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Preface

The origins of this book date back to the 1990s when we co-taught a semester-long
advanced inference course. Our goal then and now is to give an accessible version of
classical likelihood inference plus modern topics like M-estimation, the jackknife,
and the bootstrap. The last chapter on classical permutation and rank methods is
not “modern” but certainly is timeless. Our worldview is that models are important
for statistical framing of scientific questions, but the M-estimation and resampling
approaches facilitate robust inference in the face of possible misspecification. The
Bayesian chapter is a newer addition intended to give a solid introduction to an
increasingly important general approach. Most of the book, however, is clearly
frequentist.

A typical semester course consists of Chaps. 1–6 plus selections from Chaps.
7–12. We have sprinkled R code throughout the text and also in problems.

We expect students to have taken a first-year graduate level mathematical
statistics course from a text like Statistical Inference by Casella and Berger. But
measure theory is not a requirement and only shows up briefly when discussing
almost sure convergence in Chap. 5 and in the Chap. 2 appendix on exponential
families.

Although intended for second-year graduate students, many of the chapters can
serve as references for researchers. In particular, Chap. 9 on Monte Carlo studies,
Chap. 10 on the jackknife, and Chap. 12 on permutation methods contain results and
summaries that are not easily accessible elsewhere.

We thank many generations of students for careful reading and constructive
suggestions.

Raleigh, NC, USA Dennis D. Boos
Leonard A. Stefanski
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Introductory Material



Chapter 1
Roles of Modeling in Statistical Inference

1.1 Introduction

A common format for a course in advanced statistical inference is to accept as
given a parametric family of statistical or probability models and then to proceed
to develop what is an almost exclusively model-dependent theory of inference. The
usual focus is on the development of efficient estimators of model parameters and
the development of efficient (powerful) tests of hypotheses about those unknown
parameters.

The model and the likelihood implied by it, along with maximum likelihood for
parameter estimation and likelihood ratio statistics for hypothesis testing, provide
an integrated and coherent approach to inference that is applicable to a wide variety
of problems.

For example, a simple parametric family of models for a sample of independent
observations Y1; : : : ; Yn is that each observation Yi has density f .yI�/ belonging
to the normal (Gaussian) location-scale family

ff .yI�/ D 1p
2��

exp

�

� .y � �/2
2�2

�

; �1 < � < 1; 0 < � < 1g: (1.1)

More concise language is to say that Y1; : : : ; Yn are independent and identically
distributed (iid) from the N.�; �2/ family. The likelihood of Y D .Y1; : : : ; Yn/

T is
L.� jY / D Qn

iD1 f .Yi I�/ leading to maximum likelihood estimators b� D Y and
b� D fn�1Pn

iD1.Yi � Y /2g1=2. The likelihood ratio statistic for H0 W � D �0 is
equivalent to the square of the usual one-sample t statistic.

The model/likelihood package is straightforward and so easy to use that it is
often forgotten that it is a wholly self-contained and self-justifying theory. Once the
probabilistic model is fully specified, it is, in a wide variety of cases (although not
all), a foregone conclusion that maximum likelihood estimators are most efficient
and that likelihood ratio tests are most powerful, at least asymptotically. Thus
it should be remembered that the mathematical optimality of likelihood-based
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4 1 Roles of Modeling in Statistical Inference

procedures (maximum likelihood estimation, likelihood ratio testing) is almost
always dependent on the correctness of the assumed model.

In applications it is generally recognized that all models are approximations, and
that proposed models are tentative at best, and often subject to reevaluation and
modification throughout the course of the data analysis. Given the tentative nature
of modeling in applications, it would seem logical to regard as equally suspect
the attendant statistical theory that itself is often totally dependent on the assumed
model through the likelihood.

A healthy skepticism of an assumed model and the inferences dictated by it is
only possible with a thorough understanding of the various parts of a model and their
roles in the analysis of the data, especially with regard to inferences of a probabilistic
(as opposed to descriptive) nature, e.g., statements of precision (standard errors) and
significance (p-values) or their Bayesian counterparts. Understanding the various
parts of a model and their roles in data analysis is also the first step toward the
development and understanding of methods of inference other than those based on
a full likelihood.

Although these other approaches include such methods as conditional likelihood,
partial likelihood, and quasi likelihood—methods whose very names suggest their
less-than-full-likelihood flavor—they also include methods that are combinations of
likelihood-dictated procedures and non-model-based (also called design-based or
what are essentially method-of-moments) methods of inference. The key feature of
these latter methods is that a model may be used for certain aspects of the data
analysis, e.g., the definition and determination of estimates of those parameters
of primary importance or the construction of a test statistic, whereas the (often
secondary) problem of assessing precision of an estimate, or assigning a significance
level to a test statistic, may be handled with non-model-based methods including
method-of-moments, and resampling methods such as the jackknife and bootstrap.

It is important to understand the advantages and disadvantages of deviating
from a full-likelihood specification, or from a complete exploitation of the assumed
likelihood, for only then is it possible to understand the full implication of model
assumptions on conclusions, and just as importantly, to tailor analyses to specific
problems where a hybrid analysis may be more desirable than a totally likelihood-
based analysis. The starting point for developing such an understanding is the
recognition of the various parts of a statistical model and their roles in statistical
inference.

1.2 The Parts of a Model

We start by noting the impossibility of the task of dissecting statistical models into
individual distinct components in general. Nevertheless it is often the case that upon
taking a very broad perspective of a model, it is possible to roughly classify certain
parts of a model into two or more components depending on their importance or
degree of relevance to the data analysis (Cox and Snell 1981, pp. 17–18).
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In order to understand the classification it is useful to take a step back and
consider the scientific investigation producing the data to be analyzed. It is seldom
the case that an experiment, survey, observational study, etc., is undertaken for the
stated purpose of fitting a statistical model to the data. Remember that a statistician’s
job is to analyze data, not models. There is almost always a more fundamental
question motivating the research and data collection, e.g., what is the nature of the
dependence of a response variate on a predictor variate (regression), or what is the
nature of the relationship between two or more variates when there is no distinction
as to response or predictor (correlation).

Bearing in mind that the global objective of data analysis is to address the
questions motivating the research, it is seen that statistical modeling is just a means
for accomplishing this task. It is not surprising then that the primary objective of
a statistical model is to address, as directly as possible, the research questions of
greatest interest. Thus for example if an experiment is conducted to learn how
a response variate Y depends on a predictor X , the most important part of the
statistical model is the specified form of the regression function E.Y jX D x/.
If, as is often adequate in applied work, this specification is linear in the predictor
variable,

E.Y jX D x/ D ˇ0 C ˇ1x; (1.2)

then the motivating research question is for the most part satisfactorily answered
once sensible and defensible estimates of ˇ0 and ˇ1 are obtained. There may in
fact be no need to imbed the regression model (1.2) in a probabilistic model. Least
squares estimation, for example, is a sensible and defensible method of obtaining
regression estimates quite apart from its connection to normal theory likelihood
methods.

However, in many scientific investigations the very notion of “defensible” evokes
the notion of reproducibility, which is fundamental to the experimental method. Very
few scientific investigations are of a nature where exact reproducibility is possible,
and thus some measure of the precision of the results is required. The formulation of
an appropriate statistical model for the data provides an objective means of obtaining
such measures of precision.

The most common statistical model for data fXi; Yig, encompassing the linear
regression specification (1.2) is the normal theory, simple linear regression model,

Yi D ˇ0 C ˇ1Xi C ei e1; : : : ; en are iid N.0; �2/: (1.3)

The distributional assumptions on the equation errors e1; : : : ; en serve foremost
to provide a means of assessing the precision of the estimates of ˇ0 and ˇ1, or
in assigning significance to hypotheses about these regression parameters. These
assumptions may also serve to “fine tune” the method of estimation in some cases.
For example, the homogeneous error structure in (1.3, p. 5) indicates unweighted,
or ordinary least squares estimation, whereas a heterogeneous error structure would
suggest consideration of some form of weighted least squares.

Insofar that it is more important to get a reasonable representation and estimate
of the regression function, the linear regression specification in (1.3, p. 5) is more
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important than the distributional specification, as the latter usually has, and ideally
should have, only a secondary effect on the conclusions of the data analysis.

It is generally the case that specification of regression structure is “easier”
than specification of variation structure or distributional form. A desirable feature
of data analysis is to arrive at conclusions that are most robust (insensitive) to
those assumptions that are most likely to be misspecified (or likely to be most
misspecified).

The simple linear regression model (1.3) provides a nice example of an essen-
tially two-part model, the primary part is the regression specification; the secondary
part is the distributional specification. It should come as no surprise that in more
complicated models the distinction is not so clear-cut and that depending on
emphasis, a particular part of a model may be either primary or secondary in the
sense described above. Regression models with non-homogeneous error structures
provide a good illustration of this.

In the analysis of a regression problem, it is often noted that the variation of the
response variate around its mean is not constant, but rather increases with increasing
mean. Poisson data exhibit this feature — recall that for the Poisson distribution the
mean and variance are equal. For certain applications it is important to model this
aspect of the data quite apart from any consideration of improving estimates of the
regression function by using weighted least squares. A popular and useful model for
capturing variation of this type assumes that variance is proportional to a power of
the mean.

Thus we entertain a model with a three-tiered structure. At the first, and most
important level is the regression structure, say for simplicity the linear regression
in (1.2, p. 5). Added to this is the assumption that variation is proportional to a
power of the mean,

Var.Y jX D x/ D �2.ˇ0 C ˇ1x/
2� ; (1.4)

where � > 0 and � � 0 are additional unknown parameters. The model is completed
with the assumption that observations are independent and normally distributed.
Thus a concise specification of the full model is

Yi D ˇ0 C ˇ1Xi C �.ˇ0 C ˇ1Xi/
�ei ; e1; : : : ; en are iid N.0; 1/: (1.5)

Note that this model implies ˇ0 C ˇ1x > 0 for all possible x because only positive
numbers can be raised to fractional powers. A model like (1.5) where the variance
of the errors is not constant is called heteroscedastic (in contrast to a model with
constant or homoscedastic errors).

Although this is a very reasonable model for a large number of regression
problems, seldom is it the case that the model parameters ˇ0; ˇ1; � , and � would
be estimated from the likelihood

L.ˇ0; ˇ1; �; �/ D
n
Y

iD1

1p
2� �.ˇ0 C ˇ1Xi/�

exp

"

�fYi � .ˇ0 C ˇ1Xi/g2
2�2.ˇ0 C ˇ1Xi /2�

#

: (1.6)
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The problem with using (1.6) for estimation is that misspecification of either the
distribution of the errors, or the variance function has an adverse effect on estimation
of the regression function E.Y jX D x/ D ˇ0 C ˇ1x, the quantity most likely to
be of greatest interest. This problem is apparent from the fact that the parameters ˇ0
and ˇ1 appear in both the mean and variance function.

The model (1.5, p. 6) is an example where in general it is advised not to use the
likelihood for estimation (i.e., maximum likelihood estimation is undesirable); but,
for example, the full model may be used for the problem of setting prediction inter-
vals, or in the related problem of setting calibration intervals (interval estimation of
X0 corresponding to a “new” value of the response, say Y0).

In the preceding paragraphs we have made the distinction between those parts
of a model that are directly related to, and allow us to address, the important
research question(s) (primary part), and those parts of a model that play a secondary
role in the data analysis often by way of providing an objective assessment of
precision or significance of the important conclusions (secondary and tertiary parts).
There is a good chance that most students have encountered a logically different
model dichotomy in previous statistics courses, especially in the study of regression
models. In the simple linear regression model (1.3, p. 5) it is common to refer
to ˇ0 C ˇ1Xi as the systematic component of the model, and ei as the random
component.

With (1.3, p. 5), as with many regression models, the systematic component is
often equivalent to what we have identified as the primary part, and the random
component is our secondary part. This breakdown is not always the case as can be
seen with the heteroscedastic regression model (1.5) where it could be possible for
the variance function (1.4) to be of primary interest. From a very practical point
of view, we should be most concerned with those aspects of a model that are most
related to, and have the greatest effect on, the main conclusions drawn from the
data. Thus for many problems it is more instructive to think in terms of (and use
the terminology of) primary and secondary parts as we have defined them, if for no
other reason than to ensure that the focus of the data analysis is on those research
questions of greatest interest.

1.3 The Roles of a Model in Data Analysis

In the preceding discussion of modeling we have already mentioned the roles of a
model in connection with the various parts of a model. This section summarizes the
main points made above with respect to modeling and data analysis .

• The model provides a means of addressing research questions of interest, often
via the definition of parameters directly relevant to the research issues.

• The model usually implies a likelihood, and estimators can often be defined
by maximizing the likelihood. Thus in situations where no other method of
estimation is immediately apparent, one can always resort to modeling followed
by maximum likelihood estimation.
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• With estimates in hand, whether obtained by maximum likelihood or some other
method (e.g., method of moments), a model, again often via the likelihood,
provides a means of assessing precision of the estimates, i.e., the calculation of
standard errors of the estimates. In most cases large sample approximations are
used in the calculation of standard errors.

• Related to the calculation of standard errors (at least asymptotically) is the
determination of statistical significance, usually in the form of calculating a
p-value of a hypothesis test. Often the p-value is the frequentist probability
under a null hypothesis model of observing a test statistic that is at least as
extreme as the value of the statistic calculated from the data. In such cases it
is clear that determination of the p-value depends on the model.

In addition to its role in providing a vehicle for data analysis, a model can also
play a direct role in the scientific investigation by providing the researcher with a
simplified theoretical version of the process or phenomenon under investigation.
In effect the model serves as a manageable surrogate for the real phenomenon
in the critical assessment of existing theories or in the development of more
comprehensive theories. In this latter case it is usually true that some or even all
of the parts of the model are indicated by relevant scientific theory.

1.4 A Consulting Example

A graduate student in civil engineering came to the Statistics Department with a
modeling problem concerning flood predictions on rivers in North Carolina. His
basic question was how to best model the relationship between watershed area
and maximum flood waters that can be expected over a 100 year period at the
“gauging station” associated with each watershed. Actually, he had a possible model
in mind, but he did not know how to fit the model with the data he had. First a little
background.

At the time there were about 140 gauging stations on rivers in North Carolina
where the water level was continuously recorded. The area of the watershed that
feeds into the river before the gauging station was known, as well as the cross-
sectional area of the river at the station. Thus the flow (in gallons per second) past
each station could be determined. The hydrology literature suggested a model of the
formQ D kA��1, linearized to

logQ D log k C .� � 1/ logA; (1.7)

where Q is the 100-year maximum flow and A is the watershed area, and k and �
are unknown parameters. (Note that we use “log” for natural logarithm.)

The student had collected one data point for each of the 140 stations equal to
the maximum flow observed during the time the station had been keeping records.
However, these times ranged from 6 to 83 years, and most were between 20 and
60 years. The problem is that the observed maximum from a station having only
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10 years of data tends to be smaller than the maximum from a station having
80 years of data, which would tend to be smaller than the maximum from a station
having 100 years of data. This is problematic because the model is defined in terms
of 100-year maximum flows.

Three problems were identified to think about:

1. How should one estimate/predict the 100-year maximum flow Q for each station
given the observed data?

2. What assumptions about random errors should be added to the mean model
in (1.7)?

3. What stations should be used in fitting the regression model?

It might be worthwhile for the reader to pause for a moment and reflect on what
is the model and what are its primary and secondary parts. However, as the story
continues, we will see added complexities, and models within models.

Let us attempt to work on the first problem above, estimation of Q. After
further discussion, we discovered that at some stations we would be able to get
yearly maximum flows for the recording period. For example, at a station observed
for 36 years, we could obtain X1; : : : ; X36, where each Xi is a yearly maximum
flow rate. If we had a full 100 years of data, then we would just order the data
X.1/ � X.2/ � : : : � X.100/, and then set Q D X.100/. The problem is that we do not
have X.100/ for any stations. However, we do know something about its distribution
function

P.X.100/ � t/ D P.X1 � t; : : : ; X100 � t/ D
100
Y

iD1
P.Xi � t/ D ŒF .t/�100 ; (1.8)

where F.t/ D P.Xi � t/, the distribution function of Xi , and we have made the
assumption that all the yearly maximums are independent and identically distributed
(iid). The median of this distribution is t0 such that ŒF .t0/�

100 D 1=2, or F.t0/ D
.1=2/:01 D :993. So the median of the distribution of X.100/ is the .993 quantile of
F.t/. We might consider using an estimate of this value for Q, the maximum over
100 years.

We have reduced problem one above to estimating the .993 quantile of the
yearly maximum distribution at a station based on X1; : : : ; Xn, where n may
be considerably smaller than 100. A little reflection shows that a nonparametric
approach is not feasible because of the small sample size. Thus, we need to assume
that the yearly maxima follow some parametric distribution. A natural distribution
for maxima is the location-scale extreme value distribution

P.Xi � t/ D exp

�

� exp

�

� t � �
�

��

; �1 < t; � < 1; 0 < � < 1: (1.9)

If we set this distribution function equal to .993 and solve for t , we obtain

Q:993.�; �/ D � Œ� logf� log.:993/g�C �:
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Finally, plugging in estimates .b�;b�/ such as maximum likelihood estimates yield
Q:993.b�;b�/, our solution to problem one above.

Thus we have added an additional stage of modeling in order to get the data
needed to fit the main model (1.7, p. 8). The remaining two problems on the type of
errors to add to (1.7, p. 8), possibly correlated due to nearness in space, and which
stations to use (a statistical design question), are interesting, but we leave them for
homework or class discussion.

1.5 Notation, Definitions, Asymptotics, and Simulations

In this section we give a few definitions and asymptotic results in order to discuss
an example in the next section. More formal development of asymptotic results is
found in Chapter 5. The first subsection introduces some general language used for
models and classes of distributions.

1.5.1 Families of Distributions

A parametric model or parametric family is a set of distributions indexed by a finite
dimensional parameter �T D .�1; : : : ; �b/. Typically we use b for the dimension
but usually change to p for regression situations (to be in concert with standard
usage). We might describe a family of distributions as a set of distribution functions
fF.yI�/;� 2 �g or a set density functions ff .yI�/;� 2 �g. The normal family
defined in (1.1, p. 3) is one example. Another example is the exponential scale model
defined in terms of the kernel F.y/ D f1� exp.�y/gI.0 � y < 1/ as

fF.yI �/ D F.y=�/; 0 < � < 1g:
It is called a scale family and � is a scale parameter because the distribution function
of the rescaled �Y , for a random variable Y with distribution function F.y/, is
P.�Y � y/ D P.Y � y=�/ D F.Y=�/. The normal family in (1.1, p. 3) is a
location-scale family because it has the basic form F..y � �/=�/. A family of the
form F.y � �/ is called a location family with kernel F./.

A semiparametric family is a family of distributions indexed by a finite dimen-
sional parameter � and some infinite dimensional parameter such as an unknown
function belonging to a large class of functions. For example, a semiparametric
location family is

ff .yI�; f0/ D f0.y � �/;�1 < � < 1; f0 2 C g;
where C is the class of continuous unimodal densities, symmetric about 0, � is
the finite-dimensional parameter and f0./ is the infinite-dimensional parameter.
A semiparametric linear regression model example is Yi D xTi ˇ C ei , where the
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density of e belong to C . In contrast, a nonparametric regression model example is
Yi D g.xi /C ei , where again the density of e is in C , but the function g is assumed
to be in the class of continuous functions on Œa; b� with m continuous derivatives.

More recent nonparametric research has focused mostly on nonparametric re-
gression models, whereas classical nonparametrics involving rank and permutation
methods, also called distribution-free methods, often uses semiparametric models.
For example, in the two-independent-samples case with distribution functions F
and G, the hypotheses might be totally nonparametric H0 W F.y/ D G.y/ versus
Ha W F.y/ ¤ G.y/, where there are no restrictions on F or G. But often, one
assumes a semiparametric shift model G.y/ D F.y � 	/ and tests H0 W 	 D 0

versusH0 W 	 ¤ 0 with F is unknown.

1.5.2 Moments and Cumulants

The j th population moment of a random variable is denoted by �0
j ; for the random

variable Y ,

�0
j D E.Y j /; j D 1; 2; : : : :

Of course, for j D 1 we often follow the standard convention that E.Y / D �

instead of �0
1. The j th population central moment of a random variable is denoted

by �j ,

�j D EŒfY � E.Y /gj �; j D 1; 2; : : : :

Note that �1 � 0. Unless stated otherwise, a reference to �0
j or �j implies the

assumption that the moment exists and is finite, in other words, that

E.jY j j/ < 1 or EfjY � E.Y /jj g < 1:

The j th sample moment and sample central moment are denoted bym0
j andmj ,

m0
j D 1

n

n
X

iD1
Y
j
i and mj D 1

n

n
X

iD1
.Yi � Y /j :

The j th population cumulant of a random variable is denoted by 
j ; j D 1; 2; : : :,
assuming the defining moments exist. In terms of population moments the first four
cumulants are


1 D �0
1 D � (mean)


2 D �0
2 � �2 D �2 (variance)


3 D �0
3 � 3��0

2 � 2�3 D �3


4 D �0
4 � 4��0

3 � 3.�0
2/
2 C 12�2�0

2 � 6�4 D �4 � 3�22: (1.10)
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The only nonzero cumulants of a normal random variable are 
1 D E.Y / and

2 D var.Y /. The cumulants are derived from the cumulant generating function
k.t/ D logfm.t/g, where m.t/ is the usual moment generating function, m.t/ D
E fexp.tY /g. That is, 
j D k.j /.0/; j D 1; 2; : : :, where k.j /.t/ denotes the j th
derivative of k.t/.

When needed for clarity, an additional subscript is added to moments and
cumulants to identify the random variable, e.g., �0

Y;j is the j th moment of Y , �X;j is
the j th central moment of X , and 
W;j is the j th cumulant of W .

The ratio of moments, Skew D �3=.�2/
3=2, is called the skewness coefficient and

sometimes designated by
p

ˇ1 or �3 or ˛3. Symmetric densities such as the normal
have Skew D 0 when �3 exists. For non-symmetric densities such as the extreme
value (Skew D 1:14) and the exponential (Skew D 2), Skew measures the lack of
symmetry. Similarly, the kurtosis coefficient, Kurt D �4=�

2
2, measures tail mass

(equivalently peakedness) relative to the normal distribution for which Kurt D 3.
Other names for Kurt are ˇ2 and ˛4; the coefficient of excess is �4 D Kurt � 3. See
Ruppert (1987) for a readable exposition on kurtosis.

A third ratio of moments is the coefficient of variation, .�2/1=2=�, the standard
deviation divided by the mean. Scientists often use the coefficient of variation
because it intuitively measures variation relative to the mean, i.e., it is a relative
standard deviation.

1.5.3 Quantiles and Percentiles

For a random variable X with strictly increasing continuous distribution function
F.x/ D P.X � x/, the pth quantile (also called the 100*pth percentile) is the
x value �p that satisfies F.�p/ D p, or simply �p D F�1.p/. For example, the
standard exponential distribution function is F.x/ D 1 � exp.�x/, x � 0. Thus,
solving F.�p/ D 1 � exp.��p/ D p leads to �p D � log.1 � p/. At p D 0:2,
�0:2 D � log.1 � 0:2/ D 0:223.

Discrete random variables have discontinuous F , and even continuous F can
have intervals over which F is constant. In these cases we need a suitable definition
of F�1 to define quantiles. For any distribution function F , a definition of F�1 that
covers all possible cases is

F�1.t/ D inffy W F.y/ � tg; (1.11)

where inf D infimum is the greatest lower bound of the set. This inverse F �1.t/
is left-continuous and is the same as the usual inverse of a function when F is
continuous and strictly increasing. Figure 1.1 illustrates definition (1.11) using a
modification to the standard exponential distribution function. Basically, F.x/ D
1 � exp.�x/ has been modified between 0.4 and 1.5 to have a jump at x D 0:4

and a flat spot between x D � log.1 � :8/ D 1:09 and x D 1:5. To get an
inverse value at p, we move horizontally to the right at height p until we reach
F.x/ and then project down to the x axis. At p D 0:2, �0:2 is the usual exponential
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Fig. 1.1 Modified standard exponential distribution function on left with quantiles at p D
.0:2; 0:5; 0:8/ added on right

quantile F �1.0:2/ D � log.1 � 0:2/ D 0:223 because F.x/ D 1 � exp.�x/ on the
first portion of the curve. But at p D 0:5 (actually for any p 2 Œ0:33; 0:60�), the
horizontal dashed line intersects the vertical line at x D 0:4 and thus F�1.p/ D 0:4.
Perhaps the most non-intuitive case is the flat spot at p D 0:8. Any x in the interval
where F.x/ D 0:8 might have been used as the quantile, but the definition above
chooses the leftmost x of the flat region to be F�1.0:8/ D 1:09.

Moving to a sample, X1; : : : ; Xn, there are numerous definitions of a sam-
ple pth quantile. The simplest approach is to use F �1

n .p/, where Fn.x/ D
n�1Pn

iD1 I.Xi � x/ is the sample distribution function. The sample distribu-
tion function Fn is the nonparametric maximum likelihood estimator of F (see
Section 2.2.6, p. 45) and has many desirable properties. However, the sample
distribution function has jumps at the distinct sample values and is flat in-between.
Thus, F�1

n .p/ is the [np]th ordered sample value where [�] is the greatest integer
function, whereas most other definitions are weighted averages of two adjacent
ordered sample values. The R function quantile allows nine options based on
the discussion in Hyndman and Fan (1996).

1.5.4 Asymptotic Normality and Some Basic
Asymptotic Results

Suppose that b� is a b-dimensional estimator such that for some sequence of

nonrandom p-vectors, f�ng1
nD1, the centered and scaled statistic n1=2

�

b� � �n
�

converges in distribution to a Nb.0;˝/ distribution, that is, a b-variate normal
distribution with mean 0 and covariance matrix˝ . “Convergence in distribution” to
a b-variate normal distribution means that

P.n1=2.b� � �n/ � x/ �! P.X � x/
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at each b-vector x where X is a normal random b-vector with mean 0 and
covariance˝ and the inequalityX � x is component-wise. More concise notation

is n1=2.b� � �n/
d�! X . The asymptotic variance is Avar.b�/ D ˝=n, and the

asymptotic mean is Amean.b�/ D �n. Note that we use “variance” generically here
to mean either a scalar variance or a covariance matrix. We say that the asymptotic
distribution ofb� is Nb.�n; ˝=n/ or thatb� is asymptotically normal with asymptotic
mean �n and asymptotic variance˝=n. We often write this asb� � ANb.�n; ˝=n/.

For two estimators of a scalar parameter � , the asymptotic relative efficiency of
b�1 tob�2 is the limit of the ratio of the asymptotic variance ofb�2 to the asymptotic
variance ofb�1,

ARE.b�1; b�2/ D Avar.b�2/

Avar.b�1/
:

Another important concept is convergence in probability. A random sequence Yn
converges in probability to c if P. jYn � c j > �/ ! 0 as n ! 1 for each � > 0.

Concise notation for this convergence is Yn
p�! c. Convergence in probability

for a vector-valued random sequence is equivalent to convergence in probability of
each component. An important result for convergence in probability is the continuity
theorem.

Theorem 1.1 (Continuity). Suppose that Y n
p�! c and g is continuous at c.

Then g.Y n/
p�! g.c/.

The next two theorems are extremely useful for obtaining asymptotic distributions.

Theorem 1.2 (Slutsky’s Theorem). If Xn
d�! X , Yn

p�! a, and Zn
p�! b,

where a and b are constants, then YnXn CZn
d�! aX C b:

In this following theorem, the vector-valued derivative g0.�/ D @g.�/=@� is a row
vector (see the Appendix on derivative notation, p. 531).

Theorem 1.3 (Delta Method). Suppose that b� � ANb.�;˝=n/ and that g is a
real-valued function on Rb possessing a derivative g0.�/ in a neighborhood of �
and continuous at � with at least one component nonzero at � . Define b� D g.b�/

and � D g.�/: Then

b� � ANf�; g0.�/˝g0.�/T =ng:
Intuition for this result is readily seen by approximating g.b�/ by a Taylor series,

b� D g.b�/

� g.�/C g0.�/.b� � �/; (1.12)

from which it follows (assuming that the remainder in (1.12) can be ignored) that

n1=2.b� � �/ � g0.�/n1=2.b� � �/ d�! Nf0; g0.�/˝ g0.�/T g:
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1.5.5 Simulation Methods

Computer simulation is perhaps the most important tool for the 21st century
statistician. We use it throughout the book, both in examples and problems, often
accompanied with relevant R code.

We synonymously use the terms simulation, Monte Carlo simulation, and Monte
Carlo methods to refer to the use of randomly generated data for estimating
quantities of interest, often expectations. For example, consider estimating the mean
of a distribution with density f .y/ and distribution function F.y/,

E.Y / D
Z

yf .y/dy:

A simple approach to approximate this integral is to generate independentY1; : : : ; YN
from f .y/ and estimate it with N�1PN

iD1 Yi . The estimated variance of this
estimator is simply s2N�1=N , where s2N�1 D .N �1/�1PN

iD1.Yi �Y /2 is the sample
variance.

The R computing language is designed to facilitate the generation of random
variables. For many distributions there are functions available. For example, to
generate a vector y of N D 1000 independent normal(� D 3; �2 D 10) random
variables, the code is simply

y <- rnorm(1000,mean=3,sd=sqrt(10)).

Knowing the order of the arguments allows one the shortened version

y <- rnorm(1000,3,sqrt(10)).

A slightly harder example is the extreme value location-scale distribution with
distribution function F.yI�; �/ D exp Œ� exp f�.y � �/=�g� used in (1.9, p. 9).
Here E.Y / D �c C � where c is the mean for the case � D 0 and � D 1

(this is true for any location-scale distribution). Now to generate from the extreme
value distribution, we use the fact that F �1.U / for a uniform(0,1) random variable
U has exactly the distribution function F for any F . This result is an important
companion result to the probability integral transformation result: F.Y / has a
uniform(0,1) distribution for continuous random variables Y with distribution
function F . However, the inverse distribution function result is stronger because it
is true for any distribution function, continuous or discrete. See Problem 1.9 (p. 21)
for a proof.

For the extreme value distribution function with .� D 0; � D 1/, we set
exp f� exp.�y/g D t and solve for y yielding

F�1.t/ D � log f� log.t/g :
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Here is the R code and result:

set.seed(157) # sets starting point for random numbers
N <- 1000000 # sample size
U <- runif(N) # generates vector of N uniform(0,1) rv’s
Y <- -log(-log(U)) # vector of N extreme value rv’s
mean(Y) # mean
[1] 0.5750475
sd(Y)/sqrt(N) # standard error of mean
[1] 0.001282290

In this case we know that c D 0:577, Euler’s number. The estimate 0.575 is within
two standard errors, .0026, of 0.577.

A more complex problem is estimating parameters of the sampling distribution
of an estimator. We use the estimator from Section 1.4 as an example,

Q:993.b�;b�/ D b�Œ� logf� log.:993/g�Cb�:

Recall that Q:993.b�;b�/ estimates the median of the maximum of a sample of
size n from an extreme value distribution. We know the true value is Q:993.�; �/.
A question of interest might be the bias of this estimator. Thus we seek to estimate
EfQ:993.b�;b�/g � Q:993.�; �/. In R we need to generate a number of samples of
size n and computeQ:993.b�;b�/ for each sample. Here we generate 100 samples for
the case � D 0; � D 1.

dextval <- function(x,mu,sigma){ # extreme value density
y <- exp(-(x-mu)/sigma)
y*exp(-y)/sigma

}
l.extval <- function(theta,y){ # neg. of loglike

-sum(log(dextval(y,theta[1],theta[2])))
}
ext.val.mle <- function(y){ # finds mle
# starting values from method of moments
sig.start<-sqrt(6)*sd(y)/pi
theta.start<-mean(y)-sig.start*.577
nlm(l.extval,c(theta.start,sig.start),y=y)$estimate

}
set.seed(367)
n<-20 # sample size
nrep<-100 # number of reps
# each row of data is a sample of size n
data<-matrix(-log(-log(runif(n*nrep))),nrow=nrep,ncol=n)
out<-t(apply(data,1,ext.val.mle)) # nrep by 2 matrix, mle
parm<- -log(-log(.993)) # target parameter
est<-out[,2]*(-log(-log(.993)))+out[,1] # vector of est
mean(est-parm) # estimated bias
[1] -0.2913428
sd(est-parm)/sqrt(nrep) # standard error of est. bias
[1] 0.1011618
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1.6 Example: A Simple Mean/Variance Model

In this introductory chapter we have explained the importance of model assumptions
in statistical inference. In particular, we have defined the primary part of the
model as that part directly related to the scientific question of interest, whereas
the secondary part is essentially all the remaining components of the model. These
secondary components play a large role in the type of methods used and inferences
drawn.

To illustrate these ideas, we now describe the maximum likelihood estimator and
method-of-moment estimator in a simple normal model where the variance depends
on the mean and the coefficient of variation is assumed known. This example is
adapted from Carroll and Ruppert (1988, pp. 21–22).

1.6.1 The Assumed Model and Associated Estimators

The assumed model for constructing a likelihood and defining inferential proce-
dures is

Y1; : : : ; Yn iid N.�; c2�2/; c2 known: (1.13)

Note that c is the coefficient of variation. The method-of-moments (MOM) estima-
tor of � does not depend on the variance assumption, but its variance does:

b�MOM D Y ; Var.b�MOM/ D c2�2

n
: (1.14)

Using model (1.13), the likelihood is

L.� j fYign1/ D
n
Y

iD1

1

c�
p
2�

exp

(

� .Yi � �/2
2c2�2

)

D c�n��n.2�/�n=2 exp

(

�
n
X

iD1

.Yi � �/2
2c2�2

)

; (1.15)

and the maximum likelihood estimator (MLE) and asymptotic variance are given by

b�MLE D
�

Y
2 C 4c2m0

2

�1=2 � Y
2c2

; Avar.b�MLE/ D c2�2

n.1C 2c2/
; (1.16)

where recall m0
2 D n�1Pn

iD1 Y 2i .
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1.6.2 Model-Based Comparison of MOM to MLE

Under model (1.13), both b�MOM and b�MLE are consistent for �. The asymptotic
(large sample) relative efficiency ofb�MLE with respect to b�MOM is

ARE.b�MLE; b�MOM/ D Avar.b�MOM/

Avar.b�MLE/
D 1C 2c2: (1.17)

It is no surprise that the MLE is more efficient than the MOM. For example, if
c D 1, then maximum likelihood is three times as efficient as method-of-moments.

1.6.3 A Non-Model-Based Comparison of MOM to MLE

We now study b�MOM D Y and b�MLE in (1.16) under an enlarged model that drops
the normality assumption and the mean/variance relationship in (1.13, p. 17):

Y1; : : : ; Yn iid E.Y1/ D �; EjY1j4 < 1; (1.18)

Results are stated in terms of � and the central moments.
The method-of-moments estimator (Y ) is of course still unbiased for estimating

� and its variance is �2=n. The maximum likelihood estimator based on assuming
normality converges in probability to

�

�2 C 4c2�2 C 4c2�2
	1=2 � �

2c2
(1.19)

and has asymptotic variance

Avar.b�MLE/ D 1

nv1

 

�2v
2
2

4c4
C �3v2

c2
C �4 � �22

!

; (1.20)

where

v1 D �2.1C 4c2/C 4c2�2; v2 D �.1C 4c2/ � p
v1:

From expression (1.19), it is clear that the MLE is consistent if and only if the
variance is exactly equal to c2�2, i.e., �2 D c2�2; however, normality is not
required. When �2 D c2�2, then v1 and v2 are v1 D �2.1C 2c2/2 and v2 D 2c2�,
and (1.20) is

Avar.b�MLE/ D c2�2

n.1C 2c2/2

˚

1C 2c2 C 2c.Skew/C c2.Kurt � 3/



; (1.21)
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Fig. 1.2 Asymptotic
variances times n (lines) and
estimated variances times n
(C for n D 20 and o for
n D 100) ofb�MLE in (1.16,
p. 17) for normal (� D 1,
variance D 4) (lower line)
and exponential data with
� D 1 (upper line). Plotted
estimates are based on 10,000
Monte Carlo replications with
standard error approximately
1.4% of the estimates

where recall that Skew D �3=�
3=2
2 and Kurt D �4=�

2
2 are the standardized third

and fourth moments, respectively. Now the asymptotic relative efficiency of b�MLE

with respect to b�MOM is

ARE.b�MLE; b�MOM/ D .1C 2c2/2

1C 2c2 C 2c.Skew/C c2.Kurt � 3/
: (1.22)

It is apparent from (1.22) that for certain nonzero values of Skew and Kurt,
the asymptotic relative efficiency of maximum likelihood to method of moments
can be less than one, i.e., there are distributions for which method of moments
is more efficient. This would not be important if such values of Skew and Kurt
were uncommon in practice; however, Carroll and Ruppert (1988, pp. 21–22) argue
that data sets for which method of moments is more efficient than, or nearly
as efficient as, maximum likelihood occur commonly in practice. For example,
exponential distributions have c D 1, Skew D 2, and Kurt D 9, in which case
ARE.b�MLE; b�MOM/ D 9=13.

1.6.4 Checking Example Details

The asymptotic variance expression (1.20, p. 18) follows by applying Theorem 1.3
(p. 14) tob�MLE in (1.16, p. 17), noting thatb�MLE may be viewed as a function g.b�/,
where b� D .Y ;m0

2/
T and ˝ is the covariance matrix of .Y1; Y 21 /. Alternatively,

b�MLE may be viewed as a function ofb� D .Y ;m2/
T , where˝11 D �2,˝12 D �3,

and˝22 D �4 � �22 are taken from Example 5.36 (p. 256).
Either derivation of (1.20, p. 18) is tedious and subject to mistakes. One way to

check the calculations is to simulate samples and estimate the actual variance. To
illustrate, Figure 1.2 plots the asymptotic variance from (1.20, p. 18) multiplied by n
for normal data with mean � D 1 and varianceD4 (lower line) and for exponential
data with � D 2 and thus varianceD4 (upper line). Multiplying the asymptotic
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variance by n allows us to keep results for various values of n on the same plot.
The plotted points are from Monte Carlo variance estimates for n D 20 .C/ and
n D 100 (o).

For each of 10,000 generated samples from each distribution and sample size, the
estimatorb�MLE was calculated and the sample variance computed and multiplied by
n. For the normal data, the asymptotic variances are close to the estimated variances
even at n D 20. For exponential data, larger sample sizes are required, but clearly by
n D 100 the estimated variances are close to the asymptotic variance curves. Note
thatb�MLE is consistent in these cases when c D 2 for the normal data and c D 1 for
the exponential data. However, the curves and estimates are valid even when b�MLE

is inconsistent. From Section 9.3.2 (p. 370), we find that the approximate relative
standard errors of the plotted Monte Carlo estimates are .2=10000/1=2 D :014, or
1.4% of the estimates.

This comparison of asymptotic variances and finite sample variances is a
paradigm we want to emphasize as one of the key approaches of modern statistical
research. The asymptotic expressions are useful for evaluating new estimators,
comparing estimators, and basic understanding of the problem at hand. Monte Carlo
estimates are useful to evaluate and compare estimators in finite samples. Finally,
comparing asymptotic expressions with Monte Carlo estimates helps confirm that
both the asymptotic expressions are correct and that the computations in the
Monte Carlo study are correctly coded. However, it should be kept in mind that
computational results alone do not constitute proof.

1.7 Problems

1.1. In generalized linear models there is typically a linear predictor �i D xTi ˇ, a
link function g./ such that �i D g.�i /, where �i is the mean of Yi (and thus �i D
g�1.xTi ˇ/). Further, assuming independence of the Yi and a particular exponential
family form for the density of Yi leads to a likelihood and to maximum likelihood
estimators. Explain what part or parts of the above description make up the primary
part of the model.

1.2. A pharmaceutical company is interested in how the variability of drug tablet
weights depends on manufacturing factors A and B . The proposed model is

Yijk D �ij C �ij �ijk ;

where the �ijk are iid N.0; �2/ and �ij D ˛iˇj �ij with
P

i log˛i D 0,
P

j log
ˇj D 0,

P

i log �ij D 0, and
P

j log �ij D 0. What are the primary and secondary
parts of the model?

1.3. How does the model specification in (1.5, p. 6) affect the

a. prediction of a new Y at a given x value?
b. the variance of that prediction?
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1.4. Let Y be a random variable with moment generating function mY .t/, defined
for all t in a neighborhood of t D 0. The cumulant generating function of Y is
k.t/ D log.m.t// and defines the cumulants of Y in the same fashion as the moment
generating function defines the moments, i.e., 
j D k.j /.0/; j D 1; 2; : : :, where
k.j /.t/ denotes the j th derivative of k.t/.

a. Derive the first four cumulants in terms of the first four (noncentral) moments.
b. Express 
2; 
3, and 
4 in terms of the central moments.
c. Express the skewness coefficient Skew D �3=.�2/

3=2 and the kurtosis coefficient
Kurt D �4=�

2
2 in terms of the cumulants.

1.5. Find the first four cumulants of:

a. a Poisson(/ random variable;
b. a N.�; �2/ random variable.

Then find the skewness and kurtosis coefficients for these two random variables.

1.6. Prove that if Y is a random variable with all of its cumulants of order greater
than two equal to zero, i.e., 0 D 
3 D 
4 D � � � , then Y has a normal distribution.

1.7. Suppose that Z has cumulant generating function kZ.t/ with E.Z/ D 0 and
Var.Z/ D 1. Let Y D �Z C �. Find the cumulant generating function of Y ,
kY .t/, in terms of kZ.�/. Use this to prove that all cumulants except 
1 are location
invariant, i.e., do not depend on �.

1.8. Show that Skew.a C bY / D Skew.Y / and Kurt.a C bY / D Kurt.Y /.
For an iid random sample Y1; : : : ; Yn, show that Skew.Y / D Skew.Y1/=n1=2 and
Kurt.Y / D 3C fKurt.Y1/� 3g=n. Give a heuristic explanation of why skewness is
more important than kurtosis when the normal distribution is used to approximate
the distribution of a sample mean.

1.9. Using the definition (1.11, p. 12), Serfling (1980, p. 3) gives the result that
F.y/ � t if and only if y � F�1.t/ for any distribution function. Use that result to
prove: for any distribution function F , the distribution function of F�1.U /, where
U is a uniform(0,1) random variable, is F.y/. That is, show that P.F �1.U / �
y/ D F.y/ for all y.

1.10. Recall that the location-scale extreme value distribution has distribution
function F.t/ D F0..t � �/=�/, where F0.x/ D expf� exp.�x/g. Give an
expression for the pth quantile, F�1.p/.

1.11. Related to the bias estimation example of Section 1.4 for a sample of size
n D 20 from an extreme value distribution with � D 0; � D 1, estimate the bias of
the method of moments estimatorQ:993.b�mm;b�mm/, whereb�mm D Y �0:577b�mm,
and b�mm D p

6sn�1=� . In addition, estimate the mean squared error, in R code
mean((est-parm)ˆ2).
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1.12. Suppose that Y1; : : : ; Yn are iid Poisson(/ and that b D Y . Define �2
b

D
var.b/. Consider the following two estimators of �2

b
,

b�2
b

D
b

n
and e�2

b
D s2

n
;

where s2 D .n � 1/�1
Pn

iD1.Yi � Y /2 and note that in general

var.s2/ D fVar.Y1/g2
�

2

n � 1
C .Kurt � 3/

n

�

: (1.23)

We want to compare the asymptotic efficiency of the two estimators of �2
b

above.

Note that �2
b

! 0, and that both b�2
b

and e�2
b

converge in probability to 0. When

studying the consistency and efficiency of estimators of asymptotic variances
that are converging to 0 at rate n�1, it is necessary to normalize everything by
multiplying by n. Thus you are to compare the consistency and efficiency of nb�2

b

and ne�2
b

as estimators of limn!1 n�2
b

.

a. When the Poisson model holds, are both estimators consistent?
b. When the Poisson model holds, give the asymptotic relative efficiency of the two

estimators. (Actually here you can compare exact variances since the estimators
are so simple.)

c. When the Poisson model does not hold but assuming second moments exist, are
both estimators consistent?

1.13. Consider the model (1.13, p. 17). Defineb�WLS as that value of � minimizing

�.�/ D
n
X

iD1

�

.Yi � �/2
�2�2

�

: (1.24)

Do all calculations assuming the full model (1.13, p. 17).

a. Show that b�WLS converges in probability, but that its limit is not �, i.e., b�WLS is
not a consistent estimator of �.

b. Find Ef�0.�/g and show that it is not equal to zero.
c. Find the estimator obtained by minimizing

��.�/ D
n
X

iD1

�

.Yi � �/2

�2�2
C 2 log.�/

�

(1.25)

and denote it byb��WLS.
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d. Is b��WLS a consistent estimator of �? If so find its asymptotic variance and
compare to that ofb�MOM andb�MLE.

e. Find Ef�0�.�/g. Is it equal to zero?

1.14. Use Theorem 1.1 (p. 14) to justify the limiting expression (1.19, p. 18) for
b�MLE. Then compute the value of the limiting expression for the four situations and
two distributions in Figure 1.2 (p. 19).

1.15. Use the delta method to derive the asymptotic variance expression (1.16,
p. 17) given by

�2�2

n.1C 2�2/

when the true model is N.�; �2�2/.

1.16. Use the delta method to derive the asymptotic variance expression in (1.20,
p. 18).

1.17. To check on the asymptotic variance expression in (1.20, p. 18), generate 1000
samples of size n D 20 from the exponential density .1=2/ exp.�y=2/ that has
mean � D 2 and variance=4 so that in terms of the model �2 D 1. For each sample,
calculate b�MLE in (1.16, p. 17). Then compute (1.20, p. 18) for this exponential
density and compare it to n D 20 times the sample variance of the 1000 values of
b�MLE. Repeat for n D 50.



Part II
Likelihood-Based Methods



Chapter 2
Likelihood Construction and Estimation

2.1 Introduction

After a statistical model for the observed data has been formulated, the likelihood of
the data is the natural starting point for inference in many statistical problems. This
function typically leads to essentially automatic methods of inference, including
point and interval estimation, and hypothesis testing. In fact, likelihood methods are
generally asymptotically optimal provided the assumed statistical model is correct.
Thus, the likelihood is the foundation of classical model-based statistical inference.
In this chapter we describe, and often derive, basic likelihood methods and results.
We start with construction of the likelihood in numerous examples and then move to
various inferential techniques. The development in this chapter follows the classical
frequentist approach to inference. However, the Bayesian approach to inference is
equally dependent on the likelihood, and the material in this chapter is essential to
understanding the Bayesian methods in Chapter 4.

If Y D .Y1; : : : ; Yn/
T has joint density or probability mass function f .y I�/,

with �T D .�1; : : : ; �b/, then the likelihood function is just the joint density
(or probability mass function) evaluated at the observed data points, L.� jY / D
f .Y I�/. Note that capital letters, e.g., Y , denote random variables, observed or
not, and lower-case letters, e.g., y, denote arguments of mathematical functions. The
parameter vector � is listed first in L because L is primarily viewed as a function
of � for given data vector Y D .Y1; : : : ; Yn/

T . The notation here suggests that the
Yi are scalars, but they could just as well be vectors. Henceforth, we stop using
the term “probability mass function” and just use “density” unless it is important to
emphasize that the data are discrete random variables.

For independent Yi , the likelihood factors into

L.� jY / D
n
Y

iD1
fi .Yi I�/;

D.D. Boos and L.A. Stefanski, Essential Statistical Inference: Theory and Methods,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-4818-1 2,
© Springer Science+Business Media New York 2013
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where we denote the density of Yi by fi to indicate that each Yi can have a
different density, as would be the case with regression models. For an independent
and identically distributed (iid) sample Y1; : : : ; Yn with the density of Y1 given by
f .yI�/, the likelihood has the familiar form L.� jY / D Qn

iD1 f .Yi I�/.
We discuss a variety of likelihoods in this chapter that are more complex than the

simple product likelihoods associated with iid data. In such models it is important
to remember that the likelihood is defined in terms of the density of the observed
data to be analyzed. For emphasis, we state the following

Key Concept: In all situations the likelihood is the joint density of the observed
data to be analyzed.

Thus, for example, in models for censored or missing data, the likelihood is not
the density of the so-called “complete” data that includes the censored or missing
values. Rather it is the density of only those components of the data that are observed
and used in the statistical analysis. Note also that we usually write L.� jY / as a
random function depending on the data Y rather than asL.� jy/, although the latter
may be appropriate in a context where only the mathematical properties of L.� jy/
are being described.

It is apparent by its definition, that likelihood construction is an exercise in the
calculus of random variables and distributions; i.e., the essential problem is that of
determining the joint probability density of the data to be analyzed. Such problems
constitute a core topic covered in introductory mathematical statistics courses and
texts; for example, Casella and Berger (2002).

Of the relevant techniques taught in such courses, we prefer using the so-
called distribution function method for deriving the density of random variables and
vectors. This technique is more general and more useful than the Jacobian method
commonly emphasized in mathematical statistics courses. For example, suppose
that the random variable Y has distribution function FY .yI�/ D P.Y � y/, but
we desire the density of the random variable X D g.Y /. (Note that distribution
function is often called cumulative distribution function, we prefer the short name.)
Then the distribution of X is simply

FX.xI�/ D P fX � xg D P fg.Y / � xg;
where the latter is a probability calculated from the distribution of Y . Often g is a
strictly increasing function, in which case g�1 exists and

FX.xI�/ D P fg.Y / � xg D P fY � g�1.x/g D FY fg�1.x/I�g: (2.1)

Finally, in the case that Y has a differentiable distribution function with density
fY .yI�/ D .d=dy/FY .yI�/ and g�1 is differentiable, the density of X is found by
differentiating both sides of (2.1) with respect to x resulting in

fX.xI�/ D fY fg�1.x/I�gdg
�1.x/
dx

:
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The expression for fX.xI�/ above is identical to that obtained by the Jacobian
method. Note that the absolute value of the derivative of g�1.x/ that appears in the
general Jacobian method formula is not necessary in our case due to the assumption
that g is increasing.

We further illustrate the utility of this method with a transformation model
likelihood. Consider an iid sample Y1; : : : ; Yn, and a parametric transformation
h.y; ˛/ strictly increasing in y for each ˛. The model assumptions are such that
the transformed data h.Y1; ˛/; : : : ; h.Yn; ˛/ are iid with common density f .yI�/
and distribution function F.yI�/. Both ˛ and � are parameters in this model. The
problem is to find the likelihood of the observed data Y1; : : : ; Yn. In light of the “Key
Concept” above, we need the density of Yi to construct the likelihood. Under the
stated monotonicity assumption on h, ft � yg is equivalent to fh.t; ˛/ � h.y; ˛/g.
Thus the distribution function of Yi is,

P fYi � yg D P fh.Yi ; ˛/ � h.y; ˛/g D F fh.y; ˛/I�g:
Taking the derivative with respect to y, the density of Y is

fY .yI�; ˛/ D f fh.y; ˛/I�g@h.y; ˛/
@y

;

resulting in the likelihood

L.� ; ˛I Y / D
n
Y

iD1
f fh.Yi ; ˛/I�g

(

@h.y; ˛/

@y

ˇ

ˇ

ˇ

ˇ

yDYi

)

:

A common mistake in this kind of problem is to start working with h.Yi I˛/ instead
of with the observed data Yi .

2.1.1 Notes and Notation

It is generally accepted, e.g., Hald (1998), that Fisher (1912) was the first to
use the likelihood to obtain estimators by finding the value of � that maximizes
L.� jY /. In a series of articles in the 1920’s, R. A. Fisher showed that the maximum
likelihood estimator (MLE), denoted herein byb�MLE, is generally optimal or at least
optimal in large samples (Fisher 1922). We do not dwell on questions of optimality,
but focus our attention on constructing likelihoods in a variety of situations in the
following section.

On a practical note, the MLE (b�MLE) of the b 	 1 parameter vector � is usually
calculated by optimizing the log likelihood function, log.L.� jY //, henceforth
denoted by `.�/. For suitably differentiable likelihoods, optimization is usually
accomplished by differentiating `.�/, with respect to � to obtain the likelihood
score function S .�/ D f`0.�/gT where `0.�/ D @`.�/=@� , and then solving the
likelihood equations, S .�/ D 0b�1.
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Finally note that we use the convention that the derivative of the scalar function
`.�/ with respect to the b 	 1 argument � is the 1 	 b row vector `0.�/ D
@`.�/=@� D .@`=@�1; : : : : ; @`=@�b/. However, we prefer to define the likelihood
equations in terms of the b 	 1 column-vector score function S .�/. The Appendix
(p. 531) contains a summary of the vector calculus notation and results used in the
remainder of this book.

2.2 Likelihood Construction

2.2.1 Discrete IID Random Variables

The use of the likelihood function in parameter estimation is easiest to understand
in the case of discrete random variables. Suppose that each of the n iid random
variables in the sample Y1; : : : ; Yn have probability mass function

f .yI�/ D P� .Y1 D y/; y D y1; y2; : : : :

For example, f .yI�/ might be the Poisson probability mass function with � D
, and

f .yI/ D ye�

yŠ
; y D 0; 1; : : : :

Because a probability mass function evaluated at y is just the probability that the
event fY D yg occurs, the likelihood is

L.� jY / D
n
Y

iD1
f .Yi I�/ D

n
Y

iD1
P� .Y

�
i D Yi jYi / (2.2)

where Y �
1 ; : : : ; Y

�
n are iid random variables having the same distribution as, but

mutually independent of Y1; : : : ; Yn. In other words the likelihood is the probability
of getting the sample actually obtained (or to be obtained). We use Y �

1 ; : : : ; Y
�
n so

that we can use the language of probability rather than the notation of probability
mass functions.

Why should one chooseb� to maximizeL.� jY /? In effect,b�MLE is the parameter
value that makes the observed data most probable, or most likely, under the assumed
family of probability mass functions. Thus f .yIb�MLE/ is the probability mass
function that is most consistent with the observed data.

Example 2.1 (Fetal lamb movements). Leroux and Puterman (1992, p. 546)
give data on counts of movements in five-second intervals of one fetal lamb (n D
240 intervals):

No. of movements: 0 1 2 3 4 5 6 7
Counts : 182 41 12 2 2 0 0 1
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Note that this table is just a concise way to exhibit the 240 ordered observed
values 0; : : : ; 0; 1; : : : ; 1; 2; : : : ; 2; 3; 3; 4; 4; 7. Under the assumption that move-
ments follow a Poisson process in time, interval counts are independent Poisson
random variables, and the likelihood is

L.� jY / D
n
Y

iD1
f .Yi I/ D

n
Y

iD1
Yi e�=Yi Š D nY e�n

 

n
Y

iD1
Yi Š

!�1
;

where � consists of just the scalar . Equating the derivative of the log likelihood
with respect to  to zero and solving results inbMLE D Y D 86=240 D :358. Using
this estimate, the expected counts at y are nf .yIbMLE/:

No. of movements 0 1 2 3 4 5 6 7

Observed Counts 182 41 12 2 2 0 0 1
Expected-Poisson 167.7 60.1 10.8 1.3 0.1 0 0 0

Note that the Poisson model under predicts at y D 0 and over predicts at y D 1.
A more formal evaluation of this observation is provided by a chi-squared goodness-
of-fit test of the null hypothesis that a Poisson model is correct:

�2.GOF/ D
4
X

iD1

.Oi � Ei/
2

Ei
D 16:6; (2.3)

based on grouping cells with movements > 2 into a fourth group. The p-value is
.00025 using the �2 distribution with 4� 1� 1 D 2 degrees of freedom, suggesting
the Poisson model is inappropriate. The p-value constructed in this manner is not
entirely correct because it does not account for the grouping of cells 3–7. The
problem of grouping is described in Example 2.5 (p. 34) where it is shown that
a more appropriate p-value is .0001.

To account for the inflated number of zeroes, consider the mixture of a point
mass at 0 and the Poisson: P.Y1 D y/ D pI.y D 0/ C .1 � p/f .yI/, where
I.A/ is the indicator function of the event A, so that I.y D 0/ D 1 for y D 0 and
I.y D 0/ D 0 for y ¤ 0. Alternatively,

P.Y1 D y/ D
(

p C .1 � p/f .0I/; y D 0;

.1 � p/f .yI/; y D 1; 2; : : : :

This is called a zero-inflated Poisson model, or ZIP for short. Letting n0 denote the
number of zeroes in the sample, the likelihood is

L.; p jY / D Œp C .1 � p/f .0I/�n0 .1 � p/n�n0 Y

I.Yi>0/

f .Yi I/:
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Using the nlm function in R to minimize �`.�/ with respect to � D .; p/T results
inbpMLE D :577 andbMLE D :847. The ZIP model expected counts are

No. of movements 0 1 2 3 4 5 6 7

Observed Counts 182 41 12 2 2 0 0 1
Expected-ZIP 182 36.9 15.6 4.4 0.9 .2 0 0

and the chi-squared goodness of fit statistic is 1.35 with approximate p-value = .24.
Thus there is little evidence of lack of fit with the ZIP model. �

2.2.2 Multinomial Likelihoods

The multinomial distribution is a generalization of the binomial distribution that
arises often in practice. Recall that the binomial distribution results from counting
the number of successes in n independent trials where each trial has only two
possible outcomes, success or failure. The probability of a success is usually
denoted p. For a multinomial distribution , there are k � 2 possible outcomes.
One way to conceptualize multinomial data is to consider independently tossing
n balls into k different urns, where pi is the probability of the ball landing in
the i th urn on each toss, i D 1; : : : ; k. Doing so results in Ni balls in the i th
urn, i D 1; : : : ; k,

Pk
iD1 Ni D n. We say that .N1; : : : ; Nk/ are distributed as

multinomial.nIp1; p2; : : : ; pk/. The likelihood is

L.p jN1; : : : ; Nk/ D nŠ

N1ŠN2Š � � �NkŠp
N1
1 p

N2
2 � � �pNkk ; (2.4)

where
Pk

iD1 Ni D n,
Pk

iD1 pi D 1, and 0 < pi < 1, i D 1; : : : ; k: Note
that for k D 2 we can identify p of the binomial with p1 and 1 � p with p2.
In fact, because pk D 1 �Pk�1

iD1 pi , there are only k � 1 freely varying parameters
in the multinomial density and likelihood. Although the symmetry in (2.4, p. 32)
is aesthetically appealing, it is almost always better in applications and theory to
rewrite (2.4, p. 32) with 1�Pk�1

iD1 pi substituted for pk . For example, when finding
maximum likelihood estimators, that substitution avoids the need for constrained
optimization.

Note that any subset of .N1; : : : ; Nk/ also has a multinomial distribution . In
particular, Ni has a binomial distribution with parameters pi and n. Thus E.Ni/ D
npi and Var.Ni/ D npi .1 � pi /. The covariance between Ni and Nj for i ¤ j is
�npipj . This can be shown by first noting that when n D 1,

E.Ni � pi /.Nj � pj / D P.Ni D 1;Nj D 1/� pipj D �pipj
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because when n D 1, bothNi D 1 and Nj D 1 cannot occur. The result for general
n follows by further noting that a multinomial(nIp1; p2; : : : ; pk/ vector is equal in
distribution to a sum of n independent multinomial(n D 1Ip1; p2; : : : ; pk/ vectors.

The maximum likelihood estimator of pi is the sample proportion Ni=n. More
interesting multinomial likelihoods arise when the pi are modeled as a function of
a lesser number of parameters �1; : : : ; �m; m < k � 1, as shown in the following
examples.

Example 2.2 (Hardy-Weinberg equilibrium). Suppose that the genotypes of a
certain gene with two alleles a and A are labeled AA, Aa, and aa. If a sample
of n individuals results in NAA individuals with genotype AA, NAa with
genotype Aa, and Naa individuals with genotype aa, then (NAA, NAa, Naa) are
multinomial(n; pAA, pAa, paa). Thus, kD3 and p1DpAA, p2DpAa, and p3Dpaa.
Now, Hardy-Weinberg Equilibrium refers to a random mating scheme whereby
these genotype probabilities can be written in terms of a single allele probability
pA (the population proportion of A alleles): pAA D p2A, pAa D 2pA.1 � pA/,
paa D .1 � pA/

2. Substituting these modeled probabilities into (2.4) gives the
likelihood for pA:

L.pA jNAA;NAa;Naa/

D nŠ

NAAŠNAaŠNaaŠ
.p2A/

NAA Œ2pA.1 � pA/�
NAa



.1 � pA/
2
�Naa

:

Maximizing this likelihood leads to bpA D .2NAA C NAa/=.2n/, the sample
frequency of A alleles. Numerous other multinomial models arising in population
genetics are presented in Weir (1996). �

Example 2.3 (Capture-recapture removal design). To estimate fish survival
during a specified length of time (e.g., one month), a common approach in capture-
recapture methodology is to use a removal design. Suppose that in a closed
population (e.g., a lake), n fish are caught, tagged, and released back into the lake.
One month laterN1 of the tagged fish are removed from the lake (untagged fish may
also be removed at the same time). Assuming that the probability that a tagged fish
survives for a month is s, and the probability that it is removed at the end of month
one is p (given it survived until that point), then the probability of one of the original
tagged fish being removed at the end of month one is sp. Continuing, at the end of
the second month N2 tagged fish are removed, and the probability of an original
tagged fish being removed is then s2.1 � p/p, that is, the probability of surviving
two months (s2) times the probability of not being removed at the end of month
one (1 � p) times the probability of removal at the end of two months. Suppose
that we continue this process one more time and let N4 D n � N1 � N2 � N3
be the fish that were not removed. Then (N1;N2;N3;N4) are multinomial(n; p1 D
sp; p2 D s2.1 � p/p; p3 D s3.1 � p/2p; p4 D 1 � sp � s2.1 � p/p � s3.1 �
p/2p). Multinomial models from the capture-recapture literature are studied in
Brownie et al. (1985). �
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Example 2.4 (Two-way contingency tables). Consider a two-way table with r
rows and c columns and cell counts Nij ; i D 1; : : : ; r; j D 1; : : : ; c. The usual
situation is that .N11; : : : ; Nrc) are multinomial(nIp11; : : : ; prc). The hypothesis of
independence of rows and columns is pij D piCpCj , i D 1; : : : ; r; j D 1; : : : ; c,
where piC D Pc

jD1 pij and pCj D Pr
iD1 pij are the marginal probabilities. If the

table is square, r D c, then another hypothesis of interest is symmetry, pij D pji
for i ¤ j . These and many other models for contingency tables appear in Agresti
(2002). �

Multinomial models can be used to describe samples from any discrete distri-
bution with a finite support. For example, suppose that Y1; : : : ; Yn are each from
a binomial distribution with probability of success � and 4 trials. So the possible
values of Yi are 0; 1; 2; 3; 4. If we let Nj be the number of the Y1; : : : ; Yn equal
to j; j D 0; : : : ; 4, then .N0;N1;N2;N3;N4/ has a multinomial distribution with
pj D �

4
j

	

�j .1� �/4�j , j D 0; : : : ; 4. This idea is important enough to set apart:

Key Concept: For an iid sample Y1; : : : ; Yn from any discrete distribution with
finite support, the data can be viewed as multinomial data where the counts
are the number of occurrences of each of the finite number of possible values,
and the likelihood is obtained from (2.4, p. 32). There are not many common
examples of finite discrete distributions, but often such structure is imparted by
grouping the large values in a data set as illustrated in the following example related
to Example 2.1 (p. 31).

Example 2.5 (Grouped likelihood: discrete data). The goodness-of-fit analysis
in Example 2.1 (p. 31) to test whether the Poisson is a reasonable model for
the fetal lamb data uses expected counts based on the full maximum likelihood
estimate bMLE D :358. Calculating expected counts in this way is expedient, but
not supported by asymptotic theory. Chernoff and Lehmann (1954) showed that the
limiting null-hypothesis distribution of the chi-square statistic with counts based
on the full MLE converges to the sum of a chi-squared random variable with
k � p � 1 degrees of freedom and an additional weighted sum of p chi-squared
random variables with one degree of freedom, where p is the number of parameters
estimated. Thus using �2k�p�1 critical values for such a chi-square statistic is liberal
in the sense that the probability of rejection under the null hypothesis exceeds the
nominal significance level. A conservative approach is to use �2k�1 critical values.
For the fetal lamb data the conservative analysis uses �23 critical values, and the
conservative p-value corresponding to the �2.GOF/ D 16:6 in Example 2.1 (p. 31)
is .00087, c.f., to the liberal p-value D :00025.

An approach that leads to the correct asymptotic chi-squared distribution with
k � p � 1 degrees of freedom for the chi-square statistic is to use expected counts
based on the maximum likelihood estimator from the grouped data. The grouped-
data multinomial likelihood for the fetal lamb data is
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LG./ D 240Š

182Š41Š12Š5Š

�

0e�

0Š

�182 �
1e�

1Š

�41 �
2e�

2Š

�12
" 1
X

iD3

i e�

i Š

#5

;

and is maximized at bGMLE D :335. Using bGMLE to calculate expected counts in
the chi-squared statistic yields �2G.GOF/ D 18:4with p-value D :00010 from the �22
distribution. Note that in a strict sense using the grouped-data likelihood contradicts
the principle that the likelihood is always the density of the observed data. However,
the grouped-data likelihood is correct for the grouped observed data.

There are other variations on the grouped-data likelihood approach that result in
goodness-of-fit statistics having the standard chi-squared distribution. For example,
one can minimize the chi-squared statistic

�2./ D
4
X

iD1

fOi �Ei./g2
Ei ./

with respect to , obtaining b D :381 with minimum value 16.0. Recall that
Ei./ is just the probability of falling in the i th category, i.e., 0; 1; 2, or > 2

under the Poisson./model. The estimatorb is asymptotically equivalent tobGMLE.
Also, comparing the minimum chi-squared statistic value 16.0 to a �22 distribution
(resulting in p-value = .00033) is justified asymptotically. In fact, there is a large
class of statistics that can be minimized to obtain estimators that are asymptotically
equivalent tobGMLE (Cressie and Read 1984; Read and Cressie 1988).

The asymptotically equivalent estimators of  for a fixed grouping structure are
less efficient than the full maximum likelihood estimator Y . However, grouping
often produces estimators that are more robust (insensitive) to outliers than the full
MLE (Simpson 1987, Lindsay 1994).

The multiple analyses of the fetal lamb data illustrate the limited ability
of large sample distribution approximations (even when justified by asymptotic
theory) to distinguish between small p-values. An alternative approach described in
Chapter 11 that is often more accurate in finite samples is based on the parametric
bootstrap. Briefly, a parametric bootstrap p-value is obtained by randomly sampling
B times from a Poisson distribution with  D b D :358, computing �2.GOF/ for
each sample, and calculating the fraction of the �2.GOF/ test statistics that exceed
the observed �2.GOF/ D 16:6.

Grouping to obtain multinomial data with parameter-dependent cell probabilities
is a generally-applicable strategy. The resulting grouped-data MLE is generally
less efficient than the full-data MLE. However, there are certain other advantages
as noted above, especially those related to robustness to extremes. Another is to
construct goodness-of-fit statistics for parametric models of continuous data which
we illustrate in Section 3.5, (p. 149). �
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2.2.3 Continuous IID Random Variables

We now consider likelihoods for iid sample data Y1; : : : ; Yn for which Y1 is a
continuous random variable with density f .yI�/. The following example illustrates
a typical application.

Example 2.6 (Hurricane data). For 36 hurricanes that had moved far inland on
the East Coast of the U.S. in 1900–1969, Larsen and Marx (2001, p. 320) give
maximum 24-hour precipitation levels during the time they were over mountains:

> hurr.rain
[1] 31.00 2.82 3.98 4.02 9.50 4.50 11.40 10.71
[9] 6.31 4.95 5.64 5.51 13.40 9.72 6.47 10.16
[17] 4.21 11.60 4.75 6.85 6.25 3.42 11.80 0.80
[25] 3.69 3.10 22.22 7.43 5.00 4.58 4.46 8.00
[33] 3.73 3.50 6.20 0.67

A histogram suggests that the gamma density,

f .yI˛; ˇ/ D 1

� .˛/ˇ˛
y˛�1e�y=ˇ;

is a reasonable candidate model for these data. The gamma likelihood is

L.� jY / D
n
Y

iD1

1

� .˛/ˇ˛
Y ˛�1
i e�Yi =ˇ D f� .˛/g�n ˇ�n˛ nYYi

o˛�1
e�P

Yi =ˇ;

with log likelihood

`.�/ D �n log� .˛/ � n˛ logˇ C .˛ � 1/
X

logYi �
P

Yi

ˇ
;

where � D .˛; ˇ/T . The log likelihood surface is shown in Figure 2.1. To maximize
the log likelihood, we use the R minimization function nlm:

dgam<-function(x,alpha,beta=1.){dgamma(x/beta,alpha)
/beta}

glike<-function(theta,x){
-sum(log(dgam(x,theta[1],theta[2])))}

nlm(glike,c(1.59,4.458),x=hurr.rain)
$minimum
[1] 102.3594
$estimate
[1] 2.187214 3.331862
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Fig. 2.1 Gamma log likelihood for the hurricane data
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The starting values 1.59 and 4.58 are the method of moment estimators that solve
X D 7:29 D ˛ˇ and s2 D 33:41 D ˛ˇ2. To check the fit we plot sample quantiles
versus the quantiles of the fitted model (QQ plot):

qgam<-function(q,alpha,beta=1.){qgamma(q,alpha)*beta}
plot(qgam(ppoints(hurr.rain),2.187,3.332),

sort(hurr.rain))

A QQ plot should be approximately linear if the model fits the data well. The plot
in Figure 2.2 shows that the largest values in the sample are somewhat larger than
to be expected from a gamma distribution. Thus the visual evidence suggests that a
gamma distribution may not be an adequate model for these data. �
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2.2.3a The Connection Between Discrete and Continuous Likelihoods

The continuous-data likelihood L.� jY / D Qn
iD1 f .Yi I�/ looks the same as that

for discrete data, but it is not a probability as it is for discrete data; see (2.2,
p. 30). A continuous distribution assigns zero probability to any single point. Thus
for continuous data the probability of any particular iid sample is zero, and the
probabilistic intuition underlying maximum likelihood that is readily apparent with
discrete data (2.2, p. 30) is not as evident for continuous data. However, the intuition
underlying maximum likelihood is revealed by considering certain normalized
limits of probabilities.

We start by recalling the definition of the derivative g0.x/ of a function g.x/,

g0.x/ D lim
h!0

g.x C h/� g.x/

h
;

provided the limit exists (meaning that the limits as h ! 0C and h ! 0� exist
and are equal). When the derivative exists a second, equivalent definition of the
derivative of g at x is

g0.x/ D lim
h!0C

g.x C h/� g.x � h/

2h
: (2.5)

To see the equivalence just add and subtract g.x/ and take limits. The two-sided
definition of g0.x/ is sometimes more useful in applied work than the usual one-
sided definition, e.g., when calculating derivatives numerically. We use it here to
show that the probabilistic intuition for maximum likelihood with discrete data holds
for continuous data as well.

Consider the two-sided derivative definition applied to a differentiable distribu-
tion function. If F is the distribution function of a continuous random variable Y
having density f .y/, then wherever f is continuous,

f .y/ D lim
h!0C

F.y C h/ � F.y � h/
2h

D lim
h!0C

P.Y 2 .y � h; y C h�/

2h
: (2.6)

In fact it is sometimes appropriate to use the limit in the right-hand side above
as the definition of the density. This is because densities are not unique and certain
versions of the density do not result in sensible likelihoods. However, the version
of the density obtained from (2.6) generally does lead to a sensible likelihood.
For example, consider the logistic distribution F.y/ D f1 C exp.�y/g�1. The
usual form of the density associated with F is f .y/ D exp.�y/f1C exp.�y/g�2.
However, f�.y/ D f .y/I.y ¤ 2/C 0:3I.y D 2/ is nonnegative and for all y

Z y

�1
f�.t/ dt D F.y/;
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so that f�.y/ is also a valid probability density associated with F . A graph of f�.y/
appears in Figure 2.3. Note that in a sample of size n D 1 from the location model
f .yI�/ D f�.y��/, the f�-likelihood is maximized at Y1�� D 2. Thusb��MLE D
Y1 � 2 instead of the usual b�MLE D Y1. This simple example illustrates that all
versions of a density are not equally useful for maximum likelihood estimation. The
key point here is that the cumulative distribution function is unique, and using it to
define the density via (2.6) generally results in the “natural” or “regular” version
of the density function. This is true for the logistic distribution and also for any
other distribution that is continuously differentiable. Using (2.6) to define a density
when the continuous distribution function is not continuously differentiable is not
as straightforward.

There is a version of (2.6) for bivariate data as well. If X and Y are both
continuous and have joint distribution functionFX;Y and density function fX;Y , then
wherever fX;Y is continuous

fX;Y .x; y/ D lim
h!0C

�

1

2h

�2 �

FX;Y .x C h; y C h/ � FX;Y .x � h; y C h/

�FX;Y .x C h; y � h/C FX;Y .x � h; y � h/

�

D lim
h!0C

P.X 2 .x � h; x C h�; Y 2 .y � h; y C h�/

.2h/2
:

Also, if X is discrete and Y is continuous, then because the events fX 2 .x �
h; x C h�g and fX D xg are equivalent for h sufficiently small, we only need to
normalize for the continuous component, and the joint mixed density/mass function
is obtained via

fX;Y .x; y/ D lim
h!0C

P.X D .x � h; x C h�; Y 2 .y � h; y C h�/

2h
:
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Having introduced the symmetric definition of derivative (2.5, p. 38) as a useful
way to think about densities of continuous random variables, we are now ready
to talk about likelihoods. Assume that f .yI�/ is the derivative of the distribution
function P� .Y1 � y/ D F.yI�/. Then we have

L.� jY / D
n
Y

iD1
f .Yi I�/

D
n
Y

iD1
lim
h!0C

�

F.Yi C hI�/� F.Yi � hI�/
2h

�

D lim
h!0C

n
Y

iD1

�

F.Yi C hI�/� F.Yi � hI�/
2h

�

D lim
h!0C

�

1

2h

�n n
Y

iD1
P�.Y

�
i 2 .Yi � h; Yi C h� jYi /;

where again Y �
1 ; : : : ; Y

�
n are iid with the same distribution and independent of

Y1; : : : ; Yn. Thus, for small h the likelihood is approximately equal to a constant
.2h/�n multiple of the probability of a 2h-neighborhood of the observed data. In
other words, the likelihood is proportional to the probability of obtaining a new
sample that is close to the sample actually obtained. So, similar to the case of
discrete data, maximizing the 2h-likelihood to obtain b�h is the same as choosing
the density, f .yIb�h/, that assigns the greatest probability to a neighborhood of the
observed data Y . Of course this makes sense only ifb�h converges tob�MLE as h ! 0

as is generally the case.
In the discrete case, note that the likelihood is obtained via a similar limiting

process, but without the constant factor .2h/�1,

lim
h!0C

n
Y

iD1
fF.Yi C hI�/� F.Yi � hI�/g D

n
Y

iD1

˚

F.Y C
i I�/� F.Y �

i I�/


D
n
Y

iD1
f .Yi I�/

D L.� jY /:

Here it helps to remember that the distribution function of a discrete random variable
has jumps of size f .yI�/ at the possible values y. Note also that at the jump points
y, F.yCI�/ and F.y�I�/ denote the limits of F.t I�/ as t converges to y from the
right and left, respectively.

The 2h-method of calculating likelihoods allows us to construct likelihoods for
more complicated problems where a mathematically rigorous definition of likeli-
hood would require measure theoretic concepts. Our general working definition of
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the likelihood for independent data Y1; : : : ; Yn, where Yi has distribution function
Fi .yI�/, is then

L.� jY / D lim
h!0C

�

1

2h

�m n
Y

iD1
fFi .Yi C hI�/ � Fi .Yi � hI�/g ; (2.7)

where 1 � m � n depends on the number of continuous components in the data.
We now illustrate this definition with a class of models having both discrete and
continuous components.

2.2.4 Mixtures of Discrete and Continuous Components

Data Y such as daily rainfall, or snowfall, or the weight of fish caught on a
commercial fishing expedition, often have a number of zeroes (no rain, no snow,
no luck), and the amounts greater than zero are best modeled by a continuous
distribution. Such data are often modeled by a distribution

FY .yIp;�/ D P.Y � y/ D pI.0 � y/C .1 � p/FT .yI�/; (2.8)

that is a mixture of a point mass at zero (note that I.0 � y/ is the distribution
function of a degenerate random variable at zero), and a continuous positive random
variable T having distribution function FT .yI �/, e.g., a Weibull random variable.
Alternatively, (2.8) can be expressed as

FY .yIp;�/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; y < 0;

p; y D 0;

p C .1� p/FT .yI�/; y > 0:

We now obtain the likelihood of an iid sample Y1; : : : ; Yn from the distribution (2.8)
using the definition (2.7, p. 41). Letting n0 be the number of zeroes in the data, and
with m D n � n0 the number of non-zero Yi , we have

L.� jY / D lim
h!0C

�

1

2h

�m n
Y

iD1
fFY .Yi C hIp;�/ � FY .Yi � hIp;�/g

D lim
h!0C

fFY .hIp;�/� FY .�hIp;�/gn0

	 lim
h!0C

Y

Yi>0

�

FY .Yi C hIp;�/� FY .Yi � hIp;�/
2h

�

D lim
h!0C

fp C .1 � p/FT .hI�/gn0
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	 lim
h!0C

Y

Yi>0

�

.1 � p/FT .Yi C hI�/� .1 � p/FT .Yi � hI�/
2h

�

D pn0.1 � p/n�n0 Y

Yi>0

fT .Yi I�/:

In the second step the zero Yi are replaced by 0 and factored out of the full product
leaving only the product over the positive Yi . The third step uses the fact that
for h sufficiently small, Yi � h > 0 for the nonzero Yi and the discrete part of
the distribution function subtracts out of FY , that is FY .Yi C hIp;�/ � FY .Yi �
hIp;�/ D .1�p/FT .Yi ChI�/� .1�p/FT .Yi �hI�/ for Yi > 0. The likelihood
is intuitive consisting of a Bernoulli component for the n0 zeroes and a continuous
component for the n�n0 nonzero values. Consideration of the log likelihood makes
it apparent that bpMLE D n0=n and that b�MLE is obtained in the usual way for a
sample of size n� n0 having density fT .yI�/.
Example 2.7 (Snowfall in Seattle). Siegel (1985) gives total January snowfall in
inches for Seattle from 1906 to 1960:

> snow
[1] 4.1 2.1 23.3 3.1 0.0 0.0 0.0 0.0 0.0

[10] 0.0 0.3 12.2 4.1 6.3 2.6 0.0 4.8 10.9
[19] 1.0 3.8 6.6 10.1 0.0 11.5 0.0 1.0 2.3
[28] 1.1 1.3 18.4 0.0 0.0 0.0 14.6 0.7 0.0
[37] 0.3 11.3 0.0 0.0 0.0 7.0 16.9 5.0 2.5
[46] 0.0 0.0 0.0 6.5 17.4 0.8 0.0 31.0 0.0
[55] 1.0

Because there are 21 months of January with no snow in the 55 years, bpMLE D
21=55. A Weibull distribution was fit to the nonzero snowfall amounts. Because
�log(Weibull) has a location-scale extreme value distribution, we display in the left
panel of Figure 2.4 an extreme value QQ plot of the �log transformed data. The
right panel of Figure 2.4 displays the estimated Weibull distribution function with
the empirical distribution function of the original data jittered to avoid ties. Neither
plot indicates a problem with the fit.

�

2.2.5 Proportional Likelihoods

Our working definition (2.7, p. 41) for the likelihood is a bit vague because the
factor .2h/�m depends on the number of discrete and continuous components.
This vagueness should not be overly disconcerting, though, because likelihoods are
equivalent for point estimation as long as they are proportional and the constant
of proportionality does not depend upon unknown parameters. In fact, some
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Fig. 2.4 Assessing fit of Weibull to nonzero snowfall data

statisticians make the much stronger statement that all inference about � should
be the same as long as likelihoods are proportional. The strong Likelihood Principle
is considered again at the end of this subsection. We proceed by looking at a series
of examples.

Suppose that Y1; : : : ; Yn are iid from a continuous distribution with density
fY .yI�/. Consider the transformed data Xi D g.Yi/, i D 1; : : : ; n, where g is
a known, increasing, continuously differentiable function. Because g is one-to-one,
we can reconstruct Yi from Xi and vice versa. Thus the two data sets fY1; : : : ; Yng
and fX1; : : : ; Xng are equivalent in the sense that each contains exactly the same
information. Because of this equivalence, it is intuitive that likelihood inference
based on one data set should be identical to inference based on the other. We now
show that this is the case.

The density of Xi is fX.xI�/ D fY .h.x/I�/h0.x/; where h D g�1. Thus the
likelihood of the X sample is

L.� jX/ D
n
Y

iD1
fY .h.Xi/I�/h0.Xi/

D
n
Y

iD1
fY .Yi I�/h0.g.Yi //

D
n
Y

iD1
fY .Yi I�/ 1

g0.Yi /

�

since
dh.x/

dx
D dg�1.x/

dx
D 1

g0.g�1.x//

�

D L.� jY /
(

n
Y

iD1

1

g0.Yi /

)

: (2.9)

Note that the two likelihoods are proportional as functions of � for all Yi . This
implies that maximum likelihood estimates and likelihood ratio tests are identical
whether derived from L.� jY / or L.� jX/.
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A similar line of reasoning ensues when there are sufficient statistics that are
not one-to-one functions of the data. For example, suppose that we have a sample
Y1; : : : ; Yn of iid Bernoulli random variables with parameter p. Noting that the
density of Yi is py.1 � p/1�y , the likelihood is L.p jY / D pS.1 � p/n�S ; where
S D P

Yi . The binomial likelihood of the sufficient statistic S is L.p jS/ D
�

n
S

	

pS.1 � p/n�S . Thus L.p jY / and L.p jS/ differ by the factor
�

n
S

	

that is
independent of p for all S , and similar to the transformation example in (2.9), this
difference has no consequence for inference on p.

Note that in each of the previous two examples the sampling plan and data
are the same, yet we could find multiple different but indisputably equivalent
likelihoods in each case (equivalent via their proportionality). However, when
different sampling plans give rise to proportional likelihoods, their equivalence is
debatable, as illustrated in the next example.

Example 2.8 (Likelihood Principle example). This example is taken from Berger
and Wolpert (1984, p. 19–20), who cite Lindley and Phillips (1976). Consider data
obtained from two different sampling plans. The first is the usual iid Bernoulli
sampling with n D 12 and sufficient statistic-likelihood

 

12

S

!

pS.1 � p/12�S ;

where S D P

Yi . The second sampling plan is negative binomial, wherein
Bernoulli random variables Yi are observed until 3 zeroes are obtained. For negative
binomial sampling S D P

Yi is a sufficient statistic with likelihood,
 

S C 2

S

!

pS.1 � p/3:

The ratio of the binomial likelihood to the negative-binomial likelihood is

�

12
S

	

�

SC2
S

	 .1 � p/9�S :

Unlike (2.9), this ratio depends on the parameter p except in the particular case
S D 9. So for any value of S ¤ 9, the likelihoods are not proportional and there is
no reason to expect the two likelihoods to result in the same inferences.

However, suppose that SD9 in both cases, resulting in likelihoods 220p9.1�p/3
and 55p9.1�p/3 that are clearly proportional. Should all inferences be the same for
these two different experiments? Certainly bpMLE D 9=12 for both, but for testing
H0 W p D 1=2 versusHa W p > 1=2, the p-value for the first experiment is .0730 and
.0337 for the second (confidence intervals also differ). Some statisticians, primarily
Bayesians, maintain that proportional likelihoods contain the same information and
thus should necessarily result in the same inferences. They cite the discrepancy in p-
values and confidence intervals as evidence that frequentist methods are not logical
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approaches to inference because they can lead to different conclusions even when
the likelihoods are proportional (and thus the inferences are not based solely on the
likelihood). For example, the difference in p-values above is due to the fact that their
calculation depends on the null probability mass functions and the sample spaces
for S (f0; 1; : : : ; 12g for binomial sampling and f0; 1; : : : g for negative binomial
sampling). The key point is that the p-value calculations do not depend solely on
the observed likelihood.

The belief that proportional likelihoods should lead to equivalent inferences is
canonized in the Likelihood Principle here reproduced verbatim from Berger and
Wolpert (1984, p. 19) (note that they use x where we have used Y or S ):

THE LIKELIHOOD PRINCIPLE. All the information about � from an experiment is
contained in the likelihood function for the actual observation x. Two likelihood functions
for � (from the same or different experiments) contain the same information about � if they
are proportional to each other.

Consideration of the philosophy behind The Likelihood Principle or of the contro-
versies surrounding it is not addressed in this book. We merely note that proportional
likelihoods always lead to the same b�MLE and contain the same information within
the same experiment, as illustrated by the transformed data and sufficient statistic
examples. �

2.2.6 The Empirical Distribution Function as an MLE

In this next example, we essentially ignore the factor .2h/�m in deriving the
maximum likelihood estimator. Suppose that Y1; : : : ; Yn are iid with distribution
function F.y/. Here F.y/ is the unknown parameter. We merely require F.y/
to have the properties of a distribution function: it is nonnegative, nondecreasing,
right-continuous, and satisfies 0 � F.y/ � 1 for all y 2 .�1;1/ with
limy!�1 F.y/ D 0 and limy!1 F.y/ D 1. Thus the parameter space is the set of
all distribution functions.

Ignoring the factor .2h/�m, an approximate likelihood for F is

Lh.F jY / D
n
Y

iD1
fF.Yi C h/ � F.Yi � h/g ;

where h is assumed to be a small positive constant. The following argument assumes
that there are no ties in the sample; the results apply more generally, but requires a
modified proof. In the absence of ties we can assume that h is small enough to
ensure that ŒYi � h; Yi C h� does not contain Yj for any j ¤ i . Let pi;h D F.Yi C
h/ � F.Yi � h/. Then Lh.F jY / D Qn

iD1 pi;h. Note that Lh.F jY / is maximized
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only if each pi;h > 0, i D 1; : : : ; n. Since increasing pi;h increases Lh.F jY /, we
want the pi;h > 0 to be as large as possible while still satisfying

Pn
iD1 pi;h � 1.

Of course this implies that
Pn

iD1 pi;h D 1. Thus our goal is to maximize
Qn
iD1 pi;h

over all p1;h; : : : ; pn;h subject to the constraints pi;h > 0 and
Pn

iD1 pi;h D 1. Using
the method of Lagrange multipliers, we solve the optimization problem by finding
the stationary points of

g.p1;h; : : : ; pn;h; / D
n
X

iD1
log.pi;h/C 

 

n
X

iD1
pi;h � 1

!

;

by solving

@g

@pi;h
D 1

pi;h
C  D 0; i D 1; : : : ; n;

@g

@
D

n
X

iD1
pi;h � 1 D 0:

The first n equations Imply that pi;h D �1=, which upon substitution into the last
equation yields  D �n. Thus any distribution function bF h.y/ satisfying bF h.Yi C
h/ � bF h.Yi � h/ D 1=n; i D 1; : : : ; n, maximizes Lh.F jY /. Problem 2.10 shows
that all such bF h.y/ converge in distribution to bF EMP.y/ D n�1Pn

iD1 I.Yi � y/ as
h ! 0. Thus we take as the MLE of F.y/, the empirical distribution function, i.e,

bFMLE.y/ D FEMP.y/ D 1

n

n
X

iD1
I.Yi � t/:

2.2.7 Likelihoods from Censored Data

2.2.7a Type I Censoring

Suppose that a random variableX is normally distributed with mean � and variance
�2, but whenever X � 0, all we observe is that it is less than or equal to 0. We say
that X has been censored at 0. If the sample value is set to 0 in the censored cases,
then we can define the observed variate Y by

Y D
(

0; X � 0;

X; X > 0:
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At y D 0 the distribution function of Y is

FY .0/ D P.Y D 0/ D P.�Z C � � 0/ D P.Z � ��=�/ D ˚ .��=�/ ;
where Z is a standard normal random variable with distribution function ˚ . For
y > 0, FY .y/ D P.X � y/ D ˚ ..y � �/=�/, and FY .y/ D 0 for y < 0. Thus,
suppose we have a sample Y1; : : : ; Yn, and, as before, let n0 be the number of sample
values that are 0. Then with m D n � n0

Lh.� jY / D
�

1

2h

�m n
Y

iD1
fFY .Yi C hI�/� FY .Yi � hI�/g

D
�

˚

�

h � �
�

�

� 0

�n0

	
Y

Yi>0

�

˚ ..Yi C h� �/=�/ �˚ ..Yi � h � �/=�/
2h

�

h!0C

�!
n

˚
���
�

�on0 Y

Yi>0

�

1

�
�

�

Yi � �

�

��

D L.� jY /:

Tobin (1958) introduced this model in a regression setting, and later it was named
the Tobit model after Tobin and its similarity to probit models. Of course, censoring
at zero is not unique; any threshold valueL0 might be appropriate depending on the
situation. In general, this type of censoring at a fixed point is called Type I censoring,
and we have just discussed left censoring. Type II censoring refers to situations
where the first r ordered values of a sample are observed or more generally some
specified subset of the ordered values are observed (see Problem 2.12, p. 110).

It is worth mentioning that censoring is different from truncation. For example,
we might sample only households that have above a certain income, say L0. That
is, our sample Y1; : : : ; Yn of incomes is only for incomes above L0, and in a sense
we are unaware of data belowL0. If all incomes have distribution function F.xI�/,
then for y > L0

P.Y1 � y jY1 > L0/ D P.Y1 � y; Y1 > L0/

P.Y1 > L0/
D F.yI�/� F.L0I�/

1 � F.L0I�/ :

Taking derivatives, the likelihood of Y1; : : : ; Yn is then

L.� jY / D
n
Y

iD1

�

f .yI�/
1 � F.L0I�/

�

:

This is just an iid-data likelihood, where the densities are adjusted to take into
account that Yi > L0.
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Now back to Type I censoring, we might have censoring on the left at L0 and
censoring on the right at R0, but observe all values of X between L0 and R0.
Suppose that X has density f .xI�/ and distribution function F.xI�/, and that

Yi D

8

ˆ

ˆ

<

ˆ

ˆ

:

L0; Xi � L0;

Xi ; L0 < Xi < R0;

R0; Xi � R0:

If we let nL and nR be the number of Xi values � L0 and � R0, respectively, then
the likelihood of the observed data Y1; : : : ; Yn is

L.� jY / D fF.L0I�/gnL
8

<

:

Y

L0<Yi<R0

f .Yi I�/
9

=

;

f1 � F.R0I�/gnR :

We could also let each Xi be subject to its own censoring values Li and Ri .
The notation just gets a bit more onerous. However, right censoring is the most
common; so let us restrict to that case and define Yi D min.Xi ; Ri /. In addition,
define indicator variables ıi D I.Xi � Ri/ that are equal to one if we observe
Xi and are zero if Xi is censored. Then the likelihood can be written in the fairly
simple form

L.� jY / D
n
Y

iD1
f .Yi I�/ıi Œ1 � F.Ri I�/�1�ıi :

Example 2.9 (Equipment failure times). Lawless (1982, Table 1.1.2) gives data
from Bartholomew (1957) on pieces of equipment that are started at different times
and later regularly checked for failure. By a fixed date when the study ended, three
of the items had not failed and therefore were censored. The data in days to failure
are as follows:

Y: 2 72 51 60 33 27 14 24 4 21
ı: 1 0 1 0 1 1 1 1 1 0

Note that values 72, 60, and 21 are censoring times, not failure times, and indicated
by ı D 0. For simplicity, suppose that the failure times follow an exponential
distribution, F.xI �/ D 1 � exp.�x=�/; x � 0: Then

L.� jY / D
n
Y

iD1

�

1

�
exp.�Yi=�/

�ıi

Œexp.�Yi=�/�1�ıi D
�

1

�

�n�nR
exp.�nY =�/;

where nR is the number of observations censored on the right. Taking logarithms,
we have

`.�/ D logL.� jY / D �.n � nR/ log � � nY

�
;
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and differentiating with respect to � and equating to zero leads to

S.�/ D �.n � nR/

�
C nY

�2
D 0;

and

b�MLE D
�

n

n � nR
�

Y D
�

10

10� 3

�

30:8 D 44:0: �

2.2.7b Random Censoring

In the situations described above, the censoring timesL andRwere considered fixed
time points. In medical studies, however, patients often enter the studies at different
times that are modeled as random variables. Along with a fixed end date of the study,
this leads to random right censoring times R1; : : : ; Rn. The notation stays the same,
Yi D min.Xi ; Ri / and ıi D I.Xi � Ri/, but we assume that the censoring times
are independent of X1; : : : ; Xn and iid with distribution function G.t/ and density
g.t/. Now consider the contribution to the likelihood due to .Yi ; ıi D 1/ and recall
that Xi has density f .xI�/:

P.Yi 2 .y � h; y C h�; ıi D 1/

2h
D P.Xi 2 .y � h; y C h�;Xi � Ri/

2h

D
�

1

2h

�Z 1

�1

Z 1

�1

[I.y � h < t � y C h; t � r/

	 f .t I�/g.r/] dt dr

D
�

1

2h

�Z yCh

y�h

�Z 1

�1

I.t � r/g.r/dr

�

f .t I�/dt

D
�

1

2h

�Z yCh

y�h

Œ1 �G.t/� f .t I�/dt

�! Œ1 �G.y/� f .yI�/

The last line is by the Fundamental Theorem of Calculus. Next consider the
contribution due to .Yi ; ıi D 0/:

P.Yi 2 .y � h; y C h�; ı D 0/

2h
D P.Ri 2 .y � h; y C h�; Xi > Ri /

2h

D
�

1

2h

�Z yCh

y�h

�Z 1

�1
I.t > r/f .t I�/dt

�

g.r/dr
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D
�

1

2h

�Z yCh

y�h
Œ1 � F.r I�/� g.r/dr

�! Œ1 � F.yI�/� g.y/

Putting together these two types of contributions to the likelihood, we have

L.� jY ; ı/ D
(

n
Y

iD1
f .Yi I�/ıi Œ1 � F.Yi I�/�1�ıi

)

n
Y

iD1

n

g.Yi /
1�ıi Œ1 �G.Yi/�

ıi
o

D
n
Y

iD1

n

f .Yi I�/ıi Œ1 � F.Yi I�/�1�ıi g.Yi /1�ıi Œ1 �G.Yi/�
ıi
o

:

Note that the first part of the likelihood is the same as we derived for the fixed
censoring times situation. Note also that the unknown censoring distribution G is
not needed to estimate � .

2.3 Likelihoods for Regression Models

2.3.1 Linear Model

Consider the familiar normal linear model,

Yi D xTi ˇ C ei i D 1; : : : ; n; (2.10)

where e1; : : : ; en are iid N.0; �2/, and the x1; : : : ;xn are known nonrandom p-
vectors, the first component of which is usually the constant “1” corresponding to
an intercept. In this section we use p for the dimension of ˇ, and thus � D .ˇT ; �/T

has dimension b D p C 1. The likelihood is

L.ˇ; � j fYi ;xi gniD1/ D
n
Y

iD1

1p
2��

exp

(

�
�

Yi � xTi ˇ
	2

2�2

)

D
�

1p
2��

�n

exp

(

�
n
X

iD1

�

Yi � xTi ˇ
	2

2�2

)

: (2.11)

Using the distribution-function method, the likelihood is found by first calculating
the distribution function of Yi ,

P.Yi � y/ D P.xTi ˇ C ei � y/ D P.ei � y � xTi ˇ/ D ˚

�

y � xTi ˇ
�

�

;
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where ˚ is the standard normal distribution function, then differentiating with
respect to y to get the density of Yi , replacing y by Yi , and taking the product
over i .

Taking logarithms of (2.11) shows that the maximum likelihood estimator of
ˇ is the same as the least squares estimator, bˇMLE D bˇLS D .XTX/�1XTY ,
where X D .x1; : : : ;xn/

T , and for simplicity XTX is assumed to be nonsingular.
Setting the derivative of the log likelihood with respect to � equal to zero and
solving producesb�2MLE D n�1Pn

iD1be2i , wherebei D Yi � xTi bˇMLE, i D 1; : : : ; n.
However, common practice is to use the unbiased estimator .n � p/�1

Pn
iD1be2i in

place ofb�2MLE.
For sampling designs wherein .xi ; Yi / are sampled from a population of .x; Y /

pairs, the predictors are also random variables. In such cases the linear model
specification (2.10) is understood to specify the conditional distribution of Yi given
X i D xi . Thus if marginally,X 1; : : : ;Xn are iid with parametric density fX .xI�/,
then the full likelihood is

L.ˇ; �;� j fYi ;X i gniD1/

D
�

1p
2��

�n

exp

(

�
n
X

iD1

�

Yi �XT
i ˇ
	2

2�2

)

n
Y

iD1
fX .X i ;�/: (2.12)

Note that the log likelihood decomposes into two parts `.ˇ; �;�/ D `1.ˇ; �/ C
`2.�/ where `1.ˇ; �/ is identical in structure to the logarithm of (2.11). It follows
that if � does not depend functionally on ˇ or � as is usually assumed, then
likelihood-based inference for ˇ and � is identical for (2.11) and (2.12) (e.g., the
partial derivatives with respect to ˇ and � of `.ˇ; �;�/ and `1.ˇ; �/ are identical,
neither one depending �). When the density of the X i does not depend on the
parameters ˇ and � , the sample values X 1; : : : ;Xn are said to be ancillary and
play no role in likelihood methods. The estimators and information matrix are the
same as before, and the asymptotic results are the same. For exact finite sample
results, it is traditional to condition on X 1; : : : ;Xn, in which case results are the
same as in the fixed constants case. See Sampson (1974) for a comparison of exact
conditional and unconditional inference in the normal linear model.

For modeling certain data, e.g., when Yi are maxima, it makes sense to assume
the additive model (2.10, p. 50) but with nonnormal errors. Assuming that the errors
have the scale-family density ��1fe.t=�/, then the likelihood is

L.ˇ; � j fYi;xi gniD1/ D
n
Y

iD1

1

�
fe

�

Yi � xTi ˇ
�

�

: (2.13)

For example, the extreme value density

fe.t/ D exp .�t/ exp f� exp .�t/g ;
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Fig. 2.5 Simple linear regression modeling of Venice maximum sea levels 1931–81

is a natural candidate model when the Yi are maxima. With the extreme value error
model it is no longer true that least squares and maximum likelihood estimators are
equal. Both are consistent for the non-intercept components of ˇ, but the asymptotic
relative efficiency of the least squares estimator compared to the extreme value
maximum likelihood estimator is only .61 assuming the extreme value model is
correct. Thus, there is good reason to go to the extra trouble of using the extreme
value MLE when the Yi are maxima and the extreme value error model is justified.

Example 2.10 (Venice sea levels). The annual maximum sea levels in Venice for
1931–1981 are given in Pirazzoli (1982) and analyzed by Embrechts et al. (1985)
using extreme value likelihood methods. The data are as follows:

> venice
[1] 103 78 121 116 115 147 119 114 89 102 99

[12] 91 97 106 105 136 126 132 104 117 151 116
[23] 107 112 97 95 119 124 118 145 122 114 118
[34] 107 110 194 138 144 138 123 122 120 114 96
[45] 125 124 120 132 166 134 138

The left panel of Figure 2.5 plots the data and the least squares line, y D 104:9C
:567year, and the extreme value maximum likelihood line, y D 96:8 C :563year,
where the year variable is from 1 to 51 for years 1931 to 1981. The right panel
of Figure 2.5 gives an extreme value QQ plot of the residuals and suggests that
the extreme value model is reasonable. The slope estimates are very close, but the
standard errors of the slopes are .177 (LS) and .136 (MLE), consistent with the
greater efficiency of the latter when the extreme value model is appropriate.

The difference in intercepts is explained by the fact that the extreme value error
distribution has mean � :577� . Thus we expect thatbˇ1;LS � bˇ1;MLE C :577b� . The
MLE of � from the extreme value fit is 14.5, and thus bˇ1;MLE C :577b� D 96:8 C
:577.14:5/ D 105:17 � 104:9 as expected. �
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2.3.2 Additive Errors Nonlinear Model

The standard nonlinear regression model is very similar to (2.10, p. 50) but Yi D
xTi ˇ C ei is replaced by Yi D g.xi ;ˇ/ C ei , where g is a known function.
Common examples are the exponential growth model g.xi ;ˇ/ D ˇ0 exp .ˇ1xi /
and the logistic growth model g.xi ;ˇ/ D ˇ0 .1C ˇ1 exp f�ˇ2xi g/�1. For normal
errors, the likelihood is the same as (2.11, p. 50) with xTi ˇ replaced by g.xi ;ˇ/
and maximum likelihood again leads to least squares estimators, but the estimator
of ˇ no longer has a closed form and must be calculated numerically. The maximum
likelihood estimator of � has the same form as in the linear case, i.e., the average
squared residual.

2.3.3 Generalized Linear Model

Generalized linear models introduced by Nelder and Wedderburn (1972) are another
important class of nonlinear models that generalize the normal linear model.
Suppose that Yi has log density

logf .yi I �i ; �/ D yi�i � b.�i /
ai .�/

C c.yi ; �/: (2.14)

The density of Yi is almost an exponential family density except for the dispersion
term ai .�/, where ai is a known function and � is possibly an unknown parameter.
In exponential family language, �i is called the natural or canonical parameter.

For those unfamiliar with exponential families, it is worth taking a moment to
show how standard densities fit into the framework of (2.14). Consider first the
Bernoulli density

f .yIp/ D py.1 � p/1�y; y D 0; 1:

Taking natural logarithms, we have

logf .yIp/ D y logp C .1 � y/ log.1 � p/

D y log

�

p

1 � p

�

C log.1 � p/:

Thus ai .�/ D 1, c.yi ; �/ D 0, � D log fp=.1� p/g and then pD1= f1C exp.��/g,
so that

b.�/ D � log.1 � p/ D � log

�

1 � 1

1C exp.��/
�

D log f1C exp.�/g :
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Next consider the normal.�; �2/ density:

logf .yI�; �/ D � log
�p

2��
�

� .y � �/2
2�2

D y� � �2=2
�2

� log
�p

2��
�

� y2

2�2
:

Thus � D �, b.�/ D �2=2 D �2=2, ai .�/ D �2, and c.yi ; �/ D log.�
p
2� / �

y2=.2�2/. Note that in the general exponential family framework of Appendix B
(p. 97), the generalized linear model representation of the normal density is closer
to the representation of a normal density with known variance �2, Example 2.29
(p. 98), than the two-parameter version, Example 2.31 (p. 100).

Returning to the general form (2.14), we first use the fact that the derivative
of (2.14) must have expectation zero, to obtain �i D E.Yi / D b0.�i /. Next, using
the information identity often studied in a first course in mathematical statistics,

E

�

@

@�i
logf .Yi I �i ; �/

� 2

D E

�

� @2

@�2i
logf .Yi I �i ; �/

�

leads to Var.Yi / D b00.�i /ai .�/. Note that since the variance must be positive,
b.�i / is a strictly convex function and b0.�i / is monotone increasing with a unique
inverse b0�1.

For generalized linear models there is a link function g between the mean of Yi
and the linear predictor �i D xTi ˇ such that g.�i / D xTi ˇ. Thus, the formal
definition of the density in terms of the linear predictor has the awkward term
�i D b0�1 ˚g�1.xTi ˇ/




. Fortunately, the most important cases have g.�i / D �i D
xTi ˇ. These g are called natural or canonical link functions and are found by
setting g.�i / D b0�1.�i /. Examples are g.�i / D �i for normal data, g.�i / D
log f�i=.1� �i/g for Bernoulli data, and g.�i / D log.�i / for Poisson data.

For canonical-link models, the log likelihood of .Y1;x1/; : : : ; .Yn;xn/, where
the Yi are independent with log density (2.14) and the xi are known nonrandom
vectors, is

logL.ˇ; � j fYi ;xi gniD1/ D
n
X

iD1

�

Yix
T
i ˇ � b.xTi ˇ/
ai .�/

C c.Yi ; �/

�

: (2.15)

We now consider three important models. For normal data, we have already
shown b.�i / D �2i =2. Choosing the canonical link g.�i / D �i (since b0.�i / D �i )
and ai .�/ D �2 leads directly to (2.10, p. 50) with N(0,�2) errors, the normal linear
model.

For Bernoulli data, Yi D 0 or 1 with P.Yi D 1/ D pi D �i , and ai .�/ D 1

and b.�i / D log
�

1C e�i
	

. Thus b0.�i / D .1 C e��i /�1 and the canonical link is

g.pi / D log fpi=.1� pi/g. Because pi is modeled as .1Ce�xTi ˇ/�1 and .1Ce�t /�1
is the distribution function of a logistic random variable, this model is called logistic
regression. In dose-response settings and other applications, it is common to use
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the normal distribution function ˚ in place of the logistic, in which case g.pi / D
˚�1.pi / and the model is called probit regression or probit analysis. (However, the
probit link is not a canonical link and is not further discussed here.)

Often the data are such that each unique xi is associated with mi binary
responses, in which case the data are naturally represented as .xi ; Yi1; : : : ; Yimi /,
for i D 1; : : : ; n. When Yi1; : : : ; Yimi are iid Bernoulli.pi/, then sufficiency can be
invoked to further reduce the stored data to the pairs

�

xi ; Y i �
	

; i D 1; : : : ; n. In this
case the Y i � follow model (2.14, p. 53) with the same definitions as for Bernoulli
data except that V D diag fm1p1.1 � p1/; : : : ; mnpn.1 � pn/g, ai .�/ D 1=mi , and
c.yi ; �/ differs accordingly.

Often the Bernoulli response variables Yi1; : : : ; Yimi are obtained by some type of
cluster sampling, thus violating the independence assumption and usually resulting
in positive pairwise correlation (e.g., Y i � is the proportion of family members
contracting the flu in a given time period). In this case the miY i � are not binomially
distributed but are over-dispersed or have extra-binomial variation. The generalized
linear model handles this case by letting ai .�/ D �=mi so that Var.Y i �/ D
�pi.1 � pi/=mi and V D diag fm1p1.1 � p1/; : : : ; mnpn.1 � pn/g =�.

For Poisson data, b.�i / D e�i and ai .�/ D 1, and thus b0.�i / D e�i . Inverting b0
leads to the canonical link g.�i / D log.�i / and modeling the mean�i by ex

T
i ˇ . The

variance of Yi is �i . Often data initially thought to be Poisson are over-dispersed,
and it is important to add the over-dispersion parameter � so that Var.Yi / D ��i .

2.3.4 Generalized Linear Mixed Model (GLMM)

In recent years there has been a large effort focused on extending generalized
linear models (GLMs) to include random effect terms. These extended models have
a GLM structure conditional on a vector of random effects U . That is, the log
conditional density of the dependent variable Yi has the form (in the canonical link
case)

logfYi ju.yi jU ;xi ; zi ;ˇ; �/ D yi�i � b.�i /
�

C c.yi ; �/; (2.16)

where �i D xTi ˇ C zTi U is the linear predictor now enhanced to include the
random effects U via the terms zTi U where zi are known nonrandom predictors. To
complete the specification, assume that the random effects have density fu.uI �/,
where � is a vector of parameters. Such a model is called a generalized linear
mixed model (GLMM). In the normal distribution case, this leads to the usual linear
mixed model Y D Xˇ C ZU C e, here written in the familiar vector form where
X D .xT1 ; : : : ;x

T
n / and Z D .zT1 ; : : : ; z

T
n /. If the Yi are conditionally independent,

then the likelihood of the observations Y1; : : : ; Yn is

L.ˇ; �; � j fyi ; xi ; zi gniD1/ D
Z n
Y

iD1
fYi ju.yi ju;xi ; zi ;ˇ; �/fu.uI �/du: (2.17)
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Integration over u is required because U is not observed, and the likelihood is the
density of the observed data. In the normal case, the integration is tractable, but in
general this likelihood is not easy to calculate or maximize. Breslow and Clayton
(1993) and McCullagh (1997) give some of the important approaches for finding
maximum likelihood estimators, but this remains an active area of research.

2.3.5 Accelerated Failure Model

Accelerated Failure Models comprise an important class of regression models for
censored data. For the case of random right censoring, the model is

logTi D xTi ˇ C �ei ;

where we observe Yi D min.logTi ; logRi/, and Ri is a censoring time that is
assumed independent of Ti . Typical models for the errors ei are standard normal, or
logistic, or

fe.z/ D eze�ez
; �1 < z < 1;

the density of the logarithm of a standard exponential random variable. The name
“Accelerated Failure Models” comes from the fact that for the failure time Ti D
ex

T
i ˇe�ei , the role of xi can be to accelerate (shorten) the time to failure. Using

notation as before, the likelihood for error density fe and distribution function Fe is

L.ˇ; � j fYi; ıi ;xi gniD1/ D
n
Y

iD1

�

1

�
fe.ri /

�ıi

Œ1 � Fe .ri /�1�ıi :

where ıi D I.Yi D logTi / and ri D .Yi � xTi ˇ/=� .

Example 2.11 (Censored survival times). Lawless (1982, p. 318) gives data
from Glasser (1965) on survival times of patients with primary lung tumors and
two covariates, age and lung performance status (ps). The data are as follows: log
survival timeD(1.94, 2.23, 1.94, 1.98, 2.23, 1.59, 2.13, 1.80, 2.32, 1.92, 2.15*,
2.05*, 2.48*, 2.42*, 2.56*, 2.56*) (* for censored); ageD(42, 67, 62, 52, 57, 58,
55, 63, 44, 62, 51, 64, 54, 64, 54, 57); performance statusD(4, 6, 4, 6, 5, 6, 6, 7, 5,
7, 7, 10, 8, 3, 9, 9). A scatter plot of log survival time versus age and ps is not very
suggestive of a significant linear relationship. Moreover, a least squares fit ignoring
the censoring suggests that neither covariate is important. However, maximization
of the accelerated failure likelihood (in SAS PROC LIFEREG) with fe the standard
normal yields

logT D 1:614� :006.age/C :102.ps/;
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with standard error .06 for the performance status coefficient estimate .102. Thus
the Wald statistic (studied in detail in Chapter 3) is TW D10.2/6D1.7, which
is suggestive of a positive effect due to performance status, but not conclusive,
especially in light of the liberal tendencies of TW statistics as discussed in
Section 3.2.4 (p. 132). �

2.4 Marginal and Conditional Likelihoods

The presence of nuisance parameters is a common problem in likelihood analysis
of parametric models, especially when the number of nuisance parameters is large.
In these cases �T D .�T1 ;�

T
2 / where �1 contains the parameters of interest and

typically has small dimension, and �2 contains the nuisance parameters. When
the dimension of �2 is large, maximum likelihood estimators of the parameters
of interest (�1) are often biased in small samples and can be inconsistent in large
samples. We present two alternatives to full maximum likelihood-based inference
in such cases. Each method depends on finding a one-to-one transformation of the
data Y to .V ;W / such that either:

fY .y I�1;�2/ D fW ;V .w; vI�1;�2/ D fW jV .wjvI�1;�2/fV .vI�1/I (2.18)

or

fY .yI�1;�2/ D fW ;V .w; vI�1;�2/ D fW jV .wjvI�1/fV .vI�1;�2/: (2.19)

The key common feature of the likelihood factorizations in (2.18) and (2.19) is
that one component of each contains only the parameter of interest. In (2.18) the
marginal density of V, fV .V I�1/, depends on �1 only, and a likelihood derived
from it is called a marginal likelihood and results in marginal likelihood inference.
In (2.19) the conditional density ofW given V, fW jV .wjvI�1/, depends on �1 only,
and a likelihood derived from it is called a conditional likelihood and results in
conditional likelihood inference. Both types of alternative likelihoods can be useful
in practice.

We illustrate the usefulness of marginal and conditional likelihoods in the context
of the famous Neyman-Scott example of an inconsistent maximum likelihood
estimator of the error variance in one-way analysis of variance (Neyman and Scott
1948).

2.4.1 Neyman-Scott Problem

Let Yij ; i D 1; : : : ; n; j D 1; 2 be independent normal random variables with
possibly different means �i but the same variance �2. Thus � D .�2; �1; : : : ; �n/

T
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has dimension n C 1. The maximum likelihood estimator of �i is b�i;MLE D
.Yi1 C Yi2/=2, and

b�2MLE D 1

2n

n
X

iD1

2
X

jD1

�

Yij �b�i;MLE
	2

D 1

2n

n
X

iD1

(

�

Yi1 � Yi1 C Yi2

2

�2

C
�

Yi2 � Yi1 C Yi2

2

�2
)

D 1

n

n
X

iD1

1

4
.Yi1 � Yi2/2 : (2.20)

Using (2.20) we can see that E
�

b�2MLE

	 D �2=2 and thatb�2MLE

p�! �2=2 as n ! 1
by the Weak Law of Large Numbers.

The failure of maximum likelihood in this example is due to the fact that the
number (n) of nuisance parameters (�1; : : : ; �n) grows proportionally with sample
size. One way to handle the problem here is to define Vi D .Yi1 � Yi2/=

p
2 and

Wi D .Yi1CYi2/=
p
2; i D 1; : : : ; n. This is a one-to-one transformation of the data,

and V1; : : : ; Vn are iid normal.0; �2/ and independent of .W1; : : : ;Wn/ which are iid
normal.

p
2�i ; �

2/. Because of the independence, the marginal distribution of V is
the same as the conditional distribution of V given W . Thus this transformation
fits into either (2.18) or (2.19), and the marginal (or conditional) likelihood of
V1; : : : ; Vn,

L.� jV / D
n
Y

iD1

1

�
�

�

Vi

�

�

D .2�/�n=2��n exp

 

� 1

2�2

n
X

iD1
V 2
i

!

;

leads directly tob�2MMLE D 2b�2MLE, the usual unbiased ANOVA estimator. The use of
V here is an example of the general restricted maximum likelihood (REML) method
(see, e.g., Harville 1977, and Problem 2.22, p. 112).

2.4.2 Marginal Likelihoods

A marginal likelihood approach is simple provided that you can find a statistic V
whose distribution is free of the nuisance parameter �2. The notation in (2.18) is
helpful to get a broad perspective, but it is not necessary to actually findW in order
to use the method. For example, Pace and Salvan (1997, p. 136–137) give the
distribution of the sample correlation coefficient r from a sample of bivariate normal
pairs. This marginal distribution of r depends only on the underlying correlation
coefficient � and leads to an approximate marginal maximum likelihood estimator
b� D r

˚

1 � .1 � r2/=2n
. Note that here we do not need to find aW to complement
V . In general, the main reason to find the complementary W might be to gain
intuition about the possible information loss for using only V .
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There does not seem to be a general approach for finding appropriate marginal
likelihoods. However, the situation is different for conditional likelihoods in which
it is often possible to exploit the existence of sufficient statistics. We now give some
examples of constructing conditional likelihoods.

2.4.3 Neyman-Scott Problem via Explicit Conditional
Likelihood

The solution to the Neyman-Scott problem in Section 2.4.1, (p. 57) used properties
of the transformed variables Vi and Wi , but did not explain how the appropriate
transformations were chosen. The key in this example and many others is to
identify sufficient statistics for the nuisance parameters under the assumption that
the parameter of interest is known. It follows that the distribution of the data given
these sufficient statistics does not depend on the nuisance parameters whether the
parameter of interest is known or not. For the Neyman-Scott problem we know
that Ti D Yi1 C Yi2 is sufficient for �i , i D 1; : : : ; n in the N.�i ; �2/ family
assuming that �2 is known. It follows that the conditional distribution of the data
vector Y given the vector of sufficient statistics T D .T1; : : : ;Tn/ does not depend
on the nuisance parameter vector � D .�1; : : : ; �n/. Thus we seek the conditional
distribution of Y given T .

Because of independence of .Yi1; Yi2;Ti / over i and the fact that Yi;1 C Yi2 D
Ti , the required conditional distribution is readily determined from the conditional
distributions of Yi1 given Ti , i D 1; : : : ; n. By normality, Yi1 given Ti is normal with
mean Ti =2 and variance �2=2. Using these results it is easy to determine that the
conditional maximum likelihood estimator of �2 is

b�2CMLE D 2

n

n
X

iD1
.Yi1 � Ti =2/

2;

which is identical to the marginal maximum likelihood estimator of �2 derived in
Section 2.4.1, (p. 57).

In the Neyman-Scott problem the conditioning statistics Ti did not depend on
any unknown parameters. There are problems where the appropriate conditioning
statistics do depend on parameters, and we now give such an example taken from
the class of generalized linear measurement error models. For other examples, see
Stefanski and Carroll (1987), Carroll et al. (2006) and Tsiatis and Davidian (2001).

2.4.4 Logistic Regression Measurement Error Model

Suppose that conditioned on the predictor variable X , the binary response variable
Y and the measured predictorW follow the simple logistic regression measurement
error model
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P.Y D 1jX/ D F.˛ C ˇX/;

W D X C U;

where F is the logistic distribution function F.t/ D f1 C exp.�t/g�1, and the
measurement error U � N.0; �2u / independently of X and Y with �2u known.
Observed data consist of independent pairs .Yi ;Wi/; i D 1; : : : ; n. The parameters
of interest are ˛ and ˇ. In the functional version of this model the unobserved
true predictors X1; : : : ; Xn are regarded as unknown nuisance parameters; in
the structural version X1; : : : ; Xn are regarded as iid random variables from a
population with unknown nuisance distribution FX .

In either version of the model the “statistic” Ti D WiC.Yi�1=2/�2uˇ is sufficient
for the unobserved Xi in the model in which Xi is regarded as a parameter and ˇ
is known. We put “statistic” in quotes to emphasize the fact that it is not a statistic
in the strict sense (because it depends on an unknown parameter). However, it is a
statistic in the model in whichXi is regarded as a parameter and ˇ is known and this
in turn means that the conditional distribution of .Yi ;Wi/ given Ti (and Xi when it
modeled as a random variable) does not depend on Xi (and this is the case whether
ˇ is known or not). Thus as in the Neyman-Scott problem, conditioning eliminates
dependence on the unknown nuisance parameters X1; : : : ; Xn (or FX in the case of
the structural model).

The conditional distribution of .Yi ;Wi/ given Ti is determined by that of Yi
given Ti which can be shown to be

P.Yi D yjTi D t/ D yF.˛ C ˇt/C .1 � y/f1� F.˛ C ˇt/g:

The conditional likelihood estimating equations are formed from

@

@.˛; ˇ/T
log fP.Yi D yjTi D t/g D fy � F.˛ C ˇt/g

�

1

t

�

resulting in the conditional likelihood estimating equations for .˛; ˇ/ given by

n
X

iD1
ŒYi � F f˛ C ˇTi .ˇ/g�

�

1

Ti .ˇ/

�

D
�

0

0

�

;

where we have written Ti .ˇ/ instead of Ti as a reminder that the conditioning
statistic depends on the parameter ˇ. These estimating equations are unbiased
and the general theory of M-estimation (Chapter 7) can be applied to obtain the
asymptotic distribution of the estimators found by solving the estimating equations;
see Stefanski and Carroll (1987), and Carroll et al. (2006), for further details.
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2.4.5 General Form for Exponential Families

It is no coincidence that the previous two examples involve exponential family
distributions. The structure of exponential families is such that it is often possible
to exploit their properties to eliminate nuisance parameters. Our final example uses
Theorem 2.6 (p. 104) of Appendix B, that states that if Y has density of form (2.60,
p. 99) with � D .�T1 ;�

T
2 /
T ,

f .y I�1;�2/ D h.y/ exp
n
X

�1iWi C
X

�2j Vj � A.�1;�2/
o

;

then the conditional distribution of W given V has an exponential family distribu-
tion that depends only on �1. In principle, then, exponential families often provide
an automatic procedure for findingW and V . The details are not always simple, but
the results are often well worth the effort. Our final important example is conditional
logistic regression.

2.4.6 Conditional Logistic Regression

For binary independent Yi , the standard logistic regression model is

P.Yi D 1/ D pi .xi ;ˇ/ D 1

1C exp.�xTi ˇ/
D exp.xTi ˇ/

1C exp.xTi ˇ/
:

The likelihood is

L.ˇ jY ;X/ D
n
Y

iD1
pi .xi ;ˇ/

Yi f1 � pi .xi ;ˇ/g1�Yi

D
n
Y

iD1

�

exp.xTi ˇ/

1C exp.xTi ˇ/

� Yi �

1 � exp.xTi ˇ/

1C exp.xTi ˇ/

� 1�Yi

D exp
˚Pn

iD1 Yi .xTi ˇ/



Qn
iD1

˚

1C exp.xTi ˇ/



D c.X ;ˇ/ exp

0

@

p
X

jD1
ˇj

n
X

iD1
xij Yi

1

A ; (2.21)

where Tj D Pn
iD1 xij Yi ; j D 1; : : : ; p are clearly sufficient statistics for this

exponential family . Now suppose that �1 D ˇk is the parameter of interest, treating
the others as nuisance parameters. Then, in our notation W1 D Tk D Pn

iD1 xikYi
and V D .T1; : : : ; Tk�1; TkC1; : : : ; Tp/T , and the conditional density of interest

P.Tk D tkjT1 D t1; : : : ; Tk�1 D tk�1; TkC1 D tkC1; : : : ; Tp D tp/
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D c.t1; : : : ; tp/ exp.ˇktk/
P

u c.t1; : : : ; tk�1; u; tkC1; : : : ; tp/ exp.ˇku/
(2.22)

depends only on ˇk . These results were first exposited in Cox (1970), and later
made computationally feasible by Hirji et al. (1987). This use of conditioning is
called exact conditional logistic regression and is especially useful for small data
sets where asymptotic approximations are not valid.

2.5 The Maximum Likelihood Estimator
and the Information Matrix

Having learned to construct the likelihood in a variety of situations, it is now
time to use the likelihood to make inferences about model parameters. The theory
and methodology of parameter estimation, hypothesis testing, and confidence
intervals based on the likelihood are both elegant and practical. In many situations,
this methodology is the natural starting point for statistical inference. A central
component of this theory is the information matrix I.�/. Thus, after a brief
introduction to the definitions of b�MLE, I.�/, and related likelihood quantities,
we focus on computation of I.�/ and then move on to methods for finding b�MLE

(Section 2.6).
Because they encompass a majority of the likelihoods encountered in practice, we

often restrict attention to likelihoods that are continuously differentiable. That is, the
row vector of partial derivatives `0.�/ D @ logL.� jY /=@� exists and is continuous
for all � in �. The partial derivative of the log likelihood plays an important role
in likelihood inference via the likelihood score function, S .�/ D f`0.�/gT , also
denoted by S .Y ;�/ when the dependence on the data needs to be emphasized.
Thus we define for future reference

S .�/ D S .Y ;�/ D ˚

`0.�/

T D

�

@ logL.� jY /
@�

�T

: (2.23)

Note that S .�/ and � have the same dimension.
Generally, the maximum likelihood estimatorb�MLE is the value (or values) of �

where the maximum (over the parameter space �) of L.� jY / is attained, i.e.,

L.b�MLE jY / � L.� jY /; for all � 2 �: (2.24)

Under the assumption that the log likelihood is continuously differentiable, then
anyb�MLE satisfying (2.24) also satisfies the likelihood equations,

S .�/ D 0: (2.25)
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The likelihood equations are often used to calculateb�MLE using an equation-solving
method such as Newton-Raphson iteration. In fact, there are likelihoods where a
finite b�MLE satisfying (2.24) does not exist, but a local maximum identified by
solving (2.25) works well (see Example 2.28, p. 97). Moreover, all the regular
asymptotic properties of likelihood-based inference methods follow from the fact
thatb�MLE solves (2.25), i.e., S .b�MLE/ D 0.

Ideally b�MLE satisfying (2.24) or solving (2.25) is unique, or at least there
is a principled strategy for choosing a single solution from among the possibly
multiple values. These issues are discussed in Section 2.6 (p. 80) and Appendix 2.7
(p. 90). For many models used in practice, b�MLE is uniquely defined by (2.24)
and solves (2.25), and we generally assume these properties, and deal with the
exceptional cases as they arise. However, we present a simple example illustrating
just such an exceptional case.

Example 2.12 (Exponential threshold model). Suppose that Y1; : : : ; Yn are iid
from the exponential distribution with threshold parameter �,

f .yI�/ D
(

e�.y��/ � < y < 1;

0 otherwise;
(2.26)

for �1 < � < 1. The likelihood is L.� jY / D e�nY en�
Qn
iD1 I.� < Yi /, where

I.A/ is the indicator function of the event A. Thus, the likelihood is zero for any
value of � � Y.1/ where Y.1/ D minfY1; : : : ; Yng. Figure 2.6 displays a plot of the
likelihood for the artificial data set f2:47; 2:35; 2:23; 3:53; 2:36g.

It is evident from Figure 2.6 that the supremum of L.� jY / is obtained as �
increases to the point of discontinuityb�MLE D Y.1/ D 2:23, but that L.2:23 jY / D
0, so that the MLE b�MLE does not satisfy (2.24). Obviously neither does it
solve (2.25) as the derivative of L.� jY / does not exist at � D 2:23. Changing
the definition of the density in (2.26) by replacing � < y < 1 with � � y < 1
results in the MLE satisfying (2.24) but the likelihood is still not differentiable. This
example is continued in Problem 2.31 where it is shown that the maximizer of the
corresponding 2h-likelihood, b�2h-MLE, satisfies the 2h-likelihood version of (2.24)
regardless of whether � < y < 1 or � � y < 1 is used in the definition of the
model, and furthermore that for small h, b�2h-MLE D Y.1/ � h and thus converges to
b�MLE D Y.1/ as h ! 0. �

Often, the parameter of interest is a function of � , say � D g.�/. An important
property of maximum likelihood estimation is that b�MLE D g.b�MLE/ is the
maximum likelihood estimator of � D g.�/. This property follows immediately
as spelled out in Zehna (1966) and Casella and Berger (2002, p. 320).

Most of the discussion in the rest of this chapter involves the asymptotic
distribution of b�MLE under “regular” conditions discussed more thoroughly in
Chapter 6. These regularity conditions preclude situations like Example 2.12 above
in which the support (all y values for which the density is positive) depends on
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Fig. 2.6 Likelihood of a
sample of size n D 5

from (2.26)

a parameter value. Under these regularity conditions, the maximum likelihood
estimator for an iid sample with density f .yI�/ satisfies

p
n
�

b�MLE � �
�

d�! Nb

˚

0; I.�/�1



; as n ! 1; (2.27)

where Nb denotes a b-variate multivariate normal distribution, and I.�/ is the Fisher
information matrix

Iij .�/ D E

��

@

@�i
logf .Y1I�/

� �

@

@�j
logf .Y1I�/

��

; (2.28)

or using notation for derivatives with respect to a vector,

I.�/ D E

��

@

@�T
logf .Y1I�/

� �

@

@�
logf .Y1I�/

��

; (2.29)

where we use the convention that @ logf .Y1I�/=@�T D f@ logf .Y1I�/=@�gT . The
latter vector appears frequently in likelihood inference and thus it is convenient to
have a notation for it. We use s.Yi ;�/ where

s.y;�/ D
�

@

@�
logf .yI�/

� T

: (2.30)

With this notation (2.29) can be written more succinctly as

I.�/ D E


s.Y1;�/s.Y1;�/
T
�

; (2.31)

Often students are most familiar with I.�/ for the b D 1 case of a single real
parameter and the Cramér-Rao lower bound, which states that in finite samples
any unbiased estimator must have variance greater than or equal to fnI.�/g�1.
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The approximate normality result in (2.27) is related but different, stating that the
lower bound is achieved in an asymptotic distribution sense by b�MLE. In fact, an
asymptotic optimality result for maximum likelihood estimation is that˙ �I.�/�1
is nonnegative definite, where ˙ is the asymptotic covariance matrix of any other
consistent estimator for � .

According to (2.27), I.�/�1 is the variance matrix of the limiting distribution
of n1=2.b�MLE � �/. It is possible that in finite samples (of any size) I.�/�1 differs
substantially from Var.n1=2b�MLE/, as some elements of the exact variance could be
infinite or undefined. However, even in such cases the Nbf0; I.�/�1g distribution
often provides a good approximation to the distribution of n1=2.b�MLE � �/ in finite
samples, and thus I.�/�1 (and its variants defined below) is useful for assessing
the variability of estimators. However, it is important to distinguish between the
finite-sample expectations E.b�MLE/ and variances Var.b�MLE/ and the means and
variances of the normal distribution used to approximate the distribution of b�MLE.
It is customary to do so by using the modifier “asymptotic.” Thus we say that
the asymptotic mean of n1=2.b�MLE � �/ is zero and the asymptotic variance of
n1=2.b�MLE ��/ is I.�/�1; or equivalently that the asymptotic mean and variance of
b�MLE are 0 and fnI.�/g�1 respectively. Finally, we note that the latter should not be
confused with limn!1E.b�MLE/ and limn!1 Var.b�MLE/ even when these are well
defined.

The typical regularity conditions ensuring that (2.27) holds (Chapter 6) also
imply that

E

�

@

@�i
logf .Y1I�/

�

D 0;

so that the diagonal elements of I.�/ are equal to Var f@ logf .Y1I�/=@�i g, and the
off-diagonal elements equal

Cov

�

@

@�i
logf .Y1I�/; @

@�j
logf .Y1I�/

�

:

If, in addition to the aforementioned regularity conditions, `.�/ is twice differen-
tiable, then it transpires that for all i and j ,

E

�

� @2

@�i@�j
logf .Y1I�/

�

D E

��

@

@�i
logf .Y1I�/

� �

@

@�j
logf .Y1I�/

��

;

so that in addition to the defining relationships in (2.28) and (2.29) we have the
equivalent definitions

Iij .�/ D E

�

� @2

@�i@�j
logf .Y1I�/

�

; (2.32)
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or using vectors

I.�/ D E

�

� @

@�
s.Yi ;�/

�

D E

�

� @2

@� @�T
logf .Y1I�/

�

: (2.33)

The equivalence of (2.29) and (2.33) in the context of (2.27) depends critically on
the assumed model being correct, i.e., Y1; : : : ; Yn are iid f .yI�/. When the assumed
model is not correct (as is often the case), the matrices defined by the expectations
in the right-hand sides of (2.29) and (2.33) are not equal and (2.27) is no longer
true. The maximum likelihood estimator is still usually asymptotically normal,
but generally with a different asymptotic variance and sometimes with a different
asymptotic mean. Asymptotic results for such cases are described in Chapter 7.

For practical inference about � , the main consideration is to be able to calculate
I.�/ for a family of densities and to estimate it from the sample. Generally one uses
estimates of fnI.�/g�1 to get standard errors forb�MLE because the convergence in
distribution result (2.27) implies thatb�MLE is approximately Nb.�; fnI.�/g�1/.

The most obvious estimate of the information matrix is I.b�MLE/ because it is
the maximum likelihood estimator of I.�/. However, I.�/ is not always known
or easily computed, but it can usually be estimated. Note that for an iid sample
Y1; : : : ; Yn, with log likelihood

logL.� jY / D
n
X

iD1
logf .Yi I�/;

taking two derivatives and dividing by n, results in

I.Y ;�/ D 1

n

n
X

iD1

�

� @

@�
s.Yi ;�/

�

D 1

n

n
X

iD1

�

� @2

@� @�T
logf .Yi I�/

�

; (2.34)

where the over bar “ ” indicates averaging.
It follows from (2.32) or (2.33) thatEfI.Y ;�/g D I.�/when Yi � f .yI�/; i D

1; : : : ; n. Thus I.Y ;b�MLE/ is a natural estimator of I.�/. The matrix nI.Y ;b�MLE/

is generally called either the sample information matrix or the observed infor-
mation matrix. The estimator I.Y ;b�MLE/ is convenient because it is a byprod-
uct of the common iterative numerical methods used to calculate b�MLE. Also,
Efron and Hinkley (1978) suggest some philosophical reasons for preferring
fnI .Y ;b�MLE/g�1 to fnI.b�MLE/g�1 as estimators of the asymptotic covariance
matrix ofb�MLE.
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There is one additional empirical version of (2.31) that has applications when
model robustness is an issue (Chapter 7),

I�.Y ;�/ D 1

n

n
X

iD1
s.Yi ;�/s.Yi ;�/

T

D 1

n

n
X

iD1

�

@

@�T
logf .Yi I�/

� �

@

@�
logf .Yi I�/

�

: (2.35)

It follows from (2.31) that EfI�.Y ;�/g D I.�/. However, although this estimator
plays an important role in Chapter 7, it is generally inefficient as an estimator
of I.�/ and thus seldom used unless robustness concerns outweigh efficiency
concerns.

When Y1; : : : ; Yn are independent but not identically distributed (inid), as, for
example, in many regression models, the likelihood score function is S .�/ D
Pn

iD1 si .Yi ;�/ where, similar to the definition in (2.30),

si .y;�/ D
�

@

@�
logfi .yI�/

� T

: (2.36)

In this case I.Y ;�/ is defined as

I.Y ;�/ D 1

n

n
X

iD1

�

� @

@�
si .Yi ;�/

�

D 1

n

n
X

iD1

�

� @2

@� @�T
logfi .Yi I�/

�

: (2.37)

The only difference between (2.34) and (2.37) is that f .Yi I�/ in the former is
replaced by fi .Yi I�/ in the latter. Then we define the average expected information
matrix (also called the average Fisher information matrix) for the whole sample
to be

I.�/ D EfI.Y ;�/g D 1

n

n
X

iD1
E

�

� @2

@� @�T
logfi .Yi I�/

�

: (2.38)

In the iid case I.�/ D I.�/. Of course, we can also use the analog of (2.29,
p. 64), to make this computation, resulting in

I.�/ D 1

n

n
X

iD1
E


si .Yi ;�/si .Yi ;�/
T
�

D 1

n

n
X

iD1
E

��

@

@�T
logfi .Yi I�/

� �

@

@�
logfi .Yi I�/

��

: (2.39)
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The empirical analogue of (2.39),

I�.Y ;�/ D 1

n

n
X

iD1
si .Yi ;�/si .Yi ;�/

T

D 1

n

n
X

iD1

�

@

@�T
logfi .Yi I�/

� �

@

@�
logfi .Yi I�/

�

: (2.40)

plays an important role in Chapter 7, but like its iid counterpart, (2.35), is generally
an inefficient estimator of I.�/, and used only when model robustness is an issue.

Finally, there are situations where the average information is not as useful as the
total information in the sample; for example, when defining test statistics in non-iid
situations. For such cases we define

IT.Y ;�/ D � @2

@� @�T
logL.� jY / (2.41)

and

IT.�/ D E

�

� @2

@� @�T
logL.� jY /

�

(2.42)

for its expectation. In multi-sample situations, where there may be a series
of independent samples with different sample sizes, IT.�/ avoids dealing with
notation problems caused by differing sample sizes. In simpler situations, such as
a single sample of independent observations of size n, IT.�/ reduces to nI.�/.
The advantage of the seemingly redundant definition I.�/ is that for asymptotic
analysis, I.�/ typically converges to a finite limit as n ! 1, whereas IT.�/

diverges and thus asymptotic results are more easily stated in terms of I.�/ and
its limit.

To summarize the various information quantities, we started with I.�/ for the
information (also called expected or Fisher information) in one data point with
density f .yI�/. The average expected information in a sample of independent data
points is denoted I.�/ and can be computed by either (2.37, p. 67) or (2.38, p. 67).
For n iid data points, I.�/ D I.�/ and IT.�/ D nI.�/. The various empirical or
sample versions of these quantities are averages or sums over the sample; we add
Y to the definitions I.Y ;�/ and IT.Y ;�/ to emphasize that they depend on the
sample data. Taking expectations with respect to the sample values eliminates the
dependence on Y and yields I.�/ and IT.�/, respectively.

In the likely event that the sundry versions of and notations for information matri-
ces seem like information overload, Table 2.1 provides a concise summary of the key
likelihood and information quantities for three classes of data types: independent
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Table 2.1 Summary of important likelihood quantities and their notations for iid, inid, and general
data sets. Recall that s.y; �/ D @ logf .yI�/=@�T , and si .y; �/ D @ logfi .yI�/=@�T as defined
in (2.30, p. 64) and (2.36, p. 67).

Data Type

iid inid General

L.�jY /
n
Q

iD1

f .Yi I �/
n
Q

iD1

fi .Yi I�/ f .Y I �/

`.�/ D logL.�jY / n
P

iD1

log f .Yi I �/
n
P

iD1

log fi .Yi I �/ log f .Y I �/

S .�/ D @
@�T

`.�/
n
P

iD1

s.Yi ; �/
n
P

iD1

si .Yi ; �/
@
@�T

log f .Y I �/

IT.Y ;�/ D � @
@� S .�/ �

n
P

iD1

@
@� s.Yi ; �/ �

n
P

iD1

@
@� si .Yi ; �/ � @

@� S .�/

IT.�/ D EfIT.Y ; �/g nI.�/ nI.�/ IT.�/

I .Y ; �/ D 1
n
IT.Y ; �/ I .Y ; �/ I .Y ; �/ �

I .�/ D EfI .Y ; �/g I.�/ I.�/ �

I
�
.Y ; �/ 1

n

n
P

iD1

s.Yi ;�/s.Yi ; �/
T 1

n

n
P

iD1

si .Yi ; �/si .Yi ; �/
T �

I
�
.�/ D EfI�

.Y ; �/g I.�/ I.�/ �

and identically distributed (iid); independent and not identically distributed (inid);
and the general case that allows for dependence or nonidentical distributions.

2.5.1 Examples of Information Matrix Calculations

We now look at a variety of fairly simple examples of calculating I.�/ analytically
(as opposed to numerically). For twice differentiable likelihoods the information
matrix can be determined using either (2.29, p. 64) or (2.33, p. 66). In specific cases
one formula is often simpler to use than the other, but there is no general guidance
on this matter. Of course, calculating I.�/ using both definitions provides a check
for errors.
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Example 2.13 (Binomial distribution). The binomial probability mass function
is

f .yIp/ D
 

n

y

!

py.1 � p/n�y; y D 0; 1; : : : n:

Differentiating the log density results in

s.y; p/ D @

@p
logf .yIp/ D @

@p
.constant C y logp C .n� y/ log.1 � p//

D y

p
� .n � y/

1 � p D y � np

p.1 � p/ ;

and using (2.31) leads to

I.p/ D IT.p/ D Var fs.Y; p/g D np.1 � p/
fp.1 � p/g2 D n

p.1 � p/ :

Alternatively, as

� @

@p
s.y; p/ D np.1 � p/C .y � np/.1 � 2p/

fp.1 � p/g2 ;

using (2.33, p. 66) results in

I.p/ D IT.p/ D E

�

� @

@p
s.y; p/

�

D np.1 � p/
fp.1 � p/g2 D n

p.1 � p/ :

Note that I.p/ D IT.p/ in this case, but our preferred notation is IT.p/ because
often the binomial variable Y is the sum (either explicitly or implicitly) of n
independent Bernoulli.p/ variables, i.e., Y D X1 C � � � CXn. The information of a
single Bernoulli variateXi is I.p/ D 1=fp.1�p/g, and IT.p/ D n=fp.1�p/g for
the entire Bernoulli sample. Thus the total information is the same whether the data
are viewed as a Bernoulli n-sample or as a single binomial observation.

