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(TV)

Dedicated to my wife Olha and to my
children Bohdan and Anna-Yaroslava.

(TB)





Preface

In multivariate statistical analysis, elliptical distributions have recently provided an
alternative to the normal model. Most of the work, however, is spread out in journals
throughout the world and is not easily accessible to the investigators. Fang, Kotz,
and Ng presented a systematic study of multivariate elliptical distributions; however,
they did not discuss the matrix variate case. Fang and Zhang have summarized
the results of generalized multivariate analysis which include vector as well as
the matrix variate distributions. On the other hand, Fang and Anderson collected
research papers on matrix variate elliptical distributions, many of them published
for the first time in English. They published very rich material on the topic, but
the results are given in paper form which does not provide a unified treatment of
the theory. Therefore, it seemed appropriate to collect the most important results
on the theory of matrix variate elliptically contoured distributions available in the
literature and organize them in a unified manner that can serve as an introduction to
the subject.

The book will be useful for researchers, teachers, and graduate students in
statistics and related fields whose interests involve multivariate statistical analysis
and its application into portfolio theory. Parts of this book were presented by Arjun
K. Gupta as a one semester course at Bowling Green State University. Knowledge of
matrix algebra and statistics at the level of Anderson is assumed. However, Chap. 1
summarizes some results of matrix algebra. This chapter also contains a brief review
of the literature and a list of mathematical symbols used in the book.

Chapter 2 gives the basic properties of the matrix variate elliptically contoured
distributions, such as the probability density function and expected values. It also
presents one of the most important tools of the theory of elliptical distributions, the
stochastic representation.

The probability density function and expected values are investigated in detail in
Chap. 3.

Chapter 4 focuses on elliptically contoured distributions that can be represented
as mixtures of normal distributions.

The distributions of functions of random matrices with elliptically contoured
distributions are discussed in Chap. 5. Special attention is given to quadratic forms.
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viii Preface

Characterization results are given in Chap. 6.
The next three chapters are devoted to statistical inference. Chapter 7 focuses on

estimation results, whereas Chap. 8 is concerned with hypothesis testing problems.
Inference for linear models is studied in Chap. 9.

Chapter 10 deals with the application of the elliptically contoured distributions
for modeling financial data. We present distributional properties of the estimated
main characteristics of optimal portfolios, like variance and expected return assum-
ing that the asset returns are elliptically contoured distributed. The joint distributions
of the estimated parameters of the efficient frontier are derived as well as we
provide exact inference procedures for the corresponding population values. We also
study the distributional properties of the estimated weights of the global minimum
variance portfolio in detail.

In Chap. 11, we consider a further extension of matrix variate elliptically
contoured distributions that allows us to model the asymmetry in data. Here, first
the multivariate skew normal distribution is presented and its matrix generalization
is discussed. We also study the main properties of this distribution, like moments, the
density function, and the moment-generating function. Next, the skew t-distribution
is introduced as well as the general class of matrix variate skew elliptically con-
toured distributions. Moreover, we present the distributional properties of quadratic
forms in skew elliptical distributions and discuss the inference procedures. An appli-
cation into portfolio theory is discussed as well. Finally, an up-to-date bibliography
has been provided, along with author and subject indexes. The materials in the first
nine chapters are from the book Elliptically Contoured Models in Statistics by the
first two authors. The material in Chaps. 10 and 11 is taken from the papers of the
authors. Permission of their publishers Kluwer Academic Publishers (http://www.
wkap.com), Japan Statistical Society (http://www.jss.gr.jp), Springer (http://www.
springer.com), and Taylor and Francis (http://www.tandfonline.com/) is gratefully
acknowledged.

We would like to thank the Department of Mathematics and Statistics, Bowling
Green State University, and the Department of Mathematics, Humboldt University
of Berlin, for supporting our endeavor and for providing the necessary facilities to
accomplish the task. The first author is thankful to the Biostatistics Department,
University of Michigan, for providing him the opportunity to organize the material
in its final form. Thanks are also due to Professors D. K. Nagar, M. Siotani,
J. Tang, and N. Nguyen for many helpful discussions. He would also like to
acknowledge his wife, Meera, and his children, Alka, Mita, and Nisha, for their
support throughout the writing of the book. The second author is thankful to his
mother Edit for her support in the early stages of the work on this book. The
third author acknowledges the support of the Department of Statistics, European
University Viadrina and the German Research Foundation (DFG) via the Research
Unit 1735 “Structural Inference in Statistics: Adaptation and Efficiency”. Thanks
are also due to Professors W. Schmid and Y. Yelejko. He is also greatly thankful
to his wife Olha and to his children Bohdan and Anna-Yaroslava for providing
considerable help during the preparation of the book.
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Acronyms

We denote matrices by capital bold letters, vectors by small bold letters and scalars
by small letters. We use the same notation for a random variable and its values. Also
the following notations will be used in the sequel.

IRp the p-dimensional real space
B(IRp) the Borel sets in IRp

Sp the unit sphere in IRp

IR+ the set of positive real numbers
IR+

0 the set of nonnegative real numbers
χA(x) the indicator function of A, that is χA(x) = 1 if x ∈ A and χA(x) = 0

if x �∈ A
χ(x ≥ t) the same as χ[t,∞)(x) (t is a real number)
A ∈ IRp×n A is a p×n real matrix
ai j the (i, j)th element of matrix A
A′ transpose of A
rk(A) rank of A
A > 0 the square matrix A is positive definite (see also Sect. 1.2)
A ≥ 0 the square matrix A is positive semidefinite (see also Sect. 1.2)
|A| determinant of the square matrix A
tr(A) trace of the square matrix A
etr(A) exp(tr(A)) if A is a square matrix
‖A‖ norm of A defined by ‖A‖=√tr(A′A)
A−1 inverse of A
A− generalized inverse of A, that is AA−A = A (see also Sect. 1.2)
A1/2 let the spectral decomposition of A ≥ 0 be GDG′, and define

A1/2 = GD1/2G′ (see also Sect. 1.2)
O(p) the set of p× p dimensional orthogonal matrices
Ip the p× p dimensional identity matrix
ep the p-dimensional vector whose elements are 1’s; that is, ep =

(1,1, . . . ,1)′ real matrix
A⊗B Kronecker product of the matrices A and B (see also Sect. 1.2)
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A > B A−B is positive definite
A ≥ B A−B is positive semidefinite

vec(A) the vector

⎛

⎜⎜⎜
⎝

a1

a2
...

an

⎞

⎟⎟⎟
⎠

where ai denotes the ith column of p×n matrix

A, i = 1,2, . . . ,n
J(X → f (X)) the Jacobian of the matrix transformation f
X ∼ D the random matrix X is distributed according to the distribution D
X ≈ Y the random matrices X and Y are identically distributed
Cov(X) covarinace matrix of the random matrix X; that is Cov(X) =

Cov(vec(X′))
φX(T) the characteristic function of the random matrix X at T; that is

E(etr(iT′X)), X,T ∈ IRp×n

For a review of Jacobians, see Press (1972) and Siotani, Hayakawa and Fujikoshi
(1985). We also use the following notations for some well known probability
distributions.

UNIVARIATE DISTRIBUTIONS:

N(μ ,σ2) normal distribution; its probability density function is

f (x) =
1√

2πσ
exp

{
− (x−μ)2

2σ2

}
,

where μ ∈ IR, σ ∈ IR+, and x ∈ IR
B(a,b) beta distribution; its probability density function is

f (x) =
1

β (a,b)
xa−1(1− x)b−1 ,

where a > 0, b > 0, β (a,b) = Γ (a)Γ (b)
Γ (a+b) , and 0 < x < 1

tn Student’s t-distribution; its probability density function is

f (x) =
Γ
(

n+1
2

)

√
nπΓ
(

n
2

)
(

1+
x2

n

)− n+1
2

,

where n > 0, and x ∈ IR
χ2

n chi-square distribution; its probability density function is
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f (x) =
1

2
n
2Γ
(

n
2

)x
n
2−1 exp

{
− x

2

}
,

where n > 0, and x ≥ 0
χn chi distribution; its probability density function is

f (x) =
1

2
n
2−1Γ

(
n
2

)xn−1 exp

{
−x2

2

}
,

where n > 0, and x ≥ 0
Fn,m F distribution; its probability density function is

f (x) =
Γ
(

n+m
2

)

Γ
(

n
2

)
Γ
(

m
2

)
( n

m

) n
2 x

n
2−1

(
1+ n

m x
) n+m

2
,

where n,m = 1,2, . . . ,, and x > 0
Up,m,n U distribution, which is the same as the distribution of ∏p

i=1 vi; where vi’s
are independent and

vi ∼ B

(
n+1− i

2
,

m
2

)

For the U distribution, see Anderson (2003), pp. 307–314.

MULTIVARIATE DISTRIBUTIONS:

Np(μ,Σ) multivariate normal distribution; its characteristic function is

φx(t) = exp

{
it′μ+

1
2

t′Σ t
}
,

where x, t,μ ∈ IRp, Σ ∈ IRp×p, and Σ ≥ 0
D(m1, . . . ,mp;mp+1) Dirichlet distribution; its probability density function is

f (x) =
Γ
(
∑p+1

i=1 mi

)

∏p+1
i=1 Γ (mi)

p

∏
i=1

xmi−1
i

(

1−
p

∑
i=1

xi

)mp+1−1

,
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where x=(x1,x2, . . . ,xp)
′ ∈ IRp, 0<∑p

i=1 xi < 1, and mi > 0, i= 1,2, . . . , p
SMTv(α) multivariate skew t-distribution; its probability density function is

fv(y) = 2 fTv(y)FTv+p

(
α ′y

(v+y′Σ−1y)
1
2

√
v+ p

)

,

where fTk(·) and FTk(·) denote the probability density function and the
cumulative distribution function of central t-distribution with k degrees of
freedom, respectively; y ∈ IRp, v > 0, α ∈ IRp, Σ ∈ IRp×p, and Σ > 0.

SMC(α) multivariate skew Cauchy distribution; its probability density function is

f (y) =
2Γ
(

p+1
2

)

(π)
p+1

2

(

1+
p

∑
1

y2
j

)− p+1
2

FTp+1

⎛

⎜⎜
⎜⎜⎜
⎝

α ′y
√

p+1
(

1+
p

∑
1

y2
j

) 1
2

⎞

⎟⎟
⎟⎟⎟
⎠
,

where FTk(·) denotes the cumulative distribution function of central t-
distribution with k degrees of freedom; y ∈ IRp, α ∈ IRp, Σ ∈ IRp×p, and
Σ > 0.

CSNp,q(μ,Σ ,D,ν ,Δ) closed skew normal distribution; its probability density
function is

gp,q(y) =Cφp(y;μ,Σ)Φq[D(y−μ);ν ,Δ ],

with

C−1 =Φq[0;ν ,Δ +DΣD′] (1)

where φl(x;μ,Σ) and Φl(x;μ,Σ) denote the probability density function
and the cumulative distribution function of the l-dimensional normal
distribution with mean vector μ and covariance matrix Σ , respectively;
y∈ IRp, p,q≥ 1, μ ∈ IRp, ν ∈ IRq, D∈ IRq×p, Σ ∈ IRp×p, Σ > 0, Δ ∈ IRq×q,
and Δ > 0.

MATRIX VARIATE DISTRIBUTIONS:

Np,n(M,Σ ⊗Φ) matrix variate normal distribution; its characteristic function is
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φX(T) = etr

{
iT′M+

1
2

T′ΣTΦ
}
,

where M,X,T ∈ IRp×n, Σ ∈ IRp×p, Σ ≥ 0, Φ ∈ IRn×n, and Φ ≥ 0
Wp(Σ ,n) Wishart distribution; its probability density function is

f (X) =
|X| n−p−1

2 etr
{− 1

2Σ
−1X
}

2
np
2 |Σ | n

2Γp
(

n
2

) ,

where X ∈ IRp×p, X > 0, Σ ∈ IRp×p, Σ > 0, p, n are integers, n ≥ p, and

Γp(t) = π
p(p−1)

4

p

∏
i=1
Γ
(

t − i−1
2

)

BI
p(a,b) matrix variate beta distribution of type I; its probability density function

is

f (X) =
|X|a− p+1

2 |Ip −X|b− p+1
2

βp(a,b)
,

where a > p−1
2 , b > p−1

2 , βp(a,b) =
Γp(a)Γp(b)
Γp(a+b) , X ∈ IRp×p, and 0 < X < Ip

BII
p (a,b) matrix variate beta distribution of type II; its probability density function

is

f (X) =
|X|a− p+1

2 |Ip +X|−(a+b)

βp(a,b)
,

where a > p−1
2 , b > p−1

2 , X ∈ IRp×p, and X > 0
Tp,n(m,M,Σ ,Φ) matrix variate T distribution; its probability density function is

f (X)=
π−

np
2 Γp

(
n+m+p−1

2

)

Γp

(
m+p−1

2

)
|Σ | n

2 |Φ | p
2

|Ip+Φ−1(X−M)Σ−1(X−M)′|− n+m+p−1
2 ,

where m > 0, M,X,T ∈ IRp×n, Σ ∈ IRp×p, Σ > 0, Φ ∈ IRn×n, and Φ > 0
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Ep,n(M,Σ ⊗Φ ,ψ) matrix variate elliptically contoured distribution; its charac-
teristic function

φX(T) = etr(iT′M)ψ(tr(T′ΣTΦ)) ,

where T : p × n, M : p × n, Σ : p × p, Φ : n × n, Σ ≥ 0, Φ ≥ 0, and
ψ : [0,∞)→ IR

For further discussion of BI
p(a,b), BII

p (a,b), see Olkin and Rubin (1964) and
Javier and Gupta (1985b), and for results on Tp,n(m,M,Σ ,Φ), see Dickey (1967).
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Chapter 1
Preliminaries

1.1 Introduction and Literature Review

Matrix variate distributions have been studied by statisticians for a long time. The
first results on this topic were published by Hsu and Wishart. These distributions
proved to be useful in statistical inference. For example, the Wishart distribution
is essential when studying the sample covariance matrix in the multivariate normal
theory. Random matrices can also be used to describe repeated measurements on
multivariate variables. In this case, the assumption of the independence of the
observations, a commonly used condition in statistical analysis, is often not feasible.
When analyzing data sets like these, the matrix variate elliptically contoured
distributions can be used to describe the dependence structure of the data. This
is a rich class of distributions containing the matrix variate normal, contaminated
normal, Cauchy and Student’s t-distributions. The fact that the distributions in
this class possess certain properties, similar to those of the normal distribution,
makes them especially useful. For example, many testing procedures developed
for the normal theory to test various hypotheses can be used for this class of
distributions, too.

Matrix variate elliptically contoured distributions represent an extension of
the concept of elliptical distributions from the vector to the matrix case. Impor-
tant distribution results on vector variate elliptical distributions were derived by
Kelker (1970), Chu (1973), Dawid (1977) and Cambanis, Huang, and Simons
(1981). Quadratic forms in elliptical distributions were studied by Cacoullos and
Koutras (1984), Fang and Wu (1984), Anderson and Fang (1987), and Smith
(1989). Problems related to moments were considered by Berkane and Bentler
(1986a). Characterization results were given by Kingman (1972), Khatri and
Mukerjee (1987), and Berkane and Bentler (1986b). Kariya (1981), Kuritsyn
(1986), Anderson, Fang, and Hsu (1986), Jajuga (1987), Cellier, Fourdrinier, and
Robert (1989) and Grübel and Rocke (1989) focused on inference problems.
Asymptotic results were obtained by Browne (1984), Hayakawa (1987), Khatri
(1988) and Mitchell (1989). Special aspects of elliptical distributions were discussed

A.K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory,
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4 1 Preliminaries

by Khatri (1980), Sampson (1983), Mitchell and Krzanowski (1985), Cacoullos
and Koutras (1985), Khattree and Peddada (1987), and Cléroux and Ducharme
(1989). Krishnaiah and Lin (1986) introduced the concept of complex elliptical
distributions. Some of the early results in elliptical distributions were summarized
in Muirhead (1982) and Johnson (1987). More extensive reviews of papers on this
topic were provided by Chmielewski (1981), and Bentler and Berkane (1985). The
most recent summary of distribution results was given by Fang, Kotz, and Ng
(1990).

Some of the papers mentioned above also contain results on matrix variate
elliptically contoured distributions; for example, Anderson and Fang (1987), and
Anderson, Fang, and Hsu (1986). Other papers, like Chmielewski (1980), Richards
(1984), Khatri (1987), and Sutradhar and Ali (1989), are also concerned with matrix
variate elliptical distributions. Fang and Anderson (1990) is a collection of papers
on matrix variate elliptical distributions. Many of these papers were originally
published in Chinese journals and this is their first publication in English. Fang
and Zhang (1990) have provided an excellent account of spherical and related
distributions.

The purpose of the present book is to provide a unified treatment of the theory
of matrix variate elliptically contoured distributions, to present the most important
results on the topic published in various papers and books, to give their proofs and
show how these results can be applied in portfolio theory.

1.2 Some Results from Matrix Algebra

In this section, we give some results from matrix algebra which are used in the
subsequent chapters. Except for the results on the generalized inverse, we do not
prove the theorems since they can be found in any book of linear algebra (e.g.
Magnus and Neudecker, 1988). Other books, like Anderson (2003) and Muirhead
(1982), discuss these results in the appendices of their books.

Definition 1.1. Let A be a p× p matrix. Then, A is called

(i) Symmetric if A′ = A.
(ii) Idempotent if A2 = A.

(iii) Nonsingular if |A| �= 0.
(iv) Orthogonal if AA′ = A′A = Ip.
(v) Positive semidefinite and this is denoted by A ≥ 0 if A is symmetric and for

every p-dimensional vector v, v′Av ≥ 0.
(vi) Positive definite and this is denoted by A > 0 if A is symmetric and for every

p-dimensional nonzero vector v, v′Av > 0.
(vii) Permutation matrix if in each row and each column of A exactly one element

is 1 and all the others are 0.
(viii) Signed permutation matrix if in each row and each column of A exactly one

element is 1 or −1 and all the others are 0.
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Theorem 1.1. Let A be p× p, and B be q× p. Then, we have the following results.

(i) If A > 0, then A−1 > 0.
(ii) If A ≥ 0, then BAB′ ≥ 0.

(iii) If q ≤ p, A > 0 and rk(B) = q, then BAB′ > 0.

Definition 1.2. Let A be a p× p matrix. Then, the roots (with multiplicity) of the
equation

|A−λ Ip|= 0

are called the characteristic roots of A.

Theorem 1.2. Let A be a p× p matrix and λ1,λ2, . . . ,λp its characteristic roots.
Then,

(i) |A|=∏p
i=1λi.

(ii) tr(A) = ∑p
i=1λi.

(iii) rk(A) = the number of nonzero characteristic roots.
(iv) A is nonsingular if and only if the characteristic roots are nonzero.
(v) Further, if we assume that A is symmetric, then the characteristic roots of A

are real.
(vi) A is positive semidefinite if and only if the characteristic roots of A are

nonnegative.
(vii) A is positive definite if and only if the characteristic roots of A are positive.

The next theorem gives results on the rank of matrices.

Theorem 1.3. (i) Let A be a p×q matrix. Then, rk(A)≤ min(p,q) and rk(A) =
rk(A′) = rk(AA′) = rk(A′A). If p = q, then rk(A) = p if and only if A is
nonsingular.

(ii) Let A and B be p×q matrices. Then, rk(A+B)≤ rk(A)+ rk(B).
(iii) Let A be a p×q, B a q×r matrix. Then, rk(AB)≤min(rk(A),rk(B)). If p= q

and A is nonsingular then rk(AB) = rk(B).

Definition 1.3. Let A be a p× q matrix. If rk(A) = min(p,q), then A is called a
full rank matrix.

In the following theorem we list some of the properties of the trace function.

Theorem 1.4. (i) Let A be a p× p matrix. Then, tr(A) = tr(A′), and tr(cA) =
ctr(A) where c is a scalar.

(ii) Let A and B be p× p matrices. Then, tr(A+B) = tr(A)+ tr(B).
(iii) Let A be a p×q, B a q× p. Then, tr(AB) = tr(BA).
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Theorem 1.5. Let the p× p matrix A be defined by

ai j =

{
x, if i = j
y, if i �= j

.

Then, |A|= (x− y)p−1(x+(p−1)y).

Now we give some matrix factorization theorems.

Theorem 1.6. (Singular value decomposition of a matrix)
Let A be a p×q matrix with p ≥ q. Then, there exist a p× p orthogonal matrix G,
a q× q orthogonal matrix H and a q× q positive semidefinite diagonal matrix D
such that

A = G
(

D
0

)
H ,

where 0 denotes the (p−q)×q zero matrix. Moreover, rk(D) = rk(A).

Theorem 1.7. (Spectral decomposition of a symmetric matrix)
Let A be a p× p symmetric matrix. Then, there exist a p× p orthogonal matrix G

and a p× p diagonal matrix D such that

A = GDG′ . (1.1)

Moreover, if A is of the form (1.1) then the diagonal elements of D are the
characteristic roots of A.

Definition 1.4. Let A be a p× p positive semidefinite matrix with spectral decom-
position A = GDG′. Let D1/2 be the diagonal matrix whose elements are the square
roots of the elements of D. Then we define A1/2 as A1/2 = GD1/2G′.

Theorem 1.8. Let A and B be p× p matrices. Assume A is positive definite and B
is positive semidefinite. Then, there exist a p× p nonsingular matrix C and a p× p
diagonal matrix D such that

A = CC′ and B = CDC′ . (1.2)

Moreover, if A and B are of the form (1.2), then the diagonal elements of D are the
roots of the equation |B−λA|= 0.

Theorem 1.9. Let A be a p× q matrix with rk(A) = q. Then there exist a p× p
orthogonal matrix G and a q×q positive definite matrix B such that

A = G
(

Iq

0

)
B ,

where 0 denotes the (p−q)×q zero matrix.
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Theorem 1.10. (The rank factorization of a square matrix)
Let A be a p× p matrix with rk(A) = q. Then, there exists a p×q matrix B of rank
q such that A = BB′.

Theorem 1.11. (Vinograd’s Theorem)
Assume A be a p×q, and B is a p× r matrix, where q ≤ r. Then, AA′ = BB′ if and
only if there exists a q× r matrix H with HH′ = Iq such that B = AH.

Theorem 1.12. Let A be a p× p, symmetric idempotent matrix of rank q. Then,
there exists a p× p orthogonal matrix G such that

A = G
(

Iq 0
0 0

)
G′ ,

where the 0’s denote zero matrices of appropriate dimensions.

Theorem 1.13. Let A1,A2, . . . ,An be p× p, symmetric, idempotent matrices. Then,
there exists a p× p orthogonal matrix such that G′AiG is diagonal for every 1 ≤
i ≤ n if and only if AiA j = A jAi for every 1 ≤ i, j ≤ n.

Theorem 1.14. Let A1,A2, . . . ,An be p× p, symmetric, idempotent matrices. Then,
there exists a p× p orthogonal matrix G such that

G′A1G =

(
Ir1 0
0 0

)
,G′A2G =

⎛

⎝
0 0 0
0 Ir2 0
0 0 0

⎞

⎠ ,

. . . ,G′AnG =

⎛

⎝
0 0 0
0 Irn 0
0 0 0

⎞

⎠ ,

where ri = rk(Ai), i = 1, . . . ,n, if and only if AiA j = 0 for every i �= j.

Next, we give some results for the Kronecker product, also called direct product
of matrices.

Definition 1.5. Let A = (ai j) be a p× q, B an r × s matrix. Then the Kronecker
product of A and B, denoted by A⊗B, is the (pr)× (qs) matrix defined by

A⊗B =

⎛

⎜⎜⎜
⎝

a11B a12B . . . a1qB
a21B a22B . . . a2qB

...
... . . .

...
ap1B ap2B . . . apqB

⎞

⎟⎟⎟
⎠

.

Theorem 1.15. (i) If c and d are scalars, then (cA)⊗ (dB) = cd(A⊗B).
(ii) If A and B are of equal dimension, then

(A+B)⊗C = (A⊗C)+(A⊗C), and C⊗(A+B) = (C⊗A)+(C⊗B).
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(iii) (A⊗B)⊗C = A⊗ (B⊗C).
(iv) (A⊗B)′ = A′ ⊗B′.
(v) If A and B are square matrices then

tr(A⊗B) = tr(A)tr(B).

(vi) If A is p×q, B is r× s, C is q×n, and D is s× v, then

(A⊗B)(C⊗D) = (AC)⊗ (BD).

(vii) If A and B are nonsingular matrices, then A⊗B is also nonsingular and

(A⊗B)−1 = A−1 ⊗B−1.

(viii) If A and B are orthogonal matrices, then A⊗B is also orthogonal.
(ix) If A and B are positive semidefinite matrices, then A ⊗ B is also positive

semidefinite.
(x) If A and B are positive definite matrices, then A⊗B is also positive definite.

(xi) If A is p× p, B is q×q matrix, then |A⊗B|= |A|q|B|p.
(xii) If A is p× p, B is q× q, λ1,λ2, . . . ,λp are the characteristic roots of A, and

μ1,μ2, . . . ,μq are the characteristic roots of B, then λiμ j, i = 1, . . . , p, j =
1, . . . ,q are the characteristic roots of A⊗B.

Theorem 1.16. Let A1 and A2 be p × q, B1 and B2 be r × s nonzero matrices.
Then, A1 ⊗B1 = A2 ⊗B2, if and only if there exists a nonzero real number c such
that A2 = cA1 and B2 =

1
c B1.

Definition 1.6. Let X be a p × n matrix and denote the columns of X by

x1,x2, . . . ,xn. Then vec(X) =

⎛

⎜
⎜⎜
⎝

x1

x2
...

xn

⎞

⎟
⎟⎟
⎠

.

Theorem 1.17. (i) Let X be a p×n, A q× p, and B n×m matrices. Then,

vec((AXB)′) = (A⊗B′)vec(X′).

(ii) Let X and Y be p×n, A p× p, and B n×n matrices. Then

tr(X′AYB) = (vec(X′))′(A⊗B′)vec(Y′).

(iii) Let X and Y be p×n dimensional matrices. Then

tr(X′Y) = (vec(X′))′vec(Y′).

For a more extensive study of the Kronecker product, see Graybill (1969).
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Now we give some results on the generalized inverse of a matrix. Since this
concept is not so widely used in statistical publications, we prove the theorems in
this part of the chapter. For more on generalized inverse, see Rao and Mitra (1971).

Definition 1.7. Let A be a p× q matrix. If there exists a q× p matrix B such that
ABA = A, then B is called a generalized inverse of A and is denoted by A−.

It follows from the definition that A− is not necessarily unique. For example,

for any real number a, (1,a) is a generalized inverse of

(
1
0

)
. However, if A is a

nonsingular square matrix, then A− is unique as the following theorem shows.

Theorem 1.18. Let A be a p× p nonsingular matrix. Then, A−1 is the one and only
one generalized inverse of A.

PROOF: The matrix A−1 is a generalized inverse of A since AA−1A = IpA = A.
On the other hand, from AA−A = A we get A−1AA−AA−1 = A−1AA−1. Hence,
A− = A−1.

Next, we show that every matrix has a generalized inverse.

Theorem 1.19. Let A be a p×q matrix. Then A has a generalized inverse.

PROOF: First, we prove that the theorem is true for diagonal matrices. Let D be
n×n diagonal and define the n×n diagonal matrix B by

bii =

{
1

dii
, if dii �= 0

0, if dii = 0
.

Then, DBD = D. Hence B, is a generalized inverse of D.
Next, assume that A is a p×q matrix with p≥ q. Using Theorem 1.6, we can find

a p× p orthogonal matrix G, a q×q orthogonal matrix H, and a positive semidefinite
diagonal matrix D such that

A = G
(

D
0

)
H.

We already know that D has a generalized inverse. Define

B = H′ (D−, 0
)

G′.

Then, we obtain

ABA = G
(

D
0

)
HH′ (D−, 0

)
G′G
(

D
0

)
H = G

(
D
0

)
H = A.

So B is a generalized inverse of A. If A is p×q dimensional with p < q, then A′
has a generalized inverse B. So A′BA′ = A′. Therefore, AB′A = A. Hence, B′ is a
generalized inverse of A.
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We know that if A is a nonsingular square matrix, then (A−1)′ = (A′)−1. The
generalized inverse has the same property as the next theorem shows.

Theorem 1.20. Let A be a p × q matrix. Then, (A−)′ = (A′)−; that is B is a
generalized inverse of A, if and only if B′ is a generalized inverse of A′.

PROOF: First, assume B is a generalized inverse of A. Then, ABA = A. Hence,
A′B′A′ = A′. So B′ is a generalized inverse of A′.

On the other hand, assume B′ is a generalized inverse of A′. Then, A′B′A′ = A′.
Hence, ABA = A and therefore B is a generalized inverse of A.

For nonsingular square matrices of equal dimension, we have (AB)−1 =
B−1A−1. However, for the generalized inverse, (AB)− = B−A− does not always

hold. For example, consider A = (1,0) and B =

(
1
0

)
. Then, for any real numbers

a and b,

(
1
a

)
is a generalized inverse of A and (1,b) is a generalized inverse of B.

However, B−A− = 1+ab is a generalized inverse of AB = 1 only if a = 0 or b = 0.
In special cases, however, (AB)− = B−A− is true as the next theorem shows.

Theorem 1.21. Let A be a p× q, B a p× p, and C a q× q matrix. Assume B and
C are nonsingular. Then, (BAC)− = C−1A−B−1.

PROOF: The matrix F is a generalized inverse of (BAC)− iff BACFBAC = BAC.
This is equivalent to ACFBA = A; that is CFB = A−, or F = C−1A−B−1.

Theorem 1.22. Let A be a p×q matrix with rk(A) = q. Then, A−A = Iq.

PROOF: It follows from Theorem 1.6, that there exists a p× p orthogonal matrix
G, a q× q orthogonal matrix H, and a q× q positive definite diagonal matrix D
such that

A = G
(

D
0

)
H .

Then, AA−A = A can be written as

G
(

D
0

)
HA−A = G

(
D
0

)
H .

Premultiplying the last equation by G′, we obtain

(
D
0

)
HA−A =

(
D
0

)
H .

Hence,
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(
DHA−A

0

)
=

(
DH

0

)
.

and consequently DHA−A = DH. Now, D and H are q×q nonsingular matrices, so
we get A−A = Iq.

Theorem 1.23. Let A be a p × p matrix of rank q and let A = BB′ be a rank
factorization of A as it is defined in Theorem 1.10. Then, B−B = Iq and B−AB− ′ =
Iq. Moreover, B− ′B− is a generalized inverse of A.

PROOF: Since B is p× q dimensional and rk(B) = q, from Theorem 1.22 we get
B−B = Iq and

B−AB− ′ = B−BB′B− ′ = B−B(B−B)′ = IqIq = Iq .

We also have

AB− ′B−A = BB′B− ′B−BB′ = B(B−B)′(B−B)B′ = BIqIqB′ = BB′ = A.

1.3 A Functional Equation

We close this chapter with a result from the theory of functional equations that will
prove to be useful in the derivation of many theorems about elliptically contoured
distributions. The theorem gives the solution of a variant of Hamel’s equation (or
Cauchy’s equation).

Theorem 1.24. Let f be a real function defined on IR+
0 the set of nonnegative

numbers. Assume that f is bounded in each finite interval and satisfies the equation

f (x+ y) = f (x) f (y) for all x,y ∈ IR+
0 .

Then either f (x) = 0 for all x or f (x) = eax where a ∈ IR.

PROOF: See Feller (1957), p. 413.

Corollary 1.1. Let f be a bounded, not identically zero function defined on IR+
0 . If

f satisfies the equation

f (x+ y) = f (x) f (y) for all x,y ∈ IR+
0

then f (x) = e−kx where k ≥ 0.



Part II
Definition and Distributional Properties



Chapter 2
Basic Properties

2.1 Definition

In the literature, several definitions of elliptically contoured distributions can be
found, e.g. see Anderson and Fang (1982b), Fang and Chen (1984), and Sutradhar
and Ali (1989). We will use the following definition given in Gupta and Varga
(1994b).

Definition 2.1. Let X be a random matrix of dimensions p× n. Then, X is said to
have a matrix variate elliptically contoured (m.e.c.) distribution if its characteristic
function has the form

φX(T) = etr(iT′M)ψ(tr(T′ΣTΦ))

with T : p×n, M : p×n, Σ : p× p, Φ : n×n, Σ ≥ 0, Φ ≥ 0, and ψ : [0,∞)→ IR.

This distribution will be denoted by Ep,n(M,Σ ⊗Φ ,ψ).

Remark 2.1. If in Definition 2.1 n= 1, we say that X has a vector variate elliptically
contoured distribution. It is also called multivariate elliptical distribution. Then the
characteristic function of X takes on the form

φx(t) = exp(it′m)ψ(t′Σ t) ,

where t and m are p-dimensional vectors. This definition was given by many
authors, e.g. Kelker (1970), Cambanis, Huang and Simons (1981) and Anderson
and Fang (1987). In this case, in the notation Ep,n(M,Σ ⊗Φ ,ψ), the index n can be
dropped; that is, Ep(m,Σ ,ψ) will denote the distribution Ep,1(m,Σ ,ψ).

Remark 2.2. It follows from Definition 2.1 that |ψ(t)| ≤ 1 for t ∈ IR+
0 .

The following theorem shows the relationship between matrix variate and vector
variate elliptically contoured distributions.

A.K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory,
DOI 10.1007/978-1-4614-8154-6 2, © Springer Science+Business Media New York 2013
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Theorem 2.1. Let X be a p × n random matrix and x = vec(X′). Then, X ∼
Ep,n(M,Σ ⊗Φ ,ψ) if and only if x ∼ Epn(vec(M′),Σ ⊗Φ ,ψ).

PROOF: Note that X ∼ Ep,n(M,Σ ⊗Φ ,ψ) iff

φX(T) = etr(iT′M)ψ(tr(T′ΣTΦ)) (2.1)

On the other hand, x ∼ Epn(vec(M′),Σ ⊗Φ ,ψ) iff

φx(t) = exp(it′vec(M′))ψ(t′(Σ ⊗Φ)t) .

Let t = vec(T′). Then

φx(t) = exp(i(vec(T′))′vec(M′))ψ((vec(T′))′(Σ ⊗Φ)vec(T′)) . (2.2)

Now, using Theorem 1.17, we can write

(vec(T′))′vec(M′) = tr(T′M) (2.3)

and

(vec(T′))′(Σ ⊗Φ)vec(T′) = tr(T′ΣTΦ) . (2.4)

From (2.1), (2.2), (2.3), and (2.4) it follows that φX(T) = φx(vec(T′)). This
completes the proof.

The next theorem shows that linear functions of a random matrix with m.e.c.
distribution have elliptically contoured distributions also.

Theorem 2.2. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ). Assume C : q×m, A : q× p, and B :
n×m are constant matrices. Then,

AXB+C ∼ Eq,m(AMB+C,(AΣA′)⊗ (B′ΦB),ψ).

PROOF: The characteristic function of Y = AXB+C can be written as

φY(T) = E(etr(iT′Y))

= E(etr(iT′(AXB+C)))

= E(etr(iT′AXB))etr(iT′C)

= E(etr(iBT′AX))etr(iT′C)

= φX(A′TB′)etr(iT′C)

= etr(iBT′AM)ψ(tr(BT′AΣA′TB′Φ))etr(iT′C)

= etr(iT′(AMB+C))ψ(tr(T′(AΣA′)T(B′ΦB))) .

This is the characteristic function of Eq,m(AMB+C,(AΣA′)⊗ (B′ΦB),ψ).
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Corollary 2.1. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ), and let Σ = AA′ and Φ = BB′ be rank
factorizations of Σ and Φ . That is, A is p× p1 and B is n×n1 matrix, where p1 =
rk(Σ), n1 = rk(Φ). Then,

A−(X−M)B′− ∼ Ep1,n1(0,Ip1 ⊗ In1 ,ψ) .

Conversely, if Y ∼ Ep1,n1(0,Ip1 ⊗ In1 ,ψ), then

AYB′+M ∼ Ep,n(M,Σ ⊗Φ ,ψ) .

with Σ = AA′ and Φ = BB′.

PROOF: Let X ∼ Ep,n(M,Σ ⊗ Φ ,ψ), Σ = AA′ and Φ = BB′ be the rank
factorizations of Σ and Φ . Then, it follows from Theorem 2.2 that

A−(X−M)B′− ∼ Ep1,n1(0,(A
−ΣA′−)⊗ (B−ΦB′−),ψ) .

Using Theorem 1.23, we get A−ΣA′− = Ip1 and B−ΦB′− = In1 , which completes
the proof of the first part of the theorem. The second part follows directly from
Theorem 2.2.

If x ∼ Ep(0,Ip,ψ), then it follows from Theorem 2.2 that Gx ∼ Ep(0,Ip,ψ) for
every G ∈ O(p). This gives rise to the following definition.

Definition 2.2. The distribution Ep(0,Ip,ψ) is called spherical distribution.

A consequence of the definition of the m.e.c. distribution is that if X has m.e.c.
distribution, then X′ also has m.e.c. distribution. This is shown in the following
theorem.

Theorem 2.3. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ). Then, X′ ∼ En,p(M′,Φ⊗Σ ,ψ).
PROOF: We have

φX′(T) = E(etr(iT′X′))

= E(etr(iXT))

= E(etr(iTX))

= etr(iTM)ψ(tr(TΣT′Φ))

= etr(iT′M′)ψ(tr(T′ΦTΣ)).

This is the characteristic function of X′ ∼ En,p(M′,Φ⊗Σ ,ψ).
The question arises whether the parameters in the definition of a m.e.c.

distribution are uniquely defined. The answer is they are not. To see this assume
that a, b, and c are positive constants such that c = ab, Σ 2 = aΣ 1, Φ2 = bΦ1,
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ψ2(z) = ψ1
(

1
c z
)
. Then, Ep,n(M,Σ 1 ⊗Φ1,ψ1) and Ep,n(M,Σ 2 ⊗Φ2,ψ2) define the

same m.e.c. distribution. However, this is the only way that two formulae define the
same m.e.c. distribution as shown in the following theorem.

Theorem 2.4. Let X ∼ Ep,n(M1,Σ 1 ⊗Φ1,ψ1) and at the same time X ∼ Ep,n(M2,
Σ 2 ⊗Φ2,ψ2). If X is nondegenerate, then there exist positive constants a, b, and c
such that c = ab, and M2 = M1, Σ 2 = aΣ 1, Φ2 = bΦ1, and ψ2(z) = ψ1

(
1
c z
)
.

PROOF: The proof follows the lines of Cambanis, Huang and Simons (1981). First
of all, note that the distribution of X is symmetric about M1 as well as about M2.
Therefore, M1 = M2 must hold. Let M = M1. Let us introduce the following
notations

Σ l = lσi j, i, j = 1, . . . , p; l = 1,2,

Φ l = lφi j, i, j = 1, . . . ,n; l = 1,2.

Let k(a) denote the p-dimensional vector whose ath element is 1 and all the
others are 0 and l(b) denote the n-dimensional vector whose bth element is 1 and
all the others are 0. Since X is nondegenerate, it must have an element xi0 j0 which
is nondegenerate. Since xi0 j0 = k′(i0)Xl( j0), from Theorem 2.2 we get

xi0 j0 ∼ E1(mi0 j0 , 1σi0i0 1φ j0 j0 ,ψ1)

and

xi0 j0 ∼ E1(mi0 j0 , 2σi0i0 2φ j0 j0 ,ψ2).

Therefore, the characteristic function of xi0 j0 −mi0 j0 is

φ(t) = ψ1(t
2

1σi0i0 1φ j0 j0)

= ψ2(t
2

2σi0i0 2φ j0 j0) (2.5)

with t ∈ IR.
Since, lσi0i0 and lφ j0 j0 (l = 1,2) are diagonal elements of positive semidefinite

matrices, they cannot be negative, and since xi0 j0 is nondegenerate, they cannot be
zero either. So, we can define

c = 2σi0i0 2φ j0 j0

1σi0i0 1φ j0 j0
.

Then, c > 0 and ψ2(z) = ψ1
(

1
c z
)

for z ∈ [0,∞).
We claim that Σ 2 ⊗Φ2 = c(Σ 1 ⊗Φ1). Suppose this is not the case. Then, there

exists t ∈ IRpn such that t′(Σ 2 ⊗Φ2)t �= ct′(Σ 1 ⊗Φ1)t. From Theorem 1.17, it
follows that there exists T0 ∈ IRp×n such that tr(T′

0Σ 2T0Φ2) �= ctr(T′
0Σ 1T0Φ1).
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Define T = uT0, u ∈ IR. Then, the characteristic function of X−M at uT0 is

ψ1(utr(T′
0Σ 1T0Φ1)) = ψ2(uctr(T′

0Σ 1T0Φ1)).

On the other hand, the characteristic function of X−M at uT0 can be expressed as
ψ2(utr(T′

0Σ 2T0Φ2)). So

ψ2(uctr(T′
0Σ 1T0Φ1)) = ψ2(utr(T′

0Σ 2T0Φ2)) . (2.6)

If tr(T′
0Σ 1T0Φ1) = 0 or tr(T′

0Σ 2T0Φ2) = 0, then from (2.6) we get that ψ(u) = 0
for every u ∈ IR. However, this is impossible since X is nondegenerate.

If tr(T′
0Σ 1T0Φ1) �= 0 and tr(T′

0Σ 1T0Φ1) �= 0, then define

d = c
tr(T′

0Σ 1T0Φ1)

tr(T′
0Σ 2T0Φ2)

.

Then, d �= 0, d �= 1, and from (2.6) we get ψ2(u) = ψ2(du). By induction, we get

ψ2(u) = ψ2(d
nu) and ψ2(u) = ψ2

((
1
d

)n

u

)
, n = 1,2, . . . .

Now either dn → 0 or
(

1
d

)n → 0, and from the continuity of the characteristic
function and the fact that ψ2(0) = 1 it follows that ψ2(u) = 0 for every u ∈ IR.
However, this is impossible. So, we must have Σ 2 ⊗Φ2 = c(Σ 1 ⊗Φ1). From
Theorem 1.16 it follows that there exist a > 0 and b > 0 such that Σ 2 = aΣ 1,
Φ2 = bΦ1, and ab = c. This completes the proof.

An important subclass of the class of the m.e.c. distributions is the class of matrix
variate normal distributions.

Definition 2.3. The p×n random matrix X is said to have a matrix variate normal
distribution if its characteristic function has the form

φX(T) = etr(iT′M)etr

(
−1

2
T′ΣTΦ

)
,

with T : p× n, M : p× n, Σ : p× p, Φ : n× n, Σ ≥ 0, Φ ≥ 0. This distribution is
denoted by Np,n(M,Σ ⊗Φ).

The next theorem shows that the matrix variate normal distribution can be used
to represent samples taken from multivariate normal distributions.

Theorem 2.5. Let X ∼ Np,n(μe′n,Σ ⊗ In), where μ ∈ IRp. Let x1,x2, . . . ,xn be the
columns of X. Then, x1,x2, . . . ,xn are independent identically distributed random
vectors with common distribution Np(μ,Σ).
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PROOF: Let T = (t1, t2, . . . , tn) be p×n matrix. Then

φX(T) = etr

⎛

⎜⎜⎜
⎝

i

⎛

⎜⎜⎜
⎝

t′1
t′2
...

t′n

⎞

⎟⎟⎟
⎠
(μ,μ, . . . ,μ)

⎞

⎟⎟⎟
⎠

etr

⎛

⎜⎜⎜
⎝
−1

2

⎛

⎜⎜⎜
⎝

t′1
t′2
...

t′n

⎞

⎟⎟⎟
⎠
Σ (t1, t2, . . . , tn)

⎞

⎟⎟⎟
⎠

= exp

(

i
n

∑
j=1

t′jμ

)

exp

(

−1
2

n

∑
j=1

t′jΣ t j

)

¬

=
n

∏
j=1

exp

(
it′jμ−

1
2

t′jΣ t j

)
,

which shows that x1,x2, . . . ,xn are independent, each with distribution Np(μ,Σ).

2.2 Probability Density Function

If X ∼ Ep,n(M,Σ ⊗Φ ,ψ) defines an absolutely continuous elliptically contoured
distribution, Σ and Φ must be positive definite. Assume this is not the case.
For example, Σ ≥ 0 but Σ is not positive definite. Then, from Theorem 1.7, it
follows that Σ = GDG′ where G ∈ O(n), and D is diagonal and d11 = 0. Let
Y = G′(X−M). Then, Y ∼ Ep,n(0,D⊗Φ ,ψ), and the distribution of Y is also
absolutely continuous. On the other hand, y11 ∼ E1(0,0,ψ) so y11 is degenerate. But
the marginal of an absolutely continuous distribution cannot be degenerate. Hence,
we get a contradiction. So, Σ > 0 and Φ > 0 must hold when the m.e.c. distribution
is absolutely continuous.

The probability density function (p.d.f.) of a m.e.c. distribution is of a special
form as the following theorem shows.

Theorem 2.6. Let X be a p× n dimensional random matrix whose distribution is
absolutely continuous. Then, X ∼ Ep,n(M,Σ ⊗Φ ,ψ) if and only if the p.d.f. of X
has the form

f (X) = |Σ |− n
2 |Φ |− p

2 h(tr((X−M)′Σ−1(X−M)Φ−1)) , (2.7)

where h and ψ determine each other for specified p and n.

PROOF: I. First, we prove that if X ∼ Ep,n(M,Σ ⊗Φ ,ψ) and Ep,n(M,Σ ⊗Φ ,ψ) is
absolutely continuous, then the p.d.f. of X has the form (2.7).

Step 1. Assume that M = 0 and Σ ⊗Φ = Ipn. Then, X ∼ Ep,n(0,Ip ⊗ In,ψ).
We want to show that the p.d.f. of X depends on X only through tr(X′X). Let x =
vec(X′). From Theorem 2.1 we know that x ∼ Epn(0,Ipn,ψ). Let H ∈ O(pn), then,
in view of Theorem 2.2,
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Hx ∼ Epn(0,HH′,ψ) = Epn(0,Ipn,ψ) .

Thus, the distribution of x is invariant under orthogonal transformation. There-
fore, using Theorem 1.11, we conclude that the p.d.f. of x depends on x only through
x′x. Let us denote the p.d.f. of x by f1(x). We have f1(x) = h(x′x). Clearly, h only
depends on p, n, and ψ . It follows from Theorem 1.17, that x′x = tr(X′X). Thus,
denoting the p.d.f. of X by f (X), we get f (X) = h(tr(X′X)).

Step 2. Now, let X ∼ Ep,n(M,Σ ⊗Φ ,ψ). From Corollary 2.1, it follows that Y =

Σ− 1
2 (X−M)Φ− 1

2 ∼ Ep,n(0,Ip ⊗ In,ψ). Therefore, if g(Y) is the p.d.f. of Y, then

g(Y) = h(tr(Y′Y)). The Jacobian of the transformation Y → X is |Σ− 1
2 |n|Φ− 1

2 |p.
So the p.d.f. of X is

f (X) = h
(

tr
(
Φ− 1

2 (X−M)′Σ− 1
2Σ− 1

2 (X−M)Φ− 1
2

))
|Σ |− n

2 |Φ |− p
2

= |Σ |− n
2 |Φ |− p

2 h
(
tr
(
(X−M)′Σ−1(X−M)Φ−1)) .

II. Next, we show that if a random matrix X has the p.d.f. of the form (2.7), then
its distribution is elliptically contoured. That is, assume that the p×n random matrix
X has the p.d.f.

f (X) = |Σ |− n
2 |Φ |− p

2 h
(
tr
(
(X−M)′Σ−1(X−M)Φ−1)) ,

then we want to show that X ∼ Ep,n(M,Σ ⊗Φ ,ψ). Let Y = Σ− 1
2 (X−M)Φ− 1

2 .
Then, the p.d.f. of Y is g(Y) = h(tr(Y′Y)). Let y = vec(Y′). Then, the p.d.f. of y is
g1(y) = h(y′y). The characteristic function of y is

φy(t) =
∫

IRpn
exp(it′y)h(y′y)dy ,

where t ∈ IRpn.
Next, we prove that if t1 and t2 are vectors of dimension pn such that t′1t1 = t′2t2,

then φy(t1) = φy(t2). Using Theorem 1.11, we see that there exists H ∈ O(pn), such
that t′1H = t′2. Therefore,

φy(t2) =
∫

IRpn
exp(it′2y)h(y′y)dy

=

∫

IRpn
exp(it′1Hy)h(y′y)dy .

Let z = Hy. The Jacobian of the transformation y → z is |H′|pn = 1. So
∫

IRpn
exp(it′1Hy)h(y′y)dy =

∫

IRpn
exp(it′1z)h(z′HH′z)dz

=
∫

IRpn
exp(it′1z)h(z′z)dz

= φy(t1).
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This means that φy(t1) = φy(t2). Therefore, φy(t) is a function of t′t, which
implies that φY(T) is a function of tr(T′T). Therefore, there exists a function ψ
such that φY(T) =ψ(tr(T′T)). That is, y ∼ Ep,n(0,Ip⊗In,ψ). Using Corollary 2.1,
we get X ∼ Ep,n(M,Σ ⊗Φ ,ψ).

Next we prove a lemma which will be useful for further study of m.e.c.
distributions.

Lemma 2.1. Let f be a function f : A× IRp → IRq, where A can be any set. Assume
there exists a function g : A× IR → IRq such that f (a,x) = g(a,x′x) for any a ∈ A
and x ∈ IRp. Then, we have

∫

IRp
f (a,x)dx =

2π
p
2

Γ
( p

2

)
∫ ∞

0
rp−1g(a,r2)dr

for any a ∈ A.

PROOF: Let x = (x1,x2, . . . ,xp)
′ and introduce the polar coordinates

x1 = rsinθ1sinθ2 . . .sinθp−2sinθp−1

x2 = rsinθ1sinθ2 . . .sinθp−2cosθp−1

x3 = rsinθ1sinθ2 . . .cosθp−2

...

xp−1 = rsinθ1cosθ2

xp = rcosθ1 ,

where r > 0, 0 < θi < π , i = 1,2, . . . , p−2, and 0 < θp−1 < 2π . Then, the Jacobian
of the transformation (x1,x2, . . . ,xp)→ (r,θ1,θ2, . . . ,θp−1) is

rp−1sinp−2θ1sinp−3θ2 . . .sinθp−2.

We also have x′x = r2. Thus,

∫

x∈IRp
f (a,x)dx =

∫

x∈IRp
g(a,x′x)dx

=
∫ ∞

0

∫ π

0

∫ π

0
. . .
∫ 2π

0
g(a,r2)rp−1sinp−2θ1sinp−3θ2 . . .sinθp−2dθp−1 . . .dθ2dθ1dr

=
2π

p
2

Γ
( p

2

)
∫ ∞

0
rp−1g(a,r2)dr.

The next theorem is due to Fang, Kotz, and Ng (1990).
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Theorem 2.7. Let g : IR+
0 → IR+

0 be a measurable function. Then, there exists a
constant c such that

cg(tr(X′X)), X ∈ IRp×n

is the p.d.f. of the p×n random matrix X if and only if

0 <
∫ ∞

0
rpn−1g(r2)dr < ∞.

Moreover, the relationship between g and c is given by

c =
Γ
( pn

2

)

2π
pn
2
∫ ∞

0 rnp−1g(r2)dr
.

PROOF: By definition, cg(tr(X′X)), X∈ IRp×n, is the p.d.f. of a p×n random matrix
X iff cg(y′y), y∈ IRpn is the p.d.f. of a pn-dimensional random vector y. On the other
hand, cg(y′y), y ∈ IRpn is the p.d.f. of a pn-dimensional random vector y iff

∫

IRpn
cg(y′y)dy = 1 .

From Lemma 2.1, we get

∫

IRpn
cg(y′y)dy = c

2π
pn
2

Γ
( pn

2

)
∫ ∞

0
rpn−1g(r2)dr.

Hence, we must have

0 ≤
∫ ∞

0
rpn−1g(r2)dr < ∞.

and

c =
Γ
( pn

2

)

2π
pn
2
∫ ∞

0 rnp−1g(r2)dr
.

2.3 Marginal Distributions

Using Theorem 2.2, we can derive the marginal distributions of a m.e.c. distribution.

Theorem 2.8. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ), and partition X, M, and Σ as

X =

(
X1

X2

)
, M =

(
M1

M2

)
, and Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
,
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where X1 is q×n, M1 is q×n, and Σ 11 is q×q, 1 ≤ q < p. Then,

X1 ∼ Eq,n(M1,Σ 11 ⊗Φ ,ψ).

PROOF: Let A = (Iq,0) be of dimensions q × p. Then, AX = X1, and from

Theorem 2.2, we obtain X1 ∼ Eq,n

(
(Iq,0)M,

(
(Iq,0)Σ

(
Iq

0

))
⊗Φ ,ψ

)
, i.e. X1 ∼

Eq,n(M1,Σ 11 ⊗Φ ,ψ).

If we partition X vertically, we obtain the following result.

Theorem 2.9. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ), and partition X, M, and Φ as

X =
(

X1, X2
)
, M =

(
M1, M2

)
, and Φ =

(
Φ11 Φ12

Φ21 Φ22

)
,

where X1 is p×m, M1 is p×m, and Φ11 is m×m, 1 ≤ m < n. Then,

X1 ∼ Ep,m(M1,Σ ⊗Φ11,ψ) . (2.8)

PROOF: From Theorem 2.3, it follows that

X′ =
(

X′
1

X′
2

)
∼ En,p

((
M′

1
M′

2

)
,

(
Φ11 Φ12

Φ21 Φ22

)
⊗Σ ,ψ

)

Then (2.8) follows directly from Theorem 2.8.

Theorem 2.10. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ), then xi j ∼ E1(mi j,σiiφ j j,ψ).

PROOF: The result follows from Theorems 2.8 and 2.9.

Remark 2.3. It follows from Theorems 2.8 and 2.9 that if X ∼ Ep,n(M,Σ ⊗Φ ,ψ)
and Y is a q × m submatrix of X, then Y also has m.e.c. distribution; Y ∼
Eq,m(M∗,Σ ∗ ⊗Φ∗,ψ).

2.4 Expected Value and Covariance

In this section, the first two moments of a m.e.c. distribution will be derived. In
Chap. 3, moments of higher orders will also be obtained.

Theorem 2.11. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ).

(a) If X has finite first moment, then E(X) = M.
(b) If X has finite second moment, then Cov(X) = cΣ ⊗Φ , where c =−2ψ ′(0).
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PROOF: Step 1. First, let us assume M= 0 and Σ⊗Φ = Ipn. Then, X∼ Ep,n(0,Ip⊗
In,ψ).
(a) In view of Theorem 2.2, we have

(−Ip)X ∼ Ep,n(0,Ip ⊗ In,ψ).

Therefore, E(X) = E(−X), and E(X) = 0.
(b) Let x = vec(X′). Then x ∼ Epn(0,Ipn,ψ). The characteristic function of x is

φx(t) = ψ(t′t), where t = (t1, . . . , tpn)
′. Then,

∂φx(t)
∂ ti

=
∂ψ
(
∑pn

l=1 t2
l

)

∂ ti
= 2tiψ ′

(
pn

∑
l=1

t2
l

)

.

So,

∂ 2φx(t)
∂ t2

i

= 2ψ ′
(

pn

∑
l=1

t2
l

)

+4t2
i ψ ′′
(

pn

∑
l=1

t2
l

)

.

and if i �= j, then

∂ 2φx(t)
∂ t j∂ ti

= 4tit jψ ′′
(

pn

∑
l=1

t2
l

)

.

Therefore,

∂ 2φx(t)
∂ t2

i

∣∣∣∣∣
t=0

= 2ψ ′(0) and
∂ 2φx(t)
∂ ti∂ t j

∣∣∣∣∣
t=0

= 0 if i �= j.

Thus, Cov(x) =−2ψ ′(0)Ipn.

Step 2. Now, let X ∼ Ep,n(M,Σ ⊗Φ ,ψ). Let Σ = AA′ and Φ = BB′ be the rank
factorizations of Σ and Φ . Then, from Corollary 2.1, it follows that Y = A−(X−
M)Φ ′ − ∼ Ep1,n1(0,Ip1 ⊗ In1 ,ψ) and X = AYB′. Using Step 1 ,we get the following
results:

(a) E(Y) = 0. Hence E(X) = A0B′+M = M.
(b) Let x = vec(X′), y = vec(Y′), and μ = vec(M′). Then x = (A⊗B)y+ μ , and

Cov(y) =−2ψ ′(0)Ipn and so

Cov(x) = −2ψ ′(0)(A⊗B)Ipn(A′ ⊗B′)

= −2ψ ′(0)(AA′)⊗ (BB′)

= −2ψ ′(0)Σ ⊗Φ .
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Corollary 2.2. With the conditions of Theorem 2.11, the ith (i = 1, . . . , p) column
of the matrix X has the covariance matrix φiiΣ and the jth row ( j = 1, . . . ,n) has
the covariance matrix σ j jΦ .

Corollary 2.3. With the conditions of Theorem 2.11,

Corr(xi j,xkl) =
σikφ jl√
σiiσkkφ j jφll

,

that is, the correlations between two elements of the matrix X, depend only on Σ
and Φ but not on ψ .

PROOF: From Theorem 2.11, we get Cov(xi j,xkl) = cσikφ jl , Var(xi j) = cσiiφ j j, and
Var(xkl) = cσkkφll , where c =−2ψ ′(0). Therefore

Corr(xi j,xkl) =
cσikφ jl√

c2σiiσkkφ j jφll

=
σikφ jl√
σiiσkkφ j jφll

.

2.5 Stochastic Representation

In Cambanis, Huang, and Simons (1981) the stochastic representation of vector
variate elliptically contoured distribution was obtained using a result of Schoenberg
(1938). This result was extended to m.e.c. distributions by Anderson and Fang
(1982b). Shoenberg’s result is given in the next theorem.

Theorem 2.12. Let ψ be a real function ψ : [0,∞) → IR. Then, ψ(t′t), t ∈ IRk is
the characteristic function of a k-dimensional random variable x, if and only if
ψ(u) =

∫ ∞
0 Ωk(r2u)dF(r), u ≥ 0, where F is a distribution function on [0,∞) and

Ωk(t′t), t ∈ IRk is the characteristic function of the k-dimensional random variable
uk which is uniformly distributed on the unit sphere in IRk. Moreover, F(r) is the

distribution function of r = (x′x)
1
2 .

PROOF: Let us denote the unit sphere in IRk by Sk:

Sk = {x|x ∈ IRk;x′x = 1} ,

and let Ak be the surface area of Sk i.e.

Ak =
2π k

2

Γ
(

k
2

) .
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First, assume ψ(u) =
∫ ∞

0 Ωk(r2u)dF(r). Let r be a random variable with
distribution function F(r), and let uk be independent of r and uniformly distributed
on Sk. Define x = ruk. Then, the characteristic function of x is

φx(t) = E(exp(it′x))

= E(exp(it′ruk))

= E{E(exp(it′ruk)|r)}

=
∫ ∞

0
E(exp(it′ruk)|r = y)dF(y)

=
∫ ∞

0
φuk(yt)dF(y)

=
∫ ∞

0
Ωk(y

2t′t)dF(y) .

Therefore, ψ(t′t) =
∫ ∞

0 Ωk(y2t′t)dF(y) is indeed the characteristic function of the
k-dimensional random vector x. Moreover,

F(y) = P(r ≤ y) = P((r2)
1
2 ≤ y) = P(((ruk)

′(ruk))
1
2 ≤ y) = P((x′x)

1
2 ≤ y).

Conversely, assume ψ(t′t) is the characteristic function of a k-dimensional
random vector x. Let G(x) be the distribution function of x. Let dωk(t) denote the
integration on Sk. We have ψ(u) = ψ(ut′t) for t′t = 1, and therefore we can write

ψ(u) =
1

Ak

∫

Sk

ψ(ut′t)dωk(t)

=
1

Ak

∫

Sk

φx(
√

ut)dωk(t)

=
1

Ak

∫

Sk

∫

IRm
exp(i

√
ut′x)dG(x)dωk(t)

=

∫

IRm

(
1

Ak

∫

Sk

exp(i
√

ux′t)dωk(t)
)

dG(x)

=
∫

IRm
Ωk
(
(
√

ux)′(
√

ux)
)

dG(x)

=
∫

IRm
Ωk(ux′x)dG(x)

=
∫ ∞

0
Ωk(uy2)dF(y),

where F(y) = P((x′x)
1
2 ≤ y).
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Now, we can derive the stochastic representation of a m.e.c. distribution.

Theorem 2.13. Let X be a p×n random matrix. Let M be p×n, Σ be p× p, and
Φ be n×n constant matrices, Σ ≥ 0, Φ ≥ 0, rk(Σ) = p1, rk(Φ) = n1. Then,

X ∼ Ep,n(M,Σ ⊗Φ ,ψ) (2.9)

if and only if

X ≈ M+ rAUB′ , (2.10)

where U is p1 ×n1 and vec(U′) is uniformly distributed on Sp1n1 , r is a nonnegative
random variable, r and U are independent, Σ = AA′, and Φ = BB′ are rank
factorizations of Σ and Φ . Moreover, ψ(u) =

∫ ∞
0 Ωp1n1(r

2u)dF(r), u ≥ 0, where
Ωp1n1(t

′t), t ∈ IRp1n1 denotes the characteristic function of vec(U′), and F(r)
denotes the distribution function of r. The expression, M + rAUB′, is called the
stochastic representation of X.

PROOF: First, assume X ∼ Ep,n(M,Σ⊗Φ ,ψ). Then, it follows from Corollary 2.1,
that Y = A−(X−M)B′− ∼ Ep1,n1(0,Ip1 ⊗ In1 ,ψ). Thus,

y = vec(Y′)∼ Ep1n1(0,Ip1n1 ,ψ).

So, ψ(t′t), t ∈ IRp1n1 is a characteristic function and from Theorem 2.12, we get

ψ(u) =
∫ ∞

0
Ωp1n1(y

2u)dF(y), u ≥ 0,

which means that y ≈ ru, where r is nonnegative with distribution function F(y), u
is uniformly distributed on Sp1n1 , and r and u are independent. Therefore, we can
write y ≈ ru, where u = vec(U′). Now, using Corollary 2.1 again, we get

X ≈ AYB′+M ≈ M+ rAUB′ .

Conversely, suppose X ≈ M+ rAUB′. Let u = vec(U′). Define

ψ(u) =
∫ ∞

0
Ωp1n1(y

2u)dF(y),

where F(y) is the distribution function of r, u ≥ 0. Then, it follows from The-
orem 2.12, that ψ(t′t), t ∈ IRp1n1 is the characteristic function of ru. So ru ∼
Ep1n1(0,Ip1n1 ,ψ) and hence,

rU ∼ Ep1n1(0,Ip1 ⊗ In1 ,ψ) .

Therefore,

X ≈ M+ rAUB′ ∼ Ep,n(M,(AA′)⊗ (BB′),ψ) = Ep,n(M,Σ ⊗Φ ,ψ).
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It may be noted that the stochastic representation is not uniquely defined. We can
only say the following.

Theorem 2.14. M1 + r1A1UB′
1 and M2 + r2A2UB′

2, where U is p1 × n1, are two
stochastic representations of the same p × n dimensional nondegenerate m.e.c.
distribution if and only if M1 = M2, and there exist G ∈ O(p1), H ∈ O(n1), and
positive constants a, b, and c such that ab = c, A2 = aA1G, B2 = bB1H, and
r2 =

1
c r1.

PROOF: The “if” part is trivial. Conversely, let X ≈ M1+r1A1UB′
1 and X2 ≈ M2+

r2A2UB′
2. Then

X ∼ Ep,n(M1,(A1A′
1)⊗ (B1B′

1),ψ1)

and

X ∼ Ep,n(M2,(A2A′
2)⊗ (B2B′

2),ψ2),

where ψi(u) =
∫ ∞

0 Ωp1n1(y
2u)dFi(y), and Fi(y) denotes the distribution function of

ri, i = 1,2.
It follows, from Theorem 2.4, that M1 = M2, and there exist a2 > 0, b2 > 0,

and c2 > 0 such that a2b2 = c2, A2A′
2 = a2A1A′

1, B2B′
2 = b2B1B′

1, and ψ2(z) =

ψ1

(
1
c2 z
)

. Now, from Theorem 1.11, it follows that there exist G ∈ O(p1) and H ∈
O(n1) such that A2 = aA1G, and B2 = bB1H. Since, ψ2(z) = ψ1

(
1
c2 z
)

, we have

ψ2(z) =
∫ ∞

0
Ωp1n1(y

2z)dF2(y)

= ψ1

( z
c2

)

=
∫ ∞

0
Ωp1n1

(
y2 z

c2

)
dF1(y)

=
∫ ∞

0
Ωp1n1

((y
c

)2
z

)
dF1(y)

=
∫ ∞

0
Ωp1n1(t

2z)dF1(ct) .

Therefore F2(y) = F1(cy), and

P(r2 < y) = P(r1 < cy) = P
( r1

c
< y
)
.

Hence, r2 =
1
c r1.
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Remark 2.4. It follows, from Theorem 2.13, that U does not depend on ψ . On the
other hand, if p1 and n1 are fixed, ψ and r determine each other.

Remark 2.5. Let Ep,n(0,Σ ⊗Φ ,ψ) and rAUB′ be the stochastic representation of
X. Then, A−XB′− ≈ rU, and tr((A−XB′−)′(A−XB′−))≈ tr(r2U′U). Now,

tr((A−XB′−)′(A−XB′−)) = tr(B−X′A′−A−XB′−)

= tr(X′A′−A−XB′−B−)

= tr(X′Σ−XΦ−) .

Here we used A′−A− = Σ−, which follows from Theorem 1.23. On the other hand,
tr(U′U) = 1. Therefore, we get r2 ≈ tr(X′Σ−XΦ−).

If an elliptically contoured random matrix is nonzero with probability one,
then the terms of the stochastic representation can be obtained explicitly. First we
introduce the following definition.

Definition 2.4. Let X be a p × n matrix. Then its norm, denoted by ‖X‖, is
defined as

‖X‖=
(

p

∑
i=1

n

∑
j=1

x2
i j

) 1
2

.

That is, ‖X‖= (tr(X′X))
1
2 , and if n = 1, then we have ‖x‖= (x′x)

1
2 .

The proof of the following theorem is based on Muirhead (1982).

Theorem 2.15. Let X ∼ Ep,n(0,Ip⊗ In,ψ) with P(X = 0) = 0. Then, X = ‖X‖ X
‖X‖ ,

P(‖X‖ > 0) = 1, vec
(

X′
‖X‖
)

is uniformly distributed on Spn, and ‖X‖ and X
‖X‖ are

independent. That is, ‖X‖ X
‖X‖ is the stochastic representation of X.

PROOF: Since X = 0 iff tr(X′X) = 0, P(‖X‖ > 0) = 1, follows so we can write
X = ‖X‖ X

‖X‖ . Define x = vec(X′). Then, x ∼ Epn(0,Ipn,ψ) and ‖X‖= ‖x‖. Hence,
x = ‖x‖ x

‖x‖ .
Let T (x) = x

‖x‖ , and G ∈ O(pn). Then, we get Gx ∼ Epn(0,Ipn,ψ), so x ≈ Gx
and T (x)≈ T (Gx). On the other hand,

T (Gx) =
Gx
‖Gx‖ =

Gx
‖x‖ = GT (x) .

Hence, T (x) ≈ GT (x). However, the uniform distribution is the only one on
Spn which is invariant under orthogonal transformation. So, T (x) is uniformly
distributed on Spn.
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Now, we define a measure μ on Spn. Fix B ⊂ IR+
0 Borel set. Let A ⊂ Spn be a

Borel set. Then,

μ(A) = P(T (x) ∈ A|‖X‖ ∈ B) .

Since μ(IRpn) = 1, μ is a probability measure on Spn.
Let G ∈ O(pn). Then, G−1x ≈ x, and we have

μ(GA) = P(T (x) ∈ GA|‖x‖ ∈ B)

= P(G−1T (x) ∈ A|‖x‖ ∈ B)

= P(T (G−1x) ∈ A|‖x‖ ∈ B)

= P(T (G−1x) ∈ A|‖G−1x‖ ∈ B)

= P(T (x) ∈ A|‖x‖ ∈ B)

= μ(A) .

Thus, μ(A) is a probability measure on Spn, invariant under orthogonal transfor-
mation, therefore, it must be the uniform distribution. That is, it coincides with the
distribution of T (x). So, μ(A) = P(T (x) ∈ A), from which it follows that

P(T (x) ∈ A|‖x‖ ∈ B) = P(T (x) ∈ A) .

Therefore, T (x) and ‖x‖ are independently distributed. Returning to the matrix
notation, the proof is completed.

Muirhead (1982) has given the derivation of the p.d.f. of r in the case when
x ∼ Ep(0,Ip,ψ) and x is absolutely continuous. Now for the elliptically contoured
random matrices, the following theorem can be stated.

Theorem 2.16. Let X ∼ Ep,n(0,Σ ⊗Φ ,ψ) and rAUB′ be a stochastic representa-
tion of X. Assume X is absolutely continuous and has the p.d.f.

f (X) = |Σ |− n
2 |Φ |− p

2 h(tr(X′Σ−1XΦ−1)) .

Then, r is also absolutely continuous and has the p.d.f.

g(r) =
2π

pn
2

Γ
( pn

2

) rpn−1h(r2), r ≥ 0.

PROOF: Step 1. First we prove the theorem for n = 1. Then, x ∼ Ep(0,Σ ,ψ) and so

y = A−1x ∼ Ep(0,Ip,ψ) .
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Therefore y has the p.d.f. h(y′y). Let us introduce polar coordinates:

y1 = rsinθ1sinθ2 . . .sinθp−2sinθp−1

y2 = rsinθ1sinθ2 . . .sinθp−2cosθp−1

y3 = rsinθ1sinθ2 . . .cosθp−2

...

yp−1 = rsinθ1cosθ2

yp = rcosθ1 ,

where r > 0, 0 < θi < π , i = 1,2, . . . , p − 2, and 0 < θp−1 < 2π . We want to
express the p.d.f. of y in terms of r,θ1, . . . ,θp−1. The Jacobian of the transformation
(y1,y2, . . . ,yp)→ (r,θ1, . . . ,θp−1) is rp−1sinp−2θ1sinp−3θ2 . . .sinθp−2. On the other
hand, y′y = r2. Therefore, the p.d.f. of (r,θ1, . . . ,θp−1) is

h(r2)rp−1sinp−2θ1sinp−3θ2 . . .sinθp−2.

Consequently, the p.d.f. of r is

g(r) = rp−1h(r2)
∫ 2π

0

∫ π

0
. . .
∫ π

0
sinp−2θ1sinp−3θ2 . . .sinθp−2dθ1dθ2 . . .dθp−2dθp−1

= rp−1h(r2)
2π

p
2

Γ
( p

2

) .

Step 2. Now let X ∼ Ep,n(0,Σ ⊗Φ ,ψ) and X ≈ rAUB′. Define x = vec(X′), and
u = vec(U′). Then, x ∼ Epn(0,Σ ⊗Φ ,ψ), x has p.d.f. 1

|Σ⊗Φ |h(x
′(Σ ⊗Φ)−1x), and

x ≈ r(A⊗B)u. Using Step 1 we get the following as the p.d.f. of r,

g(r) = rpn−1h(r2)
2π

pn
2

Γ
( pn

2

) .

The stochastic representation is a major tool in the study of m.e.c. distributions.
It will often be used in further discussion.

Cambanis, Huang and Simons (1981), and Anderson and Fang (1987) derived
the relationship between the stochastic representation of a multivariate elliptically
contoured distribution and the stochastic representation of its marginals. This result
is given in the next theorem.

Theorem 2.17. Let X ∼ Ep,n(0,Ip ⊗ In,ψ) with stochastic representation X ≈ rU.
Let X be partitioned into
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X =

⎛

⎜⎜⎜
⎝

X1

X2
...

Xm

⎞

⎟⎟⎟
⎠

,

where Xi is pi ×n matrix, i = 1, . . . ,m. Then,

⎛

⎜⎜⎜
⎝

X1

X2
...

Xm

⎞

⎟⎟⎟
⎠

≈

⎛

⎜⎜⎜
⎝

rr1U1

rr2U2
...

rrmUm

⎞

⎟⎟⎟
⎠

,

where r, (r1,r2, . . . ,rm), U1,U2, . . . ,Um are independent, ri ≥ 0, i = 1, . . . ,m,
∑m

i=1 r2
i = 1,

(r2
1,r

2
2, . . . ,r

2
m−1)∼ D

( p1n
2

,
p2n
2

, . . . ,
pm−1n

2
;

pmn
2

)
, (2.11)

and vec(U′
i) is uniformly distributed on Spin, i = 1,2, . . . ,m.

PROOF: Since X ≈ rU, we have

⎛

⎜⎜⎜
⎝

X1

X2
...

Xm

⎞

⎟⎟⎟
⎠

≈ rU ,

where r and U are independent. Thus it suffices to prove that

U ≈

⎛

⎜⎜⎜
⎝

r1U1

r2U2
...

rmUm

⎞

⎟⎟⎟
⎠

.

Note that U does not depend onψ , so we can chooseψ(z)= exp
(− z

2

)
, which means

X ∼ Np,n(0,Ip ⊗ In). It follows that Xi ∼ Npi,n(0,Ipi ⊗ In) and Xi’s are mutually
independent, i = 1, . . . ,m.

Now,

U ≈ X
‖X‖ =

(
X′

1

‖X‖ ,
X′

2

‖X‖ , . . . ,
X′

m

‖X‖
)′

.
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From Theorem 2.15 it follows that Xi = ‖Xi‖ Xi
‖Xi‖ , where ‖Xi‖ and Xi

‖Xi‖ are

independent and vec
(

X′
i

‖Xi‖
)
≈ upin which is uniformly distributed on Spin. Since,

Xi’s are independent, ‖Xi‖ and Xi
‖Xi‖ are mutually independent, i = 1,2, . . . ,m.

Therefore, we get

U ≈
(‖X1‖

‖X‖
X′

1

‖X1‖ ,
‖X2‖
‖X‖

X′
2

‖X2‖ , . . . ,
‖Xm‖
‖X‖

X′
m

‖Xm‖
)′

.

Define ri =
‖Xi‖
‖X‖ , and Ui =

Xi
‖Xi‖ , i = 1,2, . . . ,m. Since ‖X‖ =

(
∑m

i=1 ‖Xi‖2
) 1

2 , ri’s
are functions of ‖X1‖,‖X2‖, . . . ,‖Xm‖. Hence, (r1,r2, . . . ,rm), U1,U2, . . . ,Um are
independent. Moreover, ‖Xi‖2 = tr(X′

iXi)∼ χ2
pin and ‖Xi‖2’s are independent. Now,

it is known that

( ‖X1‖2

∑m
i=1 ‖Xi‖2 ,

‖X2‖2

∑m
i=1 ‖Xi‖2 , . . . ,

‖Xm‖2

∑m
i=1 ‖Xi‖2

)
∼ D
( p1n

2
,

p2n
2

, . . . ,
pm−1n

2
;

pmn
2

)

(see Johnson and Kotz, 1972). Consequently, (r2
1,r

2
2, . . . ,r

2
m−1) has the distribution

(2.11).

Corollary 2.4. Let X ∼ Ep,n(0,Ip ⊗ In,ψ) with stochastic representation X ≈ rU.
Let X be partitioned into

X =

(
X1

X2

)
,

where X1 is q× n matrix, 1 ≤ q < p. Then,

(
X1

X2

)
≈
(

rr1U1

rr2U2

)
, where r, (r1,r2),

U1,U2 are independent, ri ≥ 0, i = 1,2, r2
1 + r2

2 = 1, and r2
1 ∼ B

(
qn
2 , (p−q)n

2

)
. Also

vec(U′
1) is uniformly distributed on Sqn and vec(U′

2) is uniformly distributed on
S(p−q)n.

2.6 Conditional Distributions

First, we derive the conditional distribution for the vector variate elliptically
contoured distribution. We will follow the lines of Cambanis, Huang, and Simons
(1981). The following lemma will be needed in the proof.

Lemma 2.2. Let x and y be one-dimensional nonnegative random variables.
Assume that y is absolutely continuous with probability density function g(y).
Denote the distribution function of x by F(x). Define z = xy. Then, z is absolutely
continuous on IR+ with p.d.f.
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h(z) =
∫ ∞

0

1
x

g
( z

x

)
dF(x) . (2.12)

If F(0) = 0, then z is absolutely continuous on IR+
0 , and if F(0) > 0, then z has

an atom of size F(0) at zero. Moreover, a conditional distribution of x given z is

P(x ≤ x0|z = z0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
h(z0)

∫
(0,w]

1
x0

g
(

z0
x0

)
dF(x0) if x0 ≥ 0, z0 > 0, and h(z0) �= 0

1 if x0 ≥ 0, and z0 = 0
or x0 ≥ 0, z0 > 0 and h(z0) = 0

0 if x0 < 0 .

(2.13)

PROOF:

P(0 < z ≤ z0) = P(0 < xy ≤ z0)

=
∫ ∞

0
P(0 < xy ≤ z0|x = x0)dF(x0)

=
∫ ∞

0
P(0 < y ≤ z0

x0
)dF(x0)

=
∫ ∞

0

∫
(

0,
z0
x0

] g(y)dydF(x0).

Let t = x0y. Then, y = t
x0

, dy = 1
x0

dt and

∫ ∞

0

∫
(

0,
z0
x0

] g(y)dydF(x0) =
∫ ∞

0

∫

(0,z0]

1
x0

g

(
t
x0

)
dtdF(x0)

=
∫

(0,z0]

∫ ∞

0

1
x0

g

(
t
x0

)
dF(x0)dt

and this proves (2.12).
Since, y is absolutely continuous, P(y = 0) = 0. Hence,

P(χ{0}(z) = χ{0}(x)) = 1. (2.14)

Therefore, if F(0) = 0, then P(z = 0) = 0, and so z is absolutely continuous on R+
0 .

If F(0)> 0, then P(z = 0) = F(0) and thus z has an atom of size F(0) at zero.
Now, we prove (2.13). Since x ≥ 0, we have P(x ≤ x0) = 0 if x0 < 0. Hence,

P(x ≤ x0|z) = 0 if x0 < 0. If x0 ≥ 0, we have to prove that the function P(x ≤ x0|z)
defined under (2.13) satisfies

∫

[0,r]
P(x ≤ x0|z)dH(z) = P(x ≤ x0,z ≤ r),

where H(z) denotes the distribution function of z and r ≥ 0. Now,
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∫

[0,r]
P(x ≤ x0|z)dH(z) = P(x ≤ x0|z = 0)H(0)+

∫

(0,r]
P(x ≤ x0|z)dH(z)

= H(0)+
∫

(0,r]

1
h(z)

(∫

(0,x0]

1
x

g
( z

x

)
dF(x)

)
h(z)dz

= H(0)+
∫

(0,x0]

∫

(0,r]

1
x

g
( z

x

)
dzdF(x).

