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Introduction 

 
Our new monograph has been inspired by the former one, Earthquake 
Source Asymmetry, Structural Media, and Rotation Effects (R. Teisseyre, 
M. Takeo, and E. Majewski, eds, Springer 2006). Some problems, con-
cerned primarily but not exclusively with the basic theoretical nature, have 
appeared to us as worthy of further analysis. Thus, in the present mono-
graph we intend to develop new theoretical approaches to the theory of 
continua that go far beyond the traditional seismological applications. We 
also try to present the links between the experimental data, the observed 
rotational seismic waves, and their theoretical evaluation and description. 

In addition, we consider the basic point motions and deformations, and 
we intend to find the invariant forms to describe such point motions. We 
believe that there must exist the basic equations for all point motions and 
deformations, and we derive such relations within a frame of a continuum 
theory. Thus, in the considered standard asymmetric theory, we include 
relations not only for the displacement velocities but also for a spin motion 
and basic point deformations as well. We include here the axial point de-
formation and twist point deformation represented by the string-string and 
string-membrane motions. A twist vector is defined here as a vector per-
pendicular to the string-string plane and representing its magnitude. It be-
comes an important counterpart to spin and a key to the presented theory. 
We show in the forthcoming chapters that the twist motion describes the 
oscillations of shear axes.  

Practically all motions and deformations can be described by the dis-
placement field, but this is not true for the point-related spin, the string-
string vector, and point axial motions, which become independent fields 
related to different source processes. This approach not only widens our 
possibilities for the description of material deformations but also leads us 
to its projection onto some basic problems of the classical relativistic 
theory. Furthermore, we include considerations of an advanced approach 
to space geometry and deformations in asymmetric continua. Applications 
of differential geometry are extremely important for the non-linear 
processes. Finally, we arrive at some analogies leading us up to the general 
relativity problems.  

The monograph is presented in three parts. In the first part, Introduction 
to Asymmetric Continuum and Experimental Evidence of Rotation Mo-
tions, we consider the basic deformations in a continuum and discuss the 
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full system of the point deformations and motions that need to be indepen-
dently described by an appropriate system of basic equations. We present 
an important evaluation of the experimental data and methods used to de-
rive the rotation wave part. Our considerations include the necessity of 
simultaneous recording of the translational and rotational earthquake mo-
tions and the strains—at least the deviatoric strains. We believe that the 
related data will provide new insights for earthquake engineering studies 
as well. 

The new achievements in experimental studies related to rotation mo-
tions involve some important relations with engineering seismology and 
with interaction effects, including some reverse actions. For instance, a 
strong vibration of buildings erected on flexible soil can induce, through 
soil-structure interaction, additional rotational motions in the ground. 
Thus, we argue that the vibration of some objects on the ground surface 
may interact back on the ground motions. 

In the next part, Continuum with Defect Densities and Asymmetry of 
Fields, we develop the standard asymmetric continuum theory. We discuss 
the fundamental problems related to the continuum theories and the need 
for a new approach that includes asymmetric fields, and we present a re-
view of achievements of the asymmetric continua. When considering con-
tinua contaminated by a field of defects and interaction nuclei, we include 
the different material responses to stresses or other active fields, with these 
responses most frequently being described by an appropriate choice of 
constitutive relations. The other approach—the Kröner approach—relies 
on suitable modifications of the equation of motion so as to include a phys-
ical interaction involving the defects and internal nuclei (thermal, electric, 
rotation nuclei, and others).  

Instead of the above-mentioned approaches, we introduce the standard 
asymmetric continuum theory that brings us more directly to an interactive 
nature of defects and internal nuclei. In a frame of this new approach, we 
discuss the basic deformations and the related aspects of the constitutive 
bonds between stress moments and the rotation of particles in a continuum. 
Stress moments, when introduced into a frame of classical continuum 
theory, require that at least one discrete element be introduced into the 
continuum—i.e., an internal length unit. This inconsistency is usually 
overcome by the concepts of the micropolar or micromorphic theories, in 
which the point-grains are subjected to deformation. Such an apparent 
contradiction disappears in the asymmetric continuum theory when the 
internal rotations become connected to antisymmetric stresses in a consti-
tutive way. Therefore, we present an equivalence between this new treatise 
with the antisymmetric stresses and the one that uses the stress moments. 
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Many aspects of continuum theories have their origin in problems of the 
crystal lattice defects. The densities of such defects have their description 
in the continuum theories. Thus, in developing the standard asymmetric 
continuum theory we include a counterpart of dislocation density fields 
together with the stress-dislocation relations in a concise manner. This 
theory of continua, with rotational motions (spin and twist together), with 
the inner central motion (e.g., the thermal one), and with the other defect 
fields, can be projected onto the intrinsic properties of the Riemannian or 
non-Riemannian space. Moreover, based on the notion of the antisymme-
tric stresses (introduced, among others, by Shimbo 1975, 1995), we may 
extend the theory to include a case of a homogeneous continuum. The 
standard asymmetric continuum is, thus, the theory that includes symme-
tric and antisymmetric stresses. The additional constitutive laws introduced 
form a basis for the existence of an antisymmetric stress field, with such 
stresses arising as an elastic response to the rotational deformations of 
bonds in a lattice network. 

Furthermore, we introduce the deviatoric potentials, which help us to 
define the twist motion as the counterpart to the spin motion and to provide 
better understanding of the symmetry properties of fields. This theory 
permits us to present a new insight into fracture processes with a counter-
part of rotational motions, spin and twist, and also an axial deformation 
when a confining load is included. Consequently, we discuss processes 
leading to material granulation and fragmentation. The hypothesis of frac-
ture synchronization processes is based on the special solution for the spin 
and twist fields.  

An important problem in seismology, and especially in the search for 
earthquake precursory phenomena, concerns the interaction between the 
mechanical and electric fields. We present a frame for the interaction 
asymmetric continuum theory and discuss the numerous approaches to the 
study the electric field and electric current related precursory phenomena.  

We extend our considerations for non-linearity in terms of the theory of 
fluids and extreme deformations, including the soliton waves. 

Continuing with the problem of the non-linear processes, we give ex-
amples concerning the motion of dislocations and, strictly speaking, its 
density field. We provide examples of the numerical simulation of some 
fracture sequences of the in-plane (edge dislocation) and anti-plane (screw 
dislocation) motions. Furthermore, we present the most characteristic ex-
amples of soliton applications to problems of fracture physics. We then 
end this part with a canonical approach to the theory of asymmetric conti-
nua. Our considerations, starting with Hamilton’s Principle, lead us to the 
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equations of motion formulated in terms of the spin structure and spin 
rates.  

In the last part, entitled Deformations in Riemannian Geometry, we pass 
to the more advanced descriptions for the continua, basing the discussion 
on a number of theories presented in the Riemannian and other generalized 
spaces, which may include the intrinsic asymmetric properties. This ap-
proach can be treated as a natural introduction to nonlinear physics. We 
review possible analogies between an elastic continuum with a continuum 
defect distribution and the Einstein-Cartan theory, paying the most atten-
tion to the analogies between dynamical concentrations of continuous 
fields (disclinations and dislocations) and the tensors of curvature and tor-
sion in the Riemannian spaces extended by torsion. We attempt to relate 
the defect densities to spinors in the spin-spaces, arriving at the disclina-
tion and dislocation spinors. Then, we employ twistors to describe spin and 
twist solitons, and we formulate Maxwell-like equations for spin and twist 
motions in terms of spinors. Finally, we consider how the antisymmetric 
potentials for the spin and twist can lead us to formulate a complex de-
scription of motions, with the asymmetric perturbations applied only to the 
metric tensor. This approach permits us to present the relevant relations in 
the frame of the classical Riemannian space. 

We rely also on the numerous analogies between a continuum theory 
approach and General Relativity. With regard to such analogies, we recall, 
first of all, the Cartan works (Cartan 1923, 1924, 1925) as being influenced 
by the work of the Cosserat brothers (1909) on a generalized continuum in 
which a moment stress tensor is included. Therefore, we dare to extend the 
obtained results for the electromagnetic potentials. In this way we define 
the antisymmetric perturbations to metric tensor, and then we come to the 
relevant relations for the Complex General Relativity in the frame of the 
classical Riemannian space.  

On a final note, our treatise in the first and second parts is presented in  
a rather accessible form and suggests some possible future applications. 
The related considerations and results may be recommended for research-
ers in physics, geophysics, material sciences, and for advanced students as 
well. A more advanced approach is used in the last part; however, we point 
out that the applications of differential geometries in physics have become 
extremely enlightening for the fundamental understanding of nonlinear 
processes.  

 

Roman Teisseyre 
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INTRODUCTION  
TO  ASYMMETRIC  CONTINUUM 

AND  EXPERIMENTAL  EVIDENCE 
OF  ROTATION MOTIONS 



 

 

1 Introduction to Asymmetric Continuum: 
    Fundamental Point Deformations 

Roman Teisseyre and Marek Górski 

Institute of Geophysics, Polish Academy of Sciences 
ul. Księcia Janusza 64, 01-452 Warszawa, Poland 
e-mail: rt@igf.edu.pl 

 
1.1 Introduction 

A more general approach to continuum mechanics is inspired by the 
asymmetric theory; therefore, we first consider some arguments forming 
the basis to constitute such an asymmetric continuum theory based on 
asymmetric stresses: 

I.  Already when studying the elastic field of an edge dislocation we find 
some asymmetry in its components; in confrontation with symmetry of 
shears, this fact results in the asymmetry of stresses for a continuous dis-
tribution of dislocations (for screw dislocations such a contradiction does 
not exist). Therefore, a direct differential relation between any density of 
dislocations and the related stresses cannot be adequately found in a sym-
metric continuum. 

II.  Fracture reveals usually its asymmetric pattern relative to the main 
slip plane; we believe that the premonitory processes, as described by de-
formations in a continuum with defects, develop also in an asymmetric 
way. 

III.  In the classical continuum, the balance of angular momentum holds 
only if the stresses are symmetric; the angular motions can be introduced 
only artificially with the help of a length element and a reference rotation 
point. This classical theory has also many other limitations and therefore 
many trials have been undertaken to generalize it. The asymmetric theory 
of elasticity with asymmetric stresses and couple-stresses has been 
founded by Nowacki (1986). However, a first generalization to include the 
moments in a continuum is due to Voigt (1887) and a complete theory 
including asymmetry of stress and strain is that known as the Cosserat 
theory of elasticity with the displacement vector and rotation vector  
(E. Cosserat and F. Cosserat 1909). Micropolar and micromorhic elastic 
theories have been developed by Eringen and his co-workers (see: Eringen 
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1999). Teisseyre (2005, 2006) proposed a simpler version of the asymme-
tric theory which includes the asymmetric stresses, strains and rotations, 
but in which the equations for the antisymmetric stresses differ from that 
of couple moments in Nowacki’s theory; their roles are interchanged, but 
both systems remain almost equivalent. 

IV.  Usually, when searching for the fault slip solutions we rely on clas-
sical elasticity with the friction constitutive laws introduced according to 
the experimental data. The obtained equations do not theoretically apply to 
elastic continuum that includes any distribution of defects as objects with 
their own stress field; nevertheless, the obtained results well explain the 
observational data. We consider an elastic continuum with asymmetric 
stresses and defects. This approach permits to study the defect interactions 
and elastodynamic solutions describing slip propagation along a fault. 

V.  The asymmetry of fields follows also from the notion of antisymme-
tric stresses introduced by Shimbo (1975, 1995) and Shimbo and Kawagu-
chi (1976) and related to the friction processes and rotation of grains. Frac-
ture processes develop usually along the main fault plane; hence, there 
appears the initial asymmetry of the fracture pattern (Teisseyre and Kozak 
2003); due to friction, the rotation of grains adjacent to the main slip plane 
gives rise to the antisymmetric part of stresses and twist deformations. 
According to Shimbo (1975, 1995) we introduced the constitutive law 
joining the antisymmetric stresses with the rotation nuclei (self-rotation 
field); without such a constitutive law, any theory reduces the rotation 
motions and waves (except the displacement rotation) to zero. 

VI.  In the asymmetric continuum, defined as that including both the 
symmetric stresses and the antisymmetric stresses, there appear also the 
rotational motions/deformations which split into the pure spin and twist 
motions, the latter relating to the shear deformations of grains; when con-
sidering the point like nuclei, the twist deformation  passes to 3D space 
torsion (Riemannian space). 

VII.  Experimental evidence discovering an appearance of the spin and 
twist motions in a seismic field is based on the records of seismic rotation 
fields obtained both with the help of the ring laser or fiber optics interfe-
rometers, based on the Sagnac principle (Cochard et al. 2006, Schreiber et 
al. 2006, Takeo 2006, Jaroszewicz et al. 2006) and by the rotation seismo-
graphs (Moriya and Teisseyre 2006, Wiszniowski 2006). For spin motion 
we shall be aware of the fact that the recorded rotation contains two ele-
ments: rotation of displacements and independent spin motion. Both these 
elements, according to experimental evidence, appear in different propor-
tions depending on the source processes and propagation conditions. New 
observations have been obtained due to the modern instrumentation tech-
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niques; the results are in the form of the rotation wave seismograms. The 
first one is probably that achieved in an indirect way (Teissyere 1973); the 
azimuth array of horizontal seismographs, installed in one of coal mines in 
Upper Silesia to record the very near tremors, permitted to deduce the rota-
tational component of motions. The really first rotation seismograms were 
obtained at the two fundamental geodetic stations in Wetzell, Germany, 
and in Australia (Cochard et al. 2006, Schreiber et al. 2006) equipped with 
the ring-laser interferometers based on the Sagnac principle. Later on, sen-
sors of another type − the fiber-optic interferometers − were used by Takeo 
(2006), specifically for the seismic observations; one of the versions of his 
sensors included the tri-axial system. Jaroszewicz et al. (2006) applied this 
system of interferometers for the study of Silesian seismic events. Using a 
more traditional approach, Moriya (see: Moriya and Teisseyre 2006) has 
constructed the first rotation seismograph system consisting of a pair of 
anti-parallel seismographs; such a system with the common suspension of 
the anti-parallel seismographs was subsequently used in later constructions 
(Wiszniowski 2006). 

Data collected by the above-mentioned recording systems brought at 
least two important results:  

− records of different events in the very near field indicate that some 
events, e.g., shallow volcanic and those of explosion type, differ 
from the common characteristics by their extremely small rotation 
components (Teisseyre et al. 2003);  

− correlations between the rotation seismograms obtained from the 
ring-laser system and the rotation motions, rot u, derived from the 
array of seimometers (located at the same site) show almost perfect 
fit (Cochard et al. 2006).  

The independent rotation field, e.g., the rotation related to grains or 
points of continuum, has been introduced by Shimbo (1975, 1995) in his 
considerations on the friction and fracturing processes. In such a way, the 
constitutive law joining the antisymmetric stresses and rotation was intro-
duced 

*
[ ] 2 ,ks ksS μ ω=   

which relates directly to the internal friction μ∗, called the rotation rigidity, 
as kind of material resistance. 

Such a constitutive law is requested by the asymmetric theory; this con-
stitutive law concerns any deformation in which the internal friction plays 
any role. 
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The Shimbo law has been later generalized for the spin and twist rota-
tion motions (Teisseyre et al. 2006). 

Thus, we cannot deny the existence of independent rotation waves; and 
the question is reduced to the magnitude of the rotation rigidity μ∗; when 
μ∗ exceeds the modulus of rigidity, * ,μ μ  we may, of course, neglect 
these rotation waves, but in the reverse case, * ,μ μ  the pure rotation 
motions would prevail. In our considerations (see: Teisseyre 2006) we 
make the natural assumption * ,μ μ≡  as the rigidity modulus relates to the 
transversal motions which are connected to rotations. 

To summarize, we may note that the independent, pure rotation, [ ] ,sω  

can be presented by means of the potentials :micro
ku  

[ ]
1
2

.micro micro
nsk k s n

n s

u u
x x

ω
⎡ ⎤∂ ∂

∈ = −⎢ ⎥
⎣ ⎦

  

Such potentials contribute to displacement field, as the rotations contri-
bute to the displacement derivatives; reversely, the displacements may 
produce the rotation field; such a statement may appear as a far-going one 
as the values of displacement micro

ku  could be extremely small. However, 
we shall note that in the asymmetric theory the rotation motions would 
exist even in the case when we neglect displacement fields − such a case 
can be called a degenerated continuum. 

Therefore, basing on the above reasoning, showing that the rotations 
may contribute to displacement derivatives and displacements may contri-
bute to rotations, we can state that these motions are interrelated; this 
statement is empirically supported by the above mentioned almost perfect 
fit between the derived rotations, rot u, and the rotations obtained from the 
ring-laser system data. Therefore, we think that the problem related to the 
existence of rotation waves appears irrelevant. However, we shall stress 
that the displacements and rotation motions differ in general, especially 
when considering their origin and effects. Instead of the problem whether 
the rotation waves exist or not, we propose to consider the classification of 
rotation motions from the point of view of their origin, scale, and the ef-
fects produced. 

We propose the following classification: 
− the micro-rotations or rotations, ω, as related to the wave motions 

based on the internal friction processes (rotation rigidity), as well as 
to slip motions with friction/fracture processes; 
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− the meso-rotations related to material granulation and formation of 
the mylonite zones under the shear load fracturing processes; 

− the total rotations, ωT (the nomenclature introduced by Kröner 
1981) related to the displacement field, u; 

− the macro-rotations as related to fragmentation of material at the 
fracturing under compression load; 

− the mega-rotation effects related to the ground tilts and tilting of 
high objects on the ground. 

The important role of rotational processes in mechanics of fracturing 
and the related energy release has been discussed in our former papers 
(Teisseyre 2006, Teisseyre et al. 2006). Both under confining pressure and 
under external shears the role of micro-fracturing in the bond breaking 
process is similar; however, we observe here the essential differences for 
rotations in larger scales. The confining condition leads to the formation of 
induced opposite arrays of dislocations, resulting in fragmentation 
processes and related macro-rotations. On the other hand, shear load leads 
to more concentrated fracturing along some planes. We have underlined, in 
the cited papers, that macro-rotation processes and related energy release is 
more effective for the fracturing under confining pressure. 

These considerations lead us to the question of classification of basic 
motions. 

Worth mentioning here is the fundamental contribution to the rotation 
motions as caused by earthquakes, presented in the paper by Cochard et al. 
(2006); the described simulations and comparison of the rotation of dis-
placement field, as computed from the array seismometer system, excel-
lently fit to the spin motion measured by means of modern ring laser tech-
nology. We shall note that this well proved agreement has been obtained 
using the pass band filtering, 0.03-0.08 Hz, limiting results to the surface 
wave trails. However, the near source effects, including friction processes 
at cracks, and an influence of medium structure and its defects, may con-
tribute to the formation of an independent rotation field; the question how 
big such effects could be remains still open. 

For seismic source processes, the independent rotation, the spin motion, 
clearly overpasses rotation of displacements, however we shall also note 
some exceptions related to events of  explosion nature or for some volcan-
ic near surface events; here, the situation is reverse and both the pure spin 
motion and rotation of displacement are highly reduced. For strong mo-
tions which include a tilting component the rotation of displacements can 
reach high magnitudes. Same is observed in engineering seismology: the 
rotation of displacements is very high and this effect is due to the magnifi-

Chap. 1  Introduction to Asymmetric Continuum 
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cation of horizontal rotation components and to the appearance of rock-
ing/tilting component caused by the geometry of construction, especially 
for high buildings. 

1.2 Self-Field Nuclei: Deviations from Classical Elasticity 

Any continuum could be described using the Kröner approach based on the 
concept of internal fields excited by a density of defects and internal nuc-
lei; stresses and strains are related by the unique constitutive law, that for 
the ideal elasticity. This approach is equivalent to the other one in which 
we change the constitutive law in the way appropriate to describe the plas-
tic, viscous and relaxation effects. 

In the Kröner continuum with a density of internal nuclei, also treated as 
points, the elastic strains, rotations and stresses can be expressed as differ-
ences between total and self-fields (Kröner 1982). These elastic fields shall 
obey the constitutive laws valid in the ideal elasticity.  

Frequently, the deviations from ideal elasticity are taken into account by 
the appriopriate elasto-plastic constitutive laws. However, following the 
Kröner approach (Kröner 1982), we maintain the ideal elastic law, and we 
introduce the self/inner stresses, strains and rotations as related to the in-
ternal nuclei or defects. The Kröner method allows to include the devia-
tions from symmetry properties for stresses, strains and rotations. We also 
introduce additional constitutive laws joining the antisymmetric stresses 
with rotations; in such a way we include a role of the antisymmetric 
stresses which replace that of stress moments. 

The asymmetric continuum includes the displacements and also rota-
tions; the related balance equations split into those related to symmetric 
and antisymmetric parts (Teisseyre 2005). 

In the present approach we rely on the standard asymmetric continuum 
theory in which we assume that strains remain symmetric and rotations 
antisymmetric for the symmetric and antisymmetric fields: 

( ) [ ] ( ) [ ], ,kl kl kl kl kl kl klS S S E E ω ω= + = =  (1.1) 

and we can join these deformation fields, in an independent way, with 
displacement motions:  

01 1
2 2

,l k l k
kl kl

k l k l

u u u uE
x x x x

ω χ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= + = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (1.2) 
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where the structural index, x0, is introduced to account for the phase shifts 
between shear and spin motions; ⎟x0⎢= 1. 

We recall that any symmetric tensor can be split in a given coordinate 
system into the axial and deviatoric parts: the deviatoric tensor, ( ) ,

D
ikS  hav-

ing zero value of its trace, and axial tensor, ( ) ,
A
ikS  are defined as  

1 1
3 3

Tr ( ), Tr ( ), Tr ( ) 0.D A D= − = =S S I S S I S S  (1.3) 

For the symmetric part of stresses we can take the classical constitutive 
relation (including its deviatoric form):  

( ) ( )2 , 2 ,D D
kl kl ss kl ik ikS E E S Eλδ μ μ= + =  (1.4) 

and we supplement it with the Shimbo law for the antisymmetric part  

[ ] 2 .ikikS μω=  (1.5) 

There is no problem with including here the appropriate linear deviations 
related to visco-plastic effects. In the classic elastic continuum, only dis-
placement motions are taken into account, while any independent rotation 
motions are excluded because of the lack of appropriate constitutive laws 
supporting the existence of elastic response to the rotational deformations 
of bonds in a lattice network. The Shimbo law joins the friction related 
rotations with the antisymmetric stresses. We may also note that the rota-
tion rigidity constant introduced, in the Shimbo law and related to bonds 
(inner friction) has been taken as equal to the rigidity modulus.  

Finally, we shall underline that the body deformation is given by strain 
and rotation. 

The experimental evidence for independent spin and twist motions ap-
peared when analyzing the records of seismic rotation fields. The obtained 
experimental data clearly indicate that the independent spin and twist mo-
tion are detectable. As mentioned above, the twist deformations represent 
the grain deformations caused by elastic strain; however, when considering 
the grains as the 

”

rigid” points of continuum, such a twist deformation 
converts to a kind of 3D space curvature (Teisseyre et al. 2005, Teisseyre 
et al. 2006). 

The proper definition of the twist motion we will be given further on. 
Here, we can state that the antisymmetric stresses relate to rotational de-
formation and form the internal rotation nuclei, as, e.g., those appearing 
when micro-cracks are formed. 

