, and sometimes

thereverse is true. As for execution time, splinefft is never slower than splinechol.
When n is a large power of two, splinefft is about five times faster than splinechol,
independently of signal type or SNR. Tables 4.1 and 4.2 show examples. When n is
not a power of two, the speed advantage of splinefft is not as great.

In summary, if one compares the Cholesky, QR, and FFT algorithms for

continuous spline smoothing on the basis of speed, memory use, and estimation

accuracy, it is clear that the FFT algorithm is the best option.

References

[1] Manolakis DG, Ingle VK (2011) Applied digital signal processing. Cambridge University

Press, New York

[2] Unser M, Blu T (2007) Self-similarity: part 1-splines and operators. IEEE Trans Signal Process

55:1352–1363

[3] De Nicolao G, Ferrari-Trecate G, Sparacino G (2000) Fast spline smoothing via spectral

factorization concepts. Automatica 36:1733–1739

Table 4.1 Execution

time (sec.) for

n ¼ 220 ¼ 1,048,576

signal splinechol splinefft

x1 1.1 0.23

x2 1.4 0.27

x3 1.5 0.28

Table 4.2 Execution

time (sec.) for

n ¼ 223 ¼ 8,388,608

signal splinechol splinefft

x1 6.1 1.3

x2 6.4 1.3

x3 6.4 1.3

References 35

Chapter 5

Discrete Spline Smoothing

In this chapter we investigate Cholesky and FFT algorithms for discrete

cubic spline smoothing, and we compare the performance of the continuous and

discrete smoothers. Henderson [1] was the first to use Cholesky factorization for the

discrete problem.

5.1 The Discrete Problem

In the discrete problem, the integral in the cost functional (1.2) is replaced by the

sum of squared second differences:

x
Xn

i¼1

yi � u i=nð Þð Þ2 þ
Xn�2

i¼1

u iþ 2ð Þ=nð Þ � 2u iþ 1ð Þ=nð Þ þ u i=nð Þð Þ2: (5.1)

In matrix form this becomes

x y� uð ÞT y� uð Þ þ uTMTMu: (5.2)

The minimizer s of (5.2) satisfies

Ac ¼ xI þMMT
� �

c ¼ My; (5.3)

s ¼ y�MTc: (5.4)

H.L. Weinert, Fast Compact Algorithms and Software for Spline Smoothing,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4614-5496-0_5,
The Author(s) 2013

37

When n ¼ 8 for example,

A ¼

xþ 6 �4 1 0 0 0

�4 xþ 6 �4 1 0 0

1 �4 xþ 6 �4 1 0

0 1 �4 xþ 6 �4 1

0 0 1 �4 xþ 6 �4

0 0 0 1 �4 xþ 6

2

6666664

3

7777775
: (5.5)

As in the continuous case, A is positive definite, Toeplitz, and pentadiagonal.

5.2 Cholesky Algorithm

The Cholesky algorithm (2.5)-(2.14) is valid for the discrete case as long as the first

equation in (2.7) is changed to

a0 ¼ xþ 6; a1 ¼ 4: (5.6)

The polynomial whose roots determine the number of iterations required for

convergence is now

z4 � 4z3 þ xþ 6ð Þz2 � 4zþ 1: (5.7)

Eq. (2.17) is still valid, but (2.18) must be modified slightly:

N1 ¼
ceil 26x�1=4

� �
; x � 100

8; x> 100

8
<

: : (5.8)

See Fig. 5.1 and Table 5.1. The GCV score can be computed exactly as detailed in

Section 2.2.

The MATLAB function dsplinechol implements the discrete Cholesky

algorithm.

function s ¼ dsplinechol(y)
%
n ¼ length(y);
nc ¼ ceil(n/2);
rmndr ¼ rem(n,2);
w ¼ diff(y,2);
sig ¼ fminbnd(@dgcv, 0, 1);
dgcv(sig);

38 5 Discrete Spline Smoothing

s ¼ y-s;
%

function score ¼ dgcv(sig)
%

s ¼ zeros(n-2,1);
xi ¼ 4*sig^4/(1-sig^2);
a0 ¼ 6+xi;
if xi > 100

N ¼ 8;
else

N ¼ ceil(26*xi^-.25);
end
if N > n-5 % No truncation

e ¼ zeros(1,n-2);
f ¼ zeros(1,n-2);
f(1) ¼ 1/a0;
s(1) ¼ f(1)*w(1);
e(1) ¼ 4*f(1);
f(2) ¼ 1/(a0-4*e(1));
s(2) ¼ f(2)*(w(2)+4*s(1));
mu ¼ 4-e(1);
e(2) ¼ mu*f(2);
for k ¼ 3:n-2

f(k) ¼ 1/(a0-mu*e(k-1)-f(k-2));
s(k) ¼ f(k)*(w(k)+mu*s(k-1)-s(k-2));
mu ¼ 4-e(k-1);
e(k) ¼ mu*f(k);

end
s(n-3) ¼ s(n-3)+e(n-3)*s(n-2);
for k ¼ n-4:-1:1

s(k) ¼ s(k)+e(k)*s(k+1)-f(k)*s(k+2);
end
g2 ¼ f(n-2);
tr1 ¼ g2;
d ¼ e(n-3)*g2;
tr2 ¼ d;
g1 ¼ f(n-3)+e(n-3)*d;
tr1 ¼ tr1+g1;
tr3 ¼ 0;
for k ¼ n-4:-1:n-nc