Let u = z
x . Then, J(u → z) = x, and so

∫

(0,r]

1
x

g
( z

x

)
dz =

∫

(0, r
x ]

g(u)du = P
(

0 < y ≤ r
x

)
.

Hence,

H(0)+
∫

(0,x0]

∫

(0,r]

1
x

g
( z

x

)
dzdF(x) = H(0)+

∫

(0,x0]
P
(

0 < y ≤ r
x

∣∣∣x = x0

)
dF(x0)

= H(0)+P
(

0 < x ≤ x0,0 < y ≤ r
x

)

= H(0)+P(0 < x ≤ x0,0 < xy ≤ r)

= P(z = 0)+P(0 < x ≤ x0,0 < z ≤ r)

= P(x = 0,z = 0)+P(0 < x ≤ x0,0 < z ≤ r)

= P(0 ≤ x ≤ x0,0 ≤ z ≤ r)

= P(x ≤ x0,z ≤ r),

where we used (2.14).
Now, we obtain the conditional distribution for spherical distributions.

Theorem 2.18. Let x ∼ Ep(0,Ip,ψ) with stochastic representation ru. Let us par-

tition x as x =

(
x1

x2

)
, where x1 is q-dimensional (1 ≤ q < p). Then, the conditional

distributionæ of x1 given x2 is (x1|x2) ∼ Eq

(
0, Iq,ψ‖x2‖2)

)
, and the stochastic

representation of (x1|x2) is r‖x2‖2 u1, where u1 is q-dimensional. The distribution
of r‖x2‖2 is given by

a) P(ra2 ≤ y) =

∫
(a,
√

a2+y2]
(w2 −a2)

q
2−1w−(p−2)dF(w)

∫
(a,∞)(w

2 −a2)
q
2−1w−(p−2)dF(w)

(2.15)
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for y ≥ 0 if a > 0 and F(a)< 1,

b) P(ra2 = 0) = 1 if a = 0 or F(a) = 1 . (2.16)

Here F denotes the distribution function of r.

PROOF: From Corollary 2.4, we have the representation

(
x1

x2

)
≈
(

rr1u1

rr2u2

)
.

Using the independence of r, r1, u1 and u2, we get

(x1|x2) ≈ (rr1u1|rr2u2 = x2)

= (rr1u1|r(1− r2
1)

1
2 u2 = x2)

= (rr1|r(1− r2
1)

1
2 u2 = x2)u1,

and defining r0 = (rr1|r(1− r2
1)

1
2 u2 = x2), we see that r and u1 are independent;

therefore, (x1|x2) has a spherical distribution.
Next, we show that

(rr1|r(1− r2
1)

1
2 u2 = x2)≈

(
(r2 −‖x2‖2)

1
2 |r(1− r2

1)
1
2 = ‖x2‖

)
.

If r(1− r2
1)

1
2 u2 = x2, then

(
r(1− r2

1)
1
2 u2

)′
r(1− r2

1)
1
2 u2 = ‖x2‖2 and therefore,

r2(1− r2
1) = ‖x2‖2. Hence, we get r2 − r2r2

1 = ‖x2‖2, thus r2r2
1 = r2 −‖x2‖2 and

rr1 = (r2 −‖x2‖2)
1
2 . Therefore,

(rr1|r(1− r2
1)

1
2 u2 = x2)≈ ((r2 −‖x2‖2)

1
2 |r(1− r2

1)
1
2 u2 = x2).

If x2 = 0, then ‖x2‖= 0, and using the fact that u1 �= 0 we get

((r2 −‖x2‖2)
1
2 |r(1− r2

1)
1
2 u2 = x2) = ((r2 −‖x2‖2)

1
2 |r(1− r2

1)
1
2 = 0)

= ((r2 −‖x2‖2)
1
2 |r(1− r2

1)
1
2 = ‖x2‖).

If x2 �= 0, then we can write

((r2 −‖x2‖2)
1
2 |r(1− r2

1)
1
2 u2 = x2)

=

(
(r2 −‖x2‖2)

1
2 |r(1− r2

1)
1
2 u2 = ‖x2‖ x2

‖x2‖
)



38 2 Basic Properties

=

(
(r2 −‖x2‖2)

1
2 |r(1− r2

1)
1
2 = ‖x2‖ and u2 =

x2

‖x2‖
)

=
(
(r2 −‖x2‖2)

1
2 |r(1− r2

1)
1
2 = ‖x2‖

)
,

where we used the fact that r, r1, and u2 are independent. Since 1− r2
1 ∼ B

( p−q
2 , q

2

)

its p.d.f. is

b(t) =
Γ
( p

2

)

Γ
( q

2

)
Γ
( p−q

2

) t
p−q

2 −1(1− t)
q
2−1, 0 < t < 1.

Hence, the p.d.f. of (1− r2
1)

1
2 is

g(y) =
Γ
( p

2

)

Γ
( q

2

)
Γ
( p−q

2

) (y2)
p−q

2 −1(1− y2)
q
2−12y

=
2Γ
( p

2

)

Γ
( q

2

)
Γ
( p−q

2

)yp−q−1(1− y2)
q
2−1, 0 < y < 1.

Using Lemma 2.2 we obtain a conditional distribution of r given r(1− r2
1)

1
2 = a.

P(r ≤ u|r(1− r2
1)

1
2 = a) (2.17)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
h(a)

∫
(0,u]

1
w

2Γ ( p
2 )

Γ ( q
2 )Γ (

p−q
2 )

(
a
w

)p−q−1
(

1− a2

w2

) q
2 −1

dF(w) if u ≥ 0, a > 0, and h(a) �= 0

1 if u ≥ 0, and a = 0
or u ≥ 0, a > 0 and h(a) = 0

0 if u < 0 .

where

h(a) =
∫

(a,∞)

1
w

2Γ
( p

2

)

Γ
( q

2

)
Γ
( p−q

2

)
( a

w

)p−q−1
(

1− a2

w2

) q
2−1

dF(w) .

Now,

∫
(a,u]

1
w

2Γ ( p
2 )

Γ ( q
2 )Γ (

p−q
2 )

(
a
w

)p−q−1
(

1− a2

w2

) q
2−1

dF(w)

h(a)

=

∫
(a,u]

(
w2 −a2

) q
2−1

w−(1+p−q−1+q−2)dF(w)
∫
(a,∞) (w

2 −a2)
q
2−1 w−(1+p−q−1+q−2)dF(w)
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=

∫
(a,u]

(
w2 −a2

) q
2−1

w−(p−2)dF(w)
∫
(a,∞) (w

2 −a2)
q
2−1 w−(p−2)dF(w)

. (2.18)

We note that h(a) = 0 if and only if

∫

(a,∞)

(
w2 −a2) q

2−1
w−(p−2)dF(w) , (2.19)

and since
(
w2 −a2

) q
2−1

w−(p−2) > 0 for w > a, we see that (2.19) is equivalent to
F(a) = 1. Therefore, h(a) = 0 if and only if F(a) = 1.

(a) If a > 0 and F(a)< 1, then for r ≥ 0 we have

P(ra2 ≤ y) = P((r2 −a2)
1
2 ≤ y|r(1− r2

1)
1
2 = a)

= P(r ≤ (y2 +a2)
1
2 |r(1− r2

1)
1
2 = a) . (2.20)

From (2.17), (2.18), and (2.20) we have

P(ra2 ≤ y) = P(r ≤ (y2 +a2)
1
2 |r(1− r2

1)
1
2 = a)

=

∫
(a,
√

a2+y2]

(
w2 −a2

) q
2−1

w−(p−2)dF(w)
∫
(a,∞) (w

2 −a2)
q
2−1 w−(p−2)dF(w)

.

(b) If r ≥ 0 and a = 0 or r ≥ 0, a > 0 and F(a) = 1, then from (2.17) we get

P(r ≤ (y2 +a2)
1
2 |r(1− r2

1)
1
2 = a) = 1 .

Take y = 0, then we get

P(ra2 ≤ 0) = P(r ≤ a|r(1− r2
1)

1
2 = a) = 1. (2.21)

Now, since ra2 ≥ 0, (2.21) implies P(ra2 = 0) = 1.

In order to derive the conditional distribution for the multivariate elliptical
distribution we need an additional lemma.

Lemma 2.3. Let x ∼ Ep(m,Σ ,ψ) and partition x, m, Σ as

x =

(
x1

x2

)
, m =

(
m1

m2

)
, Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
,
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where x1, m1 are q-dimensional vectors and Σ 11 is q × q, 1 ≤ q < p. Let y ∼
Ep(0,Ip,ψ) and partition y as y =

(
y1

y2

)
, where y1 is q-dimensional. Define

Σ 11·2 = Σ 11 − Σ 12Σ−
22Σ 21 and let Σ 11·2 = AA′ and Σ 22 = A2A′

2 be rank factor-
izations of Σ 11·2 and Σ 22. Then

(
x1

x2

)
≈
(

m1 +Ay1 +Σ12Σ−
22A2y2

m2 +A2y2

)
.

PROOF: Since

(
y1

y2

)
∼ Ep(0,Ip,ψ), we have

(
m1 +Ay1 +Σ12Σ−

22A2y2

m2 +A2y2

)
=

(
m1

m2

)
+

(
A Σ 12Σ−

22A2

0 A2

)(
y1

y2

)

∼ Ep

((
m1

m2

)
,

(
A Σ 12Σ−

22A2

0 A2

)(
A′ 0

A′
2Σ

−
22Σ 21 A′

2

)
,ψ
)

= Ep

(
m,

(
AA′+Σ12Σ−

22A2A′
2Σ

−
22Σ 21 Σ 12Σ−

22A2A′
2

A2A′
2Σ

−
22Σ 21 A2A′

2

)
,ψ
)

= Ep

(
m,

(
Σ 11 −Σ12Σ−

22Σ 21 +Σ12Σ−
22Σ 22Σ−

22Σ 21 Σ 12Σ−
22Σ 22

Σ 22Σ−
22Σ 21 A2A′

2

)
,ψ
)
. (2.22)

Now we prove that Σ 12Σ−
22Σ 22 = Σ 12. If Σ 22 is of the form Σ 22 =

(
L 0
0 0

)
, where

L is a nonsingular, diagonal s×s matrix, then Σ 12 must be of the form Σ 12 =
(

K, 0
)

where K is q × s. Indeed, otherwise there would be numbers i and j such that
1 ≤ i ≤ q and q+ s ≤ j ≤ p and σi j �= 0, σ j j = 0. Since Σ 22 ≥ 0, we must have∣∣∣∣
σii σ ji

σi j σ j j

∣∣∣∣≥ 0. However with σi j �= 0, σ j j = 0, we have

∣∣∣∣
σii σ ji

σi j σ j j

∣∣∣∣=−σ2
i j < 0 which

is a contradiction. Therefore, Σ 12 =
(

K, 0
)
.

Let Σ−
22 be partitioned as

Σ−
22 =

(
A B
C D

)

By the definition of a generalized inverse matrix, we must have

(
L 0
0 0

)(
A B
C D

)(
L 0
0 0

)
=

(
L 0
0 0

)
,

which gives
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(
LAL 0

0 0

)
=

(
L 0
0 0

)
,

So LAL = L, and since L is nonsingular, we get A = L−1. Thus Σ−
22 =

(
L−1 B
C D

)
.

Then,

Σ 12Σ−
22Σ 22 =

(
K, 0

)(L−1 B
C D

)(
L 0
0 0

)

=
(

K, 0
)( Is 0

CL 0

)

=
(

K, 0
)

= Σ 12 .

If Σ 22 is not of the form Σ 22 =

(
L 0
0 0

)
, then there exists a G ∈ O(p−q) such that

GΣ 22G′ =
(

L 0
0 0

)
. Now, define

Σ ∗ =

(
Iq 0
0 G

)(
Σ 11 Σ 12

Σ 21 Σ 22

)(
Iq 0
0 G′

)

=

(
Σ 11 Σ 12G′

GΣ 21 GΣ 22G′

)
.

Then, we must have

Σ 12G′(GΣ 22G′)−(GΣ 22G′) = Σ 12G′

That is, Σ 12G′GΣ−
22G′GΣ 22G′ = Σ 12G′, which is equivalent to Σ 12Σ−

22Σ 22 = Σ 12.
Using Σ 12Σ−

22Σ 22 = Σ 12 in (2.21), we have

(
m1 +Ay1 +Σ12Σ−

22A2y2

m2 +A2y2

)
= Ep

(
m,

(
Σ 11 −Σ12Σ−

22Σ 21 +Σ 12Σ−
22Σ 21 Σ 12

Σ 21 Σ 22

)
,ψ
)

= Ep

(
m,

(
Σ 11 Σ 12

Σ 21 Σ 22

)
,ψ
)

= Ep(m,Σ ,ψ)

which is the distribution of x.

Next, we give the conditional distribution of the multivariate elliptical distribu-
tion in two different forms.
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Theorem 2.19. Let x ∼ Ep(m,Σ ,ψ) with stochastic representation m+rAu. Let F
be the distribution function of r. Partition x, m, Σ as

x =

(
x1

x2

)
, m =

(
m1

m2

)
, Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
,

where x1, m1 are q-dimensional vectors and Σ 11 is q × q, 1 ≤ q < p. Assume
rk(Σ 22)≥ 1. Then, a conditional distribution of x1 given x2 is

(x1|x2)∼ Eq(m1 +Σ 12Σ−
22(x2 −m2),Σ 11·2,ψq(x2)),

where

Σ 11·2 = Σ 11 −Σ12Σ−
22Σ 21, q(x2) = (x2 −m2)

′Σ−
22(x2 −m2),

and

ψq(x2)(u) =
∫ ∞

0
Ωq(r

2u)dFq(x2)(r) , (2.23)

where

(a)

Fq(x2)(r) =

∫
(
√

q(x2),
√

q(x2)+r2]
(w2 −q(x2))

q
2−1w−(p−2)dF(w)

∫
(
√

q(x2),∞)
(w2 −q(x2))

q
2−1w−(p−2)dF(w)

(2.24)

for r ≥ 0 if q(x2)> 0 and F(
√

q(x2))< 1, and
(b)

Fq(x2)(r) = 1 for r ≥ 0 if q(x2) = 0 and F(
√

q(x2)) = 1 . (2.25)

PROOF: From Lemma 2.3, we get

(
x1

x2

)
≈
(

m1 +Ay1 +Σ12Σ−
22A2y2

m2 +A2y2

)
,

where AA′ = Σ 11·2 and A2A′
2 = Σ 22 are rank factorizations of Σ 11·2, Σ 22, and(

y1

y2

)
∼ Ep(0,Ip,ψ). Thus,

(x1|x2) ≈ (m1 +Ay1 +Σ12Σ−
22A2y2|m2 +A2y2 = x2)

= m1 +Σ12Σ−
22(A2y2|m2 +A2y2 = x2)+A(y1|m2 +A2y2 = x2)
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= m1 +Σ12Σ−
22(A2y2|A2y2 = x2 −m2)+A(y1|A2y2 = x2 −m2)

= m1 +Σ12Σ−
22(x2 −m2)+A(y1|A−

2 A2y2 = A−
2 (x2 −m2)) . (2.26)

Now A−
2 A2 = Irk(Σ 22)

, and hence we get

(y1|A−
2 A2y2 = A−

2 (x2 −m2)) = (y1|y2 = A−
2 (x2 −m2)) . (2.27)

From Theorem 2.18, we get

(y1|y2 = A−
2 (x2 −m2))∼ Eq(0,Iq,ψq(x2)) ,

where

q(x2) = (A−
2 (x2 −m2))

′A−
2 (x2 −m2)

= (x2 −m2)
′A−′

2 A−
2 (x2 −m2)

= (x2 −m2)
′Σ−

22(x2 −m2)

and ψq(x2) is defined by (2.23)–(2.25). Thus,

A(y1|y2 = A−
2 (x2 −m2)) ∼ Eq(0,AA′,ψq(x2))

= Eq(0,Σ 11·2,ψq(x2)). (2.28)

Finally, from (2.26), (2.27), and (2.28) we get

(x1|x2)∼ Eq(m1+Σ 12Σ−
22(x2−m2),Σ11·2,ψq(x2)).

Another version of the conditional distribution is given in the following theorem.

Theorem 2.20. Let x ∼ Ep(m,Σ ,ψ) with stochastic representation m+ rAu. Let
F be the distribution function of r. Partition x, m, Σ as

x =

(
x1

x2

)
, m =

(
m1

m2

)
, Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
,

where x1, m1 are q-dimensional vectors and Σ 11 is q × q, 1 ≤ q < p. Assume
rk(Σ 22)≥ 1.

Let S denote the subspace of IRp−q defined by the columns of Σ 22; that is, y ∈ S,
if there exists a ∈ IRp−q such that y = Σ 22a.

Then, a conditional distribution of x1 given x2 is

(a) (x1|x2)∼ Eq(m1 +Σ12Σ−
22(x2 −m2),Σ11·2,ψq(x2))

for x2 ∈ m2 + S, where q(x2) = (x2 −m2)
′Σ−

22(x2 −m2) and ψq(x2) is defined
by (2.23)–(2.25).

(b) (x1|x2) = m1 for x2 ∈/ m2 +S.
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PROOF: It suffices to prove that P(x2 ∈/ m2+S) = 0 since (x1|x2) can be arbitrarily
defined for x2 ∈ B where B is of measure zero. However, P(x2 ∈/ m2 + S) = 0
is equivalent to P(x2 ∈ m2 + S) = 1; that is, P(x2 − m2 ∈ S) = 1. Now, x2 ∼
Ep−q(m2,Σ22,ψ) and so x2 −m2 ∼ Ep−q(0,Σ 22,ψ).

Let k = rk(Σ 22). Let G ∈ O(p− q) such that GΣ 22G′ =
(

L 0
0 0

)
, where L is a

diagonal and nonsingular k× k matrix and define y = G(x2 −m2). Then,

y ∼ Ep−q

(
0,
(

L 0
0 0

)
,ψ
)
. (2.29)

Partition y as y =

(
y1

y2

)
, where y1 is k×1. We have

P(x2 −m2 ∈ S) = P(x2 −m2 = Σ 22a with a ∈ IRp−q)

= P(G(x2 −m2) = GΣ 22G′Ga with a ∈ IRp−q)

= P

(
y =

(
L 0
0 0

)
b with b ∈ IRp−q

)

= P

(
y =

(
L 0
0 0

)(
b1

b2

)
with b1 ∈ IRk,b2 ∈ IRp−q−k

)

= P

(
y =

(
Lb1

0

)
with b1 ∈ IRk

)

= P

((
y1

y2

)
=

(
c
0

)
with c ∈ IRk

)

= P(y2 = 0) .

Now, it follows from (2.29) that y2 ∼ Ep−q−k(0,0,ψ) and so P(y2 = 0) = 1.
Therefore, P(x2 −m2 ∈ S) = 1.

Now we can derive the conditional distribution for m.e.c. distributions.

Theorem 2.21. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with stochastic representation M +
rAUB′. Let F be the distribution function of r. Partition X, M, Σ as

X =

(
X1

X2

)
, M =

(
M1

M2

)
, and Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
,

where X1 is q×n, M1 is q×n, and Σ 11 is q×q, 1 ≤ q < p. Assume rk(Σ 22)≥ 1.
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Let S denote the subspace of IR(p−q)n defined by the columns of Σ 22 ⊗Φ; that
is, y ∈ S, if there exists b ∈ IR(p−q)n such that y = (Σ 22 ⊗Φ)b. Then, a conditional
distribution of X1 given X2 is

1. (X1|X2)∼ Eq,n(M1 +Σ 12Σ−
22(X2 −M2),Σ11·2 ⊗Φ ,ψq(X2))

for vec(X′
2) ∈ vec(M′

2)+S, where q(X2) = tr((X2 −M2)
′Σ−

22(X2 −M2)Φ−),

ψq(X2)(u) =
∫ ∞

0
Ωqn(r

2u)dFq(X2)(r) , (2.30)

where

(a)

Fa2(r) =

∫
(a,
√

a2+r2]
(w2 −a2)

qn
2 −1w−(pn−2)dF(w)

∫
(a,∞)(w

2 −a2)
qn
2 −1w−(pn−2)dF(w)

(2.31)

for r ≥ 0 if a > 0 and F(a)< 1, and
(b)

Fa2(r) = 1 for r ≥ 0 if a = 0 and F(a) = 1 . (2.32)

2. (X1|X2) = M1 for vec(X′
2) ∈/ vec(M′

2)+S.

PROOF: Define x = vec(X′), x1 = vec(X′
1), x2 = vec(X′

2), m = vec(M′), m1 =

vec(M′
1), and m2 = vec(M′

2). Then x =

(
x1

x2

)
and x ∼ Epn(m,Σ ⊗Φ ,ψ). Now

apply Theorem 2.20.

(1) If x2 ∈ vec(M′
2)+S, we have

(x1|x2)∼ Eqn

(

m1 +(Σ12 ⊗Φ)(Σ22 ⊗Φ)−(x2 −m2),

(Σ11 ⊗Φ)− (Σ12 ⊗Φ)(Σ22 ⊗Φ)−(Σ 21 ⊗Φ),ψq(x2)

)

(2.33)

where

q(x2) = (x2 −m2)
′(Σ 22 ⊗Φ)−(x2 −m2)

= (vec((X2 −M2)
′))′(Σ−

22 ⊗Φ−)(vec(X2 −M2)
′)

= tr((X2 −M2)
′Σ−

22(X2 −M2)Φ−) .
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From (2.23) and (2.24) we get (2.30) and (2.31). Since x2 ∈ m2+S, there exists
b ∈ IR(p−q)n such that x2 −m2 = (Σ 22 ⊗Φ)b. Then, we have

(Σ 12 ⊗Φ)(Σ22 ⊗Φ)−(x2 −m2) = (Σ 12 ⊗Φ)(Σ22 ⊗Φ)−(Σ22 ⊗Φ)b

= (Σ 12Σ−
22Σ 22 ⊗ΦΦ−Φ)b

= (Σ 12Σ−
22Σ 22 ⊗Φ)b

= (Σ 12Σ−
22 ⊗ In)(Σ 22 ⊗Φ)b

= (Σ 12Σ−
22 ⊗ In)(x2 −m2) .

We also have

(Σ11 ⊗Φ)− (Σ12 ⊗Φ)(Σ22 ⊗Φ)−(Σ21 ⊗Φ)

= (Σ11 ⊗Φ)− (Σ12Σ−
22Σ 21)⊗Φ

= (Σ11 −Σ12Σ−
22Σ 21)⊗Φ .

Therefore, (2.33) can be written as

(x1|x2)∼ Eqn(m1 +(Σ12Σ−
22 ⊗ In)(x2 −m2),Σ11·2 ⊗Φ ,ψq(x2)).

Hence,

(X1|X2)∼ Eq,n(M1 +Σ12Σ−
22(X2 −M2),Σ11·2 ⊗Φ ,ψq(X2)).

(2) If x2 ∈/ vec(M′
2)+S, we get (x1|x2) = m1, so (X1|X2) = M1.

Corollary 2.5. With the notation of Theorem 2.21, we have

1−F(w) = Ka2

∫

(
√

w2−a2,∞)
(r2 +a2)

pn
2 −1r−(qn−2)dFa2(r) ,w ≥ a ,

where Ka2 =
∫
(a,∞)(w

2 −a2)
qn
2 −1w−(pn−2)dF(w).

PROOF: From (2.31) we get,

dFa2(r) =
1

Ka2
(r2)

qn
2 −1(r2 +a2)−

pn−2
2

dw
dr

dF(w) ,

where r2 +a2 = w2. Hence,

dF(w) = Ka2 r−(qn−2)(r2 +a2)
pn
2 −1 dr

dw
dFa2(r) ,
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where a < w ≤√
a2 + r2. Therefore,

1−F(w) = Ka2

∫

(
√

w2−a2,∞)
(r2 +a2)

pn
2 −1r−(qn−2)dFa2(r) ,w ≥ a .

Theorem 2.22. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with stochastic representation M +
rAUB′. Let F be the distribution function of r and X, M, Σ be partitioned as in
Theorem 2.21.

(1) If vec(X′
2) ∈ vec(M′

2)+S, where S is defined in Theorem 2.21, and

(a) If X has finite first moment, then

E(X1|X2) = M1 +Σ12Σ−
22(X2 −M2) .

(b) If X has finite second moment, then

Cov(X1|X2) = c1Σ 11·2 ⊗Φ ,

where c1 =−2ψ ′
q(X2)

(0), and ψq(X2) is defined by (2.30), (2.31) and (2.32).

(2) If vec(X′
2) ∈/ vec(M′

2)+S, then E(X1|X2) = M1, Cov(X1|X2) = 0.

PROOF: It follows from Theorems 2.11 and 2.21.

The next theorem shows that if the distribution of X is absolutely continuous,
then the constant c1 in Theorem 2.22 can be obtained in a simple way. This
was shown by Chu (1973), but his proof applies only to a subclass of absolutely
continuous distributions. The following proof, however, works for all absolutely
continuous distributions.

Theorem 2.23. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) and X, M, Σ be partitioned as in
Theorem 2.21. Assume the distribution of X is absolutely continuous and it has
finite second moment.

Let

f2(X2) =
1

|Σ 22| n
2 |Φ | p−q

2

h2
(
tr
(
(X2 −M2)

′Σ−1
22 (X2 −M2)Φ−1))

be the p.d.f. of the submatrix X2. Then,

Cov(X1|X2) =

∫ ∞
r h2(z)dz
2h2(r)

Σ 11·2 ⊗Φ ,

where r = tr
(
(X2 −M2)

′Σ−1
22 (X2 −M2)Φ−1

)
.

PROOF: Step 1. First we prove the theorem for the case n = 1, m = 0. From
Theorems 2.21 and 2.22, we conclude that Cov(x1|x2) = c1Σ 11·2, where c1 is
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determined by p, q, and x′2Σ
−1
22 x2. Hence, c1 does not depend on Σ 11 and Σ 12.

Thus without loss of generality, we can assume that Σ 11 = Iq and Σ 12 = 0. Then

Σ 11·2 = Iq. Let x1 = (x1,x2 . . .xq)
′, and f1(x1,x2) = |Σ 22|− 1

2 h1(x2
1 + x′2Σ

−1
22 x2) be

the joint p.d.f. of x1 and x2. Then,

c1 = Var(x1|x2) =

∫ ∞
−∞ x2

1 f1(x1,x2)dx1

f2(x2)

=

∫ ∞
−∞ x2

1h1(x2
1 +x′2Σ

−1
22 x2)dx1

h2(x′2Σ
−1
22 x2)

= 2

∫ ∞
0 x2

1h1(x2
1 +x′2Σ

−1
22 x2)dx1

h2(x′2Σ
−1
22 x2)

. (2.34)

Now, f2(x2) =
∫ ∞
−∞ f1(x1,x2)dx1, hence

h2(x′2Σ−1
22 x2) =

∫ ∞

−∞
h1(x

2
1 +x′2Σ−1

22 x2)dx1

= 2
∫ ∞

0
h1(x

2
1 +x′2Σ−1

22 x2)dx1 .

So, h2(z) = 2
∫ ∞

0 h1(x2
1 + z)dx1, for z ≥ 0. Hence, for u ≥ 0, we get

∫ ∞

u
h2(z)dz = 2

∫ ∞

u

∫ ∞

0
h1(x

2
1 + z)dx1dz

= 2
∫ ∞

0

∫ ∞

0
χ(z ≥ u)h1(x

2
1 + z)dx1dz .

Let w =
√

x2
1 + z−u. Then, w2 = x2

1 + z−u and so J(z → w) = 2w. Hence,

∫ ∞

u
h2(z)dz = 2

∫ ∞

0

∫ ∞

0
χ(w2 − x2

1 +u ≥ u)h1(w
2 +u)2wdx1dw

= 4
∫ ∞

0

∫ ∞

0
χ(w2 ≥ x2

1)wh1(w
2 +u)dx1dw

= 4
∫ ∞

0

∫ w

0
wh1(w

2 +u)dx1dw

= 4
∫ ∞

0

(
wh1(w

2 +u)
∫ w

0
dx1

)
dw

= 4
∫ ∞

0
wh1(w

2 +u)wdw

= 4
∫ ∞

0
w2h1(w

2 +u)dw . (2.35)
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Now from (2.34) and (2.35), we get

c1 =

∫ ∞
u h2(z)dz
2h2(u)

, where u = x′2Σ−1
22 x2 .

Step 2. Next, let n = 1, m �= 0, and y = x−m. Then,

Cov(y1|y2) =

∫ ∞
u h2(z)dz
2h2(u)

Σ 11·2 ,

where u = y′2Σ
−1
22 y2. Therefore,

Cov(x1|x2) = Cov(y1 +m1|y2 = x2 −m2)

=

∫ ∞
u h2(z)dz
2h2(u)

Σ 11·2 ,

where u = (x2 −m2)
′Σ−1

22 (x2 −m2).
Step 3. Finally, let X ∼ Ep,n(M,Σ ⊗Φ ,ψ). Define x = vec(X′). Now, for x we

can use Step 2. Therefore,

Cov(X1|X2) =

∫ ∞
r h2(z)dz
2h2(r)

Σ 11·2 ⊗Φ ,

where r = tr
(
(X2 −M2)

′Σ−1
22 (X2 −M2)Φ−1

)
.

2.7 Examples

In this section we give some examples of the elliptically contoured distributions. We
also give a method to generate elliptically contoured distributions.

2.7.1 One-Dimensional Case

Let p = n = 1. Then, the class E1(m,σ ,ψ), coincides with the class of one-
dimensional distributions which are symmetric about a point. More precisely, x ∼
E1(m,σ ,ψ) if and only if P(x ≤ r) = P(x ≥ m− r) for every r ∈ IR. Some examples
are: uniform, normal, Cauchy, double exponential, Student’s t-distribution, and the
distribution with the p.d.f.
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f (x) =

√
2

πσ
(

1+
(

x
σ
)4) , σ > 0 .

2.7.2 Vector Variate Case

The definitions and results here are taken from Fang, Kotz and Ng (1990). Let p > 1
and n = 1.

2.7.2.1 Multivariate Uniform Distribution

The p-dimensional random vector u is said to have a multivariate uniform distribu-
tion if it is uniformly distributed on the unit sphere in IRp.

Theorem 2.24. Let x = (x1,x2, . . . ,xp)
′ have a p-variate uniform distribution. Then

the p.d.f. of (x1,x2, . . . ,xp−1) is

Γ
( p

2

)

π
p
2

(

1−
p−1

∑
i=1

x2
i

)− 1
2

,
p−1

∑
i=1

x2
i < 1 .

PROOF: It follows from Theorem 2.17 that
(

x2
1,x

2
2, . . . ,x

2
p−1

)
∼ D
(

1
2 , . . . ,

1
2 ; 1

2

)
.

Hence, the p.d.f. of
(

x2
1,x

2
2, . . . ,x

2
p−1

)
is

Γ
( p

2

)

(
Γ
(

1
2

))p

p−1

∏
i=1

(x2
i )

− 1
2

(

1−
p−1

∑
i=1

x2
i

)− 1
2

Since the Jacobian of the transformation (x1,x2, . . . ,xp−1) → (|x1|, |x2|, . . . , |xp−1|)
is 2p−1∏p−1

i=1 |xi|, the p.d.f. of (|x1|, |x2|, . . . , |xp−1|) is

2p−1Γ
( p

2

)

π
p
2

(

1−
p−1

∑
i=1

x2
i

)− 1
2

Now because of the spherical symmetry of x, the p.d.f. of (x1,x2, . . . ,xp−1) is the
p.d.f. of (|x1|, |x2|, . . . , |xp−1|) divided by 2p−1; that is

Γ
( p

2

)

π
p
2

(

1−
p−1

∑
i=1

x2
i

)− 1
2

,
p−1

∑
i=1

x2
i < 1 .
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2.7.2.2 Symmetric Kotz Type Distribution

The p-dimensional random vector x is said to have a symmetric Kotz type
distribution with parameters q, r, s ∈ IR, μ: p-dimensional vector, Σ : p× p matrix,
r > 0, s > 0, 2q+ p > 2, and Σ > 0 if its p.d.f. is

f (x) =
sr

2q+p−2
2s Γ

( p
2

)

π
p
2Γ
(

2q+p−2
2s

)
|Σ | 1

2

[(x−μ)′Σ−1(x−μ)]q−1 exp{−r[(x−μ)′Σ−1(x−μ)]s} .

As a special case, take q = s = 1 and r = 1
2 . Then, we get the multivariate normal

distribution with p.d.f.

f (x) =
1

(2π)
p
2 |Σ | 1

2

exp

{
− (x−μ)′Σ−1(x−μ)

2

}
,

and its characteristic function is

φx(t) = exp(it′μ)exp

(
−1

2
t′Σ t
)
. (2.36)

The multivariate normal distribution is denoted by Np(μ,Σ).

Remark 2.6. The distribution, Np(μ,Σ), can be defined by its characteristic func-
tion (2.36). Then, Σ does not have to be positive definite; it suffices to assume that
Σ ≥ 0.

2.7.2.3 Symmetric Multivariate Pearson Type II Distribution

The p-dimensional random vector x is said to have a symmetric multivariate Pearson
type II distribution with parameters q ∈ IR, μ: p-dimensional vector, Σ : p× p matrix
with q >−1, and Σ > 0 if its p.d.f. is

f (x) =
Γ
( p

2 +q+1
)

π
p
2Γ (q+1) |Σ | 1

2

(1− (x−μ)′Σ−1(x−μ))q ,

where (x−μ)′Σ−1(x−μ)≤ 1.

2.7.2.4 Symmetric Multivariate Pearson Type VII Distribution

The p-dimensional random vector x is said to have a symmetric multivariate Pearson
type VII distribution with parameters q, r ∈ IR, μ: p-dimensional vector, Σ : p× p
matrix with r > 0, q > p

2 , and Σ > 0 if its p.d.f. is
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f (x) =
Γ (q)

(πr)
p
2Γ
(
q− p

2

) |Σ | 1
2

(
1+

(x−μ)′Σ−1(x−μ)
r

)−q

. (2.37)

As a special case, when q = p+r
2 , x is said to have a multivariate t-distribution

with r degrees of freedom and it is denoted by Mtp(r,μ,Σ).

Theorem 2.25. The class of symmetric multivariate Pearson type VII distributions
coincides with the class of multivariate t-distributions.

PROOF: Clearly, the multivariate t-distribution is Pearson type VII distribution.
We only have to prove that all Pearson type VII distributions are multivariate t-
distributions.

Assume x has p.d.f. (2.37). Define

r0 = 2
(

q− p
2

)
and Σ 0 = Σ

r
r0
.

Then, Mtp(r0,μ,Σ 0) is the same distribution as the one with p.d.f. (2.37).

The special case of multivariate t-distribution when r = 1; that is, Mtp(1,μ,Σ) is
called multivariate Cauchy distribution.

2.7.2.5 Symmetric Multivariate Bessel Distribution

The p-dimensional random vector x is said to have a symmetric multivariate Bessel
distribution with parameters q, r ∈ IR, μ: p-dimensional vector, Σ : p× p matrix with
r > 0, q >− p

2 , and Σ > 0 if its p.d.f. is

f (x) =
[(x−μ)′Σ−1(x−μ)] q

2

2q+p−1π
p
2 rp+qΓ

(
q+ p

2

) |Σ | 1
2

Kq

(
[(x−μ)′Σ−1(x−μ)] 1

2

r

)

,

where Kq(z) is the modified Bessel function of the third kind; that is Kq(z) =
π
2

I−q(z)−Iq(z)
sin(qπ) , |arg(z)|< π , q is integer and

Iq(z) =
∞

∑
k=0

1
k!Γ (k+q+1)

( z
2

)q+2k
, |z|< ∞ , |arg(z)|< π .

If q = 0 and r = σ√
2
, σ > 0, then x is said to have a multivariate Laplace

distribution.
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2.7.2.6 Symmetric Multivariate Logistic Distribution

The p-dimensional random vector x is said to have an elliptically symmetric logistic
distribution with parameters μ: p-dimensional vector, Σ : p× p matrix with Σ > 0 if
its p.d.f. is

f (x) =
c

|Σ | 1
2

exp{−(x−μ)′Σ−1(x−μ)}
(1+ exp{−(x−μ)′Σ−1(x−μ)})2

with

c =
π

p
2

Γ
( p

2

)
∫ ∞

0
z

p
2 −1 e−z

(1+ e−z)2 dz.

2.7.2.7 Symmetric Multivariate Stable Law

The p-dimensional random vector x is said to follow a symmetric multivariate stable
law with parameters q, r ∈ IR, μ: p-dimensional vector, Σ : p× p matrix with 0 <
q ≤ 1, r > 0, and Σ ≥ 0 if its characteristic function is

φx(t) = exp(it′μ− r(t′Σ t)q) .

2.7.3 General Matrix Variate Case

The matrix variate elliptically contoured distributions listed here are the matrix
variate versions of the multivariate distributions given in Sect. 2.7.2. Let p ≥ 1 and
n ≥ 1.

2.7.3.1 Matrix Variate Symmetric Kotz Type Distribution

The p× n random matrix X is said to have a matrix variate symmetric Kotz type
distribution with parameters q, r, s ∈ IR, M : p×n, Σ : p× p, Φ : n×n with r > 0,
s > 0, 2q+ pn > 2, Σ > 0, and Φ > 0 if its p.d.f. is

f (X) =
sr

2q+pn−2
2s Γ

( pn
2

)

π
pn
2 Γ
(

2q+pn−2
2s

)
|Σ | n

2 |Φ | p
2

[tr((X−M)′Σ−1(X−M)Φ−1)]q−1

× exp{−r[tr((X−M)′Σ−1(X−M)Φ−1)]s} .
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If we take q = s = 1 and r = 1
2 , we obtain the p.d.f. of the absolutely continuous

matrix variate normal distribution:

f (X) =
1

(2π)
pn
2 |Σ | n

2 |Φ | p
2

etr

{
− (X−M)′Σ−1(X−M)Φ−1

2

}
.

The characteristic function of this distribution is

φX(T) = etr(iT′M)etr

(
−1

2
T′ΣMΦ

)
. (2.38)

Remark 2.7. If we define Np,n(M,Σ⊗Φ) through its characteristic function (2.38),
then Σ > 0 is not required, instead it suffices to assume that Σ ≥ 0.

2.7.3.2 Matrix Variate Pearson Type II Distribution

The p×n random matrix X is said to have a matrix variate symmetric Pearson type
II distribution with parameters q ∈ IR, M : p×n, Σ : p× p, Φ : n×n with q > −1,
Σ > 0, and Φ > 0 if its p.d.f. is

f (X) =
Γ
( pn

2 +q+1
)

π
pn
2 Γ (q+1) |Σ | n

2 |Φ | p
2
(1− tr((X−M)′Σ−1(X−M)Φ−1))q ,

where tr((X−M)′Σ−1(X−M)Φ−1)≤ 1.

2.7.3.3 Matrix Variate Pearson Type VII Distribution

The p×n random matrix X is said to have a matrix variate symmetric Pearson type
VII distribution with parameters q, r ∈ IR, M : p×n, Σ : p× p, Φ : n×n with r > 0,
q > pn

2 , Σ > 0, and Φ > 0 if its p.d.f. is

f (X) =
Γ (q)

(πr)
pn
2 Γ
(
q− pn

2

) |Σ | n
2 |Φ | p

2

(
1+

tr((X−M)′Σ−1(X−M)Φ−1)

r

)−q

.

(2.39)

Particularly, when q = pn+r
2 , X is said to have a matrix variate t-distribution

with r degrees of freedom and it is denoted by Mtp,n(r,M,Σ ⊗Φ). It follows,
from Theorem 2.25, that the class of matrix variate symmetric Pearson type VII
distributions coincides with the class of matrix variate t-distributions.

When r = 1, in the definition of matrix variate t-distribution, i.e., Mtp,n(1,M,Σ⊗
Φ), then X is said to have a matrix variate Cauchy distribution.
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2.7.3.4 Matrix Variate Symmetric Bessel Distribution

The p × n random matrix X is said to have a matrix variate symmetric Bessel
distribution with parameters q, r ∈ IR, M : p× n, Σ : p× p, Φ : n× n with r > 0,
q >− pn

2 , Σ > 0, and Φ > 0 if its p.d.f. is

f (X) =
[tr((X−M)′Σ−1(X−M)Φ−1)]

1
2

2q+pn−1π
pn
2 rpn+qΓ

(
q+ pn

2

) |Σ | n
2 |Φ | p

2

× Kq

(
[tr((X−M)′Σ−1(X−M)Φ−1)]

1
2

r

)

,

where Kq(z) is the modified Bessel function of the third kind as defined in
Sect. 2.7.2.5. For q = 0 and r = σ√

2
, σ > 0, this distribution is known as the matrix

variate Laplace distribution.

2.7.3.5 Matrix Variate Symmetric Logistic Distribution

The p × n random matrix X is said to have a matrix variate symmetric logistic
distribution with parameters M : p×n, Σ : p× p, Φ : n×n with Σ > 0, and Φ > 0
if its p.d.f. is

f (X) =
c

|Σ | n
2 |Φ | p

2

etr(−(X−M)′Σ−1(X−M)Φ−1)

(1+ etr(−(X−M)′Σ−1(X−M)Φ−1))2

with

c =
π

pn
2

Γ
( pn

2

)
∫ ∞

0
z

pn
2 −1 e−z

(1+ e−z)2 dz.

2.7.3.6 Matrix Variate Symmetric Stable Law

The p×n random matrix X is said to follow a matrix variate symmetric stable law
with parameters q, r ∈ IR, M : p× n, Σ : p× p, Φ : n× n with 0 < q ≤ 1, r > 0,
Σ ≥ 0, and Φ ≥ 0 if its characteristic function is

φX(T) = etr
(
iT′M

)
exp
(−r(tr(T′ΣMΦ))q) .
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2.7.4 Generating Elliptically Contoured Distributions

If we have a m.e.c. distribution, based on it we can easily generate other m.e.c.
distributions. For vector variate elliptical distributions, this is given in Muirhead
(1982).

Theorem 2.26. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) have the p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr((X−M)′Σ−1(X−M)Φ−1)).

Suppose G(z) is a distribution function on (0,∞). Let

g(X) =
1

|Σ | n
2 |Φ | p

2

∫ ∞

0
z−

pn
2 h

(
1
z

tr((X−M)′Σ−1(X−M)Φ−1)

)
dG(z) .

Then, g(X) is also the p.d.f. of a m.e.c. distribution.

PROOF: Clearly, g(X)≥ 0. Moreover,

∫

IRp×n
g(X)dX

=
∫

IRp×n

1

|Σ | n
2 |Φ | p

2

∫ ∞

0
z−

pn
2 h

(
1
z

tr((X−M)′Σ−1(X−M)Φ−1)

)
dG(z)dX

=
∫ ∞

0

∫

IRp×n

1

|zΣ | n
2 |Φ | p

2
h
(
tr((X−M)′(zΣ)−1(X−M)Φ−1)

)
dXdG(z)

=
∫ ∞

0
1dG(z) = 1 .

Hence, g(X) is a p.d.f. Let r(w) =
∫ ∞

0 z−
pn
2 h
(

w
z

)
dG(z). Then,

g(X) =
1

|Σ | n
2 |Φ | p

2
r(tr((X−M)′Σ−1(X−M)Φ−1)).

Therefore, g(X) is the p.d.f. of an elliptically contoured distribution.

Corollary 2.6. Let h(u) = (2π)−
pn
2 exp

(− u
2

)
in Theorem 2.26. Then, for any

distribution function G(z) on (0,∞),

g(X)=
1

(2π)
pn
2 |Σ | n

2 |Φ | p
2

∫ ∞

0
z−

pn
2 exp

(
− 1

2z
tr((X−M)′Σ−1(X−M)Φ−1)

)
dG(z) .

defines the p.d.f. of a m.e.c. distribution. In this case, the distribution of X is said to
be a mixture of normal distributions.
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In particular, if G(1) = 1− ε and G(σ2) = ε with 0 < ε < 1, σ2 > 0, we obtain
the ε-contaminated matrix variate normal distribution. It has the p.d.f.

f (X) =
1

(2π)
pn
2 |Σ | n

2 |Φ | p
2

[

(1− ε)etr

(
−1

2
(X−M)′Σ−1(X−M)Φ−1

)

+
ε
σ pn etr

(
− 1

2σ2 (X−M)′Σ−1(X−M)Φ−1
)]

.



Chapter 3
Probability Density Function
and Expected Values

3.1 Probability Density Function

The m.e.c. probability density function has some interesting properties which will be
given in this chapter. These results are taken from Kelker (1970), Cambanis, Huang,
and Simons (1981), Fang, Kotz, and Ng (1990), and Gupta and Varga (1994c).

The first remarkable property is that the marginal distributions of a m.e.c.
distribution are absolutely continuous unless the original distribution has an atom
of positive weight at zero. Even if the original distribution has an atom of positive
weight at zero, the marginal density is absolutely continuous outside zero. This
is shown for multivariate elliptical distributions in the following theorem due to
Cambanis, Huang, and Simons (1981).

Theorem 3.1. Let x ∼ Ep(0,Ip,ψ) have the stochastic representation x ≈ ru. Let

F(r) be the distribution function of r. Assume x is partitioned as x =

(
x1

x2

)
, where

x1 is q-dimensional, 1 ≤ q < p. Let x1 have the stochastic representation x1 ≈ r1u1.
Then, the distribution of r1 has an atom of weight F(0) at zero and it is absolutely
continuous on (0,∞) with p.d.f.

gq(s) =
2Γ
( p

2

)
sq−1

Γ
( q

2

)
Γ
( p−q

2

)
∫ ∞

s
r−(p−2)(r2 − s2)

p−q
2 −1dF(r) , 0 < s < ∞. (3.1)

PROOF: From Corollary 2.4, it follows that r1 ≈ rr0, where r2
0 ∼ B

( q
2 ,

p−q
2

)
.

Therefore, P(r1 = 0) = P(r = 0) = F(0) and

P(0 < r1 ≤ t) = P(0 < rr0 ≤ t)

=
∫

(0,∞)
P(0 < rr0 ≤ t)dF(r)

A.K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory,
DOI 10.1007/978-1-4614-8154-6 3, © Springer Science+Business Media New York 2013

59



60 3 Probability Density Function and Expected Values

=
∫

(0,∞)
P
(

0 < r0 ≤ t
r

)
dF(r)

=
∫

(0,∞)
P

(
0 < r2

0 ≤
t2

r2

)
dF(r)

=
∫

(0,∞)

Γ
( p

2

)

Γ
( q

2

)
Γ
( p−q

2

)
∫
(

0,min
(

1, t2

r2

)] x
q
2−1(1− x)

p−q
2 −1dxdF(r) .

Let x = s2

r2 . Then, J(x → s) = r2

2s and we have

∫

(0,∞)

Γ
( p

2

)

Γ
( q

2

)
Γ
( p−q

2

)
∫
(

0,min
(

1, t2

r2

)] x
q
2−1(1− x)

p−q
2 −1dxdF(r)

=
∫

(0,∞)

Γ
( p

2

)

Γ
( q

2

)
Γ
( p−q

2

)
∫

(0,min(r,t)]

2s
r2

( s
r

)q−2
(

1− s2

r2

) p−q
2 −1

dsdF(r)

=
2Γ
( p

2

)

Γ
( q

2

)
Γ
( p−q

2

)
∫

(0,∞)

∫

(0,min(r,t)]
sq−1r−2−q+2−(p−q)+2(r2 − s2)

p−q
2 −1dsdF(r)

=
∫

(0,t]

2Γ
( p

2

)
sq−1

Γ
( q

2

)
Γ
( p−q

2

)
∫

(0,min(r,t)]
r−(p−2)(r2 − s2)

p−q
2 −1dF(r)ds ,

from which (3.1) follows.

Corollary 3.1. Let x ∼ Ep(0,Ip,ψ) and assume that P(x = 0) = 0. Let x ≈ ru be
the stochastic representation of x and F(r) the distribution function of r. Partition

x into x =

(
x1

x2

)
, where x1 is q-dimensional, 1 ≤ q < p. Then, x1 is absolutely

continuous with p.d.f.

fq(y) =
Γ
( p

2

)

π
q
2Γ
( p−q

2

)
∫ ∞

(y′y)
1
2

r−(p−2)(r2 −y′y)
p−q

2 −1dF(r) . (3.2)

PROOF: From Theorem 3.1, it follows that x1 is absolutely continuous and if r1u1

is the stochastic representation of x1 then r1 has the p.d.f.

gq(s) =
2Γ
( p

2

)
sq−1

Γ
( q

2

)
Γ
( p−q

2

)
∫ ∞

s
r−(p−2)(r2 − s2)

p−q
2 −1dF(r) , 0 < s < ∞ . (3.3)

Since, x1 also has a m.e.c. distribution, its p.d.f. is of the form

fq(y) = hq(y′y) . (3.4)
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From Theorem 2.16, it follows that

gq(s) =
2π

q
2

Γ
( q

2

) sq−1hq(s
2) ,s ≥ 0 , (3.5)

and from (3.3) and (3.5), it follows that

hq(s
2) =

Γ
( p

2

)

π
q
2Γ
( p−q

2

)
∫ ∞

s
r−(p−2)(r2 − s2)

p−q
2 −1dF(r) . (3.6)

Now, (3.2) follows from (3.4) and (3.6).
The following result was given by Fang, Kotz, and Ng (1990).

Theorem 3.2. Let x∼Ep(0,Ip,ψ) with p.d.f. f (x) = h(x′x). Let x be partitioned as

x =

(
x1

x2

)
, where x1 is q-dimensional, 1 ≤ q < p. Then, x1 is absolutely continuous

and its p.d.f. is

fq(y) =
π

p−q
2

Γ
( p−q

2

)
∫ ∞

y′y
(u−y′y)

p−q
2 −1h(u)du . (3.7)

PROOF: Let ru be the stochastic representation of x and F be the distribution
function of r. Then, from Theorem 2.16, we get the p.d.f. of r as

g(r) =
2π

p
2

Γ
( p

2

) rp−1h(r2) . (3.8)

From (3.2) and (3.8), we have

fq(y) =
Γ
( p

2

)

π
q
2Γ
( p−q

2

)
∫ ∞

(y′y)
1
2

r−(p−2)(r2 −y′y)
p−q

2 −1 2π
p
2

Γ
( p

2

) rp−1h(r2)dr

=
2π

p−q
2

Γ
( p−q

2

)
∫ ∞

(y′y)
1
2

r(r2 −y′y)
p−q

2 −1h(r2)dr .

Let u = r2. Then, J(r → u) = 1
2r and we have

fq(y) =
π

p−q
2

Γ
( p−q

2

)
∫ ∞

y′y
(u−y′y)

p−q
2 −1h(u)du .

Marginal densities have certain continuity and differentiability properties. These
are given in the following theorems. The first theorem is due to Kelker (1970).
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Theorem 3.3. Let x ∼ Ep(0,Ip,ψ), 1 < p, with p.d.f. f (x) = h(x′x). Let x be

partitioned as x =

(
x1

x2

)
, where x1 is p− 1 dimensional. Let x1 have the p.d.f.

fp−1(y) = hp−1(y′y). If hp−1(z) is bounded in a neighborhood of z0 then hp−1(z) is
continuous at z = z0.

PROOF: From (3.7), we get

hp−1(z) =
π 1

2

Γ
(

1
2

)
∫ ∞

z
(u− z)−

1
2 h(u)du .

Thus,

hp−1(z) =
∫ ∞

z
(u− z)−

1
2 h(u)du . (3.9)

Choose any η > 0. There exist k > 0 and K > 0 such that if |z− z0| < k then

h(z) < K. Let ε = min
(

k, η
2

64

)
. Further let δ be such that 0 < δ < ε , and z0 < z <

z0 +δ . Then, we have

|hp−1(z)−hp−1(z0)| =
∣∣∣∣

∫ ∞

z
(u− z)−

1
2 h(u)du−

∫ ∞

z0

(u− z0)
− 1

2 h(u)du

∣∣∣∣

=

∣∣
∣∣∣

∫ ∞

z0+ε

(
(u− z)−

1
2 − (u− z0)

− 1
2

)
h(u)du

+
∫ z0+ε

z

(
(u− z)−

1
2 − (u− z0)

− 1
2

)
h(u)du

−
∫ z

z0

(u− z0)
− 1

2 h(u)du

∣∣∣∣∣

≤
∫ ∞

z0+ε

(
(u− z)−

1
2 − (u− z0)

− 1
2

)
h(u)du

+

∫ z0+ε

z

(
(u− z)−

1
2 − (u− z0)

− 1
2

)
h(u)du

+
∫ z

z0

(u− z0)
− 1

2 h(u)du . (3.10)

Now,

∫ z0+ε

z

(
(u− z)−

1
2 − (u− z0)

− 1
2

)
h(u)du
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≤
∫ z0+ε

z
(u− z)−

1
2 h(u)du

≤ K
∫ z0+ε

z
(u− z)−

1
2 du

≤ 2K(ε+ z0 − z)
1
2 ≤ 2

√
ε (3.11)

and
∫ z

z0

(u− z0)
− 1

2 h(u)du ≤ 2K(z− z0)
− 1

2

≤ 2
√
ε . (3.12)

Furthermore,
∫ ∞

z0+ε

(
(u− z)−

1
2 − (u− z0)

− 1
2

)
h(u)du

≤
∫ ∞

z0+ε

(
(u− (z0 +δ ))−

1
2 − (u− z0)

− 1
2

)
h(u)du . (3.13)

We have

lim
δ→0

[
(u− (z0 +δ ))−

1
2 − (u− z0)

− 1
2

]
= 0 for u ≥ z0 + ε ,

and

0 ≤ (u− (z0 +δ ))−
1
2 − (u− z0)

− 1
2

≤ (u− (z0 + ε))−
1
2 − (u− z0)

− 1
2

≤ (u− (z0 + ε))−
1
2 for u ≥ z0 + ε .

Since,
∫ ∞

z0+ε
(u− (z0 + ε))−

1
2 h(u)du = hp−1(z0 + ε)< ∞ ,

we can use the dominated Lebesgue convergence theorem to get

lim
δ→0

∫ ∞

z0+ε

(
(u− z)−

1
2 − (u− z0)

− 1
2

)
h(u)du = 0 .

Therefore, there exists υ > 0 such that if 0 < δ < υ then

∫ ∞

z0+ε

(
(u− z)−

1
2 − (u− z0)

− 1
2

)
h(u)du <

η
2
. (3.14)
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Hence, if δ = min(ε ,υ) then for z0 < z < z0 +δ , (3.10)–(3.14) give

|hp−1(z)−hp−1(z0)| ≤ 4
√
ε+

η
2
≤ η .

Therefore, hp−1(z) is continuous from the right at z0. In a similar way, it can be
proved that hp−1(z) is continuous from the left at z0.

The next theorem shows that the p − 2 dimensional marginal density of a
p-dimensional absolutely continuous multivariate elliptical distribution is differen-
tiable. This theorem is due to Kelker (1970).

Theorem 3.4. Let x ∼ Ep(0,Ip,ψ), 2 < p, with p.d.f. f (x) = h(x′x). Let x be

partitioned as x =

(
x1

x2

)
, where x1 is p− 2 dimensional. Let x1 have the p.d.f.

fp−2(y) = hp−2(y′y). Then, hp−2(z) is differentiable and

h′p−2(z) =−πh(z). (3.15)

PROOF: From Theorem 3.2, we get

hp−2(z) = π
∫ ∞

z
h(u)du, z ≥ 0 . (3.16)

Hence, h′p−2(z) =−πh(z).

Remark 3.1. Theorem 3.4 shows that if p ≥ 3 and the one-dimensional marginal
density of a p-dimensional absolutely continuous spherical distribution is known,
then all the marginal densities and also the density of the parent distribution can
be obtained easily. In fact, if f j(y) = h j(y′y), y ∈ IR j, denotes the p.d.f. of the j-
dimensional marginal, then from (3.15) we get

h2 j+1(z) =

(
− 1
π

) j

h( j)
1 (z) , z ≥ 0 .

From (3.9), we have

h2(z) =
∫ ∞

z
(u− z)−

1
2 h3(u)du .

From h2(z), we can obtain the other marginals using

h2 j(z) =

(
− 1
π

) j−1

h( j−1)
2 (z) , z ≥ 0 .

Remark 3.2. Assume x ∼ Ep(0,Ip,ψ) is absolutely continuous, p ≥ 3. If f j(y) =
h j(y′y), y ∈ IR j, denotes the p.d.f. of the j-dimensional marginal then from (3.16)
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it follows that h j(z), z ≥ 0 is nondecreasing for j = 1,2, . . . , p− 2. Since f1(z) =
h1(z2), the p.d.f. of the one-dimensional marginal, is nondecreasing on (−∞,0] and
nonincreasing on [0,∞).

The results given in this chapter so far referred to the vector variate elliptically
contoured distributions. Their extension to the matrix variate case is straightforward
since X ∼ Ep,n(0,Ip ⊗ In,ψ) is equivalent to x = vec(X′) ∼ Epn(0,Ipn,ψ). The
following theorems can be easily derived.

Theorem 3.5. Let X ∼ Ep,n(0,Ip ⊗ In,ψ) have the stochastic representation X ≈
rU. Let F(r) be the distribution function of r. Assume X is partitioned as X =(

X1

X2

)
, where X1 is q× n. Let X1 have the stochastic representation X1 ≈ r1U1.

Then, the distribution of r1 has an atom of weight F(0) at zero and it is absolutely
continuous on (0,∞) with p.d.f.

gq,n(s) =
2Γ
( pn

2

)
sqn−1

Γ
( qn

2

)
Γ
(
(p−q)n

2

)
∫ ∞

s
r−(pn−2)(r2 − s2)

(p−q)n
2 −1dF(r) ,

0 < s < ∞ .

Corollary 3.2. With the notation of Theorem 3.5 we get P(X1 = 0) = P(X = 0).

Theorem 3.6. Let X∼Ep,n(0,Ip⊗In,ψ) and assume that P(X= 0). Let X≈ rU be
the stochastic representation of X and F(r) the distribution function of r. Partition

X into X =

(
X1

X2

)
, where X1 is q×n, 1 ≤ q < p. Then, X1 is absolutely continuous

with p.d.f.

fq,n(Y) =
Γ
( pn

2

)

π
qn
2 Γ
(
(p−q)n

2

)
∫ ∞

(tr(Y′Y))
1
2

r−(pn−2)(r2 − tr(Y′Y))
(p−q)n

2 −1dF(r) .

Theorem 3.7. Let X ∼ Ep,n(0,Ip ⊗ In,ψ) with p.d.f. f (X) = h(tr(X′X)). Let X be

partitioned as X =

(
X1

X2

)
, where X1 is q× n, 1 ≤ q < p. Then, X1 is absolutely

continuous with p.d.f.

fq,n(Y) =
π

(p−q)n
2

Γ
(
(p−q)n

2

)
∫ ∞

tr(Y′Y)
(u− tr(Y′Y))

(p−q)n
2 −1h(u)du .

Theorem 3.8. Let X ∼ Ep,n(0,Ip ⊗ In,ψ), 1 < p, 1 < n, with p.d.f. f (X) =

h(tr(X′X)). Let X be partitioned as X =

(
X1

X2

)
, where X1 is q× n, 1 ≤ q < p.

Let X1 have the p.d.f. fq,n(Y) = hq,n(tr(Y′Y)). Then, hq,n(z) is differentiable and
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(i) If (p−q)n is even, (p−q)n = 2 j, then

h( j)
q,n(z) = (−π) jh(z) ,

(ii) If (p−q)n is odd, (p−q)n = 2 j+1, then

∂ j

∂ z j

(∫ ∞

z
(u− z)−

1
2 h′q,n(u)du

)
= (−π) j+1h(z) .

Theorem 3.9. Let X ∼ Ep,n(0,Ip ⊗ In,ψ), pn ≥ 3 with p.d.f. f (X) = h(tr(X′X)).
Let f1(y) = h1(y2) denote the p.d.f. of a one-dimensional marginal of X. Then, if we
know h1(z), we can obtain h(z) in the following way.

(i) If pn is odd, pn = 2 j+1, then

h(z) =
h( j)

1 (z)

(−π) j .

(ii) If pn is even, pn = 2 j, then

h(z) =

(
− 1
π

) j ∂ j−1

∂ z j−1

∫ ∞

z
(u− z)−

1
2 h′1(u)du .

Theorem 3.10. Assume X ∼ Ep,n(0,Ip ⊗ In,ψ) is absolutely continuous, p > 1,
n > 1. If f j,n(Y) = h j,n(tr(Y′Y)), Y ∈ IR j×n, denotes the p.d.f. of the j × n
dimensional marginal, then h j(z), z ≥ 0 is nondecreasing for j = 1,2, . . . , p− 1.
Moreover, the p.d.f. of the one-dimensional marginal is nondecreasing on (−∞,0]
and nonincreasing on [0,∞).

3.2 More on Expected Values

The stochastic representation can be used to compute the expected values of matrix
variate functions when the underlying distribution is elliptically contoured. In order
to simplify the expressions for the expected values, we need the following theorem
which is a special case of Berkane and Bentler (1986a).

Theorem 3.11. Let φ(t) = ψ(t2) be a characteristic function of a one-dimensional
elliptical distribution. Assume the distribution has finite mth moment. Then,

φ (m)(0) =

{
m!
(m

2 )!
ψ(

m
2 )(0) if m is even

0 if m is odd.
(3.17)
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PROOF: If the mth moment exists, say μm then, φ (m)(t) also exists and φ (m)(0) =
imμm. First we prove that

φ (k)(t) =
k

∑
n=[ k+1

2 ]

Kk
nt2n−kψ(n)(t2), (3.18)

where 0≤ k ≤m, [z] denotes the integer part of z, and Kk
n is a constant not depending

on ψ . We prove this by induction.
If k = 0, we have φ(t) = ψ(t2), so K0

0 = 1. If k = 1 we get φ ′(t) = 2tψ ′(t2), and
the statement is true in this case, with K1

1 = 2. Assume the theorem is true up to
l < m. Then, for k = l +1 we get

φ (k)(t) =
l

∑
n=[ l+1

2 ]

(2n− l)Kl
nt2n−l−1ψ(n)(t2)

+
l

∑
n=[ l+1

2 ]

2Kl
nt2n−l−1ψ(n+1)(t2)

=
k−1

∑
n=[ k

2 ]

(2n− k+1)Kk−1
n t2n−kψ(n)(t2)

+
k

∑
n=[ k

2 ]+1

2Kk−1
n−1t2n−kψ(n)(t2)

=

(
2

[
k
2

]
− k+1

)
Kk−1
[ k

2 ]
t2[ k

2 ]−kψ([
k
2 ])(t2)

+
k−1

∑
n=[ k

2 ]+1

(
2Kk−1

n−1 +(2n− k+1)Kk−1
n

)
t2n−kψ(n)(t2)

+ 2Kk−1
k−1 t2k−kψ(k)(t2). (3.19)

We have to distinguish between two cases.

(a) k even.
Then,

[
k+1

2

]
=
[

k
2

]
and 2

[
k
2

]− k+1 = 1. Hence, (3.19) gives

φ (k)(t) =
k

∑
n=[ k+1

2 ]

Kk
nt2n−kψ(n)(t2) ,

with



68 3 Probability Density Function and Expected Values

Kk
n =

⎧
⎪⎨

⎪⎩

Kk−1
[ k+1

2 ]
if n =

[
k+1

2

]

2Kk−1
n−1 +(2n− k+1)Kk−1

n if
[

k+1
2

]
< n < k

2Kk−1
k−1 if n = k .

(b) k odd.
Then,

[
k+1

2

]
=
[

k
2

]
+1 and 2

[
k
2

]− k+1 = 0. From (3.19) we get

φ (k)(t) =
k

∑
n=[ k+1

2 ]

Kk
nt2n−kψ(n)(t2)

with

Kk
n =

{
2Kk−1

n−1 +(2n− k+1)Kk−1
n if

[
k+1

2

]≤ n < k
2Kk−1

k−1 if n = k .

Hence (3.18) is established. Taking k = m and t = 0 in (3.18), we get

φ (m)(0) =

{
Km

m
2
ψ(

m
2 )(0) if m is even

0 if m is odd.
(3.20)

If m is even, m = 2s say, then we have φ (2s)(0) = i2sμ2s, that is φ (2s)(0) =

(−1)sμ2s. Let x ∼ N1(0,1), then μ2s = (2s)!
2ss! , ψ(z) = exp

(− z
2

)
, and ψ(s)(z) =(− 1

2

)s
exp
(− z

2

)
, from which ψ(s)(0) =

(− 1
2

)s
follows. Therefore,

φ (2s)(0) = K2s
s ψ(s)(0) = K2s

s

(
−1

2

)s

.

Thus, we get

K2s
s

(
−1

2

)s

= (−1)s (2s)!
2ss!

,

from which it follows that K2s
s = (2s)!

s! . Comparing this with (3.20), we obtain
(3.17).

Corollary 3.3. Let φ(t) = ψ(t2) be as in Theorem 3.11, then

(i) φ(0) = 1,
(ii) If ψ(t) is differentiable, φ ′(0) = 0,

(iii) If ψ(t) has second derivative, φ ′′(0) = ψ ′(0),
(iv) If ψ(t) has third derivative, φ ′′′(0) = 0,
(v) If ψ(t) has fourth derivative, φ iv(0) = 12ψ ′′(0).
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Corollary 3.4. Let φ(t) = exp
(
− t2

2

)
. Then,

φ (m)(0) =

{(− 1
2

)m
2 m!
(m

2 )!
if m is even

0 if m is odd.

For example,

(i) φ(0) = 1,
(ii) φ ′(0) = 0,

(iii) φ ′′(0) =−1,
(iv) φ ′′′(0) = 0,
(v) φ iv(0) = 3.

Now, we can derive the following results.

Theorem 3.12. Let X ∼ Ep,n(0,Σ ⊗Φ ,ψ) with P(X = 0) = 0. Let q = rk(Σ), m =
rk(Φ) and rAUB′ be the stochastic representation of X. Assume Y∼Np,n(0,Σ⊗Φ).
Let F be a subset of the p×n real matrices such that if Z∈ IRp×n, Z∈F , and a> 0,
then aZ ∈ F and P(X ∈/ F) = P(Y ∈/ F) = 0. Let K(Z) be a function defined on
F such that if Z ∈ F and a > 0, then K(aZ) = akK(Z) where k >−qm. Assuming
E(K(X)) and E(K(Y)) exist, we get

(a) E(K(X)) = E(K(Y))
E(rk)Γ ( qm

2 )

2
k
2 Γ
(

qm+k
2

) ,

(b) If X has the p.d.f. f (X) = 1

|Σ | n
2 |Φ |

p
2

h(tr(X′Σ−1XΦ−1)) then

E(K(X)) = E(K(Y))
π

pn
2
∫ ∞

0 zpn+k−1h(z2)dz

2
k
2−1Γ

(
pn+k

2

) ,

(c) If k = 0, then E(K(X)) = E(K(Y)),
(d) If k is a positive even integer, then

E(K(X)) = E(K(Y))(−2)
k
2ψ

k
2 (0),

(e) If k is a positive odd integer and K(aZ) = akK(Z) holds for all a ≥ 0, then
E(K(X)) = 0.

PROOF:

(a) K(X) and K(Y) are defined if X ∈ F and Y ∈ F . Since

P(X ∈/ F) = P(Y ∈/ F) = 0,

we see that K(X) and K(Y) are defined with probability one.
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Let r2AU2B′ be the stochastic representation of Y. From the conditions of
the theorem, it follows that if aZ ∈ F and a > 0, then Z ∈ F . Since,
P(X = 0) = 0, we have P(r = 0) = 0, and from P(rAU1B′ ∈ F ) = 1, we get
P(AUB′ ∈ F ) = 1. Thus K(AUB′) is defined with probability one. Moreover,
P(K(rAUB′) = rkK(AUB′)) = 1. Therefore E(K(rAUB′)) = E(rkK(AUB′)).
Since, r and U are independent, we get

E(K(rAUB′)) = E(rk)E(K(AUB′)) . (3.21)

Similarly,

E(K(r2AU2B′)) = E(rk
2)E(K(AU2B′)) . (3.22)

However, AUB′ ≈ AU2B′, hence

E(K(AUB′)) = E(K(AU2B′)) . (3.23)

Now Theorem 2.16 shows that r2 has the p.d.f.

q2(r2) =
1

2
qm
2 −1Γ

( qm
2

) rqm−1
2 exp

(
− r2

2

2

)
, r2 ≥ 0.

Therefore,

E(rk
2) =

∫ ∞

0

1

2
qm
2 −1Γ

( qm
2

) rqm+k−1
2 exp

(
− r2

2

2

)
dr2 .

Let z = r2
2. Then dr2

dz = 1
2
√

z and we have

E(rk
2) =

1

2
qm
2 −1Γ

( qm
2

)
∫ ∞

0
z

qm+k−1
2 exp

(
− z

2

) 1
2
√

z
dz

=
1

2
qm
2 Γ
( qm

2

)
∫ ∞

0
z

qm+k
2 −1 exp

(
− z

2

)
dz

=
2

k
2Γ
(

qm+k
2

)

Γ
( qm

2

) . (3.24)

Now, from (3.22) and (3.24) we get

E
(

K
(
Σ

1
2 U2Φ

1
2

))
=

E(K(Y))

E(rk
2)
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=
Γ
( qm

2

)

2
k
2Γ
(

qm+k
2

)E(K(Y)). (3.25)

Using (3.21), (3.23) and (3.25) we get

E(K(X)) = E(K(Y))
E(rk)Γ

( qm
2

)

2
k
2Γ
(

qm+k
2

) . (3.26)

(b) Using Theorem 2.16, the p.d.f. of r is

q1(r) =
2π

pn
2

Γ
( pn

2

) rpn−1h(r2) , r ≥ 0.

Therefore,

E(rk) =

∫ ∞

0

2π
pn
2

Γ
( pn

2

) zpn+k−1h(z2)dz . (3.27)

From (3.26) and (3.27), we get

E(K(X)) = E(K(Y))
π

pn
2
∫ ∞

0 zpn+k−1h(z2)dz

2
k
2−1Γ

(
pn+k

2

) ,

(c) This is a special case of (a).
(d) It follows from part (a), that E(K(X)) = cq,m(ψ,k)E(K(Y)) where cq,m(ψ,k) is

a constant depending on q, m, k and ψ only. So, in order to determine cq,m(ψ,k),
we can choose X ∼ Eq,m(0,Iq ⊗ Im,ψ), Y ∼ Nq,m(0,Iq ⊗ Im) and K(Z) = zk

11
where z11 is the (1,1)th element of the q×m matrix Z. Then K(aZ) = akK(Z),
a> 0, is obviously satisfied. Now, x2

11 ≤ tr(X′X) and hence |x11|k ≤ (tr(X′X))
k
2 .

Here r ≈ (tr(X′X))
1
2 and since rk is integrable, (tr(X′X))

1
2 is also integrable

over [0,∞). Therefore, E(xk
11) exists. Similarly, E(yk

11) also exists.
Hence, we can write

E(xk
11) = cq,m(ψ,k)E(yk

11). (3.28)

However, x11 ∼ E1(0,1,ψ) and y11 ∼ N1(0,1). Then, from Theorem 3.11,

it follows that E(xk
11) =

k!
ik( k

2 )!
ψ(

k
2 )(0) and from Corollary 3.4 we get that

E(yk
11) =

k!
ik( k

2 )!

(− 1
2

)( k
2 ). Hence cq,m(ψ,k) = (−2)(

k
2 )ψ(

k
2 )(0).

(e) Take a = −1. Then, we have K(−Z) = (−1)kK(Z) and since k is odd, we
get K(−Z) = −K(Z). However, X ≈ −X and so K(X) ≈ K(−X). Therefore,
E(K(X)) = E(K(−X)) =−E(K(X)) and hence E(K(X)) = O.
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In the next theorem we examine expected values of functions which are defined
on the whole p× n dimensional real space. In contrast to Theorem 3.12, here we
do not require that the underlying distribution assign probability zero to the zero
matrix.

Theorem 3.13. Let X ∼ Ep,n(0,Σ ⊗Φ ,ψ). Let q = rk(Σ), m = rk(Φ) and rAUB′
be the stochastic representation of X. Assume Y ∼ Np,n(0,Σ ⊗Φ). Let K(Z) be a
function defined on IRp×n such that if Z ∈ IRp×n and a ≥ 0 then K(aZ) = akK(Z)
where k >−qm. Assume E(K(X)) and E(K(Y)) exist. Then,

(i) E(K(X)) = E(K(Y))
E(rk)Γ ( qm

2 )

2
k
2 Γ
(

qm+k
2

) ,

(ii) If k = 0 then E(K(X)) = E(K(Y)),
(iii) If k is a positive even integer, then

E(K(X)) = E(K(Y))(−2)(
k
2 )ψ(

k
2 )(0) ,

(iv) If k is a positive odd integer and K(aZ) = akK(Z) holds for all a �= 0, then

E(K(X)) = 0.

PROOF: Let r2AU2B′ be the stochastic representation of Y. Then, we have

E(K(rAUB′)) = E(rk)E(K(AUB′)) (3.29)

and

E(K(r2AU2B′)) = E(rk
2)E(K(AU2B′)) . (3.30)

However (3.29) and (3.30) are the same as (3.21) and (3.22). Therefore, the proof
can be completed in exactly the same way as the proof of Theorem 3.12.

Since moments of normal random variables are well known, using Theorem 3.14,
we can obtain the moments of m.e.c. distributions.

Theorem 3.14. Let X ∼ Ep,n(0,Ip ⊗ In,ψ). Let rU be the stochastic representation
of X. Then, provided the moments exist, we get

E

(
p

∏
i=1

n

∏
j=1

x
2si j
i j

)

= E(r2s)
Γ
( pn

2

)

π
pn
2 Γ
( pn

2 + s
)

p

∏
i=1

n

∏
j=1
Γ
(

1
2
+ si j

)
, (3.31)

where si j are nonnegative integers and s = ∑p
i=1∑

n
j=1 si j. We also have

E

(
p

∏
i=1

n

∏
j=1

x
2si j
i j

)

= ψ(s)(0)
(−1)s22s

π
pn
2

p

∏
i=1

n

∏
j=1
Γ
(

1
2
+ si j

)
. (3.32)
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PROOF: We use Theorem 3.13. Let Z ∈ IRp×n and K(Z) =∏p
i=1∏

n
j=1 z

2si j
i j . If a ≥ 0,

then

K(aZ) = a2sK(Z) . (3.33)

If Y ∼ Np,n(0,Ip ⊗ In), then the elements of Y are independently and identically
distributed standard normal variables, hence,

E

(
p

∏
i=1

n

∏
j=1

y
2si j
i j

)

=
p

∏
i=1

n

∏
j=1

E
(

y
2si j
i j

)
, (3.34)

and

E
(

y
2si j
i j

)
=

(2si j)!
si j!2si j

= 2si j
Γ
(

1
2

)

π 1
2

1
2

3
2
. . .

2si j −1
2

=
2si jΓ

(
1
2 + si j

)

π 1
2

. (3.35)

Now, from (3.33), (3.34), (3.35) and part (a) of Theorem 3.13 we obtain (3.31).
On the other hand, (3.33)–(3.35), and part (c) of Theorem 3.13 yield (3.31).

The formula (3.31) is given in Fang, Kotz, and Ng (1990).

Theorem 3.15. Let X ∼ Ep,n(0,Σ⊗Φ ,ψ). Then, provided the left-hand sides exist,

(i) E(xi1 j1) = 0.
(ii) E(xi1 j1xi2 j2) =−2ψ ′(0)σi1i2φ j1 j2 .

(iii) E(xi1 j1xi2 j2xi3 j3) = 0.
(iv)

E(xi1 j1 xi2 j2 xi3 j3 xi4 j4) = 4ψ ′′(0)(σi1i2φ j1 j2σi3i4φ j3 j4 +σi1i3φ j1 j3σi2i4φ j2 j4

+ σi1i4φ j1 j4σi2i3φ j2 j3) .

PROOF: Step 1. Let Y ∼ Np,n(0,Ip ⊗ In). Then, the elements of Y are independent,
standard normal variables, so

E(yi1 j1) = 0,

E(yi1 j1 yi2 j2) = δi1i2δ j1 j2 ,

E(yi1 j1 yi2 j2 yi3 j3) = 0,

E(yi1 j1 yi2 j2 yi3 j3 yi4 j4) = δi1i2δ j1 j2δi3i4δ j3 j4 +δi1i3δ j1 j3δi2i4δ j2 j4

+ δi1i4δ j1 j4δi2i3δ j2 j3 .
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Step 2. Let X ∼ Np,n(0,Σ ⊗ Φ). Let q = rk(Σ), m = rk(Φ) and rAUB′ be
the stochastic representation of X. Then, we can write X = AYB′, where Y ∼
Np,n(0,Iq ⊗ In), xi j = ∑n

l=1∑
p
k=1 aikyklbl j, Σ = AA′, and Φ = BB′.

Using the result of Step 1, we get

E(xi1 j1) = E

(
n

∑
l=1

p

∑
k=1

ai1kyklbl j1

)

=∑
l,k

ai1kE(ykl)bl j1

= 0 .

E(xi1 j1xi2 j2) = E

((
n

∑
l=1

p

∑
k=1

ai1kyklbl j1

)(
n

∑
t=1

p

∑
s=1

ai2systbt j2

))

= ∑
l,k,t,s

ai1kbl j1ai2sbt j2E(yklyst)

= ∑
l,k,t,s

ai1kbl j1ai2sbt j2δksδlt

=∑
l,k

ai1kai2kbl j1bl j2

= σi1i2φ j1 j2 .

E(xi1 j1 xi2 j2 xi3 j3) = E

((
n

∑
l=1

p

∑
k=1

ai1kyklbl j1

)(
n

∑
t=1

p

∑
s=1

ai2systbt j2

)

×
(

n

∑
q=1

p

∑
r=1

ai3ryrqbq j3

))

= ∑
l,k,t,s,q,r

ai1kbl j1 ai2sbt j2ai3rbq j3 E(yklystyrq)

= 0 .

E(xi1 j1xi2 j2xi3 j3xi4 j4) = E

((
n

∑
l=1

p

∑
k=1

ai1kyklbl j1

)(
n

∑
t=1

p

∑
s=1

ai2systbt j2

)

×
(

n

∑
q=1

p

∑
r=1

ai3ryrqbq j3

)(
n

∑
w=1

p

∑
u=1

ai4uyuwbw j4

))

= ∑
l,k,t,s,q,r,w,u

ai1kbl j1ai2sbt j2
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× ai3rbq j3ai4ubw j4 E(yklystyrqyuw)

= ∑
l,k,t,s,q,r,w,u

ai1kbl j1ai2sbt j2

× ai3rbq j3ai4ubw j4(δksδltδruδqw

+ δkrδlqδsuδtw +δkuδlwδsrδtq)

= ∑
k,l,r,q

ai1kai2kbl j1 bl j2ai3rai4rbq j3bq j4

+ ∑
k,l,s,t

ai1kai3kbl j1bl j3ai2sai4sbt j2bt j4

+ ∑
k,l,s,t

ai1kai4kbl j1bl j4ai2sai3sbt j2bt j3

= σi1i2φ j1 j2σi3i4φ j3 j4 +σi1i3φ j1 j3σi2i4φ j2 j4

+ σi1i4φ j1 j4σi2i3φ j2 j3 .