Chap. 1  Introduction to Asymmetric Continuum 
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Antisymmetric stresses relate to an internal rotation motion; these 
stresses become important in materials with higher dislocation densities, 
under high stresses, or in zones where microfracture processes nucleate; in 
such zones, we can expect the presence of rotation nuclei. 

The continuum mechanics found its basis in considerations on deforma-
tions caused by displacement field, including the moment of momentum 
and angular deformation. Only later, in the micropolar and micromorphic 
theories with the infinitesimally small nuclei or in other advanced conti-
nuum treatments, the spin motions, or say the angular fields, appear as 
independent variables. In the asymmetric continuum theories, the dis-
placements and rotations may appear as equally and similarly treated inde-
pendent fields. Starting with such theories as the basis, we can define the 
degenerated continuum as that in which the displacements vanish − do not 
exist; we remain confined to the rotational deformations only. Rotational 
deformations split into the pure rotation and twist/shear oscillations; in the 
micromorphic theories the latter can be also related to the shear deforma-
tions of the point-nuclei. In our generalized approach, there appear also the 
axial fields, with a structure similar to that of a thermal field, and meaning 
the axial deformations: expansion/compression. Deformations related to 
thermal field, and deformations of the internal nuclei appear in the micro-
morphic theories. 

1.3 Basic Deformations and Simple Motions in an  
      Asymmetric Continuum 

Basic and simple motions could be defined as those which may be reduced 
to the 3D point motion in the Cartesian or Riemannian spaces or the de-
formations conceived as the respective curvatures. 
 

 

Fig. 1.1  Rotational motions: spin and twist (for explanation, see further on)  
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Considering basic motions we can distinguish here the simple motions, 
first the translations described by vector u and next the independent rota-
tion, further on called spin; in a non-homogeneous continuum, the grains 
having different material parameters can rotate due to interaction of a dis-
placement field with the moment of inertia of grains. 

Then, we shall pass to the tensorial motions/deformations: 
Any antisymmetric tensor [ks]ω  can be related to the vectorial field 

[ ] [ ] ,i iks ksω ω=∈  e.g., to spin motion; thus, we come again to the equivalent 
vector field. Theoretically, this simple spin motion, [ ]iω , could be treated 
as independent of the displacement rotation, however both contribute to 
the total spin field as observed, e.g., in seismology, 

0
[ ] [ ]

1
2

.s k
ks ks

k s

u u
x x

ω ω
⎛ ⎞∂ ∂

= − +⎜ ⎟∂ ∂⎝ ⎠
 (1.6) 

Any symmetric tensor can be split into the axial and deviatoric tensors 
(Eq. 1.3); the axial field represents the point deformation (compres-
sion/dilatation nucleus, e.g., related to thermal anomaly), see Fig. 1.2. 
These axial oscillation motions include the equal translation motions 
which, for both elastic or thermoelastic continua, may be directly related to 
the incompressibility moduli K, or to thermal expansion coefficients. With 
the axial formations and for the point-like continuum, we obtain, respec-
tively, the Riemannian curvature and, for the last case, the more compli-
cated Riemannian torsion tensor. 
 

 

Fig. 1.2  Axial basic deformations (3D, 2D and 1D)  

There remains the deviatoric field; in the limit related to the point-like 
deviatoric deformations presented in the system of off-diagonal axes we 
will have the string-string type (Fig. 1.3) and the string-membrane type 
(Fig. 1.4) deformations.  
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Fig. 1.3  String-string basic deformation  

 

Fig. 1.4  String-membrane basic deformation  

 
However, it is possible to show that these deviatoric deformations may 

be used to define a new antisymmetric tensor related to the simple defor-
mations representing another kind of the rotations motion – the twist  
deformation, ω(i). Such a deformation can be related to pure shear oscilla-
tions (Fig. 1.5) related to the oscillation of the off-diagonal shear axes  
as perturbated by dynamical and fracture processes. In a system related to 
the off-diagonal axes, we can present a shear deformation in the form:  

( ) ( ) ( )2 , .D D D
ik ik ks ksi iS E Eμ ω= = ∈  (1.7) 

In the next chapters (Chaps. 6 and 7) we will discuss an invariant defini-
tion of the twist motion ω(i). 
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Fig. 1.5  Twist motion: rotational oscillations of the off-diagonal shear axes and 
internal fracturings as sources of perturbations  

The spin and twist fields contribute to the outcoming asymmetric rota-
tion field: 

[ ] ( ) .s s sω ω ω= +  (1.8) 

We may notice that in the above formulae the displacement field might 
be presented by the equivalent vector potential field: 

2 1
2

n s
k ksn

s n

u
x x
ω ω

λ
⎛ ⎞∂ ∂

= ∈ −⎜ ⎟∂ ∂⎝ ⎠
  

where λ will be the intrinsic length parameter of the continuum; in the 
extreme case it is equal to the Planck length unit. 

1.4 Conclusions 

This chapter is based on an advanced approach to the theory of degene-
rated continuum, and relates to its sources in our former studies, as well as 
in the recent monograph 

”

Earthquake Source Asymmetry, Structural Me-
dia and Rotation Effects” (Springer 2006) and to our other former papers; 
however, we introduce here a new theoretical approach based on the stan-
dard continuum theory.  

We could consider the mechanics based exclusively on rotation motions 
as the exactly opposite case to the classic elastic continuum in which only 
displacement motions are taken into account, while any independent rota-
tion motions are excluded. In fact, the independent rotation motions are 
excluded only due to the lack of appropriate constitutive laws supporting 

Chap. 1  Introduction to Asymmetric Continuum 
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the existence of an elastic response to the rotational deformations of bonds 
in a lattice network. In the asymmetric continuum we included the bonds 
joining asymmetric stresses with spin and twist motions.  

The twist motions were defined as those related to oscillations of shear 
type; we shall remember that the notion of twist field appeared from an 
analysis of the records of seismic rotation fields.  

In the degenerated mechanics, in which we confine ourselves to rotation 
motions, excluding that related to displacements, we may describe any 
process, phenomenon, body property, or shift and position, which is re-
lated to some length element l, by the help of  the “arm spin” θ defined as: 

0

0

tg = l l
l

θ
−   

where by this expression we can reduce any length element l to the angle 
θ, “arm spin” and to a certain basic reference unit l0 (e.g., for point-like 
continuum to the Planck length unit). 

We shall note that the seismic spin and twist motions can be measured 
with the help of the ring laser or fiber optics interferometers, based on the 
Sagnac principle and by the strainmeters, or partly by the rotation seismo-
graphs. The obtained experimental data clearly indicate that the indepen-
dent spin and twist motions are detectable, forming the counterparts of 
displacement rotations and shear deformations.  

As mentioned above, the shear deformations can be presented in the 
main axes system (point-grain deformation) or in the off-diagonal system 
(twist motion); however, when considering the grains as “rigid” points of 
continuum, such deformations convert the Euclidean space into a kind of a 
3D space torsion curvature. We may present such geometrical features 
related to the Riemannian geometry aspects in a schematic way as shown 
in Fig. 1.6. 

                           
Fig. 1.6  Schematic presentation of the point-deformations converting the Eucli-
dean space into the Riemannian space with 3D space torsion and  curvature 
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In the above considerations, we have defined the simple basic motions 
and point-like deformations: translation was supplemented with indepen-
dent spin and twist motion and, furthermore, the complex pure axial mo-
tions. 

Concluding, we defined two basic independent motions: displacement 
iu  and spin [i]ω  and the basic deformations: twist/shear (i)ω  and the axial 

deformations .A
kkE  

In this chapter we have considered a total of the ten basic motions: un, 
ω[n], ω(m) and dilatation/compression as given by traces of deformation. 
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2.1 Definition of Rotation and a Review of the Measurement  
    Methods 

The term rotation has several meanings and relates to various topics. Gen-
erally, it is used to mean (in three-dimensional space) the rotation move-
ment of a rigid body in such a way that any given point of that body re-
mains at a constant distance from some fixed point. 

In seismology, rotation means mainly a curl of a spatial vector field of 
displacements u. Hence, it can be defined as the limit of a ratio of the sur-
face integral (over a close surface S) of the cross product of u with the 
normal n of S, to the volume V enclosed by the surface S, as the volume 
goes to zero: 

0

1curl .lim
V

d
V→

Σ

⎛ ⎞
= ×⎜ ⎟

⎝ ⎠
∫u n u S  (2.1) 

In the Cartesian coordinates x, y, z, rotation is given by the following for-
mula: 

curl ,y yx xz zu uu uu u
y z z x x y

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
x y zu e e e  (2.2) 

where ei are unit vectors of each coordinate. 
We can also say that the component of rotation of u in the direction  

of unit vector n is the limit of a line integral per unit area of the surface S 
over a closed curve C which encloses surface S, where n is the normal  
of S:  
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( )
0

1curl , .lim
S C

d
S→

= ∫u n u r  (2.3) 

The notation (a, b) means a scalar product of vectors a and b. The Stokes 
theorem is related to rotation. It says that 

curl .
C

d d
Σ

= ×∫ ∫u r u S  (2.4) 

Formulas (2.2) and (2.3) suggest two approaches to the rotation mea-
surement. In the first approach, we need to determine partial differences of 
movement as an approximation of partial derivatives. Components of the 
rotation vector can be then computed by subtraction of proper partial de-
rivatives. The second approach is based on measurement of an integral or 
sum of projections of movements along a closed curve. 

There are two ways to apply the gradient method. The most widely ap-
plied procedure is based on the measurement of the ground motion dis-
placement1 in various but specified points and in specified direction; the 
ratio of differences in signals recorded simultaneously from appropriate 
seismometers to the distance between the seismometers is then computed. 
To estimate one component of rotation, e.g. vertical, four seismometers are 
required. In we have  more seismometers than required, the rotation can be 
calculated directly from recorded signals. Saito (1968) suggests to estimate 
strain and vertical rotation as a weighted sum of horizontal components, 
where coefficients in the sum will be determined by a set of polynomials. 
The measurement of rotation from arrays of seismometers was made by 
Saito (1968), Gomberg et al. (1999), Bodin et al. (1997), Suryanto et al. 
(2006), and Huang (2003). In most experiments, seismometers cover an 
area, but there were also such experiments in which the seismometers were 
put in line in the direction of the event. In this case, the assessment  was 
simple, because the event was an explosion. 

The second approach to gradient measurement is to transmit the dis-
placement in one point to a second point by a rigid bar (Aki and Richards 
1980, Smith and Kasahara 1969) or by a laser beam (Duncan 1986). Then 

                                                 
1 In most cases, instead of displacement, the measurement is made of velocity of 
displacement (by a seismometer) or acceleration of displacement (by an accelero-
meter). Similarly, an application of the Sagnac effect gives the velocity of rota-
tion.  However, we use the terms displacement and rotation, because the velocity 
measurement does not change the essence of meaning.  However, while describing 
specific measurements the real measured quantities will be given.  
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the gradient is measured as a distance between the end of the bar and the 
second point. This method is applied mainly to record strain.  

The measurement of the rotation based on Eq. (2.3) was made by seis-
mometers placed on the circle or other closed curve. The seismometers 
were oriented towards the recorded movement, tangential to the curve. 
(Droste and Teisseyre 1976). Then the integral is approximated by the sum 
of the signal from the seismometers. The gradient methods can also be 
treated as an approach based on Eq. (2.3). They need the assumption of the 
strain tensor. It can change slightly on segments that connect sensors 
(Wiszniowski 2006). For the measurement of rotation it is enough to have 
three seismometers in a triangle; however, in order to ensure the fulfill-
ment of constant strain tensor between seismometers  and because of dif-
ferences in the seismometer’s responses, it is better to use a greater number 
of seismometers distributed on a regular polygon. When the distribution is 
arbitrary, we must use scaling coefficients.  

A next group of sensors to measure rotations based on Eq. (2.3) are 
magnetohydrodynamic sensors, MHD (Nigbor et al. 2007), which can be 
also categorized as measuring rotation based on Eq. (2.3). 

The sensors based on Sagnac effect (Sagnac 1913) are ideal because 
they measure the real integral over a closed curve. We distinguish two 
such systems: ring- laser (Schreiber et al. 2001), and fibre-optic (Jarosze-
wicz et al. 2006). In both systems, the optical path length difference, ΔL, 
experienced by light propagating in opposite directions along the closed 
path is detected (Post 1967): 

0

4 ( , ) ,L
c

Δ = A Ω  (2.5) 

where A is the vector of the geometrical area enclosed by the wave path, c0 

is the velocity of light in vacuum, Ω is the rotation vector. The investiga-
tion of the above formula leads to the two important conclusions. The first 
is that for a given resolution of measurement of the optical path length 
difference ΔL, a method for detecting very small values of the rotational 
speed Ω is to enlarge the geometrical area A. The other conclusion is con-
nected with scalar product of two vectors (A, Ω) which shows that the 
system detects rotational component with axes perpendicular to the geome-
trical area enclosed by the wave path, and this axis can be positioned freely 
over this area.  

Usually, the distance ΔL generated by the Sagnac effect is extremely 
small; for instance, the Earth rotation rate equal to 0.26 rad/h gives magni-
tude of ΔL equal to 9.7⋅10-13 cm for A = 100 cm2. Hence, the above-
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mentioned ring laser and fibre-optic systems are a technical implementa-
tion of the loop interferometer for appropriate detection of so small or even 
smaller distances.  

The ring-laser setup for measurement of ΔL, shown in Fig. 2.1a, is the 
loop interferometer (with triangular or square shape of the loop) and in-
cludes an optical amplifier within the resonator (Rosenthal 1962, Macek 
and Davis 1963, Killpatrick 1966). Such an amplifier enables to produce 
laser oscillation at f q along the (q = +) and also (q = –) directions within 
the resonator (bottom part of Fig. 2.1a). 

 
Fig. 2.1  Interferometric systems for Sagnac effect detection: (a) active method in 
ring-laser approach, (b) passive method in two-beam interferometer approach. 
Parameters IIN  and  IOUT are the intensities of input and output beams, respectively 

In the presence of rotation Ω, we get the frequency difference, Δf, given by  

4 ( , ) ,Af f f
Pλ

+ −Δ = − = n Ω  (2.6) 

where λ is the optical wavelength of the laser oscillator, n is the normal 
vector to the laser beam plane and P is the perimeter enclosed by the beam 
path.  

The advantage of the ring-laser method is that no external means are 
needed to measure Δf, since f + and f -  are automatically generated within 
the ring laser and may be coupled out through one of the mirrors. To ob-
tain Δf, one simply beats the f + and f – outputs outside the ring laser.  

The ring-laser approach using a He-Ne amplifier (Aronowitz 1971) was 
the first successful optical gyroscope and is now being used in a number of 
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civilian and military inertial navigation systems. The implementation of 
such a system for seismological research has been discussed by Schreiber 
(2006) which presents system G with square laser resonator (A = 16 m2) 
and sensor resolution of 9·10-11 rad/s1/2 installed in the Geodetic Observato-
ry Wettzell.  

The fibre-optic version, named fibre-optic rotational seismometer 
(FORS) (Jaroszewicz et al. 2003), which uses the two-beam interferometer 
method, applies the fibre loop interferometer configuration (Vali and 
Shorthill 1976) with a 3 dB fibre coupler as input-output gate for optical 
beam (Fig. 2.1b). In such a system, a phase shift Δφ is produced between 
clockwise (cw) and counterclockwise (ccw) propagating light, given by 

0 0 0

2 8 ( , ).AL
c

π πφ
λ λ

Δ = Δ = n Ω  (2.7) 

where λ0 is the wavelength on the light in vacuum and n is the normal 
vector to the fibre loop plane.  

The bottom part of Fig. 2.1b shows the cosinusoidal variation of the 
output intensity from this interferometer, IOUT, as a function of Ω. There-
fore, to measure Ω, we need to measure the change in IOUT. In the case of a 
fibre interferometer, however, it is possible to loop the fibre many times 
(Vali and Shorthill 1976), say N times, before returning to the fibre coup-
ler. In this case, Δt as well as ΔL become N times longer and the corres-
ponding Δφ becomes 

0 0 0

2 8 ( , ).A NL N
c

π πφ
λ λ

⋅
Δ = Δ ⋅ = n Ω  (2.8) 

For a fibre of length L wound in a coil of diameter D, we have A = πD2/4 
and N = L/πD, so at last we get 

0 0

2 ,LD
c

πφ
λ

Δ = Ω  (2.9) 

where Ω is rotation component in the axis perpendicular to fibre-optic 
loop. In other words, the sensitivity of the Sagnac interferometer in this 
approach is enhanced not only by increasing the physical sensor loop di-
ameter but also by increasing the total length of the fibre used. 

The fibre-optic approach using a classical fibre-optic gyroscope (Takeo 
et al. 2002, Jaroszewicz et al. 2003) were the first successful applications 
of such a system for seismological research. The next generation of this 
system, seismometer FORS-II installed in the Ojcow Observatory, Poland 
(Jaroszewicz et al. 2006) for the rotational events investigation had a reso-
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lution of 9.5·10-9 rad/s1/2, as a result of optimization of its sensor loop ra-
dius and the optical fibre length.  

The presented approaches based on Eqs. (2.2) and (2.3) are equivalent 
providing that distances are as small as possible. Unfortunately, decreasing 
the area of surface in (2.3) lead to worsening of the signal to noise ratio for 
ring laser and fibre-optic systems. The area of fibre-optic can be enlarged 
by increasing the length L of the optical fibre but this can also increase the 
noise. Taking into consideration the fibre-optic system operation limited 
by short noise, the expected minimum value of detectable rotation, the so-
called resolution, is (Ostrzyżek 1989): 

2
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2
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(2.10) 

where k is the Boltzman constant, e the elementary charge, T the tempera-
ture, iA and VA are the amplifier noises (for current and voltage input 
sources, respectively), Ro the resistance of loaded photodiode, S the sensi-
tivity of photodiode, α the optical fibre attenuation, σ the total optical 
losses without sensor loop losses, P the optical power of source, X de-
scribes the non-coherent source overflows noise, φo and fm are amplitude 
and frequency of phase modulation, respectively, τ is the time delay of 
light during propagation through the loop, and J1 is the Bessel function of 
the first kind. 

As one can see, the maximum sensitivity of the system requires max-
imization of such parameters as: radius R of the loop, optical power P, 
length L of the used fibre; it also depends on wavelength λ and total losses 
of optical path σ. It should be noticed that the sensor loop length has the 
main influence on sensitivity. However, because with growing fibre 
length, the losses increase too, the optimum length is evaluated at about 
12-15 km for the standard single-mode optical fibre at 1285 nm, as shown 
in Fig. 2.2 (Krajewski et al. 2005). 

The distances measured by rigid bars become immeasurable and the dif-
ferences, if the velocities are measured by seismometers, become lower 
than the inaccuracy of recording. 

On the other hand, by increasing the area of surface in the Sagnac-effect 
sensors, we measure the mean value in the area not the rotation in a point. 
The question is how much the rotation we can averaged.  
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Fig. 2.2  Fibre-optic system resolution versus total optical length L and loop ra-
dius R in 1 Hz detection band. Parameters for simulation: λ = 1285 nm, α = 0.45 
dB/km, σ = 15 dB, P = 10 mW 

The computation of rotation based on Eq. (2.2) assumes a small error of 
approximation of the partial derivatives by differences, and consequently 
small or possible to specify changes of strain tensor in the path between 
points and seismometers. The measurements of rotation were performed 
on the arrays of seismometers located at distances of: a few kilometers 
(Saito 1968); about 4 m and more for seismometers L28, and about 600 m 
for seismometers STS-2 (Gomberg et al. 1999); 72-139 m (Bodin et al. 
1997); or about 500-1000 m (Suryanto et al. 2006). The frequency band of 
the rotational signal is limited by the distance between the seismometers. 
The shorter the distances between the seismometers,  the higher the fre-
quency of the signal that can be measured. Gomberg et al. (1999) wanted 
to measure a signal in band up to 8 Hz, whereas Suryanto et al. (2006) 
compared rotation recorded by ring laser to array-derived rotation in band 
0.03-0.3 Hz.  

This consideration concerned the continuous medium. Only this ap-
proach to rotation can be applied to the seismometers array. In many cases, 
rotation can be treated as a rotation of a rigid body. This is correct for 
small-size and small-distance sensors where we can assume that displace-
ment and rotation are locally constant. In fact, almost all measurement 
instruments, except of the array of seismometers, measure the rotation of 
their own rigid chassis. The sensors that measure rotation of a rigid body 
can be categorized basing on the method of measurement as follows: fibre-
optic gyroscopes, ring laser gyroscopes, piezoelectric gyroscopes (Nigbor 
1994), hemispherical resonators gyros, tuning fork gyroscopes, vibrating 
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wheel gyroscopes (Huang 1963, Farrell 1969), MHD sensors (Nigbor et al. 
2007), and balanced pendulum sensors (Smith and Kasahara 1969, Ferrari 
2006).  

In order to determine rotation of a rigid body, it is enough to measure 
the displacement in two points, or even the displacement in one point if the 
body is the balanced pendulum.  

The gradient measurement of rotation (Eq. 2.2) and the methods based 
on Sagnac effect (Eq. 2.3) was made also in a rigid trunk. Teisseyre et al. 
(2003), Moriya and Marumo (1998) and Bradner and Reichle (1973) ap-
plied seismometers placed in a rigid trunk. Teisseyre et al. (2002) used a 
rotational-seismograph system with two oppositely oriented independent 
seismometers, having pendulums suspended on a common axis, to record 
small earthquakes at Ojców Observatory, Poland, and L’Aquila Observato-
ry, Italy. The structure of sensor and its coupling points was elongated. It 
makes conjectures that depend on the direction of foundation of the sensor. 
The measurement of vertical rotation in Ojców Observatory, Poland, and 
L’Aquila Observatory was performed by two sensors mounted perpendicu-
larly – for seismometers in common. Bradner and Reichle (1973) pre-
sented a Sem and Lear instrument employing one normal and inverted 
pendulum as well as two back-to-back vertical seismometers to separate 
tilt from vertical displacement. 

Nigbor (1994) measured rotations of ground during an underground 
chemical explosion experiment with a solid-state rotational velocity sensor 
based on Coriolis effect. The resolution of that sensor made in MEMS 
technology was not so good (about 0.1 mrad/s) and  cannot be applied to 
week rotational signals in practice. Takeo (1998) recorded an earthquake 
swarm on Izu peninsula in Japan by sensors of the same type. 

 A next group of sensors exploited the principle of simple balanced pen-
dulum. First, very simple instruments of this type were made by Jean de 
Hautefeuille in 1703, Nicola Cirillo in 1731, Andrea Bina in 1751 and at 
last Filippo Cecchi, who obtained the first records  of rotation on smoked 
paper (see Ferrari 2006). The idea of balanced pendulum is still applicable 
to record rotations. The inertial rotation meter proposed by Smith and Ka-
sahra (1969) is a balanced cross-shaped pendulum where rotation can be 
measured in four points at the ends of all arms of the cross. The rigid seis-
mometer (Wiszniowski et al. 2003) is also a balanced pendulum designed 
as arms of two seismometers rigidly joined with each other. Both sensors 
can measure rotation in a few points although one point looks sufficient. 
However, measurement in many points allows us to eliminate such effects 
like oscillation of the axis of pendulum or springy vibration of the pendu-
lum (Zadro and Braitenberg 1999). 
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The ratio of the inertia mass of the pendulum to the moment of inertia 
should be as low as possible to prevent the influence of displacement on 
the pendulum (see the sensor made by Filippo Cecchi in Ferrari 2006). 
Gyroscopic seismometers (Huang 1963, Farrell 1969) increase the moment 
of inertia by a built-in gyro. The noise of such a sensor was rather high. 
The noise of gyroscopic seismometer made by Farrell (1969) was equiva-
lent to 5 μrad of ground tilt and 0.1 cm/s of ground velocity. 