Finally note that for binomial data Y , solving s.Y; p/ D 0 is equivalent to solving

Y � np

p.1 � p/ D 0

and so bpMLE D Y=n. Thus Var.bpMLE/ D p.1 � p/=n, corresponding exactly to
IT.p/

�1. �

Example 2.14 (Multinomial distribution). For the multinomial model with pa-
rameters (nIp1; : : : ; pk) where pk D 1 � Pk�1

iD1 pi (see p. 32), computations
similar to that for the binomial give the k � 1 by k � 1 information matrix for
p D .p1; : : : ; pk�1/T ,



2.5 The Maximum Likelihood Estimator and the Information Matrix 71

IT.p/ D n

0

B

B

B

@

1
p1

C 1
pk

1
pk

1
pk
: : : 1

pk
1
pk

1
p2

C 1
pk

1
pk
: : : 1

pk

: : : : :
1
pk

1
pk

: : : 1
pk

1
pk�1

C 1
pk

1

C

C

C

A

:

In matrix notation, IT.p/ D nfdiag.1=p1; : : : ; 1=pk�1/ C 11T =pkg, for which it
can be shown that IT.p/

�1 D fdiag.p/� ppT g=n, or

IT.p/
�1 D 1

n

0

B

B

@

p1.1 � p1/ �p1p2 �p1p3 : : : �p1pk�1
�p2p1 p2.1 � p2/ �p2p3 : : : �p2pk�1
: : : : :

�pk�1p1 �pk�1p2 �pk�1p3 : : : pk�1.1 � pk�1/

1

C

C

A

:

This is the covariance matrix of the first k � 1 sample proportions. For certain
purposes, adding a row and column for the kth sample proportion to this matrix
to obtain the covariance matrix of all k sample proportions is convenient. However,
the resulting covariance matrix is singular. �
Example 2.15 (Normal distribution). For the normal family both parameteriza-
tions �T D .�; �/ and �T D .�; �2/ are used in practice, each leading to a different
information matrix . Here we use �T D .�; �/. The logarithm of the N.�; �2/
density is

logf .yI�; �/ D constant � log � � 1

2�2
.y � �/2;

and
@

@�
logf .yI�; �/ D y � �

�2
;

so that the (1,1) element of I.�/ is

Var

�

Y � �
�2

�

D 1

�2
:

Similarly

@

@�
logf .yI�; �/ D � 1

�
C .y � �/2

�3
;

and the (2,2) element of I.�/ is

Var

�

� 1
�

C .Y � �/2

�3

�

D 2�4

�6
D 2

�2
:
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The off-diagonal elements of I.�/ are 0 because the covariance between Y �� and
.Y � �/2 is zero. Thus

I.�; �/ D 1

�2

�

1 0

0 2

�

: (2.43)

For an iid N.�; �2/ sample the MLEs of � and � are Y and sn D ˚

n�1Pn
iD1

.Yi � Y /2
1=2. In large samples these MLEs are approximately normally distributed
with asymptotic covariance matrix

I.�; �/�1

n
D �2

n

�

1 0

0 1=2

�

:

Plugging in sn for � gives large sample standard errors sn=
p
n for b� D Y and

sn=
p
2n forb� D sn. �

Example 2.16 (Extreme value distribution). The extreme value density is
f .yI�; �/ D f0 f.y � �/=�g =� , where

f0.x/ D e�xe�e�x
; �1 < x < 1:

If Y has density f .yI�; �/, then X D .Y � �/=� has density f0.x/. The first
moment of X is

E.X/ D
Z 1

�1
xe�xe�e�x

dx

D
Z 1

0

�.log u/e�u du D �;

where � D :577215 : : : is Euler’s constant and the latter integral is obtained via
the transformation of variables u D exp.�x/. Similarly

E.X2/ D
Z 1

0

.log u/2e�u du D �2

6
C �2:

Thus the variance of X is �2=6 D 1:6449 (to four decimals). Since Y D �X C �,
we have E.Y / D �� C � and Var(Y / D 1:6449�2. Note that � is not the mean of
Y and �2 is not the variance of Y . The identifications E.Y / D � and Var.Y / D �2

only occur in location-scale families like the normal when
R

xf0.x/ dx D 0 and
R

x2f0.x/ dx D 1. Alternatively we can define a standardized form for the extreme

value density, f�.x/ D f0

n

.�=
p
6/.x C �/

o

�=
p
6, with the property that � and

�2 of f� f.x � �/=�g =� are the mean and variance.
The logarithm of the density of Y is

logf .yI�; �/ D � log� �
�y � �

�

�

� exp
n

�
�y � �

�

�o

;
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so that
@

@�
logf .yI�; �/ D 1

�
� 1

�
exp

n

�
�y � �

�

�o

;

and
@2

@�2
logf .yI�; �/ D � 1

�2
exp

n

�
�y � �

�

�o

:

Using the second derivative definition of the information matrix (2.33, p. 66), the
(1,1) element is

E

�

1

�2
exp

�

�
�

Y � �
�

���

D E

�

1

�2
exp .�X/

�

D 1

�2

Z 1

�1
e�xe�xe�e�x

dx

D 1

�2

Z 1

0

ue�u du D 1

�2
� .2/ D 1

�2
:

Similarly

@2

@�@�
logf .yI�; �/ D � 1

�2
C 1

�2
exp

n

�
�y � �

�

�o

� 1

�2

�y � �
�

�

exp
n

�
�y � �

�

�o

;

and the (1,2) element of the information matrix is

1

�2
� 1

�2
E
�

e�X 	C 1

�2
E
�

Xe�X 	 D 1

�2
� 1

�2
� 1

�2

Z 1

0

.log u/ue�u du

D � 1

�2
.1 � �/ � � :423

�2
:

Finally,

@2

@�2
logf .yI�; �/ D 1

�2
� 2

�2

�y � �
�

�

C 2

�2

�y � �
�

�

exp
n

�
�y � �

�

�o

� 1

�2

�y � �

�

�2

exp
n

�
�y � �

�

�o

:

The (2,2) element of the information matrix is

1

�2

�

�1C2�C2.1� �/C.1 � �/2C�2

6
�1
�

D 1

�2

�

.1 � �/2 C �2

6

�

� 1:824

�2
:
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Thus the information matrix for the extreme value distribution is (to three decimal
places)

I.�; �/ D 1

�2

�

1 �:423
�:423 1:824

�

;

and the MLEs for an iid sample of size n are approximately normal with mean
.�; �/T and variance

I.�; �/�1

n
D �2

n

�

1:109 :257

:257 :608

�

: (2.44)

�

Example 2.17 (Normal error regression models). Consider the normal regres-
sion model likelihood (2.11, p. 50). The components are independent but not
identically distributed. Thus the relevant definition of the information matrix
is (2.38, p. 67), which for the normal linear model results in

I.ˇ; �/ D 1

�2

�

XTX=n 0

0 2

�

: (2.45)

Recall that this is the average expected information matrix for the entire sample
and is comparable to I.�/ in iid samples. Inverting IT.ˇ; �/ D nI.ˇ; �/, shows
that the asymptotic variance of bˇ is the exact finite-sample variance, .XTX/�1�2,
and that the asymptotic variance of b�MLE is �2=2n, the same as for the maximum
likelihood estimator of � from an iid N.�; �2/ sample. The latter two large sample
variances are equal because neither one incorporates a finite-sample degrees-of-
freedom adjustment.

The information matrix for the nonlinear model Yi D g.xi ;ˇ/ C ei of (2.3.2,
p. 53) is

I.ˇ; �/ D 1

�2

�

GTG=n 0

0 2

�

; (2.46)

whereG is the matrix with elements ŒG �ij D @g.xi ;ˇ/=@̌ j . �

Example 2.18 (Generalized Linear Models). Consider the likelihood (2.15,
p. 54). Taking derivatives with respect to ˇ, the score equation for estimating ˇ
is

S.ˇ; �/ D
n
X

iD1

˚

Yi � b0.xTi ˇ/



xi

ai .�/
D

n
X

iD1

.Yi � �i/xi

ai .�/
D 0: (2.47)

Taking another derivative with respect to ˇ, we have the average information matrix
for ˇ:

I.Y ;ˇ/ D XTV X=n; (2.48)
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whereXT V X D Pn
iD1



b00.xTi ˇ/=ai .�/
�

xix
T
i and

V D diag
˚

Var.Y1/=a1.�/2; : : : ;Var.Yn/=an.�/2



:

Note that I.Y ;ˇ/ D XTV X=n does not depend on the Yi ’s and thus I.Y ;ˇ/ D
I.ˇ/; that is, the average Fisher information for ˇ is the same as the average
observed information when using the canonical link. We have slightly abused
notation here because I.ˇ/ often depends on � as well. The full average expected
information matrix has the form

I.ˇ; �/ D
�

XTV X=n 0

0 In.�/

�

:

The off-diagonal value 0 follows from taking a derivative of (2.47) with respect to
� and then an expectation. The information submatrix I.�/ relating to � is rarely
mentioned in the generalized linear model literature.

For logistic regression, I.ˇ/ D XTV X=n where the diagonal matrix is V D
diag Œp1.1 � p1/; : : : ; pn.1� pn/�.

For Poisson data, b.�i / D e�i and ai .�/ D 1, and thus b0.�i / D e�i . Inverting
b0 leads to the canonical link g.�i / D log.�i / and modeling the mean �i by ex

T
i ˇ .

The variance of Yi is �i and I.ˇ/ D XT VX=n where V D diag Œ�1; : : : ; �n�. �

2.5.2 Variance Cost for Adding Parameters to a Model

For the extreme value location-scale model the asymptotic corr.b�MLE; b�MLE/ �
0:31, whereas for the normal location-scale model the asymptotic correlation is
corr.b�MLE; b�MLE/ D 0 (in fact corr.b�MLE; b�MLE/ D 0 in finite samples). One
consequence of the nonzero correlation in the extreme value model is that for
estimating � there is a cost in terms of increased variability for jointly estimating � .
The calculations in Example 2.16 (p. 72) show that when � is known the asymptotic
variance of b�MLE is �2=n; whereas if � is unknown and estimated jointly with �,
then the asymptotic variance of b�MLE is 1:109�2=n. In this model the asymptotic
variance inflation in estimating � due to estimating � is not large. However, it is
indicative of a pervasive phenomenon with important practical implications:

Key Concept: Whenever parameters are added to a model, the diagonal
elements of the inverse information matrix are always greater than or equal
to the corresponding elements of the simpler model.

This follows from properties of the inverse of a partitioned matrix. For example,
suppose that the information matrix I be partitioned as

I D
�

I11 I12
I21 I22

�

;
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where I11 is a scalar corresponding to the partition � D .�1;�
T
2 /
T where �1 is scalar.

If �2 is known, then the information matrix (a scalar in this case) for �1 is I11 and the
asymptotic variance of the MLE of �1 is 1=.nI11/. When �2 is unknown and jointly
estimated the asymptotic variance of the MLE of �1 is 1=.nI .11// where I .11/ D
.I11 � I12I�1

22 I21/
�1, the (1,1) element of I�1. Clearly I�1

11 � .I11 � I12I�1
22 I21/

�1
if and only if I11 � I11 � I12I�1

22 I21, or equivalently if and only if I12I�1
22 I21 �

0. The latter inequality always holds because I22 is a covariance matrix and thus
nonnegative definite. Also the inequality is strict whenever I12 ¤ 0 and I22 is
positive definite. It follows that the asymptotic variance of the maximum likelihood
estimator of �1 when the other parameters are known is less than or equal to the
asymptotic variance of the estimator of �1 when at least one of the other parameters
is jointly estimated with �1. The inequality is generally strict unless I12 D 0 (e.g.,
as in the normal location-scale model).

We illustrate the variance inflation phenomenon first with a general location-scale
model and then with some three-parameter models.

2.5.2a Location-Scale Models

Suppose that

f .yI�; �/ D 1

�
f0

�y � �
�

�

;

where f0.x/ is a density on .�1;1/. Straightforward calculations yield

I.�; �/ D 1

�2

0

B

B

B

B

B

B

B

@

Z 1

�1

�

f 0
0 .x/

f0.x/

� 2

f0.x/dx

Z 1

�1
x

�

f 0
0 .x/

f0.x/

� 2

f0.x/dx

Z 1

�1
x

�

f 0
0 .x/

f0.x/

� 2

f0.x/dx

Z 1

�1

�

1C x
f 0
0 .x/

f0.x/

� 2

f0.x/dx

1

C

C

C

C

C

C

C

A

:

Recall that � and �2 are the mean and variance only when
R1

�1 xf0.x/dx D 0 and
R1

�1 x2f0.x/dx D 1. When the base density is symmetric about zero, f0.x/ D
f0.�x/, then the off-diagonal term I12 D 0 as it is the integral of an odd function
about zero, and b�MLE and b�MLE are uncorrelated. Thus when f0.x/ is symmetric
about 0, there is no asymptotic variance inflation cost due to estimating � in addition
to �.

The normal distribution is symmetric with information matrix given by (2.43,
p. 72) and therefore there is no asymptotic variance inflation for estimating � with
unknown � . In contrast, there is an asymptotic variance inflation in the asymmetric
extreme value distribution, as noted in the example at the beginning of this section.
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2.5.2b Three-Parameter Models

The next three examples are three-parameter models and illustrate clearly the
asymptotic costs of estimating a third parameter compared to just estimating two
of the parameters.

Example 2.19 (Transformed generalized gamma). The random variable X has
a generalized gamma distribution (Stacy 1962) when � logX has distribution
function F.t I�; �; / D F ..t � �/=�/, where

F.x/ D 1 � 1

� ./

Z exp.�x/

0

u�1e�udu:

For  D 1, F.t I�; �; 1/ is the extreme value location-scale distribution. For the
model with �, � and  unknown with the true value of  D 1, the information
matrix is

I.�; �;  D 1/ D 1

�2

0

@

1 �:423 �1
�:423 1:824 �:577

�1 �:577 1:645

1

A ;

with inverse

I.�; �;  D 1/�1 D �2

0

@

43:8 20:9 34:0

20:9 10:6 16:4

34:0 16:4 27:0

1

A :

Comparison to the extreme value location-scale model inverse information matrix
in (2.44, p. 74) reveals a huge asymptotic variance inflation due to estimating . For
example, the ratio of asymptotic variances for b�MLE when  D 1 is unknown and
estimated and when  D 1 is correctly assumed known, is 43:8=1:109 D 39:5. �

Example 2.20 (Burr II distribution). With location-scale parameters, the Burr II
distribution function is

F.t I�; �; / D
�

1C exp

�

� .t � �/

�

���
:

At  D 1, this is the logistic location-scale model distribution. For the model with
�, � and  unknown with the true value of  D 1, the information matrix is (to
three decimal places)

I.�; �;  D 1/ D 1

�2

0

@

:333 0 :5

0 1:430 �:5
:5 �:5 1:0

1

A ; (2.49)
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with inverse

I.�; �;  D 1/�1 D �2

0

@

32:9 �7:0 �20:0
�7:0 2:3 4:7

�20:0 4:7 13:3

1

A :

Because I1;2 D I2;1 D 0 in (2.49) we know that the asymptotic variance ofb�MLE for
the case where  D 1 is correctly assumed is 1=.nI1;1/ D �2=.:333n/ D 3�2=n.
Thus the variance inflation when using b�MLE with  D 1 unknown and jointly
estimated is 32:9=3 D 11:0. �

Example 2.21 (Box-Cox model). In a famous paper, Box and Cox (1964) studied
the use of power transformations in data analysis. The Box-Cox family of transfor-
mations is given by, for Y > 0,

Y ./ D
8

<

:

Y  � 1


;  ¤ 0;

logY;  D 0;

and is defined so that Y ./ is continuous as  ! 0. The usual assumption is that Y ./

has a N.�; �2/ distribution. For example, with  D 1=3, then .Y 1=3 � 1/=.1=3/ D
3.Y 1=3 � 1/ has a N.�; �2/ distribution. The normality assumption is necessarily
violated in theory for any  ¤ 0 because the logarithmic transformation . D 0/ is
the only member of the family that maps the positive real axis onto the whole real
line. Nevertheless normality is often a useful working assumption. The quality of
the approximations to normality that can be achieved when  ¤ 0 has been studied
by Hernandez and Johnson (1980).

For this example we consider the case when the true  D 0 (Y � lognormal)
so that the normality assumption is exactly valid. For this model when all three
parameters .�; �; / are estimated, the information matrix of .�; �; / is

I.�; �;  D 0/ D 1

�2

0

B

B

B

B

B

@

1 0 ��1

0 2 �2��

��1 �2�� �2

1

C

C

C

C

C

A

;

where �1 D .�2 C �2/=2 and �2 D �

7�4 C 10�2�2 C �4
	

=4. The inverse is

I.�; �;  D 0/�1 D

0

B

B

B

B

B

B

B

B

B

@

�1
���2

3

�1

3

���2

3

�

�2

2
C 2�2

3

�

2�

3�

�1

3

2�

3�

2

3�2

1

C

C

C

C

C

C

C

C

C

A

:



2.5 The Maximum Likelihood Estimator and the Information Matrix 79

where �1 D �

7�2 C 2�2 C �4=�2
	

=6 and �2 D �

1C �2=�2
	

. Of course when
 D 0 is correctly assumed, the variance of b�MLE is �2=n. Thus the asymptotic
variance inflation factor when using b�MLE with  D 0 but unknown is �1=�2 D
�

7C 2�2=�2 C �4=�4
	

=6, which can be arbitrarily large depending on .�; �/.
Bickel and Doksum (1981) touched off a heated debate by arguing that standard

errors forb�MLE should be derived from I.�; �; /�1, whereas the accepted practice
at the time was to ignore the fact that  was jointly estimated. Hinkley and Runger
(1984) countered that the accepted practice is correct because the analysis should
be conditional on the scale (as determined by ) chosen, even if that scale is chosen
based on the data. �

2.5.3 The Information Matrix for Transformed and Modeled
Parameters

Suppose that the density f .yI�/ has b dimensional parameter � , b 	 b information
matrix I.�/, and we are interested in either a one-to-one transformation � D g.ˇ/

where ˇ also has dimension b, or a reduced-parameter model where � D g.ˇ/ and
ˇ has dimension s < b. We show that for either case,

I.ˇ/ D
�

@g.ˇ/

@ˇ

� T

I.g.ˇ//

�

@g.ˇ/

@ˇ

�

(2.50)

by using the vector calculus chain rule for the derivative of the real-valued function
`.ˇ/ D logf .yI�/ D logf .yIg.ˇ//. Doing so results in

@`.ˇ/

@ˇ
D @ logf .yIg.ˇ//

@g

@g.ˇ/

@ˇ
;

where
@ logf .yIg.ˇ//

@g
D @

@�
logf .yI�/

ˇ

ˇ

ˇ

ˇ

�Dg.ˇ/
;

and

@g.ˇ/

@ˇ
D

0

B

B

B

B

B

B

B

B

B

B

B

@

@g1.ˇ/

@̌ 1

@g1.ˇ/

@̌ 2

� � � @g1.ˇ/
@̌ s

@g2.ˇ/

@̌ 1

@g2.ˇ/

@̌ 2

� � � @g2.ˇ/
@̌ s

:::
:::

:::
@gb.ˇ/

@̌ 1

@gb.ˇ/

@̌ 2

� � � @gb.ˇ/
@̌ s

1

C

C

C

C

C

C

C

C

C

C

C

A

:

Then using (2.29, p. 64) leads to (2.50).
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Example 2.22 (Normal: .�; �/ transformed to .�; �2/). The information matrix
for the normal distribution with � D .�; �/T was given earlier to be I.�; �/ D
diag.1=�2; 2=�2/. If we prefer the parameter to be ˇ D .�; �2/T , then

� D
0

@

g1.�; �
2/

g2.�; �
2/

1

A D
0

@

�

p
�2

1

A ;

@g.ˇ/=@ˇ D diag f1; 1=.2�/ g and

I.ˇ/ D
0

@

1 0

0 1=.2�/

1

A

0

@

1=�2 0

0 2=�2

1

A

0

@

1 0

0 1=.2�/

1

A D 1

�2

0

@

1 0

0 1=.2�2/

1

A

�

Example 2.23 (Normal model: constant coefficient of variation). In Chapter 1
(1.13, p. 17) we discussed the N.�; �20 �

2/ model with �20 known. To get the infor-
mation I.�/ using (2.50, p. 79), let � D .�; �/T with I.�; �/ D diag.1=�2; 2=�2/
as in the last example, and set �1 D � D ˇ D g1.ˇ/ and �2 D � D �0ˇ D g2.ˇ/.
Then

I.�/ D I.ˇ/ D �

1 �0
	

0

@

1=.�20�
2/ 0

0 2=.�20�
2/

1

A

0

@

1

�0

1

A D 1C 2�20
�20�

2
:

Note that fnI.�/g�1 corresponds to the asymptotic variance in (1.16, p. 17). �
Example 2.24 (Hardy-Weinberg model). In the Hardy-Weinberg example (Ex-
ample 2.2, p. 33), � D .pAA; pAa/

T is the full multinomial parameterization, and the
model in terms of ˇ D pA is pAA D g1.pA/ D p2A, pAa D g2.pA/ D 2pA.1�pA/.
We leave the computation of IT.pA/ D 2n= fpA.1 � pA/g for Problem b, p. 118. �

2.6 Methods for Maximizing the Likelihood or Solving
the Likelihood Equations

Maximum likelihood estimation requires maximization of the log likelihood `.�/ D
logL.�jY /, which in most cases means taking derivatives and solving the likelihood
equations,

S .�/ D @

@�T
`.�/ D 0: (2.51)
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In simple cases, we can solve (2.51) analytically, and Section 2.6.1 discusses
briefly the use of the profile likelihood to simplify solving (2.51) either analytically
or numerically. When an analytic solution does not exist, there are two main
approaches to solving (2.51) forb�MLE: standard optimization methods like Newton
methods; or the EM Algorithm, a clever statistically-based iteration procedure
introduced by Dempster et al. (1977). We briefly discuss Newton methods in
Section 2.6.2 and then focus on the EM Algorithm in Section 2.6.3. In addition
there are a variety of computer search methods that we do not discuss, but a review
may be found in Fouskakis and Draper (2002).

2.6.1 Analytical Methods via Profile Likelihoods

In certain problems it is possible to maximize the log likelihood for part of � D
.�T1 ;�

T
2 /
T , say e�2.�1/, without actually knowing the value of �1. The notation

e�2.�1/ means that for any value �1,e�2.�1/ maximizes the likelihood with respect
to �2. The profile likelihood is merely the usual likelihood withe�2.�1/ inserted for
�2 — thus, the profile likelihood is a function of only �1. The advantage here is
that one need only maximize the profile likelihood L.�1;e�2.�1// with respect the
lower-dimensional parameter �1. Doing so results inb�1 and thenb�2 D e�2.b�1/.

As an example, recall the gamma log likelihood

`.˛; ˇ/ D �n log� .˛/ � n˛ logˇ C .˛ � 1/
X

logYi �
P

Yi

ˇ

shown in Figure 2.1 (p. 37) for the hurricane data. Taking a partial derivative with
respect to ˇ gives the score equation

S2.˛; ˇ/ D �n˛
ˇ

C
Pn

iD1 Yi
ˇ2

D 0:

Solving this equation leads to eˇ.˛/ D Y =˛. Now substituting eˇ.˛/ D Y =˛ for ˇ
in the log likelihood leads to the profile log likelihood

`
�

˛;eˇ.˛/
�

D �n log� .˛/ � n˛.log Y � log˛/C .˛ � 1/

n
X

iD1
logYi � n˛:

Figure 2.7 shows the profile log likelihood for the hurricane data. From this plot
it is easy to locate (visually and numerically) b̨MLE D 2:19 and substitute to get
bˇMLE D 7:29=2:19 D 3:33, the same as found before by using the R function nlm.
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Fig. 2.7 Gamma profile log
likelihood for the hurricane
data

Profiling is most advantageous when the first maximization can be done analyti-
cally, leaving only second maximization for numerical methods. However, because
each maximization is lower dimensional, it is sometimes useful even when both
optimizations are done numerically.

2.6.2 Newton Methods

Taylor expansion of (2.51) about a “current value” � .�/ leads to

0 D S .�/ � S .� .�//C
�

@

@�
S .�/

ˇ

ˇ

ˇ

ˇ

�D�.�/

�

f� � � .�/g:

Letting

IT.Y ;�
.�// D

� �@
@�
S .�/

ˇ

ˇ

ˇ

ˇ

�D�.�/

�

and solving the approximate equation for � , call it �.�C1/, yields

�.�C1/ D � .�/ C
n

IT.Y ;�
.�//
o�1

S .� .�//: (2.52)

Iteration of (2.52) often results in a convergent sequence providing the starting value
is good, e.g., �.0/ might be a method of moments estimator. The iteration (2.52)
proceeds until the difference k� .�C1/ � � .�/k, or relative difference k� .�C1/ �
�.�/k=k� .�/k, is small. Stopping rules based on the magnitudes of kS .�.�//k or
k`.�.�C1// � `.�.�//k=k`.� .�//k are also used (see Monahan 2001, Sec. 8.4).

If we replace IT.Y ;�
.�// in (2.52) by its expectation IT.�

.�//, then the method
is called Fisher scoring. This replacement is useful in cases like probit regression
where IT.�/ is simpler than IT.Y ;�/.

Under certain conditions, Newton methods have local quadratic convergence,
which means that for some c > 0

k�.�C1/ �b�MLEk � ck� .�/ �b�MLEk2:
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Thus, at least near the solution, convergence is fast for a Newton method. One
downside is that IT.Y ;�

.�// or IT.�
.�// might be costly to calculate at each step

in which case secant methods can be used in place of derivatives, but the quadratic
convergence is then lost. It is also possible that a Newton step in (2.52) jumps too far.
Thus, backtracking and other modifications are suggested. Chapter 8 of Monahan
(2001) is a good place to get an overview of these approaches.

It is also possible to just use the first iterate in (2.52) as an estimate, called a
“one-step estimator,”

b�1 D � .1/ D � .0/ C
n

IT.Y ;�
.0//
o�1

S .� .0//:

This estimator has the same asymptotic properties as the fullb�MLE as long as � .0/ is
consistent.

Example 2.25 (Newton iteration for logistic regression). Consider the usual
logistic regression model with Yi distributed as binomial (mi; pi / and logfpi=.1 �
pi /g D xTi ˇ. Then

S .ˇ/ D @

@ˇT
`.ˇ/ D

n
X

iD1
xi .Yi �mipi/ D 0;

IT.Y ;ˇ/ D � @2

@ˇ@ˇT
`.ˇ/ D

n
X

iD1
mipi .1 � pi/xix

T
i

and

ˇ.�C1/ D ˇ.�/ C
(

n
X

iD1
mip

.�/
i .1 � p

.�/
i /xix

T
i

) �1 n
X

iD1
xi .Yi �mip

.�/
i /;

where p.�/i D
n

1C exp.�xTi ˇ.�//
o�1

. See Agresti (2002, p. 147) for interpretation

of this Newton iteration as Iteratively Reweighted Least Squares. �

2.6.3 EM Algorithm

In a ground-breaking paper, Dempster et al. (1977) put together in coherent form an
approach to solving the likelihood equations that a number of people had discovered
earlier in particular applications. Their paper popularized the “EM Algorithm ” (“E”
for “Expectation” and “M” for “Maximization”) and led to many new statistical
applications as well as modifications and extensions of the algorithm, and even a
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number of books on the subject, e.g., Little and Rubin (1987), and McLachlan and
Krishnan (1997).

The basic idea of the EM Algorithm is to view the observed data Y as incomplete,
that somehow there is missing data Z that would make the problem simpler if we
had it. In some casesZ could truly be missing data, but in others it is just additional
data that we wish we had. The first step is to write down the joint likelihood of
the “complete” data .Y ;Z /, call it LC.� jY ;Z /. Since we do not have Z , we
actually cannot compute LC.�jY ;Z /. We always need to maximize an objective
function that depends only on � and the observed data Y . However, remember that
conditional expectations are functions of the conditioning variate. Thus, the “E” step
of the EM Algorithm is to compute the conditional expectation of logLC.� jY ;Z /
given Y assuming the true parameter value is �.�/. Define

Q.�;�.�/;Y / D E�.�/ flogLC.� jY ;Z / jY g (2.53)

D
Z

logLC.� jY ; z/fZjY .z jY ;� .�//d z;

where we have written the expectation in the second line as if Z jY has a continuous
density, but this is for notational convenience only. It may look odd to have both �.�/

and � in the expectation, but this is a key aspect of the procedure; in reality �.�/ is
the current value in an iteration. The “M” step of the EM Algorithm is to maximize
Q.�;� .�/;Y / with respect to � with �.�/ fixed. This produces a new value �.�C1/
that is then reinserted in the “E” step and so on. We summarize the EM Algorithm
as follows:

• E Step: Calculate Q.�;� .�/;Y /.
• M Step: Calculate �.�C1/ that maximizesQ.�;�.�/;Y / with respect to � .

Under some conditions it is possible to show that the likelihood is increased at
each step of the iteration and that convergence is guaranteed. Before getting to such
details, it helps to see several examples.

2.6.3a EM Algorithm for Two-Component Mixtures

Suppose that Y1; : : : ; Yn are iid from the mixture density

f .yI�/ D pf1.yI�1; �1/C .1 � p/f2.yI�2; �2/; (2.54)

where f1 and f2 are normal densities with means �1 and �2, respectively, and
variances �21 and �22 . Thus the parameter vector is �T D .�1; �2; �1; �2; p/. The
usual log likelihood,

`.�/ D
n
X

iD1
log fpf1.Yi I�1; �1/C .1 � p/f2.Yi I�2; �2/g ; (2.55)
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is simple to write down, but not so simple to maximize. (Actually, it is well known
that this log likelihood has maxima on the boundaries of the parameter space,
and is not well-behaved. However, solutions to the likelihood equations with good
properties do exist, and we want to find these, and the EM Algorithm accomplishes
this.) To use the EM Algorithm, we define independent Bernoulli random variables
Zi , where P.Zi D 1/ D p, and represent Yi as

Yi D ZiX1i C .1 �Zi/X2i ;

where X11; : : : ; X1n are iid from f1.yI�1; �1/, X21; : : : ; X2n are iid from
f2.yI�2; �2/, and all the random variables are independent of Z1; : : : ; Zn. It is
a simple exercise to show that the Yi defined in this fashion have the mixture
density (2.54). We also note that this representation is also useful for computer
generation of random variables from the mixture density.

The first step of the EM Algorithm is to write down the joint likelihood of the
complete data .Y ;Z /. We find in Problem 2.45 (p. 120) that the joint density of
.Yi ; Zi / is given by

fpf1.yI�1; �1/gz f.1 � p/f2.yI�2; �2/g1�z :

Thus the complete data log likelihood is

logLC.� jY ;Z / D
n
X

iD1
fZi logf1.Yi I�1; �1/C .1 �Zi / logf2.Yi I�2; �2/

C Zi logp C .1 �Zi/ log.1 � p/g :
The conditional expectation of the E step is given by

Q.�;� .�/;Y / D E� .�/ flogLC.� jY ;Z / jY g D
n
X

iD1

n

w.�/i log f1.Yi I�1; �1/

C.1 � w.�/i / log f2.Yi I�2; �2/

C w.�/i logpC.1�w.�/i / log.1�p/
o

;

where

w.�/i D E�.�/ .Zi jYi/ D p.�/f1.Yi I�.�/1 ; �.�/1 /

p.�/f1.Yi I�.�/1 ; �.�/1 /C .1 � p.�//f2.Yi I�.�/2 ; �.�/2 /
:
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This conditional expectation for the Zi is found in the second part of Problem 2.45.
Substituting the form of the normal densities (but ignoring the constant 2�)

leads to

Q.�;� .�/;Y / D
n
X

iD1

"

w.�/i

�

� log �1 � .Yi � �1/
2

2�21

�

C .1 � w.�/i /

�

� log �2 � .Yi � �2/
2

2�22

�

C w.�/i logp C
n

1 � w.�/i

o

log.1 � p/
#

:

Notice that in terms of minimizing Q.�;�.�/;Y / in � , the weights w.�/i are just
constants. Thus, taking a derivative with respect to �1 is similar to working with the
log likelihood of a single normal distribution,

@

@�1
Q.�;�.�/;Y / D

n
X

iD1
w.�/i

.Yi � �1/
�21

D 0:

Solving this yields �.�C1/
1 D P

w.�/i Yi=
P

w.�/i . Similarly, we obtain get �.�C1/
2 D

P

.1�w.�/i /Yi=
P

.1�w.�/i /. The updating formulas for �1 and �2 are also simple but
left for Problem 2.46 (p. 120). Taking the derivative of Q.�;�.�/;Y / with respect
to p yields

@

@p
Q.�;�.�/;Y / D

n
X

iD1

(

w.�/i
p

� .1 � w.�/i /

1 � p

)

D 0:

Solving this last equation gives p.�C1/ D .1=n/
P

w.�/i .
In this case the EM Algorithm has turned local maximization of the difficult

log likelihood (2.55, p. 84) into an iteration process with very simple updates. The
normal distribution played only a small role until the M step where it leads to simple
update formulas. Let us go back and make the problem a bit more general in order
to gain some insight into how the EM Algorithm works. Let � D .�; p/T and let
f1.yI�/ and f2.yI�/ be arbitrary densities so that the log likelihood is

`.�/ D
n
X

iD1
logf .Yi I�/ D

n
X

iD1
log fpf1.Yi I�/C .1 � p/f2.Yi I�/g :

Taking derivatives with respect to � leads to the vector likelihood equation
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@

@�T
`.�/ D

n
X

iD1

�

p
@

@�T
f1.Yi I�/C .1 � p/

@

@�T
f2.Yi I�/

��

f .Yi I�/ D 0:

(2.56)
The Q function of the EM Algorithm is given by

Q.�;� .�/;Y / D
n
X

iD1

n

w.�/i logf1.Yi I�/C .1 � w.�/i / logf2.Yi I�/

C w.�/i logp C .1 � w.�/i / log.1 � p/
o

:

Taking derivatives with respect to � leads to

@

@�
Q.�;� .�/;Y / D

n
X

iD1

(

w.�/i
f1.Yi I�/

@

@�T
f1.Yi I�/C .1 � w.�/i /

f2.Yi I�/
@

@�T
f2.Yi I�/

)

D 0:

Finally, replacing w.�/i by its definition p.�/f1.Yi I� .�//=f .Yi I� .�// and � by �.�C1/
when this last vector equation is solved, the equation becomes

n
X

iD1

�

p.�/r1
@

@�T
f1.Yi I� .�C1//C .1 � p.�//r2

@

@�T
f2.Yi I�.�C1//

��

f .Yi I�.�// D 0;

(2.57)
where rj D fj .Yi I�.�//=fj .Yi I�.�C1//, j D 1; 2. As the EM Algorithm converges,
r1 and r2 are each converging to 1, and this last equation looks very similar to (2.56).
This similarity is not a proof of convergence, but it suggests that the EM Algorithm
gives the same solution as solving (2.57).

2.6.3b EM Algorithm for Right Censored Data

Recall that in the right censoring context we observe .Y1; ı1/; : : : ; .Yn; ın/, where
Yi D min.Xi ; Ri /, Xi has the density f .xI�/ that we want to estimate, Ri is a
censoring time, and ıi D I.Xi � Ri/ indicates whether Yi is a censored observation
or is Xi . To make things simpler, we assume that the censoring times Ri are not
random. The likelihood was given before as

L.� jY / D
n
Y

iD1
f .Yi I�/ıi f1 � F.Ri I�/g1�ıi :

In some cases this likelihood is hard to maximize, and the EM Algorithm gives
an alternate approach. For notational simplicity, let us relabel the data so that
Y1; : : : ; Ynu are the uncensored observations and YnuC1; : : : ; Yn are the censored
ones. It then makes sense to take Z as the unknown XnuC1; : : : ; Xn. Assuming that
the censoring times are known, the “complete” data .Y ; ı;Z / are equivalent to just
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the fullX sample. (Note that we use the notation .Y ; ı;Z / to mean fYi ; ıi ; Zi gniD1.)
Thus the complete data log likelihood can be written as

logLC.� jX/ D
n
X

iD1
logf .Xi I�/ D

nu
X

iD1
logf .Xi I�/C

n
X

iDnuC1
logf .Xi I�/:

The conditional expectation given the observed data .Y ; ı/ is

Q.�;� .�/;Y ; ı/ D E�.�/ flogLC.� jX/ jY ; ıg

D
nu
X

iD1
logf .Yi I�/C

n
X

iDnuC1
E�.�/ flogf .Xi I�/ jYi ; ıi g :

Since Xi D Yi in the first sum, its value is left unchanged by the conditional
expectation, but we have replaced Xi by Yi . To proceed further we assume that
the data are exponentially distributed so that f .xI�/ D ��1 exp.�x=�/ for x � 0.
We already know from Example 2.9 (p. 48) that the maximum likelihood estimator
is
Pn

iD1 Yi=nu, but it is instructive to see how the EM Algorithm arrives at the same
estimator. (Some of this material was adapted from Example 1.3 of McLachlan and
Krishnan 1997.)

Substituting the exponential form logf .xI �/ D � log � � x=� , we have

Q.�; �.�/;Y ; ı/ D �n log � � 1

�

nu
X

iD1
Yi � 1

�

n
X

iDnuC1
E�.�/ .Xi jXi > Ri/ :

The conditional density of Xi given Xi > Ri is ��1 exp.�x=�/ exp.Ri=�/I.x >
Ri/, and the conditional expectation in the last expression is simply �.�/ C Ri
(Problem 2.52, p. 122, asks for a derivation of this result). Substituting for the
conditional expectation, we have

Q.�; �.�/;Y ; ı/ D �n log � � 1

�

nu
X

iD1
Yi � 1

�

n
X

iDnuC1

�

�.�/ CRi
	

:

Noting that for the censored observations Yi D Ri , the above equation simplifies to

Q.�; �.�/;Y ; ı/ D �n log � � 1

�

n
X

iD1
Yi � 1

�
.n � nu/�

.�/:

Finally, taking the derivative of this last expression with respect to � , we obtain
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�n
�

C 1

�2

(

n
X

iD1
Yi C .n � nu/�

.�/

)

D 0;

leading to the update formula

�.�C1/ D 1

n

(

n
X

iD1
Yi C .n � nu/�

.�/

)

:

As � ! 1, we expect both �.�C1/ and �.�/ to converge tob�MLE. Substitutingb�MLE

for �.�C1/ and �.�/ in the update formula, shows thatb�MLE satisfies

b�MLE D 1

n

(

n
X

iD1
Yi C .n � nu/b�MLE

)

;

with solution b�MLE D Pn
iD1 Yi=nu; as found previously. Note that if we subtract

the last display from the update formula, we obtain

�.�C1/ �b�MLE D
�

1 � nu

n

�

�

�.�/ �b�MLE
	

;

and taking absolute values,

ˇ

ˇ�.�C1/ �b�MLE

ˇ

ˇ D .1 � nu=n/
ˇ

ˇ�.�/ �b�MLE

ˇ

ˇ :

Thus the convergence here is linear with constant .1 � nu=n/. McLachlan and
Krishnan (1997, Sec. 3.9) argue that a linear rate of convergence is typical for the
EM Algorithm.

2.6.3c Convergence Results for the EM Algorithm

The EM Algorithm is often useful when the complete data likelihood has the
form of an exponential family. In fact Dempster et al. (1977) gave their first
presentation in terms of exponential families. The examples is Sections 2.6.3a
(p. 84) and 2.6.3b (p. 87) are both of this type. Often, as in these examples, the
M step is straightforward and basically inherited from the exponential family, but
the E step is often challenging and not necessarily aided by the exponential family
structure.

Theorem 1 of Dempster et al. (1977) essentially says that

`.�.�C1// � `.� .�// (2.58)
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where equality holds if and only if both

Q.� .�C1/;� .�// D Q.� .�/;� .�// and fZ jY .Z jY ;� .�C1// D fZ jY .Z jY ;�.�//:

Thus, the EM Algorithm is guaranteed to increase the log likelihood at each step.
If `.�/ is bounded from above, then (2.58) guarantees that the sequence `.�.�//
converges to some l�. However, convergence of `.�.�// does not guarantee that
the sequence of �.�/ converges to b�MLE. Wu (1983) points out that the results of
Dempster et al. (1977) on this convergence are incorrect, and gives a number of
technical conditions to obtain this convergence. We refer the reader to Wu (1983)
and McLachlan and Krishnan (1997, Ch. 3) for these results.

The EM Algorithm is a very useful method for finding maximum likelihood
estimators. Update formulas are often simple when the complete data likelihood
has an exponential family form. Because of (2.58) it tends to be more stable than
Newton methods, although it can be considerably slower in certain situations. The
EM Algorithm does not require derivatives of the log likelihood, but on the other
hand, IT.Y ;b�/ is not available at the end to use for standard errors.

2.7 Appendix A – Uniqueness of Maximum Likelihood
Estimators

In this appendix we give some fairly technical results on uniqueness ofb�MLE. Parts
of this subsection are at a somewhat higher mathematical level than the rest of
Chapter 2.

For given data Y and likelihoodL.�jY /, there is no guarantee that the likelihood
has a unique maximizing value. The best situation is when the likelihood equations
S .�/ D @`.�/=@�T D 0 have a unique root b� , where `.�/ is the log likelihood
function. A good source concerning this uniqueness is Makelainen et al. (1981).
Here we give several results from that paper and then some examples.

2.7.1 Definitions

Let� be an open set ofRb. A sequence � .1/;� .2/; : : :, in� is said to converge to the
boundary, @�, of � if for every compact set K 
 �, there exists an integer k0 � 1

such that �.k/ 62 K for every k � k0. When � D Rb, this condition is equivalent to
limk!1 k � .k/ kD 1. A real-valued function f defined on� is said to be constant
on the boundary, @�, if limk!1 f .� .k// D c for every sequence �.1/;� .2/; : : :, in
� converging to @�, where c is an extended real number (possibly 1 or �1). We
use the notation lim�!@� f .�/ D c to denote that f is constant on the boundary,
i.e., equal to c on the boundary.



2.7 Appendix A – Uniqueness of Maximum Likelihood Estimators 91

2.7.2 Main Results

The following theorem tells us that a unique maximum likelihood estimate exists if
the log likelihood function is constant on the boundary of the parameter space and
if the negative of the Hessian matrix of the log likelihood, defined as IT.Y ;�/, is
positive definite at solutions of the likelihood equations.

Theorem 2.1 (Makelainen et al. 1981, Corollary 2.5). Let� be a connected open
subset of Rb, b � 1, and let `.�/ be a twice continuously differentiable real-valued
function on � with lim�!@� `.�/ D c, where c is either a real number or �1.
Suppose that IT.Y ;�/ D �@2`.�/=@�@�T is positive definite at every point � 2 �
for which @`.�/=@�T D 0. Then `.�/ has a unique global maximum and no other
critical points. Furthermore, `.�/ > c for every � 2 �.

The key to this result is the condition that IT.Y ;�/ is positive definite at every
� for which S .�/ D 0: This assumption rules out local minima, and multiple
local maxima cannot occur without local minima. Applying the result in practice
necessitates finding all solutions to S .�/ D 0 and checking that IT.Y ;�/ is positive
definite at each solution.

Example 2.26 (Uniqueness of binomial MLE). If Y is binomial(n; p), then� D
.0; 1/ and the likelihood L.pjY / is proportional to pY .1 � p/n�Y with `.p/ D
constant C Y logp C .n � Y / log.1 � p/. If 0 < Y < n, then `.p/ ! �1 as
p ! 0 or 1 and is thus constant on the boundary. If Y D 0 or Y D n, then
`.p/ is not constant on the boundary, and Theorem 2.1 does not apply. In that case,
the maximum occurs at 0 or 1, respectively, not in our parameter space. Taking
derivatives, we have

@`.p/

@p
D Y

p
� n � Y

1 � p
D 0;

which has solution bp D Y=n unless Y D 0 or Y D n. Taking another derivative,
we have

�@
2`.p/

@p2
D Y

p2
C n � Y
.1 � p/2

;

which is positive for all p and Y , implying that `.p/ is strictly concave, and a
concave function can have only one maxima. Thus, Theorem 2.1 assures us that
bp D Y=n is the unique maximum likelihood estimator when 0 < Y < n. �

The next theorem strengthens the condition on IT.Y ;�/ to be positive definite
throughout the parameter space which implies that the function `.�/ is strictly
concave on �. This allows us to remove any conditions about the boundary. But
note the requirement that at least one critical point exists.

Theorem 2.2 (Makelainen et al. 1981, Theorem 2.6). Let `.�/ be twice continu-
ously differentiable with � varying in a connected open subset � 
 Rb . Suppose
that
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(i) the likelihood equations @`.�/=@�T D 0 have at least one solution � 2 �
and that

(ii) IT.Y ;�/ D �@2`.�/=@�@�T is positive definite at every point � 2 �.

Then

(a) `.�/ is a strictly concave function of �;
(b) there is a unique maximum likelihood estimateb�MLE 2 �;
(c) `.�/ has no other maxima or minima or other stationary points in �.

Recall that a matrix A is positive definite if xT Ax > 0 for all x. One criterion
for positive definiteness of a matrix A is as follows (see Graybill 1988 p. 397). A is
positive definite if and only if

a11 > 0I
ˇ

ˇ

ˇ

ˇ

a11 a12

a21 a22

ˇ

ˇ

ˇ

ˇ

> 0I
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 a13

a21 a22 a23
a31 a32 a33

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

> 0I : : : I jAj > 0:

2.7.3 Application of Theorem 2.2 to the Multinomial

Suppose that .N1; : : : ; Nk/ are distributed as multinomial.nIp1; p2; : : : ; pk/. The
likelihood is

L.p j N1; : : : ; Nk/ D nŠ

N1ŠN2Š � � �NkŠp
N1
1 p

N2
2 � � �pNkk ;

where
Pk

iD1 Ni D n,
Pk

iD1 pi D 1, 0 < pi < 1, i D 1; : : : ; k: The log likelihood
is thus

`.p/ D c0 C
k�1
X

iD1
Ni logpi CNk log

 

1 �
k�1
X

iD1
pi

!

:

Taking derivatives we have

@`.p/

@p1
D N1

p1
� Nk

pk
D 0 ) N1

p1
D Nk

pk

: : :

: : :

: : :

@`.p/

@pk�1
D Nk�1

pk�1
� Nk

pk
D 0 ) Nk�1

pk�1
D Nk

pk
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Assume that 0 < Ni < n; i D 1; : : : ; k: Otherwise, L.p/ is maximized in pi
if ni D 0 by settingbpi D 0 which is not in the parameter space. To solve the above
system, note that Ni D pi .Nk=pk/ and summing both sides gives

k�1
X

iD1
Ni D

 

k�1
X

iD1
pi

!

�

Nk

pk

�

or n � Nk D .1 � pk/.Nk=pk/ or n D Nk=pk, and thus bpi D Ni=n; i D
1; : : : ; k: Taking another derivative, we find that IT.Y ;p/ can be written as
D C .Nk=p

2
k/ 11T , where D is a diagonal matrix with diagonal elements dii D

Ni=p
2
i ; i D 1; : : : k � 1; and 1 is a vector of ones. Thus, IT.Y ;p/ is positive

definite because for any x ¤ 0

xT IT.Y ;p/x D
k�1
X

iD1
Nix

2
i =p

2
i C �

Nk=p
2
k

	

�
X

xi

�2

> 0:

Then by Theorem 2.2 (p. 91), the maximum likelihood estimators are unique if all
the Ni lie between zero and n.

2.7.4 Uniqueness of the MLE in the Normal location-scale
Model

Suppose that Y1; : : : ; Yn are iid N.�; �2), �1 < � < 1, 0 < � < 1, �T D
.�; �/. Then

`.�; �/ D c � n log � � 1

2�2

n
X

iD1
.Yi � �/2:

@`.�/

@�T
D

0

B

B

B

@

@`.�/

@�

@`.�/

@�

1

C

C

C

A

D

0

B

B

B

B

B

B

@

1

�2

n
X

iD1
.Yi � �/

�n
�

C 1

�3

n
X

iD1
.Yi � �/2

1

C

C

C

C

C

C

A

:

Note that the latter partial derivative is with respect to � .

IT D � @2`.�/

@� @�T
D

0

B

B

B

B

B

B

@

n

�2
2

�3

n
X

iD1
.Yi � �/

2

�3

n
X

iD1
.Yi � �/ � n

�2
C 3

�4

n
X

iD1
.Yi � �/2

:

1

C

C

C

C

C

C

A
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The only solution of @`.�/=@�T D 0 is of courseb� D Y andb� D sn. Moreover,

IT.Y ; sn/ D
0

@

n=s2n 0

0 2n=s2n

1

A ;

which is positive definite since xT IT.Y ; sn/x D nx21=s
2
n C 2nx22=s

2
n > 0 for any x.

Thus, .Y ; sn/ is a relative maximum of the log likelihood. Is it a global maximum?
To use Theorem 2.2 (p. 91), we need to show that IT is positive definite everywhere
in .�1;1/ 	 .0;1/. Unfortunately,

jITj D n2

�4

"

�1C 3

�2

(

1

n

n
X

iD1
.Yi � �/2

)

� 4

�2
.Y � �/2

#

D n2

�6

˚

3s2n � �2 � .Y � �/2



;

and this can be negative—take � D Y and �2 D 4s2n. Thus, IT is not concave over
.�1;1/ 	 .0;1/. It is concave in a region around .Y ; sn/. Since .Y ; sn/ is the
only critical value, to use Theorem 2.1 (p. 91), it would be sufficient to show that
`.�; �/ is constant on the boundary of the region .�1;1/ 	 .0;1/. We could
argue successfully here, but we take another approach that illustrates advantages of
using profile likelihoods.

Theorem 2.3. Let f .�; �/ be a function such that �1.�/ is a global maximum
for each value of � . If �1 is a global maximum of f �.�/ D f .�1.�/; �/, then
.�1.�1/; �1/ is a global maximum of f .�; �/.

Proof. f �.�1/ D f .�1.�1/; �1/ � f .�1.�/; �/ � f .�; �/for all.�; �/: �

For N.�; �2/ data, consider `.�; �/ as a function of only �. Then

@`.�; �/

@�
D 1

�2

n
X

iD1
.Yi � �/ D 0

implies that �1 D Y is a critical value for each � . Since

�@
2`.�; �/

@�2
D n

�2
> 0;

f .�; �/ is concave as a function of � for each � , and �1 D Y is a global maximum
of `.�; �/ for each � . Now we can “concentrate” `.�; �/ to get the profile likelihood

`�
n.�/ D `.Y ; �/ D c � n log � � ns2n

2�2
:
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Then
@`�

n.�/

@�
D �n

�
C ns2n
�3

D 0

implies that �1 D sn is a critical value of `�
n.�/. Now

�@
2`�
n.�/

@�2
D � n

�2
C 3ns2n

�4
;

and this latter expression is positive at �1 D sn. Thus, �1 D sn is a local maximum
of `�

n.�/. Unfortunately, plugging in �2 D 4s2n in this latter expression shows that
`�
n.�/ is not concave. However, we can now check the boundary points � D 0 and
� D 1 and see that

lim
�!0

`�
n.�/ D �1 and lim

�!1 `�
n.�/ D �1:

Thus, by Theorem 2.1 (p. 91), �1 D sn is a global maximum of `�
n , and by

Theorem 2.3, .b�;b�/ D .X; s/ is a global maximum of `.�; �/.

2.7.5 Application of Theorems 2.1 and 2.3 to the Exponential
Threshold Model

Suppose that Y1; : : : ; Yn are iid from the exponential threshold model,

f .yI�; �/ D 1

�
exp

�

� .y��/
�

�

; � � y<1;�1 < �<1; 0<�<1:

The likelihood is then

L.�; � jY / D ��n exp

(

�
n
X

iD1

�

Yi � �

�

�

)

n
Y

iD1
I.� � Yi < 1/:

For each value of �; L.�; �/ is maximized atb� D Y.1/, the smallest order statistic,
and the profile (or concentrated) likelihood is

L�.�/ D L.Y.1/; �/ D ��n exp

(

�
n
X

iD1

�

Yi � Y.1/

�

�

)

:

Then

logL�.�/ D �n log � � 1

�

n
X

iD1

�

Yi � Y.1/
	

;
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and
@

@�
logL�.�/ D �n

�
C n

�2

�

Y � Y.1/
	 D 0;

implies thatb� D Y � Y.1/ if Y > Y.1/. Furthermore,

� @2

@�2
logL�.�/ D � n

�2
C 2n

�3

�

Y � Y.1/
	

:

Clearly, this second derivative is greater than zero at b� if Y > Y.1/ but not for all
values of ��.0; 1/. Thus, b� is a relative maximum of logL�.�/ but logL�.�/ is
not concave on .0; 1/. Sinceb� is the only critical point, it is a global maximum of
logL�.�/ by Theorem 2.1 (p. 91) because

lim
�!0

logL�.�/ D lim
�!1 logL�.�/ D �1:

Finally, Theorem 2.3 (p. 94) yields that .b�;b�/ D .Y.1/; Y � Y.1// is the unique
maximum likelihood estimator of .�; �/.

2.7.6 Uniqueness of the MLE for Exponential Families

The binomial, multinomial, and normal distributions are exponential families. Thus,
in these cases the uniqueness of maximum likelihood estimators can be obtained
directly from the following corollary to Theorem 2.2 (p. 91).

Theorem 2.4. Suppose that X is distributed according to a minimal exponential
family of form (2.59, p. 98) where g.�/ is one-to-one and twice continuously
differentiable in �, and � is an open subset of Rs . If there is at least one solution
to the transformed likelihood equations E� fT .X/g D T .X/, then that solution is
the unique maximum likelihood estimator.

Proof. The likelihood equations E� T .X/ D T .X/ in the canonical parameter
space � D g.�/ have a unique solutionb�MLE since IX.�/ is the covariance matrix
of T which is positive definite everywhere since T is affinely independent. Then
b�MLE D g�1.b�MLE/ is also unique. �

Example 2.27 (Normal location-scale as exponential family). Suppose that
Y1; : : : ; Yn are iid N.�; �2/ as in Section 2.7.4 (p. 93). From (2.61, p. 100) of
Appendix B on exponential families, we see that �1 D g1.�/ D �=�2 and
�2 D �1=2�2, and T1 D Pn

iD1 Yi and T2 D Pn
iD1 Y 2i : The “transformed

likelihood equations” are n� D Pn
iD1 Yi and n.�2 C �2/ D Pn

iD1 Y 2i leading
to the usual estimators b�MLE D Y and b�MLE D sn (as long as n � 2 and the
Yi are not all equal). The technical condition of being a “minimal” exponential
family is that T1 D Pn

iD1 Yi and T2 D Pn
iD1 Y 2i do not satisfy a linear constraint
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like T1 C 2T2 D 4 and similarly that g1.�/ and g2.�/ do not satisfy a linear
constraint. Clearly g.�/ is suitably differentiable and one-to-one, and thus we can
use Theorem 2.4 to justify the uniqueness of the maximum likelihood estimators. �

Finally, we give one last example to show that existence and uniqueness of
maximum likelihood estimators is not always to be expected.

Example 2.28 (Mixture of normals). Suppose that Y1; : : : ; Yn are iid from the
mixture of normals model

f .yI�; �; p/ D p�.y � �/C .1 � p/ 1
�
�
�y � �

�

�

;

where � is the standard normal density function. The log likelihood with � D Y1 is

log
�

p�.0/C .1 � p/
1

�
�.0/

�

C
n
X

iD2

log
�

p�.Yi � Y1/C .1 � p/
1

�
�

�

Yi � Y1

�

��

:

As � ! 0, the first term in this last expression tends to infinity, but each of
the individual terms in the second term are bounded. Thus, for some paths to the
boundary of the parameter space, the log likelihood tends to infinity, and thus the
maximum likelihood estimator does not exist in the strict sense. Moreover, there
can be multiple local maxima. Nevertheless, local maxima within the parameter
space that satisfy the likelihood equations tend to behave well and are asymptotically
normal with the usual asymptotic variance. In Section 2.6.3 (p. 83) we showed how
the EM Algorithm can find at least one of these solutions. So, uniqueness of the
maximum likelihood estimator is a nice property, but it is not necessary in order to
obtain useful parameter estimates. �

2.8 Appendix B – Exponential Family Distributions

Fisher (1934b) is often given credit for initiating the study of families of distribu-
tions that we now call exponential families. In particular he gave the result that the
only families of distributions that have a one-dimensional sufficient statistic are one-
parameter exponential families. This result was extended to multiparameter families
by Darmois (1935), Koopman (1936), and Pitman (1936).

The most thorough treatments of exponential families are found in the books by
Barndorff-Nielsen (1978), Johansen (1979), and Brown (1986). Of these, Johansen
(1979) is the most accessible for students. Other valuable sources are Lehmann
(1983), and Lehmann and Casella (1998), which contain most of the results relevant
to statistical inference. The Encyclopedia of Statistics entry by Barndorff-Nielsen
(1982) is also an accessible exposition of the basic properties.
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A family of distributions fF� ;� 2 ˝g is an exponential family if densities
f .xI�/ exist with respect to a measure � and have the form

f .xI�/ D h.x/ exp

(

s
X

iD1
gi .�/Ti .x/ � B.�/

)

: (2.59)

For those not familiar with measure theory, the only fact you need to know here
is that measure theory allows us to write expectations with respect to a density as
integrals even when the densities are for discrete random variables. Thus,

Efq.X/g D
Z

q.x/f .xI�/d�.x/

D
(
R

q.x/f .xI�/dx; for continuous random variables;
P

q.xi /f .xi I�/; for discrete random variables.

Both x and � can be vectors, but � is bold unless it is clearly a scalar, and x is bold
only when it helps to emphasize that it is a vector. In general x and � take values in
subsets of Rk and Rm (often m D s), respectively, and � is Lebesgue measure or a
counting measure.

Example 2.29 (Normal distribution with known variance 1). The normal(�; 1/
density is

f .xI�/ D 1p
2�

exp

�

�1
2
.x � �/2

�

D e�x2=2
p
2�

exp

�

�x � �2

2

�

; �1 < x < 1; �1 < � < 1;

from which we can identify � D �, ˝ D .�1;1/, g.�/ D �, T .x/ D x,
B.�/ D �2=2, and h.x/ D e�x2=2=

p
2� . Of course � is Lebesgue measure on

.�1;1/. �

Example 2.30 (Poisson distribution). The Poisson(/ density is

f .xI/ D xe�

xŠ
D 1

xŠ
exp flog./x � g ; x D 0; 1; : : :  > 0;

from which we see that � D ,˝ D .0;1/, g./ D log./, T .x/ D x, B./ D ,
h.x/ D 1=xŠ, and � may be taken as counting measure on the nonnegative
integers. �
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2.8.1 Canonical Representation

The set of parameter values

˝0 D
(

� W
Z

h.x/ exp

 

s
X

iD1
gi .�/Ti .x/

!

d�.x/ < 1
)

is called the natural parameter space of the family (2.59). It is the largest possible
parameter space for a specific family type. In a given situation, the actual parameter
space ˝ may equal˝0 or be restricted to a proper subset.

For many purposes it is simpler to reparameterize in terms of � D g.�/ so
that (2.59) becomes

f .xI�/ D h.x/ exp

(

s
X

iD1
�iTi .x/ � A.�/

)

: (2.60)

This latter expression is called the canonical representation, and � is the canonical
parameter. The set

˝� D
(

� W
Z

h.x/ exp

 

s
X

iD1
�iTi .x/

!

d�.x/ < 1
)

is also called the natural parameter space.
In the canonical representation, if � is in the interior of ˝�, then the moment

generating function of T exists in a neighborhood of the origin and is given by (see,
Lehmann and Casella 1998, Theorem 5.10, p. 28)

MT .u/ D Eeu1T1C:::CusTs D eA.�Cu/�A.�/:

The cumulant generating function is just

KT .u/ D logfMT .u/g D A.�C u/ �A.�/:

Both functions lead to the following simple expressions for the mean and covariance
matrix of T .X/:

@A.�/

@�T
D E fT .X/g ; @2A.�/

@�@�T
D Var fT .X/g :

Note also that taking two derivatives of the logarithm of (2.60) leads to I.�/ D
Var fT .X/g : The information matrix for representation (2.59) is then I.�/ D
J T I.g.�//J , where J D @gi .�/=@�j . These expressions are useful if A.�/ is
easily manipulated. In Example 2.29 (p. 98) we have A.�/ D B.�.�// D �2=2,
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and E(X/ D d.�2=2/=d� D � D �, Var(X/ D d2.�2=2/=d�2 D 1: Similarly, for
Example 2.30 (p. 98) we have A.�/ D B..�// D e�, and E(X/ D d.e�/=d� D
e� D , Var(X/ D d2.e�/=d�2 D e� D . In the next example we see that A.�/ is
harder to use than direct calculation.

Example 2.31 (Normal location-scale model). The normal(�; �2/ density is

f .xI�/ D 1p
2��2

exp

�

� 1

2�2
.x � �/2

�

D 1p
2�

exp

�

�

�2
x � 1

2�2
x2 � �2

2�2
� log.�/

�

; (2.61)

for �1 < x < 1; �1 < � < 1; 0 < � < 1. We can identify � D .�; �/,
˝0 D .�1;1/ 	 .0;1/, g1.�/ D �=�2, g2.�/ D �1=2�2, T1.x/ D x, T2.x/ D
x2, B.�/ D �2=2�2 C log.�/, and h.x/ D 1=

p
2� . For computing moments we

put � D ��1=2�2 and �2 D �1=2�2 into B.�/ to get

A.�/ D ��21
4�2

� 1

2
log.��2/ � log.

p
2/:

Taking a derivative with respect to �1, we get

E fXg D @

@�1
A.�/ D �2�1=.4�2/ D �:

The second derivative with respect to �1 is then D �2=.4�2/ D �2 D Var fXg. But
note that for the standard normal density �, we have

R1
1 x�.x/dx D �Œ�.1/ �

�.�1/� D 0 directly, and
R1

1 x2�.x/dx D R1
1 �.x/dx D 1 using integration by

parts. Thus, E fXg D � and Var fXg D �2 follow fairly easily and perhaps more
easily than finding A.�/ and taking two derivatives with respect to �1. �

It is not hard to see that the joint distribution of independent and identically
distributed (iid) random variables XT D .X1; : : : ; Xn/ from an exponential
family also form an exponential family with the same parameters but with Ti.x/
replaced with T �

i D Pn
jD1 Ti .xj /, B.�/ replaced by nB.�/, and h.x/ replaced

by
Qn
jD1 h.xj /. For example, the joint density of a sample from the normal(�; �2/

density is

f .xI�/ D .2�/�n=2 exp

8

<

:

�

�2

n
X

jD1
xj � 1

2�2

n
X

jD1
x2j � n

�2

2�2
� n log.�/

9

=

;

:

From the factorization theorem we immediately see that .
Pn

jD1 Xj ;
Pn

jD1 X2
j / is

a sufficient statistic and note that it is a one-to-one function of the more familiar
sufficient statistic .X; S2/. In general
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.T �
1 ; : : : ; T

�
s / D

0

@

n
X

jD1
Ti .Xj /; : : : ;

n
X

jD1
Ts.Xj /

1

A

is a sufficient statistic based on an iid sample from (2.59, p. 98). In particular
problems we may prefer to work with other equivalent sufficient statistics, possibly
nonlinear transformed ones such as .X; S2/. However, we almost always ought to
choose a sufficient statistic from among the minimal sufficient statistics, which leads
us to seek a minimal version of (2.59, p. 98).

2.8.2 Minimal Exponential Family

Although the representation (2.59, p. 98) is not unique because of linear transfor-
mations, it is possible and usually worthwhile to find a representation based on the
smallest s that satisfies (2.59, p. 98). Thus we seek a version of (2.59, p. 98) such
that the real-valued components T1; : : : ; Ts are “affinely independent with respect
to �, ” that is,

s
X

iD1
ciTi .x/ D csC1 a:s � H) ci D 0; i D 1; : : : s C 1: (2.62)

In other words, (2.62) says that almost surely � the Ti do not satisfy a linear
constraint. For example, T1.x/ D x and T2.x/ D 3x are not affinely independent
(since 3T1�T2 D 0), but T1.x/ D x and T2.x/ D 3x2 are affinely independent with
respect to � D Lebesgue measure. Similarly, we want the real-valued components
�1.�/; : : : ; �s.�/ to be affinely independent, that is, that the �i do not satisfy a linear
constraint. In such a case when both the Ti and �i .�/ are free of linear constraints,
then the family is said to be minimal. It is not hard to show by a theorem of Lehmann
and Scheffé (see Casella and Berger 2002, Theorem 6.2.13, p. 281) that .T1; : : : ; Ts/
is then minimal sufficient.

Example 2.32 (Multinomial distribution). The multinomial(nIp1; : : : ; pk) dis-
tribution is a naturally occurring family that is not minimal in the usual parameteri-
zation. The density is

f .xIp/ D nŠ

x1Š : : : xkŠ

k
Y

iD1
p
xi
i D nŠ

x1Š : : : xkŠ
exp

(

k
X

iD1
log.pi /xi

)

; (2.63)

where
Pk

iD1 pi D 1 and
Pk

iD1 xi D n. This family has the representation (2.59,
p. 98) with gi D log.pi / and Ti D xi ; i D 1; : : : ; k. Here it is easy to reduce to
a minimal representation with s D k � 1 by setting pk D 1 � Pk�1

iD1 pi , xk D
n �Pk�1

iD1 xi , � D .p1; : : : ; pk�1/, and g.�/ D flog.p1=pk/; : : : ; log.pk�1=pk/g :
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Thus pk and xk may still appear in

f .xI�/ D nŠ

x1Š : : : xkŠ
exp

(

k�1
X

iD1
log.pi=pk/xi C n log.pk/

)

so that the expression is not too unwieldy. The natural parameter space here is

˝0 D
(

.p1; : : : ; pk�1/ W 0 < pi ;
k�1
X

iD1
pi < 1

)

:

The canonical representation is

f .xI�/ D nŠ

x1Š : : : xkŠ
exp

(

k�1
X

iD1
�ixi � n log

 

1C
k�1
X

iD1
e�i

!)

;

with natural parameter space ˝� D f.�1; : : : ; �k�1/ W �1 < �i < 1g. Taking

derivatives of A.�/ D n log
�

1CPk�1
iD1 e�i

�

leads quickly to EfXi g D npi ,

VarfXig D npi .1 � pi /, and Cov.Xi ; Xj / D �npipj for i ¤ j . �

Example 2.33 (Normal with mean = variance). A less natural family is the
normal(�2; �2/ density where upon substituting � D �2 into (2.61, p. 100) we
get

f .xI �/ D 1p
2�

exp

�

�2

�2
x � 1

2�2
x2 � �4

2�2
� log.�/

�

D exp
2�

exp

�

� 1

2�2
x2 � �2

2
� log.�/

�

:

Thus, this family reduces to an s D 1 minimal exponential family. �

Example 2.34 (Normal with mean = standard deviation). Now consider the
normal
(�; �2/ density where substituting � D � into (2.61, p. 100) yields

f .xI �/ D 1p
2�

exp

�

�

�2
x � 1

2�2
x2 � �2

2�2
� log.�/

�

D e�1=2
p
2�

exp

�

1

�
x � 1

2�2
x2 � log.�/

�

:

This case is different because it is a minimal s D 2 exponential family (x and x2 are
affinely independent and so are �1 D 1=� and �2 D �1=2�2), yet the dimension of
� D � is 1. This type of exponential family is called a curved exponential family .
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For an iid sample from the above density, .
Pn

jD1 Xj ;
Pn

jD1 X2
j / (or equivalently

.X; S2/) is still a minimal sufficient statistic, but simple calculations show that it is
not complete. �

Example 2.35 (Fourth-power curved exponential example). Another example
of a curved exponential family is given by Lehmann and Casella (1998, p. 41):

f .xI �/ D Ce�.x��/4 D Ce�x4e4�3x�6�2x2C4�x3��4 :

This is a minimal s D 3 curved exponential family. For an iid sample,
.
Pn

jD1 Xj ;
Pn

jD1 X2
j ;
Pn

jD1 X3
j / is minimal sufficient but not complete. �

2.8.3 Completeness

Recall that a set of statistics .T1; : : : ; Ts/ is complete with respect to the family of
their induced distributions indexed by � if there are no functions �.T / (other than
� D 0) such that E� �.T / D 0 for all � 2 ˝ .

So what restrictions guarantee completeness of the minimal sufficient statistic?
Johansen (1979, p. 11), Lehmann and Casella (1998, p. 42), and Brown (1986,
p. 43) each give completeness results in terms of the canonical representation (2.60,
p. 99). Johansen’s sufficient condition is that fF�;� 2 ˝�g be a “regular exponential
family,” which means that it is a minimal exponential family with the natural
parameter space ˝� and that space is an open set in Rs. Lehmann and Casella’s
Theorem 6.22 seems a little less restrictive because it requires the family to be of
full rank, which means that the family is minimal and the parameter space contains
an s-dimensional rectangle (not concentrated on a subspace of lower dimension
than s). For example, the parameter space in Example 2.34 (p. 102) is defined by
the curve �2 D ��21=2 which is of dimension 1. Clearly, this curve does not contain
a 2-dimensional rectangle. Lehmann and Casella’s result allows the parameter space
of � to be a subset of the natural parameter space ˝�. We can restate their theorem
as follows.

Theorem 2.5 (Lehmann and Casella Theorem 6.22). The sufficient statistic
.T1; : : : ; Ts/ of a canonical exponential family having representation (2.60, p. 99) is
complete sufficient provided that the family is minimal and that the parameter space
contains an s-dimensional rectangle.

To translate this result on completeness to a family with the representation (2.59,
p. 98), we need to merely verify that the family is minimal and that in terms of
the canonical parameters, the parameter space contains an s-dimensional rectangle.
Thus, of the above examples, only for random samples drawn from the densities in
Examples 2.34 (p. 102) and 2.35 (p. 103) are the T not complete. If the dimension
of � is less than s, then we can be sure that the parameter space, after conversion to
the canonical framework, is concentrated on a subspace of lower dimension than s.
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For Example 2.31 (p. 100) with the normal.�; �2) density, Theorem 2.5 says that
.T1; T2/ D .X;X2/ is complete. One might note that E�.T 21 � T2/ D 0 for all � .
This does not contradict completeness because T 21 � T2 D 0.

2.8.4 Distributions of the Sufficient Statistics

Several other important facts about exponential families are summarized by the
following result from Lehmann (1986, Lemma 8, p. 58).

Theorem 2.6. Let X be distributed according to an exponential family of form
(2.60, p. 99) where � D .	; /

f .xI 	; / D h.x/ exp

8

<

:

r
X

iD1
�iUi .x/C

s
X

jD1
 j Tj .x/ � A.	; /

9

=

;

: (2.64)

Then

(0) the distribution of .U ;T / is an exponential family
(i) the marginal distribution of T D .T1; : : : ; Ts/ is an exponential family of the

form

f .tI 	; / D q.t/C.	/ exp

8

<

:

s
X

jD1
 j tj � A.	; /

9

=

;

I (2.65)

(ii) the conditional distribution ofU D .U1; : : : ; Us/ given T D t is an exponential
family of the form

f .ujtI 	/ D qt.u/ exp

(

r
X

iD1
�iui � At.	/

)

: (2.66)

Example 2.36 (Logistic dose-response model). Consider a toxicology study with
k groups of animals who are given a drug at dose levels d1; : : : ; dk , respectively. The
animals are monitored for a reaction such as weight loss or death. The result is that
Xi of the ni animals in group i react, i D 1; : : : ; k, and we treat the dataX1; : : : ; Xk
as a set of independent binomial.ni ; pi / random variables. The joint density is then

(

k
Y

iD1

 

ni

xi

!)

exp

(

k
X

iD1
log

�

pi

1 � pi

�

xi �
k
X

iD1
ni log.1 � pi /

)

:

Without any restrictions on the pi (other than 0 < pi < 1), this is an s D k full
rank exponential family with Ti D Xi and �i D logfpi=.1� pi /g, i D 1; : : : ; k.

A common assumption in such studies is that pi is modeled as pi D F.ˇ0 C
ˇ1di /, whereF is a distribution function like the standard normal˚ , logisticF.t/ D
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.1C e�t /�1, or extreme value F.t/ D exp.� exp.�t//. In these models the logistic
distribution function has a particularly nice form because logfF.t/=.1�F.t//g D t

and thus logfpi=.1�pi/g D ˇ0Cˇ1di . Plugging into the joint density above, we get
(

k
Y

iD1

 

ni

xi

!)

exp

(

ˇ0

k
X

iD1
xi C ˇ1

k
X

iD1
dixi �

k
X

iD1
ni log.1 � F.ˇ0 C ˇ1di //

)

:

Thus, for the logistic model we have an s D 2 full rank exponential family with
T D .

Pk
iD1 Xi ;

Pk
iD1 diXi / and � D .ˇ0; ˇ1/. This model fits nicely into the

previous Theorem about the conditional distribution of U jT D t, where typically
U D Pk

iD1 diXi and T D Pk
iD1 Xi since ˇ1 is usually the parameter of interest,

and ˇ0 is a nuisance parameter. Let us spell out the details as taken from Cox and
Snell (1989, Ch. 2). The joint distribution of .T; U / is given by

P.T D t; U D u/ D c.t; u/ exp

(

ˇ0t C ˇ1u �
k
X

iD1
logni

�

1C eˇ0Cˇ1di
	

)

;

(2.67)

where c.t; u/ is just the constant needed to make (2.67) a discrete density. The
conditional density of U jT D t is found in the usual way

P.U D ujT D t/ D P.U D u; T D t/

P.T D t/
D c.t; u/eˇ1u

P

v c.t; v/e
ˇ1v
; (2.68)

where cancellations of terms from (2.67) greatly simplify the expression. Even with
the simple form in (2.68), calculation of this conditional density usually requires
specialized software.

Further results in Lehmann (1986) use this conditional distribution to find
UMPU tests concerning ˇ1. Methods based on the logistic model with conditional
likelihoods are often called conditional logistic regression.

Looking back at the general form of the likelihood in terms of F , we note that
if F is some other distribution function than the logistic, then typically the density
does not reduce as it does for the logistic, and we have a minimal exponential family
with s D k, but � D .ˇ0; ˇ1/ only has dimension D 2. These densities thus form
a curved exponential family. Messig and Strawderman (1993) give conditions for
X1; : : : ; Xk to be minimal sufficient. They also assert completeness of the minimal
sufficient statistic in certain cases of these curved exponential families (a surprising
result). �

2.8.5 Families with Truncation or Threshold Parameters

In general, the definition (2.59, p. 98) of an exponential family assumes that
the support of X does not depend on � . This seems to eliminate families with
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truncation or threshold parameters from being able to use exponential family
results. Fortunately, a number of families have conditional exponential family
representations, as illustrated using the following results from Quesenberry (1975).

Consider a random sample X1; : : : ; Xn from one of three types of densities
defined over an interval .a; b/, possibly (�1;1):

f .xI� ; �1; �2/ D c.�1; �2;�/d.x;�/; a < �1 < x < �2 < bI (2.69)

f .xI� ; �/ D c1.�;�/d1.x;�/; a < � < x < bI (2.70)

f .xI� ; �/ D c2.�;�/d2.x;�/; a < x < � < bI (2.71)

where d.x;�/, d1.x;�/, and d2.x;�/ are positive, continuous, and integrable over
the intervals .�1; �2/, .�; b/, and .a; �/, respectively.

Now let us focus on the first density form (2.69). If X.1/ is the smallest order
statistic and X.n/ is the largest, then for � fixed, .X.1/; X.n// is minimal sufficient
for .�1; �2/. Denote by Z1; : : : ; Zn�2 the other values of the sample that fall
between X.1/ and X.n/. Quesenberry’s (1975) Theorem 1 states that conditional
on .X.1/; X.n// D .x.1/; x.n//, the random variables Z1; : : : ; Zn�2 are iid and
continuous with density function

q.z;�/ D d.z;�/I
�

x.1/ < z < x.n/
	

R x.n/
x.1/

d.z;�/d z
;

where I.�/ is the indicator function. Of course a similar result holds for observations
from (2.70) and (2.71) that are conditional on being larger than X.1/ or smaller than
X.n/, respectively. Thus if the d.z;�/ in (2.69), (2.70) and (2.71) have an exponential
family form, then the conditional densities do also. The simplest example is the
exponential

f .xI �; �/ D �e��.x��/I.� < x < 1/;

with � > 0 and �1 < � < 1. Then, conditional on X.1/ D x.1/, the observations
larger than x.1/ have density

q.z; �/ D �e��.z�x.1//I.x.1/ < x < 1/ D e��zC�x.1/Clog.�/I.x.1/ < x < 1/:

2.8.6 Exponential Family Glossary

natural parameter space of the family (2.59):

˝0 D f� W
Z

h.x/ exp

"

s
X

iD1
�i .�/Ti .x/

#

d�.x/ < 1g:
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canonical representation (� is called the canonical parameter):

f .xI�/ D h.x/ exp

"

s
X

iD1
�iTi .x/ � A.�/

#

:

minimal exponential family : T1; : : : ; Ts are affinely independent with respect to �,
and g1.�/; : : : ; gs.�/ are affinely independent (affinely independent means “do not
satisfy a linear constraint”).
regular exponential family : minimal exponential family with the canonical repre-
sentation and ˝� is an open set in Rs.
full rank exponential family: minimal exponential family and ˝ contains an
s-dimensional rectangle.
curved exponential family: dim.�/ < s.

2.9 Problems

2.1. Let Y1; : : : ; Yn be iid positive random variables such that Y ./ is assumed to
have a normal(�; �2/ distribution, where

Y ./ D

8

ˆ

<

ˆ

:

Y  � 1


when  ¤ 0;

log.Y / when  D 0:

(The normality assumption is actually only possible for  D 0, but ignore that
detail.) Derive the log likelihood `n.�; �; jY / of the observed data Y1; : : : ; Yn. Note
that y./ is a strictly increasing function of y (the derivative is always positive). It
might be easiest to use the “distribution function” method to get the density of Yi ,
but feel free to use Jacobians, etc.

2.2. One of the data sets obtained from the 1984 consulting session on max flow
of rivers was n D 35 yearly maxima from one station displayed in the following R
printout.

> data.max
[1] 5550 4380 2370 3220 8050 4560 2100
[8] 6840 5640 3500 1940 7060 7500 5370

[15] 13100 4920 6500 4790 6050 4560 3210
[22] 6450 5870 2900 5490 3490 9030 3100
[29] 4600 3410 3690 6420 10300 7240 9130

a. Find the maximum likelihood estimates for the extreme value location-scale
density f .yI�; �/ D f0..y � �/=�/=� , where

f0.t/ D e�t e�e�t

:
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b. Draw a QQ plot and the parametrically estimated distribution function overlaid
with the empirical distribution function. Here is sample R code.

par(mfrow = c(2,1)) # gives two plots per page
qextval<-function(t,mu,sigma){-sigma*log(-log(t))

+mu}
pextval<-function(x,mu,sigma){exp(-exp(-(x-mu)/

sigma))}
plot(qextval(ppoints(data.max),0,1),sort(data.max))
seq(1900,13200,,100)->x # a grid of values
pextval(x,muhat,sigmahat)->y # est. cdf for grid
plot(x,y,type="l") # plots est. ext. value cdf
1:35/35->ht # heights for empirical cdf
points(sort(data.max),ht) # adds empirical cdf

2.3. Recall the ZIP model

P.Y D 0/ D p C .1 � p/e�

P.Y D y/ D .1 � p/
ye�

yŠ
y D 1; 2; : : :

a. Reparameterize the model by defining

� � P.Y D 0/ D p C .1 � p/e�:

Solve for p in terms of  and � , and then substitute so that the density depends
only on  and � .

b. For an iid sample of sample of size n, let n0 be the number of zeroes in the
sample. Assuming that the complete data is available (no grouping), show that
the likelihood factors into two pieces and that b� D n0=n. (This illustrates why
we obtained exact fits for the 0 cell in Example 2.1, p. 32.) Also show that the
maximum likelihood estimator for is the solution to a simple nonlinear equation
involving Y C (the average of the nonzero values).

c. Now consider the truncated or conditional sample consisting of the n�n0 nonzero
values. Write down the conditional likelihood for these values and obtain the
same equation forbMLE as in a). (First write down the conditional density of Y
given Y > 0.)

2.4. In sampling land areas for counts of an animal species, we obtain an iid sample
of counts Y1; : : : ; Yn, where each Yi has a Poisson distribution with parameter ,
P.Y1 D y/ D e�y=yŠ.

a. Derive the maximum likelihood estimator of . Call itbMLE;1.
b. For simplicity in quadrat sampling, sometimes only the presence or absence of

a species is recorded. Let n0 be the number of Yi ’s that are zero. Write down
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the binomial likelihood based only on n0. Show that the maximum likelihood
estimator of  based only on n0 isbMLE;2 D � log.n0=n/.

c. Recall that the asymptotic relative efficiency ofb�1 tob�2 is the limit of the ratio
of the asymptotic variance ofb�2 to the asymptotic variance ofb�1. Use the delta
theorem from Ch. 1 to show that the asymptotic relative efficiency ofbMLE;1 to
bMLE;2 is fexp./� 1g=.

d. The overall goal of the sampling is to estimate the mean number of the species per
unit land area. Comment on the use ofbMLE;2 in place ofbMLE;1. That is, explain
to a researcher for what  values and under what distributional assumptions is it
reasonable?

2.5. Suppose that X and Y are continuous random variables with joint density
fX;Y .x; y/ and marginal densities fX.x/ and fY .y/, respectively. Use the 2h
method to justify the definition of the conditional density of X given Y :

fX jY .xjy/ D fX;Y .x; y/

fY .y/
:

2.6 (Continuation). Generalize Problem 2.5 to the case where X is a vector of
dimension p and Y is a vector of dimension q. (Hint: The result looks the same but
you do not divide by 2h.)

2.7 (Continuation). Repeat Problem 2.5 for the case that X is continuous but Y is
discrete.

2.8. For the rainfall example (2.8, p. 41), with distribution function

FY .t Ip; c; �/ D pI.0 � t/C .1 � p/
n

1 � e�.t=�/c
o

;

find the mean, variance, and median. It helps to know that the r th moment about 0
of a Weibull distribution (the continuous component in the model) is � .1C r=c/�r .
The mean and variance expressions depend on � .�/. To get the median, just set the
distribution function equal to 1/2 and solve for t .

2.9. The sample Y1; : : : ; Yn is iid with distribution function

FY .yIp0; p1; ˛; ˇ/ D p0I.0 � y/C .1 � p0 � p1/F.yI˛; ˇ/C p1I.y � 1/;

where F.yI˛; ˇ/ is the beta distribution. You may recall that the beta density is
positive on 0 < y < 1 so that F.0I˛; ˇ/ D 0 and F.1I˛; ˇ/ D 1, but otherwise
you do not need to use or know its form in the following; just use F.yI˛; ˇ/ or
f .yI˛; ˇ/ where needed. The physical situation relates to test scores standardized
to lie in Œ0; 1�, but where n0 of the sample values are exactly 0 (turned in a blank
test), n1 values are 1 (a perfect score), and the rest are in between 0 and 1. Use the
2h method to show that the likelihood is
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p
n0
0 p

n1
1 .1 � p0 � p1/n�n0�n1 Y

0<Yi<1

f .Yi I˛; ˇ/:

2.10. Suppose that Y1; : : : ; Yn are n distinct numbers. Assume that there exists an
h� > 0 such that for all 0 < h < h�, bF h.y/ is a distribution function satisfying

bF h.Yi C h/� bF h.Yi � h/ D 1

n
; i D 1; : : : ; n:

Prove that bF h.y/ �! n�1Pn
iD1 I.Yi � y/ as h �! 0 at each continuity point of

the limit.

2.11. Let Y1; : : : ; Yn be an iid sample, each with distribution function F . We
make no restrictions on F . Show that the empirical distribution function is the
nonparametric maximum likelihood estimator for the case that there are ties in the
data. To fix notation, let nj be the number of sample values at yj , j D 1; : : : ; k;
Pk

jD1 nj D n: Then start with the approximate likelihood
Qk
jD1Œpj;h�nj , where

pj;h D F.yj C h/ � F.yj � h/, and use an argument similar to that found in
Section 2.2.6, p. 45.

2.12. For an iid sample Y1; : : : ; Yn, Type II censoring occurs when we observe only
the smallest r values. For example, in a study of light bulb lifetimes, we might stop
the study after the first r D 10 bulbs have failed. Assuming a continuous distribution
with density f .yI�/, the likelihood is just the joint density of the smallest r order
statistics evaluated at those order statistics:

L.� IY.1/; : : : ; Y.r// D nŠ

.n � r/Š

"

r
Y

iD1
f .Y.i/I�/

#



1 � F.Y.r/I�/
�n�r

:

For this situation, let f .yI �/ D e�y=� =� and find the MLE of � .

2.13. For the random censoring likelihood, p. 49, we expressed P.Yi 2 .y�h; yC
h�; ıi D 1/ and P.Yi 2 .y � h; y C h�; ıi D 0/ as double integrals, divided by
2h and took limits. Instead of double integrals, try to find the same expressions by
conditioning: e.g., start with

P.Yi 2 .y � h; y C h�; ıi D 1/ D P.Xi 2 .y � h; y C h�; Xi � Ri/

D P.Xi � Ri jXi 2 .y � h; y C h�/

	 P.Xi 2 .y � h; y C h�/:

(Hint: boundP.Xi � Ri jXi 2 .y�h; yCh�/ above by P.y�h � Ri/ and below
by P.y C h � Ri/.)

2.14. Derive the likelihood found in (2.13, p. 51).
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2.15. Derive the likelihood for the normal additive errors nonlinear model of
Section 2.3.2 (p. 53).

2.16. The standard Box-Cox regression model (Box and Cox 1964) assumes that
after transformation of the observed Yi to Y ./i we have the linear model

Y
./
i D xTi ˇ C ei ; i D 1; : : : ; n;

where Yi is assumed positive and the xi are known constants, i D 1; : : : ; n. In
addition assume that e1; : : : ; en are iid normal.0; �2/ errors. Recall that the Box-
Cox transformation is defined in Problem 2.1 (p. 107) and is strictly increasing for
all . Show that the likelihood is

L.ˇ; �;  j fYi ;xi gniD1/ D
�

1p
2��

�n

exp

2

6

4�
n
X

iD1

n

Y
./
i � xTi ˇ

o2

2�2

3

7

5

	
n
Y

iD1

ˇ

ˇ

ˇ

ˇ

ˇ

@t./

@t

ˇ

ˇ

ˇ

ˇ

tDYi

ˇ

ˇ

ˇ

ˇ

ˇ

:

2.17. Suppose that we have the same situation as the previous problem except that
e1; : : : ; en are iid from a density fe.z/. Find the likelihood of the data.

2.18. The “transform-both-sides” (TBS) model (Carroll and Ruppert 1998) as-
sumes that there is a known physical relationship between Yi and xi , say E.Yi j
xi / D g.xi ;ˇ/ with unknown ˇ, but the random error structure is unknown. So, to
preserve the known physical relationship, it is assumed that after applying the Box-
Cox transformation (see Problem 2.1, p. 107) to both sides of the equation we have

Y
./
i D g.xi ;ˇ/

./ C ei ; i D 1; : : : ; n:

We also assume that both Yi and g.xi ;ˇ/ are positive quantities and that e1; : : : ; en
are iid normal.0; �2/ errors. Show that the likelihood is given by

L.ˇ; �;  j fYi ;xi gniD1/ D
�

1p
2��

�n

exp

2

6

4�
n
X

iD1

n

Y
./
i � g.xi ;ˇ/

./
o2

2�2

3

7

5

	
n
Y

iD1

ˇ

ˇ

ˇ

ˇ

ˇ

@t./

@t

ˇ

ˇ

ˇ

ˇ

tDYi

ˇ

ˇ

ˇ

ˇ

ˇ

:

2.19. For the Poisson probability mass function f .yI/, put the log density in the
generalized linear model form, (2.14, p. 53), identifying b.�/, etc., and derive the
mean and variance of Y , E.Y / D �, Var.Y / D �.



112 2 Likelihood Construction and Estimation

2.20. One version of the negative binomial probability mass function is given by

f .yI�; k/ D � .y C k/

� .k/� .y C 1/

�

k

�C k

�k �

1 � k

�C k

�y

y D 0; 1 : : :

where � and k are parameters. Assume that k is known and put f .yI�; k/ in the
generalized linear model form, (2.14, p. 53), identifying b.�/, etc., and derive the
mean and variance of Y , E.Y / D �, Var.Y / D �C �2=k.

2.21. The usual gamma density is given by

f .yI˛; ˇ/ D 1

� .˛/ˇ˛
y˛�1e�y=ˇ 0 � y < 1; ˛; ˇ > 0;

and has mean ˛ˇ and variance ˛ˇ2. First reparameterize by letting � D ˛ˇ so that
the parameter vector is now .�; ˛/. Now put this gamma family in the form of a
generalized linear model, identifying � , b.�/, ai .�/; and c.y; �/. Note that ˛ is
unknown here and should be related to �. Make sure that b.�/ is actually a function
of � and take the first derivative to verify that b.�/ is correct.

2.22. Consider the standard one-way ANOVA situation with Yij distributed as
N.�i ; �2/, i D 1; : : : ; k; j D 1; : : : ; ni , and all the random variables are
independent.

a. Form the log likelihood, take derivatives, and show that the MLEs are b�i D
Y i ; i D 1; : : : ; k; b�2 DSSE/N , where SSE=

Pk
iD1

Pni
jD1.Yij � Y i /

2 and N D
Pk

iD1 ni .
b. Now define V T

i D .Yi1 � Y i ; : : : ; Yi;ni�1 � Y i /. Using standard matrix
manipulations with the multivariate normal distribution, the density of V i is
given by

.2�/�.ni�1/=2n1=2i ��.ni�1/ exp

�

� 1

2�2
vTi ŒIni�1 C Jni�1�vi

�

;

where Ini�1 is the ni � 1 by ni � 1 identity matrix and Jni�1 is an ni � 1 by
ni � 1 matrix of 1’s. Now form the (marginal) likelihood based on V 1; : : : ;V k

and show that the MLE for �2 is nowb�2 DSSE/.N � k/.
c. Finally, let us take a more general approach and assume that Y has an N -

dimensional multivariate normal distribution with mean Xˇ and covariance
matrix˙ D �2Q.�/, where X is an N 	p full rank matrix of known constants,
ˇ is a p-vector of regression parameters, and Q.�/ is an N 	 N standardized
covariance matrix depending on the unknown parameter � . Typically � would
consist of variance component and/or spatial correlation parameters. We can
concentrate the likelihood by noting that if Q.�/ were known, then the gener-
alized least squares estimator would bebˇ.�/ D .XTQ.�/�1X/�1XTQ.�/�1Y .
Substituting for ˇ yields the profile log likelihood

�N
2

log.2�/�N log � � 1

2
log jQ.�/j � GSSE.�/

2�2
;
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where GSSE.�/ D .Y � Xbˇ.�//TQ.�/�1.Y �Xbˇ.�//. To connect with part
a), let Q.�/ be the identity matrix (so that GSSE.�/ is just SSE) and find the
maximum likelihood estimator of �2.

d. Continuing part c), the REML approach is to transform to V D ATY , where
the N � p columns of A are linearly independent and ATX D 0 so that V is
MN.0; AT˙A/. A special choice of A leads to the REML log likelihood

� N � p
2

log.2�/ � .N � p/ log � � 1

2
log jXTX j � 1

2
log jXTQ.�/�1X j

� 1

2
log jQ.�/j � GSSE.�/

2�2
:

To connect with part b), let Q.�/ be the identity matrix and find the maximum
likelihood estimator of �2.

2.23. Suppose that Yi;j are independent for i D 1; : : : ; n; j D 1; : : : ; m, with
Yi;j � N.�i ; �2/. This a generalization of Section 2.4.1 (p. 57).

a. Construct the full likelihood for .�2; �1; : : : ; �n/ and obtain the MLEs of
�1; : : : ; �n and �2. Show that b�2MLE is not unbiased and not even consistent for
�2 as n ! 1 with m fixed.

b. Construct a marginal likelihood for �2 analogous to that derived in Example 2.4.1
for the case m D 2. Find the marginal MLE of �2, call itb�2MMLE, and show that
it is both unbiased and consistent for �2 as max.n;m/ ! 1.

2.24. For the Neyman-Scott solution in Section 2.4.3 (p. 59), use the fact that if
.X 1;X 2/

T is distributed as MNf.�1;�2/T ;˙ g, then .X 1 j X 2/ is distributed as
MNf�1 C˙ 12˙

�1
22 .X 2 ��2/;˙ 11 �˙ 12˙

�1
22 ˙ 21g, to show that .Yi1 j Yi1 C Yi2/

is distributed as Nf.Yi1 C Yi2/=2; �
2=2g.

2.25. If Y is from an exponential family where .W ;V / are jointly sufficient for
.�1;�2/, then the conditional density of W jV is free of the nuisance parameter �2
and can be used as a conditional likelihood for estimating �1. In some cases it may
be difficult to find the conditional density. However, from (2.19, p. 57) we have

fY .y I�1;�2/
fV .vI�1;�2/ D fW jV .wjvI�1/:

Thus, if you know the density of Y and of V , then you can get a conditional
likelihood equation.

a. Now let Y1; : : : ; Yn be iid N.�; �2/, V D Y , and � D .�; �/T . Form the ratio
above and note that it is free of �. (It helps to remember that

P

.Yi � �/2 D
P

.Yi � Y /2 C n.Y � �/2.)
b. Find the conditional maximum likelihood estimator of �2.
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2.26. Consider the normal theory linear measurement error model

Yi D ˛ C ˇUi C �eei ; Xi D Ui C �Zi ; i D 1; : : : ; n;

where e1; : : : ; en; Z1; : : : ; Zn are iid N.0; 1/ random variables, �2 is known, and
˛; ˇ; �e and U1; : : : ; Un are unknown parameters.

a. Let s2X denote the sample variance of X1; : : : ; Xn. Show that E.s2X/ D s2U C �2

where s2U is the sample variance of fUign1 .
For the remainder of this problem assume that s2U ! �2U as n ! 1 and that s2X
converges in probability to �2U C �2. (Note that even though fUign1 are parameters it
still makes sense to talk about their sample variance, and denoting the limit of s2U as
n ! 1 by �2U is simply a matter of convenience).

b. Show that the estimate of slope from the least squares regression of fYign1 on

fXign1 (call itbˇY jX ) is not consistent for ˇ as n ! 1. This shows that it is not
OK to simply ignore the measurement error in the predictor variable.

c. Now construct the full likelihood for ˛; ˇ; �2� ; U1; : : : ; Un and show that it has
no sensible maximum. Do this by showing that the full likelihood diverges to 1
whenUi D .Yi�˛/=ˇ for all i and �2� ! 0. This is another well-known example
of the failure of maximum likelihood to produce meaningful estimates.

d. Consider the simple estimator (of ˇ)

bˇMOM D s2X
s2X � �2

bˇY jX ;

and show that it is a consistent estimator of ˇ. This shows that consistent
estimators exist, and thus the problem with maximum likelihood is not intrinsic
to the model.

e. Assuming that all other parameters are known, show that Ti D Yiˇ=�
2
� CXi=�

2

is a sufficient statistic for Ui , i D 1; : : : ; n.
f. Find the conditional distribution of Yi j Ti and use it to construct a conditional

likelihood for ˛; ˇ and �2� in a manner similar to that for the logistic regression
measurement error model.

2.27. Suppose that Y1; : : : ; Ym are independent Bernoulli random variables with
P.Yi D 1/ D pi , where 0 < pi < 1 for all i D 1; : : : ; m. Let S D Y1 C � � � C Ym,
Y D .Y1; : : : ; Ym/

T , y D .y1; : : : ; ym/
T , 0m�1 D .0; : : : ; 0/T , �i D log.pi=.1 �

pi //, and � D .�1; : : : ; �m/
T . Let Um;s denote the collection of m 	 1 vectors u

whose elements are either 1 or 0 and sum to s.

a. Show that the conditional density of YjS ,

fYjS .yjs/ D P.Y1 D y1; : : : ; Ym D ymjS D s/;
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is given by

fYjS .yjs/ D
P

exp.�T u/I.y D u/
P

exp.�T u/
; 0 � s � mI

where the summations are over all u 2 Um;s and I is an indicator function.
b. Find the conditional distributions of Yi jS D s, for i D 1; : : : ; m, and s D
0; 1; : : : ; m.

2.28. Suppose that Yk;i is the i th Bernoulli observation from the kth stratum of a
stratified random sample, i D 1; : : : ; mk , k D 1; : : : ; n, and that

P.Yk;i D 1jXk;i / D F.˛k C ˇTXk;i /;

where Xk;i is a vector of explanatory variables associated with Yk;i , and F.�/ is the
logistic distribution function. Consider the case when the number of strata (n) is
large and the strata sample sizes (mk) are small. In this case ˇ is the parameter
of interest and ˛1; : : : ; ˛k are nuisance parameters. Explain why the conditional
likelihood of the data given the stratum totals, Sk D Yk;1 C � � � C Yk;mk , is free of
the nuisance parameters. In particular show that the contribution to the conditional
likelihood from the kth stratum is

L.ˇI YkjSk/ D exp.ˇT
Pmk

iD1 Xk;iYk;i /
P

exp.ˇT
Pmk

iD1 Xk;iui /
; 0 � Sk � mkI

where the summations are over all u 2 Umk;Sk and ui denotes the i th element of u.
(See Problem 2.27 for the definition of Umk;Sk .). Explain, in terms of the likelihood,
the phrase “there is no information in strata for which Sk D 0 or Sk D mk .”

2.29. In matched case-control studies the population of subjects is first stratified.
Then within each stratum the population is divided between cases (subjects with a
disease) and controls (disease-free subjects). A random sample of cases is obtained
and a random sample of controls is obtained. This problem addresses only the most
common situation in which one case is selected and multiple (mk � 1/ controls are
selected, so that the total sample size from the kth stratum is mk.

a. Argue that the sampling described above is probabilistically equivalent to the
situation in which: i) a random sample of size mk is chosen from the kth stratum
without regard to cases or controls; ii) the number of cases, Sk, is determined
and the sample is accepted if Sk D 1, otherwise it is rejected; iii) the process
is repeated until a sample is accepted, i.e., Sk D 1. The latter description of the
sampling makes clear that the distribution of responses, Yk;1; : : : ; Yk;mk in the
observed sample is a conditional distribution given Sk D 1.

b. For 1-to-.mk � 1/ matching it is common to assign the first index (i D 1) to
the case and the remaining indices to the controls so that Yk;1 D 1; Yk;2 D
� � � D Yk;mk D 0. Show that with this naming convention the contribution to the
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conditional likelihood of data from the kth stratum is

L.ˇI YkjSk D 1/ D exp.ˇTXk;1/
Pmk

iD1 exp.ˇTXk;i /
:

c. Show that for the case of 1-to-1 matching

L.ˇI YkjSk D 1/ D F
�

ˇT .Xk;1 � Xk;2/
	

;

where F.�/ is the logistic distribution function.

2.30. Instead of the logistic model for the probability of disease assume the more
general model,

P.Yk;i D 1jXk;i / D ˛kp.Xk;i ;ˇ/;

for a given function p.�; �/. Assuming that the probabilities of disease, ˛kp.Xk;i ;ˇ/

are small for all k and i (a reasonable assumption for rare diseases), use the
approximation log.x=.1�x//= log.x/ � 1 for x near 0, to show that an approximate
conditional likelihood for the case of 1-to-.mk � 1/ matching is

L.ˇI YkjSk D 1/ D p.Xk;1;ˇ/
Pmk

iD1 p.Xk;i ;ˇ/
;

where the case has index i D 1. Explain the role of the rare-disease assumption
in showing that the approximate likelihood does not depend on the nuisance
parameters.

2.31. This problem relates to Example 2.12 (p. 63). Figure 2.8 displays plots of
the exponential threshold model likelihood in Example 2.12 and the corresponding
2h-likelihoods for h D 0:1000; 0:0667; 0:0333; 0C. For clarity (and because scaling
does not matter), all of the likelihoods are scaled to a common supremum in the
plots.

a. The plots suggest that the 2h-likelihood MLEb�2h-MLE converges tob�MLE D Y.1/
as h ! 0. Prove that this is true in general by showing that b�2h-MLE D Y.1/ �
h for h sufficiently small for any random sample from the threshold model in
Example 2.12.

b. Explain the solitary point in the fourth panel of Figure 2.8 by calculating
limh!0 Lh.�jY / for the threshold model 2h-likelihood.

2.32. Derive the Fisher information matrix for the Poisson() distribution (actually
just an information number here).

2.33. Derive the Fisher information matrix for the multinomial.nIp) distribution.
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Fig. 2.8 Likelihood (thin line) and 2h-likelihoods (thick line) for h D 0:1000; 0:0667; 0:0333; 0C

for the sample of size n D 5 from Example 2.12. The likelihoods are scaled so that their
supremums are all equal

2.34 (Continuation of Problem 2.2, p. 107).

a. Find an estimate of the asymptotic covariance of .b�;b�/. Here it helps to know
that the Fisher information matrix has elements I.�; �/11 D 1=�2, I.�; �/12 D
�:423=�2, and I.�; �/22 D 1:824=�2.

b. Estimate the median of the distribution of the largest flow rate in 100 years:

bQ D b�Œ� log.� log.:993//�Cb�:

c. Find an estimate of the variance of bQ.

2.35. Derive the Fisher information matrix I.�/ for the reparameterized ZIP model

P.Y D 0/ D �

P.Y D y/ D
�

1� �

1 � e�

�

ye�

yŠ
y D 1; 2; : : :

The (2,2) element of I.�/ is

.1 � �/
 

1

.1 � e�/
� e�
�

1 � e�	2

!

:
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2.36. A “multiplicative” form of the ZIP model is

P.Y D 0/ D !e�;

P.Y D y/ D a!;
e�y

yŠ
y D 1; 2; : : : :

a. Show that a!; D �

1 � !e�	 =
�

1 � e�	.
b. Find the element of I.�/ that corresponds to !.

2.37. Suppose that Y1; : : : ; Yn are iid from the one parameter exponential family

f .yI �/ D exp fyg.�/ � b.�/C c.y/g :

a. For g.�/ D � , find I.Y; �/ (sample version) and explain why it is the same as
I.�/ (Fisher information).

b. Now for general differentiable g.�/, find I.�/.

2.38. In the Hardy-Weinberg example, Example 2.2 (p. 33), we have a multinomial
problem with k D 3 and the probabilities modeled in terms of pA. Find IT.pA/ in
three ways:

a. Calculate IT.pA/ directly from the probability mass function.
b. Use the transformation method with IT.p/ from the original multinomial

parameterization.
c. Find the variance ofbpA;MLE D .2NAACNAa/=.2n/ directly from the covariance

of the multinomial and take the reciprocal. (Actually, the general method is to
take the inverse of the asymptotic variance, but here the variance and asymptotic
variance are the same.)

2.39. Recall the Type II censoring in Problem 2.12 where the likelihood is a func-
tion of the order statistics. Here it is not as easy to think of the information matrix for
a single observation. So for the exponential density f .yI �/ D ��1e�y=� I.y > 0/,
compute the average information by taking the expectation of the negative of the
second derivative of the log likelihood function (at the true parameter value) divided
by n. It helps to know that the i th order statistic from an exponential has expectation
�
Pi

jD1.n � j C 1/�1.

2.40. a. Ralph decides to start n light bulbs at t D 0. At t D c1 hours, he checks
and finds r1 have failed. Then he comes back at t D c2 hours and finds that
r2 more have failed. He ends the experiment with n � r1 � r2 light bulbs still
working. If the lifetime distribution of the light bulbs has density f .yI�/ and
distribution function F.yI�/, write down the likelihood function of the observed
data .r1; r2/. (Hint: think “multinomial.”)
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b. Jordan is a bit more industrious than Ralph. He reruns the experiment and
observes failures Yr1C1; : : : ; Yr1Cr2 , and stops the experiment at t D c2 with
n � r1 � r2 light bulbs still working. Write down the likelihood for this case.
(Note: he decided to stop at t D c2 before observing the outcomes. So it is
a fixed censoring time. The numbers r1 and r2 would vary from experiment to
experiment.)

c. Sampson is even more industrious. He starts n light bulbs at t D 0, observes
Y1; : : : ; Yr1Cr2 , and stops the experiment at t D c2 with n � r1 � r2 light bulbs
still working. Write down the likelihood for this case.

d. A section head decides to evaluate the three workers’ performances. She has
cost figures for light bulbs and hourly rates for the workers’ time. But she is
not sure how to deal with the results of the experiment. A statistician friend has
told her that she can actually make the comparisons before the experiments are
even run if she is willing to make some guesses about parameter values. What
statistical calculations should she make to complete a cost-efficiency analysis of
the three experiments? What guesses would be required? If she waits until after
the experiments are completed, what alternative calculations could she make that
would be easier and not require guesses?

2.41. Use simulation to verify that the information matrix for Example 2.21 (p. 78)
is correct when � D 1 and � D 1. One approach is to generate samples of size n D
100 (or larger) from a normal(1,1) distribution and exponentiate to get lognormal
data. Then form the log likelihood and use a numerical derivative routine to find the
second derivative matrix for each sample. Then average over 1000 replications and
compare to the given information matrix.

2.42. Use simulation to verify that the inverse information matrix for Example 2.21
(p. 78) is correct when � D 1 and � D 1. One approach is to generate samples
of size n D 100 (or larger) from a normal(1,1) distribution and exponentiate to get
lognormal data. Then form the log likelihood and find the estimates for .�; �2; /.
Repeat for 1000 replications giving a data matrix of size 1000 by 3 of estimates.
Compute the sample covariance matrix of these and compare it to the inverse of the
given information matrix.

2.43. For the generalized linear model with link function g, not necessarily the
canonical link, write down the likelihood function and show how to obtain the
likelihood score equation,

S.ˇ; �/ D
n
X

iD1
D i

.Yi � �i/

Var.Yi /
D 0;

where Di D Di .ˇ/ D @�i .ˇ/=@ˇ
T . (In the above expression we have suppressed

the dependence ofDi and �i on ˇ.) The key idea used is the chain rule and the fact
that the derivative of �i D b0�1.�i / with respect to �i is 1=b00.�i /.
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2.44. Continuing the last problem, show that the Fisher information matrix for the
ˇ part of the generalized linear model is given by

I.ˇ/ D 1

n

n
X

iD1

DiD
T
i

Var.Yi /
:

Here you can use either of two methods: a) take the expectation of the negative of
the derivative of S.ˇ; �/, and noting that all the ugly derivatives drop out because
E.Yi ��i/ D 0; or b) the individual summed components of I.ˇ/ can also be found
using the cross-product definition of information in (2.39, p. 67).

2.45. Suppose that X1 and X2 are independent and continuous random variables
with densities f1 and f2, respectively. Z is a Bernoulli.p/ random variable and
independent of X1 and X2. Define Y by Y D ZX1 C .1 �Z/X2.
a. Use the 2h method to show that the joint density of .Y;Z/ is given by

fY;Z.y; z/ D Œpf1.y/�
z Œ.1 � p/f2.y/�1�z :

b. Use the 2h method to show that

P.Z D 1jY D y/ D pf1.y/

pf1.y/C .1 � p/f2.y/ :

2.46. For the mixture of two normals problem that was used to illustrate the EM
Algorithm in Section 2.6.3a (p. 84), find the updating formulas for the standard
deviations �1 and �2.

2.47. A mixture of three component densities has the form

f .yI�;p/ D p1f1.yI�/C p2f2.yI�/C p3f3.yI�/;

where p1 C p2 C p3 D 1. We observe an iid sample Y1; : : : ; Yn from f .yI� ;p/.
a. Show how to define multinomial(1Ip1; p2; p3/ vectors .Zi1; Zi2; Zi3/ to get a

representation for the Yi from f .yI� ;p/ based on independent random variables
.Xi1; Xi2; Xi3/ from the individual components.

b. Give the complete data log likelihood and the functionQ to be maximized at the
M step.

2.48. Suppose that the data Y1; : : : ; Yn are assumed to come from a mixture of two
binomial distributions. Thus

f .yIp; �1; �2/ D p

 

n

y

!

�
y
1 .1 � �1/

n�y C .1 � p/
 

n

y

!

�
y
2 .1 � �2/

n�y:

Find Q.p; �1; �2; p�; ��1 ; �
�
2 / and the updating formulas.
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2.49. Recall that the ZIP model is just a mixture of densities f .yI; p/ D pf1.y/C
.1 � p/f2.yI/, where

f1.y/ D I.y D 0/ f2.yI/ D ye�

yŠ
; y D 0; 1; 2; : : :

Lambert (1992) used it to model product defects as a function of covariates. In the
“perfect” state, no defects occur (P.Yi D 0/ D 0), whereas in the “imperfect”
state, the number of defects Yi follows a Poisson() distribution. The author used
the EM Algorithm as follows (except we won’t do the more complicated modeling
with covariates.) Let Zi D 1 if the product is in the perfect state and Zi D 0 for
the imperfect state. Recall that the contribution to the complete data likelihood for
a pair .Yi ; Zi / is Œpf1.Yi /�

Zi Œ.1 � p/f2.Yi I/�1�Zi (and here note that the first part
reduces to pZi because f1 is a point mass at 0).

a. E step. Write down the complete data log likelihood and find Q.; p; �; p�/ in
terms of w�i D E.Zi jYi ; �; p�/. (You do not need to give an expression for w�i .)

b. M step. Find expressions for �C1 and p�C1 by maximizingQ from the E step.

2.50. The results of an experiment, Y1; : : : ; Yn iid Poisson(), were written on slips
of paper. Thus, the density of Yi is

f .yI/ D ye�

yŠ
y D 0; 1; : : :

Unfortunately, n � q of the slips were lost by accident, completely at random. For
notational purposes, suppose that we observe only Y1; : : : ; Yq .

a. Decide on the vectorZ that we would use for the EM Algorithm and write down
the complete data log likelihood.

b. Now find the equation giving �C1 in terms of � .
c. Using b., find an explicit representation of the maximum likelihood estimator.

2.51. The lab book containing a student’s data had smudges so that for some of the
data, the student could not tell whether the data value had a minus sign in front of it.
The student’s original plan was to assume that the data Y1; : : : ; Yn were iid N.�; �2/.
Now, she only has q of these Y values; for convenience label them Y1; : : : ; Yq
although the “smudging” was completely at random. For the smudged values, she
only observes jYqC1j; : : : ; jYnj. Note that one way to represent Yi is Œ2I.Yi > 0/�1�
times jYi j since the sign of Yi is given by Œ2I.Yi > 0/ � 1�. Also, for the first
parts below, assume that you know the function wi .�; �/ D E fI.Yi > 0/ j jYi jg D
P.Yi > 0 j jYi j/.
a. Give the likelihood function of the observed data Y1; : : : ; Yq; jYqC1j; : : : ; jYnj.
b. For an EM Algorithm approach, suggest some missing data Z , and give the

complete data log likelihood function.
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c. Now take conditional expectations and find the Q function that should be
maximized at the M step.

d. Using the Q function from c), find the update formula for �.
e. Find wi .�; �/ D P.Yi > 0 j jYi j/.
2.52. For an exponential random variable X with density

f .xI �/ D 1

�
e�x=� x > 0;

derive the conditional expectation of X given that X > r for r > 0.

2.53. Write down the complete data likelihood for the situation of Example 2.6.3b
(p. 87) when we assume that the censoring times R1; : : : ; Rn are iid with density g
and distribution FunctionG. In this case, we let Z consist of the censoredX values
plus the unobservedR values, R1; : : : ; Rnu after relabeling. Now, the complete data
are fXi;Ri gniD1. Explain why the same EM iteration results in this random censoring
version of Example 2.6.3b.

2.54. Y1; : : : ; Yn are iid continuous random variables with density f .yI�/, but they
have been grouped into the k intervals Œa0; a1/; Œa1; a2/; : : : ; Œak�1; ak/, and we only
record the number of Yi in each interval:N1;N2; : : : ; Nk, respectively.

a. Write down the likelihood for the observed data.
b. For the EM Algorithm, use Y1; : : : ; Yn as the complete data and write down the

complete data log likelihood.
c. Find the density of Y1 given Y1 2 Œai�1; ai /.
2.55. Suppose that Y1; : : : ; Yn are iid with density f .yI�/, but we only observe the
values of the Yi ’s that are greater than some known constant c. Let’s say there are
nL values below c (whose actual values we do not know) and label the data above
c (for which we know the values) YnLC1; : : : ; Yn. For the EM Algorithm, find the
functionQ to be maximized at the M step. Express any conditional expectations as
integrals.

2.56. Suppose that we have a one-way random effects model:

Yij D �C ˛i C eij ; i D 1; : : : ; kI j D 1; : : : ; ni ;

where ˛1; : : : ; ˛k are iid N.0; �2˛/ and independent of the errors eij which are all
iid N.0; �2e /. Set this up as an EM Algorithm, first writing down the complete
data log likelihood in terms of the observed Yij and the unobserved ˛i , and then
deriving the form of the “Q” function to maximize. Do not evaluate any conditional
expectations; just leave them as conditional expectations but be clear about what is
being conditioned on, and ignore the M step.

2.57. Consider a situation where the complete data likelihood is from a canonical
exponential family of the form
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L.� jx/ D h.x/ exp

(

s
X

iD1
�iTi .x/ �A.�/

)

;

where XT D .Y T ;ZT /. Show that the M step of the EM Algorithm reduces to
solving

E�D�.k/ ŒT .X/jY � D E�T .X/:

The following questions are related to Appendix A starting on p. 90.

2.58. If Y1; : : : ; Yn are iid from a normal(�; �2/ distribution, then the log
likelihood is

`n.�; �/ D �n
2

log.2�/� n log � � 1

2

n
X

iD1

�

Yi � �
�

�2

:

Show that `n.�; �/ tends to �1 (and is therefore constant on the boundary) as (i)
� ! 0 and 1 for � fixed, (ii) � ! ˙1 for fixed � , (iii) both parameters are
heading towards their extremes.

2.59. Suppose that Y1; : : : ; Yn are iid from the truncated (at 0) normal location
model. Truncated distributions are different from censored data because for trun-
cated distributions we do not even know about observations below the truncation
point (0 in this case). Thus the density is the same as usual but truncated and
renormalized to have integral equal to one. In our case the density is f .yI�/ D
�.y � �/I.y � 0/=.1 � ˚.��//, where � and ˚ are the density and distribution
function of a standard normal random variable, respectively. Show or tell why the
maximum likelihood estimator of � must be unique if it exists. (Hint: exponential
family.)

2.60. Suppose that Y1; : : : ; Yn are iid from the location-scale family f .yI�; �/ D
��1f0..y � �/=�/. Lehmann (1983, p. 437) says that two different authors have
shown in unpublished papers that the MLEs of (�; �) are unique if i) f0.x/ is
positive and twice differentiable for all x 2 .�1;1/ and ii) f0 is “strongly
unimodal,” which means that logf0.x/ is concave on .�1;1/. Let’s try to prove
this result using Theorem 2.1. First define

 0.x/ D � d

dx
logf0.x/ D �f

0
0 .x/

f0.x/
:

Condition ii) above is just  0
0.x/ > 0 for all x. Next, note that the MLEs b� and b�

must satisfy

n
X

iD1
 0

�

Yi �b�
b�

�

D 0 and
n
X

iD1

��

Yi �b�
b�

�

 0

�

Yi �b�
b�

�

� 1

�

D 0:
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Now complete the following steps:

Step 1. Verify that

� @2

@�@�T
logf .yI�; �/ D 1

�2

�

 0
0.x/  0.x/Cx 0

0.x/

 0.x/Cx 0
0.x/ 2x 0.x/Cx2 0

0.x/ � 1

�

;

where x D .y � �/=� .
Step 2. Now replace the above matrix by �.@2=@�@�T /`.b�;b�/, being sure to take

advantage of the fact that certain sums are 0 from the likelihood equations.
Verify that this matrix is positive definite. It helps to remember the Cauchy-
Schwarz inequality for sums,

�
X

si ti

�2 �
�
X

s2i

� �
X

t2i

�

;

and this additional hint:

h
X

˚

Xi 
0
0.Xi/




i2 D
�

X

�

Xi

q

 0
0.Xi/

q

 0
0.Xi/

��2

:

Step 3. Now let (�; �) go to the boundaries of the parameter space, and show
that ln.�; �/ always goes to �1. You may assume that xf0.x/ ! 0 as
x ! ˙1 (follows because log f0.x/ being concave implies that f0.x/ is
bounded by c exp.�x/ for some constant c).

2.61. Suppose that Y1; : : : ; Yn are iid from the extreme value location-scale family
f .yI�; �/ D ��1f0..y � �/=�/, where f0.x/ D e�x exp.�e�x/;�1 < x < 1.
Verify that f0 satisfies the conditions for the maximum likelihood estimators to be
unique (see the previous problem).



Chapter 3
Likelihood-Based Tests and Confidence Regions

There are three asymptotically equivalent testing methods based on the likelihood
function: Wald tests, likelihood ratio tests, and score tests also known as Lagrange
multiplier tests in the econometrics literature. In this chapter we present increasingly
more general versions of the three test statistics culminating in the most general
forms given in (3.7)–(3.13) starting on p. 136. Under appropriate null hypotheses
and regularity conditions, each of these statistics is asymptotically chi-squared
distributed. In addition, under “local” alternatives converging to the null hypothesis,
they have identical asymptotic noncentral chi-squared distributions. The asymptotic
local power results also show that the tests are the best possible asymptotically.

We start with the simplest case of iid data with one unknown real parameter.
Then for testing H0 W � D �0 versusHa W � ¤ �0, the three test statistics are:

• Wald —

TW D .b�MLE � �0/
2

n

IT.b�MLE/
o�1 I

• Likelihood ratio —

TLR D �2
n

`.�0/� `.b�MLE/
o

;

• Score —

TS D S.�0/
2

IT.�0/
:

In these definitions, `.�/, S.�/ and IT.�/ are the scalar-parameter versions of the
log likelihood and likelihood score functions, and total information matrix (number)
appearing in Table 2.1 (p. 69). The asymptotic equivalence of the test statistics
results from the close relationships among them. These are easiest to see in the
case of a scalar parameter. Relationships among the three test statistics and their
relationship to the log likelihood function `.�/ are depicted in Figure 3.1 for the case

D.D. Boos and L.A. Stefanski, Essential Statistical Inference: Theory and Methods,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-4818-1 3,
© Springer Science+Business Media New York 2013
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θ0θMLE

Parameter θ

Δ1

Δ2

β

Log likelihood

(θMLE)

(θ0) (θ0 (θ0))

Fig. 3.1 Graphical representation of the relationships between Wald, Score and Likelihood Ratio
test statistics. The Likelihood Ratio test statistic is a multiple of the difference, 	1; the Wald test
statistic is a multiple of the squared difference, 	2

2; and the Score test statistic is a multiple of the
squared slope, ˇ2

of a scalar parameter and simple null hypothesis. Visualizing a dynamic graph as
�0 moves left (right) of its depicted position reveals how all three statistics decrease
(increase) in unison in this quadratic likelihood illustration.

The Likelihood Ratio test statistic is a multiple of the difference, 	1, between
the log likelihood evaluated at b�MLE and �0. The Wald test statistic is a multiple
of the squared difference, 	2

2, between b�MLE and �0. The Score test statistic is a
multiple of the squared slope, ˇ2 .D S.�0/

2/, of the line tangent to the log likelihood
at �0. The multipliers are all different, but are all such that the statistics have equal
asymptotic expectations .D 1/. Note that the three quantities 	1, j	2j and jˇj vary
together as the location of the point .�0; `.�0// on the parabola changes relative to
the point .b�MLE; `.b�MLE//.

Wald (1943) is usually credited with the formal derivation of TW in the general
multiparameter case and proof of its asymptotic distribution; hence the name



3 Likelihood-Based Tests and Confidence Regions 127

Wald test. Of course, dividing a parameter estimate by a standard error certainly did
not begin with Wald (1943). For example, the one-sample t statistic was studied by
Gossett (“Student,” 1908). The likelihood ratio approach to testing was introduced
by Neyman and Pearson (1928, 1933). Wilks (1938) gave the first proof of the
asymptotic null distribution. The score statistic and its asymptotic properties were
introduced by Rao (1948). A parallel development of the score approach was begun
by Aitchison and Silvey (1958) under the name Lagrange multiplier statistic still
used in the econometrics literature.

Even though these three test statistics are asymptotically equivalent, there are
often good reasons to prefer one in certain situations. The Wald statistic is by far the
simplest and is available in most standard computing packages. However, it is not
invariant to reparameterization, whereas the likelihood ratio and score statistics are.
Thus, for example, the Wald test about a scale parameter � depends on whether
the null hypothesis is expressed as H0 W � D �0 or H0 W �2 D �20 . From a
computing standpoint, the likelihood ratio is often more difficult to compute than the
Wald or score statistic because it requiresb�MLE under both the null and alternative
hypotheses. In contrast, the Wald statistic only requiresb�MLE under the alternative
hypothesis, and the score statistic only requires b�MLE under the null hypothesis.
However, for testing a sequence of nested models, likelihood ratio statistics are
convenient assuming that all of the log likelihoods for the different models have
been computed. For example, consider a parameter � with five components and
the sequence of possible models and log likelihoods where e� i;MLE denotes the

H1 W �1 D �2 D �3 D �4 D �5 D 0 `.e�1;MLE/

H2 W �2 D �3 D �4 D �5 D 0 `.e�2;MLE/

H3 W �3 D �4 D �5 D 0 `.e�3;MLE/

H4 W �4 D �5 D 0 `.e�4;MLE/

H5 W �5 D 0 `.e�5;MLE/

maximum likelihood estimator under the i th hypothesis. There are
�

5
2

	 D 10

possible tests, such as H2 versus H4 � H2, and all ten Likelihood Ratio test
statistics can be obtained simply by subtraction. For example, the statistic for H2

versus H4 � H2 is TLR D �2 ˚`.e�2;MLE/ � `.e�4;MLE/



. Generally speaking, the
Wald statistic with chi-squared critical values does not have as good Type I error
probabilities as the likelihood ratio and score statistics in finite samples. From
a robustness standpoint, the Wald and score tests are easiest to adjust when the
likelihoods are possibly misspecified.

Next we introduce the test statistics in the case of a simple null hypothesis
(� completely specified) and then proceed to the more interesting composite null
hypothesis where � is only partially specified underH0.
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3.1 Simple Null Hypotheses

We now consider the simple null hypothesis H0 W � D �0 versus Ha W � ¤ �0,
where � is b 	 1 and the data Y1; : : : ; Yn are iid from f .yI�/. The three statistics
are defined in terms of `.�/, S .�/ and IT.�/ defined in Table 2.1 (p. 69). The
asymptotic distribution results for the three statistics stated below hold under
suitable regularity conditions. To distinguish it from our notations for information
matrices, the identity matrix is denoted by I in the following.

• The Wald statistic is

TW D .b�MLE � �0/T
n

IT.b�MLE/
o

.b�MLE � �0/:

b�MLE is AN.�; fIT.�/g�1/ or equivalently, fIT.�/g�1=2.b�MLE��/ d�! N.0; Ib/

where Ib is the b-dimensional identity matrix. It follows that TW
d�! �2b as

n ! 1 under H0 provided IT.b�MLE/fIT.�0/g�1 converges in probability to
Ib as n ! 1 under H0. In fact, IT.b�MLE/ can be replaced by IT.�0/ or by
the sample information matrix IT.Y ;b�MLE/ in the definition of TW and the
asymptotic distribution of the resulting statistic is unchanged. However, if any
of these matrices are singular, then some care must be used; see Moore (1977),
Andrews (1987), and Hadi and Wells (1990).

• The score test statistic is

TS D S .�0/
T fIT.�0/g�1

S .�0/: (3.1)

Under H0, S .�0/ has mean 0, variance IT.�0/, and by The Central Limit
Theorem is AN.0; IT.�0//. Thus fIT.�0/g�1=2S .�0/ converges in distribution

to N.0; Ib/ underH0. It follows that TS
d�! �2b as n ! 1 underH0.

• The likelihood ratio statistic is

TLR D �2 log

�

sup�2H0 L.� jY /
sup�2� L.� jY /

�

D �2
n

`.�0/ � `.b�MLE/
o

;

where � is the parameter space and sup = least upper bound plays the role
of “maximum” in cases where the maximum is not attained. The limiting
distribution of TLR is not as obvious as it is for TW and TS. However, using a
two-term Taylor series expansion, one can show that under H0, TLR D TW C ın

where ın
p�! 0 as n ! 1. Thus, the convergence of the Wald statistic and

Slutsky’s Theorem (p. 14) imply that TLR
d�! �2b as n ! 1 underH0.

The two quadratic-form statistics, TW and TS, have an interesting “inverse”
relationship to one another in the sense that the components of the defining quadratic
forms are inversely related. b�MLE on the “wings” of TW is obtained by solving
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S .�/ D 0 (an “inverse” operation), whereasS .�0/ appears on the wings of TS. Also
the product of the middle matrix components, IT.b�MLE/ and fIT.�0/g�1, converge
to Ib and thus are asymptotically matrix inverses of one another.

Example 3.1 (Normal model with known variance). Suppose that Y1; : : : ; Yn are
iid N(�; 1) and H0 W � D �0. Then

`.�/ D logL.� jY / D �n
2

log.2�/� 1

2

n
X

iD1
.Yi � �/2;

S.�/ D @

@�
`.�/ D

n
X

iD1
.Yi � �/;

and

IT.Y ; �/ D � @

@�
S.�/ D n;

so that b�MLE D Y and IT.�/ D E fIT.Y ; �/g D n. It follows that

TW D .Y � �0/.n/.Y � �0/ D n.Y � �0/
2;

TS D
n
X

iD1
.Yi � �0/.n

�1/
n
X

iD1
.Yi � �0/ D n.Y � �0/2;

and

TLR D �2
(

�1
2

n
X

iD1
.Yi � �0/2 C 1

2

n
X

iD1
.Yi � Y /2

)

D n.Y � �0/
2;

are identical for this model. �

Example 3.2 (Bernoulli data). Suppose that Y1; : : : ; Yn are iid from a Bernoulli
distribution with parameter p andH0 W p D p0. With X D Pn

iD1 Yi ,

`.p/ D logL.p jY / D X logp C .n �X/ log.1 � p/;

S.p/ D @

@p
`.p/ D X

p
� n� X

1 � p D X � np

p.1 � p/ ;

and

IT.Y ; p/ D � @

@p
S.p/ D X

p2
C n � X

.1 � p/2
:
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Thus bpMLE D bp D X=n and IT.p/ D E fIT.Y ; p/g D n=p.1 � p/: The test
statistics are

TW D .bp � p0/
�

n

bp.1 �bp/
�

.bp � p0/ D n .bp � p0/
2

bp.1�bp/ ;

TS D
�

X � np0

p0.1 � p0/
� �

n

p0.1 � p0/
��1 �

X � np0

p0.1 � p0/

�

D n .bp � p0/2
p0.1 � p0/ ;

TLR D �2 ŒX log.p0=bp/C .n �X/ log f.1 � p0/=.1 �bp/g� :

TLR is not so familiar, but TW and TS are seen in introductory statistics texts and
differ only in whether n .bp � p0/

2 is standardized bybp.1�bp/ (Wald) or by p0.1�
p0/ (score). Problem 3.12 relates to the asymptotic equivalence of TW, TS and TLR

for this example. �

3.2 Composite Null Hypotheses

Only rarely are we interested in simple null hypotheses where the entire parameter
vector � is specified in the null hypothesis. More often interest lies in only certain
components of the parameter vector or in constraints on the components. Thus, we
now study test statistics appropriate for when the null hypothesis is specified as
either H0 W �1 D �10 where �T D .�T1 ;�

T
2 /, or as H0 W h.�/ D 0, for some

function h. For the former we assume that � is partitioned as

�
b�1 D

0

B

B

@

�1
r�1

�2
.b�r/�1

1

C

C

A

: (3.2)

As in the simple null hypothesis the asymptotic distribution results for the six
statistics stated below hold under suitable regularity conditions.

3.2.1 Wald Statistic – Partitioned �

Consider (3.2) and testing H0 W �1 D �10 versus Ha W �1 ¤ �10, where
no restrictions are made on �2. H0 is a composite null hypothesis, and �2 is a
nuisance parameter. For notational simplicity we leave off the subscript MLE and
letbIT D IT.b�/.
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Partition the information matrix as

bIT D
 

bIT;11 bIT;12

bIT;21 bIT;22

!

;

and denote the upper (1,1) element of its inverse by

bI11T D
�

bIT;11 �bIT;12bI
�1
T;22
bIT;21

��1
:

The Wald test statistic is

TW D .b�1 � �10/T
n

bI11T

o�1
.b�1 � �10/

D .b�1 � �10/T
�

bIT;11 �bIT;12bI
�1
T;22
bIT;21

�

.b�1 � �10/: (3.3)

Similar to the simple null hypothesis case, TW
d�! �2r as n ! 1 under H0, where

the degrees of freedom r corresponds to the number of restrictions underH0.

3.2.2 Score Statistic – Partitioned �

The score statistic TS for a composite null hypothesis requires the maximum
likelihood estimator of � under the null hypothesisH0 W �1 D �10. We denote this
restricted MLE by e� D .e�1;e�2/, where e�1 D �10, and e�2 maximizes `.�10;�2/
with respect to �2. Under the regularity conditions assumed throughout this section,
e� satisfies S 2.e�/ D 0 where S 2.�/ is from the partitioned score function

S .�/ D
0

@

S 1.�/

S 2.�/

1

A D

0

B

B

B

B

@

�

@

@�1
`.�/

�T

�

@

@�2
`.�/

�T

1

C

C

C

C

A

:

LeteIT D IT.e�/. The score test statistic

TS D S .e�/TeI �1
T S .e�/; (3.4)

was introduced by Rao (1948) who showed that TS
d�! �2r as n ! 1 under H0.

BecauseeIT is not an estimator of the asymptotic variance of S .e�/, the asymptotic
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distribution result is not as obvious as it is for the simple-null score statistic in (3.1).
However, because S 2.e�/ D 0, (3.4) is equivalent to

TS D �

S 1.e�/
T ; 0

	

�

eIT;11 eIT;12
eIT;21 eIT;22

��1 �
S 1.e�/

0

�

D S 1.e�/
T
�

eIT;11 �eIT;12eI
�1
T;22
eIT;21

	�1
S 1.e�/: (3.5)

Comparing (3.5) to (3.3) shows that the composite-null TW and TS share a similar
inverse relationship as was pointed out in the simple null hypothesis case (p. 129).
Furthermore, it can be shown that .eIT;11 � eIT;12eI

�1
T;22
eIT;21/ is an estimator of the

asymptotic variance of S 1.e�/ (see 6.17, p. 288) and thus (3.5) is a natural and
intuitive starting point for proving the asymptotic �2r distribution of TS.

3.2.3 Likelihood Ratio Statistic – Partitioned �

The likelihood ratio statistic for a composite null hypothesis is

TLR D �2 log

�

sup�2H0 L.� jY /
sup�2� L.� jY /

�

D �2
n

`.e� jY /� `.b� jY /
o

: (3.6)

As in the simple null case, showing that TLR
d�! �2r as n ! 1 under H0 entails

using a two-term Taylor series approximation showing that TLR D TW C ın where
ın is asymptotically negligible.

3.2.4 Normal Location-Scale Model

Suppose that Y1; : : : ; Yn are iid N.�; �2/. The log likelihood is

`.�; �/ D logL.�; � jY / D c � n log � � 1

2�2

n
X

iD1
.Yi � �/2;

and the score function components are

S1.�; �/ D @

@�
`.�; �/ D 1

�2

n
X

iD1
.Yi � �/;

S2.�; �/ D @

@�
`.�; �/ D 1

�3

n
X

iD1

˚

.Yi � �/2 � �2
 :
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Of course, solving Sj .�; �/ D 0; j D 1; 2 results in b� D Y and b�2 D s2n D
n�1Pn

iD1.Yi � Y /2. The information matrix isbIT.�; �/ D diag.n=�2; 2n=�2/.
Consider the composite null hypothesis H0 W � D �0 with � unrestricted. The

Wald statistic is

TW D �

Y � �0
	T
�

n

s2n

�

�

Y � �0
	 D n

�

Y � �0
	2

s2n
D
� n

n � 1
�

t2;

where t2 is the square of the usual Student-t statistic. For TS and TLR, e� D �0 and
e� solves

S2.e�; �/ D 1

�3

n
X

iD1

˚

.Yi � �0/
2 � �2
 D 0;

so that

e�2 D 1

n

n
X

iD1
.Yi � �0/

2 D s2n C �

Y � �0
	2
;

resulting in

TS D
(

1

e�2

n
X

iD1
.Yi � �0/

)

�

e�2

n

�

(

1

e�2

n
X

iD1
.Yi � �0/

)

D n
�

Y � �0
	2

e�2
D n

�

Y � �0
	2

s2n C �

Y � �0
	2

D nTW

nC TW
;

and

TLR D n log

(

1C
�

Y � �0
	2

s2n

#

D n log

�

1C TW

n

�

:

Using the inequalities

x

1C x
� log.1C x/ � x; x > �1;

(which are strict for x ¤ 0) with x D TW=n, shows that TS < TLR < TW: In a more
general result for the normal linear model, Berndt and Savin (1977) proved that
TS � TLR � TW for testing regression parameters. Of course from an exact testing
standpoint TS, TLR, TW are all equivalent to using t2. However, it is instructive to
consider the true Type I error probabilities when the asymptotic �21 critical values
are used as this analysis sheds light on the relative performance of TW, TS and TLR

when exact distributions are not available.
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For TW

P
˚

TW � �21.1 � ˛/

 D P

n� n

n � 1

�

t2 � �21.1 � ˛/
o

D P

�

F1;n�1 �
�

n � 1
n

�

�21.1� ˛/

�

;

where �21.1�˛/ is the upper 1�˛ quantile of the �21 distribution and F1;n�1 denotes
an F random variable with 1 and n � 1 degrees of freedom. For the score statistic

P
˚

TS � �21.1 � ˛/

 D P

�

F1;n�1 �
�

n � 1
n � �21.1 � ˛/

�

�21.1 � ˛/

�

;

whereas for TLR

P
˚

TLR � �21.1 � ˛/

 D P

˚

F1;n�1 � .n � 1/


expf�21.1� ˛/=ng � 1
�


:

The table below displays the exact finite-sample sizes of the TW, TS and TLR tests
obtained using the formulas above, for ˛ D :05 and n D 10; 20. The Wald test

Finite-Sample Sizes for Testing �
at Asymptotic Nominal Size D :05

TW TS TLR

n D 10 .096 .042 .070
n D 20 .071 .047 .059

sizes, :096 and :071, illustrate the often liberal tendency of TW. The score test is
slightly conservative having sizes :042 and :047, whereas the likelihood ratio test
with sizes :070 and :059. is liberal although not to the extent of the Wald test. For
all three tests the improvement in size as n increases from 10 to 20 illustrates the
rate of convergence to the asymptotic chi-squared distribution.

If the exact finite-sample first moment of TW or TLR can be determined, then these
statistics can be adjusted to have the same mean as the asymptotic �21 distribution
resulting in what is known as a “Bartlett’s correction.” The correction generally
improves the chi-squared approximation. Applying Bartlett’s correction to TW the
Type I error probabilities above improve to .053 and .052, compared to .096
and .071, respectively. Similar improvements are available for TLR. Discussions
of Bartlett’s corrections are found in Lawley (1956), Barndorff-Nielsen and Cox
(1979), and Reid (1988).
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3.2.5 Wald, Score, and Likelihood Ratio Tests –H0 W h.�/ D 0

In many situations, it is not convenient to use the partitioned-vector approach to
testing. For example, consider bivariate normal data where �1 and �2 are the
mean parameters, respectively, and H0 W �1 D �2 is of interest. Testing this null
hypothesis using the partitioned-vector approach requires reparameterization such
that �1 D �1 � �2 and �2 D �2.

We now consider testing null hypotheses specified as H0 W h.�/ D 0, where h.�/
is an r 	 1 vector function with r 	 b matrix of first partial derivatives H .�/ D
@h.�/=@� . For example, consider testing �1 D �2 with bivariate normal data. Set
� D .�1; �2; �1; �2; �/

T and h.�/ D �1 � �2. ThenH .�/ D .1;�1; 0; 0; 0/. Note
that the linear hypotheses KT ˇ D m common in linear models inference is of the
form h.�/ D 0 with h.ˇ/ D KT ˇ � m. Also the partitioned-vector hypothesis
H0 W �1 D �10 has the form h.�/ D 0 where h.�/ D �1 � �10. When testing
H0 W h.�/ D 0 we assume that r � b and thatH .�/ is full rank.

• The Wald statistic TW forH0 W h.�/ D 0 follows from the Delta Theorem (p. 14)
applied to h.b�/. Since b� is AN.�; IT.�/

�1/, the Delta Theorem implies that
h.b�/ is AN



h.�/;H .�/IT.�/
�1H .�/T

�

. Thus

TW D h.b�/T
h

H .b�/IT.b�/
�1H .b�/T

i�1
h.b�/:

This Wald statistic is intuitive and easily computed. However, it has a double non-
invariance: not only does TW vary with reparameterization, it also varies with the
choice of h. For example, H0 W �1 � �2 D 0 and H0 W �1=�2 � 1 D 0 result in
different Wald statistics (assuming that �2 is not zero). The lack of invariance is
illustrated in Section 3.2.8 (p. 139).

• The score test statistic given in (3.4, p. 131) is appropriate for testing H0 W
h.�/ D 0 provide that e� maximizes the likelihood subject to the constraint
h.�/ D 0. However, an alternative equivalent form is often used. Note that e�
maximizes the log likelihood subject to the constraint h.�/ D 0. Thuse� satisfies
S.e�/ � H .e�/Te
 D 0 and h.e�/ D 0, where e
 is a data-dependent vector of
Lagrange multipliers. SubstitutingH .e�/Te
 for S.e�/ in (3.4, p. 131), we obtain

TS D e
TH .e�/eI�1
T H .

e�/Te
:

This form motivates the name Lagrange Multiplier Test used in the econometrics
literature.

To simply illustrate, consider the situation where � D .�1; �2/
T and H0 W

�1 D �2. Here h.�1; �2/ D �1 � �2 leads to H .�1; �2/ D .1;�1/, and the
restricted maximum likelihood estimator e� is found by solving the augmented
set of equations

S1.�/ �  D 0

S2.�/C  D 0

�1 � �2 D 0;
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where  is a scalar. Of course,e� can also be found by substituting �1 D �2 D �

into the log likelihood and finding the maximum with respect to � . The latter
method does not use S1 and S2 directly, although the resulting test statistics are
identical.

• The likelihood ratio test statistic for testing H0 W h.�/ D 0 is identical to
that in (3.6, p. 132), when e� maximizes the likelihood subject to the constraint
h.�/ D 0., and there are no widely used alternative forms.

3.2.6 Summary of Wald, Score, and LR Test Statistics

We summarize the forms of the three test statistics here. Note that the formulas
below are appropriate for general data structure, assuming neither independence
nor identical distributions.

• For H0 W �1 D �10, the Wald statistic is

TW D .b�1 � �10/T
hn

IT.b�/
�1
o

11

i�1
.b�1 � �10/ (3.7)

D .b�1 � �10/T
�

bIT;11 �bIT;12bI
�1
T;22
bIT;21

�

.b�1 � �10/I (3.8)

whereas for H0 W h.�1/ D 0 withH .�/ D @h.�/=@� ,

TW D h.b�/T
n

H .b�/IT.b�/
�1H .b�/T

o�1
h.b�/: (3.9)

• The score statistic formula,

TS D S .e�/T
˚

IT.e�/

�1

S .e�/; (3.10)

is always correct where e� is the MLE under H0. However, for H0 W �1 D �10,
TS is equivalent to

TS D S 1.e�/
T
�

eIT;11 �eIT;12eI
�1
T;22
eIT;21

	�1
S 1.e�/; (3.11)

where eIT;ij denotes the ij th submatrix of IT.e�/. Also for H0 W h.�/ D 0, the
Lagrange Multiplier form of TS is

TS D e
TH.e�/
˚

IT.e�/

�1

H.e�/Te
; (3.12)

which is equivalent to (3.10) since S .e�/ D H.e�/Te
.
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• Finally, the likelihood ratio test statistic is always given by

TLR D �2
n

logL.e� j Y / � logL.b� j Y /
o

: (3.13)

3.2.7 Score Statistic for Multinomial Data

For a multinomial .nIp1; : : : ; pk/ vector .N1; : : : ; Nk/, the score statistic TS can
always be put in the form of the usual Pearson chi-squared goodness-of-fit statistic,
Pk

iD1.Oi � eEi/
2=eEi . This follows from the fact that the log likelihood is c �

Pk
iD1 Ni log.pi / and the score vector is

S .p/ D
�

N1

p1
� Nk

pk
; : : : ;

Nk�1
pk�1

� Nk

pk

�T

;

where pk D 1 � Pk�1
iD1 pi . Note that we use the full rank parameterization p D

.p1; : : : ; pk�1/T and thus S is a k � 1 dimensional vector. Use of pk in place of
1 � Pk�1

iD1 pi is for notational purposes only. From Example 2.14 (p. 70), we have
the k � 1 by k � 1 matrix IT.p/

�1 D fdiag.p/� ppT g=n, and thus

TS D S .ep/T fIT.ep/g�1
S .ep/

D
k
X

iD1

�

Ni

epi
� Nk

epk

�2
epi

n
�
(

k
X

iD1

�

Ni

epi
� Nk

epk

�

epi

n

) 2

D
k
X

iD1

�

Ni

epi
� Nk

epk
�
�

n � Nk

epk

�� 2
epi

n

D
k
X

iD1

.Ni � nepi /2
nepi

: (3.14)

In the second equality, the upper summation limit is set to k rather than k�1 because
the kth summands are identically 0. This allows us to invoke the variance equality
P

a2i pi � .
P

aipi /
2 D P

.ai �P

aj pj /
2pi to obtain the third equality.