Step 3. Let X ∼ Ep,n(0,Σ⊗Φ ,ψ). Define, on the set of p×n dimensional matrices,
the functions

Ki1, j1(Z) = zi1 j1

Ki1, j1,i2, j2(Z) = zi1 j1 zi2 j2

Ki1, j1,i2, j2,i3, j3(Z) = zi1 j1 zi2 j2zi3 j3

Ki1, j1,i2, j2,i3, j3,i4, j4(Z) = zi1 j1 zi2 j2zi3 j3zi4 j4 .

Now, the results follow from Theorem 3.13.

Theorem 3.16. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ). Then, provided the left-hand sides
exist,

(i) E(xi1 j1) = mi1 j1 .
(ii) E(xi1 j1xi2 j2) =−2ψ ′(0)σi1i2φ j1 j2 +mi1 j1mi2 j2 .

(iii)

E(xi1 j1 xi2 j2 xi3 j3) = −2ψ ′(0)(σi1i2φ j1 j2mi3 j3 +σi1i3φ j1 j3 mi2 j2

+ σi2i3φ j2 j3 mi1 j1)+mi1 j1mi2 j2mi3 j3 .

(iv)

E(xi1 j1xi2 j2xi3 j3xi4 j4) = 4ψ ′′(0)(σi1i2φ j1 j2σi3i4φ j3 j4 +σi1i3φ j1 j3σi2i4φ j2 j4

+ σi1i4φ j1 j4σi2i3φ j2 j3)−2ψ ′(0)(mi1 j1 mi2 j2σi3i4φ j3 j4

+ mi1 j1 mi3 j3σi2i4φ j2 j4 +mi1 j1mi4 j4σi2i3φ j2 j3
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+ mi2 j2 mi3 j3σi1i4φ j1 j4 +mi2 j2mi4 j4σi1i3φ j1 j3

+ mi3 j3 mi4 j4σi1i2φ j1 j2)+mi1 j1 mi2 j2mi3 j3mi4 j4 .

PROOF: Let Y = X−M. Then, Y ∼ Ep,n(0,Σ⊗Φ ,ψ) and using Theorem 3.15, we
obtain the first four moments of Y. Therefore,

(i) E(xi1 j1) = E(yi1 j1 +mi1 j1) = mi1 j1 .
(ii)

E(xi1 j1xi2 j2) = E((yi1 j1 +mi1 j1)(yi2 j2 +mi2 j2))

= E(yi1 j1 yi2 j2)+E(yi1 j1)mi2 j2 +E(yi2 j2)mi1 j1

+ mi1 j1 mi2 j2

= −2ψ ′(0)σi1i2φ j1 j2 +mi1 j1mi2 j2 .

(iii)

E(xi1 j1xi2 j2xi3 j3) = E((yi1 j1 +mi1 j1)(yi2 j2 +mi2 j2)(yi3 j3 +mi3 j3))

= E(yi1 j1 yi2 j2 yi3 j3)+E(yi1 j1yi2 j2)mi3 j3

+ E(yi1 j1 yi3 j3)mi2 j2 +E(yi2 j2yi3 j3)mi1 j1

+ mi1 j1 mi2 j2mi3 j3

= −2ψ ′(0)(σi1i2φ j1 j2 mi3 j3 +σi1i3φ j1 j3mi2 j2

+ σi2i3φ j2 j3mi1 j1)+mi1 j1 mi2 j2 mi3 j3 .

(iv)

E(xi1 j1xi2 j2xi3 j3xi4 j4) = E((yi1 j1 +mi1 j1)(yi2 j2 +mi2 j2)

× (yi3 j3 +mi3 j3)(yi4 j4 +mi4 j4))

= E(yi1 j1yi2 j2yi3 j3yi4 j4)+E(yi1 j1yi2 j2yi3 j3)mi4 j4

+ E(yi1 j1yi2 j2yi4 j4)mi3 j3 +E(yi1 j1 yi3 j3 yi4 j4)mi2 j2

+ E(yi2 j2yi3 j3yi4 j4)mi1 j1

+ E(yi1 j1yi2 j2)mi3 j3 mi4 j4

+ E(yi1 j1yi3 j3)mi2 j2 mi4 j4

+ E(yi1 j1yi4 j4)mi2 j2 mi3 j3

+ E(yi2 j2yi3 j3)mi1 j1 mi4 j4

+ E(yi2 j2yi4 j4)mi1 j1 mi3 j3
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+ E(yi3 j3yi4 j4)mi1 j1 mi2 j2 +mi1 j1 mi2 j2mi3 j3mi4 j4

= 4ψ ′′(0)(σi1i2φ j1 j2σi3i4φ j3 j4 +σi1i3φ j1 j3σi2i4φ j2 j4

+ σi1i4φ j1 j4σi2i3φ j2 j3)−2ψ ′(0)(mi1 j1mi2 j2σi3i4φ j3 j4

+ mi1 j1mi3 j3σi2i4φ j2 j4 +mi1 j1 mi4 j4σi2i3φ j2 j3

+ mi2 j2mi3 j3σi1i4φ j1 j4 +mi2 j2 mi4 j4σi1i3φ j1 j3

+ mi3 j3mi4 j4σi1i2φ j1 j2)+mi1 j1mi2 j2mi3 j3 mi4 j4 .

Remark 3.3. The derivation of (i) and (ii) of Theorem 3.16 provides another proof
of Theorem 2.11.

Theorem 3.17. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with finite second order moments. Let
c0 = −2ψ ′(0). Then, for any constant matrix A, if the expressions on the left-hand
sides are defined, we have

(i) E(XAX) = c0ΣA′Φ+MAM,
(ii) E(XAX′) = c0Σ tr(A′Φ)+MAM′,

(iii) E(X′AX) = c0Φtr(ΣA′)+M′AM,
(iv) E(X′AX′) = c0ΦA′Σ +M′AM′.

PROOF:

(i)

E(XAX)i j = E

(
p

∑
l=1

n

∑
k=1

xikaklxl j

)

=∑
l,k

(c0σilφk j +mikm jl)akl

= c0∑
l,k

σilaklφk j +∑
l,k

mikaklml j

= (c0ΣA′Φ+MAM)i j .

(ii)

E(XAX′)i j = E

(
p

∑
l=1

n

∑
k=1

xikaklx jl

)

=∑
l,k

(c0σi jφkl +mikm jl)akl

= c0σi j∑
l,k

φklakl +∑
l,k

mikaklm jl

= (c0Σ tr(A′Φ)+MAM′)i j .
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(iii) From Theorem 2.3, it follows that X′ ∼ En,p(M′,Φ⊗Σ ,ψ). Using (ii), we get
E(X′AX) = c0Φtr(A′Σ)+M′AM.

(iv) Since, X′ ∼ En,p(M′,Φ ⊗ Σ ,ψ), from (i) we have E(X′AX′) = c0ΦA′Σ +
M′AM′.

Theorem 3.18. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with finite second order moment. Let
c0 =−2ψ ′(0). Then for any constant matrices A, B, if the express ions on the left-
hand sides are defined, we have

(i) E(Xtr(AX)) = c0ΣA′Φ+Mtr(AM),
(ii) E(Xtr(AX′)) = c0ΣAΦ+Mtr(AM′),

(iii) E(X′tr(AX)) = c0ΦAΣ +M′tr(AM),
(iv) E(X′tr(AX′)) = c0ΦA′Σ +M′tr(AM′),
(v) E(tr(XAXB)) = c0tr(ΣA′ΦB)+ tr(MAMB),

(vi) E(tr(XAX′B)) = c0tr(ΣB)tr(ΦA′)+ tr(MAM′B),
(vii) E(tr(XA)tr(XB)) = c0tr(ΣB′ΦA)+ tr(MA)tr(MB),

(viii) E(tr(XA)tr(X′B)) = c0tr(ΣBΦA)+ tr(MA)tr(M′B).

PROOF:

(i)

E(Xtr(AX))i j = E

(

xi j

n

∑
k=1

p

∑
l=1

aklxkl

)

=∑
l,k

(c0σilφ jk +mi jmlk)akl

= c0∑
l,k

σilaklφk j +mi j∑
l,k

aklmlk

= (c0ΣA′Φ+Mtr(AM))i j .

(ii)

E(Xtr(AX′)) = E(Xtr(XA′))

= E(Xtr(A′X))

= c0ΣAΦ+Mtr(A′M)

= c0ΣAΦ+Mtr(AM′).

(iii) X′ ∼ En,p(M′,Φ⊗Σ ,ψ).

E(X′tr(AX)) = E(X′tr(A′X′))

= c0ΦAΣ +M′tr(A′M′)

= c0ΦAΣ +M′tr(AM).
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(iv) X′ ∼ En,p(M′,Φ⊗Σ ,ψ).

E(X′tr(AX′)) = c0ΦA′Σ +M′tr(AM′).

(v)

E(tr(XAXB)) = E

(
p

∑
i=1

n

∑
j=1

p

∑
k=1

n

∑
l=1

xi ja jkxklbli

)

= ∑
i, j,k,l

(c0σikφ jl +mi jmkl)a jkbli

= c0

(

∑
i, j,k,l

σika jkφ jlbli

)

+ ∑
i, j,k,l

mi ja jkmklbli

= c0tr(ΣA′ΦB)+ tr(MAMB).

(vi)

E(tr(XAX′B)) = E

(
p

∑
i=1

n

∑
j=1

n

∑
k=1

p

∑
l=1

xi ja jkxlkbli

)

= ∑
i, j,k,l

(c0σilφ jk +mi jmlk)a jkbli

= c0

(

∑
i,l

σilbli

)(

∑
i,l

φ jka jk

)

+ ∑
i, j,k,l

mi ja jkmlkbli

= c0tr(ΣB)tr(ΦA)+ tr(MAM′B)

= c0tr(ΣB)tr(ΦA′)+ tr(MAM′B).

(vii)

E(tr(XA)tr(XB)) = E

((
p

∑
i=1

n

∑
l=1

xilali

)(
p

∑
j=1

n

∑
k=1

x jkbk j

))

= ∑
i, j,k,l

(c0σi jφlk +milm jk)alibk j

= c0 ∑
i, j,k,l

σi jbk jφlkali
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+

(

∑
i,l

milali

)(

∑
j,k

m jkak j

)

= c0tr(ΣB′ΦA)+ tr(MA)tr(MB).

(viii)

E(tr(XA)tr(X′B)) = E(tr(XA)tr(XB′))

= c0tr(ΣBΦA)+ tr(MA)tr(MB′)

= c0tr(ΣBΦA)+ tr(MA)tr(M′B).

Theorem 3.19. Let X∼Ep,n(M,Σ⊗Φ ,ψ) with finite third order moment. Let c0 =
−2ψ ′(0). Then, for any constant matrices A and B, if the expressions on the left-
hand sides are defined, we have

(i) E(XAXBX) = c0(MAΣB′Φ+ΣB′M′A′Φ+ΣA′ΦBM)+MAMBM,
(ii)

E(X′AXBX) = c0(M′AΣB′Φ+Φtr(ΣB′M′A′)+ΦBMtr(AΣ))

+ M′AMBM,

(iii)

E(X′AX′BX) = c0(M′AΦtr(ΣB′)+Φtr(AM′BΣ)+ΦA′ΣBM)

+ M′AM′BM,

(iv)

E(X′AXBX′) = c0(M′AΣ tr(BΦ)+ΦB′M′A′Σ +ΦBM′tr(AΣ))

+ M′AMBM′,

(v)

E(XAX′BX′) = c0(MAΦB′Σ +Σ tr(AM′BΦ)+ΣBM′tr(AΦ))

+ MAM′BM′,

(vi)

E(X′AX′BX′) = c0(M′AΦB′Σ +ΦB′MA′Σ +ΦA′ΣBM′)

+ M′AM′BM′,
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(vii)

E(XAX′BX) = c0(MAΦtr(BΣ)+ΣB′MA′Φ+ΣBMtr(AΦ))

+ MAM′BM,

(viii)

E(XAXBX′) = c0(MAΣ tr(ΦB′)+Σ tr(AMBΦ)+ΣA′ΦBM′)

+ MAMBM′.

PROOF:

(i)

E(XAXBX)i j = E

(
n

∑
k=1

p

∑
l=1

n

∑
r=1

p

∑
q=1

xikaklxlrbrqxq j

)

= ∑
k,l,r,q

[c0(σilφkrmq j +σiqφk jmlr +σlqφr jmik)

+ mikmlrmq j]aklbrq

= c0

[

∑
k,l,r,q

σilaklφkrbrqmq j + ∑
k,l,r,q

σiqbrqmlraklφk j

+ ∑
k,l,r,q

mikaklσlqbrqφr j

]

+ ∑
k,l,r,q

mikaklmlrbrqmq j

= (c0(ΣA′ΦBM+ΣB′M′A′Φ+MAΣB′Φ)

+ MAMBM)i j.

(ii)

E(X′AXBX)i j = E

(
p

∑
k=1

p

∑
l=1

n

∑
r=1

p

∑
q=1

xkiaklxlrbrqxq j

)

= ∑
k,l,r,q

[c0(σklφirmq j +σkqφi jmlr +σlqφr jmki)

+ mkimlrmq j]aklbrq
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= c0

[(

∑
k,l

aklσlk

)(

∑
r,q
φirbrqmq j

)

+ φi j ∑
k,l,r,q

σkqbrqmlrakl

+ ∑
k,l,r,q

mkiaklσlqbrqφr j

]

+ ∑
k,l,r,q

mkiaklmlrbrqmq j

= (c0(tr(AΣ)ΦBM+Φtr(ΣB′M′A′)+M′AΣB′Φ)

+ M′AMBM)i j.

(iii)

E(X′AX′BX) = E(X′B′XA′X)′

= (c0(tr(B′Σ)ΦA′M+Φtr(ΣAM′B)+M′B′ΣAΦ)

+ M′B′MA′M)′

= c0(M′AΦtr(ΣB′)+Φtr(AM′BΣ)+ΦA′ΣBM)

+ M′AM′BM.

(iv)

E(X′AXBX′)i j = E

(
p

∑
k=1

p

∑
l=1

n

∑
r=1

n

∑
q=1

xkiaklxlrbrqx jq

)

= ∑
k,l,r,q

[c0(σklφirm jq +σk jφiqmlr +σl jφrqmki)

+ mkimlrm jq]aklbrq

= c0

[(

∑
k,l

aklσlk

)(

∑
r,q
φirbrqm jq

)

+ ∑
k,l,r,q

φiqbrqmlraklσk j

+

(

∑
k,l

mkiaklσl j

)(

∑
r,q

brqφqr

)]

+ ∑
k,l,r,q

mkiaklmlrbrqm jq

= (c0(ΦBM′tr(AΣ)+ΦB′M′A′Σ +M′AΣ tr(BΦ))

+ M′AMBM′)i j.
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(v) X′ ∼ En,p(M′,Φ⊗Σ ,ψ).

E(XAX′BX′) = c0(MAΦB′Σ +Σ tr(ΦB′MA′)+ΣBM′tr(AΦ))

+ MAM′BM′

= c0(MAΦB′Σ +Σ tr(AM′BΦ)+ΣBM′tr(AΦ))

+ MAM′BM′.

(vi) X′ ∼ En,p(M′,Φ⊗Σ ,ψ).

E(X′AX′BX′) = c0(M′AΦB′Σ +ΦB′MA′Σ +ΦA′ΣBM′)+M′AM′BM′.

(vii)

E(XAX′BX) = (E(X′B′XA′X′))′

= (c0(M′B′Σ tr(A′Φ)+ΦAM′BΣ +ΦA′M′tr(B′Σ))

+ M′B′MA′M′)′

= c0(ΣBMtr(AΦ)+ΣB′MA′Φ+MAΦtr(BΣ))

+ MAM′BM.

(viii)

E(XAXBX′) = (E(XB′X′A′X′))′

= (c0(MB′ΦAΣ +Σ tr(B′M′A′Φ)+ΣA′M′tr(B′Φ))

+ MB′M′A′M′)′

= c0(ΣA′ΦBM′+Σ tr(AMBΦ)+MAΣ tr(ΦB′))

+ MAMBM′.

Theorem 3.20. Let X∼Ep,n(M,Σ⊗Φ ,ψ) with finite third order moment. Let c0 =
−2ψ ′(0). Then, for any constant matrices A and B, if the expressions on the left-
hand sides are defined, we have

(i)

E(Xtr(X′AXB)) = c0(Mtr(A′Σ)tr(B′Φ)+ΣA′MB′Φ+ΣAMBΦ)

+ Mtr(M′AMB),
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(ii)

E(XBXtr(AX)) = c0(MBΣA′Φ+ΣA′ΦBM+ΣB′Φtr(AM))

+ MBMtr(AM),

(iii)

E(X′BXtr(AX)) = c0(M′BΣA′Φ+ΦAΣBM+Φtr(AM)tr(BΣ))

+ M′BMtr(AM).

PROOF:

(i)

E(Xtr(X′AXB))i j = E

(

xi j

n

∑
k=1

p

∑
l=1

n

∑
q=1

p

∑
r=1

xlkalrxrqbqk

)

= ∑
k,l,r,q

[c0(σilφ jkmrq +σirφ jqmlk +σlrφkqmi j)

+ mi jmlkmrq]alrbqr

= c0

[

∑
k,l,r,q

σilalrmrqbqkφ jk

+ ∑
k,l,r,q

σiralrmlkbqkφ jq

+ mi j

(

∑
k,q

bqkφqk

)(

∑
r,l

alrσlr

)]

+ mi j ∑
k,l,r,q

mlkalrmrqbqk

= (c0(ΣAMBΦ+ΣA′MB′Φ+Mtr(A′Σ)tr(B′Φ))

+ Mtr(M′AMB))i j.

(ii)

E(XBXtr(AX))i j = E

((
n

∑
k=1

p

∑
l=1

xikbklxl j

)(
n

∑
r=1

p

∑
q=1

arqxqr

))

= ∑
k,l,r,q

[c0(σilφk jmqr +σiqφkrml j +σlqφ jrmik)

+ mikml jmqr]bklarq
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= c0

[(

∑
k,l

σilbklφk j

)(

∑
r,q

arqmqr

)

+ ∑
k,l,r,q

σiqarqφkrbklml j

+ ∑
k,l,r,q

mikbklσlqarqφ jr

]

+

(

∑
k,l

mikbklml j

)(

∑
r,q

arqmqr

)

= (c0(ΣB′Φtr(AM)+ΣA′ΦBM+MBΣA′Φ)

+ MBMtr(AM))i j.

(iii)

E(X′BXtr(AX))i j = E

((
p

∑
k=1

p

∑
l=1

xkibklxl j

)(
n

∑
r=1

p

∑
q=1

arqxqr

))

= ∑
k,l,r,q

[c0(σklφi jmqr +σkqφirml j +σlqφ jrmki)

+ mkiml jmqr]bklarq

= c0

[

φi j

(

∑
k,l

bklσlk

)(

∑
r,q

arqmqr

)

+ ∑
k,l,r,q

φirarqσkqbklml j

+ ∑
k,l,r,q

mkibklσlqarqφ jr

]

+

(

∑
k,l

mkibklml j

)(

∑
r,q

arqmqr

)

= (c0(Φtr(BΣ)tr(AM)+ΦAΣBM+M′BΣA′Φ)

+ M′BMtr(AM))i j.

Theorem 3.21. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with finite fourth order moments. Let
c0 =−2ψ ′(0) and k0 = 4ψ ′′(0). Then, for any constant matrices A, B, and C, if the
expressions on the left-hand sides are defined, we have

(i)

E(XAXBXCX) = k0(ΣC′ΦBA′Φ+ΣA′ΦBΣC′Φ+ΣB′Φtr(AΣC′Φ))

+ c0(MAMBΣC′Φ+MAΣC′M′B′Φ
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+ ΣC′M′B′M′A′Φ+MAΣB′ΦCM

+ ΣB′M′A′ΦCM+ΣA′ΦBMCM)

+ MAMBMCM,

(ii)

E(X′AXBXCX) = k0(Φtr(ΣC′ΦBΣA′)+ΦBΣC′Φtr(AΣ)

+ ΦCΣA′ΣB′Φ)+ c0(M′AMBΣC′Φ

+ M′AΣC′M′B′Φ+Φtr(AMBMCΣ)

+ M′AΣB′ΦCM+ΦCMtr(AMBΣ)

+ ΦBMCMtr(AΣ))+M′AMBMCM,

(iii)

E(X′AX′BXCX) = k0(Φtr(ΣC′ΦA′)tr(BΣ)+ΦA′ΣBΣC′Φ

+ ΦCΣBΣAΦ)+ c0(M′AM′BΣC′Φ

+ M′AΦtr(MCΣB)+Φtr(AM′BMCΣ)

+ M′AΦCMtr(BΣ)+ΦCMtr(AM′BΣ)

+ ΦA′ΣBMCM)+M′AM′BMCM,

(iv)

E(X′AXBX′CX) = k0(Φtr(ΣC′ΣA′)tr(BΦ)+ΦBΦtr(AΣ)tr(CΣ)

+ ΦB′Φtr(AΣC′Σ))+ c0(M′AMBΦtr(ΣC)

+ M′AΣC′MB′Φ+Φtr(AMBM′CΣ)

+ M′AΣCMtr(BΦ)+ΦB′M′A′ΣCM

+ ΦBM′CMtr(AΣ))+M′AMBM′CM,

(v)

E(XAX′BXCX) = k0(ΣBΣC′Φtr(ΦA)+ΣB′ΣC′ΦA′Φ

+ ΣC′ΦA′tr(ΣB))+ c0(MAM′BΣC′Φ

+ MAΦtr(BMCΣ)+MAΦCMtr(ΣB)

+ ΣC′M′B′MA′Φ+ΣB′MA′ΦCM

+ ΣBMCMtr(ΦA))+MAM′BMCM,
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(vi)

E(X′AXBXCX′) = k0(ΦBΣ tr(ΣA)tr(ΦC)+ΦCΦBΣAΣ

+ ΦC′ΦBΣA′Σ)+ c0(M′AMBΣ tr(ΦC)

+ M′AΣ tr(BMCΦ)+M′AΣB′ΦCM′

+ ΦC′M′B′M′A′Σ +ΦCM′tr(AMBΣ)

+ ΦBMCM′tr(ΣA))+M′AMBMCM′.

PROOF:

(i)

E(XAXBXCX)i j = E

(
p

∑
q=1

n

∑
r=1

p

∑
l=1

n

∑
k=1

p

∑
t=1

n

∑
s=1

xisastxtkbklxlrcrqxq j

)

= ∑
q,r,l
k,t,s

{k0[σitφskσlqφr j +σilφsrσtqφk j +σiqφs jσtlφkr]

+ c0[mismtkσlqφr j +mismlrσtqφk j

+ mismq jσtlφkr +mtkmlrσiqφs j +mtkmq jσilφsr

+ mlrmq jσitφsk]+mismtkmlrmq j}astbklcrq

= ∑
q,r,l
k,t,s

{k0[σitastφskbklσlqcrqφr j

+ (σilbklφk j)(φsrcrqσtqast)

+ σiqcrqφkrbklσtlastφs j]

+ c0[misastmtkbklσlqcrqφr j

+ misastσtqcrqmlrbklφk j

+ misastσtlbklφkrcrqmq j

+ σiqcrqmlrbklmtkastφs j

+ σilbklmtkastφsrcrqmq j

+ σitastφskbklmlrcrqmq j]

+ misastmtkbklmlrcrqmq j}
= (k0[ΣA′ΦBΣC′Φ+(ΣB′Φ)tr(ΦCΣA′)

+ ΣC′ΦBA′Φ ]+ c0[MAMBΣC′Φ

+ MAΣC′M′B′Φ+MAΣB′ΦCM
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+ ΣC′M′B′M′A′Φ+ΣB′M′A′ΦCM

+ ΣA′ΦBMCM]+MAMBMCM)i j.

(ii)

E(X′AXBXCX)i j = E

(
p

∑
q=1

n

∑
r=1

p

∑
l=1

n

∑
k=1

p

∑
t=1

p

∑
s=1

xsiastxtkbklxlrcrqxq j

)

= ∑
q,r,l
k,t,s

{k0[σstφikσlqφr j +σslφirσtqφk j

+ σsqφi jσtlφkr]+ c0[msimtkσlqφr j

+ msimlrσtqφk j +msimq jσtlφkr

+ mtkmlrσsqφi j +mtkmq jσslφir

+ mlrmq jσstφik]+msimtkmlrmq j}astbklcrq

= ∑
q,r,l
k,t,s

k0[(φikbklσlqcrqφr j)(σstast)

+ φircrqσtqastσslbklφk j

+ φi j(σsqastσtlbklφkrcrq)]

+ c0[msiastmtkbklσlqcrqφr j

+ msiastσtqcrqmlrbklφk j

+ msiastσtlbklφkrcrqmq j

+ φi j(σsqcrqmlrbklmtkast)

+ (φircrqmq j)(σslbklmtkast)

+ (φikbklmlrcrqmq j)(σstast)]

+ msiastmtkbklmlrcrqmq j

= (k0[ΦBΣC′Φtr(ΣA)+ΦCΣA′ΣB′Φ

+ Φtr(ΣAΣB′ΦC)]+ c0[M′AMBΣC′Φ

+ M′AΣC′M′B′Φ+M′AΣB′ΦCM

+ Φtr(ΣC′M′B′M′A′)+ΦCMtr(ΣB′M′A′)

+ ΦBMCMtr(ΣA)]+M′AMBMCM)i j.
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(iii)

E(X′AX′BXCX)i j = E

(
p

∑
q=1

n

∑
r=1

p

∑
l=1

p

∑
k=1

n

∑
t=1

p

∑
s=1

xsiastxktbklxlrcrqxq j

)

= ∑
q,r,l
k,t,s

{k0[σskφitσlqφr j +σslφirσkqφt j

+ σsqφi jσklφtr]+ c0[msimktσlqφr j

+ msimlrσkqφt j +msimq jσklφtr

+ mktmlrσsqφi j +mktmq jσslφir

+ mlrmq jσskφit ]+msimktmlrmq j}astbklcrq

= ∑
q,r,l
k,t,s

k0[φitastσskbklσlqcrqφr j

+ φircrqσkqbklσslastφt j

+ φi j(σsqcrqφtrast)(σklbkl)]

+ c0[msiastmktbklσlqcrqφr j

+ (msiastφt j)(σkqcrqmlrbkl)

+ (msiastφtrcrqmq j)(σklbkl)

+ φi j(σsqcrqmlrbklmktast)

+ (φircrqmq j)(σslbklmktast)

+ φitastσskbklmlrcrqmq j]

+ msiastmktbklmlrcrqmq j

= (k0[ΦA′ΣBΣC′Φ+ΦCΣBΣAΦ

+ Φtr(ΣC′ΦA′)tr(ΣB)]+ c0[M′AM′BΣC′Φ

+ M′AΦtr(ΣC′M′B′)+M′AΦCMtr(ΣB)

+ Φtr(ΣC′M′B′MA′)+ΦCMtr(ΣB′MA′)

+ ΦA′ΣBMCM]+M′AM′BMCM)i j.

(iv)

E(X′AXBX′CX)i j = E

(
p

∑
q=1

p

∑
r=1

n

∑
l=1

n

∑
k=1

p

∑
t=1

p

∑
s=1

xsiastxtkbklxrlcrqxq j

)
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= ∑
q,r,l
k,t,s

{k0[σstφikσrqφl j +σsrφilσtqφk j

+ σsqφi jσtrφkl ]+ c0[msimtkσrqφl j

+ msimrlσtqφk j +msimq jσtrφkl

+ mtkmrlσsqφi j +mtkmq jσsrφil

+ mrlmq jσstφik]+msimtkmrlmq j}astbklcrq

= ∑
q,r,l
k,t,s

k0[(φikbklφl j)(σstast)(σrqcrq)

+ (φilbklφk j)(σsrcrqσtqast)

+ φi j(σsqcrqσtrast)(φklbkl)]

+ c0[(msiastmtkbklφl j)(σrqcrq)

+ msiastσtqcrqmrlbklφk j

+ (msiastσtrcrqmq j)(φklbkl)

+ φi j(σsqcrqmlrbklmtkast)

+ φilbklmtkastσsrcrqmq j

+ (φikbklmrlcrqmq j)(σstast)]

+ msiastmtkbklmrlcrqmq j

= (k0[ΦBΦtr(ΣA)tr(ΣC)+(ΦB′Φ)tr(ΣCΣA′)

+ Φtr(ΣC′ΣA′)tr(ΦB)]+ c0[M′AMBΦtr(ΣC)

+ M′AΣC′MB′Φ+M′AΣCMtr(ΦB)

+ Φtr(ΣC′MB′M′A′)+ΦB′M′A′ΣCM

+ ΦBM′CMtr(ΣA)]+M′AMBM′CM)i j.

(v)

E(XAX′BXCX)i j = E

(
p

∑
q=1

n

∑
r=1

p

∑
l=1

p

∑
k=1

n

∑
t=1

n

∑
s=1

xisastxktbklxlrcrqxq j

)

= ∑
q,r,l
k,t,s

{k0[σikφstσlqφr j +σilφsrσkqφt j

+ σiqφs jσklφtr]+ c0[mismktσlqφr j

+ mismlrσkqφt j +mismq jσklφtr
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+ mktmlrσiqφs j +mktmq jσilφsr

+ mlrmq jσikφst ]+mismktmlrmq j}astbklcrq

= ∑
q,r,l
k,t,s

k0[(σikbklσlqcrqφr j)(φstast)

+ σilbklσkqcrqφsrastφt j

+ (σiqcrqφtrastφs j)(σklbkl)]

+ c0[misastmktbklσlqcrqφr j

+ (misastφt j)(σkqcrqmlrbkl)

+ (misastφtrcrqmq j)(σklbkl)

+ σiqcrqmlrbklmktastφs j

+ σilbklmktastφsrcrqmq j

+ (σikbklmlrcrqmq j)(φstast)]

+ misastmktbklmlrcrqmq j

= (k0[ΣBΣC′Φtr(ΦA)+ΣB′ΣC′ΦAΦ

+ ΣC′ΦA′Φtr(ΣB)]+ c0[MAM′BΣC′Φ

+ MAΦtr(ΣC′M′B′)+MAΦCMtr(ΣB)

+ ΣC′M′B′MA′Φ+ΣB′MA′ΦCM

+ ΣBMCMtr(ΦA)]+MAM′BMCM)i j.

(vi)

E(X′AXBXCX′)i j = E

(
n

∑
q=1

n

∑
r=1

p

∑
l=1

n

∑
k=1

p

∑
t=1

p

∑
s=1

xsiastxtkbklxlrcrqx jq

)

= ∑
q,r,l
k,t,s

{k0[σstφikσl jφrq +σslφirσt jφkq

+ σs jφiqσtlφkr]+ c0[msimtkσl jφrq

+ msimlrσt jφkq +msim jqσtlφkr

+ mtkmlrσs jφiq +mtkm jqσslφir

+ mlrm jqσstφik]+msimtkmlrm jq}astbklcrq

= ∑
q,r,l
k,t,s

k0[(φikbklσl j)(σstast)(crqφrq)
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+ φircrqφkqbklσslastσt j

+ φiqcrqφkrbklσtlastσs j]

+ c0[(msiastmtkbklσl j)(φrqcrq)

+ (msiastσt j)(φkqcrqmlrbkl)

+ msiastσtlbklφkrcrqm jq

+ φiqcrqmlrbklmtkastσs j

+ (φircrqm jq)(σslbklmtkast)

+ (φikbklmlrcrqm jq)(σstast)]

+ msiastmtkbklmlrcrqm jq

= (k0[ΦBΣ tr(ΣA)tr(ΦC)+ΦCΦBΣAΣ

+ ΦC′ΦBΣA′Σ ]+ c0[M′AMBΣ tr(ΦC)

+ M′AΣ tr(ΦC′M′B′)+M′AΣB′ΦCM′

+ ΦC′M′B′M′A′Σ +ΦCM′tr(ΣB′M′A′)

+ ΦBMCM′tr(ΣA)]+M′AMBMCM′)i j.

Theorem 3.22. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with finite fourth order moments. Let
c0 =−2ψ ′(0) and k0 = 4ψ ′′(0). Then, for any constant matrices A, B, and C, if the
expressions on the left-hand sides are defined, we have

(i)

E(XAtr(XBXCX′)) = k0(Σ 2B′ΦCΦA+Σ2B′ΦAtr(CΦ)

+ ΣB′ΦC′ΦAtr(Σ))+ c0(MAtr(MBΣ)tr(CΦ)

+ MAtr(MCΦB)tr(Σ)+ΣMBMCΦA

+ MAtr(MC′ΦBΣ)+ΣB′M′MC′ΦA

+ ΣMC′M′BΦA)+MAtr(MBMCM′),

(ii)

E(XAXtr(BXCX′)) = k0(ΣBΣA′ΦC′Φ+ΣA′Φtr(BΣ)tr(CΦ)

+ ΣB′ΣA′ΦCΦ)+ c0(MAMtr(BΣ)tr(CΦ)

+ MAΣBMCΦ+ΣMBMCΦAM

+ MAΣB′MC′Φ+ΣB′MC′ΦAM

+ ΣA′Φtr(MC′M′B′))+MAMtr(BMCM′),
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(iii)

E(X′AXtr(BXCX′)) = k0(ΦC′Φtr(ΣBΣA′)+Φtr(AΣ)tr(BΣ)tr(CΦ)

+ ΦCΦtr(ΣB′ΣA′))+ c0(M′AMtr(BΣ)tr(CΦ)

+ M′AΣBMCΦ+ΦC′M′B′ΣAM

+ M′AΣB′MC′Φ+ΦCM′BΣAM

+ Φtr(AΣ)tr(MCM′B))+M′AMtr(BMCM′),

(iv)

E(XBXCXtr(AX)) = k0(ΣB′ΦCΣA′Φ+ΣA′ΦBΣC′Φ

+ ΣC′ΦAΣB′Φ)+ c0(MBΣC′Φtr(AM)

+ ΣC′M′B′Φtr(AM)+MBMCΣA′Φ

+ ΣB′ΦCMtr(MA)+MBΣA′ΦCM

+ ΣA′ΦBMCM)+MBMCMtr(AM),

(v)

E(X′BXCXtr(AX)) = k0(ΦCΣA′Φtr(BΣ)+ΦAΣBΣC′Φ

+ Φtr(ΣB′ΣC′ΦA))+ c0(M′BΣC′Φtr(MA)

+ Φtr(MA)tr(MCΣB)+M′BMCΣA′Φ

+ ΦCMtr(BΣ)tr(MA)+M′BΣA′ΦCM

+ ΦAΣBMCM)+M′BMCMtr(MA),

(vi)

E(X′BX′CXtr(AX)) = k0(ΦB′ΣCΣA′Φ+ΦAΣBΦtr(ΣC)

+ Φtr(ΣCΣBΦA))+ c0(M′BΦtr(MA)tr(ΣC)

+ Φtr(MA)tr(MB′ΣC′)+M′BM′CΣA′Φ

+ ΦB′ΣCMtr(MA)+M′BΦAΣCM

+ ΦAΣBM′CM)+M′BM′CMtr(AM).

PROOF:

(i)

E(XAtr(XBXCX′))i j = E

((
n

∑
s=1

xisas j

)(
n

∑
q=1

n

∑
r=1

p

∑
l=1

n

∑
k=1

p

∑
t=1

xtkbklxlrcrqxtq

))



94 3 Probability Density Function and Expected Values

= E

⎛

⎜
⎝∑

q,r,l
k,t,s

xisas jxtkbklxlrcrqxtq

⎞

⎟
⎠

= ∑
q,r,l
k,t,s

{k0[σitφskσltφrq +σilφsrσttφkq +σitφsqσtlφkr]

+ c0[mismtkσltφrq +mismlrσttφkq

+ mismtqσtlφkr +mtkmlrσitφsq +mtkmtqσilφsr]

+ mismtkmlrmtq}as jbklcrq

= ∑
q,r,l
k,t,s

k0[(σitσtlbklφskas j)(φrqcrq)

+ (σilbklφkqcrqφsras j)σtt

+ σitσtlbklφkrcrqφsqas j]

+ c0[(misas j)(mtkbklσlt)(φrqcrq)

+ (misais)σtt(φkqcrqmlrbkl)

+ (misas j)(σtlbklφkrcrqmtq)

+ σitmtkbklmlrcrqφsqas j

+ σilbklmtkmtqcrqφsras j

+ σitmtqcrqmlrbklφskas j]

+ (misas j)(mtkbklmlrcrqmq j)

= (k0[Σ 2B′ΦAtr(ΦC)+ΣB′ΦC′ΦAtr(Σ)

+ Σ 2B′ΦCΦA]+ c0[MAtr(MBΣ)tr(ΦC)

+ MAtr(Σ)tr(ΦC′M′B′)+MAtr(ΣB′ΦCM′)

+ ΣMBMCΦA+ΣB′M′MC′ΦA

+ ΣMC′M′B′ΦA]+MAtr(MBMCM′))i j.

(ii)

E(XAXtr(BXCX′))i j = E

((
p

∑
t=1

n

∑
s=1

xisastxt j

)(
n

∑
q=1

n

∑
r=1

p

∑
l=1

p

∑
k=1

bklxlrcrqxkq

))

= E

⎛

⎜
⎝∑

q,r,l
k,t,s

xisastxt jbklxlrcrqxkq

⎞

⎟
⎠
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= ∑
q,r,l
k,t,s

{k0[σitφs jσlkφrq +σilφsrσtkφ jq +σikφsqσtlφ jr]

+ c0[mismt jσlkφrq +mismlrσtkφ jq

+ mismkqσtlφ jr +mt jmlrσisφsq +mt jmkqσilφsr

+ mlrmkqσitφs j]+mismt jmlrmkq}astbklcrq

= ∑
q,r,l
k,t,s

k0[(σitastφs j)(σlkbkl)(φrqcrq)

+ σilbklσtkastφsrcrqφ jq

+ σikbklσtlastφsqcrqφ jr]

+ c0[(misastmt j)(σlkbkl)(φrqcrq)

+ misastσtkbklmlrcrqφ jq

+ misastσtlbklmkqcrqφ jr

+ σikbklmlrcrqφsqastmt j

+ σilbklmkqcrqφsrastmt j

+ (σitastφs j)(mkqcrqmlrbkl)]

+ (misastmt j)(mkqcrqmlrbkl)

= (k0[ΣA′Φtr(ΣB)tr(ΦC)+ΣB′ΣA′ΦCΦ

+ ΣBΣA′ΦC′Φ ]+ c0[MAMtr(ΣB)tr(ΦC)

+ MAΣBMCΦ+MAΣB′MC′Φ

+ ΣBMCΦAM+ΣB′MC′ΦAM

+ ΣA′Φtr(MC′M′B′)]+MAMtr(MC′M′B′))i j.

(iii)

E(X′AXtr(BXCX′))i j = E

((
p

∑
t=1

p

∑
s=1

xsiastxt j

)(
n

∑
q=1

n

∑
r=1

p

∑
l=1

p

∑
k=1

bklxlrcrqxkq

))

= E

⎛

⎜
⎝∑

q,r,l
k,t,s

xsiastxt jbklxlrcrqxkq

⎞

⎟
⎠

= ∑
q,r,l
k,t,s

{k0[σstφi jσlkφrq +σslφirσtkφ jq +σskφiqσtlφ jr]

+ c0[msimt jσlkφrq +msimlrσtkφ jq
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+ msimkqσtlφ jr +mt jmlrσskφiq +mt jmkqσslφir

+ mlrmkqσstφi j]+msimt jmlrmkq}astbklcrq

= ∑
q,r,l
k,t,s

k0[φi j(σstast)(σlkbkl)(φrqcrq)

+ (φircrqφ jq)(σslbklσtkast)

+ (φiqcrqφ jr)(σskbklσtlast)]

+ c0[(msiastmt j)(σklbkl)(φrqcrq)

+ msiastσtkbklmlrcrqφ jq

+ msiastσtlbklmkqcrqφ jr

+ φiqcrqmlrbklσskastmt j

+ φircrqmkqbklσslastmt j

+ φi j(σstast)(mkqcrqmlrbkl)]

+ (msiastmt j)(mkqcrqmlrbkl)

= (k0[Φtr(ΣA)tr(ΣB)tr(ΦC)+ΦCΦtr(ΣB′ΣA′)

+ ΦC′Φtr(ΣBΣA′)]+ c0[M′AMtr(ΣB)tr(ΦC)

+ M′AΣBMCΦ+M′AΣB′MC′Φ

+ ΦC′M′B′ΣAM+ΦCM′BΣAM

+ Φtr(ΣA)tr(MC′M′B′)]+M′AMtr(MC′M′B′))i j.

(iv)

E(XBXCXtr(AX))i j = E

((
p

∑
t=1

n

∑
s=1

xtsast

)(
p

∑
q=1

n

∑
r=1

p

∑
l=1

n

∑
k=1

xikbklxlrcrqxq j

))

= E

⎛

⎜
⎝∑

q,r,l
k,t,s

xtsastxikbklxlrcrqxq j

⎞

⎟
⎠

= ∑
q,r,l
k,t,s

{k0[σtiφskσlqφr j +σtlφsrσiqφk j +σtqφs jσilφkr]

+ c0[mtsmikσlqφr j +mtsmlrσiqφk j

+ mtsmq jσilφkr +mikmlrσtqφs j +mikmq jσtlφsr

+ mlrmq jσtiφsk]+mtsmikmlrmq j}astbklcrq
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= ∑
q,r,l
k,t,s

k0[σtiastφskbklσlqcrqφr j

+ σiqcrqφsrastσtlbklφk j

+ σilbklφkrcrqσtqastφs j]

+ c0[(mikbklσlqcrqφr j)(mtsast)

+ (σiqcrqmlrbklφk j)(mtsast)

+ (σilbklφkrcrqmq j)(mtsast)

+ mikbklmlrcrqσtqastφs j

+ mikbklσtlastφsrcrqmq j

+ σtiastφskbklmlrcrqmq j]

+ (mikbklmlrcrqmq j)(mtsast)

= (k0[ΣA′ΦBΣC′Φ+ΣC′ΦAΣB′Φ

+ ΣB′ΦCΣA′Φ ]+ c0[MBΣC′Φtr(MA)

+ ΣC′M′B′Φtr(MA)+ΣB′ΦCMtr(MA)

+ MBMCΣA′Φ+MBΣA′ΦCM

+ ΣA′ΦBMCM]+MBMCMtr(AM))i j.

(v)

E(X′BXCXtr(AX))i j = E

((
p

∑
t=1

n

∑
s=1

xtsast

)(
p

∑
q=1

n

∑
r=1

p

∑
l=1

p

∑
k=1

xkibklxlrcrqxq j

))

= E

⎛

⎜
⎝∑

q,r,l
k,t,s

xtsastxkibklxlrcrqxq j

⎞

⎟
⎠

= ∑
q,r,l
k,t,s

{k0[σtkφsiσlqφr j +σtlφsrσkqφi j +σtqφs jσklφir]

+ c0[mtsmkiσlqφr j +mtsmlrσkqφi j

+ mtsmq jσklφir +mkimlrσtqφs j +mkimq jσtlφsr

+ mlrmq jσtkφsi]+mtsmkimlrmq j}astbklcrq

= ∑
q,r,l
k,t,s

k0[φsiastσtkbklσlqcrqφr j

+ φi j(φsrcrqσkqbklσtlast)
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+ (φircrqσtqastφs j)(σklbkl)]

+ c0[(mkibklσlqcrqφr j)(mtsast)

+ φi j(mtsast)(σkqcrqmlrbkl)

+ (φircrqmq j)(mtsast)(σklbkl)

+ mkibklmlrcrqσtqastφs j

+ mkibklσtlastφsrcrqmq j

+ φsiastσtkbklmlrcrqmq j]

+ (mkibklmlrcrqmq j)(mtsast)

= (k0[ΦAΣBΣC′Φ+Φtr(ΦCΣBΣA′)

+ ΦCΣA′Φtr(ΣB)]+ c0[M′BΣC′Φtr(MA)

+ Φtr(MA)tr(ΣC′M′B′)+ΦCMtr(MA)tr(ΣB′)

+ M′BMCΣA′Φ+M′BΣA′ΦCM

+ ΦAΣBMCM]+M′BMCMtr(MA))i j.

(vi)

E(X′BX′CXtr(AX))i j = E

((
p

∑
t=1

n

∑
s=1

xtsast

)(
p

∑
q=1

p

∑
r=1

n

∑
l=1

p

∑
k=1

xkibklxrlcrqxq j

))

= E

⎛

⎜
⎝∑

q,r,l
k,t,s

xtsastxkibklxrlcrqxq j

⎞

⎟
⎠

= ∑
q,r,l
k,t,s

{k0[σtkφsiσrqφl j +σtrφslσkqφi j +σtqφs jσkrφil ]

+ c0[mtsmkiσrqφl j +mtsmrlσkqφi j

+ mtsmq jσkrφil +mkimrlσtqφs j +mkimq jσtrφsl

+ mrlmq jσtkφsi]+mtsmkimrlmq j}astbklcrq

= ∑
q,r,l
k,t,s

k0[(φsiastσtkbklφl j)(σrqcrq)

+ φi j(φslbklσkqcrqσtrast)

+ φilbklσkrcrqσtqastφs j]

+ c0[(mkibklφl j)(mtsast)(σrqcrq)

+ φi j(mtsast)(σkqcrqmrlbkl)
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+ (φilbklσkrcrqmq j)(mtsast)

+ mkibklmrlcrqσtqastφs j

+ mkibklφslastσtrcrqmq j

+ φsiastσtkbklmrlcrqmq j]

+ (mkibklmrlcrqmq j)(mtsast)

= (k0[ΦAΣBΦtr(ΣC)+Φtr(ΦB′ΣC′ΣA′)

+ ΦB′ΣCΣA′Φ ]+ c0[M′BΦtr(MA)tr(ΣC)

+ Φtr(MA)tr(ΣC′MB′)+ΦB′ΣCMtr(MA)

+ M′BM′CΣA′Φ+M′BΦAΣCM

+ ΦAΣBM′CM]+M′BM′CMtr(AM))i j.

Remark 3.4. The expected values of many of the expressions in Theorems 3.18–
3.22 were computed by Nel (1977) for the case where X has matrix variate normal
distribution. If X ∼ Np,n(M,Σ ⊗Φ), then −2ψ ′(0) = 1 and 4ψ ′′(0) = 1. Therefore
taking c0 = k0 = 1, our results give the expected values for the normal case, and so
Nel’s results can be obtained as special cases of the formulae presented here.

Next, we give some applications of Theorems 3.18–3.22.

Theorem 3.23. Let X ∼ Ep,n(0,Σ ⊗ In,ψ) with finite fourth order moments. Let

Y = X
(

In − ene′n
n

)
X′. Let c0 =−2ψ ′(0) and k0 = 4ψ ′′(0). Then,

(i)

E(Y) = c0(n−1)Σ , (3.36)

(ii)

Cov(yi j,ykl) = k0(n−1)(σilσ jk+σikσ jl)+(n−1)2(k0−c2
0)σi jσkl , (3.37)

(iii)

Var(yi j) = (nk0 − (n−1)c2
0)(n−1)σ2

i j + k0(n−1)σiiσ j j. (3.38)

PROOF: Let A = In − ene′n
n .

(i) Using Theorem 3.18, we get

E(XAX′) = c0Σ tr

((
In − ene′n

n

)
In

)
+0 = c0(n−1)Σ .
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(ii) Let qm be a p-dimensional column vector such that

qm
i =

{
1 if i = m
0 if i �= m

, m = 1,2, . . . , p; i = 1,2, . . . , p.

Then, yi j = qi ′Yq j = qi ′XAX′q j and ykl = qk ′Yql = qk ′XAX′ql . Now from
(3.36), it follows that

E(yi j) = c0(n−1)σi j and E(ykl) = c0(n−1)σkl .

Since, X ∼ Ep,n(0,Σ ⊗ In,ψ), we have X′ ∼ En,p(0,In ⊗Σ ,ψ). Using Theo-
rem 3.22, we get

E(yi jykl) = E(qi ′XAX′q j qk ′XAX′ql)

= qi ′E(XAX′q j qk ′XAX′)ql

= qi ′
(

k0(Σ tr(InAInA)tr(q jqk ′Σ)

+ Σq jqk ′Σ tr(AIn)tr(AIn)+Σ(q jqk ′)′Σ tr(AInAIn))
)

ql

= k0

(
(n−1)qi ′Σqltr(qk ′Σq j)+qi ′Σq jqk ′Σql(n−1)2

+ qi ′Σqk q j ′Σql(n−1)
)

= k0
(
(n−1)σilσk j +(n−1)2σi jσkl +(n−1)σikσ jl

)
.

Then,

Cov(yi j,ykl) = E(yi jykl)−E(yi j)E(ykl)

= k0
(
(n−1)σilσk j +(n−1)2σi jσkl +(n−1)σikσ jl

)

− c2
0(n−1)2σi jσkl

= k0(n−1)(σilσ jk +σikσ jl)+(n−1)2(k0 − c2
0)σi jσkl

which proves (3.37).
(iii) Take k = i and l = j in (3.37). Then,

Var(yi j) = k0(n−1)(σ2
i j +σiiσ j j)+(n−1)2(k0 − c2

0)σ2
i j

= (n−1)(nk0 − (n−1)c2
0)σ2

i j + k0(n−1)σiiσ j j.

Example 3.1. Let X ∼ Mtp,n(m,0,Σ ⊗Φ), m > 4, and Y = X
(

In − ene′n
n

)
X′. We

want to find E(Y), Cov(yi j,ykl) and Var(yi j). In order to compute them, we need
to know c0 = −2ψ ′(0) and k0 = 4ψ ′′(0). Let u = x11√σ11

. Then, u ∼ Mt1,1(m,0,1);
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that is u has a one-dimensional Student’s t-distribution with m degrees of freedom.
(This will be shown in Chap. 4.) Hence, using Theorem 3.16 we get E(u2) = c0 and
E(u4) = 3k0. It is known that

E(ur) =
m

r
2 β
(

r+1
2 , m−r

2

)

β
(

1
2 ,

m
2

) for m > r and r even,

(see Mood, Graybill, and Boes, 1974, p. 543). In particular, we have

E(u2) =
mβ
(

2+1
2 , m−2

2

)

β
(

1
2 ,

m
2

)

= m
1
2Γ
(

1
2

)
Γ
(

m−2
2

)

Γ
(

1
2

)(
m−2

2

)
Γ
(

m−2
2

)

=
m

m−2
,

and

E(u4) =
m2β
(

4+1
2 , m−4

2

)

β
(

1
2 ,

m
2

)

= m2
3
2

1
2Γ
(

1
2

)
Γ
(

m−4
2

)

Γ
(

1
2

)(
m−2

2

)(
m−4

2

)
Γ
(

m−2
4

)

=
3m2

(m−2)(m−4)
.

Hence, c0 =
m

m−2 and k0 =
m2

(m−2)(m−4) . Now, using Theorem 3.23, we get

E(Y) = (n−1)
m

m−2
Σ ,

Cov(yi j,ykl) = (n−1)
[ m2

(m−2)(m−4)
(σilσ jk +σikσ jl)

+ (n−1)

(
m2

(m−2)(m−4)
− m2

(m−2)2

)
σi jσkl

]

= (n−1)
m2

(m−2)(m−4)

×
[
σilσ jk +σikσ jl +(n−1)

(
1− m−4

m−2

)
σi jσkl

]
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= (n−1)
m2

(m−2)(m−4)

×
[
σilσ jk +σikσ jl +

2(n−1)
m−2

σi jσkl

]
,

and

Var(yi j) = (n−1)
m2

(m−2)(m−4)

[
σ2

i j +σiiσ j j +
2(n−1)

m−2
σ2

i j

]

= (n−1)
m2

(m−2)(m−4)

[
σiiσ j j +

2n+m−4
m−2

σ2
i j

]
.



Chapter 4
Mixtures of Normal Distributions

4.1 Mixture by Distribution Function

Muirhead (1982) gave a definition of scale mixture of vector variate normal
distributions. Using Corollary 2.6, the scale mixture of matrix variate normal
distributions can be defined as follows (Gupta and Varga, 1995a).

Definition 4.1. Let M : p×n, Σ : p× p, andΦ : n×n be constant matrices such that
Σ > 0 and Φ > 0. Assume G(z) is a distribution function on (0,∞). Let X ∈ IRp×n

and define

g(X) =
1

(2π)
pn
2 |Σ | n

2 |Φ | p
2

×
∫ ∞

0
z−

pn
2 etr

(
− 1

2z
(X−M)′Σ−1(X−M)Φ−1

)
dG(z). (4.1)

Then the m.e.c. distribution whose p.d.f. is g(X) is called a scale mixture of matrix
variate normal distributions.

Remark 4.1. In this chapter we will denote the p.d.f. of X ∼ Np,n(M,Σ ⊗Φ) by
fNp,n(M,Σ⊗Φ )(X). With this notation, (4.1) can be written as

g(X) =
∫ ∞

0
fNp,n(M,zΣ⊗Φ )(X)dG(z).

Remark 4.2. Let X be a p×n random matrix. Then, X ∼ Ep,n(M,Σ⊗Φ ,ψ), Σ > 0,
Φ > 0 has the p.d.f. defined by (4.1) if and only if its characteristic function is

φX(T) = etr(iT′M)
∫ ∞

0
etr

(
− zT′ΣTΦ

2

)
dG(z), (4.2)

A.K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory,
DOI 10.1007/978-1-4614-8154-6 4, © Springer Science+Business Media New York 2013

103



104 4 Mixtures of Normal Distributions

that is

ψ(v) =
∫ ∞

0
exp
(
− zv

2

)
dG(z).

This statement follows from a more general result proved later in Theorem 4.5.

Remark 4.3. From (4.2), it follows that X ∼ Ep,n(M,Σ ⊗Φ ,ψ), Σ > 0, Φ > 0 has

the p.d.f. defined by (4.1) if and only if X ≈ z
1
2 Y where Y ∼ Np,n(M,Σ ⊗Φ), z has

the distribution G(z), and z and Y are independent.

The relationship between the characteristic function of a scale mixture of normal
distributions and its stochastic representation is pointed out in the next theorem, due
to Cambanis, Huang, and Simons (1981).

Theorem 4.1. Let X ∼ Ep,n(0,Ip ⊗ In,ψ) have the stochastic representation X ≈
rU. Let G(z) be a distribution function on (0,∞). Then,

ψ(v) =
∫ ∞

0
exp
(
− zv

2

)
dG(z) (4.3)

if and only if r is absolutely continuous with p.d.f.

l(r) =
1

2
pn
2 −1Γ

( pn
2

) rpn−1
∫ ∞

0
z−

pn
2 exp

(
− r2

2z

)
dG(z). (4.4)

PROOF: First, assume (4.3) holds. Then, with the notation of Remark 4.3, we can
write X ≈ z

1
2 Y. Hence, rU ≈ z

1
2 Y, and tr(r2U′U)≈ tr(zY′Y). Consequently,

r2 ≈ ztr(Y′Y). (4.5)

Since Y ∼ Np,n(0,Ip ⊗ In), and hence tr(Y′Y)∼ χ2
pn. Now, χ2

pn has the p.d.f.

f1(w) =
1

2
pn
2 Γ
( pn

2

)w
pn
2 −1e−

w
2 , w > 0 .

Denoting r2 by s, from (4.5) we obtain the p.d.f. of s as

f2(s) =
∫ ∞

0

1
z

f1

(
s
z

)
dG(z)

=
∫ ∞

0

1
z

1

2
pn
2 Γ
( pn

2

)
(

s
z

) pn
2 −1

e−
s
2z dG(z)

=
1

2
pn
2 Γ
( pn

2

) s
pn
2 −1
∫ ∞

0
z−

pn
2 e−

s
2z dG(z).
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Since r2 = s, we have J(s → r) = 2r and so the p.d.f. of r is

l(r) =
1

2
pn
2 −1Γ

( pn
2

) rpn−1
∫ ∞

0
z−

pn
2 exp

(
− r2

2z

)
dG(z)

which is (4.4).
The other direction of the theorem follows from the fact that r and ψ determine

each other.

The question arises when the p.d.f. of a m.e.c. distribution can be expressed as
a scale mixture of matrix variate normal distributions. With the help of the next
theorem, we can answer this question. This theorem was first derived by Schoenberg
(1938) and the proof given here is due to Fang, Kotz, and Ng (1990) who made use
of a derivation of Kingman (1972).

Theorem 4.2. Let ψ : [0,∞) → IR be a real function. Then, ψ(t′t), t ∈ IRk is a
characteristic function for every k ≥ 1 if and only if

ψ(u) =
∫ ∞

0
exp
(
−uz

2

)
dG(z) , (4.6)

where G(z) is a distribution function on [0,∞).

PROOF: First, assume (4.6) holds. Let k ≥ 1 be an integer and x be a k-dimensional
random vector with p.d.f.

g(x) =
1

(2π) k
2

∫ ∞

0
z−

k
2 exp

(
−x′x

2z

)
dG(z).

Then, the characteristic function of x is

φx(t) =
∫

IRk
exp(it′x)g(x)dx

=
∫

IRk
exp(it′x)

1

(2π) k
2

∫ ∞

0
z−

k
2 exp

(
−x′x

2z

)
dG(z)dx

=
∫ ∞

0

∫

IRk
exp(it′x)

1

(2πz)
k
2

exp

(
−x′x

2z

)
dxdG(z)

=
∫ ∞

0
exp

(
− t′tz

2

)
dG(z) ,

where we used the fact that
∫

IRk exp(it′x) 1

(2πz)
k
2

exp
(
− x′x

2z

)
dx is the characteristic

function of Nk(0,zIk) and hence is equal to exp
(
− t′tz

2

)
. Hence, ψ(t′t) is the

characteristic function of x, where t ∈ IRk.
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Conversely, assume ψ(t′t) is a characteristic function for every k ≥ 1. Then, we
can choose an infinite sequence of random variables (x1,x2, . . .), such that for every
k ≥ 1 integer, the characteristic function of (x1,x2, . . . ,xk) is ψ(t′t), where t ∈ IRk.
Let {π(1),π(2), . . . ,π(k)} be a permutation of the numbers {1,2, . . . ,k}. Then the
characteristic function of (xπ(1),xπ(2), . . . ,xπ(k)) is alsoψ(t′t). Hence, (x1,x2, . . . ,xk)
and (xπ(1),xπ(2), . . . ,xπ(k)) are identically distributed. Thus the infinite sequence
(x1,x2, . . .) is exchangeable.

Let (Ω ,A ,P) be the probability space on which x1,x2, . . . ,xn, . . . are defined.
From De Finetti’s theorem (see Billingsley, 1979, p. 425), we know that there
exists a sub σ -field of A say F such that conditional upon F , xi’s are identically
distributed and conditionally independent. The conditional independence means that
for every integer n

P(xi ∈ Mi, i = 1,2, . . . ,n|F ) =
n

∏
i=1

P(xi ∈ Mi|F ) (4.7)

where Mi ∈ B(IR), i = 1,2, . . . ,n. Moreover, F has the property that for every
permutation of 1,2, . . . ,n, say {π(1),π(2), . . . ,π(k)},

P(xi ∈ Mi, i = 1,2, . . . ,n|F ) = P(xπ(i) ∈ Mi, i = 1,2, . . . ,n|F ). (4.8)

Let (xi|F )ω be a regular conditional distribution of xi given F and E(xi|F )ω be
a conditional expectation of xi given F , i = 1,2, . . .. Here, ω ∈ Ω (see Billingsley,
1979, p. 390). Then, for g : IR → IR integrable, we have

E(g(xi)|F )ω =
∫ ∞

0
g(xi)d(xi|F )ω (4.9)

(see Billingsley, 1979, p. 399). Now, it follows from (4.7) and (4.8) that for fixed
ω ∈Ω ,

P(x1 ∈ M|F )ω = P(x1 ∈ M, xi ∈ IR, i = 2, . . . ,k|F )ω

= P(xk ∈ M, x1 ∈ IR, xi ∈ IR, i = 2, . . . ,k−1|F )ω

= P(xk ∈ M|F )ω .

Hence, for fixed ω ∈Ω , and any positive integer k,

(x1|F )ω = (xk|F )ω almost everywhere. (4.10)

Define

φ(t)ω =
∫

IR
eitx1d(x1|F )ω , (4.11)
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where t ∈ IR, and ω ∈Ω . Then, from (4.10) we get

φ(t)ω =
∫

IR
eitxk d(xk|F )ω . (4.12)

For fixed t ∈ IR, φ(t)ω is a F -measurable random variable. On the other hand, for
fixed ω , φ(t)ω is a continuous function of t since it is the characteristic function
of the distribution defined by (x1|F )ω . Since φ(t)ω is a characteristic function, we
have |φ(t)ω | ≤ 1 and φ(0)ω = 1. We also have

φ(−t)ω = E(ei(−t)x1 |F )ω = E(eitx1 |F )ω = φ(t)ω .

From (4.9) and (4.12), we see that for any positive integer k,

φ(t)ω = E(eitxk |F )ω . (4.13)

Using (4.7) and (4.13), we get

E

(

exp

(

i
n

∑
j=1

t jx j

)

|F
)

ω

=
n

∏
j=1

E
(
eit jx j |F)ω

=
n

∏
j=1
φ(t j)ω . (4.14)

Therefore,

E

(

exp

(

i
n

∑
j=1

t jx j

))

= E

(
n

∏
j=1
φ(t j)

)

.

The left-hand side of the last expression is the characteristic function of
(x1,x2, . . . ,xn). Hence, we get

E

(
n

∏
j=1
φ(t j)

)

= ψ

(
n

∑
j=1

t2
j

)

. (4.15)

Let u and v be real numbers and define w = (u2 + v2)
1
2 . Then, we can write

E(|φ(w)−φ(u)φ(v)|2) = E((φ(w)−φ(u)φ(v))(φ(w)−φ(u)φ(v)))
= E((φ(w)−φ(u)φ(v))(φ(−w)−φ(−u)φ(−v)))

= E(φ(w)φ(−w))+E(φ(u)φ(−u)φ(v)φ(−v))

− E(φ(w)φ(−u)φ(−v))−E(φ(−w)φ(u)φ(v)).
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Using (4.15), we see that all four terms in the last expression equal ψ(2w2), hence,

E(|φ(w)−φ(u)φ(v)|2) = 0.

That means, φ(u)φ(v) = φ(w) with probability one, or equivalently φ(u)ωφ(v)ω =
φ(w)ω for ω ∈C(u,v), where C(u,v)⊂Ω and P(C(u,v)) = 1.

Now, we have

φ(u)ωφ(0)ω = φ(|u|)ω for ω ∈ C(u,0)

and

φ(−u)ωφ(0)ω = φ(|u|)ω for ω ∈C(−u,0).

But φ(0)ω = 1 and so φ(u)ω = φ(−u)ω for ω ∈C(u,0)∩C(−u,0). However we
have already shown that φ(−u)ω = φ(u)ω . Hence, φ(u)ω = φ(u)ω and therefore
φ(u)ω is real for ω ∈C(u,0)∩C(−u,0). Similarly, φ(v)ω is real for ω ∈C(0,v)∩
C(0,−v).

Define

C =
⋂

u,v rational numbers
{C(u,v)∩C(u,0)∩C(−u,0)∩C(0,v)∩C(0,−v)}.

Then, P(C) = 1, φ(u)ωφ(v)ω = φ(
√

u2 + v2)ω and φ(u)ω is real for u, v rational
and ω ∈C. However we have already shown that φ(t)ω is continuous in t for fixed
ω ∈ Ω . Hence φ(t)ω is real for all t ∈ IR and ω ∈ C. Moreover, with the notation

ξ (t)ω = φ
(

t
1
2

)

ω
, we have

ξ (t1)ωξ (t2)ω = ξ (t1 + t2)ω , t1 ≥ 0, t2 ≥ 0 (4.16)

for t
1
2

1 , t
1
2

2 rational. Since ξ (t)ω is continuous in t, we conclude that (4.16) holds for
all nonnegative numbers t1 and t2. Now using Corollary 1.1 we find that the solution
of (4.16) is

ξ (t)ω = e−k(ω)t , t ≥ 0

where k(ω) is a positive number depending on ω (see Feller, 1957, p.413). So, we
can write

φ(t)ω = e−
z(ω)

2 t2
, t ≥ 0

where z(ω) depends on ω . This is also true if t < 0 since φ(−t)ω = φ(t)ω . Now,
z(ω) defines a random variable z with probability one. Therefore, we can write
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φ(t) = e−
z
2 t2

(4.17)

and hence z =−2logφ(1). Since, φ(1) is F -measurable, so is z, and we have

E(y|z) = E(E(y|F )|z) (4.18)

For any random variable y. Now take y = eitx1 , then using (4.13), (4.17) and (4.18)
we get

E(eitx1 |z) = E(E(eitx1 |F )|z)
= E(φ(t)|z)
= E
(

e−
z
2 t2 |z
)

= e−
z
2 t2

.

Hence, the characteristic function of x1 is

ψ(t2) = E(eitx1)

= E(E(eitx1 |z))
= E
(

e−
z
2 t2
)

=

∫ ∞

0
exp

(
− zt2

2

)
dG(z),

where G(z) denotes the distribution function of z. Thus,

ψ(u) =
∫ ∞

0
exp
(
− zu

2

)
dG(z)

which proves (4.6).

We also need the following lemma.

Lemma 4.1. Let X ∼ Ep,n(0,Σ ⊗Φ ,ψ). Let Y be a q×m submatrix of X such that
qm < pn and P(Y = 0) = 0. Then Y is absolutely continuous.

PROOF: From Theorem 3.6, it follows that Y is absolutely continuous.

Now, we can prove the following theorem.

Theorem 4.3. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) such that P(X = M) = 0. Then, the
distribution of X is absolutely continuous and the p.d.f. of X can be written as a
scale mixture of matrix variate normal distributions if and only if for every integer
k > pn there exists Y ∼ Eq,m(M1,Σ1 ⊗Φ1,ψ1), such that qm ≥ k, Σ 1 > 0, Φ1 > 0
and Y has a submatrix Y0 with Y0 ≈ X.
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PROOF: First, assume that for every integer k > pn there exists Y ∼ Eq,m(M1,Σ 1 ⊗
Φ1,ψ1) such that qm ≥ k and Y has a submatrix Y0 with Y0 ≈ X. Then, for fixed
k, from Remark 2.3, it follows that ψ1 = ψ . Moreover, from Lemma 4.1, it follows
that the distribution of Y0 and consequently that of X is absolutely continuous. Let

w = vec

(
Σ− 1

2
1 (Y−M1)Φ

− 1
2

1

)′
, then w ∼ Eqm(0,Iqm,ψ). Let v be a k-dimensional

subvector of w. Then, v ∼ Ek(0,Ik,ψ) and the characteristic function of v is φv(t) =
ψ(t′t), where t ∈ IRk. Using Theorem 4.2, we get ψ(u) =

∫ ∞
0 exp

(− zu
2

)
dG(z).

Therefore, the p.d.f. of X is

g(X) =
∫ ∞

0
fNp,n(M,zΣ⊗Φ )(X)dG(z).

Next, assume that X can be written as a scale mixture of matrix variate normal
distributions; that is, the p.d.f. of X is g(X) =

∫ ∞
0 fNp,n(M,zΣ⊗Φ )(X)dG(z). Then,

we have

ψ(u) =
∫ ∞

0
exp
(
− zu

2

)
dG(z) .

It follows from Theorem 4.2, that ψ(t′t), t ∈ IRk is a characteristic function for
every k ≥ 1. Choose k > pn, and let q ≥ p, m ≥ n, such that qm ≥ k. Define a
qm-dimensional random vector w such that w ∼ Eqm(0,Iqm,ψ). Let w = vec(S′)
where S is q×m matrix, then S ∼ Eq,m(0,Iq ⊗ Im,ψ). Further define

Σ 1 =

(
Σ 0
0 Iq−p

)
, Φ1 =

(
Φ 0
0 Im−n

)
, and M1 =

(
M 0
0 0

)
,

where M1 is q×m. Let Y = Σ
1
2
1 SΦ

1
2
1 +M1. Then,

Y ∼ Eq,m

((
M 0
0 0

)
,

(
Σ 0
0 Iq−p

)
⊗
(
Φ 0
0 Im−n

)
,ψ
)

.

Partition Y into Y =

(
Y11 Y12

Y21 Y22

)
where Y11 is p×n. Then, Y11 ∼ Ep,n(M,Σ ⊗

Φ ,ψ) and hence X ≈ Y11.

Example 4.1. Here, we list some m.e.c. distributions together with the distribution
function G(z) which generates the p.d.f. through (4.1).

(i) Matrix variate normal distribution:

G(1) = 1.
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(ii) ε-contaminated matrix variate normal distribution:

G(1) = 1− ε , G(σ2) = ε .

(iii) Matrix variate Cauchy distribution:

G(z) =
1

4π

∫ z

0
t−

3
2 e−

1
2t dt.

(iv) Matrix variate t-distribution with m degrees of freedom:

G(z) =

(
m
2

)m
2

Γ
(

m
2

)
∫ z

0
t−(1+m

2 )e−
m
2t dt.

Here, (a) and (b) are obvious, and (c) and (d) will be shown in Sect. 4.2.

Next, we give an example which shows that the p.d.f. of an absolutely continuous
elliptically contoured distribution is not always expressible as the scale mixture of
normal distributions.

Example 4.2. Let x be a one-dimensional random variable with p.d.f. f (x) =√
2
π

1
1+x4 . Assume f (x) has a scale mixture representation. Then, from Theorem 4.3,

there exists a q×m dimensional elliptical distribution Y ∼ Eq,m(M1,Σ 1 ⊗Φ1,ψ1),
such that qm > 5 and one element of Y is identically distributed as x. Therefore,
there exists a 5-dimensional random vector w such that w ∼ E5(m2,Σ 2,ψ) and
w1 ≈ x.

Now, f (x) = h(x2) where h(z) =
√

2
π

1
1+z2 . Let the p.d.f. of w be f1(w) = h1((w−

m2)
′Σ−1

2 (w−m2)). It follows, from Theorem 3.4, that h1(z) = 1
π2
∂ 2h(z)
∂ z2 . We have

∂h(z)
∂ z

=

√
2
π
∂
∂ z

1
1+ z2

= −2
√

2
π

z
(1+ z2)2 ,

and

∂ 2h(z)
∂ z2 =−2

√
2
π

1−3z2

(1+ z2)3 .

Consequently we get h1(z) = 2
√

2
π3

3z2−1
(1+z2)3 . However, h1(z) < 0 for 0 < z < 1√

3

and hence h(x2) cannot be a p.d.f. This is a contradiction. Therefore, f (x) cannot be
written as a scale mixture of normal distributions.

Next, we prove some important theorems about scale mixture representations.
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Theorem 4.4. Let λ : IRp×n → IRq×m be a Borel-measurable matrix variate
function. Assume that if X ∼ Np,n(M,Σ ⊗ Φ) then the p.d.f. of W = λ (X)

is lλ
Np,n(M,Σ⊗Φ )

(W). Then, if X ∼ Ep,n(M,Σ ⊗ Φ ,ψ) with p.d.f. g(X) =
∫ ∞

0 fNp,n(M,zΣ⊗Φ )(X)dG(z), the p.d.f. of W = λ (X) is

l(W) =

∫ ∞

0
lλ
Np,n(M,zΣ⊗Φ )

(W)dG(z) .

PROOF: Let A ⊂ IRq×m. Then,

∫

A
l(W)dW =

∫

A

∫ ∞

0
lλ
Np,n(M,zΣ⊗Φ )

(W)dG(z)dW

=
∫ ∞

0

∫

A
lλ
Np,n(M,zΣ⊗Φ )

(W)dWdG(z)

=
∫ ∞

0
P(λ (X) ∈ A|X ∼ Np,n(M,zΣ ⊗Φ))dG(z)

=

∫ ∞

0

∫

IRp×n
χA(λ (X)) fNp,n(M,zΣ⊗Φ )(X)XdG(z)

=

∫

IRp×n
χA(λ (X))

∫ ∞

0
fNp,n(M,zΣ⊗Φ )(X)dG(z)X

=
∫

IRp×n
χA(λ (X))g(X)X

= P(λ (X) ∈ A|X ∼ Ep,n(M,Σ ⊗Φ ,ψ)) .

Corollary 4.1. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with p.d.f.

g(X) =
∫ ∞

0
fNp,n(M,zΣ⊗Φ )(X)dG(z).

Let C : q×m, A : q× p, and B : n×m be constant matrices, such that rk(A) = q and
rk(B) = m. Then, from Theorems 4.4 and 2.2, it follows that the p.d.f. of AXB+C
is

g∗(X) =
∫ ∞

0
fNp,n(AMB+C,z(AΣA′)⊗BΦB′)(X)dG(z) .

Furthermore, if X, M, and Σ are partitioned into

X =

(
X1

X2

)
, M =

(
M1

M2

)
, and Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
,

where X1 : q×n, M1 : q×n, and Σ 11 : q×q, 1 ≤ q < p, then the p.d.f. of X1 is
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g1(X) =
∫ ∞

0
fNp,n(M1,zΣ 11⊗Φ )(X)dG(z) .

Corollary 4.2. Let X ∼ Ep,n(μe′n,Σ ⊗ In,ψ) with p.d.f. g(X), where

g(X) =
∫ ∞

0
fNp,n(M,zΣ⊗Φ )(X)dG(z).

Then,

(a) The p.d.f. of y1 =
Xen

n is

g1(y1) =
∫ ∞

0
fNp(μ ,zΣ/n)(y1)dG(z)

(b) The p.d.f. of Y2 = X
(

In − ene′n
n

)
X′ is

g2(Y2) =
∫ ∞

0
fWp(zΣ ,n−1)(Y2)dG(z) ,

(c) The p.d.f. of Y3 = XX′, for μ = 0, is

g3(Y3) =
∫ ∞

0
fWp(zΣ ,n)(Y3)dG(z) ,

Theorem 4.5. Let λ : IRpn → IRq×m be a Borel-measurable matrix variate function.
Assume that if X ∼ Np,n(M,Σ ⊗Φ), then E(λ (X)) exists and it is denoted by
ENp,n(M,Σ⊗Φ )(λ (X)). Then, if X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with p.d.f.

g(X) =
∫ ∞

0
fNp,n(M,zΣ⊗Φ )(X)dG(z),

such that E(λ (X)) exists and it is denoted by EEp,n(M,Σ⊗Φ ,ψ)(λ (X)), we have

EEp,n(M,Σ⊗Φ ,ψ)(λ (X)) =
∫ ∞

0
ENp,n(M,zΣ⊗Φ )((λ (X)))dG(z) .

PROOF:

EEp,n(M,Σ⊗Φ ,ψ)(λ (X)) =
∫

IRp×n
λ (X)g(X)dX

=
∫

IRp×n
λ (X)

∫ ∞

0
fNp,n(M,zΣ⊗Φ )(X)dG(z)dX

=
∫ ∞

0

∫

IRp×n
λ (X) fNp,n(M,zΣ⊗Φ )(X)dXdG(z)

=
∫ ∞

0
ENp,n(M,zΣ⊗Φ )(λ (X))dG(z) .
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Corollary 4.3. With the notations of Theorem 4.5, if Cov(X) exists, then

Cov(X) =

(∫ ∞

0
zdG(z)

)
Σ ⊗Φ .

Next, we give a theorem which shows the relationship between the characteristic
function of a scale mixture of normal distributions and the characteristic function
of a conditional distribution. This theorem is due to Cambanis, Huang, and Simons
(1981).

Theorem 4.6. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with p.d.f.

g(X) =

∫ ∞

0
fNp,n(M,zΣ⊗Φ )(X)dG(z).

Let X, M, and Σ be partitioned as

X =

(
X1

X2

)
, M =

(
M1

M2

)
, and Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
,

where X1 and M1 are q× n and Σ 11 : q× q. Then, the conditional p.d.f. of X1|X2

can be written as

g1(X1|X2) =
∫ ∞

0
f
Nq,n(M1+Σ 12Σ−1

22 (X2−M2),zΣ 11·2⊗Φ )
(X)dGq(X2)(z), (4.19)

where q(X2) = tr((X2 −M2)
′Σ−1

22 (X2 −M2)Φ−1) and

Ga2(z) =

∫ z
0 v−

(p−q)n
2 exp

(
− a2

2v

)
dG(v)

∫ ∞
0 v−

(p−q)n
2 exp

(
− a2

2v

)
dG(v)

if a > 0, z ≥ 0, (4.20)

and G0(z) = 1 if z ≥ 0.

PROOF: Let X ≈ rΣ
1
2 UΦ

1
2 +M be the stochastic representation of X. Then, (4.4)

gives the p.d.f. of r. It follows, from Theorem 2.21, that the stochastic representation
of X1|X2 has the form

X1|X2 ≈ rq(X2)Σ
1
2
11U1Φ

1
2 +(M1 +(X2 −M2)Σ−1

22 Σ 21).

Here, vec(U′
1) is uniformly distributed on Sqn. It follows, from (2.31) and (4.4), that

P(ra2 ≤ c) =

∫√c2+a2

a (r2 −a2)
qn
2 −1r−(pn−2)rpn−1 ∫ ∞

0 s−
pn
2 exp

(
− r2

2s

)
dG(s)dr

∫ ∞
a (r2 −a2)

qn
2 −1r−(pn−2)rpn−1

∫ ∞
0 s−

pn
2 exp

(
− r2

2s

)
dG(s)dr

.
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Let y2 = r2 −a2, then J(r → y) = r
y , and we have

P(ra2 ≤ c) =

∫ c
0 yqn−1 ∫ ∞

0 s−
pn
2 exp

(
− y2+a2

2s

)
dG(s)dy

∫ ∞
0 yqn−1

∫ ∞
0 s−

pn
2 exp

(
− y2+a2

2s

)
dG(s)dy

=

∫ c
0 yqn−1 ∫ ∞

0 s−
pn
2 exp

(
− y2

2s

)
exp
(
− a2

2s

)
dG(s)dy

∫ ∞
0 s−

pn
2 exp

(
− a2

2s

)∫ ∞
0 yqn−1 exp

(
− y2

2s

)
dydG(s)

. (4.21)

In order to compute
∫ ∞

0 yqn−1 exp
(
− y2

2s

)
dy we substitute t = y2

2s . Then, J(y →
t) = s

t , and hence

∫ ∞

0
yqn−1 exp

(
− y2

2s

)
dy = (2s)

qn
2 −1s

∫ ∞

0
t

qn
2 −1 exp(−t)dt

= 2
qn
2 −1s

qn
2 Γ
(qn

2

)
.

Substituting this into (4.21), we get

P(ra2 ≤ c) =

∫ c
0 yqn−1 ∫ ∞

0 s−
pn
2 exp

(
− y2

2s

)
exp
(
− a2

2s

)
dG(s)dy

∫ ∞
0 2

qn
2 −1Γ

( qn
2

)
s−

(p−q)n
2 exp

(
− a2

2s

)
dG(s)

(4.22)

=
∫ c

0

1

2
qn
2 −1Γ

( qn
2

)yqn−1
∫ ∞

0

exp
(
− y2

2s

)

s
qn
2

s−
(p−q)n

2 exp
(
− a2

2s

)

∫ ∞
0 s−

(p−q)n
2 exp

(
− a2

2s

)
dG(s)

dG(s)dy.