It has been noted in many articles (Droste and Teisseyre 1976, Bradner 
and Reichle 1973, Teisseyre et al. 2003, Trifunac and Todorowska 2001, 
Graizer 2006) that a typical unbalanced pendulum seismometer records the 
displacement and rotation simultaneously. The equation of motion of hori-
zontal pendulum is: 

2
0 0 02 ,y y y u l uαω ω φ ξ ⊥+ + = − + +  (2.11) 

where ω0 is the circular frequency of free vibrations, α is the damping 
coefficient, ξ is an angle of deflection of the pendulum from its equili-
brium position, φ is the vertical rotation, l0 is the reduced length of the 
pendulum, u is the horizontal displacement of ground in seismometer di-
rection whereas ⊥u  the horizontal displacement of ground orthogonal to u. 

Wiszniowski et al. (2003) presented another approach to the signal re-
cording by the pendulum. They show that it is possible to present a formu-
la for recording the displacement component alone, without rotation. The 
pendulum seismometer is then equivalent to a seismometer with straight-
line movement of inertial mass placed in the centre of inertia of a simple 
pendulum. This approach is better than the multi-seismometers recording 
of rotation. 

The problem is with an internal deformation of the instrument and how 
the body of sensor is attached to the elastic medium of the earth. The rigid-
ity of the base and its coupling to the earth is critical for such instruments 
(Smith and Kasahara 1969). 

2.2 Classification of Rotation Measurements and Requirements 
        for Recording Instruments  

The measurement of rotations involves a wide range of problems: 
(a) Near source rotational ground motions: Bouchon and Aki (1982) 

measured natural earthquake strike-slip by the stations put 1-20 km 
away from the fault strike with epicenter distance of 1-50 km. The 
recorded signal amplitude was about 0.1-1.2 mrad/s. Huang (2003) 
showed rotation with an amplitude of about 40-200 μrad/s recorded 
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at a distance of 6 km from earthquake. Takeo recorded, in the near 
field, a rotation with amplitude of about 30 μrad/s (Takeo 1998) and 
26 mrad/s (Takeo 2006). Recording of rotation in the near field al-
lows us to learn more about the mechanism of a seismic event. 

(b) Rotations connected with volcanoes eruptions. The amplitude of ro-
tations recorded close to a volcano was tens of μrad/s (Moriya and 
Teisseyre 2006). 

(c) Rotation measured during chemical explosion (Nigbor 1994) had ra-
ther big amplitude. Rotational signal recorded 1 km away from a 
1 kton explosion had amplitude of about 138 mrad/s. The same re-
cording system has not recorded a  natural earthquake with M = 3.5 
at a distance of 8 km from the hypocenter because the rotational 
signal did not exceed the noise of instruments.  

(d) Engineering seismology (Zembaty 2006) is interested in recording 
rotations in the range of mrad and more. 

(e) Measurement of tilt (Bradner and Reichle 1973, Graizer 2006, Bo-
din et al. 1997) recorded tilts with an amplitude of 5 μrad of waves 
from an earthquake with Mw = 6.7 at a distance of 311 km. 

(f) Measurement of rotation of teleseismic waves (Pancha et al. 2000, 
Igiel et al. 2003, Schreiber et al. 2006). The recorded amplitudes of 
rotations are small, from nrad/s up to 400 nrad/s. These signals were 
measured by ring lasers. 

(g) Measurement of rotations for identification and separation of waves 
enables better and more unique interpretation and identification of P 
versus SV versus SH wave components (Smith and Kasahara 1969) 
as well as separate Love from Rayleigh waves. 

(h) Research into self-rotations in micromorfic continuum (Teisseyre 
and Nagahama 1999). 

Based on the recording conditions, the measurements of rotation can be 
grouped into recording of strong rotations, as listed in points a-d (tens of 
μrad/s and more) and recording of very weak rotations and very small 
ratios of rotation to movement, as listed in points f-h. The measurement of 
rotations needs sensors with sensitivity less than 10-9 rad/s. Ring laser sen-
sors (resolution of 9·10-11 rad/s1/2, Schreiber et al. 2006), fibre-optic sensors 
(resolution of 9.5·10-9 rad/s1/2, Jaroszewicz et al. 2006), and MHD sensors 
(resolution of 6·10-6 rad/s1/2, PMD Scientific Inc.) can record very low rota-
tion signals. Unlike seismometers, these sensors are not sensitive to linear 
motions. The sensitivity of seismometers is the best, but there is a problem 
with separating the recording of rotation from linear motion because of 
different responses. The problem of the discrepancy of response of seis-
mometers and homogeneity of the Earth’s crust beneath the seismometers 
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seems to be negligible at the long period of the signal (Saito 1968) but at 
the short period of interest to us a similar approach was unsuccessful 
(Smith 1966). Besides, some signals, like rotation waves, may be observed 
by the seismometers close enough to each other (Moriya and Teisseyre 
1999). The quoted paper describes further the errors of recording  in this 
situation and the way to reduce the errors. 

2.3 The Influence of Recording Error on the Computed 
       Rotation Signal 

The most widely applied method of seismic rotation and strain waves and 
motions depends on the measurements of the ground motion velocity in 
various but closely situated points; then the signals recorded simultaneous-
ly from many seismometers are compared (Moriya and Teisseyre 1999, 
Teisseyre et al. 2003a). In optimal case, the responses of all seismometers 
to equal stimuli are equal, so the recorded differences correspond only to 
differences in the ground motions. However, this happens only in theory. 
In practice, there is a hidden equipment response non-equality in the dif-
ferences between simultaneous records. In the seismic far field, differences 
in ground motion at various points are much smaller than this motion, thus 
any non-identity of responses of channels seriously spoils the results. 

The strain tensor is  

( ) ,δ δ= ⋅∇u x u  (2.12) 

where x is coordinate vector and u is vector of displacement. It consists of 
symmetric and antisymmetric parts (Aki and Richards 1980): 

( )1 curl ,
2

δ δ δ= + ×u e x u x  (2.13) 

where e jest a symmetric strain tensor. The antisymmetric tensor describes 
the rotation, whereas deviatoric part of the tensor e represents twist.  

Let vi be a displacement recorded by the i-th seismometer 

( , ) ,i i i i=v n u n  (2.14) 

where ni is the direction of i-th seismometer movement, whereas ui is a 
displacement in the i-th seismometer site. 

Because the scalar value is vi = (ni,u), the displacement difference for 
two seismometers, i and j, is 

Chap. 2  Measurement of Short-Period Weak Rotation Signals 



 

28

( , ) ( , ).ij i i j jvδ = −u n u n  (2.15) 

Additionally, it was so far assumed that  

,i j=n n  (2.16) 

(or equivalently for rotation ni = −nj). This allowed us to describe the 
measured difference as 

( , ).ij i j ivδ = ±u u n  (2.17) 

When the seismometers are placed perpendicular to the segment con-
necting them, as in the case of rotation measurement, we have (Teisseyre 
et al. 2003): 

, or ( , ) 0.δ δ⊥ =v x v x  (2.18) 

We cannot measure the changes of volume, because when we equate u to 
v, then 

Tr 0.δ =e x  (2.19) 

When the seismometers are placed parallel to the segment connecting 
them, as in the case of strain measurement, we get 

|| , or 0,δ δ× =v x v x  (2.20) 

which means that second term in (2.13) is always zero.  
The recorded signal of displacement is processed by the response of 

seismometer and a recording device. The signal recorded by the i-th seis-
mometer can be described in the Laplace domain by the formula 

( )( ) ( ), ( ) ,i i iv s s s= G u  (2.21) 

where Gi is the tensor of response of the i-th seismometer to displacement 
vector ui. Usually, the response is assumed as one-dimensional. Then 

( ) ( ) .i i is G s=G n  (2.22) 

The STS-2 seismometer (Streckeisen 1995) is an example of tree-axial 
sensor whose response is multidimensional and formula (2.22) is not ful-
filled. But the departure from that is minimal. Assuming a small difference 
in the recording conditions of the two seismometers, the difference of the 
two seismometers can be presented in the form 
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( )
( ) ( )

( ) ( ) , ( )

( ) , ( ) ( ) , ( ) ,

ij ij ij ij
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δ δ
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+ +

n u

n u n u
 (2.23) 

where ( ),ijG s  ,ijn  ( )ij su  are the mean values, whereas ( ),ijG sδ  ,ijδn  

( )ij sδu  are differences of the two values or vectors. The first term is a 
gradient of displacement, whereas the remaining two terms are a linear 
motion recorded due to the discrepancy of responses and positions of 
seismometers. Adopting the assumption (2.23), we can separately deal 
with the error of position and the error of  response of the seismometer. 

2.3.1 The error of the seismometers position 

The directions of movement of two seismometers differs slightly. 

,i j ji= +n n c  (2.24) 

where cji is the position difference. For small values of cji  

, and .i ij j ij⊥ ⊥n c n c  (2.25) 

The difference of recording of the same displacement signals by two seis-
mometers (ui = uj = u) will be 

( , ) .ij ijv cδ = u  (2.26) 

and will be correlated with the displacement recorded by perpendicular 
seismometers. This effect, named the cross-axis sensitivity, was previously 
shown by Graizer (2006), and Trifunac and Todorovska (2001). In their 
measurements they neglected the cross-axis sensitivity as relatively low. 

The experiment to measure rotation and strain took place in observatory 
Książ, Poland, in 2006. Three horizontal seismometers, labeled 1, 2 and 3, 
were put in line at distances of 192 and 263 cm. The direction of move-
ment of the seismometers pendulums agrees with the direction of the line 
and was perpendicular to the direction towards the expected waves from 
the Lubin Copper Mine Region, Poland. Additional couple of seismome-
ters on a rigid basis, labeled 5 and 6, recorded signals in the wave direc-
tion. The two seismometers recorded the signal for estimation of rotation. 
The third seismometer recorded the signal for estimation of the strain per-
pendicular to the wave direction.  

During the measurement we noticed that the difference of signals from 
two seismometers depends on a signal from the perpendicular seismometer 
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(see Fig. 2.3). The relationship of two signals, sj and si, can be described 
by the self correlation coefficient 

2 2
.i j

ij

i j

s s

s s
ρ = ∑

∑ ∑
 (2.27) 

The correlation coefficient for the difference signal from seismometers 
1 and 2 and the signal from seismometer 5 for an examined earthquake 
from the Lubin Copper Basin is shown in Fig. 2.3c. It can be explained by 
the difference of direction of seismometers 1 and 2. The differential signal 
equals 0.02 of perpendicular signal (Fig. 2.3d). It correspond to the angle 
error of ~1°. 

 

Fig. 2.3  Earthquake from the Lubin Copper Basin, 2006.07.28, 15:44, M = 3.3, 
recorded by a group of seismometers installed in the Książ seismic station: (a) 
velocity recorded by the seismometer installed in radial direction; (b) difference of 
velocity recorded by horizontal seismometers (1 and 2) installed in-line in trans-
versal direction; (c) correlation between signals (a) and (b); (d) ratio of signal (b) 
to (a) 

The signals were recorded by pendulum seismometers SM-3. The equi-
librium position of such seismometer moves in time. This means that the 
recording of displacement direction changes during the measurement, and 
the position error cannot be corrected by more precise installation. The 
position of pendulum has to be systematically tested and corrected.  
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This problem does not occur when seismometers with strait movement 
of mass are applied. The force-balance seismometers do not have this 
problem either, because the zero position of the pendulum is forced by the 
electronic feedback. Muramatsu et al. (2001) describe a similar problem. 
They suggest to solve it by applying the coupled pendulum connected by a 
crossing wire. The difficulties with positioning the seismometers to work 
in the same direction with the accuracy less than 1° still remain. 

It is easy to eliminate this correlation owing to the correlation with per-
pendicular movement. The problem is how to discriminate between the 
position error and the real strain or rotation. The correlation between the 
rotation or strain and the movement does exist. An example is a compres-
sional wave along a thin rod. 
 

(a) 

 
 
(b) 

Fig. 2.4  The TAPS system – two antiparallel pendulum seismometers: (a) general 
view, (b) schematic 
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2.3.2 Error of seismometer responses and methods of  
     correcting it 

As a classical example of the above situation, let us consider an  applica-
tion of the rotational seismometer named TAPS (Teisseyre and Nagahama 
1999). It is a set of two antiparallel pendulum seismometer (named left – L 
and right – R) situated on a common axis and connected in parallel, but 
with opposite orientations, as shown in Fig. 2.4. 

In the case of ground motion containing displacements u(t) and rotation 
α(t), the electromotive force EMF recorded by each simple seismometer, 
f(t), contains a component of displacement ±u and the rotation motion 
α  multiplied by a proper length of pendulum l (Moriya and Teisseyre 
1999):  

, ( ) ( ) ( ) ,L Rf t u t l tα= ± + ⋅  (2.28) 

where signs “+” and “− R and L seismometers, respectively.  
As one can see, in the case of two identical seismometers the rotational 

and translational components can be obtained from the sum and difference 
of the two recorded signals respectively as 

[ ] [ ]1 1( ) ( ) ( ) and ( ) ( ) ( ) .
2 2R L R Lt f t f t u t f t f t
l l

α = + = −  (2.29) 

Because, as a matter of fact, the pendulum seismometers are different, 
the special TAPS channels equalization algorithm for a clear rotation de-
tection (Suchcicki et al. 2001) has been applied originally. Unfortunately, 
this procedure can be ineffective, especially if the TAPS seismometer 
components have different attenuation characteristics. In such a situation 
the existing finite sensitivities related to the signal sampling procedure 
used during the data recording generate errors in the signal (Jaroszewicz et 
al. 2003), as shown in the simulation presented in Fig. 2.5. In this simula-
tion, the difference between the left and right seismometers attenuation 
|βL−βR| = 0.05 has been assumed. Moreover, the two seismometers should 
also be considered as elements with a different noise level. 

As one can see, the main error signal exist in the region where the rota-
tional events have small amplitude in comparison to the displacement. 
Because, in fact, it is the expected region of the rotational seismic event, 
the method of TAPS calibration is a crucial problem for credibility of its 
operation. Moreover, the extremely high sensitivity of the translational 
motions of the seismometers taken into account in their construction can 
limit the accuracy of such devices, too. 
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(a) 

(b) 

Fig. 2.5  (a) Simulated rotational and displacement components of a seismic event, 
and (b) rotation signal detected by the TAPS system (Jaroszewicz et al. 2003) 

The experimental verification of the above consideration was a joint ap-
plication of the TAPS and FORS-I systems where the latter is a fibre-optic 
rotational seismometer with sensitivity equal to 2.3×10-6 rad/s (for 2σ, 
where σ is the standard deviation of measured noise level) in the used 20 
Hz detection band. The results presented in Fig. 2.6 show that the rotation-
al signal obtained from the TAPS is fuzzed, whereas the signal from the 
FORS-I is very smooth. This results show, in the first, the advantage of 
direct method of rotation measurement by the FORS in comparison to the 
differential method realized by the TAPS. Secondly, obtained results sug-
gest the necessity of searching for other methods of improving the TAPS 
performance.  
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(a) 

(b) 

 
Fig. 2.6  (a) The rotation table with the TAPS (bottom box) and the FORS-I sys-
tem (top box), and (b) output signals from the FORS-I and the TAPS after proper 
numerical processing (Jaroszewicz and Krajewski 2002) 

One of the possible approaches is to apply the filtering procedure in the 
FFT domain (Teisseyre et al. 2002) or the time-domain (Nowożyński and 
Teisseyre 2003). The precise estimation of the filter is important and diffi-
cult. Parameters of such filters are estimated on the basis of some data 
recorded previously from the same seismometers but these methods use 
the so-called test positioning of  TAPS (the seismographs of the system are 
turned so as to make them situated in the parallel-parallel position), that 
generally changes the conditions of the TAPS operation. The other proce-
dure of the recorded data processing proposed by Solarz et al. (2004) based 
on smoothing by the spline functions (Kojdecki 2002, Eubank 2000).  
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The recorded digital data Y = {Yi, i = 0, …, N} with sampling at Δt is 
smoothed by the spline function: 

3 2( ) , ( 1) ,j j j jS t a b c d j t t j tτ τ τ= + + + Δ ≤ ≤ + Δ  
, 0, ..., 1.t j t j Nτ = − Δ = −  

(2.30) 

In this way, the functional: 
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reaches its minimum. It should be emphasized that there exists a relation 
between parameter p of the above functional and mean-square error ε 
(Kojdecki 2002) defined as  
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This relation calculated for pi = 1 {i = 0, …, N} (Kojdecki 2002) by im-
plementation of the falsi method (Flannery 1998) is shown in Fig. 2.7. As 
one can see, the smoothing procedure generates an error by one order of 
magnitude greater for TAPS than for FORS-I.  
 

 

Fig. 2.7  Dependence between the mean square error ε and parameter p for TAPS 
and FORS-I systems 
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The effectiveness of this method for improving the recording of rotation 
events by TAPS (in comparison with the method presented in Fig. 2.6b) is 
shown in Fig. 2.8a. For the spline function, the parameter p equal to 5×10-6 
has been chosen as optimum for smoothing. As Solarz et al. (2004) have 
shown, such a value is high enough for rotational component smoothing 
without reducing the really existing displacement component (see  
Fig. 2.8b). 
 

(a) 

(b) 

 

Fig. 2.8  (a) The rotational component recorded during the test presented in Fig. 
2.6b after smoothing, and (b) additional displacement effect recorded by TAPS 

The error of response of seismometers and the error of position can also 
be reduced by increasing the number of seismometers in an array. This 
enhances also the sensitivity and accuracy of measurement. 
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2.4 Direct Detection of the Rotational Component 

Because the system based on the Sagnac effect realizes the absolute rota-
tion measurement, it is probably the best solution for rotational events 
recording. That is why the new system named FORS-II using the classical 
gyroscope configuration (see Fig. 2.9) has been proposed by Jaroszewicz 
et al. (2005). The application of a standard single-mode fibre with length L 
equal to 11130 m in 0.63 m diameter sensor loop, high optical power 
source (10 mW superluminescence diode, λ = 1285 nm) and total optical 
loss  equal  to 21 dB  give  the theoretical  sensitivity of  4.4×10-9 rad/s1/2.  

(a) 

 
 

(b) 

 
 

Fig. 2.9  (a) The view of the FORS-II optical part, and (b) the general scheme of 
the system 
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two channels of TAPS-2. As initial information it should be underlined 
that data obtained for TAPS systems present only linear motion described 
as fL(t) and fR(t) (see Eq. 2.29) and rotational components must be calcu-
lated by suitable method. Additionally, the initial impact test during the 
systems installation  showed that all the electronic channels of the seismic 
recording system KST give the same time delay (Jaroszewicz et al. 2005). 

Of utmost interest is the fact that the FORS-II has registered rotation 
with the time delay to linear motion characteristic of this earthquake regis-
tered by channels of TAPS systems (in region A instead of region B – see 
Fig. 2.10). The final results of the numerical processing with data correc-
tion by spline function approximation with ε = 0.3 (Solarz et al. 2004) 
applied for the data presented in Fig. 2.10 designed for calculation of the 
rotational component is shown in Fig. 2.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.11  Recognition of seismic rotational components by FORS-II and TAPS-2 
from data presented in Fig. 2.10 
 

Chap. 2  Measurement of Short-Period Weak Rotation Signals 



 

40

 

  

 

 

Fig. 2.12  The comparison of the rotational components recorded by TAPS (left 
column) with FORS-II (right column) obtained during the earthquakes recorded 
on 22.10.04 at 8h16m, and the two events of 21.10.04 at 11h42m, respectively 

The analysis of these data, based on the comparison of the translational 
and rotational components registered by TAPS as well as the spectrum of 
rotational components registered by two types of seismometers, show that 
real rotational components exist only in the A region (see Fig. 2.11), whe-
reas other rotation components recorded by TAPS (region B at Fig. 2.11) 
are probably erroneous due to the fact that the characteristics of its two 
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channels are not identical, as it has been mentioned at the beginning of this 
chapter. In region A, the translational component does not exist. Moreover, 
the rotational characteristics recorded by TAPS and FORS-II are the same 
and their amplitudes are twice smaller than expected previously. 

Figure 2.12 presents a comparison of different rotational components 
obtained from four seismic events previously recorded by TAPS and 
FORS-II. It is easy to recognize a similarity of the characteristics recorded 
by each of the above rotational seismometers. Moreover, the FORS-II ca-
libration procedure gives additional information about the absolute ampli-
tudes of these events which are in the range from 1.5⋅10-6 rad/s to 2⋅10-7 
rad/s. 

 

 
Fig. 2.13  Time relation between signals registered by FORS-II and TAPS-2 sys-
tem as well as between P-waves and S-waves registered by second channel of 
TAPS-2 (in the window) of the seismic events recorded on 2006.10.2006, at 8h16m 

If the recorded rotational components are related to the seismic rotation-
al waves, SRW, the main conclusion to be drawn from the observed time 
delay ΔtR (see Fig. 2.13) is that the SRW are the seismic waves which 
propagate with velocities different from the classical longitudinal or trans-
versal ones. Because the seismic S-waves have higher velocities than the 
P-waves and both of them have different attenuation and frequency charac-
teristics, the delay time between them (Δt − see window in Fig. 2.13) can 
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be used for calculation of the distance from the seismic events epicentre as 
L = 7.86 ⋅Δt (Teisseyre et al. 2001). Additionally, for each of the recorded 
seismic events the time delay ΔtR between the P-waves and the seismic 
rotational events, RSE, can also be calculated according to the scheme 
shown in Fig. 2.13 (Jaroszewicz et al. 2005).  

 

 

Fig. 2.14  Time delays versus the distance from the seismic event epicentre of the 
rotational events for the data recorded in Ojców Observatory 

The results of the above estimation for the SRE in the seismic events 
recorded in the Ojców Observatory are summarized in a graphical form in 
Fig. 2.14. It should be noticed that all events should be treated as near-
source rotational ground motions.  

2.5 Conclusions 

The presented review of methods for short-period weak rotation signals 
measurement shows the necessity for developing new instrumentation 
whose principle of operation would eliminate the sensitivity to linear mo-
tions. For this reason, seismometers should be used with special care as 
concerns their positioning, selecting examples with the same response, and 
calibration. They should be used as an array that compromises between the 
resolution and frequency of rotation signals. The practically expected sen-
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sitivity of less than nrad/s gives preference to systems operating on the 
basis of the optical Sagnac effect, such as laser or fibre-optic systems or 
magnetohydrodynamic sensors. The main advantage of such systems is a 
possibility to detect the absolute rotation, which is impossible to attain in 
other way. It seems that the data obtained in this manner are clear for iden-
tification. A higher sensitivity can be now achieved by a laser system, but 
it is a stationary equipment. For a portable system, the other two are pre-
ferred.  