The same argument applies to sets of independent multinomial vectors. Thus, for
all contingency tables the score statistic is the chi-squared goodness-of-fit statistic
whenever testing any null hypothesis against the alternative of a full unrestricted
model.

Example 3.3 (Testing for Hardy-Weinberg equilibrium). Recall from Exam-
ple 2.2 (p. 33) that the Hardy-Weinberg model of random mating has p1 D pAA D
p2A, p2 D pAa D 2pA.1 � pA/, and p3 D paa D .1 � pA/

2, where pA is the



138 3 Likelihood-Based Tests and Confidence Regions

Table 3.1 Data reproduced
from Table 2.6 of Agresti
(2002)

Victim’s Defendant’s Proportion Receiving
Race Race Death Penalty

White White 53/467 D 0.11
White Black 11/48 D 0.23
Black White 0/16 D 0
Black Black 4/143 D 0.03

Table 3.2 Results of fitting three models to the data in Table 3.1

Log Parameters Pearson Change
Model Likelihood Fit df Deviance TLR �2 D TS in TS

1 �211.99 2 2 5.39 5.81
2 �209.48 3 1 0.38 5.01 0.20 5.61
3 �209.29 4 0 0 0.38 0 0.20

population frequency of A alleles. For testing the validity of this model based on
multinomial k D 3 data, .NAA;NAa;Naa/, the restricted estimators are the indicated
functions ofepA D .2NAA CNAa/=.2n/, and from (3.14)

TS D
�

NAA � nep2A
	2

nepA
C fNAa � n2epA.1 �epA/g2

n2epA.1 �epA/ C
˚

Naa � n.1 �epA/2

2

n.1 �epA/2
: �

Example 3.4 (Death penalty sentencing and race). Table 2.6 of Agresti (2002)
presents results from Radelet and Pierce (1991) on the proportion of defendants
given the death penalty, indexed by the race of the victim and race of the defendant.
Agresti (2002) presents the data in two 2-by-2 tables, one for white victims and
one for black victims, and uses them to illustrate the dangers of Simpson’s paradox
when pooling two tables. Here we use the data, reproduced in Table 3.1, to illustrate
various test statistics. The proportion of defendants who received the death penalty
is higher for blacks than for whites, and more so when the victims are white.
In the following we give results for three models assuming independent binomial
variation in the four rows of Table 3.1. Model 1. The proportions are the same for
both defendant races controlling for victim’s races (the common odds ratio is 1).
Model 2. The common odds ratio for both tables is different from 1. Model 3. The
model with no restrictions (also known as the saturated model). These models were
fit using logistic regression. We could also fit an equivalent loglinear model based on
assuming a multinomial distribution with 8 cells; the only difference from the above
results would be that the log likelihoods would differ by a constant, and the number
of estimated parameters would be 5, 6, and 7 for Models 1, 2, and 3, respectively.

The deviance is obtained by taking twice the absolute difference between the log
likelihood for a given model and the log likelihood for the saturated model, i.e.,
for the three models in Table 3.2 the deviance in row j is �2f`.b�j / � `.b�3/g. The
deviance is a goodness-of-fit statistic similar to the Pearson �2.
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Comparing the deviance of 5.39 or TS D 5:81 to a �22 distribution suggests
that Model 1 is at best marginally adequate. Because focused alternatives typically
lead to more powerful tests than goodness-of-fit tests, we usually are interested in
differences of deviances, the column labeled TLR in the results table. For comparing
Model 1 to Model 2, TLR D 5:01 D �2.�211:99 C 209:29/ with p-value=.025
(based on a �21 distribution), supports the conclusion that the probability of receiving
the death penalty depends on defendant race.

The TLR D 0:38 D �2.�209:48C 209:29/ results for Model 2 versus Model 3
is clearly not significant, suggesting that the odds ratio in the white victim’s 2-by-2
table is similar to that in the black victim’s table.

The last column displays differences in the Pearson �2 values. Such differences
of TS values are not themselves score statistics, but can be used much like the
differences of deviances as long as the binomial sample sizes are reasonably large.
The general approach justifying use of these differences is explained in Lindsay and
Qu (2003) and discussed briefly in Section 8.3.4 (p. 356). The score statistic for
comparing Models 1 and 2 is 5.81, quite similar to the 5.01 and 5.61, but it cannot
be computed from the Pearson �2 statistics (and not to be confused with the 5.81 in
the first row above). �

3.2.8 Wald Test Lack of Invariance

We now illustrate the lack of invariance of Wald statistics to the choices of
parameterization and function h when the null hypothesis is specified as H0 W
h.�/ D 0.

In Examples 2.1 (p. 30) and 2.5 (p. 34) we discussed use of the chi-squared
goodness-of-fit statistic for revealing deficiencies in the Poisson model for the fetal
lamb data. We now use the ZIP model

P.Y1 D y/ D
(

p C .1 � p/f .0I/; y D 0;

.1 � p/f .yI/; y D 1; 2; : : : ;

for the same purpose by testing H0 W p D 0 (the Poisson model is adequate). First
we need the information matrix IT.p; / for the ZIP model. Routine (but tedious)
calculations yield

IT;11.p; / D n

(

1� e�

�.1 � p/

)

;

IT;12.p; / D �n
(

e�

�

)

;

IT;22.p; / D n

(

1 � p


� p.1 � p/e�

�

)

;
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where � D P.Yi D 0/ D p C .1 � p/e�. Then, substituting the ZIP model
estimatesbp D :577 andb D :847 to getbIT D IT.bp;b/, we obtain

TW D bp2.bI T;11 �bI 2T;12=
bI T;22/ D 71:73; (3.15)

to be compared to a �21 distribution, and thus is highly significant. Recall that in
Example (2.5, p. 34) we found �2G.GOF/ D 18:4 (with p-value D :00010/. One
expects that a test of the Poisson assumption directed at p within the ZIP model is
more powerful than an omnibus test like the chi-squared goodness-of-fit test, thus
the larger value of TW in (3.15).

In the ZIP model, there are certain advantages to changing the parameter from
.p; / to .�; /, where � D P.Yi D 0/ D p C .1 � p/e�. In the .�; /
parameterization the maximum likelihood estimator of � is simply the sample
proportion of Yi ’s that are zero, b� D n0=n in the notation of Example 2.1
(p. 31). The maximum likelihood estimator for  is the same as in the .p; /
parameterization but is now found by solving a simple one-variable equation. Also,
the information matrix is diagonal with

IT;11.�; / D n
1

�.1 � �/
;

IT;22.�; / D n.1 � �/

(

1


�

1� e�	 � e�
�

1 � e�	2

)

:

Testing H0 W p D 0 is equivalent to testing H0 W � D e�, or H0 W h1.�; / D 0,
with h1.�; / D � � e�. After taking derivatives to get the associatedH function,
we substitute b� D 182=240 D :758 andb D :847 to getbIT D IT.b�;b/ and

TWh1 D
n
�

b� � e�b
�2

1

bIT;11

C e�2b
bIT;22

D 21:88; (3.16)

to be compared to a �21 distribution, say �21.:95/ D 3:84. Taking logarithms of both
sides of � D e� leads to testingH0 W h2.�; / D 0with h2.�; / D log.�/C and

TWh2 D
n
�

log.b�/Cb
�2

1

b�2bIT;11

C 1

bIT;22

D 13:44: (3.17)

Finally, solving for p in terms of � , we find p D .� � e�/=.1 � e�/, leading to
yet another logically-equivalent hypothesis test H0 W h3.�; / D 0 with h3.�; / D
.� � e�/=.1� e�/ and
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TWh3 D
n
�

b� � e�b
�2

1

bIT;11
C e�2b

bIT;22

�

1�b�
1�e�b

�2
D 71:73: (3.18)

First note that the latter Wald statistic is identical to the Wald statistic for the .p; /
parameterization and H0 W p D 0. This makes sense because p D h3.�; / D 0

in both. Comparing TWh1 and TWh3 is instructive because the only difference is the

factor .1�b�/2=.1� e�b/2 in the denominator of TWh3 . WhenH0 is true, this factor
should be close to 1; here its value is .18, which greatly reduces the denominator
of TWh3 . It is a bit disturbing that these Wald statistics are so different, although
they are all much larger than the nominal .05 critical value 3.84 and thus result in
identical conclusions at the .05 level of significance. Also it can shown that under
the null hypothesis they are likely to be much more similar.

For comparison, we compute TS and TLR. In the original .p; / parameterization
for the ZIP model,

S1.p; / D @ logL.p;  jY /
@p

D n0
�

1 � e�	

p0
� n � n0

1 � p
;

and the maximum likelihood estimators underH0 W p D 0 areep D 0 ande D Y D
:358 (because underH0 the data are Poisson). After some algebra we find that

TS D
n

S1.ep;e/
o2

�

eI T;11 �eI 2T;12=
eIT;22

	 D
n
�

n0=n� e�e�2

e�e �1 � e�e �ee�e� D 23:96:

In the .�; / parameterization we find

S1.�; / D n0 � n�

�.1 � �/
; S2.�; / D �S1.�; /;

and underH0 W � D e�,e D Y D :358 and e� D e�e D :70. Then,

TS D .eS1;eS2/

 

eI�1
T;11 0

0 eI�1
T;22

!

�

eS1
eS2

�

D
eS21
eI T;11

C
eS22
eI T;22

D n.n0=n�e�/2
e�.1 �e� �ee�/ D 23:96:

The two versions of TS are equal because the score test is invariant to reparam-
eterization. Although the eI T;ij notation is the same in both version of TS these
information matrix components do depend on the parameterizations and thus differ
between versions.



142 3 Likelihood-Based Tests and Confidence Regions

Finally, we note that the maximized log likelihoods in Example 2.1 (p. 31) are
�201:044 and �190:437 for the Poisson models and ZIP models, respectively. Thus

TLR D �2 f�201:044� .�190:437/g D 21:21;

regardless of the parameterization. The score statistic is slightly larger than the
likelihood ratio statistic and larger than two of the Wald statistics computed for
these data (although in general, the score statistic is often smaller than the other two
statistics, as illustrated in Section 3.2.4 (p. 132)).

van den Broek (1995) gives the score test for the Poisson distribution within the
ZIP model and mentions that a simulation study by El-Shaarawi (1985) shows that
the score test is more powerful than the likelihood ratio test. Ridout et al. (2001)
give the score test for testing the appropriateness of a ZIP model within the context
of a zero-inflated negative binomial distribution. For the fetal lamb data they obtain
TS D 4:72 and p-value = .03 suggesting that even the ZIP model for a negative
binomial distribution is not adequate for these data.

3.2.9 Testing Equality of Binomial Probabilities: Independent
Samples

Suppose that Yj are independent binomial(nj ; pj /, j D 1; 2, and the task is
to test H0 W p1 D p2. With h.p1; p2/ D p1 � p2, and IT.p1; p2/ D
diag .n1=fp1.1 � p1/g; n2=fp2.1 � p2/g/, using (3.9, p. 136) results in

TW D .bp1 �bp2/2
�

bp1.1 �bp1/
n1

C bp2.1 �bp2/
n2

� ;

wherebp1 D Y1=n1 andbp2 D Y2=n2. For the score statistic, (3.10) leads to

TS D .bp1 �bp2/2
�

ep.1 �ep/
n1

C ep.1 �ep/
n2

� ;

where ep D .Y1 C Y2/=.n1 C n2/ is the pooled estimator of p obtained from the
likelihood with p1 D p2 D p. Note that TS is the same as the chi-squared test
statistic for homogeneity or independence in 2-by-2 contingency tables. Finally,

TLR D 2

2
X

iD1

�

Yi log

�

bpi

ep

�

C .ni � Yi / log

�

1 �bpi
1 �ep

��

:

For this problem TS is usually the preferred statistic.
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3.2.10 Test Statistics for the Behrens-Fisher Problem

Suppose that Y1; : : : ; Yn1 are iid from a N.�1; �21 ) distribution, X1; : : : ; Xn2 are iid
from a N.�2; �22 / distribution, and the null hypothesis is H0 W �1 D �2. This is
known as the Behrens-Fisher Problem and has a long history. Using independence
and (2.43, p. 72), IT.�/ D diag

�

n1=�
2
1 ; n2=�

2
2 ; 2n1=�

2
1 ; 2n2=�

2
2

	

, where �T D
.�1; �2; �1; �2/. The Wald statistic is

TW D
�

Y � X
	2

(

s2n1
n1

C s2n2
n2

) ;

via (3.9, p. 136). Using (3.10, p. 136), the score statistic is

TS D
�

Y � X
	2

� P

.Yi �e�/2
n21

C
P

.Xi �e�/2
n22

� ;

wheree� is a root of a cubic equation that arises from solving simultaneously

�21 .�/ D 1

n1

X

.Xi � �/2; �22 .�/ D 1

n2

X

.Yi � �/2;

and

� D
(

n1X

�21 .�/
C n2Y

�22 .�/

)

��

n1

�21 .�/
C n2

�22 .�/

�

:

The likelihood ratio statistic is

TLR D n1 log

� P

.Yi �e�/2
P

.Yi � Y /2

�

C n2 log

� P

.Xi �e�/2
P

.Xi � X/2

�

:

For this problem the preferred method is a modified version of TW obtained
by replacing s2n1 and s2n2 by the corresponding degrees-of-freedom-adjusted sample
variances. The signed square root of the modified TW is known as Welch’s t , and
is typically compared to a t distribution with an estimated degrees of freedom. See
Best and Rayner (1987) for comparison of TW, TS, and TLR.
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3.3 Confidence Regions

Suppose that we are interested in a confidence region for the r 	 1 subvector
�1 where � has the partition .�T1 ;�

T
2 /
T . Confidence procedures are obtained by

inverting the various test statistics. That is, we find the values of �1, considered as
null values, for which the test statistics are less than or equal to the upper 1� ˛ of a
chi-squared distribution with r degrees of freedom. The confidence region is thus

C1�˛ D ˚

�1 W T .�1/ � �2r .1 � ˛/
 ; (3.19)

where �2r .1 � ˛/ is the 1 � ˛ quantile of a �2r random variable and T denotes any
one of TW, TS, or TLR. Writing T .�1/ as a function of �1 means that the statistic is
calculated treating �1 as a null value. The proof that this approach is asymptotically
valid is very simple. Let �10 be the true parameter value. Then

P.C1�˛ 3 �10/ D P
˚

T .�10/ � �2r .1 � ˛/



;

which converges to 1� ˛ as T .�10/
d�! �2r . Note that “C1�˛ 3 �10” is read as “the

(random) set C1�˛ contains the (nonrandom) point �10.”

3.3.1 Confidence Interval for a Binomial Probability

Example 3.2 (p. 129) is easy to use for illustration. In this simple binomial model,
there is just one parameter p and thus b D r D 1. In the following z1�˛=2 is the
upper 1� ˛=2 quantile of the standard normal distribution, and we use the fact that
�21.1� ˛/ D z21�˛=2.

Solving the inequality

n .bp � p/
2

bp.1 �bp/ � z21�˛=2

for p leads to

 

bp � z1�˛=2

r

bp.1 �bp/
n

; bp C z1�˛=2

r

bp.1 �bp/
n

!

;

the standard Wald interval taught in introductory classes. Alternatively, solving the
inequality

n .bp � p/
2

p.1 � p/
� z21�˛=2
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for p leads to, via the quadratic formula, the score interval with endpoints

�

bp

�

n

nC z2

�

C 1

2

�

z2

nC z2

��

˙
s

bp.1 �bp/
n

�

n2z2

.nC z2/2

�

C 1

4

�

z4

.nC z2/2

�

; (3.20)

where for conciseness z1�˛=2 is shortened to z. Santner (1998), Agresti and Coull
(1998), and Brown et al. (2001), show that the score interval has coverage properties
superior to the Wald interval. In fact, the score interval performs well even when
bp D 0 or 1. The interval derived from TLR must be found numerically and has not
received much attention in the literature.

3.3.2 Confidence Interval for the Difference of Binomial
Probabilities: Independent Samples

Consider the more complicated setup of Section 3.2.9 (p. 142) with two independent
binomial random variables and the parameter 	 D p1 � p2. The Wald interval is
straightforward and familiar because all parameter estimates are computed under
the unrestricted model,

bp1 �bp2 ˙ z1�˛=2

s

bp1.1 �bp1/
n1

C bp2.1 �bp2/
n2

:

The score and likelihood ratio intervals are difficult to compute because they require
maximum likelihood estimators for p1 and p2 under the restrictionH0 W p1 � p2 D
	 for multiple values of 	. Denote such estimators byep1.	/ andep2.	/. Then the
score interval requires finding all values of 	 such that

TS.	/ D fep1.	/�ep2.	/g2
�

ep1.	/f1�ep1.	/g
n1

C ep2.	/f1�ep2.	/g
n2

�

is less than �21.1�˛/. The likelihood ratio interval is comparably difficult, and hence
neither interval is used much in practice.
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3.4 Likelihood Testing for Regression Models

3.4.1 Linear Model

For testing linear hypotheses about ˇ of the formH0 W KTˇ D m, the statistics TW,
TS, and TLR are all functions of the usual F statistics and thus equivalent if exact
critical values are used.

Returning to Example 2.10 (p. 52) dealing with maximum sea levels in Venice,
recall that the least squares and extreme value MLE slope estimates are very close
(.567 and .563), but the standard errors of the slopes are .177 and .136, respectively.
The square root of the Wald test statistic forH0 W ˇ D 0 is thus .563/.136=4.14. The
square root of the extreme value likelihood ratio statistic is 3.75. Both are highly
significant and larger than the corresponding least squares t D :567=:177 D 3:2.

3.4.2 Additive Errors Nonlinear Model

Recall the standard nonlinear regression model (2.10, p. 50) where Yi D g.xi ;ˇ/C
ei , where g is a known function. For testing H0 W ˇj D 0, computer packages
make Wald tests easy to conduct by printing the standard errors obtained from
the estimated information matrix (2.46, p. 74). As in other models, the Wald tests
are often liberal, and dependent on the parameterization. Seber and Wild (1989,
Ch. 5) give a discussion of the advantages of likelihood ratio and score tests and
F approximations to them. The likelihood ratio tests are easily obtained from the
output by subtracting sums of squares from full and reduced model fits.

Practitioners often want a statistic comparable to R2 in linear regression to
assess model fit, but most statistical packages do not give an R2-like statistic for
nonlinear least squares. One R2-like statistic based on the likelihood is R2LR D
1 � exp.�TLR=n/, where TLR tests the hypothesis that all non-intercept slope
parameters are zero. For nonlinear least squares this is just 1�SSE/SST, where SST
and SSE are the total and error sums of squares. See Magee (1990) for a discussion
of alternative definitions of R2.

3.4.3 Generalized Linear Model

For comparing nested generalized linear models, likelihood ratio tests dominate via
their connection to the model deviance statistic that is standard output in GLM
model fitting software. The deviance of a particular model is just the likelihood ratio
statistic for testing that model against the alternative saturated model (essentially
one parameter for each data point). Likelihood ratio test statistics for comparing
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different nested submodels are then readily obtained as the differences of the model
deviances because the contribution of the saturated-model log likelihood to the
deviance is the same for any two models and thus cancels.

Wald tests are also easy to implement because computer packages usually print
standard errors from the estimated information matrix. In the case of logistic
regression, Hauck and Donner (1977) show that Wald tests have non-monotone
power functions and probably should be avoided. Many commonly used tests turn
out to be score tests for logistic models. We describe a few in the following
examples.

3.4.3a Logistic Dose-Response Model

Suppose we have data from a dose-response study wherein rats receive different
doses of a suspected carcinogen, and the response indicates the occurrence of tumors
appear within a two-month followup. Then xTi D .1; di / for i D 1; : : : ; n, where
d1; : : : ; dn are the dose levels. At the i th dose level suppose that mi rats are used
with Yi = the number of rats having at least one tumor at the end of two months.
Assume that the logit model log fpi=.1� pi /g D ˇ1 C ˇ2di holds where pi is the
probability of an individual rat having at least one tumor at the end of two months.
The score test forH0 W ˇ2 D 0,

TS D
˚Pn

iD1
�

Yi �miY
	

di

2

Y .1 � Y /Pn
iD1 mi.di � d/2

;

where Y D P

Yi=
P

mi and d D P

midi=
P

mi , is known as the Cochran-
Armitage trend test. It turns out that this test statistic is also the score statistic for
any model in which pi D F.ˇ1 C ˇ2di/ for some distribution function F , not just
the logistic distribution function. (see Tarone and Gart (1980), for details).

3.4.3b Adequacy of Logistic Dose-Response Model

Continuing the previous logistic regression example, suppose that we want to test
the adequacy of the logistic model, H0 W pi D ˚

1C exp.�xTi ˇ/

�1

; i D 1; : : : ; n

versus the alternative that the pi are not constrained. The score test turns out to be
the usual chi-squared goodness-of-fit test. That is, think of each dose level having
two cells consisting of rats with counts Yi and mi � Yi . Then:

TS D
X .Oi � bEi/

2

bEi

D
n
X

iD1

"

.Yi �miepi/
2

miepi
C fmi � Yi �mi.1 �epi /g2

mi.1 �epi /

#
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D
n
X

iD1
.Yi �miepi /

2

�

1

miepi
C 1

mi.1 �epi /
�

D
n
X

iD1

.Yi �miepi /
2

miepi .1 �epi / ;

where the epi are the fitted probabilities from the logistic model; the tilde ˜ is used
here because the logistic model is the null hypothesis. TS should be compared to
a chi-squared distribution with n � 3 degrees of freedom. This test statistic is also
the score test for testing the adequacy of a general logistic model with n distinct x
vectors. An alternative statistic used with generalized linear models is the deviance
for the fitted model as described in earlier in this section. Most software packages
print both the score test statistic and the deviance test statistic by default.

3.4.3c Mantel-Haenszel Statistic

Example 3.2.9 (p. 142) gave the score statistic for testing H0 W p1 D p2 for two
independent binomials. A logistic regression formulation of the same problem is
H0 W ˇ2 D 0, where logit.p1/ D log fp1=.1 � p1/g D ˇ1 C ˇ2 and logit.p2/ D
log fp2=.1 � p2/g D ˇ1 for which ˇ2 is the log odds ratio. We now consider the
generalization to the case of k sets of independent binomials (often arising from
k strata or k independent 2-by-2 tables), where it is assumed that each data set
has the same log odds ratio ˇkC1. Thus for the j th data set (or table) we have
logit

˚

p1C2.j�1/

 D ˇj C ˇkC1 and logit

˚

p2C2.j�1/

 D ˇj . A traditional way to

display data of this type arising from a clinical trial is, for the j th table,

Success Failure
Treatment aj bj n1j
Control cj dj n2j

Total m1j m2j tj

Here Y1C2.j�1/ D aj and Y2C2.j�1/ D cj . The score test for testing that the common
odds ratio is unity in all tables (eˇkC1 D 1) is formulated as H0 W ˇkC1 D 0 with
test statistic

TS D

k
X

iD1
.aj �m1jn1j =tj /

2

k
X

iD1
.n1j n2jm1jm2j =t

3
j /

: (3.21)

The classical Mantel-Haenszel statistic, say TMH, conditions on the margins of
the tables and thus differs slightly from (3.21) by replacing the divisor t3j in the
denominator of (3.21) by t2j .tj � 1/.



3.5 Model Adequacy 149

3.5 Model Adequacy

Checking model assumptions is a key component of data analysis. In regression
models, most attention is given to plotting residuals versus predicted values and
explanatory variables. In all types of parametric models, though, there is concern
about whether distributional assumptions are warranted, e.g., whether data are nor-
mally distributed, or have an extreme value distribution, or some other distribution.

The chi-squared goodness-of-fit statistic, used to assess whether the Poisson
distribution was appropriate in (2.3, p. 31), can be used for discrete-data model
checking more generally. Example 3.4.3b also illustrates its use. For continuous
data, we might look at histograms or QQ plots. In Figure 2.2 (p. 36) we demon-
strated the use of the quantile-quantile (QQ) plot to assess distributional type.
A QQ plot is just a plot of the ordered sample values (empirical quantiles) versus
the quantiles of the fitted model, and a straight line suggests an adequate distribution
choice. For continuous data we can also group the data into cells and use the chi-
squared goodness-of-fit statistic as in the following.

Example 3.5 (Grouped likelihood - hurricane data). Recall that in Example 2.6
(p. 36) the QQ plot (Figure 2.2, p. 37) suggested that the gamma model is inappro-
priate for the hurricane rainfall data. A more objective assessment is obtained by
first grouping the data into cells and using the chi-squared statistic along with the
grouped maximum likelihood estimators of ˛ and ˇ. Moore (1986) recommends
choosing k � 2n2=5 equiprobable cells for the chi-squared statistic, here resulting
in k D 8 since n D 36. Thus we found the (.125,.25,.375,.5,.625,.75,.875)
quantiles (percentiles) of the gamma distribution with the raw maximum likelihood
estimators. For example, the .125 quantile of a gamma(˛ D 2:19; ˇ D 3:33)
distribution is 2.39. So the first cell is (0,2.39]. The .25 quantile is 3.67. So the
second cell is (2.39,3.67]. Now we form the multinomial likelihood for the counts
of a gamma random variable falling in these cells (the probabilities are just the
difference of the gamma distribution function at the cell boundaries) and maximize
that. The result is b̨ D 3:37 and bˇ D 2:03 which differ from the full maximum
likelihood estimates (b̨D 2:19;bˇ D 3:33). Perhaps the grouped likelihood is not as
sensitive to the two large rainfall values as the likelihood is. Finally, we compute the
chi-squared statistic with probabilities given by the estimated gamma distribution:
�2.GOF)=4.05 with p-value= .54 from a �25 distribution (df=8 � 2 � 1 D 5).
Apparently the hurricane rainfall data fit a gamma distribution better than initially
thought, at least as indicated by the grouped-data chi-squared statistic. �

Although the chi-squared statistic after grouping is simple to understand and use,
it is typically not the most powerful method. A class of more powerful statistics
is based on a distance between the fitted parametric model and the empirical
distribution function Fn.y/ D n�1Pn

iD1 I.Yi � y/. For example, weighted
Cramer-von-Mises statistics have the form

TWCVM D n

Z 1

�1

h

F.yIb�/ � Fn.y/
i2

w.y;b�/f .yIb�/ dy;
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where b� is usually b�MLE, and w.y;b�/ is a weight function. A good choice of
w.y;�/ is ŒF .yI�/.1� F.yI�//��1 resulting in the Anderson-Darling goodness-
of-fit statistic. In location-scale families, the null distribution of TWCVM is free of
the unknown parameter values, and can thus be tabled. The gamma distribution is
not a location-scale family; so the null distribution is harder to calculate. However,
the parametric bootstrap described in Ch. 11 (p. 413) can be used to find p-values.
For the hurricane data of Example 2.6 (p. 36), the parametric bootstrap p-value
for testing adequacy of the gamma distribution is .032. Removing the largest data
point 31.00 leads to a p-value of .16. Thus, most of the evidence against the gamma
distribution is due to the largest observation being larger than one would expect
from a gamma distribution.

In more complicated models, it is not always easy to assess the adequacy of the
model. Most data analysts use a variety of techniques, especially residual plots, to
check assumptions. After carrying out these checks, we still may be unsure about the
model. Thus, Chapter 7 (p. 297), Chapter 8 (p. 339), Chapter 10 (p. 385), Chapter 11
(p. 413), and Chapter 12 (p. 449) describe methods to robustify inference in the face
of model inadequacy or to relax assumptions.

Model adequacy is sometimes addressed by considering classes of models dif-
fering with respect to flexibility and hence usually complexity as well. Comparisons
among model classes are then made with the objective of determining the least
complex adequate model. Model selection is the name given to formal procedures
used to decide on a model. For example, in regression, deciding on what explanatory
variables to include in the fitted model is called model selection or variable selection.
With multivariate data, deciding on the type of covariance structure is a form of
model selection. Historically, the most important methods for model selection are
based on the fitted negative log likelihood (times 2) plus a penalty term depending
on the number of parameters in the model. For example, Akaike’s Information
Criterion (AIC, see Akaike, 1973) uses the penalty term 2k where k is the number
of parameters in the candidate model. The Bayesian Information Criterion (BIC,
Schwarz, 1978), uses k log.n/. Surveys of these approaches appear in Hastie et al.
(2001) and Rao and Wu (2001).

3.6 Nonstandard Hypothesis Testing Problems

The likelihood-based inference methods of Sections 3.1–3.4 depend on regularity
conditions to be discussed in Ch. 4 that guaranteeb�MLE is asymptotically normal and
the associated test statistics have limiting chi-squared distributions. We have already
mentioned situations like Example 2.12 (p. 63) where b�MLE is not asymptotically
normal. Such anomalies can occur when the densities are not suitably smooth or
the support of the density depends on the unknown � . The key condition ensuring
regular asymptotic properties is that b�MLE is a solution to the likelihood equations
asymptotically,
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P

�

@

@�T
logL.b�MLE jY / D 0

�

�! 1: (3.22)

When (3.22) does not hold, then typically it is no longer true that b�MLE �
AN

˚

�; IT.�/
�1
, and in such cases the three likelihood based tests do not always

have a limiting �2r underH0.
However, test statistics with non-chi-squared limits also arise when the hypothe-

ses are not of the usual form, � D �0 versus � ¤ �0. In the next two subsections
we discuss two interesting situations: extensions of one-sided hypotheses; and cases
where the null hypothesis occurs on the boundary of the parameter space. In these
nonstandard situations the limiting distribution is not chi-squared but often related
to chi-squared distributions.

3.6.1 One-Sided Hypotheses and Their Extensions

The hypothesis tests considered so far have been mainly of the formH0 W �1 D �10
versus Ha W �1 ¤ �10, often called two-sided tests. If �1 is a single real parameter,
then we usually call H0 W �1 � �10 versus Ha W �1 > �10 or H0 W �1 � �10 versus
Ha W �1 < �10 one-sided tests. One-sided tests are common. For example, if Y is
binomial.n; p/, we might be interested in H0 W p � 1=2 versus Ha W p > 1=2

and reject H0 if Y � k, where P.Y � k jp D 1=2/ D ˛. Or for Y1; : : : ; Yn �
N.�; �2), we might test H0 W � � 2:1 versus Ha W � < 2:1 with the rejection
region t D p

n.Y � 2:1/=s < �t˛;n�1, where t˛;n�1 is the 1 � ˛ quantile from the
t distribution with n � 1 degrees of freedom. Often in these tests, for simplicity,
we write the null hypothesis as H0 W � D �0 and let the alternative describe the
direction of interesting alternatives. In these cases the two different specifications of
H0 result in equivalent tests because �0 is the hardest of the null hypothesis values
to differentiate from the possible alternative values.

3.6.1a Isotonic Regression

Consider data consisting of k independent normal samples of size n1; : : : ; nk ,
each iid with means �1; �2; : : : ; �k , and common variance �2, i.e., the usual
ANOVA setup. In some cases there is reason to believe a priori that the means
are nondecreasing, �1 � �2 � � � � � �k . In this case, the maximum likelihood
estimators minimize

Pk
iD1 ni .Y i � �i/

2 subject to the constraint �1 � �2 � � � � �
�k , a type of order-restricted least squares method known as isotonic regression.

Now consider testing H0 W �1 D �2 � � � D �k versus Ha W �1 � �2 � � � � �
�k , with at least one strict inequality. For this hypothesis test the likelihood ratio
test statistic has a non-chi-squared distribution which in the known variance case

is called the �2 distribution, and in the variance unknown case, is called the E
2

distribution. For example, Barlow et al. (1972, p. 126) prove that
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P.�2k � C/ D
k
X

`D1
P.`; k/P.�2`�1 � C/; (3.23)

where �20 denotes a point mass at zero, and P.`; k/ are the probabilities that the
order-restricted estimators assume exactly ` distinct values under the null hypothe-
sis. For the case k D 2, we have P.�2k � C/ D .1=2/I.C D 0/C.1=2/P.�21 � C/

because Y 1 > Y 2 with probability 1/2, in which case the maximum likelihood
estimates under the inequality constraint areb�1 D b�2 D .n1Y 1Cn2Y 2/=.n1Cn2/.
Thus P.1; 2/ D P.2; 2/ D 1=2, and �2 has the mixture distribution consisting of a
point mass at 0 and a �21 random variable. The resulting test is equivalent to using a
one-sided normal test of the difference of means. For the case of unknown variance,
the null distribution, E

2
, is similar to (3.23), with the difference that beta random

variables replace the �2l�1 random variables in (3.23).

Example 3.6 (Isotonic regression P -values for k D 3). Consider one-way
ANOVA normally-distributed data with k D 3, n1 D n2 D n3 D 5, and known
variance �2 D 14. In this case, TLR D P3

iD1 ni .b�i � Y /2=�2 for H0 W �1 D �2 D
�3 versusHa W �1 � �2 � �3, whereb�i ; i D 1; : : : ; 3 are the maximum likelihood
estimators under theHa constraint, and Y is the pooled mean over all observations.
In this example we compare the usual ANOVA test of equality of means, the isotonic
regression ANOVA p-values, and a simple linear regression p-value. For simplicity,
we now restrict attention to data sets for which the sample means are in increasing
order so that b�i D Y i ; i D 1; : : : ; 3. For such data sets, the usual ANOVA statistic
for H0 versus the complement of H0 has exactly the same value as the isotonic-
regression likelihood ratio statistic TLR D P3

iD1 ni .b�i � Y /2=�2. However, the
former is compared to a �22 distribution, and the latter to the �2 distribution in (3.23)
with P.1; 3/ D 1=3, P.2; 3/ D 1=2, and P.3; 3/ D 1=6 (Bartholomew 1959).
Linear regression is useful for detecting monotone trends whether they are linear or
not and so we also consider the simple linear regression test statistic

Tfi D

p
5

3
X

iD1
.xi � x/Y i

�

(

3
X

iD1
.xi � x/2

) 1=2
;

derived from the working model Y i � N.�Cˇxi ; �2=5/with x1 D 1; x2 D 2; x3 D
3 and testing H0 W ˇ D 0 versus Ha W ˇ > 0. The p-values for three different sets
of means are displayed in Table 3.3.

These p-values suggest that the isotonic regression likelihood ratio test is more
powerful than the usual ANOVA test. The regression slope test is best in these three
data sets even though the means are not linear in xi . Perhaps it is a little unfair
to include this slope test because it has power for parameter values not in Ha,
for example, when population means increase and then decrease. Nevertheless, the
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Table 3.3 P -values for three
samples, n1 D n2 D n3 D 5,
�2 D 14

Y 1 Y 2 Y 3 ANOVA ISO Reg

2 6 6 0.149 0.050 0.045
2 6 7 0.082 0.026 0.017
2 6 8 0.036 0.011 0.006

relative ease of using regression is probably why isotonic regression is not used
more.

Finally, although the p-values reported in Table 3.3 are for the known-variance
case, qualitatively similar results are obtained for the more complicated case of �
unknown. �

There is a large literature on order-restricted inference. For testing for ordered
alternatives, there has been more emphasis on TLR than on TW and TS. The classic
references are Barlow et al. (1972) and Robertson et al. (1988), whereas a more
recent account is Silvapulle and Sen (2005).

3.6.2 Null Hypotheses on the Boundary of the Parameter Space

When a null hypothesis value, say �0 lies on the boundary of the parameter space,
then maximum likelihood estimators are often truncated at that boundary because
by definition b�MLE must lie in the parameter space of � . Thus b�MLE is equal to
the boundary value �0 with positive probability and correspondingly TLR is zero
for those cases. The result is that the limiting distribution of TLR is a mixture of a
point mass at zero and a chi-squared distribution. We illustrate first with an artificial
example and then consider the one-way random effects model.

3.6.2a Normal Mean with Restricted Parameter Space

Suppose that Y1; : : : ; Yn � N.�; 1/. Usually, b�MLE D Y , but suppose that we
restrict the parameter space for � to be Œ�0;1/ where �0 is some given constant,
instead of .�1;1/. Then b�MLE D Y if Y � �0 and b�MLE D �0 if Y < �0.
Now suppose that the null hypothesis is H0 W � D �0. We first consider the three
likelihood-based test statistics, showing that only the score statistic has a limiting
�21 distribution. Then we provide a simple solution to this testing problem.

Under H0, the Wald statistic is TW D n.b�MLE � �0/
2, which is thus TW D 0 if

b�MLE D �0 and TW D n.Y ��0/2 if Y � �0. The score statistic is TS D n.Y ��0/2,
and the likelihood ratio statistic is the same as the Wald statistic. Thus, only the
score statistic converges to a �21 distribution underH0. The Wald and the likelihood
ratio statistics converge to a distribution that is an equal mixture of a point mass
at 0 and a �21 distribution, the same distribution as in (3.23) for k D 2. In fact the
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limiting distribution function is similar to the “wind speed” example, given by (2.3,
p. 28) with p D 1=2 and FT equal to the �21 distribution. Note that the limiting
distribution is the distribution of the random variable Z2I.Z > 0/, where Z is
a standard normal random variable. This uncommon limiting distribution does not
cause problems here because the test is one sided. Thus a suitable level-˛ test for
the Wald and likelihood ratio statistics is to reject H0 if the test statistic exceeds
the 1 � 2˛ quantile of the �21 distribution. To see that this is correct, note that by
independence of Z2 and I.Z > 0/

P
˚

Z2I.Z > 0/ > �21.2˛/

 D P

˚

Z2 > �21.2˛/;Z > 0



D P
˚

Z2 > �21.2˛/



P.Z > 0/

D .2˛/.1=2/ D ˛:

However, there is a problem with the score test. Note that rejecting for large
values of TS is equivalent to conducting a two-sided test of H0 W � D �0 using

the statistic
p
n.Y � �0/ and thus rejects either if Y < �0 �

q

�21.˛/=n or Y >

�0 C
q

�21.˛/=n. However, rejecting forY < �0 �
q

�21.˛/=n makes no sense

when the parameter space is Œ�0;1/. The natural solution is to reject H0 whenp
n.Y � �0/ > z˛ , where P.Z > z˛/ D ˛.
The main point of this artificial example is that the restricted parameter space

with �0 on the boundary has led to nonstandard limiting distributions for TW and
TLR. A similar problem occurs in real problems as illustrated in the next example.

3.6.2b One-Way Random Effects Model

Following notation in Searle (1971, Ch. 9), consider the one-way balanced random
effects model,

Yij D �C ˛i C eij ; j D 1; : : : ; r; i D 1; : : : ; t;

where� is an unknown mean, and the ˛i are independent N(0; �2˛/ random variables
and independent of the errors eij that are iid N.0; �2e /. If �2˛ > 0 and �2e > 0, then
the maximum likelihood estimators are

b� D Y :: D 1

rt

t
X

iD1

r
X

jD1
Yij ;

b�2˛ D
8

<

:

SSA

rt
� MSE

r
when SSA/t > MSE;

0 otherwise;
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b�2e D
8

<

:

MSE when SSA/t > MSE;

SSE C SSA

rt
otherwise;

where

Y i: D 1

r

r
X

jD1
Yij ; SSA D r

t
X

iD1

�

Y i: � Y ::
	2
;

SSE D
t
X

iD1

r
X

jD1

�

Yij � Y i:
	2
; MSE D SSE

t.r � 1/
:

The log likelihood is

`.�/ D C � t.r � 1/

2
log �2e � t

2
logV

�1
2

(

SSE

�2e
C SSA C rt

�

Y :: � �
	2

V

)

;

where C is a constant and V D �2e C r�2˛ . Taking derivatives with respect to �T D
.�2˛ ; �

2
e ; �/, and noting that SSA and SSE are independent with E.SSA/ D .t �1/V

and E.SSE/ D t.r � 1/�2e , we obtain

I .�/ D 1

rt

0

B

B

B

B

B

B

B

B

B

@

r2t

2V 2

rt

2V 2
0

rt

2V 2

�

t.r � 1/
2�4e

C t

2V 2

�

0

0 0
rt

V

1

C

C

C

C

C

C

C

C

C

A

with inverse

h

I .�/
i�1 D

0

B

B

B

B

B

B

B

B

@

2

r

�

V 2 C �4e
r � 1

� �2�4e
r � 1

0

�2�4e
r � 1

2r�4e
r � 1

0

0 0 V

1

C

C

C

C

C

C

C

C

A

:
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If �2˛ > 0, �2e > 0, and t ! 1 while r remains fixed, then P.b�2˛ D 0/ ! 0

and P
˚

b�2e D .SSE C SSA/=.rt/

 ! 0 and the maximum likelihood estimators

are asymptotically normal with asymptotic covariance
h

rtI .�/
i�1

as dictated

by standard asymptotic results. (If in addition r ! 1, then slightly different
asymptotic normality results are obtained; see Miller 1977.)

Consider now the hypothesis testing situation H0 W �2˛ D 0. Under this null
hypothesis, P.b�2˛ D 0/ ! 1=2, somewhat like the artificial example above. The
Wald statistic is TW D 0 whenb�2˛ D 0 (when SSA=t � MSE/ and

TW D ŒSSA=.rt/ � MSE=r�2
h

rtI .b�MLE/
i�1
11

when SSA=t > MSE. Thus, in large samples under H0, TW converges in
distribution to Z2I.Z > 0/ as in the artificial example. We would reject H0 if
the test statistic is greater than the 1 � 2˛ quantile of the �21 distribution.

Miller (1977, p. 757) gives the likelihood ratio statistic as

TLR D �t Œ.r � 1/ log ft=.t � 1/g C r log r

C logF � r log ft.r � 1/=.t � 1/C F g�

when F > t=.t � 1/ and TLR D 0 otherwise, where F is the usual F statistic
F D MSA=MSE, MSA D SSA=.t � 1/. It can then be shown that as t ! 1, TLR

also converges in distribution to Z2I.Z > 0/.
For computing the score statistic, note that underH0 the likelihood estimator for

� remains Y :: ande�2e D .SSE C SSA/=.rt/. Then the score statistic is

TS D
�

1

2e�4e
f.r � 1/SSA � SSEg

�2
2e�4e

r.r � 1/t
: (3.24)

Moreover, it can be shown that TS converges under H0 to a �21 distribution. Thus,
we are in the same situation as the artificial example where the score statistic has the
standard limiting distribution, but it does not take into account the one-sided nature
of the null hypothesis. Thus we should redefine TS to be zero whenever SSA=t �
MSE and use the 1� 2˛ critical value of the �21 distribution.

Manipulation of (3.24) shows that TS is a function of the usual F statistic F D
MSA=MSE and that TS is large if F is large or small (and small means F near 0,
which means SSA=t � MSE). Thus, an “exact” corrected score procedure is to just
carry out the usual F test with the usual F critical values.
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3.6.2c General Solution for Parameters on the Boundary

The study of likelihood ratio statistics with parameters on the boundary of the
parameter space was begun by Chernoff (1954). Self and Liang (1987) give a fairly
complete description of the general problem. They separate the parameter vector
into four components:

1. r1 parameters of interest on the boundary,
2. r2 parameters of interest not on the boundary,
3. s1 nuisance parameters on the boundary,
4. s2 nuisance parameters not on the boundary.

Thus, the b-dimensional vector � has sub-dimensions .r1; r2; s1; s2/, where r1Cr2C
s1 C s2 D b. For example, in the one-way mixed model above, �T D .�2˛ ; �

2
e ; �/

with dimensions .r1 D 1; r2 D 0; s1 D 0; s2 D 2/. A related example is to
test H0 W �2˛ D 0; � D 0 versus Ha W �2˛ > 0; � ¤ 0 in the one-way mixed
model. In this case, � has joined �2˛ to form the parameter vector of interest and the
dimensions are .r1 D 1; r2 D 1; s1 D 0; s2 D 1/. The limiting distribution of TLR in
this case is Z2

1I.Z1 > 0/CZ2
2 , where Z1 and Z2 are independent standard normal

random variables. Self and Liang (1987) also give a variety of more complicated
examples.

Sometimes it is not obvious when we have a boundary problem. Recall our
testing the Poisson assumption with a ZIP model

P.Y1 D y/ D
(

p C .1 � p/f .0I/; y D 0I
.1 � p/f .yI/; y D 1; 2; : : :

by testing H0 W p D 0. Logically, this is a boundary value (p is a probability)
but mathematically it is not. It is possible to let p be less than zero — the only
natural restriction on p is that P.Y1 D 0/ D p C .1 � p/e� � 0. This
restriction translates into the parameter space for .p; / given by Figure 3.2. Using
the full parameter space in Figure 3.2, the maximum likelihood estimators solve
the likelihood equations and the test statistics we computed in Section 2.3 are
asymptotically �21 under H0 W p D 0. Philosophically we might prefer a one-sided
hypothesis here, H0 W p D 0 versus Ha W p > 0, in which case we would need to
modify the statistics computed in Section 2.3 to be 0 if the unrestricted maximum
likelihood estimator of p is less than 0 and use 1�2˛ quantiles of the �21 distribution.
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Fig. 3.2 Maximum allowable parameter space for the ZIP density. The space continues to the left
and up to 1 for p 2 Œ0; 1�

3.7 Problems

3.1. For a situation where the likelihood is quadratic in a single real parameter � ,
i.e.,

logL.� jY / D a.Y /C b.Y /� � c�2;

where c is a known constant and a.�/ and b.�/ are known functions, show that the
Wald, score, and likelihood ratio statistics are all the same forH0 W � D �0.

3.2. Suppose that we have an iid sample Y1; : : : ; Yn from f .yI�; �/ D ��1f0..y�
�/=�/, where f0 is the Laplace density f0.y/ D .1=2/ exp.�jyj/. The maximum
likelihood estimators are the sample median b� and the mean deviation from the
median b� D n�1P jYi � b�j. Even though the Laplace density doesn’t quite have
the smoothness conditions that we usually require, most results work as long as you
use d jyj=dy D sgn.y/ when y ¤ 0 and D 0 otherwise, and compute the Fisher
information matrix from the product of first partial derivatives rather than try to get
the matrix of second partial derivatives. (To save you from computations, the result
turns out to be I�;� D ��2diagŒ1; 1�. Also EjY1��j D � and Var(Y1/ D 2�2.) Find
the Wald, score, and likelihood ratio statistics TW, TS, and TLR, for H0 W � D �0
versusHa W � ¤ �0.

3.3. Verify the value 71.73 (3.15, p. 140) for the Wald statistic in the .p; )
parameterization.

3.4. Verify the values 21.88, 13.44, 71.73 in equations (3.16)–(3.18) starting on p.
140, in Section 3.2.8 for the .�; ) parameterization.

3.5. For the two independent binomials problem, Section 3.2.9 (p. 142), derive the
three statistics TW, TS, and TLR for testing H0 W p1 D p2.
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3.6. Assume that Y1 and Y2 are independent with respective geometric probability
mass functions,

f .yIpi / D pi.1 � pi /
y�1 y D 0; 1; : : : 0 � pi � 1; i D 1; 2:

Recall that the mean and variance of a geometric random variable with parameter p
are 1=p and .1�p/=p2, respectively. ForH0 W p1 D p2 versusHa W p1 ¤ p2 show
that the score statistic is

TS D ep2

2.1�ep/ .Y1 � Y2/2 ;

whereep D 2=.Y1 C Y2/.

3.7. For the setting of the previous problem (Y1 and Y2 are independent geometric
random variables), show that for h1.p1; p2/ D p1 � p2, the Wald statistic is

TW;1 D .Y1 � Y2/
2
.

�

1 �bp1
bp22

C 1 �bp2
bp21

�

;

where bpi D 1=Yi ; i D 1; 2. Next, show that for h2.p1; p2/ D 1=p1 � 1=p2, the
Wald statistic is

TW;2 D .Y1 � Y2/2
.

�

1 �bp1
bp21

C 1 �bp2
bp22

�

:

Which version seems more appropriate?

3.8. Suppose that Y1; : : : ; Yn1 are iid from a N.�1; �2) distribution,X1; : : : ; Xn2 are
iid from a N.�2; �2/ distribution, the samples are independent of each other, and we
desire to test H0 W �1 D �2.

a. Derive the Wald and score tests and express them as a function of the square of
the usual two-sample pooled t . Also, show that the likelihood ratio statistic is
TLR D .n1 C n2/ logf1C t2=.n1 C n2 � 2/g.

b. Let n1 D n2 D 5. These tests reject H0 at approximate level .05 if they are
larger than 3.84. Find exact expressions for P.TW � 3:84/, P.TS � 3:84/, and
P.TLR � 3:84/ using the fact that t2 has an F.1; n1 C n2 � 2/ underH0.

3.9. Suppose that Y1; : : : ; Yn are independently distributed as Poisson random
variables with means 1; : : : ; n, respectively. Thus,

P.Yi D y/ D f .yIi / D 
y
i e

�i
yŠ

; y D 0; 1; 2; : : : :

Show that the score statistic for testing H0 W 1 D 2 D � � � D n D  (i.e., that the
Yi ’s all have the same distribution) is given by
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TS D
n
X

iD1

�

Yi � Y
	2

Y
:

3.10. Derive expression (3.20, p. 145) for the confidence interval for p.

3.11. In the case that we observe all successes in n Bernoulli(p) trials, an exact
1�˛ lower bound for p is ˛1=n, obtained by solving pn.1�p/0 D ˛ (see Example
9.2.5 on p. 425–427 of Casella and Berger 2002). Use the left-hand part of the
interval (3.20, p. 145) with z D z1�˛ to get an approximate lower bound in this
case. Compare the two lower bounds in terms of coverage for ˛ D :05 and n D 10,
n D 20, and n D 100.

3.12. Show that the TW, TS and TLR statistics defined in Example 3.2 (p. 129) are
asymptotically equivalent under H0 by showing their differences converge to 0 in
probability.

3.13. Consider a dose-response situation similar to Section 3.4.3a (p. 147) with k
dose levels. At the i th dose di we observe (Yij ; nij ; j D 1; : : : ; mi /, where the nij
are fixed constants. A common assumption is that the Yij are all independent and
distributed binomial(nij ; pi .ˇ/ D F.xTi ˇ//, where F is a distribution function like
the standard normal or logistic distribution function and typically xTi D .1; di / or
xTi D .1; di ; d

2
i /. Then the log of the likelihood is

logL.ˇ/ D constant C
k
X

iD1

mi
X

jD1



Yij log fpi .ˇ/g C .nij � Yij / log f1 � pi.ˇ/g
�

:

a. Find the score function S.ˇ/.
b. Find the total sample information IT.Y ;ˇ/ and its expected value IT.ˇ/.
c. Show that for the logistic distribution function, F.x/ D .1C exp.�x//�1,

IT.Y ;ˇ/ D IT.ˇ/ D
k
X

iD1

mi
X

jD1
nij pi .ˇ/ f1� pi .ˇ/gxixTi :

3.14. Derive the Cochran-Armitage trend test in Section 3.4.3a (p. 147) as a score
test.

3.15. Derive the goodness-of-fit score statistic in Section 3.4.3b (p. 147) assuming
that the Yi are independent binomial(mi; pi ) random variables, and the parameter
vector is � D .p1; : : : ; pn/

T . The only place the logistic parameterization enters is
that under H0, epi D F.xTi

eˇ/, where F is the logistic distribution function and eˇ
is just the logistic model maximum likelihood estimator. Thus, the form of F never
enters the derivation since we just substituteepi wherever necessary in the score test
definition.
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3.16. Derive the score statistic TS in (3.21, p. 148)

3.17. For the lung cancer data of Glasser (1965), Example 2.11 (p. 56), fit
lognormal and Weibull models using the SAS program lung.sas.txt on the
course website http://www4.stat.ncsu.edu/�boos/Essential.Statistical.Inference

a. Get the p-values for Wald and likelihood ratio tests of age, and then after deleting
age, get the p-values for performance status (ps).

b. For one of the models with only ps in the model, invert the negative of the Hessian
(SAS calls -Hessian the Hessian), and check that the reported standard errors
actually come from it.

c. One might like to choose between the normal and Weibull models. Can you think
of a way to do this?

3.18. Consider having two independent iid samples, the first with a normal(�1,1)
distribution and sample size n1, the second with a normal(�2,1) distribution and
sample size n2. For H0 W �1 D �2 versus Ha W �1 < �2, find TLR and the testing
procedure at ˛ D :05. Note that underHa W the maximum likelihood estimators are
the usual ones if Y 1 � Y 2, but b�1 D b�2 D .n1Y 1 C n2Y 2/=.n1 C n2/ if Y 1 > Y 2.
Also, note that P.2; 2/ D 1=2 in (3.23, p. 152) for this case since the probability
is 1/2 that the restricted estimators are the usual sample means with l D 2 distinct
values.

3.19. Find the .90, .95, and .99 quantiles of the distribution of Z2I.Z > 0/, where
Z is a standard normal random variable.

3.20. Consider testingH0 W �1 D �2 D �3 D �4 versusHa W �1 � �2 � �3 � �4
in the one-way ANOVA context with known variance. Suppose that the observed
sample means are in increasing order so that the usual ANOVA TLR statistic and
the isotonic regression TLR are exactly the same and equal to 7.5. Find the p-values
for both procedures using the �23 distribution for the usual ANOVA test and (3.23,
p. 152) for the isotonic regression test assuming equal sample sizes. In this case,
the necessary constants for (3.23, p. 152) are P.1; 4/ D 1=4, P.2; 4/ D 11=24,
P.3; 4/ D 6=24, and P.4; 4/ D 1=24, from Bartholomew (1959).

3.21. Verify the accuracy of the statement near the end of Section 3.6.2b that starts
on p. 154, “Manipulation of (3.24) shows that TS is a function of the usual F
statistic F D MSA=MSE and that TS is large if F is large or small (and small
means F near 0, which means SSA=t � MSE). Thus, an ‘exact’ corrected score
procedure is to just carry out the usual F test with the usual F critical values.”

http://www4.stat.ncsu.edu/~boos/Essential.Statistical.Inference


Chapter 4
Bayesian Inference

4.1 Introduction

The majority of this book is concerned with frequentist inference about an unknown
parameter � arising in a statistical model, typically a parametric model where data
Y are assumed to have density f .y I�/. The classical tools are estimation � by
maximum likelihood, hypothesis testing via TW, TS, or TLR tests, and confidence
interval estimation obtained by inverting test statistics. Throughout, the parameter
� is viewed as a fixed constant, and only Y is random.

The Bayesian approach is a bit different, starting with the assumption that � is
random with population or prior density �.�/. Then Nature chooses a particular
value � from �.�/ and generates data Y from f .y I�/, but written as f .y j �/
to emphasize that it is a density of Y conditional on the value of � . At this point,
the goals of frequentist and Bayesian inference are the same: there is one value of
� that generated the data, and our goal is to learn about that value based on Y .
However, the Bayesian approach is different because it can take advantage of the
original random nature of � and use the joint distribution of � and Y to get the
conditional density of � given Y ,

�.� j Y D y/ D f .y j �/�.�/
Z

f .y j �/�.�/d�
: (4.1)

This conditional density is called the posterior density of � and is the basis for
making inferences about � . For example, the standard point estimator of the value
of � that generated Y is the mean of the posterior,

R

��.� j Y /d� . Analogues of
.1 � ˛/ confidence regions, called credible regions, are regions of the parameter
space that have posterior probability 1 � ˛.

The density in the denominator of (4.1), m.y/ D R

f .y j �/�.�/d� , is the
marginal density of Y . Before data has been collected, m.y/ can, in principle, be
used to predict a future value of Y . When used in this fashion,m.y/ is usually called

D.D. Boos and L.A. Stefanski, Essential Statistical Inference: Theory and Methods,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-4818-1 4,
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the prior predictive density. Note that frequentist inference has no parallel method
for predicting before observing data except perhaps to guess a value of � and use
f .y j �/.

A more important forecast density is the marginal density of a future value of Y ,
say Y new,

m.ynew j Y / D
Z

f .ynew j �;Y /�.� j Y /d�:

We call m.ynew j Y / the posterior predictive density. If Y new is independent of
Y , then f .ynew j �;Y / reduces to f .ynew j �/ and m.ynew j Y / is defined in
exactly the same fashion as m.y/ except that the integration over � is with respect
to the posterior instead of the prior. For a specific predicted value, one might use the
mean of m.ynew j Y /, but m.ynew j Y / allows us to assess the uncertainty about
the prediction, perhaps giving a prediction interval.

Here we briefly discuss notation specific for this chapter. Typically, we prefer
to use capital letters for random quantities and lowercase letters for arguments of
functions, like X and g.x/. However, we break our convention here because �
and � are hard to distinguish, and standard Bayesian notation is to use lowercase
� everywhere and let the context dictate the usage. Within functions, � refers to
arguments, and f .y j �/ means f .y j � D �/. When referring to densities about �
like priors and posteriors, we use � and let the arguments show whether it is a prior
or posterior.

The new quantity introduced in Bayesian analysis is the prior �.�/. Where
does it come from? For the subjective Bayesian, �.�/ reflects personal uncertainty
about � before the data are collected. For other Bayesians, �.�/ incorporates all
previous information known about � , perhaps from historical records, and Bayesian
analysis is used to combine previous information with current data. (Frequentists
can also include historical information for making inferences but not in such a
straightforward way.) For others, �.�/ may be a convenient technical density that
allows them to use the Bayesian machinery easily (conjugate priors) or in an
objective fashion often resulting in inference close to frequentist inference (vague
or non-informative priors). In any case, �.�/ is a crucial quantity in Bayesian
inference, and often a stumbling block for non-Bayesians. We will not spend time
reviewing debates about �.�/, but merely assume that it has been given.

We start with a few simple examples.

Example 4.1 (Binomial(nIp/). For Y that is binomial(nIp/,

f .y j p/ D
 

n

y

!

py.1� p/n�y y D 0; 1; : : : n:

The usual prior is a beta(˛; ˇ/ density

�.p/ D � .˛ C ˇ/

� .˛/� .ˇ/
p˛�1.1 � p/ˇ�1;
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where � ./ is the Gamma function. Multiplying the two densities results in the joint
density

 

n

y

!

py.1 � p/n�y � .˛ C ˇ/

� .˛/� .b/
p˛�1.1 � p/ˇ�1

D c.˛; ˇ; y/pyC˛�1.1� p/n�yCˇ�1:

Formally the posterior is obtained by dividing the joint density by the marginal
density of Y

m.y/ D
Z 1

0

c.˛; ˇ; y/pyC˛�1.1 � p/n�yCˇ�1dp

D
B.y C ˛; n � y C ˇ/

�

n
y

	

B.˛; ˇ/
; (4.2)

where B.˛; ˇ/ D � .˛/� .ˇ/=� .˛ C ˇ/ is the beta function. This beta-binomial
density arises in other contexts where one averages over the p of binomial densities.

In this case, we really do not need m.y/ because we can recognize from the
kernel pyC˛�1.1 � p/n�yCˇ�1 of the joint density that the posterior must be a
beta.y C ˛; n � y C ˇ/ density. Whenever the posterior is from the same family
as the prior, we say the prior is a conjugate prior. Historically, conjugate priors
were very important because they simplified finding posteriors. With the advent of
modern computing and Markov chain Monte Carlo methods, conjugate priors are
not as essential as in the past, but they still make inference very straightforward.

Because the mean of a beta(˛; ˇ) density is ˛=.˛Cˇ/, the mean of the posterior is

E.p j Y / D Y C ˛

Y C ˛ C n � Y C ˇ
D Y C ˛

˛ C ˇ C n

D
�

˛ C ˇ

˛ C ˇ C n

��

˛

˛ C ˇ

�

C
�

n

˛ C ˇ C n

��

Y

n

�

: (4.3)

Here we have used upper case Y to emphasize the random nature of the estimator.
We see that the posterior mean is a weighted average of the prior mean and the
unbiased estimator Y=n. Bayesian point estimators are usually of this general form,
shrinking maximum likelihood estimators toward prior values.

For a specific numerical example with (4.3), let n D 10 and suppose Y D 2

is observed. Then a uniform(0,1) prior (˛ D ˇ D 1) gives posterior mean .25
compared to the unbiased estimator .20. Jeffreys’s noninformative prior, ˛ D ˇ D
1=2 from (4.12, p. 175), gives 5/22=.23, and a more informative prior, ˛ D ˇ D 5

gives equal weighting and posterior mean (1/2)(1/2)+(1/2)(.20)=.35.All these Bayes
estimators are drawn toward the prior mean of 1/2 (when ˛ D ˇ), but the latter
was the only one exerting much influence away from the unbiased estimator .20.



166 4 Bayesian Inference

Lehmann and Casella (1998, p. 311–312) show that ˛ D ˇ D p
n=2 is a special

choice for which the Bayes estimator has lower mean squared error than Y=n

for small n over most of the parameter space (0,1). This illustrates the general
tendency that Bayes estimators compare favorable in terms of mean squared error
to frequentist unbiased estimators. Of course, the choice ˛ D ˇ D 0 leads to Y=n
even though the prior for these values is not a true density because p�1.1 � p/�1
is not integrable (hence the term improper prior). The beta.Y; n � Y / posterior is
proper, however, as long as 1 � Y � n � 1.

One arena where Bayesian inference is very appealing is when trying to make
personal decisions about health care procedures (surgeries, correct drug usage, etc.).
Here is one example that is quite real for a lot of folks with heart problems.

Should Stent Patients Stop Taking Blood Thinners Before Surgery?

When a heart artery gets clogged up, the standard procedure is to open up the artery
with angioplasty using an inflatable balloon at the end of a catheter that is usually
inserted in the leg and guided up to the clogged artery. An important advance in the
use of angioplasty is to leave a bare metal stent (thin hollow mesh) in the artery to
keep the artery from clogging back up. These stents are effective but still have a
rate of clogging up (called restenosis) of 30% in the first year. The next generation
of stents are called drug-eluting because they are inserted with a drug coating that
keeps the restenosis rate under 10%, a major improvement. However, it has been
discovered that these drug-eluting stents have an increased risk for a blood clot to
form on their surface if blood thinners, notably clopidogrel (brand name Plavix)
plus aspirin, have been stopped. In one study, it was found that a certain percentage
of people with drug-eluting stents who stopped clopidogrel at the end of 6 months
experienced some kind of event linked to a blood clot in the following 18 months.
We shall assume for illustration that the percentage is 5%, but it is likely smaller.
So, it is now being recommended that people with drug-eluting stents remain on
blood thinners like clopidogrel for much longer than the initial 6 month period after
receiving their stents, perhaps indefinitely.

The dilemma for these patients with drug-eluting stents is what to do when
they need surgery or even something as simple as a colonoscopy where it is
recommended that they stop all blood thinners before the operation. The reason
for stopping the blood thinners is to reduce the risk of internal bleeding during and
after the operation or procedure. However, stopping the blood thinners yields the
increased risk of blood clots on the stent and a possible heart attack.

We first think about a person with a drug-eluting stent who is considering an
operation for which he needs to stop taking blood thinners. What is his risk of a
blood clot if he stops taking blood thinners? Ignoring the difference between an 18
month window (from the study) and a 7 day window (for his operation), he desires
to use the 5% result to discern a relevant prior. The 5% study result can be viewed as
arising from a sample of people having the marginal beta-binomial distribution (4.1,
p. 164). Each of the persons in the study can be viewed as obtaining a p from the
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Fig. 4.1 Possible priors for the stent example. Left panel: Beta(1.5,28.5) density. Right panel:
Beta(.01,.19) density

population distribution of p’s, then experiencing a Bernoulli event during the next
18 months with probability p. Presumably, different people have different risks of
having a blood clot once they stop blood thinners leading to the distribution of p’s.
The mean and variance of the beta-binomial in (4.1, p. 164) with n D 1 are ˛=.˛C
ˇ/ and ˛ˇ=.˛ C ˇ/2, respectively. Thus, it makes sense to set :05 D ˛=.˛ C ˇ/

or ˇ D 19˛, but it is not clear how to set their actual values because .˛; ˇ/T is
not estimable from a sample of beta-binomial random variables, each with n D 1.
Fortunately, this is not required here. Using (4.1, p. 164) with Y D 1 and n D 1, the
prior predicted probability that a person will have a blood clot is

P.Y D 1/ D B.1C ˛; ˇ/

B.˛; ˇ/
D ˛

˛ C ˇ
D :05

regardless of the actual values of ˛ and ˇ. Here we have used the fact that � .˛ C
1/ D ˛� .˛/. Thus, the patient should evaluate his risk at 1 in 20 if he stops taking
blood thinners.

We actually know one person who stopped the blood thinners for a colonoscopy
and had a blood clot during the procedure. He was restented and his dilemma now is
the same: should he stop blood thinners in the future for an important surgery? His
situation is a bit different, though, because he actually has data, Y1 D 1 for n D 1,
leading to his personal posterior beta(1C ˛; ˇ) and forecast density

P.Y2 D 1 j Y1 D 1/ D B.2C ˛; ˇ/

B.1C ˛; ˇ/
D ˛ C 1

˛ C ˇ C 1
:

Substituting ˇ D 19˛, this probability is .˛ C 1/=.20˛ C 1/. Figure 4.1 shows
two possibilities, ˛ D 1:5 on the left and ˛ D :01 on the right. With ˛ D 1:5, the
predicted probability of an event is only .08, barely up from .05 because the prior is
unimodal above .05. However, with ˛ D :01 the prior is bimodal putting .95 of the
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mass near 0 and .05 near 1. Then, his risk is .:01C1/=.20.:01/C1/D :84, and with
˛ D :001 it is .98. These bimodal priors reflect a belief that there are essentially two
types of individuals, those who do not need blood thinners beyond 6 months and
those that do. And for those that do need blood thinners, the risk is almost 1 if they
stop taking blood thinners.

Thus, we have a situation that a person without any data has a 1 in 20 risk, but
a person who has already experienced a blood clot, the risk could be anywhere
between .05 and 1. In other words, without further information about the shape of
the population of p’s, the second person cannot really evaluate his risk. �

Example 4.2 (Normal(�; �2Y /). Suppose that Y1; : : : ; Yn are iid N.�; �2Y ), where
�2Y is known, and the prior density for � is N.�0; �20 ), where �0 and �20 are known.
Straightforward calculations (Problem 4.1) reveal that the posterior of � given Y (or
equivalently, given the sufficient statistic Y ) is normal with mean

�0�0 C �nY

�0 C �n
(4.4)

and variance .�0C�n/�1, where �0 D 1=�20 is the prior precision of � and �n D n=�2Y
is the precision of Y . Thus, the posterior mean is again a weighted average of the
prior mean and the unbiased estimator.

A 1 � ˛ credible interval or region is a set of � values that has posterior
probability 1 � ˛, much like a confidence interval or region. For the above normal
posterior, the 95% credible interval for � is

 

�0�C �nY

�0 C �n
� 1:96

.�0 C �n/1=2
;
�0�C �nY

�0 C �n
C 1:96

.�0 C �n/1=2

!

: (4.5)

One advantage of these intervals is that people can say naturally “I believe with
probability .95 that � lies in the interval.” Frequentists, on the other hand, need to
explain that 95% confidence intervals are intervals such that in repeated sampling,
95% of them on average contain the true � .

The scope of application for this simple normal example is quite large if one
is willing to ignore the difference between estimating variability and assuming it
known. For example, we know maximum likelihood estimators are approximately
normal with asymptotic variances given by the elements of the inverse of the total
information matrix. Thus, suppose that � is b 	 1 but b�1 is a single parameter of

interest with variance estimated byb�21 D
n

IT.b�/
�1
o

11
. Then, using a N.�y01; �201)

prior for �1, the posterior is approximately normal with mean

�01=�
2
01 C Y =b�21

1=�201 C 1=b�21

and variance
�

1=�201 C 1=b�21
	�1

. �
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A nice feature of independent data is that one can sequentially update the prior
for each additional datum, or all at once. For example, suppose Y1; : : : ; Yn are
independent with respective densities fi .yi j �/; i D 1; : : : ; n. Then, the posterior is

�.� j Y / D
�.�/

n
Y

iD1
fi .Yi j �/

R

�.�/

n
Y

iD1
fi .Yi j �/ d�

D
�.� j Y1/

n
Y

iD2
fi .Yi j �/

R

�.� j Y1/
n
Y

iD2
fi .Yi j �/ d�

D
�.� j Y1; : : : Yk/

n
Y

iDkC1
fi .Yi j �/

R

�.� j Y1; : : : ; Yk/
n
Y

iDkC1
fi .Yi j �/ d�

: (4.6)

Here, �.� j Y1/ is the posterior from using the prior and Y1. It then is used as the
prior for the remaining data. In the simple normal example above, the intermediate
posterior after observing the first k Y ’s has mean

�0�0 C kY k=�
2
0

�0 C k=�20
;

where Y k D k�1Pk
iD1 Yi .

Sufficient statistics often make calculations easier. Because of the factorization
theorem, if a sufficient statistic for � exists, then the posterior depends on the data
only through the sufficient statistic. This is clear in the simple normal example,
where the posterior depends only on Y . In addition, one can replace the likelihood
in Bayesian analysis by the likelihood based only on the sufficient statistic. For the
simple normal example, we could use the N.�; �20 =n/ density of Y in place of the
full likelihood.

There are large philosophical differences between frequentist and Bayesian
approaches. The frequentist uses the sampling distribution of statistics to define
estimators, confidence regions, and hypothesis tests. The Bayesian relies on the
posterior density for inference. However, the details of the difference in approaches
often reduces to how nuisance parameters are handled in each approach.

Suppose that � is partitioned into .�T1 ;�
T
2 /
T , where �1 is the parameter of

interest and �2 is often called a nuisance parameter. The Bayesian approach is to
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integrate �2 out of the posterior density, yielding the marginal posterior density
for �1. The frequentist uses a variety of techniques to deal with �2: (i) use a
conditional or marginal likelihood that does depend on �2; (ii) plug in the maximum
likelihood estimator for �2 and try to handle the resulting sampling distributions;
(iii) use pivotal quantities like the t statistic; or (iv) take the maximum value of
p-values over the nuisance parameter space. The frequentist approaches often seem
ad hoc compared to the Bayesian approach. However, assigning meaningful priors
to the nuisance parameters is often much harder than for the parameters of interest.
Integration to get the marginal posterior might be daunting, but computing strategies
are available. Thus, there are tradeoffs in both Bayesian and frequentist approaches,
and neither is uniformly easier to use than the other. In this chapter we try to give
an overview of the main ideas of Bayesian inference, and include comparisons to
frequentist procedures when appropriate.

4.2 Bayes Estimators

Although � is random in Bayesian analysis, once Nature has chosen a particular
value of � and data Y is generated, then � is fixed, and it makes sense to define
point estimators of � . Bayes estimators are straightforward minimizers of Bayes
risk, which we now define after first defining risk.

A loss function L.� ; ı.Y // is a nonnegative function of the true parameter
value � and an estimator ı.Y /. The most common loss function is squared error,
L.�; ı.Y // D P f�i � ıi .Y /g2. The risk is the expectation of L.� ; ı.Y // with
respect to the conditional distribution of Y given � ,

R.�; ı/ D
Z

L.� ; ı.y//f .y j �/ dy:

At this point there are several standard frequentist approaches. The first approach is
to restrict the class of estimators, say to unbiased estimators, and then to minimize
R.�; ı/ over the restricted class. In the case of unbiased estimators and squared
error loss, the resulting optimal estimator, if it exists, is called the minimum
variance unbiased estimator (MVUE). The second general frequentist approach is
to maximize the risk R.�; ı/ over � and then seek an estimator that minimizes the
maximum risk. Estimators ımm that satisfy

inf
ı

sup
�

R.�; ı/ D sup
�

R.�; ımm/;

are called minimax estimators.
Instead of maximizing the risk, the Bayes approach is to average the risk over �

leading to the Bayes risk

RBayes.�; ı/ D
Z

R.�; ı/�.�/ d�: (4.7)
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An estimator ıBayes that minimizes RBayes.�; ı/ is called a Bayes estimator. For
squared error loss, the Bayes estimator is the posterior mean

R

� �.� j y/ d�. For
absolute error loss in the case of a scalar parameter, L.�; ı.y// D j� � ı.y/j, the
Bayes estimator is a median of the posterior �.� j y/ and is not necessarily unique.

Some authors (e.g., Robert, 2001, p. 62–63) call (4.7) the integrated risk and its
value at the minimizer ımin, RBayes.�; ımin/, the Bayes risk. If this latter quantity is
finite, then the Bayes estimator also minimizes at each y the posterior expected loss

Z

L.�; ı.y//�.� j y/ d�:

Bayes estimators with proper priors are generally not unbiased in the frequentist
sense. The weighted means of Examples 4.1 (p. 164) and 4.2 (p. 168) are
clearly biased. However, they typically have good risk behavior in the frequentist
sense. Interestingly, a key technique for finding minimax estimators starts with a
Bayes estimator (see Lehmann and Casella, 1998, Ch. 5). Moreover, an admissible
estimator (an estimator not uniformly larger in risk compared to any other estimator)
must be a Bayes estimator or the limit of Bayes estimators. Thus, Bayes estimators
are not only good in terms of Bayes risk but are often of interest to frequentists
willing to sacrifice unbiasedness.

4.3 Credible Intervals

A 1 � ˛ credible interval or region is just a region of � values with posterior
probability 1 � ˛. When the region volume is minimized, the region is called
a highest posterior density (HPD) region. For example, the normal interval (4.5,
p. 168) is a 95% HPD interval due to the symmetry and unimodality of the normal
distribution. Because Monte Carlo methods (Section 4.8, p. 193) are often used to
estimate posteriors, simple equal tail area intervals are the most commonly used
type of credible intervals. That is, given a set of N replications from the end of a
Markov chain Monte Carlo run, one just orders the values, and the empirical .025
and .975 quantiles are the endpoints of the 95% credible interval.

Often credible intervals are called Bayesian confidence intervals. And in some
cases they correspond exactly to frequentist confidence intervals such as the usual t
interval for the case of a single normal mean with unknown variance and improper
priors (see the end of Section 4.6.1, p. 176). In general, however, credible intervals
do not have the frequentist property of including the true parameter with probability
1�˛ when repeated sampling with the same � value. Rather, for given data Y D y,
they have probability 1�˛ of containing the true parameter value. As an illustration,
Agresti and Min (2005) investigated the frequentist coverage of Bayesian credible
intervals for p1 � p2, p1=p2, and odds ratios for two independent binomials. They
found that the frequentist coverage of the Bayesian intervals was not as good as the
best of the frequentist intervals.
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Recall that even though � is random, when Nature chooses a particular �0 and
generates data Y from f .y j �0/, for that data Y , � is fixed at �0 and at least
Nature knows whether �0 lies in the interval. In fact, on the computer we can play
the role of Nature and check the validity of Bayesian specifications by generating
�k , k D 1; : : : ; K; from a continuous prior �.�/ and for each �k, generate data Y k ,
form the posterior and credible interval and see if the proportion of intervals that
contain the associated �i is close to 1 � ˛. A related approach is to compute

Hk D
Z �k

�1
�.t j Y k/dt; k D 1; : : : ; K:

By the probability integral transformation,Hk should be a uniform random variable,
and H1; : : : ;HK can be checked for uniformity using a statistic like the Anderson-
Darling goodness-of-fit statistic. Lack of uniformity suggests the presence of
mistakes in the mathematics or the computations. Examples may be found in
Monahan and Boos (1992). Cook et al. (2006) give a similar proposal for testing
validity of Bayesian posteriors and computations.

4.4 Conjugate Priors

When the data Y has density f .y j �/ and the prior and posterior are from the
same family of densities, we say that the prior is conjugate. More specifically,
if the conjugate prior has density �.� j �prior/, where �prior is a vector of fixed
hyperparameters, then the posterior density has the form �.� j �post/, where the
updated hyperparameter �post is a known function of �prior and the data Y .

In Examples 4.1 (p. 164) and 4.2 (p. 168) we have already seen conjugate priors.
The beta(˛; ˇ/ prior for binomial.n; p/ data Y leads to the beta(Y C ˛; n� Y C ˇ)
posterior. The N.�0; �20 / prior for a sample of N.�; �2Y / data leads to a Nf�0�0 C
�nY /=.�0 C �n/; 1=.�0 C �n/g posterior, where �0 D 1=�20 and �n D n=�2Y . Other
examples illustrated in problems are: a beta(˛; ˇ) prior is conjugate for the negative
binomial family; a gamma prior is conjugate for Poisson data and also for gamma
data; a Pareto prior is conjugate for uniform(0,�) data.

The examples mentioned above are for one real � . An interesting vector case is
the multinomial(nIp1; : : : ; pk/. Here the conjugate prior is a Dirichlet(˛1; : : : ; ˛k/
distribution with density

�.p1; : : : ; pk j ˛1; : : : ; ˛k/ D 1

B.˛/

k
Y

iD1
p
˛i�1
i ; (4.8)

where B.˛/ D Qk
iD1 � .˛i /=� .

Pk
iD1 ˛i /. Recall that the likelihood for multino-

mial data .N1; : : : ; Nk) is proportional to
Qk
iD1 p

Ni
i . Thus the posterior must be

proportional to
k
Y

iD1
p
Ni
i

k
Y

iD1
p
˛i�1
i D

k
Y

iD1
p
˛iCNi�1
i ;

which we recognize as Dirichlet.˛1 CN1; : : : ; ˛k CNk/.
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DeGroot (1970, Sect. 9.3) shows that any data density that has a sufficient statistic
of fixed dimension for all n � 1 has a conjugate prior. The most useful densities
of this type belong to the exponential family. For simplicity we use the natural
parameter version given in (2.60, p. 99)

f .y I�/ D h.y/ exp

(

s
X

iD1
�iTi .y/� A.�/

)

: (4.9)

The conjugate prior has density

�.� j � ; / D K.�; / exp

(

s
X

iD1
�i�i � A.�/

)

: (4.10)

The posterior is �.� j � C T .Y /; C 1/ as can be seen by multiplying likelihood
and prior

h.Y / exp

(

s
X

iD1
�iTi .Y / �A.�/

)

K.�; / exp

(

s
X

iD1
�i�i � A.�/

)

/ exp

(

s
X

iD1
�i .Ti .Y /C �i /� .C 1/A.�/

)

:

This natural exponential family form is often not the easiest (or most “natural”)
form to work with. The binomial density

�

n
y

	

py.1 � p/n�y is an exponential family

density with h.y/ D �

n
y

	

, T .y/ D y, � D logfp=.1�p/g, andA.�/ D n log.1Ce�/.
From (4.10) the conjugate prior is

�.� j �; / / exp f��� n log.1C e�/g D e��

.1C e�/n
:

Using the change-of-variables formula to transform back to the density of p D
e�.1C e�/�1, we find �.p j �; / is beta(˛ D � C 2; ˇ D nC 2� �/. The update
from prior �.� j �; / to posterior �.� j � CY; C1/ is parallel to the usual update
of beta(˛; ˇ) to beta(˛ C Y; n � Y C ˇ) of Example 4.1 (p. 164), but the latter is
much simpler to use.

As mentioned in the chapter Introduction use of conjugate priors are not as
important as in the past, but they are straightforward. Moreover, one might argue
philosophically that updating the prior with data should not change the form of the
density but just change the hyperparameters. More examples of conjugate priors for
normal data appear in Section 4.6 (p. 176).
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4.5 Noninformative Priors

The search for truly noninformative priors has been long and extensive, but it does
not seem possible to have a general rule for specifying ignorance about � in the
prior. Kass and Wasserman (1996) give an extensive discussion, and here we give
briefly a few ideas from that paper, but most of the ideas originate with Jeffreys
(1961).

Consider first the case of a discrete finite set for � , say � can only take the values
1, 2, 3. Then it seems quite plausible that a non-informative prior give equal weight
to each value,�.�/ D 1=3 for � D 1; 2; 3. One criticism is for the more general case
of events A;B;C where C D C1 [ C2. Then, we might specify P.A/ D P.B/ D
P.C / D 1=3 or P.A/ D P.B/ D P.C1/ D P.C2/ D 1=4. So there is not a clear
definition of how to proceed in such cases.

For the case of a location parameter � taking values on the whole real line
.�1;1/, the improper prior �.�/ D 1 giving equal weight to all values can be
justified on a variety of grounds. An improper prior does not have a finite integral.
However, there seems to be no philosophical problem with improper priors as long
as they lead to proper posteriors. From Example 4.2 (p. 168), the posterior using
�.�/ D 1 (equivalent to taking �0 D 0 and �0 D 1) is normal with mean Y and
variance �2Y =n.

For the case of a scale parameter � taking values in .0;1/, Jeffreys suggests
�.�/ D 1=� . His invariance argument is that any power transformation of � , say
� D �a, has via a change-of-variables, the improper density

�.�/ D 1

�1=a

ˇ

ˇ

ˇ

ˇ

�1=a�1

a

ˇ

ˇ

ˇ

ˇ

D 1

a�
; 0 < � < 1;

which is similar in form to 1=� .
Combining these last two improper priors, a location-scale family with .�; �/ 2

.�1;1/ 	 .0;1/, suggests using the improper prior V

�.�; �/ / 1

�
: (4.11)

Now, moving to the case of general parameters on continuous parameter
spaces, let us first consider the binomial.n; p/ case. It seems quite natural to
think first of �.p/ D 1, the uniform prior on .0; 1/. However, transformations
of the parameter no longer have the uniform property. For example, the odds
parameter � D p=.1 � p/ has density

�.�/ D 1

ˇ

ˇ

ˇ

ˇ

d.�=.� C 1//

d�

ˇ

ˇ

ˇ

ˇ

D 1

.1C �/2
; 0 < � < 1:



4.5 Noninformative Priors 175

For the one-parameter case, Jeffreys (1961) proposed the general noninformative
prior for � as

�.�/ / I.�/1=2; (4.12)

where I.�/ is the usual information number. Recall from (2.50, p. 79) that the
transformed parameter � D g.�/ has information

I.�/ D 1

fg0.�/g2 I.�/ D 1

fg0.g�1.�//g2 I.g
�1.�//: (4.13)

Now notice that using the change-of-variable formula for densities with � D g.�/

applied to (4.12) yields

�.�/ / 1

jg0.g�1.�//jI.g
�1.�//1=2 D I.�/1=2;

the same as the square root of (4.13). Thus, (4.12) leads to the same form in terms
of information regardless of parameterization.

In the binomial case, I.p/ D n=fp.1 � p/g, and thus Jeffreys’s prior is
proportional to fp.1 � p/g�1=2, a beta.1=2; 1=2/ density. The odds parameter
� D p=.1 � p/ has Jeffreys’s prior

�.�/ / 1

�1=2.1C �/
; 0 < � < 1: (4.14)

Further transforming to the log odds, � D logfp=.1� p/g, gives

�.�/ / e�=2

1C e�
; �1 < � < 1: (4.15)

Moving to the multiparameter case, Jeffreys gives

�.�/ / jI.�/j1=2 ; (4.16)

where jI.�/j is the determinant of I.�/. As an example, consider the multinomial
(nIp1; : : : ; pk/ distribution where

Pk
iD1 pi D 1. Recall from Chapter 2 Exam-

ple 2.13 (p. 70) that IT.p/ D nfdiag.1=p1; : : : ; 1=pk�1/C 11T =pkg leading to

jIT.p/j D n

p1p2 � � �pk ;

and Jeffreys’s prior

�.p/ / 1p
p1p2 � � �pk ;
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a Dirichlet(1=2; 1=2; : : : ; 1=2) distribution. Recall that the Dirichlet distribution is
the conjugate prior for the multinomial distribution.

For the N.�; �2/ model with � D .�; �/, the information matrix is Diag .��2;
2��2/ and Jeffreys’s prior would be �.�; �/ / ��2 in contrast to ��1 of (4.11,
p. 174). Thus, Jeffreys modified his original proposal (4.16) in the presence of
location parameters, say �1; : : : ; �k , to

�.�1; : : : ; �k;�/ / jI.�/j1=2 ; (4.17)

where I.�/ is the information matrix with �1; : : : ; �k held fixed (treated as known).
With this modification, Jeffreys’s prior for the N.�; �2/ case is ��1. Moreover, the
extension to the normal linear model would yield the same prior.

Many noninformative priors are improper. Often, they result in proper and useful
posteriors. But in multiparameter problems, it is not as easy to assess the effect of
using improper priors. As an alternative, very diffuse proper priors are often used in
practice. But such priors, as they approximate improper priors in a limiting sense,
sometimes share problems similar to those of improper priors. Kass and Wasserman
(1996, p. 1358) conclude after reviewing a number of examples: “The message from
this and similar examples is that improper priors must be used with care when the
dimension of the parameter space is large.”

There are many other approaches for obtaining noninformative priors as surveyed
in Kass and Wasserman (1996). However, they conclude that Jeffreys’s priors, (4.11,
p. 174), (4.12, p. 175), (4.16, p. 175), and (4.17, p. 176) are the “default among the
defaults” for noninformative priors.

4.6 Normal Data Examples

4.6.1 One Normal Sample with Unknown Mean and Variance

In Example 4.2 (p. 168) we made the unrealistic assumption that the variance of the
normal data is known. Here we assume that Y1; : : : ; Yn are iid N.�; �2/, where both
� and � D 1=�2 are unknown, � D .�; �/T . Use of the precision � in place of �2

makes the calculations easier.
The prior is usually given in two steps: �.� j �/ is N.�0; .� n0/�1/ and �.�/ is

gamma(˛0; 1=ˇ0) with density �.�/ D � .˛0/
�1ˇ˛00 �˛0�1e��ˇ0 . The use of 1=ˇ0 in

the gamma prior instead of ˇ0 also makes the computations easier. The full prior
is then �.�; �/ D �.� j �/�.�/. Because the gamma prior mean is ˛0=ˇ0, we are
roughly thinking that the prior variance is like .ˇ0=˛0/n�1

0 . Another way to assess
the strength of the prior is to note that the marginal prior distribution of � is t
with center �0, scale2 D .ˇ0=˛0/=n0, and degrees of freedom 2˛0. For further
calibration, recall that a t distribution with k degrees of freedom and scale D � has
variance �2k=.k � 2/ provided k > 2.
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The likelihood is

.2��2/�n=2 exp

�

� 1

2�2

n
X

.Yi � Y /2 C n.Y � �/2
o

�

:

Multiplying the likelihood and the prior, squaring and regrouping (Problem 4.10,
page 202, asks you to fill in the steps), the joint distribution and posterior have the
form

�.�; � j Y / D c1�
1=2 exp

�

�� n
0

2
.� � �0/2

�

�˛
0�1e��ˇ0

; (4.18)

where �0 D .n0�0 C nY /=.n0 C n/, n0 D n0 C n, ˛0 D n=2C ˛0, and

ˇ0 D ˇ0 C
P

.Yi � Y /2

2
C 1

2

�

n0n

n0 C n

�

.�0 � Y /2:

We recognize that (4.18) is the product of the N.�0; .� n0/�1/ density and the
Gamma.˛0; 1=ˇ0/ density, and thus the prior is conjugate for the normal family. For
inference on �, we integrate with respect to � leading to the marginal t posterior
for �,

�.� j Y / D c.df /scale�1
�

1C .� � �0/2

.scale/2df

��
2

4

df C 1

2

3

5

; (4.19)

where df D 2˛0 D nC2˛0, scale2 D .ˇ0=˛0/=.n0 Cn/, and c.df / is the constant
for a t density. The posterior mean is E.� j Y / D �0 and the posterior variance is
Var.� j Y / D scale2fdf=.df � 2/g as long as df > 2.

For forecasting or predicting a new observation YnC1, the posterior predictive
density is

m.ynC1 j Y1; : : : ; Yn/ D
Z

f .ynC1 j �/�.� j Y1; : : : ; Yn/d�; (4.20)

the marginal density of YnC1 based on the posterior of � given the data. Starting with
the full posterior, multiplying by the density of YnC1, and integrating with respect
to � and then � gives thatm.ynC1 j Y1; : : : ; Yn/ is a t density with mean �0, degrees
of freedom 2˛0, and scale2 D .ˇ0=˛0/.1C 1=n0/.

If ˛0 ! �1=2, ˇ0 ! 0, and n0 ! 0 such that .n0=ˇ0/1=2 ! 1, then the
limit of �.�; �/ is proportional to 1=� , an improper prior on .�1;1/ 	 .0;1/.
Plugging into the marginal posterior for �, we find it has a t distribution with mean
Y , df D n � 1, ˛0 D .n � 1/=2, ˇ0 D P

.Yi � Y /2=2, and scale2 D P

.Yi �
Y /2=fn.n � 1/g D s2n�1=n. Thus, the Bayes estimator for this improper prior is Y ,
and the credible interval is identical to the usual t interval of classical frequentist
inference.
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Summarizing, the marginal posterior for � using the informative prior has a t
distribution with mean �0 D .n0�0 C nY /=.n0 C n/ and

scale2 D
2ˇ0 CP

.Yi � Y /2 C
�

n0n

n0 C n

�

.�0 � Y /2

.2˛0 C n/.n0 C n/
: (4.21)

The marginal prior for � has a t distribution with mean �0 and

scale2 D ˇ0

˛0n0
: (4.22)

The marginal posterior for � using the non-informative improper prior has a t
distribution with mean Y and

scale2 D s2n�1
n
: (4.23)

These latter two scale2 values, (4.22) and (4.23), assess the weight of the prior
and data, respectively. Then, (4.21) relates to the combination of those two in
the posterior. Interestingly, the posterior scale does not have to be smaller than
the scale of either the prior or the data because the term .�0 � Y /2 can be made
arbitrarily large by choosing�0 sufficiently far from Y . This counter-intuitive result
contrasts with the scale-known case of Example 4.2 (p. 168) where the posterior
variance of �, .�0 C �n/

�1, is always smaller than ��1
0 or ��1

n .

4.6.2 Two Normal Samples

Here we have Xi ; : : : ; Xm iid N.�1; �2/ and Y1; : : : ; Yn iid N.�2; �2), where � D
.�1; �2; � D 1=�2/T and 	 D �1 � �2 is the parameter of interest. We assume
the usual Normal-gamma priors, �.�1 j �/ is N.�10; .�m0/

�1/, �.�2 j �/ is
N.�20; .� n0/�1/, and �.�/ is gamma(˛0; 1=ˇ0/.

Following the procedure as in the previous section, the joint posterior of � given
.X ;Y / is the product of the N.�0

1; .�m
0/�1/, N.�0

2; .� n
0/�1/, and Gamma.˛0; 1=ˇ0/

densities, where �0
1 D .m0�10 CmX/=.m0 Cm/, m0 D m0 Cm, �0

2 D .n0�20 C
mY /=.n0 C n/, n0 D n0 C n, ˛0 D ˛0 Cm=2C n=2, and V

ˇ0 D ˇ0 C
P

.Xi �X/2
2

C 1

2

�

m0m

m0 Cm

�

.�10 � X/2

C
P

.Yi � Y /2
2

C 1

2

�

n0n

n0 C n

�

.�20 � Y /2:
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Because we really want the posterior of	 D �1 ��2, we need to make a change of
variables, say from .�1; �2/ to .	;�2/ and integrate out�2 and then � . The first step
is easy—because �1 and �2 have conditionally independent normal distributions,
their difference is normal with mean�0

1��0
2 and variance 1=.�m0/C1=.� n0/. Thus,

the posterior of .	; �/ given .X ;Y / is the product of Nf	0; 1=.�m0/ C 1=.� n0/g
and the Gamma.˛0; 1=ˇ0/ density. Finally, integrating out � leads to a marginal t
posterior for 	 with center 	0 D �0

1 � �0
2, degrees of freedom 2˛0, and scale2 D

.ˇ0=˛0/.m0 C n0/=.m0n0/.
The improper prior �.�/ D 1=� obtained by letting ˛0 ! �1, ˇ0 ! 0,m0 ! 0,

and n0 ! 0 such that .m0n0/
1=2=ˇ0 ! 1, leads to a marginal t posterior for	 with

mean X � Y , degrees of freedommC n� 2, and scale2 D s2p.1=mC 1=n/, where
s2p is the usual pooled estimate of variance.

4.6.3 Normal Linear Model

Suppose that Y follows the usual normal linear model with mean X� and
covariance matrix �2In, that is,

Y D X�C e;

and e1; : : : ; en are iid N.0; �2/. The dimension of � is p 	 1, and X is an n 	 p

matrix of constants. We assume again a Normal-gamma prior,� given � D 1=�2 is
N.	0;˙

�1
0 =�/, where ˙ 0 is a positive definite matrix, and � is gamma(˛0; 1=ˇ0).

(The use of � as the coefficient parameter is so that we can keep using ˇ0 as a
gamma hyperparameter.)

Following the style of the previous sections, we find the posterior also has the
Normal-gamma form, where� has posterior mean

�0 D .XTX C˙ /�1.XTY C˙ 0�0/

and covariance matrix .XTX C˙ 0/
�1=� , ˛0 D ˛0 C n=2, and

ˇ0 D ˇ0 C 1

2

n

�

Y �X�0	T Y C �

�0 ��0	T ˙ 0�0

o

: (4.24)

We can also reexpress the posterior mean �0 as a weighted average of the least
squares estimator b� D .XTX/�1XTY and the prior mean�0,

�0 D .XTX C˙ 0/
�1.XTXb�C˙ 0�0/:

Note that if �0 D 0 and ˙ 0 D dIp , where d is a constant and Ip is the
p-dimensional identity matrix, then the posterior mean�0 D .XTXCdIp/�1XTY
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Table 4.1 Weight Gain of Cotton Rats by Litter Size (from Randolph et al. 1977)

Litter Size (X ) 2 3 4 4 4 4 5 5
Weight Gain (Y ) 31.1 36.9 41.6 46.1 48.4 48.4 30.1 44.4
Litter Size (X ) 5 5 6 6 6 6 6 7
Weight Gain (Y ) 46.8 54.0 48.9 50.1 51.2 56.5 68.4 77.1

is the ridge regression estimator of Hoerl and Kennard (1970), originally proposed
to deal with multicollinearity and near singularity of XTX .

Integrating out � , we find the marginal posterior of� is multivariate t with center
�0, 2˛0 D 2˛0 C n degrees of freedom, and scale matrix .ˇ0=˛0/.XTX C ˙ 0/

�1.
The p-dimensional multivariate t with k degrees of freedom, center � and scale
matrix S , has density

c

�

1C 1

k
.x � �/TS�1.x � �/

��.kCp/=2
;

where c D � .k=2C p=2/j˙ j�1= ˚� .k=2/.k�/p=2
.
Suppose that we are interested in only a subset of the � vector, say �1 of

dimension p1, where � D .�T
1 ;�

T
2 /
T . Then the marginal posterior distribution

of�1 is the p1 dimensional multivariate t with 2˛0 C n degrees of freedom, center
�0
1 and scale matrix .ˇ0=˛0/

˚

.XTX C˙ 0/
�1


11
.

If XTX is nonsingular and we let S ! 0, ˛0 ! �p=2, and ˇ0 ! 0 such that
�.�; �/ ! 1=� , then �0 converges to the least squares estimator XTX�1XTY ,
and the marginal posterior of� is a p-dimensional t with degrees of freedom n�p
and scale matrix s2XTX�1, where s2 D .n � p/�1P.Yi � xTi �0/2.

Example 4.3 (Simple linear regression). Randolph et al. (1977) studied energy
use in cotton rats and presented a scatter plot of weight gain in the 12 days after
birth. Boos and Monahan (1986) extracted the data in Table 4.1 from the scatter plot
and used it to illustrate Bayesian analysis using robust regression. Here we use the
standard conjugate prior Bayesian analysis for normal data presented above.

Figure 4.2 (p. 181) gives the scatter plot along with the least squares lines, E.Y j
X/ D 15:6C 6:8X for all 16 data points (solid line), andE.Y j X/ D 25:6C 4:2X

for the first 14 data points (dashed line). Randolph et al. (1977) reported both lines
because they were worried that the last two points were unusual.

Boos and Monahan (1986) used a previous study of cotton rats, Kilgore (1970),
to build a normal-gamma informative prior: given � , � is normal with mean �0 D
.20:4; 8:01/T and covariance

˙�1
0

�
D 1

�

�

3:39 �0:56
�0:56 0:10

�

;
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Fig. 4.2 Scatter plot of
Table 4.1 (p. 180) data with
least squares lines (full data:
solid, without last two points:
dashed)
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Fig. 4.3 Marginal prior and posterior densities for the slope 	2 for the cotton rat data. Left panel
is for the full data, and right panel is for data without last two points. Prior density is dashed line.
Solid lines are posteriors for noninformative prior (on left of each panel) and for informative prior
(center densities)

and � is gamma.˛0; 1=ˇ0/ with ˛0 D 2:5 and ˇ0 D 51:3. Figure 4.3 (p. 181)
gives the marginal prior (dashed lines) and two posteriors (solid lines): from the
noninformative prior on the left of each graph and from the informative prior in the
middle of each graph. The left panel is for the full data, and the right panel is for
the data reduced by deleting the last two data points.

The posteriors for the noninformative priors can be viewed as representing the
data; thus the right panel has a taller density on the left because deleting the last
two points gives a slope estimate with smaller standard error. The posterior for
the informative prior combines information from the data and from the prior. Our
intuition is that this latter posterior should be narrower and taller than either of
the other two densities. This intuition holds in the left panel although the posterior
scale is barely smaller than the prior scale. In the right panel, the posterior scale is
smaller than the noninformative prior posterior but larger than the prior scale. This
non-intuitive result is due to the fact that in the right panel, the prior mean of 8.01
is far away from the least squares estimate 4.2. It is not as clear from the expression
(4.24, p. 179) that the scale might be inflated by a large difference between prior
mean and the data, but basically it is a generalization of (4.21, p. 178) for the one
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sample case. There is an additional factor, the correlation between the slope and the
intercept in the prior and also in the data. Although not presented here, we found
that changing the correlation in the prior to be smaller also reduces the size of the
scale of the posterior for	2. �

4.7 Hierarchical Bayes and Empirical Bayes

The hierarchical Bayes approach is to specify the prior distribution �.�/ in two
stages. The usual prior has parameters ˛ that need to be specified exactly, say
�.�/ D �.� j ˛0/. For example, in the normal problem with known variance
(Example 4.2, p. 168), the normal prior for� has a mean and variance that need to be
given. In the unknown normal case (Section 4.6.1, p. 176) there are four parameters
.�0; n0; ˛0; ˇ0/ to be set, although the normal-gamma prior has a hierarchical flavor
because the normal prior for � is conditional on � .

In the hierarchical approach, the hyperparameter ˛ is not specified but rather a
prior density h.˛/ is given for ˛. Typically, h.˛/ D h.˛ j �0/ has a hyperparameter
� that needs to be given. However, specifying �0 is felt to be more robust and less
subjective than specifying ˛0. In a sense, pushing the choice of specific parameters
higher in the hierarchy makes the resulting prior

�.�/ D �.� j �0/ D
Z

�.� j ˛/h.˛ j �0/ d˛ (4.25)

less sensitive to specification. That is, �.� j �0/ is less sensitive to assigning a
specific value to �0 via h.˛ j �0/ than �.� j ˛/ is to assigning a specific value
˛0. Note that hierarchical Bayes can be viewed as single prior Bayes with prior
�.�/ in (4.25). In fact, in simple problems like Example 4.2 (p. 168) with just one
parameter of interest, there seems to be little interest in using a hierarchy because
finite mixtures of priors can approximate (4.25) easily. The most important use of
hierarchical modeling is in more complicated situations like one-way random effects
ANOVA and meta-analysis discussed below where the Bayesian approach leads to
natural pooling and shrinkage so that estimators of individual effects can borrow
strength from the whole data set. The Bayesian approach also leads to parametric
empirical Bayes methods where specification of the hyperpriorh.˛/ can be avoided.

We can write the posterior in the hierarchical case using (4.25) (but suppressing
dependence on �0) as

�.� j Y / D
f .Y j �/

Z

�.� j ˛/h.˛/ d˛
Z Z

f .Y j �/�.� j ˛/h.˛/ d˛d�
:
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Within the numerator integral, if we multiply and divide by the marginal m.y j
˛/ D R

f .y j �/�.� j ˛/ d�, then we are led to another representation of the
posterior,

�.� j Y / D
Z

�.� j ˛;Y /�.˛ j Y / d˛;

where

�.� j ˛;Y / D f .Y j �/�.� j ˛/
m.Y j ˛/ (4.26)

and

�.˛ j Y / D m.Y j ˛/h.˛/
R R

f .Y j �/�.� j ˛/h.˛/ d˛d� :

In certain situations, we can estimate ˛ by treating m.Y j ˛/ as a marginal
likelihood. Then, supposing further that �.˛ j Y / is highly peaked around the
maximum likelihood estimator b̨, we have

�.� j Y / � �.� j b̨;Y /; (4.27)

and the mean of this approximate posterior is called an empirical Bayes estimator.
Usually, the mean of (4.27) is close to the mean of a full posterior with h.˛/

specified, but the variability from (4.27) does not fully incorporate the uncertainty
about ˛ as does a full Bayesian approach.

4.7.1 One-Way Normal Random Effects Model

We consider data in a one-way design, Yij ; i D 1; : : : ; kI j D 1; : : : ; ni . The
standard frequentist ANOVA models are either fixed effects or random effects. The
Bayesian analogue of the fixed effects model is given by the normal linear model
(Section 4.6.3, p. 179) with XTX D diag.n1; : : : ; nk/. In that model, the prior
covariance ˙�1

0 =� can be used to relate the means to one another, but it does not
have the flavor of a random effects model.

A simple Bayesian random effects ANOVA model is to assume that Yij given
�i and �2e has a normal density with mean �i and variance �2e . Given �1; : : : ; �k
and �2e , the Yij are all independent. Note the abuse of notation here because � of
the previous section here includes both �1; : : : ; �k and �2e . Next, we let �1; : : : ; �k
given ˛ D .�; �a/ be iid from a N.�; �2a / density, and the hyperparameters have
density h.�; �a/. The parameter �2e might also be drawn from a distribution with
parameters added to ˛. However, a typical specification is as follows: �2e has a
Jeffreys’s noninformative prior / 1=�2e on .0;1/, �a has a flat noninformative prior
/ 1 on .0;1/, and � has a flat noninformative prior on .�1;1/. These choices
are nontrivial because other seemingly natural noninformative priors can cause the
posterior to be improper (see, for example, Hobert and Casella, 1996).
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Table 4.2 One-Way Random Effects Data

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

4.9 8.2 8.1 7.4 22.1 5.7
4.1 4.8 3.0 13.5 15.7 8.1
9.1 9.0 13.9 13.4 19.3 12.8

12.6 6.8 19.3 7.6
11.4 13.9

Means 6.0 7.3 9.4 10.3 17.6 9.6
SD’s 2.7 2.2 4.9 3.7 4.1 3.5

Table 4.3 Posterior and Frequentist Estimates for the Table 4.2 Data

Posterior Summaries EBLUP & REML

mean sd 2.5% 50% 97.5% EST SE SE2

�1 7.0 2.2 2.8 7.1 11.1 7.1 1.9 2.1
�2 8.1 2.1 3.8 8.1 12.2 8.1 1.9 2.1
�3 9.6 1.8 6.0 9.6 13.2 9.6 1.7 1.9
�4 10.2 1.8 6.8 10.2 13.7 10.3 1.7 1.9
�5 16.2 2.0 11.7 16.4 19.9 16.2 1.6 1.7
�6 9.8 1.6 6.4 9.8 12.9 9.7 1.6 1.7

� 10.1 2.6 5.0 10.2 14.9 10.2 1.7 1.7
�2a 36.2 103.4 2.3 18.8 152.3 13.1
�2e 16.2 6.1 8.0 15.0 31.3 14.2

The posterior results are from WinBUGS via R2WinBUGS. Monte Carlo standard
errors of the entries are in the second decimal place except for �2a , where for
example, it is 3.2 for the mean. The SE are estimates of (4.30), and SE2 are bias-
corrected versions.

A key focus here is the random effects population N.�; �2a /, which is the prior
�.�i j �; �a/, and therefore we focus on the posterior densities of � and �2a . We
also may be interested in the posterior densities of the individual �i and forecasts of
new individuals from these populations.

To illustrate, Table 4.2 gives data generated from the above model with � D
10, �e D 5, and �a D 4. We analyzed these data with Gibbs sampling using
the R package R2WinBUGS; computational details are given in Example 4.6
(p. 197). Table 4.3 gives summary statistics for the posterior distributions of all the
parameters. Note that the table entries are MCMC estimates (Section 4.8.2, p. 195)
and generally have Monte Carlo standard errors in the second decimal place. The
posterior mean and median are essentially the same for� and � but differ somewhat
for the variance parameters because of their skewed distributions. The posterior
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means for the individual �i are essentially weighted means of the individual sample
means given in Table 4.2, and the posterior mean of � = 10.1.

The frequentist formulation is to let Yij D � C ai C eij , where the eij are
iid N.0; �2e / and independent of the ai that are iid N.0; �2a /. If these variances
were known, then the best linear unbiased estimator (BLUE) of � would be
b� D Pk

iD1 wi Y i:=
Pk

iD1 wi , where w�1
i D Var.Y i:/ D �2a C �2e =ni . Estimating the

variances, say by REML, leads to estimated weightsbwi and the empirical best linear
unbiased estimator (EBLUE) b� D Pk

iD1bwi Y i:=
Pk

iD1bwi with estimated variance
1=
Pk

iD1bwi . In Table 4.3 we see thatb� D 10:2 is close to the Bayes posterior mean
10.1, but with smaller standard error (1.7 versus 2.6).

For estimating the random effects, ai or �C ai , best linear unbiased prediction
(BLUP) proceeds by noting

E.�C ai j Y / D �C E.ai j Y i:/ D �C �2a
�2a C �2e =ni

.Y i: � �/:

Here we have used joint normality of .ai ; Y i:/ and the standard result that if
.X 1;X 2/

T is distributed as MNf.�1;�2/T ;˙ g, then .X 1 j X 2/ is distributed as
MNf�1 C ˙ 12˙

�1
22 .X 2 � �2/;˙ 11 �˙ 12˙

�1
22 ˙ 21g. The conditional expectation

above suggests insertingb� for � yielding

b��
i D b�C �2a

�2a C �2e =ni
.Y i: �b�/: (4.28)

Harville (1976, Theorem 1) verifies that (4.28) is indeed the BLUP for �i D �Cai ,
that is, it minimizes the mean squared error between �i and any unbiased estimator
that is linear in the Yij . Finally, inserting estimators for �2a and �2e , we find the
empirical best linear unbiased predictor (EBLUP) of �i D �C ai is

b�i D .1� bBi/Y i: C bBib�; bBi D b�2e=ni

b�2a Cb�2e=ni
: (4.29)

The mean squared error of prediction for the BLUP version in (4.28) is

E.b��
i � �i /2 D .1 � Bi/

2 �
2
e

ni
C B2

i

�

1
P

wi
C �2a � 2wi �2a

P

wi

�

C2.1 � Bi/Bi
�

wi
P

wi

�

�2e
ni

D
�

1

�2a
C ni

�2e

��1 �
1C

�

wi
P

wi

�

.�2e =ni /

�2a

�

: (4.30)

Kackar and Harville (1984) and Kenward and Roger (1997) discuss how to adjust
this calculation to take into account the estimation of �2a and �2e ; basically they
estimate (4.30) plus a bias term from Taylor series expansions.
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The last three columns of Table 4.3 contain estimates from (4.29), standard
errors from (4.30), b�, and REML estimates of �2a and �2e for the data in Table 4.2.
These frequentist estimates are close to the Bayesian counterparts except, perhaps,
for �2a . The next-to-last column of Table 4.3 contains estimated standard errors
based on estimating the mean squared error of prediction in (4.30). These standard
errors are all less than the Bayesian posterior standard deviations, reflecting the fact
that estimation of �2a and �2e is ignored in the mean squared error of prediction
calculation. The last column shows the adjusted standard errors of Kackar and
Harville (1984) and Kenward and Roger (1997). They are closer to the Bayesian
standard deviations.

For the empirical Bayes approach, we go back to the Bayesian formulation but
simplify the problem by assuming that �2e is known. Then �.� j ˛;Y / of (4.26,
p. 183) is direct from (4.4, p. 168) of Example 4.2 (p. 168) just a product of k
independent normal densities, where the i th density has mean

niY i:=�
2
e C �=�2a

ni =�2e C 1=�2a
(4.31)

and variance .ni=�2e C 1=�2a /
�1. The empirical Bayes approach is to approximate

the posterior by �.� j b̨;Y / where b̨ are obtained from the marginal likelihood
m.y j ˛/ D R

f .y j �/�.� j ˛/ d�, which is the same likelihood as in the
frequentist analysis for estimating .�; �2a ; �

2
e /. If we use the same estimation method

and insert those estimates in (4.31), then the empirical Bayes estimators of �i
are exactly the EBLUPS of (4.29). Also, the posterior variances .ni=�2e C 1=�2a /

�1
are exactly the first term of (4.30) and typically only slightly less than (4.30) because
the second term of (4.30) is small unless �2e is much larger than �2a . For example,
compared to the next-to-last column of Table 4.3 (p. 184), the estimated empirical
Bayes standard errors are only .03 to .05 less than the EBLUP standard errors.

4.7.2 James-Stein Estimation

In a famous paper, James and Stein (1961) proved that the estimator (4.32) of a
multivariate normal mean vector dominates the maximum likelihood estimator in
terms of mean squared error as long as the number of components is three or greater.
Here we briefly describe this result and its empirical Bayes interpretation.

Suppose that Y1; : : : ; Yb are independent with Yi distributed as N.�i ; �20 /, where
�20 is known. In other words, Y is MN.�; �20 Ib/, where Ib is the b-dimension
identity matrix. The James-Stein estimator is

b�JS D
8

<

:

1 � .b � 2/�20
 

b
X

iD1
Y 2i

!�19
=

;

Y : (4.32)
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Note that b�JS shrinks Y towards 0. Lehmann and Casella (1998, p. 276) give the
risk or expected squared error loss ofb� JS as

b
X

iD1
E.b� JS;i � �i /

2 D b�20 � .b � 2/2�40 E
 

b
X

iD1
Y 2i

!�1
; (4.33)

which is clearly less than the risk b�20 forb�MLE D Y .
For the empirical Bayes interpretation, suppose that the prior distribution for �

is MN.0; �2aIb/. If �2a is known, then the Bayes posterior for �jY is normal with
mean

�

1 � �20

�20 C �2a

�

Y : (4.34)

The marginal distribution of Y is MNf0; .�2a C �20 /Ibg, and under this marginal
distribution, .b � 2/�20 =

Pb
iD1 Y 2i is an unbiased estimator of �20 =.�

2
0 C �2a /.

Substituting this estimator in (4.34) leads to (4.32), and thusb�JS may be viewed as
an empirical Bayes estimator. This empirical Bayes characterization of the James-
Stein estimator was originally due to Efron and Morris (1972).

Efron and Morris (1973, p. 126) noted that the prior distribution MN.0; �2aIb/
for � could be replaced by MN.�; �2aIb/ resulting in the Bayes posterior mean

�20
�20 C �2a

�C
�

1 � �20
�20 C �2a

�

Y : (4.35)

The marginal distribution of Y is now MNf�; .�2a C �20 /Ibg, leading to unbiased
estimators b� D Y and bB D .b � 3/�20 =

Pb
iD1.Yi � Y /2 for B D �20 =.�

2
0 C �2a /.

Substituting these estimators into (4.35) yields

bBY C .1 � bB/Y ; (4.36)

very similar to (4.29, p. 185), each component of Y is shrunk towards the sample
mean Y . The estimator (4.36) is also called a James-Stein estimator, and it can be
shown to have expected loss similar to (4.33) that is less than Y as long as b � 4

(Lehmann and Casella, 1998, p. 367). A detailed account of James-Stein estimation
and related minimax results may be found in Chapters 4 and 5 of Lehmann and
Casella (1998).

4.7.3 Meta-Analysis Applications of Hierarchical
and Empirical Bayes

Meta-analysis refer to statistical analysis of a group of studies related to the same
basic question of interest. For example, one might be interested in the effect of zinc
lozenges on preventing colds. There might be k studies that provide estimates of the
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treatment effect, for example, the difference between success rates or odds ratio of
people taking zinc lozenges versus those taking a placebo. Each study would also
provide a standard error for the estimate.

The hierarchical Bayes framework for use in meta-analysis is often very similar
to the random effects model of the last section. We have the results of k studies, each
one providing information on effect parameters �i for the ith study, i D 1; : : : ; k.
The data from the ith study is Yi , and Yi j �i has density fi .yi j �i /, and all the Y 0

i s

are independent given �1; : : : ; �k . Compared to the previous section, here Yi plays
the role of Y i:.

We assume that the �i are drawn from the density �.� j ˛/, where ˛ is
unknown and comes from a prior density h.˛/. Note that in this formulation we
do not have any nuisance parameters to deal with in the distribution of Yi j �i ; for
example, unknown variances in normal problems. Typically, one just assumes that
these variance parameters are estimated well-enough to be considered known. In
the binomial models discussed below, however, there is a nuisance control group
probability that is given a prior distribution. Ignoring any first stage nuisance
parameters, the three levels of the model are

f .y j �/ D f .y1; : : : ; yk j �1; : : : ; �k/ D
k
Y

iD1
f .yi j �i /;

�.� j ˛/ D �.�1; : : : ; �k j ˛/ D
k
Y

iD1
�.�i j ˛/;

h.˛/:

The second and third stages of the hierarchy thus provide a prior for � of the form
(4.25, p. 182)

�.�/ D �.�1; : : : ; �k/ D
Z k
Y

iD1
�.�i j˛/h.˛/d˛:

In the empirical Bayes framework where ˛ is estimated by Ǫ , this results in a
simple estimated prior for �i of the form �.�i j Ǫ / and an estimated posterior of
the form �.�i j Ǫ ; yi /. The mean of this estimated posterior (the empirical Bayes
estimate) is usually close to the posterior mean of the full Bayesian hierarchical
model. However, the variance of the estimated posterior tends to be too small when
compared to the variance of the full Bayesian posterior (because the variability in ˛
is ignored). Kass and Steffey (1989) provides corrections for this underestimation.
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4.7.3a Meta-Analysis using Normal Models with Known Variance

At minimum, most study summaries include an effect estimate and standard error.
The effect estimate could be the difference of sample means or a coefficient in a
linear or logistic regression. Thus, the data for a meta-analysis of k studies often
consists of .Y1; V1/; : : : ; .Yk; Vk/, where the Yi are at least approximately normally
distributed with variance estimated by Vi but treated as a known variance in the
analysis.

A fixed effect approach would assume that all the Yi are approximately unbiased
estimators of the true effect �. An approximately optimal estimator is then Y D
Pk

iD1 V �1
i Yi=

Pk
iD1 V �1

i . Because of study heterogeneity caused by differences in
study protocols, investigators, and subject populations, it is unrealistic to think that
each Yi is actually estimating the same �. Thus, it makes sense to assume that the
i th study is estimating a �i that is drawn from a population with center �, typically
a normal population. This random effects model is popular in both frequentist and
Bayesian approaches.

The Bayesian approach here is very similar to the random effects approach in
Section 4.7.1 (p. 183). The only difference here is that Yi given �i is N.�i ; Vi / with
Vi assumed known. A standard specification follows Section 4.7.1 (p. 183): �i given
.�; �a/ is N.�; �2a /, �a has a flat noninformative prior / 1 on .0;1/, and� has a flat
noninformative prior on .�1;1/. Although Vi is treated as known, the posterior
densities are nontrivial and we resort to Markov chain Monte Carlo to estimate them
(see Section 4.8.2, p. 195).

For frequentist and empirical Bayes approaches, the likelihood of Y used for
estimating ˛ D .�; �a/ is the product of independent N.�; �2a C Vi / densities,
i D 1; : : : ; k. Given an estimator b�2a, an approximately optimal estimator of � is
given by b� D Pk

iD1bwi Yi=
Pk

iD1bwi , wherebwi D .b�2a C Vi /
�1. Typically

Pk
iD1bwi

is used to estimate Var.b�/ and 95% confidence limits areb�˙ 1:96.
Pk

iD1bwi /1=2.
A variety of estimators for �2a are possible. The most popular is a moment

estimator due to DerSimonian and Laird (1986),

b�2a;DL D max

(

0;
Qw � .k � 1/

Pk
iD1 V �1

i �Pk
iD1 V �2

i =
Pk

iD1 V �1
i

)

; (4.37)

where Qw D Pk
iD1 V �1

i .Yi � Y /2 and Y D Pn
iD1 V �1

i Yi=
Pk

iD1 V �1
i . The

second argument of the max.�; �/ function is the method-of-moments estimator of
�2a obtained by equating the Qw to its expectation and solving for �2a .

In a simulation study of meta-analyses for log odds ratios, Sidik and Jonkman
(2007) found that b�2a;DL and the maximum likelihood estimator and the restricted
maximum likelihood estimator (REML) are all biased too small. They proposed a
less biased moment estimator
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b�2a;SJ D 1

k � 1

k
X

iD1
bv�1
i .Yi � Y

bv
/2; (4.38)

where Y
bv

D Pk
iD1bv�1

i Yi=
Pk

iD1bv�1
i , bvi D br i C 1, bri D Vi=s

2
k , and s2k is the

sample variance of the Yi with divisor k. The estimator is motivated by rewriting
Var.Yi / D �2a .1 C ri /, ri D Vi=�

2
a , and has the added advantage that it is

automatically nonnegative.
Although estimation of � and �2a is the main focus of meta-analyses, empirical

Bayes offers automatic improved estimators of the �i by borrowing strength from all
the data. Because �i jY ; �; �2a is normal with mean Bi�C .1 � Bi/Yi and variance
.V �1
i C ��2

a /�1 where Bi D Vi=.�
2
a C Vi /, the empirical Bayes estimator of �i is

b�i;EB D bBi b�C .1 � bBi/Yi ; (4.39)

wherebBi D Vi=.b�
2
aCVi /. Similar to the one-way random effects case, the estimated

posterior variance .V �1
i Cb��2

a /
�1 is too small because it does not take into account

the estimation of � and �2a , and a variety of authors have suggested improvements
(e.g., Kass and Steffey, 1989).

Example 4.4 (Meta-Analysis of hernia repair). Sidik and Jonkman (2007) re-
analyzed results from 29 studies analyzed in Memon et al. (2003) that compared two
types of surgical techniques for hernia repair. The endpoint postoperative compli-
cation is binary, and here we use the 29 estimates of log odds ratios along with the
usual asymptotic standard errors for Vi , .n�1

11 C n�1
12 C n�1

21 C n�1
22 /

1=2 in 2 	 2 table
notation.

Here we focus on the results given in the top half of Table 4.4. The estimates
of � are similar for all four methods. The fixed effect standard error for b� is
much smaller than for the three random effect approaches as one might expect. The
DerSimonian and Laird estimatorb�2a;DL D 0:43 appears too small when compared
to the Bayes estimator and to the Sidik and Jonkman estimator. The Bayes estimate
0.65 reported in Table 4.4 is the posterior median. In addition, the Bayes posterior
standard deviation for �2a is 0.32, suggesting that even with 29 studies, there is quite
a bit of uncertainty in the random effects population variability. �

4.7.3b Meta-Analysis Using the Binomial Model

Here we want to consider meta-analysis of studies with two groups to compare based
on a binary endpoint. The data consists of .Y1c; n1c ; Y1t ; n1t /; : : : ; .Ykc; nkc; Ykt ;
nkt /, where the control group Yic is binomial(nic; pic/ and independent of the
treatment group Yit that is binomial(nit ; pit /, i D 1; : : : ; k. Example 4.4 (p. 190) is
this type study, but there we used the approximate normality of the log odds ratio to
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Table 4.4 Meta-Analysis of 29 Studies on Hernia Repair from Memon et al. (2003)

Approximate Normal Results Based on Log Odds Ratio

Log Odds Ratio Scale Odds Ratio Scale

b�2a b� SE(b�/ L95% U95% exp.b�/ L95% U95%

Fixed �0.49 0.07 �0.63 �0.35 0.61 0.53 0.70
DL 0.43 �0.48 0.16 �0.78 �0.17 0.62 0.46 0.84
SJ 0.82 �0.47 0.20 �0.85 �0.08 0.63 0.43 0.92
Bayes 0.65 �0.47 0.18 �0.83 �0.10 0.63 0.43 0.90

Binomial Assumption Results

MH-Fixed �0.53 0.07 �0.67 �0.40 0.59 0.51 0.67
GLMM 0.64 �0.47 �0.84 �0.11 0.62 0.43 0.89
Bayes 0.77 �0.48 0.20 �0.87 �0.09 0.63 0.42 0.91

L95% and U95% refer to 95% confidence or credibility intervals. For Bayes
estimates, the Monte Carlo standard errors are in the range 0:001�0:007. DL uses
(4.37, p. 189). SJ uses (4.38, p. 190). MH = Mantel-Haenszel. GLMM = binomial
mixed model. Bayes estimates for �2a are posterior medians.

carry out the analysis. Here we work directly with the binomial outcomes but still
focus on the log odds ratio.

Bayes random effects approaches are given in Smith et al. (1995) and Warn et al.
(2002). We prefer the model on p. 2687 of Smith et al. (1995). As in the previous
section, we assume that the logs odds ratios �i are drawn from a random effects
population (prior) that is N.�; �2a /. The �i are related to the binomial parameters by
logit.pic/ D �i��i =2 and logit.pit / D �iC�i=2, where logit.p/ D log.p=.1�p//,
and �i D flogit.pic/ C logit.pit /g=2 is an average logit for the i th study. Then,
Yic given pic is binomial(nic; pic/, and Yit given pit is binomial(nit ; pit /. As in
previous specifications, �a has a flat noninformative prior / 1 on .0;1/, and � has
a flat noninformative prior on .�1;1/. Also, the prior for �i is N.0; 10/.

The last row of Table 4.4 (p. 191) give results for Example 4.4 (p. 190). The
Bayes posterior median for �2a is a little higher than the corresponding median for
the approximate normal approach, but otherwise the two Bayes models yield similar
results.

For a frequentist comparison in Table 4.4 (p. 191), we present the standard fixed
effects Mantel-Haenszel approach and a generalized linear mixed model (GLMM)
that is a logistic regression with random intercept and random slope coefficient
for the treatment indicator variable. This random slope coefficient is specified to
be N.�; �2a ) and thus corresponds directly to the other random effects analyses in
Table 4.4 (p. 191). The GLMM estimate of �2a is 0.64, somewhat smaller than the
Bayes estimate. In general, all the random effect approaches in Table 4.4 (p. 191)
are fairly close and distinct from the fixed effect approaches.
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Table 4.5 Affect of Magnesium on Short Term Mortality of Heart Patients,
from Teo et al. (1991)

Mag. Group Control Group

Study Died Alive Died Alive Log Odds Ratio SE

1 1 39 2 34 �0.83 1.25
2 9 126 23 112 �1.06 0.41
3 2 198 7 193 �1.28 0.81
4 1 47 1 45 �0.04 1.43
5 10 140 8 140 0.22 0.49
6 1 58 9 47 �2.41 1.07
7 1 24 3 20 �1.28 1.19

Table 4.6 Meta-Analysis of Table 4.5 Data

Approximate Normal Results Based on Log Odds Ratio

Log Odds Ratio Scale Odds Ratio Scale

b�2a b� SE(b�/ L95% U95% exp.b�/ L95% U95%

Fixed �0.75 0.27 �1.27 �0.23 0.47 0.28 0.79
DL 0.17 �0.80 0.33 �1.46 �0.15 0.45 0.23 0.86
SJ 0.34 �0.84 0.38 �1.59 �0.09 0.43 0.20 0.91
Bayes 0.43 �0.85 0.48 �1.84 0.08 0.48 0.16 1.08

Binomial Assumption Results

MH-Fixed �0.83 �1.32 �0.34 0.44 0.27 0.71
GLMM 0.78 �0.74 0.11 �1.01 �0.47 0.47 0.36 0.62
Bayes 0.50 �0.91 0.48 �1.93 0.06 0.45 0.14 1.06

L95% and U95% refer to 95% confidence or credibility intervals. For Bayes
estimates, the Monte Carlo standard errors are in the range 0:001�0:03. DL uses
(4.37, p. 189). SJ uses (4.38, p. 190). MH D Mantel-Haenszel. GLMM D binomial
mixed model. Bayes estimates for �2a are posterior medians.

Example 4.5 (Meta-Analysis on the use of magnesium in heart attack patients).
Brockwell and Gordon (2007) report on a meta-analysis by Teo et al. (1991) of

seven small clinical trials that studied the effect of injecting heart attack patients
with magnesium. The endpoint was death while in the hospital (5 studies) or within
one month after treatment (one study). The data are in Table 4.5.

Table 4.6 gives the results of the meta-analyses in the same format as Table 4.4.
The DerSimonian and Laird estimator of �2a is much smaller than any of the
others, and recall that the Bayes estimators of �2a are posterior medians. The
GLMM standard error for b� appears far too small and results in a short and likely
overoptimistic confidence interval. The Bayes results are again quite close to one
another.
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Brockwell and Gordon (2007) note that a later large clinical trial resulted in
an odds ratio 95% interval of .1:00; 1:12/, creating a controversy because of the
discrepancy with the earlier studies. From that perspective, the Bayes intervals
(0.16,1.08) and (0.14,1.06) may be preferred because they are the only ones casting
doubt on the effectiveness of using magnesium with these patients. �

4.8 Monte Carlo Estimation of a Posterior

The main technical problem in Bayesian analysis is obtaining the posterior density
for the parameters of interest and associated summary quantities like the posterior
mean, standard deviation, and quantiles. Recall the simple form for a posterior

�.� j Y D y/ D f .y j �/�.�/
R

f .y j �/�.�/d� :

and the form for hierarchical models

�.� j Y D y/ D f .y j �/ R �.� j ˛/h.˛/ d˛
R R

f .y j �/�.� j ˛/h.˛/ d˛d� :

In either case, we see the need to calculate integrals. Moreover, we usually need to
integrate out the nuisance parameters and calculate the posterior mean leading to
more integration. In the case of conjugate priors, all these calculations can be done
analytically. However, as soon as we move away from conjugate priors and/or to
hierarchical models, computing difficult integrals is routinely needed.

Historically, there have been a number of important techniques to do numerical
integration such as Simpson’s rule, the mid-point rule, and Gaussian quadrature.
Moreover, modern techniques like Laplace approximation and Monte Carlo inte-
gration are available and still very important. Monahan (2001, Ch. 12) gives a good
introduction to these approaches.

The main focus of modern Bayesian computing, however, has been on Markov
chain Monte Carlo (MCMC) methods whereby a dependent sequence of random
variables are obtained with the property that in the limit these random variables
have the posterior distribution. The end of these sequences can be used as a sample
to approximate the posterior density via a histogram or kernel density estimator.
Moreover, the posterior mean and variance can be estimated by the sample mean
and variance, and posterior quantiles are estimated by sample quantiles. In fact, in
many ways it is simpler to have a sample from the posterior than it is to have a
complex density function.
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Fig. 4.4 Posterior (t with
mean 6.88 and scale 1.44) for
the slope of the cotton rat
regression without last two
points (solid) and kernel
estimate from N D 10; 000

Monte Carlo variates from the
posterior (dashed)

We first illustrate Monte Carlo sampling in a case where the random variables are
independent and then move to the more general case of Gibbs sampling resulting in
dependent sequences.

4.8.1 Direct Monte Carlo Sampling from a Posterior

Recall from Section 4.6 (p. 176) that a standard approach for normal data leads
to the Normal-gamma form for the posterior. Here it is very easy to sample from
the posterior because the posterior distribution of �2 D 1=� does not depend on
the mean parameters, and the mean parameters given �2 have a normal distribution
(multivariate if� is a vector). So the plan is to simply generate �1 from the posterior,
then generate a �1 from the appropriate normal distribution with � D �1. Then
repeat this a total of N times leading to .�1; �1/; : : : ; .�N ; �N / where the pairs
are independent because the �i are generated independently (but �i and �i are
dependent).

To illustrate with a real data example, we use the simple linear regression
Example 4.3 (p. 180) and focus on the posterior in the middle of the right panel
of Figure 4.3 (p. 181) for the case where two data points were dropped and the
informative prior was used. In this case the posterior mean of the intercept and
slope is �0 D .16:30; 6:88/T , ˛0 D 9:5, ˇ0 D 630:0, and the posterior covariance
matrix of� given � is

��1
�

0:79 �0:15
�0:56 0:03

�

:

The marginal posterior density of the slope is a t density with mean 6:88,
scale .ˇ0.0:03/=˛0/1=2 D 1:44 and standard deviation scalef2˛0=.2˛0 � 2/g1=2 D
1:52. Figure 4.4 (p. 194) plots this density.

The dashed line in Figure 4.4 (p. 194) is for a kernel density estimator based on
data generated from the posterior and plotted using the following code
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N<-10000
set.seed(373)
tau<-rgamma(N,shape=alpha1,rate=beta1)
Deltas<-rnorm(N,mean=Delta1[2],sd=sqrt(COV[2,2]/tau))
lines(density(Deltas,from=0,to=15),lty=2)

In this code, we have generated only the second component of the mean parameter,
that is, the slope. For the purposes of looking at the marginal posterior density of
the slope, it does not matter whether we generated from the marginal normal via

Deltas<-rnorm(N,mean=Delta1[2],sd=sqrt(COV[2,2]/tau))

or from the bivariate normal with mean=Delta1 and cov=COV/tau and take
the second component. The beauty of the Monte Carlo approach is that once
we generate a sample of vectors from the joint posterior, we can analyze each
component separately for marginal densities or analyze groups of parameters
together for joint densities. That may not seem important until one tries analytically
to find a marginal density from a complicated joint density.

It is clear in Figure 4.4 (p. 194) that the Monte Carlo approach is closely
reproducing the density. Estimated summary descriptive statistics are also close to
the true values:

> round(mean(Deltas),2)
[1] 6.85
> round(sd(Deltas),2)
[1] 1.52
> round(quantile(Deltas,c(.025,.5,.975)),2)
2.5% 50% 97.5%
3.79 6.87 9.78

Because these samples are independent, the Monte Carlo standard error of the mean
estimate is 1:518=.10000/1=2 D :015. Thus the difference between the true mean
6.88 and the estimate is a little less than two Monte Carlo standard errors. The
estimated standard deviation is very close to the true standard deviation 1.52. The
true .025 and .975 quantiles are (3.87,9.89), reasonably close to the estimated values
3.79 and 9.78, respectively. Of course, if better accuracy is desired, then N can be
made larger.

4.8.2 Markov chain Monte Carlo Sampling from a Posterior

In the previous section, Monte Carlo sampling from the Normal-gamma posterior
was simple because the posterior of �2 did not depend on other parameters, and we
could generate a �2 and then a � given that �2. Repeating N times leads to an iid
sample of vectors from the posterior.

In general, though, the posterior does not factor into such a nice form. Suppose
that � is b-dimensional and we would like to estimate a complicated posterior
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�.� j Y /. Suppose further that we are able to generate random variables from each
of the full univariate conditional posterior densities

�.�1 j �2; �3; : : : ; �b;Y /
�.�2 j �1; �3; : : : ; �b;Y /
� � �
�.�b j �1; �2; : : : ; �b�1;Y /:

Then given starting values �.0/1 ; : : : ; �
.0/

b :

1. Generate �.i/1 from �.�1 j �.i�1/2 ; �
.i�1/
3 ; : : : ; �

.i�1/
b ;Y /;

2. Generate �.i/2 from �.�2 j �.i/1 ; � .i�1/3 ; : : : ; �
.i�1/
b ;Y /;

� � �
b. Generate �.i/b from �.�b j �.i/1 ; � .i/2 ; : : : ; � .i/b�1;Y /;

repeating for i D 1; : : : ; N .
In contrast to the previous section, these N vectors are not iid. However,

under suitable regularity conditions, the limiting joint distribution of � .N / D
.�
.N/
1 ; �

.N/
2 ; : : : ; �

.N/

b / as N ! 1 is exactly the joint posterior distribution of �
given Y . Moreover, for any integrable function g./,

1

N

N
X

iD1
g
�

�
.i/
1 ; �

.i/
2 ; : : : ; �

.i/

b

� wp1�! Efg.�1; : : : ; �b/g as N ! 1:

The above sampling scheme is called Gibbs sampling and was pioneered by Geman
and Geman (1984), Tanner and Wong (1987), and Gelfand and Smith (1990).

The sequences generated are Markov chains, and in the limit .N ! 1/, any
collection of k generated vectors .�.NC1/;� .NC2/; : : : ;� .NCk// has a stationary dis-
tribution. Also each �.NCj / is distributed approximately according to the marginal
posterior distribution of .� j Y /, but �.NCj1/ and � .NCj2/ are not independent.
Thus some care must be taken when using Monte Carlo means to approximate
expectations.

In practice, one typically generates a sequence of length N but discards the
first N0 burn-in elements as a means of assuring convergence to the stationary
distribution of the Markov chain. Then, the remaining N � N0 elements of the
sequence are used to estimate functionals of the posterior distribution such as
the mean, standard deviation, quantiles, etc. However the lack of independence
among the �.NCj / means that assessing the Monte Carlo variability in these Monte
Carlo estimates must account for the dependence among the random variables. For
example, time series models and methods are sometimes used. Alternatively, one
can generate k independent sequences, estimate the posterior mean for each, then
use the sample standard deviation of these posterior means divided by

p
k as a

standard error for the mean of the means. We illustrate with the data from Table 4.2
(p. 184).
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Example 4.6 (Gibbs sampling in the normal random effects model). Recall
the one-way random effect model with data Yij ; i D 1; : : : ; kI j D 1; : : : ; ni . We
assume that all random quantities on the same level are conditionally independent
with distributions

Yij j �i ; �2e � N.�i ; �
2
e /

�i j �; �2a � N.�; �2a / and �e D 1=�2e � gamma.a2; 1=b2/

� � N.�0; 1=�0/ and �a D 1=�2a � gamma.a1; 1=b1/:

In Section 4.7.1 (p. 183), we gave noninformative priors on �e and �a, but here we
want to use gamma priors so that we can write out all the full conditionals. Following
Jones and Hobert (2004), the posterior conditional distributions are

� j �; �a; �e;Y � N

 

�0�0 C k�a�

�0 C k�a
;

1

�0 C k�a

!

�i j � Œi �; �; �a; �e;Y � N

 

�a�C ni�eY i:

�a C ni�e
;

1

�a C ni �e

!

where � D k�1Pk
iD1 �i , and � Œi � D .�1; : : : ; �i�1; �iC1; : : : ; �k/, and

�a j �; �; �e;Y � gamma

�

k

2
C a1;

P

.�i � �/2

2
C b1

�

�e j �; �; �a;Y � gamma

 

P

ni

2
C a2;

P

ni .�i � Y i:/2 C SSE

2
C b2

!

;

where SSED Pk
iD1

Pni
jD1.Yij � Y i:/

2.
We choose �0 D 0, �0 D :000001 to approximate the usual noninformative

prior on .�1;1/ for �. For �e we choose .a2 D b2 D :001/, which is a standard
approximation to Jeffreys’s noninformative prior / 1=�2e on .0;1/. For �a, we
choose .a1 D b1 D :01/ (very mildly informative) because the prior / 1=�2a on
.0;1/ yields an improper posterior. Here is part of the R code to generateN random
vectors

# starting values
mu[1]<-rnorm(1,mean=0,sd=1/sqrt(mu0))
theta[,1]<-rnorm(k,mean=mean(ybar),sd=2*sd(ybar))
tau.e[1]<-rgamma(1,shape=a2,rate=b2)
tau.a[1]<-rgamma(1,shape=a1,rate=b1)
# start Gibbs loop
for(i in 2:N){
mu[i]<-rnorm(1,mean=(tau.0*mu0+k*tau.a[i-1]

*mean(theta[,i-1]))/(tau.0+k*tau.a[i-1]),
sd=1/sqrt(tau.0+k*tau.a[i-1]))
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Fig. 4.5 Posterior densities for � and �2 of the random effects N.�; �2/ distribution for the
Table 4.2 (p. 184) data. Solid lines are for the R code implementation, and dashed lines are for
the WinBUGS implementation with flat prior on �a

theta[,i]<-rnorm(k,mean=(tau.a[i-1]*mu[i]+ni

*tau.e[i-1]*y)/(tau.a[i-1]+ni*tau.e[i-1]),
sd=1/sqrt(tau.a[i-1]+ni*tau.e[i-1]))

tau.a[i]<-rgamma(1,shape=k/2+a1,
rate=(sum((theta[,i]-mu[i])ˆ2))/2+b1)

tau.e[i]<-rgamma(1,shape=ntot/2+a2,
rate=(sum(ni*(theta[,i]-ybar)ˆ2)+SSE)/2+b2)

} # ends update loop

We then ran this code 5 separate times with N D 1500 each time, retaining the
last 1000 from each run, resulting in 5000 total vectors of .�; �; �2e ; �

2
e / from the

posterior. The solid lines in Figure 4.5 (p. 198) are kernel density estimates of
the posteriors for � and �2.

A simpler way to do the Gibbs sampling for this problem is to use the BUGS
software; BUGS stands for Bayesian inference Using Gibbs Sampling. Actually we
used the R package R2WinBUGS to call WinBUGS. The BUGS model statement
used to duplicate the above R code is given by

model{
for(i in 1:N) {y[i]˜dnorm(theta[group[i]],tau.e)}

tau.e˜dgamma(0.001,0.001)
sig2.e<-1/tau.e

for(j in 1:k){theta[j]˜dnorm(mu,tau.a)}
mu˜dnorm(0.0,1.0E-6)
tau.a˜dgamma(0.01,0.01)
sig2.a<-1/tau.a

}

The code is very similar to R, but note that the normal densities are speci-
fied with precisions, that is, dnorm(mu,tau.a) is equivalent to the R code
rnorm(1,mean=mu,sd=1/sqrt(tau.a)), and dgamma(a1,b1) is equiv-
alent to the R code rgamma(1,shape=a1,rate=b1)or rgamma(1,shape=
a1,scale=1/a1).
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In Section 4.7.1 (p. 183) we used a flat prior on �a, which seems to be standard
now that it is well known that Jeffreys’s prior �2a / 1=�2a on .0;1/ yields an
improper posterior. The BUGS model code for this specification is the same as above
except that

sig.a˜dunif(0,100)
sig2.a<-pow(sig.a,2)
tau.a<-1/sig2.a

replaces the tau.a dgamma(0.01,0.01), where pow is the power function. In
Figure 4.5 (p. 198) the dashed lines are for this specification. Basically, the posterior
densities are a little more spread out, but the quantiles (see Table 4.3, p. 184) are not
much different. �

There are many practical details in using Gibbs sampling and checking correct-
ness of the output. Typically, one looks at plots over time of the generated values
and at a variety of diagnostics to make sure that convergence has been reached. It
can be difficult to detect an improper posterior, and there is a lot of active research
on implementation of Gibbs sampling. There is an older sampling method, the
Metropolis algorithm, which is more general than Gibbs sampling and also results
in MCMC dependent samples. It is often used when Gibbs sampling in not available
or easy to carry out, but we do not discuss it here.

4.8.3 Why Does Gibbs Sampling Work?

At first blush, Gibbs sampling is both mysterious and amazing. It seems magical that
one can generate sequences from conditional distributions and end up with random
variables having the desired posterior joint distribution. A rigorous explanation of
how Gibbs sampling works requires Markov chain theory, which is beyond the level
of this book. However, the following example sheds light on the process in a special
case.