Define the distribution function

Ga2(z) =

∫ z
0 s−

(p−q)n
2 exp

(
− a2

2s

)
dG(s)

∫ ∞
0 s−

(p−q)n
2 exp

(
− a2

2s

)
dG(s)

.

Then, from (4.22), we get

P(ra2 ≤ c) =
∫ c

0

1

2
qn
2 −1Γ

( qn
2

)yqn−1
∫ ∞

0

exp
(
− y2

2z

)

z
qn
2

d(Ga2(z))dy.
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Hence the p.d.f. of ra2 is

l∗(ra2) =
1

2
qn
2 −1Γ

( qn
2

) rqn−1
a

∫ ∞

0

exp
(
− r2

a
2z

)

z
qn
2

dG(z)

Now, from Theorem 4.1, this means that the p.d.f. of X1|X2 has the form (4.19)
with Ga2(z) defined by (4.20).

4.2 Mixture by Weighting Function

Chu (1973) showed another way to obtain the p.d.f. of a m.e.c. distribution from the
density functions of matrix variate normal distributions. For this purpose, he used
Laplace transform. We recall here that if f (t) is a real function defined on the set of
nonnegative real numbers, then its Laplace transform, L [ f (t)] is defined by

g(s) = L [ f (t)]

=
∫ ∞

0
e−st f (t)dt.

Moreover, the inverse Laplace transform of a function g(s) (see Abramowitz and
Stegun, 1965, p.1020) is defined by

f (t) = L −1[g(s)]

=
1

2πi

∫ c+i∞

c−i∞
estg(s)ds ,

where c is an appropriately chosen real number. It is known that L −1[g(s)] exists if
g(s) is differentiable for sufficiently large s and g(s) = o(s−k) as s → ∞, k > 1.

The following theorem was proved by Chu (1973) for the vector variate case.

Theorem 4.7. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with p.d.f. g(X) where

g(X) = |Σ |− n
2 |Φ |− p

2 h(tr((X−M)′Σ−1(X−M)Φ−1)) .

If h(t), t ∈ [0,∞) has the inverse Laplace transform, then we have

g(X) =
∫ ∞

0
fNp,n(M,z−1Σ⊗Φ )(X)w(z)dz , (4.23)
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where

w(z) = (2π)
pn
2 z−

pn
2 L −1[h(2t)]. (4.24)

PROOF: From (4.24), we get

h(2t) = L [(2π)−
pn
2 z

pn
2 w(z)]

=
∫ ∞

0
e−tz(2π)−

pn
2 z

pn
2 w(z)dz.

Hence,

g(X) = |Σ |− n
2 |Φ |− p

2

∫ ∞

0
etr

(
−1

2
tr((X−M)′Σ−1(X−M)Φ−1)z

)( z
2π

) pn
2

w(z)dz

=
∫ ∞

0

1

(2π)
pn
2 |z−1Σ | n

2 |Φ | p
2

etr

(
−1

2
tr((X−M)′Σ−1(X−M)Φ−1)z

)
w(z)dz

=
∫ ∞

0
fNp,n(M,z−1Σ⊗Φ )(X)w(z)dz .

Remark 4.4. Let g(x) =
∫ ∞

0 fNp(0,z−1Σ )(x)w(z)dz. Assume, w(z) is a function (not a

functional), and define u(z) = 1
z2 w
(

1
z

)
. Then,

g(X) =
∫ ∞

0
fNp,n(M,zΣ⊗Φ )(X)u(z)dz. (4.25)

Indeed, let t = 1
z . Then, J(z → t) = 1

t2 and so (4.23) can be rewritten as

g(X) =

∫ ∞

0
fNp,n(M,tΣ⊗Φ )(X)w

(
1
t

)
1
t2 dt

=
∫ ∞

0
fNp,n(M,tΣ⊗Φ )(X)u(t)dt .

Remark 4.5. Even if w(z) is a functional the representation (4.25) may exist as parts
(a) and (b) of the next example show.

Example 4.3. Here, we list some m.e.c. distributions together with the functions
w(z) and u(z) which generate the p.d.f. through (4.23) and (4.25).

(a) Matrix variate normal distribution;

w(z) = δ (z−1), and

u(z) = δ (z−1).
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(b) ε-contaminated matrix variate normal distribution;

w(z) = (1− ε)δ (z−1)+ εδ (z−σ2), and

u(z) = (1− ε)δ (z−1)+ εδ (z−σ2).

(c) Matrix variate Cauchy distribution:

w(z) =
1

4π
√

zez
, and

u(z) =
1

4πz

√
ze

1
z

.

(d) Matrix variate t-distribution with m degrees of freedom;

w(z) =

(
mz
2

)m
2 e−

mz
2

zΓ
(

m
2

) , and

u(z) =

(
m
2z

)m
2 e−

m
2z

zΓ
(

m
2

) ,δ (z−1).

(e) The one-dimensional distribution with p.d.f.

g(x) =

√
2

πσ
1

1+
(

x
σ
)4 ;

w(z) =
1√
πz

sin
z
2
, and

u(z) =
1√
πz

sin
1
2z

.

The functions w(z) in parts (a) and (c)–(e) are given in Chu (1973) and u(z) can be
easily computed from w(z).

Remark 4.6. It may be noted that u(z) is not always nonnegative as part (e) of
Example 4.3 shows. However, if it is nonnegative then defining G(z) =

∫ z
0 u(s)ds,

(4.25) yields g(X) =
∫ ∞

0 fNp,n(M,zΣ⊗Φ )(X)dG(z) which is the expression given in

Remark 4.1. We have to see that
∫ ∞

0 u(s)ds = 1 but this will follow from the next
theorem if we take v = 0 in (4.26). Therefore, using Example 4.3 we obtain the
results in parts (c) and (d) of Example 4.1.

Now, we can state theorems similar to those in Sect. 4.1.
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Theorem 4.8. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) be absolutely continuous. Then, X has
the p.d.f. defined by (4.23) if and only if the characteristic function of X is

φX(T) = etr(iT′M)
∫ ∞

0
etr

(
−T′ΣTΦ

2z

)
w(z)dz,

that is

ψ(v) =
∫ ∞

0
exp

(
− v

2z

)
w(z)dz.

Also, X has the p.d.f. defined by (4.25) if and only if

φX(T) = etr(iT′M)
∫ ∞

0
etr

(
− z(T′ΣTΦ)

2

)
u(z)dz,

that is

ψ(v) =
∫ ∞

0
exp
(
− zv

2

)
u(z)dz . (4.26)

Theorem 4.9. Let λ : IRp×n → IRq×m be a Borel-measurable matrix variate
function. Assume that if X ∼ Np,n(M,Σ ⊗ Φ) then the p.d.f. of W = λ (X)

is lλ
Np,n(M,Σ⊗Φ )

(W). Then, if X ∼ Ep,n(M,Σ ⊗ Φ ,ψ) with p.d.f. g(X) =
∫ ∞

0 fNp,n(M,z−1Σ⊗Φ )(X)w(z)dz, the p.d.f. of W = λ (X) is

l(W) =
∫ ∞

0
lλ
Np,n(M,z−1Σ⊗Φ )

(W)w(z)dz . (4.27)

If g(X) =
∫ ∞

0 fNp,n(M,zΣ⊗Φ )(X)u(z)dz, the p.d.f. of W = λ (X) is

l(W) =
∫ ∞

0
lλ
Np,n(M,zΣ⊗Φ )

(W)u(z)dz . (4.28)

PROOF: In the proof of Theorem 4.4 if dG(z) is replaced by u(z)dz, we obtain
(4.28). In the same proof if we replace dG(z) by w(z)dz and Np,n(M,zΣ ⊗Φ) by
Np,n(M,z−1Σ ⊗Φ) we obtain (4.27).

Corollary 4.4. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with p.d.f.

g(X) =
∫ ∞

0
fNp,n(M,z−1Σ⊗Φ )(X)w(z)dz.

Let C : q×m, A : q× p, and B : n×m be constant matrices, such that rk(A) = q
and rk(B) = m. Then, from Theorems 4.9 and 2.2, it follows that the p.d.f. of
AXB+C is
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g∗(X) =
∫ ∞

0
fNp,n(AMB+C,z−1(AΣA′)⊗(BΦB′))(X)w(z)dz .

If

g(X) =
∫ ∞

0
fNp,n(M,zΣ⊗Φ )(X)u(z)dz (4.29)

then

g∗(X) =

∫ ∞

0
fNp,n(AMB+C,z(AΣA′)⊗(BΦB′))(X)u(z)dz .

If X, M, and Σ are partitioned as

X =

(
X1

X2

)
, M =

(
M1

M2

)
, and Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
,

where X1 : q×n, M1 : q×n, and Σ 11 : q×q, 1 ≤ q < p, then the p.d.f. of X1 is

g1(X1) =
∫ ∞

0
fNp,n(M1,z−1Σ 11⊗Φ )(X1)w(z)dz .

and if (4.29) holds, then

g1(X1) =
∫ ∞

0
fNp,n(M1,zΣ 11⊗Φ )(X1)u(z)dz .

Corollary 4.5. Let X ∼ Ep,n(μe′n,Σ ⊗ In,ψ) with p.d.f.

g(X) =
∫ ∞

0
fNp,n(μe′n,z−1Σ⊗In)

(X)w(z)dz

and μ ∈ IRp. Then,

(a) The p.d.f. of y1 =
Xen

n is

g1(y1) =
∫ ∞

0
fNp(μ ,z−1Σ /n)(y1)w(z)dz

(b) The p.d.f. of Y2 = X
(

In − ene′n
n

)
X′, for p ≤ n−1, is

g2(Y2) =
∫ ∞

0
fWp(z−1Σ ,n−1)(Y2)w(z)dz ,

(c) The p.d.f. of Y3 = XX′, for p ≤ n and μ = 0, is
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g3(Y3) =
∫ ∞

0
fWp(z−1Σ ,n)(Y3)w(z)dz .

If g(X) =
∫ ∞

0 fNp,n(μe′n,zΣ⊗In)
(X)u(z)dz and μ ∈ IRp. Then,

(a) The p.d.f. of y1 =
Xen

n is

g1(y1) =
∫ ∞

0
fNp(μ ,zΣ/n)(y1)u(z)dz

(b) The p.d.f. of Y2 = X
(

In − ene′n
n

)
X′ is

g2(Y2) =
∫ ∞

0
fWp(zΣ ,n−1)(Y2)u(z)dz ,

(c) The p.d.f. of Y3 = XX′, for μ = 0, is

g3(Y3) =
∫ ∞

0
fWp(zΣ ,n)(Y3)u(z)dz .

Remark 4.7. It follows, from Example 4.3 and Corollary 4.4, that any submatrix of
a random matrix with Cauchy distribution also has Cauchy distribution. Also any
submatrix of a random matrix having t-distribution with m degrees of freedom has
t-distribution with m degrees of freedom.

Example 4.4. Let X ∼ Ep,n(μe′n,Σ ⊗ In,ψ) have matrix variate t-distribution with

m degrees of freedom. Then applying Corollary 4.5 with w(z) =
m(mz

2 )
m
2 −1

e−
mz
2

2Γ (m
2 )

, we

see that

(a) The p.d.f. of y1 =
Xen

n is

g1(y1) =
m

m
2 n

p
2Γ
(m+p

2

)

π
p
2Γ
(

m
2

) |Σ | 1
2

(m+n(y1 −μ)′Σ−1(y1 −μ))−
m+p

2

(b) The p.d.f. of Y2 = X
(

In − ene′n
n

)
X′ is

g2(Y2) =
m

m
2 Γ
(

m+p(n−1)
2

)

Γ
(

m
2

)
Γp
(

n−1
2

) |Σ | n−1
2

(m+ tr(Σ−1Y2)
−m+p(n−1)

2 |Y2|
n−p−2

2 ,

(c) The p.d.f. of Y3 = XX′, if μ = 0, is

g3(Y3) =
m

m
2 Γ
(m+pn

2

)

Γ
(

m
2

)
Γp
(

n
2

) |Σ | n
2
(m+ tr(Σ−1Y2)

−m+pn
2 |Y2|

n−p−1
2 .

Here, Γp(t) = π
p(p−1)

4 ∏p
i=1Γ

(
t − i−1

2

)
.
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The mixture representation of the p.d.f. of a m.e.c. distribution makes it possible
to derive monotone likelihood ratio (MLR) properties. To do this, we also need the
following lemma (Karlin, 1956) given in Eaton (1972), p. B.2.

Lemma 4.2. Assume p(x,r) and q(r,θ) are functions which have monotone likeli-
hood ratios. Then g(x,θ) =

∫
p(x,r)q(r,θ)dr also has monotone likelihood ratio.

Theorem 4.10. Let X ∼ En(μen,σ2In,ψ) with p.d.f. g(x,σ) where μ ∈ IR and
g(x,σ) =

∫ ∞
0 fNn(μen,zσ2In)

(x)u(z)dz. Assume

u(c1r1)u(c2r2)≤ u(c1r2)u(c2r1), (4.30)

for 0 < c1 < c2, 0 < r1 < r2.

(a) If n > p and g1(y,σ) denotes the p.d.f. of y = x′
(

In − ene′n
n

)
x, then

g1(y1,σ1)g1(y2,σ2)≥ g1(y1,σ2)g1(y2,σ1),

for 0 < σ1 < σ2, 0 < y1 < y2; that is, g1(y,σ) has MLR.
(b) If n ≥ p, μ = 0, and g2(v,σ) denotes the p.d.f. of v = x′x, then

g2(v1,σ1)g2(v2,σ2)≥ g2(v1,σ2)g2(v2,σ1),

for 0 < σ1 < σ2, 0 < v1 < v2; that is, g2(v,σ) has MLR.

PROOF:

(a) We know, from Corollary 4.5, that

g1(y,σ) =
∫ ∞

0
fW1(zσ2,n−1)(y)u(z)dz.

Let r = zσ2. Then, z = r
σ2 and J(z → r) = 1

σ2 . Thus,

g1(y,σ) =
∫ ∞

0
fW1(zσ2,n−1)(y)u

( r
σ2

) 1
σ2 dr.

Let

p(y,r) = fW1(zσ2,n−1)(y) =
1

2
n−1

2 Γ
(

n−1
2

)
y

n−1
2 −1e−

y
2r

r
n−1

2

and q(r,σ) =
(

r
σ2

)
1
σ2 .

It is easy to see that p(y1,r1)p(y2,r2) ≥ p(y1,r2)p(y2,r1), if 0 < r1 < r2, 0 <
y1 < y2. Thus p(y,r) has MLR. It follows, from (4.30), that q(r,σ) also has
MLR. Using Lemma 4.2, we obtain the desired result.



4.2 Mixture by Weighting Function 123

(b) It follows, from Corollary 4.5, that

g2(y,σ) =
∫ ∞

0
fW1(zσ2,n)(y)u(z)dz.

Then, proceeding in a similar way as in the proof of part (a), we find that g2(v,σ)
has MLR.

The following theorem was given by Chu (1973) for the vector variate case.

Theorem 4.11. Let λ : IRpn → IRq×m be a Borel-measurable matrix variate func-
tion. Assume that if X ∼ Np,n(M,Σ ⊗Φ), then E(λ (X)) exists and it is denoted by
ENp,n(M,Σ⊗Φ )(λ (X)). Then, if X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with p.d.f.

g(X) =
∫ ∞

0
fNp,n(M,z−1Σ⊗Φ )(X)w(z)dz,

such that E(λ (X)) exists and it is denoted by EEp,n(M,Σ⊗Φ ,ψ)(λ (X)), we have

EEp,n(M,Σ⊗Φ ,ψ)(λ (X)) =
∫ ∞

0
ENp,n(M,z−1Σ⊗Φ )(λ (X))w(z)dz . (4.31)

If g(X) =
∫ ∞

0 fNp,n(M,zΣ⊗Φ )(X)u(z)dz and E(λ (X)) exists, then

EEp,n(M,Σ⊗Φ ,ψ)(λ (X)) =
∫ ∞

0
ENp,n(M,zΣ⊗Φ )(λ (X))u(z)dz . (4.32)

PROOF: In the proof of Theorem 4.5 if dG(z) is replaced by u(z)dz, we obtain
(4.31). In the same proof if we replace dG(z) by w(z)dz and Np,n(M,zΣ ⊗Φ) by
Np,n(M,z−1Σ ⊗Φ) we obtain (4.32).

Corollary 4.6. With the notation of Theorem 4.10, if Cov(X) exists, then

Cov(X) =

(∫ ∞

0

w(s)
s

ds

)
Σ ⊗Φ

and also

Cov(X) =

(∫ ∞

0
su(s)ds

)
Σ ⊗Φ .



Chapter 5
Quadratic Forms and Other Functions
of Elliptically Contoured Matrices

5.1 Extension of Cochran’s Theorem to Multivariate
Elliptically Contoured Distributions

Anderson and Fang (1987) studied how results, similar to Cochran’s theorem can
be derived for m.e.c. distributions. This section presents their results. Results from
Anderson and Fang (1982b) are also used.

We will need the following lemma.

Lemma 5.1. Let X : p× n be a random matrix with p.d.f. f (XX′). Let A = XX′,
then the p.d.f. of A is

π
pn
2

Γp
(

n
2

) |A| n−p−1
2 f (A), A > 0 ,

where Γp(t) = π
p(p−1)

4 ∏p
i=1Γ

(
t − i−1

2

)
.

PROOF: See Anderson (2003), p. 539.

The next lemma generalizes the result of Lemma 5.1.

Lemma 5.2. Let X be a random p × n matrix, and write X = (X1,X2, . . .,Xm)
where Xi is p×ni, i = 1, . . .,m. Assume X has the p.d.f. p(X) = f (X1X′

1,X2X′
2, . . .,

XmX′
m). Further let Wi = XiX′

i, i = 1, . . .,m. Then, the p.d.f. of (W1,W2, . . .,Wm) is

π
pn
2

∏m
i=1Γp

( ni
2

)
m

∏
i=1

|Wi|
ni−p−1

2 f (W1,W2, . . .,Wm), Wi > 0, i = 1, . . .,m. (5.1)

PROOF: We prove, by induction, that the p.d.f. of (W1, . . .,Wk,Xk+1, . . .,Xm) is

A.K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory,
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π
p∑k

i=1 ni
2

∏k
i=1Γp

( ni
2

)
k

∏
i=1

|Wi|
ni−p−1

2 p(X1, . . .,Xk,Xk+1, . . .,Xm)|X1X′
1=W1,...,XkX′

k=Wk
,

(5.2)

for k = 1, . . .,m. In the proof, p(Y) will denote the p.d.f. of any random matrix Y.
If k = 1, we can write

p(W1,X2, . . .,Xm) = p(W1|X2, . . .,Xm)p(X2, . . .,Xm)

=
π

pn1
2

Γp
( n1

2

) |W1|
n1−p−1

2 p(X1|X2, . . .,Xm)|X1X′
1=W1

p(X2, . . .,Xm)

=
π

pn1
2

Γp
( n1

2

) |W1|
n1−p−1

2 p(X1,X2, . . .,Xm)|X1X′
1=W1

,

where we used Lemma 5.1.
Now, assume the statement is true for k = l < m. Then, for k = l +1, we get

p(W1, . . .,Wl+1,Xl+2, . . .,Xm)

= p(Wl+1|W1, . . .,Wl ,Xl+2, . . .,Xm)p(W1, . . .,Wl ,Xl+2, . . .,Xm)

=
π

pnl+1
2

Γp
( nl+1

2

) |Wl+1|
nl+1−p−1

2

× p(Xl+1|W1, . . .,Wl ,Xl+2, . . .,Xm)Xl+1X′
l+1=Wl+1

p(W1, . . .,Wl ,Xl+2, . . .,Xm)

=
π

pnl+1
2

Γp
( nl+1

2

) |Wl+1|
nl+1−p−1

2

× p(W1, . . .,Wl ,Xl+1,Xl+2, . . .,Xm)Xl+1X′
l+1=Wl+1

=
π

pnl+1
2

Γp
( nl+1

2

) |Wl+1|
nl+1−p−1

2
π

p∑l
i=1 ni
2

∏l
i=1Γp

( ni
2

)
l

∏
i=1

|Wi|
ni−p−1

2

× p(X1, . . .,Xl ,Xl+1,Xl+2, . . .,Xm)|X1X′
1=W1,...,Xl+1X′

l+1=Wl+1

=
π

p∑l+1
i=1 ni
2

∏l+1
i=1Γp

( ni
2

)
l+1

∏
i=1

|Wi|
ni−p−1

2

× p(X1, . . .,Xl+1,Xl+2, . . .,Xm)|X1X′
1=W1,...,Xl+1X′

l+1=Wl+1

where we used Lemma 5.1 and the induction hypothesis. Taking k = m in (5.2) we
obtain (5.1).



5.1 Extension of Cochran’s Theorem to Multivariate Elliptically Contoured Distributions 127

Definition 5.1. Let X ∼ Ep,n(0,Σ ⊗ In,ψ), Σ > 0. Partition X as X =
(X1,X2, . . .,Xm), where Xi is p × ni, i = 1, . . .,m. Then, Gp,m

(
Σ , n1

2 , . . .,
nm
2 ,ψ
)

denotes the distribution of (X1X′
1,X2X′

2, . . .,XmX′
m).

Remark 5.1. If in Definition 5.1, Σ = Ip, we also use the notation Gp,m(
n1
2 , . . .,

nm
2 ,ψ); that is, Ip can be dropped from the notation.

Remark 5.2. Definition 5.1 generalizes the Wishart distribution. In fact, if m = 1
and ψ(z) = exp

(− z
2

)
, then Gp,1

(
Σ , n

2 ,ψ
)

is the same as Wp(Σ ,n).

Theorem 5.1. Let X ∼ Ep,n(0,Σ ⊗ In,ψ), Σ > 0 and rAU be the stochastic
representation of X. Partition X as X = (X1,X2, . . .,Xm), where Xi is p × ni,
i = 1, . . .,m. Then,

(X1X′
1,X2X′

2, . . .,XmX′
m)≈ r2A(z1V1,z2V2, . . .,zmVm)A′, (5.3)

where (z1,z2, . . .,zm−1) ∼ D
( n1

2 ,
n2
2 , . . .,

nm−1
2 ; nm

2

)
, ∑m

i=1 zi = 1, Vi = UiU′
i with

vec(U′
i) uniformly distributed on Spni , and r, V1,V2, . . .,Vm, (z1,z2, . . .,zm) are

independent.

PROOF: From Theorem 2.17, it follows that

(X1,X2, . . .,Xm)≈ rA(
√

z1U1,
√

z2U2, . . .,
√

zmUm),

from which (5.3) follows immediately.

Theorem 5.2. Let (W1,W2, . . .,Wm) ∼ Gp,m
(
Σ , n1

2 ,
n2
2 , . . .,

nm
2 ,ψ
)
, where Wi is

p× p, i = 1, . . .,m. Then, for 1 ≤ l ≤ m,

(W1,W2, . . .,Wl)∼ Gp,l

(
Σ ,

n1

2
,

n2

2
, . . .,

nl

2
,ψ
)
.

PROOF: Define X ∼ Ep,n(0,Σ ⊗ In,ψ) and partition X as X = (X1,X2, . . .,Xm),
where Xi is p×ni dimensional, i = 1, . . .,m. Then, by Definition 5.1 we have

(X1X′
1,X2X′

2, . . .,XmX′
m)≈ (W1,W2, . . .,Wm) .

Hence, (X1X′
1,X2X′

2, . . .,XlX′
l) ≈ (W1,W2, . . .,Wl). Let Y = (X1,X2, . . .,Xl).

Then, Y ∼ Ep,n∗(0,Σ ⊗ In∗ ,ψ) with n∗ = ∑l
i=1 ni. Therefore,

(X1X′
1,X2X′

2, . . .,XlX
′
l)∼ Gp,l

(
Σ ,

n1

2
,

n2

2
, . . .,

nl

2
,ψ
)
,

which completes the proof.
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Theorem 5.3. Let (W1,W2, . . .,Wm) ∼ Gp,m
(
Σ , n1

2 ,
n2
2 , . . .,

nm
2 ,ψ
)
, where m > 1,

Wi is p× p, i = 1, . . .,m. Then,

(W1 +W2,W3, . . .,Wm)∼ Gp,m−1

(
Σ ,

n1 +n2

2
,

n3

2
, . . .,

nm

2
,ψ
)
.

PROOF: Let X be defined as in the proof of Theorem 5.2. Define X0 = (X1,X2) and
Y = (X0,X3, . . .,Xm). Then,

(X0X′
0,X3X′

3, . . .,XmX′
m) = (X1X′

1 +X2X′
2,X3X′

3, . . .,XmX′
m)

≈ (W1 +W2,W3, . . .,Wm).

We also have

Y = (X0,X3, . . .,Xm)∼ Ep,n(0,Σ ⊗ In,ψ).

Hence, (X0X′
0,X3X′

3, . . .,XmX′
m) ∼ Gp,m−1

(
Σ , n1+n2

2 , n3
2 , . . .,

nm
2 ,ψ
)

which
completes the proof.

Theorem 5.4. Let X ∼ Ep,n(0,Σ ⊗ In,ψ), Σ > 0 and P(X = 0) = 0 and stochastic

representation X ≈ rΣ
1
2 U. Partition X as X = (X1,X2, . . .,Xm), where Xi is p×ni,

i = 1, . . .,m, 1 < m ≤ n, p ≤ ni, i = 1,2, . . .,m− 1, 1 ≤ nm. Let Wi = XiX′
i, i =

1, . . .,m−1, then the p.d.f. of (W1,W2, . . .,Wm−1) is given by

p(W1,W2, . . .,Wm−1) =
Γ
( pn

2

) |Σ |− n−nm
2

Γ
( pnm

2

)
∏m−1

i=1 Γp
( pni

2

)
m−1

∏
i=1

|Wi|
ni−p−1

2

×
∫ ∞
(

tr
(
Σ−1

∑m−1
i=1 Wi

)) 1
2

r2−pn

(

r2 − tr

(

Σ−1
m−1

∑
i=1

Wi

)) pnm
2 −1

dF(r), (5.4)

where Wi > 0, i = 1, . . .,m, and F(r) is the distribution function of r.

PROOF: Let Y = Σ− 1
2 X, Yi = Σ− 1

2 Xi, i = 1,2, . . .,m, and Vi = YiY′
i, i =

1,2, . . .,m−1. Then Y ∼ Ep,n(0,Ip ⊗ In,ψ). From Theorem 3.6, it follows that the
density of Y = (Y1,Y2, . . .,Ym−1) is

f (Y1,Y2, . . .,Ym−1) =
Γ
( pn

2

)

π
p(n−nm)

2 Γ
( pnm

2

)

×
∫ ∞

(tr(∑m−1
i=1 YiY′

i))
1
2

r2−pn

(

r2 − tr

(
m−1

∑
i=1

YiY′
i

)) pnm
2 −1

dF(r).
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Then, Lemma 5.1 gives the p.d.f. of (V1,V2, . . .,Vm−1) as

p(V1,V2, . . .,Vm−1) =
Γ
( pn

2

)

Γ
( pnm

2

)
∏m−1

i=1 Γp
( pni

2

)
m−1

∏
i=1

|Vi|
ni−p−1

2 (5.5)

×
∫ ∞

(tr(∑m−1
i=1 Vi))

1
2

r2−pn

(

r2 − tr

(
m−1

∑
i=1

Vi

)) pnm
2 −1

dF(r).

Since, (V1,V2, . . .,Vm−1) = Σ− 1
2 (W1,W2, . . .,Wm−1)Σ− 1

2 and

J((V1,V2, . . .,Vm−1)→ (W1,W2, . . .,Wm−1)) = |Σ |− (p+1)(m−1)
2 ,

from (5.5) we get

p(W1,W2, . . .,Wm−1) =
Γ
( pn

2

)

Γ
( pnm

2

)
∏m−1

i=1 Γp
( pni

2

)
m−1

∏
i=1

|Σ |− ni−p−1
2

m−1

∏
i=1

|Wi|
ni−p−1

2

×
∫ ∞
(

tr
(
Σ−1

∑m−1
i=1 Wi

)) 1
2

r2−pn

(

r2 − tr

(

Σ−1
m−1

∑
i=1

Wi

)) pnm
2 −1

|Σ |− (p+1)(m−1)
2 dF(r),

and since
(
∏m−1

i=1 |Σ |− ni−p−1
2

)
|Σ |− (p+1)(m−1)

2 = |Σ |− 1
2 ∑

m−1
i=1 ni , we obtain (5.6).

If X is absolutely continuous, we obtain the following result.

Theorem 5.5. Let X ∼ Ep,n(0,Σ ⊗ In,ψ) have the p.d.f.

f (X) =
1

|Σ | n
2

h(tr(X′Σ−1X)).

Partition X as X = (X1,X2, . . .,Xm), where Xi is p×ni, i = 1, . . .,m, 1 ≤ m ≤ p. Let
Wi = XiX′

i, i = 1, . . .,m, then the p.d.f. of (W1,W2, . . .,Wm)

p(W1,W2, . . .,Wm) =
π

pn
2 |Σ |− n

2

∏m
i=1Γp

( ni
2

)
m

∏
i=1

|Wi|
ni−p−1

2 h

(

tr

(

Σ−1
m

∑
i=1

Wi

))

,

Wi > 0, i = 1, . . .,m. (5.6)

PROOF: Since the p.d.f. of X= (X1,X2, . . .,Xm) is |Σ |− n
2 h
(
trΣ−1∑m

i=1 XiX′
i

)
, from

Lemma 5.2, we obtain (5.6).
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Corollary 5.1. Let X ∼ Ep,n(0,Σ ⊗ In,ψ) with the p.d.f.

f (X) =
1

|Σ | n
2

h(tr(X′Σ−1X)).

Then, the p.d.f. of A = XX′ is given by

p(A) =
π

pn
2 |Σ |− n

2

Γp
(

n
2

) |A| n−p−1
2 h(tr(Σ−1A)), A > 0.

Lemma 5.3. Let x and z be independent, and y and z be independent one-
dimensional random variables, such that P(x > 0) = P(y > 0) = P(z > 0) = 1 and
xz ≈ yz. Assume one of the following conditions holds:

(i) φlogz(t) �= 0 almost everywhere
(ii) P(x < 1) = 1.

Then, x ≈ y.

PROOF: Note that xz≈ yz is equivalent to logx+ logz≈ logy+ logz, which is again
equivalent to

φlogx(t)φlogz(t) = φlogy(t)φlogz(t), (5.7)

where φx(t) denotes the characteristic function of x.

(i) Since φlogz(t) �= 0 almost everywhere, and the characteristic functions are
continuous, we get

φlogx(t) = φlogy(t).

Hence, x ≈ y.
(ii) Since φlogz(0) = 1 and the characteristic functions are continuous, there exists

δ > 0, such that φlogz(t) �= 0 for t ∈ (−δ ,δ ).
Then, from (5.7) we get

φlogy(t) = φlogy(t) for t ∈ (−δ ,δ ) (5.8)

Since P(x < 1) = 1, we have P(logx < 0) = 1. However, P(logx < 0) = 1,
together with (5.8), implies that logx ≈ logy (see Marcinkiewicz, 1938). Thus,
we get x ≈ y.

Theorem 5.6. Let (W1,W2, . . .,Wm) ∼ Gp,m
(
Σ , n1

2 ,
n2
2 , . . .,

nm
2 ,ψ
)
, where ni is

positive integer and Wi is p× p, i = 1,2, . . .,m and Σ > 0. Let v be a p-dimensional
constant nonzero vector. Then,

(v′W1v,v′W2v, . . .,v′Wmv)∼ G1,m

(n1

2
,

n2

2
, . . .,

nm

2
,ψ∗
)
, (5.9)

where ψ∗(z) = ψ(v′Σvz).
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PROOF: Let (X1,X2, . . .,Xm)∼ Ep,n(0,Σ⊗In,ψ), with n=∑m
i=1 ni and Xi is p×ni,

i = 1,2, . . .,m. Then, by definition,

(X1X′
1,X2X′

2, . . .,XmX′
m)≈ (W1,W2, . . .,Wm).

Hence,

(v′X1X′
1v,v′X2X′

2v, . . .,v′XmX′
mv)≈ (v′W1v,v′W2v, . . .,v′Wmv) (5.10)

Define y′i = v′Xi, i = 1,2, . . .,m. Then, yi is ni ×1 and

(y′1,y
′
2, . . .,y

′
m) = v′(X1,X2, . . .,Xm),

and hence,

(y′1,y
′
2, . . .,y

′
m)∼ E1,n(0,v′Σv⊗ In,ψ) = E1,n(0,In,ψ∗)

with ψ∗(z) = ψ(v′Σvz). Therefore,

(y′1y1,y′2y2, . . .,y′mym)∼ G1,m

(n1

2
,

n2

2
, . . .,

nm

2
,ψ∗
)
. (5.11)

Since, y′1y1 = v′XiX′
iv, i = 1,2, . . .,m, (5.10) and (5.11) give (5.9).

Now, we derive some result which can be regarded as the generalizations of
Cochran’s theorem for normal variables to the m.e.c. distribution.

Theorem 5.7. Let X ∼ Ep,n(0,Σ ⊗ In,ψ), Σ > 0 and assume there exists a

p-dimensional constant vector v such that P(v′Σ− 1
2 X = 0) = 0. Let A be an n× n

symmetric matrix and k ≤ n a positive integer. Then,

XAX′ ∼ Gp,1

(
Σ ,

k
2
,ψ
)

(5.12)

if and only if A2 = A and rk(A) = k.

PROOF: It is enough to consider the case Σ = Ip because otherwise we can define

Y = Σ− 1
2 X, and XAX′ ∼ Gp,1

(
Σ , k

2 ,ψ
)

is equivalent to YAY′ ∼ Gp,1
(

k
2 ,ψ
)
.

First, assume A2 = A and rk(A) = k. Then, using Theorem 1.12, we can write

A = G
(

Ik 0
0 0

)
G′,

where G ∈ O(n) and 0’s denote zero matrices of appropriate dimensions.
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Define n× k matrix C =

(
Ik

0

)
and let Y = XGC. Then, Y ∼ Ep,k(0,Ip ⊗ Ik,ψ)

and

XAX′ = YY′. (5.13)

From Definition 5.1, we have

YY′ ∼ Gp,1

(
k
2
,ψ
)
. (5.14)

From (5.13) and (5.14), we obtain (5.12).
On the other hand, assume (5.12) holds, and define y = X′v. Then,

y ∼ En(0,In,ψ∗) with ψ∗(t) = ψ(v′vt).

Moreover, P(y = 0) = 0. From Theorem 5.2, we get

y′Ay ∼ G1,1

(
k
2
,ψ∗
)
. (5.15)

Let y ≈ ru be the stochastic representation of y. Then,

y′Ay ≈ r2u′Au. (5.16)

Let y =

(
y1

y2

)
, where y1 is k-dimensional. Then, from Corollary 2.4, we get

(
y1

y2

)
≈
(

r
√

wu1

r
√

1−wu2

)
, (5.17)

where r, w, u1 and u2 are independent, u1 is uniformly distributed on Sk, u2 is
uniformly distributed on Sn−k, and w ∼ B

(
k
2 ,

n−k
2

)
. Since y1 ∼ Ek(0,Ik,ψ∗), we get

y′1y1 ∼ G1,1

(
k
2
,ψ∗
)
. (5.18)

From (5.17), we obtain

y′1y1 ≈ r2wu′
1u1 = r2w. (5.19)

From (5.15), (5.16), (5.18), and (5.19), we get

r2u′Au ≈ r2w. (5.20)
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Since P(0 < w < 1) = 1 and P(r2 > 0) = 1, we have P(r2w > 0) = 1. Therefore,
(5.20) implies P(u′Au > 0) = 1. Using (ii) of Lemma 5.3, from (5.20) we obtain
u′Au ≈ w. Thus,

u′Au ∼ B

(
k
2
,

n− k
2

)
. (5.21)

Define z ∼ Nn(0,In). Then, from Theorem 2.15 it follows that z
‖z‖ ≈ u, and from

(5.21) we get

z′Az
‖z‖2 ∼ B

(
k
2
,

n− k
2

)
. (5.22)

Now, A = GDG′, where G ∈ O(n) and D =

(
Ik 0
0 0

)
, where 0’s denote zero

matrices of appropriate dimensions. Let t = G′z. Then, t ∼ Nn(0,In) and z′Az
‖z‖2 =

t′Dt
‖t‖2 ∼ B

(
k
2 ,

n−k
2

)
. However z ≈ t

z′Dz
‖z‖2 ∼ B

(
k
2
,

n− k
2

)
. (5.23)

From (5.22) and (5.23), we get

z′Az
‖z‖2 ≈ z′Dz

‖z‖2 . (5.24)

Now, z′Az = ‖z‖2 z′Az
‖z‖2 with ‖z‖2 and z′Az

‖z‖2 being independent. Moreover, z′Dz =

‖z‖2 z′Az
‖z‖2 , with ‖z‖2 and z′Dz

‖z‖2 being independent. Therefore, from (5.23), we get

z′Az ∼ z′Dz. Since, z′Dz ∼ χ2
k , we get

z′Az ∼ χ2
k . (5.25)

Now, (5.25) implies that A2 = A, and rk(A) = k.

Theorem 5.7 can be generalized in the following way.

Theorem 5.8. Let X ∼ Ep,n(0,Σ ⊗ In,ψ), Σ > 0 and assume there exists a

p-dimensional constant vector v such that P(v′Σ− 1
2 X = 0) = 0. Let A1, A2, . . . , Am

be n× n symmetric matrices and k1, k2, . . . , km positive integers with ∑n
i=1 ki ≤ n.

Then,

(XA1X′,XA2X′, . . .,XAmX′)∼ Gp,m

(
Σ ,

k1

2
,

k2

2
, . . .,

km

2
,ψ
)

(5.26)
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if and only if

rk(Ai) = ki, i = 1, . . .,m, (5.27)

A2
i = Ai, i = 1, . . .,m (5.28)

and

AiA j = 0, i �= j, i, j = 1, . . .,m. (5.29)

PROOF: As in Theorem 5.7, it is enough to consider the case Σ = Ip.
First, assume (5.26)–(5.28) are satisfied. Then, from Theorem 1.14, there exists

G ∈ O(n) such that

G′A1G =

(
Ik1 0
0 0

)
, G′A2G =

⎛

⎝
0 0 0
0 Ik2 0
0 0 0

⎞

⎠

. . .,G′AmG =

⎛

⎝
0 0 0
0 Ikm 0
0 0 0

⎞

⎠ .

Let k = ∑m
i=1 ki and define the n× k matrix C =

(
Ik

0

)
. Moreover, define the k× k

matrices Ci =

⎛

⎝
0 0 0
0 Iki 0
0 0 0

⎞

⎠, i = 1, . . .,m. Then, G′AiG = CCiC′, i = 1, . . .,m.

Define Y = XGC. Then, Y ∼ Ep,k(0,Ip ⊗ Ik,ψ) and

XAiX′ = YCiY′, i = 1, . . .,m. (5.30)

Partition Y into Y = (Y1,Y2, . . .,Ym) where Yi is p× ki, i = 1, . . .,m. Then,

YCiY′ = YiY′
i, i = 1, . . .,m (5.31)

and by Definition 5.1, we get

(Y1Y′
1,Y2Y′

2, . . .,YmY′
m)∼ Gp,m

(
k1

2
,

k2

2
, . . .,

km

2
,ψ
)
. (5.32)

From (5.30), (5.31), and (5.32) we obtain (5.26).
Next, assume (5.26) holds. Then, it follows from Theorem 5.2, that
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XA1X′ ∼ Gp,1

(
k1

2
,ψ
)
, i = 1, . . .,m.

Using Theorem 5.7, we get rk(Ai) = ki and A2
i = Ai. It also follows from

Theorem 5.2, that

(XAiX′,XA jX′)∼ Gp,2

(
ki

2
,

k j

2
,ψ
)
.

Now, using Theorem 5.3, we get

(X(Ai +A j)X′)∼ Gp,1

(
k1 + k2

2
,ψ
)
, i �= j.

Using Theorem 5.7 again, we get (Ai +A j)
2 = Ai +A j. However, we already

know A2
i = Ai, and A2

j = A j. Hence, we get AiA j = 0.

Theorem 5.9. Let X ∼ Ep,n(0,Σ ⊗ In,ψ), Σ > 0 and assume there exists a

p-dimensional constant vector v such that P(v′Σ− 1
2 X = 0) = 0. Let A and B

be symmetric idempotent n × n matrices, with 1 ≤ rk(A) < n, 1 ≤ rk(B) < n,
such that AB = 0. Then, XAX′ and XBX′ are independent if and only if X ∼
Np,n(0,σ2Ip ⊗ In), where σ2 > 0.

PROOF: Without loss of generality, we can assume Σ = Ip.
Let n1 = rk(A), n2 = rk(B). Since A and B are symmetric, we have

BA = AB = 0. Using Theorem 1.14, we can find G ∈ O(n), such that

G′AG =

⎛

⎝
In1 0 0
0 0 0
0 0 0

⎞

⎠ , and G′BG =

⎛

⎝
0 0 0
0 In2 0
0 0 0

⎞

⎠ .

Let n0 = n1 +n2 and define the n×n0 matrix C =

(
In0

0

)
. Moreover, define the

n0 × n0 matrices C1 =

(
In1 0
0 0

)
and C2 =

(
0 0
0 In2

)
. Then, G′AG = CC1C′ and

G′BG = CC2C′.
Define Y = XGC, then XAX′ = YC1Y′ and XBX′ = YC2Y′. Partition Y into

Y = (Y1 Y2), where Y1 is p×n1. Then, YC1Y′ = Y1Y′
1 and YC2Y′ = Y2Y′

2.
First, assume X ∼ Np,n(0,σ2Ip ⊗ In). Then, Y ∼ Np,n0(0,σ2Ip ⊗ In0). Thus, the

columns of Y are independent and so are Y1 and Y2. Hence, Y1Y′
1 and Y2Y′

2 are
independent. Therefore, XAX′ and XBX′ are independent.

On the other hand, assume XAX′ and XBX′ are independent. Define y = X′v.
Then, y ∼ En(0,In,ψ∗), where ψ∗(t) = ψ(v′vt). Moreover, P(y = 0) = 0. Since,
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XAX′ and XBX′ are independent, so are y′Ay and y′By. Define w = G′y, then
w ∼ En(0,In,ψ∗) with P(w = 0) = 0. Let ru be the stochastic representation of w.

Then, P(r = 0) = 0. Partition w into w =

⎛

⎝
w1

w2

w3

⎞

⎠ where w1 is n1-dimensional, and

w2 is n2-dimensional.

Let r

⎛

⎝

√
z1u1√
z2u2√
z3u3

⎞

⎠ be the representation of

⎛

⎝
w1

w2

w3

⎞

⎠ given by Theorem 2.17. Since

P(r = 0) = 0, we get P(w1 = 0) = P(w2 = 0) = 0. Now, y′Ay = w′
1w1 and y′By =

w′
2w2. Define w0 =

(
w1

w2

)
. Then, w0 ∼ En0(0,In∗ ,ψ∗). Let r0u0 be the stochastic

representation of w0. Then,

(w′
1w1,w′

2w2)≈ r2
0(s1,s2)

where r2
0 and (s1,s2) are independent, s1 + s2 = 1 and

s1 ∼ B
(n1

2
,

n2

2

)
. (5.33)

Moreover,
w′

1w1
w′

2w2
≈ s1

s2
and w′

1w1 + w′
2w2 ≈ r2

0 are independent. Therefore,

w′
1w1 ≈ σ2

0 χ2
p1

and w′
2w2 ≈ σ2

0 χ2
p2

for σ0 > 0 (see Lukacs, 1956, p. 208). Since
r2

0 ≈ w′
1w1 +w′

2w2, we have

r2
0 ∼ χ2

p with p = p1 + p2. (5.34)

We also have 1−s2
s2

≈ w′
1w1

w′
2w2

. Consequently, 1
s2
≈ w′

1w1+w′
2w2

w′
2w2

, and s2 ≈ w′
2w2

w′
1w1+w′

2w2
∼

B
( p2

2 , p1
2

)
. Hence,

s1 ∼ B
( p1

2
,

p2

2

)
. (5.35)

From (5.33) and (5.35), we get p1 = n1, p2 = n2. Thus, p = n0. From (5.34), we
get r2

0 ≈ σ2
0 χ2

n0
. Since, u0 is uniformly distributed on Sn0 , we get w0 ∼Nn0(0,σ2

0 Ir0).

Consequently, ψ∗(z) = exp
(
−σ2

0 z
2

)
. Therefore, ψ(z) = exp

(
−σ2z

2

)
, with σ2 =

σ2
0

v′v .

Hence, X ∼ Np,n(0,σ2Ip ⊗ In).

Corollary 5.2. Let X ∼ Ep,n(0,Ip ⊗ In,ψ) and let xi denote the ith column of X,
i= 1,2, . . .,n. Define x̄= 1

n ∑
n
i=1 xi and S(X) = 1

n ∑
n
i=1(xi− x̄)(xi− x̄)′. Assume there

exists a p-dimensional constant vector v such that P(v′X= 0)= 0. Then, x̄ and S(X)
are independent if and only if X ∼ Np,n(0,σ2Ip ⊗ In) with σ2 > 0.
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PROOF: If X ∼ Np,n(0,σ2Ip ⊗ In), then xi’s constitute a random sample from the
distribution Np(0,σ2Ip) and the independence of x̄ and S(X) is a well-known result
(see Anderson, 2003, p. 74).

On the other hand, if x̄ and S(X) are independent, then x̄x̄′ and S(X) are also
independent. We have x̄x̄′ = Xene′nX′ and

S(X) = X
(

In − ene′n
n

)
X′.

Let A = ene′n and B = In − ene′n
n . Then, A and B satisfy the conditions of

Theorem 5.9. Therefore X ∼ Np,n(0,σ2Ip ⊗ In).

5.2 Rank of Quadratic Forms

The main result of this section uses the following lemma proved by Okamoto (1973).

Lemma 5.4. Let X be a p×n random matrix with absolute continuous distribution.
Let A be an n×n symmetric matrix with rk(A) = q. Then

(i) P{rk(XAX′) = min(p,q)}= 1 and
(ii) P{nonzero eigenvalues of XAX′ are distinct}= 1.

PROOF: See Okamoto (1973).

Matrix variate elliptically contoured distributions are not necessarily absolutely
continuous. However, as the following theorem shows (see Gupta and Varga, 1991),
a result similar to that of Okamoto can be derived for this class of distributions also,
if we assume that the distribution is symmetric about the origin and it assumes zero
with probability zero.

Theorem 5.10. Let X ∼ Ep,n(0,Σ ⊗Φ ,ψ) with P(X = 0) = 0. Let A be an n× n
symmetric matrix. Then

(i) P{rk(XAX′) = min(rk(Σ),rk(ΦAΦ))}= 1 and
(ii) P{the nonzero eigenvalues of XAX′ are distinct}= 1.

PROOF: Let rk(Σ) = q, rk(Φ) = m and let X ≈ rCUD′ be the stochastic represen-
tation of X. Then, vec(U′) is uniformly distributed on Sqm. Using Theorem 1.9 we

can write C = G
(

B
0

)
, where G ∈ O(p) and B is a q× q positive definite matrix.

Then

XAX′ ≈ r2G
(

BUD′ADU′B′ 0
0 0

)
G′,
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where 0’s denote zero matrices of appropriate dimensions. Since P(X = 0) = 0, we

have P(r = 0) = 0. Moreover, the nonzero eigenvalues of G
(

BUD′ADU′B′ 0
0 0

)
G′

are the same as those of BUD′ADU′B′. Hence,

P{rk(XAX′) = rk(BUD′ADU′B′)}= 1 (5.36)

and

P{the nonzero eigenvalues of XAX′ are distinct}
= P{the nonzero eigenvalues of BUD′ADU′B′ are distinct}. (5.37)

Let Σ ∗ = BB′, A∗ = D′AD and define Y ∼ Nq,m(0,Σ ∗ ⊗ Im). Since B is
nonsingular, Σ ∗ > 0 and so Y is absolutely continuous. Let Y ≈ r∗BU∗ be the
stochastic representation of Y. Then, vec(U∗′) is uniformly distributed on Sqm. Now,
YA∗Y′ ≈ r∗2BU∗D′ADU∗′B′ and therefore,

P{rk(YA∗Y′) = rk(BU∗D′ADU∗′B′)}= 1 (5.38)

and

P{the nonzero eigenvalues of YA∗Y′ are distinct}
= P{the nonzero eigenvalues of BU∗D′ADU∗′B′ are distinct}. (5.39)

However, from Lemma 5.4 we know that

P{rk(YA∗Y′) = min(q,rk(A∗))}= 1 (5.40)

and

P{the nonzero eigenvalues of YA∗Y′ are distinct}= 1. (5.41)

Moreover,

rk(A∗) = rk(D′AD)≥ rk(DD′ADD′)≥ rk(D−DD′ADD′D
′ −) = rk(D′AD),

where we used D−D = Im which follows from Theorem 1.23. Hence,

rk(A∗) = rk(DD′ADD′) = rk(ΦAΦ).

Since vec(U′) ≈ vec(U∗′), we have U ≈ U∗ and then (i) follows from (5.36),
(5.38), and (5.40) and (ii) follows from (5.37), (5.39) and (5.41).

If Σ > 0 and Φ > 0 in Theorem 5.10, we obtain the following result.
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Theorem 5.11. Let X ∼ Ep,n(0,Σ ⊗Φ ,ψ) with Σ > 0, Φ > 0 and P(X = 0) = 0.
Let A be an n×n symmetric matrix. Then

(i) P{rk(XAX′) = min(p,rk(A))}= 1 and
(ii) P{the nonzero eigenvalues of XAX′ are distinct}= 1.

PROOF: It follows, directly, from Theorem 5.10.

Corollary 5.3. Let X ∼ Ep,n(μe′n,Σ ⊗Φ ,ψ), where p < n, μ ∈ IRp, Σ > 0 and
Φ > 0. Assume P(X = μe′n) = 0. Let xi be the columns of X, i = 1, . . .,n and
define x̄ = 1

n ∑
n
i=1 xi. Then S(X) = 1

n ∑
n
i=1(xi − x̄)(xi − x̄)′ is positive definite and its

characteristic roots are distinct with probability one.

PROOF: Here

S(X) = X
(

In − ene′n
n

)
X′ = (X−μe′n)

(
In − ene′n

n

)
(X−μe′n)

′.

Now let Y=X−μe′n and A= In− ene′n
n . Then, Y∼Ep,n(0,Σ⊗Φ ,ψ), P(Y= 0) = 0,

S(X) = YAY′ and from Theorem 5.11, we obtain the desired result.

5.3 Distributions of Invariant Matrix Variate Functions

In this section, we will derive the distributions of invariant functions of random
matrices with m.e.c. distributions. In order to do this, we will need the following
theorem (Gupta and Varga, 1994d).

Theorem 5.12. Let X ∼ Ep,n(0,Σ⊗Φ ,ψ) with P(X = 0) = 0. Assume Y ∼ Np,n(0,
Σ ⊗Φ). Let F be a subset of the p× n real matrices, such that if Z ∈ IRp×n, Z ∈
F , and a > 0 then aZ ∈ F and P(X ∈/ F ) = P(Y ∈/ F ) = 0. Let K(Z) be a
function defined on F , such that if Z ∈ F and a > 0, then K(Z) = K(aZ). Then,
K(X) and K(Y) are defined with probability one and K(X) and K(Y) are identically
distributed.

PROOF: K(X) and K(Y) are defined if X ∈ F and Y ∈ F . Since P(X ∈/ F ) =
P(Y ∈/ F ) = 0 we see that K(X) and K(Y) are defined with probability one.
Let r1AU1B′ be the stochastic representation of X and r2AU2B′, the stochastic
representation of Y. It follows, from the conditions of the theorem, that if aZ ∈ F
and a > 0 then Z ∈ F . Since P(X = 0) = 0, we have P(r1 = 0) = 0. Since
P(r1AU1B′ ∈ F ) = 1, we get P(AU1B′ ∈ F ) = 1. So, K(AU1B′) is defined with
probability one. Moreover, P{K(r1AU1B′) = K(AU1B′)}= 1.

Similarly, P{K(r2AU2B′) = K(AU2B′)}= 1. But AU1B′ ≈ AU2B′. Hence,



140 5 Quadratic Forms and Other Functions of Elliptically Contoured Matrices

K(AU1B′)≈ K(AU2B′).

Therefore, K(r1AU1B′)≈ K(r2AU2B′), which means K(X)≈ K(Y).

Remark 5.3. The significance of Theorem 5.12 is the following. Assume the con-
ditions of the theorem are satisfied. Then, it is enough to determine the distribution
of the function for the normal case, in order to get the distribution of the function,
when the underlying distribution is elliptically contoured.

Now, we apply Theorem 5.12 to special cases.

Theorem 5.13. Let X ∼ Ep,n(0,Ip ⊗ In,ψ), with P(X = 0) = 0. Let G : n×m be
such that n−m ≥ p and G′G = Im. Then,

(X(In −GG′)X′)−
1
2 XG ∼ Tp,m(n− (m+ p)+1,0,Ip,Im).

PROOF: Let K(Z) = (Z(In −GG′)Z′)−
1
2 ZG. Let F = {Z|Z is p×n matrix, such

that Z(In −GG′)Z′ is nonsingular}. Clearly, if Z ∈ IRp×n, Z ∈ F and a > 0, then
aZ ∈ F . If Z ∈ F and a > 0, then

K(aZ) = (aZ(In −GG′)(aZ)′)−
1
2 aZG = (Z(In −GG′)Z′)−

1
2 ZG = K(Z).

Let E : n×m be defined as E =

(
Im

0

)
. Then, E′E = G′G. Now, Theorem 1.11

says that there exists an n× n matrix H, such that HH′ = In and G′H = E′. That
means, H is orthogonal and H′G = E. So, we have

In −GG′ = In −HEE′H′

= H(In −EE′)H′

= H
(

In −
(

Im 0
0 0

))
H′

= H
(

0 0
0 In−m

)
H′ = HDH′,

where D =

(
0 0
0 In−m

)
. Clearly, D = BB′, where B is an n× (n−m) matrix defined

as B =

(
0

In−m

)
. Using Theorem 5.11, we get

P{rk(X(In −GG′)X′) = min(rk(In −GG′), p)}
= 1.
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However, rk(In−GG′) = rk(HDH′) = rk(D) = n−m, and since n−m ≥ p, we see
that rk(X(In −GG′)X′) = p, with probability one. Therefore, X(In −GG′)X′ is of
full rank with probability one. So, P(X ∈/ F ) = 0.

Hence, we can use Theorem 5.12. That means we can assume X ∼ Np,n(0,Ip ⊗ In).
Let V = XH. Then, V ∼ Np,n(0,Ip ⊗ In). Partition V as V = (V1,V2), where V1 is
p×m. Then, V1 ∼ Np,m(0,Ip ⊗ Im), and V2 ∼ Np,n−m(0,Ip ⊗ In−m), where V1 and
V2 are independent. Now,

(X(In −GG′)X′)−
1
2 XG = (XHDH′X′)−

1
2 XHE

= (VBB′V′)−
1
2 VE

=

(
V
(

0
In−m

)(
0 In−m

)
V′
)− 1

2

V
(

Im

0

)

= (V2V′
2)

− 1
2 V1.

Here, V2V′
2 ∼ Wp(n − m,Ip), V1 ∼ Np,m(0,Ip ⊗ Im) and V1 and V2V′

2
are independent. From Dickey (1967), we get that under these conditions,
(V2V′

2)
− 1

2 V1 ∼ Tp,m(n− (m+ p)+1,0,Ip,Im) (also see Javier and Gupta, 1985a).

Theorem 5.14. Let X ∼ Ep,n(0,Ip ⊗ In,ψ) with P(X = 0) = 0. Let B: n× n be a
symmetric, idempotent matrix of rank m where m ≥ p and n−m ≥ p. Then,

(XX′)−
1
2 (XBX′)(XX′)−

1
2 ∼ BI

p

(
m
2
,

n−m
2

)
.

PROOF: Let K(Z) = (ZZ′)−
1
2 (ZBZ′)(ZZ′)−

1
2 . Let F = {Z|Z is p×n matrix, such

that ZZ′ is nonsingular}. Clearly, if Z ∈ IRp×n, Z ∈ F and a > 0, then aZ ∈ F .
If Z ∈ F and a > 0, then

K(aZ) = (a2ZZ′)−
1
2 (a2ZBZ′)(a2ZZ′)−

1
2

= (ZZ′)−
1
2 (ZBZ′)(ZZ′)−

1
2

= K(Z).

Using Theorem 5.11, we get

P{rk(XX′) = min(rk(In), p)}= 1.

Since m≥ p and n−m≥ p we have n≥ 2p and hence, n≥ p. Thus, min(rk(In), p)=
p. Therefore, XX′ is of full rank with probability one. So, P(X ∈/ F ) = 0. Similarly,
P(Y ∈/ F ) = 0. Hence, we can use Theorem 5.12. That means we can assume
X ∼ Np,n(0,Ip ⊗ In). Since B is a symmetric, idempotent matrix of rank m, there
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exists an n× n orthogonal matrix H, such that B = H
(

Iq 0
0 0

)
H′. We can write

(
Iq 0
0 0

)
= CC′ where C is an n×m matrix defined as C =

(
Iq

0

)
. Let V = XH.

Then, V ∼ Np,n(0,Ip ⊗ In). Partition V as V = (V1,V2) where V1 is p × m.
Then, V1 ∼ Np,m(0,Ip ⊗ Im), and V2 ∼ Np,n−m(0,Ip ⊗ In−m), where V1 and V2 are
independent.

Now,

(XX′)−
1
2 (XBX′)(XX′)−

1
2 = (XHH′X′)−

1
2 (XHCC′H′X′)(XHH′X′)−

1
2

= (VV′)−
1
2 (VCC′V′)(VV′)−

1
2

= (V1V′
1 +V2V′

2)
− 1

2 (V1V′
1)(V1V′

1 +V2V′
2)

− 1
2 .

Here V1V′
1 ∼ Wp(m,Ip), V2V′

2 ∼ Wp(n−m,Ip) and V1V′
1 and V2V′

2 are indepen-
dent. Finally from Olkin and Rubin (1964), we get that under these conditions

(V1V′
1 +V2V′

2)
− 1

2 (V1V′
1)(V1V′

1 +V2V′
2)

− 1
2 ∼ BI

p

(
m
2
,

n−m
2

)
.

Theorem 5.15. Let X∼Ep,n(0,Ip⊗In,ψ) with P(X= 0) = 0. Let A and B be n×n
symmetric, idempotent matrices, rk(A) = n1, rk(B) = n2, such that n1, n2 ≥ p and
AB = 0. Then,

(XAX′)−
1
2 (XBX′)(XAX′)−

1
2 ∼ BII

p

(n2

2
,

n1

2

)
.

PROOF: Let K(Z) = (ZAZ′)−
1
2 (ZBZ′)(ZAZ′)−

1
2 . Let F = {Z|Z is p×n matrix,

such that ZAZ′ is nonsingular}. Clearly, if Z ∈ IRp×n, Z ∈ F and a > 0, then
aZ ∈ F . If Z ∈ F and a > 0, then

K(aZ) = (a2ZAZ′)−
1
2 (a2ZBZ′)(a2ZAZ′)−

1
2

= (ZAZ′)−
1
2 (ZBZ′)(ZAZ′)−

1
2

= K(Z).

Using Theorem 5.11, we get

P{rk(XAX′) = min(rk(A), p)}= 1.

However rk(A) = n1 ≥ p, and hence min(rk(A), p) = p. Therefore, XAX′ is of full
rank with probability one. So, P(X ∈/ F ) = 0. Similarly, P(Y ∈/ F ) = 0.
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Hence, we can use Theorem 5.12. That means we can assume X ∼ Np,n(0,Ip ⊗
In). Since A and B are symmetric, idempotent matrices and AB = 0, there exists an
n×n orthogonal matrix H, such that

H′AH =

⎛

⎝
In1 0 0
0 0 0
0 0 0

⎞

⎠ and H′BH =

⎛

⎝
0 0 0
0 In2 0
0 0 0

⎞

⎠

(see Hocking, 1985).
We can write H′AH = CC′ and H′AH = DD′, where C′ = (In1 ,0,0) and D′ =

(0,In2 ,0). Let V = XH. Then, V ∼ Np,n(0,Ip ⊗ In). Partition V as V = (V1,V2,V3)
where V1 is p × n1 and V2 is p × n2. Then, V1 ∼ Np,n1(0,Ip ⊗ In1) and V2 ∼
Np,n2(0,Ip ⊗ In2) where V1 and V2 are independent.

(XAX′)−
1
2 (XBX′)(XAX′)−

1
2 = (XHCC′H′X′)−

1
2 (XHDD′H′X′)(XHCC′H′X′)−

1
2

= (VCC′V′)−
1
2 (VDD′V′)(VCC′V′)−

1
2

= (V1V′
1)

− 1
2 (V2V′

2)(V1V′
1)

− 1
2 .

Here V1V′
1 ∼Wp(n1,Ip), V2V′

2 ∼Wp(n2,Ip) and V1V′
1 and V2V′

2 are independent.
Finally from Olkin and Rubin (1964), we get that under these conditions

(V1V′
1)

− 1
2 (V2V′

2)(V1V′
1)

− 1
2 ∼ BII

p

(n2

2
,

n1

2

)
.

The next theorem shows that under some general conditions, Hotelling’s T 2

statistic has the same distribution in the elliptically contoured case, as in the normal
case; that is, we get an F distribution.

Theorem 5.16. Let X ∼ Ep,n(0,Σ ⊗ In,ψ) with P(X = 0) = 0. Assume
p < n. Let xi be the ith column of X, i = 1, . . .,n. Let x̄ = 1

n ∑
n
i=1 xi. Define

S(X) = 1
n−1 ∑

n
i=1(xi − x̄)(xi − x̄)′ and T 2(X) = nx̄′S(x)−1x̄. Then

T 2(X)

n−1
n− p

p
∼ Fp,n−p.

PROOF: Let A = In − ene′n
n . Then, S(X) = XAX′. We also have x̄ = 1

n Xen. Thus,
T2(X) = e′nX′(XAX′)−1Xen.

Let K(Z) = e′nZ′(ZAZ′)−1Zen. Let F = {Z|Z is p× n matrix, such that ZAZ′
is nonsingular}. Clearly, if Z ∈ IRp×n, Z ∈ F and a > 0, then aZ ∈ F . If Z ∈ F
and a > 0, then
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K(aZ) = e′naZ′(a2ZAZ′)−1aZen

= e′nZ′(ZAZ′)−1Zen

= K(Z).

From Corollary 5.3, we see that XAX′ is of full rank with probability one. So,
P(X ∈/ F ) = 0. Similarly, P(Y ∈/ F ) = 0.

Hence, we can use Theorem 5.12. That means we can assume X ∼ Np,n

(0,Ip ⊗ In). However, for the normal case this is a well known result (see
Corollary 5.2.1 of Anderson, 2003, p. 176).

Theorem 5.17. Let X ∼ Ep,n(μe′n,Σ ⊗ In,ψ) with P(X = μe′n) = 0 and μ ∈ IRp.

Assume n > p. Let Y ∼ Np,n(μe′n,Σ ⊗ In), and S(X) = X
(

In − ene′n
n

)
X′. Then, the

principal components of S(X) have the same joint distribution as the principal
components of S(Y).

PROOF: Let A = In − ene′n
n and S(Z) = ZAZ′ for Z ∈ IRp×n. First, note that S(Z) =

S(Z−μe′n) therefore, without loss of generality, we can assume μ = 0.
Let K(Z) = { normalized characteristic vectors of ZAZ′}. Let F = {Z|Z is

p× n matrix, such that ZAZ′ is nonsingular}. Clearly, if Z ∈ IRp×n, Z ∈ F and
a > 0, then aZ ∈ F . If Z ∈ F and a > 0, then obviously, K(aZ) = K(Z). Using
Corollary 5.3, we find that the characteristic roots of XAX′ are nonzero and distinct
with probability one. So, P(X ∈/ F ) = 0. Similarly, P(Y ∈/ F ) = 0.

Now applying Theorem 5.12, we obtain the desired result.



Chapter 6
Characterization Results

6.1 Characterization Based on Invariance

In this section, we characterize the parameters of m.e.c. distributions which are
invariant under certain linear transformations. First we prove the following lemma.

Lemma 6.1. The p× p matrix Σ defined by

Σ = aIp +bepe′p,

is positive semidefinite if and only if a ≥ 0 and a ≥−pb.

PROOF: From part (vi) of Theorem 1.2, we have to show that the characteristic
roots of Σ are nonnegative. From Theorem 1.5 we obtain

|Σ −λ Ip| = |(a−λ )Ip +bepe′p|
= ((a−λ +b)−b)p−1(a−λ +b+(p−1)b)

= (a−λ )p−1(a+ pb−λ ).

Hence, the characteristic roots of Σ are λ1 = a and λ2 = a+ pb. Therefore, the
characteristic roots of Σ are nonnegative if and only if a ≥ 0 and a+ pb ≥ 0.

Theorem 6.1. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) with p > 1 and Φ �= 0. Define

P = {P : P is p× p permutation matrix},
R = {R : R is p× p signed permutation matrix}, and

G = {G : G is p× p orthogonal matrix}.

A.K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory,
DOI 10.1007/978-1-4614-8154-6 6, © Springer Science+Business Media New York 2013
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Then,

(a) For every P ∈ P , PX ≈ X if and only if M = epμ ′ where μ ∈ IRn, Σ = aIp +
bepe′p, a,b ∈ IR, a ≥ 0, and a ≥−pb,

(b) For every R ∈ R, RX ≈ X if and only if M = 0 and Σ = aIp, where a ≥ 0,
(c) For every G ∈ G , GX ≈ X if and only if M = 0 and Σ = aIp, where a ≥ 0.

PROOF:

(a) First, assume that X ∼ Ep,n(epμ ′,(aIp + bepe′p)⊗Φ ,ψ) with a ≥ 0, and a ≥
−pb. Then, from Lemma 6.1, Σ is positive semidefinite.
Let P ∈ P . Then, PX ∼ Ep,n(Pepμ ′,(P(aIp +bepe′p)P′)⊗Φ ,ψ). Since Pep =
ep and PP′ = Ip, we get PX ∼ Ep,n(epμ ′,(aIp +bepe′p)⊗Φ ,ψ), which proves
that PX ≈ X.

Next, assume X ∼ Ep,n(M,Σ ⊗Φ ,ψ) and PX ≈ X for every P ∈ P . Then,
PX ∼ Ep,n(PM,PΣP′ ⊗Φ ,ψ) and hence, PM = M and PΣP′ = Σ for every
P ∈ P . Now, we introduce the following notation. Let P(k, l), 1 ≤ k, l ≤ p
denote a p× p symmetric matrix, whose (i, j)th element is

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = j, i �= k, i �= l
1 if i = l, j = k
1 if i = k, j = l
0 otherwise

Then, it is easy to see that P(k, l) ∈ P .
From P(1, i)M = M, i = 2, . . ., p, we get M = epμ ′, where μ ∈ IRn. From

P(1, i)ΣP(1, i) = Σ , i = 2, . . ., p we get

σii = σ11 (6.1)

and

σi j = σ1 j if j > i . (6.2)

If p ≥ 3, then from P(2, i)ΣP(2, i) = Σ , i = 3, . . ., p, we get

σ1 j = σ12 if j ≥ 3 . (6.3)

From (6.1), it is clear that the diagonal elements of Σ are equal, whereas (6.2)
and (6.3) show that the off-diagonal elements of Σ are also equal. Therefore,
Σ = aIp +bepe′p, and |Σ |= (a+ pb)ap−1. From Lemma 6.1, in order for aIp +
bepe′p to be positive semidefinite, we must have a ≥ 0 and a ≥−pb.

(b) First assume that X ∼ Ep,n(0,aIp ⊗Φ ,ψ) with a ≥ 0. Let R ∈ R, then RX ∼
Ep,n(0,aRIpR′ ⊗Φ ,ψ). Since RR′ = Ip, we have RX ≈ X.
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Next, assume that X ∼ Ep,n(M,Σ ⊗Φ ,ψ) and RX ≈ X for every R ∈ R. Let
R = −Ip, then RX ∼ Ep,n(−M,Σ ⊗Φ ,ψ). Therefore M = −M i.e. M = 0.
Since P ⊂ R, Σ must be of the form aIp + bepe′p, a ≥ 0 and a ≥ −pb. So,
X ∼ Ep,n(0,(aIp +bepe′p)⊗Φ ,ψ).

Let R be a p× p symmetric matrix, whose (i, j)th element is

⎧
⎨

⎩

−1 if i = j = 1
1 if i = j > l
0 otherwise

Then, R ∈ R and RX ∼ Ep,n(0,R(aIp + bepe′p)R′ ⊗Φ ,ψ). Since, R(aIp +
bepe′p)R′ = aIp + bRepe′pR′, we must have bRepe′p = bepe′p, which can also
be written as

b(epe′p −Repe′pR) = 0. (6.4)

Now, epe′p −Repe′pR is a matrix whose (i, j)th element is

⎧
⎨

⎩

2 if i = 1, j ≥ 2
2 if i ≥ j, j = 1
0 otherwise

Hence, epe′p − Repe′pR �= 0 and thus, from (6.4), we conclude that b = 0.
Therefore, X ∼ Ep,n(0,aIp ⊗Φ ,ψ) with a ≥ 0.

(c) First assume X ∼ Ep,n(0,aIp ⊗Φ ,ψ) with a ≥ 0. Let G ∈ G , then GX ∼
Ep,n(0,aGG′ ⊗Φ ,ψ) and since GG′ = Ip, we have GX ≈ X.
On the other hand, if X ∼ Ep,n(0,aIp ⊗Φ ,ψ) and GX ≈ X for every G ∈ G ,
then RX ≈ X for R ∈ R must also hold, since R ⊂ G . Then, using part (b), we
obtain X ∼ Ep,n(0,aIp ⊗Φ ,ψ) with a ≥ 0.

Definition 6.1. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ). Then, X is called left-spherical, if
GX ≈ X, for every G ∈ O(p), right-spherical if XH ≈ X for every H ∈ O(n), and
spherical if it is both left- and right-spherical.

Theorem 6.2. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ). Then, X is left-spherical if and only if
M = 0 and Σ = aIp, with a ≥ 0; right-spherical if and only if M = 0 and Φ = bIn;
and spherical if and only if M = 0, Σ = aIp and Φ = bIn, with a ≥ 0.

PROOF: It follows, from Theorem 6.1.
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6.2 Characterization of Normality

In this section, it is shown that if m.e.c. distributions possess certain properties, they
must be normal. The first result shows that the normality of one element of a random
matrix with m.e.c. distribution implies the normality of the whole random matrix.

Theorem 6.3. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) and assume that there exist i and j such
that xi j is nondegenerate normal. Then, X ∼ Np,n(M,Σ ⊗Φ).

PROOF: It follows, from Theorems 2.10, that xi j ∼ E1(mi j,σiiφ j j,ψ). Since
xi j is normal, we have ψ(z) = exp

(− z
2

)
. Then Ep,n(M,Σ ⊗ Φ ,ψ) becomes

Np,n(M,Σ ⊗Φ ,ψ).

The following characterization results are based on independence.

Theorem 6.4. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ). If X has two elements that are nonde-
generate and independent, then X ∼ Np,n(M,Σ ⊗Φ).

PROOF: Without loss of generality we can assume M = 0. Let us denote the two
independent elements of X by y and z. Then, we get

(
y
z

)
∼ E2

((
0
0

)
,

(
a c
c b

)
,ψ
)
.

From Theorem 2.8, we have y ∼ E1(0,a,ψ) and from Theorem 2.19, we obtain

y|z ∼ E1

(
c
b

z,a− c2

b
,ψ∗
)
.

Since, y and z are independent, y|z ≈ y. Hence, y ∼ E1

(
c
b z,a− c2

b ,ψ
∗
)

and in view

of Theorem 2.4 we must have c
b z = 0 for every z real number. This is possible, only

if c = 0. Therefore,

(
y
z

)
∼ E2

((
0
0

)
,

(
a 0
0 b

)
,ψ
)
.

Now let y1 =
√

ay, z1 =
√

bz, and w =

(
y1

z1

)
. Then, w ∼ E2

((
0
0

)
,

(
1 0
0 1

)
,ψ
)

,

and its characteristic function at t =
(

t1
t2

)
is

φw(t) = ψ
((

t1 t2
)( 1 0

0 1

)(
t1
t2

))
= ψ(t2

1 + t2
2 ).
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The characteristic functions of y1 and z1 are φy1(t1) = ψ(t2
1 ) and φz1(t2) = ψ(t2

2 ).
Since y and z are independent, so are y1 and z1. Therefore, φw(t) = φy1(t1)φz1(t2);
that is ψ(t2

1 + t2
2 ) = ψ(t2

1 )ψ(t2
2 ), or equivalently

ψ(t1 + t2) = ψ(t1)ψ(t2), t1 ≥ 0, t2 ≥ 0. (6.5)

Now, using Corollary 1.1 we see that ψ(t) = e−kt , k ≥ 0, t ≥ 0. Moreover, k = 0
is impossible since this would make y degenerate. Therefore, k > 0 and hence X is
normal.

Corollary 6.1. Let X∼Ep,n(M,Σ⊗Φ ,ψ) and xi, i= 1, . . .,n denote the columns of
X. If x1,x2, . . .,xn are all nondegenerate and independent, then X∼Np,n(M,Σ⊗Φ),
where Φ is diagonal.

PROOF: This follows, from Theorem 6.4. Since if two columns are independent,
then any two elements, picked one from each of these columns will also be
independent. The structure of Φ is implied by the fact that x1,x2, . . .,xn are
independent and normal.

Remark 6.1. For the case p = 1, a result similar to Corollary 6.1, was given by
Kelker (1970). However, he had stronger conditions since he made the diagonality
of Φ an assumption of the theorem. The following theorem, although not a
characterization result gives the idea for a further characterization of normality.

Theorem 6.5. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) be nondegenerate, with finite second
order moment. Assume A : q× p, B : n× k, C : r × p, and D : n× l are constant
matrices. Then, AXB and CXD are uncorrelated if and only if either AΣC′ = 0 or
B′ΦD = 0.

PROOF: Without loss of generality, we can assume M = 0. Then, using Theo-
rem 1.17, we can write

Cov(vec(AXB)′,vec(CXD)′) = E(vec(AXB)′(vec(CXD)′)′)

= E((A⊗B′)vec(X′)(vec(X′))′(C′ ⊗D))

= −2ψ ′(0)(A⊗B′)(Σ ⊗Φ)(C′ ⊗D)

= −2ψ ′(0)(AΣC′)⊗ (B′ΦD).

Here, ψ ′(0) �= 0, since X is nondegenerate, so we must have (AΣC′)⊗(B′ΦD) = 0.
This holds iff AΣC′ = 0 or B′ΦD = 0.

Remark 6.2. Since, in the normal case, uncorrelatedness and independence are
equivalent, Theorem 6.5 implies that for X ∼ Np,n(M,Σ ⊗Φ), AXB and CXD are
independent iff AΣC′ = 0 or B′ΦD = 0. This property of the matrix variate normal
distribution was obtained by Nel (1977).
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Theorem 6.5 shows that under certain conditions, two linear expressions in
a random matrix with m.e.c. distribution are uncorrelated, whereas Remark 6.2
says that if the underlying distribution is normal the two linear transforms are
independent. The question arises whether the independence of the linear transforms
characterizes normality in the class of m.e.c. distributions. The answer is yes, as the
next theorem shows.

Theorem 6.6. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) and A : q× p, B : n× k, C : r× p, and
D : n× l be constant nonzero matrices. If AXB and CXD are nondegenerate and
independent, then X is normal.

PROOF: Without loss of generality, we can assume M = 0. Since AXB and
CXD are independent, so are vec(AXB)′ = (A ⊗ B′)vec(X′) and vec(CXD)′ =
(C⊗D′)vec(X′). Let x= vec(X), then x∼Epn(0,Σ⊗Φ ,ψ). Let v′ be a nonzero row
of A⊗B′ and w′ be a nonzero row of C⊗D′. Then, v′x and w′x are independent. Let

H =

(
v′

w′

)
. Then Hx =

(
v′x
w′x

)
∼ E2(0,H(Σ ⊗Φ)H′,ψ). Since v′x and w′x are

independent and their joint distribution is elliptically contoured, from Theorem 6.4
we conclude that Hx is normal. Therefore, X is normal.

The following characterization results are based on conditional distributions (see
Gupta and Varga, 1990, 1992, 1994a, 1997).

Theorem 6.7. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) be nondegenerate. Let X, M, and Σ be

partitioned as X =

(
X1

X2

)
, M =

(
M1

M2

)
, Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
, where X1 and M1

are q × n and Σ 11 is q × q. Assume rk(Σ 22) ≥ 1 and rk(Σ)− rk(Σ 22) ≥ 1. Let
X1|X2 ∼ Eq,n(M1 +Σ 12Σ−1

22 (X2 −M2),Σ11·2 ⊗Φ ,ψq(X2)) with q(X2) = tr((X2 −
M2)

′Σ−
11(X2 −M2)Φ−). Then, ψq(X2) does not depend on X2, with probability one

if and only if X ∼ Np,n(M,Σ ⊗Φ).

PROOF: It is known that if X∼Np,n(M,Σ⊗Φ), thenψq(X2) = exp
(− z

2

)
and hence,

ψq(X2) does not depend on X2 (see, e.g. Anderson, 2003, p. 33).
Conversely, assume ψq(X2) does not depend on X2 for X2 ∈ A, where P(X2 ∈

A) = 1. Thus, for X2 ∈ A, we can write ψq(X2) = ψ0(z), where ψ0 does not depend
on X2. It follows from the definition of q(X2), that it suffices to consider the case
M = 0, Σ = Ip, Φ = In (see Theorem 2.22). Let T be a p×n matrix and partition it

as T =

(
T1

T2

)
, where T1 is q×n. Then, the characteristic function of X is

φX(T) = ψ(tr(T′T))

= ψ(tr(T′
1T1 +T′

2T2))

= ψ(tr(T′
1T1)+ tr(T′

2T2)). (6.6)

On the other hand,
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φX(T) = E(etr(iT′X))

= E(etr(iXT′))

= E(etr(i(X1T′
1 +X2T′

2)))

= E(E(etr(i(X1T′
1 +X2T′

2))|X2))

= E(etr(iX2T′
2))E(E(etr(iX1T′

1)|X2))

= E(etr(iX2T′
2))ψ0(tr(T′

1T1))

= ψ(tr(T′
2T2))ψ0(tr(T′

1T1)). (6.7)

Let u = tr(T′
1T1) and v = tr(T′

2T2). Then, from (6.6) and (6.7), we obtain

ψ(u+ v) = ψ(u)ψ0(v) (6.8)

for u,v ≥ 0. Taking u = 0 in (6.8), we get ψ(v) = ψ0(v). Hence, (6.8) gives

ψ(u+ v) = ψ(u)ψ(v) (6.9)

for u,v≥ 0. Now from Corollary 1.1 we see thatψ(z)= e−kz, k ≥ 0, t ≥ 0. Moreover,
k cannot be zero, since this would make X degenerate. Therefore, k > 0 and hence
X is normal.