The results obtained in the Ojców Observatory prove that the real seis-
mic rotational events are delayed in time with regard to the classical seis-
mic wave existing during earthquakes. Moreover, the recorded amplitude 
of these events, connected with the quarry situated near to FORS location, 
have been identified in the range of 1.5⋅10-6 rad/s to 2⋅10-7 rad/s, which is 
less than 5-7 percent of the seismic event amplitude. Besides, it was clear-
ly shown that the TAPS system also detected some events with the time 
and amplitude correlated with the data recorded by FORS-II. 
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3.1 Introduction 

Most man-made structures are built above the ground. Single-family resi-
dential homes can be several tens of meters high, while modern steel sky-
scrapers can reach heights of several hundred meters. Supported asymme-
trically at their base, with their center of gravity near mid-height, these 
structures undergo rocking motions when excited by earthquakes, strong 
winds, and man-made transient and steady excitations. Through the rock-
ing compliance, the soil-structure interaction then acts as a mechanism for 
conversion of the incident wave energy into rotational motions of the 
foundation, which then radiates this wave energy back into the soil. During 
earthquake and ambient noise excitations, the incident waves are scattered 
and diffracted by the foundation-soil interface, and together with the waves 
generated by soil-structure interaction radiate rotational motions back into 
the soil. During wind and man-made excitation, a part of the wave energy 
in the building is converted into rotational excitation of the soil. The early 
work on the waves created by soil structure-interaction dates back to the 
1930s (Sezawa and Kanai 1935, 1936) and 1940s (Biot 2006). Full-scale 
experiments of soil-structure interaction have provided data to measure 
and quantify the nature of the motions at the interface between the soil and 
the building foundations (Luco et al. 1986, Todorovska 2002, Trifunac and 
Todorovska 2001). The emphasis in these full-scale tests, so far, has been 
on the response of structures, and on how this response is affected by soil-
structure interaction. Some experiments, however, did investigate the na-
ture of the near-field deformation of soil surrounding the building founda-
tion (Luco et al. 1975, 1988, Foutch et al. 1975, Wong et al. 1977a). It has 
been found that for stiff foundation-structure systems, the soil-foundation 
interaction can be approximated by a rigid foundation model having only 
six degrees of freedom. For flexible foundations (Trifunac et al. 1999) and 
multiple foundations, the soil deformation is far more complex, and the 
translational and rotational waves in the near field, radiated by the motion 
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of the foundations, require complex three-dimensional analyses. In densely 
populated metropolitan areas where separation of adjacent buildings is 
small or negligible and there are building-soil-building interactions, and 
where long bridges have multiple supports resting on soil, detailed two- 
and three-dimensional analyses are required (Werner et al. 1979, Wong 
and Trifunac 1975). Analytical studies of two-dimensional soil-structure 
interaction (of long buildings on rigid foundations) have shown how the 
interference of the incident waves, and of the scattered waves from the 
foundation, can lead to nearly standing wave motions on the ground sur-
face, which, at the nodes, result in strong torsional motions (Trifunac 1972, 
Trifunac et al. 2001c, Todorovska et al. 1988). Analytical studies of the 
response of three-dimensional models show amplification of the torsional 
response of building-foundation-soil systems and the radiation of torsional 
scattered waves for near-horizontal incidence of SH waves (Lee 1979). 
Studies of the wave passage effects around rigid embedded foundations 
have explained amplification of the rocking foundation motions and the 
more energetic radiation of rotational waves when half wave-lengths of the 
incident waves are comparable to the foundation width (Todorovska and 
Trifunac 1990, 1991, 1993). Observational and analytical studies of build-
ings in an urban setting have examined the site-city interaction (Boutin and 
Roussillon 2004, Gueguen et al. 2000, 2002, Kham et al. 2006, Tsogka and 
Wirgin 2003), and have interpreted the prolonged duration of strong 
ground motion in urban settings (Wirgin and Bard 1996) in terms of the 
waves delayed by prolonged paths up and down the buildings (Gicev 
2005). 

Experiments using forced vibration of full-scale structures have been 
used to investigate the wave motion in the far field radiated due to soil-
structure interaction (Luco et al. 1975, Favela 2004). The radiated waves 
in the far field have been used as monochromatic sources of waves to in-
vestigate the relative significance of irregular topography and irregular 
geometry of sedimentary layers on amplification of surface displacements 
(Wong et al. 1977b).  

In the following, the linear theory of soil-structure interaction will be il-
lustrated, emphasizing the rotational aspects of motion, which result from 
(1) the presence of an inclusion (foundation) in the half space (Lee and 
Trifunac 1982), and (2) from the interaction with a structure (Lee 1979).  
A discussion of the non-linear aspects of this class of problems is beyond 
the scope of this chapter, but the reader may find introductory examples of 
analyses and observations in Gicev (2005) and Trifunac et al. (2001a,b). 
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3.2 Soil-Foundation Interaction – Near Field 

The dynamic response of a rigid foundation embedded in an elastic me-
dium to seismic waves can be separated into two parts. The first part cor-
responds to the determination of the restraining forces due to the rigid 
body motion of the inclusion. The second part deals with the evaluation of 
the driving forces due to the scattering of incident waves by the inclusion, 
which is presumed to be immobile.  

 
Fig. 3.1  Forces Fbx, Fby, Fbz, Mbx, Mby, Mbz acting on the foundation, and its dis-
placements Δx, Δy, Δz, φx, φy, φz  

Consider a foundation embedded in an elastic medium and supporting 
an elastic superstructure. The steady-state harmonic motion of the founda-
tion having frequency ω can be described by a vector {Δx,  Δy,  Δz, φx, φy, 
φz}T (Fig. 3.1), where Δx and Δy are horizontal translations, Δz is vertical 
translation, φx and φy are rotations about horizontal axes, and φz is torsion 
about the vertical axis. Using superposition, displacement of the founda-
tion is the sum of two displacements 

0{ } { *} { },U U U= +  (3.1) 

where {U*} is the foundation input motion corresponding to the displace-
ment of the foundation under the action of the incident waves in the ab-
sence of external forces, and {U0} is the relative displacement correspond-
ing to the displacement of the foundation under the action of the external 
forces in the absence of incident wave excitation. 

The interaction force {Fs(ω)}exp{−iωt} generates the relative displace-
ment {U0}exp{−iωt}. It corresponds to the force that the foundation exerts 
on the soil, and it is related to {U0} by {Fs} = [Ks(ω)]{U0}, where [Ks(ω)] 
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is the 6×6 complex stiffness matrix of the embedded foundation. It de-
pends upon the material properties of the soil medium, the characteristics 
and shape of the foundation, and the frequency of the harmonic motion. It 
describes the force-displacement relationship between the rigid founda-
tion and the soil medium. 

The driving force of the incident waves is equal to  

{ } [ ]{ }* * ,s sF K U=  (3.2) 

where the input motion {U*} is measured relative to an inertial frame. The 
“driving force” is the force that the ground exerts on the foundation when 
the rigid foundation is kept fixed under the action of incident waves. It 
depends upon the properties of the foundation and the soil and on the na-
ture of excitation. 

The displacement {U} is then related to the interaction and driving 
forces via  

[ ]{ } { } { }* .s s sK U F F= +   

For a rigid foundation having a mass matrix [M0] and subjected to external 
force, {Fext}exp{−iωt}, the dynamic equilibrium equation is 

[ ]{ } { } { }2
0 .s extM U F Fω− = − +  (3.3) 

{ } { , , , , , }ext bx by bz bx by bzF F F F M M M=  is the force the structure exerts on the 
foundation (Fig. 3.1). Then Eq. (3.3) becomes  

( ){ } { } { }2
0[ ] [ ] .s s extM K U F Fω ∗− + = +  (3.4) 

The solution of {U} requires the determination of the mass matrix, the 
impedance matrix, the driving forces and the external forces. 
 
Foundation Response. The stiffness and damping coefficients associated 
with the real and imaginary parts of [KS] are the functions of dimensionless 
frequency η (Lee 1979). η = ωa/πβ is the ratio of the diameter of the he-
mispherical foundation to the wavelength of the transverse (S) waves, λ, in 
the half space. η is also a dimensionless wave number kβ a/π. The range of 
η considered in the examples here will be from 0 to 1. 
 
Incident SV wave (Fig. 3.1) excites vertical motion, horizontal translation, 
and rocking, {Δx /a0, 0 ,  Δz /a0, aφy /a0, 0}T. For the Poisson’s ratio, 
ν = 0.25, the critical angle of incidence is θcr = 35°16′. The incidence an-
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gles θ = 0° and 30° are thus below the critical angle, while the angles of 
incidence θ = 60° and 85° are beyond the critical angle. The case of graz-
ing incidence (θ = 90°) will result in zero motion in the free field, and thus 
it is not considered here. In Fig. 3.2, the normalized amplitudes |aφy /a0|, 
where a is the radius of the foundation, and a0 is the amplitude of incident 
waves, are plotted versus the dimensionless frequency η for different an-
gles of incidence and for m0/mS = 0, 2, and 4; m0 is the mass of the hemis-
pherical foundation; and ms is the mass of soil removed by the foundation. 
For vertical incidence, only the horizontal translation and rocking are ex-
cited, and there is no vertical motion. At low frequencies, the displacement 
amplitudes approach the limit of the free field displacement amplitudes. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.2  Rocking φy of the foundation, excited by plane SV waves, with incident 
angles θ = 0°, 30°, 60° and 85°, and dimensionless frequency η 
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The amplitudes gradually decrease with increasing η because of the em-
bedment, which introduces coupling and rocking. The increase of the 
m0/mS  factor influences the displacement amplitudes in a way that can be 
viewed through an analogy with a single-degree-of-freedom system (Lee 
1979). It is seen that the foundation converts a significant part of the inci-
dent wave energy into rotational motions and that this conversion is most 
efficient for incident wavelengths about twice the diameter of the founda-
tion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3.3  Torsion φz of the foundation, excited by plane SH waves, with incident 
angles θ = 30°, 60° and 85°, and dimensionless frequency η 
 

 M.D. Trifunac 



55

Incident P wave excites vertical motion, horizontal translation, and rock-
ing of the foundation {ΔX /a0, 0 ,  ΔZ /a0, 0 ,  aφy /a0, 0}T. For vertical inci-
dence, only the vertical motion is excited. The embedment introduces 
coupling of the horizontal translation and rocking, and, for a general inci-
dence angle, a significant component of rocking is present. The normalized 
rocking amplitudes |aφy /a0| are similar to those for excitation by SV waves 
(Fig. 3.2) but are smaller (Lee 1979). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.4  Normalized rocking φx of the foundation, excited by plane SH waves, 
with incident angles θ = 0°, 30°, 60° and 85°, and dimensionless frequency η 

 
Incident SH wave excites torsion, horizontal translation, and rocking of 
the foundation. Unlike for incident P and SV waves, no vertical motion is 
excited: {0, Δy /a0, 0 ,  aφx /a0, 0, aφz /a0}T. In the absence of the foundation, 
the free field surface displacement amplitude for an incident SH wave of 
unit amplitude is two for the horizontal y-component and zero for the x- 
and z-components, for all angles of incidence. The presence of the founda-
tion changes this simplicity. In Figs. 3.3 and 3.4, the amplitudes |aφz /a0| 
and |aφx /a0| are plotted versus the dimensionless frequency η for different 
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angles of incidence and for m0/mS = 0, 2, and 4. For vertical incidence, 
only the horizontal translation and rocking are excited, and there is no 
torsion (aφz a0). At low frequency, the y-component displacement ampli-
tudes approach the free field displacement amplitude for all angles of inci-
dence. As for incident P and SV waves, the motions decrease with increas-
ing frequency because of wave scattering by the embedded foundation. 
Coupling and a significant component of rocking are introduced by the 
embedment. The increase in the m0/mS  ratio illustrates again the analogy 
with single-degree-of-freedom system. 
 
Hill's Equation. From (3.4), the matrix equation of motion of the foun-
dation, with external forces present, is  

[ ]{ } [ ]{ } { } { }*
0 .s s extM U K U F F+ = +  (3.5) 

After the mass matrix [M0], the stiffness matrix [Ks], and the force { }sF ∗  
have all been evaluated, those can be used to determine the foundation dis-
placement {U}. For soil-structure interaction problems, in the presence of 
the structure, {Fext} is the force that the structure exerts on the foundation. 

The first model illustrated here is shown in Fig. 3.5. It considers the cas-
es involving incident P and SV waves. The structure is represented by an 
equivalent single-degree-of-freedom system, with a concentrated mass mb at 
a height h above the foundation. It has a radius of gyration rb and a moment 
of inertia 2

b b bI m r=  about 0. The degree-of-freedom is chosen to corres-
pond to the rocking ψr. This rotation is restrained by a spring with rocking 
stiffness Kr and by a dashpot with rocking damping Cr (both not shown in 
Fig. 3.5). The gravitational force mbg is considered. Taking moments about 
B results in the equation of motion 

( ) ( ) ( ){
( ) ( )}

2

2

2 1/ / cos

/ sin ,

y r r r r r r x y r

r g z y r

a

a

φ ψ ω ς ψ ω ψ ε φ ψ

ω ε φ ψ

+ + + = − Δ +

+ + Δ +
 (3.6) 

where 2(1 ( / ) ) /bh r h aε = + , 2 2 2/ [ ( )]r r bK m h rω = + ; the natural frequency 
of rocking squared, ζr is a fraction of the critical damping in 

2 22 / [ ( )]r r r bC m h rω ζ = + ; and 22 /g r aε ω= . Equation (3.6) is a differen-
tial equation coupling the rocking of the foundation and the structure with 
the horizontal and vertical motions of the foundation. It is a nonlinear equ-
ation, whose solution will require numerical analysis. In this work we will 
consider only the case when y rφ ψ+  is small. Then  
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( ){ }
( ) ( ){ }

2

2

2 1 / /

1/ / / .

r r r r r g z r

y x r g z y

a

a a

ψ ω ζ ψ ω ε ε ε ψ

φ ε ω ε φ

+ + − −Δ =

= − + −Δ + + Δ
 (3.7) 

For steady-state excitation by the incident P and SV waves, with frequency 
ω, Δx, φy, and Δz, and therefore the coefficients of (3.7), will be periodic. 
Equation (3.7) is then a special form of Hill's equation. Analysis of the 
stability of this equation can be found in the report by Lee (1979). 
 

 

Fig. 3.5  In-plane rocking of foundation-structure model excited by plane P or SV 
waves 

Solution of the Interaction Equation. For steady-state harmonic incident 
P and SV waves with excitation frequency ω, the vertical component of the 
foundation displacement, Δz, will also be harmonic with the same frequen-
cy ω. Considering only the period T = 2π /ω, the most general solutions 
will take the form of Fourier series 

,in t
x n e ω−Δ = Δ∑    ,in t

y n e ωφ φ −=∑    ,in t
r n e ωψ ψ −=∑  (3.8) 

where the summation is from n = −∞ to +∞.  Δn, φn, and ψn are Fourier 
coefficients to be determined (Lee 1979). For the examples that follow, the 
model parameters have been chosen to take on the following values: 
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m0 /ms = 1, mb /ms = 3, h /a = 1, rb /h = 0.5, ζr = 0.02, εg = 0.1, a0 /a = 0.05, 
and the dimensionless fixed-base frequency of the structure 
ηr = ωra/πβ = 0.1, 0.3, 0.5, and 0.8. m0 /ms = 1.0 corresponds to the case of 
a rigid hemispherical foundation of the same density as the elastic medium 
of the half space.  

 

Fig. 3.6  Normalized rocking angles ψr and φy and translation Δx versus dimen-
sionless excitation frequency η, for normalized model frequencies ηr = 0.1, 0.3, 
0.5 and 0.8, and for incident P wave with θ = 30° 
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The amplitudes of the coefficients Δ1/a0, aφ1/a0, and aψ1/a0 of the 
first harmonic components (n = 1) corresponding to the harmonic frequen-
cy of excitation, e−iωt, are the dominating contributors to response. For 
n > 1, the coefficients Δn  /a0, aφn  /a0, and aψn  /a0, among other parame-
ters, are dependent upon the ratio a0 /a, which is chosen to be 0.05. Figure 
3.6 illustrates the response amplitudes of the first harmonic components 
(n = 1; the amplitudes for n = 2 are much smaller and may be neglected) 
of the Fourier series of Δx  /a0, aφy  /a0, and aψr  /a0, representing founda-
tion translation, foundation rocking, and relative rocking response.  

In the analysis and design of earthquake-resistant structures, it is neces-
sary to estimate the maximum amplitudes of the relative responses at the 
top of the structure, which are then used to calculate the strain and the 
maximum stresses in the structure. In the absence of soil-structure interac-
tion, the structure’s relative rocking response, ψr, would be maximum at 
the fixed-base natural frequency, ωr, and the relative response would ap-
proach infinity, as the fraction of critical damping, ζr, approaches zero. 
Interaction of the foundation with half space introduces “damping” into the 
relative response and results in a reduction of the “natural frequency” of the 
complete system. This reduction is more pronounced for larger values of 
fixed-base natural frequencies (Todorovska and Trifunac 1991).  

At each of the frequencies where the relative responses experience max-
ima, the foundation rocking has an associated peak. At the fixed-base natu-
ral frequencies of long buildings (Trifunac 1972), the corresponding com-
ponent of the external force will experience a maximum, and the corres-
ponding displacement component has a “node” in the half space. Similar 
nodes are observed in the foundation rocking component of the three-
dimensional models. However, because of the coupling of foundation rock-
ing with the foundation horizontal translation, these nodes do not occur at 
exactly the fixed-base natural frequencies of the structure.  

As the values of mb /ms and h/a increase, the rocking components of the 
foundation and the structure become more prominent–so prominent that the 
peak relative responses occur at frequencies characteristic of the natural 
rocking frequencies of the total system. For large mb /ms and h/a, the rock-
ing stiffness of the structure, 2 2 2( ),r b r bK m h rω= +  becomes large. As the 
structure becomes stiffer, its relative rocking response becomes small, and 
the structural response, ψr, contributes a negligible amount to φy + ψr. The 
total system then behaves like a rigid, partially embedded mass, m = m0 + mb, 
vibrating on an elastic half space (Biot 2006, Lee et al. 1982).  

The model of the structure for the case of an incident SH wave (Fig. 3.7) 
is similar to the one for the incident P and SV waves. Its displacement vector 
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Fig. 3.7  Rocking (φx and ψr), torsion (φz and ψT) and translation Δy of foundation-
structure model, excited by incident SH wave 

is {0, Δy, Δz, φx, 0, φz}T. The structure can rock about the x-axis (Fig. 3.7, 
top) and twist about the z-axis (Fig. 3.7, bottom). Let ψr be the relative 
angle of rocking of the mass. For torsion, let ψT  be the relative angle of 
twist of the mass; IT its moment of inertia about the z axis; KT the torsional 
stiffness; CT the torsional damping; ωT the torsional natural frequency, 

2 / ;T T TK Iω =  and ζT the fraction of critical damping for torsion, where 
2 / .T T T TC Iω ς =  Writing the rocking moment equilibrium equations about 
B (Fig. 3.7, top), torsional moment equilibrium about a vertical axis 
through B (Fig. 3.7, bottom), and assuming that φx + ψr and φz + ψr are 
small, gives 

( ){ }
( ) ( ){ }

2

2

2 1 / /

1 / / /

r rr r r g r

x y r g z x

a

a a

ψ ω ς ψ ω ε ε ε ψ

φ ε ω ε φ

•• •

••

+ + − − Δ =

= − + Δ + + Δ
 (3.9) 
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and 
22 .zψ ω ς ψ ω ψ φ

•• • ••

Τ ΤΤ Τ Τ Τ+ + = −  (3.10) 
It is seen that for small relative response and small rocking, the torsional 
twist is uncoupled from the horizontal motions. Figure 3.8 illustrates the 
amplitudes of Δy  /a0, aφx  /a0, and aψr  /a0, for incident SH waves when 
θ = 30°. 

 
Fig. 3.8  Normalized rocking angles φx and ψr, and out-of-plane foundation mo-
tion Δy versus dimensionless excitation frequency η, for normalized model fre-
quencies ηr = 0.1, 0.3, 0.5 and 0.8, and for incident SH wave with θ = 30° 
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3.3 Soil-Foundation Interaction – Far Field  

For distances greater than about 10a (Fig. 3.1) the motions of the half 
space, generated by building vibration, can be evaluated in terms of a point 
source consisting of two horizontal forces, Fbx, Fby, two rocking moments, 
Mby, Mbx, and a torsional moment, Mbz. A building oscillating in the x-z 
plane, for example, will produce strong Rayleigh waves in the x direction, 
while Love waves will be generated in the y direction (Bycroft 1956, Cher-
ry 1962, Favela 2004). During forced vibration tests of a building, suffi-
ciently large displacements of the ground can be generated, so that the 
recording and analysis can be made with standard recording devices at 
distances approaching 10 km (Luco et al. 1975). With specialized record-
ing and data analyses, surface waves generated by building rocking can be 
detected at distances approaching 1.000 km (Favela 2004). The recorded 
motions contain valuable information about the properties of the medium 
of propagation and can serve as a full-scale laboratory for testing and veri-
fication of the wave propagation models of sedimentary and soil layers 
(Wong et al. 1977b), and of the influence of the surface topography on the 
amplitudes of surface motions (Wong et al. 1976). 

3.4 Summary 

The above single-degree-of-freedom system model of buildings erected on 
flexible soil shows how, through soil-structure interaction, a portion of the 
energy of incident waves is converted into the rotational motions. The 
eccentric location of the foundations, below the center of mass of the struc-
tures they support, makes the foundations the sources of rotational motions 
in the soil. Through the soil-structure interaction, the translational energy 
of the in-plane body P- and the SV-waves is converted into the foundation 
rocking (in the same plane), while the energy of the incident SH waves 
becomes the source of out-of-plane rocking and torsion about the vertical 
axis. It can be shown that the additional rotational excitation associated 
with the passage of Rayleigh (rocking) and Love (torsion) surface waves 
further amplifies the rotational motions of the foundations.  

The amplitudes of the rotational motions of the foundations depend 
most upon the natural frequency of the structure above and on the wave-
length of the incident waves below. The largest rotations of the foundation 
occur for relatively stiff buildings (when ηr = ωra/πβ is large; e.g., 0.8 in 
Figs. 3.6 and 3.8) excited by incident waves with wavelengths that are 
approximately double the characteristic width of the foundation (when η is 
near one half; see Figs. 3.2, 3.3, and 3.4). 
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For multiple foundations of long structures, like bridges, for example, 
all of the above will hold for individual foundations, but additional rota-
tional motions in the soil will also result from differential motions of the 
supports and from the wave passage effects (Trifunac and Todorovska 
1997, Trifunac and Gicev 2006). These additional rotations will tend to be 
associated with longer wave-lengths, comparable to the inter-foundation 
distances of the multiple foundation systems, and can be viewed as result-
ing from a couple, or from a chain of couples, whose component forces lie 
in a vertical (for in-plane excitation) or horizontal (for out-of-plane excita-
tion) plane.  

In an urban setting, a distribution of buildings will act as an extended 
surface source area, consisting of a large number of closely spaced sources 
of translational and rotational motions, which will cause the warping of the 
half space surface in the near field and a seemingly random distribution of 
strong, high-frequency surface waves in the far field. For a distribution of 
buildings 1–50 stories high, the waves generated by the movement of their 
foundations will be in the range 0.1–10 Hz. 