Example 4.7 (Gibbs sampling in the bivariate normal model). Suppose that
the data consists of one pair .X; Y / from the bivariate normal with mean � D
.�X; �Y /

T , and covariance matrix
�

1 �

� 1

�

;

where �1 < � < 1 is known. If the (improper) prior on � consists of independent
uniform densities on .�1;1/, then the posterior for � is bivariate normal with
mean .X; Y / and the same covariance matrix. This is easy to see after writing down
the bivariate normal density. Of course, because we know the joint posterior, there
is no reason to use Gibbs, but it is easy to follow the convergence. The conditional
densities required for Gibbs sampling are
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�X j �Y ;X; Y � N.X C �.�Y � Y /; 1 � �2/

�Y j �X ;X; Y � N.Y C �.�X � X/; 1 � �2/:
Starting with a nonrandom �

.0/
Y , the first step is to calculate

�
.1/
X D ZX1

p

1 � �2 CX C �.�
.0/
Y � Y /

�
.1/
Y D ZY1

p

1 � �2 C Y C �.�
.1/
X �X/

D ZY1
p

1 � �2 C Y C �ZX1
p

1 � �2 C �2.�
.0/
Y � Y /;

where the random variables ZX1;ZX2; : : : and ZY1;ZY 2; : : : are mutually indepen-
dent, standard normal random variables. Continuing the iteration, results in

�
.k/
X D X C

p

1 � �2
n

ZXk C �2k�1.�.0/Y � Y /
o

C
p

1 � �2
(

k�1
X

iD1
�2iZX.k�i / C

k�1
X

iD1
�2i�1ZY.k�i /

)

:

�
.k/
Y D Y C

p

1 � �2
n

ZXk C �2k.�
.0/
Y � Y /

o

C
p

1 � �2
(

k
X

iD1
�2i�1ZX.kC1�i / C

k�1
X

iD1
�2iZY.k�i /

)

:

Note that .�.k/X ; �
.k/
Y / are linear functions of iid(�; �2) normal random variables

and thus have a bivariate normal distribution. Taking expectations shows that

Ef�.k/X j X; Y g D X C
p

1 � �2�2k�1.�.0/Y � Y / ! X as k ! 1:

Similarly, Ef�.k/Y j X; Y g converges to Y . The variances and covariances are

Varf�.k/X j X; Y g D .1� �2/

(

1C
k�1
X

iD1

�

�4i C �4i�2
	

)

Varf�.k/Y j X; Y g D .1 � �2/
(

1C �4k�2 C
k�1
X

iD1

�

�4i C �4i�2
	

)

Covf�.k/X ; �
.k/
Y j X; Y g D .1 � �2/

(

k
X

iD1

�

�4i�3 C �4i�5
	 � ��1

)

:



4.9 Problems 201

Problem 4.19 (p. 203) is to verify that the above variances converge to 1, and that
the covariance converges to � as k ! 1. Thus, because the bivariate normal
is characterized by these moments, .�.k/X ; �

.k/
Y / converges in distribution to the

bivariate normal posterior of � . �

4.9 Problems

4.1. Fill in the details to get the posterior mean (4.4, p. 168).

4.2. Give details to show that (4.6, p. 169) is correct.

4.3. For the credible interval in (4.5, p. 168), show that in repeated sampling from
a normal distribution with mean �0 and variance �2Y , the coverage probability is

˚

 

1:96

�

�0 C �n

�n

�1=2

��0.�0 � �0/
�
1=2
n

!

�˚
 

�1:96
�

�0 C �n

�n

�1=2

��0.�0 � �0/
�
1=2
n

!

:

Set n D 10 and �2Y D 1 and compute this probability for several combinations of
the other parameters.

4.4. The negative binomial density is

f .y j r; p/ D
 

r C y � 1

y

!

pr.1 � p/y y D 0; 1; : : : I 0 � p � 1:

Show that beta .˛; ˇ) is a conjugate prior for p with beta .˛ C r; ˇ C Y / posterior.

4.5. The Poisson density is

f .y j / D e�y

yŠ
y D 0; 1; : : : I 0 � p � 1:

Show that gamma .˛; ˇ) is a conjugate prior for  with gamma .˛C Y; ˇ=.ˇC 1//

posterior.

4.6. Suppose that Y has a gamma.˛0; 1=�) density,

f .y j �/ D 1

� .˛0/
�˛0y˛0�1e�y� 0 < y < 1I 0 < � < 1:

Show that gamma.˛; 1=ˇ) is a conjugate prior for � with gamma.˛C˛0; 1=.ˇCY //
posterior. What is the posterior if instead of a single Y , we have a sample Y1; : : : ; Yn
from the gamma.˛0; 1=�)?
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4.7. Suppose that data Y with likelihood f .Y j �/ has conjugate prior �.� j �/
and posterior �.� j q.Y ;�// for known function q. Show that the mixture prior,

�.� j �1; : : : ;�k/ D
k
X

iD1
wi�.� j � i /;

with know weights w1; : : : ;wk , is also conjugate, and give the form of the posterior.

4.8. Show that Jeffreys’s prior for the odds parameter � D p=.1 � p/ is given by
(4.14, p. 175).

4.9. Show that Jeffreys’s prior for the log odds parameter � D logfp=.1 � p/g is
given by (4.15, p. 175).

4.10. Fill in the details to get the posterior (4.18, p. 177) .

4.11. Show the step that leads from (4.18, p. 177) to (4.19, p. 177).

4.12. (Use results from Section 4.6.1, p. 176) Joe and Mary are in their 40’s and
have four boys (now in their 20’s) whose heights are 68 inches, 72 inches, 74 inches,
and 69 inches, respectively. Recently, Joe and Mary had a fifth son. They would like
to get a posterior density for the adult height of their fifth boy. They decide to assume
that the four observations they have on their first four sons have come from a normal
distribution with mean � and variance 1=� . Note also that Joe is himself 68 inches
tall and Mary is 62 inches tall.

a. First use the improper prior �.�; �/ D 1=� and find the marginal posterior of
� given the four data points. Also find the mean and standard deviation of this
posterior.

b. Now elicit from yourselves a “normal-gamma” conjugate prior based on any
thoughts you might have from the above description. Try to put yourself in Joe
and Mary’s shoes. This really ought to be done without knowledge of the heights
of the children since those values are the data.

c. Find the marginal posterior of � and its mean and standard deviation based on b.
and the sample.

d. The parents actually want the Bayesian forecast (prediction) density of the adult
height of their fifth son. Thus they could assume that Y5 is the adult height of their
fifth son and that Y5 j �; � is normal(�; 1=�/. Recall from Section 4.6.1 (p. 176)
that the prediction density is a t density with center=�0, scale2 D .ˇ0=˛0/.1 C
.n0 C n/�1/, and degrees of freedom=2˛0.

i. Find the mean and standard deviation of this t distribution using the actual
values from a) and c) in order to compare the effect of uninformative and
informative priors.

ii. They would like their fifth son to be a basketball player. Using the predictive
density, find the probability that their fifth son will be taller than 78 inches
using both the a) and c) values.
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4.13. Verify that the expression (4.30, p. 185) follows from the expression above it.

4.14. For the random effects example (Section 4.7.1, p. 183), verify that the
marginal density of the data .Yij ; i D 1; : : : ; kI j D 1; : : : ; ni / in the Bayesian
specification, formally given by m.y j ˛/ D R

f .y j �/�.� j ˛/ d�, is the
same as the joint density for the frequentist specification (but with �i D � C ai )
by noting that in the Bayes specification, each Yij given (�i ,�2e ) is N.�i ; �2e / and
all independent and each �i given .�; �2a / is N.�; �2a / and all independent, implies
Yij D �i C eij , where the eij are iid N.0; �2e / and independent of �1; : : : ; �k .

4.15. From Section 4.7.2 (p. 186), if Y is MNf0; .�2a C �20 /Ibg, show that .b �
2/�20 =

Pb
iD1 Y 2i is an unbiased estimator of �20 =.�

2
0 C �2a /.

4.16. Deriveb�2a;DL of (4.37, p. 189).

4.17. Deriveb�2a;SJ of (4.38, p. 190) by assuming that the variance ratios ri D Vi=�
2
a

are known.

4.18. Higgins et al. (2009) extracted effect sizes and associated standard errors from
Roberts et al. (2007) meta analysis of 14 studies on set shifting ability in people with
eating disorders:

size = 0.38 0.07 0.52 0.85 0.45 0.01 -0.58
0.44 0.46 0.93 0.28 0.20 0.46 0.59

se = 0.40 0.21 0.29 0.25 0.29 0.35 0.36
0.25 0.22 0.47 0.24 0.28 0.23 0.36

a. Use the DerSimonian and Laird approach to estimate � and �2a of the random
effects distribution, and give a 95% confidence interval for �.

b. Run a full Bayesian analysis using MCMC and report the (2.5%,50%,97.5%)
percentiles of the posterior distribution of � and �2a .

4.19. First verify that
Pk�1

iD1 �4i D .�4��4k/=.1��4/. Then give exact expressions

for the variances and covariances of .�.k/X ; �
.k/
Y / in Example 4.7 (p. 199) and show

that they converge to the appropriate quantities.

4.20. GenerateN D 200 iterations of the Gibbs sequence for Example 4.7 (p. 199)
using .X D 1; Y D 2; � D :9; �

.0/
Y D 2. Make separate scatter plots of the first 100

pairs and the second 100 pairs.



Part III
Large Sample Approximations in Statistics



Chapter 5
Large Sample Theory: The Basics

5.1 Overview

A fundamental problem in inferential statistics is to determine, either exactly or
approximately, the distribution of a statistic calculated from a probability sample
of data. The statistic is usually a parameter estimate, in which case the distribution
characterizes the sampling variability of the estimate, or a test statistic, in which
case the distribution provides the critical values of the test and also is useful for
power calculations. Because the number and type of inference problems admitting
statistics for which exact distributions can be determined is limited, approximating
the distribution of a statistic is usually necessary. The well-known results that Y
and

p
n .Y � �/=s have N.�; �2=n/ and tn�1 distributions, respectively, when

Y1; : : : ; Yn are independently and identically distributed N.�; �2/ and similar results
for normal linear models, are exceptions rather than the norm. If the population
distribution is not normal, then neither distribution is exact in general. Yet the
distributions of Y and

p
n .Y � �/=s are approximately N.�; �2=n/ and tn�1

respectively, provided Y1; : : : ; Yn are independently and identically distributed from
a distribution with mean � and variance �2 < 1. The larger n is, the better the
approximation.

Approximate inference, i.e., inference based on an approximation to the dis-
tribution of a statistic, is essential for most modern statistical methods. Even
though it is usually the case that the exact distribution of a statistic cannot be
obtained, it is generally possible to obtain an approximation to the distribution of
sufficient accuracy to be useful in applications. Most often, although not exclusively,
approximations are derived via determination of the asymptotic distribution (as
sample size n increases to 1) of the statistic of interest. The asymptotic distribution
forms the basis for determining a useful approximate distribution of a statistic
calculated from a sample of size n.

The modern statistical researcher should know how to determine when a large
sample approximation to the distribution of a statistic is appropriate, how to derive
the approximation, and how to use it for inference in applications. The fact that

D.D. Boos and L.A. Stefanski, Essential Statistical Inference: Theory and Methods,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-4818-1 5,
© Springer Science+Business Media New York 2013
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only a few types of asymptotic distributions arise in the vast majority of statistical
applications greatly simplifies the task of developing a working knowledge of
large sample theory. Statistics that are averages, or are asymptotically equivalent
to averages, generally have normal asymptotic distributions. An important corollary
is that quadratic forms of such statistics have asymptotic chi-squared distributions.
Statistics that are extreme values, e.g., maximum or minimum order statistics,
have one of three extremal-type asymptotic distributions. Most statistics arising
in practice are either average-like or extreme value-like, and the statistician who
is familiar with the asymptotic theory of averages and extreme values can handle
most statistical asymptotic problems. Of the two types of statistics, those that are
average-like are far more common in applications and are studied first and in greater
detail throughout this chapter. We cover extremal-type asymptotic distributions as a
special case of convergence in distribution in Section 5.2.3 (p. 220).

5.1.1 Statistics Approximated by Averages

Large-sample theory for statistics that are approximated by averages consists largely
of applications of the Laws of Large Numbers and of the Central Limit Theorem. If
X is the sample mean of n independent and identically distributed (iid) random
variables X1; : : : ; Xn, with mean � D E.X1/, then the Laws of Large Numbers
guarantee that X is close to � in a probabilistic sense when n is large. Specifically,
the Strong Law of Large Numbers states that

P
�

lim
n!1 jX � �j < �; for every � > 0

�

D 1;

and the Weak Law of Large Numbers states that

lim
n!1P.jX � �j < �/ D 1; for every � > 0:

The Central Limit Theorem guarantees that the distribution of X is approximately
the same as a normal distribution with mean � and variance �2=n, as n ! 1,
provided the population variance �2 D Var.X1/ is finite. Specifically, the Central
Limit Theorem for iid summands states that

lim
n!1P

 

X � �
�=

p
n

� t

!

D ˚.t/;

where ˚ is the standard normal cumulative distribution function.
The Laws of Large Numbers and the Central Limit Theorem describe the

asymptotic behavior of arithmetic averages. Most statistics are not arithmetic
averages, but are asymptotically equivalent to arithmetic averages. The key to
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deriving the asymptotic distribution of a statistic is identifying the appropriate
approximating average, which is not always immediately apparent. We now describe
some classes of statistics that are approximately averages.

5.1.1a Averages

First, of course, is the class of statistics that are exactly equal to arithmetic averages.
It appears that we are stating the obvious here, but we do so to emphasize the fact
that the class of averages includes averages of functions of the sample values. Thus
statistics like n�1PX2

i , n�1P log.Xi/, n�1P I.Xi � a/ and n�1P exp.tXi/ are
averages to which the Laws of Large Numbers and Central Limit Theorem apply
provided the required means and variances exist. Note also that random quantities
like n�1P.Xi � �/2 are also in this class even though they depend on possibly
unknown parameters like �. The Laws of Large Numbers and the Central Limit
Theorem apply to such quantities in exactly the same way as statistics, which by
definition are not a function of unknown parameters.

5.1.1b Functions of Averages

Functions of averages are approximately averages (or quadratic functions of
averages). Suppose that Y m�1 is a multivariate sample mean and f is a smooth
scalar valued function. By the multivariate Laws of Large Numbers we know that
Y is close to the population mean � and a Taylor Series approximation is justified.
Letting f 0.y/ denote the row vector @f .y/=@y,

f .Y / � f .�/C f 0.�/.Y � �/
D n�1X˚

f .�/C f 0.�/.Y i � �/
 : (5.1)

Thus f .Y / � W D n�1PWi whereWi D f .�/C f 0.�/.Y i � �/.
For example, consider an iid sample of pairs .Y1i ; Y2i /; : : : ; .Y1n; Y2n/ and

the ratio estimator f .Y / D Y 1=Y 2, where �2 ¤ 0. In this case f 0.�/ D
.1=�2;��1=�22/ and thus Y 1=Y 2 � n�1PWi where

Wi D �1

�2
C 1

�2
.Y1i � �1/ � �1

�22
.Y2i � �2/: (5.2)

Some statistics are functions of averages even though they are not commonly
expressed as such. For example, consider X1; : : : ; Xn iid(�; �2) and the variance
estimator s2n D n�1Pn

iD1.Xi � X/2. Define Y 1 D X , Y 2 D n�1PX2
i and
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f .y/ D y2 � y21 for which f 0.y/ D .�2y1; 1/. Then s2n D f .Y / and a Taylor
Series approximation yields s2n � n�1PWi where Wi D .Xi � �/2.

For applying the Laws of Large Numbers to f .Y /, we can just use continuity
of f (see Theorem 5.9, p. 227) rather than (5.1). For applying the Central Limit
Theorem to f .Y /, the approximation of f .Y / by an arithmetic average is the key
step in the application of the Delta Theorem (p. 238). In some cases f 0.�/ D 0,
in which case we need to replace (5.1) by a second order Taylor expansion and
the approximation is no longer an average but rather a quadratic form, f .Y / �
f .�/ C .Y � �/TB.�/.Y � �/, where 2B.�/ is the matrix of second partial
derivatives of f . Thus, there are functions of averages that are not approximately
averages but rather approximately quadratic functions of averages.

5.1.1c Statistics Implicitly Defined by Averages

A wide class of statistics that are approximated by averages are defined by systems
of equations that are themselves averages. In the one-dimensional case, the statistic
b� is defined by solvingGn.�/ D 0, i.e.,Gn.b�/ D 0, whereGn.�/ D n�1P g.Yi ; �/

for some function g specific to the estimator. Supposing that b� is consistent for �
justifies the following Taylor Series expansion when n is large,

0 D Gn.b�/ � Gn.�/CG0
n.�/.

b� � �/
D n�1Xg.Yi ; �/C

n

n�1Xg0.Yi ; �/
o

.b� � �/;

where g0.y; �/ D @g.y; �/=@� . Solving forb� � � yields

b� � � � � n�1P g.Yi ; �/

n�1Pg0.Yi ; �/
: (5.3)

The right-hand side of (5.3) is a ratio estimator which, as shown in (5.2, p. 209),
is approximated by an average and thus so too is b� . For an example, suppose that
X1; : : : ; Xn are iid with density f .xI �/ D � exp.��x/I.x � 0/, with � > 0. Then
the maximum likelihood estimator of � is found by solving n�1P g.Xi ; �/ D 0,
where g.x; �/ D ��1 � x.

Estimators implicitly defined by averages are also known as M-estimators. M-
estimators are an important and ubiquitous class of statistics and are studied in
greater detail in Chapter 5.

One purpose for describing the three classes of statistics above is to emphasize
the simple yet important fact that
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Most common statistics are approximately averages (or quadratic functions of
averages).

Of course, not all statistics can be approximated by averages. As alluded to
previously, extreme order statistics such as the minimum X.1/ and the maximum
X.n/ can not be approximated by averages. Asymptotic theory for extreme value-
like statistics differs from that of average-like statistics.

When a statistic can be approximated by an average, the approximating average
is usually an average of some function of the sample values. The general form of
the approximation for a statistic T D T .X1; : : : ; Xn/ can be written in the form

T � T1 D 1

n

n
X

iD1
h.Xi /CRn; (5.4)

where T1 is the large sample stochastic limit of T , h is a function (often called
the influence function or influence curve), and the remainder Rn is negligibly small
as n increases. This expansion with remainder term can be easily derived for the
sample variance s2n D n�1Pn

iD1.Xi � X/2, where substituting
Pn

iD1.Xi � X/2 D
Pn

iD1.Xi � �/2 � n.X � �/2 leads to

s2n � �2 D 1

n

n
X

iD1
Œ.Xi � �/2 � �2� � .X � �/2: (5.5)

The remainder term Rn D �.X � �/2 can be shown to be suitably small by using
the Markov inequality given in Section 5.5.1 (p. 226). Thus we can see that s2n � �2
is approximated by an average of the transformed random variables h.Xi/ D Œ.Xi �
�/2 � �2�. Note that this is the same approximation obtained via the function-of-
averages approach.

The strategy of much of large sample theory is then to verify the approximation
of T � T1 by an average and to use the Laws of Large Numbers and the Central
Limit Theorem to deduce the asymptotic properties of the approximating average
n�1Pn

iD1 h.Xi/. In this chapter we present the tools (theorems and techniques)
used to approximate statistics by averages and to derive their asymptotic distribution
properties.

We start with the basic notions of convergence of random quantities and then
move to the approximations and tools. The knowledgeable reader will notice a
strong similarity between the notation and language in these notes and of that found
in the classic reference by Serfling (1980, Approximation Theorems of Mathematical
Statistics). That book is still a very useful reference and we encourage all students
to buy it and study it. This chapter is more concise and focuses mainly on the above
approximation (5.4, p. 211) as the guiding principle for understanding and proving
useful large sample results.
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5.2 Types of Stochastic Convergence

Recall that a nonrandom sequence y1; y2; : : : converges to a limiting value c if every
neighborhood of c contains all but a finite number of the full sequence, i.e., for each
� > 0 there exists an n� such that for all n � n� , jyn � cj < �. Common notation
for indicating convergence are

lim
n!1yn D c; and yn ! c as n ! 1:

An example of a convergent sequence is yn D 1=2n where c D 0. An example of
a nonconvergent sequence is yn D 1=2n for odd values of n, and yn D 10 for even
values. In this latter sequence, an infinite number of the yn remain bounded away
from 0.

Convergence of sequences of random variables is complicated by the fact that
there is no single unique value to assign to a random variable Yn, i.e., there
is a distribution of possible values. Thus any useful definition of convergence
must involve probabilistic concepts. There are three useful modes of convergence:
convergence with probability 1, in probability, and in distribution. The sequence Yn
converges with probability 1 to Y if

P
�

lim
n!1Yn D Y

�

D 1I

Yn converges in probability to Y provided that for each � > 0,

lim
n!1P.jYn � Y j < �/ D 1I

and Yn converges in distribution to Y (with distribution function F ) provided

lim
n!1P.Yn � y/ D P.Y � y/ D F.y/;

for all y such that F.y/ � F.y�/ D 0 (points y where F is continuous).
Convergence with probability 1 is the strongest form of convergence followed by
convergence in probability. Convergence in distribution is the weakest form of
convergence but also the most important in large sample inference. It provides
the justification for basing standard errors and confidence intervals on the limiting
distribution (usually normal) of a parameter estimate and for using critical values
from the limiting distribution (usually normal or chi-squared) of a test statistic.
However, in deriving the asymptotic distribution of a statistic, it is often essential
to use convergence in probability and convenient to use convergence almost surely
in intermediate steps of the analysis. Thus it is important to have a good working
knowledge of all three modes of convergence.

In the sections that follow we study the three modes of convergence. Throughout
these sections we assume a sequence of random variables Y1; Y2; : : : and a limiting
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random variable Y (a constant c in many applications) all defined on some
probability space (˝;A; P ). Here ˝ is a set of points, A is a �-field of sets in
˝ closed under complements and countable unions, and P is a probability measure
(distribution). Random variables Y are functions on ˝ into the real line such that
Y �1.B/ 2 A for Borel sets B . Important examples are often based on having a
sample of independent and identically distributed (iid) random variables. To denote
iid random variables with mean � and finite variance �2 > 0, we use the notation
iid(�; �2).

5.2.1 Convergence with Probability 1 (Almost Sure
Convergence)

The natural extension of convergence of nonrandom sequences to convergence
of sequences of random variables gives rise to what is called convergence with
probability 1 (wp1), also known as convergence almost surely (a.s.). The key idea is
the same as in convergence of nonrandom sequences — that only a finite number of
random variables in the sequence can be bounded away from their limit — except
that we require the probability of this event to be one. That is, Yn converges to Y
wp1 provided

P.for each � > 0; there exists n� such that for all n > n�; jYn � Y j < �/ D 1:

Example 5.1 (Uniform random variables scaled by n). For a simple example
of an almost sure convergent sequence, suppose that Yn D Un=n where U1; U2; : : :
are iid Uniform.0; 1/ random variables. Now consider that for any � > 0, if n� D
Œ1=�� C 1 where Œ�� is the greatest integer function, then for any n > n� , ju=nj <
1=n < 1=n� < �, for any number u, 0 � u � 1. Because P.all jUnj � 1/ D 1, it
follows that for the sequence Y1; Y2; : : :,

P.for each � > 0; jYnj < � for all n > Œ1=��C 1/ D 1;

that is, Yn converges to 0 wp1. Because it uses a construction based on uniform
random variables, this example is almost trivial. Nevertheless it illustrates the
concept of almost sure convergence. �

Convergence wp1 is conceptually similar to convergence of nonrandom se-
quences because it is based on viewing each realization of an infinite sequence of
random variables as a sequence of real numbers. That is, suppose that the random
variables Y1; Y2; : : : and Y are all defined on the same probability space (˝;A; P ).
Then for each ! 2 ˝ , Y1.!/; Y2.!/; : : : is a sequence of real numbers and we
can use the definition of convergence of a sequence of real numbers to describe
convergence of that sequence to Y.!/. If the set of !’s where this convergence takes
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place has probability 1 with respect to the underlying probability space (˝;A; P ),
then we say that Yn converges with probability 1 to Y . Formally we state Yn
converges with probability 1 to Y if

P
�

lim
n!1Yn D Y

�

D 1:

By this we mean

P
�

! 2 ˝ W lim
n!1Yn.!/ D Y.!/

�

D 1:

That is, there exists a subset ˝0 of ˝ with P.˝0/ D 1, such that for each ! 2 ˝0,
the real sequence Y1.!/; Y2.!/; : : : converges to the real number Y.!/, i.e.,

lim
n!1Yn.!/ D Y.!/:

Our notation for this convergence is

Yn
wp1�! Y as n ! 1:

The common alternative expression almost sure convergence uses the notation

Yn
a:s:�! Y:

5.2.1a Strong Law of Large Numbers

The Strong Law of Large Numbers (SLLN) for iid random variables states that if
X1; : : : ; Xn are iid with finite mean E.X1/ D �, then the sample mean X converges
with probability 1 to �. For reference we state

Theorem 5.1 (Strong Law of Large Numbers). If X1; : : : ; Xn are iid with finite

mean E.X1/ D �, then X
wp1�! � as n ! 1.

In some ways with probability 1 convergence is easier to use than in probability
convergence, discussed in the next section, because the connection to convergence
of nonrandom sequences is closer. That is, if you know how to prove a result
for nonrandom sequences, then it is often clear how to proceed for proving with
probability 1 convergence for random sequences as long as you pay some attention
to the sets of probability 1 on which the convergence take place.

5.2.2 Convergence in Probability

We now study convergence in probability in greater detail. The sequence Yn
converges in probability to Y if for each � > 0,

lim
n!1P.jYn � Y j < �/ D 1I
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or equivalently
lim
n!1P.jYn � Y j > �/ D 0:

For proofs, it is sometimes useful to note an alternate more technical definition: for
each � > 0, there exists n� such that for all n � n� ,

P.jYn � Y j < �/ > 1 � �:

Shorthand notation is

Yn
p�! Y as n ! 1:

Example 5.2 (Binary sequence). Let us start with a simple example:

Yn D 1

2n
with probability pnI

D 10 with probability 1 � pn:

Then for n > � log �= log 2,

P.jYn � 0j > �/ D 1 � pn;

and thus Yn
p�! 0 if pn ! 1. An advantage of convergence in probability is that

a small and diminishing amount of “bad behavior” (here Yn D 10) is allowed for a
random sequence, and convergence can still follow. �

The sequence in the next example converges in probability but does not
converge wp1.

Example 5.3 (Bernoulli random variables). Suppose that Y1; Y2; : : : are indepen-
dent Bernoulli trials with P.Yn D 1/ D E.Yn/ D 1=n. The mean and variance
of this sequence converge to 0. Thus if the sequence converges in any sense, the
only sensible limit is 0. We now show that this sequence does not converge to 0
wp1. Because the only possible values for Yn are 0 and 1, jYn � 0j < � if and
only if Yn D 0 for � < 1. Thus the condition for convergence to 0 wp1 is that
P.there existsm; such that all Yn D 0 for n > m/ D 1. However,

P.all Yn D 0 for n > m/ < P.YmC1 D 0; YmC2 D 0; : : : ; YmCB D 0/

D
�

mC 1 � 1
mC 1

��

mC 2 � 1

mC 2

�

� � �
�

mC B � 1

mC B

�

D m

mC B
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for every positive integer B . Letting B ! 1 shows that P.all Yn D 0 for n >
m/ D 0, and thus the sequence does not converge to 0 wp1. Nevertheless, if one
had to predict the value of Yn for large n, the prediction bY n D 0 is correct with

probability P.Yn D bY n/ D .n � 1/=n ! 1, showing that bY n
p�! 0. Even though

the sequence does not converge wp1, the asymptotic behavior of the sequence

(bY n
p�! 0) is regular enough to be useful for statistical inference. �

5.2.2a Weak Law of Large Numbers

Many important applications of convergence in probability are connected to the
Weak Law of Large Numbers (WLLN). ForX1; : : : ; Xn that are iid with finite mean
E.X1/ D �, the WLLN states that X converges in probability to � as n ! 1. For
reference, we state

Theorem 5.2 (Weak Law of Large Numbers). If X1; : : : ; Xn are iid with finite
mean � D E.X1/, then

X
p�! � as n ! 1:

If we assume that X1 also has a finite variance �2, then the WLLN follows
directly from Chebychev’s inequality:

P.jX � �j > �/ � E.X � �/2

�2
D Var.X/

n�2
D �2

n�2
:

Other versions of the weak law of large numbers are available that allow weakening
of the iid assumptions in Theorem 5.2 but add stronger moment assumptions. The
following theorem is an example, directly requiring Var.X/ ! 0.

Theorem 5.3. If X1; : : : ; Xn are random variables with finite means �i D E.Xi/,
variances E.Xi � �i/

2 D �2i , and covariances E.Xi � �i/.Xj � �j / D �ij such
that

Var.X/ D 1

n2

2

4

n
X

iD1
�2i C 2

n�1
X

iD1

n
X

jDiC1
�ij

3

5 ! 0 as n ! 1;

then

X � � p�! 0 as n ! 1;

where � D n�1Pn
iD1 �i .

Example 5.4 (Autoregressive Time Series). Consider the first-order autoregres-
sive time series

Xi � � D �.Xi�1 � �/C ei ; i D 1; 2; : : : ;
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where the ei are iid N.0; �2e ), X0 is distributed as N
˚

�; �2e =.1� �2/



and indepen-
dent of the ei , and 0 < j�j < 1. Then

Cov.Xi ; XiCh/ D �i;iCh D �h

1 � �2
�2e ; h D 0; 1; : : :

and �2i D �ii D Œ�2e =.1� �2/�. Thus,

Var.X/ D 1

n2
�2e

1 � �2

2

4nC 2

n�1
X

iD1

n
X

jDiC1
�j�i

3

5

D 1

n2
�2e

1 � �2

�

nC 2.n� 1/
�

�

1� �

�

� 2
.�2 � �nC1/
.1 � �/2

�

! 0

as n ! 1 and X
p�! � by Theorem 5.3. �

Example 5.5 (Equicorrelation). In the previous example it is crucial for the
correlations between members of the sequence to die out as the distance between
their indices grows. A simple illustration of what happens otherwise is as follows.
Suppose that Z0;Z1; : : : is a sequence of independent standard normal random
variables. Define

Xi D Z0 CZi ; i D 1; 2; : : :

Then Cov.Xi ; Xj / D 1 for i ¤ j and Var.X/ D n�2Œ2nC n.n � 1/� D 1 C n�1,
and clearly the conditions of Theorem 5.3 do not hold. It is easy to see that the

conditions of Theorem 5.2 or Theorem 5.3 hold for X � Z0 and thus X
p�! Z0 as

n ! 1. This example also illustrates a case where the stochastic limit is a random
variable rather than a constant. �

5.2.3 Convergence in Distribution

Suppose that the random variables Y; Y1; Y2; : : : have distribution functions
F.y/; F1.y/; F2.y/; : : : respectively. Let CF be the subset of .�1;1/ where F is
continuous. Then Yn converges in distribution to Y if Fn converges to F pointwise
on CF , i.e.,

lim
n!1Fn.y/ D F.y/ for each y 2 CF :

For this convergence our shorthand notation is

Yn
d�! Y as n ! 1:
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An alternative expression is convergence in law with the related notation

Yn
L�! Y as n ! 1:

The shorthand notations are useful and concise, but it is important to remember that
the convergence is for the distribution functions and not for the random variables

themselves. For example, if Z is a standard normal random variable and Yn
d�! Z,

then it is also true that Yn
d�! �Z even though it seems contradictory.

The sequence in the following example converges in distribution but not wp1 or
in probability.

Example 5.6 (Convergence in distribution but not in probability). Suppose
that Y1; Y2; : : : are independent random variables with Yn � N.�; �2n /, where the
sequence �2n ! �2 > 0 as n ! 1. This sequence does not converge in probability
(see Problem 5.2, p. 263). However,

P.a < Yn � b/ D ˚ f.b � �/=�ng �˚ f.a � �/=�ng
! ˚ f.b � �/=�g � ˚ f.a � �/=�g D P.a < Y � b/;

for all a � b, where Y � N.�; �2/ and ˚ is the distribution function of a standard
normal random variable.

Thus Yn
d�! Y and the N.�; �2/ distribution provides a good approximation to

the distribution of Yn for large n even though Yn does not converge in probability or
wp1. �

Because convergence in distribution is about convergence of distribution func-
tions, there is no need for the random variables to be defined on the same sample
space. However, in many applications the random variables in the sequence are
defined on the same probability space, but the limiting random variable need not
be. In fact, we do not even need a limiting random variable, but merely a limiting
distribution function. Nevertheless, it is convenient to use the language of limiting
random variables as in the Central Limit Theorem discussed next.

5.2.3a Central Limit Theorem

Consider the standardized sample mean from a sample of iid(�; �2) random
variables, Yn D n1=2.X � �/=� . The Central Limit Theorem (CLT) states that
P.Yn � y/ ! ˚.y/ for each y 2 .�1;1/, where ˚ is the distribution function
of a standard normal random variable. We now state the Lindeberg-Levy version of
the CLT.
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Theorem 5.4 (Central Limit Theorem). IfX1; : : : ; Xn are iid with mean E.X1/ D
� and variance Var.X1/ D �2 < 1, then

X � �

�=
p
n

d�! Z as n ! 1;

where Z is a standard normal random variable.

Example 5.7 (Normal approximation to the binomial). If Y is a binomial(n; p)
random variable, then Y has the same distribution as

Pn
iD1 Xi , where X1; : : : ; Xn

are iid Bernoulli(p) random variables, E.Xi/ D p, Var.Xi/ D p.1�p/. The normal
approximation for calculations like P.Y � k/ comes from the CLT,

P.Y � k/ D P.X � k=n/ D P

( p
n.X � p/

p

p.1 � p/
�

p
n.k=n� p/
p

p.1 � p/

)

� 1 � ˚

(

.k � np/
p

np.1 � p/

)

;

where˚ is the standard normal distribution function. Because of the discreteness of
the binomial distribution, continuity corrections such as subtracting 1/2 from k in
the above formula, can improve this approximation. �

5.2.3b Sample Size and the Central Limit Theorem

Students at all levels often ask, “How large does n have to be for the normal
approximation to be useful?” The answer to that question is not quite as simple
as the n � 30 often given in introductory courses. The CLT says that P.Zn �
t/ � ˚.t/, where Zn D p

n.X � �/=� . An improved approximation, called an
Edgeworth Expansion, states that if X1 has a finite third moment with skewness
coefficient Skew.X1/ D E.X1 � �/3=�3, then

P.Zn � t/ � ˚.t/ � Skew.X1/p
n

.t2 � 1/

6
�.t/; (5.6)

where � is the standard normal density (see, e.g., Feller 1966, p. 539). The key
feature of this improved approximation is that Skew.X1/=

p
n is the main quantity

regulating how fast the distribution of X (or equivalently of Zn) approaches a
normal distribution. For a symmetric distribution Skew.X1/ D 0, and the CLT
approximation is very fast.

Example 5.8 (Convergence to normality for the binomial). As an illustration,
consider the previous binomial example where simple calculations show that
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the skewness coefficient of a Bernoulli random variable is Skew.X1/ D .1 �
2p/=

p

p.1 � p/. Thus for p D 1=2 the skewness is zero suggesting fast conver-
gence and a good approximation for small n, whereas at p D :10, Skew.X1/ D 2:67

and a much larger n is required. In this case, formal rules such as minfnp; n.1 �
p/g � 10 are often found in introductory texts. Here, for p D :10 that rule leads to
n D 100 with the corresponding Skew.X1/=

p
100 D :267, whereas at p D 1=2, it

leads to n D 20. �

In general, one should pay attention to Skew.X1/=
p
n instead of simple rules

such as n � 30. To explore this further, note that the skewness coefficient of X is
given by

Skew.X/ D Skew.X1/p
n

:

This expression follows from several simple facts: Skew.a C bX1/ D Skew.X1/
and E.X � �/3 D n�3Pn

iD1 E.Xi � �/3. Now suppose that we have a sample
X1; : : : ; X30 from some distribution with skewness coefficient Skew.X1/. Let us
define new random variables Y1 D .X1 C X2/=2; Y2 D .X3 C X4/=2; : : : ; Y15 D
.X29 CX30/=2. Then Y D X and

Skew.Y / D Skew.Y1/p
15

D Skew.X1/=
p
2p

15
D Skew.X1/p

30
D Skew.X/:

Clearly, the normal approximation for Y must be the same as for X but the sample
sizes are n� D 15 for the Y sample and n D 30 for the original sample. Thus, for
thinking about the quality of the normal approximation in the CLT, we must look at
Skew.X1/=

p
n and not simply at n or Skew.X1/ by themselves.

5.2.3c Convergence in Distribution for the Sample Extremes

We will see that most convergence in distribution results follow from some
version of the CLT coupled with an approximation-by-averages representation. As
mentioned in the chapter introduction, though, sample extremes have a different
limiting behavior from the CLT. In this section we describe some limit results
for the sample extremes. When working with sample extremes, it is often best to
directly use the definition of convergence of distribution functions. We illustrate the
approach in a simple example and then give the main classical theorem about the
limiting distribution of the sample extremes.

Example 5.9 (Maximum of an exponential sample). Suppose that X1; : : : ; Xn
are a random sample from the standard exponential distribution with distribution
function F.x/ D 1� exp.�x/, and consider the largest sample value X.n/. We take
advantage of the fact that if the largest value is less than x, then so are each of the
sample values and vice versa. Thus for each x 2 .�1;1/, as n ! 1, we have
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Fn.x/ D P
�

X.n/ � log n � x
	 D P .X1 � log n � x; : : : ; Xn � log n � x/

D f1 � exp.�x � log n/gn

D
�

1 � exp.�x/
n

�n

! exp f� exp.�x/g D G.x/: �

As you might recall from previous chapters, G.x/ is called the extreme value or
Gumbel distribution function. A famous result due to Gnedenko (1943) says that if
.X.n/�an/=bn converges in distribution for some real sequences an and bn > 0, then
the limiting distribution must be one of only three types. The distribution function
G.x/ D exp.�e�x/ in the previous example is the best-known of the three types.
Here is a statement of Gnedenko’s Theorem (see, for example, Leadbetter et al.
1983, p. 10–12).

Theorem 5.5 (Extremal Limiting distributions). Let X1; : : : ; Xn be iid with
maximum X.n/. If for some constants an, bn > 0,

P

�

X.n/ � an
bn

� x

�

! G.x/;

for some nondegenerate distribution function G.x/, then G.x/ must be of the form
F0f.x � �/=�g, �1 < � < 1, � > 0, where F0 is one of the following three
types:

Type I: F0.y/ D exp .�e�y/ � 1 < y < 1;

Type II: F0.y/ D
�

0 y � 0;

exp .�y�˛/ y > 0; for some ˛ > 0I

Type III: F0.y/ D
�

exp f�.�y/˛g y � 0; for some ˛ > 0;
1 y > 0:

As mentioned above, Type I is the most common limiting distribution for X.n/ and
occurs when Xi has normal distributions, gamma distributions, and many more. If
Xi has a Pareto distribution, then Type II is the correct limiting form. If Xi has
a uniform distribution on any interval, then Type III is the correct form. Figure 5.1
shows the densities of these distributions; for Types II and III the displayed densities
use ˛ D 1. Note that if Y has a Type II density, then 1=Y has a Weibull density
with shape parameter ˛. If Y has a Type III density, then �Y has a Weibull
density with shape parameter ˛.

For statistical inference where the data are sample extremes, it is common to put
all three Types together with scale and location parameters, and estimate the three
parameters by maximum likelihood. For example, Coles and Dixon (1999) give the
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Fig. 5.1 Densities of
Extremal Types I (solid), II
with ˛ D 1 (dotted), and III
with ˛ D 1 (dashed).

following parameterization of the resulting Generalized Extreme Value distribution
function:

F.xI�; �; �/ D exp
h

� f1C �.x � �/=�g�1=�i ; � ¤ 0

D exp Œ� exp f�.x � �/=�g� � D 0:

defined on fx W 1C�.x��/=� > 0g for � 2 .�1;1/, � > 0, and � 2 .�1;1/,
where � D 0 corresponds to Type I, � > 0 corresponds to Type II, and � < 0

corresponds to Type III.
Theorem 5.5 only states what the limiting distribution is whenX.n/ has a limiting

distribution; it may not have a limiting distribution. For example, if the Xi have a
Poisson distribution, then there are no constants an, bn > 0 such that .X.n/�an/=bn
has a nondegenerate limiting distribution. Theorem 5.5 also covers the smallest
value, X.1/, by noting that X.1/ D � maxf�X1; : : : ;�Xng. See Leadbetter et al.
(1983, Ch. 1) for more details and examples.

5.2.3d Uniform Convergence in Distribution

The most common limit distributions encountered in statistical inference are normal,
chi-squared , or extreme value and therefore have continuous distribution functions.
Thus the definition of convergence in distribution usually entails pointwise conver-
gence of distribution functions at each y 2 .�1;1/ or y 2 .0;1/. In this case we
automatically have uniform convergence of the distribution functions as provided by
the following classical theorem attributed to Pólya:

Theorem 5.6 (Pólya). If the sequence of distribution functionsFn converges point-
wise to F , where F is continuous on .�1;1/, then

lim
n!1 sup

y2.�1;1/

jFn.y/ � F.y/j D 0:
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5.3 Relationships between Types of Convergence

The most important relationships between the modes of convergence are that with
probability 1 convergence is the strongest and implies convergence in probability
which in turn implies convergence in distribution. In symbols we have

Yn
wp1�! Y H) Yn

p�! Y H) Yn
d�! Y:

Recall that Example 5.3 (p. 215) and Example 5.6 (p. 218) showed that the arrows
cannot be reversed without some additional conditions. In the following we give just
a few more details about the relationships.

1. Yn
wp1�! Y implies Yn

p�! Y . This follows directly from the following equivalent

condition for
wp1�!:

Yn
wp1�! Y ” lim

n!1P.jYm � Y j < �; all m � n/ D 1 for each � > 0:

(5.7)

See Serfling (1980, p. 7) for a proof. This latter condition also gives a way to

obtain
wp1�! from probability calculations used for convergence in probability:

1
X

nD1
P.jYn � Y j > �/ < 1 for each � > 0 implies Yn

wp1�! Y as n ! 1:

Also because of the Markov inequality P.jYn � Y j > �/ � EjYn � Y jr=�r , we
can replace P.jYn � Y j > �/ by EjYn � Y jr in the above condition and obtain
wp1�!.

2. Yn
p�! Y implies Yn

d�! Y . This is not obvious, but one method of proof
follows from Slutsky’s Theorem (p. 241) after noting that Yn D .Yn � Y /C Y .

3. For a constant c, Yn
p�! c is equivalent to Yn

d�! c.

Serfling (1980, p. 6–11) gives more relationships among the types of conver-
gence, but the ones above are the most important.

5.4 Extension of Convergence Definitions to Vectors

Now we extend the definitions of the three types of convergence to random vectors.
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5.4.1 Convergence wp1 and in Probability for Random Vectors

From real analysis we have that a k-vector sequence yn converges to c if the
Euclidean distance between yn and c converges to zero, that is,

kyn � c k ! 0 as n ! 1;

where k x k D
�

Pk
iD1 x2i

�1=2

. This norm convergence is equivalent to the conver-

gence of the coordinates yin to ci , respectively, i D 1; : : : ; k. The generalization
of convergence with probability 1 and in probability for random vectors Yn (and
matrices) to Y is similar. We say that Yn converges wp1 to Y if

kYn � Y k wp1�! 0 as n ! 1;

and Yn converges in probability to Y if

kYn � Y k p�! 0 as n ! 1:

Similar to the case of nonrandom sequences, the stochastic convergence of this
Euclidean distance kYn�Y k is equivalent to the componentwise convergence. That
is, a sequence of vectors (or matrices) Yn converges with probability 1 to Y if and
only if each component of Yn converges with probability 1 to the corresponding
component of Y . The same statement holds if we replace “with probability 1” by
“in probability.”

Thus, for example, the Strong Law of Large Numbers (Theorem 5.1, p. 214)
and Weak Law of Large Numbers (Theorem 5.2, p. 216) also hold immediately for
multivariate sample means X because the sample mean ofX 1; : : : ;Xn

X D 1

n

n
X

iD1
Xi D

 

1

n

n
X

iD1
X1i ; : : : ;

1

n

n
X

iD1
Xki

!

is equal to a vector of sample means.

5.4.2 Convergence in Distribution for Vectors

Because convergence in distribution refers to pointwise convergence of distribution
functions, it is quite natural for convergence in distribution of random vectors to

mean convergence of the associated distribution functions. Thus, we say Yn
d�! Y

as n ! 1 if the distribution function of Yn converges to the distribution function of
Y at all points y 2 Rk where the distribution function of the limiting random vector
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Y , F.y/ D P.Y � y/; is continuous. Note that for k-vectors x and y, x � y

means x1 � y1; : : : ; xk � yk .
This natural definition of convergence in distribution to random k-vectors is

quite different from the extensions of the last section for wp1 and in probability
convergence. Moreover, because the marginal distributions of a random vector are
not sufficient to determine its joint distribution, we shall see that convergence in
distribution of a vector is not equivalent to convergence of its components (an
exception is when the components are independent).

But first we now state the simplest vector version of the CLT; the proof is left for
Problem 5.48 (p. 272).

Theorem 5.7 (Multivariate CLT). If X 1; : : : ;Xn are iid random k-vectors with
finite mean E.X 1/ D � and covariance matrix˙ , then

p
n.X � �/ d�! Y as n ! 1;

where Y is a Nk.0;˙ ) random vector.

Example 5.10 (Central Limit Theorem for multinomial vector). Suppose that
X 1; : : : ;Xn are iid multinomial(1;p1; : : : ; pk) random vectors. Then the sum of
these vectors is multinomial(n;p1; : : : ; pk) and we get directly from Theorem 5.7 that

p
n .bp1 � p1; : : : ;bpk � pk/

T d�! Y as n ! 1;

where bp D n�1Pn
iD1Xi and Y is a normal random vector with mean 0 and

Cov.Yi ; Yj / D �pipj for i ¤ j and Cov.Yi ; Yj / D pi.1 � pi / for i D j . �

As mentioned earlier, vector convergence in distribution does not follow from
convergence of the individual components. Here is a simple example to illustrate.

Example 5.11 (Marginal convergence but not joint convergence). Suppose that
Z1;Z2;Z3 are independent standard normal random variables, and let Xn D
.X1n;X2n/

T be .Z1 CZ3;Z2 CZ3/
T for odd values of n and .Z1 CZ3;Z2 �Z3/T

for even values of n. Then, clearly the individual componentsX1n andX2n converge
in distribution to N.0; 2/ random variables because they have that distribution for
each n. But Xn has a bivariate normal distribution with mean 0, variances = 2, and
correlation = 1/2 for odd n, and correlation = �1=2 for even n. Thus the distribution
of Xn does not converge to any distribution. �

Note that this counterexample depends on the components being related.
However, if the components are independent and converge in distribution individ-
ually, then the vector converges in distribution. We state this as

Theorem 5.8 (Joint convergence under independence). Suppose that the compo-
nents of Xn are independent and converge in distribution to the components of X

that are also independent. ThenXn
d�! X as n ! 1.
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Proof. Assume that P.Xi � x/ is continuous at x D xi , i D 1; : : : ; k.

P.Xn � x/ D P.X1n � x1; : : : ; Xkn � xk/

D
k
Y

iD1
P.Xin � xi / �!

k
Y

iD1
P.Xi � xi / D P.X � x/:

5.5 Tools for Proving Large Sample Results

We have stated the most important definitions and relationships between modes of
convergence for random quantities. Now we are ready to discuss the tools that make
asymptotic statistical analysis fairly routine.

5.5.1 Markov Inequality

An important tool used for proving convergence in probability is the basic Markov
inequality: for r > 0

P.jYn � Y j > �/ � EjYn � Y jr
�r

:

For r D 2 and Y D c, this becomes Chebychev’s inequality (already mentioned in
connection with the WLLN, p. 216)

P.jYn � cj > �/ � E.Yn � c/2
�2

D Var.Yn/C fE.Yn/ � cg2
�2

:

Use of Chebychev’s inequality often requires stronger moment conditions than are
necessary. This was seen in the WLLN where a proof using Chebychev’s inequality
requires a finite second moment, but the WLLN only requires a finite first moment
(but a harder proof that we have not given). A second illustration of this fact is the
sample variance as follows.

Example 5.12 (Convergence in probability of the sample variance). For an iid
sample X1; : : : ; Xn with finite fourth moment, we have

P.j s2n � �2 j > �/ � E.s2n � �2/2

�2
D �4

�2

� n

n � 1
�2
�

2

n � 1
C Kurt.X1/ � 3

n

�

C �4

�2

� n

n � 1 � 1
�2

;
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where Kurt.X1/ D �4=�
4. Thus s2n

p�! �2 as n ! 1. We see in the next section
that only a finite second moment is required for this convergence. �

5.5.2 Continuous Functions of Convergent Sequences

This subsection gives powerful results for proving convergence of functions g.Yn/
of random sequences Yn. This approach usually gives the best results for proving
wp1 and convergence in probability. Before stating the main theorem, we first
review briefly the definition of a continuous function. Here we state these definitions
for real-valued functions of a real sequence, but they are also true for vector-valued
functions of vector sequences.

A real function f is continuous at a point c if

lim
y!c

f .y/ D f .c/:

A lesser known equivalent definition is: if

lim
yn!c

f .yn/ D f .c/

for all sequences yn that converge to c, then f is continuous at c. The following
theorem is analogous to this latter definition but allows some “bad behavior” on
sets in the sample space of the limiting random variable having probability 0. For
convergence with probability 1 or in probability, the limiting random variable is
often a constant c. Then the assumption of the following theorem is merely that g is
continuous at c. Note also that the theorem is stated for vector functions g defined
on vectors Yn.

Theorem 5.9 (Continuity). Let g be a vector-valued function defined on Rk that
is continuous except for a set Ag where P.Y 2 Ag/ D 0. Then as n ! 1

(i)

Yn
wp1�! Y H) g.Yn/

wp1�! g.Y /:

(ii)

Yn
p�! Y H) g.Yn/

p�! g.Y /:

(iii)

Yn
d�! Y H) g.Yn/

d�! g.Y /:

Proof of (i). Let ˝0 be the set with P.˝0/ D 1 where Yn converges. Then
for ! 2 ˝0 \ Y �1.Acg/, Yn.!/ ! Y .!/ and g.Yn.!// ! g.Y .!//, and

P
n

˝0 \ Y �1.Acg/
o

D 1. �
Proof of (ii). For simplicity we deal only with real Yn and Y D c. By the definition
of continuity, for given � > 0, there exists ı� such that jyn � cj < ı� implies that
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jg.yn/ � g.c/j < �. Let n�;ı be such that for n � n�;ı , P.jYn � cj < ı�/ > 1 � �.
Then, for n � n�;ı ,

P.jg.Yn/ � g.c/j < �/ � P.jYn � cj < ı�/ > 1 � �:

For the proof of part (iii), see Serfling (1980, p. 25).
Two useful corollaries, combined in the following theorem, are obtained by

taking g to be the sum and product of the k components of y, g.y/ D Pk
jD1 yj

and g.y/ D Qk
jD1 yj .

Theorem 5.10 (Continuity: products and sums). IfYn
wp1�! Y , then

Pk
jD1 Yjn

wp1�!
Pk

jD1 Yj and
Qk
jD1 Yjn

wp1�! Qk
jD1 Yj . The result also holds for

p�! and
d�!.

Now we give a variety of examples of the use of Theorems 5.9 and 5.10.

5.5.2a Examples for wp1 and in Probability Convergence

Example 5.13 (Simple continuous functions). Let g.x/ D x2 or g.x/ D exp.x/.

Then for any c such that Yn
p�! c we have g.Yn/

p�! g.c/ since these g’s are
continuous at all points. �

Example 5.14 (Convergence of the sample variance). The variance s2n of an
iid.�; �2/ sample converges almost surely to �2. Consider a proof using the
approximation-by-averages representation

s2n � �2 D 1

n

n
X

iD1

˚

.Xi � �/2 � �2
 � .X � �/2:

By the SLLN, X �� converges to 0 wp1. The function g.y/ D y2 is continuous at
y D 0 and thus by Theorem 5.9, .X � �/2 converges to 0 wp1. A second appeal to
the SLLN, assuming a finite second moment, shows that

1

n

n
X

iD1

˚

.Xi � �/2 � �2

 wp1�! 0:

Finally an appeal to Theorem 5.10 (p. 228) shows that s2n��2 wp1�! 0, or equivalently

that s2n
wp1�! �2. Because n=.n � 1/

wp1�! 1, another appeal to Theorem 5.10 shows
that the unbiased sample variance fn=.n� 1/gs2n also converges to �2 wp1. Finally,
we note the advantage of the above approach because it requires only a second finite
moment as compared to using Chebychev’s inequality (Example 5.12, p. 226) that
requires a finite fourth moment. �
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Example 5.15 (Poisson distribution function). Suppose that X1; : : : ; Xn are iid
Poisson .�) with � unknown and we want to estimate the probability that a “new”
Poisson .�) random variable XnC1 is less than its mean, i.e.,

� D P.XnC1 � �/ D
Œ��
X

iD1

e���i

i Š
D g.�/;

where Œ�� is the greatest integer part of �. The natural estimator of � is

b� D
ŒX�
X

iD1

e�XXi

i Š
D g.X/:

Theorem 5.9 (p. 227) tells us that g.X/
p�! g.�/ as long as � is not one of the

points of discontinuity 0; 1; 2; : : : that make up the setAg. What happens when� is a
positive integer, say � D 2? ThenX is close to 2 as n gets large but randomly varies
on either side of 2 with probability � 1=2. Thus g.X/ randomly jumps between
g.2/ and g.2�/ D g.1/ with probability approaching 1=2, and never converges.

For a slightly different application of Theorem 5.9 (p. 227) but with the same

g, look back to Example 5.5 (p. 217) where X
p�! Z0 and Z0 is a standard

normal random variable. Theorem 5.9 would apply since P.Z0 2 Ag/ D P.Z0 D
0 or 1 or 2 or : : :/ D 0, and thus g.X/

p�! g.Z0/. �

5.5.2b Examples for Convergence in Distribution

Example 5.16 (Function with discontinuity at zero, continuous Y ). Suppose

that Yn
d�! Y and P.Y D 0/ D 0. Then

1

Yn

d�! 1

Y
: �

Example 5.17 (Function with discontinuity at zero, discrete Y ). Suppose that

Yn
d�! Y , where Y has a Poisson() distribution. Then Y 1=2n

d�! Y 1=2, but a similar
convergence does not hold for 1=Yn. �

Example 5.18 (Quadratic forms). Suppose that Yn
d�! Y , where Yn and Y are

k-vectors and C is a k by k matrix. Then Y T
n CYn

d�! Y TCY . �

Example 5.19 (Chi-squared goodness-of-fit statistic). An important case of the
previous example is to the chi-squared goodness-of-fit statistic

k
X

iD1

.Oi �Ei/2
Ei

D
k
X

iD1

.nbpi � npi /2
npi

D
k
X

iD1

1

pi
n.bpi � pi /2 D Y T

n CYn;
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where from Example 5.10 (p. 225),bp D n�1Pn
iD1Xi ; C D DiagŒ1=p1; : : : ; 1=pk�,

and Yn D p
n.bpn � p/. �

Example 5.20 (One-way ANOVAF ). Another important case of Example 5.18 is
to the one-way ANOVAF statistic based on k independent samples, each composed
of ni iid(�; �2/ random variables under the null hypothesis of equal means. If for
simplicity we let ni D n, then

F D 1

k � 1
k
X

iD1
n.Xi �X/2=s2p D Y T

n CYn

.k � 1/s2p
;

where the Xi are the individual sample means, X is the overall mean, s2p is

the pooled variance estimate, Y T
n D p

n.X1 � �; : : : ; Xk � �/; C D .Ik �
k�11k1Tk /; Ik is the k-dimensional identity matrix, and 1k is a vector of ones. If
n ! 1 and k remains fixed, then the numerator of the F statistic converges to a
quadratic form Y TCY whose distribution can be shown to be the same as �2�2k�1
using the following results. �

To aid in using these results, we now state several standard results on quadratic
forms in normal random variables. The first result, from Graybill (1976, p. 135-136),
is for nonsingular covariance matrices. Although the middle matrix C is assumed
symmetric, the results apply to nonsymmetric C because Y TCY is a scalar and
thus Y TCY D Y TC T Y D Y T .C CC T /Y =2. Note that we use the version of the
noncentral chi-squared distribution with mean equal to the degrees of freedom plus
the noncentrality parameter (as found in the computing packages R and SAS).

Theorem 5.11. Suppose that the k	1 vector Y is distributed as MNk.�;˙ / where
˙ has rank k. Then for symmetric C the quadratic form Y TCY has a noncentral
chi-squared distribution with noncentrality parameter  D �TC� and r degrees
freedom if and only if one of the following three conditions are satisfied:

1. C˙ is an idempotent matrix of rank tr(C˙ / D r;
2. ˙C is an idempotent matrix of rank tr(˙C / D r;
3. ˙ is a generalized inverse of C and C has rank r .

This next theorem, from Styan (1970, Theorem 4) who gives credit to Khatri
(1963), allows˙ to be singular.

Theorem 5.12. Suppose that the k 	 1 vector Y is distributed as MNk.�;˙ /
where ˙ has rank r � k. Then for symmetric C the quadratic form Y TCY has a
noncentral chi-squared distribution with noncentrality parameter  D �TC� and
r degrees freedom if and only if all of the following four conditions are satisfied:

1. ˙C˙C˙ D ˙C˙ ;
2. rank(˙C˙ / D t r.C˙ / D r;
3. �TC˙C˙ D �TC˙ ;
4. �TC˙C� D �TC�.
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When � D 0, considerable simplification occurs, and in that case Shanbhag
(1968) shows that 1. and 2. of Theorem 5.12 are equivalent to .C˙ /2 D .C˙ /3

and tr(C˙ / D r .

Continuation of Example 5.20 (p. 230). Theorem 5.11 applies directly to Ex-
ample 5.20 (p. 230) because by the multivariate Central Limit Theorem Yn

T Dp
n.X1 � �; : : : ; Xk � �/

d�! Y , where Y is MNk.0; �2Ik/. Moreover, C D
.Ik �k�11k1Tk / is idempotent and tr(C˙ / D tr.C / D k�1. Therefore Y TCY =�2

is distributed as �2k�1. Asymptotic power approximations can be made by letting
the i th mean in Example 5.20 (p. 230) have the form � C di=

p
n. A strengthened

version of the multivariate Central Limit Theorem yields in this case that the
limiting random variable Y has a MNk.d ; �2Ik/ distribution. Then Theorem 5.11
yields that Y TCY =�2 is distributed as noncentral chi-squared with r D k � 1

degrees of freedom and noncentrality parameter  D dT .Ik � k�11k1Tk /d=�
2 D

Pk
iD1.di�d/2=�2. Therefore, the approximate power for the one-way ANOVAF is

the probability that this latter noncentral chi-squared random variable is larger than
the 1 � ˛ quantile of a �2k�1 distribution. In Problem 5.11 (p. 265) we see that the
approximation is fairly crude for small n since it is comparable to using the standard
normal to approximate a t distribution.

Continuation of Example 5.19 (p. 229). Theorem 5.12 is required for this
application because Y from the multinomial distribution has a singular normal
distribution. It is not hard to verify that C˙ D I�p1T is idempotent and therefore
.C˙ /2 D .C˙ /3 and tr.C˙ / D k � 1.

5.5.3 Order Notation

In working with both nonrandom sequences and random sequences, it helps to be
able to have simple rules and notation to bound sums and products of sequences
with possibly different rates of convergence. We first give the deterministic versions
of “order” notation, and then discuss analogues for random sequences.

5.5.3a Nonrandom Order Relations

For real sequences fung and fvng “un D O.vn/ as n ! 1” means that there exist a
positive constant M and an integer n0 such that

ˇ

ˇ

ˇ

ˇ

un
vn

ˇ

ˇ

ˇ

ˇ

� M for all n � n0:
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The phrase “un D o.vn/ as n ! 1” means that

lim
n!1

ˇ

ˇ

ˇ

ˇ

un
vn

ˇ

ˇ

ˇ

ˇ

D 0;

and “un � vn as n ! 1” means that

lim
n!1

ˇ

ˇ

ˇ

ˇ

un
vn

ˇ

ˇ

ˇ

ˇ

D 1:

Example 5.21 (Polynomial in n). Let un D 2n3 C 6n2 C 1. Then un D O.n3/,
where .M D 4; n0 D 6/ is one pair which meets the bounding requirements. Of
course un D O.4n3/ and un D O.n4/, etc., are true as well. Also un D o.n4/,
un D o.n3log.n//, and un � 2n3. �

Rules and Relationships of Deterministic Order Relations

1. If un D o.vn/, then un D O.vn/.
2. If u1n D O.v1n/ and u2n D O.v2n/, then u1nu2n D O.v1nv2n/.
3. If u1n D o.v1n/ and u2n D O.v2n/, then u1nu2n D o.v1nv2n/.
4. If u1n D o.v1n/ and u2n D o.v2n/, then u1nu2n D o.v1nv2n/.
5. If unj D o.vn/ for j D 1; : : : ; m, then un1 C � � � C unm D o.vn/ for any finite m.
6. If unj D O.vn/ for j D 1; : : : ; m, then un1 C � � � C unm D O.vn/ for any finite
m.

7. If un1 D o.vn/ and un2 D O.vn/, then un1 C un2 D O.vn/.

These rules are simple known facts about sequences. But to illustrate, consider the
following proof of 3. By assumption

u1n
v1n

! 0 as n ! 1;

and there exist M > 0 and n0 such that

ˇ

ˇ

ˇ

ˇ

u2n
v2n

ˇ

ˇ

ˇ

ˇ

� M for all n � n0:

Then
ˇ

ˇ

ˇ

ˇ

u1nu2n
v1nv2n

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

u1n
v1n

ˇ

ˇ

ˇ

ˇ

M for all n � n0

! 0 as n ! 1: �



5.5 Tools for Proving Large Sample Results 233

5.5.3b “With Probability 1” Order Relations

If the sequences fUng and fVng are random variables, then we can add “wp1” to each
of the above order relations, and we get meaningful statements. For example, “Un D
O.Vn/ wp1” means that there exists ˝0 
 ˝ such that P.˝0/ D 1 and for each
! 2 ˝0, Un.!/ D O.Vn.!//. Note that the constants do not need to be uniform
in !. For example, a pair (M.!/; n0.!/) can depend on !. For completeness, we
restate the rules and relationships.

Rules and Relationships of wp1 Order Relations

1. If Un D o.Vn/ wp1, then Un D O.Vn/ wp1.
2. If U1n D O.V1n/ wp1 and U2n D O.V2n/ wp1, then U1nU2n D O.V1nV2n/ wp1.
3. If U1n D o.V1n/ wp1 and U2n D O.V2n/ wp1, then U1nU2n D o.V1nV2n/ wp1.
4. If U1n D o.V1n/ wp1 and U2n D o.V2n/ wp1, then U1nU2n D o.V1nV2n/ wp1.
5. If Unj D o.Vn/ wp1 for j D 1; : : : ; m, then Un1 C � � � C Unm D o.Vn/ wp1 for

any finite m.
6. If Unj D O.Vn/ wp1 for j D 1; : : : ; m, then Un1 C � � � C Unm D O.Vn/ wp1 for

any finite m.
7. If Un1 D o.Vn/ wp1 and UN2 D O.Vn/ wp1, then Un1 C Un2 D O.Vn/ wp1.

To further illustrate, let us prove 3. above. By assumption there exists ˝10 with
P.˝10/ D 1 such that for ! 2 ˝10

U1n.!/

V1n.!/
! 0 as n ! 1;

and there exists ˝20 with P.˝20/ D 1 such that for ! 2 ˝20 there exist M.!/ > 0
and n0.!/ such that

ˇ

ˇ

ˇ

ˇ

U2n.!/

V2n.!/

ˇ

ˇ

ˇ

ˇ

� M.!/ for all n � n0.!/:

Then for ! 2 ˝10 \˝20

ˇ

ˇ

ˇ

ˇ

U1n.!/U2n.!/

V1n.!/V2n.!/

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

U1n.!/

V1n.!/

ˇ

ˇ

ˇ

ˇ

M.!/ for all n � n0.!/

! 0 as n ! 1:

Moreover,P.˝10 \˝20/ D 1�P.˝C
10 [˝C

20/ � 1� ˚P.˝C
10/C P.˝C

20/

 D 1:�

5.5.3c “In Probability” Order Relations

For a sequence of random variables fYng we say that the sequence is bounded in
probability if for each � > 0 there exist M� and n� such that

P.jYnj > M�/ < � for all n � n�;
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or equivalently

P.jYnj � M�/ > 1 � � for all n � n�:

If Fn.y/ D P.Yn � y/, then an equivalent condition is

Fn.M�/� Fn.�M�/ > 1 � � for all n � n�:

Shorthand notation is

Yn D Op.1/ as n ! 1:

When Yn is bounded in probability, then the sequence of probability measures
associated with Yn is said to be tight (c.f., Billingsley, 1999, Ch. 1). Whatever the
language used, the importance of Yn D Op.1/ is that probability mass is not allowed
to escape to ˙1. Thus it should make intuitive sense that

Yn
d�! Y implies Yn D Op.1/;

which can be easily verified.
Now given the definition ofOp.1/ we can define for random sequences fUng and

fVng that “Un D Op.Vn/” means that

ˇ

ˇ

ˇ

ˇ

Un

Vn

ˇ

ˇ

ˇ

ˇ

D Op.1/ as n ! 1:

Similarly, “Un D op.Vn/” means that

ˇ

ˇ

ˇ

ˇ

Un

Vn

ˇ

ˇ

ˇ

ˇ

p�! 0 as n ! 1:

Rules and Relationships of In Probability Order Relations

1. If Un D op.Vn/, then Un D Op.Vn/.
2. If U1n D Op.V1n/ and U2n D Op.V2n/, then U1nU2n D Op.V1nV2n/.
3. If U1n D op.V1n/ and U2n D Op.V2n/, then U1nU2n D op.V1nV2n/.
4. If U1n D op.V1n/ and U2n D op.V2n/, then U1nU2n D op.V1nV2n/.
5. If Unj D op.Vn/ for j D 1; : : : ; m, then Un1 C � � � C Unm D op.Vn/ for any

finite m.
6. If Unj D Op.Vn/ for j D 1; : : : ; m, then Un1 C � � � C Unm D Op.Vn/ for any

finite m.
7. If Un1 D op.Vn/ and UN2 D Op.Vn/, then Un1 C Un2 D Op.Vn/.

Notice that 4. is direct from Theorem 5.10 (p. 228). The other extensions are
straightforward but take a little more work to prove than the previous versions. For
example, let us prove 2.
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By assumption there exists M1� > 0, M2� > 0, n1� , and n2� such that

P

�ˇ

ˇ

ˇ

ˇ

Uin

Vin

ˇ

ˇ

ˇ

ˇ

� Mi�

�

> 1 � �=2 for all n � ni�; i D 1; 2:

Then for all n � max.n1�; n2�/,

P

�ˇ

ˇ

ˇ

ˇ

U1nU2n

V1nV2n

ˇ

ˇ

ˇ

ˇ

� M1�M2�

�

� P

�ˇ

ˇ

ˇ

ˇ

U1n

V1n

ˇ

ˇ

ˇ

ˇ

� M1�;

ˇ

ˇ

ˇ

ˇ

U2n

V2n

ˇ

ˇ

ˇ

ˇ

� M2�

�

� 1 � .�=2C �=2/ D 1 � �:
We have used the fact that for a > 0; b > 0, if jAj � a and jBj � b, then jABj �
ab. Thus, the event fjAj � a; jBj � bg is a subset of fjABj � abg, and P.jAj �
a; jBj � b/ � P.jABj � ab/. �

Note that Sn D O.1/ implies Sn D Op.1/ and Sn D o.1/ implies Sn D op.1/.

Example 5.22 (Adding and subtracting). Often we have a quantity of interest for
which we want to prove convergence in probability, say b� , and a related quantity,

say b��, where we know that b�� p�! � and b� �b�� p�! 0 as n ! 1. Then, the
method of proof is simply to subtract and add,

b� � � D b� �b�� Cb�� � �

D op.1/C op.1/ D op.1/:
�

Example 5.23 (Convergence of sample variance). We close this subsection on
order relations with one of our main examples, the sample variance, written as

s2n � �2 D 1

n

n
X

iD1
Œ.Xi � �/2 � �2�CRn;

where Rn D �.X � �/2. To prove s2n
p�! �2, we needed to show that Rn

p�! 0,
or Rn D op.1/. But this follows from the WLLN and 4. above with U1n D U2n D
X � � and V1n D V2n D 1. For asymptotic normality of s2n, we need

p
nRn

p�! 0

or Rn D op.n
�1=2/. This follows from 3. above with the same Uin and with U1n D

op.1/ and U2n D Op.n
�1=2/, which follows from the Central Limit Theorem. �

5.5.4 Asymptotic Normality and Related Results

A useful language convention (actually introduced in Chapter 1) is to say that Yn is
asymptotically normal with “mean” �n and “variance” �2n if

Yn � �n
�n

d�! N.0; 1/ as n ! 1:
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Our shorthand notation is Yn is AN.�n; �2n/. Note that �n and �2n need not be the
mean and variance of Yn, and Yn itself may not converge in distribution. Still we
may approximate Yn by a N.�n; �2n/ random variable as seen by using Theorem 5.6
(p. 222):

sup
y2.�1;1/

jP.Yn � y/ � P.�nZ C �n � y/j

D sup
y2.�1;1/

ˇ

ˇ

ˇ

ˇ

P

�

Yn � �n

�n
� y � �n

�n

�

� P

�

Z � y � �n

�n

�ˇ

ˇ

ˇ

ˇ

D sup
t2.�1;1/

ˇ

ˇ

ˇ

ˇ

P

�

Yn � �n
�n

� t

�

� P .Z � t/

ˇ

ˇ

ˇ

ˇ

! 0;

where Z is a standard normal random variable.

Example 5.24 (Normal approximation to a chi-squared random variable). If
Yn is a �2n random variable, then by the Central Limit Theorem Yn is AN.n; 2n/
(since Yn is equal in distribution to a sum of n independent �21 random variables).

Certainly Yn does not converge in distribution; in fact Yn
d�! 1. However,p

2n.1:645/C n is a reasonable approximation to the 90th percentile of Yn as can
be checked for various values of n. �

Here are three useful theorems taken from Serfling (1980, p. 20) associated with
asymptotic normality.

Theorem 5.13. If Yn is AN.�; �2n /, then Yn
p�! � if and only if �n ! 0 as

n ! 1.

Theorem 5.14. If Yn is AN.�n; �2n/, then Yn is AN.��
n ; �

�2
n / if and only if

lim
n!1

��
n

�n
D 1 and lim

n!1
��
n � �n
�n

D 0:

Theorem 5.15. If Yn is AN.�n; �2n/, then anYn C bn is AN.�n; �2n/ if and only if

lim
n!1an D 1 and lim

n!1
�n.an � 1/C bn

�n
D 0:

Example 5.25 (Versions of the sample variance). Let s2n be the “1/n” version of
the sample variance from an iid(�; �2) sample with finite fourth central moment
�4 D E.X1 � �/4. We show in the next section that s2n is AN.�2; .�4 � �4/=n/.
The last theorem above tells us that the same asymptotic normality applies to the
“1=.n� 1/” version of the sample variance using an D n=.n� 1/. �

Generalization to random vectors: fYng is asymptotically multivariate normal
with “mean” �n and “covariance matrix” ˙ n if for every c 2 Rk such that
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cT˙ n c > 0 for all n sufficiently large, cT Yn is AN.cT�n; c
T˙ nc/. Shorthand

notation is Yn is AMN.�n;˙ n/ or ANk.�n;˙ n/. Many cases of interest are
covered by the following result for a simpler form for˙ n.

Theorem 5.16. Yn is ANk.�n; b
2
n˙ / if and only if

Yn ��n
bn

d�! MN.0;˙ /:

Analogous to part of Theorem 5.13 (p. 236), we also have

Theorem 5.17. If Yn is ANk.�;˙ n/ with ˙ n �! 0, then Yn
p�! � as n ! 1.

Recall that˙ n �! 0 means pointwise convergence of the elements of˙ n.

5.5.5 The Delta Theorem

We introduced the Delta Theorem in Chapter 1 (p. 14), but for completeness we
repeat it here in three versions; the last version allows vector functions g.�/T D
.g1.�/; : : : ; gs.�// of a k-dimensional estimator b� . The reason for the different
versions is that in simple cases, the vector versions seem like overkill and obscure
the basic Taylor expansion g.b�/ � g.�/Cg0.�/.b� ��/ that lies behind the method.
The proof of these theorems may be found in Serfling (1980, Ch. 3).

Theorem 5.18 (Delta Method - Scalar Case). Suppose that b� is AN.�; �2n/ with
�n ! 0 and g is a real-valued function differentiable at � with g0.�/ ¤ 0. Then as
n ! 1

g.b�/ is AN
h

g.�/;
˚

g0.�/

2
�2n

i

:

Example 5.26 (Variance stabilizing transformation for the sample variance).
“Variance stabilizing” transformations are usually applied to sample statistics whose
asymptotic variance depends on their asymptotic mean. The purpose is to convert
them into new statistics for which the asymptotic variance does not depend on the
asymptotic mean. This can be useful for constructing confidence intervals or using
the statistics in an analysis of variance type setting. One of our key examples has
been the sample variance, s2n, based on an iid sample X1; : : : ; Xn, which is AN


�2; �4 fKurt.X1/ � 1g =n�, where Kurt.X1/ D �4=�
4 is the kurtosis. Note that the

asymptotic variance depends directly on �2, the asymptotic mean. By Theorem 5.18,
however, since the derivative of log.x/ is 1=x and

.1=�2/2


�4 fKurt.X1/� 1g =n� D fKurt.X1/� 1g =n;
then log.s2n/ is ANŒlog.�2/; fKurt.X1/ � 1g =ng. Thus, log.y/ is a variance stabi-
lizing transformation for the sample variance because fKurt.X1/ � 1g =n does not
depend on log.�2/. �
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Example 5.27 (Square of the sample mean). Suppose that X1; : : : ; Xn are

iid(�; �2) and we are interested in the asymptotic distribution of X
2
. If � ¤ 0, then

g0.x/ D 2x and X
2

is AN.�2; 4�2�2=n/. However, if � D 0, then Theorem 5.18
cannot be used because the derivative of x2 at � D 0 is 2.0/ D 0. In this case

nX
2 d�!.�Z/2, where Z is a standard normal random variable, using Theorem 5.9

(p. 227). Special theorems to handle cases where derivatives are zero are given on
p. 119 and 124 of Serfling (1980). �

Example 5.28 (Reciprocal of the sample mean). Suppose that X1; : : : ; Xn are
iid(�; �2) and we are interested in the asymptotic distribution of 1=X . The derivative
of g is g0.x/ D �1=x2 and if � ¤ 0, then 1=X is ANf1=�; .�2=�4/=ng.
Theorem 5.18, however, cannot be used for 1=X when � D 0 because then the
derivative does not exist at � D 0. In this case, Theorem 5.9 (p. 227) gives

1=.
p
nX/

d�!1=N.0; �2/. �

The next version of the Delta Method is for real-valued functions g defined on
a vector � . Here we allow the asymptotic variance to be of the form b2n˙ , where
often b2n D 1=n.

Theorem 5.19 (Delta Method - Real-Valued Function of a Vector). Suppose
that b� is ANk.�; b2n˙ / with bn ! 0 and that g is a real-valued function with
partial derivatives existing in a neighborhood of � and continuous at � with
g0.�/ D @g.�/=@� not identically zero. Then as n ! 1

g.b�/ is AN


g.�/; b2ng
0.�/˙g0.�/T

�

:

Example 5.29 (Risk difference for multinomial 2 	 2 table). Consider a 2 	 2

table of counts in a medical setting given by

Not
Cured Cured

Group 1 N11 N12
Group 2 N21 N22

where .N11;N12;N21;N22/T has a multinomial(nIp11; p12; p21; p22) distribution,
n D N11CN12CN21CN22. The risk difference of the proportion cured for the two
groups is

g.p/ D g.p11; p12; p21; p22/ D p11

p11 C p12
� p21

p21 C p22
;

andb� is obtained by substituting bpij D Nij =n for pij in this latter expression. For
use with Theorem 5.19 (p. 238), we have

g0.p/ D
�

p12

.p11 C p12/2
;

�p11
.p11 C p12/2

;
�p22

.p21 C p22/2
;

p21

.p21 C p22/2

�

:
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From Example 5.10 (p. 225) the asymptotic covariance times n of bp D .bp11;bp12;

bp21;bp22/ is given by

˙ D

0

B

B

B

B

B

B

B

B

B

B

@

p11.1 � p11/ �p11p12 �p11p21 �p11p22

�p12p11 p12.1 � p12/ �p12p21 �p12p22

�p21p11 �p21p12 p21.1 � p21/ �p21p22

�p22p11 �p22p12 �p22p21 p22.1 � p22/

1

C

C

C

C

C

C

C

C

C

C

A

Multiplying g0.p/T˙g0.p/ (in Maple, for example) yields

p11p12

.p11 C p12/3
C p21p22

.p21 C p22/3
(5.8)

for n times the asymptotic variance of g.bp/. If one makes the substitutions p1 D
p11=.p11 C p12/, p2 D p21=.p21 C p22/, n1 D n.p11 C p12/, and n2 D n.p21 C
p22/ that would be appropriate for the independent binomials version of the 2 	 2

table (see Example 5.31, p. 240), then this asymptotic variance has the usual form
p1.1 � p1/=n1 C p2.1 � p2/=n2. �

Example 5.30 (General Multinomial). Now consider a real-valued function
g.bp/ of bp D .N1=n; : : : ; Nk=n/

T in the general multinomial case and using the
standard notation that .N1; : : : ; Nk/ is multinomial(nIp1; : : : ; pk/. Certainly this
covers the previous example, but the general case is easier to handle because the
covariance matrix (also the asymptotic covariance matrix) of bp may be written as
˙=n D 

Diag.p/ � ppT � =n. Then

g0.p/˙g0.p/T D g0.p/


Diag.p/ � ppT �g0.p/T

D
k
X

iD1
pi

�

@g.p/

@pi

� 2

�
(

k
X

iD1
pi
@g.p/

@pi

) 2

: (5.9)

Looking at the previous example, and making the notation conversion, the second
term of (5.9) is zero and the first term is easily found to yield (5.8).

Our last version of the Delta Method allows vector-valued functions g of
dimension s.

Theorem 5.20 (Delta Method - Vector-Valued Function of a Vector). Suppose
that b� is ANk.�; b2n˙ / with bn ! 0 and that g is an s-valued function on Rk

possessing an s 	 k matrix of partial derivatives
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g0.x/ D @g.x/

@x
D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

@g1.x/

@x1

@g1.x/

@x2
: : :

@g1.x/

@xk

@g2.x/

@x1

@g2.x/

@x2
: : :

@g2.x/

@xk
: : : : : :

: : : : : :
@gs.x/

@x1

@gs.x/

@x2
: : :

@gs.x/

@xk

1

C

C

C

C

C

C

C

C

C

C

C

C

A

; (5.10)

in a neighborhood of � , and each partial derivative is continuous at � with at least
one component nonzero at � in every row.

Then as n ! 1
g.b�/ is AN



g.�/; b2ng
0.�/˙g0.�/T

�

:

Example 5.31 (Product binomial 2 	 2 table). Let X1 be binomial(n1; p1) and
X2 be binomial(n2; p2) with associated estimators bp1 D X1=n1 and bp2 D X2=n2.
The setup is similar to Example 5.29 (p. 238) but the distributions and notation are
different:

Not Sample
Cured Cured Size

Group 1 X1 n1 �X1 n1

Group 2 X2 n2 �X2 n2

Here we want to consider the risk difference p1 � p2 along with the risk
ratio p1=p2. To obtain the joint asymptotic distribution of .bp1 � bp2;bp1=bp2/

T

via Theorem 5.20, we run into a problem because we actually have two sample
sizes n1 and n2 and no “n.” The standard approach in this type of situation is to
define n D n1 C n2 and n D n1=n, and assume that n ! ,  2 .0; 1/,
as min.n1; n2/ ! 1. Then we can replace n1 by nn and n2 by n.1 � n/ and
say that bp1 is ANfp1; p1.1 � p1/=nng and by Theorem 5.14 (p. 236) that bp1 is
AN.p1; p1.1 � p1/=n/. Similarly, bp2 is ANfp2; p2.1 � p2/=.1� /ng. Because
of independence, we can assert that .bp1;bp2/T are jointly asymptotically normal and
use Theorem 5.20 to get that .bp1 � bp2;bp1=bp2/

T is jointly asymptotically normal
with asymptotic mean .p1 � p2; p1=p2/T and asymptotic variance times n given by

0

B

B

@

1 �1

1

p2

�p1
p22

1

C

C

A

0

B

B

B

@

p1.1 � p1/


0

0
p2.1 � p2/
1 � 

1

C

C

C

A

0

B

B

B

@

1
1

p2

�1 �p1
p22

1

C

C

C

A

:

Problem 5.26 (p. 267) shows that the asymptotic correlation is one when p1 D p2.
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5.5.6 Slutsky’s Theorem

The next theorem (actually first given in Chapter 1) lets us use results proved for
one sequence to be applied to other closely related sequences. It is one of the most
important tools of asymptotic analysis.

Theorem 5.21 (Slutsky). If Xn
d�! X , Yn

p�! a, and Zn
p�! b as n ! 1, then

YnXn CZn
d�! aX C b as n ! 1:

Proof. First note that YnXn C Zn D .Yn � a/Xn C aXn C .Zn � b/C b, so that
YnXn C Zn D Wn C Rn, where Rn D .Yn � a/Xn C .Zn � b/ D op.1/ and

Wn D aXn C b
d�! aX C b as n ! 1. Then, for arbitrary t and � chosen so that

t C � and t � � are continuity points of the distribution function of aX C b,

P.Wn CRn � t/ D P.Wn CRn � t; jRn j > �/
C P.Wn CRn � t; jRn j � �/

� P.jRn j > �/C P.Wn � t C �/;

and similarly

P.Wn CRn � t/ � P.Wn � t � �/:

This leads to

lim
n!1 jFn.t/ � F.t/ j � max fF.t/ � F.t � �/; F.t C �/ � F.t/g ;

where Fn.t/ D P.YnXn C Zn � t/ and F.t/ D P.aX C b � t/. Since � >
0 is arbitrary, the result follows. Note that we have used the fact that distribution
functions have only a countable number of jump discontinuities. �

Example 5.32 (One sample t statistic). The standard first example for Slutsky’s
Theorem is the one sample t statistic t D p

n.X � �/=sn�1 where the numerator
converges in distribution by the CLT and the denominator converges in probability
by Example 5.14 (p. 228) and Theorem 5.9 (p. 227). �

Slutsky’s Theorem along with the CLT provide asymptotic normality for many
estimators and statistics via the approximation by averages Theorem 5.23 of the next
subsection. We can also give a multivariate version of Slutsky’s Theorem as follows.

Theorem 5.22 (Multivariate Slutsky). Let Xn and X be random k-vectors such

Xn

d�! X . Let Yn be an m 	 k random matrix such that Yn
p�! A, where A is an

m 	 k constant matrix. Let Z n be a random m-vector such that Z n

p�! B, where
B is a constantm-vector. Then

YnXn CZn

d�! AX CB as n ! 1:
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5.5.7 Approximation by Averages

Theorem 5.23 (Approximation by Averages). Suppose that X1; : : : ; Xn are iid
and the statistic T D T .X1; : : : ; Xn/ has the following approximation,

T � T1 D 1

n

n
X

iD1
h.Xi /CRn;

where Efh.X1/g D 0, Varfh.X1/g D �2h , and
p
nRn

p�! 0 as n ! 1. Then

p
n.T � T1/

d�! N.0; �2h/ as n ! 1:

Proof. First apply the CLT to n�1=2Pn
iD1 h.Xi / which is playing the role of Xn

in Slutsky’s Theorem. Then apply Slutsky’s Theorem with
p
n Rn playing the role

of Zn.

Example 5.33 (Sample variance). Let X1; : : : ; Xn be iid(�; �2) with finite fourth
central moment �4 D E.X1 � �/4. Consider the “1=n” version of the sample
variance s2n D n�1Pn

iD1.Xi �X/2. Some algebra leads to

s2n � �2 D 1

n

n
X

iD1

˚

.Xi � �/2 � �2
 � .X � �/2:

The remainder term Rn D �.X � �/2 is op.n�1=2/ because
p
nRn D �p

n.X �
�/.X��/, and �p

n.X��/ isOp.1/ by the CLT, andX�� is op.1/ by the WLLN.

Now apply Slutsky’s Theorem with h.Xi / D Œ.Xi��/2��2� to get
p
n.s2��2/ d�!

N.0; �4 � �4/ as n ! 1. �

5.5.7a Sample Central Moments

So far we have covered the sample mean and the sample second central moment
s2n. Now we give results for all the sample central moments. Let X1; : : : ; Xn be
iid(�; �2) with finite 2kth moment �2k , where �k D E.X1 � �/k . Note that � D
E.X1/, �1 D E.X1 � �/ D 0, and �2 D �2. Let the sample kth central moment
be given bymk D n�1Pn

iD1.Xi �X/k . Then we have the following approximation
theorem which verifies the conditions of Theorem 5.23 for the sample kth central
moments. A direct proof is given in Serfling (1980, p. 72), but it also follows from
Theorem 5.28 (p. 249).
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Theorem 5.24 (Lemma 2.2.3, p. 72, of Serfling, 1980). IfX1; : : : ; Xn are iid with
mean � and �2k < 1, then

mk � �k D 1

n

n
X

iD1



.Xi � �/k � �k � k�k�1.Xi � �/�CRn;

where
p
nRn

p�! 0 as n ! 1.

Noting that for hk.Xi/D ˚

.Xi � �/k � �k � k�k�1.Xi � �/



, Ehk.Xi/D 0

and

�2h;k D Varhk.Xi / D �2k � �2k � 2k�k�1�kC1 C k2�2�
2
k�1; (5.11)

then Theorem 5.23 tells us that mk is AN.�k; �2h;k=n/. For example, k D 3

corresponds to the central third moment m3, and h3.Xi/ D .Xi � �/3 � �3 �
3�2.Xi � �/ and �2h;3 D �6 � �23 � 6�2�4 C 9�32:

5.5.7b Sample Percentiles/Quantiles

Let X1; : : : ; Xn be iid with distribution function F and inverse distribution function
(or quantile function)

�p D F�1.p/ D inffx W F.x/ � pg; 0 < p < 1 : (5.12)

The simplest definition of a sample pth quantile (or 100pth percentile) is b�p D
F�1
n .p/, where Fn is the empirical distribution function with jumps of 1=n at

the Xi ’s. The sample pth quantile b�p D F�1
n .p/ is then the npth order statistic

if np is an integer and the .Œnp� C 1/th order statistic otherwise, where Œ�� is
the greatest integer function. Other common definitions of sample pth quantiles
are weighted averages of the two order statistics. Virtually all definitions have
the same asymptotic normal limiting distribution whose proof was available as
early as the 1940’s and likely earlier. Modern proofs of the asymptotic normality
of b�p D F�1

n .p/ depend on Theorem 5.23 (p. 242) via a proof of the basic
approximation which originated with Bahadur (1966). In fact any approximation
of a statistic by an average plus a negligible remainder is often called a “Bahadur
representation.” The best version of that approximation for use with Theorem 5.23
(p. 242) is due to Ghosh (1971):

Theorem 5.25. Suppose that X1; : : : ; Xn are iid with distribution function F and
F 0.�p/ exists and is positive. Then

b�p � �p D 1

n

n
X

iD1

�

p � I.Xi � �p/

F 0.�p/

�

CRn;

where
p
nRn

p�! 0 as n ! 1.
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Because

hp.Xi/ D
�

p � I.Xi � �p/

F 0.�p/

�

has mean 0 and variance �2h;p D p.1 � p/=ŒF 0.�p/�2, Theorem 5.23 and Theo-

rem 5.25 give thatb�p is AN.�p; �2h;p=n/ as n ! 1. For example, when p D 0:5,
we have the sample median, and h.Xi / D f1=2� I.Xi � �0:5 /g =F 0.�0:5 / with
asymptotic variance 1=



4nF 0.�0:5 /2
�

.

5.5.8 Finding h in the Approximation by Averages

The approximation-by-averages representation

T � T1 D 1

n

n
X

iD1
hT.Xi /CRn;

of Theorem 5.23 (p. 242) is a key tool for finding the asymptotic distribution of
random quantities. In this section we begin adding a subscript T to h in order
to distinguish it from various other h functions that might be involved in its
definition. So far we have illustrated this representation for sample central moments
(Theorem 5.24, p. 243) including the sample variance (Example 5.33, p. 242) and
sample percentiles (Theorem 5.25, p. 243). In each of these examples, we merely
presented the appropriate hT. But where does hT come from? How can we find hT

in a new situation?
A general answer can be given for functional statistics. A functional statistic

is one that can be represented in terms of the empirical distribution function
Fn.t/ D n�1Pn

iD1 I.Xi � t/. For example, the sample mean X D R

y dFn.y/

is a functional statistic. In this case we write X D T .Fn/, where the functional T .�/
is defined as T .F / D R

y dF.y/. For functional statistics,

hT.x/ D @

@�
T .F C �.ıx � F //

ˇ

ˇ

ˇ

ˇ

�D0C

D lim
�!0C

T .F C �.ıx � F // � T .F /
�

(5.13)
is called the influence curve as introduced by Hampel (1974). Note that ıx.t/ D
I.x � t/, viewed as a function of t , is the distribution function of a constant random
variable with value x.

However, there are many situations where we can motivate and give hT without
resorting to this functional derivative approach. Thus, in this subsection, we list a
number of general forms for random quantities and their associated hT functions.
At the end of the subsection, we return to the functional definition of the influence
curve given in (5.13).

For all of the following situations, we are thinking of a sample X1; : : : ; Xn of iid
random variables.
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5.5.8a Averages of Functions

The asymptotic properties of T D n�1Pn
iD1 q.Xi / are easily handled directly

by the laws of large numbers and the Central Limit Theorem, but it is still worth
pointing out the approximation-by-averages representation

1

n

n
X

iD1
q.Xi /� Efq.X1/g D 1

n

n
X

iD1
Œq.Xi/� Efq.X1/g�C 0: (5.14)

Here the definition hT.x/ D q.x/�Efq.X1/g is obvious, but it helps reinforce that

hT is always standardized to have mean 0. The proof that
p
nRn

d�! 0 is automatic
since Rn D 0. The asymptotic variance is obtained from �2hT

D Varfq.X1/g.
Examples are q.x/ D log.x/, q.x/ D x2, q.x/ D I.x � a/, etc.

5.5.8b Functions of Averages

This class refers to Delta Theorem examples where the quantity of interest, T D
g .q1; : : : ; qk/, is a real-valued function of averages of the type in (5.14),

qj D 1

n

n
X

iD1
qj .Xi /:

The representation then follows from a first order Taylor expansion

g .q1; : : : ; qk/ � g.�/ D
k
X

jD1
g0
j .�/



qj � �j
�CRn

D 1

n

n
X

iD1

2

4

k
X

jD1
g0
j .�/

˚

qj .Xi /� �j



3

5CRn; (5.15)

where qj D n�1Pn
iD1 qj .Xi/, � D ŒEfq1.X1/g; : : : ; Efqk.X1/g�T , and

g0
j .�/ D @

@xj
g.X /

ˇ

ˇ

ˇ

ˇ

XD�
:

Thus hT.x/ D Pk
jD1 g0

j .�/
˚

qj .x/ � �j



.

Example 5.34 (Sample central third moment). The sample central third moment
may be expressed as
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T D m3 D n�1
n
X

iD1
.Xi � X/3 D n�1

n
X

iD1

�

X3
i � 3X2

i X C 3XiX
2 � X

3
�

D m0
3 � 3m0

2X C 2X
3
;

which is a function of the raw sample moments q1 D X , q2 D m0
2, and q3 D m0

3.
Thus T D g.X;m0

2;m
0
3/, where

g.y1; y2; y3/ D y3 � 3y2y1 C 2y31 :

Taking partial derivatives and substituting � D .EfX1g; EfX2
1 g; EfX3

1g/T D
.�; �0

2; �
0
3/
T , we have

hT.Xi / D .6�2 � 3�0
2/.Xi � �/ � 3�.X2

i � �0
2/C .X3

i � �0
3/:

This can be compared to the representation of T D m3 in terms of centered
quantities as given in Theorem 5.24 (p. 243), hT.Xi/ D .Xi��/3��3�3�2.Xi��/.
This latter hT from Theorem 5.24 is preferable because then the asymptotic variance
is given in terms of central moments rather than raw moments. �

Note that this class of statistics, T D g .q1; : : : ; qk/, is a subset of the class
handled by the Delta Theorem (Theorem 5.19, p. 238). Moreover, the main reason to
get an approximation-by-averages representation is to obtain asymptotic normality
that Theorem 5.19 (p. 238) already gives in more generality. Nevertheless, (5.15,
p. 245) reveals how the form of hT for this case comes from Taylor expansion.
As in Example 5.34 above, .q1; : : : ; qk/ are typically subsets of the raw sample
momentsX;m0

2;m
0
3; : : :, and functions of them of interest include s2n,m3, estimates

of Skew.X1/ and Kurt.X1/ given by m3=m
3=2
2 and m4=m

2
2, respectively, and the

sample correlation coefficient. The fact that
p
nRn

p�! 0 as n ! 1 is given in
the following theorem which has nearly the same conditions as the Delta Theorem
(Theorem 5.19, p. 238).

We state this theorem in a slightly more general way in terms of an iid sample
of vectors Y 1; : : : ;Yn. The most important applications are of the type mentioned
above, where Y i D fq1.Xi /; : : : ; qk.Xi/gT , andX1; : : : ; Xn is an iid sample. In this
case (5.16) below reduces to (5.15, p. 245).

Theorem 5.26 (Approximation-by-Averages Representation for Functions of
Means). Suppose that Y 1; : : : ;Yn are iid vectors with finite mean E.Y 1/ D � and
covariance ˙ . If g is a real-valued function such that g0 exists in a neighborhood
of � and is continuous at �, and g0.�/ ¤ 0, then

g.Y /� g.�/ D 1

n

n
X

iD1
g0.�/.Y i ��/CRn; (5.16)

where
p
nRn

p�! 0 as n ! 1.
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Proof. By Young’s form of Taylor’s expansion (see, for example, p. 45 of Serfling,
1980), (5.16) holds where

p
nRn

kp
n.Y ��/k

p�! 0;

and k � k is the usual Euclidean norm. But by the Central Limit Theorem, the
denominator is converging to a random variable and is thus Op.1/. Multiplying
op.1/ and Op.1/ results then yields an op.1/ result for

p
nRn. �

Note that the asymptotic variance of g.Y / that follows from Theorem 5.26
is similar to the one given by the Delta Theorem (Theorem 5.19, p. 238),
g0.�/˙g0.�/T =n, although with slightly different notation, � D � and b2n D n.

5.5.8c Functions of Statistics with Approximation-by-Averages
Representation

We hope to convince the reader that approximation by averages are ubiquitous.
Moreover, they build on one another. The next result says that a smooth function
of statistics that have an approximation-by-averages representation also has an
approximation-by-averages representation. This is a generalization of (5.15, p. 245)
and essentially gives approximation-by-averages representation for statistics that are
covered by the Delta Theorems. We let � have dimension k in accordance with
Theorem 5.26 (p. 246) although � usually has dimension b.

Theorem 5.27. For an iid sample X1; : : : ; Xn, suppose that each component of b�
has the approximation-by-averages representation given by

b�j � �j D 1

n

n
X

iD1
hj .Xi /CRnj ; j D 1; : : : ; k; (5.17)

where
p
nRnj

p�! 0 as n ! 1, Efhj .X1/g D 0, and Varfhj .X1/g is finite,
j D 1; : : : ; k. Also assume that g is a real-valued function with partial derivatives
existing in a neighborhood of the true value � and continuous at � . Then

g.b�/� g.�/ D 1

n

n
X

iD1

2

4

k
X

jD1
g0
j .�/hj .Xi /

3

5CRn; (5.18)

where
p
nRn

p�! 0 as n ! 1.

Proof. The proof is nearly identical to the proof of Theorem 5.26 (p. 246) except
thatb�j � �j plays the role of qj � �j in (5.15, p. 245) or Y j � �j in (5.16) and is
in turn replaced by

Pn
iD1 hj .Xi /CRnj . �
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5.5.8d Averages of Functions with Estimated Parameters

Often we need asymptotic normality of a sum with estimated parameters in the
summands, T D n�1Pn

iD1 q.Xi ;b�/. A simple example would be the sample
central moments, mk D n�1Pn

iD1.Xi � X/k , for which an approximation by
averages result has already been given (Theorem 5.24, p. 243). A more difficult
statistic to handle arises from replacing X in mk by the sample median b�1=2,
resulting in n�1Pn

iD1.Xi �b�1=2/k .
In the general case considered here, we need each component of the b 	 1

estimatorb� to have an approximation-by-averages representation

b�j � �j D 1

n

n
X

iD1
hj .Xi /CRnj ; j D 1; : : : ; b; (5.19)

where
p
nRnj

p�! 0 as n ! 1, Efhj .X1/g D 0, and Varfhj .X1/g is finite,
j D 1; : : : ; b. Note that (5.19) is the same (5.17, p. 247) except b replaces k as the
dimension. In the following we put the above hj functions into a b	1 vectorh. Note
also that the vector of partial derivatives of q with respect to � , q0, is also a b 	 1

vector. Then, Taylor expansion along with some adding and subtracting leads to

1

n

n
X

iD1
q.Xi ;b�/ �Efq.X1;�/g D 1

n

n
X

iD1
hT.Xi/CRn;

where

hT.Xi / D q.Xi ;�/� Efq.X1;�/g C 

Efq0.X1;�/g
�

h.Xi /; (5.20)

and for someb�� lying betweenb� and �

Rn D
"

1

n

n
X

iD1
q0.Xi ;�/ �Efq0.X1;�/g

#

.b� � �/

C Efq0.X1;�/g
(

b� � � � 1

n

n
X

iD1
h.Xi/

)

(5.21)

C 1

2
.b� � �/T

(

1

n

n
X

iD1
q00.Xi ;b��/

)

.b� � �/:

Before showing that
p
nRn

p�! 0 as n ! 1 in Theorem 5.28 below, let us look at
hT.Xi/ from (5.20) for a few examples:

1. The kth sample central moment has q.Xi ; �/ D .Xi � �/k and b� D X . Thus
q0.Xi ; �/ D �k.Xi � �/k�1, h1.Xi/ D Xi � �, and

hT.Xi/ D .Xi � �/k � �k � k�k�1.Xi � �/;

which is the same as given in Theorem 5.24 (p. 243).
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2. The second central moment about the median has q.Xi ; �0:5 / D .Xi � �0:5 /
2 and

for the sample median h1.Xi/ D f1=2� I.Xi � �0:5 /g =F 0.�0:5 /. Thus

hT.Xi / D .Xi � �0:5 /
2 �E.X1 � �0:5 /

2 � 2.�� �0:5 /
�

1=2� I.Xi � �0:5 /

F 0.�0:5 /

�

:

If the population mean and medians are the same, then this second central
moment about the median has the same asymptotic behavior as the sample
variancem2 D s2n.

3. A more standard dispersion estimator used with the sample median is the mean
absolute deviation from the sample median,

T D 1

n

n
X

iD1
jXi �b�0:5j:

Unfortunately, the results in this subsection do not apply to this statistic because
the absolute value function is not differentiable at 0. Nevertheless, T has an
approximation-by-averages representation, with

hT.x/ D jx � �0:5j � EjX1 � �0:5j; (5.22)

as can be verified by using (5.13, p. 244).

The following theorem formally states the approximation-by-averages represen-
tation for T D n�1Pn

iD1 q.Xi ;b�/. A simple corollary is that T is AN.Efq.X1;�/g,
VarfhT.X1/g=n/ where hT is given in (5.20, p. 248).

Theorem 5.28. For an iid sample X1; : : : ; Xn, suppose that each component of b�
has the approximation-by-averages representation given by

b�j � �j D 1

n

n
X

iD1
hj .Xi /CRnj ; j D 1; : : : ; b; (5.23)

where
p
nRnj

p�! 0 as n ! 1, Efhj .X1/g D 0, and Varfhj .X1/g is finite,
j D 1; : : : ; b. Also assume that the real-valued function q.Xi ;�/ has two partial
derivatives with respect to � , and

1. Varfq.X1;�/g and Efq0.X1;�/g are finite;
2. there exists a function M.x/ such that for all �� in a neighborhood of the true

value � and all j; k 2 f1; : : : ; bg, jq00.x;��/jkj � M.x/, where EfM.X1/g <
1.

Then,

1

n

n
X

iD1
q.Xi ;b�/ �Efq.X1;�/g D 1

n

n
X

iD1
hT.Xi/CRn;
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where

hT.Xi/ D q.Xi ;�/ �Efq.X1;�/g C 

Efq0.X1;�/g
�

h.Xi/;

and
p
nRn

p�! 0 as n ! 1.

Proof. The first two terms of (5.21) are clearly op.n�1=2/ due to the approximation-
by-averages representation for b� and the WLLN applied to n�1Pn

iD1 q0.Xi ;�/.
For the last term of (5.21) we use the fact that n�1Pn

iD1 q00.Xi ;b��/ is ultimately

bounded by n�1Pn
iD1 M.Xi/ becauseb�

p�! � and n�1Pn
iD1 M.Xi/ D Op.1/ by

the WLLN. �

A version of Theorem 5.28 is given in Presnell and Boos (2004). Randles (1982)
presents more general results on statistics with estimated parameters. An important
application of Theorem 5.28 is found in the proof of Theorem 6.9 (p. 288).

5.5.8e Maximum Likelihood Estimators

Consider X1; : : : ; Xn iid from a parametric model density f .xI�/. Under suitable
regularity conditions to be given in Chapter 6,

b�MLE � � D 1

n

n
X

iD1
I.�/�1

�

@

@�
logf .Xi I�/

�

CRn;

where
p
nRn

p�! 0 as n ! 1.

5.5.8f M-Estimators

In Chapter 7 we generalize maximum likelihood estimators to b� that satisfy
Pn

iD1 .Xi ;b�/ D 0, where is a known .b	1/-function that does not depend on i
or n. In the Appendix of Chapter 7, we show under suitable regularity conditions that

b� � � D 1

n

n
X

iD1
A.�/�1 .Xi ;�/CRn;

where
p
nRn

p�! 0 as n ! 1 andA.�/ D E
˚� 0.X1;�/




:
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5.5.8g U -Statistics

U -statistics were introduced by Hoeffding (1948) and are a large class of statistics
that generalize the sample mean X . They are statistics that can be represented as
arithmetic averages of functions of subsets of the original sample. Specifically they
are statistics that can be written as

T D 1
�

n

m

	

X

c

v.Xi1; Xi2 ; : : : ; Xim/; (5.24)

where v is a function called a kernel that is symmetric in its arguments, and
P

c

denotes the m-fold summation over all
�

n
m

	

distinct subsets of fi1; : : : ; img from
f1; : : : ; ng. The U in U -statistics is for “unbiased,” as the kernel v is such that
E.T / D Efv.X1; : : : ; Xm/g D � , the parameter that T is estimating. The form
of T in (5.24) looks foreboding, but usually m D 2 or m D 3, and the resulting
expression is relatively simple. For example, the unbiased version of the sample
variance is seen to be a U-statistic upon algebraic manipulation,

s2n�1 D 1

n � 1
n
X

iD1
.Xi � X/2 D 2

n.n � 1/
X

i<j

.Xi �Xj /2
2

D T; (5.25)

where m D 2, v D .x1; x2/ D .x1 � x2/
2=2, and c is the set of all

�

n
2

	

sets of
observations fXi;Xj g.

Although U -statistics have identically distributed summands, many of the
summands are correlated due to overlapping Xi values; for example, v.X1;X2/
and v.X1;X3/ are correlated due to X1 appearing in both. Thus, an approximation-
by-averages representation is important because the iid Central Limit Theorem
does not apply to sums of dependent summands. Many results about U -statistics
may be found in Serfling (1980, Ch. 5), but here we want to merely mention the
approximation by averages result that follows from Theorem 5.3.2, p. 188, of that
text:

Theorem 5.29. For an iid sample X1; : : : ; Xn, if Efv.X1; : : : ; Xm/g2 < 1, then

T � � D 1

n

n
X

iD1
h.Xi /CRn;

where

h.x/ D m ŒE fv.X1;X2; : : : ; Xm/ jX1 D xg � �� ;

and
p
nRn

p�! 0 as n ! 1.

In the U -statistic context, the average n�1Pn
iD1 h.Xi / above is often called the

projection of T � � onto the space of averages of mean zero random variables
because of its conditional expectation origin.
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Example 5.35 (Sample variance). To find the h for the sample variance given in
(5.24), we note that v.x1; x2/ D .x1 � x2/

2=2 and compute

E
˚

.X1 �X2/2=2 j X1 D x

 D E.x � X2/

2=2

D E f.x � �/ � .X2 � �/g2 =2

D .x � �/2 C �2

2
:

Finally, we subtract � D E.X1 � X2/
2=2 D �2 from

˚

.x � �/2 C �2



=2 and
multiply bym D 2 to obtain h.x/ D .x � �/2 � �2, a form we have derived before
in other ways.

5.5.8h The Influence Curve

The approximation-by-averages representation of most statistics in use can be
found from one of the above general classes of random quantities. The maximum
likelihood and M-estimator classes are extremely relevant and by themselves cover
most situations of interest, at least in combination with one of the general results
of Theorems 5.26 (p. 246) through 5.27 (p. 247). Several notable exceptions are
the class of linear combinations of order statistics, L-statistics, and the class of
estimators obtained by inverting rank tests, R-statistics, discussed in Chs. 8 and 9 of
Serfling, 1980.

If we can obtain h of the approximation by averages essentially by Taylor
expansion in all of the above classes, why do we need the complicated functional
derivative

h.x/ D @

@�
T .F C �.ıx � F //

ˇ

ˇ

ˇ

ˇ

�D0C

(5.26)

of (5.13, p. 244)? The reason is that this h (typically called the Influence Curve)
unifies all of the approximation by averages results. That is, all of the above
approximation-by-averages representations can be derived via (5.26). Our goal here
is to merely show why this is the case. One small caveat: equation (5.26) only shows

how to obtain h, not how to prove
p
nRn

p�! 0 as n ! 1.
For a functional T .�/ defined on distribution functions F.t/, the Gateaux

derivative in the “direction”	.t/ is given by

T .F I	/ D @

@�
T .F C �	/

ˇ

ˇ

ˇ

ˇ

�D0C

(5.27)

The Gateaux derivative has a long history in variational calculus and in the definition
of derivatives for functionals. von Mises (1947) introduced the Gateaux derivative
into the statistics literature and used a Taylor expansion in � of T .F C �	/ with
	 D Fn � F to get asymptotic results for functional statistics T .Fn/, where Fn is
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the empirical distribution function Fn.t/ D n�1Pn
iD1 I.Xi � t/. Specifically von

Mises (1947) used Taylor expansion about � D 0 to get

T .F C �	/ D T .F /C T .F I	/� CR.F;	/:

Now letting 	 D Fn � F and � D 1 in the previous expression, we get

T .Fn/ D T .F /C T .F IFn � F /CRn; (5.28)

where we have changedR.F;	/ to Rn to reflect dependence on n. Note that

Fn.t/ � F.t/ D 1

n

n
X

iD1
fI.Xi � t/ � F.t/g

D 1

n

n
X

iD1
fıXi .t/ � F.t/g : (5.29)

The key to understanding why the Influence Curve of (5.26) provides the h of
the approximation by averages is the following. Starting with von Mises’ first order
Taylor expansion (5.28) and substituting (5.29), we have

T .Fn/ � T .F / D T .F IFn � F /CRn (5.30)

D T

�

F I 1
n

X

.ıXi � F /

�

CRn (5.31)

D 1

n

X

T .F I ıXi � F /CRn; (5.32)

where in this last step we have used linearity of the Gateaux derivative,T .F IP aiFi / D
P

aiT .F IFi /. Linearity is not guaranteed by definition (5.27), but it usually holds.
Thus, simple Taylor expansion of T .F C �.Fn � F // and linearity leads to the
approximation-by-averages representation with h given by (5.13, p. 244) or (5.26,
p. 252). Now we give several examples to illustrate.

5.5.8i Influence Curve Derivation for Sample Mean and Variance

The mean functional is T1.F / D R

t dF.t/ and the variance functional is T2.F / D
R

.t � �/2dF.t/. To find the influence curve of the mean functional,

T1.F C �	/ D
Z

t d ŒF.t/C �	.t/� D
Z

t dF.t/C �

Z

t d	.t/:

Then the Gateaux derivative is

T1.F I	/ D @

@�
T1.F C �	/

ˇ

ˇ

ˇ

ˇ

�D0
D
Z

t d	.t/;
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and setting 	.t/ D ıx.t/ � F.t/, we have

h.x/ D
Z

t d Œıx.t/ � F.t/� D x �
Z

t dF.t/ D x � �;

where we have put in � for the mean functional in the last step, and used the fact
that

R

t dıx.t/ D x.
For the variance functional, let us use the alternate expression Var.X/ D

E.X2/� �2 and substitute T1.F / D � to get

T2.F C �	/ D
Z

t2 dF.t/C �

Z

t2 d	.t/� fT1.F C �	/g2 :

Then the Gateaux derivative is

T2.F I	/ D @

@�
T2.F C �	/

ˇ

ˇ

ˇ

ˇ

�D0

D
Z

t2 d	.t/ � 2T1.F /T1.F I	/:

Setting 	.t/ D ıx.t/ � F.t/ and using the results for the mean, we have

h.x/ D
Z

t2 d Œıx.t/ � F.t/� � 2�.x � u/

D x2 � .�2 C �2/ � 2�x C 2�2 D .x � �/2 � �2;

where we have used the fact that
R

t2 dF.t/ D �2 C �2.

5.5.8j Influence Curve Derivation for the Median

The sample median provides a good example of using the functional approach to
obtain the appropriate h function without getting bogged down by mathematical
rigor. Recall that the definition of the pth quantile (5.12, p. 243) was already in a
functional form, �p D F �1.p/. We use the fact that when F is continuous at �p ,
F.F�1.p// D p. Then, for p D 0:5, we have for	 continuous,

F
˚

.F C �	/�1.0:5/

C �	

˚

.F C �	/�1.0:5/

 D 0:5:

Using implicit differentiation, we take the partial derivative with respect to �,

F 0 ˚.F C �	/�1.0:5/

 @

@�
.F C �	/�1.0:5/

C	
˚

.F C �	/�1.0:5/

C �

@

@�
	
˚

.F C �	/�1.0:5/

 D 0: (5.33)
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Note that it is not clear that we can differentiate	, but we ignore that detail because
setting � D 0 gets rid of the last term. Thus, setting � D 0 and substituting �0:5 D
F�1.0:5/, we have

F 0.�0:5 /T .F I	/C	.�0:5 / D 0;

and solving for T .F I	/, the Gateaux derivative is

T .F I	/ D � 	.�0:5 /

F 0.�0:5 /
:

Although we derived T .F I	/ under the assumption that	was continuous, we now
set 	.t/ D ıx.t/ � F.t/ D I.x � t/ � F.t/ in the formula above, and using the
fact that F.�0:5 / D 0:5, obtain

h.x/ D 0:5 � I.x � 0:5/

F 0.�
0:5
/

:

5.5.9 Proving Convergence in Distribution of Random Vectors

Previously we noted that convergence in distribution of vectors is harder to prove
than the vector versions of wp1 convergence and convergence in probability. The
key reason is that convergence in distribution of the components of a vector, i.e.,
convergence of the marginal distribution functions, does not entail joint convergence
of the vector except in the special case that the components are independent
(Theorem 5.8, p. 225).

The main tool for proving convergence in distribution of vectors is the Cramer-
Wold device given in Theorem 5.31 (p. 256) below. In order to prove Theorem 5.31,
we need the following classical result giving the equivalence between convergence
in distribution and pointwise convergence of characteristic functions. The charac-
teristic function �.t/ of a random vector Y is defined to be the complex-valued
function

�.t/ D E
n

eit
T Y
o

D E
˚

cos.tT Y /

C iE

˚

sin.tT Y /



;

where t 2 Rk and i D p�1. The characteristic function uniquely determines the
distribution function and vice versa. When the moment generating functionm.t/ D
E
�

et
T Y
�

exists, the characteristic function and moment generating function are

related via m.t/ D �.�it/. The characteristic function always exists and thus is
more useful than the moment generating function for proving convergence results.

Theorem 5.30. Let Yn be a sequence of random k-vectors with associated charac-
teristic functions �n. Then

Yn
d�! Y ” lim

n!1�n.t/ D �.t/ for all t 2 Rk:
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Although Theorem 5.30 is used to prove Theorem 5.31, its most important
application is to prove the Central Limit Theorem. Now we are ready to state the
following general result concerning the equivalence of convergence in distribution
of random vectors and the convergence in distribution of all linear combinations
of the vector components. Its proof is straightforward using characteristic functions
(see Serfling, 1980, p. 18).

Theorem 5.31 (Cramér-Wold).

Yn
d�! Y ” cTYn

d�! cTY for all c 2 Rk:

Recall Example 5.11 (p. 225) where convergence in distribution of the compo-
nents did not entail joint convergence in distribution. The Cramér-Wold condition
picks this up: .c1; c2/.X1n;X2n/T D c1Z1 C c2Z2 C .c1 C c2/Z3 for n odd is
distributed as N.0; c21 C c22 C .c1 C c2/

2/, whereas .c1; c2/.X1n;X2n/T D c1Z1 C
c2Z2 C .c1 � c2/Z3 for n even is distributed as N.0; c21 C c22 C .c1 � c2/

2/ and
thus cTXn does not converge in distribution. Thus by Theorem 5.31, Xn does not
converge in distribution.

In many applications, we verify the Cramér-Wold condition by approximating all
the components by averages. The next example illustrates the type of problem that
can be handled by such an approximation. Then the next subsection generalizes the
result into a theorem.

Example 5.36 (Joint convergence in distribution: sample mean and variance).
Suppose that X1; : : : ; Xn are iid(�; �2) and �4 exists, where �k D E.X1 � �/k .

Because of the separate approximation by averages results for both X and s2n, we
might guess that

p
n.X � �; s2n � �2/T

d�! BN.0;˙ / as n ! 1; (5.34)

where˙ 11 D �2,˙ 12 D �3, and˙ 22 D �4��4. Perhaps the off-diagonal element
�3 is not totally obvious, but it makes sense to use the covariance of the two h
functions from their approximation-by-averages representations, and that turns out
to be �3.

To use Theorem 5.31 in showing this joint convergence, we need to show that

c1Œ
p
n.X � �/�C c2Œ

p
n.s2 � �2/� d�! N

˚

0; .c1; c2/˙ .c1; c2/
T



. Note that using
the representation in Example 5.33 (p. 242) for s2n � �2, we have

c1.X � �/C c2.s
2 � �2/ D 1

n

n
X

iD1
Œc1.Xi � �/C c2f.Xi � �/2 � �2g�CRn;

where Rn D �c2.X � �/2; which is an approximation-by-averages represen-
tation. Then by Theorem 5.23 (p. 242) we have the appropriate convergence to
Nf0; .c1; c2/˙ .c1; c2/T g since VarŒc1.Xi � �/ C c2f.Xi � �/2 � �2g� D c21�

2 C
c22.�4 � �4/C 2c1c2�3 D .c1; c2/˙ .c1; c2/

T . �
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5.5.10 Multivariate Approximation by Averages

Theorem 5.32 (Multivariate Approximation by Averages). For an iid sample
X1; : : : ; Xn, suppose that each component of T has the approximation-by-averages
representation given by

Tj � Tj1 D 1

n

n
X

iD1
hj .Xi /CRnj ; j D 1; : : : ; k; (5.35)

where
p
nRnj

p�! 0 as n ! 1, Efhj .X1/g D 0, and the covariance of
.h1.X1/; : : : ; hk.X1//

T is ˙ . Then

p
n.T1 � T11; : : : ; Tk � Tk1/T

d�! N.0;˙ /:

Theorem 5.32 follows easily from Theorem 5.22 (p. 241) and the multivariate
Central Limit Theorem (Theorem 5.7, p. 225). Theorem 5.32 tells us that any
statistics having component-by-component approximation by averages can be put
together to get joint asymptotic normality. For example, any group of sample
central moments and any group of sample percentiles have joint asymptotic normal
distributions. These convergence are illustrated below. Moreover, one can combine
any set of sample moments with any set of sample percentiles to get joint asymptotic
normality of the whole set. This can be useful if one is interested in the asymptotic
correlations between these statistics or if one has a statistic which is a function of
both sample moments and sample percentiles.

Recall that joint convergence in probability and with probability 1 for random k-
vectors is equivalent to convergence of the individual components. This equivalence
is not true for convergence in distribution (except for the case where all the compo-
nents are independent). Theorem 5.32 is an equivalence result in that statistics that
are component-by-component approximated by averages and thus are univariately
asymptotically normal are also automatically jointly asymptotically normal.

Example 5.37 (Sample moments). Consider the vector composed of the sample
meanX and the second through the kth sample central moments .X;m2; : : : ; mk/

T .
Theorem 5.24 (p. 243) and Theorem 5.32 (p. 257) yield that this vector is
asymptotically normal with mean .�; �2; : : : ; �k/T and covariance matrix ˙=n,
where the ij th element of ˙ for i � 2 and j � 2 is given by

E


.X1 � �/i � �i � i�i�1.X1 � �/� .X1 � �/j � �j � j�j�1.X1 � �/
�

D �iCj � �i�j � i�i�1�jC1 � j�iC1�j�1 C ij�i�1�j�1�2: �

Example 5.38 (Sample quantiles). Suppose that F 0.�pi / > 0; i D 1; : : : ; k;

where 0 < p1 < � � � < pk < 1. Then by Theorem 5.24 (p. 243) and
Theorem 5.32 (p. 257), the vector .b�p1 ; : : : ;b�pk /

T is asymptotically normal with
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mean .�p1 ; : : : ; �pk /
T and covariance matrix˙=n, where the ij th element of˙ for

i � j is given by

E

"

�

pi � I.X1 � �pi /

F 0.�pi /

�

(

pj � I.X1 � �pj /

F 0.�pj /

)#

D pi.1 � pj /

F 0.�pi /F 0.�pj /
: �

5.6 Summary of Methods for Proving Convergence
in Distribution

We have covered a lot of ground in this chapter. Here we remind the reader of the
most important approaches for proving convergence in distribution.

1. Averages:

1

n

n
X

iD1
Xi is AN fE .X1/;Var .X1/=ng as n ! 1

directly from the CLT (p. 219).
2. Averages of Functions:

1

n

n
X

iD1
h.Xi/ is AN fE h.X1/;Varh.X1/=ng as n ! 1

directly from the CLT (p. 219).
3. Functions of Averages (or of Asymptotically Normal Yn)

a) Continuous Functions of Standardized Yn:

Yn is AN.�n; �2n/ H) g

�

Yn � �n

�n

�

d�! g.Z/ as n ! 1;

where Z is a standard normal random variable. Of course, Theorem 5.9
(p. 227) is a bit more general since it applies to any Yn converging in
distribution.

b) Differentiable Functions of Asymptotically Normal Yn:

Yn is AN.�; �2=n/ H) g.Yn/ is AN
h

g.�/;
˚

g0.�/

2
�2=n

i

as n ! 1. The third Delta Theorem, Theorem 5.20 (p. 239), is more general
since it applies to vector-valued functions of a vector Yn.
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4. Approximation by Averages:

T � T1 D 1

n

n
X

iD1
h.Xi /CRn;

where E h.X1/ D 0, Var h.X1/ D �2h , and Rn D op
�

n�1=2	 implies

T is AN.T1; �2h=n/ as n ! 1:

This is Theorem 5.23 (p. 242) with the more general version found in Theorem
5.32 (p. 257).

5.7 Appendix – Central Limit Theorem for Independent
Non-Identically Distributed Summands

A Central Limit Theorem gives conditions under which an appropriately stan-
dardized (or normalized) sum of random variables converges in distribution to
a standard normal distribution. The most well known Central Limit Theorem is
the one for independent and identically distributed (iid) summands, Theorem 5.4
(p. 219). However, there are Central Limit Theorems for summands that are neither
independent nor identically distributed, and certain of these are useful for large
sample inference, especially for regression settings.

The general nature of the conditions under which a standardized sum converges
to a standard normal are that: (a) the summands are not too dependent; and (b)
all summands contribute more or less equally to the sum in the sense that no
single summand contributes significantly more variability to the sum than any other
summand. Independent summands satisfy (a) in the strongest possibly sense, and
identically distributed summands satisfy (b) in the strongest possible sense. Hence
the well-known version of the Central Limit Theorem for iid random variables
follows.

However, not all sums are asymptotically normal. Counter examples are useful
for illustrating the necessity of certain conditions in Central Limit Theorems. We
start with two such examples. The first shows that some conditions on the depen-
dence structure are necessary; the second illustrates the necessity for conditions
ensuring that no random variable contributes significantly to the variance of the sum.

Example 5.39 (Persistent correlations). Suppose that T has a non-normal den-
sity fT , with E.T / D 0 and Var.T / D �2T > 0, and let Z1;Z2; : : : ; be iid
standard normal random variables that are independent of T . Define Xi D T CZi
for i D 1; 2; : : :. Note that the Xi are identically distributed but not independent.
The correlation between Xi and Xj for i ¤ j is �2T =.�

2
T C 1/ > 0. Note that

the pairwise correlation can be made arbitrarily small by taking �2T sufficiently
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small. Now set Sn D X1 C X2 C � � � C Xn D nT C Z1 C � � � C Zn. The sum
Sn has mean 0 and variance v2n D n2�2T C n, so that the standardized sum is
Sn=vn D Y1;n C Y2;n where Y1;n D nT=vn and Y2;n D .Z1 C � � � C Zn/=vn. It is
easily verified that Y1;n converges in distribution to T=�T and that Y2;n converges in
probability to 0. Thus the standardized sum converges in distribution to T=�T which
is non-normal. This example shows that a standardized sum of dependent summands
need not converge to a standard normal distribution, even when the components are
identically distributed and the pairwise correlations are small. The key feature of
this example is that the correlation between Xi and Xj does not decay to zero as
ji � j j ! 1 for all i and j , and thus T dominates the sum. �

Next we present an example of summands that are mutually independent, but
whose distributions differ sufficiently that their standardized sum does not converge
to a standard normal.

Example 5.40 (Components contribute unequally). Suppose that B;B1; B2; : : :
are iid random variables with P.B D �1/ D P.B D 1/ D 1=2. Note
that E.B/ D 0 and Var.B/ D 1. Define Xi D 2i=2Bi . The Xi are mutually
independent and have common mean 0, but different variances, Var.Xi/ D 2i .
The sum Sn D X1 C � � � C Xn has mean 0 and variance Var.Sn/ D v2n D
Pn

iD1 2i D 2nC1 � 2 so the standardized sum is Yn D Sn=vn. We show that the
standardized sum does not converge in distribution to a standard normal by using a
proof by contradiction. Assume that Yn does converge in distribution to a standard
normal. It follows that Yn�1 must also converge in distribution to N.0; 1/. Write
Yn D Sn�1=vn C Xn=vn D .vn�1=vn/Yn�1 C .2n=2=vn/Bn. Note that vn�1=vn and

.2n=2=vn/ both converge to 1=
p
2. So using the facts that Yn�1

d�!N.0; 1/ and that

Bn and B have the same distribution, it follows that Yn
d�!Z=

p
2C B=

p
2 where

Z and B are independent and Z is standard normal. However, the sum of a normal
random variable (Z=

p
2) and a discrete random variable (B=

p
2) does not have

a normal distribution, contradicting the assumption that Yn
d�! N.0; 1/. Note that

in this example Var.Xn/=Var.Sn/ ! 1=2, so that one summand (Xn) contributes
one-half of the total variability to sum (Sn) asymptotically. The fact that Var.Xn/
is increasing with n is not the key feature of this example. The same phenomenon
holds if the variance decreases with n as illustrated in Problem 5.51 (p. 272). �

Central Limit Theorems for dependent summands play an important role in the
analysis of dependent data, e.g., time series and spatial statistics. Our concern in this
text is primarily with independent, but not necessarily identically distributed, such as
arises in regression modeling and in data from designed experiments. Accordingly
we limit further discussion to Central Limit Theorems for independent but non-
identically distributed random variables.
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5.7.1 Double Arrays

In statistical applications we are usually interested in standardized sums of the form
Yn D .Sn�an/=bn where Sn D X1C� � �CXn. We assume that the Xi are mutually
independent. Reexpression results in

Yn D
n
X

iD1

�

Xi

bn
� an

nbn

�

D
n
X

iD1
Xn;i

where Xn;i D Xi=bn � an=nbn. The Xn;i can be arranged in a triangular array

X1;1;

X2;1 X2;2

X3;1 X3;2 X3;3
:::

:::
:::

Xn;1 Xn;2 : : : Xn;n

Note that the random variables in each row are independent, and that the standard-
ized sum Yn is just the nth row sum. The triangular array above is a special case of
a double array in which the number of entries in each row is arbitrary,

X1;1; X1;2 : : : X1;k1
X2;1; X2;2 : : : X2;k2
:::

:::
:::

:::

Xn;1 Xn;2 : : : Xn;kn:

(5.36)

Central Limit Theorems are usually stated in terms of the row sums of a double
array. This is convenient for statistical applications as it sometimes is the case that
the summands in a statistic depend on sample size. For example, in some regression
problems with experimental data, the response might be measured at equally-spaced
time points tn;i D i=.nC 1/, i D 1; 2; : : : ; n, giving rise to observed responseXn;i .
Even in standard linear regression problems with data fXi; Yig, the least squares
estimator of slope is

bˇ D
Pn

iD1.Xi � X/Yi
Pn

iD1.Xi � X/2
D

n
X

iD1
Yn;i

where Yn;i D Yi.Xi � X/=
Pn

iD1.Xi � X/2. Thus we see that often the data
themselves, or statistics calculated from data, are row sums of double arrays. So
it is natural to formulate and state Central Limit Theorems in terms of such arrays.
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5.7.2 Lindeberg-Feller Central Limit Theorem

Consider a double array as in (5.36, p. 261), and set Sn D Xn;1 C � � � C Xn;kn .
Define �n;i D E.Xn;i /, �2n;i D Var.Xn;i /, �n D Pkn

iD1 �n;i , �2n D Pkn
iD1 �2n;i . The

standardized sum is .Sn � �n/=�n. Note that .Sn � �n/=�n D X 0
n;1 C � � � C X 0

n;kn

where X 0
n;i D .Xn;i � �n;i /=�n, where E.X 0

n;i / D 0 and
Pkn

iD1 Var.X 0
n;i / D 1.

Thus the standardized row sums from a double array fXn;ig are equal to the row
sums of double array fX 0

n;ig for which �0
n;i D E.X 0

n;i / D 0, and � 02
n;i D Var.X 0

n;i /

are such that � 02
n D Pkn

iD1 � 02
n;i D 1. It follows that there is no loss in generality in

assuming that the double array is such that the entries have mean zero and the row
sum variances are equal to 1. Thus we drop the 0 notation and simply assume that
the double array under study is such that �n;i D 0 for all i and n, and that �2n D 1

for all n.
As alluded to in the opening remarks and examples, a Central Limit Theorem

requires that the summands all contribute only a small amount asymptotically. The
appropriate condition is known as uniform asymptotic negligibility. The double
array (5.36) is said to be uniformly asymptotically negligible if and only if

lim
n!1 max

1�i�kn
P.jXn;i j > �/ D 0: (5.37)

Note that (5.37) implies that limn!1P.jXn;i j > �/ D 0 for each i , and thus each
componentXn;i must converge in probability to 0.

Theorem 5.33 (Lindeberg-Feller). Consider the double array in (5.36, p. 261)
with independence in each row, �n;i D 0 and �2n;i < 1 for all n and i , and �2n D 1.
Then in order that

.i/ Sn
d�!N.0; 1/

.ii/ the double array is uniformly asymptotical negligible

both hold as n ! 1, it is necessary and sufficient that for each ı > 0

lim
n!1

kn
X

iD1
E
˚

X2
n;iI.jXn;i j > ı/
 D 0: (5.38)

Equation (5.38) is called the “Lindeberg Condition.” Theorem 5.33 says that the
desired asymptotic normality of Sn and the uniform asymptotically negligible
condition (5.37) are together equivalent to the Lindeberg Condition. Thus using
Theorem 5.33 requires that we know how to verify (5.38). Here we illustrate the
basic approach by proving the iid Central Limit Theorem, Theorem 5.4 (p. 219).
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The assumptions of Theorem 5.4 are thatX1; : : : ; Xn are iid with meanE.X1/ D
� and variance Var.X1/ D �2 < 1: For Theorem 5.33, kn D n and define

Xn;i D Xi � �

�
p
n

so that E.Xn;i / D 0, Var.Xn;i / D 1=n, and
Pn

iD1 Var.Xn;i / D 1. Then

n
X

iD1
E
˚

X2
n;i I.Xn;i > ı/


 D 1

�2
E
˚

.X1 � �/2I.jX1 � � j > ıpn/


D 1

�2

Z

.x � �/2I.j x � � j > ıpn/ dF.x/;

where F is the distribution function of X1. Now notice that

Z

.x � �/2I.j x � � j > ıpn/ dF.x/ D �2 �
Z

Œ��ıpn;�Cıpn�

.x � �/2 dF.x/:

The integral on the right-hand side above increases monotonically to �2 as n ! 1
and consequently

lim
n!1

Z

.x � �/2I.j x � � j > ıpn/ dF.x/ D 0;

thus verifying (5.38, p. 262).
So Sn D Pn

iD1 Xn;i D p
n.X � �/=� is AN(0,1) as stated by Theorem 5.4

(p. 219). A variety of problems given at the end of the chapter require verification
of the Lindeberg Condition, and this basic type of proof is usually adequate.

5.8 Problems

5.1. Suppose that Y1; : : : ; Yn are identically distributed with mean E.Y1/ D �,
var.Y1/ D �2, and covariances given by

Cov.Yi ; YiCj / D ��2; jj j � 2

D 0 jj j > 2:

Prove that Y
p�! � as n ! 1.

5.2. Suppose that Y1; Y2; : : : are independent random variables with Yn � N.�; �2n/,
where the sequence �2n ! �2 > 0 as n ! 1. Prove that there is no random variable

Y such that Yn
p�! Y . (Hint: Assume there is such a Y and obtain a contradiction

from jYn � YnC1j � jYn � Y j C jYnC1 � Y j.)
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5.3. Show that Yn
d�! c for some constant c implies Yn

p�! c by directly using
the definitions of convergence in probability and in distribution. Start with P.jYn �
cj>�/.
5.4. In Section 5.2.3b (p. 219) the sample size discussion refers to convergence
in the Central Limit Theorem, but in many practical situations one may be more
interested in convergence of the one sample t statistic, t D p

n.X � �/=sn�1. An
Edgeworth expansion (Hall, 1987) for the t statistic similar to (5.6, p. 219) shows
that

p

ˇ1.X1/=
p
n is still the important quantity but that t is skewed in the direction

opposite to Zn D p
n.X ��/=� . Thus Boos and Hughes-Oliver (2000) developed

the following equation

˛ C Œ:19C :026 log.˛/�

p

ˇ1.X1/p
n

for the probability that the 1�˛ one-sided t bound .�1; XC t˛;n�1sn�1=
p
n/ fails

to include the mean �.

a. Find how large n needs to be for a nominal 95% upper bound for � to have a
“miss rate” of at most .06 if

p

ˇ1.X1/ D :80. (In other words, to be sure the
coverage is at least .94.)

b. Working backwards in the above equation, find an adjusted ˛ so that the miss
rate would be .05.

5.5. Consider the simple linear regression setting,

Yi D ˛ C ˇxi C ei ; i D 1; : : : ; n;

where the xi are known constants, and e1; : : : ; en are iid with mean 0 and finite
variance �2. After a little algebra, the least squares estimator has the following
representation,

bˇ � ˇ D

n
P

iD1
.xi � x/ei

n
P

iD1
.xi � x/2

:

Using that representation, prove thatbˇ
p�! ˇ as n ! 1 if

Pn
iD1.xi � x/2 ! 1.

5.6. LetX1; : : : ; Xn be iid with finite fourth moment. Show that the sample kurtosis
b2 D m4=.m2/

2 is weakly consistent.

5.7. Let .X1; Y1/; : : : ; .Xn; Yn/ be iid bivariate random vectors with finite .s; t/th
moment, EjX1jsjY1jt < 1, where s and t are positive integers. Consider the sample
covariance

m11 D 1

n

n
X

iD1
.Xi �X/.Yi � Y /:
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Prove that m11

p�! �11; where �11 is the population covariance. Find the smallest
values of .s; t/ that you can.

5.8. Suppose that Y1; : : : ; Yn are iid random variables with P.Y1 > 0/ D 1. Define
the arithmetic (b�A), geometric (b�G), and harmonic (b�H ) sample means as follows:

b�A D 1

n

n
X

iD1
Yi

b�G D
 

n
Y

iD1
Yi

!1=n

b�H D
 

1

n

n
X

iD1

1

Yi

!�1
:

Give some simple conditions under which each of these estimators converges in
probability, and describe the limit for each in terms of expectations of functions
of Y1.

5.9. Let X1; : : : ; Xn be iid from a distribution with mean �, variance �2, and finite
central moments �3 and �4. Considerb� D X=sn, a measure of “effect size” used in

meta-analysis. Prove thatb�
p�! � D �=� as n ! 1.

5.10. Prove the following extension of Example 5.18 (p. 229): Suppose that Yn
d�!

Y , whereYn andY are k-vectors andC n is a k by k matrix converging in probability

to the k by k matrix C . Then Y T
n C nYn

d�! Y TCY .

5.11. In the continuation of Example 5.20 (p. 230) on 231, it follows that under

the local alternative �i D � C di=
p
n, .k � 1/F D Pk

iD1 n.Xi � X/2=s2p
converges in distribution to a noncentral chi-squared distribution with k � 1

degrees of freedom and noncentrality parameter  D dT .Ik � k�11k1Tk /d=�
2 D

Pk
iD1.di � d/2=�2. Now, if the data in a one-way ANOVA setup such as Exam-

ple 5.20 (p. 230) are normally distributed with means �1; : : : ; �k and common
variance �2, then the exact power of the ANOVA F statistic is the probability
that a noncentral F distribution with k � 1 and k.n � 1/ degrees of free-
dom and noncentrality parameter  D Pk

iD1 n.�i � �/2=�2 is larger than a
percentile of the central version of that F distribution. In R, that would be
1-pf(qf(.95,k-1,k*(n-1)),k-1,k*(n-1),nc) , where nc= and the
level is .05. Show that if �i D �Cdi =pn, then

Pk
iD1.di �d/2=�2 D Pk

iD1 n.�i �
�/2=�2, that is, the asymptotic chi-squared power approximation uses the same non-
centrality parameter. In R that would be 1-pchisq(qchisq(.95,k-1),2,nc).
Compare the approximation for k D 3 and nc=10 to the true power for n D 5, 10,
and 20.
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5.12. Prove that Yn
d�! Y implies that Yn D Op.1/.

5.13. Suppose thatb�1 is AN.�0; A1=n) as n ! 1.

a. What can we say about consistency ofb�1? Why?

b. Ifb�1 �b�2 p�! 0, what can we say about consistency ofb�2? Why?

c. If
p
n.b�1�b�2/ p�! b, what can we say about asymptotic normality ofb�2? Why?

5.14. Prove: if U1n D O.V1n/ wp1 and U2n D O.V2n/ wp1, then U1nU2n D
O.V1nV2n/ wp1.

5.15. Prove: if U1n D op.V1n/ and U2n D Op.V2n/, then U1nU2n D op.V1nV2n/.

5.16. Show that Sn D O.1/ implies Sn D Op.1/ and Sn D o.1/ implies Sn D
op.1/.

5.17. Consider the convergence concepts

(i) O.1/

(ii) o.1/

(iii) Op.1/

(iv) op.1/

(v)
d�!

(vi)
p�!

For each of the following quantities, list which of (i)-(vi) apply directly without any
standardization. For (v) and/or (vi), consider only cases where the limit is a random
variable or a finite constant (not ˙1). In those cases, give the limit.

a. Xn D nC 5.
b. Yn D �1=n for n odd and Yn D 1=n for n even.
c. Zn D n�1Pn

iD1 Ui , where U1; : : : ; Un are iid, E.U1/ D 0, Var.U1/ D 1.
d. XnYn, where Xn and Yn are defined in a. and b.
e.

p
XnZn, where Xn and Yn are defined in a. and b.

5.18. For proving convergence wp1, it is sometimes useful to use the following
simple result: If events A1; : : : ; Ak jointly imply the event B and P.A1/ D
P.A2/ D � � � D P.Ak/ D 1, then P.B/ D 1. Prove this result.

5.19. For proving convergence in probability, it is sometimes useful to use the
following simple result: If events A1�; : : : ; Ak� jointly imply the event B� and
P.Ai�/ � 1 � �, i D 1; : : : ; k, then P.B�/ � 1 � k�. Prove this result.

5.20. Show that Yn
p�! Y implies Yn

d�! Y . Hint: use Slutsky’s Theorem and the
representation Yn D .Yn � Y /C Y .

5.21. From Theorem 5.13 (p. 236) we obtain the useful result: If Yn is AN(�; �2n/

and �n ! 0, then Yn
p�! �. Prove this using Slutsky’s Theorem.



5.8 Problems 267

5.22. For the statisticb� D X=sn in Problem 5.9 (p. 265), show that the asymptotic
variance times n is given by

1 � ��3

�4
C �2�4

4�6
� �2

4�2

using Theorem 5.19 (p. 238) and (5.34, p. 256).

5.23. In Problem 5.8 (p. 265), you were asked to work on the consistency of b�A,
b�G , andb�H . Here we focus on asymptotic normality. For these estimators, state why
each is asymptotically normal, any conditions needed for asymptotic normality, and
the explicit form of the asymptotic mean and variance.

5.24. When two independent binomials,X1 is binomial (n1; p1) andX2 is binomial
(n2; p2), are put in the form of a 2 	 2 table (see Example 5.31, p. 240), then one
often estimates the odds ratio

� D
p1

1 � p1
p2

1 � p2

D p1.1� p2/

p2.1� p1/
:

The estimateb� is obtained by insertingbp1 D X1=n1 andbp2 D X2=n2 in the above
expression. Show that log.b�/ has asymptotic variance

1

n1p1.1 � p1/ C 1

n2p2.1 � p2/
:

5.25. Using the multinomial form of the 2	2 table found in Example 5.29 (p. 238),
show that for the odds ratio defined in Problem 5.24, log.b�/ has asymptotic variance

1

np11
C 1

np12
C 1

np21
C 1

np22
:

5.26. Multiply the matrices in Example 5.31 (p. 240) to obtain the asymptotic
covariance matrix. Then, find an expression for the asymptotic correlation between
the risk difference and risk ratio, and show that this correlation is one whenp1 D p2.

5.27. For an iid sample Y1; : : : ; Yn, consider finding the asymptotic joint distribu-
tion of .Y ; sn; sn=Y / using Theorem 5.20 (p. 239) and (5.34, p. 256).

a. Find the matrices g0.�/ and ˙ used to compute the asymptotic covariance
g 0.�/˙g0.�/T .

b. Multiply the matrices in a. to get the asymptotic covariance. (It might help to use
Maple or Mathematica.)