The next theorem shows that the normality of the conditional distributional
characterizes the normal distribution in the class of m.e.c. distributions.

Theorem 6.8. Let X ∼ Ep,n(M,Σ⊗Φ ,ψ) be nondegenerate. Let X and Σ be parti-

tioned as X=

(
X1

X2

)
, Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
, where X1 is q×n and Σ 11 is q×q. Assume

rk(Σ 22)≥ 1 and rk(Σ)−rk(Σ22)≥ 1. Then, P(X1|X2 is nondegenerate normal)= 1
if and only if X ∼ Np,n(M,Σ ⊗Φ).

PROOF: It has already been mentioned in the proof of Theorem 6.7 that if X ∼
Np,n(M,Σ ⊗Φ), then X1|X2 is nondegenerate normal with probability one.

Conversely, assume X1|X2 is nondegenerate normal with probability one. Then,
from the definition of q(X2), it follows that it suffices to consider the case M = 0,
Σ = Ip, Φ = In, where now q(X2) = tr(X′

2X2). So q(X2) = 0 if and only if X2 = 0.
Thus, P(q(X2) = 0) = P(X2 = 0).

On the other hand, from Corollary 3.2 it follows that P(X2 = 0) = P(X = 0).
Hence, P(q(X2) = 0) = P(X = 0). However P(X = 0) > 0 is not possible since
this would imply that X1|X2 is degenerate with positive probability. Therefore,
P(q(X2) = 0) = 0 must hold. Hence, there exists a set A ⊂ IRq×n such that P(X2 ∈
A) = 1. If X2 ∈ A, then q(X2)> 0 and X1|X2 is nondegenerate normal. So if X2 ∈ A,
then we get



152 6 Characterization Results

X1|X2 ∼ Eq,n(0,Iq ⊗ In,ψq(X2)) with ψq(X2)(z) = exp

(
−c(q(X2))z

2

)
.

(6.10)

Here, c denotes a function of q(X2), such that c(q(X2)) > 0 for X2 ∈ A. Let
rq(X2)U1 be the stochastic representation of X1|X2. Since

r2
q(X2)

≈ tr((X1|X2)
′(X1|X2)),

from (6.10), we get

r2
q(X2)

∼ c(q(X2))χ2
qn. (6.11)

The p.d.f. of χ2
qn is

g(y) =
1

2
qn
2 Γ
( qn

2

)y
qn
2 −1e−

y
2 , y > 0. (6.12)

Let v2 = c(q(X2))y for fixed X2 with v ≥ 0 and J(y → v) = 1
c(q(X2))

2v. Then,

v≈ rq(X2), hence the p.d.f. of v, say p(v), is the same as the p.d.f. of rq(X2). Therefore,
from (6.12) we get

p(v) =
2v

2
qn
2 Γ
( qn

2

)
c(q(X2))

(
v2

c(q(X2))

) qn
2 −1

e
− v2

2c(q(X2))

=
1

Γ
( qn

2

)
2

qn
2 −1(c(q(X2)))

qn
2

vqn−1e
− v2

2c(q(X2)) . (6.13)

Let rU be the stochastic representation of X and F be the distribution function
of r. By appealing to Corollary 2.5, from (6.13), we obtain

1−F(z) = Kq(X2)

∫ ∞
√

z2−q(X2)
(v2 +q(X2))

pn
2 −1v−(qn−2)p(v)dv

= LX2

∫ ∞
√

z2−q(X2)
(v2 +q(X2))

pn
2 −1ve

− v2
2c(q(X2)) dv, (6.14)

for z ≥ q(X2) where

LX2 =
Kq(X2)

Γ
( qn

2

)
2

qn
2 −1(c(q(X2)))

qn
2
.

Substituting t2 = v2 +q(X2) and J(v → t) = t
v in (6.14), we get
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1−F(z) = LX2

∫ ∞

z
t pn−2te

− t2−q(X2)
2c(q(X2)) dt

= LX2 e
q(X2)

2c(q(X2))

∫ ∞

z
t pn−1e

− t2
2c(q(X2)) dt. (6.15)

Now, (6.15) holds for z ≥ q(X2). Differentiating (6.15), with respect to z, we get

F ′(z) = JX2 zpn−1e
− z2

2c(q(X2)) for z ≥ q(X2), (6.16)

where JX2 =−LX2 e
q(X2)

2c(q(X2)) .
Let X2,1 ∈ A and X2,2 ∈ A and let z ∈ [max(q(X2,1),q(X2,2)),∞). Then, from

(6.16), it follows that c(q(X2,1)) = c(q(X2,2)). Therefore, (6.10) shows that
φq(X2,1) = φq(X2,2). Since P(A) = 1, this means that φq(X2) does not depend on
X2, with probability one. Hence, from Theorem 6.7, it is easily seen that X is
normally distributed.

The next characterization result shows that if a m.e.c. distribution is absolutely
continuous and one of its marginals has the p.d.f. whose functional form coincides
with that of the p.d.f. of the original distribution up to a constant multiplier, then the
distribution must be normal. More precisely, we can prove the following theorem.

Theorem 6.9. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) be absolutely continuous with p.d.f.

|Σ |− n
2 |Φ |− p

2 h(tr((X−M)′Σ−1(X−M)Φ−1)).

Let X, M, and Σ be partitioned as X =

(
X1

X2

)
, M =

(
M1

M2

)
, Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
,

where X1 and M1 are q×n and Σ 11 is q×q with 1 ≤ q < p. Let the p.d.f. of X1 be

|Σ 11|− n
2 |Φ |− p

2 h1(tr((X1 −M1)
′Σ−1

11 (X1 −M1)Φ−1)).

Then, h and h1 agree up to a constant multiplier; that is,

h(z) = ch1(z) (6.17)

if and only if X is normal.

PROOF: If X is normal, then h(z)= (2π)−
pn
2 exp

(− z
2

)
. Moreover, X1 is also normal

with h1(z) = (2π)−
qn
2 exp

(− z
2

)
. Thus, h(z) = (2π)

(q−p)n
2 h1(z), so (6.17) is satisfied

with c = (2π)
(q−p)n

2 .
Conversely, assume (6.17) holds. Without loss of generality, we can assume

M = 0, Σ = Ip, Φ = In. From (6.17), we get

h(tr(XX′)) = ch1(tr(X1X′
1)). (6.18)
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We also use the fact that h1(tr(X1X′
1)), being marginal p.d.f. of X, can be

obtained from h(tr(XX′)) through integration.
Let X = (X1,X2), then h(tr(XX′)) = h(tr(X1X′

1 + X2X′
2)) = h(tr(X1X′

1) +
tr(X2X′

2)). Hence we have

h1(tr(X1X′
1)) =

∫

IR(p−q)×n
h(tr(X1X′

1)+ tr(X2X′
2))dX2. (6.19)

From (6.18) and (6.19), we get

h1(tr(X1X′
1)) = c

∫

IR(p−q)×n
h1(tr(X1X′

1)+ tr(X2X′
2))dX2.

Hence

h1(z) = c
∫

IR(p−q)×n
h1(z+ tr(X2X′

2))dX2, z ≥ 0.

Using (6.17) again, we have

h(z) = c2
∫

IR(p−q)×n
h1(z+ tr(X2X′

2))dX2, z ≥ 0.

which can also be written as

h(z) = c2
∫

IR(p−q)×n
h1(z+ tr(Y2Y′

2))dY2. (6.20)

Define the (p+q)×n matrix Y =

(
Y1

Y2

)
, with Y1 : p×n. Let z = tr(Y1Y′

1). Then,

from (6.20), we have

h(tr(Y1Y′
1)) = c2

∫

IR(p−q)×n
h1(tr(Y1Y′

1)+ tr(Y2Y′
2))dY2. (6.21)

Now, the left-hand side of (6.21) is a p.d.f., since Y1 is p×n. Hence,

∫

IRp×n
h(tr(Y1Y′

1))dY1 = 1.

Therefore, integrating the right-hand side of (6.21), with respect to Y1 we get

c2
∫

IRp×n

∫

IR(p−q)×n
h1(tr(Y1Y′

1)+ tr(Y2Y′
2))dY2dY1 = 1,

which can be rewritten as
∫

IR(p+(p−q))×n
c2h1(tr(YY′))dY = 1.
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Therefore, c2h1(tr(YY′)) is the p.d.f. of a (2p−q)×n random matrix Y with m.e.c.
distribution. Moreover, it follows from (6.21) and (6.17), that ch1(tr(Y1Y′

1)) is the
p.d.f. of the p× n dimensional marginal of Y. Since Y1 ∼ Ep,n(0,Ip ⊗ In,ψ), we
must have

Y ∼ E2p−q,n(0,I2p−q ⊗ In,ψ).

By iterating the above procedure we see that for any j ≥ 1, there exists a
(p+ j(p−q))×n random matrix Y j with m.e.c. distribution, such that

Y ∼ Ep+ j(p−q),n(0,Ip+ j(p−q)⊗ In,ψ).

Then it follows from the Definition 4.1, Theorem 4.3, and Remark 4.2, that there
exists a distribution function G(u) on (0,∞), such that

ψ(s) =
∫ ∞

0
exp
(
− su

2

)
dG(u). (6.22)

Therefore,

h(z) =
∫ ∞

0

1

(2πz)
pn
2

exp
(
− zu

2

)
dG(u)

and

h1(z) =
∫ ∞

0

1

(2πz)
qn
2

exp
(
− zu

2

)
dG(u)

Using (6.17), we get

∫ ∞

0

(
1

(2πz)
pn
2
− c

(2πz)
qn
2

)

exp
(
− zu

2

)
dG(u) = 0. (6.23)

Using the inverse Laplace transform in (6.23), we obtain

(
1

(2πz)
pn
2
− c

(2πz)
qn
2

)

dG(z) = 0.

Hence,

(2πz)−
pn
2

(
1− (2πz)

(p−q)n
2 c
)

dG(z) = 0.

However, this is possible only if G is degenerate at z0 =
1

2π c
2

(p−q)n ; that is,
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G(z) =

{
0 if z < z0

1 if z ≥ z0.

Now, let z0 = σ2. Then, (6.22) gives ψ(s) = exp
(
− sσ2

2

)
, which implies that X is

normal.

Since in the normal case ψq(X2) does not depend on X2, the conditional
distribution rq(X2)|X2 is also independent of X2. Hence, for every k positive integer
the conditional moment E(rk

q(X2)
|X2), is independent of X2. The next theorem shows

that normal distribution is the only m.e.c. distribution which possesses this property.

Theorem 6.10. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) be nondegenerate. Let X and Σ be

partitioned as X=

(
X1

X2

)
, Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
, where X1 is q×n and Σ 11 is q×q with

1 ≤ q < p. Assume rk(Σ 22)≥ 1 and rk(Σ)−rk(Σ22)≥ 1. Then, there exists positive
integer k such that E(rk

q(X2)
|X2) is finite and does not depend on X2, with probability

one if and only if X is normal. Here, rq(X2) is the one-dimensional random variable,
appearing in the stochastic representation of X1|X2:

X1|X2 ≈ rq(X2)AU1B′.

PROOF: If X is normal, then ψq(X2)(z) = ψ
(− z

2

)
. Hence, r2

q(X2)
∼ χ2

q1n, with q1 =

rk(Σ)− rk(Σ22). Hence, E(rk
q(X2)

|X2) is the k
2 th moment of χ2

q1n which is finite and
independent of X2.

Conversely, assume E(rk
q(X2)

|X2) is finite and does not depend on X2, with
probability one. Without loss of generality, we can assume M = 0, Σ = Ip, Φ = In.
Then, we have q(X2) = ‖X2‖ and X1|X2 ≈ r‖X2‖2U1. Hence we get tr(X′

1X1)|X2 ≈
r2
‖X2‖2tr(U′

1U1), and since tr(U′
1U1) = 1, we get ‖X1‖|X2 ≈ r‖X2‖2 . Therefore,

E(‖X1‖k|X2) = E(rk
‖X2‖2 |X2).

Hence, E(‖X1‖k|X2) is finite (with probability one) and independent of X2.
Next, we show that P(X = 0) = 0. Assume this is not the case. Let 0 < P0 =

P(X = 0) = P

((
X1

X2

)
= 0
)

. Then P((X1|X2) = 0) ≥ P0 and P(E(‖X1‖k|X2) =

0) ≥ P0. Since E(‖X1‖k|X2) does not depend on X2 with probability one, we have
P(E(‖X1‖k|X2) = 0) = 1. Hence, P((X1|X2) = 0) = 1.

Since,

P(X1 ∈ B) =
∫

IRq×n
P((X1|X2) ∈ B)dFX2(X2),
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where FX2 is the distribution function of X2 and B ∈ B(IRq1×n), we get
P(X1 = 0) = 1. Then, from Corollary 3.2, we get P(X = 0) = P(X1 = 0) = 1.
That means X is degenerate, which contradicts the assumptions of the theorem. So,
P(X = 0) = 0.

From Corollary 3.2, it follows that P(X2 = 0) = 0. Let X ≈ rU be the
stochastic representation of X and F be the distribution function of r. Then, using
Theorem 2.21, we obtain

P((X1|X2) = 0) = 1 if F(‖X2‖) = 1

and

F‖X2‖2(z) =
1

K‖X2‖2

∫
(
‖X2‖,

√
z2+‖X2‖2

)(s2 −‖X2‖2)
qn
2 −1s−(pn−2)dF(s) (6.24)

if z≥ 0 and F(‖X2‖)< 1, where F‖X2‖2(z) denotes the distribution function of r‖X2‖2

and

K‖X2‖2 =
∫

(‖X2‖,∞)
(s2 −‖X2‖2)

qn
2 −1s−(pn−2)dF(s).

From (6.24), we get

dF‖X2‖2(z) =
1

K‖X2‖2
(z2)

qn
2 −1(z2 +‖X2‖2)−

pn−2
2

ds
dz

dF(s) (6.25)

where z2 +‖X2‖2 = s2. Using (6.25), we obtain

E(rk
‖X2‖2 |X2) =

∫ ∞

0
zkdF‖X2‖2(z)

=
1

K‖X2‖2

∫

(‖X2‖,∞)
(s2 −‖X2‖2)

qn+k
2 −1s−(pn−2)dF(s).

Since, E(rk
‖X2‖2 |X2) does not depend on X2, it follows that there exists a constant

c(k) which does not depend on X2, such that

∫

(‖X2‖,∞)
(s2 −‖X2‖2)

qn+k
2 −1s−(pn−2)dF(s)

= c(k)
∫

(‖X2‖,∞)
(s2 −‖X2‖2)

qn
2 −1s−(pn−2)dF(s), (6.26)

almost everywhere. Since P(X = 0) = 0, Theorem 3.5 shows that X2 is abso-
lutely continuous. Therefore, ‖X2‖ is also absolutely continuous. Hence, (6.26)
implies that
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∫

(y,∞)
(s2 − y2)

qn+k
2 −1s−(pn−2)dF(s) = c(k)

∫

(y,∞)
(s2 − y2)

qn
2 −1s−(pn−2)dF(s)

(6.27)

for almost every y (with respect to the Lebesgue measure) in the interval (0,y0),
where y0 = inf{y : F(y) = 1}. Furthermore, (6.27) is also true if y > y0, because in
that case both sides become zero. Therefore, (6.27) holds for almost every y > 0.

Define the following distribution function on [0,∞)

H(z) =

∫ z
0 skdF(s)
∫ ∞

0 skdF(s)
. (6.28)

In order to do this, we have to prove that
∫ ∞

0 skdF(s) is finite and positive. Now, F
is the distribution function of r, where X ≈ rU is the stochastic representation of X.
Since, P(X = 0) = 0, we have P(r > 0) = 1. Hence,

∫ ∞
0 skdF(s) = E(rk) > 0. On

the other hand, let X1 ≈ r1U1 be the stochastic representation of X1. It follows from
Corollary 2.4, that

r1 ≈ rt, (6.29)

where r and t are independent and t2 ∼ B
(

qn
2 , (p−q)n

2

)
. Now,

E(‖X1‖k) = E(E(‖X1‖k|X2))

is finite, since E(‖X1‖k|X2) is finite and does not depend on X2, with probability
one. Since r1 ≈ ‖X1‖, we see that E(rk

1) is finite. From (6.29), we get E(rk
1) =

E(rk)E(tk) and E(rk
1) is finite implies that E(rk) is finite. Since P(X = 0) = 0, we

have F(0) = 0 and so H(0) = 0. Now, (6.27) can be rewritten in terms of H as
∫

(y,∞)
(s2 − y2)

qn+k
2 −1s−(pn+k−2)dH(s) = c

∫

(y,∞)
(s2 − y2)

qn
2 −1s−(pn+k−2)dH(s).

(6.30)

Let r0 be a random variable with distribution function H. Further, let u0 be
uniformly distributed over Spn+k, independent of r0. Define y = r0u0. Then, y ∼
Epn+k(0,Ipn+k,ψ∗). Since H(0) = 0, we get P(r0 = 0) = 0. Thus, P(y = 0) = 0. Let
y1 be a (p− q)n+ k-dimensional subvector of y and y2, a (p− q)n-dimensional
subvector of y1. Then, it follows from Theorem 3.1, that both y1 and y2 are
absolutely continuous. Let h1(y′1y1) be the p.d.f. of y1 and h2(y′2y2) that of y2.
Let y1 ≈ r0,1U0,1 and y2 ≈ r0,2U0,2 be the stochastic representations of y1 and y2

respectively. Moreover, Theorem 3.1 shows that the p.d.f. of r0,1 is

g1(y) = c1y(p−q)n+k−1
∫

(y,∞)
(s2 − y2)

qn
2 −1s−(pn+k−2)dH(s)

and that of r0,2 is



6.2 Characterization of Normality 159

g2(y) = c2y(p−q)n−1
∫

(y,∞)
(s2 − y2)

qn+k
2 −1s−(pn+k−2)dH(s) .

Here ci denotes a positive constant, i = 1,2, . . .. It follows, from Theorem 2.16, that

h1(y
2) = c3y−((p−q)n+k)+1g1(y)

= c4

∫

(y,∞)
(s2 − y2)

qn
2 −1s−(pn+k−2)dH(s)

and

h2(y
2) = c5y−(p−q)n+1g2(y)

= c6

∫

(y,∞)
(s2 − y2)

qn+k
2 −1s−(pn+k−2)dH(s) .

Hence,

h1(y
2) = c4

∫

(y,∞)
(s2 − y2)

qn
2 −1s−(pn−2)dF(s) (6.31)

and

h2(y
2) = c6

∫

(y,∞)
(s2 − y2)

qn+k
2 −1s−(pn−2)dF(s) . (6.32)

Then, (6.27), (6.30), and (6.31) imply that h2(y2) = c7h1(y2). Therefore, from
Theorem 6.9 we conclude that y1 is normal. Since, y1 is a subvector of y, it is
also normal. Hence, H(z) is the distribution of c8χpn+k. Then,

dH(z) = l(z)dz, (6.33)

where

l(z) = c9

(
z
c8

)pn+k−1

e
− z2

2c2
8 , z ≥ 0. (6.34)

From (6.28), it follows that dH(z) = c10zkdF(z). Using (6.33) and (6.34), we obtain

c11zpn+k−1e
− z2

2c2
8 dz = zkdF(z). Hence,

dF(z) = c12

(
z
c8

)pn−1

e
− z2

2c2
8 , z ≥ 0.
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Since F is the distribution of r, we obtain that r ≈ c12χpn. Therefore, X is normal.

The following theorem gives a characterization of normality based on conditional
central moments.

Theorem 6.11. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) be nondegenerate. Let X, M, and Σ be

partitioned as X =

(
X1

X2

)
, M =

(
M1

M2

)
, Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
, where X1 and M1 are

q×n and Σ 11 is q×q. Assume rk(Σ 22)≥ 1 and rk(Σ)− rk(Σ22)≥ 1. Assume also
that there exist nonnegative integers, ki j, i = 1,2, . . .,q; j = 1,2, . . .,n, satisfying k =

∑p
i=1∑

n
j=1 ki j ≥ 1, and such that K(X2) = E

(
∏q

i=1∏
n
j=1(xi j −E(xi j|X2))

ki j |X2

)
is

nonzero with positive probability. Then K(X2) is finite and does not depend on X2,
with probability one if and only if X is normally distributed.

PROOF: If X is normal, then

X1|X2 ∼ Nq,n(M1 +Σ12Σ−
22(X2 −M2),Σ11·2 ⊗Φ).

Hence

(X1 −E(X1|X2))|X2 ∼ Nq,n(0,Σ 11·2 ⊗Φ).

Therefore, E
(
∏q

i=1∏
n
j=1(xi j −E(xi j|X2))

ki j |X2

)
is finite and does not depend

on X2.
Conversely, assume K(X2) is finite and does not depend on X2. Now,

X1|X2 ∼ Eq,n(M1 +Σ12Σ−
22(X2 −M2),Σ 11·2 ⊗Φ ,ψq(X2)),

and hence

(X1 −E(X1|X2))|X2 ∼ Eq,n(0,Σ 11·2 ⊗Φ ,ψq(X2)).

Let rq(X2)AUB′ be the stochastic representation of (X1 −E(X1|X2))|X2. Then,

q

∏
i=1

n

∏
j=1

((xi j −E(xi j|X2))
ki j |X2)≈ rk

q(X2)

q

∏
i=1

n

∏
j=1

(AUB′)ki j
i j . (6.35)

The expected value of the left-hand side of (6.35) is finite and does not depend on
X2. Since rq(X2) and U are independent, taking expectation on both sides of (6.35),
we obtain

K(X2) = E(rk
q(X2)

|X2)E

(
q

∏
i=1

n

∏
j=1

(A∗UB′)ki j
i j

)

. (6.36)
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Now P(0 �= |K(X2)|< ∞)> 0, therefore it follows, from (6.36), that

P

(

0 �=
∣∣∣∣∣
E

(
q

∏
i=1

n

∏
j=1

(A∗UB′)ki j
i j

)∣∣∣∣∣

)

> 0. (6.37)

However E
(
∏q

i=1∏
n
j=1(A

∗UB′)ki j
i j

)
is a constant (say c) that does not depend X2,

therefore (6.37) implies that

E

(
q

∏
i=1

n

∏
j=1

(A∗UB′)ki j
i j

)

�= 0. (6.38)

From (6.36) and (6.38), we get

E(rk
q(X2)

|X2) =
1
c

K(X2).

Therefore, E(rk
q(X2)

|X2) is finite and independent of X2 with probability one.
Then, using Theorem 6.10, we conclude that X is normally distributed.

Theorems 6.7–6.11 are due to Cambanis, Huang, and Simons (1981). In The-
orem 6.11, however, the assumption that the conditional central moments are
nonzero, with probability one is missing. Without this assumption, the theorem is
not correct. To see this, take k11 = 1 and ki j = 0, (i, j) �= (1,1). Then

K(X2) = E((X11 −E(X11|X2))|X2)

= E(X11|X2)−E(X11|X2)

= O.

Thus K(X2) is finite and does not depend on X2, but X does not have to be normal.
In order to derive further characterization results, we need the following lemma.

Lemma 6.2. Let X ∼ Ep,n(0,Σ ⊗Φ ,ψ) with P(X = 0) = P0 where 0 ≤ P0 < 1.
Then, there exists a one-dimensional random variable s and a p × n random
matrix L, such that s and L are independent, P(s = 0) = P0, P(s = 1) = 1−P0,

L ∼ Ep,n

(
0,Σ ⊗Φ , ψ−P0

1−P0

)
and X ≈ sL. Moreover, P(L = 0) = 0.

PROOF: If P0 = 0, choose s, such that P(s = 1) = 1 and the theorem is trivial.
If P0 > 0, then let us define L in the following way. Define a measure PL on IRp×n

in the following way: PL(B) = 1
1−P0

P(X ∈ (B−{0})), where B is a Borel set in

IRp×n. Now, PL(IRp×n) = P(X ∈ (IRp×n −{0})) = 1−P0
1−P0

= 1. Therefore, PL defines
a probability measure on IRp×n. Let L be a random matrix, whose distribution is
defined by PL; that is, P(L ∈ B) = PL(B) for every Borel set B in IRp×n.
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Let s be a one-dimensional random variable, with P(s = 0) = P0, and P(s = 1) =
1−P0 such that s is independent of L. Then we show X ≈ sL.

Let B be a Borel set in IRp×n. Then

P(sL ∈ B) = P(sL ∈ B|s = 1)P(s = 1)+P(sL ∈ B|s = 0)P(s = 0)

= P(L ∈ B|s = 1)P(s = 1)+P(0 ∈ B|s = 0)P(s = 0)

= P(L ∈ B)(1−P0)+P(0 ∈ B)P0

=
1

1−P0
P(X ∈ (B−{0}))(1−P0)+ χB(0)P0

= P(X ∈ (B−{0}))+ χB(0)P0.

If 0 ∈ B, then B = (B−{0})∪{0} and χB(0) = 1. Therefore

P(X ∈ (B−{0}))+ χB(0)P0 = P(X ∈ (B−{0}))+P(X ∈ {0})
= P(X ∈ B).

If 0 ∈/ B, then B = B−{0} and χB(0) = 0. So,

P(X ∈ (B−{0}))+ χB(0)P0 = P(X ∈ B).

Hence, X ≈ sL. Therefore, the characteristic functions of X and sL are equal, i.e.
φX(T) = φsL(T). Moreover,

φsL(T) = E(etr(iT′sL))

= E(etr(iT′sL)|s = 1)P(s = 1)+E(etr(iT′sL)|s = 0)P(s = 0)

= E(etr(iT′L)|s = 1)(1−P0)+E(1|s = 0)P0

= E(etr(iT′L))(1−P0)+1 ·P0

= φL(T)(1−P0)+P0.

Hence, φX(T) = φL(T)(1−P0)+P0, and therefore

φL(T) =
φX(T)−P0

1−P0
=
ψ(tr(T′ΣTΦ))−P0

1−P0
.

Furthermore, P(L = 0) = 1
1−P0

P(X ∈ ({0}−{0})) = 0.

Theorem 6.12. Let X ∼ Ep,n(0,Σ 1 ⊗ In,ψ1) with p ≤ n. Assume

XX′ ∼ Gp,1

(
Σ 2,

n
2
,ψ2

)
.

Then there exists c > 0 such that Σ 2 = cΣ 1 and ψ2(z) = ψ1
(

z
c

)
.
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PROOF: It follows, from Definition 5.1, that there exists a p×n random matrix Y,
such that Y ∼ Ep,n(0,Σ 2 ⊗ In,ψ2) and YY′ ∼ Gp,1

(
Σ 2,

n
2 ,ψ2
)
. So, we have XX′ ≈

YY′. From Theorem 2.4, it suffices to show that X ≈ Y.
First, note that if Z is a p × n matrix, then Z = 0 iff ZZ′ = 0. Therefore,

P(X = 0) = P(XX′ = 0) and P(Y = 0) = P(YY′ = 0). Since, XX′ ≈ YY′, we have
P(XX′ = 0) = P(YY′ = 0) and so, P(X = 0) = P(Y = 0).

Let us denote P(X = 0) by P0. If P0 = 1, then P(X = 0) = P(Y = 0) = 1, and
hence, X ≈ Y.

If P0 < 1, then from Theorem 1.8, there exists a p× p nonsingular matrix H, such
that HΣ 2H′ = Ip and HΣ 1H′ = D, where D is diagonal.

Let V1 =HX and V2 =HY. Then, V1 ∼Ep,n(0,D⊗In,ψ1) and V2 ∼Ep,n(0,Ip⊗
In,ψ2). Moreover, V1V′

1 = HXX′H′ and V2V′
2 = HYY′H′. So, we have V1V′

1 ≈
V2V′

2. It suffices to prove that V1 ≈V2, because if this is true, then H−1V1 ≈H−1V2

and so, X ≈ Y.
Using Lemma 6.2, we can write Vi ≈ siLi, where si and Li are independent,

si is a one-dimensional random variable, with P(si = 0) = P0, P(si = 1) = 1−P0,
P(Li = 0) = 0 (i = 1,2). So s1 ≈ s2. Moreover, we have

L1 ∼ Ep,n

(
0,D⊗ In,

ψ1 −P0

1−P0

)
and L2 ∼ Ep,n

(
0,Ip ⊗ In,

ψ2 −P0

1−P0

)
.

If P0 = 0, then P(s1 = 1) = P(s2 = 1) = 1 and so, L1L′
1 ≈ s2

1L1L′
1 ≈ V1V′

1 ≈
V2V′

2 ≈ s2
2L2L′

2 ≈ L1L′
1. If 0 < P0 < 1, then for any Borel set B in IRp×n we have

P(ViV′
i ∈ B) = P(s2

i LiL′
i ∈ B)

= P(s2
i LiL′

i ∈ B|si = 1)P(si = 1)+P(s2
i LiL′

i ∈ B|si = 0)P(si = 0)

= P(LiL′
i ∈ B)(1−P0)+ χB(0)P0.

Therefore,

P(LiL′
i ∈ B) =

P(ViV′
i ∈ B)− χB(0)P0

1−P0
(i = 1,2).

Since, V1V′
1 ≈ V2V′

2, we have P(V1V′
1 ∈ B) = P(V2V′

2 ∈ B) and so, P(L1L′
1 ∈

B) = P(L2L′
2 ∈ B). Hence, L1L′

1 ≈ L2L′
2. Let r1D

1
2 U1 and r2U2 be the stochastic

representations of L1 and L2, respectively. Then we have L1L′
1 ≈ r2

1D
1
2 U1U′

1D
1
2

and L2L′
2 ≈ r2

2U2U′
2. Thus,

r2
1D

1
2 U1U′

1D
1
2 ≈ r2

2U2U′
2. (6.39)

Let W1 = U1U′
1 and W2 = U2U′

2. Since, U1 ≈ U2, we have W1 ≈ W2. Note that
(6.39) can be rewritten as

r2
1D

1
2 W1D

1
2 ≈ r2

2W2. (6.40)
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From Theorem 5.11, it follows that P(rk(L1L′
1) = p) = 1. Since, L1L′

1 is a
positive semidefinite p × p matrix, we get P(L1L′

1 > 0) = 1. Now L1L′
1 ≈

L2L′
2, and hence we have P(L2L′

2 > 0) = 1. Therefore, P(r2
2W2 > 0) = 1 and

P(r2
1D

1
2 W1D

1
2 > 0) = 1. Thus, the diagonal elements of r2

2W2 and r2
1D

1
2 W1D

1
2 are

positive, with probability one. If p = 1, then D is a scalar; D = c. If p > 1, then it
follows from (6.40) that

(r2
2W2)11

(r2
2W2)ii

≈

(
r2

1D
1
2 W1D

1
2

)

11(
r2

1D
1
2 W1D

1
2

)

ii

, i = 2, . . ., p,

or equivalently,

(W2)11

(W2)ii
≈

(
D

1
2 W1D

1
2

)

11(
D

1
2 W1D

1
2

)

ii

. (6.41)

However, D
1
2 is diagonal so,

(
D

1
2 W1D

1
2

)

j j
= (W1) j jd j j, j = 1, . . ., p and (6.41)

becomes

(W2)11

(W2)ii
≈ (W1)11

(W1)ii

d11

dii
.

Since W1 ≈ W2, we have (W2)11
(W2)ii

≈ (W1)11
(W1)ii

and so, (W1)11
(W1)ii

≈ (W1)11
(W1)ii

d11
dii

. Since

P
(
(W1)11
(W1)ii

> 0
)
= 1, this is possible only if d11

dii
= 1, i = 2, . . ., p. So, we get D = cIp

where c is a scalar constant. From (6.39), we get

cr2
1U1U′

1 ≈ r2
2U2U′

2.

Taking trace on both sides, we get

tr(cr2
1U1U′

1)≈ tr(r2
2U2U′

2)

and hence,

cr2
1tr(U1U′

1)≈ r2
2tr(U2U′

2).

Now, tr(U1U′
1) = tr(U2U′

2) = 1 and therefore, cr2
1 ≈ r2

2 and r2 ≈ √
cr1. Let

r3 ≈ r2, such that r3 is independent of U1 and U2. Then, we have L1 ≈ r1D
1
2 U1 ≈

1√
c r3(cIp)

1
2 U1 = r3U1 ≈ r3U2. Since L2 ≈ r2U2 ≈ r3U2, we have L1 ≈ L2. Since

s1 ≈ s2, we get s1L1 ≈ s2L2. Therefore V1 ≈ V2.

Now we can prove a result on the characterization of normality.
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Theorem 6.13. Let X ∼ Ep,n(0,Σ 1⊗In,ψ1), with p ≤ n. Assume XX′ ∼Wp(Σ2,n).
Then, X ∼ Np,n(0,Σ 1 ⊗ In) and Σ 1 = Σ 2.

PROOF: The result follows immediately by taking ψ2(z) = exp
(− z

2

)
, in

Theorem 6.12.
The following theorem is an extension of Theorem 6.12.

Theorem 6.14. Let X ∼ Ep,n(0,Σ1 ⊗Φ ,ψ1) and Y ∼ Ep,n(0,Σ 2 ⊗Φ ,ψ2), with
Σ 1 > 0, Σ 2 ≥ 0, and Φ > 0. Assume XAX′ ≈ YAY′ where A is an n× n positive
semidefinite matrix, with rk(A) ≥ p. Suppose that all moments of X exist. Let

x = tr(X′Σ−1
1 XΦ−1) and define mk = E(xk), k = 1,2, . . .. If ∑∞k=1

(
1

m2k

) 1
2k

= ∞,

then X ≈ Y.

PROOF: Without loss of generality, we can assume that Φ = In. Indeed, if Φ �= In

then, define X1 =XΦ− 1
2 , Y1 =YΦ− 1

2 , and A1 =Φ
1
2 AΦ

1
2 . Then, X1 ∼Ep,n(0,Σ 1⊗

In,ψ1), Y1 ∼ Ep,n(0,Σ 2 ⊗ In,ψ2), rk(A1) = rk(A) ≥ p, XAX′ = X1A1X′
1, and

YAY′ = Y1A1Y′
1. So XAX′ ≈ YAY′ if and only if X1A1X′

1 ≈ Y1A1Y′
1 and X ≈ Y

if and only if X1 ≈ Y1.
Hence, we can assume Φ = In. From Theorem 1.8, there exists a p × p

nonsingular matrix H such that HΣ 1H′ = Ip and HΣ 2H′ = D, where D is diagonal.
Let Z1 = HX and Z2 = HY. Then, Z1 ∼ Ep,n(0,Ip ⊗ In,ψ1) and Z2 ∼ Ep,n(0,D⊗
In,ψ2). Moreover, Z1AZ′

1 = HXAX′H′ and Z2AZ′
2 = HYAY′H′. Since XAX′ ≈

YAY′, we have Z1AZ′
1 ≈ Z2AZ′

2. It suffices to prove that Z1 ≈ Z2, because if this
is true, then H−1Z1 ≈ H−1Z2 and therefore X ≈ Y. Since Z1AZ′

1 ≈ Z2AZ′
2, we get

P(Z1AZ′
1 = 0) = P(Z2AZ′

2 = 0).
If P(Z1 = 0) < 1 then, using Lemma 6.2, we can write Z1 = s1L1 where s1

and L1 are independent, s1 is a one-dimensional random variable with P(s1 = 0) =

P(Z1 = 0), P(s1 = 1) = 1 − P(Z1 = 0), L1 ∼ Ep,n

(
0,Ip ⊗ In,

ψ1−P(Z1=0)
1−P(Z1=0)

)
and

P(L1 = 0) = 0. Then, from Theorem 5.11, it follows that P(rk(L1AL′
1) = p) = 1.

Since, A is positive definite, this implies that

P(L1AL′
1 > 0) = 1. (6.42)

Consequently P(L1AL′
1 = 0) = 0. Moreover,

P(Z1AZ′
1 = 0) = P(s2

1L1AL′
1 = 0)

= P(s2
1 = 0)

= P(s1 = 0)

= P(Z1 = 0).

Hence, P(Z1AZ′
1 = 0)< 1.
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If P(Z2 = 0) < 1 then, using Lemma 6.2, we can write Z2 = s2L2 where s2

and L2 are independent, s2 is a one-dimensional random variable with P(s2 =

0) = P(Z2 = 0), P(s2 = 1) = 1−P(Z2 = 0), L2 ∼ Ep,n

(
0,D⊗ In,

ψ2−P(Z2=0)
1−P(Z2=0)

)

and P(L2 = 0) = 0. Then, from Theorem 5.10, it follows that P(rk(L2AL′
2) =

min(rk(D), p)) = 1. From P(Z2 = 0)< 1, it follows that rk(D)≥ 1. Hence,

P(rk(L2AL′
2)≥ 1) = 1.

Thus, P(L2AL′
2 = 0) = 0. Therefore,

P(Z2AZ′
2 = 0) = P(s2

2L2AL′
2 = 0)

= P(s2
2 = 0)

= P(s2 = 0)

= P(Z2 = 0).

Hence, P(Z2AZ′
2 = 0) < 1. Therefore, if either P(Z1 = 0) < 1 or P(Z2 = 0) < 1,

then we get P(Z1AZ′
1 = 0) = P(Z2AZ′

2 = 0) < 1 and hence, P(Zi = 0) < 1 must
hold for i = 1,2. However, then we get

P(Z1 = 0) = P(Z1AZ′
1 = 0)

= P(Z2AZ′
2 = 0)

= P(Z2 = 0)

and P(s1 = 0) = P(s2 = 0). Hence, s1 ≈ s2.
If either P(Z1 = 0) = 1 or P(Z2 = 0) = 1, then we must have P(Zi = 0) = 1 for

i = 1,2. Therefore, P(Z1 = 0) = P(Z2 = 0) is always true. Let P0 = P(Z1 = 0).
If P0 = 1, then Z1 = 0 = Z2 and the theorem is proved.
If P0 < 1, then we first prove that

L1AL′
1 ≈ L2AL′

2. (6.43)

If P0 = 0, then P(s1 = 1) = P(s2 = 1) = 1 and so,

L1AL′
1 ≈ s1L1AL′

1 ≈ Z1AZ′
1 ≈ Z2AZ′

2 ≈ s2L2AL′
2 ≈ L2AL′

2.

If 0 < P0 < 1, then for any Borel set B in IRp×n, we have

P(Z1AZ′
1 ∈ B) = P(s1L1AL′

1 ∈ B)

= P(s1L1AL′
1 ∈ B|s1 = 1)P(s1 = 1)

+ P(s1L1AL′
1 ∈ B|s1 = 0)P(s1 = 0)

= P(L1AL′
1 ∈ B)(1−P0)+ χB(0)P0.
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Therefore,

P(L1AL′
1 ∈ B) =

P(Z1AZ′
1 ∈ B)− χB(0)P0

1−P0
.

Similarly,

P(L2AL′
2 ∈ B) =

P(Z2AZ′
2 ∈ B)− χB(0)P0

1−P0
.

Since, Z1AZ′
1 ≈ Z2AZ′

2, we get P(Z1AZ′
1 ∈ B) = P(Z2AZ′

2 ∈ B) and so,
P(L1AL′

1 ∈ B) = P(L2AL′
2 ∈ B). Therefore, L1AL′

1 ≈ L2AL′
2 which establishes

(6.43).
Let r1U1 and r2D

1
2 U2 be the stochastic representations of L1 and L2. Here D is

diagonal. Then, we have L1AL′
1 ≈ r2

1U1AU′
1 and L2AL′

2 ≈ r2
2D

1
2 U2AU′

2D
1
2 . Hence,

r2
1U1AU′

1 ≈ r2
2D

1
2 U2AU′

2D
1
2 . (6.44)

Let W1 = U1AU′
1 and W2 = U2AU′

2. Since U1 ≈ U2, we have W1 ≈ W2. So, (6.44)
can be rewritten as

r2
1W1 ≈ r2

2D
1
2 W2D

1
2 . (6.45)

If p = 1, then D is a scalar; D = cI1. If p > 1, then from (6.42) it follows that the
diagonal elements of L1AL′

1 are positive, with probability one. From (6.43), it is
seen that P(L2AL′

2 > 0) = 1 and the diagonal elements of L2AL′
2 are also positive

with probability one. Using (6.45), we obtain

(r2
1W1)11

(r2
1W1)ii

≈

(
r2

2D
1
2 W2D

1
2

)

11(
r2

2D
1
2 W2D

1
2

)

ii

, i = 2, . . ., p ,

or equivalently,

(W1)11

(W1)ii
≈

(
D

1
2 W2D

1
2

)

11(
D

1
2 W2D

1
2

)

ii

. (6.46)

However D
1
2 is diagonal and hence,

(
D

1
2 W2D

1
2

)

j j
= (W2) j jd j j, j = 1, . . ., p.

Therefore, (6.46) becomes

(W1)11

(W1)ii
≈ (W2)11

(W2)ii

d11

dii
.
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Since W1 ≈ W2, we have (W1)11
(W1)ii

≈ (W2)11
(W2)ii

and so, (W2)11
(W2)ii

≈ (W2)11
(W2)ii

d11
dii

. Now

P
(
(W2)11
(W2)ii

> 0
)
= 1, which is possible only if d11

dii
= 1, i = 2, . . ., p. Consequently

we get D = cIp, where c is a scalar constant. From (6.45), we get

r2
1W1 ≈ r2

2cW2.

Taking trace on both sides, we have tr(r2
1W1)≈ tr(r2

2cW2), and hence,

r2
1tr(W1)≈ r2

2ctr(W2). (6.47)

Since, tr(U1U′
1) = 1, all the elements of U1 are less than 1. Therefore, there exists

a positive constant K such that tr(U1U′
1) < K. From Theorem 5.10, it follows that

P(rk(U1AU′
1) = p) = 1. Consequently U1AU′

1 > 0 with probability one. Therefore,
E((tr(W1))

k) is a finite positive number for k = 1,2, . . .. From (6.47), it follows that

E(r2k
1 )E((tr(W1))

k) = E((cr2
2)

k)E((tr(W2))
k), k = 1,2, . . ..

Hence,

E(r2k
1 ) = E((cr2

2)
k), k = 1,2, . . .. (6.48)

Since, Z1 ≈ s1L1 and L1 ≈ r1U1, we can write Z1 ≈ s1r1U1, where s1, r1, and U1

are independent.
Similarly, Z2 ≈ s2

√
cr2U2, with s2, r2, U2 independent. Since s1 ≈ s2, we have

E(s2k
1 ) = E(s2k

2 ) = (1−P0), k = 0,1,2, . . .. (6.49)

From (6.48) and (6.49), it follows that

E

((
1
c

s2
1r2

1

)k
)

= E
(
(s2

2r2
2)

k
)
.

Now,

x = tr(X′Σ−1
1 X)

= tr(Z′
1H′−1Σ−1

1 H−1Z1)

= tr(Z′
1Z1)

= s2
1r2

1tr(U′
1U1)

= s2
1r2

1.
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Thus, mk = E
(
(s2

1r2
1)

k
)
= E
(
(cs2

2r2
2)

k
)
. However, if mk is the kth moment of

a random variable and ∑∞k=1

(
1

m2k

) 1
2k

= ∞, then the distribution of the random

variable is uniquely determined (see Rao, 1973, p. 106). Thus we have s2
1r2

1 ≈ cs2
2r2

2.
Therefore, s1r1 ≈√

cs2r2, and hence Z1 ≈ Z2.



Part III
Estimation and Hypothesis Testing



Chapter 7
Estimation

7.1 Maximum Likelihood Estimators of the Parameters

Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ), with p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr(X−M)′Σ−1(X−M)Φ−1).

Let n ≥ p and assume h is known. We want to estimate M, Σ , and Φ based on a
single observation from X.

First, we show that, without imposing some restrictions on M, Σ , and Φ , indeed
the maximum likelihood estimators (MLE’s) do not exist.

Let a be a positive number for which h(a) �= 0, and Φ be any n× n positive

definite matrix. Let s be a positive number, and define k =
√

sa
p . Let V be a p× n

matrix such that V = k(Ip,0), M = X−VΦ
1
2 , and Σ = sIp. Then, f (X) can be

expressed as

f (X) =
1

|sp| n
2 |Φ | p

2
h(tr(Φ

1
2 V′Σ−1VΦ

1
2Φ−1))

=
1

s
pn
2 |Φ | p

2
h(tr(k2(sIp)

−1Ip))

=
1

s
pn
2 |Φ | p

2
h

(
k2

s
p

)

=
h(a)

s
pn
2 |Φ | p

2
.
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Therefore, if s → 0, then f (X)→ ∞. Hence, the MLE’s do not exist. This example
shows that even if Φ is known, there are no MLE’s for M and Σ . Thus, we have to
restrict the parameter space, in order to get the MLE’s. The following lemma will
be needed to obtain the estimation results.

Lemma 7.1. Let X be a p×n matrix, μ a p-dimensional vector, v an n-dimensional
vector and A an n×n symmetric matrix, such that v′Av �= 0. Then,

(X−μv′)A(X−μv′)′ = X
(

A− Avv′A
v′Av

)
X′

+ (v′Av)
(

X
Av

v′Av
−μ
)(

X
Av

v′Av
−μ
)′

. (7.1)

PROOF: The right hand side of (7.1) equals

XAX′ −X
Avv′A
v′Av

X′

+ (v′Av)
(

X
Avv′A
(v′Av)2 X′ −X

Av
v′Av

μ ′ −μ v′A
v′Av

+μμ ′
)′

= XAX′ −XAvμ ′ −μv′AX′+(v′Av)μμ ′

= (X−μv′)A(X−μv′)′,

which is the left hand side of (7.1).

Now denote by xi the ith column of the matrix X, then

n

∑
i=1

(xi −μ)(xi −μ)′ = (X−μe′n)(X−μe′n)
′

and since x̄ = 1
n ∑

n
i=1 xi =

1
n Xen, we have

n

∑
i=1

(xi − x̄)(xi − x̄)′ = (X− x̄e′n)(X− x̄e′n)
′

=

(
X− 1

n
Xene′n

)(
X− 1

n
Xene′n

)′

= X
(

In − 1
n

ene′n

)(
In − 1

n
ene′n

)′
X′

= X
(

In − 1
n

ene′n

)
X′.
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Choosing v = en, and A = In, we have v′Av = n, A − Avv′A
v′Av = In − 1

n ene′n, and
X Av

v′Av = 1
n en. Then, from Lemma 7.1, we get

n

∑
i=1

(xi −μ)(xi −μ)′ =
n

∑
i=1

(xi − x̄)(xi − x̄)′+n(x̄−μ)(x̄−μ)′,

which is a well-known identity.

Theorem 7.1. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ), with p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr((X−M)′Σ−1(X−M)Φ−1)),

where h(z) is monotone decreasing on [0,∞). Suppose h, Σ , and Φ are known and
we want to find the MLE of M (say M̂), based on a single observation X. Then,

(a) M̂ = X,
(b) If M = μv′, where μ is p-dimensional, v is n-dimensional vector and v �= 0 is

known, the MLE of μ is μ̂ = X Φ−1
v

v′Φ−1
v
, and

(c) If M is of the form M = μe′n, the MLE of μ is μ̂ = X Φ−1
en

e′nΦ−1
en

.

PROOF:

(a) It holds that

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr((X−M)′Σ−1(X−M)Φ−1))

=
1

|Σ | n
2 |Φ | p

2
h

(
tr

((
Σ− 1

2 (X−M)Φ− 1
2

)′(
Σ− 1

2 (X−M)Φ− 1
2

)))
.

Let y = vec
(
Σ− 1

2 (X−M)Φ− 1
2

)′
. Then, we have

tr

((
Σ− 1

2 (X−M)Φ− 1
2

)′(
Σ− 1

2 (X−M)Φ− 1
2

))
= y′y.

Since h is monotone decreasing in [0,∞) the last expression attains its minimum
when y′y is minimum. Now y′y ≥ 0 and y′y = 0 iff y = 0, therefore f (X) is
minimized for y = 0. This means that X = M. Hence, M̂ = X.

(b) We have

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr(Σ−1(X−μv′)Φ−1(X−μv′)′)) .
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Using Lemma 7.1, we can write

f (X) =
1

|Σ | n
2 |Φ | p

2
h

(
tr

(
Σ−1
[

X
(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
X′

+ (v′Φ−1v)
(

X
Φ−1v

v′Φ−1v
−μ
)(

X
Φ−1v

v′Φ−1v
−μ
)′]))

=
1

|Σ | n
2 |Φ | p

2
h

(
tr

(
Σ−1X

(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
X′
)

+ (v′Φ−1v)tr

((
X
Φ−1v

v′Φ−1v
−μ
)′
Σ−1
(

X
Φ−1v

v′Φ−1v
−μ
)))

.

Again, since h is monotone decreasing in [0,∞) the last expression attains

its minimum when tr

((
X Φ−1

v
v′Φ−1

v
−μ
)′
Σ−1
(

X Φ−1
v

v′Φ−1
v
−μ
))

is minimum.

Writing y = vec
(
Σ− 1

2

(
X Φ−1

v
v′Φ−1

v
−μ
))′

, we have to minimize yy′. Therefore,

minimum is attained at y = 0. So we must have X Φ−1
v

v′Φ−1
v
= μ . Hence,

μ̂ = X
Φ−1v

v′Φ−1v
.

(c) This is a special case of (b), with v = en.

The next result is based on a theorem due to Anderson, Fang and Hsu (1986).

Theorem 7.2. Assume we have an observation X from the distribution Ep,n(M,Σ⊗
Φ ,ψ), where (M,Σ ⊗Φ) ∈Ω ⊂ IRp×n × IRpn×pn. Suppose Ω has the property that
if (Q,S) ∈ Ω (Q ∈ IRp×n, S ∈ IRpn×pn), then (Q,cS) ∈ Ω for any c > 0 scalar.
Moreover, let X have the p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr((X−M)′Σ−1(X−M)Φ−1)) ,

where l(z) = z
pn
2 h(z), z ≥ 0 has a finite maximum at z = zh > 0. Furthermore,

suppose that under the assumption that X has the distribution Np,n(M,Σ ⊗Φ),
(M,Σ ⊗Φ) ∈ Ω , the MLE’s of M and Σ ⊗Φ are M∗ and (Σ ⊗Φ)∗, which are
unique and P((Σ⊗Φ)∗ > 0)= 1. Then, under the condition X∼Ep,n(M,Σ⊗Φ ,ψ),
(M,Σ ⊗Φ) ∈ Ω , the MLE’s of M and Σ ⊗Φ are M̂ = M∗ and ̂(Σ ⊗Φ) =
pn
zh
(Σ ⊗Φ)∗ and the maximum of the likelihood is

| ̂(Σ ⊗Φ)|− 1
2 h(zh).
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PROOF: Define

Σ 1 =
Σ

|Σ | 1
p

, Φ1 =
Φ

|Φ | 1
n

(7.2)

and z = tr((X−M)′Σ−1(X−M)Φ−1). Then, we have

z =
tr((X−M)′Σ−1

1 (X−M)Φ−1
1 )

|Σ | 1
p |Φ | 1

n

. (7.3)

Therefore, we can write

f (X) =
1

|Σ | n
2 |Φ | p

2
h(z)

= z
pn
2 h(z)(tr((X−M)′Σ−1

1 (X−M)Φ−1
1 ))−

pn
2 . (7.4)

Hence, maximizing f (X) is equivalent to maximizing l(z) and (tr((X −
M)′Σ−1

1 (X − M)Φ−1
1 ))−

pn
2 . If X ∼ Np,n(M,Σ ⊗ Φ), then h(z) = (2π)−

pn
2 e−

z
2 ,

and

l(z) = (2π)−
pn
2 z

pn
2 e−

z
2 .

Therefore,

dl(z)
dz

= (2π)−
pn
2

(
pn
2

z
pn
2 −1e−

z
2 + z

pn
2

(
−1

2

)
e−

z
2

)

=
1
2
(2π)−

pn
2 z

pn
2 −1e−

z
2 (pn− z).

Consequently, l(z) attains its maximum at z = pn. From the conditions of the
theorem it follows that under normality, (tr((X − M)′Σ−1

1 (X − M)Φ−1
1 ))−

pn
2 is

maximized for M = M∗ and Σ 1 ⊗Φ1 = (Σ 1 ⊗Φ1)
∗ = (Σ⊗Φ )∗

|(Σ⊗Φ )∗|
1
pn

. Since, (tr((X−
M)′Σ−1

1 (X−M)Φ−1
1 ))−

pn
2 does not depend on h, in the case of X ∼ Ep,n(M,Σ ⊗

Φ ,ψ), it also attains its maximum for M = M̂ = M∗ and Σ 1 ⊗Φ1 = ̂(Σ 1 ⊗Φ1) =
(Σ 1 ⊗Φ1)

∗. On the other hand, l(z) is maximized for z = zh. Then, using (7.2) and
(7.3) we get

̂(Σ ⊗Φ) = | ̂(Σ ⊗Φ)| 1
pn ̂(Σ 1 ⊗Φ1)

= |Σ̂ | 1
p |Φ̂ | 1

n ̂(Σ 1 ⊗Φ1)
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=
tr((X−M)′Σ̂−1

1 (X−M)Φ̂−1
1 )

zh

̂(Σ 1 ⊗Φ1)

=
pn
zh

tr((X−M∗)′Σ ∗−1
1 (X−M∗)Φ∗−1

1 )

pn
(Σ 1 ⊗Φ1)

∗

=
pn
zh

(Σ ⊗Φ)∗.

The maximum of the likelihood is

1

| ̂(Σ ⊗Φ)| 1
2

h(zh) = | ̂(Σ ⊗Φ)|− 1
2 h(zh).

Remark 7.1. Assume X ∼ Np,n(M,Σ ⊗Φ). Then

h(z) = (2π)−
pn
2 e−

z
2 , l(z) =

( z
2π

) pn
2

e−
z
2 ,

and l(z) attains its maximum at zh = pn. Moreover, h(zh) = (2πe)−
pn
2 .

It is natural to ask whether zh, as defined in Theorem 7.2, exists in a large class of
m.e.c. distributions. The following lemma, essentially due to Anderson, Fang, and
Hsu (1986), gives a sufficient condition for the existence of zh.

Lemma 7.2. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) have the p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr((X−M)′Σ−1(X−M)Φ−1)).

Assume h(z), (z ≥ 0) is continuous and monotone decreasing, if z is sufficiently
large. Then, there exists zh > 0, such that l(z) = z

pn
2 h(z) attains its maximum at

z = zh.

PROOF: From Theorem 2.16, r = (tr((X−M)′Σ−1(X−M)Φ−1))
1
2 has the p.d.f.

p1(r) =
2π

pn
2

Γ
( pn

2

) rpn−1h(r2), r ≥ 0.

Let y = r2. Then, J(r → y) = 1
2r , and hence the p.d.f. of y is

p2(y) =
π

pn
2

Γ
( pn

2

)y
pn
2 −1h(y), y ≥ 0.

Consequently,
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∫ ∞

0

π
pn
2

Γ
( pn

2

)y
pn
2 −1h(y)dy = 1.

Therefore,
∫ ∞

z y
pn
2 −1h(y)dy → 0 as z → ∞.

Now, let t = z
2 . Then we prove that for sufficiently large z, g(z) ≤

c
∫ ∞

t y
pn
2 −1h(y)dy, where c is a constant.

If np > 1 then

l(z) = l(2t)

= 2
pn
2 t

pn
2 h(2t)

= 2
pn
2 t

pn
2 −1th(2t)

≤ 2
pn
2 t

pn
2 −1
∫ 2t

t
h(y)dy

≤ 2
pn
2

∫ 2t

t
y

pn
2 −1h(y)dy

≤ 2
pn
2

∫ ∞

t
y

pn
2 −1h(y)dy.

If np = 1, then

l(z) = l(2t)

= 2
1
2 t

1
2 h(2t)

= 2
1
2 t

1
2−1th(2t)

≤ 2
1
2 t

1
2−1
∫ 2t

t
h(y)dy

= 2(2t)
1
2−1
∫ 2t

t
h(y)dy

≤ 2
∫ 2t

t
y

1
2−1h(y)dy

≤ 2
∫ ∞

t
y

1
2−1h(y)dy.

However,
∫ ∞

t y
pn
2 −1h(y)dy → 0 as t → ∞, thus l(z)→ 0 as z → ∞. Moreover, l(0) =

0h(0) = 0. Since, l(z) is continuous, nonnegative and limz→0 l(z) = limz→∞ l(z) = 0,
l(z) attains its minimum at a positive number zh.

For the next estimation result we need the following lemma, given in Anderson
(2003, p. 69).
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Lemma 7.3. Let A be a p× p positive definite matrix and define a function g on
the set of p× p positive definite matrices as

g(B) =−nlog|B|− tr(B−1A).

Then, g(B) attains its maximum at B = A
n and its maximum value is

g

(
A
n

)
= pn(logn−1)−nlog|A|.

PROOF: We can write

g(B) = −nlog|B|− tr(B−1A)

= n(log|A|− log|B|)− tr(B−1A)−nlog|A|
= nlog|B−1A|− tr(B−1A)−nlog|A|.

Now, g(B) is maximized for the same B as h(B)= nlog|B−1A|−tr(B−1A). We have

h(B) = nlog
∣∣∣B−1A

1
2 A

1
2

∣∣∣− tr
(

B−1A
1
2 A

1
2

)

= nlog
∣∣∣A

1
2 B−1A

1
2

∣∣∣− tr
(

A
1
2 B−1A

1
2

)
.

Now, from Theorem 1.1, it follows that A
1
2 B−1A

1
2 is also positive definite and from

Theorem 1.7, it can be written as

A
1
2 B−1A

1
2 = GDG′,

where G is p× p orthogonal and D is p× p diagonal with positive diagonal elements
λ1,λ2, . . .,λp. We obtain

h(B) = nlog

(
p

∏
i=1
λi

)

−
p

∑
i=1
λi

=
p

∑
i=1

(nlogλi −λi).

Now, ∂h(B)
∂λi

= n
λi
− 1. Thus from ∂h(B)

∂λi
= 0, we get λi = n, i = 1,2, . . ., p. Hence,

h(B) attains its maximum when D = nIp and so

A
1
2 B−1A

1
2 = GnIpG′ = nIp.
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Therefore, B−1 = nA−1, and then B = A
n . Moreover,

g

(
A
n

)
= −nlog

(∣∣
∣∣
A
n

∣∣
∣∣

)
− tr(nIp)

= pn(logn−1)−nlog|A|.

Theorem 7.3. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ) have the p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr((X−M)′Σ−1(X−M)Φ−1)),

where n ≥ p and the function l(z) = z
pn
2 h(z), z ∈ [0,∞), attains its maximum for a

positive z (say zh). Suppose h, M, and Φ are known, and we want to find the MLE
of Σ (say Σ̂ ), based on a single observation X. Then,

Σ̂ =
p
zh
(X−M)Φ−1(X−M)′.

PROOF: Step 1. First, we prove the result for normal distribution; that is, when
X ∼ Np,n(M,Σ ⊗Φ). Here, h(z) = exp

(− z
2

)
, and

f (X) =
1

(2π)
pn
2 |Σ | n

2 |Φ | p
2

etr

{
− (Σ−1(X−M)Φ−1(X−M)′)

2

}
.

Taking logarithm of both sides of the last equation and applying Lemma 7.3, we
obtain that f (X) attains its maximum in Σ , if

Σ̂ =
1
n
(X−M)Φ−1(X−M)′.

Step 2. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ). Since we proved, in Step 1, that for the
normal case, the MLE of Σ is 1

n (X−M)Φ−1(X−M)′, by using Theorem 7.2 we get

Σ̂ =
pn
zh

1
n
(X−M)Φ−1(X−M)′ =

p
zh
(X−M)Φ−1(X−M)′ .

It follows, from Theorem 5.11, that rk((X − M)Φ−1(X − M)′) = p with
probability one. Hence, P(Σ̂ > 0) = 1.

The next result is an extension of a result of Anderson, Fang, and Hsu (1986).
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Theorem 7.4. Let X ∼ Ep,n(μv′,Σ ⊗Φ ,ψ) have the p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr((X−μv′)′Σ−1(X−μv′)Φ−1)),

where n > p, μ is a p-dimensional vector, v is an n-dimensional nonzero vector, and
the function l(z) = z

pn
2 h(z), z ∈ [0,∞), attains its maximum for a positive z (say zh).

Suppose h, v, and Φ are known and we want to find the MLEs of μ and Σ (say μ̂
and Σ̂ ) based on a single observation X. Then

μ̂ = X
Φ−1v

v′Φ−1v
and Σ̂ =

p
zh

X
(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
X′.

In the special case, when v = en, we have

μ̂ = X
Φ−1en

e′nΦ−1en
and Σ̂ =

p
zh

X
(
Φ−1 − Φ

−1ene′nΦ−1

e′nΦ−1en

)
X′.

PROOF: Step 1. First we prove the result for normal distribution; that is, when
X ∼ Np,n(μv′,Σ ⊗Φ). Here, h(z) = exp

(− z
2

)
.

Using Lemma 7.1, the p.d.f. of X can be written as

f (X) =
1

(2π)
pn
2 |Σ | n

2 |Φ | p
2

exp

{
−1

2

(
trΣ−1

[
X
(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
X′

+ (v′Φ−1v)
(

X
Φ−1v

v′Φ−1v
−μ
)(

X
Φ−1v

v′Φ−1v
−μ
)′])}

.

Minimizing the expression on the right-hand side, we get

μ̂ = X
Φ−1v

v′Φ−1v
and Σ̂ =

X
(
Φ−1 − Φ−1

vv′Φ−1

v′Φ−1
v

)
X′

n
.

As noted in Remark 7.1, l(z) is maximized for zh = pn. Thus,

Σ̂ =
p
zh

X
(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
X′.

Step 2. Let X∼Ep,n(μv′,Σ⊗Φ ,ψ). We found the MLE’s of μ and Σ for the normal
case in Step 1. Now using Theorem 7.2, we get

μ̂ = X
Φ−1v

v′Φ−1v
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and

Σ̂ =
pn
zh

X
(
Φ−1 − Φ−1

vv′Φ−1

v′Φ−1
v

)
X′

n
=

p
zh

X
(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
X′.

From Theorem 5.11 it follows that with probability one,

rk

(
X
(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
X′
)
= min

(
rk

(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
, p

)
.

Since,Φ−1−Φ−1
vv′Φ−1

v′Φ−1
v

=Φ− 1
2

(
In − Φ

− 1
2 vv′Φ− 1

2

v′Φ−1
v

)
Φ− 1

2 andΦ is of full rank,

we have

rk

(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
= rk

(

In − Φ
− 1

2 vv′Φ− 1
2

v′Φ−1v

)

≥ rk(In)− rk

(
Φ− 1

2 vv′Φ− 1
2

v′Φ−1v

)

= n− rk

(
v′Φ−1v

v′Φ−1v

)

= n−1

where we used part (ii) of Theorem 1.3. Hence, P(Σ̂ > 0) = 1.

7.2 Properties of Estimators

Now, we derive the distributions of the estimators of μ and Σ . These theorems are
based on Anderson and Fang (1982a).

Theorem 7.5. X ∼ Ep,n(μv′,Σ ⊗Φ ,ψ) have the p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr((X−μv′)′Σ−1(X−μv′)Φ−1)),

where n > p, μ is a p-dimensional vector and v is an n-dimensional nonzero vector,
v �= 0. Let

μ̂ = X
Φ−1v

v′Φ−1v
and A = X

(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
X′.
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(a) Then, the joint density of μ̂ and A is

p(μ̂,A) =
(v′Φ−1v)

p
2 |A| n−p

2 −1π
p(n−1)

2

Γp
(

n−1
2

) |Σ | n
2

h(v′Φ−1v(μ̂−μ)′Σ−1(μ̂−μ)

+ tr(Σ−1A)). (7.5)

(b) μ̂ ∼ Ep

(
μ, 1

v′Φ−1
v
Σ ,ψ
)

and μ̂ has the p.d.f.

p1(μ̂)=
2(v′Φ−1v)

p
2 π

p(n−1)
2

Γ
(

p(n−1)
2

)
|Σ | 1

2

∫ ∞

0
rp(n−1)−1h(r2+v′Φ−1v(μ̂−μ)′Σ−1(μ̂−μ))dr.

(7.6)
(c) A ∼ Gp,1

(
Σ , n−1

2 ,ψ
)

and its p.d.f. is given by

p2(A) =
2π

pn
2 |A| n−p

2 −1

Γ
( p

2

)
Γp
(

n−1
2

) |Σ | n−1
2

∫ ∞

0
rp−1h(r2 + tr(Σ−1A))dr. (7.7)

PROOF:

(a) First, we derive the result for the case Φ = In.
Let G ∈ O(n), whose first column is v√

v′v and let us use the notation G =
(

v√
v′v ,G1

)
. Since G is orthogonal, we have GG′ = In; that is, v√

v′v
v′√
v′v +

G1G′
1 = In. Thus,

G1G′
1 = In − vv′

v′v
. (7.8)

Define Y = XG. Then,

Y ∼ Ep,n(μv′G,Σ ⊗ In,ψ). (7.9)

Partition Y as Y = (y1,Y2), where y1 is a p-dimensional vector. Since, G is
orthogonal, v′G1 = 0. Therefore,

v′G = v′
(

v√
v′v

,G1

)
= (

√
v′v,0).

Now, (7.9) can be written as

(y1,Y2)∼ Ep,n((
√

v′vμ,0),Σ ⊗ In,ψ). (7.10)
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Moreover, (y1,Y2) = X
(

v√
v′v ,G1

)
=
(

X v√
v′v ,XG1

)
, hence μ̂ = y1√

v′v and

using (7.8) we get A = Y2Y′
2.

Now, the density of Y; that is, the joint density of y1 and Y2 is

p3(y1,Y2)=
1

|Σ | n
2

h((y1−
√

v′vμ)′Σ−1(y1−
√

v′vμ)+tr(Y′
2Σ−1Y2))

=
1

|Σ | n
2

h((y1−
√

v′vμ)′Σ−1(y1−
√

v′vμ)+tr(Σ−1Y2Y′
2)).(7.11)

Using Lemma 5.2, we can write the joint density of y1 and A as

p4(y1,A) =
π

p(n−1)
2

Γp
(

n−1
2

) |A| n−1−p−1
2

1

|Σ | n
2

× h((y1 −
√

v′vμ)′Σ−1(y1 −
√

v′vμ)+ tr(Σ−1A)). (7.12)

We have y1 =
√

v′vμ̂ . Hence, J(y1 → μ̂) = (v′v)
p
2 . Therefore, the joint p.d.f. of

μ̂ and A is

p(μ̂,A) =
(v′v)

p
2 |A| n−p

2 −1π
p(n−1)

2

Γp
(

n−1
2

) |Σ | n
2

h(v′v(μ̂−μ)′Σ−1(μ̂−μ)+ tr(Σ−1A)).

(7.13)
Now, for Φ �= In, define X∗ = XΦ− 1

2 . Then, X∗ ∼ Ep,n(μv∗′,Σ ⊗ In,ψ), with

v∗ =Φ− 1
2 v. Thus, we get v∗′v∗ = v′Φ−1v,

μ̂ = X∗ v∗

v∗′v∗
and A = X∗

(
In − v∗v∗′

v∗′v∗

)
X∗′.

So, using the first part of the proof, from (7.13), we obtain (7.5).

(b) Since, μ̂ = X Φ−1
v

v′Φ−1
v
, we get

μ̂ ∼ Ep

(
μ

v′Φ−1v

v′Φ−1v
,Σ ⊗ v′Φ−1ΦΦ−1v

(v′Φ−1v)2
,ψ
)
= Ep

(
μ,

1

v′Φ−1v
Σ ,ψ
)
.

Now, assume Φ = In. Then, from (7.11), we derive the p.d.f. of y1 =
√

v′vμ̂ , as

p5(y1) =
∫

IRp×(n−1)
p3(y1,Y2)dY2. (7.14)

Let W = Σ− 1
2 Y2. Then, J(Y2 → W) = |Σ | n−1

2 , and from (7.11) and (7.14) we
get



186 7 Estimation

p5(y1) =
1

|Σ | n
2
|Σ | n−1

2

∫

IRp×(n−1)
h((y1 −

√
v′vμ)′Σ−1(y1 −

√
v′vμ)

+ tr(WW′))dW. (7.15)

Writing w = vec(W′), (7.15) becomes

p5(y1) =
1

|Σ | 1
2

∫

IRp(n−1)
h((y1 −

√
v′vμ)′Σ−1(y1 −

√
v′vμ)+w′w)dw.

Using Lemma 2.1, we get

p5(y1) =
1

|Σ | 1
2

2π
p(n−1)

2

Γ
(

p(n−1)
2

)
∫ ∞

0
rp(n−1)−1h(r2 +(y1 −

√
v′vμ)′

× Σ−1(y1 −
√

v′vμ))dr.

Since μ̂ = (v′v)−
1
2 y1 and J(y1 → μ̂) = (v′v)

p
2 , the p.d.f. of μ̂ is given by

p1(μ̂) =
2(v′v)

p
2 π

p(n−1)
2

Γ
(

p(n−1)
2

)
|Σ | 1

2

∫ ∞

0
rp(n−1)−1h(r2 +v′v(μ̂−μ)′Σ−1(μ̂−μ))dr.

(7.16)
For Φ �= In, define X∗ = XΦ− 1

2 . Then, X∗ ∼ Ep,n(μv∗′,Σ ⊗ In,ψ), with v∗ =
Φ− 1

2 v. Thus, we get v∗′v∗ = v′Φ−1v and μ̂ =X∗ v∗
v∗′v∗ and from (7.16) we obtain

(7.6).
(c) First, assume Φ = In. Then from (7.10) we get

Y2 ∼ Ep,n−1(0,Σ ⊗ In−1,ψ).

Hence, by Definition 5.1, A = Y2Y′
2 ∼ Gp

(
Σ , n−1

2 ,ψ
)
, and its p.d.f., using

(7.12), is given by

p2(A) =
∫

IRp
p4(y1,A)dy1. (7.17)

Let w = Σ− 1
2 (y1 −

√
v′vμ). Then, J(y1 → μ̂) = |Σ | 1

2 , and using (7.12) and
(7.17) we can write

p2(A) =
π

p(n−1)
2

Γp
(

n−1
2

) |Σ | n
2
|Σ | 1

2 |A| n−p
2 −1

∫

IRp
h(w′w+ tr(Σ−1A))dw.

Using polar coordinates, we get
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p2(A) =
π

p(n−1)
2

Γp
(

n−1
2

) |Σ | n−1
2

|A| n−p
2 −1 2π

p
2

Γ
( p

2

)
∫ ∞

0
rp−1h(r2 + tr(Σ−1A))dr

=
2π

pn
2 |A| n−p

2 −1

Γ
( p

2

)
Γp
(

n−1
2

) |Σ | n−1
2

∫ ∞

0
rp−1h(r2 + tr(Σ−1A))dr.

For Φ �= In, define X∗ = XΦ− 1
2 . Then, X∗ ∼ Ep,n(μv∗′,Σ ⊗ In,ψ), with

v∗ = Φ− 1
2 v. Since, A = X∗

(
In − v∗v∗′

v∗′v∗
)

X∗′ and A does not depend on v∗, it

has the same distribution under the m.e.c. distribution with Φ = In as under the
m.e.c. distribution with Φ �= In.

Theorem 7.6. Let X ∼ Ep,n(0,Σ ⊗Φ ,ψ) have the p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr(X′Σ−1XΦ−1)),

where n ≥ p. Let B = XΦ−1X′, then B ∼ Gp,1
(
Σ , n

2 ,ψ
)
, and the p.d.f. of B is

p(B) =
π

pn
2 |B| n−p−1

2

Γp
(

n
2

) |Σ | n
2

h(tr(Σ−1W)).

PROOF: First, assume Φ = In. Then, by Definition 5.1, we have B = XX′ ∼
Gp,1
(
Σ , n

2 ,ψ
)
. Moreover, we have f (X) = 1

|Σ | n
2

h(tr(Σ−1XX′)). Using Lemma 5.1,

we obtain the p.d.f. of B as

p(B) =
π

pn
2

Γp
(

n
2

) |Σ | n
2
|B| n−p−1

2 h(tr(Σ−1B)). (7.18)

ForΦ �= In, define X∗ =XΦ− 1
2 . Then, X∗ ∼ Ep,n(0,Σ⊗In,ψ), with v∗ =Φ− 1

2 v.
Since, B = X∗X∗′ and the distribution of B is the same under the m.e.c. distribution
with Φ = In as under the m.e.c. distribution with Φ �= In.

Before we derive the joint density of the characteristic roots of the estimators of
Σ , we give a lemma taken from Anderson (2003).

Lemma 7.4. Let A be a symmetric random matrix. Let λ1 > λ2 > .. . > λp be
the characteristic roots of A, and assume that the density of A is a function of
(λ1,λ2, . . .,λp), i.e. f (A) = g(λ1,λ2, . . .,λp). Then, the p.d.f. of (λ1,λ2, . . .,λp) is

p(λ1,λ2, . . .,λp) =
π

p2
2 g(λ1,λ2, . . .,λp)∏i< j(λi −λ j)

Γp
( p

2

) .

PROOF: See Anderson (2003), p. 538.
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Theorem 7.7. Let X ∼ Ep,n(μv′,Ip ⊗Φ ,ψ) have the p.d.f.

f (X) =
1

|Φ | p
2

h(tr((X−μv′)′(X−μv′)Φ−1)),

where n > p, μ is a p-dimensional vector and v is an n-dimensional nonzero vector,

v �= 0. Let A = X
(
Φ−1 − Φ−1

vv′Φ−1

v′Φ−1
v

)
X′.

Further let λ1 > λ2 > .. . > λp be the characteristic roots of A. Then, the p.d.f.
of (λ1,λ2, . . .,λp) is

p(λ1,λ2, . . .,λp) =
2π

p(p+n)
2

Γ
( p

2

)
Γp
( p

2

)
Γp
(

n−1
2

)

(
p

∏
i=1
λi

) n−p
2 −1

×∏
i< j

(λi −λ j)
∫ ∞

0
rp−1h

(

r2 +
p

∑
i=1
λi

)

dr. (7.19)

PROOF: From (7.7), the p.d.f. of A is

p2(A) =
2π

pn
2

Γ
( p

2

)
Γp
(

n−1
2

)

(
p

∏
i=1
λi

) n−p
2 −1 ∫ ∞

0
rp−1h

(

r2 +
p

∑
i=1
λi

)

dr

and then, using Lemma 7.4, we obtain (7.19).

Theorem 7.8. Let X ∼ Ep,n(0,Ip ⊗Φ ,ψ) have the p.d.f.

f (X) =
1

|Φ | p
2

h(tr(X′XΦ−1)),

where n ≥ p. Let B = XΦ−1X′. Further let λ1 > λ2 > .. . > λp be the characteristic
roots of B. Then, the p.d.f. of (λ1,λ2, . . .,λp) is

p(λ1,λ2, . . .,λp) =
π

p(p+n)
2

Γp
( p

2

)
Γp
(

n
2

)

(
p

∏
i=1
λi

) n−p−1
2

∏
i< j

(λi −λ j)h

(
p

∑
i=1
λi

)

. (7.20)

PROOF: From (7.18), the p.d.f. of B is

p2(A) =
π

pn
2
(
∏p

i=1λi
) n−p−1

2

Γp
(

n−1
2

) h

(
p

∑
i=1
λi

)

and using Lemma 7.4, we obtain (7.20).
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Next, we want to give a representation of the generalized variance of the
estimator of Σ , for which we need the following result.

Lemma 7.5. Let X ∼ Np,n(0,Ip ⊗ In), with n ≥ p. Then, there exists a lower
triangular random matrix T (that is, ti j = 0 if i < j), such that

t2
ii ∼ χ2

n−i+1, i = 1, . . ., p, (7.21)

ti j ∼ N(0,1), i > j, (7.22)

ti j, i ≥ j are independent, (7.23)

and XX′ ≈ TT′.

PROOF: See Anderson (2003), p. 253.

Theorem 7.9. Let X ∼ Ep,n(0,Σ ⊗Φ ,ψ) have the p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr(X′Σ−1XΦ−1)),

where n ≥ p. Let X ≈ rΣ
1
2 UΦ

1
2 be the stochastic representation of X. Let B =

XΦ−1X′, then

|B| ≈ r2p|Σ | ∏p
i=1 yi(

∑p+1
i=1 yi

)p , (7.24)

where

yi ∼ χ2
n−i+1 , i = 1, . . ., p, (7.25)

yp+1 ∼ χ2
p(p−1)

2

, and (7.26)

yi, i = 1, . . ., p+1 are independent. (7.27)

PROOF: It follows, from Theorem 7.6, that the distribution of B does not depend on
Φ . So, we can assume Φ = In.

Let V ∼ Np,n(0,Ip⊗ In). Then, from Theorem 2.15, it follows that U ≈ V√
tr(VV′)

.

Assume X and V are independent. Then, we get

X ≈ rΣ
1
2

V
√

tr(VV′)
,

and hence,

|B|= |XX′| ≈
∣∣
∣∣r

2Σ
1
2

VV′

tr(VV′)
Σ

1
2

∣∣
∣∣= r2p|Σ | |VV′|

(tr(VV′))p .
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From Lemma 7.5, we can find a lower triangular matrix T, such that

VV′ ≈ TT′,

and T satisfies (7.21), (7.22) and (7.23). Then,

|VV′| ≈
p

∏
i=1

t2
ii

and

tr(VV′)≈
p

∑
i=1

t2
iit +∑

i> j
ti j.

Define yi = t2
ii , i = 1, . . ., p and yp+1 = ∑i> j ti j. Then, (7.24)–(7.27) are satisfied.

Theorems 7.8 and 7.9 are adapted from Anderson and Fang (1982b). Now, we
study the question of unbiasedness of the estimators of μ and Σ .

Theorem 7.10. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ).

(a) Then, M̂ = X is an unbiased estimator of M.
(b) If M, Φ , and ψ are known then

Σ̂ 1 =
−1

2nψ ′(0)
(X−M)Φ−1(X−M)′

is an unbiased estimator of Σ .
(c) If M = μv′, μ is a p-dimensional vector, v is an n-dimensional nonzero vector,

v �= 0, v and Φ are known, then μ̂ = X Φ−1
v

v′Φ−1
v

is an unbiased estimator of μ .

Moreover, if ψ is also known, then

Σ̂ 2 =
−1

2(n−1)ψ ′(0)
X
(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
X′

is an unbiased estimator of Σ .

We assume that the first-order moment of X exists when we state the unbiasedness
of the estimators of μ and that the second-order moment exists when we consider
the unbiasedness of the estimators of Σ .

PROOF:

(a) E(M̂) = E(X) = M.