In this chapter, the basic source of rotational motions has been illu-
strated in terms of a spherical rigid foundation supporting a single-degree-
of-freedom oscillator as a model of a “simple building”. Mutatis mutandis, 
many of the above-described phenomena can be generalized to interpret 
the changes in the free-field wave motions resulting from a broad spectrum 
of other eccentrically supported “oscillators” ranging from individual trees 
to large and small geological formations like those in Monument Valley in 
Utah, down to Meteora in Greece or Sigiria in Sri Lanka, for example. 
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4.1 Introduction 

During the last half of the 20th century, a number of attempts were made 
to measure or estimate rotational component of strong ground motion  
(Farrell 1969, Kharin and Simonov 1969, Bradner and Reichle 1973, 
Graizer et al. 1989, Graizer 1991, Nigbor 1994, Takeo 1998, Huang 2003, 
Zahradnik and Plesinger 2005, Graizer 2006, Schreiber et al. 2006), but 
still there are no consistent measurements of rotations during earthquake 
shaking. Technological advances in the recent decade made a number of 
technologies like a combination of gyroscopes and accelerometers wildly 
used in inertial navigation much cheaper and compact and available for use 
in seismic measurements. Considering different possible directions in rota-
tion measurements is beyond the scope of this study. We will discuss clas-
sic approach to measuring rotations and translational motion by using a 
two-pendulum system. The classic way of measuring rotations by using 
two identical pendulums was apparently first suggested by Golitsyn 
(1912). It was later implemented by Kharin and Simonov (1969) in an 
instrument called VBPP (seismograph of large translational motions and 
rotations). This instrument used two identical pendulums on a same axis 
and moving in the same plane (Fig. 4.1). In case of purely translational 
input motion, both pendulums are producing exactly same output. In case 
of rotation (tilt), outputs of pendulums are opposite due to rotational acce-
leration. The output of the instrument was either a sum of the two signals, 
or a difference of them. Actually, both versions of the instruments were 
made. Summation of the two signals was supposed to result in a “purely” 
translational signal, and the difference was supposed to result in rotational 
motion only. In reality, summation of the two signals resulted in reliable 
translational motions, but the difference in the two signals (of about same 
amplitude) produced unreliable rotation measurements. The main problem 
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occurred because of difficulty in constructing two identical mechanical 
systems (pendulums), and it became clear that the difference of the two 
signals is mainly determined by non-equality of pendulums. We modified 
Golitsyn’s idea by using same configuration of pendulums (two-pendulum 
system) without requirement of pendulums to be identical. Instead of 
building two identical pendulums we need to measure precisely natural 
parameters of each pendulum, and apply post-processing to separate rota-
tional and translational motion. Designed system was tested using a special 
shake-table, and later successfully applied for recording translational mo-
tion and tilt in the near-field of two large underground explosions (Graizer 
et al. 1989, Graizer 1991). 

4.2 Theory 

Most of seismological sensors (seismometers and accelerometers) used in 
conventional seismological instruments are pendulums of the mass-on-rod 
type. Complete equation of small oscillations (i.e., sinθ  ≅ θ ) of the hori-
zontal pendulum of the mass-on-rod type can be expressed as (Graizer 
1989, 2005): 

" ' 2 " " "
1 1 1 1 1 1 1 1 2 12y D y y x g l xω ω α ψ θ+ + = − + − +  (4.1) 

where: yn is the recorded response of the instrument; ln is the length of 
pendulum arm; θn is the angle of pendulum rotation from the equilibrium; 

n n ny l θ=  for small angles θ n ; ωn and Dn are, respectively, the natural cir-
cular frequency and fraction of critical damping of the oscillator; xn″ is the 
ground motion acceleration in the n-th direction; and ψ″ is the angular 
acceleration. 

System of two horizontal pendulums 

Let us consider response of the two-pendulum system shown in Fig. 4.1 
and recording ground motion in the horizontal direction x1. Complete eq-
uations for sensors 1 and 2 shown in Fig. 4.1 are: 

" ' 2 " " "
1 1 1 1 1 1 1 1 2 1
" ' 2 " " "
2 2 2 2 2 2 1 2 2 2

2

2

y D y y x g l x

y D y y x g l x

ω ω α ψ θ

ω ω α ψ θ

⎧ + + = − + − +⎪
⎨

+ + = − + + +⎪⎩
 (4.2) 

The left sides of Eq. (4.2) represent the response of sensors. The right 
sides of Eq. (4.2) are complex inputs that include:  

• Acceleration along the x1 axis. 
• Tilt α of the base around the x2 axis. 
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Fig. 4.1  Responses of two identical pendulums on a same axis to horizontal trans-
lational motion along the x1 direction, tilt α and rotation ψ around the vertical axis 
(torsion) 

• Inertial force due to rotation ψ″ around vertical axis. 
• Cross-axis sensitivity. 

It was previously shown by Graizer (1989, 2006), Todorovska (1998) 
and Trifunac and Todorovska (2001) that cross-axis sensitivity (terms 4 in 
the right side of Eq. (4.2)) is relatively low for recent instruments, and can 
be neglected (most of recent instruments are using force-balance feedback 
system minimizing the actual motion of a pendulum):  
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" ' 2 " "
1 1 1 1 1 1 1 1
" ' 2 " "
2 2 2 2 2 2 1 2

2

2

y D y y x g l

y D y y x g l

ω ω α ψ

ω ω α ψ

⎧ + + = − + −⎪
⎨

+ + = − + +⎪⎩
 (4.3) 

The system of two Eq. (4.3) contains three unknown terms (x1, α, ψ). 
This system can be resolved for rotations around vertical axis by subtract-
ing Eq. (4.3): 

" " ' ' 2 2 "
2 1 2 2 2 1 1 1 2 2 1 1 1 2( ) (2 2 ) ( ) ( )y y D y D y y y l lω ω ω ω ψ− + − + − = +  (4.4) 

The difference is not sensitive to tilt, being only sensitive to angular acce-
leration. 

Assuming that sensors 1 and 2 are equal: 

1 2

1 2

2 1

2 1

R

S

l l l
y y y
y y y

ω ω ω= =
= =

= −
= +

  

results in: 

" ' 2 "

" ' 2
1

2 2

2 2( )
R R R

S S S

y Dy y l

y Dy y x g

ω ω ψ

ω ω α

⎧ + + =⎪
⎨

+ + = − −⎪⎩
 (4.5) 

When purely translational motion is applied to the system of identical pen-
dulums, both sensors are moving in the same direction, and their outputs 
are identical (Fig. 4.1a). When purely rotational motion around vertical 
axis is applied to the same system, sensors are moving in opposite direc-
tions (Fig. 4.1b): sensor 1 in positive direction, and sensor 2 in negative 
direction. Russian instrument VBPP (Kharin and Simonov 1969) was 
based on this principle by measuring the difference of electrical outputs of 
the two identical pendulums.  

Based on Eqs. (4.3)-(4.5) the following observations can be made: 
• Sensitivity to rotations ψ″ around vertical axis is higher for pendu-

lums with long pendulum arm. 
• If the signal is low, and sensors are not identical, system is measur-

ing errors instead of rotations. 
• Summation of the signals from the two sensors results in accelera-

tion plus tilt (if tilt exists). Tilt sensitivity of both horizontal sensors 
is the same. 
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System of two vertical pendulums 

Vertical sensors are not sensitive to tilts for small tilt angles. A general 
case of combination of the two vertical sensors can be written as: 

" ' 2 " "
1 1 1 1 1 1 1

" ' 2 " "
2 2 2 2 2 2 2

2

2

y D y y z l

y D y y z l

ω ω α

ω ω α

⎧ + + = − −⎪
⎨

+ + = − +⎪⎩
 (4.6) 

Consequently, the system of Eq. (4.6) can be resolved against both 
ground motion parameters (vertical acceleration and angular acceleration 
of tilt): 

" ' 2 "

" ' 2 "

2 2

2 2
R R R

S S S

y Dy y l

y Dy y z

ω ω α

ω ω

⎧ + + =⎪
⎨

+ + = −⎪⎩
 (4.7) 

In contrast to horizontal sensors, combination of the two identical ver-
tical sensors allows resolution of both vertical and angular acceleration. 
Unfortunately, difficulty of building two identical mechanical pendulums 
did not result in any reliable measurements using VBPP. 

Learning from our previous experience, we decided to use another ap-
proach to measuring rotations (Graizer et al. 1989, Graizer 1991). Since it 
is easier to measure precisely natural parameters of each sensor (ωn , Dn , 
ln) than to build identical pendulums, we based our two-pendulum instru-
ment on a post-measurement processing. We used same sensor arrange-
ment as proposed by Golytsin (1912), but instead of trying to build two 
identical mechanical systems, we measured parameters of each sensor and 
applied post-correction to get rotation and translation. 

Integrating both sides of Eq. (4.6) twice and assuming: 

2
1 1 1 1 1 1 1

0 0 0

2
2 2 2 2 2 2 2

0 0 0

( ) 2

( ) 2

t t t

t t t

F t y D y d d y d

F t y D y d d y d

ω τ ω τ τ

ω τ ω τ τ

= + +

= + +

∫ ∫ ∫

∫ ∫ ∫
 (4.8) 

results in: 

1 1

2 2

( ) ( ) ( )
( ) ( ) ( )

F t z t l t
F t z t l t

α
α

= − −⎧
⎨ = − +⎩

 (4.9) 

and 
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" " ' ' 2 2
2 1 2 2 2 1 1 1 2 2 1 1

"
1 3 2 4

( ) (2 2 ) ( )

( )

y y D y D y y y

l l l l

ω ω ω ω

ψ

− + − + −

= + + +
 (4.11) 

4.3 Testing and Measurements 

A registration system similar to that described above consisting of two 
pairs of accelerometers was built to record large ground motions. One pair 
of accelerometers was sensitive to vertical and another one to horizontal 
ground motion. It was based on commercially made Soviet accelerometers 
ASZ (similar to the American SMA-1). The system was first tested at the 
Institute of the Physics of the Earth using a specially designed shake-table 
(Graizer et al. 1989). It was later applied to measuring ground motion in 
the near-field of the two underground nuclear explosions. Explosions of 
different power (mb of 4.5 and 4.4, respectively) were recorded at the same 
station at the hypocentral distance of less than 1 km (at reduced distances 
of 14.3 and 18.6 m/kg1/3). 

The results of separate determination of displacements and tilts are 
shown in Fig. 3. The maximum amplitude of displacement reached 14 mm 
at the vertical component, and tilt reached 3.7*10-3 rad (0.210). The maxi-
mum tilt during the second less powerful explosion reached 9.2*10-4 rad 
(0.0530). The similarity in the shapes of tilts and displacement pulses for 
both explosions gives additional confidence in the results. Ratio of tilt 
motions between the two explosions is ~4, and the displacements differ 2.5 
times. The more rapid decay of tilt with distance to the source is consistent 
with the theory of an explosion. Residual tilts reached 1.5*10-3 and 2.4*10-

4 rad for the first and second explosions, respectively. Those results are not 
contradicting the published data. For example, amplitudes of relatively 
slow tilts measured in lakes at distances of few km from the epicenter of 
the CANNIKIN underground explosion were of the order of 10-5 to 10-4 rad 
(Dickey et al. 1972). 

4.4 Discussion and Conclusions 

Measuring rotations of the ground and structures during earthquake shak-
ing is not part of common strong motion measurement practice, and there 
are only few measurements (estimates) of rotations during strong ground 
shaking. We considered modified classical approach to rotation measure-
ments by using pairs of pendulums. The registration system based on these 
principles was used to record tilts in the vicinity of two large underground 
explosions, with maximum tilts reaching 3.7*10-3 and 9.2*10-4 rad, respec-
tively.  
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Fig. 4.3  Motions in the near-field of the two underground explosions: horizontal 
displacement, tilt and vertical displacement (from Graizer et al. 1989) 

In recent years, the situation started to change when researchers realized 
the necessity of recording translational and rotational earthquake motions 
simultaneously. Recent technological advances provide new opportunities 
for rotation measurements since some developments previously available 
only for defense industries become cheaper and widely available. The six-
component strong-motion measuring systems that include three transla-
tional and three rotational sensors should bring new insights into earth-
quake engineering studies. Two-pendulum systems similar to that de-
scribed above can be used for measuring rotations during strong ground 
shaking. 
 

 V. Graizer 



 

75

Acknowledgments .   I am grateful to all my colleagues who at dif-
ferent stages participated in studies of rotational effects. This work was 
first started at the Institute of the Physics of the Earth in the former Soviet 
Union. Any opinions, findings, and conclusions or recommendations  
expressed in this material are those of the author solely and do not neces-
sarily reflect the views of the California Geological Survey.  

References 

Bradner H, Reichle M (1973) Some methods for determining acceleration and tilt 
by use of pendulums and accelerometers. Bull Seism Soc Am 63: 1-7  

Dickey DD, McKeown FA, Bucknam RC (1972) Preliminary results of ground 
deformation measurements near the CANNIKIN explosion. Bull Seism Soc 
Am 62: 1505-1518 

Farrell WE (1969) A gyroscopic seismometer: measurements during the Borrego 
Earthquake. Bull Seism Soc Am 59: 1239-1245 

Golitsyn BB (1912) Lectures on Seismometry. Russian Acad Sci, St Petersburg 
(in Russian)  

Graizer VM (1979) Determination of the true displacement of the ground from 
strong-motion recordings. Izv USSR Acad Sci, Physics Solid Earth 15: 12, 
875-885 

Graizer VM (1989) Bearing on the problem of inertial seismometry. Izv USSR 
Acad Sci, Physics Solid Earth 25: 1, 26-29 

Graizer VM, Kuznetsov OP, Nedoshivin NI, Sultanov DD (1989) Bearing on 
ground tilt measurements near the explosion source. Reports of USSR Acad 
Sci 305: 2, 314-318 (in Russian) 

Graizer VM (1991) Inertial seismometry methods. Izv USSR Acad Sci, Physics 
Solid Earth 27: 1, 51-61 

Graizer VM (2005) Effect of tilt on strong motion data processing. Soil Dyn 
Earthq Eng 25: 197-204 

Graizer V (2006a) Tilts in strong ground motion. Bull Seism Soc Am 96: 2090-
2106 

Graizer VM (2006b) Equation of pendulum motion including rotations and its 
implications to the strong-ground motion. In: Teisseyre R, Takeo M, Majews-
ki E (eds) Earthquake source asymmetry, structural media and rotation effects, 
Springer, Berlin, pp 471-485 

Huang B-S (2003) Ground rotational motions of the 1999 Chi-Chi, Taiwan earth-
quake as inferred from dense array observations. Geophys Res Letters 30: 6, 
1307-1310  

Chap. 4  Two-Pendulum Systems for Measuring Rotations 



 

76

Kharin DA, Simonov LI (1969) VBPP seismometer for separate registration of 
translational motion and rotations. In: Seismic Instruments 5: 51-66 (in Rus-
sian) 

Niazi M (1986) Inferred displacements, velocities and rotations of a long rigid 
foundation located at El Centro differential array site during the 1979 Imperial 
Valley, California earthquake. Earthquake Eng Struct Dyn 14: 531-542 

Nigbor RL (1994) Six-degree-of-freedom ground-motion measurements. Bull 
Seism Soc Am 84: 1665-1669 

Oliveira CS, Bolt BA (1989) Rotational components of surface strong ground 
motion. Earthquake Eng Struct Dyn 18: 517-526 

Schreiber KU, Stedman GE, Igel H, Flaws A (2006) Ring laser gyroscopes as 
rotation sensors for seismic wave studies. In: Teisseyre R, Takeo M, Majews-
ki E (eds) Earthquake source asymmetry, structural media and rotation effects, 
Springer, Berlin, pp 377-390 

Takeo M (1998) Ground rotational motions recorded in near-source region of 
earthquakes. Geophys Res Letters 25: 6, 789-792  

Todorovska MI (1998) Cross-axis sensitivity of accelerographs with pendulum 
like transducers – mathematical model and the inverse problem. Earthq Eng 
Struct Dyn 27: 1031-1051  

Trifunac MD (1971) Zero baseline correction of strong-motion accelerograms. 
Bull Seism Soc Am 61: 1201-1211 

Trifunac MD, Todorovska MI (2001) A note on the usable dynamic range of acce-
lerographs recording translation. Soil Dyn Earthq Eng 21: 275-286 

Zahradnik J, Plesinger A (2005) Long-period pulses in broadband records of near 
earthquakes. Bull Seism Soc Am 95: 1928-1939 

 V. Graizer 



 

 

5 Theory and Observations: Some Remarks 
   on Rotational Motions 

Roman Teisseyre 

Institute of Geophysics, Polish Academy of Sciences  
ul. Księcia Janusza 64, 01-452 Warszawa, Poland  
e-mail: rt@igf.edu.pl 

5.1 Ten Motions and Deformations 

In the first chapter we have discussed the basic system of motions and 
deformations. To the displacements and rotations (spin), theoretically 
forming six basic independent motions, we shall add four basic deforma-
tions: the axial deformation, Ekk (see: Chap. 1), and the twist vector de-
scribing the string-string deformation (see: Chap. 1) and related to devia-
toric strain tensor, ,D

skE  ( 0);D
ssE =  twist can be defined as a vector perpen-

dicular to the string-string plane (cf: Chap. 7). We may note that these 
motions form the reference system with ten components. 

Further on (see: Chaps. 6 and 7), we will demonstrate that the axial and 
deviatoric strains can be presented in the invariant form as axial and twist 
motions.  

In our considerations (see: Chap. 1) we have mentioned that the inde-
pendent displacements, uk (except the axial part, ∂un /∂xn), and rotations, 
ω[k], might be mutually replaced using the appropriate potentials (see: 
Chap. 1); such equivalence holds for any continuum with an intrinsic 
length, l, greater than zero (or realistically, greater than the Planck length 
unit). However, we shall note that as a result we may obtain two displace-
ments, or two rotation fields shifted in phase; e.g., the original displace-
ments, u, and those related to rotations, U (U = curl ω), may be shifted in 
their phases. Moreover, the displacement and rotations differ essentially 
when considering their origin and effects produced. However, in a theoret-
ical description we can demonstrate that the spin motions, ω[k], and twist 
motions, ω(s), defined on the basis of the shear motions 

1
2

, ,D s n
ns

n s

u uE s n
x x

⎛ ⎞∂ ∂
= + ≠⎜ ⎟∂ ∂⎝ ⎠
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form a system governed by the equations of motion quite similar to the 
Maxwell equtions (see: Chap. 7). 

We have already considered numerous defaults of the classical elasticity 
(see: Chap. 1) and we have also quoted many attempts to improve this 
theory. A new standard asymmetric continuum theory is presented in 
Chapter 7; this new theory not only eliminates the above-mentioned de-
faults but also can be extended for larger deformations, including some 
aspects of fracture processes. Moreover, this relatively simple theory leads 
to new relations, like those related to defect distribution, and permits to 
consider the interaction fields (see: Chap. 16). 

We hope that in this way we can approach an adequate description of 
the modern observation results concerning the seismic rotation waves.  

5.2 Recording Spin and Twist 

The first seismic rotation observations with the ring laser system (Igel et 
al. 2005) started in the Wetzell Observatory, Germany. Considering a 
plane wave propagation, it is possible to directly compare the observed 
rotation motions with the transverse displacement velocity rotations ob-
tained by the array of seismographs; such very successful comparisons 
were presented by Suryanto et al. (2006) and Cochard et al. (2006); it was 
proved that there exists almost exact fit between the rotation rate converted 
from the array-derived transverse acceleration and rotation rate obtained 
from the ring laser system.  

Of course, the new very precise measurements based on the Sagnac in-
terferometer systems are more adequate to determine rotations and require 
much less logistic efforts than the derivation of rotations from the array 
systems, which, moreover, can be sensitive to heterogeneous ground con-
dition in an array region.  

The above-mentioned comparisons between the rotation rate records ob-
tained from the ring laser system and the rates derived from the transverse 
accelerations, based on records at the array of broadband seismographs, 
confirm the theoretical equivalence between the rotations and the deviator-
ic strains derived from the displacement velocity motions, as expected 
from the theory. 

Rotational motions recorded on the Izu peninsula, Japan, with the use of 
the fiber-optics Sagnac sensor provided the important near-source data; 
Takeo (2006), inspired by these results, has developed an important theo-
retical consideration on the influence of material defects, including dislo-
cations and disclinations, on a possible magnification of rotational motions 
in a zone near the earthquake source. This is confirmed by some near-
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source observations made with the use of the rotation seismometer systems 
(Moriya and Teisseyre 2006, Teisseyre et al. 2003) in Hokkaido, Japan, 
and the Appenines, Italy. However, we may mention also an exceptionally 
small rotational part of motions for the local surface volcanic eruptions in 
a soft volcanic material as observed at extremely small distances (hundreds 
of meters).  

It is to be noted that the measuring system based on the rotation seismo-
graphs records simultaneously both the spin and twist motions (Moriya 
and Marumo 1998, Teisseyre et al. 2003, Wiszniowski 2006); e.g., to ob-
tain the spin and twist motions around the vertical axis we need the seis-
mograph system composed of two parallel horizontal pendulums of oppo-
site orientations. Spin is achieved from a mean of the recorded values, 
while twist from their difference; however, the twist field thus obtained 
presents only the angular variations of the off-diagonal shear axes. 

Only in the special coordinate system related to the off-diagonal shear 
axes, the twist measured with the use of rotation seismographs represents 
the exact shear field. With the help of a complete system of strainmeters, 
we can achieve reliable data on the shear-twist variations. However, in 
Chapter 7 we present the invariant definition of the twist motion, therefore, 
we shall explain, in advance, how we can compare such invariantly de-
fined twist motion when we have a possibility to record the full shear os-
cillations: to achieve the required comparison we shall transform, at each 
time moment, the measured shear values into the off-diagonal system: 

11 22 33 23 31 12 23 31 12 ( ){ , , , , , } { , , } { }.D D D
sE E E E E E E E E ω→ =   

On a free ground surface, z = 0, we have E31 = E32 = 0 and we need to 
measure only E11, E22, and E12. 

5.3 Rotation Motions in the Universe 

We have considered the independent motion and deformation fields; we 
will continue this approach.  

A significant role of rotation motions in fracture processes is discussed 
further on (see: Chap. 8); however, we shall present already here some 
further remarks. Fracture process under confining pressure load can lead to 
the synchronized significant spin motions related to fragmentation centers, 
while under a shear load the spin motions could be partly compensated by 
the opposite sense of the friction-related rotations along the main fracture 
plane and the other ones along the auxiliary perpendicular fracture planes. 
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Finally, we quote here a particular observation: the squeezing process 
related to the depression region in the lower part of the Pasterze glacier, 
Grossglockner, Austria. The circular fracture zones (Fig. 5.1) present an 
interesting example of the co-action of different deformation motions.  
 

 
Fig. 5.1  Depression in the Pasterze glacier, Grossglockner, Austria 

We must emphasize here a very significant role of rotations observed in 
ground tilts (Kaczorowski 2006) and in rocking and torsion of the elevated 
structures on a ground surface (Zembaty 2006, Trifunac 2006).  

Numerous observations, in the whole spectrum of ranks, kinds and di-
mensions, show the universal role of rotational motions. The rotational 
structures and motions appear in astronomical observations, are observed 
in geological and tectonical structures and the continent evolution, become 
of recent interest in seismology and fracture mechanics and enter the mi-
cro-domains and their physics. In the related context, we may mention two 
books devoted to this point of view: “Vortex-Related Events of the Geo-
logical Processes” (Vikulin 2004) and “Rotational Processes in Geology 
and Physics” (Milanovsky 2007). 

Starting with a point of view based on Asymmetric Continuum Theory 
(see Chap. 7) we present some remarks concerning the Universe origin. 
Such implications, when do not interfere or deny the essential results of the 
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quantum and relativity theories, may deliver a simpler and intuitional ap-
proach to the metric tensor perturbations in relativity and hypotheses re-
lated to the inflation phase effects in cosmology. 