5.28. Suppose that .b�1;b�2/T are jointly asymptotically normal ..�1; �2/T ;˙=n/ as
n ! 1. Let g1.x1/ and g2.x2/ be increasing functions with non-zero derivatives
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at �1 and �2, respectively. Show that the asymptotic correlation between g1.b�1/ and
g2.b�2/ is the same as the asymptotic correlation betweenb�1 andb�2.

5.29. In most of Chapter 5 we have dealt with iid samples of size n of either
univariate or multivariate random variables. Another situation of interest is when we
have a number of different independent samples of different sizes. For simplicity,
consider the case of two iid samples, X1; : : : ; Xm and Y1; : : : ; Yn, with common
variance �2 and under a null hypothesis they have a common mean, say �. Then the
two-sample pooled t statistic is

tp D X � Y
q

s2p
�

1
m

C 1
n

	

;

where

s2p D .m � 1/s2X C .n � 1/s2Y
mC n � 2 ;

and

s2X D 1

m � 1

m
X

iD1
.Xi �X/2; s2Y D 1

n � 1

n
X

iD1
.Yi � Y /2:

It can be shown that tp
d�! N.0; 1/ as min.m; n/ ! 1. However, the proof

is fairly tricky. Instead it is common to assume that both sample sizes go to
1 at a similar rate, i.e., m;n D m=.m C n/ !  > 0 as min.m; n/ !
1. Under this assumption prove that tp

d�! N.0; 1/. Hint: show that tp D
n

p

1 � m;npm
�

X � �
	 �p

m;n
p
n
�

Y � �	
o

=sp.

5.30. For the setting of Problem 5.7 (p. 264) prove that m11 is AN.�11; �2h / and
find �2h by showing that the conditions of (an extended version for vectors of)
Theorem 5.23 (p. 242) holds with

h.Xi ; Yi / D .Xi � �X/.Yi � �Y / � �11:
Give the best moment conditions that you can for the asymptotic normality result.

5.31. For the sample third moment m3, show directly that the result of Theo-
rem 5.24 (p. 243) holds. That is, add and subtract � inside the definition of m3,
and expand in terms of .Xi ��/ and .X ��/. Then subtract �3 and the appropriate

.1=n/
P

h.Xi / for m3. This defines Rn, and you are to show that
p
nRn

p�! 0.

5.32. Suppose that b�1; : : : ;b�k each satisfy the assumptions of Theorem 5.23
(p. 242):

b� i � �i D 1

n

n
X

jD1
hi .Xj /CRin;
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where
p
nRin

p�! 0 as n ! 1 and E hi.X1/ D 0 and var hi.X1/ D �2hi < 1. Let

T D Pk
iD1 cib�i for any set of constants c1; : : : ; ck . Find the correct approximating

function hT for T , show that Theorem 5.23 may be used (verify directly without
using later theorems), and find the limiting distribution of T .

5.33. Let .X1; Y1/; : : : ; .Xn; Yn/ be iid pairs with EX1 D �1, EY1 D �2, VarX1 D
�21 , Var Y1 D �22 ; and Cov .X1; Y1/ D �12.

a. What can we say about the asymptotic distribution of .X; Y /T ?
b. Suppose that �1 D �2 D 0 and let T D .X/.Y /. Show that

nT
d�! Q as n ! 1;

and describe the random variableQ.
c. Suppose that �1 D 0; �2 ¤ 0 and let T D .X/.Y /. Show that

p
nT

d�! R as n ! 1;

and describe the random variable R.

5.34. Prove the result of Example 5.20 (p. 230) for the case of unequal sample sizes
and iN D ni=N ! i > 0, i D 1; : : : ; k, n1 C � � � C nk D N . That is, show that

.k� 1/s2pF D Pk
iD1 ni .Xi �X/2 can be written as a quadratic form and converges

in distribution to �2�2k�1 under the null hypothesis of equal means and common
variance �2.

5.35. One of the uses of asymptotic normality is to compare asymptotic variances
of estimators. In Ch. 1 we defined the asymptotic relative efficiency (ARE) of two
estimators of the same quantity to be the ratio of their asymptotic variances:

ARE.b�1;b�2/ D Avar.b�2/

Avar.b�1/
:

a. For an iid sample X1; : : : ; Xn from a distribution with finite second moment and
positive density f at the population median �1=2 D F �1.1=2/, f .�1=2/ > 0, find
an expression for the asymptotic relative efficiency of the sample mean to the
sample median, ARE(X ,b�1=2).

b. Now we want to consider location scale models

f .xI�; �/ D 1

�
f0

�x � �

�

�

:

Show that the expression derived in a. does not depend on � or � .
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c. Compute ARE(X ,b�1=2) for the following families:

(i) uniform(0,1): f0.x/ D I.0 < x < 1/;
(ii) normal(0,1): f0.x/ D .2�/�1=2 exp.�x2=2/;

(iii) logistic: f0.x/ D e�x=Œ1C e�x�2;
(iv) Laplace: f0.x/ D .1=2/e�jxj.

The variances for these four f0 are 1/12, 1, �2=3, and 2, respectively. You might
note that it makes sense to compute ARE’s here because both estimators are
estimating the same parameter, the center of symmetry �, which is both the
population mean and the population median.

5.36. Find the approximating hT function for the sample coefficient of variation
T D sn=X .

5.37. Find the approximatinghT function for the sample skewness T D m3=.m2/
3=2.

5.38. Find the approximating hT function for the sample kurtosis T D m4=.m2/
2.

5.39. Find the approximating hT function for the sample interquartile range T D
b�3=4 �b�1=4.
5.40. Formulate an extension of Theorem 5.27 (p. 247) for the situation of two in-
dependent samples X1; : : : ; Xm and Y1; : : : ; Yn, whereb�1 is a function X1; : : : ; Xm,
andb�2 is a function Y1; : : : ; Yn. The statistic of interest is T D g.b�1;b�2/, and the
conclusion is

g.b�1;b�2/� g.�1; �2/ D 1

m

m
X

iD1
g0
1.�/h1.Xi /C 1

n

n
X

iD1
g0
2.�/h2.Yi /CRmn;

where
p

max.m; n/Rmn
p�! 0 as n ! 1 and g0

1 and g0
2 are the first partial

derivatives.

5.41. For the situation of the previous problem give the approximating sum of
averages for T D s2m=s

2
n, the ratio of the sample variances.

5.42. Thinking of the kth central moment as a functional,

Tk.F / D
Z

.t � �/k dF.t/;

show that the Gateaux derivative is given by

Tk.F I	/ D
Z

ft � T1.F /gk d	.t/ � T1.F I	/
Z

k ft � T1.F /gk�1 dF.t/;
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where T1.F I	/ D R

t d	.t/ is the Gateaux derivative for the mean functional
given in Example 5.5.8i (p. 253). Then, substitute 	.t/ D ıx.t/ � F.t/ and obtain
hk given in Theorem 5.24 (p. 243).

5.43. Show that (5.22, p. 249) may be obtained by using (5.13, p. 244).

5.44. A location M-estimator (to be studied formally in Chapter 7, p. 297) may be
represented as T .Fn/, where T .�/ satisfies

Z

 .t � T .F // dF.t/ D 0;

and  is a known differentiable function. Using implicit differentiation, show that
the Gateaux derivative is

T .F I	/ D
R

 .t � T .F // d	.t/
R

 0.t � T .F // d	.t/ :

Then substitute 	.t/ D ıx.t/ � F.t/ and obtain influence function h.x/.

5.45. One representation of a “smooth” linear combination of order statistics is
T .Fn/, where T .F / D R 1

0
J.p/F �1.p/dp, and J is a weighting function. Using

the results in Example 5.5.8j (p. 254), find the influence function h.x/.

5.46. Suppose that Y1; : : : Yn are iid from the Weibull distribution with distribution
function F.t/ D 1� exp f�.t=�/cg, t � 0. Dubey (1967, Technometrics) proposed
the following “method of percentile” estimator of c based on two sample quantiles,
b�p1 andb�p2 ,

bc D log f� log.1 � p1/g � log f� log.1 � p2/g
log.b�p1/ � log.b�p2/

; 0 < p1 < p2 < 1:

He minimized the asymptotic variance of these estimators and found that p1 D :17

and p2 D :97 give the most efficient estimator which is 66% efficient relative to the
maximum likelihood estimator. (The point is that it is very simple to compute such
an estimator.) Justify thatbc is asymptotically normal and show what calculations
would be necessary to get the asymptotic variance (but do not do the calculations,
just set things up.)

5.47. One feature of the boxplot that stands out is the distance from the top of
the box to the bottom of the box, the so-called interquartile rangeb�3=4 �b�1=4. The
asymptotic variance of the interquartile range is

1

16n

�

3

f 2.�1=4/
� 2

f .�1=4/f .�3=4/
C 3

f 2.�3=4/

�

:
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Here we are using the density f in place of F 0, and of course we are assuming that
the density is positive at the first and third quartiles. We would like to compare the
efficiency of the interquartile range to that of other scale estimators, but the problem
is that they aren’t estimating the same quantities. To take that into account we define
the standardized asymptotic relative efficiency (SARE) of two scale estimators,

b�1
p�! �1 andb�2

p�! �2, by

SARE.b�1;b�2/ D Avar.b�2/=�22
Avar.b�1/=�21

:

Now compute the SARE of the sample standard deviation sn to the interquartile
range for the four f0 given in c) of Problem 5.35. You may use the fact that the
denominator of the SARE here is .Kurt � 1/=.4n/ (you could verify that using the
delta theorem), and Kurt for the four f0 are 1.8, 3.0, 4.2, 6.0, respectively. (You may
be surprised at how inefficient the interquartile range is.)

5.48. Use Theorem 5.4 (p. 219), the univariate CLT and Theorem 5.31 (p. 256)
to prove Theorem 5.7 (p. 225, the multivariate CLT). Perhaps it is easier to
use an alternate statement of the conclusion of the univariate CLT than given in

Theorem 5.4:
p
n.X � �/ d�! Y , where Y is a normal.0; �2) random variable.

5.49. Use Theorem 5.30 (p. 255) to prove the following result. If Xn

d�!
X ; Yn

d�! Y ; Xn and Yn are random vectors defined on the same probability
space and are independent, and X and Y are defined on the same probability space
and are independent, then

Xn C Yn
d�! X C Y as n ! 1:

5.50. For an iid sample X1; : : : ; Xn with finite fourth moments, show that the
asymptotic correlation between the sample mean X and the sample standard
deviation sn is Skew.X1/=

p

Kurt.X1/� 1.

5.51. Suppose that B;B1; B2; : : : are iid random variables with P.B D �1/ D
P.B D 1/ D 1=2. Define Xi D 2�i=2Bi and Sn D X1 C � � � C Xn. Prove that
the standardized sum Sn=

p

Var.Sn/ does not converge in distribution to a standard
normal. In doing so show that Var.X1/ contributes to one-half of the variability of
Sn asymptotically. Hint: Show that Sn�1 and

p
2.X2 C � � � C Xn/ are identically

distributed.

5.52. Consider a Gauss-Markov linear model

Y D Xˇ C �;
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whereY is n	1, the components of e D .e1; : : : ; en/
T are iid(0; �2), andX is n	pn.

Note that the number of predictors pn depends on n. Let H D X
�

XTX
	�1

XT

denote the projection (or “hat”) matrix with entries hi;j . Note that the hi;j also
depend on n. We are interested in the asymptotic properties (n ! 1) of the i th
residual, Yi � bY i , from this regression model, for a fixed i . Prove that if n and
pn ! 1 such that

hi;i ! ci for some 0 � ci < 1; and max
1�j�n

j¤i
jhi;j j ! 0;

then

Yi � bY i
d�!.1 � ci /ei C f.1 � ci /ci g1=2 �Z;

where Z is a standard normal random variable independent of ei . Hint: First

prove that Var
�

Pn
jD1;j¤i hi;j ej

�

D .hi;i � h2i;i /�
2. Then formulate and verify the

appropriate Lindeberg condition. (The result illustrates that least squares residuals
tend to have a distribution closer to a normal distribution than that of the original
error distribution when that distribution is not normal. Thus, tests for nonnormality
may have little power when many predictors are used.)

5.53. Consider the simple linear regression model with design points depending on
sample size,

Yi;n D ˇ1 C ˇxXi;n C ei ; i D 1; : : : ; n � 2;

where e1; : : : ; en are iid(0; �2).

a. Prove that if

lim
n!1

max1�i�n.Xi;n � X/2
Pn

1.Xi;n � X/2
D 0;

then the least squares slope estimator is asymptotically normal.
b. Determine whether the above condition for asymptotic normality holds for the

following cases:

i. Xi;n D i ;
ii. Xi;n D p

i ;
iii. Xi;n D 1=

p
i ;

iv. Xi;n D 1=i ;
v. Xi;n are iid N.0; �2/;

vi. Xi;n are iid N.0; n�2/.

5.54. Consider the simple linear regression model with design points depending on
sample size,

Yi;n D ˇ1 C ˇxXi;n C ei ; i D 1; : : : ; n � 2;
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where e1; : : : ; en are iid(0; �2), and

Xi;n D
(

i=n; i D 1; : : : ; n � 1;

n; i D n:

Determine the asymptotic properties (consistency and asymptotic distribution) of
the least squares, estimatorsbˇ1 andbˇx , and of the i th residual Yi � bY i for the two
cases: a) e1 is normally distributed; b) e1 is not normally distributed. Relate the
findings to the applied regression practice of examining high-leverage points.



Chapter 6
Large Sample Results for Likelihood-Based
Methods

6.1 Introduction

Most large sample results for likelihood-based methods are related to asymptotic
normality of the maximum likelihood estimator b�MLE under standard regularity
conditions. In this chapter we discuss these results. If consistency of b�MLE is
assumed, then the proof of asymptotic normality of b�MLE is straightforward. Thus
we start with consistency and then give theorems for asymptotic normality ofb�MLE

and for the asymptotic chi-squared convergence of the likelihood-based tests TW,
TS, and TLR. Recall that Strong consistency of b�MLE means b�MLE converges with
probability one to the true value, and weak consistency of b�MLE refers to b�MLE

converging in probability to the true value.

6.2 Approaches to Proving Consistency of b�MLE

The maximum likelihood estimator is defined to be the parameter value that
maximizes the likelihood (2.24, p. 62), but in regular cases b�MLE also solves the
likelihood equations (2.25, p. 62). These two descriptions have led to two different
methods for proving consistency of b�MLE. Wald (1949) is generally credited with
starting the method associated with the maximizing definition. The conditions
are fairly strong and restrictive but do not involve second or higher derivatives
of the likelihood function. Huber (1967, Theorem 1) generalized these results to
misspecified models and to the general estimating equations situation. Haberman
(1989, Theorem 5.1) gives further results for the special case when the log likelihood
is concave as a function of the parameter.

The second general approach to consistency is related to showing the existence
of a consistent sequence of estimators defined by the likelihood equations. This
classical approach is characterized by Cramér (1946, p. 500–503) and Serfling
(1980, Ch. 4) and involves second and possibly higher derivatives of the log

D.D. Boos and L.A. Stefanski, Essential Statistical Inference: Theory and Methods,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-4818-1 6,
© Springer Science+Business Media New York 2013
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likelihood function. If additional conditions that imply uniqueness of the estimator
are added, then true consistency of the estimator, not just the existence of a
consistent solution, follows immediately. Huber (1967, Theorem 2) gives conditions
for the latter in a more general setting.

Most rigorous proofs of consistency involve showing that the estimator is
ultimately trapped in a compact neighborhood of the true value. Many authors
elect to avoid this problem by merely assuming that the parameter space is itself
compact (e.g., White, 1981, Gallant, 1987). Assuming a compact parameter space
approach avoids almost all problems but is not as theoretically appealing. We give
this approach in Section 6.4 (p. 282).

After introducing some notation, we give some “existence of a consistent root”
arguments in the next section. Here it helps to separate the case of a real parameter
� from the more difficult vector � case.

As usual let Y1; : : : ; Yn be iid f .yI�/ where � D .�1; : : : ; �b/
T belongs to

the parameter space � (a subset of Rb), f .yI�/ is a density or probability mass
function, and F.yI�/ is the associated distribution function. The random variables
Yi may be real or vector-valued. Often we denote the “true” value of � by �0. The
log likelihood is ln.�/ D Pn

iD1 logf .Yi I�/; and the average log likelihood is

ln.�/ D n�1
n
X

iD1
logf .Yi I�/:

The expected average log likelihood under the “true” �0 is

l.�;�0/ D E�0 logf .Y1I�/ D
Z

logf .yI�/ dF.yI�0/;

where recall that the notation
R

q.y/dF.y/means either an integral
R

q.y/f .y/ dy

for the continuous case or
P1

jD1 q.yj /ŒF.yj /� F.y�
j /� for the discrete case.

Example 6.1 (Normal scale log likelihood). If Y1; : : : ; Yn are iid N.0; �2/, then
the average log likelihood is

ln.�/ D �1
2

log.2�/ � log � � 1

n

n
X

iD1

Y 2i
2�2

:

Taking the expected value under �0, we have

l.�; �0/ D �1
2

log.2�/� log � � �20
2�2

: (6.1)

In Figure 6.1, the top curve is l.�; �0/ for the case �0 D 3. The three
vertical lines show values that are ˙:01 from the curve l.�; �0/ at the points
.�0 � ı; �0; �0 C ı/ D .2:5; 3:0; 2:5/ for ı D :5. The second (lower) curve is
ln.�/ for n D 10; 000. The figure illustrates the generally true behavior of log
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likelihoods, namely that ln.�/ converges to l.�; �0/ uniformly in a neighborhood
of the true parameter. The figure also suggests and illustrates a strategy for proving
the existence of a consistent root of the likelihood equations in the case of a one-
dimensional parameter. The argument presented in the next section uses the fact that
any smooth curve intersecting the three vertical lines must have a local maximum
(flat spot) in the interval .�0 � ı; �0 C ı/. Moreover, because ln.�/ is guaranteed
to intersect the vertical lines with probability one for sufficiently large n (by the
SLLN), there must exist a solution to the likelihood equation, @ln.�/=@� D 0, in
.�0 � ı; �0 C ı/ with probability one for sufficiently large n. �

6.3 Existence of a Consistent Root of the Likelihood
Equations

The inequality in the next theorem shows that any l.�;�0/ has a local maximum
near �0. Figure 6.1 is an example, but in other situations l.�;�0/ could be much
less smooth.

The conditions of the theorem and more generally, conditions for consistency
and asymptotic normality of maximum likelihood estimates, involve the support of
the distributions involved. A point y is said to be in the support of a distribution F if
and only if every open neighborhood of y has strictly positive probability assigned
to it by F . The set of all such points is called the support of F . The support of F
is the smallest closed set of y whose complement has probability 0 assigned to it
by F . If F is a distribution on the real line with density f .y/ D dF.y/=dy, then the
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Fig. 6.1 Average log likelihood (n D 10; 000/ and expected average log likelihood for a N.0; �20 /
sample, �0 D 3.
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support of F is the closure of the set fy W f .y/ > 0g; if F is a discrete distribution
with probability mass function f .y/, then the support of F is the set of all points y
such that f .y/ > 0.

Theorem 6.1 (following Rao, 1973, p. 59). Let f .y/ and g.y/ be densities or
probability mass functions and let S be the support of f . Then

Z

S

logf .y/ dF.y/ �
Z

S

logg.y/ dF.y/;

with equality only when F.y/ D G.y/ for all points in S .

Proof. Note that g can be zero on a subset of S . In such cases we interpret the right
hand integral as �1. Now apply Jensen’s inequality in the form: ifH1.y/ is strictly
convex, then H1 ŒE fH2.Y /g� < E ŒH1 fH2.Y /g� unless H2.y/ is constant almost
everywhere. Let Y have density f .y/, H1.y/ D � logy which is strictly convex,
andH2.y/ D g.y/=f .y/. The theorem follows. �

6.3.1 Real-Valued �

We now apply Theorem 6.1 and the Strong Law of Large Numbers (SLLN) to show
existence of a consistent solution of the likelihood equations @ln.�/=@� D 0. The
case when � is real-valued is simpler than the general b-dimensional case and is
considered first. Define conditions (A), (B), and (C) by

(A) Identifiability: �1 ¤ �2 implies that F.yI�1/ ¤ F.yI�2/ for at least one y.
(B) jl.�;�0/j < 1 for � in a neighborhood of �0.
(C) logf .yI�/ has a continuous derivative with respect to � in a neighborhood of

�0 for each y in the support of F.yI�0/.
Note that these conditions are stated for vector � so that we can use them later
as well. Basically, (A) says that different values of � uniquely define different
distributions in the parametric family. (B) is a very minimal assumption required
for the Strong Law of Large Numbers, and (C) guarantees that b�MLE is a root of
the likelihood equations. Note that we do not explicitly rule out densities whose
support depends on � , but (B) often will. For example, the gamma threshold model
of Problem 6.5 (p. 293) is

f .yI �/ D 1

� .˛/
.y � �/˛�1e�.y��/; � < y < 1; (6.2)

which includes the exponential threshold model when ˛ D 1. This family does not
satisfy (B) because l.� ;�0/ D �1 for values of � to the right of �0.
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Here we give a few densities to illustrate condition (C).

1. The “Huber” density (Huber, 1981, p. 86), for k > 0,

f .yI �/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 � �p
2�
e�.y��/2=2 for jy � � j � k

1 � �p
2�
ek

2=2�kjy�� j for jy � � j > k;
(6.3)

satisfies (C) where the continuous derivative of logf .yI �/ with respect to � is
maxŒ�k;min.k; y � �/�, that is,

@

@�
logf .yI �/ D

8

<

:

k for � < y � k

y � � for y � k � � � y C k

�k for � > y C k:

(6.4)

2. The Laplace location density f .yI �/ D .1=2/ exp.�jy � � j/ is continuous at
� D y but is not differentiable there and therefore does not satisfy (C).

Theorem 6.2. If Y1; : : : ; Yn are iid from a density with a real parameter � and
(A), (B), and (C) hold, then there exists a strongly consistent solutionb�MLE of the
likelihood equation @ln.�/=@� D 0.

The following proof uses the SLLN to show that for any ı > 0, ln.�/ is arbitrarily
close to l.�; �0/ at �0 � ı, �0, and �0 C ı for n sufficiently large; for example,
within the vertical bars of Figure 6.1. This implies that for n sufficiently large, ln.�/
increases somewhere in the interval .�0 � ı; �0/ and decreases somewhere in the
interval .�0; �0 C ı/, and hence must have a critical point in .�0 � ı; �0 C ı/.

Proof. If we set f .y/ D f .yI �0/ and g.y/ D f .yI �/ in Theorem 6.1 above, then
under (A) and (B) we have l.�0; �0/ > l.�; �0/ if � ¤ �0: Let ı > 0 be given. By
Theorem 6.1 there exists � > 0 such that

l.�0; �0/� l.�0 � ı; �0/ > � (6.5)

and

l.�0; �0/ � l.�0 C ı; �0/ > �: (6.6)

Now by the SLLN using (B), we have

ln.�/
wp1�! l.�; �0/ as n ! 1;

for each � in the neighborhood where (B) holds. Let ˝1 be the subset of the
underlying probability space with P.˝1/ D 1 and such that this latter convergence
takes place for both � D �0 � ı and � D �0 C ı. For each ! 2 ˝1 we can choose
n.�; !/ such that for all n > n.�; !/,
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� �

2
< ln.�0 � ı/ � l.�0 � ı; �0/ <

�

2
; (6.7)

� �

2
< ln.�0 C ı/ � l.�0 C ı; �0/ <

�

2
; (6.8)

and

� �

2
< ln.�0/� l.�0; �0/ <

�

2
: (6.9)

(Note that we have not put ! in the above expressions, but flng1
iD1 is actually a

different sequence for each ! of the underlying probability space. In a proof of
this type it is common to ignore all such references to ! or ˝1 and just say “with
probability one.”) Putting (6.5) with (6.7) and (6.9) we have for all n > n.�; !/,

ln.�0/� ln.�0 � ı/ D ln.�0/� l.�0; �0/C l.�0; �0/ � l.�0 � ı; �0/
C l.�0 � ı; �0/ � ln.�0 � ı/

> � �
2

C � � �

2
D 0:

Thus, ln.�0/ > ln.�0�ı/. Similarly, we can show that ln.�0/ > ln.�0Cı/. Because
ln.�/ is continuously differentiable in � by (C), a solution of @ln.�/=@� D 0 exists
in .�0 � ı; �0 C ı/ for each ! 2 ˝1 and for all n > n.�; !/. Because ı > 0 is
arbitrary, Theorem 6.2 follows. �

6.3.2 Vector �

For the general case where � is b-dimensional, the previous method breaks
down because ln.�0/ > ln.�ı/ for any finite number of points �ı a distance
ı from �0 (i.e., jj�ı � �0jj D ı) does not guarantee existence of a solution to
@ln.�/=@�

T D 0 in f� W j�0 � � j < ıg. Figure 6.2 shows a ı D :5 neighborhood
of a two-dimensional parameter � D .�; �/ with �0 D 3 and �0 D 2 to illustrate
this point. It is possible for ln.�/ to have values of ln.�/ on the four points of the
circle that are smaller than ln.�0/, yet there need not be a critical point inside the
circle. This type of situation is unusual, but to guarantee that a solution exists inside
the circle, we need ln.�0/ > ln.�/ for all � on the boundary of a ı-neighborhood
of �0. However, the usual SLLN only allows us to conclude that ln.�0/ > ln.�/

with probability one, all n > n.�/, for at most a finite number of � simultaneously.
(The reason is that we can use the SLLN for each of a finite number of � values
and intersect the associated underlying sets ˝1;˝2, etc., and still have a set with
probability one. But we cannot intersect an infinite number and be sure the resulting
intersection has probability one.) Since we need the ln.�0/ > ln.�/ to hold for all
points such that j�0 � �j D ı, an uncountable infinity of � values if b � 2, we
appeal to the following uniform SLLN.
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sigma

m
u

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.
4

1.
8

2.
2

2.
6

Fig. 6.2 ı D :5 neighborhood of .�0 D 3; �0 D 2/.

Theorem 6.3 (Jennrich, 1969). Let g be a function on Y 	 �� where Y is a
Euclidean space and �� is a compact subset of a Euclidean space. Let g.y;�/
be a continuous function of � for each y and a measurable function of y for each
� . Assume also that jg.y;�/j � h.y/ for all y and � , where h is integrable with
respect to a distribution function F on Y . If Y1; : : : ; Yn is a random sample from F ,
then as n ! 1

1

n

n
X

iD1
g.Yi ;�/

wp1�!
Z

g.y;�/dF.y/ uniformly for all � 2 ��:

We can now state a result similar to the b D 1 case using (A), (B), (C), and

(D) g.y;�/ D logf .yI�/ satisfies the assumptions of Theorem 6.3 with �� D
f� W k� � �0k � ıg for some ı > 0, and F.x/ D F.xI�0/.

Theorem 6.4. If Y1; : : : ; Yn are iid from a density f .yI�/ that satisfies (A), (B),
(C), and (D), then there exists a strongly consistent solutionb�MLE of the likelihood
equations @ln.�/=@�

T D 0.

We now discuss conditions (A) and (D) for several multiparameter families of
densities.

1. Consider the mixture density f .yI�1; �2; p/ D p�.y��1/C.1�p/�.y��2/,
where � is the standard normal density. Condition (A) (p. 278) is violated unless
some restrictions are placed on the parameters. For example, .�1 D 1; �2 D 2;

p D :4/ yields the same density as .�1 D 2; �2 D 1; p D :6/, and
p D 0 or p D 1 or �1 D �2 each violate Condition (A) because they
render one of the remaining parameters nonidentifiable. Thus, if p D 0, then
f .yI�1 D 3; �2 D 5; p D 0/ is identical to f .yI�1 D 4; �2 D 5; p D 0/ or
any other f .yI�1; �2 D 5; p D 0/. One solution is to require �1 < �1 < �2 <

1 and 0 < p < 1. We might also suggest looking back to Example 2.28 (p. 97),
where for a similar mixture density, it was noted that the maximum likelihood
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estimator does not exist in the strict sense since the likelihood tends to infinity
along certain paths in the parameter space. Thus, Theorem 6.4 above is a good
result for mixture densities.

2. Condition (D) is a technical condition that we generally expect to be satisfied
when Condition (B) is satisfied. To illustrate how to verify condition (D),
consider the normal .�; �2) density, where

logf .yI�; �/ D � log.
p
2�/ � log � � .y � �/2

2�2
:

For any Euclidean neighborhood f� W k� � �0k � ıg, we can find ı1 and ı2 such
that the neighborhood is contained by the box f.�; �/ W j���0j � ı1; j���0j �
ı2jg. For any .�; �/ in this latter set,

j logf .yI�; �/j � j log.
p
2�/j C j log.�0 C ı2/j

C 1

2.�0 � ı2/2


y2 C 2.j�0j C ı1/jyj C .j�0j C ı1/
2
�

:

Since the right-hand side of the above inequality does not depend on .�; �/ and
is integrable with respect to any normal distribution function, we may take the
right-hand side as the bounding function h.y/ in Theorem 6.3, and thus (D) is
satisfied.

As mentioned in the Introduction to this chapter, the results of Theorems 6.2
(p. 279) and 6.4 (p. 281) are not fully satisfying because they only ensure that at
least one of the roots of the likelihood equation is strongly consistent. Of course,
ifb�MLE is unique using theorems from the appendix to Chapter 2, then consistency
follows naturally. For compact parameter spaces we now show consistency for the
b�MLE defined as the maximizer of the likelihood.

6.4 Compact Parameter Spaces

As mentioned in the Introduction, rigorous consistency proofs typically consist of
showing that the estimator is ultimately trapped in a compact set and then using a
form of Theorem 6.3 (p. 281) to get the result. We now give a consistency result for
compact parameter spaces that often can be combined with other methods of proof
to get more general results for noncompact parameter spaces. A similar theorem
appears in White (1981, JASA, p. 420, Theorem 2.1).

Theorem 6.5. Let Y1; : : : ; Yn be iid with density f .yI�0/, where �0 2 �, where�
is a compact subset of Rb . Suppose that assumptions (A) and (B) on page 278 are
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satisfied and that g.y;�/ D logf .yI�/ satisfies the assumptions of Theorem 6.3
(p. 281) with F.y/ D F.yI�0/. Then forb�n= the maximizer of ln.�/ on�, we have

b�n
wp1�! �0 as n ! 1:

Proof. Since ln.�/ is continuous on �, it has at least one maximizing value. The
following argument may be applied to eachb�n maximizing ln.�/ if there are more
than one. Let ˝1 be the subset of the underlying probability space on which the
convergence in Theorem 6.3 (p. 281) occurs. For ! 2 ˝1, suppose that b�n.!/ 6!
�0. Because of compactness there exists a subsequence nk and a value �1 ¤ �0

such thatb�nk .!/ ! �1. Now

jlnk .b�nk .!// � l.�1;�0/j � jlnk .b�nk .!// � l.b�nk .!/;�0/j
Cjl.b�nk .!/;�0/� l.�1;�0/j:

By the uniform convergence of Theorem 6.3 (p. 281), the first term on the right-hand
side of (6.10) converges to zero. The second term is bounded by

Z

f .yI�0/ j logf .yIb�nk .!// � logf .yI�1/jdy:

The latter term converges to zero by the dominated convergence theorem because
logf .yI�/ is continuous and

j logf .xIb�nk .!// � logf .xI�1/j � 2h.x/

and h.x/ is integrable with respect to f .yI�0/. Thus lnk .b�nk .!// �! l.�1;�0/ <

l.�0;�0/: But this latter convergence and inequality (from Theorem 6.1, p. 278)
contradict

lnk .
b�nk .!// � lnk .�0/ �! l.�0;�0/;

where the inequality is from the definition of b�n as the maximizer of ln.�/. Thus

b�n.!/ ! �0 for each ! 2 ˝1, i.e.,b�n
wp1�! �0. �

6.5 Asymptotic Normality of Maximum Likelihood
Estimators

This account of conditions for the asymptotic normality of maximum likelihood
estimators is similar to accounts in Ch. 4 of Serfling (1980) and Ch. 6 of Lehmann
and Casella (1998). For simplicity we first give a theorem and proof for a single
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real parameter � ; the multiparameter case follows. The parameter space is denoted
by �. Under a similar set of conditions to those below, Bahadur (1964) has given

the result that if tn is any estimator such that n1=2.tn � �/
d�! N.0; v.�// for each

� 2 �, then v.�/ � 1=I.�/ except perhaps on a set of � of Lebesgue measure
zero. Thus, the maximum likelihood estimator with asymptotic variance 1=I.�/
achieves a type of asymptotic Cramer-Rao lower. Estimators such asb�MLE achieving
this bound asymptotically are often called Best Asymptotically Normal (BAN). The
multiparameter extension of this result is also discussed in Bahadur (1964), where
v.�/ and I.�/ are now matrices: v.�/ � I.�/�1 is positive semi-definite and the
asymptotic variance of any scalar cT tn satisfies cT v.�/c � cT I.�/�1c.

6.5.1 Real-Valued �

Theorem 6.6. Let Y1; : : : ; Yn be iid with density f .yI �/, where � is an interior
point of �, and f .yI �/ satisfies the following conditions.

1. Identifiability: �1 ¤ �2 implies that F.yI �1/ ¤ F.yI �2/ for at least one y.
2. For each � 2 �, F.yI �/ has the same support not depending on � .
3. For each � 2 �, the first three partial derivatives of logf .yI �/ with respect to
� exist for y in the support of F.yI �/.

4. For each �0 2 �, there exists a function g.y/ (possibly depending on �0), such
that for all � in a neighborhood of the given �0, j@3 logf .yI �/=@�3j � g.y/ for
all y and where

R

g.y/ dF.yI �0/ < 1.
5. For each � 2 �, Ef@ logf .Y1I �/=@�g D 0, I.�/ D E f@ logf .Y1I �/=@�g2 D

E
˚�@2 logf .Y1I �/=@�2




, 0 < I.�/ < 1.

Ifb� satisfies S.b�/ D Pn
iD1 @ logf .Yi Ib�/=@� D 0 andb�

p�! � as n ! 1, then

p
n.b� � �/ d�! N.0; I.�/�1/ as n ! 1:

Before giving the proof, we comment briefly on the above Conditions 1–5. In
the proof we also demonstrate where the conditions are needed. Condition 1 is
the usual identifiability condition (A), p. 278. Condition 2 is a classical condition
used to eliminate nonstandard densities like the exponential threshold model. Under

Conditions 3-5 and assuming b�
p�! � , we do not actually need Conditions 1

and 2, but we include them because Condition 1 is necessary for consistency and
Condition 2 indicates when to expect problems with Conditions 3 and 5. Smith
(1985) gives a variety of different results for the maximum likelihood estimators in
cases that violate Condition 2 (see also Problem 6.5, p. 293). Condition 3 requires
appropriate smoothness of the log density to allow Taylor expansion in the proof
of Theorem 6.6. Condition 3 is not necessary for asymptotic normality, however.
This is illustrated by the Laplace location density f .yI �/ D .1=2/ exp.�jy � � j/,
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where we know thatb�MLE Dsample median is asymptotically normal as proved in
Ch. 3. Condition 4 allows us to bound the third derivative of ln.�/ that resulted from
the Taylor expansion. Condition 5 assumes that the information I.�/ exists in both
forms. Other authors give bounds on first and second derivatives that imply parts of
Condition 5 rather than assume it (see Problems 6.3 and 6.4, p. 293).

The proof below proceeds by Taylor expansion of the likelihood equationS.b�/ D
@ln.b�/=@� D 0, resulting inb� � �0 � I.�0/

�1S.�0/. Then the CLT gives the result.

Proof. Let �0 be the true parameter value. Let S 0.�/ and S 00.�/ denote the first two
derivatives of S.�/. Taylor expansion of S.b�/ around �0 yields

0 D S.b�/ D S.�0/C S 0.�0/.b� � �0/C 1

2
S 00.b��/.b� � �0/

2

D S.�0/C .b� � �0/

�

S 0.�0/C 1

2
S 00.b��/.b� � �0/

�

whereb�� is between �0 andb� . Rearranging the last equation yields

p
n.b� � �0/ D �S.�0/=pn

n

1
n
S 0.�0/C 1

2n
S 00.b��/.b� � �0/

o : (6.10)

The numerator of (6.10) converges in distribution to N.0; I.�0// by the Central
Limit Theorem and the fact that @ logf .Yi I �/=@� j�D�0 has mean zero and variance
I.�0/.

The first term in the denominator of (6.10) converges in probability to �I.�0/ by
the Weak Law of Large Numbers and Condition 5. Let Rn denote the second term
in the denominator of (6.10), i.e.,

Rn D 1

2n
S 00.b��/.b� � �0/

D 1

2n

n
X

iD1

�

@3

@�3
logf .Yi I �/

ˇ

ˇ

ˇ

ˇ

�Db��

�

.b� � �0/:

The proof is completed by showing that Rn D op.1/ and appealing to Slutsky’s
Theorem. To this end define

R�
n D 1

2n

n
X

iD1
g.Yi /.b� � �0/;

and note that there exists a ı > 0 such that jRnj � jR�
n j when jb� � �0j < ı

by Assumption 4. Also by Assumption 4 and the Weak Law of Large Numbers,
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n�1Pn
iD1 g.Yi / converges in probability to Eg.Y1/ < 1; and thus R�

n D op.1/

becauseb�
p�! �0. Finally, note that for any 0 < � < ı,

P.jRnj > �/ D P.jRnj > �; jb� � �0j > �/C P.jRnj > �; jb� � �0j � �/

� P.jb� � �0j > �/C P.jR�
n j > �; jb� � �0j � �/

� P.jb� � �0j > �/C P.jR�
n j > �/:

Because both jb� � �0j and jR�
n j are op.1/, it follows that P.jRnj > �/ ! 0 as

n ! 1 and hence Rn D op.1/, thus concluding the proof. �

6.5.2 Vector �

Now we give a theorem on asymptotic normality ofb�MLE in the multiparameter case
where � is b dimensional. The proof is similar to the proof for Theorem 6.6; details
may be found in Lehmann and Casella (1998, Ch. 6).

Theorem 6.7. Let Y1; : : : ; Yn be iid with density f .yI�/, where � is an interior
point of �, and f .yI �/ satisfies the following conditions.

1. Identifiability: �1 ¤ �2 implies that F.yI�1/ ¤ F.yI�2/ for at least one y.
2. For each � 2 �, F.yI�/ has the same support not depending on � .
3. For each � 2 �, the first three partial derivatives of logf .yI�/ with respect to
� exist for y in the support of F.yI�/.

4. For each �0 2 �, there exists a function g.y/ (possibly depending on �0), such
that in a neighborhood of the given �0 and for all j; k; l 2 f1; : : : ; bg;

ˇ

ˇ

ˇ

ˇ

@3

@�j @�k@�l
logf .yI�/

ˇ

ˇ

ˇ

ˇ

� g.y/

for all y and where
R

g.y/ dF.yI�0/ < 1.
5. For each � 2 �, EŒ@ logf .Y1I�/=@�� D 0,

I.�/ D E

�

@

@�
logf .Y1I�/ @

@�T
logf .Y1I�/

�

D E

�

� @2

@�@�T
logf .Y1I�/

�

;

and I.�/ is nonsingular.

Ifb� satisfies S .b�/ D Pn
iD1 @ logf .Yi Ib�/=@�T D 0 andb�

p�! � as n ! 1, then

p
n.b� � �/ d�! N.0; I.�/�1/ as n ! 1:
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6.6 Asymptotic Null Distribution of Likelihood-Based Tests

6.6.1 Wald Tests

Recall from Chapter 3 that composite null hypotheses are typically specified by
either of two forms. The first is the partitioned-vector form,

H0 W �1 D �10; (6.11)

where � D .�T1 ;�
T
2 /
T is b 	 1 and �1 is r 	 1, r � b. The second is the constraint

form,

H0 W h.�/ D 0; (6.12)

where h is r 	 1 and differentiable with H .�/ D @h.�/=@�T having dimension
r 	 b. The two forms of the Wald statistic are then

TW D n.b�1 � �10/T
hn

I.b�/�1
o

11

i�1
.b�1 � �10/ (6.13)

and

TW D nh.b�/T
n

H .b�/I.b�/�1H .b�/T
o�1

h.b�/: (6.14)

Since (6.12) is more general, including the first form by using h.�/ D �1��10, the
following theorem is stated for the second form, but only for the iid case.

Theorem 6.8. Suppose that Y1; : : : ; Yn are iid with density f .yI�/, � 2 �.
Assume that all the conditions of Theorem 6.7 (p. 286) hold and that H .�/ and
I.�/ are continuous and H .�/I.�/�1H .�/T is nonsingular. Then under (6.12),

TW
d�! �2r as n ! 1.

Proof. Letting the solution of (6.12) be denoted �0, by the Delta Theorem and the
asymptotic normality of the maximum likelihood estimator, h.b�/ is AN.0;H .�0/
I.�0/

�1H .�0/T =n/. Then

TW D p
nh.b�/T

n

H .b�/I.b�/�1H .b�/T
o�1 p

nh.b�/

converges in distribution to a �2r distribution by Problem 5.10, p. 265. �

Any consistent estimator of I.�0/ could be used in defining TW, for example,
I .Y ;b�/, and Theorem 6.8 still follows. More general versions of Theorem 6.8 can
be given for regression situations where some assumption about the convergence of
I .b�/ is needed. Moore (1977), Hadi and Wells (1990), and Andrews (1987) give
generalizations that allow generalized inverses of singular matrices in the middle of
Wald statistics.
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6.6.2 Score Tests

The score test for either (6.11) or (6.12) has the general form
TS D S .e�/T In.e�/

�1S .e�/=n, wheree� is the maximum likelihood estimator under
the null hypothesis. Here we give a theorem that covers the iid case for (6.11). In
this case, TS has the form

TS D S 1.e�/
T 1

n



I.e�/�1
�

11
S 1.e�/

D S 1.e�/
T 1

n

�

eI11 �eI12eI�1
22
eI21

	�1
S 1.e�/; (6.15)

where eI ij is the i; j submatrix of I.e�/ corresponding to the partition of � D
.�T1 ;�

T
2 /
T .

Theorem 6.9. Suppose that Y1; : : : ; Yn are iid with density f .yI�/, � 2 �.
Assume that all the conditions of Theorem 6.7 (p. 286) hold and that I.�/ is

continuous. Then under (6.11), TS
d�! �2r as n ! 1.

Proof. From the proof of Theorem 6.7 (p. 286), e�2 has the approximation-by-
averages representation

e�2 � �20 D 1

n

n
X

iD1
fI.�0/22g�1 @

@�2
logf .Yi I�0/CRn; (6.16)

where
p
nRn

p�! 0 as n ! 1. Using (6.16) and Condition 4 of Theorem 6.7
(p. 286) with Theorem 5.28 (p. 249), we have that

1p
n
S 1.e�/ is AN

�

0;
˚

I.�0/
�1


11

��1�
: (6.17)

Then TS in (6.15) converges to a �2r random variable by Problem 5.10 (p. 265). �

6.6.3 Likelihood Ratio Tests

The first proof of convergence in distribution of TLR to a chi-squared random
variable under the composite null hypothesis (6.11) is due to Wilks (1938). Our
proof is similar to many others in the literature and follows naturally from Taylor
expansion and Theorem 6.7.
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Theorem 6.10. Suppose that Y1; : : : ; Yn are iid with density f .yI�/, � 2 �.
Assume that all the conditions of Theorem 6.7 (p. 286) hold. Then under (6.11),

TLR
d�! �2r as n ! 1.

Proof. First expand ln.e�/ aboutb� to obtain

ln.e�/ D ln.b�/C S .b�/T .e� �b�/� p
n.e� �b�/T 1

2
In.Y ;b�

�/
p
n.e� �b�/; (6.18)

where b�� lies between e� and b� . Note that S .b�/ D 0 by definition of b� : Then
rearranging (6.18), we have

TLR D �2Œln.e�/ � ln.b�/� D p
n.e� �b�/T In.Y ;b��/

p
n.e� �b�/: (6.19)

Using the convergence in probability ofb� and Condition 4 of Theorem 6.7 (p. 286),

In.Y ;b�
�/

p�! I.�0/ as n ! 1. Thus to get the convergence in distribution of
TLR, we only need to get the asymptotic distribution of

p
n.e� �b�/. To that end, we

seek an expansion of S .e�/ aboutb� of the form

S .e�/ D S .b�/� neI�
n.
e� �b�/; (6.20)

where eI�
n

p�! I.�0/ as n ! 1. For now assume that such an expansion
exists. Then using the results that S .b�/ D 0, S2.e�/ D 0, and that S1.e�/=n is
AN.0;

˚

I.�0/
�1


11

��1
=n/ (see 6.17, p. 288), we have that

p
n.e� �b�/ d�! I.�0/

�1
�

Z

0

�

as n ! 1;

where Z is MNr .0;
˚

I.�0/
�1


11

��1
/. Finally, putting this last result along with

(6.19) and Slutsky’s theorem yields that

TLR
d�! Z T

˚

I.�0/
�1


11
Z as n ! 1;

which is clearly distributed as �2r because the covariance matrix of Z is the inverse
of the middle matrix of the quadratic form.

The proof is completed by showing that an expansion of the form (6.20) exists.
This step is complicated by the fact that there is no Mean Value Theorem for
multidimensional-valued functions. The key is to consider the components of S .�/
separately. Suppose that Sj .�/ is the j th component of S .�/. The Mean Value
Theorem applied to Sj .�/ results in

Sj .e�/ D Sj .b�/C S 0
j .
b���
j /.

e� �b�/; (6.21)
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whereb���
j is on the line segment joining e� and b� . The system of equations (6.21)

for j D 1; : : : ; b is equivalent to the equation in (6.20) witheI
�
n defined as the matrix

whose j th row is equal to �S 0
j .
b���
j /. Becauseb���

j

p�! �0 as n ! 1 for each j , it

follows that S 0
j .
b���
j /

p�! EfS 0
j .�0/g and hence thateI�

n

p�! I.�0/ as n ! 1. �

6.6.4 Local Asymptotic Power

For a fixed � in the alternative hypothesis, most reasonable tests have the property
that the probability of rejection converges to 1 as n increases. Thus, the standard
approach in the testing situation H0 W �1 D �10 versus Ha W �1 ¤ �10 (and �2
unrestricted with true value �20) is to consider local alternatives �n where the first
r elements have the form

�10 C dp
n
;

where d is an arbitrary r 	 1 vector. These are called local alternatives because
they are close to the null value for n large. They are also called Pitman alternatives,
named after Pitman who popularized a measure of asymptotic relative efficiency
based on these alternatives (to be discussed more fully in Chapter 12 in the context
of rank tests). Assume that we can strengthen the conditions of Theorem 6.7 (p. 286)
so that for � D �n

p
n.b�MLE � �0/ d�! N

��

d

0

�

; I.�0/
�1
�

as n ! 1: (6.22)

Then, one can show that TW, TS, and TLR each converge in distribution to a
noncentral �2r ./ with noncentrality parameter

 D dT
˚

I.�0/
�1


11

��1
d : (6.23)

Thus, in terms of these local alternatives, TW, TS, and TLR are asymptotically
equivalent. If r D 1, then these tests are the best asymptotically possible, but in the
general r > 1 case, no such assertion is possible (see, e.g., van der Vaart 1998, Chs.
15 and 16).

A second use of these local alternatives is to justify the approximate power
calculation

P
˚

�2r ./ > �
2
r .1 � ˛/
 ; (6.24)

where d D n1=2.�1a � �10/ and �1a is the alternative of interest, and  is given
by (6.23). Such power approximations can be used to plan studies, find sample sizes
necessary for a given power and alternative �1a, etc. Since simulation methods are
now so easy to use (see Chapter 9), these power approximations are less important
in practice.
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6.6.5 Nonstandard Situations

We have previously mentioned a number of nonstandard situations where the
limiting distributions of one or more of our statistics is not chi-squared with r
degrees of freedom. Here we try to summarize some of these cases, but we do not
claim to be exhaustive in our coverage.

1. The alternative hypothesis is order-restricted such as Ha W �1 � �2 � �3.
As mentioned in Section 3.6 (p. 150), these isotonic regression cases lead to
TLR having an asymptotic distribution such as given by (3.23). The underlying
densities here are regular, but the constrained alternative causes the nonstandard
asymptotics. These cases are not specifically eliminated by the conditions of
Chapter 6 theorems, but the estimators and test statistics in this chapter were not
constructed for these alternatives. Key references here are Barlow et al. (1972)
and Robertson et al. (1988).

2. The null hypothesis is on the boundary of the parameter space. This case was
also discussed in Section 3.6 (p. 150). The key example there was the one-way
random effects model where the test of H0 W �2˛ D 0 versus H0 W �2˛ > 0 leads
to the nonstandard limiting distribution Z2I.Z > 0/ for TLR. In Theorems 6.6
(p. 284) and 6.7 (p. 286), these cases are eliminated by requiring the true value
to be an interior point of the parameter space �. The original reference for
these types of problems is Chernoff (1954). and Self and Liang (1987) describe
the general form of the limiting distribution. Verbeke and Molenberghs (2003)
discuss the use of the score statistic TS in variance component testing problems.

3. Densities with threshold parameters like the exponential of Example 2.12
(p. 63). The maximum likelihood estimator in the exponential case, the sample
minimum, has an extreme value limit distribution and is not a solution of the like-
lihood equations. Thus, we have ruled out these densities in most of this chapter.
However, Smith (1985) gives situations where the usual limiting distributions
hold. Problem 6.5 (p. 293) is about one of his examples. A more recent account
with different types of problems is found in Dubinin and Vardeman (2003).

4. Regression models with linear or nonlinear models pieced together at a
number of join-points or change-points. For example, the mean model might
be ˇ1 C ˇ2x on x � x0 and ˇ3 C ˇ4x on x > x0. The model may or may not
be constrained to be continuous at the change-point x0, and typically x0 would
be unknown. A variety of nonstandard asymptotic distributions arise in these
problems. See Chapter 9 of Seber and Wild (1989) for an overview.

5. Densities with loss of identifiability under the null hypothesis. These prob-
lems are also described as situations where the nuisance parameters are only
present under the alternative hypothesis. An important class of these problems
is testing for the number of components in a mixture distribution. For example,
consider

f .yI	;p/ D p�.y/C .1 � p/�.y �	/; (6.25)
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where � is the standard normal density function. Under H0 W 	 D 0, the
parameter p does not appear in the density, and under H0 W p D 1, the
density does not depend on 	. Either of these H0 cause nonidentifiability of
the remaining parameter, and the Fisher information matrix is singular. Thus,
conditions 1. and 5. of Theorem 6.7 (p. 286) are not satisfied. Recent papers
on the asymptotic distribution of TLR in such cases include Dacunha-Castelle
and Gassiat (1999) and Liu and Shao (2003). For example, the latter paper
describes the limit distribution as the supremum of Œmax.WS; 0/�

2, where WS is
a special mean zero Gaussian stochastic process. Note that this limit distribution
is reminiscent of the Z2I.Z > 0/ limit distribution found in other nonstandard
problems. In some problems found in genetics, the parameter p may be known,
nevertheless, the limiting distribution is still nonstandard. For example, in the
model (6.25) above, with p fixed and known but not 0; 1; or 1=2, Goffinet
et al. (1992) give Z2I.Z > 0/=2 as the limiting distribution of TLR under
H0 W 	 D 0. Other problems in this general class include testing for the order
of an ARMA(p; q/ time series and some of the problems with change-points
mentioned above. Davies (1977, 1987) proposed a solution to these problems
based on score statistics.

6. Dimension of � grows with sample size. Throughout this chapter we have
implicitly assumed that b is fixed. However, Example 2.4.1 (p. 57) showed that
consistency of the b�MLE can be defeated by letting b grow with n. In fact,
much of the motivation for marginal and conditional likelihoods arises from
these type examples. Huber (1973, 1981) shows in the linear model that cTbˇ
can still be asymptotically normal if b grows slowly enough. Portnoy (1988)
gives a general treatment for regular exponential families including conditions
for TLR to be asymptotically normal. In the one-way ANOVA situation Brownie
and Boos (1994) show that for the usual F statistic for comparing means,

k1=2.F � 1/
d�! N.0; 2n=.n � 1// as the number of groups k goes to 1

while the sample size in each group n remains fixed (similar to the Neyman-Scott
situation). Then, TW, TS, and TLR are also asymptotically normal since they are
functions of F.

6.7 Problems

6.1. Verify that the “Huber” density in (6.3, p. 279), satisfies condition (B), p. 278.

6.2. Consider the density

f .yI �/ D 2y

�2
exp

�

�y
2

�2

�

y > 0; � > 0:

Verify that the regularity conditions 1. to 5. of Theorem 6.6 (p. 284) hold for the
asymptotic normality of the maximum likelihood estimator of � .
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6.3. In Condition 5 of Theorem 6.6 (p. 284) we have the assumption that EŒ@ log
f .Y1I �/=@�� D 0. For continuous distributions this mean zero assumption
follows if

Z �

@

@�
f .yI �/

�

dy D @

@�

�Z

f .yI �/ dy
�

because this latter integral is one by the definition of a density function. The typical
proof that this interchange of differentiability and integration is allowed assumes
that for each �0 2 �, there is a bounding function g1.y/ (possibly depending on �0)
and a neighborhood of �0 such that for all y and for all � in the neighborhood
j@f .yI �/=@� j � g1.y/ and

R

g1.y/ dy < 1. Use the dominated convergence
theorem to show that this condition allows the above interchange.

6.4. Similar to the last problem, show that

E Œ@ logf .Y1I �/=@��2 D E
�@2 logf .Y1I �/=@�2

�

follows if in addition to the condition in the last problem there is a similar bounding
function g2.y/ for the second derivative of f .yI �/.
6.5. Smith (1985) considers densities of the form f .yI �/ D f0.y � �/ for � <
y < 1, where f0.y/ � ˛cy˛�1 as y # 0. For simplicity, we assume one particular
type of such densities, the gamma threshold model,

f .yI �/ D 1

� .˛/
.y � �/˛�1e�.y��/; � < y < 1;

where ˛ is assumed known. Show that both forms of the information I.�/ exist and
are equal for ˛ > 2 and neither exist for ˛ � 2.

6.6. The proof of the asymptotic normality of the maximum likelihood estimator
does not use an approximation by averages. Show, however, that one can extend the
proof to obtain an approximation by averages result for the maximum likelihood
estimator. Hint: add and subtract the numerator of (6.10, p. 285) divided by the
probability limit of the denominator of (6.10, p. 285).

6.7. Using (6.16, p. 288) and Condition 4 of Theorem 6.7 (p. 286) with Theo-
rem 5.28 (p. 249), show that (6.17, p. 288) holds.

6.8. Assuming (6.17, p. 288) and (6.20, p. 289) hold, give the details that finish the
proof of Theorem 6.10 (p. 288).

6.9. Using (6.22, p. 290) and assuming continuity of I.�/, show that under the
Pitman alternatives �10Cd=pn, TW converges in distribution to a noncentral�2r ./

with noncentrality parameter  D dT
˚

I.�0/
�1�

11


�1
d .
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Chapter 7
M-Estimation (Estimating Equations)

7.1 Introduction

In Chapter 1 we made the distinction between the parts of a fully specified statistical
model. The primary part is the part that is most important for answering the
underlying scientific questions. The secondary part consists of all the remaining
details of the model. Usually the primary part is the mean or systematic part
of the model, and the secondary part is mainly concerned with the distributional
assumptions about the random part of the model. The full specification of the model
is important for constructing the likelihood and for using the associated classical
methods of inference as spelled out in Chapters 2 and 3 and supported by the
asymptotic results of Chapter 6.

However, we are now ready to consider robustifying the inference so that
misspecification of some secondary assumptions does not invalidate the resulting
inferential methods. Basically this robustified inference relies on replacing the
information matrix inverse I.�/�1 in the asymptotic normality result forb�MLE by a
generalization I.�/�1B.�/I.�/�1 called the sandwich matrix. In correctly specified
models, I.�/ D B.�/, and the sandwich matrix just reduces to the usual I.�/�1.
When the model is not correctly specified, I.�/ ¤ B.�/, and the sandwich matrix
is important for obtaining approximately valid inference. Thus, use of this more
general result accommodates misspecification but is still appropriate in correctly
specified models although its use there in small samples can entail some loss of
efficiency relative to standard likelihood inference.

Development of this robustified inference for likelihood-based models leads
to a more general context. As discussed in Chapter 6, the asymptotic normal
properties ofb�MLE follow from Taylor expansion of the likelihood equation S .�/ D
Pn

iD1 @ logf .Yi I�/=@�T D 0. The more general approach is then to define an
estimator of interest as the solution of an estimating equation but without the
equation necessarily coming from the derivative of a log likelihood. For historical
reasons and for motivation from maximum likelihood, this more general approach

D.D. Boos and L.A. Stefanski, Essential Statistical Inference: Theory and Methods,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-4818-1 7,
© Springer Science+Business Media New York 2013
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is called M-estimation. In recent years the approach is often referred to loosely as
estimating equations. This chapter borrows heavily from the systematic description
of M-estimation in Stefanski and Boos (2002).

M-estimators are solutions of the vector equation
Pn

iD1 .Yi ;�/ D 0. That is,
the M-estimatorb� satisfies

n
X

iD1
 .Yi ;b�/ D 0: (7.1)

Here we are assuming that Y1; : : : ;Yn are independent but not necessarily identi-
cally distributed, � is a b-dimensional parameter, and is a known .b	1/-function
that does not depend on i or n. In this description Yi represents the i th datum. In
some applications it is advantageous to emphasize the dependence of on particular
components of Yi . For example, in a regression problem Yi D .xi ; Yi / and (7.1)
would typically be written

n
X

iD1
 .Yi ;xi ;b�/ D 0: (7.2)

where xi is the i th regressor.
Huber (1964,1967) introduced M-estimators and their asymptotic properties, and

they were an important part of the development of modern robust statistics. Liang
and Zeger (1986) helped popularize M-estimators in the biostatistics literature
under the name generalized estimating equations (GEE). Obviously, many others
have made important contributions. For example, Godambe (1960) introduced the
concept of an optimum estimating function in an M-estimator context, and that paper
could be called a forerunner of the M-estimator approach.

There is a large literature on M-estimation and estimating equations. We will
not attempt to survey this literature or document its development. Rather we want
to show that the M-estimator approach is simple, powerful, and widely applicable.
We especially want students to feel comfortable finding and using the asymptotic
approximations that flow from the method.

One key advantage of the approach is that a very large class of asymptotically
normal statistics including delta method transformations can be put in the gen-
eral M-estimator framework. This unifies large sample approximation methods,
simplifies analysis, and makes computations routine although sometimes tedious.
Fortunately, the tedious derivative and matrix calculations often can be performed
symbolically with programs such as Maple and Mathematica.

Many estimators not typically thought of as M-estimators can be written in the
form of M-estimators. Consider as a simple example the mean deviation from the
sample mean

b�1 D 1

n

n
X

iD1
jYi � Y j:
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Is this an M-estimator? There is certainly no single equation of the form

n
X

iD1
 .Yi ; �/ D 0

that yields b�1. Moreover, there is no family of densities f .yI�/ such that b�1 is a
component of the maximum likelihood estimator of � . But if we let  1.y; �1; �2/ D
j y � �2 j � �1 and  2.y; �1; �2/ D y � �2, then

n
X

iD1
 .Yi ; b�1; b�2/ D

0

@

Pn
iD1

�

jYi �b�2 j �b�1
�

Pn
iD1

�

Yi �b�2
�

1

A D
�

0

0

�

yields b�2 D Y and b�1 D .1=n/
Pn

iD1 jYi � Y j. We like to use the term “partial
M-estimator” for an estimator that is not naturally an M-estimator until additional
 functions are added. The key idea is simple: any estimator that would be an
M-estimator if certain parameters were known, is a partial M-estimator because
we can “stack”  functions for each of the unknown parameters. This aspect of
M-estimators is related to the general approach of Randles (1982) for replacing
unknown parameters by estimators.

From the above example it should be obvious that we can replaceb�2 D Y by any
other estimator defined by an estimating equation; for example, the sample median.
Moreover, we can also add  functions to give delta method asymptotic results
for transformations of parameters, for example,b�3 D log.b�1/; see Examples 7.2.3
(p. 304) and 7.2.4 (p. 305) and also Benichou and Gail (1989).

The combination of “approximation by averages” and “delta theorem” method-
ology from Chapter 5 can handle a larger class of problems than the enhanced
M-estimation approach described in this chapter. However, enhanced M-estimator
methods, implemented with the aid of symbolic mathematics software (for deriving
analytic expressions) and standard numerical routines for derivatives and matrix
algebra (for obtaining numerical estimates) provide a unified approach that is
simple in implementation, easily taught, and applicable to a broad class of complex
problems.

A description of the basic approach is given in Section 7.2 along with a few
examples. Connections to the influence curve are given in Section 7.3 and then
extensions for nonsmooth  functions are given in Section 7.4. Extensions for
regression are given in Section 7.5. A discussion of a testing problem is given
in Section 7.6, and Section 7.7 summarizes the key features of the M-estimator
method. The Appendix gives theorems for the consistency and asymptotic normality
of b� as well as Weak Laws of Large Numbers for averages of summands with
estimated parameters.
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7.2 The Basic Approach

M-estimators solve (7.1, p. 298), where the vector function  must be a known
function that does not depend on i or n. For regression situations, the argument of
 is expanded to depend on regressors xi , but the basic  still does not depend
on i . For the moment we confine ourselves to the iid case where Y1; : : : ; Yn are iid
(possibly vector-valued) with distribution function F . The true parameter value �0
is defined by

EF .Y1;�0/ D
Z

 .y;�0/ dF.y/ D 0: (7.3)

For example, if  .Yi ; �/ D Yi � � , then clearly the population mean �0 D
R

y dF.y/ is the unique solution of
R

.y � �/ dF.y/ D 0.
If there is one unique �0 satisfying (7.3), then in general there exists a sequence

of M-estimators b� such that the Weak Law of Large Numbers leads to b�
p�! �0

as n ! 1. These type results are similar to the consistency results discussed in
Chapter 6. Theorem 7.1 (p. 327) in this chapter gives one such result for compact
parameter spaces. Furthermore, if  is suitably smooth, then Taylor expansion of
G n.�/ D n�1Pn

iD1 .Yi ;�/ gives

0 D G n.b�/ D G n.�0/CG 0
n.�0/.

b� � �0/CRn;

where G 0
n.�/ D @G n.�/=@� . For n sufficiently large, we expect G 0

n.�0/ to be
nonsingular so that upon rearrangement

p
n.b� � �0/ D ˚�G 0

n.�0/

�1 p

nG n.�0/C p
nR�

n : (7.4)

Define  0.y;�/ D @ .y;�/=@� and

A.�0/ D EF
˚� 0.Y1;�0/




; (7.5)

B.�0/ D EF
˚

 .Y1;�0/ .Y1;�0/
T



: (7.6)

Under suitable regularity conditions as n ! 1,

�G 0
n.�0/ D 1

n

n
X

iD1

˚� 0.Yi ;�0/

 p�! A.�0/; (7.7)

p
nG n.�0/

d�! N f0;B.�0/g ; (7.8)

and
p
nR�

n

p�! 0: (7.9)
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Putting (7.1) and (7.4)–(7.9) together with Slutsky’s Theorem, we have that

b� is AN

�

�0;
V .�0/

n

�

as n ! 1; (7.10)

where V .�0/ D A.�0/
�1B.�0/fA.�0/�1gT . The limiting covariance V.�0/ is

called the sandwich matrix because the “meat”B.�0/ is placed between the “bread”
A.�0/

�1 and fA.�0/�1gT .
If A.�0/ exists, the Weak Law of Large Numbers gives (7.7). If B.�0/ exists,

then (7.8) follows from the Central Limit Theorem. The hard part to prove is (7.9).
Huber (1967) was the first to give general results for (7.9), but there have been
many others since then (see e.g., Serfling 1980 Ch.7). Theorem 7.2 (p. 328) in the
Appendix to this chapter gives conditions for (7.10), and a by-product of its proof
is verification of (7.9).

Extension. Suppose that instead of (7.1, p. 298),b� satisfies

n
X

iD1
 .Yi ;b�/ D cn; (7.11)

where cn=
p
n

p�! 0 as n ! 1. Following the above arguments and noting that
cn=

p
n is absorbed in

p
nR�

n of (7.4), we can see that as long as (7.11), (7.4), and
(7.7)–(7.9) hold, then (7.10) also holds. This extension allows us to cover a much
wider class of statistics including empirical quantiles, estimators whose  function
depends on n, and Bayesian estimators.

7.2.1 Estimators for A, B, and V

For maximum likelihood estimation,  .y;�/ D @ logf .yI�/=@�T is often called
the score function. If the data truly come from the assumed parametric family
f .yI�/, then A.�0/ D B.�0/ D I.�0/, the information matrix. Note that A.�0/
is Definition 2 of I.�0/ in (2.33, p. 66), and B.�0/ is Definition 1 of I.�0/ in
(2.29, p. 64). In this case the sandwich matrix V.�0/ reduces to the usual I.�0/�1.
One of the key contributions of M-estimation theory has been to point out what
happens when the assumed parametric family is not correct. In such cases there
is often a well-defined �0 satisfying (7.3, p. 300) and b� satisfying (7.1, p. 298) but
A.�0/ ¤ B.�0/, and valid inference should be carried out using the correct limiting
covariance matrix V.�0/ D A.�0/

�1B.�0/fA.�0/�1gT , not I.�0/�1.
Using the left-hand side of (7.7, p. 300), we define the empirical estimator of

A.�0/ by

An.Y ;b�/ D �G 0
n.
b�/ D 1

n

n
X

iD1

n

� 0.Yi ;b�/
o

:
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Note that for maximum likelihood estimation, An.Y ;b�/ is the average observed
information matrixI .Y ;b�/ (see 2.34, p. 66). Similarly, the empirical estimator of
B.�0/ is

Bn.Y ;b�/ D 1

n

n
X

iD1
 .Yi ;b�/ .Yi ;b�/

T :

The sandwich matrix of these matrix estimators yields the empirical sandwich
variance estimator

V n.Y ;b�/ D An.Y ;b�/
�1Bn.Y ;b�/fAn.Y ;b�/

�1gT : (7.12)

V n.Y ;b�/ is generally consistent for V .�0/ under mild regularity conditions (see
Theorem 7.3, p. 329, and Theorem 7.4, p. 330, in the Appendix to this chapter).

Calculation of V n.Y ;b�/ requires no analytic work beyond specifying  .
In some problems, it is simpler to work directly with the limiting form V .�0/ D
A.�0/

�1B.�0/fA.�0/�1gT , plugging in estimators for �0 and any other unknown
quantities in V .�0/. The notation V .�0/ suggests that �0 is the only unknown
quantity in V .�0/, but in reality V .�0/ often involves higher moments or other
characteristics of the distribution function F of Yi . In fact there is a range of
possibilities for estimating V .�0/ depending on what model assumptions are used.
For simplicity, we use the notation V n.Y ;b�/ for the purely empirical estimator and
V .b�/ for any of the versions based on expected value plus model assumptions.

For maximum likelihood estimation with a correctly specified family, the three
competing estimators for I.�/�1 are V n.Y ;b�/, I .Y ;b�/�1 D An.Y ;b�/

�1, and
I.b�/�1 D V .b�/. In this case the standard estimators I .Y ;b�/�1 and I.b�/�1
are generally more efficient than V n.Y ;b�/ for estimating I.�/�1. Clearly, for
maximum likelihood estimation with a correctly specified family, no estimator can
have smaller asymptotic variance for estimating I.�/�1 than I.b�MLE/

�1.
Now we illustrate these ideas with examples.

7.2.2 Sample Mean and Variance

Letb� D .Y ; s2n/
T , the sample mean and variance. Here

 .Yi ;�/ D
0

@

Yi � �1

.Yi � �1/
2 � �2

1

A :

The first component, b�1 D Y , satisfies
P

.Yi � b�1/ D 0, and is by itself
an M-estimator. The second component b�2 D s2n D n�1P.Yi � Y /2, when
considered by itself, is not an M-estimator. However, when combined withb�1, the
pair .b�1; b�2/T is a 2 	 1 M-estimator so thatb�2 satisfies our definition of a partial
M-estimator.
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Now let us calculateA.�0/ andB.�0/ where �T0 D .�10; �20/:

A.�0/ D E
˚� 0.Y1;�0/


 D E

�

1 0

2.Y1 � �10/ 1

�

D
�

1 0

0 1

�

(7.13)

B.�0/ D E
˚

 .Y1;�0/ .Y1;�0/
T



D E

 

.Y1 � �10/2 .Y1 � �10/


.Y1 � �10/
2 � �20

�

.Y1 � �10/


.Y1 � �10/
2 � �20

� 

.Y1 � �10/
2 � �20

�2

!

D
�

�20 �3
�3 �4 � �220

�

D
�

�2 �3
�3 �4 � �4

�

; (7.14)

where �k is our notation for the kth central moment of Y1 and the more familiar
notation �2 D �20 has been substituted at the end. In this case, since A.�0/ is the
identity matrix, V.�0/ D B.�0/. To estimate B.�0/, we may use

Bn.Y ;b�/ D 1

n

n
X

iD1

 

.Yi � Y /2 .Yi � Y / .Yi � Y /2 � s2n
�

.Yi � Y / .Yi � Y /2 � s2n
� 

.Yi � Y /2 � s2n
�2

!

D
�

s2n m3

m3 m4 � s4n

�

;

where the mk are sample kth moments. Looking back at the form for V .�0/ and
plugging in empirical moment estimators leads to equality of the empirical estimator
and the expected value estimator: V .b�/ D V n.Y ;b�/ in this case.

Note that b� is a maximum likelihood estimator for the normal model density
f .yI�/ D .2��2/

�1=2 exp
˚�.y � �1/2=2�2




, but  1 D Yi � �1 and  2 D .Yi �
�1/

2 � �2 are not the score functions that come from this normal density. The partial
derivative of this normal log density yields  1 D .Yi � �1/=�2 and  2 D .Yi �
�1/

2=.2�22 / � 1=.2�2/. Thus  functions are not unique—many different ones can
lead to the same estimator. However, different functions associated with the same
estimator yield different A and B but the same V . For example, using these latter
two  functions, the resultingA andB matrices are

A.�0/ D

0

B

@

1

�2
0

0
1

2�4

1

C

A B.�0/ D

0

B

B

B

@

1

�2
�3

2�6

�3

2�6
�4 � �4
4�8

1

C

C

C

A

:
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Note that the sandwich matrix of these matrices is the same as the sandwich matrix
of the matrices in (7.13) and (7.14). If we further assume that the data truly are
normally distributed, then �3 D 0 and �4 D 3�4 resulting in A.�0/ D B.�0/ D
I.�0/ D Diag.1=�2; 1=2�4/. Here the expected value model-based covariance
estimator would be V .b�/ D Diag.s2n; 2s

4
n/.

Note that the likelihood score  functions, b MLE, are related to the original  
functions by  MLE D c , where c D diag.1=�20; 1=2�220/. A little algebra shows
that all  of the form c , where c is nonsingular (but possibly depending on �0),
lead to an equivalence class having the same estimator and asymptotic covariance
matrix V .�0/.

7.2.3 Ratio Estimator

Letb� D Y =X , where .Y1; X1/; : : : ; .Yn; Xn/ is an iid sample of pairs with means
EY1 D �Y and EX1 D �X ¤ 0, variances Var(Y1/ D �2Y and Var(X1/ D �2X , and

covariance cov(Y1;X1/ D �YX . A  function forb� D Y =X is  .Yi ; Xi ; �/ D Yi �
�Xi leading toA.�0/ D �X ,B.�0/ DE.Y1��0X1/2, V .�0/ D E.Y1��0X1/2=�2X ,

An.Y ;b�/ D X , and

Bn.Y ;b�/ D 1

n

n
X

iD1

 

Yi � Y

X
Xi

!2

;

and

V n.Y ;b�/ D 1

X
2

1

n

n
X

iD1

 

Yi � Y

X
Xi

!2

:

This variance estimator is often encountered in finite population sampling contexts.
Now consider the following of dimension 3 that yieldsb�3 D Y =X as the third

component ofb� :

 .Yi ; Xi ;�/ D
0

@

Yi � �1
Xi � �2

�1 � �3�2

1

A :

This  function is interesting because the third component does not depend on
the data. Nevertheless, this  satisfies all the requirements and illustrates how to
implement the delta method via M-estimation. The A and B matrices are

A.�0/ D
0

@

1 0 0

0 1 0

�1 �30 �20

1

A B.�0/ D
0

@

�2Y �YX 0

�YX �2X 0

0 0 0

1

A :
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This example illustrates the fact that B.�0/ can be singular (although A.�0/
generally cannot). In fact whenever a  function has components that involve no
data, then the resulting B matrix is singular. Using Maple we computed V.�0/ D
A.�0/

�1B.�0/fA.�0/�1gT , and obtained for the (3,3) element

v33 D 1

�220



�2Y � 2�30�YX C �230�
2
X

�

:

This latter expression for the asymptotic variance of
p
nb�3 can be shown to be the

same as E.Y1 � �30X1/
2=�2X obtained earlier upon noting that �20 D �X .

Sample Maple Program

with(linalg): Brings in the
linear

algebra package
vA:=[1,0,0,0,1,0,-1,theta[3],theta[2]]; Makes a vector of

the entries of A
A:=matrix(3,3,vA); Creates A from vA
Ainv:=inverse(A);
vB:=[sigma[y]ˆ2,sigma[xy],0,sigma[xy],sigma[x]ˆ2,0,0,0,0];
B:=matrix(3,3,vB);
V:=multiply(Ainv,B,transpose(Ainv));
simplify(V[3,3]);

�y
2 � 2 �3 �xy C �3

2 �x
2

�2
2

The above display is what appears on the Maple window for the last command.

7.2.4 Delta Method Via M-Estimation

In the context of Section 7.2.2 (p. 302), suppose we are interested in sn D p

s2n
and log.s2n/. We could of course just redefine �2 in Example 7.2.2 to be �22
and exp.�2/, respectively. Instead, we prefer to add  3.Yi ;�/ D p

�2 � �3 and
 4.Yi ;�/ D log.�2/ � �4 because it seems conceptually simpler and it also gives
the joint asymptotic distribution of all quantities. Now we have

A.�0/ D

0

B

B

B

B

B

B

B

@

1 0 0 0

0 1 0 0

0 � 1

2
p
�20

1 0

0 � 1

�20
0 1

1

C

C

C

C

C

C

C

A

B.�0/ D

0

B

B

B

B

@

�20 �3 0 0

�3 �4 � �220 0 0

0 0 0 0

0 0 0 0

1

C

C

C

C

A
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and V .�0/ D A.�0/
�1B.�0/fA.�0/�1gT is

V .�0/ D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�20 �3
�3

2
p
�20

�3

�20

�3 �4 � �220
�4 � �220

2
p
�20

�4 � �220
�20

�3

2
p
�20

�4 � �220
2
p
�20

�4 � �220
4�20

�4 � �220

2�
3=2
20

�3

�20

�4 � �220
�20

�4 � �220

2�
3=2
20

�4 � �220
�220

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Thus the asymptotic variance of sn is .�4 � �220/=.4�20/ D .�4 � �4/=4�2, and
the asymptotic variance of log.s2n/ is .�4 � �220/=�

2
20 D �4=�

4 � 1. We might point
out that the rank of a product of matrices is less than or equal to the minimum
rank of the matrices in the product. For this example, the rank of the above V .�0/
matrix is 2, the same as the rank of B. In fact the correlations in the bottom 3 	 3
portion of V .�0/ are all 1, which makes intuitive sense becauseb�2,b�3, andb�4 are
all monotonic functions of one another.

The results above can be formalized into an M-estimation version of the delta
method, actually Theorem 5.20 (p. 239) with g vector-valued. In problem 7.6
(p. 332), we give the M-estimation version of Theorem 5.19 (p. 238), where g is
real-valued.

7.2.5 Posterior Mode

Consider the standard Bayesian model in an iid framework where the posterior
density is proportional to

�.�/

n
Y

iD1
f .Yi I�/;

and � is the prior density. Posterior mode estimators satisfy (7.11, p. 301) with
 .y;�/ D @ logf .yI�/=@�T the same as for maximum likelihood and C n D
�� 0.b�/=�.b�/. Thus, as long as cn=

p
n

p�! 0, the Bayesian mode estimator has the
same asymptotic covariance matrix as maximum likelihood estimators.

7.2.6 Instrumental Variable Estimation

Instrumental variable estimation is a method for estimating regression parameters
when predictor variables are measured with error (Fuller 1987; Carroll et al. 2006).
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We use a simple instrumental variable model to illustrate some features of the
M-estimation approach. Suppose that triples .Yi ;Wi ; Ti / are observed such that

Yi D ˛ C ˇXi C �ee1;i

Wi D Xi C �U e2;i

Ti D � C ıXi C ��e3;i

where ej;i are mutually independent random errors with common mean 0 and
variance 1. For simplicity also assume that X1; : : : ; Xn are iid, independent of the
fej;ig and have finite variance. In the language of measurement error models, Wi

is a measurement of Xi , and Ti is an instrumental variable for Xi (for estimating
ˇ), provided that ı ¤ 0 which we now assume. Note that X1; : : : ; Xn are latent
variables and not observed. Let �2S and �S;T denote variances and covariances of
any random variables S and T .

The least squares estimator of slope obtained by regressing Y on W , bˇY jW ,
converges in probability to

˚

�2X=.�
2
X C �2U /




ˇ, and thus is not consistent for ˇ
when the measurement error variance �2U > 0. However, the instrumental variable
estimator,

bˇIV D
bˇY jT
bˇW jT

;

where bˇY jT and bˇW jT are the slopes from the least squares regressions of Y on T
andW on T , respectively, is a consistent estimator ofˇ under the stated assumptions
regardless of �2U .

The instrumental variable estimator, bˇIV is a partial M-estimator as defined in
the Introduction, and there are a number of ways to complete the  function in this
case. Provided interest lies only in estimation of the ˇ, a simple choice is

 .Y; W; T; �/ D
 

�1 � T

.Y � �2W /.�1 � T /

!

;

with associated M-estimator,

b�1 D T ; b�2 D bˇIV:

The A and B matrices calculated at the true parameters assuming the instrumental
variable model are

A D
 

1 0

˛ �X;T

!

and B D
 

�2T ˛�2T

˛�2T �2T .˛
2 C �2e C ˇ2�2U /

!

;
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which yield the asymptotic covariance matrix

A�1B
�

A�1	T D
 

�2T 0

0 �2T .�
2
e C ˇ2�2U /=�

2
X;T

!

:

Under the stated assumptions the instrumental variable estimator and the naive
estimator are both consistent for ˇ when �2U D 0, yet have different asymptotic
means when �2U > 0. Thus for certain applications their joint asymptotic distribution

is of interest, e.g., for inference about the differencebˇIV �bˇY jW . The M-estimator
approach easily accommodates such calculations. For this task consider the  
function

 .Y; W; T; �/ D

0

B

B

B

B

B

@

�1 � T

�2 �W

.Y � �3W /.�2 �W /

.Y � �4W /.�1 � T /

1

C

C

C

C

C

A

:

Note the change in the definitions of �2 and the ordering of the components of this
 function. The configuration is primarily for convenience as it leads to a triangular
A matrix. In general when the kth component of  depends only on �1; : : : ; �k ,
k D 1; 2; : : :, the partial derivative matrix @ =@�T is lower triangular and so too is
theA matrix.

The M-estimator associated with this  function is

b�1 D T ; b�2 D W ; b�3 D bˇY jW ; b�4 D bˇIV:

The A matrix calculated at the true parameters assuming the instrumental variable
model is

0

B

B

B

B

@

1 0 0 0

0 1 0 0

0 ˛ C ˇ�X�
2
U =�

2
W �2W 0

˛ 0 0 �X;T

1

C

C

C

C

A

:

The expression for the B matrix is unwieldy. However, primary interest lies in
the lower 2 	 2 submatrix of the asymptotic variance matrix A�1B

�

A�1	T . We
used Maple to calculate this submatrix and to substitute expressions for the various
mixed moments of .Y;W; T / under the assumption of joint normality, resulting in
the asymptotic covariance matrix for .b�3; b�4/,

0

@

.�2e �
2
W C ˇ2�2U �

2
X/=�

4
W

˚

�2e �
2
W C ˇ2.�2U �

2
X � �4U /




=�4W
˚

�2e �
2
W

C ˇ2.�2
U
�2X � �4U /




=�4W �2T .�
2
e C ˇ2�2U /=�

2
X;T

1

A :
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The covariance formula given above assumes normality of the errors "j;i and
the Xi in the model. Instrumental variable estimation works more generally, and
in the absence of distributional assumptions (beyond those of lack of correlation),
estimated variances can be obtained using the sandwich formula. We illustrate the
calculations with data from the Framingham Heart Study. For this illustration Y and
W are systolic blood pressure and serum cholesterol respectively measured at the
third exam, and T is serum cholesterol respectively measured at the second exam.
The data include measurements on n D 1615 males aged 45 to 65.

The 4 	 1  function was used to determine the estimates (standard errors in
parentheses)

b�1 D T D 227:2.1:1/; b�2 D W D 228:4.1:0/;
b�3 D bˇY jW D 0:042.0:011/; b�4 D bˇIV D 0:065.0:015/:

The empirical sandwich variance estimate (direct computer output) is

1785.8453 1291.8722 -1.3658812 -3.8619519
1291.8722 1718.3129 -1.1578449 -2.6815324

-1.3658812 -1.1578449 0.20737770 0.19878711
-3.8619519 -2.6815324 0.19878711 0.35584612

The estimated contrastbˇIV �bˇY jW D 0:023 has standard error 0:010, resulting
in the test statistic t D 2:29. The test statistic is consistent with the hypothesis that
serum cholesterol is measured with non-negligible error.

7.3 Connections to the Influence Curve (Approximation
by Averages)

The Influence Curve (Hampel, 1974) of an estimatorb� based on an iid sample may
be defined as the “h” function from Theorem 5.23 (p. 242) that satisfies

b� � �0 D 1

n

n
X

iD1
h.Yi ;�0/CRn;

where
p
nRn

p�! 0 as n ! 1, or by the technical definition in (5.13, p. 244) for
functional statistics. Note that here we are allowing h to be a vector and have added
the dependence on �0. If EŒh.Y1;�0/� D 0 and EŒh.Y1;�0/h.Y1;�0/T � D ˙ exists,
then by Slutsky’s Theorem and the CLT,b� is AN.�;˙=n/. It is easy to verify that
h.yI�0/ D A.�0/

�1 .y;�0/ for M-estimators and thus˙ is

E


h.Y1;�0/h.Y1;�0/
T
� D E



A.�0/
�1 .Y1;�0/f .Y1;�0/gT fA.�0/�1gT

�

D A.�0/
�1B.�0/fA.�0/�1gT D V.�0/:
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The Influence Curve or “approximation by averages” approach is more general than
the M-estimator approach; however, for many problems they are equivalent. Our
experience teaching both methods indicates that students more readily learn the M-
estimator approach and are therefore more likely to use it (and use it correctly)
in their research and work. Especially in messy problems with a large number of
parameters, it appears easier to stack  functions and compute A and B matrices
than it is to compute and stack influence curves and then compute˙ .

If the influence curve is known, then defining  .Yi ;�/ D h.Yi ;�0/ � .� � �0/
allows one to use the M-estimator approach even whenb� is not an M-estimator. In
this case A.�0/ is the identity matrix and B.�0/ D ˙ . (A minor modification is
that for the empirical variance estimators we need to define  .Yi ;b�/ D h.Yi ;b�/;
that is, plugging in b� for both � and �0.) More importantly, this fact allows one to
combine M-estimators with estimators that may not be M-estimators but for which
we have already computed influence curves. The next example illustrates this.

Example 7.1 (Hodges-Lehmann location estimator). Hodges and Lehmann
(1963)suggested that estimators could be obtained by inverting rank tests, and
the class of such estimators is called R-estimators. One of the most interesting R-
estimators is called the Hodges-Lehmann location estimator

b�HL D median

�

Xi CXj

2
; 1 � i � j � n

�

:

It is not clear how to put this estimator directly in the M-estimator framework, but
for distributions symmetric around �0, that is having F.y/ D F0.y � �0/ for a
distribution F0 symmetric about 0, Huber (1981, p. 64) gives

h.yI �0/ D F0.y � �0/� 1
2

R

f 2
0 .y/dy

;

where f0.y/ is the density function of F0.y/. The variance of this influence curve is

1

12
R

f 2
0 .y/dy

�2
;

which is easily obtained after noting that F0.Y1 � �0/ has a uniform distribution.
Now for obtaining the asymptotic joint distribution of b�HL and any set of

M-estimators, we can stack  .Yi ; �/ D h.yI �0/ � .� � �0/ with the  functions
of the M-estimators. The part of the A matrix associated with b�HL is all zeroes
except for the diagonal element that is a one. The diagonal element of the B matrix
is the asymptotic variance given above, but one still needs to compute correlations
of h.Y1; �0/ with the other  functions to get the off-diagonal elements of the B
matrix involvingb�HL. �
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7.4 Nonsmooth  Functions

In some situations the  function may not be differentiable everywhere, thus
invalidating the definition of the A matrix as the expected value of a derivative.
The appropriately modified definition ofA interchanges the order of differentiation
and expectation,

A.�0/ � � @

@�
fEF .Y1;�/g

ˇ

ˇ

ˇ

ˇ

�D�0
: (7.15)

The expectation is with respect to the true distribution of the data (denoted EF ),
but � within  varies freely with respect to differentiation, after which the true
parameter value �0 replaces � .

7.4.1 Robust Location Estimation

Huber (1964) proposed estimating the center of symmetry of symmetric distribu-
tions usingb� that satisfies

P

 k.Yi �b�/ D 0, where

 k.x/ D

8

ˆ

<

ˆ

:

�k when x < �k;
x when jxj � k;

k when x > k:

This function is continuous everywhere but not differentiable at ˙k. By definition
(7.15, p. 311), and assuming that F has density f ,

A.�0/ D � @

@�
fEF k.Y1 � �/g

ˇ

ˇ

ˇ

ˇ

�D�0
D � @

@�

�Z

 k.y � �/dF.y/
�ˇ

ˇ

ˇ

ˇ

�D�0

D
Z �

� @

@�
 k.y � �/

�ˇ

ˇ

ˇ

ˇ

�D�0
dF.y/

D
Z

 0
k.y � �0/dF.y/:

The notation  0
k inside the integral stands for the derivative of  k where it exists.

Verifying the second equality above is an instructive calculus exercise.
For B.�0/ we have B.�0/ DE 2k.Y1 � �0/ D R

 2k .y � �0/dF.y/, and thus

V.�0/ D
R

 2k.y � �0/dF.y/
R

 0
k.y � �0/dF.y/

�2
:
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For estimating A.�0/ and B.�0/, our usual estimators are

An.Y ;b�/ D n�1
n
X

iD1

h

� 0
k.Yi �b�/

i

and

Bn.Y ;b�/ D n�1
n
X

iD1
 2k .Yi �b�/:

Sometimes n is replaced by n�1 in this last expression. Here we can use the notation
 0
k.Yi �b�/ because we expect to have data at Yi �b� D ˙k with probability 0.

7.4.2 Quantile Estimation

The sample pth quantileb� Db�p D F�1
n .p/ satisfies

X
h

p � I.Yi �b�/
i

D cn;

where j cn j D njFn.b�/ � p j � 1, and Fn is the empirical distribution function.
Thus using the extended definition (7.11, p. 301), the  function is  .Yi ; �/ D
p � I.Yi � �/. This  function is discontinuous at � D Yi , and its derivative
with respect to � vanishes almost everywhere. However, definition (7.15, p. 311) of
A.�0/ continues to give us the correct asymptotic results:

A.�0/ D � @

@�
ŒEF fp � I.Y1 � �/g�

ˇ

ˇ

ˇ

ˇ

�D�0
D � @

@�
fp � F.�/g

ˇ

ˇ

ˇ

ˇ

�D�0
D f .�0/:

B.�0/ D E fp � I.Y1 � �0/g2 D p.1 � p/:

V .�0/ D p.1 � p/

f 2.�0/
:

Also, we could easily stack any finite number of quantile  functions together to
get the joint asymptotic distribution of .b�p1; : : : ;b�pk /. There is a cost, however,

for the jump discontinuities in these  functions: we no longer can use An.Y ;b�/
to estimate A.�0/. In fact, the derivative of the pth quantile  function is zero
everywhere except at the location of the jump discontinuity. There are several
options for estimating A.�0/. One is to use a smoothing technique to estimate f
(kernel density estimators, for example). Another is to approximate  by a smooth
 function and use theAn.Y ;b�/ from this smooth approximation.
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7.4.3 Positive Mean Deviation

The positive mean deviation from the median is defined to be

b�1 D 2

n

n
X

iD1
.Yi �b�2/I.Yi >b�2/;

where b�2 is the sample median. Coupled with a similar definition of a negative
mean deviation using values less than the median, these “signed distances” from the
median form the basis for an alternative to the usual box plot (see Wilson 2002).
The two-dimensional to handleb�1 is

 .Yi ;�/ D

0

B

@

2.Yi � �2/I.Yi > �2/ � �1
1

2
� I.Yi � �2/

1

C

A :

Notice that the first component of is continuous everywhere but not differentiable
at �2 D Yi . The second component has a jump discontinuity at �2 D Yi . To get
A.�0/, we first calculate the expected value of  .Y1;�/ (note that � is not �0):

EF .Y1;�/ D

0

B

@

2
R1
�2
.y � �2/dF.y/� �1
1

2
� F.�2/

1

C

A :

To take derivatives of the first component, let us write dF.y/ as f .y/dy and expand
it out to get

2

Z 1

�2

yf .y/ dy�2�2
Z 1

�2

f .y/ dy��1 D 2

Z 1

�2

yf .y/ dy�2�2 Œ1 � F.�2/���1:

The derivative of this latter expression with respect to �1 is of course �1. The deriva-
tive with respect to �2 is �2�2f .�2/ � 2 Œ1 � F.�2/�C 2�2f .�2/ D �2 Œ1 � F.�2/�
(using the Fundamental Theorem of Calculus to get the first term). Setting � D �0
means that F.�20/ D 1=2 because �20 is the population median. Thus the derivative
of the first component with respect to �2 and evaluated at � D �0 is just �1. The
partial derivatives of the second component evaluated at � D �0 are 0 and �f .�20/,
respectively. Thus

A.�0/ D
 

1 1

0 f .�20/

!

:
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Straightforward calculations forB.�0/ yield

B.�0/ D

0

B

@

b11
�10

2
�10

2

1

4

1

C

A ;

where b11 D 4
R1
�20
.y � �20/

2f .y/ dy � �210. Finally, V .�0/ is given by

V .�0/ D

0

B

B

B

@

b11 � �10

f .�20/
C 1

4f 2.�20/

�10

2f .�20/
� 1

4f 2.�20/

�10

2f .�20/
� 1

4f 2.�20/

1

4f 2.�20/

1

C

C

C

A

:

7.5 Regression M-Estimators

Regression M-estimators are a natural extension of location M-estimators. Although
a number of different regression M-estimators have been proposed and studied, the
fundamental ideas were established by Huber (1973, 1981, Ch. 7).

There are two situations of interest for M-estimator analysis of regression
estimators. The first is where the independent variables are random variables and
we can think in terms of iid .Y;X / pairs. This situation fits into our basic theory
developed in Section 5.2 for iid sampling. The second situation is where the
independent variables are fixed constants. This covers standard regression models as
well as multi-sample problems like the one-way analysis of variance setup. For this
second regression situation we need to introduce new notation to handle the non-iid
character of the problem.

7.5.1 Linear Model with Random X

We start with the linear model and least squares estimates for the case of random
pairs .Y1;X 1/; : : : ; .Yn;Xn/. The model for the conditional mean is

E.Yi jX i D xi / D xTi ˇ0 i D 1; : : : ; n: (7.16)

Here ˇ D .ˇ1; : : : ; ˇp/
T and ˇ0 is the true value of ˇ (not the intercept), and note

that we have switched from b to p for the parameter dimension. The X i are p 	 1
random vectors and X is the usual n	 p matrix constructed from these vectors and
XTX D Pn

iD1X iX
T
i . The ordinary least squares estimator bˇ D .XTX/�1X TY

minimizes
Pn

iD1.Yi �X T
i ˇ/

2 and satisfies

n
X

iD1
.Yi �XT

i
bˇ/X i D 0:



7.5 Regression M-Estimators 315

Thus bˇ is an M-estimator with  .Yi ;X i ;ˇ/ D .Yi � XT
i ˇ/X i . The conditional

expectation (7.16) also shows that ˇ0 satisfies the M-estimator defining equation
E .Y1;X 1;ˇ0/ D 0:

E.Y1 �XT
1 ˇ0/X 1 D E

˚

E.Y1 �XT
1 ˇ0/X 1 jX 1




D E
˚

.XT
1 ˇ0 �XT

1 ˇ0/X 1


 D 0:

Now moving to the asymptotic distribution, we have

A.ˇ0/ D E

�

� @

@ˇ
.Y1 �XT

1 ˇ/X 1

ˇ

ˇ

ˇDˇ0

�

D E
�

X 1X
T
1

	 � �XXT ;

and

B.ˇ0/ D E
�

Y1 �XT
1 ˇ0

	

X 1

˚

.Y1 �XT
1 ˇ0/X 1


T

D E
˚

.Y1 �XT
1 ˇ0/

2X 1X
T
1




:

If we make the additional homoscedastic assumption that E


.Yi �XT
i ˇ0/

2 jX i

� D
�2, then B.ˇ0/ is just �XXT �2. In this case, the asymptotic variance of bˇ
is ��1

XXT �
2=n. The natural estimates of A.ˇ0/ and B.ˇ0/ without assuming

homogeneity of variances are

An.X ;bˇ/ D 1

n

n
X

iD1
X iX

T
i D XTX

n
;

and

Bn.X ;Y ;bˇ/ D 1

n � p
n
X

iD1
.Yi �XT

i
bˇ/2X iX

T
i ;

where we have used the denominator n � p in analogy with the usual estimate of
variance.

7.5.2 Linear Model for Nonrandom X

The above estimates fit into our standard iid theory developed in Section 7.2. Now
let us move on to allow nonrandom xi . For this we specify the model as

Yi D xTi ˇ C ei i D 1; : : : ; n; (7.17)

where e1; : : : ; en are independent each with mean 0 but variance possibly changing,
Var.ei/ D �2i , i D 1; : : : ; n; and the x1; : : : ;xn are known constant vectors.
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The least squares estimator and associated function are the same as in the previous
subsection, but now the defining concept for ˇ0 is

E .Yi ;xi ;ˇ0/ D E.Yi � xTi ˇ0/xi D 0 i D 1; : : : ; n: (7.18)

This of course follows from (7.17), but notice that we require this expectation to be
zero for i D 1; : : : ; n. In the iid case, it was sufficient to just consider i D 1. For the
asymptotic properties ofbˇ D .XTX /�1XTY , note that from (7.17), we have

p
n.bˇ � ˇ0/ D p

n.XTX/�1XT e D
�

XTX

n

��1
1p
n

n
X

iD1
eixi :

Thus, we assume the existence of

A.ˇ0/ D lim
n!1

XTX

n
and B.ˇ0/ D lim

n!1
1

n

n
X

iD1
�2i xix

T
i : (7.19)

Then the Lindeberg-Feller version of the Central Limit Theorem (Theorem 5.33,
p. 262) leads to

bˇ is AMN.ˇ0;A.ˇ0/
�1B.ˇ0/A.ˇ0/�1=n/ as n ! 1:

We could also write this in terms of the exact variance,

bˇ is AMN

 

ˇ0; .X
TX /�1

 

n
X

iD1
�2i xix

T
i

!

.XTX/�1
!

:

The estimators for A.ˇ0/ and B.ˇ0/ are the same as in the random X i case. If we
assume that the variances of the ei are homogeneous with common value �2, then
we have the standard result that bˇ is AMN.ˇ0; .X

TX /�1�2/. Recall that in this
situation, an unbiased estimator of Var.bˇ/ is .XTX/�1b�2, where

b�2 D 1

n � p
n
X

iD1
.yi � xTi bˇ/2 D 1

n � p
n
X

iD1
be2i : (7.20)

So, for the fixed-constants version of regression we have expanded the defining
equation to (7.18), added assumptions about the constants xi in (7.19), and used
a more general version of the Central Limit Theorem. For more complicated
regression models, we need additional assumptions and notation. But first let us
consider an example with variance heterogeneity.

Example 7.2 (Linear regression with heteroscedastic errors). For the linear
model (7.17, p. 315) with heteroscedastic errors, we consider the covariance
estimator
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An.X ;bˇ/
�1Bn.X ;Y ;bˇ/An.X ;bˇ/

�1=n

D .XTX/�1
 

n

n � p

n
X

iD1
.Yi � xTi bˇ/2xixTi

!

.XTX/�1 (7.21)

in place of .XTX/�1b�2, whereb�2 is given by (7.20, p. 316). How important is it to
use this more complicated form?

Consider the simple linear model

Yi D ˇ1 C ˇ2i C iei ; i D 1; : : : ; n0; (7.22)

where the e1; : : : ; en0 are iid with mean zero and variance �2. For general n and
asymptotic purposes, consider full replicates of (7.22); that is, we repeat (7.22) k
times so that n D kn0. Here, for the first n0, xi D .1; i/T and

XTX D

0

B

B

@

kn0 k
n0
P

iD1
i

k
n0
P

iD1
i k

n0
P

iD1
i2

1

C

C

A

with

XTX

n
D

0

B

B

@

1 n�1
0

n0
P

iD1
i

n�1
0

n0
P

iD1
i n�1

0

n0
P

iD1
i2

1

C

C

A

:

The variance of the least squares estimator is

.XTX/�1
 

k

n0
X

iD1
i2�2xix

T
i

!

.XTX/�1; (7.23)

which is consistently estimated by (7.21). On the other hand, the usual variance
estimator .XTX/�1b�2 is estimating .XTX/�1�2n�1

0

Pn0
iD1 i2. For k D 1 and n0 D

10, this last quantity is

�2

 

17:97 �2:57
�2:57 :47

!

whereas the true asymptotic variance (7.23) is

�2

 

8:21 �1:89
�1:89 :54

!

:

Thus, in this case, the usual variance estimator is overestimating the variance of the
intercept estimator and underestimating the variance of the slope estimator. �
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7.5.3 Nonlinear Model for Nonrandom X—Extended
Definitions of A and B

In a number of ways the least squares estimate for linear models is too simple to
illustrate the full range of possibilities for M-estimation analysis. A moderately
more complicated situation is the additive error nonlinear model

Yi D g.xi ;ˇ/C ei i D 1; : : : ; n; (7.24)

where g is a known differentiable function and e1; : : : ; en are independent with mean
0 and possibly unequal variances Var.ei / D �2i , i D 1; : : : ; n; and the x1; : : : ;xn
are known constant vectors. As usual we put the vectors together and define X D
.x1; : : : ;xn/

T . The least squares estimator satisfies

n
X

iD1

n

Yi � g.xi ;bˇ/
o

g0.xi ;bˇ/ D 0;

where g0.xi ;bˇ/ means the partial derivative with respect to ˇ and evaluated at bˇ.
Expanding this equation about the true value and rearranging, we get

p
n.bˇ � ˇ0/ D

(

1

n

n
X

iD1
� 0.Yi ;xi ;ˇ0/

)�1
1p
n

n
X

iD1
 .Yi ;xi ;ˇ0/C p

nR�
n ;

(7.25)

where of course  .Yi ;xi ;ˇ0/ D fYi � g.xi ;ˇ0/g g0.xi ;ˇ0/. We now give general
definitions for a number of quantities followed by the result for the least squares
estimator.

An.X ;Y ;ˇ0/ D 1

n

n
X

iD1

� 0.Yi ;xi ;ˇ0/
�

D 1

n

n
X

iD1



g0.xi ;ˇ0/g0.xi ;ˇ0/T � fYi � g.xi ;ˇ0/g g00.xi ;ˇ0/
�

:

(7.26)

The notation principle is the same as before: all arguments of a quantity are included
in its name if those quantities are required for calculation. Now taking expectations
with respect to the true model, define

An.X ;ˇ0/ D 1

n

n
X

iD1
E
˚� 0.Yi ;xi ;ˇ0/




D 1

n

n
X

iD1
g0.xi ;ˇ0/g0.xi ;ˇ0/T : (7.27)
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Notice that we have dropped out the Y from this quantity’s name because the
expectation eliminates dependence on the Yi . Also note that the second term for
the least squares estimator drops out because of the modeling assumption (7.24).
Finally, assuming that the limit exists, we define

A.ˇ0/ D lim
n!1

1

n

n
X

iD1
E
˚� 0.Yi ;xi ;ˇ0/




D lim
n!1

1

n

n
X

iD1
g0.xi ;ˇ0/g0.xi ;ˇ0/T : (7.28)

In the linear regression case, note that A.ˇ0/ D limn!1XTX=n. This limit need
not exist for the least squares estimator to be consistent and asymptotically normal,
but its existence is a typical assumption leading to those desired results. Definition
(7.26) leads to the purely empirical estimator ofA.ˇ0/:

An.X ;Y ;bˇ/ D 1

n

n
X

iD1

h

� 0.Yi ;xi ;bˇ/
i

D 1

n

n
X

iD1

h

g0.xi ;bˇ/g0.xi ;bˇ/T � .Yi � g.xi ;bˇ//g00.xi ;bˇ/
i

:

(7.29)

Since this is the negative of the Hessian in a final Newton iteration, this is sometimes
preferred on computational grounds. But the estimated expected value estimator
based on (7.27) is typically simpler:

An.X ;bˇ/ D 1

n

n
X

iD1



E
˚� 0.Yi ;xi ;ˇ0/


�ˇ

ˇ

ˇ0Db̌

D 1

n

n
X

iD1
g0.xi ;bˇ/g0.xi ;bˇ/T : (7.30)

For the “B” matrices, we have in this expanded notation

Bn.X ;ˇ0/ D 1

n

n
X

iD1
E .Yi ;xi ;ˇ0/ .Yi ;xi ;ˇ0/

T

D 1

n

n
X

iD1
�2i g

0.xi ;ˇ0/g0.xi ;ˇ0/T : (7.31)
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andB.ˇ0/ is just the limit ofBn.X ;ˇ0/ as n ! 1. A natural estimator ofB.ˇ0/ is

Bn.X ;Y ;bˇ/ D 1

n � p
n
X

iD1
 .Yi ;xi ;bˇ/ .Yi ;xi ;bˇ/

T

D 1

n � p
n
X

iD1
.Yi � g.xi ;bˇ//2g0.xi ;bˇ/g0.xi ;bˇ/T : (7.32)

7.5.4 Robust regression

Huber (1973) discussed robust regression alternatives to least squares in the linear
regression context. As a specific example, consider the model (7.24, p. 318) with
g.xi ;ˇ/ D xTˇ and estimator of ˇ satisfying

n
X

iD1
 k.Yi � xTi bˇ/xi D 0; (7.33)

where  k is the “Huber”  function defined in Example 7.4.1 (p. 311). This is a
slight abuse of notation since the official .Yi ;xi ;ˇ/ D  k.Yi �xTi ˇ/xi ; i.e.,  is
being used as both the original Huber function k and also as the generic estimating
equation function. Since  k is an odd function about zero, the defining equations
E k.Yi � xTi ˇ0/xi D 0 are satisfied if the ei have a symmetric distribution about
zero. If the ei are not symmetrically distributed and the X matrix contains a column
of ones, then the intercept estimated by bˇ is different from that estimated by least
squares, but this is the only component of ˇ0 affected by asymmetry.

Differentiating results in

An.X ;Y ;ˇ0/ D 1

n

n
X

iD1

� 0.Yi ;xi ;ˇ0/
� D 1

n

n
X

iD1
 0
k.ei /xix

T
i

and

An.X ;ˇ0/ D n�1
n
X

iD1
E 0

k.ei /xix
T
i :

Also,

Bn.X ;ˇ0/ D n�1
n
X

iD1
E k.ei /2xixTi :

If we make the homogeneity assumption that the errors e1; : : : ; en all have the same
distribution, then An.X ;ˇ0/DE 0

k.e1/X
TX=n, Bn.X ;ˇ0/DE k.e1/2XTX=n,

and
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V .X ;ˇ0/ D
 

XTX

n

!�1
E f k.e1/g2
˚

E 0
k.e1/


2
;

a well-known form in robust regression.

7.5.5 Generalized Linear Models

Generalized linear models have score equations

n
X

iD1
Di .ˇ/

.Yi � �i .ˇ//
Vi .ˇ/ai .�/

D 0; (7.34)

where �i.ˇ0/ D E.Yi / D g�1.xTi ˇ0/, Di .ˇ/ D @�i .ˇ/=@ˇ
T , Vi .ˇ0/ai .�0/ D

Var.Yi /, g is the link function, and � is an additional variance parameter. Taking
expectations of the negative of the derivative with respect to ˇ of the above sum
evaluated at ˇ0 leads to the average Fisher information matrix

I.ˇ0/ D 1

n

n
X

iD1

Di .ˇ0/Di .ˇ0/
T

Vi .ˇ0/ai .�0/
:

Note that the second term involving derivatives of D i =Vi drops out due to the
assumption that �i.ˇ0/ D E.Yi /. Now for certain misspecification of densities, the
generalized linear model framework allows for estimation of � and approximately
correct inference as long as the mean is modeled correctly and the mean-variance
relationship is specified correctly. Details of this robustified inference may be found
in McCullagh (1983) under the name “quasi-likelihood.” Note, though, that only
one extra parameter � is used to make up for possible misspecification. Instead,
Liang and Zeger (1986) noticed that the M-estimator approach could be used here
without � and with only the mean correctly specified (and with Vi absorbing any
weight factor from ai ):

An.X ;bˇ/ D 1

n

n
X

iD1

Di .bˇ/Di .bˇ/
T

Vi .bˇ/
:

Bn.X ;Y ;bˇ/ D 1

n � p
n
X

iD1

n

Yi � �i.bˇ/
o2

Di .bˇ/Di .bˇ/
T

V 2
i .
bˇ/

:



322 7 M-Estimation (Estimating Equations)

7.5.6 Generalized Estimating Equations (GEE)

The landmark paper of Liang and Zeger (1986) actually introduced much more than
the use of the sandwich matrix to the generalized linear model framework. Liang and
Zeger were concerned about allowing dependence in nonnormal response variables
Yi in order to handle longitudinal and repeated measures situations and clustering.
For example, suppose that data were available on families where Yij is the absence
or presence of respiratory disease (binary) or the severity of respiratory disease (1-
5, ordered categorical) for the j th family member of the i th family. Examples of
possible covariates x are nutritional status, age, sex, and family income. Note that
age and sex change with j but nutritional status and family income would be the
same for all members of the family. The key point, though, is that families may
often be taken as independent but members within a family would have correlated
respiratory health. Thus, the response data from k families could be put into vectors
Y 1; : : : ;Y k of varying dimensions n1; : : : ; nk . The covariance matrix of all the
small vectors strung together would be block diagonal with covariance matrices
V 1; : : : ;V k .

For normally distributed Yij , standard models and methods existed for this
situation (e.g., Laird and Ware 1982). However, for binary and categorical Yij , very
few methods were available because there are not convenient joint likelihoods for
such data. Thus, Liang and Zeger (1986) proposed extending (7.34, p. 321) to

k
X

iD1
Di .ˇ/

T Vi .˛;ˇ/
�1 fYi ��i .ˇ/g D 0; (7.35)

where �i .ˇ/ is the ni 	 1 modeled mean of Y i , Di .ˇ/ D @�i .ˇ/=@ˇ
T is ni 	 p,

and ni 	ni Vi .˛;ˇ/ is an assumed model for the covariance matrix of Y i . Thus, the
estimators from (7.35) are M-estimators, and the associated matrices are

An.X ;ˇ0/ D 1

k

k
X

iD1
Di .ˇ0/

T Vi .˛;ˇ/
�1Di .ˇ0/;

and

Bn.X ;ˇ0/ D 1

k

k
X

iD1
Di .ˇ0/

T Vi .˛;ˇ/
�1Cov.Yi /Vi .˛;ˇ/

�1Di .ˇ0/:

Typically Vi .˛;ˇ/is called the “working” covariance matrix to denote that it is just a
guess at the true covariance. Simple models for Vi .˛;ˇ/may be written in the form
Vi .˛;ˇ/ D C .ˇ/1=2R.˛/C .ˇ/1=2; where C .ˇ/1=2 is a diagonal matrix with the
modeled standard deviations of Yij on the diagonal andR.˛/ is a correlation matrix.
Popular forms for R.˛/ are independence (R.˛/=identity matrix), equicorrelated
(all off-diagonal elements are the same), and autoregressive (correlation of the form
�jhj between Yij1 and Yij2 for h D j1 � j2).
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An attractive feature of the GEE method is that although one guesses the form of
Cov.Yi /, usually we estimate Bn.X ;ˇ0/ with the empirical form

Bn.X ;Y ;bˇ/ D 1

k � p
k
X

iD1
Di .bˇ/

T Vi .b̨;bˇ/
�1
beibe

T
i Vi .b̨;

bˇ/�1Di .bˇ/;

where bei D Yi � �i .
bˇ/. Putting Bn.X ;Y ;bˇ/ together with An.X ;bˇ/ gives

the sandwich estimator Vn.X ;bˇ/ that is robust to misspecification of the covariance
structure. Equation (7.35) requires an estimate of ˛, which may be found by simple
direct use ofbei or by a second set of estimating equations (Prentice, 1988, Zhao and
Prentice, 1990). The efficiency of estimating ˇ is not affected much by the working
covariance model or by the method of estimating ˛.

Dunlop (1994) gives a simple introduction to these models and methods, and
Wu et al. (2001) make comparisons with normal theory methods when the covari-
ance structure is of particular interest. Diggle et al. (2002) is an up-to-date book on
GEE and related topics. In time series and spatial analyses, there is often correlation
among all the Yi with no independent replication. In such cases the A matrix
estimates from the independent case are still consistent, but more complicated
methods must be used in estimating the B matrix; see Heagerty and Lumley (2000)
and Kim and Boos (2004).

7.6 Application to a Testing Problem

Although we discuss test statistics based on M-estimators in the next chapter,
here we present an application of M-estimation to a score statistic in a standard
likelihood situation. The main contribution of M-estimation is to analyze the effect
of a parameter estimate on the score statistic.

Example 7.3 (Shaq’s free throws). In the 2000 National Basketball Association
(NBA) playoffs, Los Angeles Lakers star player Shaquille O’Neal played in 23
games. Table 7.1 gives his game-by-game free throw outcomes and Figure 7.1
displays the results.

It is often conjectured that players have streaks where they shoot better or worse.
One way to think about that is to assume that the number of free throws made in
the i th game, Yi , is binomial (ni ; pi ) conditional on ni , the number of free throws
attempted in the i th game, and pi , the probability of making a free throw in the
i th game. Having streaks might correspond to some games having high or low pi
values. Thus, a statistical formulation of the problem might be
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Table 7.1 Shaquille O’Neal Free Throws in 2000 NBA Playoffs

Game Number 1 2 3 4 5 6 7 8 9 10 11

FTs Made 4 5 5 5 2 7 6 9 4 1 13
FTs Attempted 5 11 14 12 7 10 14 15 12 4 27
Prop. Made .80 .45 .36 .42 .29 .70 .43 .60 .33 .25 .48

Game Number 12 13 14 15 16 17 18 19 20 21 22 23

FTs Made 5 6 9 7 3 8 1 18 3 10 1 3
FTs Attempted 17 12 9 12 10 12 6 39 13 17 6 12
Prop. Made .29 .50 1.0 .58 .30 .67 .17 .46 .23 .59 .17 .25
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Fig. 7.1 Shaq’s Free Throw Percentages in the 2000 NBA Playoffs

“Can the above observed game-to-game variation in sample proportions be
explained by binomial variability with a common p?”

Note that the apparent downward trend in sample proportions is not significant; the
simple linear regression p-valueD .24.

For generality let k be the number of games. The score statistic (see Example
3.4.3b, p. 147) for testing a common binomial proportion versus some differences

H0 W p1 D p2 D � � � D pk D p vs. H1 W pi ¤ pj for at least one pair i ¤ j

is given by

TS D
k
X

iD1
.Yi � niep/

2=niep.1 �ep/;

where ep D P

Yi=
P

ni is the estimate of the common value of p under the null
hypothesis. The sample sizes n1; : : : ; nk were assumed fixed for this derivation
(they aren’t really; so this is a conditional approach). TS is also the simple chi-
squared goodness-of-fit statistic with the 2k cell expected values n1ep; n1.1 �
ep/; : : : ; nkep; nk.1 �ep/.

Using the above data, we find ep D :456, TS D 35:51 and the p-value is .034
based on a chi-squared distribution with k�1 D 22 degrees of freedom. But the chi-
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squared approximation is based on each ni going to infinity, and most of the ni in our
data set are quite small. Since TS is just a sum

Pk
iD1 eQi , eQi D .Yi �niep/2=niep.1�

ep/, we might consider using a normal approximation based on k ! 1 and the
Central Limit Theorem. If we assume that p is known, then using moments of the
binomial distribution (assuming the ni are fixed constants), we have E.Qi/ D 1

and Var.Qi/ D 2 C �

1 � 6p C 6p2
	

= fnip.1 � p/g. Averaging Var.Qi/, we get

a standard error for TS=k of 1:8035=
p
23 using k�1Pk

iD1.1=ni/ D 0:0998. The
approximate normal test statistic is then Z D 1:94 leading to a p-value of .026.

We have ignored estimation of p in the above normal approximation. Does that
matter? To find the asymptotic variance of TS using the M-estimator approach, we
need to treat the expected value of TS=k as a parameter �1, and p as �2, and form
two  functions:

 1.Yi ; ni ; �1; p/ D .Yi � nip/2
nip.1 � p/

� �1  2.Yi ; ni ; �1; p/ D Yi � nip:

For calculating the A and B matrices we can treat the ni like fixed constants in
regression or as random variables with some distribution. Taking the latter approach
and noting that �1 D 1 under H0, we get A11 D 1;A12 D .1 � 2p/=Œp.1 �
p/�;A21 D 0;A22 D E.ni / D �n,

B11 D 2C
�

1 � 6p C 6p2
	

p.1 � p/ E

�

1

ni

�

;

B12 D .1�2p/;B22 D �np.1�p/. We have used the assumption that conditionally
underH0, Yi jni is binomial(ni; p/. Note that B11 corresponds to the average of the
Var.Qi/ in the earlier derivation. The asymptotic variance of interest is then

V 11 D 

A�1BfA�1gT �
11

D B11 � 2A12B12

A22

C A2
12B22

A2
22

D 2C
�

1 � 6p C 6p2
	

p.1 � p/
E

�

1

ni

�

� .1 � 2p/2

�np.1 � p/
:

Plugging in k�1P.1=ni/ for E.1=ni/ as above and k�1Pni D 12:87 for
�n gives a standard error of 1:8011=

p
23 and a p-value of .026 just like the

above case where we assumed p is known. Thus, in this case, because ep D
:456 makes the correction term .1 � 2ep/2= f�nep.1 �ep/g D :0024 negligible,
the estimation of p has little effect on the standard error. The effect would be
noticeable if p D :8, for example. We also ran two parametric bootstraps with
100,000 resamples: conditional on .n1; : : : ; n23/ yielding p-value=.028 and also
with the ni drawn with replacement from .n1; : : : ; n23/ yielding p-value=.028.
So the normal M-estimation approximation .026 to the p-value seems better here
than the chi-squared approximation .034. We might add that the results are very
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sensitive to game 14 where Shaq made 9 free throws out of 9. Also, the related
score statistic derived by Tarone (1979) from the beta-binomial model is weighted
differently and results in a p-value of .25. �

7.7 Summary

M-estimators represent a very large class of statistics, including for example,
maximum likelihood estimators and basic sample statistics like sample moments
and sample quantiles as well as complex functions of these. The approach we
have summarized makes standard error estimation and asymptotic analysis routine
regardless of the complexity or dimension of the problem. In summary we would
like to bring together the key features of M-estimators:

1. An M-estimator b� satisfies (7.1, p. 298):
Pn

iD1 .Yi ;b�/ D 0, where  is a
known function not depending on i or n. See also the extensions (7.2, p. 298)
and (7.11, p. 301).

2. Many estimators that do not satisfy (7.1, p. 298) or the extensions (7.2, p. 298)
and (7.11, p. 301) are components of higher-dimensional M-estimators and thus
are amenable to M-estimator techniques using the method of stacking. Such
estimators are called partial M-estimators.

3. A.�0/ D E f�@ .Y1;�0/=@�g is the Fisher information matrix in regular iid
parametric models when  is the log likelihood score function. More generally
A.�0/ must have an inverse but need not be symmetric. See also the extension
(7.15, p. 311) for non-differentiable .

4. B.�0/ D E
˚

 .Y1;�0/ .Y1;�0/
T



is also the Fisher information matrix in
regular iid parametric models when  is the log likelihood score function.
B.�0/ always has the properties of a covariance matrix but is singular when at
least one component of b� is a non-random function of the other components
of b� . In general, A.�0/ ¤ B.�0/; the noteworthy exception arises when
a parametric model is assumed, and the  function results in the maximum
likelihood estimates.

5. Under suitable regularity conditions,b� is AMN .�0; V .�0/=n/ as n ! 1, where
V.�0/ D A.�0/

�1B.�0/fA.�0/�1gT is the sandwich matrix.
6. One generally applicable estimator of V.�0/ for differentiable functions is the

empirical sandwich estimator

V n.Y ;b�/ D An.Y ;b�/
�1Bn.Y ;b�/fAn.Y ;b�/

�1gT :
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7.8 Appendix – Some Theorems for M-Estimation

In this appendix we give some theorems for consistency and asymptotic normality of
M-estimators. In addition we give a WLLN for averages with estimated parameters
in order to justify consistency of the sandwich matrix estimators. Standard refer-
ences for these types of results include Huber (1964, 1967, 1981), Serfling (1980,
Ch. 7), Randles (1982), and van der Vaart (1998, Ch. 5).

7.8.1 Consistency of M-Estimators

There are a variety of methods for proving consistency of M-estimators. We follow
Theorem 6.5 (p. 282) which assumes a compact parameter space � and uses
Theorem 6.3 (p. 281) to get uniform strong consistency of G n.�/,

G n.�/ D 1

n

n
X

iD1
 .Yi ;�/

wp1�! G F.�/ D
Z

 .y;�/ dF.y/

uniformly on�.

Theorem 7.1. Suppose that Y1; : : : ; Yn are iid with distribution function F.y/, and
� is a b 	 1 parameter lying in �, a compact subset of Rb . Assume that

1. (Uniqueness) GF .�/ exists for all � 2 �, GF .�0/ D 0, and GF .�/ ¤ 0 for all
other values of � in �.

2. Each component of  .y;�/ satisfies the assumptions of Theorem 6.3 (p. 281):
 j .y;�/ is continuous in � and bounded by an integrable function of y that does
not depend on � , j D 1; : : : ; b.

If G n.b�n/
wp1�! 0, then b�n

wp1�! �0 as n ! 1.

Proof. The proof is almost exactly the same as the proof of Theorem 6.5 (p. 282)
withG n in the place ln andG F in place of l . Similarly we assume, for contradiction

purposes, existence of a subsequence fb�nk g such thatb�nk
wp1�! �1 ¤ �0. Then

jGn.b�nk /�G F.�1/ j � jG n.b�nk / �G F.b�nk / j C jG F.b�nk /�G F.�1/ j:

The first term on the right-hand side converges to 0 by the uniform strong
consistency of G n.�/. The second term converges to 0 by continuity of G F, which

easily follows from Condition 2. Thus G n.b�nk /
wp1�! G F.�1/ ¤ 0, and this

contradicts G n.b�n/
wp1�! 0. Note that Theorem 7.1 also holds if we change the

“wp1” statements to “in probability.” �
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7.8.2 Asymptotic Normality of M-Estimators

Next we give an asymptotic normality theorem that is the direct generalization of
Theorem 6.7 (p. 286).

Theorem 7.2. Let Y1; : : : ; Yn be iid with distribution function F.y/. Assume that

1.  .y;�/ and its first two partial derivatives with respect to � exist for all y in the
support of F and for all � in a neighborhood of �0, where G F.�0/ D 0.

2. For each � in a neighborhood of �0, there exists a function g.y/ (possibly
depending on �0) such that for all j , k and l 2 f1; : : : ; bg;

ˇ

ˇ

ˇ

ˇ

@2

@�j @�k
 l.y;�/

ˇ

ˇ

ˇ

ˇ

� g.y/

for all y and where
R

g.y/ dF.y/ < 1.
3. A.�0/ D E

˚� 0.Y1;�0/



exists and is nonsingular.
4. B.�0/ D E

˚

 .Y1;�0/ .Y1;�0/
T



exists and is finite.

If G n.b�/ D op.n
�1=2/ andb�

p�! �0, then

p
n.b� � �0/ d�! N

h

0;A.�0/�1B.�0/
˚

A.�0/
�1
T

i

as n ! 1:

Proof. The proof uses a component-wise expansion of G n.b�/ similar to that in
(6.21, p. 289) used in the proof of Theorem 6.10 (p. 288). By assumptionG n.b�/ D
op.n

�1=2/ and thus a Taylor series expansion of the j th component of G n.b�/

results in

op.n
�1=2/ D G n;j .b�/

D G n;j .�0/CG 0
n;j .�0/.

b� � �0/C 1

2
.b� � �0/TG 00

n;j .
e��
j /.
b� � �0/

D G n;j .�0/C
�

G 0
n;j .�0/C 1

2
.b� � �0/TG 00

n;j .
e��
j /

�

.b� � �0/;

where e��
j is on the line segment joining b� and �0, j D 1; : : : ; b. Writing these b

equations in matrix notation we have

op.n
�1=2/ D G n.�0/C

�

G 0
n.�0/C 1

2
eQ�
�

.b� � �0/;

where eQ� is the b 	 b matrix with j th row given by .b� � �0/TG 00
n;j .

e��
j /. Note that

under Condition 2, each entry in eQ� is bounded by jjb���0jjn�1P g.Yi / D op.1/,
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and thus eQ� D op.1/. By the WLLN G 0
n.�0/

p�! �A.�0/ which is nonsingular
under Condition 3. Thus for n sufficiently large, the matrix in brackets above is
nonsingular with probability approaching 1. On the set where the matrix in brackets
is nonsingular (call that set SN) we have

p
n.b� � �0/ D �

�

G 0
n.�0/C 1

2
eQ�
��1

˚p
nG n.�0/C op.1/




:

Slutsky’s Theorem and the CLT then give the result when we note that
P.SN/! 1. As in Problem 6.6 (p. 293), we could also add and subtract terms
to give an approximation-by-averages representation, where hF.Yi ;�0/DA.�0/�1
 .Yi ;�0/. �

7.8.3 Weak Law of Large Numbers for Averages
with Estimated Parameters

One of the most useful aspects of the M-estimator approach is the availability of
the empirical sandwich estimator (7.12, p. 302). Thus, it is important that the pieces
of this estimator, An.Y ;b�/ and Bn.Y ;b�/, converge in probability to A.�0/ and
B.�0/, respectively. But note that this convergence would follow immediately from
the WLLN except for the presence ofb� . Thus, the next two theorems give conditions
for the WLLN to hold for averages whose summands are a function ofb� (and thus
dependent). The first theorem assumes differentiability and a bounding function
similar to Theorem 5.28 (p. 249). The second uses monotonicity.

Theorem 7.3. Suppose that Y1; : : : ; Yn are iid with distribution function F and
assume that the real-valued function q.Yi ;�/ is differentiable with respect to � ,
EFj q0.Y1;�0/ j < 1, and there exists a function M.y/ such that for all � in a
neighborhood of �0 and all j 2 f1; : : : ; bg,

ˇ

ˇ

ˇ

ˇ

@

@�j
q.y;�/

ˇ

ˇ

ˇ

ˇ

� M.y/;

where EFfM.Y1/g < 1. Ifb�
p�! �0, then n�1Pn

iD1 q.Yi ;b�/
p�! EFq.Y1;�0/ as

n ! 1.

Proof.

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
X

iD1
q.Yi ;b�/� EFq.Y1;�0/

ˇ

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
X

iD1
q.Yi ;b�/� 1

n

n
X

iD1
q.Yi ;�0/

ˇ

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
X

iD1
q.Yi ;�0/� EFq.Y1;�0/

ˇ

ˇ

ˇ

ˇ

ˇ



330 7 M-Estimation (Estimating Equations)

The second term on the right-hand side converges to 0 in probability by the WLLN.
For the first term, we have for someb�� betweenb� and �0

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
X

iD1
q.Yi ;b�/� 1

n

n
X

iD1
q.Yi ;�0/

ˇ

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
X

iD1
q0.Yi ;b��/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b� � �0
ˇ

ˇ

ˇ

� 1

n

n
X

iD1
M.Yi/

ˇ

ˇ

ˇ

b� � �0
ˇ

ˇ

ˇ :

This latter bound is op.1/ by the WLLN and the convergence ofb� . �

This next theorem is only for a real parameter � and assumes monotonicity of q
with respect to � . A similar, but more general theorem is given by Theorem 2.9 of
Iverson and Randles (1989).

Theorem 7.4. Let Y1; : : : ; Yn be iid with distribution function F . Assume that

1. There exists a neighborhood, N.�0/, of �0 such that the real-valued function
q.y ; �/ is a monotone function of � for � 2 N.�0/ and for all y in the support
of F .

2. H.�/ D Efq.Y 1; �/g exists in a neighborhood of �0 and is continuous at �0.

Ifb�
p�! �0 as n ! 1; then

1

n

n
X

iD1
q.Yi ;b�/

p�! H.�0/ as n ! 1:

Proof. Assume without loss of generality that q is nondecreasing.
Let bT n D n�1Pn

iD1 q.Yi ;b�/ and eT n D n�1Pn
iD1 q.Yi ; �0/. Then for ı > 0

jbT n � eT nj D Rn;1 CRn;2;

where Rn;1 D jbT n �eT njI.jb� � �0j > ı/ and Rn;2 D jbT n �eT njI.jb� � �0j � ı/: For
any � > 0,

P.jRn;1j > �/ � P.jb� � �0j > ı/ ! 0 as n ! 1

sinceb�
p�! �0. Now for Rn;2 choose ı D ı� > 0 such that jH.�0 C ı�/ �H.�0 �

ı�/j < �2. Then

Rn;2 D
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
X

iD1
q.Yi ;b�/� 1

n

n
X

iD1
q.Yi ; �0/

ˇ

ˇ

ˇ

ˇ

ˇ

I.jb� � �0j � ı�/

� 1

n

n
X

iD1

ˇ

ˇ

ˇq.Yi ;b�/� q.Yi ; �0/
ˇ

ˇ

ˇ I.jb� � �0j � ı�/
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� 1

n

n
X

iD1
Œq.Yi ; �0 C ı�/ � q.Yi ; �0 � ı�/� I.jb� � �0j � ı�/

� 1

n

n
X

iD1
Œq.Yi ; �0 C ı�/ � q.Yi ; �0 � ı�/� :

Monotonicity of q was used to get the next to the last inequality. Call the last
expression above Wn and note that it is nonnegative. Then by the above bound and
the Markov inequality, we have

P.Rn;2 > �/ � P.Wn > �/ � EWn

�
D H.�0 C ı�/�H.�0 � ı�/

�
<
�2

�
D �:

Thus we have shown that Rn;1 and Rn;2 each converge in probability to zero. �

7.9 Problems

7.1. Suppose that the b 	 b matrix C .�/ is nonsingular at � D �0. Show that the
sandwich matrix V .�0/ is the same for the b 	 1  .Yi ;�/ as it is for  �.Yi ;�/ D
C .�/ .Yi ;�/.

7.2. Let Y1; : : : ; Yn be iid from some distribution with finite fourth moment. The
coefficient of variation isb�3 D sn=Y .

a. Define a three dimensional  so that b�3 is defined by summing the third
component. Find A, B , and V , where

V33 D �4

�4
� �3

�3
C �4 � �4

4�2�2
:

b. Now recompute the asymptotic distribution ofb�3 using the delta method applied
to .Y ; s2n/. (I used Maple to do this, but do it by hand if you like.)

7.3. Suppose that Y1; : : : ; Yn are iid from a gamma(˛; ˇ) distribution.

a. One version of the method of moments is to set Y equal to E.Y1/ D ˛ˇ and
n�1Pn

iD1 Y 2i equal to E.Y 21 / D ˛ˇ2 C .˛ˇ/2 and solve for the estimators. Use
Maple (at least it’s much easier if you do) to find V D A�1BfA�1gT . Here it
helps to know that E.Y 31 / D Œ˛.1 C ˛/.2 C ˛/�ˇ3 and E.Y 41 / D Œ˛.1 C ˛/.2C
˛/.3C ˛/ˇ4�. Show your derivation of A and B and attach Maple output.

b. The second version of the method of moments (and perhaps the easier method)
is to set Y equal to E.Y1/ D ˛ˇ and s2 equal to var.Y1/ D ˛ˇ2 and solve for the
estimators. You could use either the “n�1” or “n” version of s2, but here we want
to use the “n” version in order to fit into the M-estimator theory. Compute V as in
a) except that the second component of the function is different from a) (but V
should be same). Here it helps to know that �3 D 2˛ˇ3 and �4 D 3Œ˛2 C 2˛�ˇ4.
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c. The asymptotic variance of the MLEs for ˛ and ˇ are Avar(b̨MLE/ D 1:55=n for
˛ D 1:0 and Avar(b̨MLE/ D 6:90=n for ˛ D 2:0. Similarly, Avar(bˇMLE/ D
2:55ˇ2=n for ˛ D 1:0 and Avar(bˇMLE/ D 3:45ˇ2=n for ˛ D 2:0. Now
calculate the asymptotic relative efficiencies of the MLEs to the method of
moment estimators for ˛ D 1:0 and ˛ D 2:0 using results from a.

7.4. Suppose that Y1; : : : ; Yn are iid andb� satisfies

n
X

iD1
 .Yi ;b�/ D cn;

where we assume

i) b�
p�! �0

ii) cn=
p
n

p�! 0

iii) The remainder termRn from the expansion

Gn.b�/ D n�1
n
X

iD1
 .Yi ;b�/ D Gn.�0/CG0

n.�0/.
b� � �0/CRn;

satisfies
p
nRn

p�! 0.

Show that b� is AN.�0; V .�0/=n/, i.e., the same result as for the usual case when
cn D 0.

7.5. Repeat the calculations in Section 7.2.4 (p. 305) with b�3 D ˚
˚

.a � Y /=sn



replacing sn and b�4 D ˚�1.p/sn C Y replacing log.s2n/. Note that b�3 and b�4 are
the maximum likelihood estimators of P.Y1 � a/ and the pth quantile of Y1,
respectively, under a normal distribution assumption.

7.6 (Delta Theorem via M-estimation). Suppose that b� is a b-dimensional M-
estimator with defining function  .y;�/ and such that the usual quantities A and
B exist. Here we want to essentially reproduce Theorem 5.19 (p. 238) for g.b�/,
where g satisfies the assumptions of Theorem 5.19 and b2n˙ D n�1V .�/, where
V .�/ D A.�/�1B.�/fA.�/�1gT : So add the  function g.�/ � �bC1 to  .y;�/,
compute the relevant matrices, sayA�,B�, and V �, and show that the last diagonal
element of V � is g0.�/V .�/g0.�/T .

7.7. The generalized method of moments (GMM) is an important estimation
method found mainly in the econometrics literature and closely related to M-
estimation. Suppose that we have iid random variables Y1; : : : ; Yn and a p dimen-
sional unknown parameter � . The key idea is that there are a set of q � p possible
estimating equations

1

n

n
X

iD1
 j .Yi I�/ D 0; j D 1; : : : ; q
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motivated by the fact that E j .Y1I�0/ D 0, j D 1; : : : ; q, where �0 is the true
value. These motivating zero expectations come from the theory in the subject area
being studied. But notice that if q > p, then we have too many equations. The
GMM approach is to minimize the objective function

T D
"

1

n

n
X

iD1
 .Yi I�/

#T

W

"

1

n

n
X

iD1
 .Yi I�/

#

;

where  D . 1; : : : ;  q/
T and W is a matrix of weights. Now let’s simplify the

problem by letting q D 2, p D 1 so that � is real-valued, and W D diag.w1;w2/.
Then T reduces to

T D w1

"

1

n

n
X

iD1
 1.Yi I �/

#2

C w2

"

1

n

n
X

iD1
 2.Yi I �/

#2

:

To findb� we just take the partial derivative of T with respect to � and set it equal
to 0:

S.Y I �/ D 2w1

"

1

n

n
X

iD1
 1.Yi I �/

#"

1

n

n
X

iD1
 0
1.Yi I �/

#

C2w2

"

1

n

n
X

iD1
 2.Yi I �/

#"

1

n

n
X

iD1
 0
2.Yi I �/

#

D 0:

a. Prove that S.Y I �0/ converges to 0 in probability as n ! 1 making any moment
assumptions that you need. (This should suggest to you that the solution of the
equation S.Y I �/ D 0 above is consistent.)

b. To get asymptotic normality forb� , a direct approach is to expand S.Y Ib�/ around
�0 and solve forb� � �0.

b� � �0 D
�

�@S.Y I �0/
@�T

��1
S.Y I �0/C

�

�@S.Y I �0/
@�T

��1
Rn:

Then one ignores the remainder term and uses Slutsky’s Theorem along with
asymptotic normality of S.Y I �0/. But how to get the asymptotic normality of
S.Y I �0/? Find h.Yi I �0/ such that

S.Y I �0/ D 1

n

n
X

iD1
h.Yi I �0/CR�

n :

No proofs are required.
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c. The equation S.Y I �/ D 0 is not in the form for using M-estimation results
(because the product of sums is not a simple sum). Show how to get it in M-
estimation form by adding two new parameters, �2 and �3, and two new equations
so that the result is a system of three equations with three  functions; call them
 �
1 ,  �

2 , and  �
3 because  �

1 is actually a function of the original  1 and  2.

7.8. In Example 7.4.1 (p. 311) we discussed the well-known Huber location
estimator defined by

Pn
iD1  k.Yi �b�/ D 0. For real data situations, the scaling

is not known, and this simple equation is replaced by two equations,

n
X

iD1
 k

 

Yi �b�
b�

!

D 0;

n
X

iD1
�

 

Yi �b�
b�

!

D 0;

where �.x/ is an even function about zero. A typical choice of � is �.x/ D  2k � c,
where c D E 2k.Z/ and Z is a standard normal random variable. This constant
E 2k.Z/ forces �0 to be the standard deviation when the data come from a normal
distribution. But use the general �.x/ for the following parts.

a. FindA and B for .b�;b�/.
b. Simplify the expressions in a. when Y1; : : : ; Yn are iid from a location-scale

density ��1f0..y � �/=�/ and f0.x/ is symmetric about zero. In addition,
compute V because the off-diagonal elements of V should be zero.

7.9. Let Y1; : : : ; Yn be iid from some continuous distribution with nonzero density
at the population mean, f .�0/ > 0. For defining a “positive” standard deviation
similar to the positive mean deviation from the median, one needs to estimate the
proportion of the population that lies above the mean, 1 � p0 D 1 � F.�0/, using
1�Fn.Y /, where Fn is the empirical distribution function. Letting .Yi I�;p/T D
.Yi � �; I.Yi � �/ � p/, find A.�0/, B.�0/, and V.�0/. Note that we have to use
the nonsmooth definition of A.�0/:

A.�0/ D � @

@�
fEF .Y1I�;p/g

ˇ

ˇ

ˇ

ˇ

�D�0;pDp0
:

The off-diagonal element of B turns out to be b12 D R �0
�1 yf .y/dy �p0�0. In your

calculations, just let this be called b12.

7.10. Let Y1; : : : ; Yn be iid from some continuous distribution with nonzero density
at the population mean, f .�0/ > 0. Add  3.Yi ;�/ D 2.�2 � Yi /I.Yi < �2/ � �3
to the  function of Section 7.4.3 (p. 313) and find A, B, and V . You may leave
some elements ofB in the form bij but give their integral expression as was done for
b11. (This 3 is for the “negative” mean deviation from the median. If the underlying
density is symmetric about the true median, then the asymptotic correlation between
b�1 andb�3 should be 0.)
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7.11. Consider the simple no intercept model

Yi D ˇxi C ei ; i D 1; : : : ; n;

where the x1; : : : ; xn are fixed constants and e1; : : : ; en are independent with
E �.ei / D 0 and E �.ei /2 < 1 with values possibly depending on i , and
 � is a real-valued function (with superscript “*” to differentiate from our usual
 .Yi ;xi ;ˇ/).

a. A classical robust M-estimatorbˇ satisfies

n
X

iD1
 �.Yi �bˇxi /xi D 0:

Write down the asymptotic variance of bˇ and an estimator of this asymptotic
variance. You may assume that the derivative  �0 of  � exists everywhere and
that Ej �0.ei /j < 1 for all i .

b. Let’s simplify and assume that e1; : : : ; en are iid. How does the asymptotic
variance expression from a) change? Find an improved asymptotic variance
estimator in this situation.

7.12. Suppose that we think our true model is

Yi D XT
i ˇ0 C g.X i /ei ;

where g is a known function and e1; : : : ; en are iid with mean 0 and variance �2.

a. Using this model, write down the weighted least squares estimator of ˇ.
b. Even though we conjecture that we have the right variance model, and are willing

to bet that the weighted least squares estimator has lower variance than the
unweighted least squares estimator, we might still want our variance estimate
to be robust to misspecification of the variance. Thus, find the sandwich variance
estimator for the estimator in a.

(Both a. and b. are trivial if you take the transformation approach to weighted least
squares.)

7.13. Consider the nonlinear least squares model

Yi D exp.ˇXi/C ei ; i D 1; : : : ; n;

where ˇ is a scalar parameter, X1; : : : ; Xn are iid random predictor variables, and
e1; : : : ; en are iid random errors with mean 0 and variance �2 and are independent of
X1; : : : ; Xn. The parameter ˇ is estimated by the nonlinear least squares estimator,
bˇLS, found by minimizing

n
X

iD1
fYi � exp.ˇXi /g2 :
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The variance parameter, �2, is estimated by

b�2 D 1

n

n
X

iD1

n

Yi � exp.bˇLSXi/
o2

:

a. Show that b�2 is a partial M-estimator by finding an appropriate  function
(necessarily of dimension>1) definingb�2.

b. Without making any distributional assumptions (you may assume various expec-
tations exist as needed) determine the asymptotic distribution ofb�2 and derive an
estimator of its asymptotic variance.

7.14. Suppose that rat mothers are fed a possible carcinogen after impregnation,
and we let Yi = the number of baby rats born with malformations. For deriving
estimators, assume that conditional on n1; : : : ; nk , Y1; : : : ; Yk are independent with
Yi having a binomial (ni ; p) distribution.

a. Write down the likelihood and show that the maximum likelihood estimator is
bp D P

Yi=
P

ni . Also findI .p/ and the usual estimator of Var.bp/.
b. Now suppose that the Yi are no longer binomial but still independent and

E.Yi jni / D nip. Find Ak.bp/; Bk.bp/, and the sandwich estimator of Var.bp/.
(One simple model for this is the beta-binomial: first you select a rat mother
from a population of mothers where the i th mother has pi drawn from a beta
distribution with mean p. Thus Yi jni ; pi is assumed to be binomial .ni ; pi /, and
E.Yi jni /=EE.Yi jni ; pi /=E.nipi jni / D nip. In this case the variance of Yi is
larger than the binomial variance nip.1 � p/.)