Table 5.1 Number of

iterations for convergence
x 10-12 10-10 10-8 10-6 10-4 10-2 1 100

N 25977 8215 2598 822 260 82 26 8

N1 26000 8222 2600 823 260 83 26 9

5.2 Cholesky Algorithm 39

p ¼ e(k)*d-f(k)*g2;
tr3 ¼ tr3+p;
d ¼ e(k)*g1-f(k)*d;
tr2 ¼ tr2+d;
g2 ¼ g1;
g1 ¼ f(k)*(1-p)+e(k)*d;
tr1 ¼ tr1+g1;

end
p ¼ e(n-nc-1)*d-f(n-nc-1)*g2;
tr3 ¼ tr3+p;
d ¼ e(n-nc-1)*g1-f(n-nc-1)*d;
tr2 ¼ tr2+d;

else % Truncate e,f iterations
e ¼ zeros(1,N);
f ¼ zeros(1,N);
f(1) ¼ 1/a0;
s(1) ¼ f(1)*w(1);
e(1) ¼ 4*f(1);
f(2) ¼ 1/(a0-4*e(1));
s(2) ¼ f(2)*(w(2)+4*s(1));
mu ¼ 4-e(1);
e(2) ¼ mu*f(2);
for k ¼ 3:N

f(k) ¼ 1/(a0-mu*e(k-1)-f(k-2));
s(k) ¼ f(k)*(w(k)+mu*s(k-1)-s(k-2));
mu ¼ 4-e(k-1);
e(k) ¼ mu*f(k);

end
flim ¼ f(N);
elim ¼ e(N);
mu ¼ 4-elim;
for k ¼ N+1:n-2

s(k) ¼ flim*(w(k)+mu*s(k-1)-s(k-2));
end
s(n-3) ¼ s(n-3)+elim*s(n-2);
for k ¼ n-4:-1:N

s(k) ¼ s(k)+elim*s(k+1)-flim*s(k+2);
end
for k ¼ N-1:-1:1

s(k) ¼ s(k)+e(k)*s(k+1)-f(k)*s(k+2);
end
g2 ¼ flim;
tr1 ¼ g2;
d ¼ elim*g2;
tr2 ¼ d;
g1 ¼ flim+elim*d;

40 5 Discrete Spline Smoothing

tr1 ¼ tr1+g1;
tr3 ¼ 0;

if N < nc-1 % Truncate g,d,p iterations
for k ¼ 3:N

p ¼ elim*d-flim*g2;
tr3 ¼ tr3+p;
d ¼ elim*g1-flim*d;
tr2 ¼ tr2+d;
g2 ¼ g1;
g1 ¼ flim*(1-p)+elim*d;
tr1 ¼ tr1+g1;

end
tr1 ¼ tr1+(nc-N-1)*g1;
tr2 ¼ tr2+(nc-N)*d;
tr3 ¼ tr3+(nc-N)*p;

else % Don’t truncate g,d,p iterations
for k ¼ n-4:-1:N

p ¼ elim*d-flim*g2;
tr3 ¼ tr3+p;
d ¼ elim*g1-flim*d;
tr2 ¼ tr2+d;
g2 ¼ g1;
g1 ¼ flim*(1-p)+elim*d;
tr1 ¼ tr1+g1;

end
for k ¼ N-1:-1:n-nc

p ¼ e(k)*d-f(k)*g2;
tr3 ¼ tr3+p;
d ¼ e(k)*g1-f(k)*d;
tr2 ¼ tr2+d;
g2 ¼ g1;
g1 ¼ f(k)*(1-p)+e(k)*d;
tr1 ¼ tr1+g1;

end
p ¼ e(n-nc-1)*d-f(n-nc-1)*g2;
tr3 ¼ tr3+p;
d ¼ e(n-nc-1)*g1-f(n-nc-1)*d;
tr2 ¼ tr2+d;

end
end
tr ¼ 6*(2*tr1-rmndr*g1)-8*(2*tr2-(1+rmndr)*d). . .