In Chapter 1 we discussed the basic motions and deformations in 
asymmetric continuum: the axial motion, displacements, rotations and 
twist (oscillations of the off-diagonal shear axes); these fields being func-
tion of time. With initial explosion (or quantum virtual process) appearing 
at zero moment (determined with Planck precision ~10−44s) and spreading 
axially in a symmetric system at the “inflation” velocity, C c, the initial 
“condensate” (string and quarks) could be subjected to motion similar to 
axial motion in elastic continuum.  

The end of this phase of rapid expansion could relate to phase transfor-
mations (~10−35s) leading to the physical state of our Universe with the 
light velocity limit; the initial “condensate” transforms to our Riemannian 
4D space and related vacuum formed by the net of primordial elements. 
This phase transition would mean transition from symmetric phase to 
asymmetric one: the resulting World might correspond to the fluid phase 
with the asymmetric properties (see Chap. 14) 

At this phase, an enormous expansion energy should be transformed to 
other forms. Here, we may put forward another hypothesis: both the con-
tinuation of expansion at V < c, and the formation of initial rotations can 
lead to spiral structures, where we might also introduce a notion of spin 
black hole.  
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6.1 Introduction 

Using the Dirac matrices (Dirac 1982, Good 1955) we can give invariant 
presentation of any symmetric and antisymmetric tensor forms. Splitting a 
symmetric tensor into the axial and deviatoric parts we come, with the help 
of appropriate Dirac matrices, to their invariant representation in any sys-
tem. Here we present the diagonal and off-diagonal tensor forms of the 
deviatoric tensors.  

6.2 Axial and Deviatoric Parts of any Symmetric Tensor 

In Chapter 1 we have discussed the basic motions in an asymmetric conti-
nuum: the physical fields are represented by tensors. Any antisymmetric 
tensor preserves its general form; however, the symmetric tensors may 
have different forms in different systems: diagonal form, off-diagonal or 
mixed one. Therefore, it is useful to split a symmetric tensor into its axial, 

A
ikE , and deviatoric, D

ikE , parts: 

1 1
3 3

= = + .A D
ik ik ik ss ik ik ss ikE E E E E Eδ δ⎛ ⎞+ −⎜ ⎟

⎝ ⎠
 (6.1) 

Of course, a tensor with vanishing trace is equal to its deviatoric part:  

( ) ( ) ( )= , at 0.D
ik ik ssω ω ω =  (6.2) 

In a specially chosen coordinate system we can describe a deviatoric tensor 
(6 values in general) in its diagonal or off-diagonal forms (3 values only): 

(11) (3) (2)

( ) (22) ( ) (3) (1)

(33) (2) (1)

0 0 0
0 0 , or 0
0 0 0

D

D D D
ik ik

D

ω ω ω
ω ω ω ω ω

ω ω ω

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (6.3) 
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where we have put (12) (3) ,
Dω ω=  (13) (2) ,

Dω ω= −  and (23) (1) .
Dω ω=  

When comparing the observational/recording data related to a symme-
tric tensor with the theoretical results presented in such a special system, 
we shall be aware that we must transform the measured tensor values to 
the appropriate system (diagonal or off-diagonal) for any time moment. 
However, for a theoretical consideration, there exists a method to preserve 
such forms invariant with the help of Dirac tensors, maintaining these 
forms (diagonal or off-diagonal) in any 4D system. We will consider the 
off-diagonal case. 

6.3 Dirac Tensors  

We introduce the following system of the Dirac αε  tensors: 

1

0 0 0 1
0 0 1 0

,
0 1 0 0
1 0 0 0

ε

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦         

2

0 0 1 0
0 0 0 1

,
1 0 0 0

0 1 0 0

ε

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

3

0 0 0 1
0 0 1 0

i ,
0 1 0 0
1 0 0 0

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦       

4

1 0 0 0
0 1 0 0

i .
0 0 1 0
0 0 0 1

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

(6.4) 

For the system { , i }sx ct , 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

αβη

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

, these tensors fulfil the 

following condition: 

( )1
2

.α β β α αβε ε ε ε η+ =  (6.5) 

Some other Dirac tensors can be obtained as their products, e.g.: 

1 3

1 0 0 0
0 1 0 0

i ,
0 0 1 0
0 0 0 1

ε ε

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

      2 3

0 1 0 0
1 0 0 0

i ,
0 0 0 1
0 0 1 0

ε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦
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1 2

0 1 0 0
1 0 0 0

,
0 0 0 1
0 0 1 0

ε ε

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦        

1 4

0 0 0 1
0 0 1 0

i ,
0 1 0 0
1 0 0 0

ε ε

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦  

2 4

0 0 1 0
0 0 0 1

i ,
1 0 0 0

0 1 0 0

ε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

      3 4

0 0 0 1
0 0 1 0

,
0 1 0 0
1 0 0 0

ε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎣ ⎦  

4 2 3

0 1 0 0
1 0 0 0

.
0 0 0 1
0 0 1 0

ε ε ε

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

(6.6) 

Now, for the deviatoric tensor, e.g., (Eq. 6.3), we can define its 4D equiva-
lent: 

(3) (2) (1)

(3) (1) (2)
( )

(2) (1) (3)

(1) (2) (3)

0
0

0
0

D
λκ

ω ω ω
ω ω ω

ω
ω ω ω
ω ω ω

⎡ ⎤− − −
⎢ ⎥− −⎢ ⎥= ⎢ ⎥− −
⎢ ⎥
− − −⎢ ⎥⎣ ⎦

 (6.7) 

and we arrive at its invariant representation in any system: 
1 2 4 2 3

( ) (3) (2) (1)
D
λκω ω ε ω ε ω ε ε ε= + +  (6.8) 

where (3) ,ω  (2) ,ω  (1)ω  play a role of scalar fields (there remains only a 
change of orientation of the Dirac tensors).  

Further on (see the next chapter), we will show that the form (Eq. 6.8) is 
suitable to write the wave equation, e.g.: 

( ) ( )
2 2

2 0.
k kx x t

λκ λκω ω
μ ρ
∂ ∂

− =
∂ ∂ ∂

 (6.9) 

This relation describes the motion of the twist field, ( ) (1) (2) (3){ , , },sω ω ω ω=  
forming a kind of strange vector; we consider this point of view further on. 
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Again we stress that a comparison between these theoretical fields and 
the observational/recording data requires to transform the measured tensor 
values to their off-diagonal form (for any time moment). 

Finally, we may add  that any 4D antisymmetric tensor can be presented 
by means of the Dirac tensors (see: Eq. 6.6) as well: 

[ ]
1 4 2 4 1 2

1 2 3iiF F F Fαβ ε ε ε ε ε ε= + +  (6.10) 

where we have put 

[ ]

3 2 1

3 1 2

32 1

1 2 3

0
0

.
0

0

F F F
F F F

F
F F F
F F F

αβ

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

  

This form is especially useful for presenting the balance relation for the 
antisymmetric tensor fields, e.g., the Maxwell equations for the electro-
magnetic tensor (here, without a current term):  

[ ] 0.F
x αβ
β

∂
=

∂
 (6.11) 

6.4 Motion Equations: Classical Elasticity 

The classical form of motion equation can be presented as follows:  
− for the central motion: 

2 2 2 2

2 2(3 2 )kk ss kk ss s
s s s s s

S E E E F
x x t x x t x

ρ λ μ ρ∂ ∂ ∂ ∂ ∂
− = + − =

∂ ∂ ∂ ∂ ∂ ∂ ∂
(6.12) 

− for the shear motion as described by the deviatoric tensor parts:  

2 2 2

2

1
3

2D D D
sk si ik k i s ik

i s k s i k s

S S E F F F
x x x x t x x x

ρ δ∂ ∂ ∂ ∂ ∂ ∂
+ − = + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
  

− and finally 

2 2

2

1
2

1 .
3

D D
ik ik k i s ik

s s i k s

E E F F F
x x t x x x

μ ρ δ
⎛ ⎞∂ ∂ ∂ ∂ ∂

− = + −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (6.13) 
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6.5 Diagonal and Off-Diagonal Symmetric Tensor  
       Representation 

Two dimensions 

Any symmetric deviatoric tensor, EKK = 0, can be transformed to the di-
agonal form to be further easily transformed into the off-diagonal form: 

0 0
.

0 0KS KS KS

m n e e
E E E

n m e e
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= → = → =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (6.14) 

Three dimensions  

A three dimensional case is more complicated; we may consider the fol-
lowing sequence:  

11 12 13 1 3 2

12 22 23 2 3 1

13 23 33 3 2 1

0 0 0
0 0 0
0 0 0

KS KS KS

E E E e e
E E E E E E e e

E E E e e

λ
λ

λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= → = → =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (6.15) 

where λ1 + λ2 + λ3 + = 0. 
The eigenvalues appearing in the diagonal form are determined from the 

characteristic equation: 

( )2 2 2
1 2 3

3
1 2 32 2 0.e e e e e eλ λ+ +− − =  (6.16) 

However, the transition from the diagonal form to the off-diagonal one is 
not unique; we get a multitude of representations. Substituting λ with λ1, 
λ2 and λ3 we achieve a set of three equations but with only two indepen-
dent variables: 

2 2 2
1 2 3 1 2 3and .Π e e e Σ e e e= = + +  (6.17) 

The shear energy in a pure shear system is 12 12
1
2

2 .ks ksE S E E Eμ= =  In the 

off-diagonal presentation of strain deviatoric tensor we obtain  

( )12 12 13 13 32 32
1
2

= 0, 2 ;kk ks ksE E S E E E E E E Eμ= = + +
 

2 2 2
1 2 3

1 1, and .
2 2

e e e E E
μ μ

+ + = Σ =  
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Since the tensor is deviatoric, the three equations are consistent and we can 
express these variables as follows 

( )2 21
2

;K L L KΠ λ λ λ λ= − +       
22
LLKKΣ λλλλ ++=  (6.18) 

where indexes K and L are any two different numbers of the set {1, 2, 3}, 
e.g. K = 1, L = 2. 

Using the quantities Π and Σ, we can describe the deviatoric tensor; we 
can find parametric solution for the unknown quantities e1, e2 and e3 in (Eq. 
6.15). To this end we can treat one of these quantities as parameter s, e.g., e3 = s. For this case we obtain: 

3 3

1

3 3

2

3

+2 2 ,
2

+2 2 ,
2

.

sΣ s Π sΣ s Πe
s

sΣ s Π sΣ s Πe
s

e s

− + − −
=

− − − −
=

=

 
(6.19) 

In order to achieve the real values of e1, e2, we demand that  

2 2 .Πs Σ
s

+ ≤  (6.20) 

From the three values, λ1, λ2, λ3, we can find two with the same sign; ex-
pressing Π and Σ by these two values (Eq. 6.18) we can prove the exis-
tence of s fulfilling the condition (Eq. 6.20).  

 We have demonstrated that in 3D a transition from the diagonal form to 
the off-diagonal one results in a multidude of forms related to any real 
parameter s fulfilling the condition (Eq. 6.20). 

6.6 Particular Cases  

Further on, we will consider some particular forms of the off-diagonal 
tensor.  

First, we shall note that the off-diagonal tensor is related to the three 
values forming a kind of strange vector ω(s) = {ω(1), ω(2), ω(3)}. We have 
already shown that these values are not uniquely determined from the de-
viatoric diagonal tensor; we may have a multitude of representations re-
lated to the 2D different orientations around the twist vector. However, for 
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the twist direction perpendicular to a free surface, x3 = 0, under conditions 
for strains  

E31 = E32 = 0, we will obtain a semi two dimensional case E = 2μE12E12; 
the problem reduces to the 2D case already discussed. 

In 3D we can introduce an extra condition to obtain a unique representa-
tion of shears in the off-diagonal system. 

We may demand, e.g., that two parameters of {e1, e2, e3} be equal 
3

1 2 2 .e e sΣ s Π= → − =  (6.21) 

This equation is similar to the characteristic equation and has the solutions 

1

2 2

3

.e s
λ
λ
λ

−⎧
⎪= = −⎨
⎪−⎩

 (6.22) 

In that case, the off-diagonal values will be  

2 1 3, .K
K

Πe e eλ
λ

= − = =
−

 (6.23) 

To have a real solution, we must choose the values λK for which 

sign sign .K Πλ = −  (6.24) 

Further, we present some applications for the seismic waves. 
1. A simple squeeze (the P wave):  

2 0 0 0
0 0 0 0 .
0 0 0

KS KS

e e e
E e E e

e e e

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − → =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (6.25) 

For a simple squeeze this is unique off-diagonal representation of deviator-
ic tensor because the condition (Eq. 6.20) is true only for s = e.  

2. Simple shear (the S wave ) 
The diagonal form 

0 0
0 0
0 0 0

KS

e
E e

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.26) 
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may have a parametric off-diagonal representation in the form 

2 2

2 2

0
0 0

0 0
KS

s e s
E s

e s

⎡ ⎤−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (6.27) 

or other equivalent representations appropriately rotated.  
We can demonstrate the other off-diagonal representations that fulfill 

the condition (Eq. 6.21): 

0 0
0 0 0

0 0
KS

e
E

e

±⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥±⎣ ⎦

 (6.28) 

and 

0 0
2

0
2 2

0 0
2

KS

e

e eE

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.29) 

or other equivalent representations appropriately rotated. The simple shear 
is an exception because Π = 0. 

The deviatoric tensor with minus e1 and minus e3 is also correct in all 
the cases. Now we can write relation (Eq. 6.15) in the form 

13 12 13 1

12 22 23 2

13 23 33 2

1
1

1 1

1
1

0 0
0 0
0 0

0

0

0

KS KS

KS

E E E
E E E E E

E E E

Π

Π ΠE

Π

λ
λ

λ

λ
λ

λ λ

λ
λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= → = →⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
± −⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥= ± ±
⎢ ⎥− −
⎢ ⎥
⎢ ⎥

− ±⎢ ⎥−⎣ ⎦

 (6.30) 
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under the assumption that λ1 fulfills (Eq. 6.24). The sequence of compo-
nents in the diagonal tensor can be chosen freely. 

6.7 Conclusion 

We have considered the different invariant representations of the symme-
tric and antisymmetric tensors; for the symmetric tensor we have separate-
ly discussed its axial and deviatoric parts. 

Confining ourselves to the classical approach, we have discussed the 
equation of motions for the symmetric and antisymmetric tensors.  
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7.1 Introduction 

Classical treatment of the continuum mechanics found its basis in consid-
erations on deformations caused by displacement field, including the mo-
ment of momentum and angular deformation counterpart. However, when 
treating the displacements and rotations appearing in the field relations as 
the equally and similarly treated independent fields, we will arrive at the 
theory of asymmetric continuum; our present work relates to our former 
studies (Teisseyre 2004, 2005) as well as to the recent monograph (Teis-
seyre and Boratyński 2006).  

Thus, we shall recall that in the micropolar and micromorphic theories 
with the infinite small nuclei (see: Eringen 1999) or in the other advanced 
continuum treatments, the spin motions or, say, angular fields, appear as 
independent variables; however, in our present treatment we deal with the 
ideal elastic continuum, or elastic continuum with the defect fields (dislo-
cation and disclination densities), in which there appear, besides the con-
stitutive laws for the symmetric stresses and strains, also the bonds joining 
the antisymmetric stresses and the rotation motions with a related rigidity 
modulus.  

In the asymmetric continuum, defined as that including both the symme-
tric stresses and the antisymmetric stresses, the rotational deformations 
split into the pure rotation and twist motions, the latter relating to the shear 
deformations of point-nuclei. The twist motions are defined as those re-
lated to oscillations of the shear off-diagonal axes. This notion appeared 
when analyzing the seismic rotation fields. The rotation motions, spin and 
twist, can be measured by means of the ring laser or fiber optics interfero-
meters, based on the Sagnac principle or by strainmeteres and rotation 
seismographs; the experimental evidence for the spin and twist motions is 
based on the records of seismic rotation fields obtained both with a help of 
the ring laser or fiber optics interferometers, based on the Sagnac principle 
(Schreiber et al. 2006, Takeo 2006, Jaroszewicz et al. 2006) or by the rota-
tion seismographs (Moriya and Teisseyre 2006, Wiszniowski 2006). For 
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some events of explosive nature (explosions and some volcanic events) the 
above-mentioned “true” spin and twist motions are not detectable. The 
twist deformations present the grain deformations caused by elastic strain; 
however, when considering the grains as the “rigid” points of continuum, 
such a bend-twist deformation converts to a kind of 3D space curvature 
(Teisseyre et al. 2005, Teisseyre et al. 2006).  

In the present study we confine ourselves to a new concise theoretical 
approach to the asymmetric continuum. 

The other important remark is that in a homogeneous continuum the in-
fluence of rotational processes generated in earthquake sources remains 
theoretically not attenuated, as it is for the classical ideal elasticity, and the 
related waves can propagate to distant sites. First let us note that in the 
classical elastic continuum with the symmetric stresses, the rotations are 
introduced with the help of the stress moment tensor (related to some arm 
length). Instead, we assume, in our theoretical approach, the existence of 
the asymmetric stresses, strains and rotation fields. The antisymmetric 
elastic stresses form the system equivalent to stress moments, while the 
symmetric rotations describe the twist motions being equivalent in classic 
theory to shear oscillations of the point-grains of a continuum (or the 
equivalent notions appearing in the micromorphic theories) – compare 
papers by Teisseyre (2002), Teisseyre and Boratyński (2003, 2006) and 
Boratyński and Teisseyre (2004). 

The elastic theory with the asymmetric stress field is presented here; in 
this theory the antisymmetric part of stresses plays a role equivalent to the 
stress moments.  

In the Appendix to this chapter we recall the Kröner approach, with its 
self fields and interaction nuclei, we define the elastic fields as given by 
the difference between the total and self fields, where the total fields – 
stresses, strains and rotations – mean the fields defined as the respective 
derivatives of the displacement motion. In this way we arrive at the devia-
tions from the classical elasticity and the independent rotation motions − 
spin and twist; the first being a counterpart to rotation of displacements, 
while the other to oscillations of shear strain. Usually the deviations from 
ideal elasticity are described by the appriopriate elasto-plastic constitutive 
laws; the other approach follows the Kröner method, in which we maintain 
the ideal elastic relation for the stresses and strains, supplemented by con-
stitutive law joining the antisymmetric stresses with rotations, and we in-
troduce the self/inner stresses, strains and rotations, as related to the inter-
nal nuclei or defects: SS, ES, ωS. Therefore, we distinguish there between 
the total stresses, strains and rotations ST, ET, ωT = 0, and the asymmetric 
elastic stresses, strains and rotations S, E, ω. This method is shortly pre-
sented in the Appendix (Kröner 1981, Teisseyre 2005, Teisseyre and 
Boratyński 2003).  
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Here, we introduce a new approach: the standard asymmetric continuum 
theory. 

7.2 Standard Asymmetric Theory: Basic Assumptions 

As mentioned above, in opposition to other approaches, we may construct 
the asymmetric standard theory entirely related to displacement field. Such 
a theory shall be based on both the symmetric and asymmetric stresses and 
on the related constitutive laws and motion equations. The asymmetric 
deformations contain the symmetric strain and antisymmetric rotation. 
Thus, our theory is based on two groups of relations, for the symmetric and 
antisymmetric fields: 

( ) [ ] ( ) [ ], , .kl kl kl kl kl kl klS S S E E ω ω= + = =  (7.1) 

However, when introducing the new material parameters (structure index-
es: e0, χ0), we may connect these deformation fields, in an independent 
way, with some displacement motion:  

0 0 0

0 0 0

1
2

1
2

,

.

l k
kl kl

k l

l k
kl kl

k l

u uE e E e
x x

u u
x x

ω χ ω χ

⎛ ⎞∂ ∂
= = +⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
= = −⎜ ⎟∂ ∂⎝ ⎠

 (7.2) 

For the internal energy stored in such a medium we obtain 

( ) [ ] .ks ks ks ksE S E S ω= +  (7.3) 

For the particular values of these indexes, e0 and χ0, we have: 
− the classic elasticity for χ0 = 0; 
− for e0 = 0 we obtain a granular/crushed medium filled with rigid 

spheres with a friction interaction; when applying a torque load on 
its surface boundary, e.g., a cylindrical one, we obtain only some 
angular deformation, and torque energy stored would be given as 

[ ] ;ks ksE S ω=  

− for solids we put 0 1,e =  0 1;χ =  hence 

0 0 0, ,kl kl kl klE E ω χ ω= =  (7.4) 

where χ0 represents the phase shift between the motions 0
klE  and 0 ;klω  
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− for granulated or partly crashed material the structural indexes may 
take different values. 

Further on, we will consider a more general continuum with the consti-
tutive laws including also the time rates processes; for such cases we might 
discuss in a similar way the different particular cases of the material struc-
ture indexes including the dynamic objects. 

For the symmetric part of stresses we can assume the classical constitu-
tive relation: 

( ) 2 .kl kl ss klS E Eλδ μ= +   

But there is no problem to include in it the appropriate linear deviations 
related to visco-plastic effects.  

To construct the asymmetric theory, we assume, after Shimbo (1975, 
1995), the appropriate constitutive law for the antisymmetric part of 
stresses. It joins the friction/fracture rotations with the antisymmetric 
stresses:  

[ ] 2 .kl klS μω=   

Using the motion equation for the symmetric part of stresses  
2

( ) 2kl l l
k

S u F
x t

ρ∂ ∂
= +

∂ ∂
  

and the scalar and vector potentials  

2 2 2 2, ,l lps s l lps s
l p l p

u l l F l l
x x x x
ϕ ε ψ ε∂ ∂ ∂ ∂

= + = Φ + Ψ
∂ ∂ ∂ ∂

  

we can arrive at the equations for strain tensor 

2 2 2
2 2 2

1
3

1 1
2 2

,

D
lq lq kk lq

lps s qps s
l q p q p l

E E E

l l l
x x x x x x

δ

ϕ ε ψ ε ψ

= + =

∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂

 (7.5) 

where we have introduced the intrinsic length unit l.  
We write the expected equations separately for the axial and deviatoric 

parts 1 1 1
3 3 3

= + + ,D
lq lq kk lq lq kk lq lq kkE E E E E Eδ δ δ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 obtaining: 

2
2

2 ,ss
ss

EE l
t

μ ρ
∂

Δ − = ΔΦ
∂

 (7.6) 
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2

2

2
2 ,

3 2

D
lqD

lq

lq
lps qps s

l q p q l

E
E

t

l
x x x x x

μ ρ

δ
ε ε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂
Δ − =

∂
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= − Δ Φ + + Ψ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (7.7) 

where 
2

2

2 2
2 1

2

,

.
3

kk
s s

lqD
lq lps qps s

l q s s p q l

E l
x x

E l
x x x x x x x

ϕ

δϕ ϕ ε ε ψ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂
=

∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂
= − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

  

The motion equation for the antisymmetric stresses S[ni] shall replace the 
balance law for the stress moments. To this end, we take the divergence of 
rotation force moment acting on a body element due to the antisymmetric 
stresses (rotational moment of forces per infinitesimal arm length corres-
ponding to stress moments), and, on the other hand, the balancing term − 
the acceleration related to angular momentum (Teisseyre and Boratyński 
2003):  

2 2

[ ] [ ]2

2
0

[ ]2

1

1
2

.

lki ni lki ki lki ki
k n

l k
lki lki ki

k l

S K
x x t

u u K
t x x

ξ
ε ρε ω ε ρ

χ ρε ε ρ

∂ ∂
= + =

∂ ∂ ∂

⎛ ⎞∂ ∂∂
= − +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (7.8) 

With the compatibility condition, introduced in a similar way as for the 
symmetric strains: 

2

[ ] 0ij imk jns ks
m n

I
x x

ε ε ω∂
= =

∂ ∂
  

we obtain from (7.8):  

2 2 2 2
[ ] [ ] [ ] [ ]

[ ] [ ]2 22 2 or ,ki ki ki ki
ki ki

s s s s

S
K K

x x t x x t
ω ω ω

ρ ρ μ ρ ρ
∂ ∂ ∂ ∂

= + − =
∂ ∂ ∂ ∂ ∂ ∂

 (7.9) 

where we have introduced the body couples K[ki] or body moment 
[ ] [ ].l lki kiK Kε ρ=   

Otherwise, we can write: 
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2 2

[ ] [ ] [ ]2 ,l l l
k k

K
x x t

μ ω ρ ω ρ∂ ∂
− =

∂ ∂ ∂
 (7.10) 

where the left-hand side of these forms presents the basic expression for 
the resulting stress moment divergence in the continuum with asymmetric 
rotation nuclei.  