7.15. Consider a dose-response situation with k dose levels d1; : : : ; dk , where at the
i th dose we observe

˚

Yij ; nij ; j D 1; : : : ; mi




, and we assume that

E
�

Yij =nij jnij
	 D pi.ˇ/ D Œ1C exp.�ˇ1 � ˇ2di/��1 :

That is the primary part of the model. To derive an estimator, we make the
assumption that the Yij jnij have independent binomial(pi.ˇ/; nij / distributions.
(We may not really believe that assumption.) The log likelihood is thus

ln.ˇ/ D c C
k
X

iD1

mi
X

jD1



Yij logpi .ˇ/.nij � Yij / log.1 � pi .ˇ//
�

:

a. Take derivatives with respect to ˇ to get the likelihood equations and the two-
dimensional  function. Verify that each summand of the likelihood equation
has mean 0 using the primary model assumption.

b. Derive the sandwich estimator of Var(bˇ/. You need to treat the double sum as a
single sum and treat the nij as fixed constants.

7.16. The data tcdd.dat.txt on the course website

http://www4.stat.ncsu.edu/�boos/Essential.Statistical.Inference

http://www4.stat.ncsu.edu/~boos/Essential.Statistical. Inference
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are from a study on the teratogenic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) in mice (Birmbaum et al. 1991). The third column in the data set is
the number of baby mice having cleft palates out of a litter size given by the
fourth column. The second column is the dose (the units of measurement are not
important). Each row of the data set relates to a different pregnant mice mother
given TCDD on gestation day 10. The purpose of this problem is to get familiar
with how to use GEE in SAS and to get sandwich variance estimates. Save this data
file.

Now get into SAS and run the program tcdd.sas1.txt (Note that you have
to modify location of the data set in the infile statement.) It gives a standard
logistic regression of the sample proportions on the logarithm of dose. Next, take
the “*” off the repeated statement. This gives a GEE analysis and standard errors
from the sandwich matrix. But it does not actually display the sandwich matrix nor
does it allow you to try some other “working” correlation structures. (The reason
is that genmod actually needs the 0-1 binary Y’s instead of the proportions.) The
“working” correlation structure is just a guess at the correlation structure within
a cluster. So now get the file tcdd.sas2.txt from the website. In the data
step of this program the individual binary responses for each litter are constructed.
You might run a PROC PRINT to see what the created data actually looks like.
Submit this program and you get the same answers as in the previous program
but now you get to see the sandwich matrix and the estimated working correlation
structure. Finally, change type=ind to type=exch and resubmit. This uses an
exchangeable working correlation structure. Here is what you are to turn in (no
computer output please).

a. The parameter estimates and standard errors from regular logistic regression.
b. The parameter estimates and sandwich standard errors from GEE with the

independent working correlation structure and the 2 by 2 sandwich covariance
matrix estimate.

c. The parameter estimates and sandwich standard errors from GEE with the
exchangeable working correlation structure and the 2 by 2 sandwich covariance
matrix estimate.

d. For this last situation also include the estimated working correlation structure for
a litter of size 6.



Chapter 8
Hypothesis Tests under Misspecification
and Relaxed Assumptions

8.1 Introduction

In Chapter 6 we gave the classical asymptotic chi-squared results for TW, TS, and
TLR under ideal conditions, that is, when the specified model density f .yI�/ is
correct. In this chapter we give asymptotic results for the case when the specified
model density is incorrect, and also show how to adjust the statistics to have
the usual asymptotic chi-squared results. For Wald and score tests, we give these
adjusted statistics in the general M-estimation context. We also discuss the quadratic
inference functions of Lindsay and Qu (2003) that are related to the Generalized
Method of Moments (GMM) approach found in the econometrics literature.

8.2 Likelihood-Based Tests under Misspecification

For purposes of deriving TW, TS, and TLR, we assume that Y1; : : : ; Yn are from
a density f .yI�/ that satisfies the usual regularity conditions for asymptotic
normality of b�MLE and asymptotic chi-squared results for TW, TS, and TLR under
H0 W �1 D �10, where �1 is r 	 1 and � is b 	 1, r � b. However, suppose that
the true density of Yi is g.y/, where g.y/ ¤ f .yI�/ for any � 2 ˝ , but there is a
well-defined �g that satisfies

Eg

�

@

@�
logf .Y1I�g/

�

D
Z

@

@�
logf .yI�g/g.y/ dy D 0: (8.1)

(In Chapter 7, we used the notation �0, but here we want to emphasize the
dependence on g with �g .) We show that all three statistics converge in distribution
under H0 W �g1 D �10 to

Pr
iD1 ciZ2

i , where Z1; : : : ; Zr are iid standard normal
random variables, and c1; : : : ; cr are the eigenvalues of

�

A11 �A12A
�1
22 A21

	 �

A�1BA�1	
11
; (8.2)

D.D. Boos and L.A. Stefanski, Essential Statistical Inference: Theory and Methods,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-4818-1 8,
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andA and B are the sandwich formula matrices

A.�g/ D Eg

�

� @2

@�@�T
logf .Y1I�g/

�

and

B.�g/ D Eg

�

@

@�T
logf .Y1I�g/

� �

@

@�
logf .Y1I�g/

�

:

In this section we will continue the practice begun in Chapter 7 of using A instead
of the information matrix I even when  is the likelihood score function. Note that
when convenient, such as in (8.2), we suppress the dependence of A and B on the
true value �g . Eigenvalues of a matrixH are solutions of determinant(H �cI/ D 0

and of course equal to H if H is a scalar (r D 1 case).
If the model were correctly specified, g.y/ D f .yI�/ for some � 2 ˝ , then

A.�/ D B.�/ D I.�/ and (8.2) is the r	r identity matrix with c1 D � � � D cr D 1,

and
Pr

iD1 ciZ2
i

dD �2r . For the general misspecified case, it is easiest to look at
TW in order to see the origin of

Pr
iD1 ciZ2

i . Recall that the Wald test statistic for
H0 W �g1 D �10 is

TW D p
n.b�1 � �10/T

�

bA11 � bA12
bA�1
22
bA21

�p
n.b�1 � �10/; (8.3)

where bAij D A.b�/ij . Using Theorem 7.2 (p. 328) and Problem 5.10 (p. 265) under
the conditions below in Theorem 8.2, we have

TW
d�! XT

�

A11 �A12A
�1
22 A21

	

X ; (8.4)

whereX isNr
�

0;
˚

A�1BA�1

11

	

. Then we apply the following well-known result
(see, e.g., Graybill, 1976, p. 136) to get this limiting distribution in the form
Pk

iD1 ciZ2
i .

Theorem 8.1. Suppose that X is distributed as Nk. 0;˙ /, where ˙ has rank k.
If D is a symmetric matrix of rank k, then XTDX has the same distribution as
Pk

iD1 ciZ2
i ; where c1; : : : ; ck are the eigenvalues of D˙ and Z1; : : : ; Zk are iid

standard normal random variables.

We now give the main result for our three likelihood-based tests under possible
misspecification of the density and for the partitioned null hypothesis H0 W �g1 D
�10. Recall that e� refers to the maximum likelihood estimator under H0, given by
e� D .�10;e�2/

T , where S 2.e�/ D 0, S .�/ D Pn
iD1 @ log f .Yi I�/=@�T . A version

of Theorem 8.2 is found in Kent (1982).

Theorem 8.2. Suppose that Y1; : : : ; Yn are iid from density g.y/, but TW, TS, and
TLR are derived under the assumption that the density is f .yI�/, � 2 �, �T D
.�T1 ;�

T
2 /, H0 W �1 D �10, and Ha W �1 ¤ �10. Suppose further that  .y;�/ D

@ logf .yI�/=@�T and g.y/ satisfy the conditions of Theorem 7.2 (p. 328), and
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thatA.�/ is continuous. Then, under �g1 D �10 each of TW, TS, and TLR converges
in distribution as n ! 1 to

Pr
iD1 ciZ2

i , where c1; : : : ; cr are the eigenvalues of
(8.2, p. 339), and Z1; : : : ; Zr are iid standard normal random variables.

Proof. As explained above, the result for TW is straightforward using the asymptotic
normality of b� from Theorem 7.2 (p. 328). For TS we follow the proof of
Theorem 6.9 (p. 288) and obtain from Theorem 7.2 (p. 328) that e�2 has the
approximation-by-averages representation

e�2 � �g2 D 1

n

n
X

iD1

˚

A.�g/22

�1 @

@�T2
logf .Yi I�g/CRn; (8.5)

where
p
nRn

p�! 0 as n ! 1. Using (8.5) and Condition 2 of Theorem 7.2
(p. 328) with Theorem 5.28 (p. 249), we have that S 1.e�/ is AN

�

0; nV gS1

	

, where

V gS1 D B11 �A12A
�1
22 B21 �B12A

�1
22 A21 CA12A

�1
22 B22A

�1
22 A21: (8.6)

Patterned matrix manipulations reveal that V gS1 can be reexpressed as

V gS1 D �

A11 �A12A
�1
22 A21

	 �

A�1BA�1	
11

�

A11 �A12A
�1
22 A21

	

: (8.7)

Putting (8.7) together with the form of TS in the partitioned case,

TS D n�1S 1.e�/T
�

eA11 � eA12
eA�1
22
eA21

	�1
S 1.e�/; (8.8)

and Theorem 8.1 (p. 340), yields the result. Finally, the argument for TLR follows
closely the line of reasoning in the proof of Theorem 6.10 (p. 288), yielding

TLR
d�! Z T

�

A11 �A12A
�1
22 A21

	�1
Z as n ! 1; (8.9)

where here Z is Nr.0;V gS1/. Then using the form (8.7) for V gS1 and Theorem 8.1
(p. 340), the result follows. �

Now we give some simple examples to illustrate Theorem 8.2 (p. 340). The first
two are related to Section 3.2.4 (p. 132) and Section 7.2.2 (p. 302).

Example 8.1 (Tests of a normal mean). The assumed model is N.�; �2/, H0 W
� D �0, but the true density g.y/ is possibly nonnormal with third and fourth
central moments�3 and�4, respectively. In this case �g1 D � and �g2 D �2 have the
same interpretation (mean, variance) under both the assumed N.�; �2/ density and
the true density g. From Section 3.2.4 (p. 132) we have TW D n.Y � �0/

2=s2n, and

TS and TLR are simple functions of TW. Clearly, TW
d�! �21 under H0 as n ! 1

by the Central Limit Theorem. This also follows from Theorem 8.2 (p. 340) after
noting from Example 7.2.2 (p. 302) (with the parameterization �2 D �2) that
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A.�g/ D

0

B

@

1

�2
0

0
1

2�4

1

C

A B.�g/ D

0

B

B

B

@

1

�2
�3

2�6

�3

2�6
�4 � �4

4�8

1

C

C

C

A

:

Then
�

A11 �A12A
�1
22 A21

	 D 1=�2,
�

A�1BA�1	
11

D �2, (8.2, p. 339) = 1, and
Theorem 8.2 (p. 340) shows the limiting distribution is Z2

1 , which is a �21 random
variable. Thus, in this case, the misspecification of not having a normal distribution
has no asymptotic effect on test levels. In fact, virtually all tests about sample
means under normal distribution assumptions, as found in ANOVA and regression
situations, have this “Type I error robustness” to model misspecification. �

Example 8.2 (Tests of a normal variance). The assumed model is N.�; �2/,

but now let H0 W �2 D �20 . Then TW D n.s2n � �20 /
2=.2s4n/, and TW

d�!
Œ.Kurt � 1/=2��21 under H0 as n ! 1 by results from Chapter 5 about the
asymptotic normality of the sample variance. Recall that Kurt D �4=�

2
2 D �4=�

4,
and Kurt D 3 for normal distributions. To obtain this limiting distribution from
Theorem 8.2 (p. 340), we need to switch the order of the parameter to be .�2; �/.
Then

�

A11 �A12A
�1
22 A21

	 D 1=.2�4/,
�

A�1BA�1	
11

D �4 � �4, and (8.2,
p. 339) = .�4 � �4/=.2�4/ D .Kurt � 1/=2: In contrast to tests about a mean,
the asymptotic level of normal theory tests about a variance parameter is directly
affected by nonnormality. For example, the true asymptotic level of a nominal
˛ D :05 one-sided test would be P.Z >

p

2=.Kurt � 1/1:645/. If Kurt D 5,
then the asymptotic level is .122. In general this nonrobustness to nonnormality
pervades tests about variances in ANOVA and regression situations (see, e.g.,
Boos and Brownie, 2004). But fortunately, these tests are not used very often
in practice. �

Example 8.3 (Clustered binary data). Binary (0-1) data are often sampled in
clusters due to aggregation of results by families, communities, etc. (see, e.g.,
Problem 7.14, p. 336) where there is possibly correlation among cluster members.
Each data point Yi is a sum of the binary random variables in the cluster. Ignoring
the correlation, the assumed model for Y1; : : : ; Yn is binomial(mIp/, where for
simplicity we have set all clusters to have the same size m > 1. Suppose that the
true density g.y/ has mean mp but variance mp.1 � p/d , where d > 1 means
Yi is over-dispersed relative to a binomial distribution. If the Yi have the beta-
binomial distribution (see Problem 7.14, p. 336), then d D 1 C .m � 1/�, where
� is the correlation coefficient between members of the same cluster. Under the
assumed binomial(mIp/ distribution and H0 W p D p0, we have (c.f. Example 3.2,
p. 129) TW D nm .bp � p0/2 =bp.1 � bp/ and TS D nm .bp � p0/2 =p0.1 � p0/,

where bp D Pn
iD1 Yi=nm. From the Central Limit Theorem we have TW

d�! d�21
underH0 as n ! 1. This result also follows from Theorem 8.2 (p. 340) by noting
that A D m=p.1 � p/ and B D md=p.1 � p/. In the usual case with � > 0
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(cluster members positively correlated), d > 1 and thus the limiting distribution of
TW is stochastically greater than when � D 0. This means that using �21 instead of
d�21 results in inflated Type I error rates. �

In the above three examples, the asymptotic random variable is fairly simple
since it is just a multiple of the �21 random variable. When the tests involve more
than one degree of freedom, then the asymptotic distribution is more complicated.
The next example combines the first two examples above.

Example 8.4 (Tests of a normal mean and variance). The assumed model is
N.�; �2/ with H0 W � D �0; �

2 D �20 . For this fully specified null hypothesis, the
Wald test is simply the sum of the Wald test statistics for the first two examples
above, TW D n.Y � �0/

2=s2n C n.s2n � �20 /2=.2s4n/. After noting that here A11 D A

and B11 D B and (8.2, p. 339) = BA�1, the eigenvalue problem is to solve

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 � c �3

�2
�3

2�4
�4 � �4
2�4

� c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0: (8.10)

When �3 D 0, it is not difficult to show that the solutions are c1 D 1 and c2 D
.�4 � �4/=.2�4/ D .Kurt � 1/=2. The limiting distribution of TW (and TS and TLR

as well) underH0 is that ofZ2
1 C Œ.Kurt � 1/=2�Z2

2 . If �3 ¤ 0, then the distribution
is more complicated. �

For problems like the first three examples above, it is fairly straightforward, at
least conceptually, to estimate c1 of the limiting random variable and then adjust the
statistics, e.g., TLR=bc1, or the critical values,bc1�21.˛/, so that the test procedure has
asymptotic level ˛.

However, in this last example, the adjustment is not as straightforward. One
approach is to estimate c1 and c2 defined by (8.10, p. 343), and then estimate the
percentiles ofbc1Z2

1 Cbc2Z
2
2 . This approach works for all three test statistics but is

not overly appealing because of the steps involved: solving the eigenvalue problem,
estimating the ci , and getting the percentiles of a weighted sum of chi-squared
random variables (a nontrivial analytical exercise although straightforward to do

by simulation). For TW, an alternative procedure is to replace
�

bA11 � bA12
bA�1
22
bA21

�

in (8.3, p. 340) by an estimate of
˚�

A�1BA�1	
11


�1
and use critical values from �2r .

For TS, we need to replace
�

eA11 � eA12
eA�1
22
eA21

	�1
in (8.8, p. 341) by an estimate

of V �1
gS1

(8.6, p. 341). We give these modified statistics in the next section. For the
case r > 1, there is no obvious way to modify TLR to have a limiting �2r distribution
underH0.
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8.3 Generalized Wald, Score, and Likelihood Ratio Tests

Motivated by Theorem 8.2 (p. 340) and Chapter 7, we now give Wald, score,
and likelihood ratio statistics that are related to M-estimators and their defining
equations (7.1, p. 298)

n
X

iD1
 .Yi ;b�/ D 0: (8.11)

These include modifications to TW, TS, and TLR mentioned at the end of the previous
section.

Assume that �T D .�T1 ;�
T
2 / and the true density is again g.y/ such that

Egf .Y 1;�g/g D 0, where �1 is of dimension r 	 1 and �2 is of dimension
.b � r/ 	 1, and  T D . T

1 ; 
T
2 / is partitioned similarly. The null hypothesis is

H0 W �g1 D �10. Generalized Wald test statistics are quadratic forms constructed

by putting an estimate of the inverse of the asymptotic covariance matrix of b�1
between .b�1 � �10/T and .b�1 � �10/. Generalized score test statistics are quadratic
forms based on

P

 1.Yi ;
e�/ and estimates of its covariance matrix, wheree� refers

to the solution of
P

 2.Yi ;
e�/ D 0 with the first r components equal to �10.

When there exists a Q.Y ;�/ such that @Q.Y ;�/=@�T D Pn
iD1 .Y i ;�/,

Q.Y ;�/ can be used as a log likelihood resulting in generalized likelihood ratio
statistics of the form TGLR D 2ŒQ.Y ;b�/ �Q.Y ;e�/�=bc. These statistics are not as
widely available as the generalized Wald and score statistics because there may not
exist such a Q, but they have been found useful in generalized linear model and
robust regression contexts. Moreover, certain versions of the generalized score and
likelihood ratio statistics are invariant under parameter transformations, and thus
have a theoretical advantage over generalized Wald statistics.

8.3.1 Generalized Wald Tests

For M-estimatorsb� that satisfy (8.11, p. 344), we know thatb� isAN
�

�g;V .�g/=n
	

where V .�g/ D A.�g/
�1B.�g/fA.�g/�1gT . Thus, the obvious form for the

generalized Wald statistic in the case H0 W �g1 D �10 is

TGW D n.b�1 � �10/T
�

bV 11

��1
.b�1 � �10/; (8.12)

where bV could be any consistent estimate of V .�g/. Natural choices for bV are the

empirical sandwich estimator V n.Y ;b�/ of (7.12, p. 302) or expected value versions
V .b�/ that might depend on some modeling assumptions.

Recall that the constraint version of the null hypothesis isH0 W h.�g/ D 0, where
h is r 	 1 and differentiable with H .�/ D @h.�/=@�T having dimension r 	 b. In
this case, the natural generalization of (6.14, p. 287) is

TGW D nh.b�/T
n

H .b�/bV H .b�/T
o�1

h.b�/: (8.13)
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The generalization of Theorem 6.8 (p. 287) is then

Theorem 8.3. Suppose that Y1; : : : ; Yn are iid with density g.y/. Assume that
 .y;�/ and g.y/ satisfy the conditions of Theorem 7.2 (p. 328) under H0 W
h.�/ D 0, h satisfies the conditions of Theorem 5.20 (p. 239), bV

p�! V .�g/,

andH .�g/V .�g/H .�g/T is nonsingular. Then TGW
d�! �2r as n ! 1.

8.3.1a Examples

Let us first look briefly at the four examples from the previous section. For the
examples assuming Y1; : : : ; Yn are from N.�; �2/, Examples 8.1, 8.2, and 8.4, first
recall that

V n.Y ;b�/ D
�

s2n m3

m3 m4 � s4n

�

;

from Example 7.2.2 (p. 302). Then, for H0 W � D �0, (8.12, p. 344) gives

TGW D TW D n.Y � �0/2=s2n:
For H0 W �2 D �20 , after remembering to switch the parameter order to .�2; �/,
(8.12, p. 344) yields

TGW D n.s2n � �20 /2=.m4 � s4n/; (8.14)

where mk D P

.Yi � Y /k . At this point we might point out that generalized
Wald tests inherit the non-invariance to parameter changes and null hypothesis
specification of regular Wald tests. For example, in this last example, if we change
H0 W �2 D �20 to H0 W � D �0, then TGW D 4s2nn.sn � �0/

2=.m4 � s4n/.
For the completely specified H0 W � D �0; �

2 D �20 ,

TGW D n


.Y � �0/
2.m4 � s4n/ � 2.Y � �0/.s

2
n � �20 /m3 C .s2n � �20 /

2s2n
�

=D;

(8.15)

whereD D s2n.m4 � s4n/�m2
3.

For Example 8.3 (p. 342), taking  .Yi ; p/ D Yi=m � p results in bp D
Pn

iD1 Yi=nm. Thus, similar to the normal mean result, TGW D n.bp � p0/
2=s2n,

where here s2n D n�1Pn
iD1.Yi=m�bp/2.

In all our theorems here (and in Chapters 6 and 7) we are only giving the iid
results for reasons of simplicity, but note that similar results hold in nonindependent
cases such as regression. In this next example we give a two-sample problem that is
not covered by Theorem 8.3 (p. 345) but is covered by a regression version.

Example 8.5 (Two independent samples of clustered binary data). Similar to
the setting of Example 8.3 (p. 342), suppose that we now have two independent
samples of “summed” clustered binary data, Y1; : : : ; Yn1 , and Yn1C1; : : : ; Yn1Cn2 .
Ignoring the correlation among the correlated summands in Yi , the natural distri-
butional assumption would be that Yi jmi is binomial(mi; p1) for the first sample
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and binomial(mi; p2/ for the second sample, leading to the estimators bp1 D
Pn1

iD1 Yi=m1: and bp2 D Pn1Cn2
iDn1C1 Yi=m2:, where m1: D Pn1

iD1 mi , m2: D
Pn

iDn1C1 mi , and n D n1Cn2. To use the M-estimation regression framework, these
estimators are solutions of the generalized linear model equations (7.34, p. 321)

n
X

iD1
.Yi �mix

T
i p/xi D 0;

where xTi D .1; 0/ for the first sample, xTi D .0; 1/ for the second sample, and
pT D .p1; p2/. The estimatedA and B matrices are

An.X ;bp/ D 1

n

0

@

m1: 0

0 m2:

1

A

and

Bn.X ;bp/ D 1

n

0

@

Pn1
iD1.Yi �mibp1/

2 0

0
Pn

iDn1C1.Yi �mibp2/
2

1

A ;

where for simplicity we have used n instead of n � 2 as was suggested in Ch. 5 for
the estimated B matrix. Finally, using h.p1; p2/ D p1 � p2 in (8.13, p. 344), we
have

TGW D .bp1 �bp2/2
Pn1

iD1.Yi �mibp1/2=m
2
1: C

Pn
iDn1C1.Yi �mibp2/2=m

2
2:

: (8.16)

�
Improvements to the use of TGW with �21 critical values are given in Mancl and
DeRouen (2001) and Fay and Graubard (2001).

8.3.2 Generalized Score Tests

Sen (1982) first derived generalized score tests based on the M-estimation formula-
tion. White (1982) introduced the likelihood-related versions into the econometrics
literature. Breslow (1989,1990) and Rotnitzky and Jewell (1990) introduced these
tests in GEE contexts, and Boos (1992) gives an overview. In this section we give a
formal theorem for the iid case and then discuss examples.

As mentioned previously, generalized score tests are based on
P

 1.Yi ;
e�/,

where e� D .�10;e�2/
T satisfies

P

 2.Yi ;
e�/ D 0. The main conceptual hurdle is

to find the appropriate variance matrix to invert and put between
P

 1.Yi ;
e�/T and

P

 1.Yi ;
e�/. But this follows exactly as in the proof of Theorem 8.2 (p. 340) when

we replace S by
P

 . That is, from the proof of Theorem 7.2 (p. 328) underH0,
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e�2 � �20 D 1

n

n
X

iD1
fA.�0/22g�1

 2.Yi ;�0/CRn; (8.17)

where
p
nRn

p�! 0 as n ! 1. Then using Theorem 5.28 (p. 249), we have

1

n

n
X

iD1
 1.Yi ;

e�/ D �

I r ;�A12A
�1
22

	

0

@

n�1Pn
iD1 1.Yi ;�0/

n�1Pn
iD1 2.Yi ;�0/

1

ACRn2; (8.18)

where I r is the r 	 r identity matrix and
p
nRn2

p�! 0 as n ! 1. The variance
of the linear form of this last display gives essentiallyV gS1 of (8.6, p. 341) and (8.7,
p. 341), but here we do not assume thatA is symmetric (since it may not come from
a likelihood). Thus, we rename it here as V  1 ,

V  1 D B11 �A12A
�1
22 B21 �B12fA�1

22 gTAT
12 CA12A

�1
22 B22fA�1

22 gTAT
12: (8.19)

In the one-dimensional case, we set A12 D 0 so that the above expression is just
the scalar B . If the null hypothesis is the completely specified case H0 W �g D �0,
then againA12 D 0 and the expression reduces to B11 D B. The generalized score
statistic for H0 W �g1 D �10 is

TGS D n�1 nX 1.Yi ;
e�/T

o

eV �1
 1

n
X

 1.Yi ;
e�/
o

; (8.20)

where eV  1 is an estimator of V  1 . A theorem whose proof follows closely the above
development is now given.

Theorem 8.4. Suppose that Y1; : : : ; Yn are iid with density g.y/. Assume that

 .y;�/ and g.y/ satisfy the conditions of Theorem 7.2 (p. 328) and eV  1
p�! V  1

as n ! 1. Then TGS
d�! �2r as n ! 1.

We left the specification of eV  1 very general in our definition of TGS. There are a
number of possibilities depending on whether we use the purely empirical versions
of theA andB estimators,

An.Y ;e�/ D 1

n

n
X

iD1

˚� 0.Yi ;e�/



; Bn.Y ;e�/ D 1

n

n
X

iD1
 .Yi ;e�/ .Yi ;e�/

T ;

the expected value versions A.e�/ and B.e�/, where A.�g/ D Eg
˚� 0.Y1;�g/




,
and B.�g/ D Eg

˚

 .Y1;�g/ .Y1;�g/
T



. (Actually, our general approach in
Chapter 7 allows even more options for the expected value versions depending on
modeling assumptions.) Thus, here we can see four possible versions of TGS, where
eV  1 is based on
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An.Y ;e�/;Bn.Y ;e�/ (8.21)

A.e�/;Bn.Y ;e�/ (8.22)

A.e�/;B.e�/ (8.23)

An.Y ;e�/;B.e�/: (8.24)

Using the purely empirical estimator based on (8.21) is the simplest and most
general way to define eV  1 and TGS. However, Rotnitzky and Jewell (1990) and
Boos (1992) point out that the combination estimator based on (8.22) is invariant
to reparameterization and thus has some philosophical appeal. It is the version used
most often in GEE applications. If the parameter transformation is linear or the null
hypothesis is the completely specified H0 W �g D �0, then the version of TGS based
on (8.21) is also invariant.

8.3.2a Examples

Continuation of Example 8.1 (p. 341). The first example H0 W � D �0 is
straightforward if we use  1.Yi ;�/ D Yi � � and  2.Yi ;�/ D .Yi � �/2 � �2.
In that case,A.e�/ = the identity and

Bn.Y ;e�/ D
0

@

s2n.�0/ m3.�0/ � .Y � �0/s
2
n.�0/

m3.�0/� .Y � �0/s
2
n.�0/ m4.�0/ � s4n.�0/

1

A ;

where s2n.�0/ D n�1P.Yi � �0/
2 and mk.�0/ D n�1P.Yi � �0/

k . Then

TGS D n.Y � �0/2
s2n.�0/

D n.Y � �0/2
s2n C .Y � �0/2

;

the same as TS found in Example 3.2.4 (p. 132). Note also that we get the same
TS if we just start with  1.Yi ;�/ D Yi � � and ignore  2. However, suppose
instead that we use the  functions associated with maximum likelihood for the
parameterization �T D .�; �2/:  1.Yi ;�/ D .Yi � �/=�2 and  2.Yi ;�/ D Œ.Yi �
�/2 � �2�=.2�4/. Then

An.Y ;e�/ D

0

B

B

B

B

@

1

s2n.�0/

Y � �0
s4n.�0/

Y � �0

s4n.�0/

1

2s4n.�0/

1

C

C

C

C

A

;
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and

Bn.Y ;e�/ D

0

B

B

B

B

@

1

s2n.�0/

m3.�0/

2s6n.�0/
� Y � �0
2s4n.�0/

m3.�0/

2s6n.�0/
� Y � �0
2s4n.�0/

1

2s4n.�0/

1

C

C

C

C

A

:

Using the result that EgYi D �0 and the convention that we use m3.�0/ to estimate
�3 under H0 W � D �0, the expected-value versions A.e�/ and B.e�/ are the same
as the above except with the terms involving Y � �0 set equal to zero. Thus, the
version of TGS based on (8.22, p. 348) is again TGS D n.Y ��0/2=



s2n C .Y � �0/2
�

becauseA.e�/12 D 0. However, using the aboveAn.Y ;e�/ andBn.Y ;e�/ leads to

TGS D n.Y � �0/2
s2n C .Y � �0/2

2

41� 2

 

Y � �0
sn.�0/

!

ASkew C
 

Y � �0

sn.�0/

!2

.eKurt C 1/

3

5

�1

;

where ASkew D m3.�0/=sn.�0/
3 and eKurt D m4.�0/=sn.�0/

4. Thus, use of the
purely empirical estimators leads to the above form that is unappealing since
estimates of skewness and kurtosis are not necessary here to have a valid test
statistic. Of course, use of just  1 by itself leads again to the simpler statistic.

Continuation of Example 8.2 (p. 342). For H0 W �2 D �20 , we switch the order
of the parameters, �T D .�2; �/, and obtain for  1.Yi ;�/ D .Yi � �/2 � �2

and  2.Yi ;�/ D Yi � �, or for the likelihood-based  , that An.Y ;e�/ and A.e�/
are diagonal matrices since e� D .�20 ; Y /

T . Thus, the only relevant quantity for
computing TGS is the (1,1) element of the estimated B. For Bn.Y ;e�/, this leads to

TGS D n.s2n � �20 /
2

m4 � 2s2n�
2
0 C �40

:

ForB.e�/ in place ofBn.Y ;e�/, we get TGS D n.s2n ��20 /2=.m4� s4n/, similar to the
first of the generalized Wald statistics in (8.14, p. 345). Here, reparameterizations
such as � D .�2; �/T or .�; �/T make no difference to TGS although use of B.e�/
in place of Bn.Y ;e�/ does make a small difference.

Continuation of Example 8.4 (p. 343). For H0 W � D �0; �
2 D �20 and

 1.Yi ;�/ D Yi � � and  2.Yi ;�/ D .Yi � �/2 � �2, we have

Bn.Y ;�0/ D
0

@

s2n.�0/ m3.�0/� .Y � �0/�20

m3.�0/ � .Y � �0/�20 m4.�0/ � s4n.�0/

1

A ;
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where s2n.�0/ D n�1P.Yi � �0/
2 and mk.�0/ D n�1P.Yi � �0/

k . Then TGS D
˚

Y � �0; s2n.�0/

 fBn.Y ;�0/g

˚

Y � �0; s2n.�0/

T

, which is a bit long to write out
but it has a similar basic form to TGW in (8.15, p. 345). Use of B.�0/ in place of
Bn.Y ;�0/ would simplify the expression by putting zero in place of Y � �0 in the
diagonal elements of Bn.Y ;�0/.

Continuation of Example 8.3 (p. 342). For H0 W p D p0, we have TGS D n.bp �
p0/

2=s2n.p0/, where s2n.p0/ D n�1Pn
iD1.Yi=m� p0/2.

Continuation of Example 8.5 (p. 345). For H0 W p1 D p2, we use

n
X

iD1
.Yi �mix

T
i ˇ/xi D 0;

where xTi D .1; 0/ for the first sample, xTi D .1;�1/ for the second sample, and
.ˇ1; ˇ2/ D .p1; p1 � p2/. After switching subscripts in the definition of TGS since
the null isH0 W ˇ2 D 0, we obtain the same form as TGW in (8.16, p. 346) except that
ep D Pn

iD1 Yi=
Pn

iD1 mi replacesbp1 andbp2 in the denominator of (8.16, p. 346),

TGS D .bp1 �bp2/2
n1
P

iD1
.Yi �miep/2=m

2
1: C

n
P

iDn1C1
.Yi �miep/2=m

2
2:

: (8.25)

8.3.2b Derivation of TGS by M-Estimation

We would like to point out how the M-estimation approach of Chapter 7 leads
to the correct generalized score test statistic. In a sense, the A and B matrix
formulation automatically does the Taylor expansion and computes the variance of
the appropriate linear approximations.

To that end, let b��
1 D n�1Pn

iD1 1.Yi ;
e�/ be an M-estimator that solves

P

n

 1.Yi ;
e�/ �b��

1

o

D 0. Then, thinking of ��
1 as a parameter that is the limit

in probability ofb��
1 , the parameter for this new problem is �� composed of ��

1 and
�2; �10 is fixed and not a parameter in the new problem. The associated functions
are  �

1 .Yi ;�
�/ D  1.Yi ;�/� ��

1 and  �
2 .Yi ;�

�/ D  2.Yi ;�/. Taking derivatives
with respect to �� and expectations, we find that

A� D
0

@

I r A12

0 A22

1

A and B� D B D
0

@

E
˚

 1 
T
1




E
˚

 1 
T
2




E
˚

 2 
T
1




E
˚

 2 
T
2




1

A;

where I r is the r 	 r identity matrix andA andB without asterisks (*) refer to their
form in the original problem. Finally, the .1; 1/ element of .A�/�1B� ˚.A�/�1


T

is (8.19, p. 347).



8.3 Generalized Wald, Score, and Likelihood Ratio Tests 351

8.3.2c TGS under Different Formulations ofH0

It is often more convenient to use the null hypothesis formulation H0 W h.�g/ D 0
thanH0 W �g1 D �10. However, it is not totally obvious in the M-estimation context
what is meant bye� under h.�g/ D 0. In the case of maximum likelihood where  
is obtained by differentiating the log likelihood, we can definee� as the solution of

n
X

iD1
 .Yi ;e�/ �H .e�/Te D 0; h.e�/ D 0;

whereH .�/ D @h.�/=@�T exists and has full row rank r , and  is an r 	 1 vector
of Lagrange multipliers. Of course, if h.�g/ D 0 has the equivalent �g1 D �10
formulation, thene� has the usual meaning as the solution of

Pn
iD1 2.

e�/ D 0 with
e�1 D �10.

Assuming thate� is well-defined, TGS underH0 W h.�g/ D 0 is

TGS D n�1
n
X

 .Yi ;e�/
oT
eV h

n
X

 .Yi ;e�/
o

; (8.26)

where
eV h D �

eA�1	T
eH T

n

eHeA�1
eB
�

eA�1	T
eH T

o�1
eH eA�1; (8.27)

and matrices with tildes (˜) over them refer to consistent estimates under H0 W
h.�g/ D 0. As before, an invariant version of TGS is obtained by using (8.22, p. 348)
to estimate V h. As an example, we leave for Problem 8.8 (p. 358) to show that (8.25,
p. 350) follows from (8.26) above with h.p1; p2/ D p1�p2 when using the original
parameterization of Example 8.5 (p. 345).

Some null hypotheses are best described in terms of one set of parameters,
whereas the alternative is easiest to describe in terms of another set. Lack-of-fit
or goodness-of-fit tests are often of this type. For example, consider binary data
in b groups where �1; : : : ; �b are the success probabilities but a proposed model is
�i D wi .ˇ/; i D 1; : : : ; b, where ˇ is a b � r vector of parameters. Example 3.4.3b
(p. 147) about the adequacy of the logistic regression model is a good illustration of
this situation.

The general description of this reparameterization approach is to let � D w.ˇ/,
where w is a b-valued vector function of the new parameter ˇ that has length b � r .
The null hypothesis is H0 W �g D w.ˇg/, where W .ˇ/ D @w.ˇ/=@ˇT is assumed
to have full column rank b � r . The generalized score statistic in this formulation is

TGS D n�1
n
X

 .Yi ;e�/
oT
eV w

n
X

 .Yi ;e�/
o

; (8.28)

where eV w is an estimator of

V w D eB�1 � eB�1
eAfW

�

fW T
eAT

eB�1
eAfW

	�1
fW T

eAT
eB�1: (8.29)

Note that in this case eB needs to be invertible (in contrast to the usual M-estimation
framework). Again, one should use (8.22, p. 348) in the estimate of V w in order to
have an invariant version.
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8.3.3 Adjusted Likelihood Ratio Statistics

As mentioned in the first part of this chapter, it is not so easy to adjust likelihood
ratio statistics to have asymptotic chi-squared distributions. Moreover, there is no
general definition of what is meant by a likelihood-ratio-type test when presented
with only an estimating equation. That is, the M-estimation defining equation
Pn

iD1 .Y i ;�/ D 0 need not have come from differentiating a likelihood.
However, suppose that

Pn
iD1 .Y i ;�/ D @Q.Y ;�/=@�T for some Q.Y ;�/,

typically a log likelihood for some model, not necessarily the correct model. Then
there are two situations where likelihood-ratio-type statistics might be used. The first
is when the null hypothesis involves a single degree of freedom, and thus there
is just one eigenvalue c of (8.2, p. 339) to be estimated. The second, and more
important, is when all of the eigenvalues of (8.2, p. 339) are the same and can
be estimated. In either case the difference of the log likelihoods can be divided
by the estimated constant resulting in limiting chi-squared distributions under the
null hypothesis. There seems to be no general theory to encompass all situations of
interest. Therefore in this section we merely point out several well-known examples
where likelihood-ratio-type statistics have been used even though the estimating
equations do not come from the likelihood of the correct model.

The most well-known examples are perhaps from the generalized linear model
(GLM) log likelihood (2.15, p. 54), with canonical link for simplicity, given by

logL.ˇ; � j fYi ;xi gniD1/ D
n
X

iD1

�

Yix
T
i ˇ � b.xTi ˇ/
ai .�/

C c.Yi ; �/

�

:

It turns out that as long as the mean and variance are correctly specified, E.Yi/ D
b0.xTi ˇ/, Var.Yi / D b00.xTi ˇ/ai .�/, then two times a difference of this log
likelihood under nested hypotheses is asymptotically �2 under the smaller model. In
the GLM literature, the articles by Wedderburn (1974) and McCullagh (1983) and
the name quasi-likelihood are associated with this approach. The constant ai .�/
is usually estimated by the chi-squared goodness-of-fit statistic divided by n � p,
where p is the dimension of ˇ in the larger model. The resulting log-likelihood-
ratio-type statistics are often divided by r and compared to an F distribution with r
and n � p degrees of freedom, and have good Type I error properties. For normal
models, ai .�/ D �2 is estimated by the residual mean square. This approach arose
in the bioassay literature with the name heterogeneity factor for � in over-dispersed
binomial(mi; pi /-type data where ai .�/ D �=mi .

A second situation of interest is robust regression for the additive linear model

Yi D xTi ˇ C ei ; (8.30)

where e1; : : : ; en are iid but there is uncertainty about the distribution, possibly
normal with random outliers thrown in. Huber M-estimators use the estimating
equation

n
X

iD1
 k

�

Yi � xTi ˇ
�

�

D 0;
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where k is the “Huber” function defined in Example 7.4.1 (p. 311), but a variety
of other  functions are also used in practice. The scale factor � can be estimated
in several ways, but adding the equation

1

n � p
n
X

iD1
 2k

�

Yi � xTi ˇ
�

�

D
Z 1

�1
 2k .x/�.x/dx

is the most common. Here �.x/ is the standard normal density function, and this
scale estimation approach is called Huber’s Proposal 2. Note that the Huber  k
comes from differentiating a log density ��k , but it is not assumed that ei are
drawn from this density. Thus, one might call this a situation where a misspecified
likelihood is taken for granted.

Initially, generalized Wald tests were exclusively used in practice for this
situation, but even with a variety of corrections they were found to be mildly
liberal in small samples. Schrader and Hettmansperger (1980) suggested using the
likelihood-ratio-type statistic

TGLR D 2bc�1
(

n
X

iD1
�k

 

Yi � xTi eˇ
b�

!

�
n
X

iD1
�k

 

Yi � xTi bˇ
b�

!)

; (8.31)

where

bc D 1

n � p
n
X

iD1
 2k

 

Yi � xTi bˇ
b�

!

�

1

n

n
X

iD1
 0
k

 

Yi � xTi bˇ
b�

!

; (8.32)

andb� is the scale estimate for the larger model. In Problem 8.12 (p. 359) we ask for
the details on how the form of c follows from results in Example 7.5.4 (p. 320) and
(8.2, p. 339). Schrader and Hettmansperger (1980) suggest dividing TGLR in (8.31)
by r and comparing it to an F distribution with r and n � p degrees of freedom.

To illustrate the Type I error performance of TGW, TGS, and TGLR in robust
regression and ANOVA situations, we report briefly some simulation results from
the 1995 NC State dissertation of Lap-Cheung Lau. The three particular models
used, and the corresponding hypotheses tested are:

1. Simple linear regression
Yi D ˇ1 C ˇ2xi C ei , i D 1; : : : ; 20 with ˇ1 D 2:5 and xi D 0:5 	 .i � 1/.

The hypotheses are H0 W ˇ2 D 0 vs. Ha W ˇ2 ¤ 0.
2. One-way ANOVA

Yij D � C �i C eij , i D 1; : : : ; 4, j D 1; : : : ; 5 with � D 2:5 and �4 D 0.
The hypotheses are H0 W �1 D �2 D �3 D 0 vs. Ha W not all �’s are zero.

3. Randomized Complete Block Design (RCBD)
Yij D �C˛i C �j C eij , i D 1; : : : ; 5, j D 1; : : : ; 4 with � D 2:5, ˛1 D 0:2,

˛2 D 0:4, ˛3 D 0:6, ˛4 D 0:8, ˛5 D 0, and �4 D 0. The hypotheses are
H0 W �1 D �2 D �3 D 0 vs. Ha W not all �’s are zero.
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Table 8.1 Estimated Type I error probabilities for the classical F and Huber M-estimation robust

tests in simple linear regression, one-way ANOVA, and RCBD with N(0,1) and t3=
p
3 errors.

Nominal level is ˛ D :05: Standard error of entries � :002.

Simple Linear One-Way RCBD

Tests Cut-Off N(0,1) t3=
p
3 N(0,1) t3=

p
3 N(0,1) t3=

p
3

classical F F .049 .045 .054 .042 .053 .038
TGS �2 .049 .050 .041 .039 .036 .033
TGW F .061 .055 .076 .070 .073 .060
TGLR F .062 .057 .071 .057 .065 .052

The choices of ˇ1 and � have no effect on the results. The errors ei follow
either the standard normal distribution N(0,1) or the standardized t3 distribution,
i.e.,

p
3ei � t3, with Var.ei / D 1, in each case. Therefore, there is a total of six

cases. The three robust test statistics are based on the Huber k function with k D 1

that gives asymptotic efficiency compared to least squares of approximately 90%
when the errors are normal and 1.88 when the errors are t3. TGLR is as described
above in (8.31, p. 353) with k D 1 and using F critical values. The version of TGW

used is (8.12, p. 344) multiplied by a correction factor f1 C .p=n/.1 �b�/=b�g�2
suggested by (Huber, 1981, p. 173) whereb� D n�1Pn

iD1  0
k .bei=b�/ : This version

of TGW is then divided by r so that F critical values may be used.
The version of TGS used here reverses the subscripts so that the part of ˇ tested

is the last r components,

TGS D n�1
(

n
X

iD1
 k

�

eei

e�

�

xi2

) T

eV �1
 2

(

n
X

iD1
 k

�

eei

e�

�

xi2

)

; (8.33)

where
eV  2 D eE 0

k

n

�

XTX
	

22
� �

XTX
	

21

�

XTX
	�1
11

�

XTX
	

12

o

;

andeei D Yi � xTi1eˇ and eE 0
k D .n� p C r/�1

Pn
iD1  0

k.eei=e�/.
Here we present only Type I empirical rejection rates based on 10,000 sim-

ulations under the null hypotheses. These estimated Type I error probabilities in
Table 8.1 (p. 354) have standard errors close to

p

.:05/.:95/=10000D :002.
Generally, we see that the results in Table 8.1 are similar to previous comparisons

for tests of means, like in Section 3.2.4 (p. 132). That is, the score tests tend to be
a bit conservative using chi-squared critical values. The Wald and likelihood ratio
tests are a bit liberal even after using modifications and the F distribution that make
them less liberal. TGLR seems to hold its level better than TGW. Of course the results
in Table 8.1 are each based on only n D 20 data points; in larger samples, true
levels are closer to .05. Note that the classical F test has quite robust Type I error
properties in the face of heavy-tailed errors; the reason to use robust tests is for
improved power under alternatives (up to 30% for t3 errors, but these not displayed
in Table 8.1).
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8.3.3a A Note about Confidence Intervals

A key point in the discussion of tests under likelihood misspecification, or for the
general estimating equation situation, is that likelihood-ratio-type statistics are not
as easy to correct (or even define in general) as Wald and score tests. The GLM and
robust example regression situations just discussed are exceptions, but usually there
is no simple way to adjust for misspecification when using TLR except to estimate
the limiting distribution

Pr
iD1 ciZ2

i given by Theorem 8.2 (p. 340).
Constructing confidence intervals for a single parameter, however, turns out to

be a problem that allows a general solution for adjusting profile likelihood ratio
statistics. So first consider constructing a profile likelihood confidence interval for
a single parameter by inverting TLR. Without loss of generality, suppose that the
parameter of interest is the first component of � , say �1. The profile likelihood
interval for �1 is from (3.19, p. 144)

˚

�1 W TLR.�1;e�2.�1// � �21.1 � ˛/
; (8.34)

wheree�2.�1/ is the maximum likelihood estimate of �2 with �1 held fixed. Of course
TLR.�1;e�2.�1// also depends on the unrestricted maximum likelihood estimator as
well, but since that does not change with �1 we have suppressed it in the notation.
To adjust this interval for misspecification, we use

˚

�1 W TLR.�1;e�2.�1// �ec�21.1� ˛/



; (8.35)

where from (8.2, p. 339) we estimate the scalar

ec D �

eA11 � eA12
eA�1
22
eA21

	 �

eA�1
eBeA�1	

11
:

Note that e�2.�1// andec must be recomputed for every trial value of �1. Although
the computing may seem difficult, in a 2003 NC State dissertation Chris Gotwalt
showed that this robustified profile likelihood approach works well in a variety of
problems. Inverting TGS is also hard computationally, but it did not perform quite as
well as (8.35). Nevertheless, both are preferable to using the simpler TGW intervals,

b�1 ˙
s

�

bA�1bB
n

bA�1
oT
�

11

z1�˛=2=
p
n;

and both will be invariant to parameter transformation if the expected value estimate
of A is used along with the empirical estimate of B.
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8.3.4 Quadratic Inference Functions and Score Tests

When presented with an estimating equation
Pn

iD1 .Y i ;�/ D 0 that did not come
from differentiating a log likelihood, it is not obvious how to define a quantity to
take the place of the likelihood. This may not be a concern since it is often fine
to just have the solution b� , some notion of its standard deviation, and perhaps a
generalized Wald or score statistic for hypothesis testing.

On the other hand, there can be particular advantages to having an objective func-
tion to minimize. For example, if there are multiple solutions to

Pn
iD1 .Y i ;�/ D

0, then an objective function could help decide which one to choose. In econometrics
problems, there are often cases where the dimension of  is greater than that of
the parameter vector. In such cases an objective function is critical for defining an
appropriate solution to

Pn
iD1 .Y i ;�/ D 0. Finally, an objective function would

allow the definition of log-likelihood-ratio-type statistics.
Thus, Lindsay and Qu (2003) define the quadratic inference function (QIF)

Q2.�/ D  
T
bC�1
�  ; (8.36)

where  D n�1Pn
iD1 .Y i ;�/, and bC � estimates the covariance of  . We only

consider the natural non-model-based estimator

bC � D 1

n
Bn.Y ;�/ D 1

n2

n
X

iD1
 .Y i ;�/ .Y i ;�/

T : (8.37)

The QIF estimatorb� minimizesQ2.�/. Notice that if the dimension of � is the same
as the dimension of  , then the QIF estimator is the same as the M-estimator that
solves

Pn
iD1 .Y i ;�/ D 0 because that estimator makesQ2.�/ D 0, its minimum

value. Hansen (1982) introduced the QIF estimating method in the econometrics
literature, and a large number of publications have developed the theory in that
context. Lindsay and Qu (2003) is an expository article introducing the approach
to the statistics literature.

We focus here mainly on the testing situation where the dimension of � is the
same as the dimension of  . But first, let us give an example from Lindsay and Qu
(2003) where the dimension of  is larger than that of � . Suppose we are interested
in the center or measure of location of a single distribution from which we have an
iid sample Y1; : : : ; Yn. The estimating equation with  1.Yi ; �/ D Yi � � leads to
the sample mean, and the estimating equation with  2.Yi ; �/ D 1=2 � I.Yi � �/

leads to the sample median. But what if the distribution is assumed to be symmetric
so that both estimators are consistent for the center? By minimizing the QIF
using these two score functions, we obtain an estimator that is the asymptotically
optimal combination of the sample mean and median for estimating the center of
the distribution. Thus, if the true distribution is normal, then asymptotically only the
mean would be used. If the true distribution is Laplace, then asymptotically only the
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median would be used. In general, an optimal linear combination would result. The
QIF is an extremely simple but powerful method for combining these estimators.
Another motivating example may be found in Lindsay and Qu (2003), where the QIF
was used in a GEE setting to optimally use a set of working correlation matrices.

Returning to the testing situation where the dimension of � is the same as the
dimension of  , consider first the completely specified null hypothesisH0 W �D�0.
The QIF likelihood ratio type statistic is given by (Lindsay and Qu, 2003, p. 398) to
be

TQIF D Q2.�0/�Q2.b�/ D Q2.�0/ (8.38)

because Q2.b�/ D 0 in this case. The limiting distribution of TQIF under H0 is
�2r where r D b in this fully specified case. Note that here TQIF is the same as the
generalized score test usingBn.Y ;�/. For Example 8.1 (p. 341), use of 1.Yi ; �/ D
Yi � � leads to

TQIF D n.Y � �0/
2

s2n C .Y � �0/2
:

Similarly in Example 8.3 (p. 342) we get TQIF D n.bp � p0/
2=s2n.p0/, where

s2n.p0/ D n�1Pn
iD1.Yi=m � p0/

2. And for Example 8.4 (p. 343) we also get the
same result as TGS.

For the composite null hypothesis H0 W �1 D �10, (Lindsay and Qu, 2003, p.
398) give

TQIF D Q2.�10;e�2/ �Q2.b�/ (8.39)

D min
�2
Q2.�10;�2/; (8.40)

where again we have taken advantage ofQ2.b�/ D 0 for the case we are considering
of equal dimensions for � and  . The limiting distribution of TQIF under H0 is
�2r . Here we can see an interesting difference between TGS and TQIF. TGS uses the
estimators e� that solve

Pn
iD1 2.Y i ;e�/ D 0 where e� D .�10;e�2/

T , whereas for
TQIF we minimize Q2.�10;�2/ in �2. Moreover, the matrix that shows up in the
middle of TGS is the inverse of V  1 given by (8.19, p. 347), whereas the matrix

that shows up in the middle of TQIF is the inverse of the simpler bC � given by
(8.37, p. 356). In the simple problem of testing a standard deviation H0 W � D �0,
Example (8.2, p. 342), TGS and TQIF give almost identical results in large samples.

Thus, there are tradeoffs for computing each of TGS and TQIF, but more theory is
needed before a definitive recommendation can be made between them. Certainly,
the QIF theory gives a very important new testing method that has similarities to
log likelihood ratio tests as well as to generalized score tests. Here we have only
scratched the surface of potential applications.
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8.4 Problems

8.1. Using (8.5, p. 341) and Theorem 5.28 (p. 249), verify that expression (8.6,
p. 341) is correct.

8.2. Give arguments to support the result in (8.9, p. 341).

8.3. For Example 8.3 (p. 342), show that c1 of Theorem 8.2 (p. 340) is equal to d .

8.4. Use the quadratic equation to write down the general solution of (8.10,
p. 343). Then set �3 D 0 and show that the solutions reduce to c1 D 1 and
c2 D .�4 � �4/=.2�4/.
8.5. Provide the details and derive (8.16, p. 346).

8.6. In the continuation of Example 8.3.2a (p. 350) for TGS, obtain the estimates of
A and B that lead to (8.25, p. 350).

8.7. For the setup of problem 7.15 (p. 336), show that the generalized score test for
H0 W ˇ2 D 0 is given by

TGS D

"

k
P

iD1
.Yi: � ni:Y /di

#2

k
P

iD1

"

.di � d/2
mi
P

jD1
.Yij � nij Y /2

# :

Note that you need to reverse the subscripts of the formulas given for the generalized
score test because here the null hypothesis concerns the second part of the vector.

8.8. Using the original parameterization of Example 8.5 (p. 345), show that (8.25,
p. 350) follows from (8.26, p. 351) with h.p1; p2/ D p1 � p2.
8.9. For simple linear regression with heteroscedastic errors, model (7.17, p. 315)
with xTi D .1; di /, shows that the generalized score test forH0 W ˇ2 D 0 is given by

TGS D

�

n
P

iD1
.Yi � Y /di

�2

n
n�1

n
P

iD1
.Yi � Y /2.di � d/2

;

where we have simplified things by rewriting the model with d�
i D di�di . Then the

matrix manipulations are much simpler. How does this form compare to the usual
F test when homogeneity of variance is assumed?

8.10. Suppose we have dataX1; : : : ; Xn that are iid. The sign test forH0: median=0
is to count the number ofX ’s above 0, say Y , and compare Y to a binomial (n; p D
1=2/ distribution. Starting with the defining M-estimator equation for the sample
median (see Example 7.4.2, p. 312, with p=1/2),
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a. Derive the generalized score statistic TGS for H0: median=0 and note that it is
the large sample version of the two-sided sign test statistic.

b. Using the expression for the asymptotic variance of the sample median, write
down the form of a generalized Wald statistic TGW , and explain why it is not as
attractive to use here as TGS .

8.11. Using the general score equation (7.34, p. 321) for generalized linear models,
but assuming only that the mean and variance are correctly specified, let ai .�/ D
�=mi as used for over-dispersed binomial data and show that c1 D � � � D cr D �

that is obtained from (8.2, p. 339). In other words, show that (8.2, p. 339) is � times
the r 	 1 identity matrix.

8.12. Similar to the expressions in Example 7.5.4 (p. 320) for the � D 1 known
case, if we make the homogeneity assumption that the errors e1; : : : ; en in (8.30,
p. 352) all have the same distribution, and use

Pn
iD1 ��1 k.ei=�/xi D 0 as the

defining equation, then An.X;ˇ; �/ D ��2E 0
k.e1/X

TX=n and Bn.X ;ˇ; �/ D
��2E k.e1=�/2XTX=n are the expected value versions of A and B. Use them to
show that (8.2, p. 339) gives c1 D � � � D cr D c that is estimated by (8.32, p. 353).
The reason to use

Pn
iD1 ��1 k.ei=�/xi D 0 instead of

Pn
iD1  k.ei=�/xi D 0 is

because the former is the derivative of
Pn

iD1 �k.ei=�/ with respect to ˇ that is used
to define TGLR in (8.31, p. 353).
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Chapter 9
Monte Carlo Simulation Studies

9.1 Introduction

Modern statistical problems require a mix of analytical, computational and
simulation techniques for implementing and understanding statistical inferential
methods. Previous chapters dealt with analytical and computational techniques, and
this chapter focuses on simulation techniques. We are primarily interested in Monte
Carlo simulation studies in which the sampling properties of statistical procedures
are investigated. We discuss a few important principles in the design and analysis
of these Monte Carlo studies. These principles are perhaps obvious after reflection,
but senior, as well as junior, statistics researchers often neglect one or more of them.
Secondly, we give some practical hints about choosing the Monte Carlo size N and
analyzing and presenting results from Monte Carlo studies.

We start with a brief discussion of Monte Carlo estimation that is at the core
of all simulation techniques. “Monte Carlo” methods essentially refer to any use
of random simulation. David (1998) reports that the name was coined by famous
mathematician and computer scientist John von Neumann and his Los Alamos
colleague S.M. Ulam.

9.1.1 Monte Carlo Estimation

Monte Carlo estimation is used to estimate expected values of random variables and
functions of random variables when analytic calculation is not feasible. Monte Carlo
methods work because good random number generators generate surrogate random
variables, or pseudo-random variables, that mimic many of the key properties of
truly-random, random variables. In particular, the classical large sample theorems
of probability and statistics such as the Weak and Strong Laws of Large Numbers
and the Central Limit Theorems generally apply to sequences of pseudo-random

D.D. Boos and L.A. Stefanski, Essential Statistical Inference: Theory and Methods,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-4818-1 9,
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variables. So if T1; : : : ; TN is an independent and identically distributed sequence of
pseudo-random variables, then

T
p�! E.T /; s2N�1

p�! Var.T / and
T � E.T /

sN�1=N 1=2

d�! N.0; 1/; (9.1)

provided the necessary moments of T exist. Thus, for example, it is obvious that
E.T / can be estimated arbitrarily well by T by taking N sufficiently large, and
that bounds on the estimation error can be derived from the normal approximation.
Because the same reasoning applies to transformed pseudo-random variables, e.g.,
T ki , I.Ti � t/ and exp.sTi /, virtually any quantity related to the distribution of T
can be estimated arbitrarily well, e.g., �0

k D E.T k/, P.T � t/ D EfI.T � t/g
and mgfT .s/ D Efexp.sT /g, provided, of course, that the necessary moments exist.
Finally, we note that Monte Carlo methods apply not only to scalar-valued random
variables as depicted above, but also to random vectors.

In applications to classical statistical inference, T1; : : : ; TN are often statistics,
estimators or test statistics, that are obtained by applying a statistical procedure to
simulated data sets. That is, Ti D T .Xi;1; : : : ; Xi;n/, where T .�/ is the function that
defines the statistic and fXi;1; : : : ; Xi;ng is the ith pseudo-random data set generated
from a probability model. In such applications Monte Carlo methods are used to
estimate quantities such as:

• the bias and variance of an estimator;
• the percentiles of a test statistic or pivotal quantity;
• the power function of a hypothesis test;
• the mean length and coverage probability of a confidence interval.

An important use of Monte Carlo estimation methods is to estimate the posterior
distribution in a Bayes analysis by generating a sequence of pseudo-random
variables that converge in distribution to the posterior distribution of interest. These
Markov chain Monte Carlo (MCMC) methods are discussed in Chapter 4. Monte
Carlo estimation also plays a prominent role in bootstrap resampling inferential
methods discussed in Chapter 11. In both MCMC and bootstrap methods, Monte
Carlo estimation is used to implement the analysis of a single data set. Thus while
Monte Carlo estimation is crucial to both MCMC and bootstrap methods, neither
application constitutes a Monte Carlo study as defined below.

9.1.2 Monte Carlo Studies

The focus of this chapter is on the design, implementation and analysis of a
Monte Carlo study which we define as the application of Monte Carlo estimation
methods for the purpose of studying and comparing the probabilistic and statistical
properties of statistics and how these properties depend on factors such as sample
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size, distributional assumptions, parameter values, and so on. A Monte Carlo study
is an experiment to which the fundamental concepts of experimental design —
randomization, replication and blocking — apply. Many Monte Carlo studies are
often factorial in nature, and the techniques and methods of analysis for multifactor
experiments are relevant. In particular, Monte Carlo studies should be carefully
planned with due attention paid to the analysis of the generated data.

Often a single pseudo-random data set X1; : : : ; Xn is generated for the purpose
of illustrating a new method, especially with regard to calculating an estimate T D
T .X1; : : : ; Xn/. In complicated problems, this can be useful to explain the procedure
that results in T . However, such an exercise is merely an illustration of the method of
calculation, and is not a Monte Carlo study. Technically, it is a Monte Carlo study of
size N D 1, but of no value for estimating statistical properties of a procedure such
as bias, variance, power, etc., and therefore does not satisfy our definition of a Monte
Carlo study. A Monte Carlo study, by definition, must involve many replications in
order to estimate properties of the sampling distribution of the statistic.

We now describe a simple Monte Carlo study that is sufficient to illustrate many
of the features alluded to above, and also the interplay between analytic analysis and
the design of the experiment.

Example 9.1 (Comparing Location Estimators). Location estimators play an
important role in statistics, especially in robust statistics, and therefore their
sampling properties are often of interest. Suppose, for example, that we want to
compare three location estimators, the sample mean X , the sample 20% trimmed
mean X:20 (trim 20% from each end of the ordered sample and average the
remaining ones), and the sample medianb�:5 for a variety of sample sizes (n D 15; 30

and 120) and population distributions with different tail behavior (normal, Laplace
and t5).

So far we have identified three factors in the study, distribution at three levels
(normal, Laplace and t5), sample size at three levels (15, 30 and 120), and of
course, estimator also at three levels (mean, trimmed mean and median). Data sets
of sizes n D 15; 30 and 120 will be generated from N.�; �2/, Laplace.�; �2/
and t5.�; �2/ distributions where � and �2 are the true mean and variance of
the generated data. Should � and �2 be factors in our experiment and varied
at different levels? Consider that the three location estimators are all location-
scale invariant, i.e., T .a C bX1; : : : ; a C bXn/ D a C bT .X1; : : : ; Xn/. Thus
the sampling properties of the estimators for one set of .�; �2/ are completely
determined by the sampling properties when the mean and variance are .0; 1/, e.g.,
VarfT .a C bX1; : : : ; a C bXn/g D b2VarfT .X1; : : : ; Xn/g. Therefore it makes no
sense to study different values of .�; �2/, and these would typically be set to .0; 1/
without loss of generality.

Bias, variance and mean squared error of the estimators are typically studied.
However, for our location-estimator study, bias is not relevant because all of the
population distributions studied are symmetric about 0, and the estimators are
odd functions of the data. So we know that the estimators are unbiased, and thus
comparisons should focus on variability, and possibly kurtosis, or more generally
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on the entire sampling distribution of the estimators. Had we included some
non-symmetric distributions in the study, then bias would be of interest, although
in this case there is an attendant definitional issue as the estimators would not be
estimating the same quantities.

The Monte Carlo study as we have set it up would most likely be carried out
by generating N independent N.0; 1/ data sets of a given size, and calculating all
three estimators on each data set. This would be repeated for the different sample
sizes; and then the entire previous process repeated for the two other distributions,
so that all of the generated data sets are independent of one another, both within
and across the nine combinations of distribution and sample size. Thus estimators
calculated from different data sets are independent, whereas estimators calculated
on the same data set are dependent. The latter dependence is exploited in the analysis
of the output as comparisons of estimators are typically very precise because of the
blocking induced by the data sets. Note that a total 9N data sets are generated; and
27N estimators are calculated and should be saved for later analysis.

The choice of N remains. As in any statistical sample-size determination both
practical constraints (computing time) and statistical considerations (variance and
power) should be considered. With regard to statistical considerations, Monte Carlo
experiments have the advantage that preliminary results are usually available to
guide the choice of sample size. For example, by running the study for a preliminary
sample size N0 for some fraction of the experimental design, one can estimate
the sample size needed for adequate power in, say, the paired t-test of equality of
variances (recall that bias D 0 by design, so that Var.b�r /�Var.b�s/ D E.b�2r /�E.b�2s /
and thus equality of variances can be tested by testing the equality of means of
the squared statistics). As for practical considerations, note that computing time is
typically linear in N . So one can run the Monte Carlo simulation program for say
N D N0 whereN0 is chosen so that the program takes on the order of a few minutes.
Then determine N so that the full simulation runs in an appropriate allotted time,
e.g., overnight.

Below is R code for a fraction of the Monte Carlo study described above
corresponding to n D 15 and the standard normal population distribution, with
N D 1000.

sim.samp<-function(nrep,n,DIST,...){
# simulates nrep samples from DIST of size n
data <- matrix(DIST(n * nrep, ...), ncol = n, nrow = nrep)
}
set.seed(346) # sets the random number seed
sim.samp(1000,15,rnorm)->z # 1000 N(0,1) samples, n=15
apply(z,1,mean)->out.m # mean for each sample
trim20<-function(x){mean(x,.2)} # 20% trimmed mean function
apply(z,1,trim20)->out.t20 # trim20 for each sample
apply(z,1,median)->out.med # median for each sample
# Save all 1000 blocks of 3 estimators in a data frame
data.frame(mean=out.m,trim20=out.t20,median=out.med)->norm15
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Table 9.1 Variance estimates (times n) for location estimators. Distributions are standardized to
have variance 1

Normal Laplace t5

X X:20 Med X X:20 Med X X:20 Med

n D 15 0.99 1.11 1.47 1.00 0.70 0.71 1.02 0.85 1.06
n D 30 1.02 1.16 1.53 0.99 0.67 0.64 1.00 0.81 1.00
n D 120 1.01 1.15 1.57 0.99 0.65 0.57 1.00 0.83 1.05

Note: Entries are based on 10,000 replications and have standard errors in the
range 0.01 to 0.02. The Laplace density is .1=2/ exp.�jyj/.

Now that we have a program to compute the basic estimates, the next step is to
analyze the data, including computing:

1. the sample variances of the saved location estimators—these sample variances
are the key quantities of interest in this example, and

2. the standard errors of these sample variances and possibly standard errors of
differences of sample variances.

Recall that a standard error of any estimator, in this case a Monte Carlo-based
estimator, is an estimate of its standard deviation. In Sections 9.3 (p. 369) and 9.4
(p. 372), we discuss the computation of standard errors for a number of basic
quantities like the sample variance. Finally, we want to think about how to present
the results. To complete this example, Table 9.1 illustrates one possible presentation
of the results. We decided to multiply the variance estimates by sample size n
so that we could compare different sample sizes. Also, after computing a few
standard errors, we decided to raise the number of Monte Carlo replications
to N D 10;000. �

9.2 Basic Principles for Monte Carlo Studies

The first principle is especially for statisticians, who as a group, are used to advising
others about experiments but often ignore their own advice.

Principle 1. A Monte Carlo experiment is just like any other experiment. It requires
careful planning in addition to carrying out the experiment and analyzing the results.

There is no harm in jumping in and making preliminary runs to get a feel for
what the results will look like. But for a serious study to be later published or shared
with others, one should carefully consider the following.

a) The choice of factors to be varied during the experiment, such as the sample size
n and the distributions used to generate the data, is critical for it determines the
generality of the results and hence the utility of the study. A very limited design
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may be unconvincing at best, and misleading at worst, if the conditions under
which data are generated are not sufficiently representative of real data. However,
the desire for generality must be tempered by the fact that the number of factor-
level combination in a full factorial study grows rapidly with the numbers of
factors and their levels.

b) The Monte Carlo sample size N must be chosen large enough to obtain
satisfactory precision but also small enough to accommodate time and machine
constraints. The ability to repeat a study is important if modifications to the
design or to the statistics under investigation are required. Thus choosing N
larger than necessary to obtain acceptable precision should be avoided. It is
usually possible to add more independent replicates of the study if necessary
to increase precision.

c) Some consideration about what information is to be saved from the experiment,
and how it is to be analyzed to accomplish the objectives of the study is important.
In some studies only certain summary statistics (means, variance, covariances)
need to be saved, and these can often be aggregated on the fly using well-known
updating formulas.

Provided data storage is not a limiting factor, the relevancy of the latter recom-
mendation can be essentially eliminated by adhering to the following principle.

Principle 2. Save all of the statistics (the individual T values inside the main loop)
calculated from each data set whenever possible.

The obvious advantage of Principle 2 is the ability to calculate any desired
summary statistic after the completion of the study. Thus the post-study analysis is
not limited by pre-study decisions about what information to save from individual
runs. This is often useful when heavy-tailed data or outliers in the simulation output
are possible, the latter possibly due to extreme data sets or to the lack of convergence
of nonlinear iterative numerical methods. For then it is possible to identify problems
with the output data, and adapt the method of analysis accordingly. When problems
with non-convergence are likely, keeping track of algorithm “exit codes” may be
helpful for identifying the nature of the numerical problems. Finally, it may be
advantageous to analyze the study output using software (e.g., SAS or R) different
from that used to do the simulation.

Principle 3. Keep the Monte Carlo sample sizeN small at first until the basic study
plan is clear.

Most simulation programs and designs undergo extensive development to ensure
the correctness of the program and maximize the utility of the information so
obtained. A too-common problem is making runs with large N before the program
is known to be bug-free or the design is finalized, thereby wasting time and
effort. Thus development is usually facilitated by making initial runs with small
N . After development is complete, then make the “production” runs with large
N that will constitute the final study. However, keep in mind that Monte Carlo
studies by statisticians are just as susceptible to bias as non-Monte Carlo studies
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by non-statisticians. Thus, in the course of developing a simulation program and
design, care must be taken to ensure that conditions (factors, levels, seeds) are not
identified (consciously or subconsciously) that are unfairly favorable or unfavorable
to the any of the methods under study.

Principle 4. Organize your work and document both the simulation code and the
results.

It is important to document the computer code with comments so that you or
someone else (e.g., a colleague or an advisor) can check and understand what the
code does, both at the time of the initial study, and a year later when you receive
reviews on a paper you wrote asking for additional simulation results.

It is especially important to keep track of the seeds used in the random number
generation. Set a different seed for each run and keep records of the seeds. This
ensures that runs are reproducible and essentially guarantees independence from
run to run.

9.3 Monte Carlo Sample Size

Determining the sample size in a Monte Carlo study is no different than for other
types of studies. However, with a Monte Carlo study it is usually easier to get a good
preliminary estimate of experimental error by making test runs. Basically one needs
to determine the acceptable standard deviation of estimates or power of tests and
invert analytical functions of sample size set equal to those values. Here are a few
examples of such calculations.

9.3.1 Bias Estimation

Suppose that one computes the parameter estimateb� forN independent replications
resulting inb�1; : : : ;b�N . In a table we may present entries of N�1Pb�i along with
the true value �0, or actually present the bias estimate N�1P

b� i � �0. In either
case the standard deviation is �n=N 1=2, and a standard error is sN =N 1=2, where
�2n DVar(b�/. So, given a guess of �n, saye� , and an acceptable value, say d , for the
standard deviation of our estimate, we solve to get N D e�2=d2. One way to gete�
is from a preliminary run of size N0 samples, where thene� could just be the sample
standard deviation ofb�1; : : : ;b�N0 .

To compare the estimates of bias of two different estimators, say b�.1/ and b�.2/,
using the same Monte Carlo data, one should take into account the blocking induced
and use ŒVarfb�.1/ �b�.2/g�1=2=N 1=2 as one would use with the paired t test.
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9.3.2 Variance Estimation

When studying a new estimatorb� , one usually wants to estimate its variance with
the sample variance,

s2N�1 D 1

N � 1

N
X

iD1
.b�i �b�/2;

whereb� D N�1PN
iD1b�i . This is the Monte Carlo estimator of Var.b�/. For large

N , the approximate variance of the sample variance is close to �4n.Kurt.b�/� 1/=N ,
where �2n D var.b�/ and Kurt.b�/ is the kurtosis of the distribution ofb� .

Many estimators are approximately normal provided the sample size is not
too small. Thus, if the size n of the sample used to calculate b� is not small,
b� is approximately normal, and so Kurt.b�/ � 3, leading to the approximation
var.s2N�1/ � 2�4n=N . So the approximate standard deviation of the variance
estimate is .2=N /1=2�2n . For acceptable d , we invert to get N D 2�4n=d

2.
If one prefers to think in terms of relative error, letting dp be the acceptable

proportional error, we have that the approximate standard deviation of s2N�1=�2 is
.2=N /1=2, leading to N D 2=d2p . For example, if dp D :10 (10 percent relative
error), we get N D 2=:01 D 200.

If one considers the sample standard deviation sN�1 instead of the sample
variance s2N�1, then the approximate standard deviation of sN�1 is �n=.2N /1=2 (by
the delta theorem). Thus, letting ds denote an acceptable standard deviation for
sN�1, then N D �2n=.2d

2
s /. Similarly, if dsp denotes the value of an acceptable

proportional error, then N D 1=.2d2sp/. So if dsp D :10 (10 percent relative error),
thenN D 50. Thus for getting a 10 percent relative error for estimating the standard
deviation, one needs only 1/4 of the Monte Carlo sample size as is needed to get a
10 percent relative error for the variance.

9.3.3 Power Estimation

For a new test procedure of the form “reject the null hypothesis if T > c˛ ,” we often
estimate the power at a particular alternative by

bpow D 1

N

N
X

iD1
I.Ti > c˛/;

where Ti is the test statistic for the i th Monte Carlo sample, c˛ is a given critical
value, and I is the indicator function having value 1 if Ti > c˛ and 0 otherwise.

This is binomial sampling, and the worst variance of our estimate (occurring at
power = 1/2) is given by 1=.4N /. Setting d D 1=.2N 1=2/ yields N D 1=.4d2/.
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For d D :05 we get N D 100, but for d D :01 we get N D 2500. If we want to
compare the power of two test statistics, T .1/ and T .2/, then one should take into
account the blocking induced by computing both procedures on the same Monte
Carlo samples. This could be accomplished by estimating the variance of

I.T .1/ > c.1/˛ / � I.T .2/ > c.2/˛ /

in some preliminary runs.
In some cases, one may have a critical value c˛ from asymptotic theory but would

like to estimate the finite-sample c˛ and use it in the power estimate. This can be
important when comparing two test procedures that have different true significance
levels. In this case, Zhang and Boos (1994) suggest using an N for estimating
the critical value that is 10 times the size of the N used for estimating the power
at specific alternatives.

9.3.4 Confidence Intervals

Monte Carlo studies of confidence intervals have similarities to bias estimation
(Section 9.3.1, p. 369) and to power estimation (Section 9.3.3, p. 370). Coverage
probability and average confidence interval length are both important quantities that
should be reported whenever studying confidence intervals. Obviously we would
like intervals that achieve the nominal 1 � ˛ coverage (like 95%) and are short
on average. If one only reports estimated coverage probabilities, then we have no
idea about the value of the interval because the interval .�1;1/ is always best
in the coverage sense, achieving 100% coverage. In some situations, it is useful to
report one-sided errors rather than coverage because we might consider using one-
sided confidence bounds instead of intervals or we might prefer intervals that have
symmetric errors. For example, we might prefer an interval that misses on the left
and right of the parameter with equal probability .025 compared to one that misses
on the left with probability .01 and on the right with probability .04.

For sample size considerations, note that we obtain a sample of lengths
L1; : : : ; LN and a sample I1; : : : ; IN of binary indicators of whether the interval
contains the true parameter value. For the lengths we need a preliminary estimatee�
of the standard deviation of the lengths and an acceptable value d for the standard
error of our estimate of average length. Then, just as in Example 9.3.1 (p. 369),
we obtain N D e�2=d2. For coverage estimation or one-sided error estimation, we
would invert d D .˛.1 � ˛/=N /1=2, where d is the acceptable standard deviation
for our coverage estimate, to get N D ˛.1 � ˛/=d2. This is slightly different from
power estimation where we often use the worst case scenario of power D 1=2 to get
N D 1=.4d2/.
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9.4 Analyzing the Results

The proper analysis of Monte Carlo studies begins with correctly estimating the
standard deviation of the estimates. In some cases one might want to run an analysis
of variance to quantify the importance of different factors. When using a statistical
procedure to compare different methods, we usually want to take into account the
blocking induced by the generated data sets. That is, two estimators computed on
the same data set are generally correlated. Thus, we might use paired t tests or
randomized complete block analysis of variance. In the case of comparing two
tests, a paired t on the binary indicators of rejection is essentially equivalent to
McNemar’s test (see Section 12.10.2, p. 509) for correlated proportions. Here we
illustrate some possible analyses, focusing on situations where asymptotic analysis
is useful. In practice, it is often simplest to use jackknife methods (see Chapter 10)
for variance estimation.

9.4.1 Comparing Two Variance Estimators

Consider a situation like Example 9.1 (p. 365) where we have two estimators for
the same quantity, and we are mainly interested in estimating the variance of these
estimators. As mentioned in Section 9.3, the asymptotic variance (as N ! 1
with n fixed) of s2N�1 D .N � 1/�1

PN
iD1.b�i �b�/2 is �4n.Kurt.b�/ � 1/=N , where

�2n D var.b�/ and Kurt.b�/ is the kurtosis of the distribution ofb�: Moreover, because
most estimators are approximately normal, assuming that Kurt.b�/ � 3 leads to
a simplification of the asymptotic variance of s2N�1 to 2�4n=N . Instead of using

Kurt.b�/ � 3, we can simply estimate Kurt.b�/ with the sample kurtosis of the
estimatorsb�1; : : : ;b�N ,

bKurt.b�/ D N�1
N
X

iD1
.b�i �b�/4=

(

N�1
N
X

iD1
.b�i �b�/2

) 2

:

Suppose, however, that we want to compare the estimates of variance for two
different estimators like the mean and the trimmed mean. Because the variance
estimators, say s21;N�1 and s22;N�1, are both computed from the same original data
sets, these estimators are correlated, and the correlation must be accounted for
when we estimate the standard deviation of their ratio. Using the approximation
by averages results for sample variances, it follows that .s21;N�1; s22;N�1/T are
jointly asymptotically normal as N ! 1 with asymptotic mean .�21;n; �

2
2;n/

T and

asymptotic covariance matrix with diagonal elements N�1�41;n.Kurt.b�1/ � 1/ and

N�1�42;n.Kurt.b�2/ � 1/, respectively, and off-diagonal element

N�1Cov12;n D N�1Cov

�

n

b�1 � E.b�1/
o2

;
n

b�2 � E.b�2/
o2
�

:
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Then, using the Delta method, Theorem 5.19 (p. 238), the asymptotic variance of
s21;N�1=s22;N�1 is

1

N

�41;n

�42;n

(

Kurt.b�1/C Kurt.b�2/� 2 � 2Cov12;n
�21;n�

2
2;n

)

: (9.2)

From the sample data at the end of Example 9.1 (p. 365), we find that the estimated
variance of the sample mean divided by that of the 20% trimmed mean for normal
data is s21;N�1=s22;N�1 D :86. Plugging sample estimates into (9.2) and taking
the square root yields a standard error of :02. Although the estimated kurtoses
in this case are close to 3 (3.11 and 3.26, respectively), substituting Kurt.b�1/ D
Kurt.b�2/ D 3 changes the standard error to .01 because the last piece subtracted
in (9.2) due to correlation of s21;N�1 and s22;N�1 is quite large. When rerunning
for N D 10; 000, both methods gave the same standard error to three decimals,
.006. Thus, this is a case where it can make a difference to estimate the kurtoses.
Following is R code illustrating these calculations.

N<-1000; z<-norm15; var1<-var(z[,1]); var2<-var(z[,2])
sig12<-cov((z[,1]-mean(z[,1]))ˆ2,(z[,2]-mean(z[,2]))ˆ2)
kurt<-function(x){mean((x-mean(x))ˆ4)/(mean((x-mean(x))ˆ2)ˆ2)}
K1<-kurt(z[,1]); K2<-kurt(z[,2])
cat("var1/var2=",round(var1/var2,3),fill=T)
sd1<-(var1/var2)*sqrt(K1+K2-2-2*sig12/(var1*var2))/sqrt(N)
cat("sd of var1/var2 =",round(sd1,3),fill=T)
sd2<-(var1/var2)*sqrt(4-2*sig12/(var1*var2))/sqrt(N)
cat("sd of var1/var2 assuming Kurt=3 =",round(sd2,3),fill=T)

> source("ex1.delta.r")
var1/var2 = 0.861 sd of var1/var2 = 0.019
sd of var1/var2 assuming Kurt=3 = 0.009

9.4.2 Comparing Estimated True Variance and the Mean
of Estimated Variance Estimators

We are often interested in the quality of standard errors that we get from an estimated
information matrix or from the sandwich estimator V n.Y ;b�/ or from some other
variance estimation method. To illustrate for a simple scalar estimatorb� , we might
calculate an estimator and an estimate of its variance, denoted b�2n, for each Monte

Carlo sample resulting in the data .b�i ;b�2i;n/, i D 1; : : : ; N . We are hoping that the

variance estimatorb�2n is unbiased for the true variance ofb� , say �2n . Thus we form
the ratio

RN D

1

N

N
X

iD1
b�2i;n

s2N�1
: (9.3)
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where the numerator is estimating E.b�2n/, and the denominator is estimating the true

variance of b� . RN has a natural interpretation. For example, RN D 1:07 means
that the variance estimator b�2n is 7% too large on average, whereas RN D 0:83

means that the variance estimator is too small on average. To be confident in
these judgments, the researcher needs to know the variability of RN . Applying
the Delta theorem, Theorem 5.19 (p. 238), to the joint asymptotic distribution of
�

s2N�1; N�1PN
iD1b�2i;n

�T

we obtain the asymptotic variance as N ! 1 (with n

fixed) of RN ,

1

N

˚

E.b�2n/

2

�4n

(

Kurt.b�/� 1 � 2 Covn
�2nE.b�2n/

C Var.b�2n/

fE.b�2n/g2
)

; (9.4)

where Covn D Cov.
n

b� � E.b�/
o2

;b�2n/. To get a standard error for RN , we just

substitute in (9.4) sample estimates based on .b� i ;b�2i;n/, i D 1; : : : ; N and take the
square root.

A simpler expression for the standard error can be obtained from the M-estimator
approach using

 .b�i ;b�
2
i;n;�/ D

0

B

@

b�i � �1

�2.b�i � �1/
2 �b�2i;n

1

C

A ; (9.5)

where � D .�1; �2/
T is used in place of � in the M-estimator notation so as not to

get confused with the data in this case. Now, the standard error for RN based on the
estimated sandwich matrix (7.12, p. 302) is then

1

N 1=2

2

6

4

1

N

N
X

iD1

8

<

:

RN.b�i �b�/2 �b�2i;n
s2N�1

9

=

;

2
3

7

5

1=2

: (9.6)

Often the Monte Carlo variation of the numerator N�1PN
iD1b�2i;n of RN is much

less than the denominator s2N�1 because sample means (even of variance estimates)
tend to have smaller variances than sample variances. Thus, treatingN�1PN

iD1b�2i;n
as constant in RN results in dropping the last two terms of (9.4, p. 374) and gives
the simpler standard error expression RN f.bKurt � 1/=N g1=2. Furthermore, making
the approximations Kurt.b�/ � 3 and RN � 1, a suitable standard error is simply
.2=N /1=2. Note that if you want to use 1=RN instead of RN , then just replace
�4n=

˚

E.b�21;n/

2

by
˚

E.b�21;n/

2
=�4n in (9.4), and .2=N /1=2 is also an approximate

standard error for 1=RN .
Using the Example (9.1, p. 365) setting, the R program below computesRN and

the four standard errors for RN for an estimator of the variance of the 20% trimmed
mean: based on (9.4), (9.6), RN f.bKurt � 1/=N g1=2, and .2=N /1=2, respectively.
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The first two standard errors are essentially the same (0.053 for N D 1000 and
0.016 for N D 10000) and the last two are a bit smaller as expected. The estimates
RN D 1:05 forN D 1000 andRN D 1:04 forN D 10000 suggest that the variance
estimator is slightly biased upwards.

set.seed(346);N<-1000;n<-15

sim.samp(N,n,rnorm)->z

trim20<-function(x){mean(x,.2)} # 20% trimmed mean function

trim.var<-function(x,trim){ # var. est. for trim20

n<-length(x);h<-floor(trim*n)

tm<-mean(x,trim);sort(x)->x

ss<-h*((x[h+1]-tm)ˆ2+(x[n-h]-tm)ˆ2)

ss<-ss+sum((x[(h+1):(n-h)]-tm)ˆ2)

t.var<-ss/((n-2*h)*(n-2*h-1))

return(t.var)

}

trim20.var<-function(x){trim.var(x,.2)}

apply(z,1,trim20)->t20 # trim20 for each sample

apply(z,1,trim20.var)->t20v # var. est. for each sample

RN<-mean(t20v)/var(t20)

t1<-kurt(t20)-1

t2<-cov((t20-mean(t20))ˆ2,t20v)/(var(t20)*mean(t20v))

t3<-var(t20v)/(mean(t20v)ˆ2) se1<-(RN/sqrt(N))*sqrt(t1-2*t2+t3)

se1m<-sqrt(mean((RN*(t20-mean(t20))ˆ2-t20v)ˆ2))/(var(t20)*sqrt(N))

se2<-RN*sqrt(t1/N)

se3<-sqrt(2/N)

print(round(data.frame(N,n,RN,se1,se1m,se2,se3),3))

> source("cv2.ex.r")

N n RN se1 se1m se2 se3

1 1000 15 1.049 0.053 0.053 0.05 0.045

> source("cv2.ex.r") # repeated for N=10000

N n RN se1 se1m se2 se3

1 10000 15 1.041 0.016 0.016 0.015 0.014

9.4.3 When Should Mean Squared Error Be Reported?

Much of statistical estimation theory involves some trade-off between bias and
variance. Although, we might report both bias and variance of an estimator, in some
situations it is appropriate to also report mean squared error (MSE) D Variance
C bias2. Here we suggest that when variance estimation is the focus, MSE is
not appropriate because it rewards underestimation too much. That is, if we are
considering a variance estimate b�2 for some estimator, typically we would prefer
not to have b�2 much smaller than the true variance. For example, approximate
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Table 9.2 Mean Squared Error of Functions of the Sample Variance and
Stein’s Loss Function for a Normal(�; 1/ Sample of Size n D 10

MSE of MSE of MSE of
Estimator s2a sa log.s2a/ EfLs.s2a; 1/g
s2n�3 .45 .080 .27 .15
s2n�2 .30 .062 .25* .12
s2n�1 .22 .055 .26 .12*
s2n .19 .055* .30 .12
s2nC1 .18* .059 .35 .13
s2nC2 .19 .065 .41 .15

confidence intervals based on such a variance estimate could have coverage
probabilities much less than the nominal value 1�˛. On the other hand, the variance
of variance estimators is often proportional to its expectation so that the MSE of
negatively biased variance estimators is low.

To illustrate these ideas, assume that Y1; : : : ; Yn is an iid sample from aN.�; �2/
distribution. A fact often noted when estimating �2 is that s2nC1 D .nC1/�1P.Yi �
Y /2 has minimum mean squared error (MSE) among estimators of the form cs2n,
where s2n is the maximum likelihood estimator of �2. (See Casella and Berger 2002,
p. 350–351.) However, as mentioned above, MSE may not be the most appropriate
loss function for deciding which estimator is best. Thus we also consider MSE on
the square root scale and on the log scale, and also the expected value of a loss
function due to Stein (Casella and Berger 2002, p. 351)

LS.V; �
2/ D V=�2 � log.V=�2/� 1:

In Table 9.2 we have computed MSE, MSE(sa), MSE(log.s2a/), and E.LS/ for s2n�3,
s2n�2, s2n�1, s2n, s2nC1, and s2nC2 for sample size n D 10. In calculating these quantities,
it is helpful to know that

E
n

�

�2v
	r=2

o

D 2r=2
� ..v C r/=2/

� .v=2/
:

Also, the r th cumulant of log(Y ), where Y is a standard gamma variable, is
 .r�1/.˛/, where  is the digamma function.

The asterisks in Table 9.2 mark the minimum value for each criterion. Stein’s
loss picks s2n�1 which corresponds to common practice when estimating variance.
In simulation experiments, MSE on the log or square root scale is easy to use and
much preferable to ordinary MSE. Here minimum MSE on the log scale picks s2n�2
which is slightly biased upwards in the s2 scale. Also it might be preferable to
just report the mean and standard deviation of the variance estimates or RN of the
previous section.
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9.5 Presenting Results

There is a growing statistical literature on how to present results of studies (both
Monte Carlo and other types) in tables and graphs. A few notable references are
Ehrenberg (1977, 1978, 1981), Wainer (1993, 1997a,b), and Gelman et al. (2002).
Although statisticians are in the business of informing others how to summarize
information, they are sometimes cavalier about following basic common sense and
statistical principles in presenting their own experimental results. Here we mention a
few basic principles and then discuss presentation of testing and confidence interval
studies.

9.5.1 Presentation Principles

• Use graphs whenever possible. It is fine to have both a graph and a table, subject
to space restrictions.

• Always give some idea of the standard error of each estimated entry in tables, and
in graphs when feasible. Generally, one can report a range or average standard
error in a note at the bottom of tables and in the caption of figures.

• It is best to use at most two significant digits in table entries, and seldom are more
than three required.

• It makes little sense to include digits beyond the standard error of the entry. For
example, suppose the computer gives .04586 for an entry but the standard error of
the entry is .002. Then there is no reason to report more than .046. (One possible
exception is when the difference of entries has a much smaller standard error than
the individual entry standard error.)

9.5.2 Presenting Test Power Results

We now illustrate the presentation of results for power studies using an example
discussed previously. Recall the dose-response situation of Problem 7.15 (p. 336)
and Problem 8.7 (p. 358): k dose levels d1; : : : ; dk, where at the i th dose we observe
˚

Yij ; nij ; j D 1; : : : ; mi




, and we assume that

E
�

Yij =nij jnij
	 D pi.ˇ/ D Œ1C exp.�ˇ1 � ˇ2di/��1 :

In this notation, the Cochran-Armitage score test for H0 W ˇ2 D 0 under the
assumption that the Yij are binomially distributed is given by
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TS D

"

k
P

iD1
.Yi: � ni:Y /di

#2

k
P

iD1
.di � d/2ni:Y .1 � Y /

; (9.7)

where Yi: D Pmi
jD1 Yij , ni: D Pmi

jD1 nij , Y D Pk
iD1 Yi:=

Pk
iD1 ni:, and d D

Pk
iD1 ni:di=

Pk
iD1 ni:. The generalized score test, given in Problem 8.7 (p. 358), is

TGS D

"

k
P

iD1
.Yi: � ni:Y /di

#2

k
P

iD1

"

.di � d/2
mi
P

jD1
.Yij � nij Y /2

# : (9.8)

The generalized score test allows for clustering or overdispersion in the Yij so that
the test statistic has approximately a �21 distribution under H0 W ˇ2 D 0. Some
obvious questions are:

1. How do the tests perform when there is no clustering? That is, for binomial Yij ,
what are the true ˛ levels under H0 W ˇ2 D 0 using �21 critical values, and what
are their power curves under alternatives?

2. How do the tests perform when there is clustering?

To answer these questions, we decided to simulate the simple situation given in
Problem 8.7 (p. 358) with k D 15 and associated doses

.12; 12; 12; 24; 24; 24; 48; 48; 48; 96; 96; 96; 192; 192; 192/ (9.9)

and cluster sizes nij

.10; 9; 7; 9; 8; 6; 9; 9; 8; 3; 9; 9; 7; 9; 10/: (9.10)

Perhaps it would be more realistic to make the nij random, but we have kept them
fixed. We set the true probabilities according to the logistic model on the logarithm
of dose,

pi D Œ1 � exp f�ˇ1 � ˇ2 log.di /g��1 ;
where ˇ1 D �2 and ˇ2 varied from 0 to .9. The first two rows of Table 9.3 display
the estimated power at nominal level ˛ D :05 (critical value D 3:84), and the
third row gives the difference of powers. Clearly, use of TGS entails some loss of
power when there is no clustering and the data are binomially distributed. Figure 9.1
displays the powers graphically. It is often much easier to see differences in a graph
than in a table.
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Table 9.3 Estimates of Power for Cochran-Armitage Tests for Binomial and Beta-
Binomial Data at ˛ D :05, k D 15, and intercept ˇ1 D �2. Doses and Sample Sizes are
in (9.9) and (9.10) on p. 378

� D 0 (Binomial)
ˇ2 D 0 .2 .3 .4 .5 .7 .9

TS .042 .16 .34 .55 .75 .94 .97
TGS .047 .14 .28 .45 .62 .85 .89
TS � TGS .02 .06 .09 .13 .09 .08

� D :3 (Beta-Binomial)

T �
S .051 .09 .14 .23 .34 .50 .60
TGS .029 .07 .12 .19 .26 .41 .46
TS � TGS .02 .02 .04 .08 .09 .14

Note: Power estimates are based on 1000 replications and have standard
deviation bounded by .4000/�1=2 D :016. The standard deviations of
differences are .010 to .014. TS refers to the usual Cochran-Armitage
statistic in (9.7, p. 378). TGS refers to the generalized version in (9.8,
p. 378). T �

S refers to use of TS with critical value D 12.17.
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Fig. 9.1 Power Estimates for Cochran-Armitage Score Tests from Table 9.3 when Data are
Binomial. Solid line, TS; dashed line, TGS

Next we generated the Yij from the beta-binomial distribution with intra-class
correlation �, where � is just the regular correlation between any two binary
outcomes (see, for example, Donald and Donner, 1990). To generate Yij , we first
generate a beta .a; b/ random variable U with a D pi .1 � �/=� and b D
.1 � pi /.1 � �/=�, and then generate Yij as binomial(nij ; prob. D U ). Thus,
(unconditionally) Yij has mean nij fa=.aC b/g D nij pi and variance

Var.Yij / D nij pi .1 � pi /C nij .nij � 1/�:
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For ˇ1 D �2 and ˇ2 D 0, the estimated rejection probabilities for the
Cochran-Armitage test (TS) were .14, .28, and .39 for � D :1, .3, and .5, respectively
(not displayed). Thus, the usual Cochran-Armitage test cannot achieve the nominal
level in the face of clustering. The related estimated rejection probabilities for TGS

were .05, .03, and .02, suggesting a conservative trend in TGS as � gets larger.
Just as comparing the variances of two statistics makes little sense when their

biases differ, it makes little sense to compare the powers of two test statistics whose
sizes differ. However, we can estimate a critical value for TS and use that instead
of 3.84. Thus, we generated 10,000 data sets with ˇ1 D �2, ˇ2 D 0, and � D :3,
and estimated the 95th percentile of TS to be 12.17. Using that critical value for TS

and the usual 3.84 for TGS, we obtained the results in the lower section of Table 9.3.
These results are not really fair to TGS because the whole point of using TGS is
to adjust TS so that it has the correct size without knowledge of the underlying
distributional type (here beta-binomial), but it illustrates perhaps the cost of using
TGS compared to the best one could do in this clustered binomial situation. In fact,
the quasi-likelihood approach with an estimated � for the overdispersion would be
more powerful here and perhaps close to this best power.

9.5.3 Reporting Results for Confidence Intervals

This section is intended to illustrate some of the principles useful in describing
a Monte Carlo study comparing confidence intervals. Recall from Section 9.3.4
(p. 371) that coverage probability and average confidence interval length are both
important quantities that should be reported whenever studying confidence intervals.
Ideally, intervals have the nominal 1 � ˛ coverage and are short on average. Here
we look at a series of three tables for the same data, each an improvement on the
one before it.

Zhang and Boos (1997) discuss new methods to handle clustered binomial data
appearing in a series of 2 	 2 tables. The details are not important here, but
one of the paper’s sections investigated confidence intervals for the common odds
ratio obtained by inverting a new Mantel-Haenszel test statistic. In a Monte Carlo
study, this new confidence interval CU was compared to another confidence interval
proposed by Liang (1985), here denotedCL. Table 9.4 is a portion of the first attempt
at presenting the results in a table.

This first attempt commits several sins; the first is reporting too many digits in
the table entries. It has been argued that humans have trouble dealing visually with
more than two digits in the entries of a table (Wainer 1993). Moreover, the Monte
Carlo sample size was 1000, and therefore the standard deviation of the coverage
estimates is approximately f.:05/.:95/=1000g1=2 D :007. Thus, the third decimal of
the coverage estimates is, statistically, mainly random noise. Table 9.5 shows the
improvement when only two digits are reported. For space considerations, we have
left off notes about standard errors in these tables. Generally, it is best to mention
standard errors and Monte Carlo sample size in each table.
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Table 9.4 Coverage and length of 95% confidence intervals for data from the beta-binomial(�)
distribution with odds ratio D 1.5

� D 0:0 � D 0:2Number
of strata nij ;mij D 5 5–10 5–15 5 5–10 5–15

k D 5 CL Coverage .977 .977 .977 .984 .980 .975
Mean Length 1.93 1.48 1.25 5.15 2.88 3.95

CU Coverage .969 .964 .968 .977 .968 .961
Mean Length 0.95 0.77 0.69 1.42 1.29 1.26

Table 9.5 Coverage and length of 95% confidence intervals for data from the beta-binomial(�)
distribution with odds ratio D 1:5

� D 0:0 � D 0:2Number
of strata nij ;mij D 5 5–10 5–15 5 5–10 5–15

k D 5 CL Coverage .98 .98 .98 .98 .98 .98
Mean Length 1.9 1.5 1.3 5.2 2.9 4.0

CU Coverage .97 .96 .97 .98 .97 .96
Mean Length 1.0 0.8 0.7 1.4 1.3 1.3

Table 9.6 Coverage and length of 95% confidence intervals for data from the beta-binomial(�)
distribution with odds ratio D 1.5

� D 0:0 � D 0:2Number
of strata nij ;mij D 5 5–10 5–15 5 5–10 5–15

k D 5 Coverage CL .98 .98 .98 .98 .98 .98
CU .97 .96 .97 .98 .97 .96

Mean Length CL 1.9 1.5 1.3 5.2 2.9 4.0
CU 1.0 0.8 0.7 1.4 1.3 1.3

Taken from Zhang and Boos (1997, p. 1193)

Finally, we note that it helps to reorder the rows so that similar items are together,
in other words to facilitate comparing “apples with apples.” Table 9.6 makes this
adjustment. Now it is clear that both intervals have coverage larger than 95%, but
CU is much better in terms of average length.

9.6 Problems

9.1. In the context of Example 9.1 (p. 365) the MSE could be estimated by bMSE D
N�1PN

iD1.b�i � �0/
2.

a. What is the standard deviation of bMSE?
b. Based on a preliminary run of size N0, how large should N be to have the

standard deviation of bMSE � d?
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9.2. Provide the details that lead to the sample size estimates N D 2�4n=d
2 and

N D 2=d2p in Section 9.3.2.

9.3. Use Theorem 5.19 (p. 238) or the M-estimator method to derive the asymptotic
variance of s21;N�1=s22;N�1 found in (9.2, p. 373).

9.4. Use Theorem 5.19 (p. 238) or the M-estimator method to derive the asymptotic
variance of RN found in (9.4, p. 374).

9.5. Verify that (9.6, p. 374) is the correct form of the standard error for RN based
on the M-estimator approach.

9.6. When reporting results about the variances of variance estimators, it is
sometimes useful to report the standardized variance (variance divided by the square
of the mean) because the variance estimators may be estimating different quantities.
For example, if V is a variance estimator and V � D V=2, then clearly the variance of
V � is 1/4 of the variance of V . Thus, we define the standardized variance (SV) to be
Var.V /= fE.V /g2. Given a Monte Carlo sample V1; : : : ; VN of a variance estimator

V , bSV D s2V =V
2
, where V and s2V are the sample mean and variance of the V ’s,

respectively. Using Theorem 5.19 (p. 238) or the M-estimator method, show that the
asymptotic variance of bSV is

�4n
�4n

�

Kurt.V / � 1 � 4
�n

�n
Skew.V /C 4

�2n
�2n

�

;

where �2n D Var.V / and �n D E.V /.

9.7. Related to the SV of the last problem, one might be interested in reporting
instead the coefficient of variation (CV), which is just the square root of bSV , bCV D
sV =V . Thus, use the Delta theorem with the asymptotic variance expression for bSV ,
to obtain the asymptotic variance for bCV :

�2n
�2n

�

Kurt.V / � 1
4

� �n

�n
Skew.V /C �2n

�2n

�

:

9.8 (Monte Carlo Integration). The integral
R 1

0
g.u/ du < 1 can be estimated

by N�1PN
iD1 g.Ui /, where U1; : : : ; UN is an iid sample from the Uniform(0,1)

distribution. If
R 1

0 g
2.u/ du < 1, derive the bias and variance of this estimator, and

state why consistency and asymptotic normality hold as N ! 1.

9.9 (Monte Carlo Integration via Importance Sampling). The integral
R1

�1 g.y/ dy can be estimated by N�1PN
iD1 g.Yi /=f .Yi/, where Y1; : : : ; YN is

an iid sample from the density f .y/ whose support is the whole real line. Find
conditions on g and f such that g.Y1/=f .Y1/ has finite variance. Then derive
the bias and variance of this estimator, and state why consistency and asymptotic
normality hold as N ! 1.
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9.10. Make a new version of Table 9.1 (p. 367) by transposing estimators and
sample sizes. That is, let the estimators be rows and the sample sizes be columns.
What advantage might this version have? Then take this new version and divide the
X:20 and Median entries by the X entry. What advantage might this version have?

9.11. Table 9.3 (p. 379) was created using the R programs mc.ca1.r.txt and
mc.ca2.r.txt on the text website

http://www4.stat.ncsu.edu/�boos/Essential.Statistical.Inference

a. Repeat the first half of Table 9.3 (p. 379) with a different intercept.
b. Repeat the first half of Table 9.3 (p. 379) with a different set of doses.
c. Repeat the first half of Table 9.3 (p. 379) with a different set of sample sizes.

9.12. Repeat the second half of Table 9.3 (p. 379) with � D :1. This requires
finding the 95th percentile of TS and substituting for 12.17 in mc.ca2.r.txt.
To find this percentile, run mc.ca2.r.txt with nmc<-10000 followed by
quantile(t1,.95).

9.13. In Section 9.5.3 (p. 380), the phrase “mainly random noise” was used to
describe the third decimal place of estimated coverage probabilities based on
N D 1000 Monte Carlo replications. To quantify this phrase, suppose that Y is
binomial(1000,.95)and Y=1000 is the estimate of interest. Model the act of rounding
from three decimal places to two as adding an independent uniform random variable
U on .�:005; :005/ to Y=1000. Show that the increase in the standard deviation of
Y=1000C U compared to the standard deviation of Y=1000 is 8.4%.

http://www4.stat.ncsu.edu/~boos/Essential.Statistical.Inference


Chapter 10
Jackknife

The jackknife was developed by Quenouille (1949, 1956) as a general method to
remove bias from estimators. Tukey (1958) noticed that the approach also led to
a method for estimating variances. Since that time, the jackknife has been used
more for variance estimation than for bias estimation. Thus our focus is mainly on
jackknife variance estimation, although we begin below in the historical order with
bias estimation.

We show that the jackknife variance estimation method is essentially an empirical
or “algorithmic” version of the influence curve or delta method approach for
estimation of asymptotic variances. Thus, the jackknife allows one to get standard
errors that are theoretically grounded in the approximation by averages but without
needing to know any of that theory or even how to take a derivative. In addition,
Efron and Stein (1981) (see Section 10.8.2, p. 405) showed for many estimators
the jackknife variance estimates tend to be slightly biased upward for any sample
size, thus providing insurance against worry that the methods are biased low in
small samples. The result is that jackknife variance estimators are very attractive
nonparametric estimators for many situations. Monte Carlo comparisons with
bootstrap variance estimators are discussed in Chapter 11.

10.1 Basics

10.1.1 Definitions

Ifb� is an estimator based on an iid sample Y1; : : : ; Yn, then letb� Œi � denote the “leave-

1-out” estimator obtaining by computingb� with Yi deleted from the sample. Denote
the average of these “leave-1-out” estimators by �1 D n�1Pn

iD1b�Œi � and define
the pseudo-values by

b�ps;i D nb� � .n � 1/b�Œi �: (10.1)

D.D. Boos and L.A. Stefanski, Essential Statistical Inference: Theory and Methods,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-4818-1 10,
© Springer Science+Business Media New York 2013
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We show that these pseudo-values are related to the influence curve of b� . For the
moment, a rough heuristic is that the pseudo-value is the part of b� that depends
on Yi ; i.e., .n � 1/b�Œi �, which does not depend on Yi , is subtracted from nb� , thus

leaving only the part ofb� that depends on Yi . The average of these pseudo-values is
the bias-adjusted jackknife estimator

b� J D 1

n

n
X

iD1
b�ps;i D nb� � .n � 1/�1

D b� � .n� 1/.�1 �b�/:

10.1.2 Bias Estimation

The jackknife estimator of bias is .n � 1/.�1 �b�/, and the estimatorb� J is the bias-
corrected jackknife estimator of � . Motivation forb� J comes from an assumed and
often valid expansion of the expected value ofb� :

Efb�g D � C ˇ1

n
C ˇ2

n2
CO.n�3/: (10.2)

Now, writeb� and �1 as response variables in a simple linear regression model after
grouping the higher-order terms into error:

b� D � C ˇ1

n
C e1; �1 D � C ˇ1

n � 1 C e2:

In these regression models the intercept D � , the slope D ˇ1, and the predictor is
inverse sample size, n�1 and .n � 1/�1. Using the two points .x1; y1/ D .1=n;b�)
and .x2; y2/ D .1=.n� 1/; �1/, the line segment connecting them has slope

bˇ1 D y2 � y1

x2 � x1
D n.n � 1/.�1 �b�/;

and the intercept is

y1x2 � y2x1
x2 � x1 Db� � .n � 1/.�1 �b�/ Db� �bˇ1=n Db� J;

which we saw above is also the average of the pseudo-values. Here, we can see that
b� J D b� �bˇ1=n is a bias-corrected estimator wherebˇ1=n D .n � 1/.�1 �b�/ is the
estimated bias subtracted fromb� .
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Fig. 10.1 From
Example 10.1 (p. 387), the

jackknife estimatorb� J as the
intercept estimate or
extrapolant at 0 from fitting a

line to the two points .1=n;b� )
and .1=.n � 1/; �1/. The true
value is �0. The solid curve is
the function Efexp.Y /g D
expf�C �2=.2n/g as a
function of n�1, and the
dashed line below it is the
line segment connecting the
values of the function at n�1

and .n� 1/�1, Efb�g and
Ef�1g, respectively

Example 10.1 (Exponential of the sample mean). Let Y1; : : : ; Yn be an iid
sample from a normal(�; �2/ distribution, and consider estimation of � D exp.�/
byb� D exp.Y /. Using the moment generating function of the normal distribution, it
is easy to show that Efexp.Y /g D expf�C�2=.2n/g. Viewing this latter expression
as a function of x D 1=n, second order Taylor expansion in x around x D 0 yields

Efexp.Y /g � e� C �2e�

2

1

n
C �4e�

4

1

n2
;

so that ˇ1 D �2e�=2 and ˇ2 D �4e�=4 in (10.2). For � D 0, �2 D 4, n D 10,
the solid curve in Figure 10.1 is expf� C �2=.2n/g with points on the curve at
(0,1), .n�1;Efb�g/, and ..n � 1/�1;Ef�1g/. Note that �0 D 1 is the true value of
� D exp.�/ when � D 0. The dashed line below the solid curve is the straight line
defined by the right-most two points and extended to x D 0where the intersection is
labeled �L to denote the linear extrapolation to 0. The dotted line goes through the
points .0;b�J ), .n�1;b�/, and ..n � 1/�1; �1/ and was obtained as the line segment
connecting the right-most two points and extended to x D 0 where it intersects at
b� J. Thus, the bias-corrected estimatorb� J is the extrapolatant at 0 of this line.b� J has
two sources of error: (i) it uses a linear approximation in place of the true bias curve;
and (ii) b� and �1 replace the unknown Efb�g and Ef�1g. A related plot is found in
Efron (1982, p. 7).

This general approach for correcting bias in estimators is based on reducing
information, which here is proportional to n. To see how the estimator changes with
sample size, we plot the estimatorsb� and �1 versus the inverse of sample size used
in calculating them, n and n � 1, respectively, and then extrapolate to 0, which is
the inverse of n D 1. A general version of this correction for bias in measurement
error problems was introduced by Cook and Stefanski (1994) and Stefanski and
Cook (1995) under the name SIMEX and further discussed in Carroll et al. (2006,
Ch. 5) �
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It is not hard to show using (10.2, p. 386) (see problem 10.2) that when (10.2) holds

Efb� Jg D � � ˇ2

n2
CO.n�2/;

and thus the bias of � has been reduced from O.n�1/ to O.n�2/. It is possible
to extend this approach by leaving out two or more observations at a time (see
Schucany et al., 1971), but apparently this is not often used in practice (Efron
1982 p. 8). In fact, even the first-order bias-corrected estimator b� J may not be an
improvement over b� in terms of mean squared error (see Kim and Singh, 1998,
for examples) and is not in routine use. On the other hand, the jackknife variance
estimator is an important practical method used extensively in survey sampling and
elsewhere. Thus we now focus our attention on it.

10.1.3 Variance Estimation

The jackknife variance estimator for b� can be defined in terms of the sample
variances of the leave-1-outb�Œi � or of the pseudo-values (10.1, p. 385) as follows,

bV J D .n � 1/2
n

1

n � 1

n
X

iD1

�

b� Œi � � �1
�2 D 1

n

1

n � 1

n
X

iD1
.b�ps;i �b� J/

2: (10.3)

To understand bV J, we examine the pseudo-values closely. In the case thatb� D Y ,
the pseudo-values are just the sample values themselves, and the jackknife variance
estimator is exactly the same as the standard variance estimate s2n�1=n. (With s2n�1
we continue our notation for referring to the sample variance with n�1 in the divisor.
Below, n � 1 in the subscript refers to leave-1-out estimators when the estimator
based on sample size n is written with a subscript n.) More generally, we have

b�ps;i �b� D .n � 1/.b� �b�Œi �/ D
b�Œi � �b�
� 1
n�1

; (10.4)

which looks a bit like an approximate derivative. In fact, the empirical distribution
function of the sample without Yi is Fn�1;Œi �.y/ D Fn.y/ C �n.ıYi .y/ � Fn.y/,
where �n D �.n� 1/�1 and ıYi .y/ is the distribution function of a constant random
variable with value Yi . Then, for functional type estimatorsb� D T .Fn/, we have

b�ps;i �b� D T .Fn�1;Œi �/� T .Fn/

� 1

n � 1
D T .Fn C �n.ıYi � Fn// � T .Fn/

� 1

n � 1
: (10.5)
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Looking back at the definition of the Influence Curve (5.13, p. 244), the above
formula looks like an empirical form of the definition, and it turns out thatb�ps;i �b�
is an approximation to the influence curve evaluated at Yi . Thus, to understand the
jackknife estimator of variance, it helps to consider how the influence curve is used
to get variance estimators.

10.2 Connections to the Influence Curve

Suppose thatb� has the familiar approximation-by-averages representation

b� � �0 D 1

n

n
X

iD1
IC.Yi ; �0/CRn; (10.6)

where
p
nRn

p�! 0 as n ! 1. Here we have changed notation to the more
common IC in place of our previous notation h in Theorem 5.23 (p. 242). If
EF fIC.Y1; �0/g D 0 and EF fIC.Y1; �0/g2 D R fIC.y; �0/g2dF.y/ D �2IC exists,

then by the Central Limit Theorem, b� is AN.�; �2IC=n/. An estimate of �2IC is the
empirical estimate

b�2IC D
Z

n

cIC.y;b�/
o2

dFn.y/ D 1

n

n
X

iD1

n

cIC .Yi ;b�/
o2

; (10.7)

where cIC means that the influence curve has been estimated in addition to replacing
�0 by b� . This leads to the asymptotic variance estimate b�2IC=n. In some situations
one may want to replace the divisor n in (10.7) by n � 1 or even by n � b in vector
situations to correct for small sample bias. In general, though, we just use n for the
divisor, and this estimator usually corresponds to plug-in estimators for �2IC.

The Influence Curve Method is a two-stage procedure:

1. Approximateb���0 by the sample average of IC.Yi ; �0/ and estimate IC.Yi ; �0/,
replacing �0 by b� and estimating other unknown quantities where necessary to
obtain cIC.Yi ;b�/.

2. Estimate �2IC using the sample variance of the cIC.Yi ;b�/.

In computing the sample variance in (10.7) we have not subtracted off the mean
since theoretically the influence curve has expectation 0. With M-estimators it does
not matter since the sample mean of the cIC .Yi ;b�/ is usually zero by definition.
Recall that M-estimators based on vector have influence curvesA.�0/�1 .y;�0/
estimated byAn.Y ;b�/

�1 .Yi ;b�/, and thus the vector version of (10.7, p. 389),

1

n

n
X

iD1
dIC .Yi ;b�/dIC .Yi ;b�/

T ; (10.8)
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leads directly to the empirical sandwich estimator V n.Y ;b�/ of (7.12, p. 302).
Similarly, delta theorem estimators of asymptotic variance may also be viewed as
Influence Curve Method variance estimators.

Now, we claim that
b�ps;i �b� � cIC .Yi ;b�/ (10.9)

and that the Jackknife Variance Method is just an approximation to the Influence
Curve Method. That is, the pseudo-values minus b� play the role of the estimated
influence curve, and bV J is just the sample variance of the pseudo-values divided by
n. One motivation for (10.9) is the heuristic provided by (10.5, p. 388). Also, using
the approximation-by-averages representation (10.6, p. 389), we have

b�ps;i �b� D IC.Yi ; �0/� IC C .n � 1/.Rn �Rni /;

where IC D n�1Pn
iD1 IC.Yi ; �0/ and Rni refers to the remainder in (10.6) when

b�Œi � is used rather thanb� . In Section 10.8.1 (p. 403) we discuss smallness ofRni�Rn
as the key condition for consistency of bV J for the asymptotic variance ofb� . Here we
are satisfied to illustrate with examples.

10.3 Examples

10.3.1 Sample Moments

The sample mean is an obvious first example, and the sample variance is the simplest
nonlinear statistic.

Example 10.2 (Sample mean). For the sample meanb� D b� D Y , the leave-1-out
estimators areb�Œi � D .nY �Yi /=.n�1/, and the pseudo-values are nY �.nY �Yi/ D
Yi , the observations themselves. Thus bV J D s2n�1=n.

The influence curve is y � �0 with cIC .Yi ; Y / D Yi � Y , and the empirical
estimate of �2IC is

s2n D 1

n

n
X

iD1
.Yi � Y /2;

leading to variance estimate s2n=n. Note that bV J and the Influence Curve Method
would be the same if n � 1 were used in the denominator of (10.7, p. 389). �

Example 10.3 (Sample variance). For the sample varianceb� D s2n D n�1Pn
iD1

.Yi � Y /2, the leave-1-out estimators are
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b�Œi � D 1

n � 1

n
X

jD1
j¤i

.Yj � Y n�1;i /2

D 1

n � 1

n
X

jD1
j¤i

˚

Yj � Y � �

Y n�1;i � Y 	
2

D 1

n � 1

n
X

jD1
j¤i

�

Yj � Y
	2 � �

Y n�1;i � Y 	2

D 1

n � 1

n
X

jD1
j¤i

�

Yj � Y
	2 � 1

.n� 1/2

�

Y � Yi
	2
;

where we have used Y Œi� � Y D .n � 1/�1.Y � Yi / in this last step. Next, the
pseudo-values are

b�ps;i D nb� � .n � 1/b�Œi � D
n
X

jD1
.Yj � Y /2 �

n
X

jD1
j¤i

�

Yj � Y 	2 C 1

n � 1
�

Y � Yi
	2

D .Yi � Y /2 C 1

n � 1

�

Y � Yi
	2

D
� n

n � 1

�

.Yi � Y /2:

Taking the average of the pseudo-values, we obtain

b� J D 1

n

n
X

iD1
b�ps;i D 1

n � 1
n
X

iD1
.Yi � Y /2;

the usual unbiased version of the sample variance. This illustrates how b� J is less
biased than b� where in this case EF fb�g D f.n � 1/=ng�2. In fact, Efron (1982,
p. 11) asserts that the true justification ofb� J is that it completely eliminates bias in
quadratic estimators.

Note also that

b�ps;i �b� J D
� n

n � 1

�

˚

.Yi � Y /2 � s2n



;
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which is very similar to cIC.Yi ; s
2
n/ D .Yi � Y /2 � s2n. Finally, the sample average

ofb�ps;i isb� J and taking the (n � 1 version) sample variance ofb�ps;i divided by n,
we get

bV J D 1

n.n � 1/

n
X

iD1

� n

n � 1
�2 ˚

.Yi � Y /2 � s2n

2 D

� n

n � 1
�3 .m4 � s4n/

n
;

where recallmk D n�1Pn
iD1.Yi �Y /k . Since s2n has influence curve .y��0/2��20

and cIC .Yi ; s2n/ D .Yi � Y /2 � s2n, the empirical estimate of �2IC is

1

n

n
X

iD1

˚

.Yi � Y /2 � s2n

2 D m4 � s4n:

Thus the Influence Curve Method yields .m4 � s4n/=n as an estimator of the
asymptotic variance of s2n, and is smaller than bV J by the factor f.n � 1/=ng3. �

The asymptotic variance of any sample moment mk is given in (5.11, p. 243).
Therefore, the Influence Curve method is easy to implement by just plugging in
sample moments for any unknown population moments in that asymptotic variance
expression. However, functions of sample moments such as 1Skew D m3=fm3=2

2 g
have complicated asymptotic variance expressions. Fortunately, the jackknife can
trivially handle such functions. Here we illustrate with a Monte Carlo study
application.

Example 10.4 (Monte Carlo study example). In Section 9.4.1 (p. 372) we
discussed obtaining standard errors for the ratio of two Monte Carlo sample
variances. The asymptotic variance formula (9.2, p. 373) is straightforward to obtain
and use, but some time is required to make sure the calculations are correct. In
contrast, the jackknife is extremely easy to use in such situations. As an illustration,
we take the same example as shown at the end of Section 9.4.1 (p. 372), where the
delta method gives a standard error of 0.019 for the ratio of estimated variances
of the sample mean and sample 20% trimmed mean. The first R function below is
modified from one mentioned in the Appendix of Efron and Tibshirani (1993).

jack.se<-function(x, theta, ...){
call <- match.call()
n <- length(x)
u <- rep(0, n)
for(i in 1:n) {u[i] <- theta(x[ - i], ...)}
jack.se <- sqrt(((n - 1)/n) * sum((u - mean(u))

ˆ2))
return(jack.se)

}

ratio.var<-function(index,xdata){
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# form that jackknife can use x=1:n
var(xdata[index,1])/var(xdata[index,2])

}

# put the following code in a file named mc.ex
# data norm15 is from code in Example 1 of MC Chapter
z<-norm15
ratio.var(1:N,cbind(z[,1],z[,2]))->ratio12
jack.se(1:N,ratio.var,cbind(z[,1],z[,2]))->sd.ratio12
cat("ratio12 =",round(ratio12,3),fill=T)
cat("sd.ratio12 =",round(sd.ratio12,3),fill=T)

> source("mc.ex")
ratio12 = 0.861
sd.ratio12 = 0.019

We see that the jackknife reproduces the results obtained from (9.2, p. 373). The
only requirement besides the basic jackknife function is to write a function such as
ratio.var above that calculates the statistic of interest in terms of the rows of
the data. Note that the call to jack.se uses the integers from 1 to N as the official
data and passes the real data z as an additional third argument. �

Because moments and functions of moments play such a large role in statistics,
we give here a theorem of Shao and Tu (1995, p. 25) to justify the use of bV J with
such statistics.

Theorem 10.1. Suppose that Y 1; : : : ;Y n are iid vectors with finite mean E.Y 1/ D
� and covariance ˙ . If g is a real-valued function with g0.�/ ¤ 0 and g0.y/ is

continuous at �, then for T D g.Y /, nbV J

wp1�! �2IC as n ! 1, where �2IC D
g0.�/˙g0.�/T .

The theorem is deceptively simple because it is phrased in terms of a single
multivariate sample mean. However, it covers the same ground as Theorem 5.26
(p. 246) where the statistic of interest is given specifically as T D g .q1; : : : ; qk/,
where each component is a sample mean of a function of an underlying sample
X1; : : : ; Xn. Thus, � above is ŒEfq1.X1/g; : : : ;Efqk.X1/g�T in this notation, and
˙ is the covariance matrix of fq1.X1/; : : : ; qk.X1/gT . The limiting variance form
�2IC is from the second delta method theorem, Theorem 5.19 (p. 238). The most
obvious examples of components are sample raw moments, m0

j D n�1Pn
iD1 X

j
i .

Of course, the sample moments mj D n�1Pn
iD1.Xi � X/j are covered because

they are functions of the raw moments. Most summary statistics from Monte Carlo
studies are covered by Theorem 10.1.



394 10 Jackknife

x

IC

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

−
2

−
1

0
1

2

Standard Normal Data

E
m

pi
ric

al
 IC

Fig. 10.2 Influence Curve of 20% trimmed mean at standard normal (Left Panel) and the jackknife
empirical influence curve of a sample of size n D 50 from a standard normal (Right Panel)

10.3.2 Trimmed Means

This next example further illustrates the close connection between the pseudo-values
and the influence curve. Although it is possible to handle the following jackknife
calculations analytically, we use a purely computational approach.

Example 10.5 (20% Trimmed mean). The 20% trimmed mean is the mean of the
middle 60% of the data after ordering, and we studied its variance in Example (9.1,
p. 365). The influence curve is similar to the Huber  k function of Example 7.4.1
(p. 311) (see Huber 1981, p. 58). In the left panel of Figure 10.2 (p. 394), we have
plotted this influence curve at the standard normal. In the right panel we have plotted
the valuesb�ps;i �b� versus the Yi for a sample of n D 50 from the standard normal.
We might call this plot a jackknife empirical influence curve. It is striking how close
the plots are. We could make the plots even closer if we eliminate the randomness
by using the quantiles of a standard normal, say ˚�1.i=.n C 1//, in place of the
sample. Thus, the jackknife provides a simple way to view the influence curve of
any suitably smooth estimator.

To further note the similarities in the jackknife and Influence Curve Methods, the
standard errors for the 20% trimmed mean for the n D 50 data set in Figure 10.2
(p. 394) are (.162,.155) for the jackknife and Influence Curve Method, respectively.
For an n D 20 generated data set, they are (.158,.167), and for an n D 100 data
set they are (.112,.112). These calculations and those in Figure 10.2 (p. 394) were
made using the trim.var R function of Section 9.4.2 (p. 373) and the R function
jack.se given in Example 10.4, p. 392. �

10.3.3 Contingency Tables

Consider a contingency table of counts where the cell counts can be viewed as
arising from a single multinomial vector with sample size n. For example, a
3-by-2 table with entries Nij might have arisen from a multinomial(nIp) with
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k D 6 cells. In some situations, such a table might arise from three independent
binomials or from two independent multinomials with three cells each. Such
“product multinomial” designs require multisample jackknife methods. Here we
only discuss the situations where the single multinomial describes the whole table.

What is the correct way to calculate the leave-1-out estimators based on a
multinomial vector? The standard approach for the jackknife is to leave out each of
the smallest independent pieces of data. Those are obviously the individualYi with a
simple random sample Y1; : : : ; Yn. Here, it is important to note that the multinomial
vector .N11;N12; : : : / making up the table is actually built from summing the
individual independent multinomial vectors: there are N11 of the form .1; 0; : : : ; 0/,
N12 of the form .0; 1; : : : ; 0/, etc. Thus, each of these individual vectors must be
dropped out in turn. Note that any statistic of interest is based on .N11;N12; : : : /
or equivalently on bp D .N11=n;N12=n; : : : /. But the latter is just a sample mean
of the individual independent multinomial vectors. Thus, Theorem 10.1 (p. 393)
applies and bV J is consistent. Here we illustrate use of bV J with a simple two by two
table example.

Example 10.6 (Capital punishment survey.). In a class of graduate students in
1996, the n D 25 students were asked to turn in a sheet of paper answering whether
they were US citizens or not (US or INT) and whether they were in favor of capital
punishment or not (FOR or AGAINST). The results were as follows

Against For Total

US 10 4 14

International 4 7 11

Total 14 11 25

Let us consider the difference of proportions of those not in favor of capital
punishment,

b�1 D bpUS �bpINT D 10

14
� 4

11
D :35;

and the related odds ratio

b�2 D
�

bpUS

1 �bpUS

�

=

�

bpINT

1 �bpINT

�

D .10/.7/

.4/.4/
D 4:375:

Both estimators are nonlinear since the denominators of the proportions are random
here. But since the estimators are functions of multinomial proportion estimators,
the delta method is straightforward (see 5.9, p. 239). On the other hand, the jackknife
variance estimate can be calculated by hand very easily since there are at most four
distinct leave-1-out values.

For b�1, there are 10 leave-1-out values equal to 9/13–4/11, 4 equal to 10/13–
4/11, 4 equal to 10/14–3/10, and 7 equal to 10/14–4/10, leading to .bV J/

1=2 D 0:202.
The usual delta method standard error is a little smaller, f.10=14/.4=14/=14 C
.4=11/.7=11/=11g1=2 D 0:189.
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There are three distinct leave-1-out values for b�2, (9)(7)/f.4/.4/g D 63=16,
70/12, and 60/16, leading to .bV J/

1=2 D 4:52. The asymptotic variance of log.b�2/ is
given in Problem 5.25 (p. 267) leading to the delta method standard error forb�2 of
3.77. �

10.3.4 Sample Quantiles

The leave-1-out jackknife method is known to be inconsistent for estimating the
variance of sample quantiles. To illustrate we calculate the jackknife variance
estimate for the median of a data set.

Example 10.7 (Median). Consider a random sample of rainfall in Raleigh in
February drawn from the years 1948 to 1992,

3:74 1:57 3:68 3:93 3:24 5:75 3:45 4:76 1:00 5:50 1:43 6:00

Ordering the 12 observations gives

1:00 1:43 1:57 3:24 3:45 3:68 3:74 3:93 4:76 5:50 5:75 6:00

The median is .3:68 C 3:74/=2 D 3:71. The leave-1-out estimators of the median
are either equal to 3:74 (the 7th ordered value) or 3:68 (the 6th ordered value).
The resulting leave-1-out jackknife standard error for the median is 0:10, much
less than it ought to be (e.g., compare to the bootstrap standard error .46 of the
next chapter). �

The jackknife works as an approximate Influence Curve method, first approxi-
mating the nonlinear statistic by a linear one, and then getting a variance estimate
for the linear approximation. In the case of the median (and other quantiles), the
jackknife linear approximation is not good enough to make the variance estimate
consistent. Problem 10.13 (p. 410) shows what happens to bV J for the median in
large samples.

10.4 Delete-d Jackknife

Although the usual jackknife variance estimator for the median is inconsistent, it
is possible to use instead the delete-d jackknife. If we compute b� for all Nn;d D
�

n
d

	

possible samples of size n � d and compute the 1=Nn;d version of the sample

variance among these b� values, call it s2n;d , then the “delete-d jackknife” variance
estimator is

�

n � d
d

�

s2n;d :
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Since this requires a huge computational burden, it is suggested that one just sample
m of these possible samples and use instead

�

n � d
d

�

s2m;

where here s2m is again the 1=m version of the sample variance of theb� values. For
the median with the Example 10.7 data, here are some runs with differentm and d
values:

Leave-6-out Leave-3-out
m=10 s.e. = .45 m=10 s.e. = .23
m=20 s.e. = .49 m=20 s.e. = .29
m=40 s.e. = .56 m=40 s.e. = .25
m=100 s.e. = .59 m=100 s.e. = .23
m=100 s.e. = .59 m=100 s.e. = .23

In order for the delete-d variance estimator to be consistent, d needs to go to infinity
along with n (see Shao and Tu 1995, Section 2.3). Thus it makes sense that the
d D 6 results above look reasonable, but the d D 3 results are too small.

10.5 The Information Reduction Approach for Variance
Estimation

Recall that for bias estimation, one way to derive the estimator b� J is to use the
prediction at 1=n D 1=1 D 0 from the line defined by the two points .x1; y1/ D
.1=n;b�) and .x2; y2/ D .1=.n � 1/; �1/. The related variance estimate procedure
is to use the points .x1; y1/ D .1=n; 0) and .x2; y2/ D .1=.n � 1/; s2�1/, where
we define

s2�1 D n�1
n
X

iD1

�

b�Œi � � �1

�2

:

The intercept from the line defined by these two points is �bV J,

�intercept D �.y1x2 � y2x1/
x2 � x1 D s2�1=n

1

n � 1 � 1

n

D n � 1
n

n
X

iD1

�

b�Œi � � �1

�2 D bV J:

The idea is to treatb� as a “population” of size one of estimators based on size nwith
y1 D 0 D the population variance of the one valueb� , leading to the point .1=n; 0).
The second point .1=.n� 1/; s2�1/ is based on treating the �1 values as a population
of estimators of size n � 1, hence y2 D s2�1 is the “population” variance of those n
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Fig. 10.3 Information
reduction approach forbV J.
The jackknife variance
estimatorbV J is the negative
of the intercept estimate or
extrapolant at 0 from fitting a
line to the two points .1=n; 0)
and .1=.n�1/; s2�1/. Data are
from Example 10.1 (p. 387)

values. Figure 10.3 (p. 398) illustrates the approach with data from the situation of
Example 10.1 (p. 387) (cf. Figure 10.1, p. 387). The delete-d variance estimator is
derived in exactly the same way using the points .1=n; 0) and .1=.n � 1/; s2n;d / or
.1=.n� 1/; s2m/. For example,

�intercept D �.y1x2 � y2x1/

x2 � x1
D s2n;d =n

1

n � d
� 1

n

D
�

n � d

d

�

s2n;d :

10.6 Grouped Jackknife

The delete-d jackknife in Section 10.4 (p. 396) is a fairly sophisticated technique
that can handle nonsmooth statistics like the median. A much older and simpler
procedure, called the grouped jackknife, is based on dividing the data intom groups
of size g each, n D mg. Then the grouped jackknife variance estimator is

bV GJ D m � 1
m

m
X

iD1

�

b�n�g;i � �G1

�2 D 1

m.m� 1/

m
X

iD1

�

b�ps;g;i �b�GJ

�2

; (10.10)

whereb�n�g;i is the estimator with the i th group left out, �G1 D m�1Pm
iD1b�n�g;i ,

the pseudo-values are b�ps;g;i D mb� � .m � 1/b�n�g;i , and b�GJ is the average of
the pseudo-values. In fact, (10.10) maybe viewed as the general expression, and the
more common delete-1 jackknife variance estimator in (10.3) is a special case with
g D 1. In certain situations g > 1 may be preferred because of computational
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reason, but usually the standard delete-1 (g D 1) jackknife is preferable. This
preference can easily be demonstrated when b� is the sample mean. In that case,
it is easy to see the pseudo-values are the averages of the deleted groups, denote
them by Y i , and �G1 Db�GJ D Y . Thus,

bV GJ D 1

m.m� 1/

m
X

iD1

�

Y i � Y 	2 :

Clearly, EfbV GJg D .�2=g/=m D �2=n, and bV GJ is thus unbiased for Var.Y /.
Moreover, using (1.23, p. 22),

Var.bV GJ/ D �4

n2

�

2

m � 1 C Kurt.Y1/� 3

n

�

: (10.11)

The delete-1 usual jackknife variance estimator for Y is s2n�1=n, and its variance
has exactly the same form as Var.bV GJ/ (see 1.23, p. 22) except that 2=.m � 1/ is
replaced by 2=.n � 1/. In the case of normal data with Kurt.Y1/ D 3, we have
Var.bV GJ/=Var.s2n�1=n/ D .n � 1/=.m � 1/ � g. Thus, the delete-1 jackknife
estimator is much more efficient than the grouped jackknife variance estimator.

10.7 Non-iid Situations

Thus far, the examples we considered can be viewed in terms of an iid random
sample. The key principle for extension to other situations is that one should seek
to drop out each of the smallest, independent pieces that make up the data. In
the case of a sample Y1; : : : ; Yn, dropping out each Yi is the correct jackknife
approach. As mentioned for the grouped jackknife, it is possible to drop out
independent groups of observations like .Y1; Y2/; .Y3; Y4/; : : : .Yn�1; Yn/, but the
resulting variance estimator is not as efficient as the standard delete-1 bV J. The
delete-d estimator is different, because there we are dropping out all

�

n
d

	

pieces,
and they are not independent.

A nice illustration of the general principle is for two-stage survey sampling
designs where it is natural to drop out the primary sampling units of the first stage.
All the units selected within an individual primary sampling unit are correlated and
should be kept together as a unit. A good discussion is given in Chapter 6 of Shao
and Tu (1995). Here we illustrate jackknifing in three other non-iid situations: the k
independent samples problem, the linear model, and times series data.
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10.7.1 k Independent Samples

The data consists of k independent samples Y11; : : : ; Y1n1 , Y21; : : : ; Y2n2 ; : : : ; Yk1; : : : ;
Yknk , with associated distribution functionsF1; : : : ; Fk . The usual one-way ANOVA
setup is a common situation with data like these. An estimator of interest could be a
pooled variance estimator or the overall sample mean.

The individual data values Yij could be random vectors. In Section 10.3.3 (p. 394)
we discussed r by s contingency tables when the data come from a single multi-
nomial random vector .N11;N12; : : : ; Nrs/, which can then be viewed as arising
from n iid random vectors. However, the rows (or columns) of the contingency
table are often distributed as independent multinomial vectors, .N11;N12; : : : ; N1s/,
.N21;N22; : : : ; N2s/, : : :, .Nr1; Nr2; : : : ; Nrs/. But these rows can again be each
viewed as arising from independent multinomial vectors of size 1. Thus, here we
have k D r samples of independent vectors. Statistics such as the odds ratio or
estimates of correlation measures are commonly used with such data.

What is the appropriate way to use the jackknife to obtain variance estimators?
Clearly, we see how to drop out the smallest independent pieces. But how should
we define pseudo-values and put these together to get bV J? The best guide is to
remember that in the iid case, the pseudo-values approximate the influence curve.
Unfortunately, we have not discussed approximation by averages for the k-sample
problem except in Problem 5.40 (p. 270).

Thus, we begin with the simple k D 2 situation andb� D g.Y 1; Y 2/. By Taylor
expansion, we have

g.Y 1; Y 2/� g.�1; �2/ � @g.�/

@�1
.Y 1 � �1/C @g.�/

@�2
.Y 2 � �2/

D 1

n1

n1
X

iD1

@g.�/

@�1
.Y1i � �1/C 1

n2

n2
X

jD1

@g.�/

@�2
.Y2j � �1/:

The variance of this latter expression is then

�

@g.�/

@�1

� 2
�21
n1

C
�

@g.�/

@�2

� 2
�22
n2
;

where �21 and �22 are the variances in each sample, respectively. Plugging in sample
means and variances would then yield the delta method/influence curve estimator of
asymptotic variance.

Let us try defining

b�
.1/
ps;i D n1b� � .n1 � 1/b�

.1/

Œi �

b�
.2/
ps;j D n2b� � .n2 � 1/b�

.2/

Œj � ;
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where the superscripts refer to the two different samples. For a simple linear
example,b� D Y 2 � Y 1, we have

b�
.1/
ps;i D n1.Y 2 � Y 1/� .n1 � 1/

(

Y 2 �
 

n1Y 1 � Y1i
n1 � 1

!)

D Y 2 � Y1i :

Similarly,b�.2/ps;j D �Y 1 C Y2i . Then, define

bV J D s21;ps

n1
C s22;ps

n2
;

where s21;ps and s22;ps are the respective sample variances of the pseudo-values. For
b� D Y 2 � Y 1, we then have bV J D s21=n1 C s22=n2 as one would get from the delta

method expansion. Another example is the nonlinear estimatorb� D Y 2=Y 1, where
in Problem 10.11 (p. 410) one is asked to show that bV J is approximately equal to
the delta method variance estimator.

The generalization to k samples should be clear: define pseudo-values separately
in each sample and then let

bV J D
k
X

jD1

s2j;ps

nj
: (10.12)

Arvesen (1969) first proposed the above bV J for k D 2, but otherwise it has
not been discussed much in the literature. A proper appreciation and general proof
requires the k-sample approximation by averages

b� � �0 D
k
X

iD1

1

ni

ni
X

jD1
IC .i/.Yij ; �0/CR; (10.13)

where the i th partial influence curve IC .i/.y; �0/ is defined by

IC .i/.y; �0/ D @

@�
T .F1; : : : ; Fi�1; ıy � Fi ; FiC1; : : : ; Fk/

ˇ

ˇ

ˇ

ˇ

�D0C

:

10.7.2 Linear Model

Recall the standard linear model with full rank design matrix

Yi D xTi ˇ C ei ;
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where e1; : : : ; en are independent with mean 0 and variance �2i . Here, we think of
the data as pairs .x1; Y1/; : : : ; .xn; Yn/ regardless of whether the xi are random or
not. The general principle above suggests again leaving out each pair .xi ; Yi / in
turn. Miller (1974) showed for the least squares estimator bˇLS D .XTX/�1X TY

that bV J is consistent, but bˇJ is not bˇLS, and Hinkley (1977) demonstrates that bˇJ

has higher variance thanbˇLS. Thus Hinkley (1977) suggested defining the weighted
pseudo-values

bˇwps;i D bˇLS C n.1 � hi /.bˇLS �bˇLS;i/;

where hi D xTi .X
TX/�1xi . The average of these bˇwps;i is bˇLS and the resulting

variance estimator is

bV HJ D .XTX/�1
 

n

n � p

n
X

iD1
be2ixix

T
i

!

.XTX /�1;

where bei D Yi � xTi
bˇLS are the usual residuals and p is the dimension of ˇ.

Notice that bV HJ is the same expression that occurred naturally in the M-estimation
approach, (7.21, p. 317). It allows for variance heterogeneity of the errors ei ,
in contrast to the usual covariance estimator .XTX /�1b�2, where b�2 D .n �
p/�1

Pn
iD1be2i . Wu (1986) suggests a variant of bV HJ,

bV WJ D .XTX/�1
 

n
X

iD1

be2i
1 � hi

xix
T
i

!

.XTX/�1;

that is exactly unbiased for estimating Var.bˇLS/ under the assumptions Var.ei / D �2i
and xTi .X

TX/�1xj D 0 for any pair .i; j / where �2i ¤ �2j .
The solutions suggested above apply only to least squares although one might try

something similar for other types of estimators and regression situations.

10.7.3 Dependent Data

Time series and spatial data situations pose special problems for variance es-
timation because typically there is no independent replication. That is, all the
observations in a data set are correlated. The key assumption needed to use
a jackknife method is for the correlation between observations to get small as
the distance between observations grows. For example, in the first-order autore-
gressive time series of Example 5.4 (p. 216), the correlation between Xi and
XiCh is �h, where typically 0 < � < 1. Carlstein (1986) proposed splitting
the data into nonoverlapping blocks of size g, much like the grouped jackknife
approach, whereas Künsch (1989) suggested sequential or moving blocks of the
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form .Y1; : : : ; Yg/, .Y2; : : : ; YgC1/, : : : ; .Yn�gC1; : : : ; Yn/. The latter approach is
more similar to the delete-d jackknife, but only these n � g consecutive blocks are
used compared to the

�

n
g

	

possible blocks of the delete-d jackknife. For consistency
of the jackknife variance estimators, it is essential that the size of the blocks ! 1
as well as the number of blocks ! 1 as n ! 1. Shao and Tu (1995, Ch. 9) survey
these and other jackknife approaches for dependent data.

10.8 Several Technical Results for the Jackknife

In this section we give a general result on asymptotic consistency of bV J and a few
details of the Efron and Stein (1981) theory concerning the upward bias of bV J.

10.8.1 Asymptotic Consistency of bV J

We restrict ourselves to the simple case of an iid sample Y1; : : : ; Yn and a real
estimatorb� that has the usual approximation-by-averages representation,

b� � �0 D 1

n

n
X

iD1
IC.Yi ; �0/CRn; (10.14)

where
p
nRn

p�! 0 as n ! 1, EF fIC.Y1; �0/g D 0, and EF fIC.Y1; �0/g2 D �2IC.
Of course, for the leave-1-out estimators we also have

b�Œi � � �0 D 1

n � 1
n
X

jD1
j¤i

IC.Yi ; �0/CRni ;

where it is important to note that the remainderRni here is indexed with an i . From
the approximation by averages, we have thatb� is AN.�0; �2IC=n/ as n ! 1. Thus,
we would like to show that

bV J
˚

�2IC=n



p�! 1 as n ! 1; (10.15)

or equivalently that nbV J
p�! �2IC. To that end, we substitute the approximation by

average representations into bV J as follows,
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nbV J D .n � 1/

n
X

iD1

0

@b�Œi � � 1

n

n
X

jD1
b�n�1;j

1

A

2

D .n � 1/

n
X

iD1

0

B

B

@

1

n � 1

n
X

jD1
j¤i

IC.Yj ; �0/CRni � IC �Rn

1

C

C

A

2

D .n � 1/

n
X

iD1

 

IC � IC.Yi ; �0/
n � 1

CRni � Rn

!2

D 1

n � 1

n
X

iD1
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where IC D n�1Pn
iD1 IC.Yi ; �0/ and Rn D n�1Pn

iD1 Rni . The first term above
is a sample variance of the IC.Yi ; �0/ and thus converges in probability to �2IC.