(b) Let Y = (X−M)Φ− 1
2 . Then, Y ∼ Ep,n(0,Σ ⊗ In,ψ). So Σ̂ 1 =

−1
2nψ ′(0)YY′ and

it follows, from Theorem 3.18 that

E(Σ̂ 1) =− −1
2nψ ′(0)

(−2ψ ′(0))Σ tr(In) = Σ .
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(c) Now we have

E(μ̂) = E

(
X
Φ−1v

v′Φ−1v

)
= X

μv′Φ−1v

v′Φ−1v
= μ.

From Theorem 3.18, we obtain

E(Σ̂ 2) = − −1
2(n−1)ψ ′(0)

(−2ψ ′(0))Σ tr

((
Φ−1−Φ

−1vv′Φ−1

v′Φ−1v

)
Φ
)

+ μv′
(
Φ−1−Φ

−1vv′Φ−1

v′Φ−1v

)
vμ ′

=
1

n−1
Σ
(

tr(In)−tr

(
Φ−1vv′

v′Φ−1v

))
+μ
(

v′Φ−1v−v′Φ−1vv′Φ−1v

v′Φ−1v

)
μ ′

and since tr
(
Φ−1

vv′

v′Φ−1
v

)
= tr
(

v′Φ−1
v

v′Φ−1
v

)
= v′Φ−1

v
v′Φ−1

v
= 1, we get

E(Σ̂ 2) =
1

n−1
Σ(n−1)+0 = Σ .

The next theorem focuses on the sufficiency of the estimators.

Theorem 7.11. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ), with the p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr((X−M)′Σ−1(X−M)Φ−1)).

and assume Φ is known.

(a) If Σ is known, then M̂ = X is sufficient for M.
(b) If M is known, then A = (X−M)Φ−1(X−M)′ is sufficient for Σ .
(c) If M = μv′, where μ is a p-dimensional vector, and v �= 0 is an n-dimensional

known vector, then (μ̂,B) is sufficient for (μ,Σ), where

μ̂ = X
Φ−1v

v′Φ−1v
and B = X

(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
X′.

PROOF:

(a) Trivial.
(b) This statement follows, if we write

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr(Σ−1[(X−M)Φ−1(X−M)′]))

=
1

|Σ | n
2 |Φ | p

2
h(tr(Σ−1A)).
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(c) Using Lemma 7.1, we can write

f (X) =
1

|Σ | n
2 |Φ | p

2
h

(
tr

(
Σ−1
[

X
(
Φ−1 − Φ

−1vv′Φ−1

v′Φ−1v

)
X′

+ (v′Φ−1v)
(

X
Φ−1v

v′Φ−1v
−μ
)(

X
Φ−1v

v′Φ−1v
−μ
)′]))

=
1

|Σ | n
2 |Φ | p

2
h(tr(Σ−1[B+(v′Φ−1v)(μ̂−μ)(μ̂−μ)′])).

This proves that (μ̂,B) is sufficient for (μ,Σ).

Remark 7.2. Let X ∼ Ep,n(μe′n,Σ ⊗ In,ψ) have the p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr((X−μe′n)

′Σ−1(X−μe′n))),

where μ is a p-dimensional vector and h : IR+
0 → IR+

0 a decreasing function. Let
g : IR+

0 → IR+
0 be an increasing function. Assume we have an observation from X

and want to estimate μ . Then, μ̂ = X e′n
n = x̄ is a minimax estimator of μ under

the loss function l(z) = g((z − μ)′Σ−1(z − μ)). This result has been proved by
Fan and Fang (1985a). In another paper, Fan and Fang (1985b) showed that if in
addition to the above mentioned conditions, we assume that n > p ≥ 4, and g is
a convex function whose second derivative exists almost everywhere with respect
to the Lebesgue measure and P(X = μe′n) = 0, then x̄ is an inadmissible estimator

of μ . More precisely, they showed that the estimator μ̂c =

(
1− c

x̄′Σ̂−1
x̄

)
x̄, where

Σ̂ = X
(

In − ene′n
n

)
X′ and

0 < c ≤ 2(pn− p+2)(n−1)(p−2)(p−3)
n(n− p+2)(p−1)(n2 −2pn+2n+ p−2)

dominates x̄. As a consequence, μ̂c is also a minimax estimator of μ .



Chapter 8
Hypothesis Testing

8.1 General Results

Before studying concrete hypotheses, we derive some general theorems. These
results are based on Anderson, Fang, and Hsu (1986) and Hsu (1985b).

Theorem 8.1. Assume we have an observation X from the distribution Ep,n(M,Σ⊗
Φ ,ψ), where (M,Σ ⊗Φ) ∈Ω ⊂ IRp×n × IRpn×pn, and we want to test

H0 : (M,Σ ⊗Φ) ∈ ω against H1 : (M,Σ ⊗Φ) ∈Ω −ω, (8.1)

where ω ⊂Ω . Suppose Ω and ω have the properties that if Q ∈ IRp×n, S ∈ IRpn×pn,
then (Q,S) ∈ Ω implies (Q,cS) ∈ Ω and (Q,S) ∈ ω implies (Q,cS) ∈ ω for any
positive scalar c. Moreover, let X have the p.d.f.

f (X) =
1

|Σ | n
2 |Φ | p

2
h(tr((X−M)′Σ−1(X−M)Φ−1)),

where l(z) = z
pn
2 h(z) (z ≥ 0) has a finite maximum at z = zh > 0. Furthermore,

suppose that under the assumption that X ∼ Np,n(M,Σ ⊗Φ), (M,Σ ⊗Φ) ∈ Ω ,
the MLE’s of M and Σ ⊗ Φ are M∗ and (Σ ⊗ Φ)∗, which are unique and
P((Σ ⊗Φ)∗ > 0) = 1.

Assume also that under the assumption that X ∼ Np,n(M,Σ ⊗Φ), (M,Σ ⊗Φ) ∈
ω , the MLE’s of M and Σ ⊗Φ are M∗

0 and (Σ ⊗Φ)∗0, which are unique and P((Σ ⊗
Φ)∗0 > 0) = 1.

Then, the likelihood ratio test (LRT) statistic for testing (8.1) under the as-
sumption that X ∼ Ep,n(M,Σ ⊗Φ ,ψ), is the same as under the assumption that

X ∼ Np,n(M,Σ ⊗Φ), namely |(Σ⊗Φ )∗|
|(Σ⊗Φ )∗0|

.

PROOF: From Theorem 7.2 it follows that under the condition Ep,n(M,Σ ⊗Φ ,ψ),
(M,Σ ⊗Φ) ∈Ω , the MLE’s of M and Σ ⊗Φ are M̂ = M∗ and ( ̂Σ ⊗Φ) = np

zh
(Σ ⊗
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Φ)∗ and the maximum of the likelihood is

|( ̂Σ ⊗Φ)|− 1
2 h(zh).

Similarly, under the condition Ep,n(M,Σ ⊗Φ ,ψ), (M,Σ ⊗Φ) ∈ ω , the MLE’s of
M and Σ ⊗Φ are M̂0 = M∗

0 and ( ̂Σ ⊗Φ)0 =
np
zh
(Σ ⊗Φ)∗0 and the maximum of the

likelihood is

|( ̂Σ ⊗Φ)0|− 1
2 h(zh).

Hence, the LRT statistic is

|( ̂Σ ⊗Φ)0|− 1
2 h(zh)

|( ̂Σ ⊗Φ)|− 1
2 h(zh)

=

∣∣∣ np
zh
(Σ ⊗Φ)∗0

∣∣∣
− 1

2

∣∣∣ np
zh
(Σ ⊗Φ)∗

∣∣∣
− 1

2

=

( |(Σ ⊗Φ)∗|
|(Σ ⊗Φ)∗0|

) 1
2

which is equivalent to the test statistic |(Σ⊗Φ )∗|
|(Σ⊗Φ )∗0|

.

Theorem 8.2. Assume we have an observation X from the absolutely continuous
distribution Ep,n(M,Σ⊗Φ ,ψ), where (M,Σ⊗Φ)∈Ω =Ω1×Ω2 withΩ1 ∈ IRp×n,
Ω2 ∈ IRpn×pn. We want to test

H0 : (M,Σ ⊗Φ) ∈ ω against H1 : (M,Σ ⊗Φ) ∈Ω −ω,
where ω = ω1 ×ω2, ω1 ⊂ Ω1, ω2 ⊂ Ω2. Assume that 0 ∈ ω1. Let f (Z) be a test
statistic, such that f (cZ) = f (Z) for any scalar c > 0. Then, we have the following

(a) If

f (Z) = f (Z−M) (8.2)

for every M ∈ ω1, then the null distribution of f (X) is the same under X ∼
Ep,n(M,Σ ⊗Φ ,ψ), as under X ∼ Np,n(M,Σ ⊗Φ).

(b) If f (Z) = f (Z−M) for every M ∈ Ω1, then the distribution of f (X), null as
well as the nonnull, is the same under X ∼ Ep,n(M,Σ ⊗Φ ,ψ), as under X ∼
Np,n(M,Σ ⊗Φ).

PROOF:

(a) Let X ∼ Ep,n(M,Σ⊗Φ ,ψ), M ∈ω1. Define Y = X−M. Then Y ∼ Ep,n(0,Σ⊗
Φ ,ψ) and f (X) = f (X−M) = f (Y). Thus, the distribution of f (X) is the same
as the distribution of f (Y).
From Theorem 5.12, it follows that the distribution of f (Y) is the same under
Y ∼ Ep,n(0,Σ ⊗Φ ,ψ), as under Y ∼ Np,n(0,Σ ⊗Φ). However, f (Y) = f (Y+
M), therefore, the distribution of f (Y) is the same under Y ∼ Np,n(0,Σ ⊗Φ),
as under Y ∼ Np,n(M,Σ ⊗Φ).



8.1 General Results 195

(b) Let X ∼ Ep,n(M,Σ ⊗ Φ ,ψ), M ∈ Ω1. Define Y = X − M. Then Y ∼
Ep,n(0,Σ ⊗Φ ,ψ) and the proof can be completed in exactly the same way
as the proof of part (a).

Corollary 8.1. Assume that the conditions of Theorem 8.2 are satisfied, including
the condition of part (b). Assume that a test based on f (X) is unbiased under X ∼
Np,n(M,Σ⊗Φ). Then the same test is also unbiased under X ∼ Ep,n(M,Σ⊗Φ ,ψ).

If a test based on f (X) is strictly unbiased under X ∼ Np,n(M,Σ ⊗Φ); that is,
the power function is greater under H1 than under H0; then the same test is also
strictly unbiased under X ∼ Ep,n(M,Σ ⊗Φ ,ψ).

PROOF: Since the distribution of the test statistic does not depend onψ , neither does
the power function. Now, the unbiasedness is determined by the power function.
So, if the test is unbiased when ψ(z) = exp

(− z
2

)
, then it is also unbiased for the

other ψ’s. The other part of the statement follows similarly.

Next, we look at the hypothesis testing problem from the point of view of
invariance.

Theorem 8.3. Assume we have an observation X from the absolutely continuous
distribution Ep,n(M,Σ⊗Φ ,ψ), where (M,Σ⊗Φ)∈Ω =Ω1×Ω2 withΩ1 ∈ IRp×n,
Ω2 ∈ IRpn×pn, and we want to test

H0 : (M,Σ ⊗Φ) ∈ ω against H1 : (M,Σ ⊗Φ) ∈Ω −ω,

where ω = ω1 ×ω2, ω1 ⊂ Ω1, ω2 ⊂ Ω2. Let 0 ∈ ω1. Assume the hypotheses are
invariant under a group G of transformations g : IRp×n → IRp×n, such that g(X) =
cX, c > 0 scalar. Let f (X) be a test statistic invariant under G. Then, we have the
following.

(a) If g(X) = X−M, M ∈ ω1 are all elements of G, then the null distribution of
f (X) is the same under X ∼ Ep,n(M,Σ⊗Φ ,ψ), as under X ∼ Np,n(M,Σ⊗Φ).

(b) If g(X) = X−M, M ∈Ω1 are all elements of G, then the distribution of f (X),
the null as well as the nonnull is the same under X ∼ Ep,n(M,Σ ⊗Φ ,ψ), as
under X ∼ Np,n(M,Σ ⊗Φ).

PROOF: The results follow from Theorem 8.2, since the invariance of f (X), under
the transformation g(X) = cX, c > 0 implies f (X) = f (cX), c > 0; the invariance
under the transformation g(X) = X − M, M ∈ ω1, implies f (X) = f (X − M),
M ∈ ω1, and the invariance under the transformation g(X) = X − M, M ∈ Ω1,
implies f (X) = f (X−M), M ∈Ω1.

Corollary 8.2. Assume that the conditions of Theorem 8.3 are satisfied, including
the condition of part (b). Assume that a test based on f (X) is unbiased under X ∼
Np,n(M,Σ⊗Φ). Then, the same test is also unbiased under X ∼ Ep,n(M,Σ⊗Φ ,ψ).
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If a test based on f (X) is strictly unbiased under X ∼ Np,n(M,Σ ⊗Φ), then the
same test is also strictly unbiased under X ∼ Ep,n(M,Σ ⊗Φ ,ψ).

PROOF: It follows from the proof of Theorem 8.3 that the conditions of
Theorem 8.2 are satisfied including the conditions of part (b). Thus Corollary 8.1
can be applied, which completes the proof.

Further aspects of invariant statistics are studied in the following theorems.

Theorem 8.4. Assume we have an observation X, from the absolutely continuous
distribution X ∼ Ep,n(M,Σ⊗Φ ,ψ), where (M,Σ⊗Φ)∈Ω ⊂ IRp×n× IRpn×pn, and
we want to test

H0 : (M,Σ ⊗Φ) ∈ ω against H1 : (M,Σ ⊗Φ) ∈Ω −ω,

where ω ⊂ Ω . Let G be a group of the linear transformations g : IRp×n → IRp×n,
where g(X) = C1XC2 +C3 with C1 : p× p, C2 : n× n, and C3 : p× n matrices.
Then, the hypotheses are invariant under G when X ∼ Ep,n(M,Σ ⊗Φ ,ψ), if and
only if the hypotheses are invariant under G when X ∼ Np,n(M,Σ ⊗Φ).

Also suppose that the sufficient statistic T (X) for (M,Σ ⊗Φ) ∈ Ω is the same
under X ∼ Ep,n(M,Σ ⊗Φ ,ψ) as under X ∼ Np,n(M,Σ ⊗Φ). Then, f (X) is an
invariant of the sufficient statistic under G when X ∼ Ep,n(M,Σ⊗Φ ,ψ), if and only
if f (X) is an invariant of the sufficient statistic under G when X ∼ Np,n(M,Σ ⊗Φ).

PROOF: Assume the hypotheses are invariant under G when X ∼ Ep,n(M,Σ ⊗
Φ ,ψ). Let g ∈ G. Then, g(X) = C1XC2 +C3. Now,

g(X)∼ Ep,n(C1MC2 +C3,(C1ΣC′
1)⊗ (C′

2ΦC2),ψ) (8.3)

Thus, we have

(i) If (M,Σ ⊗Φ) ∈ ω then (C1MC2 +C3,(C1ΣC′
1)⊗ (C′

2ΦC2)) ∈ ω
and

(ii) If (M,Σ ⊗Φ) ∈Ω −ω then (C1MC2 +C3,(C1ΣC′
1)⊗ (C′

2ΦC2)) ∈Ω −ω .

Now, assume X ∼ Np,n(M,Σ ⊗Φ). Then

g(X)∼ Np,n(C1MC2 +C3,(C1ΣC′
1)⊗ (C′

2ΦC2)) (8.4)

and it follows from (i) and (ii) that the hypotheses are invariant under G when X
is normal.

Conversely, assume the hypotheses are invariant under G when X ∼ Np,n(M,Σ⊗
Φ) and g ∈ G. Let g(X) = C1XC2 + C3. Then, we have (8.4), and (i) and (ii)
follow. Since in the case of X ∼ Ep,n(M,Σ ⊗ Φ ,ψ), (8.3) holds, (i) and (ii)
imply that the hypotheses are invariant under G when X ∼ Ep,n(M,Σ ⊗Φ ,ψ).
Therefore, the invariant test statistics are the same for the normal case as for
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X ∼ Ep,n(M,Σ⊗Φ ,ψ). Since, by assumption, the sufficient statistic is the same for
X normal as for X ∼ Ep,n(M,Σ ⊗Φ ,ψ), the statement about f (X) follows.

The next result follows easily from the above theorem.

Corollary 8.3. In Theorem 8.4 if G is a group of linear transformations then the
hypotheses are invariant under G without specifying what particular absolutely
continuous m.e.c. distribution we are working with.

Corollary 8.4. Assume that the conditions of Theorem 8.4 are satisfied. Also
assume the hypotheses are invariant under a group G of linear transformations
and that s(X) is a maximal invariant of the sufficient statistic under G when
X∼Np,n(M,Σ⊗Φ). Then s(X), is also a maximal invariant of the sufficient statistic
under G when X ∼ Ep,n(M,Σ ⊗Φ ,ψ).

PROOF: From Theorem 8.4 it follows that s(X) is an invariant of the sufficient
statistic under G when X ∼ Ep,n(M,Σ ⊗Φ ,ψ). On the other hand, the maximal
invariance of s(X) means that s(X) = s(X∗) iff there exists g ∈ G, such that
g(X) = X∗ and this property does not depend on the distribution of X.

Theorem 8.5. Assume we have an observation X from the absolutely continuous
distribution X ∼ Ep,n(M,Σ ⊗Φ ,ψ), where (M,Σ ⊗Φ) ∈Ω =Ω1 ×Ω2 with Ω1 ∈
IRp×n, Ω2 ∈ IRpn×pn. We want to test

H0 : (M,Σ ⊗Φ) ∈ ω against H1 : (M,Σ ⊗Φ) ∈Ω −ω,

where ω = ω1 ×ω2, ω1 ∈ Ω1, ω2 ∈ Ω2. Let 0 ∈ ω1. Assume the hypotheses are
invariant under a group G of linear transformations g : IRp×n → IRp×n, where
g(X) = C1XC2 + C3 with C1 : p × p, C2 : n × n, and C3 : p × n matrices and
the transformations g(X) = cX−M, c > 0, M ∈ Ω1 are all elements of G. Also
suppose that the sufficient statistic T (X) for (M,Σ ⊗Φ) ∈ Ω is the same under
X ∼ Ep,n(M,Σ ⊗Φ ,ψ) as under X ∼ Np,n(M,Σ ⊗Φ).

If s(X) is a maximal invariant of the sufficient statistic under G and a test based
on s(X) is uniformly most powerful invariant (UMPI) among the tests based on the
sufficient statistic in the normal case, then the same test is also UMPI among the
tests based on the sufficient statistic when X ∼ Ep,n(M,Σ ⊗Φ ,ψ).

PROOF: From Theorem 8.4, it follows that the invariant of the sufficient under G,
in the normal case are the same as when X ∼ Ep,n(M,Σ ⊗Φ ,ψ). Corollary 8.4
implies that s(X) is a maximal invariant statistic of the sufficient statistic when X ∼
Ep,n(M,Σ ⊗Φ ,ψ). Since 0 ∈ ω1 and the transformations g(X) = cX−M, c > 0,
M ∈Ω1 are all elements of G, from part (b) of Theorem 8.3 it follows, that s(X) has
the same distribution under X ∼ Ep,n(M,Σ ⊗Φ ,ψ) as under X ∼ Np,n(M,Σ ⊗Φ).
Since, s(X) is maximal invariant, every invariant test can be expressed as a function
of s(X) (see e.g. Lehmann 1959, p. 216). Therefore, the distributions of the invariant
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statistics are the same under X ∼ Ep,n(M,Σ ⊗Φ ,ψ) as under X ∼ Np,n(M,Σ ⊗Φ).
Thus, if s(X) is uniformly most powerful among invariant tests in the normal case
then it has the same property when X ∼ Ep,n(M,Σ ⊗Φ ,ψ).

8.2 Two Models

Now, we describe the parameter spaces in which we want to study hypothesis testing
problems.

8.2.1 Model I

Let x1,x2, . . .,xn be p-dimensional random vectors, such that n > p and xi ∼
Ep(μ,Σ ,ψ), i = 1, . . .,n. Moreover, assume that xi, i = 1, . . .,n are uncorrelated
and their joint distribution is elliptically contoured and absolutely continuous. This
model can be expressed as

X ∼ Ep,n(μe′n,Σ ⊗ In,ψ), (8.5)

where X = (x1,x2, . . .,xn). Then the joint p.d.f. of x1,x2, . . .,xn can be written as

f (X) =
1

|Σ |n h

(
n

∑
i=1

(xi −μ)′Σ−1(xi −μ)
)

. (8.6)

Assume l(z) = z
pn
2 h(z), z ≥ 0 has a finite maximum at z = zh > 0. Define

x̄ =
1
n

n

∑
i=1

xi and A =
n

∑
i=1

(xi − x̄)(xi − x̄)′.

Then x̄ = X en
n , A = X

(
In − ene′n

n

)
X′ and from Theorem 7.11, the statistic T (X) =

(x̄,A) is sufficient for (μ,Σ).
If ψ(z) = exp

(− z
2

)
, then X ∼ Ep,n(μe′n,Σ ⊗ In). In this case x1,x2, . . .,xn are

independent, and identically distributed random vectors each with distribution
Np(μ,Σ). Inference for this structure has been extensively studied in Anderson
(2003).
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8.2.2 Model II

Let x(i)1 ,x(i)2 , . . .,x(i)ni be p-dimensional random vectors, such that ni > p, i = 1, . . .,q,

and x(i)j ∼ Ep(μ i,Σ i,ψ), j = 1, . . .,ni, i = 1, . . .,q. Moreover, assume that x(i)j , i =
1, . . .,q, j = 1, . . .,ni are uncorrelated and their joint distribution is also elliptically
contoured and absolutely continuous. This model can be expressed as

x ∼ Epn

⎛

⎜
⎜⎜
⎝

⎛

⎜
⎜⎜
⎝

en1 ⊗μ1

en2 ⊗μ2
...

enq ⊗μq

⎞

⎟
⎟⎟
⎠
,

⎛

⎜
⎜⎜
⎝

In1 ⊗Σ1

In2 ⊗Σ2
...

Inq ⊗Σq

⎞

⎟
⎟⎟
⎠
,ψ

⎞

⎟
⎟⎟
⎠

(8.7)

where n = ∑q
i=1 ni and

x =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

x(1)1
...

x(1)n1

x(2)1
...

x(2)n2
...

x(q)1
...

x(q)nq

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

.

Then, the joint p.d.f. of x(i)j , i = 1, . . .,q, j = 1, . . .,ni can be written as

f (x) =
1

∏q
i=1 |Σ i|ni

h

(
q

∑
i=1

ni

∑
j=1

(x(i)j −μ i)
′Σ−1

i (x(i)j −μ i)

)

. (8.8)

Assume l(z) = z
pn
2 h(z), z ≥ 0 has a finite maximum at z = zh > 0. Define

x̄(i) =
1
ni

ni

∑
j=1

x(i)j ,Ai =
ni

∑
j=1

(x(i)j − x̄(i))(x(i)j − x̄(i))′.

and A =∑q
i=1 Ai. Also let x̄ =∑q

i=1∑
ni
j=1 x(i)j and B =∑q

i=1∑
ni
j=1(x

(i)
j − x̄)(x(i)j − x̄)′.

Then, we get
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ni

∑
j=1

(x(i)j −μ i)
′Σ−1

i (x(i)j −μ i)

= tr

(
ni

∑
j=1

(x(i)j −μ i)
′Σ−1

i (x(i)j −μ i)

)

= tr

(

Σ−1
i

(
ni

∑
j=1

(x(i)j −μ i)(x
(i)
j −μ i)

′
))

= tr

(

Σ−1
i

(
ni

∑
j=1

(x(i)j − x̄(i))(x(i)j − x̄(i))′+n(x̄(i)−μ i)(x̄
(i)−μ i)

′
))

= tr(Σ−1
i (Ai +n(x̄(i)−μ i)(x̄

(i)−μ i)
′)).

Thus,

f (X) =
1

∏q
i=1 |Σ i|ni

h

(
q

∑
i=1

tr(Σ−1
i (Ai +n(x̄(i)−μ i)(x̄

(i)−μ i)
′))

)

hence the statistic (x̄(1), . . ., x̄(q),A1, . . .,Aq) is sufficient for (μ1, . . .,μq,Σ 1, . . .,Σq).
If ψ(z) = exp

(− z
2

)
, then

x ∼ Npn

⎛

⎜
⎜⎜
⎝

⎛

⎜
⎜⎜
⎝

en1 ⊗μ1

en2 ⊗μ2
...

enq ⊗μq

⎞

⎟
⎟⎟
⎠
,

⎛

⎜
⎜⎜
⎝

In1 ⊗Σ 1

In2 ⊗Σ2
...

Inq ⊗Σq

⎞

⎟
⎟⎟
⎠

⎞

⎟
⎟⎟
⎠

.

In this case x(i)1 ,x(i)2 , . . .,x(i)ni are independent, and identically distributed random

variables each with distribution Np(μ i,Σ i), i = 1, . . .,q. Moreover, x(i)j , i = 1, . . .,q,
j = 1, . . .,ni are jointly independent. Inference for this structure has been studied in
Anderson (2003).

A special case of Model II is when Σ 1 = . . .= Σ q = Σ . Then the model can also
be expressed as

X ∼ Ep,n((μ1e′n1
,μ2e′n2

, . . .,μqe′nq
),Σ ⊗ In,ψ),

where n = ∑q
i=1 ni and

X = (x(1)1 , . . .,x(1)n1 ,x
(2)
1 , . . .,x(2)n2 , . . .,x

(q)
1 , . . .,x(q)nq ).
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This leads to the same joint p.d.f. of x(i)j , i = 1, . . .,q, j = 1, . . .,ni as (8.7); that is

f (X) =
1

|Σ |n h

(
q

∑
i=1

ni

∑
j=1

(x(i)j −μ i)
′Σ−1(x(i)j −μ i)

)

.

8.3 Testing Criteria

In this section, we give results on testing of hypotheses for the two models of
Sect. 8.2. We use the notations of that section. We also use the theorems in Sect. 8.1
which show, that in certain cases, the hypothesis testing results of the theory of
normal distributions can be easily extended to the theory of m.e.c. distributions.
This section is based on Anderson and Fang (1982a), Hsu (1985a,b), and Gupta and
Varga (1995b).

8.3.1 Testing That a Mean Vector Is Equal to a Given Vector

In Model I (see Sect. 8.2.1) we want to test

H0 : μ = μ0 against H1 : μ �= μ0. (8.9)

We assume that μ and Σ are unknown and μ0 is given. Note that problem (8.9) is
equivalent to testing

H0 : μ = 0 against H1 : μ �= 0. (8.10)

Indeed, if μ0 �= 0 then define x∗i = xi − μ0, i = 1, . . .,n and μ∗ = μ − μ0. Then,
problem (8.9) becomes

H0 : μ∗ = 0 against H1 : μ∗ �= 0.

Problem (8.10) remains invariant under the group G, where

G = {g|g(X) = CX, Cis p× p nonsingular}. (8.11)

Now, we can prove the following theorem.

Theorem 8.6. The likelihood ratio test (LRT) statistic for problem (8.9) is

T2 = n(n−1)(x̄−μ0)
′A−1(x̄−μ0).

The critical region at level α is T 2 ≥ T 2
p,n−1(α), where T 2

p,n−1(α)=
(n−1)p

n−p Fp,n−p(α)
and Fp,n−p(α) denotes the 100 % point of the Fp,n−p distribution.
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If H0 holds, then n−p
(n−1)p T 2 ∼ Fp,n−p. Moreover, if μ0 = 0 then T 2 is the maximal

invariant of the sufficient statistic under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case; that is, Hotelling’s T 2 statistic. Since problems (8.9) and (8.10) are
equivalent, we can focus on (8.10). Then, G satisfies the conditions of part (a) of
Theorem 8.3 (here ω1 = {0}) and T 2 is invariant under G, so the null distribution
of T 2 is the same as in the normal case. Thus, the corresponding results of the
normal theory can be used here (see Anderson 2003, Chap. 5). Since T 2 is the
maximal invariant in the normal case, from Corollary 8.4 it follows that it is also
maximal invariant for the present model.

The nonnull distribution of T 2 depends on ψ . The nonnull p.d.f. of T 2 was
derived by Hsu (1985a). He also showed that if p > 1, then the T 2-test is locally
most powerful invariant (LMPI). On the other hand, Kariya (1981) proved that if h is
a decreasing convex function, then the T 2-test is uniformly most powerful invariant
(UMPI).

8.3.2 Testing That a Covariance Matrix Is Equal to a Given
Matrix

In Model I (see Sect. 8.2.1), assume that h is decreasing. We want to test

H0 : Σ = Σ 0 against H1 : Σ �= Σ 0 . (8.12)

We assume that μ and Σ are unknown and Σ 0 > 0 is given. It is easy to see that,
problem (8.12) is equivalent to testing

H0 : Σ = Ip against H1 : Σ �= Ip (8.13)

Theorem 8.7. The LRT statistic for the problem (8.12) is

τ = |Σ−1
0 A| n

2 h(tr(Σ−1
0 A)).

The critical region at level α is

τ ≤ τψ(α),

where τψ(α) depends onψ , but not on Σ 0. The null distribution of τ does not depend
on Σ 0.

PROOF: From Theorems 7.2 and 7.4 it follows that
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max
μ ,Σ>0

f (X) = | p
zh
(A⊗ In)|− 1

2 h(zh)

=

(
p
zh

)− pn
2

h(zh)|A|− n
2 .

On the other hand, from Theorem 7.1, we obtain

max
μ ,Σ=Σ 0

f (X) =
1

|Σ 0| n
2

h(tr((X− x̄e′n)
′Σ−1

0 (X− x̄e′n)))

=
1

|Σ 0| n
2

h(tr(Σ−1
0 A)).

Thus, the likelihood ratio test statistic is given by

maxμ ,Σ=Σ 0
f (X)

maxμ ,Σ>0 f (X)
=

1

|Σ 0|
n
2

h(tr(Σ−1
0 A))

(
p
zh

)− pn
2

h(zh)|A|− n
2

= |Σ−1
0 A| n

2 h(tr(Σ−1
0 A))

(
p
zh

) pn
2 1

h(zh)
.

Hence, the critical region is of the form τ ≤ τψ(α). Since, (8.13) is equivalent
to (8.12), it follows that the null distribution of τ does not depend on Σ 0. Hence,
τψ(α) does not depend on Σ 0, either.

In this problem, the distribution of the test statistic τ depends on ψ .

8.3.3 Testing That a Covariance Matrix Is Proportional to a
Given Matrix

In Model I (see Sect. 8.2.1) we want to test

H0 : Σ = σ2Σ 0 against H1 : Σ �= σ2Σ 0 , (8.14)

where μ , Σ , σ2 are unknown, σ2 > 0 is a scalar, and Σ 0 > 0 is given. Problem
(8.13) remains invariant under the group G, where G is generated by the linear
transformations

(i) g(X) = cX, c > 0 scalar and
(ii) g(X) = X+ve′n, v is p-dimensional vector.

It is easy to see that, problem (8.14) is equivalent to testing
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H0 : Σ = σ2Ip against H1 : Σ �= σ2Ip (8.15)

Theorem 8.8. The LRT statistic for problem (8.14) is

τ =
|Σ−1

0 A| n
2

tr
(

1
pΣ

−1
0 A
) pn

2
.

The critical region at level α is

τ ≤ τ(α),
where τ(α) is the same as in the normal case and it does not depend on Σ 0.

The distribution of τ is the same as in the normal case. The null distribution of τ
does not depend on Σ 0. τ is an invariant of the sufficient statistic under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. It is easy to see that τ is invariant under G. Moreover, G satisfies the
conditions of part (b) of Theorem 8.3; therefore, the distribution of τ is the same as
in the normal case. Hence, the corresponding results of the normal theory can be
used here (see Anderson 2003, Sect. 10.7). Since (8.15) is equivalent to (8.14), it
follows that the null distribution of τ does not depend on Σ 0. Hence, τ(α) does not
depend on Σ 0, either.

Remark 8.1. Since the distribution of τ is the same as in the normal case, its
moments and asymptotic distribution under the null hypothesis are those given by
the formulas in Anderson (2003, pp. 434–436), Gupta (1977), and Gupta and Nagar
(1987, 1988), for the normal case.

Remark 8.2. Nagao’s (1973) criterion,

n−1
2

tr

(
pA
trA

− Ip

)2

,

is also an invariant test criterion under G and hence, it has the same distribution as
in the normal case (see also Anderson 2003, pp. 436–437).

8.3.4 Testing That a Mean Vector and Covariance Matrix Are
Equal to a Given Vector and Matrix

In Model I (see Sect. 8.2.1) we want to test

H0 : μ = μ0 and Σ = Σ 0 against H1 : μ �= μ0 or Σ �= Σ 0 , (8.16)
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where μ , Σ are unknown and μ0 and Σ 0 > 0 are given. It is easy to see that, problem
(8.16) is equivalent to testing

H0 : μ = 0 and Σ = Ip against H1 : μ �= 0 or Σ �= Ip . (8.17)

Theorem 8.9. The LRT statistic for problem (8.16) is

τ = |Σ−1
0 A| n

2 h
(
tr(Σ−1

0 A)+n(x̄−μ0)
′Σ−1

0 (x̄−μ0)
)
.

The critical region at level α is

τ ≤ τψ(α),

where τψ(α) depends on ψ , but not μ0 or Σ 0. The null distribution of τ does not
depend on μ0 or Σ 0.

PROOF: From Theorems 7.2 and 7.4 it follows that

max
μ ,Σ>0

f (X) =

(
p
zh

)− pn
2

h(zh)|A|− n
2 .

On the other hand,

max
μ=μ0,Σ=Σ 0

f (X) =
1

|Σ 0| n
2

h(tr((X−μ0e′n)
′Σ−1

0 (X−μ0e′n)))

=
1

|Σ 0| n
2

h
(
tr(Σ−1

0 A)+n(x̄−μ0)
′Σ−1

0 (x̄−μ0)
)
.

Therefore, the likelihood ratio test statistic is given by

maxμ=μ0,Σ=Σ 0
f (X)

maxμ ,Σ>0 f (X)
=

1

|Σ 0|
n
2

h
(
tr(Σ−1

0 A)+n(x̄−μ0)
′Σ−1

0 (x̄−μ0)
)

(
p
zh

)− pn
2

h(zh)|A|− n
2

=
|Σ−1

0 A| n
2

h(zh)
h
(
tr(Σ−1

0 A)+n(x̄−μ0)
′Σ−1

0 (x̄−μ0)
)
(

p
zh

) pn
2

.

Hence, the critical region is of the form τ ≤ τψ(α). Since, (8.17) is equivalent to
(8.16), it follows that the null distribution of τ does not depend on μ0 or Σ 0. Hence,
τψ(α) does not depend on μ0 or Σ 0, either.

In this problem, the distribution of the test statistic τ depends on ψ . Nevertheless,
Quan and Fang (1987) have proved that the test defined in Theorem 8.9 is unbiased.
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8.3.5 Testing That a Mean Vector Is Equal to a Given Vector
and a Covariance Matrix Is Proportional to a Given
Matrix

In Model I (see Sect. 8.2.1) we want to test

H0 : μ = μ0 and Σ = σ2Σ 0 against H1 : μ �= μ0 or Σ �= σ2Σ 0 , (8.18)

where μ , Σ , σ2 are unknown, σ2 > 0 is a scalar, and μ0, Σ 0 > 0 are given.
Note that problem (8.18) is equivalent to testing

H0 : μ = 0 and Σ = σ2Ip against H1 : μ �= 0 or Σ �= σ2Ip . (8.19)

Problem (8.19) remains invariant under the group G, where

G = {g|g(X) = cX, c > 0 scalar}.

Theorem 8.10. The LRT statistic for problem (8.18) is

τ =
|Σ−1

0 A| n
2

(
tr
(

1
pΣ

−1
0 A
)
+ n

p (x̄−μ0)
′Σ−1

0 (x̄−μ0)
) pn

2
.

The critical region at level α is

τ ≤ τ(α),

where τ(α) is the same as in the normal case and it does not depend on μ0 or Σ 0.
The null distribution of τ is the same as in the normal case and it does not depend
on μ0 or Σ 0. Moreover, if μ0 = 0 then τ is an invariant of the sufficient statistic
under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. However, since Anderson (2003) does not give the corresponding result
for the normal case, we derive it here.

So, assume X ∼ Np,n(μe′n,Σ ⊗ In) and we want to test (8.18). Then, from
Theorem 7.2, Remark 7.1 and Theorem 7.4 it follows that

max
μ ,Σ>0

f (X) = |A
n
⊗ In|− 1

2
1

(2π)
pn
2

e−
pn
2

=
( n

2π

) pn
2

e−
pn
2 |A|− n

2 .

Next, we want to maximize f (X) under H0 where
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f (X)=
1

(2π)
pn
2 |σ2Σ 0| n

2
exp

{
−1

2
[tr((σ2Σ 0)

−1A)+n(x̄−μ0)
′(σ2Σ 0)

−1(x̄−μ0)]

}
.

Then,

∂ log f (X)

∂σ2 =− pn
2σ2 +

1
2σ4 [tr(Σ

−1
0 A)+n(x̄−μ0)

′Σ−1
0 (x̄−μ0)]

and from ∂ log f (X)
∂σ2 = 0, we obtain

σ̂2 =
tr(Σ−1

0 A)+n(x̄−μ0)
′Σ−1

0 (x̄−μ0)

pn
.

Thus,

max
μ=μ0,Σ=σ2Σ 0>0

f (X)

=
( pn

2π

) pn
2

e−
pn
2 |Σ 0|− n

2 (tr(Σ−1
0 A)+n(x̄−μ0)

′Σ−1
0 (x̄−μ0))

− pn
2 .

Therefore, the likelihood ratio test statistic is given by

maxμ=μ0,Σ=σ2Σ 0>0 f (X)

maxμ ,Σ>0 f (X)

=

( pn
2π
) pn

2 e−
pn
2 |Σ0|− n

2 (tr(Σ−1
0 A)+n(x̄−μ0)

′Σ−1
0 (x̄−μ0))

− pn
2

(
n

2π
) pn

2 e−
pn
2 |A|− n

2

=
|Σ−1

0 A| n
2

(
tr
(

1
pΣ

−1
0 A
)
+ n

p (x̄−μ0)
′Σ−1

0 (x̄−μ0)
) pn

2
.

Thus, the critical region is of the form τ ≤ τ(α). Since problems (8.18) and (8.19)
are equivalent, we can focus on (8.19). It is easy to see that τ is invariant under G if
μ0 = 0. Moreover G satisfies the conditions of part (a) of Theorem 8.3, so the null
distribution of τ is the same as in the normal case and, since problems (8.18) and
(8.19) are equivalent, it does not depend on μ0 or Σ 0. Therefore, τ(α) is the same
as in the normal case and it does not depend on μ0 or Σ 0.

In this case, the nonnull distribution of τ depends on ψ . Nevertheless Quan and
Fang (1987) have proved that the LRT is unbiased if h is decreasing.
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8.3.6 Testing Lack of Correlation Between Sets of Variates

In Model I (see Sect. 8.2.1), we partition xi into q subvectors

xi =

⎛

⎜⎜⎜⎜
⎝

x(1)i

x(2)i
...

x(q)i

⎞

⎟⎟⎟⎟
⎠

where x( j)
i is p j-dimensional, j = 1, . . .,q, i = 1, . . .,n. Partition Σ and A into

Σ =

⎛

⎜⎜⎜
⎝

Σ 11 Σ 12 . . . Σ 1q

Σ 21 Σ 22 . . . Σ 2q
...

Σ q1 Σ q2 . . . Σ qq

⎞

⎟⎟⎟
⎠

, A =

⎛

⎜⎜⎜
⎝

A11 A12 . . . A1q

A21 A22 . . . A2q
...

Aq1 Aq2 . . . Aqq

⎞

⎟⎟⎟
⎠

where Σ j j and A j j are p j × p j, j = 1, . . .,q. We want to test

H0 : Σ jk = 0 if 1 ≤ j < k ≤ q against

H1 : there exists j, k such that Σ jk �= 0. (8.20)

Problem (8.20) remains invariant under the group G, where G is generated by the
linear transformations

(i) g(X) = CX with C =

⎛

⎜
⎜⎜
⎝

C1

C2
...

Cq

⎞

⎟
⎟⎟
⎠

, where C j is p j × p j nonsingular

matrix, j = 1, . . .,q,
(ii) g(X) = X+ve′n, where v is p-dimensional vector.

Theorem 8.11. The LRT statistic for problem (8.20) is

τ =
|A|

∏q
i=1 |Aii| .

The critical region at level α is

τ ≤ τ(α),

where τ(α) is the same as in the normal case. The distribution of τ is the same as in
the normal case. If H0 holds, then τ ≈∏q

i=2 vi, where v2, v3, . . . , vq are independent
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and vi ∼ Upi, p̄i,n−p̄i , with p̄i = ∑i−1
j=1 p j, i = 2, . . .,q. The LRT is strictly unbiased;

that is, if H1 holds, then the probability of rejecting H0 is greater than α . τ is an
invariant of the sufficient statistic under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. It is easy to see that τ is invariant under G. Moreover G satisfies
the conditions of part (b) of Theorem 8.3. Therefore, the distribution of τ is the
same as in the normal case. Hence, the corresponding results of the normal theory
can be used here (see Anderson 2003, Chap. 9). The strict unbiasedness follows
from Corollary 8.2 and the normal theory.

Remark 8.3. Since the distribution of τ is the same as in the normal case, its
moments and asymptotic distribution under the null hypothesis are these given by
the formulas in Anderson (2003, pp. 388–390), and Nagar and Gupta (1986), for the
normal case.

Remark 8.4. Nagao’s criterion (see Anderson 2003, p. 391) is also invariant under
G and hence, it has the same distribution as in the normal case. Thus, its asymptotic
distribution under the null hypothesis is given by the formulas in Anderson (2003,
p. 391).

Hsu (1985b) has proved that the LRT in Theorem 8.11 is admissible.

8.3.7 Testing That a Correlation Coefficient Is Equal to a
Given Number

In Model I (see Sect. 8.2.1), let p = 2. Then Σ and A can be written as

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
and A =

(
a11 a12

a21 a22

)
,

where σ2
1 = σ11, σ2

2 = σ22 and ρ = σ12√σ11σ22
. We want to test

H0 : ρ = ρ0 against H1 : ρ �= ρ0, (8.21)

where μ and Σ are unknown and |ρ0|< 1 is given. Problem (8.21) remains invariant
under the group G, where G is generated by the linear transformations

(i) g(X) = CX, with C =

(
c1 0
0 c2

)
where c1 and c2 are positive scalars and

(ii) g(X) = X+ve′n, where v is p-dimensional vector.
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Theorem 8.12. The statistic

r =
a12√
a11a22

,

is maximal invariant of the sufficient statistic under G. The distribution of r is the
same as in the normal case. The LRT for problem (8.21) at level α has the critical
region

r ≤ r1(α) or r ≥ r2(α),

where r1(α) =
ρ0c−(1−ρ2

0 )
√

1−c

ρ2
0 c+1−ρ2

0
, r2(α) =

ρ0c+(1−ρ2
0 )
√

1−c

ρ2
0 c+1−ρ2

0
and c is chosen such that

under H0

P(r ≤ r1(α))+P(r ≥ r2(α)) = α.

The values of r1(α) and r2(α) depend on ρ0, but they are the same as in the normal
case.

PROOF: Since G satisfies the conditions of Corollary 8.4 and in the normal case, r
is a maximal invariant under G (see Anderson 2003, p. 126), it follows that r is also
maximal invariant under G in the present case. Moreover, G satisfies the conditions
of part (b) of Theorem 8.3 and r is invariant under G. Therefore, the distribution of
r is the same as in the normal case. Furthermore it follows from Theorem 8.1 that
the LRT statistic is the same as in the normal case. Thus, the corresponding results
of the normal theory can be used (see Anderson 2003, Sect. 4.2).

Remark 8.5. Since the distribution of r is the same as in the normal case, its
asymptotic distribution, as well as the asymptotic distribution of Fisher’s z statistic,
are the same as those given by the formulas in Anderson (2003, pp. 131–134), and
Konishi and Gupta (1989). Therefore, the tests based on Fisher’s z statistic can also
be used here.

Remark 8.6. It is known (e.g., see Anderson 2003, p. 127) that in the normal case,
for the problem

H0 : ρ = ρ0 against H1 : ρ > 0

the level α test, whose critical region has the form

r > r3(α)

is UMPI. Then, it follows from Theorem 8.5 that the same test is also UMPI in the
present case.
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8.3.8 Testing That a Partial Correlation Coefficient
Is Equal to a Given Number

In Model I (see Sect. 8.2.1) partition Σ and A as

Σ =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
and A =

(
A11 A12

A21 A22

)
,

where Σ 11 and A11 are 2×2. Assume p ≥ 3, and define

Σ 11·2 = Σ 11 −Σ12Σ−1
22 Σ 21 and A11·2 = A11 −A12A−1

22 A21.

We use the notation

Σ 11·2 =
(
σ11·3,...,p σ12·3,...,p
σ21·3,...,p σ22·3,...,p

)
and A11·2 =

(
a11·3,...,p a12·3,...,p
a21·3,...,p a22·3,...,p

)
,

Then, ρ12·3,...,p =
σ12·3,...,p√σ11·3,...,pσ22·3,...,p is called the partial correlation between the

first two variables, having the (p− 2) variables fixed (see Anderson 2003, p. 34).
We want to test

H0 : ρ12·3,...,p = ρ0 against H1 : ρ12·3,...,p �= ρ0, (8.22)

where μ and Σ are unknown and |ρ0|< 1 is given.
Problem (8.22) remains invariant under the group G, where G is generated by the

linear transformations

(i) g(X) = CX, with C =

(
C1 C2

C3 C4

)
, where C1 =

(
c1 0
0 c2

)
, c1, c2 positive

scalars, C2 is any 2 × (p − 2) matrix, C3 = 0 is (p − 2)× 2 matrix, and
C4 = Ip−2.

(ii) g(X) = CX, with C =

(
C1 C2

C3 C4

)
, where C1 = I2, C2 is 2× (p− 2) matrix,

C2 = 0, C3 = 0 is (p−2)×2 matrix, and C4 is a (p−2)×(p−2) nonsingular
matrix.

(iii) g(X) = X+ve′n, where v is p-dimensional vector.

Theorem 8.13. The statistic

r12·3,...,p =
a12·3,...,p√

a11·3,...,pa22·3,...,p

is a maximal invariant of the sufficient statistic under G. The distribution of r12·3,...,p
is the same as in the normal case and it is the same as the distribution of r in
Sect. 8.3.7, where we replace n by n− p+2.
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PROOF: Since G satisfies the conditions of Corollary 8.4 and in the normal case,
r12·3,...,p is a maximal invariant under G (see Anderson 2003, p. 159), it follows
that r is also a maximal invariant in the present case. Moreover, G satisfies the
conditions of part (b) of Theorem 8.3 and r12·3,...,p is invariant under G. Therefore,
the distribution of r12·3,...,p is the same as in the normal case. Furthermore, in
the normal case, r12·3,...,p has the same distribution as r when n is replaced by
n− p+2 (see Anderson 2003, p. 143).

Because of the relation between the distribution of r12·3,...,p and r, all statistical
methods mentioned in Sect. 8.3.7 can also be used here. So, for example, Fisher’s z
test can be applied here. Also, the test based on r12·3,...,p for the problem

H0 : ρ12·3,...,p = ρ0 against H1 : r12·3,...,p > ρ0

is UMPI.

8.3.9 Testing That a Multiple Correlation Coefficient Is Equal
to a Given Number

In Model I (see Sect. 8.2.1), let us partition Σ and A as

Σ =

(
σ11 σ ′

1
σ1 Σ 22

)
and A =

(
a11 a′1
a1 A22

)
,

where σ11 and s11 are one-dimensional. Then, ρ̄1·2,...,p =

√
σ ′

1Σ
−1
22 σ 1
σ11

is called the

multiple correlation between the first variable and the other (p− 1) variables (see
Anderson 2003, p. 38). We want to test

H0 : ρ̄1·2,...,p = 0 against H1 : ρ̄1·2,...,p �= 0, (8.23)

where μ and Σ are unknown. Problem (8.23) remains invariant under the group G,
where G is generated by the linear transformations

(i) g(X) = CX, with C =

(
c1 0′

0 C2

)
, where c1 is nonnegative scalar and C2 is a

(p−1)× (p−1) nonsingular matrix.
(ii) g(X) = X+ve′n, where v is p-dimensional vector.

Theorem 8.14. The statistic

r̄1·2,...,p =

√
a′1A−1

22 a1

a11
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is maximal invariant of the sufficient statistic under G. The distribution of r̄1·2,...,p is

the same as in the normal case. If H0 holds, then n−p
p−1

r̄2
1·2,...,p

1−r̄2
1·2,...,p

∼ Fp−1,n−p. The LRT

for problem (8.23) at level α has the critical region

n− p
p−1

r̄2
1·2,...,p

1− r̄2
1·2,...,p

≥ Fp−1,n−p(α),

where Fp−1,n−p(α) denotes the 100 % point of the Fp−1,n−p distribution. The LRT is
UMPI.

PROOF: Since G satisfies the conditions of Corollary 8.4 and in the normal case,
r̄1·2,...,p is a maximal invariant under G (see Anderson 2003, p. 157), it follows
that r̄1·2,...,p is also maximal invariant under G in the present case. Moreover, G
satisfies the conditions of part (b) of Theorem 8.3 and r̄1·2,...,p is invariant under G.
Therefore, the distribution of r̄1·2,...,p is the same as in the normal case. Furthermore,
from Theorem 8.1 it follows that the LRT statistic is the same as in the normal case.
Thus, the corresponding results of the normal theory can be used (see Anderson
2003, Sect. 4.4). It follows from Anderson (2003, p. 157), that in the normal case,
the LRT is UMPI. Therefore, by Theorem 8.5, the LRT is also UMPI here.

Remark 8.7. Since the distribution of r̄1·2,...,p is the same as in the normal case,
its moments and distribution under the nonnull hypothesis are those given by the
formulas in Anderson (2003, pp. 149–157), for the normal case.

8.3.10 Testing Equality of Means

In Model II (see Sect. 8.2.2), let Σ 1 = Σ 2 = . . .= Σ q = Σ . We want to test

H0 : μ1 = μ2 = . . .= μq against

H1 : there exist 1 ≤ j < k ≤ q, such that μ j �= μk, (8.24)

where μ i, i = 1,2, . . .,q and Σ are unknown. Problem (8.24) remains invariant under
the group G, where G is generated by the linear transformations

(i) g(X) = (In ⊗C)X, where C is p× p nonsingular matrix,
(ii) g(X) = X− en ⊗v, where v is p-dimensional vector.

Theorem 8.15. The LRT statistic for problem (8.24) is

τ =
|A|
|B| .
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The critical region at level α is

τ ≤Up,q−1,n(α),

where Up,q−1,n(α) denotes the 100 % point of the Up,q−1,n distribution. If H0 holds,
then τ ≈Up,q−1,n. τ is an invariant of the sufficient statistic under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. It is easy to see that τ is invariant under G. Moreover, G satisfies the
conditions of part (a) of Theorem 8.3. Therefore, the null distribution of τ is the
same as in the normal case. Hence, the corresponding results of the normal theory
can be used here, see Anderson (2003, Sect. 8.8), Pillai and Gupta (1969), Gupta
(1971, 1975), Gupta, Chattopadhyay, and Krishnaiah (1975), and Gupta and Javier
(1986).

The nonnull distribution of τ depends on ψ . Nevertheless, Quan (1990) has
proved that if h is decreasing then the LRT is unbiased.

8.3.11 Testing Equality of Covariance Matrices

In Model II (see Sect. 8.2.2), we want to test

H0 : Σ 1 = Σ 2 = . . .= Σ q against

H1 : there exist 1 ≤ j < k ≤ q, such that Σ j �= Σ k, (8.25)

where μ i and Σ i, i= 1,2, . . .,q are unknown. Problem (8.25) remains invariant under
the group G, where G is generated by the linear transformations

(i) g(X) = (In ⊗C)X, where C is p× p nonsingular matrix,

(ii) g(X) = X−

⎛

⎜
⎝

en1 ⊗v1

en2 ⊗v2
...

enq ⊗vq

⎞

⎟
⎠, where vi is p-dimensional vector, i = 1,2, . . .,q.

Theorem 8.16. The LRT statistic for problem (8.25) is

τ = ∏q
i=1 |Ai|

ni
2 ∏q

i=1 n
pni
2

i

|A| n
2 n

pn
2

.

The critical region at level α is

τ ≤ τ(α),

where τ(α) is the same as in the normal case. The distribution of τ is the same as
in the normal case. τ is an invariant of the sufficient statistic under G.



8.3 Testing Criteria 215

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. It is easy to see that τ is invariant under G. Moreover, G satisfies the
conditions of part (b) of Theorem 8.3. Therefore, the distribution of τ is the same as
in the normal case. Hence, the corresponding results of the normal theory can be
used here, see Anderson (2003, Sect. 10.2), and Gupta and Tang (1984).

Remark 8.8. Bartlett’s modified LRT statistic

τ1 =
∏q

i=1 |Ai|
ni−1

2

|A| n−q
2

is also invariant under G. So from Theorem 8.3 it follows that the distribution of τ1

is the same as in the normal case. Quan (1990) showed that the α level test with
critical region

τ1 ≤ τ1(α)

is unbiased if h is decreasing.
Nagao’s test statistic

τ2 = (n−1)2
q

∑
i=1

tr(AiA−1 − Ip)
2

ni −1

is also invariant under G and has the same distribution as in the normal case.

For further details on Bartlett’s modified LRT statistic and Nagao’s test statistic,
see Anderson (2003, pp. 413–415).

8.3.12 Testing Equality of Means and Covariance Matrices

In Model II (see Sect. 8.2.2), we want to test

H0 : μ1 = μ2 = . . .= μq and Σ 1 = Σ 2 = . . .= Σ q against (8.26)

H1 : there exist 1 ≤ j < k ≤ q, such that μ j �= μk or Σ j �= Σ k,

where μ i and Σ i, i= 1,2, . . .,q are unknown. Problem (8.26) remains invariant under
the group G, where G is generated by the linear transformations

(i) g(X) = (In ⊗C)X, where C is p× p nonsingular matrix,
(ii) g(X) = X− en ⊗v, where v is p-dimensional vector.
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Theorem 8.17. The LRT statistic for problem (8.26) is

τ = ∏q
i=1 |Ai|

ni
2

|B| n
2

The critical region at level α is

τ ≤ τ(α)

where τ(α) is the same as in the normal case. The null distribution of τ is the same
as in the normal case. τ is an invariant of the sufficient statistic under G.

PROOF: From Theorem 8.1 it follows that the LRT statistic is the same as in the
normal case. It is easy to see that τ is invariant under G. Moreover, G satisfies the
conditions of part (a) of Theorem 8.3. Therefore, the distribution of τ is the same as
in the normal case. Hence the corresponding results of the normal theory can be
used here (see Anderson 2003, Sect. 10.3).

The nonnull distribution of τ depends on ψ . Nevertheless, Quan and Fang (1987)
have proved that the LRT is unbiased if h is decreasing.

Remark 8.9. Since the null distribution of τ is the same as in the normal case, its
moments, distribution, and asymptotic distribution under the null hypothesis are
those given by the formulas in Anderson (2003, Sects. 10.4–5) for the normal case.

Remark 8.10. Bartlett’s modified LRT statistic

τ = ∏
q
i=1 |Ai|

ni−1
2

|B| n−q
2

is also invariant under G. So from Theorem 8.3 it follows that its null distribution is
the same as in the normal case (see Anderson 2003, pp. 412–413).



Part IV
Applications



Chapter 9
Linear Models

9.1 Estimation of the Parameters in the Multivariate
Linear Regression Model

Let x1,x2, . . . ,xn be p-dimensional vectors, such that xi ∼ Ep(Bzi,Σ ,ψ), where zi

is a q-dimensional known vector, i = 1, . . . ,n, and B is a p× q unknown matrix.
Moreover, assume that xi, i = 1, . . . ,n are uncorrelated and their joint distribution is
elliptically contoured and absolutely continuous. This model can be expressed as

X ∼ Ep,n(BZ,Σ ⊗ In,ψ), (9.1)

where X = (x1,x2, . . . ,xn); Z = (z1,z2, . . . ,zn) is a q× n known matrix; B (p× q)
and Σ (p× p) are unknown matrices. Assume rk(Z) = q and p+ q ≤ n. The joint
p.d.f. of x1,x2, . . . ,xn can be written as

f (X) =
1

|Σ |n h

(
n

∑
i=1

(xi −Bzi)
′Σ−1(xi −Bzi)

)

=
1

|Σ |n h(tr(X−BZ)′Σ−1(X−BZ)). (9.2)

Assume l(z) = z
pn
2 h(z), z ≥ 0 has a finite maximum at z = zh > 0. First, we find the

MLE’s of B and Σ .

Theorem 9.1. The MLE’s of B and Σ for the model (9.1) are given by

B̂ = XZ′(ZZ′)−1 (9.3)

and

Σ̂ =
p
zh

X(In −Z′(ZZ′)−1Z)X′. (9.4)

A.K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory,
DOI 10.1007/978-1-4614-8154-6 9, © Springer Science+Business Media New York 2013
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PROOF: From Theorem 1.3 it follows that rk(ZZ′) = q and since ZZ′ is q×q, it is
nonsingular.

Note that B and BZ determine each other uniquely. Indeed, from B we get BZ by
postmultiplying B by Z, and from BZ we can obtain B by postmultiplying BZ by
Z′(ZZ′)−1. Hence finding the MLE of B is equivalent to finding the MLE of BZ.

If X ∼ Np,n(BZ,Σ ⊗ In), then the MLE’s of B and Σ are (see Anderson 2003,
Sect. 8.2),

B∗ = XZ′(ZZ′)−1

and

Σ ∗ =
1
n
(X−B∗Z)(X−B∗Z)′.

We can rewrite Σ ∗ as

Σ ∗ =
1
n

X(In −Z′(ZZ′)−1Z)(In −Z′(ZZ′)−1Z)X′

=
1
n

X(In −Z′(ZZ′)−1Z)X′.

Then, by using Theorem 7.2, we obtain the MLE’s of B and Σ as

B̂ = XZ′(ZZ′)−1

and

Σ̂ =
pn
zh

1
n

X(In −Z′(ZZ′)−1Z)X′

=
p
zh

X(In −Z′(ZZ′)−1Z)X′.

The distributions of B̂ and Σ̂ can also be obtained, and are given in the following
theorem.

Theorem 9.2. The distributions of the MLE’s of B and Σ for the model (9.1) are
given by

B̂ ∼ Ep,q(B,Σ ⊗ (ZZ′)−1,ψ), (9.5)

and

zh

p
Σ̂ ∼ Gp,1

(
Σ ,

n−q
2

,ψ
)
. (9.6)
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PROOF: From (9.1) and (9.3) we obtain

B̂ ∼ Ep,q(BZZ′(ZZ′)−1,Σ ⊗ (ZZ′)−1ZZ′(ZZ′)−1,ψ)

= E p,q(B,Σ ⊗ (ZZ′)−1,ψ).

Then from (9.4) we get

zh

p
Σ̂ = X(In −Z′(ZZ′)−1Z)X′

= X(In −Z′(ZZ′)−1Z)(X(In −Z′(ZZ′)−1Z))′. (9.7)

From (9.1) we get

X(In −Z′(ZZ′)−1Z) ∼ Ep,n(BZ(In −Z′(ZZ′)−1Z),Σ ⊗ (In −Z′(ZZ′)−1Z)

× (In −Z′(ZZ′)−1Z),ψ)

= Ep,n(0,Σ ⊗ (In −Z′(ZZ′)−1Z),ψ). (9.8)

Now define the p×n random matrix, Y, by

Y ∼ Ep,n(0,Σ ⊗ In,ψ) (9.9)

Then,

Y(In −Z′(ZZ′)−1Z)Y′ = Y(In −Z′(ZZ′)−1Z)(In −Z′(ZZ′)−1Z)Y′ (9.10)

= (Y(In −Z′(ZZ′)−1Z))(Y(In −Z′(ZZ′)−1Z))′

and since

Y(In −Z′(ZZ′)−1Z)∼ Ep,n(0,Σ ⊗ (In −Z′(ZZ′)−1Z),ψ), (9.11)

from (9.7), (9.8), (9.10), and (9.11) we get

zh

p
Σ̂ ≈ Y(In −Z′(ZZ′)−1Z)Y′ (9.12)

However, the matrix (In −Z′(ZZ′)−1Z) is idempotent of rank n− q. Hence, using
Theorem 5.7, we get

Y(In −Z′(ZZ′)−1Z)Y′ ∼ Gp,1

(
Σ ,

n−q
2

,ψ
)
.

Next, we find the unbiased estimators of B and Σ .
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Theorem 9.3. The statistics B̂ and

Σ̂U =
−1

2ψ ′(0)(n−q)
X(In −Z′(ZZ′)−1Z)X′

for model (9.1) are unbiased for B and Σ , if the second order moment of X exists.

PROOF: From (9.5) it follows that E(B̂) = B. On the other hand, from
Theorem 3.18, we get

E(Σ̂U ) =
−1

2ψ ′(0)(n−q)
E(X(In −Z′(ZZ′)−1Z)X′)

=
−1

2ψ ′(0)(n−q)
(−2ψ ′(0))Σ tr(In −Z′(ZZ′)−1Z)

+ BZ(In −Z′(ZZ′)−1Z)Z′B′

=
1

n−q
Σ(n−q)

= Σ .

The question of sufficiency is studied in the following theorem. First, we prove a
lemma.

Lemma 9.1. Let X be p× n, B be p× q, and Z be q× n matrices with rk(Z) = q.
Define B̂ = XZ′(ZZ′)−1, then

(X−BZ)(X−BZ)′ = (X− B̂Z)(X− B̂Z)′+(B̂−B)ZZ′(B̂−B)′. (9.13)

PROOF: We can write

(X−BZ)(X−BZ)′ = (X− B̂Z+(B̂−B)Z)(X− B̂Z+(B̂−B)Z)′

= (X− B̂Z)(X− B̂Z)′+(B̂−B)ZZ′(B̂−B)′

+ (X− B̂Z)Z′(B̂−B)′+(B̂−B)Z(X− B̂Z)′. (9.14)

However,

(X− B̂Z)Z′ = (X−XZ′(ZZ′)−1Z)Z′ = XZ′ −XZ′ = 0

so the last two terms in (9.14) vanish. Thus, from (9.14), we get (9.13).

Theorem 9.4. In model (9.1), B̂ and Σ̂ are sufficient for B and Σ .

PROOF: From (9.2) and Lemma 9.1, we get
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f (X) =
1

|Σ |n h(tr(Σ−1(X−BZ)(X−BZ)′))

=
1

|Σ |n h(tr(Σ−1[(X− B̂Z)(X− B̂Z)′+(B̂−B)ZZ′(B̂−B)′])).

Now,

(X− B̂Z)(X− B̂Z)′ = (X−XZ′(ZZ′)−1Z)(X−XZ′(ZZ′)−1Z)′

= X(In −Z′(ZZ′)−1Z)(In −Z′(ZZ′)−1Z)X′

= X(In −Z′(ZZ′)−1Z)X′

=
zh

p
Σ̂ .

Hence,

f (X) =
1

|Σ |n h

(
tr

(
Σ−1
[

zh

p
Σ̂ +(B̂−B)ZZ′(B̂−B)′

]))
,

which proves the theorem.
Next, we focus on some optimality properties of the MLE’s for model (9.1).

Here, we assume that X has a finite second order moment. Let the p× 1 vector a
and the q× 1 vector c be given and assume that we want to estimate ξ = a′Bc.
We are interested in a linear unbiased estimator of ξ , that is an estimator which
can be written in the form ξ ∗ = v′vec(X′), where v is a pn-dimensional vector and
E(ξ ∗) = ξ .

The MLE of ξ is ξ̂ = a′B̂c. This is a linear estimator of ξ since

a′B̂c = a′XZ′(ZZ′)−1c

= vec(a′XZ′(ZZ′)−1c)

= (a′ ⊗ (c′(ZZ′)−1Z))vec(X′).

Moreover, ξ̂ is unbiased for ξ since

E(ξ̂ ) = a′E(B̂)c = a′Bc = ξ .

The next result, also called multivariate Gauss-Markov theorem, shows that
Var(ξ̂ )≤Var(ξ ∗) for any linear unbiased estimator ξ ∗.

Theorem 9.5. (Gauss-Markov Theorem) Let X be a p × n random matrix, with
E(X) = BZ and Cov(X) = Σ ⊗ In, where B (p× q), and Σ (p× p), are unknown
matrices and Z (q× n) is a known matrix. Assume rk(Z) = q and a (p× 1) and c
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(q×1) are known vectors. Let ξ = a′Bc, and define ξ̂ = a′B̂c. If ξ ∗ = v′vec(X′) is
any linear unbiased estimator of ξ , then Var(ξ̂ )≤Var(ξ ∗).

PROOF: See Timm (1975, p. 187).

Theorem 9.5 does not require that X have a m.e.c. distribution. Now, we show
that if the distribution of X is elliptically contoured, we can get a stronger result. In
order to do this, we need the following lemma due to Stoyan (1983).

Lemma 9.2. Let x and y be two one-dimensional random variables. Then,

E( f (x))≤ E( f (y))

holds for all increasing, real function f if and only if

P(x ≤ a)≥ P(y ≤ a),

for all a ∈ IR.

PROOF: See Stoyan (1983, p. 5).

Now, we can derive the result on m.e.c. distributions.

Theorem 9.6. Assume model (9.1) holds and X has a finite second order moment.
Let a (p×1), and c (q×1) be known vectors, ξ = a′Bc, and define ξ̂ = a′B̂c. Assume
ξ ∗ = v′vec(X′) is a linear unbiased estimator of ξ . Let l(z) be a loss function, where
l : [0,∞)→ [0,∞), l(0) = 0, and l(z) is increasing on [0,∞). Then,

E(l(|ξ̂ −ξ |))≤ E(l(|ξ ∗ −ξ |)).

That is, ξ̂ is optimal in the class of linear unbiased estimators for the loss function l.

PROOF: Since ξ ∗ = v′vec(X′) and it is unbiased for ξ , that is, E(ξ ∗) = ξ , we have
ξ̂ ∼ E1(ξ ,σ2

ξ̂
,ψ). We also have ξ ∗ ∼ E1(ξ ,σ2

ξ ∗ ,ψ).
Now, from Theorem 9.5, it follows that

Var(ξ̂ )≤Var(ξ ∗).

However, from Theorem 2.11 we get

Var(ξ̂ ) =−2ψ ′(0)σ2
ξ̂ and Var(ξ ∗) =−2ψ ′(0)σ2

ξ ∗ .

Thus,

σ2
ξ̂ ≤ σ

2
ξ ∗ . (9.15)
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Define a random variable z as z ∼ E1(0,1,ψ). Then, we have ξ̂ − ξ ≈ σξ̂ z and

ξ ∗ −ξ ≈ σξ ∗z. Consequently, for every real positive a, we obtain

P(|ξ̂ −ξ | ≤ a) = P(σξ̂ |z| ≤ a)

= P

(

|z| ≤ a
σξ̂

)

(9.16)

and

P(|ξ ∗ −ξ | ≤ a) = P(σξ ∗ |z| ≤ a)

= P

(
|z| ≤ a

σξ ∗

)
(9.17)

From (9.15), (9.16), and (9.17), it follows that

P(|ξ̂ −ξ | ≤ a)≥ P(|ξ ∗ −ξ | ≤ a).

Then, from Lemma 9.2, we obtain

E(l(|ξ̂ −ξ |))≤ E(l(|ξ ∗ −ξ |)).

Next, we prove an optimality property of Σ̂ . First, we need some concepts and
results from the theory of majorization. They are taken from Marshall and Olkin
(1979). Assume x is an n-dimensional vector x′ = (x1,x2, . . . ,xn). Then x[1] ≥ x[2] ≥
. . .≥ x[n] denote the components of x in decreasing order.

Now, let x and y be two n-dimensional vectors. Then, we say that y majorizes
x, and denote this by x ≺ y, if ∑ j

i=1 x[i] ≤ ∑ j
i=1 y[i], j = 1, . . . ,n− 1 and ∑n

i=1 x[i] =
∑n

i=1 y[i].
Let φ be a real function, defined on IRn. Then, we say that φ is Schur-convex, if

from x ≺ y, x,y ∈ IRn, it follows that φ(x)≤ φ(y).
Lemma 9.3. Let x1,x2, . . . ,xn be exchangeable, random variables and define x =
(x1,x2, . . . ,xn)

′. Assume λ is a real function defined on IRn × IRn and it satisfies the
following conditions:

(i) λ (z,a) is convex in a ∈ IRn, if z ∈ IRn is fixed,
(ii) λ ((zπ(1),zπ(2), . . . ,zπ(n)),(aπ(1),aπ(2), . . . ,aπ(n))) = λ (z,a) for all permuta-

tions π of the first n positive integers, and
(iii) λ (z,a) is Borel measurable in z, if a is fixed.

Then, φ(a) = E(λ (x,a)) is symmetric and convex in a.

PROOF: See Marshall and Olkin (1979, pp. 286–287).
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Lemma 9.4. Let φ be a real function defined on IRn. If φ(a) is symmetric and
convex in a ∈ IRn, then φ(a) is Schur-convex.

PROOF: See Marshall and Olkin (1979, pp. 67–68).

Lemmas 9.3 and 9.4, together with the definition of a Schur-convex function,
imply the following theorem.

Theorem 9.7. Let x1,x2, . . . ,xn be exchangeable, random variables and define x =
(x1,x2, . . . ,xn)

′. Let a1 and a2 be n-dimensional vectors such that a1 ≺ a2. Assume
λ is a real function defined on IRn × IRn and it satisfies the conditions (i), (ii) and
(iii) of Lemma 9.3. Then E(λ (x,a1))≤ E(λ (x,a2)) if a1 ≺ a2.

PROOF: From Lemma 9.3, it follows that φ(a) = E(λ (x,a)) is symmetric and
convex in a. Then, from Lemma 9.4 we get that φ(a) is Schur-convex, and this
means, by definition, that E(λ (x,a1))≤ E(λ (x,a2)) if a1 ≺ a2.

The following theorem proves another result about an estimator of Σ .

Theorem 9.8. Assume model (9.1) holds, X has a finite second order moment, and
ψ is known. Let

Σ̂U =
−1

2ψ ′(0)(n−q)
X(In −Z′(ZZ′)−1Z)X′.

Assume Σ ∗ is an unbiased estimator of Σ that has the form Σ ∗ = XCX′, where C
is a positive semidefinite n× n matrix depending on X. Let l(z) be a loss function,
where l : [0,∞)→ [0,∞), l(0) = 0, and l(z) is increasing on [0,∞). Then,

E(l(tr(Σ̂UΣ−1)))≤ E(l(tr(Σ∗Σ−1))).

PROOF: Let Σ ∗ be an unbiased estimator of Σ , which can be written as Σ ∗ = XCX′.
From Theorem 3.18, we get

E(Σ ∗) = E(XCX′) =−2ψ ′(0)Σ tr(C′)+BZCZ′B′.

So, in order for Σ ∗ to be an unbiased estimator of Σ , we must have tr(C) = −1
2ψ ′(0)

and ZCZ′ = 0. Since C is positive semidefinite, we can write C = HDH′, where H
is orthogonal, and D is diagonal with nonnegative elements. Therefore, ZCZ′ = 0
implies ZHDH′Z′ = 0, which can be rewritten as (ZHD

1
2 )(ZHD

1
2 )′ = 0. Hence,

ZHD
1
2 = 0,

ZC = ZHD
1
2 D

1
2 H′ = 0,

Σ ∗ = XCX′ = (X−BZ)C(X−BZ)′,
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and

tr(Σ ∗Σ−1) = tr(Σ− 1
2Σ ∗Σ− 1

2 )

= tr(Σ− 1
2 (X−BZ)HDH′(X−BZ)′Σ− 1

2 ).

Now define L = Σ− 1
2 (X−BZ)H, where L ∼ Ep,n(0,Ip ⊗ In,ψ), and let L ≈ rU be

the stochastic representation of L. Then,

tr(Σ ∗Σ−1) = tr((rU)D(rU)′)

= r2tr(UDU′).

Since ZC = 0 and rk(Z) = q, q diagonal elements of D are zero, and since
tr(C) = −1

2ψ ′(0) , the sum of the others is −1
2ψ ′(0) . Define di = dii, i = 1, . . . ,n, and

d = (d1,d2, . . . ,dn)
′. Let the vector d, corresponding to Σ̂U be denoted by d̂. Since

(In − Z′(ZZ′)−1Z) is an idempotent matrix with rank n − q, we see that n − q
elements of d̂ are equal to −1

2ψ ′(0)(n−q) , and the rest are zeros. Since, d[1] ≥ d[2] ≥
. . .≥ d[n−q], we get 1

n−q ∑
n−q
i=1 d[i] ≤ 1

j ∑
j
i=1 d[i], j = 1, . . . ,n−q−1, hence

j

∑
i=1

d̂[i] =

(
j

n−q

)( −1
2ψ ′(0)

)

=
j

n−q

n−q

∑
i=1

d[i]

≤
j

∑
i=1

d[i], j = 1, . . . ,n−q−1

and ∑ j
i=1 d̂[i] =

−1
2ψ ′(0) = ∑

j
i=1 d[i], j = n−q, . . . ,n. Therefore,

d̂ ≺ d.

Let ui, i = 1, . . . ,n denote the ith column of the matrix U. Then,

r2tr(UDU′) = r2tr

(
n

∑
i=1

diuiu′
i

)

=
n

∑
i=1

dir
2u′

iui

=
n

∑
i=1

diwi

= w′d,
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where wi = r2u′
iui, i = 1, . . . ,n, and w = (w1,w2, . . . ,wn)

′. Consequently, wi ≥ 0 and
w1,w2, . . . ,wn are exchangeable random variables.

Define the real function λ on IRn×IRn as follows: λ (z, t)= l(z′t), where z, t∈ IRn.
Then, λ satisfies the conditions of Theorem 9.7, d̂ ≺ d and w has exchangeable
components. Thus, we get

E(l(w′d̂))≤ E(l(w′d)).

However, w′d = r2tr(UDU′) = tr(Σ ∗Σ−1), so we get

E(l(tr(Σ̂UΣ−1)))≤ E(l(tr(Σ∗Σ−1))).

Corollary 9.1. Under the conditions of Theorem 9.8,

E(tr(Σ̂UΣ−1))2 ≤ E(tr(Σ∗Σ−1))2.

Theorems 9.6 and 9.8 were derived by Kuritsyn (1986) for vector variate
elliptically contoured distribution. The results here are the extensions of the results
of that paper to the case of matrix variate elliptically contoured distribution.

9.2 Hypothesis Testing in the Multivariate Linear
Regression Model

In this section, once again, we focus on model (9.1). We use the notations of
Sect. 9.1. The results are taken from Hsu (1985b).

Let the matrix B be partitioned as B = (B1,B2), where B1 is p×q1 (1 ≤ q1 < q),

and partition Z, as Z =

(
Z1

Z2

)
, where Z1 is q1×n. Let q2 = q−q1. Define A = ZZ′

and partition A as

(
A11 A12

A21 A22

)
, where A11 is q1 × q1. Then, Ai j = ZiZ′

j, i = 1,2,

j = 1,2. Also, define A11·2 = A11 −A12A−1
22 A21. We want to test the hypothesis

H0 : B1 = B∗
1 against H1 : B1 �= B∗

1, (9.18)

where B and Σ are unknown and B∗
1 is a p× q1 given matrix. Note that problem

(9.18) is equivalent to testing

H0 : B1 = 0 against H1 : B1 �= 0. (9.19)

Indeed, if B∗
1 �= 0, then define X∗ = X−B∗

1Z1. Then, we get

X∗ ∼ Ep,n(BZ−B∗
1Z1,Σ ⊗ In,ψ)

= Ep,n((B1 −B∗
1,B2)Z,Σ ⊗ In,ψ)

and B1 = B∗
1 is equivalent to B1 −B∗

1 = 0.
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Problem (9.19) remains invariant under the group G, where G is generated by the
linear transformations

(i) g(X) = CX, where C is p× p nonsingular matrix and
(ii) g(X) = X+LZ2, where L is p×q2 matrix.

Now, we derive the likelihood ratio test for the problem (9.18).

Theorem 9.9. The LRT statistic for problem (9.18) is

τ =
|X(In −Z′(ZZ′)−1Z)X′|

|(X−B∗
1Z1)(In −Z′

2(Z2Z′
2)

−1Z2)(X−B∗
1Z1)′| .

The critical region at level α is

τ ≤Up,q1,n−q(α),

where Up,q1,n−q(α) denotes the 100 % point of the Up,q1,n−q distribution. If H0 holds,
then τ ∼Up,q1,n−q. Moreover, if B∗

1 = 0 then τ is an invariant of the sufficient statistic
under G.

PROOF: From Theorem 8.1, it follows that the LRT statistic is the same as in the
normal case. Since problems (9.18) and (9.19) are equivalent, we can focus on
(9.19). The statistic τ is invariant under G. Moreover, G satisfies the conditions of
part (a) of Theorem 8.3. Therefore, the null distribution of τ is the same as in the
normal case. Thus, the corresponding results of the normal theory can be used here
(see Anderson 2003, Sect. 8.4.1).

For more on the null distribution of the test statistic and the asymptotic null
distribution, see Anderson (2003, Sects. 8.4–8.5), Pillai and Gupta (1969), Gupta
(1971), Gupta and Tang (1984, 1988), and Tang and Gupta (1984, 1986, 1987).

Next, we focus on the invariance properties of problem (9.18). The results are
based on Anderson (2003). Define Z∗

1 = Z1 − Z1Z′
2(Z2Z′

2)
−1Z2 and B∗

2 = B2 +
B1Z1Z′

2(Z2Z′
2)

−1. Then, BZ = B1Z1 +B2Z2 = B1Z∗
1 +B∗

2Z2,

Z∗
1Z∗′

1 = (Z1 −Z1Z′
2(Z2Z′

2)
−1Z2)(Z′

1 −Z′
2(Z2Z′

2)
−1Z2Z′

1)

= Z1Z′
1 −Z1Z′

2(Z2Z′
2)

−1Z2Z′
1 −Z1Z′

2(Z2Z′
2)

−1Z2Z′
1

+ Z1Z′
2(Z2Z′

2)
−1Z2Z′

2(Z2Z′
2)

−1Z2Z′
1

= Z1Z′
1 −Z1Z′

2(Z2Z′
2)

−1Z2Z′
1,

and

Z∗
1Z′

2 = (Z1 −Z1Z′
2(Z2Z′

2)
−1Z2)Z′

2

= Z1Z′
2 −Z1Z′

2(Z2Z′
2)

−1Z2Z′
2

= 0.