These relations are equivalent to the following ones:  

2

[ ] [ ]2

[ ]2

1 ,

1

lk lki ni lki ki
k k n n n

lk lki ni
n

M S S
l x x x x x

M S
l x

ε ε

ε

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂
∂

=
∂

  

or defining the angular moment ,iΞ  we obtain:  

2
[ ]2 , .ik i i iks kn

k n s

M l
x x x

μ ε ω∂ ∂ ∂
= Ξ Ξ =

∂ ∂ ∂
  

7.3 Spin and Twist Motions 

The spin motion is governed by the Eq. (7.9), or equivalently by its vector 
form (7.10). In the system related to main shear axes or in that with the 
off-diagonal components, the motion equation for the deviatoric strains 
(7.7) can be presented in the form related to the other rotation vector − the 
twist, ω(s) (see: the former chapter):  

( ) 23 31 12{ } { , , }.D D D
s E E Eω =  (7.11) 

The defined twist motion, ω(s), means the rotational oscillation of the off-
diagonal shear axes of the deviatric tensor (corresponding to oscillation of 
the main shear axes), ,D

lqE  accompanied with the changes of the shear 
magnitude; such perturbation of the shear load may be caused by the inter-
nal fracturing processes. 

Once having defined the twist vector field we can maintain its form due 
to the invariant properties of the Dirac tensors applied for the symmetric 
off-diagonal tensor ω(ik) in its 4D form (see: the former chapter):  

1 2 4 2 3
( ) (1) (2) (3)λκω ω ε ω ε ω ε ε ε= + + = (7.12) 
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(3) (2) (1)

(1)(3) (2)

(3)(2) (1)

(1) (2) (3)

0
0

,
0

0

ω ω ω
ω ω ω
ω ω ω
ω ω ω

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− − −⎢ ⎥⎣ ⎦

 

where the Dirac matrices, ε 
μ, μ = {1, 4}, were in the former chapter:  

In a similar way, we may define the external off-diagonal part of the 
right-side expression of (7.14): 

2
2

( ) .
2lq lps qps s

l q p q l

Y l
x x x x x

ε ε
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂
= Φ + + Ψ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

  

For its 4D form we can write: 
1 2 4 2 3

( ) (12) (13) (23)

(12) (13) (23)

(23)(12) (13)

(12)(13) (23)

(23) (13) (12)

0
0

.
0

0

Y Y Y Y

Y Y Y
Y Y Y
Y Y Y
Y Y Y

λκ ε ε ε ε ε= + + =

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− − −⎢ ⎥⎣ ⎦

  

Using these definitions for the off-diagonal form (7.12) we obtain  
2 2

( ) ( )
( )2 .

k kx x t
λκ λκ

λκ

ω ω
μ ρ
∂ ∂

− =
∂ ∂ ∂

Y  (7.13) 

The defined twist motion, ω(λκ), means the rotational oscillation of the off-
diagonal shear axes of the deviatric tensor, ,D

lqE  accompanied with the 
changes of the shear magnitude; such perturbation of the shear load may 
be caused by the internal fracturing processes (see Fig. 7.1). 

For the elastic continuum with defects the spin and twist motions form 
the complex rotation field defined as:  

[ ] ( )i .s s sω ω ω= +  (7.14) 

From the related balance relation (see further on) we will obtain the rela-
tions joining the spin and twist motions. 

7.4 Defects: Dislocation and Disclination Densities 

The classical approach to the dislocation and disclination densities is based 
on the Kröner description of continuum with the self-fields (Kossecka and 
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DeWitt 1977, compare: Appendix). In the asymmetric homogeneous con-
tinuum the defect density can be introduced using the modified definition 
of disclosure, Bl, and the following definition of the twist-bend vector 
(equivalent to Eq. A.11 in Appendix); we define: 

d d ,

d d .

T
l kl lqr kq r k kl kl k

T
q kq k kq k

B E x l E l

l s

ε χ ω

χ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

= − = +

Ω = =

∫ ∫
∫ ∫∫

 (7.15) 

In our approach (see, e.g. Teisseyre and Boratyński 2003) the tensor 
T
mqχ  is defined differently than by Kossecka and DeWitt (1977) in order to 

obtain a proper expression for dislocation density; we put  

0 0T
mq ksq mk

sx
χ χ ε ω∂

=
∂

 (7.16) 

and we obtain from (7.15): 

( ) 0 0 0 1
2

d d d ,l kl kl k kl kl k pl pl ss pB E l E l sω χ ω α δ α⎡ ⎤
⎢ ⎥⎣ ⎦

⎛ ⎞= + = + = −⎜ ⎟
⎝ ⎠∫ ∫ ∫∫ (7.17) 

where we have introduced the definition of the dislocation and disclination 
densities: αpl and θpq. 

From (7.15) and (7.16) it follows that the disclination density vanishes, 
in accordance with the compatibility condition:  

2 0

0.
T
kq ks

pq pmk pmk qns
m m nx x x

χ ω
θ ε ε ε

∂ ∂
= = =

∂ ∂ ∂
  

For the dislocation field we obtain from (7.17): 

0 0 01
2

.pl pl ss pmk kl kl pmk kl kl
m m

E E
x x

α δ α ε ω ε χ ω⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∂ ∂
− = + = +

∂ ∂
 (7.18) 

Supplementing the constitutive relations with that for the antisymmetric 
stresses and rotations we arrive at the relation between the dislocation den-
sity and asymmetric stresses:  

( ) [ ]
1
2

.
2 1

pmk
pl pl ss kl kl ii kl

m

S S S
x

ε να δ α δ
μ ν

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂
− = − +

∂ +
 (7.19) 

We note that in the classic theory with defects, we distinguish also the 
different definitions for a dislocation field, e.g., the Burgers and Nye dislo-
cations.  
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For a coincidence of the spin and twist motions, χ0 = 1, we may obtain 
an extreme shear deformation; for this particular case the defect vanishes:  

0 0d d d 0, 0.l
l kl kl k kl kl k k pl

k

uB E l E l l
x

ω ω α⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∂
= + = + = = =

∂∫ ∫ ∫ (7.20) 

 
Fig. 7.1  The edge and screw dislocation types 

With χ0 = −1, we obtain for the edge dislocations:  

( ) [ ]1 1 ;
2

kl kl ss kl

pl pmk
m

S S S
p l

x

ν δ
να ε

μ

⎛ ⎞∂ − +⎜ ⎟+⎝ ⎠= ≠
∂

 (7.21) 

and the screw ones:  

( ) [ ]( )1 ; .kl kl
pl pmk

m

S S
l p

x
α ε

μ
∂ +

= =
∂

 (7.22) 

The both considered cases could relate to the formation of the respective 
slip-discontinuities, Fig. 7.1.  

7.5 Balance Laws for the Rotation Field and the EM Analogy 

The complex rotation field (7.14), [ ] ( )i ,s s sω ω ω= +  may be presented in 
the tensor form:  

[3] (3) [2] (2)

[1] (1)[3] (3)

[2] (2) [1] (1)

0 i i
i 0 i .

i i 0
kis s ki

ω ω ω ω
ε ω ω ω ω ω ω

ω ω ω ω

⎛ ⎞− − − −
⎜ ⎟

= = − − +⎜ ⎟
⎜ ⎟+ − −⎝ ⎠

 (7.23) 
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We can write the balance condition as  

4 d ,
ikps s k k k k

p

ds J s
x V t

πε ω ω
υ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂ ∂
= +

∂ ∂∫∫ ∫∫  (7.24) 

where we introduced the current field Jk and velocity V. 
Hence, we obtain the field equations for the complex rotation motions: 

4
ikps s k k

p

J
x V t

πε ω ω
υ

∂ ∂
− =

∂ ∂
 (7.25) 

or the system for spin and twist motions:  

( )[ ]
( ) [ ]

1 4 1, 0.ss
k kkps k kps

p p

J
x V V x V

ωω πε εω ω
∂∂

− = + =
∂ ∂

 (7.26) 

These equations are quite similar to the EM equations; the velocity V 
shall obey the relativistic rule for a sum of velocities.  

Appendix: Continuum with Internal Nuclei 

First let us mention that in the classical elastic continuum with the symme-
tric stresses, the rotations are introduced with a help of the stress moment 
tensor (related to some arm length). Instead we may assume after Kröner, 
1982, an existence of the asymmetric stresses, strains and rotation fields 
related to the self fields of the internal nuclei. The antisymmetric elastic 
stresses form the system equivalent to stress moments, while the symme-
tric rotations describe the twist motions being equivalent in classic theory 
to shear oscillations of the point-grains of a continuum (the equivalent 
notions appearing in the micromorphic theories) – compare papers by 
Teisseyre (2002), Teisseyre and Boratyński (2003, 2006), Boratyński and 
Teisseyre (2004).  

Usually the deviations from ideal elasticity are described by the apprio-
priate elasto-plastic constitutive laws; here following the Kröner approach, 
we maintain the ideal elastic relation for the stresses and strains, supple-
mented by constitutive law joining the antisymmetric stresses with rota-
tions, and we introduce the self/inner stresses, strains and rotations as re-
lated to the internal nuclei or defects: SS, ES, ωS.  

Therefore we distinguish between the total stresses strains and rotations 
ST, ET, ωT = 0, as defined by its direct relations to the displacement field, 
from the asymmetric elastic stresses, strains and rotations S, E, ω. These 
elastic fields shall obey the constitutive laws given in the ideal elasticity. 
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However, the asymmetric continuum includes the displacements and also 
rotations; the related balance equations split into the parts related to sym-
metric and antisymmetric stresses (Teisseyre 2004); in such a continuum 
the elastic strains, rotations and stresses can be expressed as differences 
between total and self-fields (Kröner 1981):  

, , ., T ST S T ST S β β βω ω ω− − − −== == S S SE E E  (A.7.1) 

The elastic and self deformations, rotations and stresses are, in general, 
asymmetric; the antisymmetric parts for stresses and strains are mutually 
compensated:  

( ) [ ] [ ]
1
2

, 0T Si k
ki i k ki ki

k i

u uE u E E
x x,

⎛ ⎞∂ ∂
= = + + =⎜ ⎟∂ ∂⎝ ⎠

 (A.7.2) 

and similarly the symmetric parts for elastic and self rotations are compen-
sated:  

S
( )[ , ] ( )

1
2

; 0.T i k
ikki i k ik

k i

u uu
x x

ω ω ω
⎡ ⎤∂ ∂

= = − =+⎢ ⎥∂ ∂⎣ ⎦
 (A.7.3) 

However, referring to our earlier paper we assume that the self-parts of the 
antisymmetric part of strain and rotation are put as equal to each other:  

S
[ ] [ ] .
S
ik ikE ω=  (A.7.4) 

The elastic fields S, E, ω represent the physical fields, while the total 
fields ST, ET, ωT  relate, according to the compatibility condition, to the 
displacement motions ui, while the self-fields relate to the internal nuclei, 
defect densities and continuum structure.  

First, we refer to the definitions of the twist-bend tensor; first after Kos-
secka and DeWitt (1977) related to gradient of the rotation vector (vanish-
ing of both the Frank vector and the disclination density):  

[ ] [ ]
[..] [..]

1
2

grad ω ωχq ns
nsqmq

m mx x
ω ω

εχ
∂ ∂

= = → = =∇
∂ ∂

 (A.7.5) 

and then with rotation of the transposed rotation tensor (Teisseyre 2001, 
Teisseyre and Boratyński 2002):  

T Tχ curlω .
T

T mk
mq ksq

sx
ω

χ ε
∂

= → = −
∂

 (A.7.6) 
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These two definitions can describe different types of rotation nuclei; 
Kossecka and DeWitt’s definition directly leads to the pure rotation nuclei, 
while the other definition describes nuclei which can undergo the rotation 
and twist vibrations and includes the Frank vector and the disclination 
density. The total fields related to these two definitions coincide (apart of 
the sign) T T

mqmq χχ = −  and we could combine them (Teisseyre and 
Boratyński 2002), however we will relate further on to the definition 
(A.7.6).  

For the incompatibility tensors with their symmetric and antisymmetric 
parts we obtain:  

2 2
( ) ( )

( )

2 2
( ) ( ) ,

S
mn mn

ij ikm jtn ikm jtn
k t k t

S
mn mn

ikm jtn ikm jtn
k t k t

E E
I

x x x x

x x x x

ε ε ε ε

ω ω
ε ε ε ε

∂ ∂
= − = =

∂ ∂ ∂ ∂

∂ ∂
= − =

∂ ∂ ∂ ∂

  

2 2
[ ] [ ]

[ ]

2 2
[ ] [ ]

S
mn mn

ij ikm jtn ikm jtn
k t k t

S
mn mn

ikm jtn ikm jtn
k t k t

E E
I

x x x x

x x x x

ε ε ε ε

ω ω
ε ε ε ε

∂ ∂
= − = =

∂ ∂ ∂ ∂

∂ ∂
= − =

∂ ∂ ∂ ∂

 (A.7.7) 

and we can arrive to (Teisseyre 2005):  

( ) [ ]

( ) )
.

S S
qk kq kq

pq pmk pmk
m mpq pq

I
x x

α χ χ
ε ε
⎛ ⎞ ⎡ ⎤∂ − ∂

= − −⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎣ ⎦
 (A.7.8) 

The symmetric tensor I(pq) relates to the dislocation and disclination den-
sities, α and θ (Kossecka and DeWitt 1977):  

( )
( )

.qk
pq pmk pq

m pq

I
x
α

ε θ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∂
= − +

∂
 (A.7.9) 

We introduce the Shimbo (1975 and 1995) constitutive law for antisymme-
tric stresses and rotation  

[ ] [ ] [ ] [ ]
1 ,

2
S S S
mn mn mn ikE E Sω

μ∗= = − = −  (A.7.10) 

where the constant μ∗ represents the rotation rigidity modulus: rotation 
related bonds (inner friction).  
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Antisymmetric stresses relate to an internal rotation motion; these 
stresses become important in zones with higher dislocation densities or 
under high stresses or in zones where microfracturings nucleate; in such 
zones we can expect the presence of rotation nuclei.  

These considerations, related to defects – dislocation and disclination 
densities and to rotation nuclei, contain some partial results presented by 
Kossecka and DeWitt (1977), Teisseyre (2002), Teisseyre and Boratyński 
(2002, 2003); however, some necessary modifications are introduced.  

Following Kossecka and De Witt (1977), we write, with a help of the 
twist-bend tensor and with Eq. A.7.6), for a total disclosure and twist along 
a closed circuit (the Burgers vector and the Frank vector):  

( ) d , d dS S S
l kl lqr kq r k q kq k pq pB E x l l sε χ χ θ⎡ ⎤

⎢ ⎥⎣ ⎦
= − − Ω = =∫ ∫ ∫∫  (A.7.11) 

and the dislocation and disclination densities, α and θ, become:  

( ) , .
S S
kl kqS

pl pmk klq mq pq pmk
m m

E
x x

χ
α ε ε χ θ ε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂ ∂
= − + =

∂ ∂
 (A.7.12) 

Further we obtain  

( ) .
S
kl S S

pl pmk pl qq lp
m

E
x

α ε δ χ χ
∂

= − − +
∂

 (A.7.13) 

From the definitions of the twist-bend tensor (A.7.6) follows that 
S

S mn
mq nsq

sx
ωχ ε ∂

=
∂

 and we obtain 

( ) [ ]

2

,

.

S S S
kl ks lk

pl pmk pl smk pmk
m m m

S
ks

pq pmk qns
m n

E
x x x

x x

ω ω
α ε δ ε ε

ω
θ ε ε

∂ ∂ ∂
= − − −

∂ ∂ ∂

∂
=

∂ ∂

  

In the former papers by Kossecka and DeWitt (1977) and Teisseyre 
(2001), the dislocation current has been defined as the related deviation 
between the total plastic distortion and total plastic flow, here more conve-
nient appears the modified definition (Teisseyre 2002):  

− for the dislocation current (Teisseyre 2002)  

( )( )
( )

,
S

Sl S
klklkl

k kl

J Ex
υ

ω
⎛ ⎞∂

= − + +⎜ ⎟∂⎝ ⎠
 (A.7.14) 
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− for the disclination current 

( ) [ ] .
S SS
sk ksks

kq qns qns qns
n n n

Y
x x x

ω ωωε ε ε
∂ ∂∂

= − + = −
∂ ∂ ∂

 (A.7.15) 

On the other side, a dislocation current follows according to Teodosiu 
(1970) as  

pk qmk qp mJ ε α υ= −  (A.7.16) 

where υ is a dislocation velocity.  
Constitutive law joining dislocation velocity with stresses was given by 

Mataga et al. (1987): 

2
,

( )
ql qlkl

m snq
kl

S R
V

s R R

α
ε

α
−

=
− +

 (A.7.17) 

where S are the stresses; R is the resistance stress; υj and Vj = υj/υ0 are, 
respectively, the dislocation velocity and relative dislocation velocity with 
respect to the shear wave velocity υ0.  
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8.1 Introduction 

We consider rotation processes in a material under load leading to fracture 
process: in the preseismic stage as well as in the main rupture phase and in 
the post-earthquake stage. The rotation processes of different scale help to 
understand these extremely complicated phenomena in which dynamic 
processes proceed simultaneously with changes of material parameters. 
We recall a special role of rotations in the energy release effectiveness 
under different load conditions, and further on we discuss the rotation im-
pact on the granulation processes accompanying the material crushing 
processes.  

As fracturing phenomena proceed, the constitutive laws undergo consi-
derable changes, from description of elastic to plastic and, further, to my-
lonite-type material. In the narrow zone adjacent to the zone of fracturing, 
the shear stresses break the molecular bonds and in the crashed rock the 
stresses immediately drop down, the increase of stress rates and strain rates 
occurs, and material becomes partly granulated. Later, in that zone the 
stresses and strains become gradually less important and progressively 
replaced by the time-rates of stresses and strains.  

Finally in the thin zone adjacent to fracture plane, there appears material 
somewhat similar to fluid with the transport properties described by Navier-
Stokes equations. The bond breaking and granulation processes force co-
action of the twist-shear motion with spin of grains in the mylonite zone. 

In the earthquake precursory processes, the energy micro-releases relate 
to a coalescence of dislocation arrays of opposite signs. We may consider 
two different cases: in the first, we consider a rock body under the confin-
ing pressure; in the other – under the external shear load. Under confining 
pressure and under external shears, the role of micro-fracturing in the bond 
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breaking process is similar; however, we observe here essential differences 
in larger-scale rotations. Confining condition leads to formation of the 
induced different arrays of dislocations, resulting in fragmentation 
processes and related macro-rotations. On the other hand, shear load leads 
to more concentrated fracturing along some planes. We can underline that 
macro-rotations and related energy release are more effective for the frac-
turing under confining pressure. 

For the first case, we have reexamined Dieterich’s (1978) compression 
experiments which led us to conclusion that the precursory induced shear 
stresses appear due to confining load and presence of defects. Rocks are 
not homogeneous and we have to assume that inside a body there appear 
regions with the induced shear stresses of different signs. This case is 
symbolized in Fig. 8.1; the rotation energy release is postponed until the 
moment the induced stresses are so high that the material breaks locally 
and fragmentation starts. The main rupture is delayed and when it finally 
occurs, a considerable part of rotation energy is released in fragmentations. 
The total shear stress drop for compression conditions could be quite 
small, while rebound phenomena (preseismic, coseismic and in the re-
bound stage) bring an important release of rotation energy. The rotation 
processes in fragmentation and fracturing play in this case an essential 
role.  

In the second case – the shear load, the development of fracture planes 
is not chaotic and the sense of shear motions is preserved. The external 
shearing force promotes the microcracks coalescence in some zones, 
which gradually merge to form the main rupture. In such circumstances, 
rearrangement and merging of a main fracture plane can occur. Rotations 
(in every scale) are then of lesser importance. Therefore, most of the 
earthquake energy is that of shear stress release. 

Asperities and other macro-scale inhomogeneities can locally re-
distribute the stresses in various modes, changing therefore the preseismic 
conditions in parts of rock volume.  

Further on, we discuss the importance of rotations in mesoscale, be-
tween these related to the micro-scale bond breaking process and the ma-
cro-rotations at material fragmentation and transport processes. 

In any fracturing process, especially if revealed in a more spectacular 
form (long fractures) under shearing load, we shall consider the processes 
leading to granulation of material adjacent to shear fracturing. Such 
processes become intense and lead to the formation of narrow, long mylo-
nite zones adjacent to fracture zones. The related rotations − the mesoscale 
rotations − are related to bond breaking and friction processes leading to 
material granulation.  
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Coincidence and counter-action of the spin and twist-shear motions in 
bond breaking, granulation and formation of mylonite material help us to 
understand the fracture mechanism; the simultaneous mylonite formation 
appears to be caused by the common action of these rotations and fracture 
transport phenomena.  

When applying such an approach to the progressively crushing material 
we can use the Navier-Stokes equations to describe the fracture propaga-
tion.  

When in a narrow zone the huge shear stresses would break the molecu-
lar bonds, crushing and granulation of the rock material start. Immediately, 
stress magnitudes drop down to low values, and simultaneously the stress 
and strain time rates increase to such a degree that the stresses and strains 
may be neglected in the constitutive relations. In result, we may treat the 
material in this zone as more similar to a liquid than to a solid – simulta-
neously to granulation process (in an intact material or in zone already 
previously crushed), the nucleation progresses and fractures propagate. In 
such conditions, we may apply the Navier-Stokes transport equation. Thus, 
we arrive at a new description of the fracturing transport process, in which 
the shear rates force the phase coincidence of the twist-shear motion and 
the related spin motion of grains subjected to the bond breaking and granu-
lation processes.  

The constitutive law of a material under crushing condition undergoes 
substantial changes; first we may have the intact rigid rock material with 
the basic constitutive law given by the elastic properties with the total 
stress, strain and rotation fields related to displacements; further, in the 
intermediate stage both these fields as well as the appropriate rates should 
be taken into account, and finally in the sand-like mylonite material we 
might neglect the primordial stress, strain and rotation fields – there re-
main (in consideration) only the rates of stress, strain and rotations.  

Searching for the fault slip solutions we use the classical elasticity tools 
with the additional friction constitutive law basing on the experimental 
data. When instead we consider the asymmetric elastic continuum, we are 
able to consider the defect interaction and we can derive the elastodynamic 
fault solution describing slip propagation with fracturing process and re-
lated seismic radiation.  