Using the Cauchy-Schwarz inequality,
˚

n�1P aibi

2 � ˚

n�1P a2i

 ˚

n�1P b2i



,
we have for the cross product term

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1

˚

IC.Yi ; �0/ � IC 
 �Rni �Rn
	

ˇ

ˇ

ˇ

ˇ

ˇ

� 1

n � 1

n
X

iD1

˚

IC.Yi ; �0/� IC

2

	.n � 1/
n
X

iD1

�

Rni � Rn
	2
:

Putting these pieces together, we have nbV J
p�! �2IC if

.n � 1/

n
X

iD1

�

Rni �Rn
	2 p�! 0 as n ! 1: (10.16)

Since
Pn

iD1
�

Rni � Rn
	2 � Pn

iD1 .Rni �Rn/2, an alternate sufficient condition is

.n � 1/
n
X

iD1
.Rni � Rn/

2 p�! 0; as n ! 1: (10.17)

The latter condition may be easier to work with. Thus, we have proved the following
theorem.
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Theorem 10.2. Suppose that Y1; : : : ; Yn are iid and (10.14, p. 403) holds for b� ,

where
p
nRn

p�! 0 as n ! 1, EF fIC.Y1; �0/g D 0, and EF fIC.Y1; �0/g2 D
�2IC < 1. If (10.16) or (10.17) holds, then nbV J

p�! �2IC as n ! 1.

By the Markov inequality and the fact that Rn1; : : : ; Rnn are iid, a sufficient
condition for (10.17) and thus (10.16) is

n2E.Rni � Rn/
2 �! 0 as n ! 1: (10.18)

Shao and Wu (1989) refer to n2E.Rni � Rn/
2 as a measure of smoothness of the

linear approximation (10.14, p. 403), the faster it approaches 0 the more smooth is
the approximation.

As a simple illustration, recall from (5.5, p. 211) for s2n that Rn D �.Y n �
�/2. Somewhat tedious calculations reveal that E.Rni � Rn/

2 D O.n�3/ and
E.Rni �Rn/2 D O.n�3/, although the first is easier to show than the second. Thus,
Theorem 10.2 holds if Y1 has a finite fourth moment. Of course, in Example 10.3
we derived nbV J D fn=.n � 1/g3.m4 � s4n/, which is easily shown to converge to
�4 � �4 by laws of large numbers. The development of Theorem 10.2 above was
partially taken from Shao and Wu (1989) and Shao and Tu (1995, p. 51). Using
similar methods, these authors also prove consistency of the delete-d jackknife and
give alternative methods for proving consistency of bV J based on differentiability of
statistical functionals T .F /.

10.8.2 Positive Bias of bV J

In examples it is often seen that bV J is larger than the influence curve method of
variance estimation. Also, in simulation studies bV J tends to be larger than the true
variance (see for example, Table 11.3, p. 423, and Table 11.5, p. 423). Efron and
Stein (1981) provided some elegant theory to support such empirical observations.
Here we give a few details of their approach.

Suppose thatb� D b�.Y1; : : : ; Yn/ is a symmetric function of the iid observations
Y1; : : : ; Yn and has finite variance. Following Hoeffding (1948), Efron and Stein
(1981) define

˛.yi / D n
n

E.b� jYi D yi / � E.b�/
o

;

ˇ.yi ; yj / D n2
�

E.b� jYi D yi ; Yj D yj / � ˛.yi /

n
� ˛.yj /

n
� E.b�/

�

;

and similarly �.yi ; yj ; yk/; : : : ; �.y1; : : : ; yn/ (see Serfling p. 178 for related
quantities) so that
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b� D E.b�/C 1

n

n
X

iD1
˛.Yi /C 1

n2

X

i<j

ˇ.Yi ; Yj /

C 1

n3

X

i<j<k

�.Yi ; Yj ; Yk/;C � � � C 1

nn
�Y1; : : : ; Yn:

To illustrate, forb� D s2n, ˛.Yi / D f.n� 1/=ngf.Yi ��/2 ��2g, and ˇ.Yi ; Yj / D
�2.Yi � �/.Yj � �/, leading to

s2n D
�

n � 1

n

�

�2 C 1

n

n
X

iD1

�

n � 1
n

�

˚

.Yi � �/2 � �2



C 1

n2

X

i<j

˚�2.Yi � �/.Yj � �/
 :

Note that this expansion is different from the usual approximation by averages form

s2n D �2 C 1

n

n
X

iD1

˚

.Yi � �/2 � �2

 � .Y � �/2:

In fact, the terms ˛.Yi /, ˇ.Yi ; Yj /, etc., have been carefully constructed to have
mean 0 and to be uncorrelated with one another so that

Var.b�/ D �2˛
n

C
 

n � 1

1

!

�2ˇ

2n2
C
 

n � 1

2

!

�2�

3n5
C � � � C �2�

n2n
; (10.19)

where Varf˛.Yi/g D �2˛ , Varfˇ.Yi ; Yj /g D �2ˇ; � � � .
Next Efron and Stein (1981) show that

b� Œi � �b�Œj � D 1

n � 1

˚

˛.Yi / � ˛.Yj /



C 1

.n � 1/2
n
X

kD1
k¤i;j

˚

ˇ.Yj ; Yk/ � ˇ.Yi ; Yk/

C � � � ;

leading to

E
�

b�Œi � �b�Œj �
�2 D 2�2˛

.n � 1/2
C
 

n � 2

1

!

2�2ˇ

.n � 1/4 C
 

n � 2
2

!

2�2�

.n � 1/6
C � � � :
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Now, recall the U -statistic form of s2n�1 in (5.25, p. 251) whereby
Pn

iD1.ai �
a/2 D n�1P

i<j .ai � aj /
2. Thus, summing both sides of the last equation and

dividing by n (for the right-hand side just multiplying by .n � 1/=2), we have

E

(

n
X

iD1
.b� Œi � � �1/2

)

D E
n� n

n � 1

�

bV J

o

D �2˛
n � 1 C

 

n � 2
1

!

�2ˇ

.n � 1/3

C
 

n � 2

2

!

�2�

.n� 1/5
C � � � :

Then subtracting Var.b�Œi �/ (use equation (10.19) with n � 1 in place of n) from this
last equation yields

Theorem 10.3 (Theorem 1 of Efron and Stein (1981)). Suppose that b� D
b�.Y1; : : : ; Yn/ is a symmetric function of the iid observations Y1; : : : ; Yn and has
finite variance. Then

E
n� n

n � 1

�

bV J

o

� Var.b� Œi �/ D 1

2

 

n � 2
1

!

�2ˇ

.n � 1/3
C 2

3

 

n � 2
2

!

�2�

.n � 1/5
C � � � :
(10.20)

This result relates bV J based on a sample of size n times n=.n�1/ to the variance
of b� based on a sample of size n � 1 and shows the form of the difference. In
particular, this difference is nonnegative since all the terms on the right-hand side of
(10.20) are nonnegative. Now, if

Var.b�/ �
�

n � 1
n

�

Var.b�Œi �/; (10.21)

then we can multiply the left-hand side of (10.20) by .n� 1/=n and obtain the main
result of interest,

E.bV J/ � Var.b�/: (10.22)

Hoeffding (1948) showed that (10.21) holds for U -statistics. Efron and Stein (1981)
claim that (10.22) also holds for V -statistics (see Serfling 1980, p. 174) and is
asymptotically true for quadratic estimators, that is, estimators with only ˛.Yi / and
ˇ.Yi ; Yj / terms in the basic expansion. Thus, we have firm results showing that
(10.22) holds for certain classes of statistics and empirical evidence from examples
and simulations that it often holds more generally.
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10.9 Summary

The jackknife is an important tool for nonparametric bias and variance estimation.
In practice the variance estimators are more important than the bias estimators.
Asymptotically, bV J may be viewed as a computational method, without requiring
calculus or analytic calculations, to implement the Influence Curve method (which
includes the delta method and the sandwich method of M-estimators). We find it
especially appealing for summary statistics from Monte Carlo studies as illustrated
by Example 10.4 (p. 392). Even for veteran statisticians, it is much simpler to
add one or two lines of code to a simulation program than to think through the
appropriate delta/influence curve method.

In addition, the Efron and Stein (1981) theory suggests that bV J is often biased
upwards relative to the true variance, which is generally an appealing property for
variance estimates. For example, approximate confidence intervals based on bV J

tend to have good coverage properties. Thus, bV J may be preferred on both ease
of implementation as well as on statistical performance. In Chapter 11 we compare
bV J to the bootstrap and Influence Curve method in some simple examples.

We have found that the best sources for understanding advanced features of the
jackknife are Efron’s 1982 monograph The Jackknife, the Bootstrap, and Other
Resampling Plans and Shao and Tu’s 1995 book The Jackknife and Bootstrap.

10.10 Problems

10.1. Show that the least squares estimator of � based on .b�; 1=n) and
.�1; 1=.n� 1// isb� J, and the slope estimator of ˇ1 is n.n � 1/.b� � �1/.

10.2. If EF fb�g D � C ˇ1=nC ˇ2=n
2 CO.n�3/, then show that

EF fb�J g D � � ˇ2=n
2 C O.n�2/ and thus that the bias ofb� has been reduced from

O.n�1/ to O.n�2/.

10.3. For the estimatorb� D Y
2

based on an iid sample Y1; : : : ; Yn, find the exact
bias for estimating �2 and the bias ofb�J .

10.4. In Example 10.1 (p. 387), the data used in Figure 10.1 (p. 387) is

0.67 0.66 -1.33 -0.35 -0.71 -1.08 -1.60 0.00 1.70
4.54

withb� D exp.Y / D exp.0:25/ D 1:284 and �1 D 1:306. Show thatb� J D 1:09 by
finding the intercept of the line between the points .1=10; 1:284/ and .1=9; 1:306/.
The mean of m D 10; 000 delete-5 estimates is 1.508. Add the point .1=8; 1:508/
and find the intercept for fitting all three points by least squares.
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10.5. Let b� D n�1Pn
iD1 I.Yi � c/, where c is a known constant. Give the

influence curve estimator of the variance of b� (just write it down) and derive the
jackknife estimator of variance, bV J .

10.6. Let Y1; : : : ; Yn be iid random variables with mean � and finite variance.
Considerb� D g.Y /, where g is differentiable and 0 < jg0.�/j < 1.

a. Use Taylor expansion to determine the influence curve ofb� . Then show that the
influence curve method of variance estimation is exactly the same as the delta
method.

b. Note that Y n�1;i D .nY � Yi /=.n � 1/. Using the Taylor series approximation
g.Y /�g.Y n�1;i / � g0.Y /.Y�Y n�1;i /, show that the jackknife variance estimate
is approximately the delta method estimate.

10.7. Use the sim.sampR program from Chapter 9 (p. 366) to produce a matrix of
1000 rows of length 20 from the standard exponential distribution (rexp). Compute
the 20% trimmed mean and its jackknife variance estimate with

apply(z,1,mean,trim=.2)->est
apply(z,1,jack.var,theta=mean,trim=.2)->v.est

Then compute the ratio of the mean of the variance estimates to the variance of the
estimates and give the jackknife Monte Carlo standard error of this ratio. Here is
sample code:

var.est<-function(est,v.est){
ratio1<-function(index,xdata){

mean(xdata[index,2])/var(xdata[index,1])
}
x<-data.frame(est,v.est)
nmc<-nrow(x)
r1<-ratio1(1:nmc,x)
r1.var<-jack.var(1:nmc,theta=ratio1,xdata=x)
cat("mean of var est./var of est=",round(r1,3),

"se=",round(sqrt(r1.var),3),fill=T)
}
var.est(est,v.est)

10.8. For the data in Example 10.6, p. 395, show thatb� J is equal to b�1 D :35 for
the difference in proportions andb� J D 1:575 for the odds ratio. Try to explain why
for the difference in proportions we get the same estimator as the original estimator.
Doesb� J D 1:575 for the odds ratio seem unusually small compared tob�2 D 4:375?

10.9. In a clinical trial of the effect of eyedrops on reducing the incidence of
glaucoma, 33 of 204 patients receiving no eyedrops developed glaucoma after the
end of 7 years, and 17 of 204 patients taking the eyedrops developed glaucoma. Find
.bV J/

1=2 and the delta method standard error for the natural logarithm of relative risk,
b� D log.bp1=bp2/.
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10.10. In a case-control study of the effect of taking statin drugs on glaucoma, 42 of
667 glaucoma cases had taken statin drugs for at least 24 months, and 660 of 6667
controls (no glaucoma) had been taking statin drugs. For the odds ratio, calculate
the jackknife and delta method standard errors using the independent binomials
assumption. (The delta method standard error is the same as in the full multinomial
case of Example 10.3.3, p. 394.)

10.11. For b� D Y 2=Y 1 in the case of two independent samples, show that bV J of
(10.12, p. 401) is approximately the same as the delta method variance

 

Y 2

Y
2

1

!2
s21
n1

C
�

1

Y 1

�2
s22
n2
:

Hint: use Taylor expansion on the first sample pseudo-values.

10.12. Suppose we have two independent samples and put this in the linear model
framework,Yi D xTi ˇCei , by setting xi1 D 1; i D 1; : : : n; xi2 D 0; i D 1; : : : ; n1;

xi2 D 1; i D n1 C 1; : : : ; n; and n D n1 C n2. Show that forbˇ2 D Y 2 � Y 1

bV HJ D n

n � 2
��

n1 � 1

n21

�

s21 C
�

n2 � 1
n22

�

s22

�

(taken from Hinkley 1977, p. 287) and bV WJ D s21=n1 C s22=n2.

10.13. In Pyke (1965) we find the following theorem: Let Y1; : : : ; Yn be iid with
distribution function F and positive density f at a D F �1.u/, where i=n ! u as
n ! 1. Then n.Y.i/ � Y.i�1// converges in distribution to an exponential random
variable with mean 1=f .a/, where Y.1/; : : : ; Y.n/ are the ordered sample values. Use
that theorem to prove the following result for the jackknife estimate of the variance
of the sample median:

nbV J

d�! 1

4f 2.�/

�

�22
2

�2

;

where � is the population median and we assume that f .�/ > 0. For simplicity
consider only even sample sizes n D 2m, and first verify that

bV J D n � 1
4



Y.mC1/ � Y.m/
�2
:

(This result was given in Efron 1982, p. 16.)

10.14. Using (1.23, p. 22), verify that (10.11, p. 399) is correct.

10.15. Consider a randomized complete block with n blocks (rows) and k treat-
ments. The typical data might be modeled byXij D �C˛i Cˇj Ceij ; i D 1; : : : n,
j D 1; : : : ; k, where eij are independent with mean 0. The estimator of interest
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b� might be a treatment contrast or something more complex. Assume that the ˛i
are fixed treatment effects, and the block effects ˇj may be a) fixed or b) random.

Explain how to obtain a jackknife variance estimator forb� under both scenarios, ˇj
is fixed or random; in other words, what pieces of data should be dropped out for
each case?

10.16. Verify that ˛.Yi / and ˇ.Yi ; Yj / defined in Section 10.8.2 have mean 0 and
are uncorrelated.

10.17. Forb� D Y
2
, show that

˛.Yi / D 2�.Yi � �/C 1

n

˚

.Yi � �/2 � �2



with variance �2˛ D 4�2�2 C 4��3=n C .�4 � �4/=n2, and ˇ.Yi ; Yj / D 2.Yi �
�/.Yi � �/ with variance �2ˇ D 4�4. Using the formulas in Section 10.8.2, find

Var.Y
2
/ and E.bV J/ and show directly that E.bV J/ � Var.Y

2
/.



Chapter 11
Bootstrap

11.1 Introduction

The bootstrap is a general technique for estimating unknown quantities associated
with statistical models. Often the bootstrap is used to find

1. standard errors for estimators,
2. confidence intervals for unknown parameters,
3. p-values for test statistics under a null hypothesis.

Thus the bootstrap is typically used to estimate quantities associated with the
sampling distribution of estimators and test statistics.

There are several ways to view the bootstrap. The first is called the “plug-
in” description. Basically we can think of what the bootstrap estimates as a
functional (function of a function) of the underlying distribution function F ; call
the functional Q.F /. In a sense to be made clearer in Section 11.2.1 (p. 419), we
substitute the empirical distribution function Fn in place of F to get the bootstrap
estimator Q.Fn/.

The popularity of the bootstrap stems more from the second description of the
bootstrap based on visualizing a “bootstrap world” where the data analyst knows
everything. In this parallel world the true sampling design of the data is reproduced
as closely as possible, and unknown aspects of the statistical model are replaced
by sample estimates. In the real world we have one sample from the population of
interest. In the bootstrap world, we can draw as many bootstrap samples (also called
resamples) from the bootstrap-world population as we want. Thus, in this world,
the data analyst can obtain any quantity of interest by simulation. For example, if
the variance of a complicated parameter estimate in this world is desired, one just
computer generates B replicate samples, computes the estimate for each sample,
and then uses the sample variance of the B estimates as an approximation to the
variance. As B grows large, this sample variance converges to the true variance
in the bootstrap world. Of course in terms of the estimator based on the original
data (the real world), this limiting sample variance is just an estimator of the true

D.D. Boos and L.A. Stefanski, Essential Statistical Inference: Theory and Methods,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-4818-1 11,
© Springer Science+Business Media New York 2013
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Table 11.1 Yearly Maximum Flow Rates (gallons per second) at a Gauging Station in North
Carolina

5550 4380 2370 3220 8050 4560 2100 6840 5640 3500 1940 7060
7500 5370 13100 4920 6500 4790 6050 4560 3210 6450 5870 2900
5490 3490 9030 3100 4600 3410 3690 6420 10300 7240 9130

variance of the estimate. Thus we create a bootstrap world where anything can be
computed, at least up to Monte Carlo error. Those true quantities calculated in the
bootstrap world are estimates of the parallel quantities in the real world. In effect this
“bootstrap world” simulation approach opened up complicated statistical methods
to anybody with a computer and a random number generator.

Efron and Tibshirani (1993) and Davison and Hinkley (1997) are standard texts
on the bootstrap. See also Boos (2003), from which portions of this chapter are
borrowed.

11.1.1 Sample Bootstrap Applications

Before getting to the details of the bootstrap in Sections 11.2–11.7, we now give
several real consulting examples illustrating where the bootstrap might be used.

Example 11.1. Recall in Chapter 1 the consulting example in Section 1.4 (p. 8)
where a graduate student in civil engineering wanted to model the relationship
between watershed area and the maximum flow over a 100 year period at gauging
stations on rivers in North Carolina. He had a model R D kA��1 relating the 100
year maximum flow rate at a station (R) to the watershed area (A) at the station; k
and � are unknown parameters. Taking logarithms leads to a simple linear model.
He had values of A for 140 stations, but theR measurement for each station was the
maximum flow during the time the station had been keeping records. These lengths
of time varied between 6 and 83 years; so they really were not comparable and also
were not appropriate for the maximum over 100 years.

It was discovered that the student could get yearly maximums for a number
of stations. The data in Table 11.1 are n D 35 yearly maximum flow rates at
one particular station (also found in Problem 2.2, p. 107). Assuming year-to-year
independence for the yearly maximums, the distribution function of the maximum of
100 yearly maximums is P.R.100/ � t/ D ŒF .t/�100, where F.t/ is the distribution
of a single yearly maximum. Thus we proposed that we estimate the median, say
t0, of the distribution function ŒF .t/�100 to be used as the response variable in the
regression model. Setting ŒF .t0/�100 D 1=2 implies that F.t0/ D .1=2/:01 D :993.
Thus, t0 is actually the .993 quantile of the yearly maximum distribution. Because
the sample sizes were too small to estimate this quantile nonparametrically, we
suggested a parametric model for the yearly maximum. So, for the data of
Table 11.1, we assumed a location-scale, extreme value, model (see 1.9, p. 9).
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This assumption was supported with a QQ plot, and then the data were fit by
maximum likelihood obtaining b� D 4395:1 and b� D 1882:5. The estimate of the
.993 quantile is then

b� f� logŒ� log.:993/�g Cb� D 13729:2:

Using the inverse of the estimated Fisher information and the delta method applied
to the above function, we obtained a standard error of 1375.3. The idea would be
for the student to do this estimation at a number of stations and possibly use the
standard errors as weights in the regression fit.

The classical tools used here are quite adequate: QQ plot, maximum likelihood,
and delta method. But let us see what the bootstrap can do. We may first confirm
the extreme value assumption by generatingB D 100 data sets of size n D 35 from
the fitted distribution and computing the Anderson-Darling goodness-of-fit statistic
(AD) for each sample:

AD D n

Z 1

�1

h

F.yIb�/� Fn.y/
i2 h

F.yIb�/.1 � F.yIb�//
i�1

f .yIb�/ dy; (11.1)

whereFn.y/ is the empirical distribution function andb� D .b�;b�/T is the maximum
likelihood estimator. It is helpful to know that there is a convenient computing
formula for AD:

AD D �n � 1

n

n
X

iD1
.2i � 1/

h

log
n

F.Y.i/Ib�/
o

C log
n

1 � F.Y.nC1�i /Ib�/
oi

;

where Y.1/ � � � � � Y.n/ are the sample ordered values. Since 95 of these bootstrap
AD values were larger than the value AD D .178 for the data in Table 11.1, the
parametric bootstrap p-value is .95. (The term parametric bootstrap is used here
because the bootstrap samples are generated from a fitted parametric family instead
of sampled directly from the data.) If the p-value had been fairly small we would
have taken B to be much larger. The null distribution of AD for this situation has
been tabled (Stephens, 1977), but the bootstrap has made tabling such distributions
unnecessary (except for use in computer packages). In fact the bootstrap distribution
here is exact up to Monte Carlo error because the null distribution of AD does
not depend on the values of the parameter. This is true for any location-scale
family. We also kept track of the bootstrap parameter estimates and the estimated
.993 quantile for each bootstrap resample. The mean of the quantile estimates was
13572.2, illustrating some negative bias of the estimate since 13572.2 is smaller
than 13729.2, the true value in the bootstrap world. The standard deviation of the
quantile estimates was 1386.0, a parametric bootstrap standard error quite close
to the information-matrix delta value of 1375.3. Finally, we made a histogram
and QQ plot of the 100 bootstrap .993 quantile estimates and observed that they
are approximately normally distributed (suggesting that the .993 quantile estimate
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Fig. 11.1 Two methods for detecting PCB’s overlaid with the least squares line

Table 11.2 GS and ELISA values for 24 Samples

GS 76 50 59 92 70 99 28 58 106 94 115 166
ELISA 81 83 84 92 93 100 106 109 121 122 129 140

GS 176 156 150 192 171 177 205 337 334 309 310 568
ELISA 143 145 152 152 172 172 212 309 320 358 429 510

from different stations is a statistically well-behaved response variable in the linear
regression). These bootstrap analyses are modest additions to the original analysis,
but they do add some insight. For some people, just avoiding the Fisher information
and delta theorem calculus would be attractive. �

Example 11.2 (Detecting PCB’s). A local Raleigh company came to us several
years ago with data on two methods of detecting polychlorinated biphenyls (PCB’s).
They were developing a solid phase fluoroimmunoassay method that we call ELISA,
and the other method we refer to as GS for gold standard because its results were
accepted as truth. Figure 11.1 displays the data, n D 24 pairs of (GS,ELISA) values
given in Table 11.2. The company was interested in detecting PCB levels of 200
ppb (parts per billion) or more using an “action limit” of 100 ppb for their ELISA
method. That is, they planned to declare that PCB was present whenever ELISA
was � 100.

After some discussion, we determined that they wanted the probability of a
false negative when GS = 200, P.ELISA < 100jGS D 200/. In screening test
terminology, this probability would be one minus the sensitivity of the test. They
also were interested in the probability of a false positive (one minus the specificity
of the test) for different levels of GS. Since all of these calculations are similar, we
focus here on the sensitivity.

To make the problem simple, we decided to model the ELISA results as a linear
function of GS with normal homogeneous errors,

ELISA D ˛ C ˇ.GS/C �Z; (11.2)
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where Z is a standard normal random variable. Then

P.ELISA < 100jGS D 200/ D P.˛ C ˇ.GS/CZ < 100jGS D 200/

D P

�

Z <
100� ˛ � ˇ.200/

�

�

D ˚

�

100� ˛ � ˇ.200/

�

�

; (11.3)

where ˚ is the standard normal distribution function.
Since .˛; ˇ; �/ were unknown, we used the least squares estimates from a fit

to the data in Figure 11.1 to substitute in (11.3). The estimate of (11.3) was .002.
But how should the variation due to the parameter estimates be accounted for? One
could use the joint asymptotic normal distribution of the least squares estimates
and the delta method to get a standard error for the estimate and an approximate
confidence interval. But it was much simpler to just generate 10,000 samples from
the model (11.2) with the least squares estimates in place of .˛; ˇ; �/. As in the
previous example, this is a parametric bootstrap. The bootstrap standard error was
.005 and the upper 95% probability bound was .013 using the percentile method (see
Section 9.4). We worried a bit about the normality assumption, and decided to try a t
distribution with five degrees of freedom as an alternative to the normal distribution.
The probability estimate was then .007 with bootstrap standard error .009 and
upper 95% probability bound of .023. So there is clearly some sensitivity to the
normal assumption. (Actually, it appears that a Weibull distribution might be more
appropriate for the errors, but we did not pursue distributional alternatives further
because of time and cost.) One could also worry about variance heterogeneity and
other model inadequacies or use a better bootstrap confidence interval method. �

11.2 Bootstrap Standard Errors

The influence curve and jackknife variance estimation methods are focused on
estimating the asymptotic variance of an estimator. In contrast, the bootstrap method
attempts to directly estimate the variance of an estimator. The basic idea is to

1. write the variance of the estimator in terms of the unknown distribution function
F of the data: VarF fb�g (see equation 11.4, p. 420);

2. and then conceptually substitute an estimate bF for F into the variance expres-
sion, resulting in Var

bF
fb�g.

In this respect the bootstrap estimator is called a “plug-in” estimator as mentioned
in the introduction to this chapter because bF is plugged into the variance expression
wherever needed. In fact the influence curve method is really a “plug-in” method
for the asymptotic variance.
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An alternative view of the bootstrap method is based on sampling from a
fictional pseudo-population that we called the “bootstrap world.” As mentioned in
the chapter introduction, it is this view that makes the bootstrap easy to understand
and implement. The basic idea is to

1. First create a pseudo-population from the sample values. In a simple situation, we
just consider the set of sample values fY1; : : : ; Yng to be a population. (Usually,
we are not thinking of a finite population situation; so if necessary, think of this
population as consisting of an infinite number of Y1 values, an infinite number of
Y2 values, . . . , an infinite number of Yn values, each one occurring 1=n proportion
of the time.)

2. Then one conceives of drawing a random sample (often called a resample)
from this pseudo-population, mimicking the true sampling process as closely
as possible. This is random sampling in the bootstrap world. For the simple
population above and iid sampling, this resampling means drawing samples with
replacement from fY1; : : : ; Yng.

3. Because we know everything about the pseudo-population, we can theoretically
calculate the variance of our estimator when the sample is drawn from the
pseudo-population. This variance is the bootstrap variance estimator.

In practice the calculation of the last step is too difficult except for very simple
cases, and we approximate the variance calculation by repeatedly sampling from the
pseudo-population, computing the estimator for each bootstrap resample, and then
computing a sample variance of these estimators. In other words, we estimate the
theoretical variance in the bootstrap world by Monte Carlo methods. Remember
that the theoretical variance of our estimator in the bootstrap world is actually an
estimate of the variance when viewed from the real world. Thus, a Monte Carlo
approach gives an estimate of the bootstrap estimate of variance.

Example 11.3 (Food consumption of female rats). Data from an experiment on
food consumption of female rats treated with zinc-calcium EDTA are taken from
Brownie and Brownie (1986). The ordered sample values are

> sort(rats)
[1] 5.35 5.37 5.53 5.95 6.20 7.12 7.22
[8] 7.62 7.63 7.63 7.67 7.97 8.43 8.68

[15] 9.20 9.63 11.32 11.52 15.27 15.90

The 10th and 11th ordered values are 7.63 and 7.67, respectively, and thus the
sample median is 7.65. Now let us consider this sample as the pseudo-population
and draw B D 10 random samples from it. To do this, we merely draw values
independently with replacement from the set of sample values. For illustration, the
subscripts of the first sorted resample are

> set.seed(200)
> sort(sample(20,replace=T))
[1] 3 4 4 7 8 8 9 9 10 11

[11] 11 11 11 12 14 14 15 15 16 19
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Notice a number of repeats. Now the actual resample values are

> set.seed(200)
> sort(rats[sample(20,replace=T)])
[1] 5.53 5.95 5.95 7.22 7.62 7.62 7.63 7.63
[9] 7.63 7.67 7.67 7.67 7.67 7.97 8.68 8.68

[17] 9.20 9.20 9.63 15.27

Here, the third value 5.53 appears once, the fourth value 5.95 appears twice, etc.
The median of this resample isb��

1 D 7:67. Repeating this nine more times gives an
iid set of B D 10 sample medians (iid in the bootstrap world):

7.67 8.68 7.80 7.62 8.325 8.43 7.67 8.68 8.03
7.63

The sample standard deviation of these ten values is 0.44. This is a Monte Carlo
(random sampling) approximation to the true bootstrap standard deviation estimate
which itself is a theoretical calculation based on the above pseudo-population (see
Problem 11.1). To show how variable our approximation is, three more sets of B D
10 bootstrap samples led to estimated bootstrap standard errors of 0.37, .07, and
0.40. A typical recommendation is to use at least B D 100 bootstrap samples.
Repeating B D 100 four times gave estimated bootstrap standard errors of 0.43,
0.42, 0.53, and 0.32. Repeating four times at B D 1000 gave 0.42, 0.53, 0.49,
and 0.44. Keep in mind of course that the true bootstrap standard error (actually
0.46 if B ! 1) has quite a large sampling variance itself, much larger than the
approximation error due to using B D 100 instead of B D 1 resamples. Thus, if
we obtained a new sample of 20 rat results, the bootstrap standard error would likely
be quite different from 0.46. �

In Efron and Tibshirani (1993, Ch. 19), details are given about the decomposition
of variability due to the original sample and to the bootstrap resampling. The basic
result is that the variance of the estimated bootstrap standard error is approximately
c1=n

2 C c2=nB , where c1 and c2 depend on the underlying population and type of
estimator. The sampling error due to resampling B times can be made arbitrarily
small by making B large, but it rarely is worth the effort to go beyond B D 100 or
B D 1000.

11.2.1 Plug-In Interpretation of Bootstrap Variance Estimates

Now we explain the plug-in approach that gives a more theoretical understanding
of the bootstrap method. For simplicity we start with an iid sample Y1; : : : ; Yn with
each Yi having distribution function F , and a real parameter � is estimated by b� .
When necessary, we think of b� as a function of the sample, b�.Y1; : : : ; Yn/. The
variance ofb� is then
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VarF .b�/ D
Z

n

b�.y1; : : : ; yn/� EF .b�/
o2

dF.y1/ � � �dF.yn/; (11.4)

where

EF .b�/ D
Z

b�.y1; : : : ; yn/ dF.y1/ � � �dF.yn/:

The nonparametric bootstrap estimate of Var(b�/ is just to replace F by the empirical
distribution function Fn.y/ D n�1Pn

iD1 I.Yi � y/:

VarFn.b�/ D
Z

n

b�.y1; : : : ; yn/� EFn.b�/
o2

dFn.y1/ � � �dFn.yn/:

Now the general expression for these expectations is ugly. For example,

EFn.b�/ D
Z

b�.y1; : : : ; yn/ dFn.y1/ � � �dFn.yn/ D 1

nn

n
X

i1D1
� � �

n
X

inD1
b�.Yi1 ; : : : ; Yin/:

Recall that integrating a function g.y/ in one dimension with respect to dF is
R

g.y/dF.y/ D R

g.y/f .y/dy for continuous Y1 where f is the derivative of
F , and

R

g.y/dF.y/ D P

g.yi /P.Y1 D yi / for discrete Y1 with possible values
y1; y2; : : : Thus, replacing F.y/ by the empirical distribution function Fn.y/ D
n�1Pn

iD1 I.Yi � y/ gives
R

g.y/dFn.y/ D n�1Pn
iD1 g.Yi / because the empirical

distribution function corresponds to a discrete random variable with probability 1=n
at the observed data values. Of course an n-fold integral leads to an n-fold sum.

For very simple estimators, we can make the above calculations exactly. For
example, ifb� D Y , we know that EF .Y / D EF .Y1/ and therefore

EFn.Y / D EFn.Y1/ D
Z

y dFn.y/ D Y :

Similarly, we know that VarF .Y / D VarF .Y1/=n D
h

EF .Y 21 /� fEF .Y1/g2
i

=n and

then

VarFn.Y / D EFn.Y
2
1 / � fEFn.Y1/g2

n
D 1

n

 

1

n

n
X

iD1
Y 2i � Y 2

!

D s2n
n
:

Thus s2n=n is the nonparametric bootstrap estimator of the variance of the sample
mean.

Suppose that we make the parametric assumption that F.y/ D F.yI �/ D 1 �
exp.�y=�/, an exponential distribution with mean � . Then the maximum likelihood
estimator of F is bF D F.yIY / D 1 � exp.�y=Y /, and the parametric bootstrap

estimate of the variance of the sample mean is just Var
bF
Y D Var

bF
Y1=n D Y

2
=n

since the square of the mean is the variance for an exponential distribution. The
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parametric bootstrap is not really in the spirit of Chapters 7 (M-estimation) and 10
(jackknife) that emphasized standard errors obtained under minimal assumptions.
However, it is an important technique in cases where parametric assumptions are
reasonable, but analytic variance calculations are difficult. When using maximum
likelihood estimation, the parametric bootstrap typically yields the maximum like-
lihood estimator of the quantity being estimated. Note that for nonlinear estimators,
the parametric bootstrap estimate of variance is different from those obtained from
information matrices which are in fact asymptotic variance estimators.

It might be good at this time to note more clearly that the influence curve
method of variance estimation is really a bootstrap method for estimating asymptotic
variance. Recall that given an estimator b� with influence curve IC.y;�0/, the
asymptotic variance ofb� is just

˙F =n D EF fIC.Y1;�0/IC.Y1;�0/gT =n:

Suppose that we write �0 as �.F / and assume thatb� may be thought of as a function
�.Fn/ of the empirical distribution functionFn. Then for a real-valued estimator, we
may write ˙F as

˙F D EF ŒIC fY1; �.F /g�2 D
Z

ŒIC fy; �.F /g�2 dF.y/: (11.5)

Replacing F by Fn (which also turns IC into cIC ) in (11.5) yields

Z

h

cIC fy; �.Fn/g
i2

dFn.y/ D 1

n

n
X

iD1

h

cIC fYi ; �.Fn/g
i2 D 1

n

n
X

iD1

n

cIC.Yi ;b�/
o2

;

(11.6)

the expression that was given previously in vector form in Chapter 10 (10.8, p. 389).
Thus we may think of the Influence Curve variance estimator as a bootstrap plug-in
estimator of asymptotic variance.

11.3 Comparison of Variance Estimation Methods

The three main nonparametric methods of variance estimation are 1) the influence
curve method (direct estimation of asymptotic variance), 2) the jackknife method,
and the bootstrap method. As mentioned previously, Efron and Stein (1981) showed
theoretically that the jackknife variance estimate is typically biased upwards, that
is, usually E.bV J / � Var.b�/. There are no similar general results for the influence
curve method or the bootstrap. Moreover, first-order asymptotic analysis of these
three variance estimation methods has not provided generally useful insights for
recommending one method over another, except to identify those cases where the
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jackknife does not work, such as the median. Thus, Monte Carlo studies are used
for insight.

Efron (1982) reports on a number of simulation comparisons. His Tables 3.1–3.3
suggest:

1. that the influence curve variance estimate can be badly biased downwards in
some cases;

2. that the jackknife variance estimate tends to be more variable than either the
bootstrap or the influence curve estimates.

Here, for an iid sample Y1; : : : ; Yn, we give simulation results for variance
estimators of (i) the usual sample variance, b� D s2n, (ii) the 20% trimmed mean,
and (iii) the L-moment coefficient of skewness.

Recall that the asymptotic variance of Var.s2n/ is .�4 � �4/=n, leading to the
influence curve estimator bV IC D .m4 � s4n/=n. The jackknife variance estimator
in this case was derived in Chapter 10 to be Œn=.n � 1/�3.m4 � s4n/=n. The exact
variance is

Var.s2n/ D
�

n � 1

n

�2
 

2�4

n � 1 C �4 � 3�4
n

!

;

leading to the bootstrap variance estimator

bV Boot D
�

n � 1
n

�2
 

2s4n
n � 1

C m4 � 3s4n
n

!

:

Table 11.3 displays the variance estimator results for n D 10. For each distribution,
there are two columns labeled bV =V and CV, respectively. The column labeled
bV =V refers to the average of the 10,000 variance estimates for a method divided
by the true variance V. (In Tables 11.4 and 11.5, V is estimated by the sample
variance of the 1,000b� values.) The CV column is the sample coefficient of variation
of the 10,000 variance estimates for a method, that is, the Monte Carlo sample
standard deviation of the 10,000 variance estimates divided by their sample mean.
Although all three variance estimators have a similar form for this simple situation
in Table 11.3 withb� D s2n, the constants make quite a difference in small samples,
and the influence curve and bootstrap variance estimators are too small on average,
seriously too small for the normal and exponential cases. In contrast, the jackknife
variance estimator is too large for the uniform, but fairly unbiased for the normal
and exponential. Moving to n D 30 (not displayed), all three estimators improve
considerably: 10,000 reps yielded (bV IC=V , bV J=V , bV Boot=V ) D (0.98, 1.08, 0.99)
for the uniform, (0.93, 1.03, 0.90) for the normal, and (0.91, 1.01, 0.87) for
the exponential. So the same basic pattern emerges that the influence curve and
bootstrap variance estimators tend to be a bit small for the normal and exponential,
whereas the jackknife estimator is a bit too large for the uniform and generally the
best of the methods.



11.3 Comparison of Variance Estimation Methods 423

Table 11.3 Monte Carlo average of estimators of Var.s2n/ for n D 10 divided by true

variance V (bV =V ). CV is the estimated coefficient of variation for the variance estimator.
Based on 10,000 Monte Carlo replications

Uniform Normal Exponential

Distribution bV =V CV bV =V CV bV =V CV

Influence Curve 0.91 0.55 0.80 1.20 0.70 4.1
Jackknife 1.24 0.55 1.09 1.20 0.96 4.1
Bootstrap 0.93 0.51 0.74 1.15 0.60 4.0

Average s.e.’s 0.01 0.01 0.01 0.02 0.03 0.3

Table 11.4 Monte Carlo average of estimators of the variance of the 20% trimmed mean

for n D 20 divided by true variance V (bV =V ). CV is the estimated coefficient of variation
for the variance estimator. Based on 1,000 Monte Carlo replications

Uniform Normal Exponential

Distribution bV =V CV bV =V CV bV =V CV

Influence Curve 0.96 0.41 0.95 0.47 1.02 0.69
Jackknife 0.87 0.34 0.93 0.42 1.04 0.70
Bootstrap (B D 100) 0.91 0.38 0.99 0.43 1.12 0.67

Average s.e.’s 0.04 0.01 0.04 0.01 0.05 0.04

Table 11.5 Monte Carlo average of estimators of the variance of the L-moment skewness

estimator for n D 20 divided by true variance V (bV =V ). CV is the estimated coefficient of
variation for the variance estimator. Based on 1,000 Monte Carlo replications

Uniform Normal Exponential

Distribution bV =V CV bV =V CV bV =V CV

Jackknife 1.12 0.39 1.31 0.68 1.32 0.97
Bootstrap (B D 100) 1.17 0.34 1.07 0.37 1.03 0.44

Average s.e.’s 0.05 0.01 0.06 0.04 0.06 0.03

Note that we have reported average values of estimated variances. Efron (1982)
reports average values of the estimated square root of variances, that is, averages of
standard deviation estimators. Averages of standard deviation estimators naturally
appear less biased than averages of variance estimators.

Perhaps we have been a bit unfair to the influence curve method in Table 11.3
because we used n�1 in the definition of bV IC instead of .n�1/�1 as in the jackknife.
To be more fair, we now present results for the 20% trimmed mean where the
influence curve variance estimator has been tuned a bit (see trim20.var in
Section 9.4.2, p. 373). In Table 11.4, we use the same distributions as in the other
tables but change to n D 20 and 1,000 replications because we use algorithm



424 11 Bootstrap

versions of the jackknife and bootstrap (B D 100). Here we see that all three
variance estimators perform fairly similarly.

Finally, in Table 11.5 we compare the jackknife and the bootstrap variance
estimators for the L-moment coefficient of skewness estimator that is a ratio similar
to 1Skew but more robust (see Hosking, 1990). Here we see a clear superiority for the
bootstrap over the jackkknife in terms of both bias (bV =V ) and variability (CV). In
fact, the coefficient of variation results for the bootstrap can even be reduced some
by taking B D 1000 instead of B D 100.

We have studied variance estimators for the simple nonlinear estimator s2n
and for the 20% trimmed mean and L-moment skewness estimator. In the first
example, Table 11.3 (p. 423), the jackknife was the best performer. In the second
example, Table 11.4 (p. 423), no clear winner emerges. The bootstrap is a clear
winner in Table 11.5, and we note that several of the examples in Efron (1982) where
the bootstrap is preferred are for estimators involving ratios. We did not include the
influence curve method in Table 11.5 because of the additional work involved in
deriving it. In general, the jackknife and bootstrap variance estimators are much
simpler to use because they require no analytic derivation. We should also point out
that when sample sizes are large, such as when analyzing Monte Carlo simulation
output, all three methods give similar answers, and the easiest method to implement
should be chosen, usually the jackknife.

We tend to agree with conclusions given by Shao and Tu (1995, end of Ch. 3) that
for obtaining standard errors, the jackknife is often the preferred method because of
its simplicity and the fact that it is rarely too small on average. The bootstrap may
be reserved for use in more complicated settings or for problems like confidence
intervals or hypothesis tests.

11.4 Bootstrap Asymptotics

Singh (1981) and Bickel and Freedman (1981) initiated study of the asymptotic
properties of bootstrap procedures. The basic result is that under fairly weak
conditions the bootstrap estimate of the standardized distribution of an estimator
converges almost surely to the same asymptotic distribution as for the estimator.
The most usual case is when the estimator or statistic is asymptotically normal, and
then a typical proof method is to use approximation by averages. To show that the
bootstrap estimator of variance is consistent requires more conditions. See Shao and
Tu (1995, Ch. 3) for details.

To illustrate the almost sure convergence in distribution of the bootstrap distribu-
tion estimate, we state Theorem 3.1 of Bickel and Freedman (1981). Their result is
about the V -statistic of degreem D 2

Vn D 1

n2

n
X

iD1

n
X

jD1
�.Yi ; Yj /;
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where � is a symmetric kernel with �.x; y/ D �.y; x/. Previously, we discussed in
Chapter 5 the related U -statistic

Un D 2

n.n � 1/

n
X

iD1

n
X

jD1
�.Yi ; Yj /:

An example is �.x; y/ D .x � y/2=2 for which Vn D s2n and Un D s2n�1. The
asymptotic variance times n for both Vn and Un is

�2� D 4

"

Z �Z

�.x; y/ dF.y/

� 2

dF.y/� �2�
#

;

where �� D E f�.Y1; Y2/g is their limit in probability. In the following result we
conceive of bootstrap samples Y �

1 ; : : : ; Y
�
n that are iid with distribution function

equal to Fn, the empirical distribution function of the given sample Y1; : : : ; Yn, and
V �
n is the statistic based on a bootstrap sample. In this bootstrap world, the true

parameter is ��;n D EFn
˚

�.Y �
1 ; Y

�
2 /

 D Vn.

Theorem 11.1 (Bickel and Freedman 1981, Theorem 3.1). Suppose that Y1; : : : ;
Yn are iid with distribution function F , E f�.Y1; Y2/g2 < 1, E f�.Y1; Y1/g2 < 1,
and �2� > 0: Then for almost all Y1; Y2; : : :, given .Y1; : : : ; Yn/, as n ! 1

p
n.V �

n � ��;n/ converges weakly to N.0; �2� /:

Remembering that convergence in distribution or weak convergence is about
convergence of distribution functions, this result means that

P � ˚pn.V �
n � ��;n/ � x


 wp1�! ˚.x=�A/ as n ! 1;

where we write the above probability as P � to emphasize that the probability is
conditional on the given sample, or a probability in the bootstrap world. Thus, first
order bootstrap asymptotics involves verifying that the statistic in the bootstrap
world (in the above case V �

n ) has the same asymptotic normality as the parallel
statistic Vn in the real world. The proof usually involves approximation by averages
and then a Central Limit Theorem that takes into account the fact that the underlying
true distribution Fn in the bootstrap world is changing with n.

These first-order asymptotic results such as Theorem 11.1 suggest that since
the bootstrap distribution converges, then related quantities used in inference like
bootstrap distribution quantiles or variances also converge. But often, such results
are not sufficient for analyzing variations in bootstrap methods or comparison
with other types of methods. Thus, Edgeworth expansions of bootstrap distribution
functions such as P �fpn.V �

n � ��;n/ � xg are used for such analyses. To illustrate,
suppose thatb� is AN(�; �=n/. A one-term Edgeworth expansion forb� would give
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P fpn.b� � �/ � xg D ˚.x=�/C cp
n

C o.n�1=2/; (11.7)

as n ! 1 for each x, where ˚ is the standard normal distribution function.
Analogously, in the bootstrap world, we should have the related result

P �fpn.b�� �b�/ � xg D ˚.x=��
n /C cnp

n
C o.n�1=2/; (11.8)

almost surely as n ! 1 for each x, where ��
n

p�! � and cn
p�! c. Thus,

subtracting (11.8) from (11.7), we have

P fpn.b� � �/ � xg � P �fpn.b�� �b�/ � xg D ˚.x=�/ � ˚.x=��
n /C op.n

�1=2/

D Op.n
�1=2/;

where in this last step we have used Taylor expansion of ˚ and assumed that ��
n �

� D Op.n
�1=2/. Thus the bootstrap distribution of

p
n.b�� �b�/ is withinOp.n�1=2/

of the distribution of
p
n.b� � �/.

For comparison, let us now consider the analogous expansions for the t-like
quantities t D .b� � �/=b� and t� D .b�� �b�/=b��, where b� is an estimator of �
and we assume convergence to the standard normal:

P.t � x/ D ˚.x/C dp
n

C o.n�1=2/

P �.t� � x/ D ˚.x/C dnp
n

C op.n
�1=2/:

Now, assuming that dn � d D Op.n
�1=2/, we have P.t � x/ � P.t� � x/ D

Op.n
�1/, a faster convergence rate than for the unstudentized quantities. These type

expansions have provided an important way to compare confidence intervals that we
study in the next section. A good source for understanding the expansions is Hall
(1992).

11.5 Bootstrap Confidence Intervals

Bootstrap confidence intervals have been the focus of a large part of the bootstrap
research literature. Basically there have been three main lines of development:
Efron’s (1979) original percentile method and its improvements resulting in the
bias-corrected, accelerated interval (BCa), the bootstrap t interval introduced in
Efron (1982) and analyzed in Hall (1988), and the double bootstrap interval
introduced in Hall (1986). We briefly review these methods in the context of
a simple example, the odds ratio in a 2 	 2 table. Note that we work with the
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Fig. 11.2 Histograms of Bootstrap Odds Ratios and log Odds Ratios for Death Penalty Data

nonparametric bootstrap although the methods to be discussed also apply to the
parametric bootstrap.

Example 10.6 (p. 395) had data on death penalty views of American and foreign
students: 10 of 14 American students were against the death penalty, whereas only
4 of 11 foreign students were against the death penalty. The estimated odds ratio
isb� D .10/.7/=.4/.4/ D 70=16 D 4:375: We seek a 95% confidence interval for
the true odds ratio. Figure 11.2 gives a histogram of 2000 bootstrapb�� values and
also of log.b��/. It is well known that working on the log scale with the odds ratio is
better for standard methods; one reason to use this example is to see what difference
the transformation makes to bootstrap procedures. Figure 11.2 is valuable first to
illustrate that the log transformation is approximately a normalizing transformation;
.1Skew; bKurt/ D .5:77; 55:2/ for the first histogram and .1Skew; bKurt/ D .0:38; 3:17/

for the log transformed values. Also, we use B D 2000 bootstrap resamples as
typically recommended by Efron for confidence intervals (although B D 1999 is
more appropriate based on Section 11.6.2, p. 440).

Note that in order to use standard R code for the nonparametric bootstrap
(R package bootstrap), one can write out the data as 25 rows with two variables,
one indicating group membership and for the other, 1 = “against the death penalty”
and 2 = “in favor of the death penalty.” Also note that resampling with replacement
from these 25 rows of data is equivalent to drawing samples from a multinomial
with the estimated probabilities as true values; thus, one could call this a parametric
bootstrap.

The delta method estimated asymptotic variance (bV IC) ofb� is 14.219 leading to
the Wald interval 4:375˙.1:96/p14:219, .�3:0; 11:8/. A much better Wald interval
is to take the interval on the log scale, log.4:375/˙.1:96/p:743, and exponentiate it
to get .0:81; 24:7/ (Agresti 2002, p. 71). The exact interval based on the conditional
noncentral hypergeometric (Agresti 2002, p. 99) is (0.62,32.9). It is known to be
conservative due to the discreteness of the conditional distribution. Nevertheless,
good intervals ought to have left endpoint around 0:6 to 0:8 and right endpoint
between 25 and 33.
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11.5.1 The Percentile Interval

Efron’s (1979) original 100.1�2˛/% bootstrap percentile interval is to just take the
empirical 100˛ and 100.1� ˛/ percentiles from the bootstrap values ��

1 ; : : : ; �
�
B as

the left and right endpoints, respectively. If bKB is the empirical distribution function
of the bootstrap values, then the 100.1� 2˛/% percentile interval is

�

bK�1
B .˛/;

bK�1
B .1 � ˛/

�

: (11.9)

For the odds ratio example, the (.025)(2000) D 50th ordered value from the left
panel of Figure 11.2 is 0.86, and the (.975)(2000) D 1950th ordered value is
52.5 leading to (0.86,52.5) as the 95% bootstrap percentile interval. Note that the
percentile interval from the log transformed values (right panel of Figure 11.2), and
then exponentiated, is exactly the same (0.86,52.5). Thus, the percentile interval is
transformation invariant; transforming the data does not change the interval. This
invariance is in dramatic contrast to the standard Wald intervals .�3:0; 11:8/ and
.0:81; 24:7/ based on the original and then on the log transformed data, respectively.
In effect, the bootstrap is automatically finding a transformation, and using it; on
the other hand, knowing a good transformation does not help the percentile interval.
Justification for the percentile interval follows in the next section.

We should mention that there are a wide range of definitions of sample pth
quantiles. The bootstrap programs in the R package bootstrap use the kth order
statistic, where k D ŒB �p� and [�] is the greatest integer function. From here on we
use Definition 6 from Hyndman and Fan (1996) that is implemented in the R version
2 quantile function, a linear interpolation of the kth and .k C 1/th order statistics,
where k D Œ.B C 1/p�. Using this definition, the percentile interval is (0.86,52.8).

11.5.2 Heuristic Justification of the Percentile Interval

Efron’s motivation for the percentile interval is based on assuming the existence of
an increasing transformation g such that

P
n

g.b�/� g.�/ � x
o

D H.x/; (11.10)

where H is the distribution function of a random variable symmetric about 0, i.e.,
H�1.˛/ D �H�1.1 � ˛/ for 0 < ˛ < 1. (Typically, Efron describes H.x/
as a mean 0 normal distribution function, ˚.x=�/, but only symmetry is used
in the derivation.) Similarly, in the bootstrap world, assume that (11.10) holds
approximately,

P �
n

g.b��/� g.b�/ � x
o

� H.x/; (11.11)
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where recall that the subscript * is used to denote calculations in the bootstrap world
whereb� is the true value. Suppose for a moment that g is known. Then (11.10) leads
to P.g�1fg.b�/ � xg � �/ D H.x/. Setting this probability equal to 1 � ˛ gives
x D H�1.1 � ˛/ and substituting for x gives

P
�

g�1fg.b�/�H�1.1 � ˛/g � �
�

D 1 � ˛:

So under (11.10) and knowledge of g, .g�1fg.b�/�H�1.1�˛/g;1/ is an exact one-
sided interval with coverage probability 1� ˛. Because the upper 1� ˛ confidence
bound is derived similarly, we concentrate on this lower bound. Now, the goal is
to show that g�1fg.b�/ �H�1.1 � ˛/g is actually estimated by the left endpoint of
the percentile interval. To do that, recall that we denote the empirical distribution
function of the bootstrap values ��

1 ; : : : ; �
�
B by bKB so that the left endpoint of the

percentile interval is simply L˛ D bK�1
B .˛/. Then

˛ D P �.b�� � L˛/

D P �fg.b��/ � g.L˛/g
D P �fg.b��/� g.b�/ � g.L˛/ � g.b�/g
� H fg.L˛/� g.b�/g;

where the approximation in the last step is from (11.11, p. 428). Finally, solving
˛ � H fg.L˛/ � g.b�/g for L˛ yields

L˛ � g�1fH�1.˛/C g.b�/g D g�1fg.b�/�H�1.1 � ˛//g

because H�1.˛/ D �H�1.1 � ˛/. This displayed expression is the same as the
exact lower bound given above. Although existence of g satisfying (11.10, p. 428)
and (11.11, p. 428) was assumed in this derivation, g is not used in the definition of
the percentile interval. Rigorous theoretical justification of the interval follows from
appropriate asymptotic convergence of bKB .

11.5.3 Asymptotic Accuracy of Confidence Intervals

Consider a nominal 1�˛ one-sided confidence interval .Ln.˛/;1/ for � , i.e.,Ln.˛/
is a 1 � ˛ lower bound. If the non-coverage probability

P f� < Ln.˛/g D ˛ CO.n�k=2/;
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the interval is said to be kth-order accurate. Thus P f� < Ln.˛/g D ˛ C c=
p
n is

called first order accurate, and P f� < Ln.˛g D ˛ C d=n is called second order
accurate. A similar definition holds for upper bounds and two-sided intervals. It
is not hard to show that the one-sided standard Wald intervals and the percentile
interval are both first order accurate. The two-sided versions are second order
accurate for statistics that are asymptotically normal. In future sections we see
bootstrap intervals that have better asymptotic accuracy than the percentile interval.
These higher-order results require inversion of the Edgeworth expansions discussed
briefly at the end of Section (11.4, p. 424). Hall (1986, 1988) initiated the study of
the higher-order accuracy of bootstrap intervals.

11.5.4 The BC Interval

Efron’s (1982, Section 10.7) first improvement of the percentile interval is called the
bias-corrected (BC) percentile interval. It is based on observing that the estimator
under consideration may not be median-unbiased. That is, the median of the
distribution of b� is � if b� is median-unbiased. (Note that mean-unbiasedness,
Efb�g D � , is the more common notion of unbiasedness.) Deviations from median-
unbiasedness can be estimated in the bootstrap world since there b� is the true
value, and the true distribution function is just the limit of the empirical distribution
function of ��

1 ; : : : ; �
�
B , bKB , as B ! 1. That is, if b� is median-unbiased,

then bKB.b�/ � 1=2. To correct for median-bias, Efron (1982) assumes a more
complicated model than (11.10) that allows for a shift in the distribution of g.b�/
by an unknown amount z0,

P
n

g.b�/� g.�/C z0 � x
o

D ˚.x/: (11.12)

Similar to (11.11, p. 428) we also assume in the bootstrap world

P � ng.b��/� g.b�/C z0 � x
o

� ˚.x/: (11.13)

Notice that in contrast to (11.10, p. 428) and (11.11, p. 428), here we specify ˚.x/
instead of a general distribution functionH.x/. This difference is important because
the definition of z0 involves ˚ . Actually, the derivation below goes through if we
use ˚.x=�/ in place of ˚.x/, but for simplicity we just assume � is absorbed in g.

To understand z0 better, we have P.b� � �/ D P fg.b�/ � g.�/g D P fg.b�/ �
g.�/ C z0 � z0g D ˚.z0/. So ifb� is median-unbiased, then P.b� � �/ D 1=2 D
˚.z0/ and z0 D 0. Otherwise, we estimate z0 from the bootstrap distribution function
estimator bKB as follows:

bKB.b�/ D P �.b�� �b�/
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D P � ng.b��/ � g.b�/
o

D P �
n

g.b��/ � g.b�/C z0 � z0
o

� ˚.z0/;

where this last step is from (11.11). Thus bKB.b�/ � ˚.z0/, andbz0 D ˚�1.bKB.b�//.
The 1 � 2˛ BC percentile interval is

�

bK�1
B .˛1/;

bK�1
B .1 � ˛2/

�

; (11.14)

where ˛1 D ˚f2bz0 C ˚�1.˛/g, ˛2 D 1 �˚f2bz0 C ˚�1.1 � ˛/g.
Justification of (11.14) is as follows. Similar to the manipulations of the last

section, the exact lower endpoint of an exact interval based on (11.12) and
knowledge of g and z0 is

g�1
n

g.b�/C z0 � ˚�1.1 � ˛/
o

: (11.15)

We shall show that the left endpoint of (11.14) approximates this exact endpoint.
Using (11.13), for any 0 < ˇ < 1

ˇ � P � ng.b��/� g.b�/C z0 � ˚�1.ˇ/
o

D P �
n

g.b��/ � g.b�/� z0 C ˚�1.ˇ/
�

D P � n
b�� � g�1 �g.b�/� z0 C ˚�1.ˇ/

�o

D bKB

n

g�1
�

g.b�/ � z0 C ˚�1.ˇ/
�o

:

Now substitute ˇ D ę1 D ˚f2z0 C ˚�1.˛/g and apply the inverse of bKB to both
sides of the last equation to get

bK�1
B .ę1/ � g�1 ng.b�/� z0 C 2z0 C ˚�1.˛/

o

D g�1
n

g.b�/C z0 � ˚�1.1 � ˛/
o

:

This last expression is the same as the exact endpoint (11.15), and bK�1
B .ę1/ is the

same as the left endpoint of the BC interval except that ę1 uses z0 instead ofbz0.
For calculatingbz0, Efron and Tibshirani (1993, p. 186) uses the left-continuous

version of bKB so thatbz0 D ˚�1fproportion ofb�� values <b�g. In the example, 883
of the 2000 values are less than b� D 4:375 leading tobz0 D ˚�1.883=2000/ D
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�:147. Since 26 of the 2000b�� values are exactly 4.375, using the more standard
right continuous version of bKB leads to bz0 D ˚�1.909=2000/ D �:114.
We continue, however, to use Efron’s left continuous version here. Then ˛1 D
˚f2.�:147/�1:96g D 0:012 and ˛2 D 1� f˚.2.�:147/C1:96g D 0:048, leading

to
�

bK�1
B .:012/;

bK�1
B .:952/

�

D .0:63; 32:7/. This simple correction of adjusting

0.025 to 0.048 has brought the right endpoint of the percentile interval into the more
reasonable value 32.7, and the adjustment of 0.025 to 0.012 has moved the left
endpoint from 0.86 to 0.63. Similar to the percentile interval, the BC interval is also
transformation invariant. Its one-sided versions are only first order accurate, but Liu
and Singh (1987) show that the BC interval has some asymptotic superiority to the
standard Wald interval (see also, Shao and Tu, p. 153).

11.5.5 The BCa Interval

Efron’s (1987) second improvement to the percentile interval is called the bias-
corrected, accelerated interval, BCa for short. It is based on assuming that

P

(

g.b�/ � g.�/
1C ag.�/

C z0 � x

)

D ˚.x/; (11.16)

where z0 is as before and the “acceleration” constant a is related to the 3rd moment
skewness coefficient of the influence curve ofb� ,

a D 1

6
Skew

(

n
X

iD1
IC.Yi ; �/

)

D SkewfIC.Y1; �/g
6
p
n

:

From (11.16) we see that a relates to how quickly the standard deviation of g.b�/ is
changing as a linear function of g.�/. In practice one common way to estimate a is
with the jackknife approximations to the influence curve,

ba D

1

n

n
X

iD1
.�1 �b�Œi �/3

6
p
n

(

1

n

n
X

iD1
.�1 �b�Œi �/2

) 3=2
; (11.17)

whereb�Œi � are the leave-one-out estimators with �1 D n�1Pn
iD1b�Œi �. Using (11.16)

and manipulations similar to those for deriving the percentile interval and BC
interval, the 1 � 2˛ BCa interval is

�

bK�1
B .˛1/;

bK�1
B .1 � ˛2/

�

; (11.18)



11.5 Bootstrap Confidence Intervals 433

where

˛1 D ˚

"

bz0 C bz0 C ˚�1.˛/
1 �bafbz0 C ˚�1.˛/g

#

;

˛2 D 1 � ˚

"

bz0 C bz0 C ˚�1.1 � ˛/
1 �bafbz0 C ˚�1.1 � ˛/g

#

;

andbz0 D ˚�1ŒbKB.b�/� as for the BC interval, and ba is given by (11.17). Notice
that ifba D 0, then the BCa interval reduces to the BC interval, and if bothba D 0

and z0 D 0, then it reduces to the percentile interval. For the odds ratio example,
ba D �0:025, bz0 D �:147 as before, ˛1 D :0089, ˛2 D :056, and the BCa interval is
(.60,27.5).

The BCa interval is transformation invariant like the percentile and BC intervals
and is generally second order accurate. Efron (1987) and DiCiccio and Efron (1996)
give a number of examples where the performance of the BCa is very good. On
the other hand, discussants for those papers give examples where the coverage
probability of BCa intervals is too small. It may be that the acceleration constant
estimateba is biased or too variable in small samples. For example, for the odds ratio
data we generated 10 bootstrap samples and computedba for each one. The mean
and standard deviation of the 10ba values was �:046 and .03, respectively.

11.5.6 The Double Bootstrap (Calibrated Percentile) Interval

The improvements to the percentile interval given in the last two sections are based
on simple to compute adjustments to the ˛ and 1�˛ used in the percentile interval.
Another approach introduced by Hall (1986), and Loh (1987) is to adjust ˛ and
1 � ˛ by a second level of bootstrap resampling. That is, suppose that for each
of the B bootstrap resamples, an additional C resamples are drawn, the percentile
endpoints are calculated resulting in B confidence intervals, and the proportions of
those B intervals that are completely to the left and right ofb� (the true value in the
bootstrap world) are recorded. Call those estimates ML.˛/ and MU.˛/, respectively,
for “miss left” and “miss right.” If the percentile interval is working correctly, then
we would expect ML.˛/ � ˛ and MR.˛/ � ˛. Now suppose that we compute the
B second stage intervals and the associated miss proportions for a fine grid of ˛
values. We then find values ˛1 and ˛2 such that MR.˛1/ � ˛ and ML.˛2/ � ˛. The
calibrated percentile interval is

�

bK�1
B .˛1/;

bK�1
B .1 � ˛2/

�

: (11.19)

This interval is transformation invariant and second-order accurate. The main
drawback is the large number BC of resamples required. Booth and Hall (1994)
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show that C ought to be chosen much smaller than B , on the order of
p
B . Booth

and Presnell (1998, Table 1) give some approximately optimal combinations:
if BC D 10;000, use .B D 217; C D 46/; if BC D 100;000, use .B D 1020;

C D 98/; if BC D 1;000;000, use .B D 4717; C D 212/. Although this method
holds a lot of promise, it does not seem to be used much in practice because of the
computations.

11.5.7 Reflected Percentile and Bootstrap-t Intervals

One of the earliest examples in Efron (1979) was about approximating the distribu-
tion ofb� �� by the bootstrap distribution ofb�� �b� . Since the ˛ and 1�˛ estimated
quantiles of b�� �b� based on ��

1 ; : : : ; �
�
B are bK�1

B .˛/ � b� and bK�1
B .1 � ˛/ � b� ,

respectively, an approximate 1 � 2˛ confidence interval would manipulate the set

n

� W bK�1
B .˛/ �b� �b� � � � bK�1

B .1 � ˛/ �b�
o

to get the set
n

� W 2b� � bK�1
B .1 � ˛/ � � � 2b� � bK�1

B .˛/
o

:

The resulting interval,

�

2b� � bK�1
B .1 � ˛/; 2b� � bK�1

B .˛/
�

; (11.20)

is called the reflected percentile interval, the hybrid interval (Shao and Tu, 1995,
p. 141) and the basic interval (Davison and Hinkley, 1997, p. 29). We find the
derivation of this interval much easier to understand than the percentile interval,
but it often seems to have the wrong shape. For our example, recall the percentile
interval is (0.86,52.8), and thus the reflected interval is .2.4:375/�52:8; 2.4:375/�
0:86/ D .�44:1; 7:89/, clearly a poor interval in this situation. This interval is not
transformation invariant, and is vastly better in this case if computed on the log(odds
ratio) scale and exponentiated, leading to (0.36,22.3).

A generally much better interval, the bootstrap-t interval (or percentile-t inter-
val), is based on using the bootstrap distribution of t� D .b�� �b�/=b�� as an estimate
of the distribution of t D .b� � �/=b� , where b� is some estimate of the standard
deviation ofb� . Then, manipulation of the set

(

� W bF�1
t� .˛/ �

b� � �

b�
� bF�1

t� .1 � ˛/;

)
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where bF�1
t� .p/ refers to the bootstrap pth quantile estimates of t�, leads to the

bootstrap-t interval

�

b� �b�bF �1
t� .1 � ˛/; b� �b�bF�1

t� .˛/
�

: (11.21)

Note that this derivation is exactly the same as used in deriving the usual t interval
for the mean, but the t interval looks a bit different because we take advantage of
the symmetry of the t distribution to just use the 1�˛ quantile in the representation
Y ˙ sn�1t.n � 1; 1� ˛/. Here a major advantage of this bootstrap-t interval is that
it allows for asymmetry. Hall (1988) shows that the one-sided bootstrap-t intervals
are second-order accurate, but in small samples they require a good estimate of
standard deviation and perform best when t D .b� � �/=b� is approximately pivotal,
i.e., when the distribution of t is not dependent on unknown parameters. In some
situations it performs very well, but in other situations it tends to have very long
length. The R package bootstrap program boott uses a bootstrap standard
deviation estimate if no external function is provided. Thus, for the odds ratio
example, for each of the B D 2000 bootstrap samples, another 25 resamples were
used to get the bootstrap b�� resulting in 2000.25/ D 50; 000 calculations of the
statistic. The program boott gave .�17:2; 80:8/ for the 95% bootstrap-t interval,
clearly too long. If we first transform to log(odds ratio), get the bootstrap-t interval,
and then exponentiate, the interval is (0.30,23.4). Thus the bootstrap-t interval is not
transformation invariant, and performs much better on some scales than on others.

11.5.8 Summary of Bootstrap Confidence Intervals

Efron and coworkers developed the bias-corrected (BC) and bias-corrected ac-
celerated (BCa) intervals as improvements to the original bootstrap percentile
interval. All three are motivated by transformations to normality but do not require
knowledge of the transformation. In fact, all three intervals are transformation
invariant, that is, transforming first, forming the interval, and then backtransforming
has no effect on these intervals. Examples show that all three can work well
in many situations, but they all fail to give adequate coverage in a number of
well-known examples such as for b� D s2n, the sample variance. In DiCiccio and
Tibshirani (1987), for samples of size n D 20 drawn from a normal distribution, the
estimated coverage probabilities for nominal 90% intervals was .76, .81, and .81 for
the percentile, BC, and BCa intervals, respectively. Note, however, the parametric
bootstrap versions, resamples drawn from a N.Y ; s2n�1) distribution, resulted in
coverages of .89, .89, and .90, respectively. Recall that in this section we have been
exclusively talking about the nonparametric bootstrap, although all the methods
introduced are valid when drawing parametric bootstrap resamples. Parametric
bootstrap confidence intervals typically perform better than the nonparametric
bootstrap intervals.
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Fig. 11.3 Confidence Intervals for Odds ratio Example Data

Figure 11.3 shows all the confidence intervals discussed so far for the odds ratio
example. We consider the top two as “gold standards,” that is, approximating where
good intervals should be. The Wald interval on the original scale is too short and
inappropriately symmetric. The right tail of the percentile interval is too far to
the right, but the BC and BCa nicely adjust it. The motivation and second order
asymptotic accuracy of the bootstrap-t interval are very appealing. Figure 11.3
shows, though, that the right (log) scale is very important. In fact, even the reflected
method is pretty good when based on the log scale.

A lot of work has gone into developing bootstrap confidence intervals. The
BCa, the bootstrap-t , and calibrated percentile (double bootstrap) methods are
asymptotically second-order accurate and work well in many situations. However,
counter-examples show that an automatic bootstrap confidence interval method has
yet to be discovered.

11.6 Bootstrap Resampling for Hypothesis Tests

11.6.1 The Basics

An understanding of bootstrap resampling for obtaining a standard error or confi-
dence interval does not necessarily provide intuition concerning how to resample in
a hypothesis testing situation. The key point is that for getting a p-value, resampling
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must be performed under an appropriate null hypothesis, whereas for standard errors
and confidence intervals, resampling is unrestricted.

To make this clear, consider the case of two independent samples X1; : : : ; Xm
and Y1; : : : ; Yn, and suppose that we are interested in the difference in population
means, say �X � �Y. For a nonparametric bootstrap confidence interval, we would
merely draw independent samples from the empirical cdf’s or equivalently with
replacement from the sets fX1; : : : ; Xmg and fY1; : : : ; Yng, respectively. Instead,
consider testing �X � �Y D 0 with a t statistic, say the pooled t statistic

tp D X � Y
s

s2p

�

1

m
C 1

n

�

;

where

s2p D .m � 1/s2X C .n � 1/s2Y
mC n � 2 ;

and

s2X D 1

m � 1

m
X

iD1
.Xi �X/2; s2Y D 1

n � 1

n
X

iD1
.Yi � Y /2:

The above method of resampling from each sample separately would lead to a test
with power approximately equal to the nominal level of the test regardless of the
magnitude of j�X � �Yj.

Why is that resampling method wrong? Resampling in the above fashion puts
no restriction on the data and thus does not generate an approximation to the null
distribution of the tp statistic. For confidence intervals for �X ��Y, we do not want
any restriction in the bootstrap world. But for the null distribution of tp, we need to
force the means to be equal when drawing bootstrap samples.

One way to make bootstrap world true means equal is to draw both samples with
replacement from the pooled set fX1; : : : ; Xm; Y1; : : : ; Yng. By doing this, in the
bootstrap world we have created the null hypothesis

H0 W P.X� � t/ D P.Y � � t/ D HN .t/; (11.22)

where P.X� � t/ is the distribution function of an X in the bootstrap world,
P.Y � � t/ is the distribution function of a Y in the bootstrap world, and HN .t/ is
the empirical distribution function of the pooled set with N D mC n. In effect we
are trying to test the real world hypothesis

H0 W F.t/ D G.t/; (11.23)

where F and G are the distribution functions of the X and Y samples, respectively.
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It might be worth pointing out that there is an exact permutation test available for
(11.23), obtained by constructing allNŠ=mŠnŠ partitions of fX1; : : : ; Xm; Y1; : : : ; Yng
into two samples of size m and n, respectively. Then tp is computed for each
partition, and the empirical distribution of these NŠ=mŠnŠ values is called the
permutation distribution. The statistic tp for the original sample is then compared
to this distribution to get exact tests and p-values. This elegant approach was
introduced by R. A. Fisher (1934a) and is discussed fully in Chapter 12.

How do permutation tests and bootstrap tests compare? Permutation tests are
limited to a relatively small number of testing situations where permutations under
the null hypothesis have the same distribution. For those situations, the permutation
method gives exact results for any statistic. In contrast, the scope of application for
bootstrap tests is huge. The resulting tests, though, are only approximately valid
and depend on asymptotics for justification (except for the parametric bootstrap
in special situations as mentioned in Examples 11.1 and 11.2). Bootstrapping
studentized statistics like tp is usually much preferable to bootstrapping statistics
likeX �Y due to faster convergence of the bootstrap distribution (see Hall, 1986 or
1992 and the Edgeworth expansion argument at the end of Section 11.4, p. 424). For
permutation tests, however, using different statistics often leads to the same result.
For example in the above problem, the permutation method applied to tp and to
X � Y yields the same test.

To further illustrate these ideas, consider a larger null hypothesis than (11.23):

H0 W �X � �Y D 0; (11.24)

but with no other restrictions on the distributions except for finite second moments.
This allows the distributions to have different variances and even totally different
shapes. A suitable statistic might be Welch’s t

tw D X � Y
s

s2X
m

C s2Y
n

:

One way to create a bootstrap world with an appropriate null hypothesis would be
to draw the X resamples with replacement from fX1 �X; : : : ; Xm �Xg, and the Y
resamples from fY1 � Y ; : : : ; Yn � Y g. This forces the X and Y distributions in the
bootstrap world to have mean 0 but leaves their shapes different. Of course, we could
add the same constant to both sets of resamples and not change the results (since tw
is invariant to such additions). It is easy to show that the bootstrap distribution of tw
converges with probability one to a standard normal distribution, the same limiting
distribution as tw in the real world under the null hypothesis (11.24). Thus under
(11.24), the bootstrap p-value converges with probability one to a uniform random
variable. The permutation method cannot handle (11.24).
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Example 11.4 (Comparing two variances). We again consider the two indepen-
dent samples situation: X1; : : : ; Xm and Y1; : : : ; Yn with respective means �X and
�Y and variances �2X and �2Y. The null hypothesis of interest is H0 W �X D �Y. A
semiparametric assumption is made that both samples are from the same location-
scale family, but the family is unknown. Thus, the distribution function of each
Xi is F1.x/ D F0..x � �X/=�X/ and the distribution function of each Yi is
F2.x/ D F0..x � �Y/=�Y/, where F0 is the cdf of an unknown distribution with
mean 0 and variance 1. The statistic used to test H0 is

Tmn D
�

mn

mC n

�1=2
˚

log.s2X/� log.s2Y/



:

It is fairly straightforward to show that under H0, the limiting distribution of Tmn
as m; n ! 1 with m=.mC n/ !  2 .0; 1/, is normal with mean 0 and variance
Kurt.F0/�1. Because we do not know F0, we need to estimate a critical value to be
used with Tmn. We could estimate Kurt(F0) directly, but it may be better to use the
bootstrap. In the introduction to Boos et al. (1989), four bootstrap resampling plans
are discussed:

I. Draw both bootstrap samples independently and with replacement from the
pooled set fX1; : : : ; Xm; Y1; : : : ; Yng.

II. Draw X�
1 ; : : : ; X

�
m with replacement from fX1; : : : ; Xmg and independently

draw Y �
1 ; : : : ; Y

�
n with replacement from fY1; : : : ; Yng.

III. Draw both bootstrap samples independently and with replacement from the
pooled set of residuals fX1 �X; : : : ; Xm �X; Y1 � Y ; : : : ; Yn � Y g.

IV. Draw X�
1 ; : : : ; X

�
m with replacement from fX1=sX; : : : ; Xm=sXg and indepen-

dently draw Y �
1 ; : : : ; Y

�
n with replacement from fY1=sY; : : : ; Yn=sYg.

Plan I is not appropriate unless the means are equal, �X D �Y, an assumption
that is usually not warranted. The limiting distribution of T �

mn is normal with mean
0 and variance Kurt.G/ � 1, where G.x/ D F1.x/ C .1 � /F2.x/, and this
Kurt.G/� 1 can be quite different from Kurt.F0/� 1 when �X ¤ �Y.

For Plan II, the limiting distribution of T �
mn is exactly the same as that of Tmn

under both H0 and any alternative. Thus, the test has approximately the correct
level ˛ underH0, but the power is also approximately ˛ under any alternative.

For Plan III, the limiting distribution of T �
mn is normal with mean 0 and variance

Kurt.H/� 1, where

H.x/ D F1.x C �X/C .1 � /F2.x C �Y/

D F0.x=�X/C .1� /F0.x=�Y/: (11.25)

Under H0 W �X D �Y D � , H.x/ D F0.x=�/, and Kurt.H/ D Kurt.F0/ as needed
for the correct asymptotic level. Under an alternative, the kurtosis of T �

mn is not the
same as Kurt.F0/, but because the asymptotic mean of T �

mn is 0, the resulting test
under an alternative has power converging to 1.
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For Plan IV, the asymptotic results are similar to those for Plan III except that
equal kurtoses for the two samples are not needed. Thus, Plan IV is more robust
asymptotically, but in small samples it does not perform as well as Plan III because
the pooling in Plan III produces faster convergence of critical values. �

Other examples of creating null hypotheses in the bootstrap world may be found
in Beran and Srivastava (1985) and Davison and Hinkley (1997, Ch. 4).

11.6.2 The Definition of Bootstrap P-Values and the “99 Rule”

Suppose that T0 is the value of a test statistic T computed for a particular sample.
Then P.T � T0jH0/ is the definition of the p-value in situations where large values
of T support the alternative hypothesis. If the null distribution of T is a discrete
uniform distribution on some values t1; : : : ; tk (each value has probability 1=k), then
the p-value is just the proportion of ti ’s greater than or equal to T0. In analogous
fashion, when B resamples are made in the bootstrap world under an induced null
hypothesis, define the bootstrap p-value

pB D f# of T �
i � T0g
B

;

where T �
1 ; : : : ; T

�
B are the values of T computed from the resamples. This is the

definition we prefer and the one given by Efron and Tibshirani (1993, p. 221). We
should note, however, that Davison and Hinkley (1997, p. 148, 161) and others
prefer .BpB C 1/=.B C 1/.

Consider a situation where the statistic T is continuous, and a parametric
bootstrap gives the exact sampling distribution as B grows large (such as in
Example 11.1, p. 414). In this case, T0; T �

1 ; : : : ; T
�
B , are iid, all .B C 1/Š orderings

are equally likely, and pB has a discrete uniform distribution,

P.pB D 0/ D P.pB D 1=B/ D .pB D 2=B/ DD � � � D P.pB D 1/ D 1

B C 1
:

Thus, the test defined by the rejection region pB � ˛ has exact level ˛ if .B C 1/˛

is an integer. For example, if ˛ D :05, then P.pB � :05/ D 5=.99C 1/ D :05 if
B D 99, but P.pB � :05/ D 6=.100C1/ D :0594 if B D 100. So, for small B one
should use values like B D 19 or 39 or 99 to get standard ˛ levels. We call this the
“99 rule,” and note that simulation-based tests such as this are often called “Monte
Carlo” tests (first suggested by Barnard 1963). Hall (1986) gives an approximate
version of this result for the nonparametric bootstrap, and thus the “99 rule” should
be followed generally in bootstrap testing situations.

When analyzing a single data set, it is often possible to use a largeB where there
is very little difference between using B and B C 1. B D 1000 gives a rejection
rate of 51=1001 D :051. But for studying the power function of a bootstrap test,
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two Monte Carlo loops are required (the outer one for replicate samples of the true
data situation, the inner one for the bootstrap procedure), and computations can be
time consuming. Thus B D 59 or 99 or 199 might be used to save time. Since the
resulting power estimates are typically monotone increasing inB , one can adjust the
estimates ifB is taken to be small (see Boos and Zhang 2000). Davison and Hinkley
(1997, Sec. 4.5) use related arguments to justify the use of 99 resamples in the inner
loop of a double bootstrap procedure to get adjusted bootstrap p-values for a single
data set.

11.6.3 Convergence of Parametric Bootstrap P-Values

There have been many papers on the convergence properties of nonparametric
bootstrap distributions, but not as many on convergence of parametric bootstrap
distributions (see, for example, Beran 1986, 1988). Robins et al. (2000) give
interesting results for the parametric bootstrap. One conclusion for bootstrap
p-values from their Theorem 1 is as follows. If the test statistic T is asymptotically
normal (a.�/; b2.�/=n/ under a null hypothesis, then under some fairly strong
but general conditions, the parametric bootstrap p-value is asymptotically uniform
if a.�/ does not depend on � , and is asymptotically conservative otherwise. The
context of the result is a paper on p-values for model adequacy, and the authors
suggest that the conservative property is not appealing in that context. They may
have a point, but the result is comforting in terms of general usage of the bootstrap
in hypothesis testing situations.

11.7 Regression Settings

We consider typical regression settings based on iid random pairs .Y1;X 1/; : : : ;

.Yn;Xn/, or .Y1;x1/; : : : ; .Yn;xn/, where the explanatory vectors xi are viewed as
fixed constants.

In the random pairs case, it is natural to draw with replacement from the set
of pairs resulting in a bootstrap resample .Y �

1 ;X
�
1 /; : : : ; .Y

�
n ;X

�
n/. We repeat this

B times and proceed as usual to calculate coefficients bˇ�
1 ; : : : ;

bˇ�
B and whatever

bootstrap quantities are of interest such as the estimated covariance matrix ofbˇ,

.B � 1/�1
B
X

iD1
.bˇ�

i �bˇ
�
/.bˇ�

i �bˇ
�
/T : (11.26)

This bootstrap method is very general and applies to almost any regression method;
for example, logistic regression, Poisson regression, and linear and nonlinear least
squares. Moreover, the assumed model used to derive estimators does not need
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to be true in order for bootstrap estimates to be consistent. We call this method
the random pairs bootstrap although it is really just the standard nonparametric
bootstrap method.

There are a few reasons, however, to consider other bootstrap approaches in
regression settings:

1. Inference in regression setting is usually carried out conditional on the explana-
tory vectorsXT D .X 1; : : : ;Xn/ regardless of whether they are considered fixed
or random. The random pairs bootstrap, however, gives unconditional estimates
such as the covariance matrix estimate (11.26).

2. The random pairs bootstrap does not take advantage of any model assumptions
such as an additive error structure with homogeneous errors. This nonparametric
aspect of the random pairs bootstrap gives it strong robustness to model
assumptions, but also can result in much less efficient procedures.

For these reasons, let us consider the residual-based bootstrap that is appropriate
for additive errors models of the form Yi D g.xi ;ˇ/ C ei , where g is a known
function and e1; : : : ; en are iid random errors. Defining the residuals asbei D Yi �
g.X i ;bˇ/, draw bootstrap errors e�

i ; : : : ; e
�
n with replacement from the set

n

.bei �be/=
p

1 � p=n; i D 1; : : : ; n
o

:

Then form the bootstrap responses Y �
i D g.X i ;bˇ/C e�

i ; i D 1; : : : ; n. If the model
is linear, g.X i ;ˇ/ D XT

i � , then the least squares estimator in the bootstrap world
isbˇ� D .XTX/�1XT Y � with variance Var�.bˇ�/ D b�2.XTX/�1, where

b�2 D 1

n

n
X

iD1

h

.bei �be/=
p

1 � p=n
i2 D 1

n � p
n
X

iD1
.bei �be/2: (11.27)

Further, if the first column of X is a column of ones, thenbe D 0, and we recognize
the bootstrap estimate of Var.bˇ/ is the same as the usual unbiased one.

Thus, in a standard linear model setting with homogeneous errors and using least
squares, there is no need to simulate at all. The residual-based bootstrap using the
above adjusted residuals gives the same standard error as standard theory. In large
samples, the random-pairs bootstrap gives essentially the same result. However,
in a variety of settings where at least one of the usual assumptions is false or
least squares is not used, then the bootstrap might be a reasonable option because
standard methods may not exist or may not perform adequately. For example, if
heterogeneity of errors is suspected, then the random-pairs bootstrap produces a
covariance matrix estimator that is close to the weighted jackknife estimator and to
the sandwich estimator (7.21, p. 317) (except for the factor n=.n�p/). In nonlinear
regression settings, the bootstrap may be more trustworthy for certain problems as
the following example illustrates.
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Fig. 11.4 Least squares fit of fluoranthene data and residuals

Example 11.5 (Confidence interval in nonlinear regression). The following
problem was presented by Allen Olmstead, a post-doctoral fellow in the Toxicology
Department at NC State University. He had obtained data on the percent growth
rate reduction of young daphnids as a function of the chemical fluoranthene in
micrograms per liter. The model is

Yi D 100

1C .xm=xi/
� C ei ; (11.28)

where xm and � are unknown parameters to be fit to the data. Allen had fit 49 pairs of
points to this model using nonlinear least squares and obtainedbxm D 193:7 andb� D
1:85. Figure 11.4 shows the fit overlaying the points with log10(fluoranthene) on the
x axis, and also the residual plot. The fit seems pretty good although there is a hint of
increasing variability in the residual plot. Allen had solved the fitted equation to find
the value of fluoranthene that produced a 5% reduction in growth, 39.3 micrograms
per liter. But he wanted a 95% confidence interval for the underlying true value, and
the bootstrap had been suggested to him.

There were two NC State graduate students working on the project. Xianzheng
Huang implemented the residual-based bootstrap with a SAS macro and obtained
(32.0,48.7) for a 95% BCa confidence interval (B D 2000). Liqiu Jiang im-
plemented the random pairs bootstrap using the R program bcanon referred to
in the back of Efron and Tibshirani (1993) and obtained (27.8,55.0) for a 95%
BCa confidence interval (B D 2000). Xianzheng also ran a small simulation and
obtained true coverages of around 93% to 94% coverage for the residual-based
method, suggesting that it is a bit liberal here. The longer length for the random-
pairs method is perhaps due to the heterogeneity of the errors, but it is also likely
due to the difference between conditional and unconditional inference. Reflecting
these two differences, the unweighted jackknife gave 7.3 as a standard error for the
estimate (an unconditional standard error), whereas the delta method gave the
much smaller standard error 4.3 based on the conditional covariance estimate from
the least squares output. Recall that the unconditional must be larger because
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Var.b�/ D E
n

Var.b� j X/
o

C Var
n

E.b� j X/
o

. Bootstrap confidence intervals have

been studied in contexts similar to this example in Rosen and Cohen (1995) and
Zeng and Davidian (1997). �

11.8 Problems

11.1. Consider an iid sample Y1; Y2; Y3 of size n D 3. For simplicity in thinking
about the problem, suppose that Yi are continuous so that all three are distinct with
probability 1.

a. Consider drawing samples of size n D 3 with replacement from the set
fY.1/; Y.2/; Y.3/g, where Y.1/ < Y.2/ < Y.3/. Write down the 33 D 27 equally
likely resamples. Actually there are only

�

2n�1
n

	 D 10 distinct resamples (but you
will find that out empirically.)

b. Using a) write down the exact nonparametric bootstrap distribution for the sample
median in terms of the ordered values Y.1/ < Y.2/ < Y.3/.

c. From b) write down the expectation and variance of the sample median from a
bootstrap resample.

11.2. For an iid sample Y1; : : : ; Yn, consider the estimator

b� D 1

n

n
X

iD1
q.Yi /;

where q is a known function and var.q.Y1// < 1. Find variance estimates for
b� using the M-estimator method, the IC method, the jackknife method, and the
bootstrap method.

11.3. Consider the estimator b� D g.Y /, where g is a known function. The exact
general expression for the variance is the n-fold integral given in (11.4). However,
suppose that the data are from a gamma.˛; ˇ/ distribution. Write down the exact
expression for the variance of b� using the fact that a sum of independent gamma
random variables has a gamma distribution. The result involves single integrals.
Now suppose that you have found the maximum likelihood estimators of ˛ and ˇ.
Give an expression for a parametric bootstrap estimate of the variance ofb� without
resampling.

11.4. Consider estimation of the distribution function Kn.y/ D P.b� � y/ by the
Monte Carlo estimator bKn;B.y/ D B�1PB

iD1 I.b��
i � y/ where b��

1 ; : : : ;
b��
B are

iid and computed from resamples from bF , an estimate of the distribution function
F of the original iid data Y1; : : : ; Yn. Note that bKn;B.y/ is just an approximation
to the true bootstrap estimator Kn;BD1.y/ D P �.b�� � y/. Find a variance
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decomposition of Var(bKn;B.y/ in terms of means and variances of functions of
Kn;1.y/. (Hint: use the iterated variance formula Var(A/ D E ŒVar.AjB/� C
Var ŒE.AjB/�.) Use the decomposition to suggest good values of B .

11.5. Find bootstrap standard errors for the mean, median, and 20% trimmed mean
of the food consumption values in Example 11.3 (p. 418). An R function modified
from the Appendix of Efron and Tibshirani (1993) is

boot.se <- function(x,nboot,theta, ...){
call <- match.call()
n <- length(x)
bootsam<- matrix(sample(x,size=n*nboot,replace=T),

nrow=nboot)
thetastar<-apply(bootsam,1,theta,...)
se<-sd(thetastar)
return(se) }

11.6. For the data and odds ratio estimator of Example 10.6 (p. 395), find the
bootstrap standard error and compare with the influence curve (delta) method and
the jackknife method given there. Below is an appropriate R function for the odds
ratio when the data are given as

1 US 1
2 US 1
. . .
. . .
24 INT 0
25 INT 0

or<-function(index,data){
# computes odds ratio based on expanded data
x <- data[index,1]
y <- data[index,2]
n1 <- length(x[x=="US"])
n2 <- length(x[x=="INT"])
n11<-sum(y[x=="US"])
n12<-n1-n11
n21<-sum(y[x=="INT"])
n22<-n2-n21
if (min(n11,n12,n21,n22) > 0) or<-n11*n22/
(n12*n21)

else or<-(n11+.5)*(n22+.5)/((n12+.5)*(n21+.5))
return(or)

}

Remember, when the data consist of independent vectors, the official “data” are
the row numbers, in this case 1 to 25, and data=z is used as a 3rd argument in
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boot.se if the data are in z. The bootstrap standard error you get should be much
larger than those from the influence curve and jackknife methods. Try to explain the
reason.

11.7. Construct a table similar to Table 11.3 (p. 423) for the sample coefficient of
variation, sn=Y . Use sim.samp and var.est of Problem 10.7 (p. 409). For the
normal distribution let the mean be 5 and variance be 1 so that the sample mean is
positive with very high probability. You may choose n. An R program for bV IC is

cv.var<-function(x){
# asy. var of cv=s/xbar, from Serfling, 1980 p. 137
n<-length(x)
xbar<- mean(x)
diff<- x-xbar
mu2<- mean(diffˆ2)
mu3<- mean(diffˆ3)
mu4<- mean(diffˆ4)
var<- mu2ˆ2/(xbarˆ4)-mu3/(xbarˆ3)

+(mu4-mu2ˆ2)/(4*xbar*xbar*mu2)
return(var/n)
}

11.8. Find 95% confidence intervals for the 20% trimmed mean of the population
from which the food consumption values in Example 11.3 (p. 418) were obtained.
Intervals to find:

(a) b� ˙ 2:093.bV Boot/
1=2, where 2.093 is from the t with 19 degrees of freedom.

(b) The nonparametric percentile interval.
(c) The nonparametric BCa interval.
(d) The nonparametric bootstrap-t interval.

You might want to use either of the R packages bootstrap or boot. If you use
boott in package bootstrap for the bootstrap-t interval, you have a choice
of supplying a standard deviation estimate or letting the program get a bootstrap
estimate (thus a type of double bootstrap). The latter takes longer but is simpler to
use.

11.9. Simulate samples from a N.�; �2/ with n D 20 and estimate the non-
coverage probabilities of 90% intervals for �2. Also estimate the proportion of times
the associated one-sided 95% bounds do not contain the true �2. Intervals to use:

a. b� ˙ 1:729.bV Boot/
1=2, where 1.729 is from the t with 19 degrees of freedom.

b. The nonparametric percentile interval.
c. The nonparametric BCa interval.

11.10. Derive the Wald intervals .�3:0; 11:8/ and (0.81,24.7) for the odds ratio
given in Section 11.5 (p. 426).
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11.11. Using (11.10, p. 428) and (11.11, p. 428), show that the right endpoint of the
percentile interval is approximately equal to the right endpoint of the corresponding
exact interval.

11.12. Using (11.12, p. 430) and (11.13, p. 430), show that the right endpoint of the
BC interval is approximately equal to the right endpoint of the corresponding exact
interval.

11.13. To justify the BCa interval, first use (11.16, p. 432) and assume z0 and a are
known to show that the left endpoint of the exact BCa interval is

g�1
 

g.b�/C z0 C ˚�1.˛/
1 � afz0 C ˚�1.˛/g

!

D g�1
 

g.b�/C f1C ag.b�/gfz0 C ˚�1.˛/g
1 � afz0 C˚�1.˛/g

!

:

Then, assume that (11.16, p. 432) holds approximately in the bootstrap world, and
similar to the argument for the BC interval, show that bK�1

B .ę1/ is approximately
equal to the above exact endpoint, where ę1 is the same as ˛1 for the BCa interval
except that z0 and a are used in place of their estimates.

11.14. For Example 11.4 (p. 439), suppose that the populations are normal with
means �X D 0 and �Y D 3, �2X D �2Y D 1, m D n, and that we use resample
Plan I with Tmn. First verify that G.x/ D F1.x/C .1 � /F2.x/ for this case has
Kurt.G/ D 2:04. Then find the asymptotic level of a bootstrap test ofH0 W �X D �Y

versusHa W �X > �Y based on Tmn using the fact that underH0, Tmn has asymptotic
variance 3 � 1 D 2, and T �

mn has asymptotic variance 2:04� 1 D 1:04.

11.15. Under the semiparametric assumptions of Example 11.4 (p. 439), Tmn is
asymptotically normal with asymptotic mean

�

mn

mC n

�1=2
˚

log.�2X/� log.�2Y/



and asymptotic variance Kurt.F0/ � 1. The bootstrap 0.05 level critical value from
Plan III converges to 1:645fKurt.H/ � 1g1=2, where H is given in (11.25, p. 439).
These results are true for bothH0 and an alternative. Suppose that the data are from
normal distributions with �X D 2, �Y D 1, and m D n D 10. Based on these
asymptotic approximations, show that the approximate power is 0.56.

11.16. Use the function power.var from the file power.boot.variances.
txt on the website to estimate the power for the situation in the previous problem.
Then set ratio equal to 1 in power.var to see the empirical level for this
situation. Raw empirical power estimates have binomial variance bpow.1� bpow/=N .
Repeat the ratio=2 situation a few times with different seeds and estimate the
variance of the extrapolated estimates (both the linear and quadratic estimates).
Are they close to bpow.1 � bpow/=N ?

11.17. Verify that the residual-based bootstrap covariance estimator of the least
squares estimator isb�2.XTX/�1, whereb�2 is given by (11.27, p. 442).
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11.18. For Example 11.5 (p. 443), note that the solution of the estimated equation to

give percentage growth reduction 100p isbxmŒp=.1�p/�1=b�. Using Maple, show that
the delta method variance for this estimate is 18.3 when p D :05. The covariance
estimate for .bxm;b�/ from the least squares output is

�

129:105 �1:560
�1:560 0:030

�

:



Chapter 12
Permutation and Rank Tests

12.1 Introduction

In the early 1930s R. A. Fisher discovered a very general exact method of testing
hypotheses based on permuting the data in ways that do not change its distribution
under the null hypothesis. This permutation method does not require standard
parametric assumptions such as normality of the data. It does require, however,
certain invariance properties under the null hypothesis that restricts application
to fairly simple designs. But in such situations, the method results in exact tests
with level ˛ under very weak distributional assumptions. Moreover, the method is
statistic-inclusive in the sense that any test statistic can be used and inherits the
level-˛ property, although some statistics are much more powerful than others.

Tests based on this method are called permutation tests or randomization tests
depending on whether the data can be viewed as samples from populations or not.
That is, when sampling from populations, “permutation tests” refer to use of the
permutation method to obtain level ˛ tests under weak distributional assumptions.
In Fisher’s words (1935, Sec. 21), these are tests of a “wider” null hypothesis (as
compared to assuming normal distributions, for example).

However, experiments may be performed on units that cannot be viewed as
arising from random sampling of any population. In such situations “randomization
inference” refers to inference drawn based only on the physical randomization of
the units to different treatments, and on the test statistic calculated at all possible
randomizations of the data. The same test that we called a permutation test in
random sampling contexts is now called a randomization test. Of course one needs
to qualify all statements of significance about such experiments with the disclaimer
that randomization inference only applies to the units used in the experiment.

Permutation tests are the foundation of classical nonparametric statistics (also
called distribution-free statistics), which itself is often identified with rank tests.
Rank tests are actually a special subclass of permutation tests with three distinct
advantages:

D.D. Boos and L.A. Stefanski, Essential Statistical Inference: Theory and Methods,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-4818-1 12,
© Springer Science+Business Media New York 2013
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1. For data without ties, the conditional permutation distribution of a rank test is ac-
tually unconditional (does not change from sample to sample) because the ranks
of a continuous data set are the same for every sample. Thus, the distribution of
an important rank statistic like the Wilcoxon Rank Sum statistic can be tabulated
or programmed. However, this computing advantage is less important today, and
when there are ties in the data (a very common occurrence), the tabulated values
are not appropriate, and the conditional permutation distribution is required for
exact inference.

2. The key philosophical foundation of rank tests arises from the theory of invariant
tests as described in Lehmann (1986, Ch. 5). The idea with invariant tests is
to reduce the class of tests considered to those that are naturally invariant with
respect to a group of transformations G on the sample space of the data. Given
G, a maximal invariant is a statistic M.x/ with the property that any invariant
test with respect to G must be a function of x only throughM.x/. Now consider
the two-sample problem with H0 W FX.x/ D FY.x/ versus the alternative “FY

is stochastically larger than FX,” that is, Ha W 1 � FY.x/ � 1 � FX.x/ for
all x with strict inequality for at least one x. This alternative is more general
than the usual shift alternative, FY.x/ D FX.x � 	/, but it certainly includes
the shift alternative as a special case. Let G be the group of transformations
such that each g 2 G is continuous and strictly increasing. For this testing
problem and group G, the set of ranks of the combined X and Y samples is
the maximal invariant statistic. Thus, any invariant test must be a function of
the ranks. Does it make sense to require tests to be invariant with respect to
monotone transformations? Whenever data are ordinal or we do not trust the
measurement scale, then invariance certainly makes sense, and rank tests are the
obvious choice.

3. Rank tests may be preferred in many situations because of their Type II error
robustness. That is, for an appropriate data generation model, the permutation
method can make any statistic Type I error robust (level ˛), but because rank
tests are a function of the data only through the ranks, the influence of outliers is
automatically limited. Thus, rank tests are power robust in outlier-prone situation.
The key example is the Wilcoxon Rank Sum test that is powerful in the face of
a wide variety of distributional shapes. In fact, Hodges and Lehmann (1956)
showed that the asymptotic relative efficiency (ARE) of the Wilcoxon Rank Sum
test to the t test satisfies the following:

a) ARE= .955 for normal shift alternatives, and thus the Wilcoxon Rank Sum
test loses little in comparison to the t where the t is best;

b) and ARE � .864 for any continuous unimodal shift alternative with finite
variance, and thus the Wilcoxon Rank Sum test can never be much worse than
the t-test but possibly much better.

Optimality for permutation and rank procedures is discussed in more detail later.

Although the term “nonparametric” was classically associated with permutation
and rank procedures, in recent times it is more commonly used for nonparametric
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density and regression estimation methods based on smoothing. Thus, when
describing rank or permutation procedures, it is best to use the specific names
“rank” or “permutation” rather than “nonparametric.” Although permutation tests
are inherently defined in terms of randomization, they overlap with a variety of
conditional procedures and uniformly most powerful unbiased (UMPU) “Neyman
structure similar” tests based on exponential family theory (the most well known is
Fisher’s Exact Test).

Permutation procedures are very computationally intensive. These extensive
computations prevented widespread use of the method until the 1990’s. Thus,
asymptotic approximations were dominant until the 1990’s, although exact small-
sample distributions were tabled for a number of important rank test statistics.

The asymptotic approximations are basically of three kinds: normal approxi-
mations based on the Central Limit Theorem, F or beta approximations based
on matching permutation moments with normal theory moments, and Edgeworth
expansions that improve on the normal approximations. The normal approximations
have been used the most due to their simplicity. However, the F approximations
initiated by Pitman (1937a,b) and Welch (1937) in the 1930s and updated by
Box and Andersen (1955) are generally better for situations where they apply. The
Edgeworth approximations are very good for the Wilcoxon Rank Sum and Wilcoxon
Signed Rank statistics, but are somewhat more complicated for other statistics and
seem not to be in general usage. Thus, we emphasize the F approximations rather
than the normal or Edgeworth approximations. In fact these F approximations
appear to be underused in general, but the work of Conover and Iman (1981)
may have rekindled their use. Asymptotic normal theory remains important for
comparing different methods according to asymptotic power, rather than for finding
critical values. We give an overview of these results and then a few technical
details in an appendix. There are excellent texts such as Hajek and Sidak (1967)
and Randles and Wolfe (1979) that carefully explain asymptotic normality proof
techniques for rank statistics. We add that most nonparametric texts of the last
forty years are mainly about rank statistics, although Lehmann (1975) and Pratt and
Gibbons (1981) have portions devoted to permutation tests. Puri and Sen (1971)
emphasize the theory of permutation tests in multivariate settings.

In our current situation of extensive computing power, Monte Carlo approxi-
mations are the most important alternative to exact calculations. By Monte Carlo
approximation we mean random sampling from the set of all permutations. This
method can be used for any statistic in a situation where permutation methods are
appropriate. Moreover, the error of approximation can be reduced by just adding
more replications. This sampling (or resampling) in the “permutation world” is very
similar to sampling in the bootstrap world; the main difference is that bootstrap
p-values are typically approximate, even using the limit as the number of resamples
B goes to 1. In contrast, the limiting p-value in the permutation world is exact,
and even the finite B estimated p-value has an exact interpretation.

Thus, our treatment of nonparametric methods is quite a bit different from most
texts written in the last half of the twentieth century, which have emphasized rank
tests and asymptotic normal approximations. We believe the basic permutation
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approach is the most important idea because it provides Type I error robustness
for any statistic. Monte Carlo approximations can handle any problem for which
the exact permutation distribution is too difficult to compute. Rank methods are still
very important, but now because they provide Type II error robustness (good power
in the face of outliers), not because they are easy to use or their distributions are
tabled.

We start first with the two-sample problem to illustrate the basic permutation
test approach. We then give some general theory for permutation tests along with
approximations and discuss optimality results. Then we review results for the most
important designs admitting permutation tests, their use in contingency tables,
and estimators and confidence procedures derived from inverting permutation and
rank tests.

12.2 A Simple Example: The Two-Sample Location Problem

We illustrate here the basic permutation approach with a simple two treatment
experiment.

A clever middle school student believes that she has discovered a new method for
teaching fractions to third graders. To test her hypothesis, she selects six students
from her father’s third grade class and randomly assigns four to learn the new
method and two to use the standard method. After training both groups, they are
given twenty test problems. The scores for the standard method group are x1 D 6;

x2 D 8 and for the new method group are y1 D 7; y2 D 18; y3 D 11; y4 D 9.
The results look promising for the new method, but how shall we assess statistical
significance?

One possible test statistic is the standard two-sample t ,

t.X ;Y / D Y � X
q

s2p
�

1
m

C 1
n

	

; (12.1)

where s2p D fP.Xi � X/2 C P

.Yj � Y /2g=.m C n � 2/. If t is large, then one
might be convinced that the new method is better than the standard one.

Another commonly used statistic is W = the sum of the ranks of the Y values
when both X and Y samples are thrown together and ranked from smallest to
largest. Let Z denote the joint sample of both X and Y together: Z D .X ;Y /

with observed values here .6; 8; 7; 18; 11; 9/. The ranks of these observed values are
then .1; 3; 2; 6; 5; 4/ and W D 2 C 6 C 5 C 4 D 17, the sum of the Y ranks. If
the new teaching method is better, then on average we would expect W to be large.
Assuming that either t or W are reasonable statistics for our testing problem, we
still need to agree on what is a proper reference distribution for each. A simple but
very general approach is to recognize that there were actually

�

6
2

	 D 15 different
ways that two students could have been selected from the original six to go in the X
sample (with the remaining four assigned to the Y sample). Table 12.1 is a listing
of the possible samples and the values of t and W for both.
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Table 12.1 All Possible Permutations for Example Data

X Sample Y Sample
P

Yi t W

1. 6 8 7 18 11 9 45 1.17 17
2. 7 8 6 18 11 9 44 0.91 16
3. 18 8 7 6 11 9 33 �1.36 12
4. 11 8 7 18 6 9 40 0.12 13
5. 9 8 7 18 11 6 42 0.49 14
6. 6 7 8 18 11 9 46 1.47 18
7. 6 18 7 8 11 9 35 �0.84 14
8. 6 11 7 18 8 9 42 0.49 15
9. 6 9 7 18 11 8 44 0.91 16
10. 7 18 6 8 11 9 34 �1.08 13
11. 18 11 7 6 8 9 30 �2.98 10
12. 11 9 7 18 6 8 39 �0.06 12
13. 7 11 6 18 8 9 41 0.30 14
14. 7 9 6 18 11 8 43 0.69 15
15. 18 9 7 6 11 8 32 �1.72 11

Table 12.2 Permutation Distribution of t

t �2:98 �1:72 �1:36 �1:08 �0:84 �0:06 0:12

P.t/
1

15

1

15

1

15

1

15

1

15

1

15

1

15

t 0.30 0.49 0.69 0.91 1.17 1.47

P.t/
1

15

2

15

1

15

2

15

1

15

1

15

If the treatments produce identical results, then the outcomes for each student
would have been exactly the same for any of the 15 possible randomizations. Thus,
a suitable reference distribution for t or W is just the possible 15 values of t or W
along with the probability 1/15 of each. This reference distribution for t , called the
permutation distribution, is in Table 12.2.

Note that the permutation distribution of t is discrete even when sampling from
a continuous distribution. (Here the distribution of the data is also discrete because
the possible test scores are 0, 1, . . . , 20).

Using the distribution in Table 12.2, a conditional test for this experiment with
˛ D 1=15 would be to reject if t � 1:47. A one-sided p-value for the observed
value of t D 1:17 is 2/15. Similarly a conditional ˛ D 1=15 level test based on the
rank sum W would reject if W � 18, and the one-sided p-value is 2/15.

In general, the tests based on t andW would not give exactly the same results. For
example, suppose the original data had been the 14th permutation, (7,9,6,18,11,8).
Then the permutation p-value for t would be 5=15 D :33, whereas the permutation
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p-value for W would be 6=15 D :40. Note, however, the column in Table 12.1
(p. 453) for the sum of the Y values. Comparing the

P

Yi and t values, one can see
that the permutation p-values from

P

Yi and t are identical if the original data had
been any of the 15 permutations. In such a case, we say that the two statistics are
permutationally equivalent because they give exactly the same testing results.

In Problem 12.1 (p. 523) we ask for the permutation distribution of W from
Table 12.1 (p. 453). A unique feature of rank statistics when there are no ties in the
data is that the permutation distribution is the same for every such data set. That is,
although the data values would change for every data set, as long as there are no ties
in the 6 data points, the ranks would always be (1,2,3,4,5,6). Thus, the results for
W in Table 12.1 (p. 453) would be exactly the same except in a different order, and
therefore the distribution would be the same. This is one reason that rank statistics
gained popularity: without ties, the exact distribution does not change and can then
be tabled for easy lookup.

For simplicity we purposely started with a data set having no ties. However,
ties occur frequently in real data even in continuous data settings due to rounding
or inaccurate measurement. The standard way to rank data with ties is to assign the
average rank to each of a set of tied values. For example, suppose our secondX data
point had been 7 instead of 8. Then the Z vector would have been (6,7,7,18,11,9),
and instead of (1,3,2,6,5,4) for the ranks we would have (1,2.5,2.5,6,5,4). These are
now called the midranks. We have taken the values 7 and 7 that would have occupied
ranks 2 and 3 and replaced them by .2 C 3/=2 D 2:5: If the first X data point had
also been a 7, then the midrank vector would have been (2,2,2,6,5,4), where we have
used .1 C 2 C 3/=3 D 2 for the first three midranks. The use of midranks has no
effect on the general permutation approach, but tabling distributions as mentioned in
the previous paragraph is no longer possible since every configuration of tied values
has a different permutation distribution.

12.3 The General Two-Sample Setting

The two-sample problem assumes that N experimental units (rats, for example)
are available to compare two treatments A and B. First, m units are randomly
assigned to receive treatment A, and the n D N �m remaining units are assigned
to receive treatment B. After the experiment is run, we obtain realizations of some
measurement X1; : : : ; Xm for treatment A and Y1; : : : ; Yn for treatment B. The null
hypothesis H0 is that both treatments are the same or have identical effects on the
rats. In other words, if the third rat in group A whose measurement is X3 had been
assigned to group B instead, the X3 would still have been the result under H0 for
that rat, but now it would have a Y label. In fact, we can think of all possible

�

N
m

	

random assignments of m rats to group A and n rats to group B, and assume that
underH0 the individual results would be the same regardless of group assignment.
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We might then formulate a test procedure as follows.

1. Randomly assign m units to A and n units to B.
2. Run the experiment to obtain X1; : : : ; Xm and Y1; : : : ; Yn .
3. Think of the collection Z D .X1; : : : ; Xm; Y1; : : : ; Yn/ as fixed and order the
MN D �

N
m

	

values of some statistic T calculated for each Z� obtained by
permuting Z to have different sets of m first coordinates. Call these ordered
values T.1/ � T.2/ � : : : � T.MN /, and let T0 D T .X ;Y / be the statistic
calculated for the original data.

4. Reject H0 if T0 > T.k/.

This test, conditional on Z , has conditional ˛-level

1 � k

MN

if T.k/ < T.kC1/ (not tied) since MN � k values of T are larger than T.k/. The exact
conditional p-value is the proportion of values greater than or equal to T0,

Œ#T.i/ � T0�

MN

: (12.2)

When T is the t statistic in (12.1, p. 452), the above two-sample permutation
procedure was proposed by Pitman (1937a). The credit for the permutation
approach, however, goes to R. A. Fisher who had earlier introduced the permutation
approach in the fifth edition of Statistical methods for Research Workers (2	2 table
example) published in 1934 and in the first edition of The Design of Experiments
(one-sample t example) in 1935.

Besides computational problems, the main drawback of the procedure described
in points 1.�4. outlined above is that:

a) the results pertain to the N units obtained and not to a larger population;
b) computations of test power are difficult.

Thus, it is often useful to assume a population sampling model of the usual form

X1; : : : ; Xm iid FX.x/ D P.X1 � x/;

Y1; : : : ; Yn iid FY.x/ D P.Y1 � x/;

with H0 W FX.x/ D FY.x/. Under this model we can show that the conditional
permutation test actually has exact size ˛ unconditionally, i.e.,

P.rejection j H0/ D ˛:

The permutation approach has the advantage that no assumption regarding
distributions of random variables is required. Moreover, one can often show
using permutational Central Limit Theorems (e.g., Theorem 12.2, p. 465) that the
conditional distribution of T .X ;Y / properly standardized converges to a standard
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normal as min.m; n/ ! 1. Thus, in large samples one can use normal critical
values rather than list allMN possible values of T . Alternatively, one can randomly
sample B of the possible permutations and base a test on the ordered values of
T1; : : : ; TB . First we give the general theory of permutation tests and then discuss
these approximations as well as the Box-Andersen F approximation.

12.4 Theory of Permutation Tests

12.4.1 Size ˛ Property of Permutation Tests

In this subsection we show that permutation tests used in random sampling contexts
can have exact size ˛ when randomizing on rejection region boundaries, and
otherwise has level ˛ when the test is carried out without such randomization.
Recall that a size ˛ test is one for which supH0 P.rejectH0/ D ˛ and level ˛ means
supH0 P.rejectH0/ � ˛. The reference to randomization merely refers to flipping a
biased coin for sample points on the boundary between the rejection and acceptance
region in order to obtain size ˛ and has nothing to do with the randomization used
in the definition of a permutation test.

To prove size-˛ results rigorously, we need some additional notation. Two useful
sources are Hoeffding (1952) and Puri and Sen (1971). Let Z D .Z1; : : : ; ZN /

T

have joint distribution function FZ .z/ and sample space S . Let G be a group of
MN transformations of S onto S such that underH0 the distribution of each gi .Z /,
gi 2 G; i D 1; : : : ;MN , is exactly the same as the distribution of Z . Two examples
of such groups are as follows.

Permutations: G consists of allN ! permutations ofZ . IfZ is exchangeable or iid,

then gi .Z /
dD Z . Although, in the two-sample problem (two independent samples),

we usually consider only the
�

N
m

	

partitions into two groups since the statistics used
do not change by permuting elements within each sample. In the k-sample problem
(k independent samples), we consider only the

 

N

n1n2 : : : nk

!

D NŠ

n1Š � � �nkŠ

partitions into k groups, where n1 C n2 C � � � C nk D N . The group of NŠ
permutations is relevant for the two-sample, k-sample, and correlation problems.

Sign Changes: G consists of all 2N sign change transformations, g1.Z / D
.Z1;Z2; : : : ; ZN /, g2.Z / D .�Z1;Z2; : : : ; ZN /, g3.Z / D .Z1;�Z2;Z3; : : : ; ZN /,
etc. If theZi ’s are independently (but not necessarily identically) distributed, where

each Zi is symmetrically distributed about 0, then gi .Z /
dD Z . The sign change

group is relevant for the paired two-sample problem and the one-sample symmetry
problem.
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The following development is due to Hoeffding (1952). Because the permutation
distribution is discrete, it is not possible to achieve arbitrarily chosen ˛-levels like
˛ D :05 without using a randomized testing procedure. This makes the details seem
harder than they really are.

Let T .z/ be a real-valued function on S such that for each z 2 S
T.1/.z/ � T.2/.z/ � � � �T.MN /.z/

are the ordered values of T .gi .z//; i D 1; : : : ;MN . Given ˛, 0 < ˛ < 1, let k be
defined by

k D MN � ŒMN˛�;

where [�] is the greatest integer function. Let MC
N .z/ and M0

N .z/ be the numbers
of T.j /.z/; j D 1; : : : ;MN ; which are greater than T.k/.z/ and equal to T.k/.z/,
respectively. Define

a.z/ D MN˛ �MC
N .z/

M0
N .z/

:

Then define the test function �.z/ by

�.z/ D
8

<

:

1; if T .z/ > T.k/.z/I
a.z/; if T .z/ D T.k/.z/I
0; if T .z/ < T.k/.z/:

Note that for a test function, �.z/ D 1 means rejection of H0, �.z/ D 0 means
acceptance of H0, and �.z/ D � means to randomly reject H0 with probability
� . The test defined by � is an exact conditional level ˛ test by construction. The

following theorem tells us that under gi .Z /
dD Z for each gi 2 G, the test is

unconditionally a size-˛ test.

Theorem 12.1. (Hoeffding). Let the data Z D .Z1; : : : ; ZN / and the group G of

transformations be such that gi .Z /
dD Z for each gi 2 G under H0. Then the test

defined above by �.Z / has size ˛.

Proof. First note that by the definition of a.z/ and �, we have for each z 2 S

1

MN

MN
X

iD1
�.gi .z// D MC

N C a.z/M0
N .z/

MN

D ˛:

Now since gi .Z /
dD Z andG is a group, EH0�.Z / D EH0�.gi .Z // for each i , and

PH0.rejection/ D EH0�.Z / D 1

MN

MN
X

iD1
EH0�.gi .Z //

D EH0

"

1

MN

MN
X

iD1
�.gi .Z //

#

D ˛:
�



458 12 Permutation and Rank Tests

The above proof is deceptively simple. The key fact that makes it work is that
EH0�.gi .Z // is the same for each gi including g.Z / D Z . This fact rests on
the identical distribution of gi .Z / for each i and on the group nature of G. The
identical distribution requirement is intuitive, but why do we need G to be a group?
Recall that the test procedure consists of computing T for each member of G and
then rejecting if T .Z / is larger than an order statistic of the T .gi .Z // values. Now
�.gi .Z // is the test that computes T .gj .gi .Z ///, j D 1; : : : ;MN , orders all of
them, and rejects if T .gi .Z // is larger than one of the ordered values. If G is not
a group, then the set of ordered values will not be the same for each test �.gi .Z //
because gj .gi / will not be in G for some i and j . Since the sets of ordered values
could be different, there would be no basis for believing that a test based on gi .Z /
would have the same expectation as that based on Z .

Note also that the use of a.z/ in �.z/ is a way of randomizing to get an exact
size-˛ test. In practice we might just define �.z/ to be one if t.z/ > t.k/.z/ and zero
otherwise. The resulting unconditional level is a weighted average of the discrete
levels less than or equal to ˛ and will usually be less than ˛.

The conditional test procedure described in 1) � 4) may be used for any test
statistic, but the rejection region in Step 4) should be modified to correspond to the
situation. For example, the alternative hypothesis might be that the mean of A is
less than that of B . We would then look for small values of t . Or the test could be
two-sided and we would reject if t < t.k/ or if t > t.m/.

12.4.2 Permutation Moments of Linear Statistics

The exact permutation distribution may be difficult to compute. For certain linear
statistics, though, we can calculate the moments of the permutation distribution
quite easily. These moments are then used in the various normal and F approxi-
mations found in later sections.

We consider general results for situations associated with the group of transfor-
mations consisting of all permutations. These situations include the two-sample and
k-sample situations, and bivariate data .X1; Y1/; : : : ; .XN ; YN / where correlation
and regression of Y onX are of interest. Let a D .a1; : : : ; aN / and c D .c1; : : : ; cN /

be two vectors of real constants. We select a random permutation of the a values,
call them A1; : : : ; AN , and form the statistic

T D
N
X

iD1
ciAi : (12.3)

In applications a is actually the observed vector Z (or a function of Z such as the
rank vector), and c is chosen for the particular problem at hand. For example, in the
two-sample problem, with a D Z and ci D 0 for i D 1; : : : ; m and 1 otherwise, the
observed value of T for the original data is

Pn
iD1 Yi , and here T D PN

iDmC1 Ai is a
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sum of the last n elements of a random permutation ofZ . A very important subclass
of (12.3) are the linear rank statistics given in the next section.

Assuming that each permutation of A is equally likely and thus has probability
1=N Š, it is easy to see that

P.Ai D as/ D 1

N
for s D 1; : : : ; N;

and

P.Ai D as; Aj D at / D 1

N.N � 1/ for s ¤ t D 1; : : : ; N:

Then, using those two results, we get

E.Ai/ D 1

N

N
X

iD1
ai � a; for i D 1; : : : ; N;

Var.Ai / D 1

N

N
X

iD1
.ai � a/2; for i D 1; : : : ; N;

and

Cov.Ai ; Aj / D �1
N.N � 1/

N
X

iD1
.ai � a/2; for i ¤ j D 1; : : : ; N:

Finally, putting these last three results together, we get

E.T / D Nc a;

and

Var.T / D 1

N � 1

N
X

iD1
.ci � c/2

N
X

jD1
.aj � a/2; (12.4)

where a and c are the averages of the a’s and c’s, respectively. These first two
moments of T are sufficient for normal approximations based on the asymptotic
normality of T as N ! 1. In some cases it may be of value to use more complex
approximations involving the third and fourth moments of T . Thus, the central third
moment is

EfT � E.T /g3 D N

.N � 1/.N � 2/

N
X

iD1
.ci � c/3

N
X

jD1
.aj � a/3;

and the standardized third moment (skewness coefficient) is

Skew.T / D EfT � E.T /g3
fVar.T /g3=2 D .N � 1/1=2

.N � 2/

�3.c/�3.a/

f�2.c/�2.a/g3=2 ;
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where we have introduced the notation �q.c/ D N�1PN
iD1.ci � c/q for q � 2.

Similarly the standardized central fourth moment (kurtosis coefficient) is

Kurt.T / D EfT � E.T /g4
fVar.T /g2 D .N C 1/.N � 1/

N.N � 2/.N � 3/
�4.c/�4.a/

f�2.c/�2.a/g2

� 3.N � 1/2

N.N � 2/.N � 3/
�

�4.c/

f�2.c/g2 C �4.a/

f�2.a/g2
�

C 3.N 2 � 3N C 3/.N � 1/
N.N � 2/.N � 3/

:

12.4.3 Linear Rank Tests

Many popular rank tests have the general form

T D
N
X

iD1
c.i/a.Ri / (12.5)

of a linear rank statistic, where c.1/; : : : ; c.N / are called the regression constants
and a.1/; : : : ; a.N / are called the scores, and R is the vector of ranks (possibly
midranks due to ties) of some data vector Z . There is a room for confusion here in
the use of the notation for c and a, because in the general notation of the last section,
.c1; : : : ; cN / and .a1; : : : ; aN / are vectors of real numbers, but here c.�/ and a.�/ are
functions so that c1 D c.1/; : : : ; cN D c.N / and a1 D a.1/; : : : ; aN D a.N /.
This function notation just makes it easier to work with rank statistics. In particular,
the score functions a.�/ are typically derived from scores generating functions � via
a.i/ D �.i=.NC1//. In tied rank situations, a.�/ needs to be defined for non-integer
values.

The simplest setting is the two-sample problem where ZT D .X1; : : : ; Xm;

Y1; : : : ; Yn/ and the c values are all zeroes for the Xs and ones for the Y s or vice-
versa. A different situation covered by T , though, is for trend alternatives, where
c.1/; : : : ; c.N / are the integers 1; : : : ; N and T D PN

iD1 iRi will tend to be large
whenZiC1 tends to be larger thanZi . A related problem is forN independent pairs
.X1; Y1/; : : : ; .XN ; YN /. Here, tests based on Spearman’s Correlation (Section 12.7,
p. 487) are equivalent to ones having the same null distribution as T D PN

iD1 iRi .
Clearly T in (12.5) is a subclass of the linear permutation statistics given in (12.3,

p. 458). Thus results for that class are inherited by T . For example, ifR is uniformly
distributed on the permutations of 1; : : : ; N (no tied ranks), then

E.T / D Nc a;
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and

Var.T / D 1

N � 1
N
X

iD1
.c.i/ � c/2

N
X

jD1
.a.j / � a/2;

where of course c and a are the means of the c and a values, respectively. For a tied
rank situation with observed vector of midranksR, the expressions above still hold
but with a.j / replaced by a.Rj /.

For deciding on a score function in a given problem, we first select a parametric
family and then derive an optimal score function for that family. An overview of
how to do this is given in Section 12.5 (p. 473). The most important linear rank
statistic is the Wilcoxon Rank Sum. So we give a few more details about it in the
next section.

12.4.4 Wilcoxon-Mann-Whitney Two-Sample Statistic

For two independent samples X1; : : : ; Xm and Y1; : : : ; Yn, Wilcoxon (1945) intro-
duced the linear rank statistic

W D
N
X

iDmC1
Ri ; (12.6)

where R1; : : : ; RN are the joint rankings of Z D .X1; : : : ; Xm; Y1; : : : ; Yn/
T , N D

m C n. The Wilcoxon Rank Sum test has a number of optimal properties that are
mentioned in Section 12.5 (p. 473). Along with the Wilcoxon Signed Rank test for
paired data (Section 12.8.3, 494), it is the simplest and most important rank test.

Independently, Mann and Whitney (1947) proposed the equivalent statistic

WYX D
m
X

iD1

n
X

jD1
I.Yj < Xi/; (12.7)

where I.�/ is the indicator function. In the absence of ties WYX D mn C n.n C
1/=2�W . Another equivalent version is

WXY D
m
X

iD1

n
X

jD1
I.Yj > Xi/; (12.8)

withWXY D W �n.nC1/=2. We prefer this latter version and define theU -statistic
estimator of �XY D P.Y1 > X1/

b�XY D WXY

mn
D 1

mn

m
X

iD1

n
X

jD1
I.Yj > Xi/: (12.9)
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In a clinical trial, �XY can be viewed as the probability of a more favorable response
for a randomly selected patient getting Treatment 2 compared to another patient
getting Treatment 1. For screening tests where a “positive” is declared if Y > c for
a diseased subject or if X > c for a non-diseased subject, then �XY is the area under
the receiver operating characteristic (ROC) curve. This interpretation is developed
in Problem 12.8 (p. 525).

For hand computations, W is much easier to handle than these U -statistic
versions. The null moments follow easily from Section 12.4.2 (p. 458) after noting
that c.1/ D � � � D c.m/ D 0 and c.m C 1/ D � � � D c.N / D 1 lead to c D n=N

and
PN

iD1.c.i/ � c/2 D mn=N . The null mean is n.N C 1/=2 whether there are
ties or not. The variance follows from (12.4, p. 459). With no ties, we have

Var.W / D mn.N C 1/

12
: (12.10)

With ties so that .R1; : : : ; RN / are the tied ranks, we have

Var.W / D mn

N.N � 1/

(

N
X

iD1
R2i � N.N C 1/2

4

)

: (12.11)

Lehmann (1975, p. 20) gives a different expression for the variance ofW in the face
of ties,

Var.W / D mn.N C 1/

12
� mn

Pe
iD1.d 3i � di/

12N.N � 1/ ; (12.12)

where e are the number of tied groups, and di is the number of tied obser-
vations in each group. For example, with the simple example data modified to
.f6; 7g; f7; 18; 11; 9g/, the midranks are .1; 2:5; 2:5; 6; 5; 4/ and e D 1, d1 D 2;
so Var.W / D .2/.4/.6 C 1/=12 � .2/.4/Œ23 � 2�=Œ12.6/.5/� D 4:53. Expression
(12.12) may be easier to use by hand than (12.11), but its main value may be to
show that the variance of W for tied data is always smaller than (12.10) for untied
data.

The U -statistic versions in (12.7)–(12.9) are useful for easy calculation of
moments and derivation of asymptotic normality under non-null distributions. For
example, using equation (3.4.7, p. 91) of Randles and Wolfe (1979) for the variance
of a two-sample U -statistic from independent iid samples, we have that

Var.b�XY/ D 1

mn

˚

.m � 1/.�0;1 � �2XY/C .n � 1/.�1;0 � �2XY/C �1;1 � �2XY




;

(12.13)

where in the absence of ties �0;1 D P.Y1 > X1; Y1 > X2/, �1;0 D P.Y1 > X1; Y2 >

X1/, and �1;1 D �XY D P.Y1 > X1/. If the X and Y have identical continuous
distributions, then it is easy to show that �0;1 D �1;0 D 1=3 and �1;1 D �XY D 1=2

and (12.13) reduces to (12.10).
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In the presence of ties, the U -statistic quantities need to be modified by adding
I.Yj D Xi/=2 to the indicators in the sums. For example,

b�XY D WXY

mn
D 1

mn

m
X

iD1

n
X

jD1

˚

I.Yj > Xi/C I.Yj D Xi/=2



: (12.14)

The relationships WYX D mn C n.n C 1/=2 � W and WXY D W � n.n C 1/=2

then continue to hold. The definitions of �0;1, �1;0, and �1;1 for use in (12.13) have
to be modified in the face of ties; see, for example, Boos and Brownie (1992, p. 72).
In the next section we give the basic asymptotic normal results for linear statistics
under the null hypothesis of identical populations. Those general results are useful
for approximate critical regions for permutation and rank statistics. However, the
Wilcoxon statistics are special because they are related to the U -statistic b�XY for

which a large body of theory exists. In particular, b�XY is AN
n

�XY;Var.b�XY/
o

,

and this follows from basic U -statistic theory with no assumptions except that
X1; : : : ; Xm are iid with any distribution function F.x/, and Y1; : : : ; Yn are iid with
any distribution function G.x/. Because this asymptotic result is not just for null
situations, it helps us think about i) the form of the alternative hypothesis, ii) the
classes of distribution functions for which the Wilcoxon Rank Sum is consistent, in
other words, rejects with probability converging to 1, and iii) asymptotic power and
sample size determination. We now discuss these ideas.

In general, the null hypothesis of interest is

H0 W F.x/ D G.x/; each x 2 .�1;1/:

However, the alternative hypothesis can be formulated in several ways. The most
common way is to assume the shift model G.x/ D F.x � 	/, and then the
alternative hypothesis is purely in terms of 	, for example

H1 W 	 > 0:

Another popular, more nonparametric, way to phrase the alternative is

H2 W F.x/ � G.x/; each x 2 .�1;1/;

and with strict inequality for at least one x. Here, G is said to be stochastically
larger than F . Clearly,H2 is a larger class of alternatives since .F;G/ 2 H1 implies
.F;G/ 2 H2: Lastly, the natural alternative when thinking in terms ofb�XY is

H3 W �XY >
1

2
:
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Now if F and G are continuous distribution functions and .F;G/ 2 H2, then
.F;G/ 2 H3: This follows from

�XY D P.Y1 > X1/ D
Z Z

I.y > x/ dF.x/ dG.y/ D
Z

f1 �G.x/g dF.x/;

after noting that if continuous distribution functions satisfy F.x/ > G.x/ for at
least one x, then this strict inequality must hold for an interval of x values, and
R

F.x/ dF.x/ D 1=2. Assuming that H3 holds, then the Wilcoxon Rank Sum test
is consistent because of the general asymptotic normality result mentioned above.
This also means that it is also consistent under alternativesH1 and H2.

Lastly, following Noether (1987), the approximate power of a one-sided ˛ level
test when �XY >

1
2

is given by

1 � ˚

�

1=2� �XY

��0
C ˚�1.1 � ˛/

�

�

; (12.15)

where �0 is the square root of the null variance of W (12.10, p. 462), � is the ratio
of the square root of the non-null variance of W (m2n2 times eq. 12.13, p. 462) to
�0, and ˚ is the standard normal distribution function. Typically, � is close to 1.
Letting � D 1 and m D N , the total sample size N required to have power 1 � ˇ

for alternative �XY is given by Noether (1987) to be

N D
˚

˚�1.1 � ˛/C˚�1.1 � ˇ/

2

12.1� /.�XY � 1=2/2
: (12.16)

This is a fairly simple formula, but it might be preferable to state power and sample
size in terms of the shift model. Plugging in G.x/ D F.x �	/, we have

�XY D P.Y1 > X1/ D
Z

f1 � F.x �	/g dF.x/:

For example, if we wanted shifts of size 	=� in a normal(�; �2) population, then a
simple R program to get �XY using the midpoint rule is

theta.xy<-function(delta,n=10000){
# u-stat parameter for normal shift delta/sigma
# for sigma=1
# n is the number of points for midpoint rule

points<-(2*(1:n)-1)/(2*n)
mean(1-pnorm(qnorm(points)-delta))

}

If 	=� D :5, then

> theta.xy(.5,10000)
[1] 0.6381632

so that �XY D :638. Choosing ˛ D :05, ˇ D :80, and  D 1=2, we find N D 108

or m D n D 54.
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12.4.5 Asymptotic Normal Approximation

Approximate normal distributions for linear statistics have been the most popular
approximation to permutation distributions, especially for rank statistics. Here
we use the following permutation Central Limit Theorem for T D PN

iD1 ciAi ,
introduced in (12.3, p. 458), directly from Puri and Sen (1971, p. 73) who give
credit to Wald and Wolfowitz (1944), Noether (1949), and Hoeffding (1951). The
notation �q.c/ is for the qth central momentN�1PN

iD1.ci � c/q .
Theorem 12.2 (Wald-Wolfowitz-Noether-Hoeffding). If for N ! 1
(i)

�q.c/

�2.c/q=2
D O.1/ for all q D 3; 4; : : :

(ii)
�q.a/

�2.a/q=2
D o.N r=2�1/ for all q D 3; 4; : : : ;

then
T � E.T /
p

Var.T /

d�! N.0; 1/:

In a particular problem either or both of the vectors c and a may be random,
that is, calculated from the data Z . In such cases we would need to show that the
appropriate conditions .i/ and/or .i i/ hold wp1 with respect to the random vector
Z . Moreover, the conclusion of Theorem 12.2 is that the permutation distribution
of the standardized T converges to a standard normal distribution with probability
one with respect to Z .

In the case of linear rank statistics without ties, we can give a much simpler
theorem due to Hajek (1961). We follow the exposition given in Randles and Wolfe
(1979, Ch. 8) and state their version of Hajek’s theorem.

Theorem 12.3 (Hajek). Let T D PN
iD1 c.i/a.Ri / be the linear rank statistic,

where the rank vector R comes from data vector Z that is continuous (no ties with
probability one) and exchangeable, the constants c.1/; : : : ; c.N / satisfy the Noether
condition

N
P

iD1
.c.i/ � c/2

max
1�i�N.c.i/ � c/2 ! 1 as N ! 1; (12.17)

and the scores have the form a.i/ D �.i=.N C 1//, where � can be written as
the difference of two nondecreasing functions and 0 <

R 1

0
�.t/2dt < 1 and

R 1

0
j�.t/jdt < 1. Then T is ANfNc a;Var.T /g as N ! 1.
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It has been customary to use the normal approximation with rank statistics, often
with a continuity correction. For example, in the two-sample problem, consider the
Wilcoxon Rank SumW of (12.6, p. 461). Note that for application of Theorem 12.3
above, �.u/ D u, and the theorem actually applies directly to W=.N C 1/. For the
simple example of Section 1.2 where z D .x;y/ D .6; 8; 7; 18; 11; 9/ with ranks
R D .1; 3; 2; 6; 5; 4/, we find W D 17, E.W / D 4.6 C 1/=2 D 14, Var.W / D
.2/.4/.6 C 1/=12 D 14=3 (from 12.10, p. 462), and the normal approximation p-
value is

p � P

 

N.0; 1/ � 17 � 14
p

14=3

!

D P.N.0; 1/ � 1:39/ D 0:08:

With continuity correction the normal approximation p-value is

p � P

 

N.0; 1/ � 17 � 14 � 1=2
p

14=3

!

D P.N.0; 1/ � 1:16/ D 0:12:

Lehmann (1975, p. 16) cites Kruskal and Wallis (1952, p. 591) with the recommen-
dation that the continuity correction be used when the probability is above 0.02.
Recall that the exact null distribution ofW can be obtained from Table 12.1 leading
to the usual p-value P.W � 17/ D 2=15 D 0:13 which is closer to the continuity
corrected value.

When there are tied values, we can still use the normal approximation with W ,
but we must be sure to use the null variance from (12.11, p. 462) or (12.12, p. 462)
and not from (12.10, p. 462). Lehmann (1975, p. 20) does not use the continuity
correction in the presence of ties.

We can also look at approximations to the permutation p-value of T D Pn
iD1 Yi

which is permutationally equivalent to the two-sample t statistic. For the simple
example c D .0; 0; 1; 1; 1; 1/ and a D z D .6; 8; 7; 18; 11; 9/. Thus, E.T / D .6/

.4=6/.59=6/D 39:33, Var.T / D 25:23, and the normal approximation p-value is

p � P

�

N.0; 1/ � 45� 39:33p
25:23

�

D P.N.0; 1/ � 1:13/ D 0:13:

This seems almost too good an approximation to the true permutation p-value of
2=15 D 0:13 : Usually the t approximation p-value is more accurate, but here it is
P.t4 � 1:17/ D 0:15.

12.4.6 Edgeworth Approximation

Edgeworth approximations were mentioned briefly in Ch. 3 (5.6, p. 219) and
Ch. 9 (11.7, p. 426). Basically, an Edgeworth expansion is an approximation
to the distribution function of an asymptotically normal statistic. It is based on
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Fig. 12.1 Error (Left Panel) and relative error (Right Panel) of approximations to Wilcoxon Rank
Sum p-values for m D 10, n D 6: normal approximation, normal approximation with continuity
correction, and the Edgeworth approximation in (12.18, p. 467)

estimation of Skew and/or Kurt and other higher moments of the statistic. Rigorous
development of Edgeworth expansions for general permutation statistics under the
null hypothesis may be found in Bickel (1974), Bickel and van Zwet (1978), and
Robinson (1980). However, it has not proved of much practical use for obtaining
critical values or p-values of permutation statistics except in the special case of the
Wilcoxon Rank Sum W and of the one-sample Wilcoxon signed rank statistic.

Here we give the approximation forW originally due to Fix and Hodges (1955).
For W D Pn

iD1 Ri ,

P.W � w/ � 1 � ˚.t/ �
�

m2 C n2 CmnCmC n

20mn.mC nC 1/

�

.t3 � 3t/�.t/; (12.18)

where � and ˚ are the standard normal density and distribution function, respec-
tively, and t D fw � E.W / � 1=2g=pVar.W /, E.W / D n.N C 1/=2, Var.W / D
mn.N C 1/=12.

Figure 12.1 gives the error D true p-value � (12.18) and the relative error D
[true p-value � (12.18)]/(true p-value) of (12.18) compared to the true p-value and
similar quantities for the normal approximations. The range of the p-values is most
of the right tail of the distribution function of W plotted in reverse order, that is,
0.0005 to 0.11. The Edgeworth approximation is excellent for p-values larger than
0.0024, but then deteriorates as the p-value gets very small. For example, when the
true p-value is 0.00087, the Edgeworth approximation is 0.00073, and at 0.00025
it is 0.00009. The right panel of Figure 12.1 is especially helpful for illuminating
what happens at small p-values. The normal approximation is much cruder, and
below 0.02 we can see that the continuity correction is no longer useful.

Figure 12.1 suggests that (12.18) can be used for most values of W , thus
essentially replacing tabled values of the distribution of W . However, when there
are ties in the data, (12.18) as well as tabled values are no longer correct, and the
exact permutation distribution (or a Monte Carlo approximation) is required.
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12.4.7 Box-Andersen Approximation

Pitman (1937a,b) and Welch (1937) pioneered an approximation to permutation
distributions that was modernized by Box and Andersen (1955) and Box and
Watson (1962). These later authors mainly used the approach to show the Type I
error robustness of F statistics for tests comparing means and the nonrobustness
of tests comparing variances. However, we follow the Box and Andersen (1955)
formulation since it is the most straightforward.

The basic idea of the approximation is to get F statistics into their equivalent
“beta” version, then match the first two permutation moments of this beta version
to what one gets from the first two moments of a beta distribution with degrees of
freedom multiplied by a constant d . Solving for d leads to the approximation of the
permutation distribution of the F statistics by an F distribution with usual degrees
of freedom multiplied by d . We develop the approximation here for the two-sample
problem and later give it for one-way and two-way ANOVA situations.

The square of the t statistic in (12.1, p. 452) may be written in the one-way
ANOVA F form

t2 D m.X �Z/2 C n.Y �Z/2

s2p
D SSTR

SSE=.N � 2/
; (12.19)

where recall we use the Z’s to denote all the X and Y values thrown together, and
SSTR and SSE are sums of squares for treatments and error, respectively. Using the
fact that

PN
iD1.Zi � Z/2 D SSTR C SSE, we have for the beta version of the F

statistic

b.t2/ D t2

t2 CN � 2 D SSTR
N
X

iD1
.Zi �Z/2

:

Note that for normal data under the null hypothesis, b.t2/ has a beta.1=2; .N�2/=2/
distribution. Originally b.t2/ was used with the beta critical values rather than t2

with F.1;N �2/ critical values. Although, t2 and b.t2/ are equivalent test statistics,
for permutation analysis b.t2/ is much simpler because the denominator is constant
over permutations. Thus, the first permutation moment is

EPfb.t2/g D mVarP.X/C nVarP.Y /

N
X

iD1
.Zi �Z/2

D 1

N � 1
;

where we have used (12.4, p. 459) to get

VarP.X/ D
n

N
X

iD1
.Zi �Z/2

mN.N � 1/
VarP.Y / D

m

N
X

iD1
.Zi �Z/2

nN.N � 1/ :
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Note also that under normal theory Efb.t2/g D 1=2=.1=2C.N�2/=2/ D 1=.N�1/
from the beta distribution. Thus, the normal theory and permutation first moments
of b.t2/ are both 1=.N � 1/. The next step is to calculate the permutation variance
of b.t2/ (involving fourth moments), equate it to the variance of a beta.d=2; d.N �
2/=2/ distribution, 2.N �2/=Œd.N �1/.NC3/�, and solve for d . Box and Andersen
(1955, p. 13) give d for the general one-way ANOVA situation with k groups and
sample sizes n1; n2; : : : ; nk :

d D 1C
�

N C 1

N � 1
�

c2

.N�1 C A/�1 � c2 ; (12.20)

where

A D N C 1

2.k � 1/.N � k/

 

k2

N
�

k
X

iD1

1

ni

!