230 9 Linear Models

Thus, (9.1) can be written in the following equivalent form:

X ∼ Ep,n(B1Z∗
1 +B∗

2Z2,Σ ⊗ In,ψ), (9.20)

where Z∗
1Z∗′

1 = A11·2 and Z∗
1Z′

2 = 0. We want to test

H0 : B1 = 0 against H1 : B1 �= 0. (9.21)

Problem (9.21) remains invariant under group G, where G is generated by

(i) g(Z∗
1) =KZ∗

1, where K is q×q nonsingular matrix, and by the transformations
(ii)

g(X) = CX, where C is p× p nonsingular matrix, and (9.22)

(iii)

g(X) = X+LZ2, where L is p×q2 matrix. (9.23)

Then, we have the following theorem.

Theorem 9.10. The maximal invariant of A11·2, and the sufficient statistic B̂ and Σ̂
under G is the set of roots of

|H− lS|= 0, (9.24)

where H = B̂1A11·2B̂′
1 and S = zh

p Σ̂ . Here B̂1 denotes the p × q1 matrix in the

partitioning of B̂ into B̂ = (B̂1, B̂2). Moreover, if H0 holds in (9.21), then the
distribution of the roots of (9.24) are the same as in the normal case.

PROOF: In Anderson (2003, Sect. 8.6.1), it is shown that the roots of (9.24) form
a maximal invariant under the given conditions. Since the subgroup of G, which is
generated by the transformations (9.22) and (9.23), satisfies the conditions of part
(a) of Theorem 8.3, the null distribution of the roots of (9.24) is the same as in the
normal case.

It is easy to see that the LRT statistic, τ , is a function of the roots of (9.24):
τ = |Ip +HS−1|. Other test statistics, which are also functions of the roots of (9.24)
are the Lawley-Hotelling’s trace criterion: tr(HS−1); the Bartlett-Nanda-Pillai’s
trace criterion: tr(H(S + H)−1); and the Roy’s largest (smallest) root criterion,
that is, the largest (smallest) characteristic root of HS−1. Then, they have the
same null distribution as in the normal case. For a further discussion of these
test statistics, see Anderson (2003, Sect. 8.6), Pillai and Gupta (1969), and Gupta
(1971). These invariant statistics were also studied by Hsu (1985b) for the case
of m.e.c. distributions and it was also shown that the LRT, the Lawley-Hotelling’s
trace test, the Bartlett-Nanda-Pillai’s trace test, and the Roy’s largest root test, are
all admissible.
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Remark 9.1. Since the multivariate analysis of variance (MANOVA) problems can
be formulated in terms of the regression model (9.1), and most hypotheses in
MANOVA can be expressed as (9.19), the results of Theorem 9.9 can be used here.
As a consequence, the LRT statistics are the same as those developed in the normal
theory and their null distributions and critical regions are also the same as in the
normal case. For the treatment of the MANOVA problems in the normal case, see
Anderson (2003, Sect. 8.9).

9.3 Inference in the Random Effects Model

In Sect. 9.1, the p-dimensional vectors, x1,x2, . . . ,xn have the property that xi ∼
Ep(Bzi,Σ ,ψ), where B is a p × q matrix and zi is a q-dimensional vector, i =
1,2, . . . ,n. This can also be expressed as xi = Bzi + vi, where vi ∼ Ep(0,Σ ,ψ),
i = 1,2, . . . ,n. The vectors zi, i = 1,2, . . . ,n are assumed to be known. On the other
hand, the matrix B is unknown, but it is also constant. The random vectors vi,
i = 1,2, . . . ,n are called the error terms. Let V = (v1,v2, . . . ,vn). Then, the model
(9.1) can be expressed as

X = BZ+V, where V ∼ Ep,n(0,Σ ⊗ In,ψ).

We get a different model if we assume that the vectors zi, i = 1,2, . . . ,n are also

random. Define yi =

(
zi

vi

)
, and assume that yi ∼ Ep+q

((
mi

0

)
,

(
Σ 1 0
0 Σ 2

)
,ψ
)

,

where mi is a q-dimensional known vector, i = 1,2, . . . ,n, and Σ 1, q× q, Σ 2, (p−
q)× (p− q), are unknown matrices. In this case, we suppose that B and mi are
known. Moreover, let yi, i = 1,2, . . . ,n be uncorrelated and assume that their joint
distribution is elliptically contoured. Then, this model can be expressed as

X = BZ+V, where V ∼ Ep,n

((
M
0

)
,

(
Σ 1 0
0 Σ 2

)
,ψ
)
, (9.25)

where q ≤ p, X = (x1,x2, . . . ,xn) is p× n, Z is q× n, and V is p× n. Assume that
the p×q matrix B and the q×n matrix M are known, but the q×q matrix Σ 1 and
the (p−q)× (p−q) matrix Σ 2 are unknown. Also assume that rk(B) = q, and the

random matrix Y =

(
Z
V

)
has finite second order moment.

We want to find the optimal mean-square estimator of Z given X. This is
equivalent to finding E(Z|X). We need the following result.

Lemma 9.5. Let X ∼ Ep,n(M,Σ ⊗ Φ ,ψ), with stochastic representation X ≈
rA0UB′

0. Let F be the distribution function of r. Define Y = AXB, with A (q× p),
B (n×m) matrices, rk(A) = q, and rk(B) = m. Then,
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(a) If E(X|Y) exists, we have

E(X|Y) = M+ΣA′(AΣA′)−1(Y−AMB)(B′ΦB)−1B′Φ .

(b) If m = n, K =Φ = In and Cov(X|Y) exists, we have

Cov(X|Y) = k(Σ −ΣA′(AΣA′)−1AΣ)⊗ In,

where k = −2ψ ′
q(X2)

and ψq(X2) is defined by (2.30)–(2.32) with q(X2) =

tr((Y − AM)′(AΣA′)−1(Y − AM)). Moreover, if the distribution of X is
absolutely continuous and the p.d.f. of Y = AX is

f (Y) =
1

|AΣA′| n
2

h1(tr((Y−AM)′(AΣA′)−1(Y−AM))), (9.26)

then

k =

∫ ∞
r h1(t)dt
2h1(r)

,

where r = tr((Y−AM)′(AΣA′)−1(Y−AM)).

PROOF: If q = p, and n = m, the theorem is obvious. So, assume qm < pn.
Step 1. Assume n = 1, x ∼ Ep(0, Ip,ψ), and B = 1. Using Theorem 1.9, we can

write A = PDQ, where P is a q× q nonsingular matrix, Q is a p× p orthogonal
matrix, and D is a q× p matrix with D = (Iq,0). Then,

E(x|y) = E(x|Ax)

= E(x|PDQx)

= Q′E(Qx|PDQx)

= Q′E(Qx|DQx). (9.27)

Let z = Qx. Then z ∼ Ep(0,Ip,ψ) and DQx = z1, where z =

(
z1

z2

)
, z1 is

q-dimensional vector. From Theorem 2.22, it follows that E(z2|z1) = 0 and
Cov(z2|z1) = kIp−q where k =−2ψ ′

q(x2)
and ψq(x2) is defined by (2.30)–(2.32) with

q(x2) = z′1z1. On the other hand, E(z1|z1) = z1. Therefore,

E(z|z1) = D′Dz. (9.28)
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From (9.27) and (9.28), it follows that

E(x|y) = Q′D′DQx

= Q′D′P′P′−1P−1PDQx

= A′(PP′)−1Ax

= A′(PDQQ′D′P′)−1Ax

= A′(AA′)−1Ax

= A′(AA′)−1y

and

Cov(x|y) = E(xx′|y)−E(x|y)(E(x|y))′

= E(Q′zz′Q|PDz)−E(Q′z|PDz)(E(Q′z|PDz))′

= Q′[E(zz′|Dz)−E(z|Dz)(E(z|Dz))′]Q. (9.29)

Now,

E(z|Dz) = E(z|z1) = D′Dz, (9.30)

E(zz′|Dz) = E

((
z1z′1 z1z′2
z2z′1 z2z′2

)
|z1

)
=

(
E(z1z′1|z1) E(z1z′2|z1)

E(z2z′1|z1) E(z2z′2|z1)

)
,

E(z1z′1|z1) = z1z′1 = Dzz′D′,

E(z1z′2|z1) = z1E(z′2|z1) = 0,

E(z2z′1|z1) = E(z2|z1)z′1 = 0, and

E(z2z′2|z1) = E(z2z′2|z1)−E(z2|z1)E(z2|z1)
′ =Cov(z2|z1) = kIp−q.

However,

z′1z1 = x′Q′D′DQx

= x′A′(AA′)−1Ax

= y′(AA′)−1y.

So, k = −2ψ ′
q(x2)

and ψq(x2) is defined by (2.30)–(2.32) with q(x2) = y′(AA′)−1y.
Hence,

E(zz′|Dz) = D′Dzz′D′D+ k(Ip −DD′). (9.31)



234 9 Linear Models

If the distribution of x is absolutely continuous and the p.d.f. of y = Hx is given by

(9.26), then the p.d.f. of z1 = DQx is h1(z′1z1). Hence k =
∫∞

r h1(t)dt
2h1(r)

, with r = z′1z1 =

y′(AA′)−1y.
It follows from (9.29), (9.30), and (9.31) that

Cov(x|y) = Q′(D′Dzz′D′D+ k(Ip −DD′)−D′Dzz′D′D)Q

= k(Ip −Q′D′DQ)

= k(Ip −A′(AA′)−1A).

Step 2. Let X ∼ Ep,n(M,Σ ⊗Φ ,ψ). We have

(vec(X′)|vec(Y′)) = ((vec(X−M)′+ vec(M′))|vec(AXB)′)

= (vec(X−M)′|vec(A(X−M)B)′)+ vec(M′)

= (((Σ
1
2 ⊗Φ 1

2 )vec(Σ− 1
2 (X−M)Φ− 1

2 )′)|(((AΣ 1
2 )⊗ (B′Φ

1
2 ))

× vec(Σ− 1
2 (X−M)Φ− 1

2 )′))+ vec(M′)

= (Σ
1
2 ⊗Φ 1

2 )((vec(Σ− 1
2 (X−M)Φ− 1

2 )′)|(((AΣ 1
2 )⊗ (B′Φ

1
2 ))

× vec(Σ− 1
2 (X−M)Φ− 1

2 )′))+ vec(M′). (9.32)

Now, vec(Σ− 1
2 (X−M)Φ− 1

2 )′ ∼ Epn(0,Ipn,ψ) and using Step 1, we get

E((vec(Σ− 1
2 (X−M)Φ− 1

2 )′)|(((AΣ 1
2 )⊗ (B′Φ

1
2 ))vec(Σ− 1

2 (X−M)Φ− 1
2 )′))

= ((Σ
1
2 A′)⊗ (Φ

1
2 B))((AΣ

1
2Σ

1
2 A′)⊗ (B′Φ

1
2Φ

1
2 B))−1((AΣ

1
2 )⊗ (B′Φ

1
2 ))

× vec(Σ− 1
2 (X−M)Φ− 1

2 )′

= (Σ
1
2 A′(AΣA′)−1AΣ

1
2 )⊗ (Φ

1
2 B(B′ΦB)−1B′Φ

1
2 )vec(Σ− 1

2 (X−M)Φ− 1
2 )′

= vec(Σ
1
2 A′(AΣA′)−1A(X−M)B(B′ΦB)−1B′Φ

1
2 )′. (9.33)

From (9.32) and (9.33), we get

E(X|Y) = M+ΣA′(AΣA′)−1A(X−M)B(B′ΦB)−1B′Φ

= M+ΣA′(AΣA′)−1(Y−AMB)(B′ΦB)−1B′Φ .

If m = n and B =Φ = In, then from Step 1, it follows that

Cov((vec(Σ− 1
2 (X−M))′)|(((AΣ 1

2 )⊗ In)vec(Σ− 1
2 (X−M))′))

= k(Ipn − (Σ
1
2 A′(AΣA′)−1AΣ

1
2 )⊗ In)

= k(Ip −Σ 1
2 A′(AΣA′)−1AΣ

1
2 )⊗ In. (9.34)



9.3 Inference in the Random Effects Model 235

It follows from (9.32) and (9.34), that

Cov(X|Y) = k(Σ −ΣA′(AΣA′)−1AΣ)⊗ In,

where k = −2ψ ′
q(X2)

and ψq(X2) is defined by (2.30)–(2.32) with q(X2) = tr((Y−
AM)′(AΣA′)−1(Y−AM)).

If the distribution of X is absolutely continuous, then k =
∫∞

r h1(t)dt
2h1(r)

, with r =

tr((Y−AM)′(AΣA′)−1(Y−AM)).
Now, we find the optimal mean square estimator of Z given X.

Theorem 9.11. Assume that in model (9.25), rk(B) = q and the random matrix

Y =

(
Z
V

)
has a finite second order moment. Let rA0UB′

0 be the stochastic

representation of Y and F be the distribution function of r. Then, the optimal mean-
square estimator of Z given X is

Ẑ = E(Z|X) = M+Σ1B′(BΣ 1B′+Σ2)
−1(X−BM).

Furthermore,

Cov(Z|X) = k(Σ 1 −Σ1B′(BΣ 1B′+Σ2)
−1BΣ 1)⊗ In,

where k = −2ψ ′
q(x2)

and ψq(x2) is defined by (2.30)–(2.32) with q(x2) = tr((X−
BM)′(BΣ 1B′+Σ2)

−1(X−BM)). If Y is absolutely continuous and the p.d.f. of X is

f (X) =
1

|BΣ 1B′+Σ2| n
2

h(tr((X−BM)′(BΣ 1B′+Σ2)
−1(X−BM)))

then

k =

∫ ∞
r h(t)dt
2h(r)

,

where r = tr((X−BM)′(BΣ 1B′+Σ2)
−1(X−BM)).

PROOF: We have X = (B,Ip)

(
Z
V

)
. Hence,

X ∼ Ep,n(BM,(BΣ 1B′+Σ 2)⊗ In,ψ).
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Using Lemma 9.3, we get

E

((
Z
V

)
|X
)

=

(
M
0

)
+

(
Σ 1 0
0 Σ 2

)(
B′

Ip

)[
(B,Ip)

(
Σ 1 0
0 Σ 2

)(
B′

Ip

)]−1

× (X− (B,Ip))

(
M
0

)

=

(
M
0

)
+

(
Σ 1B′

Σ 2

)
(BΣ 1B′+Σ2)

−1(X−BM)

=

(
M+Σ1B′(BΣ 1B′+Σ2)

−1(X−BM)

Σ 2(BΣ 1B′+Σ2)
−1(X−BM)

)
.

Thus,

Ẑ = E(Z|X) = M+Σ1B′(BΣ 1B′+Σ2)
−1(X−BM).

We also get

Cov

((
Z
V

)
|X
)
= k

((
Σ 1 0
0 Σ 2

)
−
(
Σ 1B′

Σ 2

)
(BΣ 1B′+Σ2)

−1(BΣ 1,Σ 2)

)
⊗ In.

Therefore,

Cov(Z|X) = k(Σ 1 −Σ1B′(BΣ 1B′+Σ2)
−1BΣ 1)⊗ In,

where k = −2ψ ′
q(x2)

and ψq(x2) is defined by (2.30)–(2.32) with q(x2) = tr((X−
BM)′(BΣ 1B′+Σ 2)

−1(X−BM)).

If

(
Z
V

)
is absolutely continuous, then

k =

∫ ∞
r h(t)dt
2h(r)

with r = tr((X−BM)′(BΣ 1B′+Σ2)
−1(X−BM)).

The results of this section were derived by Chu (1973) for the vector variate case.



Chapter 10
Application in Portfolio Theory

10.1 Elliptically Contoured Distributions in Portfolio Theory

The mean-variance analysis of Markowitz (1952) is important for both practitioners
and researchers in finance. This theory provides an easy access to the problem of
optimal portfolio selection. However, in implementing pricing theory one is faced
with a number of difficulties. The mean-variance approach seems to provide almost
optimal results only if the distribution of the returns is approximately normal or the
utility function looks roughly like a parabola. Kroll, Levy, and Markowitz (1984)
reported that the mean-variance portfolio has a maximum expected utility or it is at
least close to a maximum expected utility.

The practical pitfalls of the mean-variance analysis are mainly related to the
extreme weights that often arise when the sample efficient portfolio is constructed.
This phenomenon was studied by Merton (1980), who among others argued that
the estimates of the variances and the covariances of the asset returns are more
accurate than the estimates of the means. Best and Grauer (1991) showed that
the sample efficient portfolio is extremely sensitive to changes in the asset means.
Chopra and Ziemba (1993) concluded for a real data set that errors in means are
over ten times as damaging as errors in variances and over 20 times as errors in
covariances. For that reason many authors assume equal means for the portfolio
asset returns or, in other words, the global minimum variance portfolio (GMVP).
This is one reason why the GMVP is extensively discussed in literature (Chan,
Karceski, and Lakonishok 1999). The GMVP has the lowest risk of any feasible
portfolio. The subject of our paper are the weights of the GMVP portfolio.

Results about the distribution of the estimated optimal weights and the estimated
risk measures are of great importance for evaluating the efficiency of the underlying
portfolio (Barberis 1999; Fleming, Kirby, and Ostdiek 2001). Jobson and Korkie
(1980) studied the weights resulting from the Sharpe ratio approach under the
assumption that the returns are independent and normally distributed. They derive
approximations for the mean and the variance of the estimated weights, together
with the asymptotic covariance matrix. In Jobson and Korkie (1989) a test for the

A.K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory,
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mean-variance efficiency is derived. A performance measure is introduced which is
related to the Sharpe ratio. Britten-Jones (1999) analyzed tests for the efficiency of
the mean-variance optimal weights under the normality assumption of the returns.
Using a regression procedure the exact distribution of the normalized weights is
derived. Okhrin and Schmid (2006) proved several distributional properties for
various optimal portfolio weights like, e.g., the weights based on the expected utility
and the weights based on the Sharpe ratio. They considered the case of finite sample
size and of infinite sample size as well.

In all of the above cited papers the stock returns are demanded to be independent
and normally distributed. The assumption of normality is found appropriate due to
positive theoretical features, e.g., the consistency with the mean-variance rule, the
equivalence of multiperiod and single period decision rules, the consistency with
the assumptions of the capital asset pricing model (Stiglitz 1989; Markowitz 1991).
Fama (1976) found that monthly stock returns can be well described by a normal
approach. However, in the case of daily returns the assumption of normality and
independence might not be appropriate since it is very likely that the underlying
distributions have heavy tails (Osborne 1959; Fama 1965, 1976; Markowitz 1991;
Rachev and Mittnik 2000). For such a case the application of the multivariate t-
distribution has been suggested by Zellner (1976) and Sutradhar (1988). Moreover,
the assumption of independent returns turns out to be questionable, too. Numerous
studies demonstrated that frequently stock returns are uncorrelated but not indepen-
dent (Engle 1982, 2002; Bollerslev 1986; Nelson 1991).

In this chapter we assume that the matrix of returns follows a matrix elliptically
contoured distribution. As shown in Bodnar and Schmid (2007) this family turns
out to be very suitable to describe stock returns because the returns are neither
assumed to be independent nor to be normally distributed. Furthermore, it is in
line with the results of Andersen, Bollerslev, Diebold, and Ebens (2001) and
Andersen, Bollerslev, and Diebold (2005) who showed that daily returns normalized
by the realized volatility can be well approximated by the normal distribution.
The family covers a wide class of distributions like, e.g., the normal distribution,
the mixture of normal distributions, the multivariate t-distribution, Pearson types
II and VII distributions (see Fang, Kotz, and Ng 1990). Elliptically contoured
distributions have been already discussed in financial literature. For instance, Owen
and Rabinovitch (1983) showed that Tobin’s separation theorem, Bawa’s rules of
ordering certain prospects can be extended to elliptically contoured distributions.
While Chamberlain (1983) showed that elliptical distributions imply mean-variance
utility functions, Berk (1997) argued that one of the necessary conditions for the
capital asset pricing model (CAPM) is an elliptical distribution for the asset returns.
Furthermore, Zhou (1993) extended findings of Gibbons, Ross, and Shanken (1989)
by applying their test of the validity of the CAPM to elliptically distributed returns.
A further test for the CAPM under elliptical assumptions is proposed by Hodgson,
Linton, and Vorkink (2002). The first paper dealing with the application of matrix
elliptically contoured distributions in finance, however, seems to be Bodnar and
Schmid (2007). They introduced a test for the global minimum variance. It is
analyzed whether the lowest risk is larger than a given benchmark value or not.
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10.2 Estimation of the Global Minimum Variance

In the formulation of the mean-variance portfolio problem (e.g., Markowitz 1952;
Samuelson 1970; Constandinidis and Malliaris 1995) a portfolio consisting of k
assets is considered. The weight of the i-th asset in the portfolio is denoted by wi.
Let w = (w1, ..,wk)

′ and w′1 = 1. Here 1 denotes a vector whose components are all
equal to 1. Suppose that for the k-dimensional vector of asset returns at a fixed time
point t the second moments exist. We denote the mean of this vector by μ and its
covariance matrix by V. Then the expected return of the portfolio is given by w′μ
and its variance is equal to w′Vw.

When an investor is fully risk averse optimal weights can be obtained by
minimizing the portfolio variance w′Vw subject to w′1 = 1. If V is positive definite
the weights are presented as

wM =
V−11

1′V−11
. (10.1)

The portfolio constructed using such weights is known as global minimum variance
portfolio. Its variance is given by

σ2
M = w′Vw =

1
1′V−11

. (10.2)

The quantity σ2
M is an important measure for evaluating the portfolio because it

measures its risk behavior.
Because V is an unknown parameter the investor cannot determine σ2

M . He has
to estimate V using previous observations. Given the sample of portfolio returns of
k assets x1, ..,xn the most common estimator of V is its empirical counterpart, i.e.

V̂ =
1

n−1

n

∑
t=1

(xt − x̄)(xt − x̄)′ =
1

n−1
X
(

I− 1
n

11′
)

X′ (10.3)

with X = (x1, ..,xn). Replacing V by V̂ in (10.2) we get the estimator σ̂2
M of σ2

M .
Assuming that the variables x1, ..,xn are independent and identically distributed

with xi ∼ Nk(μ,V) it follows from Muirhead (1982, Theorem 3.2.12) that

(n−1) σ̂2
M

σ2
M

∼ χ2
n−k forn > k.

However, the assumptions of normality and of independence are not appropriate
in many situations of practical interest. Many authors have shown that, e.g., the
distribution of daily stock returns is heavy tailed (cf., Osborne 1959; Fama 1965,
1976; Markowitz 1991; Mittnik and Rachev 1993). In this section we derive the
exact distribution of σ̂2

M = 1/1′V̂−11 under a weaker assumption on the underlying
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sample, namely we assume that X follows a matrix variate elliptically contoured
distribution. Such a result is useful because it provides an important characteristic
of the estimator σ̂2

M and it allows to determine confidence intervals and tests for the
risk measure σ2

M under non-normality.

10.2.1 Distribution of the Global Minimum Variance

For an arbitrary k-dimensional vector τ the density of the random variable Q
defined as

Q = (n−1)
τ ′Σ−1τ
τ ′V̂−1τ

(10.4)

is derived in this section. Because it turns out that the distribution of Q does not
depend on τ it immediately leads to the distribution of the global minimum variance
estimator σ̂2

M .
The stochastic representation of the random matrix X is essential for deriving the

distribution of Q. Let Σ be positive definite. It holds that X ∼ Ek,n(M,Σ ⊗ In,ψ)
if and only if X has the same distribution as M+ R Σ 1/2 U, where U is a k × n
random matrix and vec(U′) is uniformly distributed on the unit sphere in IRkn, R is
a nonnegative random variable, and R and U are independent (see Theorem 2.13).

The distribution of R2 is equal to the distribution of ∑n
i=1(xi −μ i)

′Σ−1(xi −μ i).
If X is absolutely continuous, then R is also absolutely continuous and its density is

fR(r) =
2πnk/2

Γ (nk/2)
rnk−1 h(r2) (10.5)

for r ≥ 0 (cf. Theorem 2.16). Note that for the matrix variate normal distribution
R2

N ∼ χ2
nk, where the index N refers to the normal distribution.

Theorem 10.1. Let X = (x1 . . .xn) ∼ Ek,n(μ 1′,Σ ⊗ In,ψ) and n > k. Let Σ be
positive definite. Then it holds that

(a) Q has a stochastic representation R2b, i.e., Q ≈ R2b. R is the generating
variable of X. The random variables R and b are independent and it holds
that b ∼ B( n−k

2 , nk−n+k
2 ). The distribution function of Q is given by

FQ(y) =
Γ ( nk

2 )

Γ ( n−k
2 )Γ ( nk−n+k

2 )

∫ 1

0
(1− z)

nk−n+k
2 −1 z

n−k
2 −1FR2(

y
z
) dz . (10.6)

(b) Suppose that X is absolutely continuous. Then the density of Q is given by
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fQ(y) =
πnk/2

Γ ( n−k
2 )Γ ( nk−n+k

2 )
y

nk
2 −1
∫ ∞

0
t(nk−n+k−2)/2 h(y(t +1))dt I(0,∞)(y) .

(10.7)

PROOF:

(a) Using V̂ = 1
n−1 X(I−11′/n)X′ and the stochastic representation of the random

matrix X we get

V̂ ≈ 1
n−1

R2Σ 1/2U(I−11′/n)U′Σ 1/2 .

Thus we obtain that

Q ≈ R2 τ ′Σ−1τ

τ ′
(
Σ 1/2U(I−11′/n)U′Σ 1/2

)−1
τ
= R2 Q∗

with

Q∗ = τ ′Σ−1τ/τ ′
(
Σ 1/2U(I−11′/n)U′Σ 1/2

)−1
τ .

The random variables R and Q∗ are independent.
The similar presentation is obtained when X is matrix normally distributed, i.e.
QN ≈R2

N Q∗ with independent variables RN and Q∗. The index N is again used to
indicate on the normal case. Because R2

N ∼ χ2
nk and R2

N Q∗ ∼ χ2
n−k (cf. Muirhead,

1982, Theorem 3.2.12), it follows with Fang and Zhang (1990, p. 59) that there
exists a random variable b∼B( n−k

2 , nk−n+k
2 ) which is independent from RN such

that R2
N Q∗ ≈ R2

N b. We observe that P(R2
N > 0) = P(b > 0) = P(Q∗ > 0) = 1.

Because P(b < 1) = 1 it follows with Lemma 5.3 that Q∗ ≈ b.
Now we obtain the general decomposition of Theorem 10.1 by applying the
results derived for normal variables. Since b can be chosen independent from R
and using that R and Q∗ are independent we get with Fang and Zhang (1990,
p. 38) that

Q ≈ R2Q∗ ≈ R2b .

Thus we have proved the stochastic representation for matrix variate elliptically
contoured distributions. The representation (10.6) is directly obtained by using
the well-known distribution theory for transformations of random vectors.

(b) The second part of Theorem 10.1 is an immediate consequence of part (a).

Note that the distribution of Q does not depend on τ .
Using (10.6) the distribution function of Q can either be calculated explicitly or

at least by numerical integration. The results of Theorem 10.1 permit to derive a test
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that the risk of the global minimum variance portfolio σ2
M =−2ψ ′(0)/1′Σ−11 does

not exceed a certain value. For a given number ξ > 0 the testing problem is

H0 : σ2
M ≤ ξ against H1 : σ2

M > ξ . (10.8)

This means that an investor is interested to know whether the risk of the global
minimum variance portfolio is greater than a certain risk level ξ or not. The test
statistic is given by

−2ψ ′(0)(n−1) σ̂2
M

ξ
=

E(R2∗)(n−1) σ̂2
M

ξ k
. (10.9)

R∗ is the generating variable of x1. Equation (10.9) is valid since x1 ∼ Ek(μ,Σ ,ψ)
and thus x1 has the stochastic representation μ+R∗Σ 1/2U∗. Consequently it follows
that

V = Cov(x1) = E(R2
∗) E(Σ 1/2U∗U∗′Σ 1/2)

=
E(R2∗)

E(R2
N∗)

E(R2
N∗Σ 1/2U∗U∗′Σ 1/2) =

E(R2∗)
k

Σ

where R2
N∗ ∼ χ2

k . This implies (10.9). If the value of the test statistic is larger than c
the hypothesis H1 is accepted. The critical value c is determined as the solution of
FQ(c) = 1−α where α is the level of significance.

Theorem 10.1 can also be used for constructing a confidence interval of σ2
M . It is

given by

[−2ψ ′(0)(n−1) σ̂2
M

c1
,
−2ψ ′(0)(n−1) σ̂2

M

c2

]
,

where c1 and c2 are the solutions of FQ(c1) = 1−α/2 and FQ(c2) = α/2.
Using the stochastic representation of the random variable Q, the moments of the

estimator of the global minimum variance are obtained. It follows that for i ∈ IN

E(σ̂2i
M ) = σ2i

M
ki

E(R2∗)i

E(R2i)

(n−1)i E(bi)

= σ2i
M

E(R2i)

E(R2∗)i

ki

(n−1)i

Γ (i+ n−k
2 )

Γ ( n−k
2 )

Γ ( nk
2 )

Γ (i+ nk
2 )

provided that E(R2i) exists. This leads to

E(σ̂2
M) =

n− k
n−1

σ2
M ,
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Var(σ̂2
M) =

(n− k+2
n(n− k)

k
nk+2

E(R4)

E(R2∗)2 −1
) (n− k)2

(n−1)2 σ
4
M .

Applying Theorem 3.17 (iii) and 3.22 (iii) we get that

E(R2
∗) =−2ψ ′(0)k , E(R4) = nk (nk+1+4ψ ′′(0))

because Σ−1/2(X−M)∼ Ek,n(0,Ik ⊗ In,ψ).
This shows that σ̂2

M is an asymptotically unbiased estimator of σ2
M . An unbiased

estimator is given by n−1
n−k σ̂

2
M .

10.2.2 Examples

In this section we consider some special families of matrix variate elliptical
distributions. Besides the normal approach we consider several alternative models
having heavier tails. We calculate the density of the global minimum variance
portfolio. The moments can be easily derived and are left to the interested reader.
The confidence intervals and the test statistics will be discussed in the next section.

Example 10.1. (The matrix variate normal distribution)
The density generator function for the multivariate normal distribution is

h(t) =
1

(2π) nk
2

exp
(
− t

2

)
. (10.10)

Applying Theorem 10.1 we obtain

fQ(y) =
π nk

2

Γ ( n−k
2 )Γ ( nk−n+k

2 )
y

nk
2 −1 exp

(
− y

2

)∫ ∞

0
t

nk−n+k−2
2 exp

(
− t

y
2

)
dt

=
1

Γ ( n−k
2 )2

n−k
2

y
n−k

2 −1 exp
(
− y

2

)
.

This is the density function of the χ2-distribution with n− k degrees of freedom.

Example 10.2. (The matrix variate symmetric Pearson type VII distribution)
If a k×n random matrix X follows a matrix variate symmetric multivariate Pearson
Type VII distribution then X has a density generator h with

hkn,r,q(t) = (π r)−nk/2 Γ (q)
Γ (q− kn/2)

(1+
t
r
)−q, q>

kn
2
, r > 0 . (10.11)
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From Theorem 10.1 it holds that

fQ(y) =
π nk

2

Γ ( n−k
2 )Γ ( nk−n+k

2 )

(π r)−nk/2Γ (q)
Γ (q− nk

2 )
y

nk
2 −1

×
∫ ∞

0
t

nk−n+k−2
2

(
1+

y(t +1)
r

)−q
dt

=
r−

nk
2 Γ (q)

Γ ( n−k
2 )Γ ( nk−n+k

2 )Γ (q− nk
2 )

y
nk
2 −1

×
(

1+
y
r

)−q ∫ ∞

0
t

nk−n+k−2
2

(
1+

y
r

1+ y
r

t
)−q

dt

=
r−(n−k)/2

B( n−k
2 ,q− nk

2 )
y

n−k
2 −1
(

1+
y
r

)−(q− nk
2 + n−k

2 )

=
2(q−nk/2)

r(n− k)
f(n−k)/2,2(q−nk/2)(

2(q−nk/2)y
r(n− k)

) .

Here fn,m denotes the density of the F− distribution with (n,m) degrees of freedom.
For the matrix variate t− distribution it holds that

fR2(t) =
1
nk

fnk,r(
t

nk
) → χ2

nk(t) as r → ∞ .

Example 10.3. (The matrix variate symmetric Kotz type distribution)
The k×n random matrix X has a matrix variate symmetric Kotz type distribution if

h(t) =
sΓ ( nk

2 )

π nk
2 Γ ( 2q+nk−2

2s )
r

2q+nk−2
2s tq−1 exp

(
− rts
)

(10.12)

with r,s > 0, q ∈ IR such that 2q+nk > 2.
We restrict ourselves to the case s = 1. Then we obtain

fQ(y) =
Γ ( nk

2 )

Γ ( n−k
2 )Γ ( nk−n+k

2 )Γ ( 2q+nk−2
2 )

rq+ nk
2 −1 yq+ nk

2 −2

× exp
(
− ry
) ∫ ∞

0
t

nk−n+k−2
2 (1+ t)q−1 exp

(
− ryt

)
dt

=
Γ ( nk

2 )

Γ ( n−k
2 )Γ ( 2q+nk−2

2 )
rq+ nk

2 −1 yq+ nk
2 −2 exp

(
− ry
)
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×U(
nk−n+ k

2
,

2q+nk−n+ k
2

,ry)

where U(a,b,x) is the confluent hypergeometric function.

10.2.3 Determination of the Elliptical Model

Next we want to illustrate how the obtained theoretical results of the previous
sections can be applied in analyzing financial data. We consider daily data from
Morgan Stanley Capital International for the equity markets returns of three
developed countries (Germany, UK, and USA) for the period from January 1993 to
December 1996. In our study we make use of the advantages of matrix elliptically
contoured distributions. First, the returns at different time points are uncorrelated
and second, the return distribution is elliptically contoured.

It has to be noted that up to now no test of goodness of fit is available for the
present modeling. Our procedure is a compromise which is obtained by combining
existing methods. In order to examine whether the returns of a stock are elliptically
symmetric at all we use a test suggested by Heathcote, Cheng, and Rachev (1995).
The type of the elliptically contoured distribution is determined by applying the
moments test of Fang and Zhang (1990). The analysis will lead to a matrix variate
t-distribution. Other tests on elliptical symmetry were derived by Beran (1979);
Baringhaus (1991); Manzotti, Perez, and Quiroz (2002), and Zhu and Neuhaus
(2003).

We consider the daily returns of the equity markets for each country separately.
For each stock the sample of returns of size n is splitted into m = [n/q] subsamples
of size q. The i-th subsample consists of the q(i− 1) + 1, . . . ,qi-th observations.
In our analysis q is taken equal to 5 or 10. The test of Heathcote, Cheng, and Rachev
(1995) is applied to analyze whether the 5- or 10-day vector of returns is elliptically
contoured, respectively. Denoting the subsample by Z1, ..,Zm the null hypothesis of
elliptical symmetry is rejected iff (see Heathcote, Cheng and Rachev (1995))

∣∣∣
∑m

j=1 sin((Z j −μm)
′t0m)

mσm(t0m)

∣∣∣> zα/2 (10.13)

where zα/2 is the 100(1−α/2) percentile of the standard normal distribution. μm
is the vector whose components are all the same and equal to the sample mean. The
function σm(.) is defined by

σ2
m(t) =

1−Um(2t)
2

−2
Um(t)

m

m

∑
j=1

(Z j −μm)
′ t sin((Z j −μm)

′ t)

+
(

Um(2t)
)2

t′Σmt, t ∈ Sm ⊂ IRq
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Table 10.1 The values of
1/σm(t1m)

Dimension Germany UK USA

5 1.4593 1.4536 1.6101
10 1.4926 1.5195 1.5149

with

Um(t) =
1
m

m

∑
j=1

cos((Z j −μm)
′t) , Σm =

1
m

m

∑
j=1

(Z j −μm)(Z j −μm)
′ .

The symbol t0m ∈ Sm is a point where the function σ2
m(.) reaches its maximum

value on the compact Sm. The set Sm of t = (t1, . . . , tq)′ is contained in a ball of
the radius ‖rm‖, where rm is the first zero of Um(.). Heathcote, Cheng and Rachev
(1995) showed that rm is of a greater magnitude than the first t (in Euclidean norm)
for which t′Amt = 2 where Am = 1

m ∑
m
j=1 Z j Z′

j. Hence, we choose rm as a solution
of the following minimization problem

min
t∈IRq

t′t subject to t′Amt = 2 . (10.14)

Solving it by constructing the Lagrangian we obtain that

t−λAmt = 0 and t′Amt = 2 .

The first k equations of the system have non-zero solution iff |I−λAm|= 0. Hence,
1/λ is an eigenvalue with eigenvector t of the matrix Am. It holds that t′t = 2λ .
Thus, the radius of the ball is equal to

√
2/λmax where λmax is the maximum

characteristic root of the matrix Am.
In the statistics (10.13) the point t0m ∈ Sm is chosen to obtain the maximum value

of the function σm(.). However, it holds that

∣∣∣
∑m

j=1 sin((Z j −μm)
′t0m)

mσm(t0m)

∣∣∣ ≤ 1
σm(t0m)

≤ 1
σm(t1m)

,

where t1m is a point of Sm.
First the radius of the ball for each country and for the five and ten dimensional

vector of returns are calculated. Then a vector t1m ∈ Sm is chosen. For the five
dimensional case we fix t1m = (180,180,180,180,180)′ for German and UK and
t1m = (190,190,190,190,190)′ for USA. In the ten dimensional case the vector,
whose components are equal to 100 is chosen for Germany and UK, and the
vector with elements equal to 150 for USA. The values of 1/σm(t1m) are given
in Table 10.1. The hypothesis of elliptical symmetry can be rejected in none of the
cases for the significance level α = 0.1.
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Table 10.2 The values of the test statistics of the moments test proposed by Fang and
Zhang (1990) (cf. Sect. 10.2.3) (here: q = 10, critical values for α = 0.1: 15.99 for I
moment, 68.80 for II moment)

Count.\d.f. 5 6 7 nor

I mom. II mom. I mom. II mom. I mom. II mom. I mom. II mom.
Germany 13.67 37.53 13.67 48.92 13.67 55.75 13.67 75.71
UK 6.14 29.67 6.14 34.59 6.14 37.59 6.14 84.49
USA 4.24 12.11 4.24 16.94 4.24 19.97 4.24 178.68

In order to construct a confidence interval or to make a test for the variance of the
global minimum variance portfolio it is necessary to know the type of the elliptical
distribution. Many authors proposed to use the t-distribution for modeling daily
returns. Blattberg and Gonedes (1974) compared two heavy tailed statistical models
for stock returns, stable distributions and the t-distribution. They concluded that
the student model provided a better fit for daily stock returns than the symmetric-
stable model. In their study they showed that the degree of freedom for the t-model
fluctuates between 2.53 and 13.26 with the mean of 4.79. Furthermore, the most
estimates of the degree of freedom are located in the interval (4,6). Following these
proposals we fitted a multivariate t-distribution to our empirical data. Again, in the
same way as described above, we examined each stock separately by building 5- and
10-day samples, respectively. The moments test of Fang and Zhang (1990, p. 185)
is applied to analyze the goodness of fit. We used the testing procedure for the first
and second sample moments. The test cannot be applied for higher moments since
they do not exist for a multivariate t-distribution with a small degree of freedom.
Table 10.2 presents the results of the test for subsamples of size q = 10. We fitted
a 10-dimensional normal and t-distribution to the data. The degree of freedom of
the t-distribution was chosen equal to 5,6, and 7. Taking the level of significance
equal to α = 0.1 the critical value is equal to 15.99 for the test based exclusively on
the first moments and 68.80 for the test using the second moments. While the null
hypothesis is not rejected for the t-distribution the normal approach is excluded by
the test based on the second moments.

This analysis leads us to the decision to model the data by a matrix variate
t-distribution in the next section.

10.2.4 Tests for the Global Minimum Variance

Here we want to illustrate how our results can be applied. We divide our data set of
daily returns in two sub-samples. The first one, that includes the data from the first
2 months of 1993, is used to estimate the mean vector and the covariance matrix.
Table 10.3 shows the sample means and the sample covariance matrix of the stock
returns. Because Σ = V/(−2ψ ′(0)) we also get an estimator of Σ . Later on these
values are used as the parameters of our model. The second sub-sample consists
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Table 10.3 The sample mean and the sample covariance matrix of the daily returns of Germany,
UK, USA determined with the observations of January 1993 and February 1993. In the table the
values of the sample covariance matrix are multiplied by 1,000, i.e., 1,000Cov(x)

Germany UK USA

Mean 0.000530 0.000508 0.000539
Germany 0.1146 0.0244 −0.0036
UK 0.0244 0.1165 0.0218
USA −0.0036 0.0218 0.0195

Table 10.4 Critical values c = F−1
Q (1−α) for the test introduced in Sect. 10.2.1

d.f. n = 20 n = 21 n = 22 n = 23

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1
d = 4 93.51 61.62 99.14 65.59 104.8 69.36 110.4 73.12
d = 5 73.66 51.68 78.04 54.79 82.41 57.91 86.79 61.02
d = 6 62.76 45.80 66.44 48.53 70.12 51.27 73.80 54.00
d = 7 55.91 41.97 59.16 44.45 62.40 46.93 65.65 49.41
nor 26.30 23.54 27.59 24.77 28.87 25.99 30.14 27.20

of the values obtained within one of the following months. It is tested whether the
variance of the global minimum portfolio within that month is less than or equal to
the preselected value ξ = 1.05 σ̃2

M . The value ξ is determined with the observations
of the first sample. σ̃2

M is the sample estimator for the global minimum variance
based on the first sub-sample. Our null hypothesis says the risk within the month
under consideration exceeds the risk of the comparative month more than 5%. The
critical values for the significance levels 0.05 and 0.1 are presented in Table 10.4.
The last row contains the critical values for the normal distribution. Because the
number of opening days of the stock exchanges may vary from 1 month to another
we give the results for the sample sizes n ∈ {20, ..,23}. In Table 10.5 the number of
rejections per year of the null hypothesis in (10.8) is shown. This is done for the 5%
(10%) level of significance for the months from March 1993 to December 1996.

Choosing a significance level of 5% the null hypothesis is rejected only once for
a t-distribution with 4 degree of freedom, twice for the t-distribution with 5, 6, and
7 degree of freedom, but 11 times for the normal distribution. For a significance
level of 10% more signals are obtained. These results are given in Table 10.5 in
parenthesis. If a matrix variate t-distribution is selected we have 5− 6 rejections
of the null hypothesis while the normal approach leads to 15 ones. The misleading
assumption of normally distributed daily returns results in more frequent rejections
of the null hypothesis and thus, in many cases, an analyst will unnecessarily adjust
the underlying portfolio.
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Table 10.5 Number of rejections per year of the null hypothesis considered in (10.8) by the test
of Sect. 10.2.1 (here: ξ = 1.05 · σ̃2

M , α = 5% in parenthesis α = 10%)

D\Y 1993 1994 1995 1996

d = 4 0 (0) 0 (2) 0 (0) 1 (3)
d = 5 0 (0) 1 (2) 0 (0) 1 (3)
d = 6 0 (0) 1 (3) 0 (0) 1 (3)
d = 7 0 (0) 1 (2) 0 (0) 1 (3)
nor 2 (4) 4 (6) 1 (1) 4 (4)

10.3 Test for the Weights of the Global Minimum Variance
Portfolio

The aim of the present section is to derive a test for the general linear hypothesis
of the GMVP weights. This hypothesis is treated in great detail within the theory
of linear models (e.g., Rao and Toutenburg 1995). It covers a large number of
relevant and important testing problems. Our test statistic is derived in a similar
way. Contrary to linear models its distribution under the alternative hypothesis is
not a non-central F-distribution. This shows that our results cannot be obtained in
a straightforward way from the theory of linear models. A great advantage of the
approach suggested in this paper is that the assumptions on the distribution of the
returns are very weak.

There are several possibilities how an optimal portfolio can be determined. For
the expected quadratic utility the portfolio weights are chosen to maximize

w′μ− α
2

w′Vw subject to 1′w = 1,

where α > 0 describes the risk aversion of an investor. This leads to the weights

wEU =
V−11

1′V−11
+α−1Rμ with Q = V−1 − V−111′V−1

1′V−11
.

Another approach consists in maximizing the Sharpe ratio of a portfolio without
a risk free asset. The Sharpe ratio is still one of the most popular measures for the
evaluation of a portfolio and the asset performance (Cochrane 1999; MacKinley
and Pastor 2000). The problem of determining optimal weights can be solved by
maximizing

w′μ√
w′Vw

subject to 1′w = 1.

The solution is given by

wSR =
V−1μ

1′V−1μ
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provided that 1′V−1μ �= 0. The portfolio with maximum Sharpe ratio can be
equivalently presented as a global tangency portfolio in a classical quadratic
optimization problem. In the case when an investor is fully risk averse, the weights
in the sense of quadratic utility maximization and the weights of the Sharpe ratio
transform to the weights

wM =
V−11

1′V−11
,

which are the weights of the GMVP.

10.3.1 Distribution of the Estimated Weights of the Global
Minimum Variance Portfolio

The estimator ŵM of wM is given by

ŵM =
V̂−1 1

1′V̂−1 1
, (10.15)

where V̂ is given in (10.3). Note that for a normal random sample V̂ is positive
definite with probability 1 if n > k. Okhrin and Schmid (2006) proved that in
this case all marginal distributions of ŵM with dimension less than k follow a
multivariate t-distribution.

Here we consider linear combinations of the GMVP weights. Let li ∈ IRk, i =
1, . . . , p, 1 ≤ p ≤ k−1, and let L′ = (l1, . . . , lp). We are interested in

wL;p = LwM =
LV−11
1′V−11

=
( l′1V−11

1′V−11
, . . . ,

l′pV−11

1′V−11

)′
. (10.16)

Applying the estimator (10.3) we get

ŵL;p = LŵM =
( l′1V̂−11

1′V̂−11
, . . . ,

l′pV̂−11

1′V̂−11

)′
. (10.17)

Next we want to derive the distribution of ŵL;p. The next theorem is due to Bodnar
and Schmid (2008a).

Theorem 10.2. Let x1,. . . ,xn be independent and identically distributed random
variables with x1 ∼ Nk(μ,V). Let n > k > p ≥ 1. Let G = (gi j) be a k×k−1 matrix
with components gii = 1, gki =−1 for i = 1, ..,k−1, and 0 otherwise. If rk(LG) = p
then it follows that
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ŵL;p ∼ tp

(
n− k+1, wL;p,

1
n− k+1

LQL′

1′V−11

)
.

PROOF: We denote the components of wM by wM,1, . . ., wM,k and of ŵM by
ŵM,1, . . . , ŵM,k. Let w̃M = (wM,1, . . ., wM,k−1)

′ and Q̃ be the matrix consisting of the
k−1 rows and columns of Q. Okhrin and Schmid (2006) showed that the first k−1
components of ŵM , which we denote by ˆ̃wM , follow an k− 1-variate t-distribution
with n− k+1 degrees of freedom and parameters w̃M and Q̃/((n− k+1)1′V−11).
Because the sum over all components of ŵM is equal to 1 we can write ŵM = G ˆ̃wM

with a k× k−1 matrix G of rank k−1. If rk(LG) = p then by using the properties
of elliptically contoured distributions it follows that

LŵM = LG ˆ̃wM ∼ tp

(
n− k+1,LwM,

1
n− k−1

LGQ̃G′L′
)

.

Because Q1 = 0 it can be seen that GQ̃G′ = Q and thus the assertion is proved.

Applying the properties of the multivariate t-distribution we get that E(ŵL;p) =
wL;p and for k ≤ n−2 that

Var(ŵL;p) =
1

n− k−1
LQL′

1′V−11
. (10.18)

Theorem 10.2 says that linear combinations of the components of ŵM are again
t-distributed. However, if the matrix V cannot be estimated by historical data, it does
not provide a test for wL;p because the distribution of ŵL;p still depends on V.

10.3.2 The General Linear Hypothesis for the Global
Minimum Variance Portfolio Weights

Following Markowitz (1952) efficient portfolios are obtained by minimizing the
variance of the portfolio return given a certain level of the expected portfolio return.
The problem of testing the efficiency of a portfolio has been recently discussed
in a large number of studies. In the absence of a riskless asset Gibbons (1982),
Kandel (1984), Shanken (1985) and Stambaugh (1982) have analyzed multivariate
testing procedures for the mean-variance efficiency of a portfolio. Jobson and Korkie
(1989) and Gibbons, Ross, and Shanken (1989) derived exact F-tests for testing the
efficiency of a given portfolio. More recently, Britten-Jones (1999) has given the
exact F-statistics for testing the efficiency of a portfolio with respect to portfolio
weights which is based on a single linear regression. In this section we introduce a
test of the general linear hypothesis for the GMVP weights. First, in Sect. 10.3.2
we consider the normal case. In Sect. 10.3.3 the results are extended to matrix
elliptically contoured distributions.
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As above let L be a p× k matrix and r be a p-dimensional vector. L and r are
assumed to be known. We consider the general linear hypothesis which is given by

H0 : LwM = r against H1 : LwM �= r .

This means that the investor is interested to know whether the weights of the GMVP
fulfill p linear restrictions or not. This is a very general testing problem and it
includes many important special cases (cf. Greene 2003, pp. 95–96).

In Theorem 10.2 it was proved that ŵL;p follows a p-variate multivariate t-
distribution with n− k+ 1 degrees of freedom, location parameter wL;p and scale
parameter LQL′/1′V−11. This result provides a motivation for considering the
following test statistic for the present testing problem

T =
n− k

p

(
1′V̂−11

)(
ŵL;p − r

)′(
LQ̂L′

)−1(
ŵL;p − r

)
. (10.19)

This quantity is very similar to the F statistic for testing a linear hypothesis within
the linear regression model. Because the distribution of the underlying quantities
is different than in the case of a linear model we cannot apply these well-known
results.

Now let Fi, j denote the F-distribution with degrees i and j. Its density is written
as fi, j. In the following we make also use of the hypergeometric function (cf.
Abramowitz and Stegun 1965)

2F1(a,b,c;x) =
Γ (c)

Γ (a)Γ (b)

∞

∑
i=0

Γ (a+ i)Γ (b+ i)
Γ (c+ i)

zi

i!
.

The technical computation of a hypergeometric function is a standard routine within
many mathematical software packages like, e.g., in Mathematica.

Theorem 10.3. Let x1,. . . ,xn be independent and identically distributed random
variables with x1 ∼ Nk(μ,V). Let n > k > p ≥ 1. Let M̃′ = (L′, 1) and
rk(M̃) = p+1.

(a) The density of T is given by

fT (x) = fp,n−k(x) (1+λ )−(n−k+p)/2 (10.20)

× 2F1

(n− k+ p
2

,
n− k+ p

2
,

p
2

;
px

n− k+ px
λ

1+λ

)

with λ = 1′V−11(r−wL;p)
′(LQL′)−1(r−wL;p).

(b) Under the null hypothesis it holds that T ∼ Fp,n−k.
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PROOF:

(a) Let M̃′ = (L′,1) and M̃V−1M̃′ = {Hi j}i, j=1,2, M̃V̂−1 M̃′ = {Ĥi j}i, j=1,2 with
H22 = 1′V−11, Ĥ22 = 1′V̂−11, H12 = LV−11, Ĥ12 = LV̂−11, H11 = LV−1L′,
and Ĥ11 = LV̂−1L′. Because (n− 1)V̂ ∼ Wk(n− 1,V) and rk(M̃) = p+ 1 we
get with Theorem 3.2.11 of Muirhead (1982) that

(n−1)(M̃V̂−1M̃′)−1 ∼Wp+1(n− k+ p,(M̃V−1 M̃′)−1) .

Now it holds with B̂ = LR̂L′ that

(M̃Σ̂−1
M̃′)−1 =

(
B̂−1 −B̂−1 ŵL;p

−ŵ′
L;p B̂−1 (Ĥ22 − Ĥ21Ĥ−1

11 Ĥ12)
−1

)

because ŵL;p = Ĥ12/Ĥ22. We obtain with Theorem 3.2.10 (ii) of Muirhead
(1982)

f√n−1B̂−1/2(ŵL;p−r)|(n−1)B̂−1(a|C)

= f−(n−1)B̂−1ŵL;p|(n−1)B̂−1(−C1/2a−Cr|C) |C| 1
2

=
Hp/2

22

(2π)p/2
exp

(
−H22

2
(a+C1/2(r−wL;p))

′(a+C1/2(r−wL;p))

)
.

This is the density of the p-dimensional normal distribution with mean C1/2(r−
wL;p) and covariance matrix I/H22, i.e.

√
n−1 H1/2

22 B̂−1/2(ŵL;p − r)|(n−1)B̂−1 = C ∼ N(H1/2
22 C1/2(r−wL;p),I) .

Consequently

(n−1) 1′V−11 (ŵL;p − r)′ B̂−1 (ŵL;p − r)|(n−1)B̂−1 = C ∼ χ2
p,λ (C)

with λ (C) = H22(r−wL;p)
′C(r−wL;p).

From Muirhead (1982, Theorem 3.2.12) we know that

(n−1)
1′V−11

1′V̂−11
∼ χ2

n−k .

Moreover, applying Theorem 3.2.10 (i) of Muirhead (1982) it follows that Ĥ22

is independent of B̂−1 and B̂−1ŵL;p and thus Ĥ22 is independent of B̂−1 and
(ŵL;p − r)′ B̂−1 (ŵL;p − r). Putting these results together we obtain

T |(n−1)B̂−1 = C ∼ Fp,n−k,λ (C) .
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Because (n−1)B̂−1 ∼Wp(n− k+ p,B−1) with B = LQL′ we obtain that

fT (x) =
∫

C>0
fp,n−k,λ (C)(x)wp(n− k+ p,B−1)(C)dC .

Here fi, j,λ denotes the density of the non-central F-distribution with degrees
i and j and noncentrality parameter λ and wp is the density of the Wishart
distribution Wp. If λ = 0 we briefly write fi, j. It holds that (e.g., Theorem 1.3.6
of Muirhead (1982))

fp,n−k,λ (C)(x) = fp,n−k,0(x) exp

(
−λ (C)

2

)

×
∞

∑
i=0

((n− k+ p)/2)i

(p/2)i

λ (C)i

i!

( px
2(n− k+ px)

)i
.

Let us denote

k(i) =
1
i!
((n− k+ p)/2)i

(p/2)i

( px
2(n− k+ px)

)i
.

Then it follows that

fT (x) = fp,n−k(x)
∞

∑
i=0

k(i)
∫

C>0
λ (C)i exp

(
−λ (C)

2

)
1

2p(n−k+p)/2Γp(
n−k+p

2 )

× |B| n−k+p
2 |C| n−k−1

2 etr

(
−1

2
BC
)

dC

= fp,n−k(x)
∞

∑
i=0

k(i)
∫

C>0
|B| n−k+p

2
1

2p(n−k+p)/2Γp(
n−k+p

2 )

× |C| n−k−1
2
(
1′V−11(r−wL;p)

′C(r−wL;p)
)i

× etr

(
−1

2
(B+1′V−11(r−wL;p)(r−wL;p)

′)C
)

dC

= fp,n−k(x) |B|
n−k+p

2 |B+1′V−11(r−wL;p)(r−wL;p)
′|− n−k+p

2

×
∞

∑
i=0

k(i)(1′V−11)i E(((r−wL;p)
′C̃(r−wL;p))

i) ,

where C̃ follows a p-dimensional Wishart distribution with n− k+ p degree of
freedom and parameter matrix B̃ = (B+1′V−11(r−wL;p)(r−wL;p)

′)−1. From
Theorem 3.2.8 of Muirhead (1982) we obtain that
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E(((r−wL;p)
′C̃(r−wL;p))

i)

= 2i ((n− k+ p)/2)i ((r−wL;p)
′B̃(r−wL;p))

i

= 2i ((n− k+ p)/2)i

( (r−wL;p)
′B−1(r−wL;p)

1+H22(r−wL;p)′B−1(r−wL;p)

)i
.

Finally

fT (x) = fp,n−k(x)(1+1′V−11(r−wL;p)
′B−1(r−wL;p))

−(n−k+p)/2

×
∞

∑
i=0

((n− k+ p)/2)i((n− k+ p)/2)i

i!(p/2)i

×
( px1′V−11(r−wL;p)

′B−1(r−wL;p)

(n− k+ px)(1+1′V−11(r−wL;p)′B−1(r−wL;p))

)i

= fp,n−k(x)(1+1′V−11(r−wL;p)
′B−1(r−wL;p))

−(n−k+p)/2

× 2F1

(n− k+ p
2

,
n− k+ p

2
,

p
2

;
px

n− k+ px

1′V−11(r−wL;p)
′B−1(r−wL;p)

1+1′V−11(r−wL;p)′B−1(r−wL;p)

)
.

Thus the result is proved.
(b) The statement follows by noting that λ = 0 under H0 and

2F1

(n− k+ p
2

,
n− k+ p

2
,

p
2

;0
)
= 1.

It is remarkable that the distribution of T depends on the parameters μ and V and
the matrices of the linear hypothesis L and r only via the quantity λ . The parameter
λ can be interpreted as a noncentrality parameter. This fact simplifies the power
study of the test. In Fig. 10.1 the power of the test, i.e. 1−FT (c) with Fp,n−k(c) =
0.9, is shown as a function of λ and p. Note that the T -statistic under H1 does
not possess the non-central F-distribution which is obtained in the theory of linear
models. The number of observations n is equal to 260 and k is equal to 7. The figure
illustrates the good performance of the test. Even for small values of λ the test has a
high performance. Moreover, it can be seen that its power decreases if p increases.

Theorem 10.3 has many important applications. If, e.g., the analyst wants to test
whether the GMVP weight of the first stock in the portfolio ŵM,1 is equal to a given
value r1, perhaps a reference value from a previous time period, we choose p = 1
and l1 = (1,0, . . . ,0)′. Then we get

T = (n− k)

(
1′V̂−11

)2
(ŵM,1 − r1)

2

1′V̂−11 v̂(−)
11 − (∑k

i=1 v̂(−)
1i )2

with V̂−1 = (v̂(−)
i j ). For the one-sided hypothesis the statistic

T ∗ =
√

n− k
1′V̂−11(ŵM,1 − r1)√

1′V̂−11 v̂(−)
11 − (∑k

i=1 v̂(−)
1i )2



256 10 Application in Portfolio Theory

p=1

p=2
p=3
p=4
p=5
p=6

Power

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Noncentrality Parameter
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Fig. 10.1 Power function of the test for the general hypothesis (cf. Theorem 10.3) for various
values of p ∈ {1, ..,6} and 10% level of significance. The number of portfolio assets is equal to
k = 7 and number of observations is n = 260

can be used which under the null hypothesis follows a t-distribution with n − k
degrees of freedom. Moreover, Theorem 10.3 provides a test for the hypothesis that,
e.g., two stocks have the same weights in the GMVP or that all weights are equal
to reference (target) values. Consequently it can be used as a tool for monitoring
the weights of the GMVP and it permits a decision whether the portfolio should be
adjusted or not.

The above result can be applied to construct a 1−α two-sided confidence interval
for wL;p as well. It is given by the set of all r satisfying that T (r)≤ Fp,n−k;1−α .

10.3.3 The General Linear Hypothesis for the Global
Minimum Variance Portfolio Weights in an Elliptical
Model

Using the stochastic representation of the random matrix X and Theorem 5.1.1 of
Fang and Zhang (1990), it is proved in Theorem 10.4 that the statistics ŵL;p and T
are distribution-free on the class of elliptically contoured distributions.
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Theorem 10.4. Let x = (x1 . . .xn)∼Ek,n(μ 1′,Σ⊗In,ψ). Let Σ be positive definite
and suppose that X is absolutely continuous. Let n > k > p ≥ 1. G is used as in
Theorem 10.2.

(a) If rk(LG) = p then

ŵL;p ∼ tp

(
n− k+1,wL;p,

1
n− k+1

LQL′

1′V−11

)
.

(b) If rk(L′,1) = p+1 then the density of T is the same as in (10.20).

PROOF: Using the stochastic representation we obtain that

(n−1)V̂ ≈ R2 Σ 1/2U(I− 1
n

11′)U′Σ 1/2.

Consequently it holds that

ŵL;p ≈

⎛

⎜
⎝

l′i
(
Σ 1/2U(I−11′/n)U′Σ 1/2

)−1
1

1′
(
Σ 1/2U(I−11′/n)U′Σ 1/2

)−1
1

⎞

⎟
⎠

=

⎛

⎜
⎝

l′i
(

R2
NΣ

1/2U(I−11′/n)U′Σ 1/2
)−1

1

1′
(

R2
NΣ

1/2U(I−11′/n)U′Σ 1/2
)−1

1

⎞

⎟
⎠ .

Thus ŵL;p has the same distribution as in the case of independent and normally
distributed random vectors. Analogously, it can be seen that LQ̂L′/1′V̂−11 is
distribution-free on the class of elliptically contoured distributions and thus the
same property holds for T .

Theorem 10.4 says that the distribution of linear combinations of the estimated
GMVP weights and the distribution of T are independent of the type of elliptical
symmetry of the portfolio returns. Thus, in case of a fully risk averse investor neither
the mean vector nor the distributional properties of asset returns have an influence
on the optimal portfolio weights. In order to apply these results it is sufficient to
know that the distribution of the data is a member of the family of matrix elliptical
distributions but it is not necessary to have knowledge of the exact distribution.
This assumption does not exclude the Pareto stable family and the multivariate t-
distribution. Although the covariance matrix does not exist for the stable family
(contrary to the normal case) and not always for the t-distribution, the results of
Theorem 10.4 are valid for these distributional families, too.
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Table 10.6 95% and 90% two-sided confidence intervals for the GMPV weights of France,
Germany, Italy, Japan, Spain, U.K., and U.S.

Country FR GE IT JP SP U.K. U.S.

95% LCL −0.0640 0.0292 −0.008 0.1162 −0.1751 −0.0170 0.4301
95% UCL 0.1890 0.2107 0.0987 0.2680 0.0131 0.2615 0.6475
90% LCL −0.0525 0.0374 −0.0032 0.1230 −0.1666 −0.0044 0.4399
90% UCL 0.1776 0.2025 0.0939 0.2612 0.0046 0.2489 0.6377

10.3.4 International Global Minimum Variance Portfolio

Based on the daily data from January 1, 1994 to December 31, 1994 an international
global minimum variance portfolio is determined. Such a portfolio is of interest
for an investor focused on international trading because it can be regarded as a
benchmark portfolio for his investment. Confidence intervals for various linear
restrictions are derived. Bodnar and Schmid (2007) proposed to model daily stock
returns by matrix elliptically contoured distributions. Following the results of
Sect. 10.2.3 the assumption of the matrix elliptical symmetry cannot be rejected
for the considered data. Here we make use of this extremely useful family of matrix
valued distributions.

In Table 10.6 separate confidence intervals for the GMVP weights of each
country are presented. The problem of multiple comparisons (here 7) is taken into
account by using the Bonferroni inequality. The null hypothesis of a weight of size 0
is not rejected for the French, Italian, Spanish, and UK returns. The GMVP weights
of Germany, Japan, and USA are positive. The GMVP weight of the USA is the
largest one. Its size is larger than the sum of the weights of all remaining countries.
The null hypothesis of a weight of size 0.5 cannot be rejected for a 10% level of
significance. The upper bound of the 95% one-sided confidence interval for the US
weight is equal to 0.6475. This result turns out to be of interest because it does
not support an investor who allocates his whole wealth into the US market. It is
not in line with the result obtained by Britten-Jones (1999) for monthly price data.
Finally, the lower bound for a 95% one-sided confidence interval for the sum of the
GMVP weights of the Germany, Japan, UK, and USA is given by 0.848. This shows
the benefits of a portfolio allocation to the four developed markets, i.e., Germany,
Japan, UK, and USA. They are able to explain nearly the whole development of the
portfolio.

10.4 Inference for the Markowitz Efficient Frontier

In order to construct an optimal portfolio Markowitz (1952) proposed to choose the
portfolio with the smallest risk for a given level of average portfolio return. Merton
(1972) showed that the set of all of these optimal portfolios lies on a parabola in the
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mean-variance space, the so-called efficient frontier. This parabola is determined
by three characteristics. The first two define the location of the vertex, while the
third one is the slope parameter. Assuming the asset returns to be independently
and normally distributed, Jobson (1991) obtained an asymptotic confidence region
of the efficient frontier, while Bodnar and Schmid (2009) derived an exact joint
confidence set of the three parameters of the efficient frontier. This set is used to
determine a region in the mean-variance space where all optimal portfolios lie with
a given probability (1−α).

Because the parameters of the efficient frontier are unknown quantities, the
investor cannot construct the efficient frontier. Usually, the sample efficient frontier
is used instead of the population efficient frontier (see, e.g. Bodnar and Schmid
2008b; Kan and Smith 2008), which is obtained by replacing the unknown param-
eters of the asset returns distribution with the corresponding sample counterparts.
However, Basak, Jagannathan, and Ma (2005) and Siegel and Woodgate (2007)
showed that the sample efficient frontier is overoptimistic and overestimates the
true location of the efficient frontier in the mean-variance space. In order to correct
this overoptimism Kan and Smith (2008) suggested an improved estimator of the
efficient frontier, while Bodnar and Bodnar (2010) derived the unbiased estimator
of the efficient frontier.

In the above cited papers, the assumption of independence and normality
is maintained. However, these assumptions might not be appropriate in many
situations of practical interest. Many authors have shown that the distribution of
daily stock returns is heavy tailed (e.g., Fama 1965; Markowitz 1991; Mittnik and
Rachev 1993; Chen, Gupta, and Troskie 2003).

10.4.1 Derivation of the Efficient Frontier

First, we derive an expression for the efficient frontier assuming that the asset returns
are elliptically contoured distributed. If a random vector x is elliptically contoured
distributed with the location parameter μ and the dispersion matrix Σ then it has the
following stochastic representation (see, e.g. Fang and Zhang (1990, p. 65))

x ≈ μ+ r̃Σ 1/2u , (10.21)

where u is uniformly distributed on the unit sphere in IRk and the generating variable
r̃ is independent of u.

We derive an expression for the efficient frontier using the formulas for the
expected return and the variance of the optimal portfolio in the sense of maximizing
the expected utility function (EU portfolio). Let w = (w1, . . . ,wk)

′ denote the vector
of portfolio weights, i.e. wi is the part of the investor’s wealth invested into the ith
asset. Then the expected return of the portfolio with the weight vector w is given

by Rp = w′E(x) = w′μ , while its variance is Vp = w′Var(x)w = E(r̃2)
k w′Σw. The

weights of the EU portfolio are obtained by maximizing
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Rp − γ2Vp = w′μ− γ
2

E(r̃2)

k
w′Σw (10.22)

under the constraint w′1 = 1. There γ > 0 is the coefficient of the investor’s risk
aversion. The solution of (10.22) is given by

wEU =
Σ−11

1′Σ−11
+ γ̃−1Qμ with Q = Σ−1 − Σ

−111′Σ−1

1′Σ−11
, (10.23)

where γ̃ = γE(r̃2)/k. Using the weights (10.23), the expected return and the variance
of the EU portfolio are obtained as

REU =
μ ′Σ−11

1′Σ−11
+ γ̃−1μ ′Qμ = RGMV + γ̃−1s , (10.24)

and

VEU =
E(r̃2)

k
1

1′Σ−11
+ γ̃−2 E(r̃2)

k
μ ′Qμ =

E(r̃2)

k
VGMV + γ̃−2 E(r̃2)

k
s , (10.25)

where

RGMV =
1′Σ−1μ
1′Σ−11

, and VGMV =
1

1′Σ−11
(10.26)

are the expected return and the variance of the global minimum variance portfolio
(GMV portfolio) and s = μ ′Qμ . The GMV portfolio is a special case of the EU
portfolio that corresponds to the case of the fully risk averse investor, i.e. γ = ∞.

The Eqs. (10.24) and (10.25) are considered as the parametric equations of the
efficient frontier. Solving (10.24) and (10.25) with respect to γ̃ , the efficient frontier
is expressed as

(R−RGMV )
2 =

k
E(r̃2)

s

(
V − E(r̃2)

k
VGMV

)
. (10.27)

From (10.27) we conclude that the efficient frontier depends on the asset return
distribution. If E(r̃2)> k, then the risk of the investment is higher than in the normal
case. Moreover, there is a decrease in the overall market profitability since in (10.27)
the slope coefficient of the parabola is multiply by k/E(r̃2)< 1. When E(r̃2)→ ∞,
the slope coefficient of the parabola tends to zero. In this case the efficient frontier
degenerates into a straight line and the only efficient portfolio is the GMV portfolio.

The same result is obtained by considering γ̃ . Note, that γ̃ can be considered as
a coefficient of risk inversion in elliptical models. If γ = ∞ and E(r̃2) < ∞, the EU
portfolio transforms to the GMV portfolio. From the other side, if E(r̃2) = ∞ there
is no solution of the optimization problem since in this case we get that

(R−RGMV )
2 =−sVGMV .
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10.4.2 Sample Efficient Frontier in Elliptical Models

Let x1, . . . ,xn be a sample of the asset returns. We assume that the asset returns
follow a matrix variate mixture of normal distributions with mean vector μ and
dispersion matrix Σ . Any mixture of normal distributions belongs to the family of
elliptically contoured distributions with stochastic representation of xi given by

xi ≈ μ+ rΣ1/2zi , (10.28)

where zi ∼ Nk(0,I) and Z = (z1, . . . ,zn) is independent of r. We denote this
distribution by Ek,n(μ,Σ ⊗ In,g), where g is the so-called density generator which
is fully determined by the distribution of r.

Note, that the asset returns are not assumed to be independently distributed in
(10.28). The assumption of independence is replaced with a weaker one that the
asset returns are uncorrelated. The random variable r determines the tail behavior of
the asset returns. The model (10.28) is in-line with the recent modeling of the daily
behavior of the asset returns. The daily asset returns are heavy-tailed distributed
and they are not independent (see, e.g. Engle 1982, 2002; Bollerslev 1986; Nelson
1991).

Because μ and Σ are unknown parameters of the asset returns distribution, the
investor cannot use (10.27) to construct the efficient frontier. These quantities have
to be estimated from the historical values of the asset returns before the efficient
frontier is determined. We consider the sample estimators of these parameters
given by

μ̂ =
1
n

n

∑
j=1

x j and Σ̂ =
1

n−1

n

∑
j=1

(x j − μ̂)(x j − μ̂)′ . (10.29)

Using E(r̃2)/k = E(r2) and plugging (10.29) instead of μ and Σ in (10.27), the
sample efficient frontier is expressed as

(R− R̂GMV )
2 =

1
E(r2)

ŝ(V −E(r2)V̂GMV ) , (10.30)

where

R̂GMV =
1′Σ̂−1μ̂

1′Σ̂−1
1
, V̂GMV =

1

1′Σ̂−1
1
, and ŝ = μ̂ ′Q̂μ̂ , (10.31)

with Q̂ = Σ̂−1 − Σ̂−1
11′Σ̂−1

/1′Σ̂−1
1.

Theorem 10.5 is taken from Bodnar and Gupta (2009). It presents the distribution
properties of R̂GMV , V̂GMV , and ŝ.
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Theorem 10.5. Let X = (x1, . . . ,xn)∼ Ek,n(μ,Σ ⊗ In,g). Assume that Σ is positive
definite. Let k > 2 and n > k. Then it holds that

(a) Given r = r0, V̂GMV is independent of (R̂GMV , ŝ).

(b) (n−1)V̂GMV/VGMV |r = r0 ∼ r2
0χ2

n−k.

(c) n(n−k+1)
(n−1)(k−1) ŝ|r = r0 ∼ Fk−1,n−k+1,ns/r2

0
.

(d) R̂GMV |ŝ = y,r = r0 ∼ N
(

RGMV ,
1+ n

n−1 y
n VGMV r2

0

)
.

(e) The joint density function is given by

fR̂GMV ,V̂GMV ,ŝ
(x,z,y) =

∫ ∞

0

n(n− k+1)

(k−1)VGMV r2
0

f
N(RGMV ,

1+ n
n−1 y
n VGMV r2

0)
(x)

× fχ2
n−k

(
n−1

VGMV r2
0

z) fF
k−1,n−k+1,ns/r2

0
(

n(n− k+1)
(n−1)(k−1)

y) fr(r0)dr0 .

PROOF: Given r = r0 it holds that the xi’s are independently distributed with
xi|r = r0 ∼ Nk(μ,r2

0Σ). Application of Lemma 1 of Bodnar and Schmid (2009)
leads to the statement of the theorem. The theorem is proved.

10.4.3 Confidence Region for the Efficient Frontier

A joint test for three characteristics of the efficient frontier is given by

H0 : RGMV = R0,VGMV =V0, s = s0 (10.32)

against

H1 : RGMV = R1 �= R0 or VGMV =V1 �=V0 or s = s1 �= s0 .

For testing (10.32) we use the results of Theorem 10.5, which motivate the
application of the test statistic T = (TR,TV ,TS)

′ with

TR =
√

n
R̂GMV −R0

√
V0

√
1+ n

n−1 μ̂
′Q̂μ̂

, (10.33)

TV = (n−1)
V̂GMV

V0
, (10.34)

TS =
n(n− k+1)
(k−1)(n−1)

μ̂ ′Q̂μ̂ . (10.35)
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Similar test statistic was considered by Bodnar and Schmid (2009) in the normal
case. The distribution of T is derived in Theorem 10.6 under the null and alternative
hypotheses.

Theorem 10.6. Let X = (x1, . . . ,xn)∼ Ek,n(μ,Σ ⊗ In,g). Assume that Σ is positive
definite. Let k > 2 and n > k. Then it holds that

(a) Let RGMV = R1, VGMV =V1, and s = s1. The density of T is given by

fT (x,y,z) = η−1
∫ ∞

0
r−2

0 fχ2
n−k

(
z

r2
0η

)
fN(

√ηδ (y),r2
0η)

(x) (10.36)

× fF
k−1,n−k+1,ns1/r2

0
(y) fr(r0)dr0 .

with δ (y) =
√

nλ1/
√

1+ k−1
n−k+1 y, η = V1/V0, λ1 = (R1 − R0)/

√
V1, and

s1 = μ ′Qμ .

(b) Under the null hypothesis the density of T under H0 is given by

fT (x,y,z) =
∫ ∞

0
r−2

0 fχ2
n−k

(z/r2
0) fN(0,r2

0)
(x) fF

k−1,n−k+1,ns0/r2
0
(y) fr(r0)dr0 .

(10.37)

PROOF: The proof of Theorem 10.6 follows from Proposition 3 of Bodnar and
Schmid (2009) by considering first the conditional distribution of X given r = r0

and then integrating over r0. The theorem is proved.

The results of Theorem 10.6 are used to derive the power function of the test for
(10.32) which depends on μ and Σ only through the quantities η , λ1, and s1. The
power function is equal to

GT ;α(η ,λ1,s1) = 1−
∫ ∞

0
(1−GTV ;α̃(η)) (10.38)

×
∫ z1−α̃/2

zα̃/2

∫ s1−α̃/2

sα̃/2

fN(
√ηδ (y),ηr2

0)
(x) fF

k−1,n−k+1,ns1/r2
0
(y) fr(r0)dydxdr0 ,

where

GTV ;α̃(η) = 1−Fχ2
n−k

(
χ2

n−k;1−α̃/2

ηr2
0

)

+Fχ2
n−k

(
χ2

n−k;α̃/2

ηr2
0

)
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Fig. 10.2 Power of the test based on T for testing problem (10.32) as a function of η =V1/V0 and
λ1 = (R1 −R0)/

√
V1 (data of Sect. 10.4.6, s1 = 0.224157, n = 60, k = 5, and α = 5%). The asset

returns are assumed to be matrix t-distributed with 5 degrees of freedom
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Fig. 10.3 Power of the test based on T for testing problem (10.32) as a function of η =V1/V0 and
λ1 = (R1 −R0)/

√
V1 (data of Sect. 10.4.6, s1 = 0.224157, n = 60, k = 5, and α = 5%). The asset

returns are assumed to be matrix t-distributed with 15 degrees of freedom

and 1−α = (1− α̃)3, i.e. α̃ = 1− 3
√

1−α . The quantities sα̃/2 and s1−α̃/2 are the
lower and upper bounds of the (1− α̃)-confidence interval for s.

In Figs. 10.2 and 10.3, we present (10.38) as a function of η and λ1 in the case
of the matrix t-distribution with 5 degrees of freedom and in the case of the matrix
t-distribution with 15 degrees of freedom. The figures show that the test for (10.32)
is more powerful when the matrix t-distribution with lager number of degrees of
freedom, i.e. with the smaller tails, is considered.
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Next, we construct the joint confidence set for the three characteristics of the
efficient frontier. From Theorem 10.6, it follows that, given r = r0, the statistics TR,
TV , and TS are mutually independent. This fact simplifies the construction of the
confidence region. In order to account for the uncertainty of the generating variable
r, we put 1−α = (1−α∗)4, e.g. α∗ = 1− 4

√
1−α . Using the fact that for given r =

r0 xi’s are independently distributed with xi|r = r0 ∼ Nk(μ,r2
0Σ), the simultaneous

confidence set A (r0) consists of all points (RGMV ,VGMV ,s) that satisfy

(RGMV − R̂GMV )
2 ≤ z2

1−α∗/2

(
1
n
+

ŝ
n−1

)
VGMV r2

0 ,

VGMV ∈
[
(n−1)V̂GMV

r2
0χ2

n−k;1−α∗/2

,
(n−1)V̂GMV

r2
0χ2

n−k;α∗/2

]

= [V̂l ,V̂u] ,

r2
0 ŝα∗/2 ≤ s ≤ r2

0 ŝ1−α∗/2 .

The confidence interval for s is obtained as a confidence interval for the noncentral-
ity parameter of the noncentral F-distribution (see Lam (1987)).

Let FR(rmax) = 1−α∗/2 and FR(rmin) = α∗/2. Then the confidence region for
the efficient frontier is defined as the border of the set {A (r) : rmin ≤ r ≤ rmax},
which is given by

(RGMV−R̂GMV )
2 ≤ z2

1−α∗/2

(
1
n
+

ŝ
n−1

)
VGMV r2

max for RGMV>R̂GMV , (10.39)

(RGMV−R̂GMV )
2 ≤ z2

1−α∗/2

(
1
n
+

ŝ
n−1

)
VGMV r2

min for RGMV<R̂GMV , (10.40)

VGMV ∈
[

(n−1)V̂GMV

r2
maxχ2

n−k;1−α∗/2

,
(n−1)V̂GMV

r2
minχ2

n−k;α∗/2

]

= [V̂l ,V̂u] (10.41)

r2
minŝα∗/2 ≤ s ≤ r2

maxŝ1−α∗/2 . (10.42)

We denote this set by A ∗. Because the efficient frontier lies in the mean-variance
space, it would be interesting to derive the expression for A ∗ in the mean-variance
space. Note, that the confidence region for the efficient frontier consists of all
parabolas (R − RGMV )

2 = s(V −VGMV ), where RGMV and VGMV satisfy (10.39)-
(10.41) and s satisfies (10.42). It can be expressed as

B = {(R−RGMV )
2 = s(V −VGMV ) : (RGMV ,VGMV ,s) ∈ A ∗} . (10.43)

Let

gl = z1−α∗/2

√

1+
nŝ

n−1

√
n−1

√
V̂GMV√

nχ2
n−k;1−α∗/2

, (10.44)
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gu = z1−α∗/2

√

1+
nŝ

n−1

√
n−1

√
V̂GMV√

nχ2
n−k;α∗/2

rmax

rmin
, (10.45)

t =
1

1+ z−2
1−α∗/2ŝ1−α∗/2

n(n−1)
n(1+ŝ)−1

. (10.46)

Using the proof of Theorem 1 of Bodnar and Schmid (2009), we get the expression
of B.