+2*(2*tr3-rmndr*p);
s ¼ diff([0; 0; s; 0; 0],2);
score ¼ n*(s’*s)/tr^2;
end

end

5.2 Cholesky Algorithm 41

5.3 FFT Algorithm

Starting with (5.3)-(5.4) and proceeding as in Section 4.1, we find that the discrete

spline smoother has frequency response (see Fig. 5.2)

H oð Þ ¼ x

4 1� cosoð Þ2 þ x
: (5.9)

This frequency response has all the properties of the continuous case except that

H pð Þ ¼ x
xþ 16

; (5.10)

and the cutoff frequency in pi units is now (see Fig. 5.3)

o0

p
¼ p�1cos�1 1� 1

2

ffiffiffiffiffi
�x

p� �
; � ¼

ffiffiffi
2

p
� 1; (5.11)

Fig. 5.1 Number of iterations for convergence

42 5 Discrete Spline Smoothing

Fig. 5.2 Frequency response

Fig. 5.3 Bandwidth

5.3 FFT Algorithm 43

which is well-defined as long as x � 16
ffiffiffi
2

p þ 1
� �

: Eq. (5.11) can be approximated

by

o0

p
ffi 0:2554x1=4; (5.12)

and the inverse relation to (5.11) is

x ¼ 4
ffiffiffi
2

p
þ 1

� �
1� coso0ð Þ2: (5.13)

The spline and the numerator of the GCV score are computed as in Sections 4.2

and 4.3. For the denominator of the GCV score, we can avoid approximate

integration of the frequency response since

n�1trace MTA�1M
� � ¼ 1� h0; (5.14)

and [2]

h0 ¼ s
2� s2

; (5.15)

where s and x are related by

x ¼ 4s4

1� s2
: (5.16)

Consequently,

GCV xð Þ ¼
2
Pn0

i¼2

1� Hið ÞYij j2 � g 1� Hn0ð ÞYn0j j2

n 1� h0ð Þð Þ2 : (5.17)

The MATLAB function dsplinefft implements the discrete FFT algorithm.

The total memory requirement is 28n bytes.

function s ¼ dsplinefft(y)
%
n ¼ length(y);
cw ¼ cos(0:2*pi/n:pi)’;
cw ¼ 4*((1-cw).^2);
s ¼ fft(y);
s ¼ s(1:length(cw));
gamma ¼ ~mod(n,2);
sig ¼ fminbnd(@gcvfftd, 0, 1);
gcvfftd(sig);

44 5 Discrete Spline Smoothing

m ¼ floor((n+1)/2);
s ¼ s-E; % Y-(Y-S)
s ¼ ifft([s;conj(s(m:-1:2))]);
%

function score ¼ gcvfftd(sig)
%

xi ¼ 4*sig^4/(1-sig^2);
E ¼ s.*(cw./(xi+cw)); % Y-S
tr ¼ 1-sig/(2-sig^2);
score ¼ (2*(E’*E)-gamma*abs(E(end))^2)/(n*tr)^2;
end

end

5.4 Discrete Versus Continuous

As in the continuous case, dsplinefft is about five times faster than dsplinecholwhen
n is a large power of two, and they have roughly the same estimation accuracy

and memory use. The remaining question is which FFT algorithm is better.

Simulations show that dsplinefft and splinefft have the same accuracy and memory

use, but dsplinefft is about 10% faster and is thus the best algorithm for cubic spline

smoothing. By using a different approximation to the discrete smoothing spline,

Garcia [3] developed a frequency domain algorithm based on the discrete

cosine transform. While it is just as accurate as dsplinefft, it takes three times

longer to execute.

References

[1] Henderson R (1925) Further remarks on graduation. Trans Actuar Soc Am 26:52–57

[2] Weinert HL (2007) Efficient computation for Whittaker-Henderson smoothing. Comput Stat

Data Anal 52:959–974

[3] Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing

values. Comput Stat Data Anal 54:1167–1178

References 45

	Fast Compact Algorithms and Software for Spline Smoothing
	Contents
	Chapter 1: Introduction
	1.1 The Continuous Problem
	1.2 The Solution
	1.3 Choosing the Smoothing Parameter
	1.4 A Look Ahead
	References

	Chapter 2: Cholesky Algorithm
	2.1 Normalized Cholesky Factorization
	2.2 Generalized Cross Validation Score
	2.3 MATLAB Implementation
	2.4 Monte Carlo Simulations
	References

	Chapter 3: QR Algorithm
	3.1 Condition Number of the Coefficient Matrix
	3.2 Least-Squares Formulation and QR Factorization
	3.3 MATLAB Implementation
	3.4 Monte Carlo Simulations
	References

	Chapter 4: FFT Algorithm
	4.1 Frequency Response of the Spline Smoother
	4.2 Computing the Spline
	4.3 Computing the GCV Score
	4.4 MATLAB Implementation
	4.5 Monte Carlo Simulations
	References

	Chapter 5: Discrete Spline Smoothing
	5.1 The Discrete Problem
	5.2 Cholesky Algorithm
	5.3 FFT Algorithm
	5.4 Discrete Versus Continuous
	References