;

c2 D k4=k
2
2 ,

k2 D 1

N � 1

N
X

iD1
.Zi �Z/2; (12.21)

k4 D
N.N C 1/

N
X

iD1
.Zi �Z/4 � 3.N � 1/

(

N
X

iD1
.Zi �Z/2

) 2

.N � 1/.N � 2/.N � 3/
: (12.22)

The statistics k2 and k4 are unbiased estimators of the population cumulants
introduced in Chapter 1.

For our two-sample t2, k D 2, n1 D m, n2 D n, m C n D N , and the Pitman-
Welch-Box-Andersen approximation is to compare t2 to an F.d; d.m C n � 2//

distribution. Box and Andersen (1955) show that E.d/ � 1C .Kurt � 3/=N under
the null hypothesis of sampling from equal populations with kurtosis Kurt. Thus,
t2 with the usual F.1; .m C n � 2// is quite Type I error robust to nonnormality
since the correction d is relatively small for moderate size N . Also, for long-tailed
distributions with thicker tails than the normal distribution, Kurt>3 and thus d >1,
so that using the F.1; .mC n � 2// critical values results in conservative tests, that
is, true test levels less than the nominal ˛ values. For example, with Laplace data,
Kurt D 6 and d � 1C3=N ; atm D n D 10 d � 1:15, and a nominal ˛ D :05 level
test would actually have true level approximately .043. For continuous uniform data,
Kurt D 1:8; at m D n D 10 d � :94 and a nominal ˛ D :05 level test would have
true level approximately .053. Since these deviations from ˛ are small, common
practice is to just use the standard F.1; .mC n� 2// reference distribution with the
t2 statistic rather than the permutation distribution or an approximation to it.

Although t2 is Type I error robust in the face of outliers, it loses power because
outliers inflate the variance estimate in the denominator of t2. Thus t2 is not Type
II error robust when sampling from distributions heavier-tailed than the normal. In
contrast, as we mentioned in the Chapter introduction, the Wilcoxon Rank Sum
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statistic W is Type II error robust, and later we use asymptotic power calculations
to verify its superiority to t2. But for the moment, we note that W is related to t2

applied to the ranks of the data, and therefore inherits robustness to outliers because
the ranks themselves are resistant to the effects of outliers. This relationship also
allows us to use the above approximation for the permutation distribution of W:

Define the standardized Wilcoxon Rank Sum statistic by

WS D W � E.W /

fVar.W /g1=2 :

Then, t2 applied to the ranks of the observations, that is, theX ranksR1; : : : ; Rm re-
placingX1; : : : ; Xm, and the Y ranksRmC1; : : : ; RN replacing Y1; : : : ; Yn, results in

t2R D .N � 2/W 2
S

N � 1 �W 2
S

:

Thus t2R and W are equivalent test statistics and we can apply the Box-Andersen
approximation to t2R using d � 1 C .1:8 � 3/=N because the ranks are a uniform
distribution on the integers 1 to N and thus have Kurt � 1:8, the kurtosis of a
continuous uniform distribution. For example, in the case of m D 10 and n D 6

given in Figure 12.1 (p. 467), the Box-Andersen approximation along with the
continuity correction gives results that are considerably better than the normal
approximation with continuity correction but not quite as good as the Edgeworth
approximation. In later sections we see that the Box-Andersen approximation is very
good in one-way and two-way ANOVA situations when the number of treatments is
greater than two.

12.4.8 Monte Carlo Approximation

In the previous sections, approximations to permutation distributions were given for
statistics based on linear forms, and essentially rely on the Central Limit Theorem
and its extensions. However, the simplest and most important approximation to
a permutation distribution is to randomly sample from the set of all possible
permutations, and directly estimate the permutation distribution. This approach can
be used for any statistic T , and its accuracy is determined simply by the number
B of random permutations used. This resampling of permutations is very similar
to resampling in the bootstrap world, and we suggest sampling with replacement
because of simplicity although sampling without replacement could be used.

Suppose that T calculated on all permutations has distinct values t1; : : : ; tk .
For example, in Table 12.1 (p. 453) the t statistic has k D 13 distinct values
�2.98, �1.72, �1.36, �1.08, �0.84, �0.06, 0.12, 0.30, 0.49, 0.69, 0.91, 1.17, 1.47,
corresponding to the 15 permutations (0.49 and 0.91 appeared twice). The Monte
Carlo approach is to randomly select B times from the 15 possible permutations,



12.4 Theory of Permutation Tests 471

calculate the statistic for each random selection, say T �
1 ; : : : T

�
B , and let the number

of T �s equal to ti be denoted Ni , i D 1; : : : ; k. If we select permutations
with replacement, then .N1; : : : ; Nk/ is multinomial(BIp1; : : : ; pk/, where pi
is the permutation distribution probability of obtaining ti . The estimates Ni=B
have binomial variances pi .1 � pi /=B . Thus, if we were trying to estimate the
probabilities in Table 12.2 (p. 453), most of the estimates would have variance
.1=15/.14=15/=B although two of them would have variance .2=15/.13=15/=B
because of the duplication of values 0.49 and 0.91.

In typical applications, we are not interested in the whole permutation distribu-
tion, but merely want to estimate the p-value given in (12.2, p. 455) using

bp D
˚

#T �
i � T0




B
;

where T0 is the value of the statistic for the original data. In the simple example,
T0 D 1:17. Recall that in this case the true permutationp-value is 2=15 D :13. Thus,
B D 1000 would yield an estimate with standard deviation f.:13/.:87/=1000g1=2 D
:01 that would be adequate for most purposes. However, if the p-value were smaller,
say .005, then we would want to take B larger so that the standard deviation of the
estimate would be a small fraction of the p-value, say not more than 10–20%. For
example, setting :001 D f.:005/.:995/=Bg1=2 would suggest B D 4975. When
the estimated p-value is to be used with rejection rules like “reject H0 if bp � ˛,”
then it is wise to choose B so that .B C 1/˛ is an integer as was discussed in
the bootstrap Section 11.6.2 (p. 440) as the“99 rule”. Mainly this would be used
in Monte Carlo simulation studies where B D 99 or B D 199 might be used to
save computing time. However, in situations where computations of the test statistic
are extremely expensive, one may view the random partitions as part of the test
itself, and the procedure “reject H0 if bp � ˛” is called a Monte Carlo test, not
just an approximation to the permutation test. This approach was first introduced
by Barnard (1963) and later studied by Hope (1968), Jöckel and Jockel (1986), and
Hall and Titterington (1989).

12.4.9 Comparing the Approximations in a Study of Two Drugs

A new drug regimen (B) was given to 16 subjects, and one week later each
subject’s status was assessed. A second independent group of 13 subjects received
the standard drug regimen (A). Both sets of measurements were compared to
baseline measurements taken before the treatment period began. The difference
from baseline data is given in Figure 12.2. This is real data but the actual details
are confidential. The drug company wanted to prove that regimen B involving their
new drug had larger differences from baseline than the standard. In terms of means
of the differences, the testing situation is H0 W �B D �A versusHa W �B > �A.



472 12 Permutation and Rank Tests

−
20

−
10

0
10

20

C
ha

ng
e

A B

Fig. 12.2 Change from
Baseline for Drugs A and B

The sample means and standard deviations are X D :92; Y D 3:19; sX D
5:45; sY D 10:21. The standard pooled t from (12.1, p. 452) is .72 with one-
sided p-value .24 from the t distribution. The exact permutation t p-value is 0.249,
but with a large p-value like this, the t distribution approximation is adequate and
agrees with the Type I error robustness mentioned previously. The Box-Andersen
d D 1:074 leading to an adjusted t p-value of .245.

However, Figure 12.2 reveals that most of the Drug B subjects have positive
changes from baseline whereas the Drug A changes are more centered around 0.
The two large negative values �22 and �11 have a strong effect on the t statistic.
The Wilcoxon Rank Sum statistic W is less affected by outliers, and might paint a
different picture. First we compute the midranks and list them with the data ordered
within samples.

A: �7 �3 �3 �1 �1 �1 �1 0 0 1 6 8 14
Rank: 3 4.5 4.5 9 9 9 9 14 14 16 21.5 23 27

B: �22 �11 �1 �1 �1 0 2 2 4 4 6 10 10
Rank: 1 2 9 9 9 14.0 17.5 17.5 19.5 19.5 21.5 24.5 24.5

B: 12 16 21
Rank: 26 28 29

Then W D 1C 2C : : : C 28C 29 D 271:5. The null mean of W is .16/.16C
13C 1/=2 D 240. To compute the null variance using the formula for ties, (12.12,
p. 462), note that there are e D 16 distinct values and 2 values tied at �3, 7 tied at
�1, 3 tied at 0, 2 tied at 2, 2 tied at 4, 2 tied at 6, and 2 tied at 10. Thus the null
variance is

.16/.13/.16C 13C 1/

12
� .16/.13/

.12/.29/.29� 1/



.73 � 7/C .33 � 3/C 5.23 � 2/�

D 520� 8:325 D 511:675:
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The approximate normal statistic is .271:5 � 240/=
p
511:675 D 1:39 with

p-value .082. The t statistic on the ranks is 1.42 with p-value .084. The Box and
Andersen (1955) degrees of freedom approximation with d D .1� 1:2=29/ D 0:96

does not change that latter p-value until the fourth decimal. The Edgeworth ap-
proximation p-value is .084 without continuity correction and .087 with continuity
correction.

Unfortunately, because of the ties we cannot trust the exact tables or a continuity
correction or the Edgeworth approximation. Thus, it seems wise to either calculate
the exact permutation p-value or estimate it by Monte Carlo methods. With B D
10; 000 we got bp D :085 with 95% confidence interval (.080,.090). Rather than
make B larger, in this case it is fairly easy to get the exact p-value D :0849 with
existing software. Summarizing the one-sided p-values, we have

Statistic Method P-value

t Exact Permutation 0.2490
t.mC n � 2/ 0.239
Box-Andersen 0.245

W Exact Permutation 0.0849
Normal 0.082
t.mC n � 2/ 0.084
Box-Andersen 0.084
Edgeworth 0.084
Edgeworth (with cc) 0.087
Monte Carlo (BD10,000) 0.085

So this is a situation where the Wilcoxon Rank Sum statistic might be preferred
to the t because of its robustness to outliers. Here it apparently downweighted the
outliers �22 and �11 enough to have a much lower p-value than the t statistic. The
normal and t approximations to the W p-value are quite reasonable here, but we
would not know that without getting the exact p-value D :0849 or by estimating it
fairly accurately.

12.5 Optimality Properties of Rank and Permutation Tests

There are actually very few results available on the optimality properties of
permutation tests. The main source is Lehmann and Stein (1949), see also Lehmann
(1986, Ch. 5), who give the form of the most powerful permutation test for shift
alternatives and note that it depends on a variety of unknown quantities including
the form of the distribution. In the particular case of normal data with common
unknown variance, they show that the most powerful permutation statistic is Y or
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equivalently Y � X or the pooled two sample t statistic. Thus general optimality
results are not available, but a general approach is clear: derive an (asymptotically)
optimal parametric test statistic under a specific parametric family assumption (your
best guess), and use the permutation approach for critical values. The resulting
permutation test is valid under the null hypothesis for any distribution as long as the
conditions of Theorem 12.1 (p. 457) hold, and is close to optimal if the distribution
of the data is close to the one used to derive the test statistic.

For rank statistics there are two main bodies of results: locally most powerful
rank tests and asymptotically most powerful rank tests based on Pitman Asymptotic
Relative Efficiency (ARE). Here we briefly give the flavor of these approaches and
main results leaving technical details for the Appendix.

12.5.1 Locally Most Powerful Rank Tests

For simplicity we focus on the two-sample shift model where X1; : : : ; Xm are
iid with distribution function F , and Y1; : : : ; Yn are iid with distribution G.y/ D
F.y �	/. We assume that F is continuous with density f . Consider

H0 W 	 D 0 versus Ha W 	 > 0:

If there exists a rank test that is uniformly most powerful of level ˛ for some � > 0
in the restricted testing problem

H0 W 	 D 0 versus Ha;� W 0 < 	 < �;

then we say that the test is the locally most powerful rank test for the original testing
problem.

The basic approach to finding a locally most powerful rank test is to take a Taylor
expansion of the probability of the rank vector as a function of 	 and maximize its
derivative at 	 D 0. For sufficiently small 	, the values of the rank vector that are
ordered by its probability under the alternative 	 are the same as those ordered by
its derivative at 	 D 0. Thus, we need only obtain an expression for the derivative
and maximize it. These details are left for the Appendix.

For the two-sample shift problem, the locally most powerful rank test rejects for
large values of

T D
N
X

iDmC1
a.Ri /;

where a.i/ D Ef�.U.i/; f /g,
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�.u; f / D �f
0.F �1.u//
f .F �1.u//

(12.23)

is called the optimal score function, and U.1/ � U.2/ � � � � � U.N/ are the order
statistics from a uniform (0,1) distribution. Recall that RmC1; : : : ; RN are the ranks
of the Y values in the joint ranking of all theX ’s and Y ’s together. We see in the next
section that a closely related statistic,

PN
iDmC1 �.Ri=.NC1/; f /; is asymptotically

equivalent and comes naturally from asymptotic relative efficiency considerations.
If F is the logistic distribution, then we are led to the Wilcoxon Rank Sum as

the locally most powerful rank test for shift alternatives because �f 0.x/=f .x/ D
2F.x/ � 1 and EfU.i/g D i=.N C 1/. When F is a normal distribution, then the
optimal score function is �.u; f / D ˚�1.u/, and the locally most powerful test is
based on the normal scores

a.i/ D Ef˚�1.U.i//g D EfZ.i/g;

where Z.i/ is a standard normal order statistic. For shifts in the scale of an
exponential distribution, F.xI �/ D 1 � exp.�x=�/, we can turn it into a shift in
location of the negative of an extreme value distribution,F.x/ D 1�expf� exp.x/g,
by taking the natural logarithm of the exponential data. The resulting optimal test
has score

a.i/C 1 D
N
X

jDNC1�i

1

j
;

where the latter sum is the expected value of the i th order statistic from a standard
exponential distribution. These are called Savage scores from Savage (1956). In
censored data situations, the analogous test is called the logrank test.

Lehmann (1953) studied alternatives of the form

F	.x/ D .1 �	/F.x/C	F 2.x/;

and showed that the Wilcoxon Rank Sum is the locally most powerful rank test
for these alternatives. In general, alternatives of the form F	.x/ D h	.F.x// for
some function h	.u/, are called Lehmann alternatives. They have the property that
two-sample rank tests have the same distribution under an alternative 	 for all
continuous F .

Johnson et al. (1987) consider locally most powerful rank tests using Lehmann
alternatives for the nonresponder problem where only a fraction of subjects respond
to treatment. Conover and Salsburg (1988) consider other locally most powerful
rank tests for the nonresponder problem. Additional situations where locally
most powerful rank tests are considered include Doksum and Bickel (1969) and
Bhattacharyya and Johnson (1973).

The optimal score functions (12.23, p. 475) appear in the k-sample problem,
Section 12.6 (p. 480), and in the correlation problem, Section 12.7 (p. 487).
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Analogous results are also available in the one-sample location or matched pairs
problem, Section 12.7 (p. 487), and are mentioned there.

Theoretical development and rigorous theorems on locally most powerful rank
tests may be found in Hajek and Sidak (1967, Ch. 2), Conover (1973), and Randles
and Wolfe (1979, Chs. 4 and 9).

12.5.2 Pitman Asymptotic Relative Efficiency

Perhaps the most useful way to evaluate and compare rank tests is due to Pitman
(1948) and further developed by Noether (1955) and others. The basic idea is that
Pitman Asymptotic Relative Efficiency (ARE) is the ratio of sample sizes for two
different tests to have the same power at a sequence of alternatives converging to
the null hypothesis.

Let S and T be two test statistics for H W � D �0 where �k is a sequence of
alternatives converging to �0 as k ! 1. If we can choose sample sizes NSk and
NTk and critical values cSk and cTk for S and T , respectively, such that S > cSk and
T > cTk have levels that converge to ˛ and their powers under �k converge to ˇ,
˛ < ˇ < 1, then the Pitman asymptotic relative efficiency of S to T is given by

ARE.S; T / D lim
k!1

NTk
NSk

:

Note that if ARE.S; T / > 1, then S is preferred to T because it takes fewer
observations (NSk is less thanNTk ) to achieve the same power. Technical conditions
in the Appendix and P.Sk > cSk / ! ˇ < 1 require that the alternatives have a
specific form: for some ı > 0

�k D �0 C ı
p

NSk
C o

 

1
p

NSk

!

as k ! 1: (12.24)

Such sequences of alternatives are called Pitman alternatives. Another important
quantity arising from the technical details is the efficacy of a test statistic S ,

eff.S/ D lim
k!1

�0
Sk
.�0/

q

NSk�
2
Sk
.�0/

;

where �Sk .�0/ and �Sk .�0/ are the asymptotic mean of S and standard deviation of
S . Thus, the efficacy of a test is the rate of change of its asymptotic mean at the
null hypothesis relative to its asymptotic standard deviation (the factor 1=

p

NSk is
introduced in the derivative because of 12.24). A powerful test in the Pitman sense
is one that is able to detect changes in the parameter value near the null hypothesis.
The ARE of S to T turns out to be

ARE.S; T / D
�

eff.S/

eff.T /

� 2

:
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Table 12.3 ARE(W; t/ for the
Two-Sample Shift Model

Distribution ARE(W; t)

Lower Bound 0.864
Normal 0.955
Uniform 1.00
Logistic 1.10
Laplace 1.50
t6 1.16
t3 1.90
t1 (Cauchy) 1
Exponential 3.00

The Pitman ARE is both a limiting ratio of sample sizes required to give the same
power and the square of the ratio of the test efficacies. High efficacies lead to
high ARE’s.

In the Appendix we give details for finding efficacies in the one-sample problem,
but here we use similar standard results on efficacies for the two-sample problem
from Randles and Wolfe (1979, Chs. 5 and 9). The most important comparison is
between the two-sample t test and the Wilcoxon Rank Sum test. The efficacy of the
t test is

eff.t/ D
p

.1 � /

�
;

where � is the standard deviation of the X distribution function F.x/ and of the Y
distribution function G.y/ D F.x � 	/, and  D limmin.m;n/!1m=.mC n/. For
the Wilcoxon Rank Sum statistic W we have

eff.W / D p

12.1� /
Z 1

�1
f 2.x/ dx;

where f is the density of F.x/, and the integral is assumed to exist. Putting these
efficacies together, we have that the Pitman ARE of W to t is

ARE.W; t/ D 12�2
�Z 1

�1
f 2.x/ dx

� 2

: (12.25)

We put ARE(W; t) into Table 12.3 for a number of distributions. Remember that
ARE(W; t/ > 1 means that the Wilcoxon Rank Sum test is preferred to the t test.
The first number is the lower bound 0.864 derived by Hodges and Lehmann (1956)
which shows that the Wilcoxon Rank Sum cannot do much worse than the t test for
any continuous unimodal distribution. The second number 0.955 is for the normal
distribution and shows that the Wilcoxon loses very little efficiency at the normal
distribution where the t test is optimal. At the uniform distribution, the tests perform
equivalently, and at the remaining examples in Table 12.3, the Wilcoxon is preferred.
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Fig. 12.3 Power of Wilcoxon Rank Sum .� � � / and t . / for m D n D 15 from Table 4.1.10
of Randles and Wolfe (1979)

One might think that these ARE results are just asymptotic and may not relate
to small sample results. To supplement the ARE results, in Figure 12.3 we plot
power results for m D n D 15 taken from Table 4.1.10 of Randles and Wolfe
(1979, p. 118–119). They simulated the power of the t and Wilcoxon using 1000
replications. Here we see good correspondence between small sample power and the
ARE results of Table 12.3. For the normal, uniform, and logistic distributions, there
is little power difference as one might expect from ARE values of .955, 1.00, and
1.10, respectively. For the Laplace, the Wilcoxon has a significant power advantage,
perhaps not quite as large at the ARE(W; t/ D 1:5 would imply. The t1 (Cauchy)
and exponential power results strongly favor the Wilcoxon and are consistent with
the large ARE values.
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We should mention that the Laplace distribution with density f .x/ D .1=2/ exp
.�jxj/ has been used quite a bit in the rank literature as a model for data, especially
for ARE comparisons and simulation studies. But it may not be very useful as a
model for real data, and ARE results for it are not as consistent with simulation
results in small samples as with other densities. The optimal rank test for the Laplace
uses scores a.i/ D 1 for i > .N C 1/=2 and 0 otherwise, and is called the two-
sample median test. However, its power performance in small samples, even when
simulating from the Laplace distribution, is poor. Freidlin and Gastwirth (2000)
show by simulation that the Wilcoxon Rank Sum test outperforms the median test
at the Laplace distribution for samples sizes m D n less than or equal to 25. They
recommend that the median test “be retired” from general usage, and we agree.

It turns out that in the scale problem mentioned briefly in Section 12.6.6 (p. 486),
ARE values are overly optimistic when compared to small sample power results.
This may reflect the fact that measuring scale (standard deviation) is an inherently
harder problem that is not as well suited to rank statistics. Klotz (1962) pointed
out this discrepancy between small sample power and ARE results. Fortunately,
ARE results have been used mainly in location comparisons where they yield good
intuition about the qualitative behavior of tests.

Another result from Randles and Wolfe (1979, p. 307) is that under suitable
regularity results on the score functions, the efficacy of any linear rank test S D
PN

iDmC1 �.Ri=.N C 1// in the two-sample shift model is given by

eff.S/ D
p

.1� /

Z 1

0

�.u/�.u; f / du

�Z 1

0

f�.u/� �g2 du

�1=2
; (12.26)

where �.u; f / is given in (12.23, p. 475). Expression (12.26) now justifies the name
optimal score function since the efficacy in (12.26) is optimized by choosing �.u/ D
�.u; f /. This can be seen by noting that

Z 1

0

�2.u; f / du D
Z 1

�1

�

f 0.x/
f .x/

� 2

f .x/ dx D I.f /;

where I.f / is the Fisher information for the model f .xI �/ D f .x � �/. Now,
noting that

R 1

0
�.u; f / du D 0, (12.26) can be reexpressed as

eff.S/ D
p

.1 � /I.f /Corr.�.U /; �.U; f //; (12.27)

where U is a uniform random variable and Corr is the correlation. Clearly, the
correlation is maximized by choosing �.u/ D �.u; f /. Moreover, it can also be
shown that

p

.1 � /I.f / is not only the largest possible efficacy among linear
rank tests but also among all ˛-level tests. Thus, optimal linear rank tests are
asymptotically equivalent in terms of Pitman ARE to the best possible tests, say
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likelihood ratio or score or Wald tests for the shift model in a parametric framework.
Of course, this optimality in either the rank test or the parametric test requires that
the assumed family is correct.

In the next sections we consider i) the k-sample problem that is a generalization
of the two-sample problem to k > 2 samples; ii) the correlation or regression
problem; and then iii) the matched pairs or one-sample symmetry problem. The
Pitman ARE analysis has to be adjusted to handle each situation, but the numbers
found in Table 12.3 (p. 477) continue to hold for these situations as well. Thus
Wilcoxon procedures, in other words rank methods using scores a.i/ D i , tend to
give very good results across a wide range of distributions in each of these situations.

12.6 The k-sample Problem, One-way ANOVA

The extension of the two-sample case to k samples or treatments is straightforward.
Suppose that we have available k independent random samples fYi1; : : : ; Yini I
i D 1; : : : ; kg, where in each sample the Yij .j D 1; : : : ; ni / are iid with distri-
bution function Fi .x/, and N D n1 C � � � C nk . The linear model representation is

Yij D �C ˛i C eij : (12.28)

If the errors eij all come from the same distribution, then (12.28) is an extension of
the shift model for two-sample data.

For example, the following are data on the ratio of Assessed Value to Sale Price
for single family dwellings (n1 D 27), two-family dwellings (n2 D 22), three-
family dwellings (n3 D 17), and four or more family dwellings (n4 D 14) in
Fitchburg, Massachusetts, in 1979.

1 Family 2 Family 3 Family 4 or More
46 74 87 55 85 129 51 100 22 119
60 75 87 60 86 150 64 107 44 120
65 75 87 67 90 203 73 111 71 129
67 77 89 73 94 730 82 112 85 143
68 78 92 76 96 83 126 89 487
69 81 95 77 97 85 134 90
70 82 95 80 98 89 140 98
71 84 100 80 100 95 195 102
73 85 121 82 113 100 113

The null hypothesis of interest is of identical distribution functions,

H0 W F1.y/ D F2.y/ D � � � D Fk.y/; (12.29)
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which arises most naturally if we randomly assigned N experimental units to k
treatment groups with sample sizes n1; n2; : : : ; nk . (The above data are not of this
type.) There are

MN D
 

N

n1n2 � � �nk

!

D NŠ

n1Šn2Š � � �nkŠ
possible assignments, which of course is the relevant number of permutations even
if the data do not come from a randomized experiment. Pitman (1938) proposed the
permutation approach for the ANOVA F statistic

F D

1

k � 1

k
X

iD1
ni .Y i: � Y ::/2

1

N � k

k
X

iD1

ni
X

jD1
.Yij � Y i:/

2

; (12.30)

where Y i: D n�1
i

Pni
jD1 Yij , and Y :: D N�1Pk

iD1 niY i . The number of permu-
tations MN gets large very fast. For example, with k D 3;N D 15; n1 D n2 D
n3 D 5, we get MN D �

15
5 5 5

	 D 756; 756. Thus Monte Carlo or asymptotic
approximations are more important than in the two-sample case. For the above
housing data, the ANOVA F in (12.30) is F D 1:24 with p-value = .30 from
the F.3; 75/ distribution. The exact permutation p-value is obtained by computing
F for each of the 1:9 	 1044 distinct allocations of fYi1; : : : ; Yini I i D 1; : : : ; 4g to
samples of size n1 D 27, n2 D 22, n3 D 17, and n4 D 14, and finding the
proportion of these greater to or equal to F D 1:24. A Monte Carlo estimate of
the exact permutation p-value is .267 based on 100,000 resamples with standard
error = .0014. Because the housing ratios are quite skewed with a number of large
observations, it is not surprising that F is small. Now we turn to rank methods that
naturally limit the effect of outliers.

12.6.1 Rank Methods for the k-Sample Location Problem

Kruskal and Wallis (1952) proposed the rank extension of the Wilcoxon Rank Sum
statistic to the k-sample situation. The rank approach is to put all N observations
together and rank them; let Rij be the rank of Yij in the combined sample. Further
define the sample sums

Si D
ni
X

jD1
a.Rij /;

where the scores a.i/ could be of any form for permutational analysis, but for
asymptotic results we assume a.i/ D �.i=.N C 1// and � is a scores generating
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function as in Theorem 12.3 (p. 465). The Kruskal-Wallis statistic uses a.i/ D i or
equivalently a.i/ D i=.NC1/. Note that Si is just a two-sample linear rank statistic
for comparing the i th population to all the others combined. The general linear rank
statistic form for comparing the k populations is then

Q D
k
X

iD1

1

s2ani
.Si � nia/2 D

k
X

iD1

�

N � ni

N

�

.Si � ESi /2

Var.Si /
; (12.31)

where s2a D .N � 1/�1
PN

iD1fa.i/ � ag2, a D PN
iD1 a.i/, and Var.Si / is given by

(12.4, p. 459) with the constants ci in that expression equal to 1 for ni of them and
0 otherwise. The reason for giving the second form in (12.31) is that it is then clear
that E.Q/ D k � 1 under the null hypothesis of equal populations. The Kruskal-
Wallis statistic that allows for ties is explicitly given by

H D
.N � 1/

(

k
X

iD1
ni

�

Ri: � N C 1

2

�2
)

0

@

k
X

iD1

ni
X

jD1
R2ij

1

A �N.N C 1/2=4

;

where Ri: D n�1
i

Pni
jD1 Rij . If there are no ties in the data, then

k
X

iD1

ni
X

jD1
R2ij D N.N C 1/.2N C 1/=6;

andH reduces to the more familiar form

H D 12

N.N C 1/

k
X

iD1
ni

�

Ri: � N C 1

2

�2

:

Under the null hypothesis (12.29, p. 480), standard asymptotic theory similar to

Theorem 12.3 (p. 465) yields that Q
d! �2k�1 as minfn1; : : : ; nkg ! 1. The �2k�1

approximation is not very good in small samples, but fortunately the F statistic on
the scores a.Rij / is a monotone function of Q,

FR D
�

N � k

k � 1

��

Q

N � 1 �Q

�

;

and using F.k�1;N �k/ as a reference distribution or the Box-Andersen adjusted
F.d.k � 1/; d.N � k// distribution yields excellent results. For the housing data
above, H D 9:8856 with p-value = 0.020 from the �23 distribution. FR D 3:6283
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Fig. 12.4 (Exact P -Values � Approximate P -Values) versus Exact P -Values for Kruskal-Wallis
Statistic. F D F.k � 1; N � k/, FBA D F.d.k � 1/; d.N � k//, and �2 D �2k�1

with p-value 0.017 from the F.3; 75/ distribution. The Box-Andersen d=0.9876,
and so the adjustment is very minor, only in the fourth decimal place. A Monte
Carlo approximation to the exact p-value is .017 based on 100,000 samples with
standard error .0004. So here the F distribution approximation is right on target to
3 decimals, but the �2 approximation is not bad due to the fairly large samples.

In Figure 12.4 we look at much smaller sample sizes for k D 3 and k D 5.
Figure 12.4 shows the difference between the exact permutation p-value and each
approximation versus the exact p-value for the Kruskal-Wallis statistic. Note that
the left panel is more expanded in the vertical scale than the right panel and
actually has less error. Nevertheless, the Box-Andersen approximation is the best
in both plots and is generally very good for k > 2. The �2k�1 approximation gets
more conservative as k gets larger. This can be explained by the following large-k
asymptotic results.

12.6.2 Large-k Asymptotics for the ANOVA F Statistic

Brownie and Boos (1994) show under the null hypothesis of equal populations that

p
k.FR � 1/

d�! N

�

0;
2n

n � 1

�

; (12.32)

for equal sample sizes n1 D n2 D � � � D nk D n and k ! 1 with n fixed. Note

that the usual result with n ! 1 and k fixed is .k � 1/FR
d�! �2k�1, similar to the

result for Q. The “large k” asymptotic result (12.32) implies that

p
k

�

Q

k � 1 � 1

�

d�! N

�

0;
2.n� 1/

n

�

; (12.33)
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as k ! 1 with n fixed, using

Q D .N � 1/FR

.N � k/=.k � 1/C FR
(12.34)

(see Problem 12.17, p. 527). Note that comparing Q to a �2k�1 is asymptotically
(k ! 1) like comparing Q=.k � 1/ to a Nf1; 2=.k � 1/g because a �2k�1 random
variable obeys the Central Limit Theorem (it is a sum of �21 random variables).
However, (12.33) says thatQ=.k�1/ should be compared to a Nf1; 2.n�1/=.kn/g
distribution. Because 2.n � 1/=.kn/ < 2=.k � 1/, using the �2k�1 distribution with
Q results in conservative true levels. For example, if k D 5 and n D 5, then the
large sample 95th percentile from Nf1; 2=.k � 1/g is 1 C .2=4/1=21:645 D 2:16,
and the approximate true level of a nominal ˛ D :05 test is

P.Q � �24.:95// � P.1C .8=25/1=2Z � 2:16/ D P.Z � 2:05/ D :02:

In contrast, use of FR with an F.k � 1;N � k/ reference distribution is supported

by (12.32) under k ! 1 and by the usual asymptotics .k � 1/FR
d�! �2k�1 when

n ! 1 with k fixed. We leave those details for Problem 12.18 (p. 527). Thus, it
is not surprising that the F approximations in Figure 12.4 are much better than the
�2k�1 ones.

12.6.3 Comparison of Approximate P-Values – Data
on Cadmium in Rat Diet

Nation et al. (1984) studied the effect of diets containing cadmium (Cd) on the
neurobehavior of adult rats. The data consists of the number of platform descents
during a passive-avoidance training scheme for 27 rats randomly assigned to three
groups:

Y sn�1
Control: 82 80 77 75 72 68 59 47 42 67 14
Cd1: 86 66 60 51 44 41 38 29 10 47 22
Cd5: 81 67 38 36 32 29 20 17 14 37 23

The control group had no Cd in the diet, and Cd1 and Cd5 refer to daily diets
containing 1 milligram and 5 milligrams, respectively, of Cd per kilogram of body
weight. The usual one-way ANOVA F D 5:10, and the permutation p-value F
statistic is bp D 0:016 based on 100,000 random permutations. The F.2; 24/ dis-
tribution gives p-value = .014, and the Box-Andersen correction factor is d D :954

leading to p-value = .016. The Kruskal-Wallis rank statistic is Q D 8:18 with
permutation p-value bp D :012 based on 100,000 random permutations. The �22
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approximation gives p-value = .017. The associated F statistic is FR D 5:51 with
p-value = .011. The Box-Andersen correction factor is d D 1 � 1:2=24 D :95

leading to p-value = .012. A summary is as follows:

Statistic Method P-value

F Monte Carlo (B=100,000) 0.016
F.2; 24/ 0.014
Box-Andersen 0.016

KW Monte Carlo (B=100,000) 0.012
�22 0.017
F.2; 24/ 0.011
Box-Andersen 0.012

As expected the F approximations give excellent p-values.

12.6.4 Other Types of Alternative Hypotheses

The k-sample F statistic and Kruskal-Wallis statistic are used to compare the
centers or locations of the k populations. Other statistics could be used for that
purpose, perhaps ones more suited to long-tailed or skewed populations. The
logrank or Savage scores, for example, are asymptotically optimal for detecting
shifts in the scale parameter of exponential populations (or the shift parameter of
extreme value distributions).

Other types of alternatives may also be of interest. For example, there may be
an implied order in the populations, say increasing doses, and there may be interest
in trends in location. There might also be interest in comparing the spread of the
populations or even the skewness.

These latter alternatives present a problem to permutation and rank methods
because the null hypothesis of interest may not be the one of identical populations.
For comparing spread, the usual null hypothesis of interest would be equal spread
rather than identical populations. In such a situation, use of the permutation
approach would require subtraction of unknown location parameters. We first
discuss ordered alternatives in location.

12.6.5 Ordered Means or Location Parameters

Recall Section 3.6.1a (p. 151) where we discussed likelihood-based methods for
ordered alternatives. Here we discuss permutation methods with simple statistics in
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the context of a Phase I toxicology study where there seems to be trends in both the
means and variances with dose:

Dose Y sn�1
0 1.44 1.63 1.40 1.59 1.52 0.11
1 1.27 1.50 1.45 1.57 1.45 0.13
2 1.26 1.07 1.38 1.75 1.37 0.29
3 1.04 1.14 1.46 1.06 1.18 0.19
4 1.37 0.79 1.32 1.42 1.23 0.29

The F statistic for comparing means is F D 1:77, and the usual F.4; 16/
distribution and the Box-Andersen approximation give p-value = 0.19. Similarly,
a Monte Carlo estimated p-value based on 10,000 random permutations gives
bp D 0:19. The Kruskal-Wallis statistic is H D 6:73 with �24 p-value = 0.15.
The F approximation from FR D 2:06 and the Box-Andersen approximation both
give p-value = 0.14. A Monte Carlo estimated p-value based on 10,000 random
permutations givesbp D 0:14. So the global comparison of location is not significant
at usual levels.

Suppose that we consider H0 W identical populations versus Ha W means are
decreasing. The permutation approach with MN D �

20
44444

	

permutations may be
used with the t statistic from a regression of the observations on dose or equivalently
Pearson’s correlation coefficient (see also the next section). Pearson’s correlation
coefficient is r D �0:53 with Monte Carlo estimated p-valuebp D 0:007 based on
10,000 random permutations. Spearman’s correlation coefficient is �0:56 withbp D
0:005. Another statistic that could have been used is the likelihood ratio statistic for
decreasing means assuming the data are normally distributed (see Section 3.6.1a,
p. 151). In addition to Spearman’s correlation coefficient, the standard rank-based
statistic is the Jonckheere-Terpstra statistic based on summing pairwise Wilcoxon
Rank Sum statistics in increasing order,

P

i<j Wij , whereWij is the Wilcoxon Rank
Sum for comparing dose group i with dose group j (see Lehmann 1975, p. 233). Its
value here is �2:458 with exact permutation p-value = 0.0069. So we can be pretty
confident that there is a downward trend in means or other location measures.

12.6.6 Scale or Variance Comparisons

Motivated by the apparent increase in variances for the dose-response data above,
we now discuss hypotheses about variances or scale parameters. Unfortunately,
there is a philosophical dilemma for using permutation procedures here. Usually, the
typical set of hypotheses when testing for unequal variances is for a semiparametric
model, P.Yij � y/ D F0..y � �i /=�i /, j D 1; : : : ; ni I i D 1; : : : ; k, where F0
is an unknown distribution function. Note that if F0.x/ has mean 0 and variance 1,
then �i is the i th population mean, and �2i is the i th population variance. In any
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case, under this semiparametric model, the i th standard deviation is c�i for some
constant c, and we can always refer to �i as a scale parameter. The hypotheses for
increasing scale are then H0 W �1 D � � � D �k versus Ha W �1 � � � � � �k with
at least one inequality. The reason for this hypothesis formulation is that we often
know that the means are different; therefore it makes little sense to assume identical
populations when testing for variance differences. Basically, we usually want to test
for variance differences in the presence of location differences.

Unfortunately, the permutation argument requires that the null hypothesis be
one of identical populations. It makes intuitive sense to center the data first by
subtracting means, but these residuals Yij � Y i no longer satisfy exchangeability
required for using Theorem 12.1 (p. 457). The permutation distribution is correct
asymptotically, but the exact level-˛ property no longer holds. An overview of the
scale testing problem is given in Boos and Brownie (2004). The best method that
has emerged for comparing scales is to use t or F statistics on the data Yij replaced
by jYij �Mi j, where Mi is the i th sample median.

One way to avoid the centering problem for the dose-response data is to reduce
the data to the sample standard deviations (or some other scale estimator) and then
calculate an appropriate statistic for the 5Š D 120 permutations possible. For the
correlation between dose and standard deviation we get r D 0:79 and p-value
D 7=120 D :058: If we use the likelihood ratio test for increasing variances for
normal distributions, we get p-value = 5/120=.042. There is a loss of information
when the number of permutations get reduced so much, from MN D �

20
44444

	

to
MN D 120; perhaps the loss of information is just a discreteness problem caused
by having too few permutations. This can be seen more clearly by calculating the
exact permutation test on the data reduced to the five means; the correlation is higher
than when using all the data, but the p-value = 2/120 = .017 is much larger than the
.007 value we obtained previously with the whole data set.

We note that the use of rank statistics for scale comparisons has not been very
successful. The subtraction of means or medians ruins the permutation argument
as mentioned above. However, rank statistics for scale based on centered data are
asymptotically distribution free if the samples are symmetrically distributed. The
larger problem is that rank tests for scale tend to have low power in small samples.
Although rank tests for location perform well in small samples and are consistent
with asymptotic relative efficiency comparisons, the opposite is true for rank tests
for scale. The latter statistics are not as powerful in small samples as would be
expected from asymptotic relative efficiency calculations.

12.7 Testing Independence and Regression Relationships

Regression methods are among the most important tools of statistics. Unfortunately,
permutation methods can really be applied in only the simplest setting of .X; Y /
pairs; that is, correlation or simple regression (not necessarily linear). Here we
discuss that simple situation and mention at the end of the section why permutation
methods cannot handle the more interesting case of multiple explanatory variables.
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Suppose that we have iid random pairs .X1; Y1/; : : : ; .Xn; Yn/ and permute each
coordinate independently to get nŠ different pairings. In reality, we need only
permute one of the coordinates to obtain all the different pairings. For example,
suppose that n D 3 with pairs .1; 2:5/; .2; 3:7/; .3; 6:4/. Then the 6 possible
permutations are

1 2 3 4 5 6

(1,2.5) (1,3.7) (1,6.4) (1,2.5) (1,3.7) (1,6.4)
(2,3.7) (2,2.5) (2,3.7) (2,6.4) (2,6.4) (2,2.5)
(3,6.4) (3,6.4) (3,2.5) (3,3.7) (3,2.5) (3,3.7)

Pitman (1937b) suggested that a test for independence of X and Y based on the
sample correlation

r D

n
X

iD1
.Xi � X/.Yi � Y /

"

n
X

iD1
.Xi � X/2

n
X

iD1
.Yi � Y /2

#1=2

use this permutation distribution for critical values. A permutationally equivalent
statistic is the least squares slope estimatebˇ D Pn

iD1.Xi �X/.Yi �Y /=
Pn

iD1.Xi �
X/2. Other popular measures that could be used to test independence are Kendall’s
rank correlation and Spearman’s rank correlation. Spearman’s estimated correlation
coefficient rS is simply to replace Xi by its rank among X1; : : : ; Xn and Yi by its
rank among Y1; : : : ; Yn, and compute the Pearson correlation r between these pairs
of ranks. It is important to keep in mind that the null hypothesis is independence
of X and Y and not zero correlation. Independence is needed for the nŠ different
pairings to have the same distribution and thus for Theorem 12.1 (p. 457) to apply.

Typical approximations to the permutation distribution of r (and similarly of rS)
are to compare .n�1/1=2r to a standard normal distribution or .n�2/1=2r=.1�r2/1=2
to a t.n � 2/ distribution. Pitman (1937b) gave the first two permutation moments
of r2, EP.r

2/ D 1=.n� 1/, and

EP.r
4/ D 3

.n � 1/.nC 1/
C .n � 2/.n � 3/
n.nC 1/.n� 1/3

�

k4.X/

k2.X/2

� �

k4.Y /

k2.Y /2

�

;

where the sample cumulants k2 and k4 were given in (12.21, p. 469) and (12.22,
p. 469), respectively. Note that these moments are straightforward from the results
in Section 12.4.2 (p. 458) since the numerator of r has the form (12.3, p. 458) of a
linear statistic, and the denominator is constant over permutations. If the pairs are
iid with a bivariate normal distribution, then r2 has a beta(1=2; n=2�1/ distribution
with E.r2/ D 1=.n � 1/ and E.r4/ D 3=.n � 1/.nC 1/. Because the permutation
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moments and normal theory moments are so close, Pitman (1937b) suggested using
the beta approximation, which is equivalent to comparing .n � 2/r2=.1 � r2/ to an
F.1; n�2/ distribution. Box and Watson (1962) generalized these results to the full
p regressor case for the test that all regressors are independent of Y . They derived
the adjusted F approximation (see Box and Watson 1962, p. 100), which for the
p D 1 case here is to compare .n� 2/r2=.1� r2/ to an F.d; d.n� 2// distribution,
where

1

d
D 1C .nC 1/˛1

n � 1 � 2˛1 ; ˛1 D n � 3

2n.n � 1/
�

k4.X/

k2.X/2

� �

k4.Y /

k2.Y /2

�

:

In large samples, d � 1 C fKurt.X/ � 3gfKurt.Y / � 3g=2n, revealing a double
Type I error robustness to nonnormality: if eitherX or Y is approximately normally
distributed, then the usual F approximation is very good. To numerically illustrate,
recall r D �:53 from the dose-response data (p. 486) where the Monte Carlo
estimated one-sided p-value was bp D :007. Taking half of the F.1; 18/ p-value
approximation for 18r2=.1 � r2/ D 7:03, we get p-value = .008. Similarly, for
Spearman’s rS D �:56 we obtained previously bp D :005. Using one half of the
F.1; 18/ p-value for 18r2S=.1� r2S/ D 8:22 yields p-value = .005.

Now let us move to the more complicated situation of the linear model,

Yi D ˇ0 C ˇ1X1i C ˇ2X2i C ei ; i C 1; : : : ; n;

where we assume e1; : : : ; en are iid from some distribution and independent of
all the Xij . As mentioned above, permuting the Y ’s under the assumption H0 W
ˇ1 D ˇ2 D 0 yields a suitable permutation distribution for testing independence
of Y and .X1;X2/. Unfortunately, we are usually much more interested in testing
H0 W ˇ2 D 0 with ˇ0 and ˇ1 unrestricted. Without knowledge of ˇ1, however, an
exact permutation procedure forH0 W ˇ2 D 0 is not possible. (Actually, it is possible
to take the maximum over permutationp-values for each value of ˇ1 in a confidence
interval under H0 as described in Berger and Boos (1994), but the loss in power is
typically not worth the gain in exactness.) Anderson and Robinson (2001) review a
number of different proposals that use residuals from first fitting the reduced model,
and show that they are asymptotically correct but do not satisfy the assumptions
of Theorem 12.1 (p. 457). Fortunately, standard linear model and rank-based linear
model testing procedures have good Type I error robustness properties in general.
The rank-based linear model methods given in Ch. 5 of Hettmansperger (1984)
have good Type II error robustness properties as well. Similarly, the M-estimation
regression methods discussed in Ch. 5 also have good robustness properties.

We conclude this section with an example that illustrates how easy it is to use
Monte Carlo approximation in an autocorrelation setting.

Example 12.1 (Raleigh snowfall). Is the total snowfall in one year independent
of the total snowfall in other years? The left panel of Figure 12.5 plots Raleigh,
NC, annual snowfall for 1962–1991 versus year. The right panel plots each year’s
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Fig. 12.5 Annual snowfall in Raleigh, NC, 1962–1991 (left panel) and annual snowfall versus
annual snowfall of previous year (right panel)

snowfall versus the previous year’s snowfall. The sample correlation from the right
panel is r D :32. Does that suggest nonzero autocorrelation? The null hypothesis
for a permutation approach is that the sequence of yearly snowfalls is iid or at least
exchangeable. Below we give R code for sampling B permutations from the set
of 30Š possible permutations, computing the lag-1 sample correlation for each, and
estimating the one-sided p-value for a positive autocorrelation. Using B D 10; 000,
we getbp D :027with standard error .0016. Thus there is good evidence of a positive
autocorrelation. The main point here is to illustrate how easy it is to carry out the
permutation test.

r.auto<-function(x){
n<-length(x)
cor(x[1:(n-1)],x[2:n])

}
perm1<-function(b, x, stat, ...){

# Gives est. permutation $p$-value for vector x.
# Assumes test rejects for large values of stat.

call <- match.call()
n <- length(x)
t0 <- stat(x)
res <- numeric(b)
for(i in 1:b) {

perm.xx <- sample(x)
res[i] <- stat(perm.xx)

}
pvalue <- sum(res >= t0)/b
se<-sqrt(pvalue*(1-pvalue)/b)
return(list(call=call,results=data.frame
(nperm=b, stat0=round(t0,4),pvalue=pvalue,
se=round(se,5))))

}
> set.seed(2458)
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> perm1(10000,raleigh.snow$snow,r.auto)
nperm stat0 pvalue se

1 10000 0.3245 0.0269 0.00162

�

12.8 One-Sample Test for Symmetry about �0 or Matched
Pairs Problem

Fisher (1935) introduced the permutation approach for the matched-pairs problem
in a discussion of Darwin’s data on self-fertilized and cross-fertilized plants. There
were 15 pairs of plants, and the differences

49;�67; 8; 16; 6; 23; 28; 41; 14; 29; 56; 24; 75; 60;�48

have meanD D 20:933, s D 37:744, and t D 2:148 for testingH0 W �D D 0 versus
Ha W �D ¤ 0, where�D is the population mean difference. The two-sidedp-value is
.0497 from the t table with 14 degrees of freedom. Alternatively, consider Fisher’s
permutation argument. There were 215 possible random assignments of types of
seeds to the 15 blocks of size 2. Thus, Fisher considered all 215 sums

P15
iD1 Di ,

where Di is the i th difference, and found only 835+28 = 863 which are greater
than or equal to the observed sum = 314. The two-sided p-value is (2)(863)/32,768
= .0527 (by symmetry there are 863 sums � �314). Note that t D p

nD=s

is permutationally equivalent to
P15

iD1 Di because t is a monotonic function of
P15

iD1 Di that depends on
P15

iD1 D2
i , which is constant over all 215 permutations.

Let us consider the theory behind Fisher’s approach. The population null model is
that the differencesD1; : : : ;Dn are independent, each with a symmetric distribution
about some �0; often �0 D 0. The distributions do not need to be the same, merely
symmetric about �0. Thus

H0 W Di � �0
dD �0 �Di; i D 1; : : : ; n: (12.35)

The group of transformations to be used with Theorem 12.1 (p. 457) is the set of
2n sign changes applied to the data with �0 subtracted. For notational simplicity, let
Di0 D Di � �0, i D 1; : : : ; n: Then, for example, if n D 4, one such transformation
is .�;C;C;�/. It would transform

.D10;D20;D30;D40/ (12.36)

into

.�D10;D20;D30;�D40/: (12.37)
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Because of (12.35) and independence, all 2n transformations of the original data
have the same distribution. That is, under (12.35) and independence, the joint distri-
bution of (12.36) is the same as (12.37), etc. Thus, the conditions of Theorem 12.1
(p. 457) apply with the group of sign changes, and Fisher’s original method is a
valid permutation approach.

12.8.1 Moments and Normal Approximation

Now let us abstract the above situation slightly in order to compute moments and
approximations. Suppose that d1; : : : ; dn is a sequence of real constants, playing the
role of the observed Di � �0 above. Let c1; : : : ; cn be iid random variables with
P.ci D 1/ D P.ci D �1/ D 1=2; these play the role of making the sign changes.
Now consider the linear statistic T D Pn

iD1 cidi . Note that the ci are symmetrically
distributed around 0 so that all odd moments of ci are 0 and all even moments equal
to 1. Then T is also symmetrically distributed about 0 with odd moments 0 and
E.T 2/ D Var.T / D Pn

iD1 d 2i and E.T 4/ D 3.
Pn

iD1 d 2i /2 � 2
Pn

iD1 d 4i . Now we
give a Central Limit Theorem for T . A more general version and proof are given in
Hettmansperger (1984, p. 302–303).

Theorem 12.4. . Suppose that d1; : : : ; dn and c1; : : : ; cn are defined as above and

1

n

n
X

iD1
d 2i �! �2 < 1 as n ! 1:

Then

T
p

Var.T /
D

n
X

iD1
cidi

 

n
X

iD1
d 2i

!1=2

d�! N.0; 1/ as n ! 1:

Now we apply this theorem to the permutation distribution of
Pn

iD1 Di when
sampling from a population.

Theorem 12.5. Suppose that D1; : : : ;Dn are iid random variables satisfying
(12.35) and with variance �2 < 1. Then the permutation distribution function
of
Pn

iD1.Di � �0/ under the group of sign changes satisfies

P �
(

n
X

iD1
.Di � �0/=

p
n�

)

wp1�! N.0; 1/ as n ! 1:

We have used the notationP � to emphasize that the probability is taken with respect
to the permutation distribution holding D1; : : : ;Dn fixed. An alternative statement
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of the result is that the permutation distribution of
Pn

iD1.Di � �0/=pn� converges
in distribution to a standard normal distribution with probability 1. Note also that we
could just as well have put fPn

iD1.Di � �0/2g1=2 in place of
p
n� in the conclusion,

giving

n
X

iD1
.Di � �0/

(

n
X

iD1
.Di � �0/2

) 1=2

d�

�! N.0; 1/ as n ! 1 wp1: (12.38)

The result follows from Theorem 12.4 because for each infinite sequence D1.!/;

D2.!/; : : : where ! 2 ˝ with P.˝/ D 1,

1

n

n
X

iD1
.Di .!/ � �0/

2 �! �2 as n ! 1

by the Strong Law of Large Numbers. For each of these sequences, Theorem 12.4
holds, and thus the convergence in distribution holds with probability 1.

12.8.2 Box-Andersen Approximation

The Box-Andersen adjusted F approximation to the permutation distribution of
Pn

iD1.Di � �0/ uses the beta version of t2 D n.D � �0/
2=s2,

b.t2/ D t2

n � 1C t2
D n.D � �0/

2

n
X

iD1
.Di � �0/2

:

Under an iid normal distribution assumption forD1; : : : ;Dn, b.t2/ has a beta.1=2;
.n � 1/=2/ distribution with mean 1=n and variance 2.n � 1/=fn2.n C 2/g. Using
the results in the previous section for T D Pn

iD1 cidi , where di D .Di ��0/=n, the
permutation moments of b.t2/ are EPfb.t2/g D 1=n and

VarPfb.t2/g D 2.n� 1/
n2.nC 2/

�

1 � f2 � 3
n � 1

�

; (12.39)

where f2 D .nC2/Pn
iD1.Di ��0/4=fPn

iD1.Di ��0/2g2. Equating the permutation
moments to those of a beta.d=2; d.n� 1/=2/ distribution leads to

d D 1C f2 � 3
nf1 � f2=.nC 2/g : (12.40)



494 12 Permutation and Rank Tests

In the above derivation we have followed the notation in Box and Andersen (1955,
p. 9), but their W is 1 � b.t2/, and we relabeled their b2 as f2. Note that f2 is close
to the sample kurtosis of the Di � �0, and thus d � 1C fKurt.D/ � 3g=n.

For the Darwin data, d D :94 and the F adjusted two-sided p-value is .053.
Recall from previous analysis that the exact two-sided permutationp-value is .0527.
The normal approximation here is Z D 1:9282 with two-sided p-valueD :054:

Thus, the normal approximation is surprisingly good here, better than the F D t2

approximation that Fisher gave (.0497), but the Box-Andersen adjustment has made
the F approximation slightly better than the normal approximation.

12.8.3 Signed Rank Methods

Now we turn to signed rank methods. Here again for simplicity we use the notation
Di0 for Di � �0. Let Ri be the rank of jDi0j among jD10j; : : : ; jDn0j. Let the sign
function be defined by sign.x/ D I.x > 0/�I.x < 0/ if x is nonzero and sign.0/ D
0. Then the signed rank of Di0 is sign.Di0/Ri although some authors use I.Di0 >

0/Ri as the definition of the signed rank. We illustrate with a simple data set from
Wilcoxon (1945) on the difference between wheat yields in two treatments in 8
blocks:

Di0 58 32 30 5 �7 6 11 10

Ri 8 7 6 1 3 2 5 4

sign.Di0/Ri 8 7 6 1 �3 2 5 4

I.Di0 > 0/Ri 8 7 6 1 0 2 5 4

Then define W C D Pn
iD1 I.Di0 > 0/Ri , W � D Pn

iD1 I.Di0 < 0/Ri and
W D Pn

iD1 sign.Di0/Ri . As long as there are no ties in the data, then all three of
these are equivalent andW D W C �W �. For the above sample we haveW C D 33;

W � D 3, andW D 30. It is perhaps more standard to callW C the Wilcoxon Signed
Rank statistic. Under (12.35, p. 491) and continuity of the data (implying no ties
with probability 1), the basic facts are that:

1. sign.D10/; : : : ; sign.Dn0/ and I.D10 > 0/; : : : ; I.Dn0 > 0/ are independent of
jD10j; : : : ; jDn0j and thus also independent of R1; : : : ; Rn;

2. W C dD W � dD Pn
iD1 I.Di0 > 0/i; and I.D10 > 0/; : : : ; I.Dn0 > 0/ are

independent Bernoulli(1/2) random variables;

3. W
dD Pn

iD1 sign.Di0/i , and sign.D10/; : : : sign.Dn0/ are iid with
P.sign.Di0/ D 1/ D 1=2;

4.

E.W C/ D 1

2

n
X

iD1
i D n.nC 1/

4
; Var.W C/ D 1

4

n
X

iD1
i2 D n.nC 1/.2nC 1/

24
I
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5.

E.W / D 0; Var.W / D
n
X

iD1
i2 D n.nC 1/.2nC 1/

6
:

For the simple example above with n D 8, we have E.W C/ D .8/.9/=4 D 18

and Var.W C/ D .8/.9/.17/=24 D 51 leading to the standardized value .33 �
18/=

p
51 D 2:1, which is clearly the same for W � and W as well. From a normal

table, we get the right-tailed p-value .018, whereas the exact permutation p-value
for the signed rank statistics is 5=256 D :01953:

Although the Wilcoxon Signed Rank is by far the most important of the signed
rank procedures, the general signed rank procedures are TC D Pn

iD1 I.Di0 >

0/a.Ri/, T � D Pn
iD1 I.Di0 < 0/a.Ri/, and

T D
n
X

iD1
sign.Di0/a.Ri /; (12.41)

where the scores a.i/ could be of any form. The analogues of the above properties for

W hold for the general signed rank statistics. In particular T
dD Pn

iD1 sign.Di0/a.i/

simplifies the distribution and moment calculations in the case of no ties. In the
case of ties, the permutation variance of T , given the midranks R1; : : : ; Rn, is
Pn

iD1fa.Ri /g2. Thus, for the normal approximation, it is simplest to use the form

Z D
n
X

iD1
sign.Di0/a.Ri /=

"

n
X

iD1
fa.Ri /g2

#1=2

; (12.42)

that automatically adjusts for ties (see Section 12.8.6, p. 497, for a discussion of
ties).

The most well-known score functions are a.i/ D i for the Wilcoxon, the quantile
normal scores a.i/ D ˚�1.1=2C i=Œ2.nC 1/�/, and the sign test a.i/ D 1. These
are asymptotically optimal for shifts in the center of symmetry D0 of the logistic
distribution, the normal distribution, and the Laplace distribution, respectively. For
asymptotic analysis we assume a.i/ D �C.i=.nC1//, where �C.u/ is nonnegative
and nonincreasing and

R 1

0
Œ�C.u/�2du < 1. The asymptotically optimal general

form for data with density f .x � �0/ and f .x/ D f .�x/ is

�C.u/ D �
f 0
�

F�1
�

1

2
C u

2

��

f

�

F �1
�

1

2
C u

2

�� :

Asymptotic normality is similar to Theorem 12.5 (p. 492) (see for example,
Theorem 10.2.5, p. 333 of Randles and Wolfe, 1979). The Edgeworth expansion
for W C and TC may be found on p. 37 and p. 89, respectively, of Hettmansperger
(1984).



496 12 Permutation and Rank Tests

Table 12.4 Pitman ARE’s for the One-Sample Symmetry Problem

Distribution ARE(S; t/ ARE(S;W C/ ARE(W C; t)
Normal 0.64 0.67 0.955
Uniform 0.33 0.33 1.00
Logistic 0.82 0.75 1.10
Laplace 2.00 1.33 1.50
t6 0.88 0.76 1.16
t3 1.62 0.85 1.90
t1 (Cauchy) 1 1.33 1

12.8.4 Sign Test

The sign test mentioned in the last section as (12.41) with a.i/ D 1 is usually given
in the form TC D Pn

iD1 I.Di0 > 0/, the number of positive differences. Under
the null hypothesis (12.35, p. 491), TC has a binomial(n; 1=2/ distribution and is
extremely easy to use. Because of this simple distribution, TC is often given early
in a nonparametric course to illustrate exact null distributions.

The sign test does not require symmetry of the distributions to be valid. It can
be used as a test of H0 W median of Di � �0 D 0, where it is assumed only that
D1; : : : ;Dn are independent, each with the same median. Thus, the test is often
used in skewed distributions to test that the median has value �0. This generality,
though, comes with a price because typically the sign test is not as powerful as the
signed rank or t test in situations where all three are valid. If there are zeroes in
D1; : : : ;Dn, the standard approach is remove them before applying the sign test.

12.8.5 Pitman ARE for the One-Sample Symmetry Problem

In the Appendix, we give some details for finding expressions for the efficacy and
Pitman efficiency of tests for the one-sample symmetry problem. Here we just report
some Pitman ARE’s in Table 12.4 for the sign test, the t test, and the Wilcoxon
signed rank. The comparison of the signed rank and the t are very similar to those
given in Table 12.3 (p. 477) for the two-sample problem. The only difference is that
skewed distributions are allowed in the shift problem but not here.

The general message from Table 12.4 is that the tails of the distribution must
be very heavy compared to the normal distribution in order for the sign test to
be preferred. This is a little unfair to the sign test because symmetry of f is not
required for the sign test to be valid, whereas symmetry is required for the Wilcoxon
signed rank test. In fact Hettmansperger (1984, p. 10–12) shows that the sign test
is uniformly most powerful among size-˛ tests if no shape assumptions are made
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about the density of f . Moreover, in the matched pairs situation where symmetry is
justified by differencing, the uniform distribution is not possible, and that is where
the sign test performs so poorly.

Monte Carlo power estimates in Randles and Wolfe (1979, p. 116) show
that generally the ARE results in Table 12.4 correspond qualitatively to power
comparisons. For example, at n D 10 and normal alternative .�0 C :4/=� , the
Wilcoxon signed rank has power .330 compared to .263 for the sign test. The ratio
:263=:330 D :80 is not too far from ARED :64: The estimated power ratio at
n D 20 is :417=:546 D :76: The Laplace distribution AREs in Table 12.4 are
not as consistent. For example, at n D 20 for a similar alternative, the ratio is
:644=:571 D 1:13; not all that close to ARED 2:00:

The Wilcoxon signed rank test is seen to have good power relative to the sign test
and to the t test. The Hodges and Lehmann (1956) result that ARE(W C; t/ � :864

also holds here for all symmetric unimodal densities. Coupled with the fact that there
is little loss of power relative to the t test at the normal distribution (ARE(W C; t/ D
0:955),W C should be the statistic of choice in many situations.

12.8.6 Treatment of Ties

The general permutation approach is not usually bothered by ties in the data,
although rank methods typically require some thought about how to handle the
definition of ranks in the case of ties. For the original situation of n pairs of data
and a well-defined statistic like the paired t statistic, the 2n permutations of the
data merely yield redundance if members of a pair are equal. For example, consider
n D 3 and the following data with all 8 permutations (1 is the original data pairing):

1 2 3 4 5 6 7 8

3,5 5,3 3,5 5,3 3,5 5,3 3,5 5,3
2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2
7,4 7,4 4,7 4,7 7,4 7,4 4,7 4,7

Permutations 1–4 are exactly the same as permutations 5–8 because permuting the
2nd pair has no effect. Thus, a permutation p-value defined from just permutations
1–4 is exactly the same as for using the full set 1–8. After taking differences between
members of each pair, the 2n sign changes work in the same way by using sign.0/ D
0; that is, there is the same kind of redundancy in that there are really just 2n�n0
unique permutations, where n0 is the number of zero differences.

For signed rank statistics, there are two kinds of ties to consider after converting
to differences, multiple zeros and multiple non-zero values. For the non-zero
multiple values, we just use mid-ranks (average ranks) as before. For the multiple
zeros, there are basically two recommended approaches:
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Method 1: Remove the differences that are zero and proceed with the reduced
sample in the usual fashion. This is the simplest approach and the most powerful
for the sign statistic (see Lehmann 1975, p. 144). Pratt and Gibbons (1981, p. 169)
discuss anomalies when using this procedure with W C.

Method 2: First rank all jD10j; : : : ; jDn0j. Then remove the ranks associated with
the zero values before getting the permutation distribution of the rank statistic, but
do not change the ranks associated with the non-zero values. However, as above,
since the permutation distribution is the same with and without the redundancy, it
really just makes the computing easier to remove the ranks associated with the zero
values. The normal approximation in (12.42, p. 495) automatically eliminates the
ranks associated with the zero values because sign.0/ D 0. For the Box-Andersen
approximation, the degrees of freedom are different depending on whether the
reduced set is used or not. It appears best to use the reduced set for the Box-
Andersen approximation although a few zero values make little difference.

Example 12.2 (Fault rates of telephone lines). Welch (1987) gives the difference
(times 105) of a transformation of telephone line fault rates for 14 matched areas.
We modify the data by dividing by 10 and rounding to 2 digits leading to

Di0 �99 31 27 23 20 20 19 �14 11 9 8 �8 6 0

sign.Di0/Ri �14 13 12 11 9:5 9:5 8 �7 6 5 3:5 �3:5 2 0

Notice that there two ties in the absolute values 20 and 8 for which the midranks
are given. The exact right-tailed permutation p-value based on the t statistic is .38,
whereas the t tables gives .33 and the Box-Andersen approximation is .40. The large
outlier �99 essentially kills the power of the t statistic. The sign test first removes
the 0 value and then the binomial probability of getting 10 or more positives out
of 13 is .046. Welch (1987) used the sample median as a statistic and for these
data we get exact p-value .062. Note that the mean and sum and t statistic are
all permutationally equivalent, but the median is not permutationally equivalent to
using a Wald statistic based on the median. So, the properties of using the median
as a test statistic are not totally clear.

For the Wilcoxon Signed Rank, no tables can be used because of the ties and the
0. However, it is straightforward to get the permutation after choosing one of the
methods above for dealing with the 0 difference.

Method 1: First remove the 0, then rank. The remaining data are

Di0 �99 31 27 23 20 20 19 �14 11 9 8 �8 6

sign.Di0/Ri �14 13 12 11 9:5 9:5 8 �7 6 5 3:5 �3:5 2

The exact p-value based on the sign.Di0/Ri values above (for example, just
insert the signed ranks into the R program below) is.048, the normal approximation
is .047, and the Box-Andersen approximation is .049.



12.9 Randomized Complete Block Data—the Two-Way Design 499

Method 2: Rank the data first, then throw away the signed rank associated with the
0. The exact p-value is .044 Recall, for the permutation p-value, it does not matter
whether we drop the 0 or not after ranking. Similarly, the normal approximation
p-value .042 based on (12.42, p. 495) automatically handles the 0 value. For the
Box-Andersen approximation, we get .0437 based on all 14 signed ranks and .0441
after throwing out the 0; so it matters very little whether we include the 0 or not. �

For problems with n � 20, the following R code modified from Venables and
Ripley (1997, p. 189-190) gives the exact permutation p-value for signed statistics:

perm.sign<-function(d,stat,pr=FALSE, ...){
# Exact perm. $p$-value for one-sample problem.
# Assumes test rejects for large values of stat.
# Looks at all 2ˆn sign change samples.
# Use only for small n.
# Need the following obscure function

bi<-function(x,digits=if(x>0)1+
floor(log(x,base=2)) else 1){

ans<-0:(digits-1)
(x %/% 2ˆans) %% 2
} # note %/% and %% are different

# The main program
t0<-stat(d, ...)
digits<-length(d)
b <- 2ˆdigits
res <- numeric(b)
for(i in 1:b){

x <- d*2*(bi(i,digits=digits) - 0.5)
res[i] <- stat(x, ...)
if(pr)cat(i,x,res[i],fill=T) # prints

}
pvalue <- sum(res >= t0)/b
sum(res==t0)->co
return(data.frame(b=b,stat0=round(t0,4),

eq.t0=co,rt.pvalue=pvalue,pv2=2*pvalue))
}

12.9 Randomized Complete Block Data—the Two-Way
Design

Blocking is one of the most important techniques for reducing variation in experi-
mental designs. The usual Randomized Complete Block design may be viewed as a
generalization of the matched pairs to situations with more than two treatments. To
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use the permutation argument with blocked data, we do not need for the treatments
to be assigned randomly, but it is most natural to discuss blocked data in that context.
The key assumption required under H0 is that the data are exchangeable within
blocks.

Suppose that k treatments are to be assigned at random within each block of
size k. For n blocks, there are .k/n possible permutations of the data corresponding
to permuting independently among treatments within each block. In the following
table there are k D 4 blocks with n D 10 treatments, thusMN D 2410 D 6:34	1013
possible permutations. These data are actually treatments 6–15 from an example of
aphid infestation of crepe myrtle cultivars given in Table 1 of Brownie and Boos
(1994). The response variable is the number of aphids on the three most heavily
infested leaves plus the percent of foliage covered with sooty mold.

Treatments
Block 1 2 3 4 5 6 7 8 9 10

1 0 0 93 78 5 1 0 21 1 1
2 0 24 0 3 2 180 0 0 3 9
3 0 2 10 0 0 3 2 3 3 140
4 0 4 2 2 0 0 1 47 1 52

The linear model representation is

Yij D �C ˇi C ˛j C eij ; (12.43)

where ˛1; : : : ; ˛k are the treatment effects, and ˇ1; : : : ˇn are the block effects. Note
that we have switched subscripts on Yij compared to the one-way model (12.28,
p. 480) so that the blocks can be the rows. Often the block effects are assumed
random, but the nonparametric literature typically considers them fixed effects.

The usual ANOVA F statistic could be used with these data:

F D

1

k � 1
k
X

jD1
n.Y :j � Y ::/

2

1

.k � 1/.n� 1/

n
X

iD1

k
X

jD1
.Yij � Y i: � Y :j C Y ::/

2

; (12.44)

where Y i: D k�1Pk
jD1 Yij , Y :j D n�1Pn

iD1 Yij , and Y :: D n�1Pn
iD1 Y i:. For

the above data F D 0:80 with p-value = 0.62 from an F distribution with 9
and 27 degrees of freedom. Since the F distribution approximates the permutation
distribution, the value 0.62 should be satisfactory. A Monte Carlo approximation
to the exact permutation p-value based on 10,000 samples gave .60 with standard
error .005, thus confirming the Type I error robustness of the usual F procedure.
However, the nonnormality of the response variable is cause for concern because
the F statistic is not Type II error robust in the face of outliers. Transformations are
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an obvious approach, and F on log.Yij C 1/ resulted in p-value = .29. Fortunately,
with rank procedures we do not have to guess the correct transformation.

12.9.1 Friedman’s Rank Test

The standard rank procedure was introduced by Friedman (1937). For the untied
case, it has the form

T D 12n

k.k C 1/

k
X

jD1

�

R:j � k C 1

2

�2

; (12.45)

where Rij is the rank of Yij within the i th row, and R:j D n�1Pn
iD1 Rij is the j th

treatment mean rank. Note that .k C 1/=2 is R:: since the average of the integers 1
to k is .k C 1/=2. The within-row ranks Rij for the above table are

Treatments
Block 1 2 3 4 5 6 7 8 9 10

1 2 2 10 9 7 5 2 8 5 5
2 2.5 9 2.5 6.5 5 10 2.5 2.5 6.5 8
3 2 4.5 9 2 2 7 4.5 7 7 10
4 2 8 6.5 6.5 2 2 4.5 9 4.5 10

We see immediately that there are numerous ties in the data. The form of the
Friedman statistic that accommodates ties is (see, for example, Conover and Iman,
1981, p. 126)

T D
.k � 1/n2

k
X

jD1

�

R:j � k C 1

2

�2

0

@

n
X

iD1

k
X

jD1
R2ij

1

A � nk.k C 1/2

4

: (12.46)

Under the null hypothesis of identical treatments, T converges to a �2k�1 distribution
as n ! 1 and k remains fixed. For the above data, T D 13:7732, and comparing
to a �29 distribution gives p-value = .13. However, as in the one-way design, the
�2 approximation becomes increasingly conservative as the number of treatments
gets large relative to the number of blocks. F distribution p-values provide much
better approximations and can be justified by either asymptotic theory or the Box-
Andersen permutation moment approximations.
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12.9.2 F Approximations

Friedman (1937, pp. 694–695) conjectured that the Friedman statistic is asymptoti-
cally normal as k ! 1 with mean k�1 and variance 2.n�1/.k�1/=n (a proof may
be found in Lemma 4 of Brownie and Boos, 1994). Similar to the one-way design,
this asymptotic normal result is consistent with applying the F statistic (12.44,
p. 500) to the within-row Friedman ranks and then using the F.k�1; .k�1/.n�1//
distribution for p-values. This argument is to be fleshed out in Problem 12.22
(p. 528). Of course, the F distribution should be used in practice; the asymptotic
normal result just supports use of the F distribution.

From Box and Andersen (1955, p. 14-15), we may approximate the permutation
distribution of F of (12.44, p. 500) or of the same F applied to the within-row
Friedman ranks by a F.d.k � 1/; d.k � 1/.n � 1// distribution, where

d D 1C .nk � nC 2/V2 � 2n
n.k � 1/.n� V2/

;

V2 D 1

n � 1
n
X

iD1
.s2i � s2/2=.s2/2;

and the s2i are the within-row variances, and s2 D n�1Pn
iD1 s2i . In the case of the

Friedman ranks with no ties in the data, d D 1 � 2=fn.k � 1/g. For the Crepe
Myrtle data this latter expression is d D :944, the same (to three decimals) as the
actual d value from the tied ranks. We summarize the various approximations in the
following table:

Approximate P -Values
for the Crepe Myrtle Data

Monte Box-And.
Carlo F.9; 27/ F.9d; 27d/ �29

Friedman .10 .13
FR .10 .10 .11
F on Y .60 .62 .63
F on log.Y C 1/ .29 .29 .30

The Monte Carlo estimates are based on 10,000 random permutations and have
standard error bounded by .005. The F approximations are good, but the Box-
Andersen adjustments do not help here. Interestingly, d D 1:08 for the usual F
(row 3), but the p-value is adjusted upwards because the F D :80 is so small.
Typically, a d value greater than 1 lowers the p-value from the F approximation.
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Table 12.5 Pitman ARE of the Friedman Test to the F Test

k = Number of Treatments

Distribution 2 3 4 5 10 1
Normal 0.64 0.72 0.76 0.80 0.87 0.955
Uniform 0.67 0.75 0.80 0.83 0.91 1.000
t3 1.27 1.42 1.52 1.58 1.73 1.900

12.9.3 Pitman ARE for Blocked Data

From van Elteren and Noether (1959) we find the surprising result that the Pitman
asymptotic relative efficiency of the Friedman test to the ANOVA F depends on the
number of treatments k,

ARE(Friedman; F / D
�

k

k C 1

�

12�2
�Z 1

�1
f 2.x/ dx

� 2

; (12.47)

where �2 is the variance of the observations. Expression (12.47) is just k=.k C 1/

times the ARE.W; t/ in (12.25, p. 477). Table 12.5 gives a few values of (12.47) for
several distributions.

The value .64 at k D 2 for the normal distribution is the same as the ARE of
the sign test to the t in Table 12.4 (p. 496). That is no accident. It turns out that
for k D 2, the Friedman test is equivalent to the sign test. (The other values in
Table 12.4, p. 496, do not correspond to the k D 2 values in Table 12.5 because
Table 12.4 refers to the distribution after taking differences, whereas Table 12.5 is
for the distribution of the individual treatment results, not the difference of treatment
results. For the normal distribution, the difference of normal random variables is also
normally distributed; so for the normal the results are the same in both tables.)

The reason for the low efficiency in Table 12.5 is that ranking within rows
(intrablock ranking) takes no advantage of between block (interblock) information.
For the k D 2 case, the Wilcoxon signed rank statistic uses interblock information
by ranking the absolute differences (note the improved efficiencies in Table 12.4,
p. 496, for the signed rank test compared to the sign test). In the next section we
discuss some rank approaches that use interblock information.

12.9.4 Aligned Ranks and the Rank Transform

Many approaches have been used to remedy the low efficiency in Table 12.5 for
small values of k. Perhaps the earliest approach (and still one of the best) is
the aligned rank method due to Hodges and Lehmann (1962). The aligned rank
approach is to first subtract the block mean (or any other location measure such
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as the median) from each observation Yij , then rank all the resulting nk residuals
together. These latter ranks on the residuals, denoted bRij , are called aligned ranks.
We suggest using F of (12.44, p. 500) on these aligned ranks.

Actually, Sen (1968) and Lehmann (1975, p. 272) use

bQ D
n2.k � 1/

k
X

jD1

�

bR:j � nk C 1

2

�2

n
X

iD1

k
X

jD1

�

bRij � bRi:

�2

; (12.48)

a statistic that is asymptotically �2k�1 under H0. The justification for the form

(12.48) comes from noting that the permutation mean of bR:j is .nk C 1/=2, and

the permutation covariance matrix of .bR:1; : : : ;bR:k/ is

�2k

k � 1
diag

 

Ik � 1k1Tk
k

!

; (12.49)

where Ik is the k-dimensional identity matrix, 1k is a vector of ones, and

�2 D 1

n2k

n
X

iD1

k
X

jD1
.bRij � bRi:/

2 (12.50)

is the permutation variance of bR:j . bQ in (12.48) is the appropriate quadratic form

in .bR:1; : : : ;bR:k/ upon noting that .k � 1/Ik=.k�
2/ is a generalized inverse of the

covariance matrix (12.49).
Other authors (Fawcett and Salter, 1984, and O’Gorman, 2001) use a one-way

ANOVA F on the aligned ranks, but we prefer the two-way F of (12.44, p. 500)
because the Box-Andersen adjustment is readily available. All three statistics, bQ
and the two F statistics on the aligned ranks, are permutationally equivalent to the
numerator of bQ; so if exact or Monte Carlo approximations are used, it does not
matter which of the three statistics is chosen. Clearly, either of the two F s gives
better approximate p-values than bQ with �2k�1 p-values.

Mehra and Sarangi (1967) give somewhat complicated formulas for the Pitman
ARE of the aligned rank approach to the usual F and to Friedman’s statistic, but the
bottom line is that the AREs of the aligned rank procedure to the usual F are close
to the last column of Table 12.5 (p. 503). Thus, the aligned rank approach is able to
recover most of the interblock information.

Another approach to recovering the interblock information is to just rank all the
observations together and apply F of (12.44, p. 500) on the resulting ranks. This
rank transform approach, due to Conover and Iman (1981) works well as long as
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the block effects are not strong. When the block effects are strong, then this approach
is similar to Friedman’s test. Hora and Iman (1988) give Pitman ARE results for this
approach.

There is an extensive literature on rank methods in block models. Mahfoud and
Randles (2005) and Kepner and Wackerly (1996) are several places that briefly
review many of the approaches. The latter also gives extensions to incomplete
blocks.

12.9.5 Replications within Blocks

In the preceding discussion we have been talking about cases where there is just
one observation per cell, nk total observations for n blocks and k treatments, and
no block by treatment interaction. Consider the k D 2 case and n blocks where
there aremi Xs for the first treatment in block i and ni Y s for the second treatment,
i D 1; : : : ; n. These type data arise naturally in clinical trials at n centers or sites.
The sites might be hospitals or clinics or individual doctors. The usual rank approach
is the van Elteren statistic (van Elteren, 1960, or Lehmann 1975, p. 145), a weighted
sum of individual Wilcoxon rank sum statistics Wi within each block,

WVE D
n
X

iD1

Wi

mi C ni C 1
:

van Elteren (1960) showed that the weights 1=.mi C ni C 1/ are asymptotically
optimal among all linear combinations of theWi . This optimality makes sense if we
write the standardized version of WVE as

n
X

iD1

1

�20 .
b�i /

�

b�i � 1

2

�

,(

n
X

iD1

1

�20 .
b�i /

) 1=2

; (12.51)

whereb�i is the Mann-Whitney estimator of �i D P.Yi1 > Xi1/ C .1=2/P.Yi1 D
Xi1/ given in (12.14, p. 463) (here we have dropped the XY subscript for
simplicity), and �20 .b�i / is the variance ofb�i under the null hypothesis of identical
X and Y populations. In the completely nonparametric case (in the absence of the
shift model), �i is the underlying parameter of interest for Wilcoxon statistics. For
continuous data (no ties), �20 .b�i / D .mi C ni C 1/=.12mini /. Thus, the numerator

of the standardized version of WVE is a weighted average of b�i � 1=2, where the
weights are inversely proportional to null variances.

The analogous t procedure is based on standardizing

n
X

iD1

mini

mi C ni
.Y i � Xi/: (12.52)
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Thus, the t procedure uses a weighted linear combination of the difference of
sample means, where the weights are inversely proportional to Var

�

Y i � Xi

	 D
�2.1=mi C 1=ni/.

The standard permutation approach is to consider all possible

MN D
n
Y

iD1

 

mi C ni

ni

!

independent permutations within sites. The normal approximation for WVE should
be very good if

Pn
iD1 mi and

Pn
iD1 ni are reasonably large and therefore is widely

used in practice. In the case that
Pn

iD1 mi and
Pn

iD1 ni converge to 1, Hodges and
Lehmann (1962) give the Pitman ARE of (12.51) to (12.52) for normal data as

:955

n
X

iD1

mini

mi C ni C 1

,

n
X

iD1

mini

mi C ni
:

Thus, if mi C ni is reasonably large, then the ARE is close to the best value .955.
For example, if mi C ni D 10 for each site, then the ARE is .955(10/11).

For the case that there are small numbers of replications per block (site), we are
led back to the procedures of the previous section, aligned ranks and possibly the
rank transform. With replications within blocks, however, we now have the ability
to test for block by treatment interactions. Unfortunately, standard permutation
procedures are not available for testing the no interaction hypothesis in the face of
main effects. A large literature exists evaluating and criticizing the rank transform
approach for testing interactions. See, for example, Akritas (1990, 1991) and
Thompson (1991). In general, for more complicated fixed effects models with
interaction, to achieve robustness via rank methods, we feel it is better to use the
general R-estimation linear model approach mentioned at the end of Section 12.7
(p. 487).

Boos and Brownie (1992) argue that a mixed model approach is usually more
appropriate, allowing inferences to be made to a larger population, but the mixed
model leads away from van Eltern’s statistic (12.51, p. 505) and permutation
inference.

12.10 Contingency Tables

12.10.1 2 x 2 Table – Fisher’s Exact Test

The first use of the permutation method was given by Fisher (1934a, Statistical
Methods for Research Workers, fifth edition) in an analysis of 2 	 2 tables. Fisher’s
example was of 13 identical twins and 17 fraternal twins (of the same sex) who had
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at least one of the pair convicted of a crime. Of the 13 identical twins only 3 had a
twin free of conviction. Of the 17 fraternal twins 15 had a twin free of conviction.
Thus the table is as follows,

Both One
Convicted Convicted Total

Identical 10 3 13

Fraternal 2 15 17

Total 12 18 30

To fix notation, a general 2 	 2 table is,

Category Category
1 2 Total

Group 1 N11 N12 N1:

Group 2 N21 N22 N2:

Total N:1 N:2 N

A standard analysis of these data assumes that N11 is binomial .N1:; p1/ and
independent of N21 assumed to be binomial .N2:; p2/. The usual statistic for testing
H0 W p1 D p2 is the pooled Z, the square root of the score statistic found in
Section 3.2.9 (p. 142),

Z D bp1 �bp2
�

ep.1 �ep/
N1:

C ep.1 �ep/
N2:

� 1=2
;

where bp1 D N11=N1:, bp2 D N21=N2:, and ep D N:1=N . To test Ha W p1 > p2, the
standard approach would be to compare Z to z˛ , the 1 � ˛ quantile of the standard
normal.

Instead of this approximate procedure, Fisher noted that conditional on the
margins N:1 and N:2 held fixed in addition to N1: and N2:, that a given table has
hypergeometric probability of .n11; n12; n21; n22/ given by

 

N1:

n11

! 

N2:

n21

!

 

N

N:1

! D N1:ŠN2:ŠN:1ŠN:2Š

N Šn11Šn12Šn21Šn22Š
:

This hypergeometric probability is easily obtained if one thinks about an urn with
N:1 balls of type 1 and N:2 of type 2. If we draw out N1: balls without replacement,
then the above probability is the probability of getting n11 of type 1 and n21 of
type 2.
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One can also think of the above table arising in the two-sample problem where
the data consists of just 1’s and 0’s. Although there are

�

N
N1:

	

permutations of interest,
many of them yield the same table. The numerator of the above hypergeometric
probability just gives the number of permutations which lead a given table.

Now a variety of statistics can be used to order the possible tables from
supporting H0 to strongly rejecting H0 and to calculate a p-value. Or one can just
use intuition for the ordering: most people would agree that for testingHa W p1 >p2,
the table below is more extreme than the original.

Category Category
1 2 Total

Group 1 N11 C 1 N12 � 1 N1:

Group 2 N21 � 1 N22 C 1 N2:

Total N:1 N:2 N

Thus, a one-tailed p-value would be obtained by summing up the hypergeometric
probabilities of those tables as extreme or more extreme than the original table
.N11;N12;N21;N22/. A number of seemingly different ways of ordering the tables
lead to the same definition of “more extreme” and are called Fisher’s Exact Test.
The simplest way to order is either the intuitive notion above or to order via the
pooled Z statistic.

For the twins data, Fisher noted that the two more extreme tables haveN11 D 11,
N12 D 2, N21 D 1, N22 D 16 and N11 D 12, N12 D 1, N21 D 0, N22 D 17. Thus
the p-value is the probability of the original table plus the probability of these two
more extreme tables:

13Š17Š12Š18Š

30Š

�

1

10Š3Š2Š15Š
C 1

11Š2Š1Š16Š
C 1

12Š1Š0Š17Š

�

D 619

1330665
D :000465:

The definition of a two-sided p-value is not so clear, but the usual practice is to
add in the probabilities of tables as extreme or more extreme in the other direction
(having probabilities less than or equal to the probability of the observed table). In
the above example we would need to add the probabilities of tables with N11 D 0,
N12 D 13, N21 D 12, b22 D 5 and N11 D 1, N12 D 12, N21 D 11, N22 D 6 but
not N11 D 2, N12 D 11, N21 D 10, N22 D 7 since it has higher probability than the
original table.

When accompanied by a randomization rule to yield exact ˛ levels, Fisher’s
Exact Test is uniformly most powerful unbiased as discussed in Lehmann (1986,
Ch. 4). But many people have noted how conservative it is when p-values are used
with the rule: reject H0 when p-value � ˛. In this case the discreteness of the
permutation distribution does prove costly in terms of power.

Barnard (1945, 1947), Boschloo (1970), and Suissa and Shuster (1985) proposed
unconditional tests in the 2 x 2 table that are typically more powerful than the
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Fisher Exact Test without randomization. See Berger (1996) for details and power
comparisons.

We have given Fisher’s Exact Test in the context of two independent binomials
and H0 W p1 D p2: It also applies in the context of multinomial data where the data
consists of a pair of binary variables .X; Y / with values x1 and x2 and y1 and y2,
respectively:

Y

y1 y2 Total

X x1 N11 N12 N1:

x2 N21 N22 N2:

Total N:1 N:2 N

The entries .N11;N12;N21;N22/ are multinomial(N Ip11; p12; p21; p22/ with associ-
ated parameters

Y

y1 y2 Total

X x1 p11 p12 p1:

x2 p21 p22 p2:

Total p:1 p:2 1

In this paired variable context, the null hypothesis for Fisher’s Exact Test is
independence of X and Y ,

H0 W pij D pi:p:j ; i D 1; 2I j D 1; 2: (12.53)

Of course, if p11 D p1:p:1, then all the other equalities such as p12 D p1:2p:2 hold
as well.

12.10.2 Paired Binary Data – McNemar’s Test

In the context of paired binary data introduced in the last section, we might expect
association between X and Y , but our main interest could be in their marginal
probabilities. In particular, the null hypothesis is often

H0 W p1: D p:1: (12.54)

A typical application is in matched pair studies such as the following well-known
case-control data from Miller (1980),
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Sibling (Control)
Tons. No Tons. Total

Hodgkin’s Tons. 26 15 41

Patient No Tons. 7 37 44

Total 33 52 85

where Hodgkin’s patients were paired with a sibling and it was determined
whether they each had a tonsillectomy or not. If the marginal estimates bp1: D
N1:=N D 41=85 and bp:1 D N:1=N D 33=85 differ significantly, then incidence
of tonsillectomies may be associated with contracting Hodgkin’s disease. Noting
that bp1: �bp:1 D N12=N � N21=N has multinomial variance fp12 C p21 � .p12 �
p21/

2g=N D .p12 C p21/=N underH0, the score statistic is

Z D N12 �N21

.N12 CN21/
1=2
:

Exact inference follows by noting that under (12.54, p. 509), N12jN12 C N21
has a binomial.N12 C N21; 1=2/ distribution. Thus, Z D 1:71 has approximate
normal one-sided p-value D :044; but P.binomial.22; 1=2/ � 15/ D :067. These
procedures are generally referred to as McNemar’s test.

What do these tests have to do with permutation and rank statistics? Let X D 1

denote that a Hodgkin’s patient had a tonsillectomy, and X D 0 denote that he/she
did not, and similarly Y D 1 and Y D 0 for the sibling control. Then the paired
data and their differences are

Hodgkin’s Sibling
Pair Patient (Control) Diff.
1 1 1 0
. . . .
. . . .

26 1 1 0
27 1 0 1
. . . .
. . . .

41 1 0 1
42 0 1 �1
. . . .
. . . .

48 0 0 0
49 0 0 0
. . . .
. . . .

85 0 0 0
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Note that there are N12 D 15 positive differences out of N12 C N21 D 22 nonzero
differences. Thus, the exact binomial procedure above is just the sign test for the
differences, and Z is exactly (12.42, p. 495) for a.i/ D 1. In fact, since all the
nonzero absolute differences are identically 1, the exact signed rank test (assuming
zeroes are deleted) yields the same binomial procedure, andZ is also (12.42, p. 495)
with a.i/ D i .

12.10.3 I by J Tables

We now consider the general I by J contingency table

Y

y1 . . . yJ Total

x1 N11 . . . N1J N1:
. . . . . . .

X . . . . . . .
. . . . . . .
xI NI1 . . . NIJ NJ:

Total N:1 . . . N:J N

The distribution of these data could be a full multinomial with IJ cells or I
independent rows of multinomial data. In either case, exact permutation analysis
is achieved by conditioning on the marginal totals resulting in a multiple hyper-
geometric for the joint distribution of the entries Nij having probability P.Nij D
nij ; i D 1; : : : ; I I j D 1; : : : ; J j N1:; : : : ; NI:; N:1; : : : ; N:J / given by

 

I
Y

iD1
Ni:Š

!

0

@

J
Y

jD1
N:j Š

1

A

NŠ

I
Y

iD1

J
Y

jD1
nij Š

:

The question remains as to what statistic should be used. If both X and Y have
nominal categories, then the chi-squared goodness-of-fit statistic is natural, but not
very interesting. IfX and Y have numerical scores or are at least ordered, then some
type of association or correlation statistic should be used. For example, one might
use Pearson’s r or Spearman’s rank correlation. If X has nominal categories and
Y has numerical categories, then ANOVA type comparisons among the row means
makes sense. If X has nominal categories and Y has ordered categories, then the
Kruskal-Wallis test might be a good choice of statistic. Moreover, all these situations
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can be generalized to multi-way tables, say I by J by K tables, usually viewed as
stratified comparisons of X and Y .

All these options for statistics in two-way and multiway tables come under the
general purview of Generalized Cochran-Mantel-Haenszel statistics. Expositions
of these statistics may be found in Landis et al. (1978) and Agresti (2002, Section
7.5.3) and implementation is found in SAS PROC FREQ.

12.11 Confidence Intervals and R-Estimators

Confidence intervals can be obtained from permutation and rank test statistics in
the same way as for other types of statistics: choose values of � appearing in a null
hypothesis such that the statistic T .�/ viewed as a function of � does not reject the
null hypothesis (see 3.19, p. 144). We often refer to this approach as “inverting a test
statistic.” For example, in the one-sample problem with data D1; : : : ;Dn assumed
to be symmetrically distributed about �0, a two-sided permutation t test could just as
well be based on T .�0/ D jPn

iD1.Di � �0/j. The permutation distribution depends
on the 2n sign change configurations ofDi � �0; : : : ;Dn � �0; we reject if T .�0/ is
larger than the largest ˛ of the 2n values of T .�0/ computed on those permutations.
So the 1 � ˛ confidence interval can be found by trial and error, but it would seem
to be a pretty laborious task because the permutation distribution changes with each
�0. A somewhat easier computing method is suggested in Lehmann (1986, p. 263),
but in general, the usual t interval is close enough to the permutation interval that it
is mostly used in practice.

Inverting the signed rank statistic W C leads to an interval ŒW.k1/;W.k2/�, where
W.1/ � W.2/ � � � � W.n.nC1/=2/ are the ordered values of the Walsh averages

Wij D Di CDj

2
; 1 � i � j � n: (12.55)

The order number k2 is such thatP.W C � k2/ � ˛=2, and k1 D n.nC1/=2C1�k2.
We have specified a closed interval so that the probability of coverage is at least 1�˛
for tied data situations (see Randles and Wolfe, 1979, p. 181-183). For example, at
n D 7 with continuous data and ˛ D :05, P.W C � 26/ D P.W C � 2/ D
:0234, and thus the interval ŒW.3/;W.26/� has exact confidence level 1�:0468 D
:9532: Often k1 and k2 are taken from the normal approximation to the permutation
distribution ofW C. For example, k1 D qC 1 and k2 D n.nC 1/=2� q, where q is
the closest integer to

n.nC 1/

4
� z˛=2

(

1

4

n
X

iD1
R2i

) 1=2

:
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In the n D 7 example above, this latter calculation gives 2.4, and thus q D 2,
k1 D 3, and k2 D 28 � 2 D 26 as before. For the sample �1:11, 2.23, 3.35, 4.67,
5.34, 6.17, 7.44, the interval is ŒW.3/;W.26/� D Œ1:12; 6:39�.

Inverting the sign test leads to an interval of order statistics

.D.k/;D.n�kC1//; 1 � k � n � k C 1:

This interval has exact coverage probability Cn.k/ D 1 � .1=2/n�1Pk�1
iD0

�

n
i

	

for
the population median from any continuous, not necessarily symmetric distribution.
To obtain at least the same coverage for any discrete distribution, we need to again
change to the closed interval ŒD.k/;D.n�kC1/�. An interesting addendum to these
intervals due to Guilbaud (1979) is that the average of two such intervals,

�

D.k/ CD.kCt /
2

;
D.n�k�tC1/ CD.n�kC1/

2

�

; k C t � n � k � t C 1;

has guaranteed coverage fCn.k/ C Cn.k C t/g=2 for any distribution. This latter
interval is useful for small n because it give more options for the confidence level
than given byCn.k/ alone. A more practical solution is given byHettmansperger and
Sheather (1986), who interpolate between adjacent order statistics to get an interval
with approximately the specified confidence, say 95%. The intervals are no longer
distribution-free, but the confidence is close to the specified value.

Moving to the two-sample problem, the permutation interval based on the two-
sample t is hard to compute, similar to the one-sample interval, and the usual t
interval is mostly used in practice. Inversion of the Wilcoxon Rank Sum statistic for
the shift model G.x/ D F.x � 	/ leads to a confidence interval for 	 of the form
ŒU.k1/; U.k2/�, where U.1/ � U.2/ � � � � U.mn/ are the ordered values of the pairwise
differences

Uij D Yj �Xi ; i D 1; : : : ; mI j D 1; : : : ; n: (12.56)

Similar to the one-sample case, k2 is chosen so thatP.W � k2Cn.nC1/=2/ D ˛=2

and k1 D mnC1�k2. In practice, one often uses the normal approximation interval
with k1 D q C 1 and k2 D mn � q, where q is the integer closest to

mm

2
� z˛=2 fVar.W /g1=2 ;

where Var.W / is given by (12.10, p. 462) or (12.11, p. 462).
Point estimators obtained from rank test statistics were introduced by Hodges

and Lehmann (1963). These R-estimators inherit some of the natural robustness
properties of rank methods; see, for example Huber (1981) and Serfling (1980,
Ch. 9), Randles and Wolfe (1979, Ch. 7), and Hettmansperger (1984, Ch. 5).
The most well known are: i) the one-sample center of symmetry estimator b� D
medianfWij g, where the Wij are in (12.55, p. 512); and ii) the two-sample shift
estimator b	 D medianfUij g, where the Uij are in (12.56, p. 513). Asymptotic
relative efficiency comparisons for confidence intervals and estimators derived from
rank tests are exactly the same as for the associated rank tests.
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12.12 Appendix – Technical Topics for Rank Tests

12.12.1 Locally Most Powerful Rank Tests

Recall from Section 12.5.1 (p. 474) that for H0 W 	 D 0 versus Ha W 	 > 0, if
there exists a rank test that is uniformly most powerful of level ˛ for some � > 0

in the restricted testing problem H0 W 	 D 0 versus Ha;� W 0 < 	 < �, we say
that the test is the locally most powerful rank test for the original testing problem.
By using a Taylor expansion of the probability of the rank vectorR as a function of
	, Lr.	/ � P	.R D r/, we need only obtain an expression for the derivative of
Lr.	/ and maximize it.

To see this consider the Taylor expansion

Lr.	/ D Lr.0/C L0
r.0/	C o.j	j/;

and a rank test with ˛ D k=N Š based on maximizing L0
r.0/. Let r .1/ be the rank

configuration that makesL0
r.0/ largest among allNŠ rank configurations, r .2/ makes

L0
r.0/ second largest among all NŠ rank configurations, etc. Such a rank test has

power

ˇ.	/ D
k
X

jD1
Lr.j / .	/ D

k
X

jD1

�

1

N Š
C L0

r.j /
.0/	C o.j	j/

�

:

For each rank configuration r .j /, we can choose 	j small enough so that Lr.j / .	/
is also the j th largest amongLr.1/ .	/; : : : ; Lr.N Š/ .	/ for all 0 < 	 < 	j . Now take
� to be smaller than all of the 	j . This shows that for 0 < 	 < �, the power of the
test that places points in the rejection region as ordered by L0

r.0/ also puts points in
the rejection as ordered by P	.R D r/ D Lr.	/; in other words, it is the locally
most powerful rank test.

Let us now consider the two-sample problem where X1; : : : ; Xm are iid with
distribution function F.x/, and Y1; : : : ; Yn are iid with distribution function G.x/.
Suppose that F and G have densities f .x/ and g.x/, respectively, whose support
is contained in that of a density h.x/. This means that h.x/ is positive whenever
f .x/ and g.x/ are positive; for example, when all three densities have support on
.�1;1/. From Theorem 12.6, (p. 515), we have

P.R D r/ D 1

N Š
E

"
Qm
iD1 f .V.ri //

QN
iDmC1 g.V.ri //

Qm
iD1 h.V.ri //

QN
iDmC1 h.V.ri //

#

;

where V.1/ < � � � < V.N/ are the order statistics of an iid sample of sizeN from h.x/.
Shift alternatives have the form g.x/ D f .x �	/ so that the X distribution has

the same shape as the Y distribution but shifted 	 to the right of it. If f .x/ has
support on .�1;1/, then we may take h.x/ D f .x/ and obtain
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P	.R D r/ D 1

N Š
E

"
QN
iDmC1 f .V.ri / �	/
QN
iDmC1 f .V.ri //

#

; (12.57)

where now V.1/ < � � � < V.N/ are order statistics for a random sample from f . Now
suppose that f .x/ is differentiable and that we can take the derivative inside the
expectation in (12.57) . Then,

L0
r.0/ D @

@	
P	.R D r/

ˇ

ˇ

ˇ

ˇ

	D0
D 1

N Š

N
X

iDmC1
E

��f 0.V.ri //
f .V.ri //

�

: (12.58)

The locally most powerful rank test places points in the rejection region according
to large values of this latter expression.

If we let V.1/ < � � � < V.N/ be replaced by F�1.U.1// < � � � < F�1.U.N// where
the U.i/ are uniform order statistics from an iid sample U1; : : : ; UN , then the locally
most powerful rank test rejects for large values of

T D
N
X

iDmC1
a.Ri /;

where a.i/ D E�.U.i/; f /, and �.u; f / D �f 0.F�1.u//=f .F�1.u// is given in
(12.23, p. 475) and called the optimal score function.

12.12.2 Distribution of the Rank Vector under Alternatives

A version of the following result first appeared in Hoeffding (1951).

Theorem 12.6. Suppose thatZ1; : : : ZN are independent continuous random vari-
ables with respective densities f1; : : : ; fN . Let R D .R1; : : : ; RN /

T be the
corresponding rank vector. If h is the density of a continuous random variable whose
support contains the support of each of f1; : : : ; fN , then

P.R D r/ D 1

N Š
E

"
QN
iD1 fi .V.ri //

QN
iD1 h.V.ri //

#

;

where V.1/ < � � � < V.N/ are the order statistics of an iid sample from h.

Proof. Let C D ft W ti has rank ri g. Then by definition

P.R D r/ D
Z

� � �
Z

I.t 2 C/
(

N
Y

iD1
fi .ti /

)

dt1dt2 � � �dtN :
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Now let v.ri / D ti so that v.1/ < � � � < v.N /. On the set C this is just a 1-to-1 change
of variable, but its implications are important. For a given vector t suppose that t1
has rank r1 D 3; that is, t1 is third from the bottom when the components of t are
ranked. Then v.r1/ D v.3/ D t1. If t2 has rank r2 D 9, then v.r2/ D v.9/ D t2. Now we
make the change of variable, and multiply and divide by NŠ

QN
iD1 h.v.ri // to get

P.R D r/ D 1

N Š

Z

� � �
Z

"
QN
iD1 fi .v.ri //

QN
iD1 h.v.ri //

#

I.v.1/ < � � � < v.N //N Š

	
(

N
Y

iD1
h.v.i//

)

dv.1/dv.2/ � � �dv.N /:

The result follows by noticing that I.v.1/ < � � � < v.N //N Š
QN
iD1 h.v.i// is the

density of the order statistic vector from h. �

12.12.3 Pitman Efficiency

Recall from Section (12.5.2, p. 476) that the Pitman asymptotic relative efficiency
of test S to test T is given by

ARE.S; T / D lim
k!1

N 0
k

Nk
;

where Nk and N 0
k are the sample sizes required for the two tests to have the same

limiting level ˛ and power ˇ under the sequence of alternatives

�k D �0 C ıp
Nk

C o

�

1p
Nk

�

as k ! 1: (12.59)

These sequences of alternatives are called Pitman alternatives, and the basic
approach is due to Pitman (1948) and Noether (1955). In the following we have
drawn heavily from the accounts in Lehmann (1975) and Randles and Wolfe (1979).

We assume in Theorem 12.7 below that both test statistics satisfy 1–7 below. For
simplicity we state the conditions for just S and then give a result on asymptotic
power before giving the main theorem.

In the following �Sk .�/ and �Sk .�/ refer to sequences of constants associ-
ated with Sk under � . They might be the means and standard deviations, but
need not be.

1.
�k ! �0 as k ! 1:
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2.
Nk ! 1 as k ! 1:

3. Under � D �0

Sk � �Sk .�0/
�Sk .�0/

d�! N.0; 1/ as k ! 1:

4. Under � D �k
Sk � �Sk .�k/
�Sk .�k/

d�! N.0; 1/ as k ! 1:

5. The derivative �0
Sk
.�/ exists in a neighborhood of � D �0 with �0

Sk
.�0/ > 0 and

�0
Sk
.��
k /

�0
Sk
.�0/

! 1 for all ��
k ! �0 as k ! 1:

6.
�Sk .�k/

�Sk .�0/
! 1 as k ! 1:

7. There exists a positive constant c such that

c D lim
k!1

�0
Sk
.�0/

q

Nk�
2
Sk
.�0/

:

This constant c is called the efficacy of S and denoted eff.S ). Based on these
conditions we first give a result on asymptotic power. The result shows that the
higher the efficacy of a test, the more power it has. The result also gives a way to
approximate the power of a test based on S . Let Z be a standard normal random
variable, and let z˛ be its upper 1 � ˛ quantile.

Theorem 12.7. Suppose that the test that rejects for Sk > ck has level ˛k ! ˛ as
k ! 1 underH0 W � D �0.

a) If Conditions 1–7 and (12.59, p. 516) hold, then

ˇk D P.Sk > ck/ ! P.Z > z˛ � cı/ as k ! 1; (12.60)

where ı is given in (12.59, p. 516).
b) If Conditions 1–7 and (12.60) hold, then (12.24, p. 476) holds.

Proof. Note first that if Condition 3. holds, then since ˛k ! ˛

ck � �Sk .�0/

�Sk .�0/
! z˛ as k ! 1:
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Now P.Sk > ck/ is given by

P

�

Sk � �Sk .�k/

�Sk .�k/
>

�

ck � �Sk .�0/

�Sk .�0/
� �Sk .�k/ � �Sk .�0/

�Sk .�0/

�

�Sk .�0/

�Sk .�k/

�

! P.Z > z˛ � cı/ as k ! 1:

To see this last step, note that by the mean value theorem there exists a ��
k such that

�Sk .�k/� �Sk .�0/

�Sk .�0/
D �0

Sk
.��
k /.�k � �0/

�Sk .�0/

D �0
Sk
.��
k /

�0
Sk
.�0/

�0
Sk
.�0/

q

Nk�
2
Sk
.�0/

p

Nk.�k � �0/ ! cı:

For part b) we just work backwards and note that (12.60) and Conditions 1–7 force
the convergence to cı which means that

p
Nk.�k � �0/ ! ı which is equivalent to

(12.59, p. 516). �
Now we give the main Pitman ARE theorem.

Theorem 12.8. Suppose that the tests that reject for Sk > ck and Tk > c0
k based

on sample sizes Nk and N 0
k , respectively, have levels ˛k and ˛0

k that converge to ˛
under H W � D �0 and their powers under �k both converge to ˇ, ˛ < ˇ < 1. If
conditions 1–7 hold and their efficacies are c Deff(S ) and c0=eff(T ), respectively,
then the Pitman asymptotic relative efficiency of S to T is given by

ARE D
�

eff.S/

eff.T /

� 2

:

Proof. By Theorem 12.7 (p. 517) b), ˇ D P.Z > z˛ � cı/ D P.Z > z˛ � c0ı0/.
Thus cı D c0ı0 and

ARE.S; T / D lim
k!1

N 0
k

Nk

D lim
k!1

 
p

N 0
k.�k � �0/p

Nk.�k � �0/

!2

D
�

ı0

ı

�2

D
� c

c0
�2

:

�

To apply Theorem 12.8 it would appear that we have to verify Conditions 3–6
above for arbitrary subsequences �k converging to �0 and then compute the efficacy
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in 7 for such sequences. However, if Conditions 1–7 and (12.60, p. 517) hold,
we know by Theorem 12.7 (p. 517) that (12.24, p. 476) holds. Thus, we really
only need to assume Condition 2 and verify Conditions 3–6 for alternatives of the
form (12.59, p. 516). Moreover, the efficacy need only be computed for a simple
sequence N converging to 1 since the numerator and denominator in Condition 7
only involve �0.

12.12.4 Pitman ARE for the One-Sample Location Problem

Using the notation of Section 12.8 (p. 491) let D1; : : : ;DN be iid from F.x � �/,
where F.x/ has density f .x/ that is symmetric about 0, f .x/ D f .�x/. Thus Di

has density f .x� �/ that is symmetric about � . The testing problem isH0 W � D �0
versusHa W � D �k, where �k is given by (12.59).

12.12.4a Efficacy for the One-Sample t

The one-sample t statistic is

t D
p
N.D � �0/

s
;

where s is the n � 1 version of the sample standard deviation. The simplest choice
of standardizing constants are

�tk .�k/ D
p
Nk.�k � �0/

�

and �tk .�k/ D 1, where � is the standard deviation of D1 (under both � D �0 and
� D �k). To verify Conditions 3 and 4 (p. 517), we have

tk � �tk .�0/

�tk .�0/
D

p
Nk.D � �0/

s
�

p
Nk.�k � �0/

�

D
p
Nk.D � �k/

�

� s

�

�

C
p

Nk.�k � �0/
�

1

s
� 1

�

�

:

Under both � D �0 and � D �k , s has the same distribution and converges in
probability to � if D has a finite variance. Thus, under � D �k the last term in
the latter display converges to 0 in probability since (12.59) forces

p
Nk.�k � �0/

to converge to ı. Of course under � D �0 this last term is identically 0. The
standardized means converge to standard normals under both � D �0 and � D �k
by Theorem 5.33 (p. 262). Two applications of Slutsky’s Theorem then gives
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Conditions 3 and 4 (p. 517). Since the derivative of �tk .�/ is �0
tk
.�/ D p

Nk=�

for all � , Condition 5 (p. 517) is satisfied. Since �tk .�k/ D 1, Condition 6 (p. 517)
is satisfied. Finally, dividing �0

tk
.�0/ D p

Nk=� by
p
Nk yields

eff.t/ D 1

�
:

It should be pointed out that this efficacy expression also holds true for the
permutation version of the t test because the permutation distribution of the t
statistic also converges to a standard normal under � D �0.

12.12.4b Efficacy for the Sign Test

The sign test statistic is the number of observations above �0,

S D
N
X

iD1
I.Di > �0/:

S has a binomial.N; 1=2) distribution under � D �0 and a binomial.N; 1�F.�0��//
distribution under general � . Let �Sk .�/ D NŒ1� F.�0 � �/� and �2Sk .�/ D NŒ1�
F.�0 � �/�F.�0 � �/. Conditions 3. and 4. (p. 517) follow again by Theorem 5.33
(p. 262), and �0

Sk
.�/ D Nf.�0 � �/. Since F is continuous, Condition 6 (p. 517)is

satisfied, and if f is continuous, then Condition 5 (p. 517) is satisfied, and the
efficacy is

eff.S/ D lim
N!1

Nf.0/
p

N2=4
D 2f .0/:

Now we are able to compute the Pitman ARE of the sign test to the t test:

ARE.S; t/ D 4�2f 2.0/:

Table 12.4 (p. 496) gives values of ARE.S; t/ for some standard distributions.

12.12.4c Efficacy for the Wilcoxon Signed Rank Test

Recall that the signed rank statistic is

W C D
N
X

iD1
I.Di > �0/R

C
i ;
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whereRC
i is the rank of jDi � �0j among jD1 � �0j; : : : ; jDN � �0j. The asymptotic

distribution of W C under �k requires more theory than we have developed so far,
but Olshen (1967) showed that the efficacy of W C is

p
12

Z 1

�1
f 2.x/dx

under the condition that
R1

�1 f 2.x/dx < 1. Thus the Pitman asymptotic relative
efficiency of the sign test to the Wilcoxon Signed Rank test is

ARE.S;W C/ D f 2.0/

3
�R1

�1 f 2.x/dx
	2
:

Similarly, the Pitman asymptotic relative efficiency of the Wilcoxon Signed Rank
test to the t test is

ARE.W C; t/ D 12�2
�Z 1

�1
f 2.x/dx

�2

:

Table 12.4 (p. 496) displays these AREs for a number of distributions.

12.12.4d Power approximations for the One-Sample Location problem

Theorem 12.7 (p. 517) gives the asymptotic power approximation

P.Z > z˛ � cı/ D 1 �˚
�

z˛ � c
p
N.� � �0/

�

based on setting ı D p
N.� � �0/ in (12.60, p. 517), where � is the alternative of

interest at sample size N .
For example, let us first consider the t statistic with c D 1=� and �0 D 0. The

power approximation is then

1 �˚
�

z˛ � p
N�=�

�

:

This is the exact power we get for the Z statistic
p
N.X � �0/=� when we know �

instead of estimating it. At �=� D :2 and N D 10, we get power 0.16, which may
be compared with the estimated exact power taken from the first four distributions
in Randles and Wolfe (1979, p. 116): .14, .15, .16, .17. These latter estimates were
based on 5000 simulations and have standard deviation around .005. At �=� D
:4 and N D 10, the approximate power is 0.35, and the estimated exact powers
for those first four distributions in Randles and Wolfe (1979, p. 116) are .29, .33,
.35, and .37, respectively. So here our asymptotic approximation may be viewed as
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substituting a Z for the t , and the approximation is quite good. Of course, for the
normal distribution we could easily have used the noncentral t distribution to get the
exact power.

For the sign test, the approximation is

1 � ˚
�

z˛ � p
N2f .0/�

�

D 1 � ˚
�

z˛ � p
N2f0.0/�=�

�

;

where we have put f in the form of a location-scale model f .x/ D f0..x �
�/=�/=� , where f0.x/ has standard deviation 1, and thus � is the standard deviation.
For the uniform distribution, f0.x/ D I.�p

3 < x <
p
3/=

p
12, so that 2f0.0/ D

2=
p
12. The approximate power at �=� D :2; :4; :6; :8 and N D 10 is then .10,

.18, .29, .43, respectively. The corresponding Randles and Wolfe (1979, p. 116)
estimates are .10, .19, .30, and .45, respectively. Here of course we could calculate
the power exactly using the binomial. The approximate power we have used is
similar to the normal approximation to the binomial but not the same because our
approximation has replaced the difference of p D F.0/ D 1=2 and p D F.�/ by a
derivative times � (Taylor expansion) and also used the null variance. It is perhaps
surprising how good the approximation is.

The most interesting case is the signed rank statistic because we do not have any
standard way of calculating the power. The approximate power for an alternative �
when �0 D 0 is

P.Z > z˛ � cı/ D 1 � ˚

�

z˛ � �
p
12N

Z 1

�1
f 2.x/dx

�

D 1 � ˚

�

z˛ � �

�

p
12N

Z 1

�1
f 2
0 .x/dx

�

:

Here again in the second part we have substituted so that � is the standard deviation
of f .x/. For example, at the standard normal

R1
�1 f 2

0 .x/dx D 1=
p
4� , and the

approximate power is

1 �˚
 

z˛ �
r

3N

�

�

�

!

:

Plugging in �=� = .2, .4, .6, and .8 at N D 10, we obtain .15, .34, .58, and .80,
respectively. The estimates of the exact powers from Randles and Wolfe (1979,
p. 116) are .14, .32, .53, and .74. Thus the asymptotic approximation is a bit too
high, especially at the larger �=� values.

Although the approximation is a little high, it could easily be used for planning
purposes. For example, suppose that a clinical trial is to be run with power D :80

at the ˛ D :05 level against alternatives expected to be around �=� D :5. Since the
FDA requires two-sided procedures, we use z:025 D 1:96 and solve ˚�1.1 � :8/ D
1:96�p

3N=�.:5/ to get

N D
�

1:96� ˚�1.:2/
:5

�2
�

3
D 32:9:
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Notice that if we invert the Z statistic power formula used above for approximating
the power of the t statistic, the only difference from the last display is that the factor
�=3 does not appear. Thus for the t the calculations result in 31.4 observations. Of
course this ratio 3=� D 31:4=32:9 is just the ARE efficiency of the signed rank test
to the t test at the normal distribution.

12.13 Problems

12.1. For the permutations in Table 12.1 (p. 453), give the permutation distribution
of the Wilcoxon Rank Sum statistic W .

12.2. For the two-sample problem with samples X1; : : : ; Xm and Y1; : : : ; Yn, show
that the permutation test based on

Pn
iD1 Yi is equivalent to the permutation tests

based on
Pm

iD1 Xi ,
Pn

iD1 Yi �Pm
iD1 Xi , and Y � X .

12.3. A one-way ANOVA situation with k D 3 groups and two observations within
each group (n1 D n2 D n3 D 2) results in the following data. Group 1: 37, 24;
Group 2: 12, 15; Group 3: 9, 16. The ANOVA F D 5:41 results in a p-value of
.101 from the F table. If we exchange the 15 in Group 2 for the 9 in Group 3, then
F D 7:26.

a. What are the total number of ways of grouping the data that are relevant to testing
that the means are equal?

b. Without resorting to the computer, give reasons why the permutation p-value
using the F statistic is 2/15.

12.4. In a one-sided testing problem with continuous test statistic T , the p-value is
either FH .Tobs./ or 1 � FH.Tobs./ depending on the direction of the hypotheses,
where FH is the distribution function of T under the null hypothesisH , and Tobs.
is the observed value of the test statistic. In either case, under the null hypothesis
the p-value is a uniform random variable as seen from the probability integral
transformation. Now consider the case where T has a discrete distribution with
values t1; : : : ; tk and probabilities P.T D ti / D pi ; i D 1; : : : ; k under the null
hypothesis H0. If we are rejecting H0 for small values of T , then the p-value
is p D P.T � Tobs./ D p1 C � � � C P.T D Tobs./, and the mid-p value is
p � .1=2/P.T D Tobs./. Under the null hypothesis H0, show that E(mid-p)=1/2
and thus that the expected value of the usual p-value must be greater than 1/2 (and
thus greater than the expected value of the p-value in continuous cases).

12.5. Consider a finite population of values a1; : : : ; aN and a set of constants
c1; : : : ; cN . We select a random permutation of the a values, call them A1; : : : ; AN ,
and form the statistic

T D
N
X

iD1
ciAi :
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The purpose of this problem is to derive the first two permutation moments T
given in Section 12.4.2 (p. 458).

a. First show that

P.Ai D as/ D 1

N
for s D 1; : : : ; N;

and

P.Ai D as; Aj D at / D 1

N.N � 1/ for s ¤ t D 1; : : : ; N:

(Hint: for the first result there are .N � 1/Š permutations with as in the i th slot
out of a total of NŠ equally likely permutations.)

b. Using a. show that

E.Ai / D 1

N

N
X

iD1
ai � a; Var.Ai / D 1

N

N
X

iD1
.ai � a/2; for i D 1; : : : ; N;

and

Cov.Ai ; Aj / D �1
N.N � 1/

N
X

iD1
.ai � a/2; for i ¤ j D 1; : : : ; N:

c. Now use b. to show that

E.T / D Nc a and Var.T / D 1

N � 1

N
X

iD1
.ci � c/2

N
X

jD1
.aj � a/2;

where a and c are the averages of the a’s and c’s, respectively.

12.6. As an application of the previous problem, consider the Wilcoxon Rank Sum
statisticW = sum of the ranks of the Y ’s in a two-sample problem where we assume
continuous distributions so that there are no ties. The c values are 1 for i D m C
1; : : : ; N D mCn and 0 otherwise. With no ties the a’s are just the integers 1; : : : ; N
corresponding to the ranks. Show that

E.W / D n.mC nC 1/

2

and

Var.W / D mn.mC nC 1/

12
:
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12.7. In Section 12.4.4 (p. 461), the integral

P.X1 < X2/ D E fI.X1 < X2/g D
Z Z

I.x1 < x2/ dF.x1/ dF.x2/

D
Z

F.x/ dF.x/

arises, where X1 and X2 are independent with distribution function F . If F is
continuous, argue that P.X1 < X2/ D 1=2 sinceX1 < X2 andX1 > X2 are equally
likely. Also use iterated expectations and the probability integral transformations to
get the same result. Finally, let u D F.x/ in the final integral to get the result.

12.8. Suppose that X and Y represent some measurement that signals the presence
of disease via a threshold to be used in screening for the disease. Assume that Y
has distribution function G.y/ and represents a diseased population, and X has
distribution functionF.x/ and represents a disease-free population. A “positive” for
a disease-free subject is declared ifX > c and has probability 1�F.c/, where F.c/
is called the specificity of the screening test. A “positive” for a diseased subject is
declared if Y > c and has probability 1�G.c/, called the sensitivity of the test. The
receiver operating characteristic (ROC) curve is a plot of 1�G.ci/ versus 1�F.ci /
for a sequence of thresholds c1; : : : ; ck . Instead of a discrete set of points, we may
let t D 1 � F.c/, solve to get c D F�1.1 � t/, and plug into 1 � G.c/ to get the
ROC curve R.t/ D 1 �G.F�1.1� t//. Show that

Z 1

0

R.t/ dt D
Z

f1�G.u/g dF.u/D �XY

for continuous F and G.

12.9. Use the asymptotic normality result forb�XY to derive (12.15, p. 464).

12.10. Use (12.15, p. 464) to prove that the power of the Wilcoxon Rank Sum Test
goes to 1 as m and n go to 1 and m=N converges to a number  between 0 and 1.
You may assume that the F and G are continuous.

12.11. Use (12.15, p. 464) to derive (12.16, p. 464).

12.12. Suppose thatb�XY is .7 and m D n. How large should m D n be in order to
have approximately 80% power at ˛ D :05 with the Wilcoxon Rank Sum Test?

12.13. Suppose that two normal populations with the same standard deviation �
differ in means by 	=� D :7. How large should m D n be in order to have
approximately 80% power at ˛ D :05 with the Wilcoxon Rank Sum Test?

12.14. The number of permutations needed to carry out a permutation test can
be computationally overwhelming. Thus the typical use of a permutation test
involves estimating the true permutationp-value by randomly selectingB D 1; 000,
B D 10; 000, or even more of the possible permutations. If we use sampling
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with replacement, then Bbp has a binomial distribution with the true p-value p
being the probability in the binomial. Consider the following situation where an
approach of questionable ethics is under consideration. A company has just run
a clinical trial comparing a placebo to a new drug that they want to market, but
unfortunately the estimated p-value based on B D 1000 shows a p-value of around
bp D :10. Everybody is upset because they “know” the drug is good. One clever
doctor suggests that they run the simulation of B D 1000 over and over again until
they get a bp less than .05. Are they likely to find a run for which bp is less than .05
if the true p-value is p D :10? Use the following calculation based on k separate
(independent) runs resulting inbp1; : : : ;bpk :

P. min
1�i�kbpi � :05/ D 1 � P. min

1�i�kbpi > :05/

D 1 � Œ1 � P.bp1 � :05/�k

D 1 � Œ1 � P.Bin(1000,.1) � 50/�k:

Plug in some values of k to find out how large k would need to be to get abp under
.05 with reasonably high probability.

12.15. The above problem is for given data, and we were trying to estimate the true
permutation p-value conditional on the data set and therefore conditional on the set
of test statistics computed for every possible permutation. In the present problem
we want to think in terms of the overall unconditional probability distribution of
Bbp where we have two stages: first the data is generated and then we randomly
select T �

1 ; : : : ; T
�
B from the set of permutations. The calculation of importance for

justifying Monte Carlo tests is the unconditional probability P.bp � ˛/ D P.Bbp �
B˛/ that takes both stages into account.

a. First we consider a simpler problem. Suppose that we get some data that seems
to be normally distributed and decide to compute a t statistic, call it T0. Then
we discover that we have lost our t tables, but fortunately we have a computer.
Thus we can generate normal data and compute T �

1 ; : : : ; T
�
B for each of B

independent data sets. In this case T0; T �
1 ; : : : ; T

�
B are iid from a continuous

distribution so that there are no ties among them with probability one. Let
bp D PB

iD1 I.T �
i � T0/=B and prove that Bbp has a discrete uniform distribution

on the integers .0; 1; : : : ; B C 1/. (Hint: just use the argument that each ordering
has equal probability 1=..B C 1/Š/. For example, Bbp D 0 occurs when T0 is the
largest value. How many orderings have T0 as the largest value?)

b. The above result also holds if T0; T �
1 ; : : : ; T

�
B have no ties and are merely

exchangeable. However, if we are sampling T �
1 ; : : : ; T

�
B with replacement from a

finite set of permutations, then ties occur with probability greater than one. Think
of a way to randomly break ties so that we can get the same discrete uniform
distribution.

c. Assuming that Bbp has a discrete uniform distribution on the integers .0; 1; : : : ;
B/, show that P.bp � ˛/ D ˛ as long as .B C 1/˛ is an integer.
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12.16. From (12.20, p. 469), d D :933 for the Wilcoxon Rank Sum statistic for
m D 10 and n D 6 and assuming no ties. This corresponds to Z being the integers
1 to 16. For no ties and W D 67, the exact p-value for a one-sided test is .0467.
Show that the normal approximation p-value is .0413 and the Box-Andersen p-
value is .0426. Also find the Box-Andersen p-values using the approximations d D
1C .1:8 � 3/=.mC n/ and d D 1.

12.17. Show that the result “Q=.k� 1/ of (12.31, p. 482) is ANf1; 2.n� 1/=.kn/g
as k ! 1 with n fixed” follows from (12.32, p. 483) and writing

p
k

�

Q

k � 1 � nFR

n � 1C FR

�

D
p
kf.N � 1/=.k � 1/� ngFR

.n � 1/
�

k

k � 1

�

C FR

C
p
k.nFR/

0

B

B

@

1

.n � 1/

�

k

k � 1
�

C FR

� 1

n � 1C FR

1

C

C

A

:

Then show that each of the above two pieces converges to 0 in probability and use
the delta theorem on nFR=.n� 1C FR/. (Keep in mind that n is a fixed constant.)

12.18. Justify the statement: “use of FR with an F.k � 1;N � k/ reference
distribution is supported by (12.32, p. 483) under k ! 1 and by the usual

asymptotics .k � 1/FR
d�! �2k�1 when n ! 1 with k fixed.” Hint: for the k ! 1

asymptotics, write an F.k � 1;N � k/ random variable as an average of k � 1

�21 random variables divided by an independent average of k.n � 1/ �21 random
variables. Then subtract 1, multiply by

p
k and use the Central Limit Theorem and

Slutsky’s Theorem.

12.19. From Section 12.8.1 (p. 492), show that for T D Pn
iD1 cidi , E.T 4/ D

3.
Pn

iD1 d 2i /2 � 2
Pn

iD1 d 4i . (Hint: first show that

�
X

cidi

�4 D
X

c4i d
4
i C 6

X

i<j

c2i d
2
i c

2
j d

2
j

plus sums of odd moments.)

12.20. Verify (12.39, p. 493) and (12.40, p. 493) for the Box-Andersen approxima-
tion in the matched pairs problem.

12.21. Using results in Section 12.4.2 (p. 458), show that EfR:j g D .k C 1/=2,
VarfR:j g D .k2 � 1/=.12n/, and CovfR:j ; R:mg D �.k2 � 1/=f12n.k� 1/g, where
Ri1; : : : Rik are Friedman ranks in the i th block randomly assigned to the integers 1
to k and independent of the ranks in the other blocks. Putting these results together,
the covariance matrix ofR D .R:1; : : : ; R:k/

T is fk.kC 1/=.12n/gCk, where Ck D
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diag
�

Ik � 1k 1Tk
k

�

. Using the fact that Ck is idempotent, find a generalized inverse

of the covariance matrix of R, call it G, and show that (12.45, p. 501) is given by

R
T
GR.

12.22. Similar to Problem 12.18, explain why asymptotic normality of the Fried-
man statistic (12.45, p. 501) supports use of the F in (12.44, p. 500) on the within
row Friedman ranks with an F.k � 1; .k � 1/.n� 1// reference distribution.

12.23. From Section 12.9.4 (p. 503) verify the permutation moments in (12.49,
p. 504) and (12.50, p. 504). Use results from Section 12.4.2 (p. 458) under the
assumption that permutations are independently carried out within rows.

12.24. From Section 12.10.1 (p. 506) consider the two independent binomial testing
problem wherem D 12 .N11 CN12/ for Group 1 and n D 4 (N21 CN22/ for Group
2, and we want to test H0 W p1 D p2 versusHa W p1 < p2, where p1 and p2 are the
respective probabilities of falling in Category 1. Suppose that T D 4 (N11CN21/ is
observed. Write down the conditional probability distribution ofN11jT D 4 (just the
hypergeometric probabilities for n11 D 0; 1; 2; 3; 4). Also, letting each of 0; 1; 2; 3; 4
be considered observed values for N11, list:

a. the Fisher Exact p-values
b. the Fisher Exact mid-p values.

12.25. For a multinomial vector .N11;N12;N21;N22/,N11CN12CN21CN22 D N ,
with associated probabilities .p11; p12; p21; p22/, show that the variance ofN12�N21
is N fp12 C p21 � .p12 � p21/2g.

12.26. Show that (12.58, p. 515) follows from (12.57, p. 515) if the derivative can
be taken inside the expectation.

12.27. Show why ˛k ! ˛ and Condition 3. (p. 517) imply that

ck � �Sk .�0/

�Sk .�0/
! z˛ as k ! 1:

(Hint: it helps to use Pólya’s result on uniform convergence, Theorem 5.6, p. 222.)

12.28. Verify that Theorem 5.33 (p. 262) applies to X when X�
1 ; : : : ; X

�
Nk

are iid
from F.x/ having mean 0 and finite variance �2, and Xi D X�

i C ı=
p
Nk; i D

1; : : : ; Nk .

12.29. Verify that Theorem 5.33 (p. 262) applies to S D PN
iD1 I.Xi > 0 when

X�
1 ; : : : ; X

�
Nk

are iid from F.x/ having median 0 and Xi D X�
i C ı=

p
Nk; i D

1; : : : ; Nk .

12.30. The data are Y1; : : : ; Yn iid with median � . For H0 W � D 0 versus
Ha W � > 0, use the normal approximation to the binomial distribution to
find a power approximation for the sign test and compare to the expression
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1 � ˚
�

z˛ � p
N2f .0/�a

�

derived from Theorem 12.7 (p. 517), where �a is an

alternative. Where are the differences?

12.31. For the Wilcoxon Signed Rank statistic, calculate an approximation to the
power of a :05 level test for a sample of size N D 20 from the Laplace distribution
with a shift of .6 in standard deviation units. Compare with the simulation estimate
.63 from Randles and Wolfe (1979, p.116).

12.32. Consider the two-sample problem where X1; : : : ; Xm and Y1; : : : ; Yn are iid
from F.x/ under H0, but the Y ’s are shifted to the right by 	k D ı=

p
Nk under

a sequence of the Pitman alternatives. Verify Conditions 3.-6 (p. 517), making any
assumptions necessary and show that the efficacy of the two-sample t test is given
by eff.t/ D p

.1� /=� , where � is the standard deviation of F .

12.33. Consider a variable having a Likert scale with possible answers 1,2,3,4,5.
Suppose that we are thinking of a situation where the treatment group has answers
that tend to be spread toward 1 or 5 and away from the middle. Can we design a rank
test to handle this? Here is one formulation. For the two-sample problem suppose
that the base density is a beta density of the following form:

� .2.1� �//
� .1� �/� .1 � �/x

�� .1 � x/�� ; 0 < x < 1; � < 1:

A sketch of this density shows that it spreads towards the ends as � gets large.
Using the LMPRT theory, find the optimal score function for H0 W � D �0 versus
Ha W � > �0, where 0 � �0 < 1. At �0 D 0, the score function simplifies to
�.u/ D �2 � logŒu.1 � u/�. Sketch this score function and comment on whether a
linear rank statistic of the form S D Pm

iD1 �.Ri=.N C 1// makes sense here.

12.34. For the two-sample problem with G.x/ D .1 � 	/F.x/ C 	F 2.x/ and
H0 W 	 D 0 versus Ha W 	 > 0, show that the Wilcoxon Rank Sum test is the
locally most powerful rank test. (You may take h.x/ D f .x/ in the expression for
P.R D r/.)

12.35. In some two-sample situations (treatment and control), only a small propor-
tion of the treatment group responds to the treatment. Johnson et al. (1987) were
motivated by data on sister chromatid exchanges in the chromosomes of smokers
where only a small number of units are affected by a treatment, that is, where the
treatment group seemed to have a small but higher proportion of large values than
the control group. For this two-sample problem, they proposed a mixture alternative,

G.x/ D .1 �	/F.x/C	K.x/;

where K.x/ is stochastically larger than F.x/, i.e., K.x/ � F.x/ for all x,
and 	 refers to the proportion of responders. For H0 W 	 D 0 versus Ha W
	 > 0, verify that the locally most powerful rank test has optimal score function
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k.F �1.u//=f .F�1.u// � 1. Let F.x/ and K.x/ be normal distribution functions
with means �1 and �2, respectively, �2 > �1, and variance �2. Show that the
optimal score function is

�.u/ D exp.�ı2=2/ exp.ı˚�1.u//� 1; (12.61)

where ı D .�2 � �1/=� .

12.36. Related to the previous problem, Johnson et al. (1987) give the following
example data:

X: 9 9 10 10 14 14 14 15 16 20
Y: 6 10 13 15 18 21 22 23 30 37

By sampling from the permutation distribution of the linear rank statistic
PmCn

iDmC1 �.Ri=.mC nC 1// with score function in (12.61), estimate the one-sided
permutation p-values with ı D 1 and ı D 2. For comparison, also give one-sided
p-values for the Wilcoxon rank sum (exact) and pooled t-tests (from t table).

12.37. Similar in motivation to problem 12.35 (p. 529), Conover and Salsburg
(1988) proposed the mixture alternative

G.x/ D .1 �	/F.x/C	 fF.x/ga :

Note that fF.x/ga is the distribution function of the maximum of a random variables
with distribution function F.x/. For H0 W 	 D 0 versusHa W 	 > 0, verify that the
locally most powerful rank test has optimal score function ua�1.

12.38. For the data in Problem 12.36 (p. 530), by sampling from the permutation
distribution of the linear rank statistic

PmCn
iDmC1 �.Ri=.m C n C 1// with score

function �.u/ D ua�1, estimate the one-sided permutation p-value with a D 5.
For comparison, also give one-sided p-values for the Wilcoxon rank sum (exact)
and pooled t-tests (from t table).

12.39. Conover and Salsburg (1988) gave the following example data set on
changes from baseline of serum glutamic oxaloacetic transaminase (SGOT):

X: -50 -17 -10 -3 4 7 8 12 26 37
Y: -116 -56 20 24 29 29 35 35 37 41

Plot the data and decide what type of test should be used to detect larger values in
some or all of the Y ’s. Then, give the one-sided p-value for that test and for one
other possible test.

12.40. Use perm.sign to get the exact one-sided p-value 0.044 for the data give
in Example 12.2 (p. 498). Then by trial and error get an exact confidence interval
for the center of the distribution with coverage at least 90%. Also give the exact
confidence interval for the median based on the order statistics with coverage at
least 90%.



Appendix A
Derivative Notation and Formulas

A.1 Notation

Suppose that x D .x1; : : : ; xk/
T is a k 	 1 column vector and g is a scalar-valued

function of x. That is, g W Rk ! R1. Then the derivative of g with respect to x is
the 1	k row vector of partial derivatives denoted by any of the following equivalent
expressions:

g0.x/ D @g

@x
D
�

@g

@x1
; : : : ;

@g

@xk

�

: (A.1)

Accordingly, the transpose of this vector is denoted

g0.x/T D
�

@g

@x

�T

D @g

@xT
D

0

B

B

B

B

@

@g

@x1
:::
@g

@xk

1

C

C

C

C

A

: (A.2)

We often have need for the matrix of mixed, partial second derivatives denoted
as follows:

g00.x/ D @

@x

�

@g

@xT

�

D @2g

@x@xT
D

0

B

B

B

B

B

@

@2g

@2x1

@2g

@x2@x1
� � � @2g

@xk@x1
:::

@2g

@2x1@xk

@2g

@2x2@xk
� � � @2g

@2xk

1

C

C

C

C

C

A

D
�

@2g

@xj @xi

�

iD1;:::;k; jD1;:::;k
: (A.3)
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In this book we encounter only functions g for which

@2g

@xj @xi
D @2g

@xi@xj
; for all i and j:

In this case the matrices in (A.3) are symmetric, and thus, it is also true that

g00.x/ D
�

@2g

@xi @xj

�

iD1;:::;k; jD1;:::;k
:

The two rightmost expressions in (A.3) are special cases of the notation for the
derivative of a vector-valued function of a vector argument. Suppose now that h D
.h1; : : : ; hs/

T is an s	1 column vector-valued function of x. That is, h W Rk ! Rs .
Then the derivative of h with respect to x is the s 	 k matrix of partial derivatives
denoted as follows:

h0.x/ D @h

@x
D

0

B

B

B

B

@

@h1

@x1

@h1

@x2
� � � @h1

@xk
:::

:::
:::

@hs

@x1

@hs

@x2
� � � @hs

@xk

1

C

C

C

C

A

D
�

@hi

@xj

�

iD1;:::;s; jD1;:::;k
: (A.4)

A.2 Definition and Taylor Approximations

Suppose now that h W Rk ! Rs . Regardless of the dimensions k and s, the
derivative of h at a particular point x0 provides a linear approximation to h.x/
for x close to x0. The linear approximation has the form

h.x/
„ƒ‚…

s�1
� h.x0/
„ƒ‚…

s�1
Ch0.x0/
„ƒ‚…

s�k
.x � x0/
„ ƒ‚ …

k�1
(A.5)

and is best in the sense that the derivative h0 has the defining property

lim
ı!0

jjh.x C ı/ � ˚

h.x/C h0.x/ı

 jj

jjıjj D 0; (A.6)

where jj � jj is the usual Euclidean norm, jjvn�1jj D �

vT v
	1=2

. The relevant
vector and matrix dimensions in (A.5) are included for clarity and to point out
that remembering the form of the linear approximation in (A.5) makes it easy to
remember the dimensions of h0 for arbitrary h in (A.4).



Appendix A Derivative Notation and Formulas 533

Occasionally, a second-order Taylor approximation is required, usually only
when s D 1, that is, h W Rk ! R1. In this case

h.x/
„ƒ‚…

1�1
� h.x0/
„ƒ‚…

1�1
Ch0.x0/
„ƒ‚…

1�k
.x � x0/
„ ƒ‚ …

k�1
C1

2
.x � x0/T
„ ƒ‚ …

1�k
h00.x0/
„ƒ‚…

k�k
.x � x0/
„ ƒ‚ …

k�1
: (A.7)

A.3 Working with Derivatives

We now describe certain vector-derivative formulas and expressions commonly
encountered in statistical applications. In the followingx D .x1; : : : ; xk/

T is always
a k	1 column vector, but the dimensions of the domains and ranges of the function
g and h vary as stated.

Product Rule

Suppose that g W Rk ! Rs andh W Rk ! Rs . Thus, we know that g0 andh0 are s	k
matrices. Define the scalar-valued function r as the product r.x/ D g.x/Th.x/.
Then r 0.x/ is the 1 	 k row vector function

r 0.x/
„ƒ‚…

1�k
D hT .x/
„ƒ‚…

1�s
g0.x/
„ƒ‚…

s�k
CgT .x/
„ƒ‚…

1�s
h0.x/
„ƒ‚…

s�k
(A.8)

Chain Rule

Suppose that g W Rs ! Rp and h W Rk ! Rs. Define the function r as the
composition r.x/ D g.h.x//. Thus, we know that g 0 is p 	 s, h0 is s 	 k, and r 0 is
p 	 k. Furthermore,

r 0.x/
„ƒ‚…

p�k
D g 0.h.x//
„ ƒ‚ …

p�s
h0.x/
„ƒ‚…

s�k
: (A.9)

Make-Your-Own Rule

There are other versions of these two rules that are sometimes needed. However, in
such cases, it is often easier to derive the relevant expression than it is to identify and
apply the relevant rule. We illustrate with a simple example. Suppose that r.x/ D
g.x/h.x/ where g W Rk ! R1 and h W Rk ! Rs . Thus, r W Rk ! Rs, and we
know that r 0 is s 	 k. To obtain the form of r 0, consider that for small ı,
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r.x C ı/ � r.x/ D g.x C ı/h.x C ı/ � g.x/h.x/
� ˚

g.x/C g0.x/ı

 ˚

h.x/C h0.x/ı

� g.x/h.x/

D g.x/h.x/C g.x/h0.x/ı C g0.x/ıh.x/

C g0.x/ıh0.x/ı � g.x/h.x/

D ˚

g.x/h0.x/C h.x/g0.x/



ı C g0.x/ıh0.x/ı

� ˚

g.x/h0.x/C h.x/g0.x/



ı: (A.10)

The first approximation results from applying (A.5) to both g and h. Then after
two steps of algebra, the second approximation arises by dropping term(s) in
which ı appears more than once, as these are negligible compared to terms in
which ı appears only once (for small ı). In this case, there is only one such term
g0.x/ıh0.x/ı. Comparing the two end expressions in (A.10) to the form of the first-
order Taylor approximation r.xC ı/ � r.x/C r 0.x/ı, derived from (A.5), shows
that r 0.x/ D g.x/h0.x/C h.x/g0.x/.

A.4 Problems

A.1. Suppose that r.x/ D g.v.x//w.x/Th.x/ where g W Rs ! R1, v W Rk ! Rs ,
w W Rk ! Rp, and h W Rk ! Rp. Apply the make-your-own rule to derive an
expression for r 0 in terms of g, v, w, h, and their derivatives.

A.2. Suppose that h W Rk ! Rs has component functions hj W Rk ! R1,
j D 1; : : : ; s. That is, h D .h1; : : : ; hs/

T . Use the approximation in (A.7)
componentwise to derive the approximation

h.x/ � h.x0/C h0.x0/.x � x0/C 1

2

0

B

@

.x � x0/Th00
1.x0/.x � x0/
:::

.x � x0/Th00
s .x0/.x � x0/

1

C

A : (A.11)

A.3. Suppose that � W Rp ! R1 is a mean function of the p 	 1 parameter � . That
is, E.Y / D �.�/. For a fixed y, define r.�/ D fy � �.�/g2. Derive r 0.�/ and
r 00.�/.
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