Theorem 10.7. It holds that B is equal to the set of all pairs (R,V ) satisfying all
of the following conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ≥ (n−1)V̂GMV
r2
maxχ2

n−k;1−α∗/2
for R ∈ IR

V ≥ z−2
1−α∗/2

n(n−1)
n(1+ŝ)−1 r−2

max(R− R̂GMV )
2 for R ∈ Il

1

V ≤ (n−1)V̂GMV
r2
minχ

2
n−k;α∗/2

+ ŝ−1
α∗/2r−2

min

(
R− R̂GMV +gu

)2
for R ∈ Il

2

V ≥ (n−1)V̂GMV
r2
maxχ2

n−k;1−α∗/2
+ ŝ−1

1−α∗/2r−2
max

(
R− R̂GMV −gl

)2
for R ∈ Iu

1

V ≥ z−2
1−α∗/2

n(n−1)
n(1+ŝ)−1 r−2

max

1+z−2
1−α∗/2 ŝ1−α∗/2

n(n−1)
n(1+ŝ)−1

(R− R̂GMV )
2 for R ∈ Iu

2

V ≥ (n−1)V̂GMV
r2
minχ

2
n−k;α∗/2

+ ŝ−1
1−α∗/2r−2

max

(
R− R̂GMV −gu

)2
for R ∈ Iu

3

, (10.47)

where Iu
1 = [R̂GMV + gl , R̂GMV + gl/t], Iu

2 = [R̂GMV + gl/t, R̂GMV + gu/t], Iu
3 =

(R̂GMV +gu/t,∞), Il
1 =
[
R̂GMV −gu, R̂GMV −gl

]
, and Il

2 =
[
R̂GMV −gu,+∞

)
.

10.4.4 Unbiased Estimator of the Efficient Frontier

Basak, Jagannathan, and Ma (2005) and Siegel and Woodgate (2007) showed
that the sample efficient frontier is overly optimistic and overestimates the true
location of the efficient frontier in the mean-variance space. Bodnar and Bodnar
(2010) corrected the overoptimism of the sample efficient frontier by deriving the
unbiased estimator of the efficient frontier assuming the asset returns to be normally
distributed. In Theorem 10.8, we extend this result by assuming the asset returns to
follow a matrix variate mixture of normal distributions.

Theorem 10.8. Let X = (x1, . . . ,xn)∼ Ek,n(μ,Σ ⊗ In,g). Assume that Σ is positive
definite. Let k > 2 and n > k. Let E(r2) and E(r−2) exist. Then the unbiased
estimator of the efficient frontier
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ψ(R,V ) = (R−RGMV )
2 − 1

E(r2)
s(V −E(r2)VGMV )

is given by

ψu(R,V ) = (R− R̂GMV )
2 − (n−2)(n−1)

n(n− k)(n− k−1)
V̂GMV − 1

E(r2)E(r−2)

×(
n−k−1

n−1
ŝ−k−1

n
)(V−E(r2)E(r−2)

(n−k−2)(n−1)
(n−k−1)(n−k)

V̂GMV ) . (10.48)

PROOF: Consider

E(ψu(R,V )) = E(E(ψu(R,V )|r))

= E(E((R− R̂GMV )
2|r))− (n−2)(n−1)

n(n− k)(n− k−1)
E(E(V̂GMV |r))

− 1
E(r2)E(r−2)

E
(
(

n− k−1
n−1

E(ŝ|r)− k−1
n

)

× (V −E(r2)E(r−2)
(n− k−2)(n−1)
(n− k−1)(n− k)

E(V̂GMV |r))
)
,

where in the last equality we use that ŝ and V̂GMV are independent given r (see
Theorem 10.5).

Now from Theorem 10.5, we obtain

E(E((R− R̂GMV )
2|r)) = (R−RGMV )

2 +E(Var(R̂GMV |r))
= (R−RGMV )

2 +Var(E(R̂GMV |ŝ,r))+E(Var(R̂GMV |ŝ,r))

= (R−RGMV )
2 +Var(RGMV )+E((

1
n
+

1
n−1

E(ŝ|r))VGMV r2)

= (R−RGMV )
2 +E((

n−2
n(n− k−1)

+
1

n− k−1
s
r2 )VGMV r2) .

The last equality follows from the fact that (see Johnson, Kotz, and Balakrishnan
(1995, p. 481))

E(ŝ|r) = n−1
n− k−1

s
r2 +

(n−1)(k−1)
n(n− k−1)

. (10.49)

Hence,
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E(E((R− R̂GMV )
2|r)) = (R−RGMV )

2 +
(n−2)E(r2)VGMV

n(n− k−1)
+

sVGMV

n− k−1
.

(10.50)

Application of (10.49) and

E(V̂GMV |r) = n− k
n−1

r2VGMV (10.51)

leads to

1
E(r2)E(r−2)

E
(
(

n− k−1
n−1

E(ŝ|r)− k−1
n

)

× (V −E(r2)E(r−2)
(n− k−2)(n−1)
(n− k−1)(n− k)

E(V̂GMV |r))
)

=
1

E(r2)E(r−2)
sE(r−2(V −E(r2)E(r−2)

n− k−2
n− k−1

VGMV r2))

=
1

E(r2)
s(V −E(r2)

n− k−2
n− k−1

VGMV ) . (10.52)

From (10.51) we get

(n−2)(n−1)
n(n− k)(n− k−1)

E(E(V̂GMV |r)) = n−2
n(n− k−1)

E(r2)VGMV . (10.53)

Putting (10.50), (10.52), and (10.53) together, we obtain

E(ψu(R,V )) = (R−RGMV )
2 − 1

E(r2)
s(V −E(r2)VGMV ) = 0 .

The last equality completes the proof of the theorem.

Although for determining the population efficient frontier E(r2) need only exist,
for constructing an unbiased estimator both the moments E(r2) and E(r−2) are used.

10.4.5 Overall F-Test

In Sect. 10.4.1, it was shown that if γ = ∞ the efficient frontier degenerates into a
straight line. If s = 0 the efficient frontier is also a straight line without imposing
any assumption on γ . In both cases, there is only one optimal portfolio, namely
the GMV portfolio. Assuming the asset returns to be matrix elliptically contoured
distributed Bodnar and Schmid (2008a) derived an exact test on the weight of
the GMV portfolio, while Bodnar (2007, 2009) considered sequential procedures
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for monitoring the weights of the GMV portfolio and of the tangency portfolio,
respectively.

Next, we consider a test for testing s = 0. The test hypothesis is given by

H0 : s = 0 against H1 : s > 0 . (10.54)

For testing (10.54) we use the results of Theorem 10.5. Because the non-central
F-distribution with s = 0 is a central F-distribution, it holds that the null hypothesis
is rejected if

TS =
n(n− k+1)
(n−1)(k−1)

ŝ > Fk−1,n−k+1;1−α . (10.55)

Fk−1,n−k+1;1−α denotes the (1−α)-quantile of the central F-distribution with k−1
and n − k + 1 degrees of freedom. Note, that the distribution of the test statistic
(10.55) does not depend on the distribution assumption imposed on the asset returns
within the class of matrix elliptically contoured distributions. Thus, the test can
easily be carried out using the the (1−α)-quantile of the central F-distribution.

10.4.6 Empirical Illustration

In order to get a better understanding for the results presented in Sect. 10.4.3
we consider an example with real data in this section. We make use of monthly
data from Morgan Stanley Capital International for the equity market returns of
five developed countries (UK, Germany, USA, Canada, and Switzerland) for the
period from July 1994 to June 1999. The parameters of the efficient frontier are
estimated by

R̂GMV = 0.0145664, V̂GMV = 0.0010337, and ŝ = 0.221457 . (10.56)

It holds that k = 5 and n = 60. We put α = 0.15, i.e. α∗ = 0.0.0398,
ŝα∗/2 = 0.000133, ŝ1−α∗/2 = 0.4849, z1−α∗/2 = 2.05566, χ2

n−k;α∗/2 = 35.64, and

χ2
n−k;1−α∗/2 = 78.64. Next we insert these values in Theorem 10.7 to obtain the

85% confidence region of the efficient frontier in the mean-variance space which is
bordered by five parabolas. When the matrix of the asset returns is assumed to be
t-distributed with 5 degrees of freedom, it is given by
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Fig. 10.4 Geometric structure of the 85%-confidence region for the efficient frontier in the mean-
variance space. The estimated parameters of the efficient frontier are given by R̂GMV = 0.0145664,
V̂GMV = 0.0010337, and ŝ = 0.224157. The asset returns are assumed to be matrix t-distributed
with 5 degrees of freedom

-0.0118734
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Fig. 10.5 Geometric structure of the 85%-confidence region for the efficient frontier in the mean-
variance space. The estimated parameters of the efficient frontier are given by R̂GMV = 0.0145664,
V̂GMV = 0.0010337, and ŝ = 0.224157. The asset returns are assumed to be matrix t-distributed
with 15 degrees of freedom

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

V ≥ 0.000117 for R ∈ IR
(I) V ≥ 1.74722(R−0.0145664)2 for R ∈ [−0.036644,0.006377]
(II) V ≤ 0.004582+20123.7(R+0.036644)2 for R ∈ [−0.036644,+∞)
(III) V ≥ 0.000117+0.3116(R−0.02276)2 for R ∈ [0.02276,0.0687)
(IV ) V ≥ 0.2645(R−0.0145664)2 for R ∈ [0.0687,0.3529]
(V ) V ≥ 0.004582+0.3116(R−0.0657)2 for R ∈ (0.3529,+∞)

.

In case of the matrix t-distribution with 15 degrees of freedom, we get the
following expression of the 85% confidence region of the efficient frontier
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

V ≥ 0.000309 for R ∈ IR
(I) V ≥ 4.61(R−0.0145664)2 for R ∈ [−0.01191,0.006377]
(II) V ≤ 0.003224+14156.6(R+0.01191)2 for R ∈ [−0.01191,+∞)
(III) V ≥ 0.000309+0.8222(R−0.02276)2 for R ∈ [0.02276,0.0687)
(IV ) V ≥ 0.69776(R−0.0145664)2 for R ∈ [0.0687,0.1895]
(V ) V ≥ 0.003224+0.8222(R−0.041)2 for R ∈ (0.0939,+∞)

.

The geometrical structure of both the confidence regions are shown in Figs. 10.4
and 10.5. We observe that the area of the confidence region is smaller when the
asset returns are assumed to be matrix t-distributed with 15 degrees of freedom than
in the case of the matrix t-distribution with 5 degrees of freedom. There are also a
number of portfolios with negative expected returns in Fig. 10.4 that belong to the
confidence region. This set is much larger than the one given in Fig. 10.5.



Chapter 11
Skew Elliptically Contoured Distributions

11.1 Skew Normal Distribution

Various multivariate skew normal distributions have been proposed in the literature,
with each one of them aiming to characterize a particular aspect of a given
phenomenon. For example, one emphasizes invariance under quadratic forms,
another one uses a general latent structure to define distributions, etc.; see Genton
(2004) for an overview. Nevertheless, most of these skew normal distributions are
special cases of the closed skew normal (CSN) family of distributions as defined
in Domı́nguez-Molina, González-Farı́as, and Gupta (2003). The CSN class of
distributions is closed under the operations of marginalization and conditioning
basic to statistical modeling, includes the normal distribution, and enjoys some of
the appealing properties of the latter. In particular, the expressions for its marginal
and conditional densities are similar to those for the normal case. However, the
distributions included in the CSN class are, in general, skewed.

Here we consider the extension of the CSN distribution from the vector to
the matrix case. The distribution we propose implicitly defines the matrix variate
generalizations of many other multivariate skew normal in the literature, and permits
the inclusion of dependence structures, such as those for panel data, which are basic
to the analysis of stochastic frontier models.

The articles by Aigner, Lovell, and Schmidt (1977) and Meeusen and van Den
Broeck (1977) were seminal to the development of models capable of describing
the production efficiency of companies. In them, the concept of a stochastic
frontier was introduced via the model y = f (x;β ) + ε , where the error term,
ε = v − u, is composed of a symmetric disturbance term, v, which represents
measurement error, and by the non-negative, firm-specific term u which captures
technical inefficiencies. This formulation of the error structure seeks to explain how
companies with the same technical ability to manage their resources might end up
with different output levels, due to the unobservable shocks v. Developments over
the last 30 years in the specification and estimation of frontier production functions
are discussed in Coelli, Prasada Rao, O’Donnell, and Battese (2005).

A.K. Gupta et al., Elliptically Contoured Models in Statistics and Portfolio Theory,
DOI 10.1007/978-1-4614-8154-6 11, © Springer Science+Business Media New York 2013
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Assuming a cross-sectional data structure, Domı́nguez-Molina, González-Farı́as,
and Ramos-Quiroga (2004) proposed a stochastic frontier model based on the
CSN distribution as given in González-Farı́as, Domı́nguez-Molina, and Gupta
(2004a). Their proposal encompasses nested submodels with an increasing degree
of complexity for the covariance structure, but within the framework of normal
measurement errors and truncated normals for inefficiencies. Specifically, their
model is

y = f(X;β )+v+Gu (11.1)

where y is a vector consisting of the value-added values for p firms, f is the
production function commonly based on the Cobb-Douglas model with lagged input
variables, v ∼ Np(0,Σ) models measurement error, and u ∼ Nc

q(ν ,Λ), q ≥ p, where
Nc

q(ν ,Λ) denotes the Nq(ν ,Λ) distribution truncated below at c. The random vector
u models technological inefficiencies in groups of firms, and is weighted by the
p × q full row rank matrix G. Also, it is assumed that v is independent of u,
f(X;β )= ( f (x1;β ), . . . , f (xp;β ))′, X=(x1, . . . ,xp)

′ is a known matrix of covariates
and β is unknown. The matrix G gives flexibility to the model. If it is left unspecified
it can be estimated and used to validate model assumptions. On the other hand, it
can be defined as G = Ip or G =−Ip for firm-specific cost efficiencies or technical
inefficiencies, respectively.

The definition of the density of the CSN distribution, given by Domı́nguez-
Molina, González-Farı́as, and Gupta (2003), is

Definition 11.1. Consider p ≥ 1, q ≥ 1, μ ∈ IRp, ν ∈ IRq, D an arbitrary q× p
matrix, Σ and Δ positive definite matrices of dimensions p × p and q × q,
respectively. Then the density function of the CSN distribution is given by

gp,q(y) =Cφp(y;μ,Σ)Φq[D(y−μ);ν ,Δ ], y ∈ IRp ,

with

C−1 =Φq[0;ν ,Δ +DΣD′] (11.2)

where φl(x;μ,Σ) and Φl(x;μ,Σ) denote the probability density function and the
cumulative distribution function of the l-dimensional normal distribution with mean
vector μ and covariance matrix Σ , respectively.

We will denote that the p-dimensional random vector y is distributed according
to a CSN distribution with parameters q, μ , Σ , D, ν , Δ by y∼CSNp,q(μ,Σ ,D,ν ,Δ).

Domı́nguez-Molina, González-Farı́as, and Ramos-Quiroga (2004) show that the
density of the compound error term in model (11.1), ε = v+Gu, is

g(ε) =Φ−1
q (0;c−ν,Λ)φp(ε;Gν ,θ)Φq[ΛGθ−1(ε−Gν);c−ν,ϒ ],

where θ = Σ +GΛG′ andϒ =Λ −ΛG′θ−1GΛ . Thus,

ε ∼CSNp,q(Gν ,θ ,ΛG′θ−1,c−ν,ϒ )
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The most important properties of the CSN distributions are their closure proper-
ties. For example, the joint distribution of independent CSN variables belongs to the
same family as do the sums of independent CSN random variables. These closure
properties allow one to study the distributional properties of random samples in a
tractable way, and are very useful when considering the extension to the matrix
variate case under certain types of dependencies. In what follows, we give various
results which, apart from being of interest in themselves, also provide the building
blocks for the matrix variate extension and the investigation of its properties.

The moment generating function of the CSN distribution, given in González-
Farı́as, Domı́nguez-Molina, and Gupta (2004a), allows us to easily derive the
moments of the distribution and to prove important distributional results. It is given
in closed form as

My(s) =
Φq(DΣs;ν ,Δ +DΣD′)
Φq(0;ν ,Δ +DΣD′)

es′μ+ 1
2 s′Σ s , s ∈ IRp (11.3)

The following proposition gives an alternative marginal representation of the CSN
distribution which is useful, for instance, when conducting simulation or calculating
moments. Moreover, the probabilistic structure defined within it can be applied
directly in stochastic frontier modeling. A simpler version of this result was given
in Domı́nguez-Molina, González-Farı́as, and Ramos-Quiroga (2004).

Theorem 11.1. Let v ∼ Np(0,Ip), u ∼ Nc
q(0,Δ+DΣD′) and u be independent of v.

Then the distribution of

y = μ+(Σ−1 +D′Δ−1D)−
1
2 v+ΣD′(Δ +DΣD′)−1u

is CSNp,q(μ,Σ ,D,ν ,Δ).

PROOF: In order to obtain the distribution of y we use the mgf technique. Now,

My(s) = es′μMv[(Σ−1 +D′Δ−1D)−
1
2 s]Mu[(Δ +DΣD′)−1DΣs]

= es′μe
1
2 s′(Σ−1

+D′Δ−1
D)−1se

1
2 s′ΣD′(Δ+DΣD′)−1(Δ+DΣD′)(Δ+DΣD′)−1DΣ s

× Φq(DΣs;ν ,Δ +DΣD′)
Φq(0;ν ,Δ +DΣD′)

=
Φq(DΣs;ν ,Δ +DΣD′)
Φq(0;ν ,Δ +DΣD′)

es′μe
1
2 s′[(Σ−1

+D′Δ−1
D)−1+ΣD′(Δ+DΣD′)−1DΣ ]s

Using the Sherman-Morrison-Woodbury formula, we obtain

(Σ−1 +D′Δ−1D)−1 +ΣD′(Δ +DΣD′)−1DΣ = Σ .
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Thus,

My(s) =
Φq(DΣs;ν ,Δ +DΣD′)
Φq(0;ν ,Δ +DΣD′)

es′μ+ 1
2 s′Σ s ,

which is the mgf of a CSNp,q(μ,Σ ,D,ν ,Δ) random vector.

This representation in terms of normals and truncated normals is far more general
than other representations given in the literature in terms of sums. Moreover, it
proves to be very flexible when modeling different error structures for the stochastic
frontier model.

An alternative way of motivating the closed skew normal distribution is via a
hidden truncation process which, in many applications, will be highly plausible.
For example, when the observational mechanism for measuring a variable is such
that we only record a value when an external condition is satisfied, an asymmetric
distribution will often be induced. The hidden truncation characterization also
furnishes a useful means of establishing some of the properties of skew distributions,
by so doing providing greater insight as to how they arise. For the hidden
truncation process, we first condition a normal random vector on a set of latent
variables subject to certain given restrictions (e.g., Z ≥ 0), thus generating a CSN
distribution. Then, if we consider operations such as marginalization, conditioning,
or addition, their application results in distributions which are also members of
the CSN family. However, it is important to point out that we can reverse this
procedure in the following way. First, carry out the corresponding marginalization,
conditioning, or addition procedure on the normal random vector and then consider
the hidden truncation process. This will lead to exactly the same distribution,
as shown in Domı́nguez-Molina, González-Farı́as, and Gupta (2003). The same
argument applies when we obtain the joint distribution of independent CSN random
variables. Using the conditioning approach of Domı́nguez-Molina, González-Farı́as,
and Gupta (2003), we provide a simple derivation of the distribution function of a
CSN random vector which proves to be useful in the study of dependence structures
via copulas (Nelsen 2006).

The next theorem is due to Domı́nguez-Molina, González-Farı́as, and Gupta
(2007).

Theorem 11.2. The distribution function of a CSN random vector y, with parame-
ters μ , Σ , D, ν , Δ is given by

F p,q(y0;μ,Σ ,D,ν ,Δ) =CΦp+q

[(
y0

0

)
;

(
μ
ν

)
,

(
Σ −ΣD′

−DΣ Δ +DΣD′

)]

where C is as given in (11.2).

PROOF: By definition, F p,q(y0;μ,Σ ,D,ν ,Δ) = P(y ≤ y0). Now, from the exten-
sion of the Copas and Li model given in González-Farı́as, Domı́nguez-Molina, and
Gupta (2004a), we obtain that
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P(y ≤ y0) = P(w0 ≤ y0|z ≥ 0)

=
P(w0 ≤ y0,z ≥ 0)

P(z ≥ 0)

=
P(w0 ≤ y0,−z ≥ 0)

P(−z ≥ 0)

= CP(w0 ≤ y0,−z ≥ 0) .

The result follows on noting that
(

w0

−z

)
∼Φp+q

[(
μ
ν

)
,

(
Σ −ΣD′

−DΣ Δ +DΣD′

)]
.

Although the conditioning argument provides a means with which to derive
elegant proofs for certain results, it cannot be used, for instance, in the calculation
of moments. For the latter, the representation in terms of sums is far more useful.
Hence, we will use the marginal representation given in Theorem 11.1 when
considering the application of the matrix variate extension of the CSN distribution
to the stochastic frontier analysis in Sect. 11.4.

11.2 Matrix Variate Skew Normal Distribution

In this section we introduce the matrix variate generalization of the CSN distribu-
tion.

First, we define the p×m random matrix of observations as

X =

⎛

⎜
⎝

x11 . . . xp1
...

. . .
...

xp1 . . . xpn

⎞

⎟
⎠= (x1, . . . ,xm) ,

where xi (p×1), i = 1, . . . ,m is the ith column of X. Here, x1, . . . ,xm can be thought
as a sample of size m from a p-dimensional population, but it is not necessary to
assume that x, . . . ,xm are independent. The random matrix X is said to have a matrix
variate normal distribution with mean matrix M (p × m) and covariance matrix
Ω (pm × pm) if vec(X′) ∼ Npm(vec(M′),Ω). We denote the probability density
function and the cumulative distribution function of X as

φp,m(X;M,Ω) = φpm(vec(X);vec(M),Ω)

and

Φp,m(X;M,Ω) =Φpm(vec(X);vec(M),Ω) .
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Using the above and the material on the CSN distribution presented in the
preceding two sections, we are now in the position to define its matrix variate
extension.

Definition 11.2. A random matrix Y (p×m) is said to have a matrix variate closed
skew normal (MVCSN) distribution with parameters M (p×m), S (pm× pm), B
(qn× pm), L (q×n), and Q (qn×qn), with S > 0 and Q > 0, if

vec(Y′)∼CSNpm;qn[vec(M′),S,B,vec(L′),Q] .

We use the notation

Y ∼CSNp,m;q,n(M,S,B,L,Q) (11.4)

to denote the fact. In most cases, the matrices S and B will have specific structures.
Properties for the parametrization (11.4) are obtained immediately from González-
Farı́as, Domı́nguez-Molina, and Gupta (2004a).

When working with random matrices it is important to bear in mind how
the random matrix, Y, is assembled. Here we consider the situation in which
Y = (y1, . . . ,yn) is a sample of independent and identically distributed random
vectors with yi ∼ CSNp,q(μ,Σ ,D,ν ,Δ) random vectors. Due to Corollary 2.4.1
of González-Farı́as, Domı́nguez-Molina, and Gupta (2004b), we know that the
distribution of vec(Y) = (y′1, . . . ,y

′
n)

′ is

CSNpn,qn(1n ⊗μ,In ⊗Σ ,In ⊗D,1n ⊗ν,In ⊗Δ),

and hence

Y′ ∼CSNp,n;q,n(1′n ⊗μ,In ⊗Σ ,In ⊗D,1′n ⊗ν ,In ⊗Δ).

Thus, assuming iid columns for Y we obtain the distribution of Y′, not that of
Y as we might have hoped for. In order to obtain the distribution of Y, we first
consider the distribution of the transpose of a MVCSN matrix. We start by defining
the commutation matrix which transforms vec(A) into vec(A′). The commutation
matrix, Kmp (mp×mp) is defined as Kmp =∑m

i=1∑
p
j=1(Hi j ⊗H′

i j), where the (i, j)th
element of Hi j (m× p) is 1 and all its other elements are 0. Then, if

X ∼CSNp,m;q,n(M,S,B,L,Q) ,

the distribution of X′ can be obtained from the fact that vec(X) = Kmpvec(X′).
Using Theorem 1 of González-Farı́as, Domı́nguez-Molina, and Gupta (2004b) and
Theorem 1.2.22 of Gupta and Nagar (2000), we then obtain that

X′ ∼CSNm,p;n,q(M′,KmpSKpm,BKpm,L,Q) .
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Moreover, if S =Ψ ⊗Σ with Σ (p× p)> 0 andΨ (m×m)> 0, then

X′ ∼CSNm,p;n,q(M′,Ψ ⊗Σ ,BKpm,L,Q) .

This follows because, from Eqs. (1.2.3) and (1.2.5) of Gupta and Nagar (2000),
K−1

mp = Kpm and Kpm(Ψ ⊗Σ)Kmp =Ψ ⊗Σ . Finally, returning to the distribution
of Y = (y1, . . . ,yn), we can use the above results to obtain

Y ∼CSNp,n;q,n(1n ⊗μ ′,Σ ⊗ In,In ⊗D,(1′n ⊗ν)Kpn,In ⊗Δ) .

Alternatively, a matrix variate CSN distribution can be obtained using an exten-
sion of the hidden truncation argument of Copas and Li (1997). This construction,
which may be more natural in many experimental settings, proceeds as follows.

Define the independent normal random matrices U1 ∼ Np,m(0,S) and U2 ∼
Nq,n(0,Q), where, as previously, S is mp×mp and Q is nq× nq. Now, consider
the matrices W = M+U1 and Z =−L+DU1E′+U2, where D is q× p, E is n×m
and, as before, M is p×m and L is q×n. Then the joint distribution of W and Z is

(
W
Z

)
∼ Nqn+pm

[(
M
−L

)
,Ω
]
,

where

Ω =

(
S S(D′ ⊗E′)

(D⊗E)S Q+(D⊗E)S(D′ ⊗E′)

)
.

Now, if Y ≈ W|{Z ≥ 0} we obtain that

f (Y) = Kφp,m(Y;M,S)Φq,n[E(Y−M)D′;L,Q] ,

where K−1 =Φq,n[0;L,Q+(D⊗E)S(D′ ⊗E′)]. Hence,

Y ∼CSNp,m;q,n(M,S,D⊗E,L,Q),

which is a particular case of (11.4).

11.2.1 Basic Properties

Here we present certain basic properties of the MVCSN distribution. We consider
the distribution of linear transformations of MVCSN matrices and then give the
distributions moment generating function.

First, we consider a closure property for linear transformations of MVCSN
matrices of the form W = A1YA2. This kind of transformation admits contrasts
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among rows as well as among columns which, for the usual setting of random
matrices, would allow contrasts among individuals and among attributes.

Theorem 11.3. Consider Y ∼CSNp,m;q,n(M,S,B,L,Q) and let A1 (n1× p) and A2

(m×n2) be matrices such that A = A1 ⊗A′
2 has full row rank. If W = A1YA2 then

W ∼ CSNn1,n2;q,n(MA,SA,BA,L,QA), where MA = A1MA2, SA = ASA′, BA =

BSA′S−1
A , and QA = Q+BSB′ −BSA′S−1

A ASB′.

PROOF: Using Theorem 1.2.22 of Gupta and Nagar (2000) we obtain that
vec(W′) = (A1⊗A′

2)vec(Y′). The result then follows from Theorem 1 of González-
Farı́as, Domı́nguez-Molina, and Gupta (2004b).

Prior to presenting the moment generating function of the MVCSN distribution,
we need to introduce some additional notation. We consider the partitioned matrices
B = (B′

1, ...,B
′
q)

′ and S = (S′
1, ...,S

′
m)

′, where Bi is n×mp, i = 1, ...,q and S j is
p×mp, j = 1, ...,m. Let T (p×m) be an arbitrary matrix,

T̃ = [B1Svec(T′), ...,BqSvec(T′)] and S̃ = [S1vec(T′), ...,Smvec(T′)].

Theorem 11.4. Let Y ∼ CSNp,m;q,n(M,S,B,L,Q). Then the moment generating
function of Y is given by

MY(T) = Eetr(Y′T) =
Φq,n(T̃;L′,Q+BSB′)
Φq,n(0;L′,Q+BSB′)

etr

(
M′T+

1
2

S̃′T
)
. (11.5)

PROOF: Due to the fact that tr(Y′T) = (vec(T′))′vec(Y′), and also that vec(Y′) ∼
CSNpm;qn(vec(M′),S,B,vec(L′),Q), we obtain from (11.3) that

E(etr(Y′T)) =
Φnq(BSvec(T′);vec(L′),Q+BSB′)

Φnq(0;vec(L′),Q+BSB′)

× exp

[
(vec(T′))′vec(M′)+

1
2
(vec(T′))′Svec(T′)

]
. (11.6)

Now, by noting that BSvec(T′) = vec(T̃) and Svec(T′) = vec(S̃), we obtain

(vec(T′))′Svec(T′) = tr(S̃′T).

Finally, (11.5) results by making use of these results, together with the definition of
Φq,n(), in (11.6).

The moment generating function for the MVCSN distribution with the parametri-
zation S = Σ ⊗Ψ and B = D⊗E, where Σ (p× p) and Ψ (m×m) are positive
definite and D (n× p) and E (q×m) are arbitrary matrices, is given by the following
corollary.
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Corollary 11.1. Let Y ∼ CSNp,m;q,n(M,Σ ⊗Ψ ,D ⊗ E,L,Q). Then the moment
generating function of Y is given by

MY(T) =
Φq,n(EΨT′ΣD′;L,Q+(DΣD′)⊗ (EΨE′))

Φq,n(0;L,Q+(DΣD′)⊗ (EΨE′))
etr

(
M′T+

1
2

T′ΣTΨ
)
.

11.3 Quadratic Forms of the Matrix Variate Skew Normal
Distributions

As is well known, the distributional properties of quadratic forms of normal
variables play a key role in classical inference. Certain results for quadratic
forms of skew normal variates have appeared recently in the literature. Azzalini
and Capitanio (1999, Sect. 3.3), discuss the independence of quadratic forms and
present a theorem which is similar to the Fisher-Cochran theorem given in Rao
(1973, Sect. 3b.4). Loperfido (2001) considers quadratic forms for skew normal
random vectors. Genton, He, and Liu (2001) derive the moments of skew normal
random vectors and their quadratic forms, and consider applications in time series
analysis and spatial statistics. Finally, Wang, Boyer, and Genton (2004) establish
an equivalence between the chi-square and generalized skew normal distributions.
They also show how properties of the chi-square distribution extend to the univariate
and multivariate skew normal distributions. In what follows, we present three results
related to the quadratic forms of MVCSN matrices. As will become evident, these
results draw heavily on the work of Domı́nguez-Molina, González-Farı́as, and
Gupta (2003) on quadratic forms of CSN variates.

Theorem 11.5. Let A (r×m), B (p× p), C (m× s), r ≤ m, s ≤ m, and

Y ∼CSNp,m;q,n(0,Σ ⊗Ψ ,D⊗E,L,Q).

Then the moment generating function of Z = AY′BYC is

MZ(T) =
Φq,n[0;L,Q+(D⊗E)Θ(D′ ⊗E′)]
Φq,n[0;L,Q+(DΣD′)⊗ (EΨE′)]

|Imp −2(ΣB)⊗ (ΨCT′A)|− 1
2 ,

(11.7)
whereΘ = [Imp −2(BΣ)⊗ (CT′AΨ)]−1.

PROOF: From (1.2.6) of Gupta and Nagar (2000), we obtain that

tr(AY′BYCT) = (vec(Y′))′(B⊗ (CT′A))vec(Y′) .

The result then follows from Proposition 13 of Domı́nguez-Molina, González-
Farı́as, and Gupta (2003).
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Corollary 11.2. Let Y ∼ CSNp,m;1,1(0,Σ ⊗Ψ ,D ⊗ E,0,v), A = C = Im, then
Y′Σ−1Y has a Wishart distribution with parameters m, p, andΨ , that is Y′Σ−1Y ∼
Wm(p,Ψ).

PROOF: Using the specified values of the parameters of the distribution of Y in
(11.7), we obtain that

MZ(T) =
Φ1[0;0,v+(D⊗E)Θ(D′ ⊗E′)]
Φ1[0;0,v+(DΣD′)⊗ (EΨE′)]

|Imp −2Ip ⊗ (ΨT′)|− 1
2 ,

which simplifies to MZ(T) = |Im −2ΨT′|− p
2 .

Note that, as a direct consequence of Corollary 11.2, if y has a
CSNp,1(0,Σ ,δ ,0,1) distribution then yy′∼Wp(1,Σ).

Corollary 11.3. Let Y ∼ CSNp,1;p,n(0,Σ ,Γ ⊗ E,0,Q), where Γ is part of the
spectral decomposition of Σ , Σ = ΓΛΓ ′ and Q is diagonal. Then Y′Σ−1Y ∼ χ2

p.

PROOF: Given that T is a real number, we deduce that

Θ = [Ip −2(Σ−1Σ)⊗T ]−1 = [Ip −2Ip ⊗T ]−1 = [Ip −2IpT ]−1 = (1−2T )−1Ip.

Now,

MZ(T ) =
Φnp[0;0,Q+(D⊗E)(1−2TΨ)−1Ip(D′ ⊗E′)]

Φnp[0;0,Q+(DΣD′)⊗ (EE′)]
|Ip −2(ΣΣ−1)⊗T |− 1

2

=
Φnp[0;0,Q+(1−2T )−1((DD′)⊗ (EE′))]

Φnp[0;0,Q+(DΣD′)⊗ (EE′)]
|Ip −2IpT |− 1

2

= (1−2T )−
p
2 .

11.4 A Multivariate Stochastic Frontier Model

In this section we extend the relationship between the closed skew normal distribu-
tion and the stochastic frontier models to the matrix case using a similar approach to
that used by Domı́nguez-Molina, González-Farı́as, and Ramos-Quiroga (2004) for
the vector case.

In what follows, we will use the notation U ∼ NC
m,n(M,S) to denote that U is a

Nm,n(M,S) random matrix truncated below at C. That is, the truncation is of the
type U ≥ C, where W ≥ C means Wi j ≥ Ci j, i = 1, ...,m, j = 1, ...,n. Note that
U ≥ C ⇒ vec(U′)≥ vec(C′).

Consider, now, production data on p firms at time t. We assume a
stochastic frontier model for time t of the form yt=(Xt;β t)+ε t, where
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(Xt;β t)=(f(x1t;β t), . . . , f(xpt;β t))
′, Xt = (x1t , ...,xpt)

′ is a known matrix of
covariates, β t is unknown, ε t = (ε1t , ...,ε pt)

′ is a random vector of compound
errors and ε t = vt + Gut , with vt = (v1t , ...,vpt)

′, ut = (u1t , ...,upt)
′ and G is a

p× q weighting matrix. We use Y to denote the p×m matrix of the value added
observations for the p firms at times t = 1, ...,m, i.e.,

Y =

⎛

⎜
⎝

y11 . . . x1m
...

. . .
...

yp1 . . . xpm

⎞

⎟
⎠= (y1, . . . ,ym) .

A joint model for such production data can be written as

Y = F+Θ , (11.8)

where F = ( f (y1,β 1), ..., f (ym,βm)), Θ = V + GU, V = (v1, ...,vm), and U =
(u1, ...,um).

We choose, in fact, to consider a slightly more general model for the compound
errors, namely,

Θ = V+DUE′,

where V ∼ Np,m(0,S), U ∼ NC
q,m(L,Q), D (p×q), E (m×m), and V is independent

of U. By pre-multiplying the matrix of technical inefficiencies, U, by D we can
incorporate common inefficiencies within groups of similar companies. Similarly,
by post-multiplying U by E′, time related inefficiency effects can be allowed for.
Note that the matrix V is no longer constrained to merely reflect measurement error.
Indeed, depending on the structure of the variance matrix S, it can also incorporate
random effects such as random intercepts and time-induced correlations among the
columns of Y. Given that vec(Θ ′) = vec(V′) + (D ⊗ E)vec(U′), we obtain from
Domı́nguez-Molina, González-Farı́as, and Ramos-Quiroga (2004) that the density
of the compound errorΘ = V+DUE′ is

g(Θ) = Φ−1
q,m(0;C−L,Q)φp,m(Θ ;DLE′,θ)

× Φmq{Q(D′ ⊗E′)θ−1[vec(Θ −DLE′)];vec(C−L),ϒ},

where θ = S+(D⊗E)Q(D′ ⊗E′) andϒ = Q−Q(D′ ⊗E′)θ−1(D⊗E)Q. Thus,Θ
has a matrix variate closed skew normal distribution. Specifically,

Θ ∼CSNp,m;q,m(DLE′,θ ,Q(D′ ⊗E′)θ−1,C−L,ϒ ).

Model (11.8), with the compound error structure Θ = V + DUE′, includes the
following submodels as special cases:
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• Model I (Homoscedastic and uncorrelated errors). D an arbitrary p× q matrix,
E= Im, S= Im⊗Σ , and Q= Im⊗Δ , where Σ (p× p) and Δ (q×q) are covariance
matrices.

• Model II (Heteroscedastic and uncorrelated errors). D an arbitrary p×q matrix,
E = Im, S and Q block diagonal matrices of the form S = ⊕m

i=1Σ i, and Q =
⊕m

i=1Δ i, with ⊕ denoting the matrix direct sum operator (see Horn and Johnson
1985, p. 24). The result of A⊕B is a block diagonal matrix. Here, Σ i (p× p) and
Δ i (m×m) are covariance matrices, i = 1, ...,m.

• Model III (Correlated errors). If any of the matrices E, S, or Q are non block
diagonal.

11.5 Global Minimum Variance Portfolio Under the Skew
Normality

In this section, we study the impact of skewness on the performance of the global
minimum variance portfolio. The GMVP plays an important role in the Markowitz’s
mean-variance analysis. This portfolio lies on the vertex of the efficient frontier
which is a parabola in the mean-variance space (see e.g., Merton 1972; Bodnar and
Schmid 2008b, 2009). It is also a unique portfolio, whose weights are independent
of the mean vector μ of the asset returns. Because of this property, the estimator of
the GMVP weights does not suffer from the error in the means which is much larger
than the error in the variances and covariances (see, e.g. Merton 1980; Best and
Grauer 1991). It makes the GMVP portfolio attractive for practitioners as well as
for researchers in the financial sector (see, e.g., Jagannathan and Ma 2003; Bodnar
and Schmid 2008a).

Let w denote the weights of the portfolio. Then, the weights of the GMVP are
obtained by minimizing the portfolio variance w′Vw under the constraint w′1p = 1.
The solution is given by

wGMV =
V−11p

1′pV−11p
. (11.9)

Because V is an unknown parameter of the asset return distribution, the vector
of the GMVP weights cannot be calculated in practice. The investor estimates V by
V̂ and then plugs V̂ in (11.9) instead of V. We consider the sample estimator of the
covariance matrix given by

V̂ =
1

n−1

n

∑
j=1

(x j − μ̂)(x j − μ̂)′ = 1
n−1

X′MX with μ̂ =
1
n

n

∑
j=1

x j . (11.10)

Here, M = In − 1
n 1n1′n is a symmetric idempotent matrix such that M = M′ and

MM = M.
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The weights of the global minimum variance portfolio are estimated by

ŵGMV =
V̂−11p

1′pV̂−11p
. (11.11)

We consider a linear combination of the GMVP weights. Let li ∈ IRp, i = 1, . . . ,q,
1 ≤ q ≤ p−1, and L′ = (l1, . . . , lq). We are interested in

wL;q = LwGMV =
LV−11p

1′pV−11p
=
( l′1V−11p

1′pV−11p
, . . . ,

l′qV−11p

1′pV−11p

)′
. (11.12)

Using the estimator (11.10), we get

ŵL;q = LŵGMV =
( l′1V̂−11p

1′pV̂−11p
, . . . ,

l′qV̂−11p

1′pV̂−11p

)′
. (11.13)

In order to derive the distributional properties of ŵL;q we need the following
result.

Theorem 11.6. Let X ∼ CSNn,p;1,1(1n ⊗ μ ′,In ⊗Σ ,D′ ⊗E′,0,v) with n > p. Then
(n−1)V̂ ∼Wp(n−1,Σ) (p-dimensional Wishart distribution with n−1 degrees of
freedom and the covariance matrix Σ ).

PROOF: From Corollary 11.2 of Domı́nguez-Molina, González-Farı́as, and Gupta
(2007) the moment generating function of (n−1)V̂ = X′MX is given by

M(n−1)V̂(T) =
Φ(0;0,v+(D′ ⊗E′)(Inp −2(MΣ)⊗T′Σ)−1(D⊗E))

Φ(0;0,v+(D′D)⊗ (E′ΣE))

× |Inp −2(M⊗ΣT′)|−1/2

= |Inp −2(M⊗ΣT′)|−1/2 .

The last equality is independent of E and D. Hence, the expression of the moment
generating function is equal to the moment generating function of the sample
covariance matrix under the assumption of normality, i.e. if D = 0n or E = 0p.
Because under normality the sample covariance matrix is Wishart with n−1 degrees
of freedom, the proposition follows.

Using Theorem 11.6 and the proof of Theorem 1 of Bodnar and Schmid (2008a),
we obtain the distribution of ŵL;q when the matrix of the asset returns follows a
matrix variate closed skew normal distribution.

Theorem 11.7. Let X∼CSNn,p;1,1(1n⊗μ ′,In⊗Σ ,D′⊗E′,0,v) with n> p> q≥ 1.
Let M̃′ = (L′, 1p) and rk(M̃) = q+1. Then
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ŵL;q ∼ tq(n− p+1, w̃L;q,
1

n− p+1
LRL′

1′pΣ−11p
) ,

where

w̃L;q =
LΣ−11p

1′pΣ−11p
and R = Σ−1 −Σ−11p1′pΣ−1/1′pΣ−11p (11.14)

As a consequence of Theorem 11.7, we obtain some interesting results. First,
because the parameters of the multivariate t-distribution, namely the scale vector
and the dispersion matrix, are only functions of Σ , the distribution of ŵL;q is
independent of D and E. On the other hand, the distribution of the asset returns
does depend on D and E. Since the covariance function is a function of D and E, we
obtain that the true vector of the GMVP weights is given by

wGMV =
V−11p

1′pV−11p
=

(Σ − 2
π

d2
j

v+D′DE′ΣE
EE′)−11p

1′p(Σ − 2
π

d2
j

v+D′DE′ΣE
EE′)−11p

=

(Σ−1 +2d2
j

Σ−1
EE′Σ−1

π(v+D′DE′ΣE)−2d2
j E′Σ−1

E
)1p

1′p(Σ−1 +2d2
j

Σ−1
EE′Σ−1

π(v+D′DE′ΣE)−2d2
j E′Σ−1

E
)1p

(11.15)

and, hence, ŵL;q is a biased estimator of wL;q if D �= 0n and E �= 0p. Moreover, the
GMVP weights cannot be estimated by replacing the matrix V by the sample covari-
ance matrix V̂. In Sect. 11.5.1, we present an alternative method of estimating V.

For providing further investigation on how large is the impact of skewness on the
performance of the global minimum variance portfolio, a test for linear combination
of the GMVP weights is applied. We consider the general linear hypothesis which
is given by

H0 : LwGMV = w0 against H1 : LwGMV �= w0 . (11.16)

This means that the investor is interested in knowing whether the weights of the
GMVP fulfill q linear restrictions or not. This is a very general testing problem and
it includes many important special cases (cf. Greene 2003, pp. 95–96).

To test (11.16) Bodnar and Schmid (2008a) derived the following test statistic

T =
n− k

q

(
1′pV̂−11p

)(
ŵL;q −w0

)′(
LR̂L′

)−1(
ŵL;q −w0

)
. (11.17)
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Although this quantity is very similar to the F statistic for testing a linear hypothesis
within the linear regression model, its distribution is different than in the case
of a linear model. Consequently, the well-known results, obtained for the linear
regression model, cannot be applied directly.

Theorem 11.8 is taken from Bodnar and Gupta (2013).

Theorem 11.8. Let X∼CSNn,p;1,1(1n⊗μ ′,In⊗Σ ,D′⊗E′,0,v) with n> p> q≥ 1.
Let M̃′ = (L′, 1p) and rk(M̃) = q+1. The density of T is given by

fT (x) = fq,n−p(x) (1+λ )−(n−p+q)/2 (11.18)

× 2F1

(n− p+q
2

,
n− p+q

2
,

q
2

;
qx

n− p+qx
λ

1+λ

)

with λ = 1′pΣ−11p(w0 − w̃L;q)
′(LRL′)−1(w0 − w̃L;q).

The proof of Theorem 11.8 follows from Theorem 11.6 and the proof of Theorem
2a of Bodnar and Schmid (2008a). If E = 0p or D = 0n the null hypothesis is
rejected if T > Fq,n−p;1−α , where Fq,n−p;1−α stands for the 1−α quantile of the
central F-distribution with q and n− p degrees of freedom. However, if E �= 0p and
D �= 0n the decision rule T > Fq,n−p;1−α might reject the null hypothesis with the
probability larger than α although the vector of the target GMVP weights w0 is
correctly specified.

11.5.1 Model Estimation

Since the dimension of the vector D is n and we deal with the sample of size n,
in the following it is assumed that the skewness is the same within the sample of
each asset, i.e. D = 1n. In this section, we study on the estimation procedure for the
suggested model of Sect. 11.2. For this aim, we modify the estimation method for
the closed skew normal distributions considered by Flecher, Naveaua, and Allard
(2009). Namely, the parameters of the model are estimated by the method of the
weighted moments. In Theorem 11.9, we derive an expression for these moments,
which is used later.

Theorem 11.9. Let Y ∼ CSNp,1;1,1(μ,Σ ,E′,0,v) with p ≥ 1. Let h(y) be a real
valued function such that E

(
h(Y)exp

(
cY′Σ−1Y

))
exists. Then

E
(
(1−2c)p/2h(Y)exp

(
cY′Σ−1Y

))
= exp

(
c

1−2c
μ ′Σ−1μ

)
E(h(Y∗))

(11.19)

for c < 1/2 where Y∗ ∼CSNp,1;1,1(
1

1−2cμ,
1

1−2cΣ ,E
′,0,v).
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PROOF: We have

E
(
(1−2c)p/2h(Y)exp

(
cY′Σ−1Y

))

= 2
∫

y
(1−2c)p/2h(y)exp

(
cy′Σ−1y

)
φp(y;μ,Σ)Φ(E′(y−μ)/√v)dy

= 2exp

(
c

1−2c
μ ′Σ−1μ

)∫

y
h(y)φp(y;

1
1−2c

μ,
1

1−2c
Σ)Φ(E′(y−μ)/√v)dy .

The theorem is proved.

Next, we present the estimation procedure. The scale matrix Σ is estimated from
the fact that (n− 1)V̂ ∼ Wp(n− 1,Σ), where V̂ is defi ned in (11.10). Note that it
is not our aim to derive an estimation procedure for all of the model parameters. In
Sect. 11.6, we calculate the probability of type I error rate for the test (11.16) in the
case of real data and for this reason we need only the estimators of the scale matrix Σ
and of the product Ẽ = (v+nE′ΣE)−1/2E. Moreover, since in the moment identities
such a product is present, it seems that the estimation of v could be difficult. Note
that

E(x j) = μ+
√

2√
π
(v+nE′ΣE)−1/2E

E((1−2c)p/2x jexp
(
cx′jΣ−1x j

)
)

= exp

(
c

1−2c
μ ′Σ−1μ

)
(

1
1−2c

μ+
√

2√
π
(v+

n
1−2c

E′ΣE)−1/2E)

E((1−2c)p/2exp
(
cx′jΣ−1x j

)
) = exp

(
c

1−2c
μ ′Σ−1μ

)
.

Equating the theoretical moments with the sample moments we obtain

Σ̂ = V̂ (11.20)

x̄ = μ̂+
√

2√
π
(v̂+nÊ′Σ̂ Ê)−1/2Ê (11.21)

x̄φ = exp

(
c

1−2c
μ̂ ′Σ̂−1μ̂

)
(

1
1−2c

μ̂+
√

2√
π
(v̂+

n
1−2c

Ê′Σ̂ Ê)−1/2Ê) (11.22)

φ̄ = exp

(
c

1−2c
μ̂ ′Σ̂−1μ̂

)
, (11.23)

where

x̄ = r̂ =
1
n

n

∑
i=1

xi ,
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x̄φ =
(1−2c)p/2

n

n

∑
i=1

xiexp
(

cx′iΣ̂
−1

xi

)
,

φ̄ =
(1−2c)p/2

n

n

∑
i=1

exp
(

cx′iΣ̂
−1

xi

)
.

Now let â =
√

v̂+nÊ′Σ̂ Ê and b̂ =
√

v̂+ n
1−2c Ê′Σ̂ Ê, then from (11.21), (11.22),

and (11.23), we obtain

{
âx̄− b̂

φ̄ x̄φ = (â− 1
1−2c b̂)μ̂

1
1−2c x̄− 1

φ̄ x̄φ =
√

2√
π (

1
â − 1

b̂
)Ê .

Application of (11.23) and the identity Ê′Σ̂ Ê = 1−2c
2nc (b̂2 − â2) leads to

{
(âx̄− b̂

φ̄ x̄φ )′Σ̂
−1
(âx̄− b̂

φ̄ x̄φ ) = 1−2c
c (â− 1

1−2c b̂)2ln(φ̄)
( 1

1−2c x̄− 1
φ̄ x̄φ )′Σ̂( 1

1−2c x̄− 1
φ̄ x̄φ ) =

(1−2c)
πnc ( 1

â − 1
b̂
)2(b̂2 − â2) .

Further let ã = a/b and c̃ = 1
1−2c . Then,

( ˆ̃ax̄− 1
φ̄

x̄φ )′Σ̂
−1
( ˆ̃ax̄− 1

φ̄
x̄φ )− 2

c̃−1
( ˆ̃a− c̃)2ln(φ̄) = 0 (11.24)

(c̃x̄− 1
φ̄

x̄φ )′Σ̂(c̃x̄− 1
φ̄

x̄φ )+
2

(c̃−1)πn
(1− ˆ̃a)2(1− 1

ˆ̃a
2 ) = 0 . (11.25)

The identity (11.24) is a quadratic equation with respect to ˆ̃a. Solving it we get

ˆ̃a =

1
φ̄ x̄Σ̂−1

x̄φ − 2c̃
c̃−1 ln(φ̄)

x̄Σ̂−1
x̄− 2

c̃−1 ln(φ̄)
(11.26)

±
√
( 1
φ̄ x̄Σ̂−1

x̄φ− 2c̃
c̃−1 ln(φ̄))2−(x̄Σ̂−1

x̄− 2
c̃−1 ln(φ̄))(( 1

φ̄ )
2x̄φ Σ̂

−1
x̄φ− 2c̃2

c̃−1 ln(φ̄))

x̄Σ̂−1
x̄− 2

c̃−1 ln(φ̄)
.

Substituting from (11.26) into (11.25), we obtain an identity which depends only
on one parameter c̃. It is solved by applying the regula falsi (see, e.g., Conte and de
Boor 1981). Then the estimators of Σ , μ , and Ẽ = (v+nE′ΣE)−1/2E are calculated
yielding

Σ̂ = V , (11.27)

μ̂ =
1

ˆ̃a− c̃
( ˆ̃ax̄− 1

φ̄
x̄φ ) , (11.28)
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ˆ̃E =

√
π√
2

1

1− ˆ̃a
(c̃x̄− 1

φ̄
x̄φ ) . (11.29)

The suggested estimator (11.28) is not surprising. It is noted that μ is no longer
the mean vector of the closed skew normal distribution and, consequently, the
sample mean does not provide a good fit in general case. Note that an improved
estimator of the covariance matrix can be obtained by

ˆ̃V = V̂− 2
π

ˆ̃E ˆ̃E
′
= V̂− 1

(1− ˆ̃a)2
(c̃x̄− 1

φ̄
x̄φ )(c̃x̄− 1

φ̄
x̄φ )′ . (11.30)

11.5.2 Goodness-of-Fit Test

When a model is fitted to real data, one would like to know how good it can describe
the observable dynamics of data and if it can be applied at all. In statistics such
questions are usually treated with goodness-of-fit tests. Although the skew normal
distributions have been already successfully applied to real data (cf. Adcock 2005;
Harvey, Leichty, Leichty, and Muller 2010; Framstad 2011), the problem of testing
their validity is not dealt in detail. This is the aim of the present section, namely we
derive a goodness-of-fit test for the matrix variate closed skew normal distribution.

Several goodness-of-fit tests for the univariate skew normal distributions are
discussed in the literature (see e.g., Gupta and Chen 2001; Mateu-Figueras, Puig,
and Pewsey 2007; Meintanis 2007, 2010; Cabras and Castellanos 2009; Pérez
Rodrı́guez and Villaseñor Alva 2010). It seems that the first goodness-of-fit test
is suggested by Gupta and Chen (2001) who applied the Kolmogorov-Smirnov
test statistic and the Pearson’s χ2 test. Mateu-Figueras, Puig, and Pewsey (2007)
extended these results to the case with estimated parameters, while Cabras and
Castellanos (2009) presented the Bayesian goodness-of-fit test for the skew normal
model. Further approaches can be found by Meintanis (2007, 2010) as well as by
Pérez Rodrı́guez and Villaseñor Alva (2010).

On the other hand, there is only one paper that deals with testing the hypothesis
of skew normality in the multivariate case (cf. Meintanis and Hlávka 2010), and no
result for the matrix variate skew normal distribution is available. Meintanis and
Hlávka (2010) suggested the application of the moment generating function for
testing the multivariate skew normality and dealt the bivariate case in detail. The
situation is much more complicated in the matrix variate case. Here, the decision
about the goodness of model is based only on a single observation. In this section,
we extend the approach of Meintanis and Hlávka (2010) to the matrix variate
case. In the derivation, we use the analytical expression of the moment generating
function of the matrix variate closed skew normal distribution.

Let X ∼ CSNn,p;1,1(1n ⊗ μ ′,In ⊗Σ ,D′ ⊗E′,0,v). Then the moment generating
function of X is obtained from the fact that vec(X′) ∼ CSNnp;1(vec(1′n ⊗ μ),Σ ⊗
In,E′ ⊗D′,0,v) and it is expressed as (cf. Domı́nguez-Molina, González-Farı́as, and
Gupta 2007, Proposition 3.2)
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MX (T) = E(etr(X′T))=2Φ
(
(vec(T′))′vec(ΣED′);0,v+D′DE′ΣE

)
(11.31)

× exp

(
(vec(T′))′vec(1′n ⊗μ)+

1
2
(vec(T′))′(Σ ⊗ In)vec(T′)

)
. (11.32)

The application of the rules of matrix differentiation (see Harville 1997,
Chap. 15) leads to

∂ (MX (T))
∂ (vec(T′))

= MX (T)
(
vec(1′n ⊗μ)+(Σ ⊗ In)vec(T′)

)
(11.33)

+ exp

(
(vec(T′))′vec(1′n ⊗μ)+

1
2
(vec(T′))′(Σ ⊗ In)vec(T′)

)

× 2(v+D′DE′ΣE)−1/2

× φ ((vec(T′))′vec(ΣED′);0,v+D′DE′ΣE
)

vec(ΣED′) .

Let a be an arbitrary vector which is orthogonal to vec(ΣED′) and has a norm
equal to one, i.e.

a′vec(ΣED′) = 0 and a′a = 1 . (11.34)

Then from (11.33) we get

a′
∂ (MX (T))
∂ (vec(T′))

−MX (T)a′
(
vec(1′n ⊗μ)+(Σ ⊗ In)vec(T′)

)
= 0 . (11.35)

Equation (11.35) is used for the derivation of the test statistic defined by

Tn,w = np
∫ ∞

−∞
D̂2

nw(T)dT , (11.36)

where w(T) is a suitable weight function and D̂2
n is the empirical counterpart of D2

n
expressed as

D2
n =

(
a′
∂ (MX (T))
∂ (vec(T′))

−MX (T)a′
(
vec(1′n ⊗μ)+(Σ ⊗ In)vec(T′)

))2

, (11.37)

which is obtained by substituting for the moment generating function MX (T) by the
empirical one given by

M̂X (T) = etr(X′T) = exp
(
(vec(T ′))′vec(X′)

)
. (11.38)
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If the assumption of the matrix variate closed skew normal distribution is valid for
the data analyzed then the values of the statistic Tn,w should be close to zero. On the
other hand, a large value of Tn,w is a signal for the rejection of the null hypothesis.

Next, we rewrite (11.37). The aim is to obtain an analytical expression that is
easy to use in practice. Following Meintanis and Hlávka (2010) we let

w(T) =
n

∏
i=1

p

∏
j=1

exp(−t2
i j)√

π
= exp

(−(vec(T′))′vec(T′)
)
/πnp/2 . (11.39)

Inserting (11.39) into (11.37) and using the identity

∂M̂X (T)
∂vec(T′)

= exp
(
(vec(T′))′vec(X′)

)
vec(X′) (11.40)

we get

Tn,w =
np

πnp/2

∫ ∞

−∞
(
a′vec(X′)−a′

(
vec(1′n ⊗μ)+(Σ ⊗ In)vec(T′)

))2

× exp
(
2(vec(T′))′vec(X′)

)
exp
(−(vec(T′))′vec(T′)

)
dT

=
np

πnp/2
exp
(−(vec(X′))′vec(X′)

)

×
∫ ∞

−∞
(
a′(vec(X′)− vec(1′n ⊗μ))−a′(Σ ⊗ In)vec(T′)

)2

× exp
(−(vec(T′)− vec(X′))′(vec(T′)− vec(X′))

)
dT

The last integral is simply

πnp/2E
((

a′(vec(X′)− vec(1′n ⊗μ))−a′(Σ ⊗ In)vec(Y′)
)2)

,

where vec(Y′)∼ Nnp
(
vec(X′), 1

2 Inp
)
. Hence,

Tn,w = npexp
(−(vec(X′))′vec(X′)

)

× E
((

a′(vec(X′)− vec(1′n ⊗μ))−a′(Σ ⊗ In)vec(Y′)
)2)

= npexp
(−(vec(X′))′vec(X′)

)

× ((a′(vec(X′)− vec(1′n ⊗μ))−a′(Σ ⊗ In)vec(X′))2

+ a′(Σ2 ⊗ In)a/2
)
.

Hence, for testing the null hypothesis of the matrix variate closed skew normal
distribution, i.e.,



11.5 Global Minimum Variance Portfolio Under the Skew Normality 293

H0 : X ∼CSNn,p;1,1(1n ⊗μ ′,In ⊗Σ ,D′ ⊗E′,0,v) (11.41)

against

H1 : X ∼/ CSNn,p;1,1(1n ⊗μ ′,In ⊗Σ ,D′ ⊗E′,0,v)

the following test statistic is derived

Tn,w = npexp
(−(vec(X′))′vec(X′)

)
(11.42)

× ((a′(vec(X′)− vec(1′n ⊗μ))−a′(Σ ⊗ In)vec(X′))2 +a′(Σ 2 ⊗ In)a/2
)
.

It is noted that the distribution of the test statistic Tn,w is not trivial under both the
null and the alternative hypothesis. The situation is even more complicated when
the parameter uncertainty is taken into account, i.e. if the parameters μ , Σ , and E
are replaced by the corresponding estimators derived in Sect. 11.5.1.

For the application of the suggested testing procedure in a practical situation we
use parametric bootstrap as follows:

(1) In the first stage a sample of size N from the matrix variate closed skew normal
distribution is generated with the corresponding parameters. For the simulation
of the sample we make use of the relationship between the matrix variate closed
skew normal distribution and the corresponding multivariate one given by (cf.
Domı́nguez-Molina, González-Farı́as, and Gupta 2007)

If X ∼CSNn,p;1,1(1n ⊗μ ′,In ⊗Σ ,D′ ⊗E′,0,v)

then vec(X′)∼CSNnp;1,1(1′n ⊗μ,Σ ⊗ In,E′ ⊗D′,0,v) .

Then the stochastic representation of the multivariate closed skew normal
distribution, namely (see, e.g., Domı́nguez-Molina, González-Farı́as, and Gupta
2007, Proposition 2.1)

vec(X′) ≈ 1′n ⊗μ+(Σ−1 ⊗ In +(E⊗D)(E′ ⊗D′)/v)−1/2vec(Z′)

+ (Σ ⊗ In)(E⊗D)(v+D′DE′ΣE)−1/2|z0|
= 1′n ⊗μ+(Σ−1 ⊗ In +(Ẽ⊗D)(Ẽ′ ⊗D′)(1+ ṽ))−1/2vec(Z′)

+ (Σ ⊗ In)(Ẽ⊗D)|z0| ,

where ṽ = D′DE′ΣE/v, vec(Z′) ∼ Nnp(0,Inp), z0 ∼ N (0,1) and vec(Z′), z0

are independent, is applied. In Sect. 11.5.1 we derive estimators for μ , Σ , and
Ẽ, but it is pointed out that it is not easy to estimate v or/and ṽ. Thus, several
values of ṽ are considered in the first stage of the bootstrap procedure, and for
each value of ṽ a sample of size N is generated.
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Table 11.1 The estimated parameters of the skew normal distribution (c̃ = 1.0287 and ˆ̃a =
0.9560254)

x̄ μ̂ ˆ̃E V̂

−0.003192 −0.012447 0.0191695 0.0032143 0.0018796 0.0015245 0.0007313 0.0013129
−0.001172 −0.011944 0.0223120 0.0018796 0.0022471 0.0014159 0.0006440 0.0009754
0.001057 −0.011135 0.0252522 0.0015245 0.0014159 0.0023945 0.0005513 0.0012291
0.0003413 −0.008289 0.0178766 0.0007313 0.0006440 0.0005513 0.0011300 0.0006633
−0.000847 −0.016930 0.0333126 0.0013129 0.0009754 0.0012291 0.0006633 0.0022025

(2) For each element of the generated sample the value of the test statistic Tn,w;k(ṽ),
k = 1, . . . ,N is calculated.

(3) Finally, the sequences Tn,w;k(ṽ) are used for determining the critical values of
the test for each ṽ.

(4) The p-values can alternatively be computed in the third stage. It is performed by
including the value of the test statistic calculated from the data into the sequence
Tn,w;k(ṽ) for each ṽ and determining its position in the corresponding ordered

sequence T (k)
n,w(ṽ).

11.5.3 Application to Some Stocks in the Dow Jones Index

In order to get a better understanding for the results presented in Sect. 11.5 we
consider an example of real data in this section. Further results of applications
of skew distributions in portfolio theory were considered by Athayde and Flôres
(2004), Patton (2004), Mencı́a and Sentana (2009), Adcock (2010). We make use of
weekly data of five stocks which are included in the Dow Jones index. The choice of
data is motivated by the paper of Jondeau and Rockinger (2006) who showed that the
skewness in weekly stock returns of the USA companies can significantly influence
the portfolio selection on this market. The assets in the study are the stocks of the
Boeing Co, Disney (Walt) Co, Hewlett-Packard, Altria Group INC, and Microsoft
Corp. The data is taken for the period from the 3rd of January 2007 to the 5th of
October 2009 and it includes n = 145 observations for each stock.

In Table 11.1, the estimators of the parameters of the skew normal distribution
described in Sect. 11.5.1 are presented. We observe that x̄ provides a poor estimator
of the location vector μ . The improved estimator μ̂ consists of much smaller
elements which are more than 20 times smaller than the corresponding components
of x̄. As a result, the application of the vector x̄ leads to misleading results, i.e. the
investor expects more (or less) from the holding asset. Consequently, the decision
about buying, holding, or selling the asset could be wrong when x̄ is used for
estimating of μ .

In Fig. 11.1a–e, the histograms for the data considered are plotted. The densities
presented in the figures are calculated by using the kernel density estimation with
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Fig. 11.1 Histograms and the kernel density estimators for the weekly returns of the (a) Boeing
Co, (b) Disney (Walt) Co, (c) Hewlett-Packard, (d) Altria group INC, and (e) Microsoft Corp

the normal kernel. We observe that the densities of the Boeing Co and Altria Group
INC returns are skewed to the left, while the densities of the Disney (Walt) Co,
Hewlett-Packard, and Microsoft Corp returns are skewed to the right.

Stronger results are presented in Fig. 11.2. Here, we apply the goodness-of-fit
test of Sect. 11.5.2 to the data considered with the estimated parameters given in
Table 11.1 for ṽ ∈ [0.1,10]. Although, in Table 11.1 the estimator of Ẽ instead
of E is present it can be used since we need only the direction of the vector
E for determining a which is orthogonal to vec(ΣED′) = (w1,w′

2)
′. The vector

a = (a1,a′2)
′/(a2

1 +a′2a2) is calculated with a2 = w2 and a1 =−w′
2w2/w1.

In Fig. 11.2, we plot the p-values of the test as a function of ṽ. The calculated
value of the test statistic is 0.0018504. We observe that the p-values are large for
all of the considered values of ṽ. They are always larger than 0.948. This result
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Fig. 11.2 The p-values of the goodness-of-fit test for the matrix variate closed skew normal
distribution as a function of ṽ = D′DE′ΣE/v applied to the weekly returns of the Boeing Co,
Disney (Walt) Co, Hewlett-Packard, Altria group INC, and Microsoft Corp

confirms that the weekly asset returns can be well described by the matrix variate
closed skew normal distribution.

Next, the main results of this section are presented. We apply the results of
Theorem 11.8 for studying the impact of skewness on the inference procedures
about the GMVP weights. For each estimated weight of the portfolio we test if
this weight corresponds to the true value calculated from (11.15), i.e the following
hypothesis is tested

H0,i : wGMV,i = w0,i = w̃GMV,i against H1,i : wGMV,i �= w0,i = w̃GMV,i

(11.43)

for i = 1,2,3,4,5. For testing H0,i the following statistic is considered
(c.f. Theorem 2)

Ti = (n− p)

(
1′pV̂−11p

)2
(ŵGMV,i − w̃GMV,i)

2

1′pV̂−11p; v̂(−)
ii − (∑k

j=p v̂(−)
i j )2

with V̂−1 = (v̂(−)
i j ).
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Table 11.2 The estimated and true weights of the global minimum variance portfolio are given
in the first two columns (p = 5 and n = 145). The estimated values of λ for the individual test on
the GMVP weight of each asset and the corresponding estimated probability of the type I error are
presented in the third column and the fourth column of the table (α = 0.05) respectively

ŵGMV w̃GMV λ̂ P̂(T > Fq,n−p;1−α |w0)

−0.047986 −0.103944 0.0061412 0.152132
0.1379042 0.1618053 0.0007404 0.061879
0.1278034 0.1280838 0.00000014 0.050002
0.6523426 0.5494764 0.0195875 0.378095
0.1299362 0.2645785 0.0334062 0.575389

The results are given in Table 11.2. In the first column we present the estimators
of the GMVP weights obtained from (11.11) with V̂ as in (11.10). The vector of true
weights is obtained from (11.15) by substituting the unknown parameters V and Ẽ
with the corresponding estimators (11.27) and (11.29). We observe that the elements
of the vectors ŵGMV and w̃GMV are different. The largest deviation is present for the
Microsoft Corp asset while the Altria Group INC asset is ranked second. This result
shows that the skewness influences the covariance matrix of the asset returns and
as a result it has a significant impact on the portfolio weights. Moreover, the results
obtained about the distributional properties of the GMVP weights are in line with
the statistical theory. The sample mean and the sample covariance matrix are hardly
interpretable if the distribution of data is not symmetric.

In the third column of Table 11.2 we present the estimators of λ for each test
(11.43). The largest value of λ̂ is obtained for the Microsoft Corp asset and it is equal
to 0.0334062. Finally, in the last column of Table 11.2 the estimated probabilities of
the type I error for each test are given. In the case of the Altria Group INC asset and
the Microsoft Corp asset, the estimated probabilities are larger than 37 % with the
significance level of 5 %. Hence, because of the skewness, which is ignored when
the normal distribution is fitted to the asset returns, the probability of rejection of
the null hypothesis is more than seven times larger than the significance level of test.

11.6 General Class of the Skew Elliptically Contoured
Distributions

Definition 11.3. A random matrix Y (p × m) is said to have a matrix variate
extended skew elliptical (MVESE) distribution with pdf generator h and parameters
M (p×m), S (mp×mp), B (nq×mp), L (q× n), Q (nq× nq), where S > 0 and
Q > 0, if

vec(Y ′)∼ ESEpm,nq[vec(M′),S,B,vec(L′),Q,h].
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Here, ESE denotes the extended skew-elliptical distribution as given in González-
Farı́as, Domı́nguez-Molina, and Gupta (2004a). We denote this relation by Y ∼
ESEp,m;q,n(M,S,B,L,Q,h).

Using similar arguments to those employed in Sect. 11.2, it is also possible to
derive the matrix variate skew-elliptical distribution for which the parameter matrix
B = D⊗E, where D (n× p) and E (q×m) are arbitrary matrices.

As partial cases of this general family of distributions in the next two subsections
we consider the skew t-distribution and the skew Cauchy distribution which are
investigated by Ramos-Quiroga (2004) in detail.

11.6.1 Multivariate Skew t-Distribution

The multivariate skew normal distribution has been studied by Gupta and Huang
(2002), Gupta and Kollo (2003), Azzalini and Dalla Valle (1996), Azzalini (2005),
Arellano-Valle and Azzalini (2006), Pewsey (2000), and its applications are given
in Azzalini and Capitanio (1999). This class of distributions includes the normal
distribution and has some properties like the normal and yet is skew. It is useful in
studying robustness. Following Gupta and Kollo (2003), the random vector x (p×1)
is said to have a multivariate skew normal distribution if it is continuous and its
density function is given by

fx(x) = 2φp(x;Σ)Φ(α ′x), x ∈ IRp, (11.44)

where Σ > 0, α ∈ IRp. It is denoted by x ∼ SNp(Σ ,α), to mean that the random
vector x has p-variate skew normal density (11.44). The moment generating
function of x is

Mx(t) = 2e
1
2 t′Σ tΦ

(
α ′Σ t

(1+α ′Σα) 1
2

)

, t ∈ IRp. (11.45)

This distribution family is not in the elliptically contoured family (see Gupta and
Nagar 2000).

The mean vector and the covariance matrix of x are given by

μx = E(x) =

√
2
π
δ

cov(x) = Σ −μxμ
′
x

where δ = (1+α ′Σα)− 1
2α . Note that the mean vector μx given by Azzalini and

Capitanio (1999) is in error. Gupta and Kollo (2003) have further defined the
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SNp(μ,Σ ,α), family where μ is the location parameter as y= x+μ ∼ SNp(μ,Σ ,α).
Azzalini and Dalla Valle (1996) defined SNp(Ω ,α) where Ω is the correlation
matrix.

It may be noted that in the multivariate case very few models are available
for dealing with non-normal data, especially so for modeling the skewness. The
univariate skew distributions have been studied by Gupta, Chang, and Huang (2002).
Next, we define the general multivariate skew t-distributions.

Definition 11.4. Let x = (x1, . . . ,xp)
′ ∼ SNp(Σ ,α) and W ∼ χ2

v independent of x.
Then the joint distribution of y j = x j/

√
W/v, j = 1, . . . , p is defined as the

multivariate skew t-distribution with v degrees of freedom.

We denote it as y = (y1, . . . ,yp)
′ ∼ SMTv(α). This may be called multivariate

skew t with common denominator as in Cornish (1954), Dunnett and Sobel (1954),
and Laurent (1955). Branco and Dey (2001) derive similar result by considering
t-distribution as a special case of scale mixture of normal distribution.

Now we can find the join density of y. The joint p.d.f. of y1,y2, . . . ,yp is given by

fv(y;α) =
2

(2πv)
p
2 |Σ | 1

2 2
v
2Γ
(

v
2

)
∫ ∞

0
w

v+p
2 −1e−(1+v−1y′Σ−1

y) w
2Φ
(√

w
v
α ′y
)

dy

(11.46)

To evaluate the integral in (11.46) we need the following result.

Lemma 11.1. Let U ∼ χ2
k , then

EUΦ(a
√

U +b) = F ′
Tk,b2

(a
√

k) (11.47)

where Φ(·) is the c.d.f. of standard normal distribution and F ′
Tk,δ2

(·) is the c.d.f. of

non-central t-distribution with k degrees of freedom and non-centrality parameter
δ 2 = b2.

PROOF: Let Z ∼ N(0,1), then

EUΦ(a
√

U +b) = EU P[Z < a
√

U +b|U ]

= EU P

[
Z −b
√

U/k
< a

√
k|U
]

= P[T ′
k ≤ a

√
k]

= F ′
Tk,b2

(a
√

k).

Now using the above lemma we can write (11.46) as
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fv(y;α) =
2(1+ v−1y′Σ−1y)−

v+p
2 Γ
( v+p

2

)

(πv)
p
2 |Σ | 1

2Γ
(

v
2

) ·EUΦ

(
α ′y

(v+y′Σ−1y)
1
2

√
U

)

where U ∼ χ2
v+p. Hence

fv(y;α) =
2(1+ v−1yΣ−1y)−

v+p
2 Γ
( v+p

2

)

(πv)
p
2 |Σ | 1

2Γ
(

v
2

) FTv+p

(
α ′y

(v+y′Σ−1y)
1
2

√
v+ p

)

(11.48)

where FTk(·) is the c.d.f. of central t-distribution with k degrees of freedom. Or
equivalently Y ∼ SMTv(α) if its p.d.f. is given by

fv(y;α) = 2 fTv(y)FTv+p

(
α ′y

(v+y′Σ−1y)
1
2

√
v+ p

)

, y ∈ IRp. (11.49)

From the definition and the density function (11.49) of SMTv(α), the following
properties can be easily seen.

(i) SMTv(0)≡ MTv− multivariate t-distribution with v degrees of freedom, where
usually Σ is replaced by the corresponding correlation matrix R.

(ii) lim
v→∞ fv(y,α) = 2φp(y;Σ)Φ(α ′y) i.e. the multivariate skew t-distribution tends

to the multivariate skew normal distribution as v → ∞.

(iii) Note that Y 2
j =

X2
j

W/v ∼ F(1,v) ≡ t2
v since X2

j ∼ χ2
1 . Here F(m,n) denotes the

Snedecor’s F-distribution with degrees of freedom m and n. Furthermore, the
joint distribution of (Y 2

1 , . . . ,Y
2
p ) is multivariate F-distribution with parameters

1,1, . . . ,1,v+ p (see Finney 1941).
(iv) The quadratic form y′Σ−1y ∼ pF(p,v), since

y′Σ−1y =
x′Σ−1x

W/v
,

and x′Σ−1x ∼ χ2
p (see Gupta and Kollo 2003; Azzalini and Dalla Valle 1996).

Note that this distribution does not depend on α . This therefore extends the
multivariate normal theory to the multivariate skew normal or the multivariate
t- to multivariate skew t-distribution.

11.6.1.1 Expected Values

Let y ∼ SMTv(α). Since y = v1/2W−1x and the mean vector and the covariance
matrix of x ∼ SNp(Σ ,α) are given by Gupta and Kollo (2003) and Azzalini and
Dalla Valle (1996), we get

E(y) =

√
2v
π

Σα
(v−2)(1+α ′Σα) 1

2

, v > 2 (11.50)
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cov(y) =
v

(v−2)(v−4)
Σ
[

I − 2(v−4)αα ′Σ
π(v−2)(1+α ′Σα)

]
, v > 4. (11.51)

For α = 0, from (11.50) and (11.51) we get the moments of multivariate t-

distribution. Further, since x j = x j/
√

W
v , j = 1, . . . , p, and W and x j are indepen-

dent, the product moments of y1,y2, . . . ,yp are easily found as

μ ′r1,r2,...,rp
= E

[
p

∏
j=1

y
r j
j

]

= v
1
2 ∑

p
1 r j E
(

W−∑p
1 r j

)
E

(
p

∏
1

x
r j
j

)

,

=

(√
v

2

) 1
2 ∑

p
1 r j Γ

(
v
2−∑p

1 r j
)

Γ
(

v
2

) E

(
p

∏
1

x
r j
j

)

,
p

∑
1

r j<
1
2

v. (11.52)

If x1, . . . ,xp are mutually independent, then

μ ′r1,...,rp
=
( v

4

) 1
2

p

∑
1

r j
Γ

(
v
2 −

p

∏
1

r j

)

Γ
(

v
2

)

{
p

∏
j=1

E(X
r j
j )

}

. (11.53)

The marginal distribution of x j is univariate skew normal and its moments can be
computed easily.

11.6.2 Multivariate Skew Cauchy Distribution

The special case of the multivariate skew t-distribution for Σ = I is

fv(y,α) =
2Γ
( v+p

2

)

(πv)
p
2Γ
(

v
2

)

(

1+ v−1
p

∑
1

y2
j

)− v+p
2

(11.54)

× FTv+p

⎛

⎜⎜⎜
⎜⎜
⎝

α ′y
(

v+
p

∑
1

y2
j

) 1
2

√
v+ p

⎞

⎟⎟⎟
⎟⎟
⎠
, y ∈ IRp,
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and may be called standard multivariate skew t-distribution. For v = 1, this
distribution is defined as the multivariate skew Cauchy distribution with density

f (y;α) =
2Γ
(

p+1
2

)

(π)
p+1

2

(

1+
p

∑
1

y2
j

)− p+1
2

FTp+1

⎛

⎜⎜⎜⎜
⎜
⎝

α ′y
√

p+1
(

1+
p

∑
1

y2
j

) 1
2

⎞

⎟⎟⎟⎟
⎟
⎠
, y ∈ IRp.

(11.55)

Definition 11.5. The random vector y is said to have multivariate skew Cauchy
distribution if its density function is given by (11.55).

It will be denoted by y ∼ SMC(α). From the density (11.55) it is seen that
the multivariate skew-Cauchy distribution does not belong to the class of spherical
distributions (see Gupta and Nagar 2000) whereas the multivariate Cauchy does.

It may be noted that the SMC(0), which is

f (y;0) =
Γ
(

p+1
2

)

(π)
p+1

2

(

1+
p

∑
1

y2
j

)− p+1
2

, −∞< y j < ∞ (11.56)

gives the multivariate Cauchy density. Then (11.56), for p = 1, gives the standard
Cauchy C(0,1), density. However the univariate skew Cauchy, obtained from
(11.55) for p = 1 is

f (y;α) =
2

π(1+ y2)
FT2

(√
2α

y
√

1+ y2

)

, −∞< y < ∞. (11.57)

This definition of univariate skew Cauchy distribution is not unique (see Gupta,
Chang, and Huang 2002).
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