For the fracture zone, the constitutive relation for the asymmetric elastic 
continuum (Chap. 7) shall be modified to include the field rates. 

As we have already mentioned, in the compression case with no initial 
shear field, we may still assume, owing to the presence of internal defects 
and the lower value of shear resistance, that there appear some internal 
regions with induced shear stresses of opposite signs under the condition 
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that the resulting field is neutral. The inner shear stress accumulation re-
lates to defect densities, while the interaction between dislocations gives 
rise to stress concentration at the first blocking dislocations of the disloca-
tion arrays formed. The fracture processes and the energy releases will 
relate to a coalescence of dislocation arrays of opposite signs and a related 
rotation rebound motion. However, the further penetrating fracture 
processes might consecutively lead to a completely crushed/granulated 
material up to the molecular scale; in the final stage, an energy release will 
relate to the bond breaking processes and the rebound rotations of the re-
leased molecules. 

Of course, we shall consider a fracturing process as a chain of events; let 
us consider the centers formed by two perpendicular plane fragments; the 
induced shear stresses are opposite on those plane fragments but have a 
common orientation of spin motion (Fig. 8.1). 
 

 
Fig. 8.1  Compression load: induced shear centers and formation of fragments 

The induced shears become almost compensated, while the spin fields 
may support the rotation processes.  

However, this spin field, ω[s], propagates and influences the processes in 
the adjacent regions; we believe that this propagation synchronizes the 
spin motions in the adjacent centers in such a way that the sense of spin 
motion becomes the same over the whole fracture region. This means, the 
spin propagation assures a synchronization of fracture processes, especial-
ly under compression load where the energy release relates to the fragmen-
tation revealed by rotation and granulation processes.  
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Under the shear load, a fracture process runs differently; as a common 
shear deformation, D

knE  (or expressed as twist ω(s)), progresses, the spins on 
the main fracture differ from those on the adjacent perpendicular frag-
ments and attenuate the fracture progress on those fragments, while these 
motions support formation of long linear fractures (Figs. 8.2 and 8.3).  
 

 
Fig. 8.2  From the extreme shear deformation to formation of granulation and 
fracturing mylonite zone 

 
Fig. 8.3  Mylonite zone and adjacent deformations 

Accordingly, we can believe that at the compression load, the total shear 
stress drop will be relatively small, while the rebound rotations will release 
an important amount of rotation energy, whereas at the shear load, the 
release of shear stresses will prevail.  
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Concluding, the rotation processes play an essential role in fragmenta-
tion and fracturing under compression load. Under prevailing shear load 
the rebound process releases shear load with the regional stress drop, while 
the rotation processes play a minor role.  

Further on, we will discuss the importance of granulation processes re-
lated to rotations in mesoscale, which we can place between the bond 
breaking processes in the micro-scale and material fragmentation in the 
macro-scale.  

8.2 Approaching Fracture: Constitutive Laws for Mylonite  
        Zones 

The fracturing process, especially under the action of shearing load, is 
accompanied by material granulation adjacent to shear fracture planes; this 
becomes spectacular at the formation of narrow, long mylonite zones. In 
this process we shall take into account a special role of rotations − the me-
soscale rotations of different scales; these rotations are related to bond 
breaking and friction processes.  

Co-action of the spin and twist-shear motions in bond breaking, granula-
tion and formation of mylonite material can effectively help us to explain 
the fracture process; the simultaneous formation of the adjacent mylonite 
zone appears due to such a co-action of spin and shears with the fracture 
transport phenomena.  

Basing on the standard asymmetric continuum theory, as presented in 
the former chapter, we will consider the material undergoing a progressive 
crashing process. We may even arrive at the conditions more similar to 
fluid material, and thus, finally, shall enter into our consideration the 
Navier-Stokes transport equations.  

Starting with the description of the rock continuum following from the 
standard asymmetric theory of continuum ( ) [ ]( ,ik ik ikS S S= +  ( ) ,ik ikE E=  

[ ] ),ik ikω ω=  we approach the final stage of crushing/granulation process in 
zones adjacent to fracture planes. In these zones, simultaneously with dy-
namic processes, there occur changes of material properties from hard 
rocks to mylonite granulated material.  

Near to the final stage, the stresses, strains and rotations become gradu-
ally neglected and progressively replaced by the constitutive relations for 
time-rates of stresses and strains; further we consider the deviatoric part of 
the symmetric fields: 

( ) ( ) [ ] [ ]2 2 , 2 2 .D D D D
ks ks ks ks ks ks ks ksS S E E S Sτ μ η τ μω ηω+ = + + = +  (8.1) 
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The introduced material constants may depend on the values of slip, u, and 
slip rate, υ. 

When in a narrow zone the huge shear stresses break the molecular 
bonds, the stresses crashing rock material will immediately drop down to 
the low values and in the crashed mylonite material we observe the imme-
diate increase of the stress and strain rates to such a degree that the stresses 
and strains may be neglected in the respective constitutive relations for this 
narrow zone. Finally, these changes will lead to the constitutive laws for 
the melt and granulated parts of mylonite material in which, practically, 
there only will remain the field time rates:  

0 0
( ) [ ]2 , 2 2 .D D
ks ks ks ks ksS E Sτ η τ ηω ηχ ω= = =  (8.2) 

The direct observation of the gauge zone of the 1995 Kobe, Japan, earth-
quake at the Avaji island suggests that the size of an inner completely 
melted part of the mylonite zone ranges around a couple of centimeters 
(private comm. W. Dębski).  

Further on, we will assume, for the sake of simplicity, that the mylonite 
material remains incompressible during the fracturing. In such a way, the 
nucleation progresses and fracture propagates simultaneously with granu-
lation process in the intact material (or in the compact zone previously 
crashed).  

Now we introduce the structural indexes (see: Chap. 7): 
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= = −⎜ ⎟∂ ∂⎝ ⎠

 (8.3) 

where the indexes 0e  and 0χ  change along with changing material prop-
erties. 

The presented relation is kept in the same form for the field rates; more-
over, to preserve a concise theoretical approach, we shall treat them as 
homogenized indexes over the part of material under consideration. 

In this new description, the shear rates create the dynamic angular de-
formations, lead to the bond breaking processes, and then, finally, to the 
fracturing transport process.  

We pass to the final stage: the crashed incompressible mylonite or sand, 
similar to incompressible fluids. Our relations define the ideal quasi-
viscous mylonite for an incompressible crashed material. 
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For our narrow mylonite zone, existing already near the pre-slip planes 
or just simultaneously formed, we may, further on, apply the Navier-
Stokes transport equation. Such motions, especially in an earthquake 
source zone, are due to the friction processes.  

We may note that when including these complex rotational motions in 
the theory, we replace the friction constitutive laws, as based on the expe-
rimental data, by the constitutive law joining the asymmetric stresses with 
spin and shear field oscillations or otherwise with spin and twist. Thus, 
instead the fault slip solutions with the additional friction constitutive law 
we consider the asymmetric elastic continuum with the defect interaction 
and with rotational motions; we can derive the elastodynamic fault solu-
tion describing slip propagation with fracturing process and related seismic 
radiation. 

Especially, in fracture zone we shall use the constitutive law (8.1); the 
asymmetric stresses may prevail and the constants introduced there, τ, μ 
and η, depend on slip and slip rate velocity. As mentioned above, the coin-
cidence of the spin and twist motions leads to destruction of bonds and 
formation of a granulated material in an intermediate mylonite zone adja-
cent to slip. 

In the former chapter we have considered an action of the spin and twist 
motions leading to formation of dislocation fields; here, we show another 
way to present a coincidence resulting in an extreme slip when sum of 
these motions approaches to the derivative of a displacement velocity (see: 
Chap. 7, Eq. 7.20): 

( )0 0 d d d .sik ik ik s sik k s k k
i s

E s s x
x x

ε ω ε υ υ υ∂ ∂
− = = →Δ

∂ ∂∫∫ ∫∫ ∫   

Further, we will try to approach these problems considering the special 
theoretical solution for the spin and twist fields. 

8.3 Slip Propagation and Spin Release Hypothesis 

While searching for the fault slip solutions we use the classical elasticity 
tools with an additional friction constitutive law basing on experimental 
data. When, instead of it, we consider the asymmetric elastic continuum, 
we are able to include the defect interaction and we can derive the elasto-
dynamic fault solution describing slip propagation with fracturing process 
and related seismic radiation.  

The angular deformations preceding the bond breaking process lead to 
the efficient rise of the angular moments around material grains.  
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In the narrow mylonite zone, we arrive at the equivalence between this 
expression and the laws introduced in the considerations on the friction 
resistance and slip.  

The co-action of rotation motions, curl υ (or spin [.]ω ), and shear, D
(..)E

(or twist, (.)ω ), can lead further to the slip fracturing motion. We assume 
that the bond breaking process and granulation of material precede the slip 
movement: just after the bond breaking micro-process, we would have the 
released rebound spin motion retarded in phase.  

This hypothesis is supported by the following solution of the homoge-
neous wave equations for the twist and spin vectors, (.)ω ,  [.]ω : 

[ ]0
( ) [ ] [ ] [ ]i , exp i( ) ,s s s s tω ω ω ω ϖ= = −kx  

[ ]0
( ) ( ) exp i( ) ,s s tω ω ϖ= −kx  

(8.4) 

where with the complex constants, 0 0
( ) [ ]i ,s sω ω=  we can fulfill the motion 

equations (see the former chapter):  

[.] (.)(.) [.]
1 1curlω 0 and curlω 0.ω ω
c c

− = + =  (8.5) 

Here, an important role may be played by the turbulence related solution in 
the system {r, φ, z}: 

( ) [ ]( ) i ( )r rϕ ϕω ω=  (8.6) 

With the introduced waves, ω(s) = iω[s], we arrive at the possibility of ex-
plaining the synchronization of the micro-fracturing processes as being due 
to the influence of propagating waves. For the fracture processes under 
compression such a synchronization will assure the common sense of the 
induced twist and spin motions, while for shear load it will lead to the for-
mation of a long shearing fracturing. In the last case, the spin waves re-
lated to a given slip on the main fracture plane attenuate those with the 
opposite spins generated at the perpendicular fragments and, due to the 
conjugate solution (8.4), reduce the slip motions on those fragments.  

The presented conjugate solution suggests that the spin rebound motion 
is retarded in phase by π/2 (as we have: [ ] [i exp i( ) exp itϖ− = −kx kx

]( 2)tϖ π− ); when slip would start due to the breaking of bonds, the mi-
cro-spin motions become released. Following this assumption we expect 
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that such a correlation between the recorded twist motions and spin mo-
tions shifted by π/2 in phase can exist in some wavelets (Fig. 8.4). 
 

 
Fig. 8.4  An example of the coincidence of spin and twist motions after the Hilbert 
transformation shifting the twist record ahead in phase by π/2; upper panel: the 
original records, lower panel: the twist record transformed 

Now we can propose the following description of the fracture process:  
− first, according to external load conditions, the asymmetric stresses 

rise; following them, the strain and rotation lead to the extreme de-
formation; the case is illustrated by Fig. 8.5; 

− next, approaching the fracture process we may observe the “accu-
mulation” phase with the co-action of the twist and spin;  

− finally, the fracturing process starts and we enter into the time rate 
domain; there will appear the dynamic disclosures and v-dislocation 
density under the conditions formed by the presented solution. 
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Fig. 8.5  The extreme shear deformation 

In the final stage described by the constitutive laws (8.2), we can expect 
an appearance of the dynamic dislocation objects (v-dislocations); for the 
v-dislocation field we obtain (see the former chapter): 

( ) 0 0 0 0d d d ,l kl kl k kl kl k pl pB E l e E l sω χ ω α⎡ ⎤
⎢ ⎥⎣ ⎦

= + = + =∫ ∫ ∫∫  

( ) [ ] .
2
pmk

pl kl kl
m

S S
x

ε
α

η
⎛ ⎞
⎜ ⎟
⎝ ⎠

∂
= +

∂
 

(8.7) 

This case presents the formation of dynamic discontinuities and the re-
lated dynamic processes in which the slip and bond breaking leads to the 
rebound spin motions delayed in phase by π/2.  

The co-action of the spin and twist motions leads to the “accumulation” 
phase, while the conjugate solution (8.4) presents a fracture process − “re-
lease” phase. 

We might suppose that the fracture process could proceed with the con-
secutive accumulation and release micro-processes; in such a situation the 
related twist and spin motions will appear consecutively as pairs of in 
phase (or anti-phase) wavelets, and those differing in phase by π/2.  

Such a theory, due to its simplicity, could be very useful for some prob-
lems, among others those in which macro-rotation plays an important role 
in the asymmetric fluid dynamics. The solution proposed can be called the 
fracture synchronization waves.  

Finally, we shall notice that similar solution might exist for the electric 
and magnetic induction vectors:  

0 0
[ ]i i ,s s s sD B D B= ↔ =   

under the condition that it will be assured by the appropriate material con-
stants. 
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8.4 Conclusions 

Rotational deformations play an essential role in fracture processes, espe-
cially for the case of compression load. 

Fracture processes can be synchronized by the spin and twist waves; the 
properties of the mylonite zone give grounds for the special solution which 
leads to fracture synchronization. 
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9.1 Introduction  

The problem of slip formation can be considered from the point of view of 
an evolution of dislocation density fields; the slip planes can be formed 
due to dynamic motion of dense dislocation arrays. To this end, we will 
consider, after Kossecka and DeWitt (1977), plastic deformations related 
to dislocation motions; however, the classic Kröner approach with the 
internal nuclei (represented by the self fields, see: Boratyński and Teis-
seyre 2006) is replaced by the standard asymmetric theory of continuum. 
On this basis, some numerical examples presenting dislocation flow pat-
terns are given. 

9.2 Standard Asymmetric Theory of Continuum 

We recall some elements of the standard asymmetric theory of continuum 
(see: Chap. 7) as based on both the symmetric and asymmetric stresses and 
the related constitutive laws and motion equations. The asymmetric de-
formations contain the symmetric strain and antisymmetric rotation. Thus, 
our theory is based on two groups of relations, for the symmetric and anti-
symmetric fields:  

( ) [ ] ( ) [ ], ,kl kl kl kl kl kl klS S S E E ω ω= + = =  (9.1) 

We join these deformation fields, in an independent way, with some 
displacement motion:  
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(9.2) 

We should remember that with the structure indexes, e0 and χ0, we have 
different types of media: from the ideal elastic, χ0 = 0, to fully granu-
lated/crushed material, e0 = 0; here for solids, according to the standard 
asymmetric continuum theory, we have put: e0 = 1, 0 1χ =  (see: Chap. 7). 

For the symmetric part of stresses and for the antisymmetric part of 
stresses, we assume the appropriate constitutive laws:  

0 0
( ) [ ]2 , 2 2 .kl kl ss kl kl kl klS E E Sλδ μ μω χ μω= + = =  (9.3) 

The motion equation for the antisymmetric stresses [ ]niS  replaces the bal-
ance law for the stress moments. Following equations derived in Chapter 7 
we write for the antisymmetric stresses:  

2 2 2 2
[ ]

[ ] [ ]2 22 or ,ki ki s s
ki s

s s s s

S
N N

x x t x x t
ω ω ω

ρ μ ρ
∂ ∂ ∂ ∂

= + − =
∂ ∂ ∂ ∂ ∂ ∂

 (9.4) 

where we have introduced also the body couples [ ] [ ].ki ski sK Kε=   

Using the scalar and vector potentials (we introduce here the intrinsic 
length unit l ) the motion equation for the symmetric part of stresses 

2

( ) 2 ,kl l l
k

S u F
x t

ρ∂ ∂
= +

∂ ∂  
2 2 2 2,l lps s l lps s

l p l p

u l l F l l
x x x x
ϕ ε ψ ε∂ ∂ ∂ ∂

= + = Φ + Ψ
∂ ∂ ∂ ∂

 
 

takes for the axial and deviatoric strains ( 1 3 )D
lq lq lq ssE E Eδ= −  the follow-

ing form: 
2

2
2

2

2

,ss
ss

D
lqD

lq

EE l
t
E

E
t

μ ρ

μ ρ

∂
Δ − = ΔΦ

∂
∂

Δ − =
∂

 
 
 
 

(9.5) 
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2
2 ,

3 2
lq

lps qps s
l q p q l

l
x x x x x

δ
ε ε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= − Δ Φ + + Ψ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

where 
2 2

0

2 2 2 2

0 0

1
3

1 1
2 2

.

D
lq lq kk lq

l q

lps s qps s
p q p l

lE E E
e x x

l l
e x x e x x

δ ϕ

ε ψ ε ψ

∂
= + =

∂ ∂

∂ ∂
+ +

∂ ∂ ∂ ∂

  

The second equation of (9.5) can be written in the off-diagonal system as  

( )

2

2

2

2

D
lqD

lq lq

lps qps s
p q l

E
E Y

t

l
x x x

μ ρ

ε ε
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂
Δ − = =

∂
⎛ ⎞∂ ∂ ∂

= ΔΦ + + Ψ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

  

and its invariant form in 4D can be achieved with the help of the Dirac 
tensors (see: Chap. 7):  

2 2
( ) ( )

( )2 ,
k kx x t

λκ λκ
λκ

ω ω
μ ρ
∂ ∂

− =
∂ ∂ ∂

Y  (9.6) 

where 
1 2 4 2 3

( ) (1) (2) (3)

(3) (2) (1)

(1)(3) (2)

(3)(2) (1)

(1) (2) (3)

0
0

;
0

0

λκω ω ε ω ε ω ε ε ε

ω ω ω
ω ω ω
ω ω ω
ω ω ω

= + + =

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− − −⎢ ⎥⎣ ⎦  

( ) 23 31 12{ } { , , }D D D
s E E Eω =  

 

and 
1 2 4 2 3

( ) (12) (13) (23)

(12) (13) (23)

(23)(12) (13)

(12)(13) (23)

(23) (13) (12)

0
0

.
0

0

Y Y Y Y

Y Y Y
Y Y Y
Y Y Y
Y Y Y

λκ ε ε ε ε ε= + + =

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− − −⎢ ⎥⎣ ⎦
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9.3 Dislocation Flow on Slip Plane 

For our continuum with dislocations (see: Chap. 7) and for 0 1χ = −  we 
can define the deformation tensor: 

0 0 .l
lq lq lq lq lq

q

uD E E
x

ω ω
∂

= + = − =
∂

 (9.7) 

We recall here the stress-dislocation relation (see: Chap. 7) 

( ) [ ] 1( )1
2

kl kl kl ii
pl pmk

m

S S S
x

ν
ν δα ε

μ
+∂ + −

= −
∂

  

leading now to  
2 2

1
1

( )
.kl kl ii k s

pl pmk pmk pml
m m l m s

D D u u
x x x x x

ν
ν ν

ν

δ
α ε ε ε+

+

∂ − ∂ ∂
= − = − +

∂ ∂ ∂ ∂ ∂
  

After Teisseyre (2001) we write the continuity relation for a dislocation 
flow including a rate of dislocation generation in some sources P 
(source/sink term): 

(1 ) 0lp S
lp j

j

V P V
t x
α

α
∂ ∂

+ − =
∂ ∂

 (9.8) 

where V is the dislocation flow velocity and VS is the shear wave velocity; 
we assume that the dislocation velocity vanishes in the dislocation line 
direction.  

We can estimate a dislocation flow velocity in the following way: 
− First, we recall the  Koehler expression for a force acting on a dislo-

cation:  

,j njk i in kF b Sε ζ=  (9.9) 

where ζ is a dislocation line element  and the right screw convention re-
lates to vectors n, F, ξ  (n is a normal to dislocation plane).  

− Next, we establish a formula for dislocation density tensor  

,k i k i
ki

b nb
s s

ζ ζ
α = =

Δ Δ
 (9.10) 

where Δs is a surface element, and bi or nbi are the sums of the Burgers 
vectors of dislocation lines crossing that surface. 
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− Finally, we modify the formula for dislocation velocity (Mataga et 
al. 1987) introducing to it  a dislocation density:  

2 2
sgn( )

( )
S Ski in in in in

j jnk jnk ki
S R S RV V V

RRS R

α
ε ε α

α
− −

= ≈
+−

 (9.11) 

where S are stresses; R is the resistance stress; cB = bR; B is the drag coef-
ficient; bi is the Burgers vector of dislocation; Vj is the dislocation velocity; 
and VS is the shear wave velocity; the inertia term is neglected here.  

The flow Eq. (9.8) becomes 

( )(1 ) sgn( ) ( ) 0.lp
ki lp jnk in in

j

Pc S R
t R x
α

α α ε
∂ − ∂

+ − =
∂ ∂

 (9.12) 

An influence of plastic/dislocation flow in the basic Eqs. (9.4) and (9.6) 
requires that we put there, instead of body forces and moments, the terms 
related to time rate of plastic velocity and plastic spin; in the first approxi-
mation, with the plastic-like dislocation velocity, V, we can put for the 
equations corresponding to (9.4) and (9.6):  

2

2

2
( )

( ) 2

,ks
ks s k

k s

ks
ks s k

k s

V V
t t x x

V V
t t x x

ω
μ ω ρ

ω
μ ω ρ

⎛ ⎞∂ ∂ ∂ ∂
Δ − = −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂ ⎛ ⎞∂ ∂ ∂
Δ − = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

  

or using (9.7) we arrive at the unique equation: 
2

2 .ls
ls l

s

DD V
t t x

ρμ
ξ
∂ ∂ ∂

Δ − =
∂ ∂ ∂

 (9.13) 

We see that the motion equations for strain and rotation fields become 
more complicated when taking into account a massive dislocation flow on 
slip/fracture plane. We may remember the approach applied by Teisseyre 
and Yamashita (1999), in which the motion equations outside a slip plane 
and just along it were considered separately; it is reasonable to assume that 
outside the slip plane we may use the homogeneous wave Eqs. (9.4) and 
(9.6), while along the slip plane we can consider only dislocation flow 
neglecting the wave part. 

However, in the present approach we used a more exact procedure; us-
ing (9.11) we can express the last relation as follows: 

2 2

2 sgn( )( ) .
S

ls ls
snk ki in in

k k l

D D V S R
x x t R t x

μ ρ ε α
∂ ∂ ∂ ∂

− = −
∂ ∂ ∂ ∂ ∂

 (9.14) 
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This will be our basic equation forming a reference to some numerical 
examples presenting dislocation flow pattern. 

9.4 Numerical Simulation of Dislocation Flow Pattern 

The counterparts of the inplane and antiplane motions are mutually related 
on a common plane − (see Fig. 9.1):  for 2sΔ  and 3b  we get  

2 3 32 3 3 32 1 1 3 32 3{ , }.j jk kF b S F b S F b Sε ζ ζ ζ= → = = −  
 

 
Fig. 9.1  Both motions can occur simultaneously − see Fig. 9.2 

Assume that an inplane motion occurs first, forming a fractured seg-
ment; its sides parallel to motion direction become formed with the related 
screw dislocations; we may expect that an antiplane motion might start in a 
neighbouring segment – see Fig. 9.3 (such a sequence can start reversely: 
first an antiplane motion and then an inplane one). 

According to (9.14) we consider the following equations: 
− inplane  

2 2

2 2 2
0

1 ( ) ,X X B X X G AX F
x c t t x
∂ ∂ ∂ ∂

− + + + =
∂ ∂ ∂ ∂

 (9.15) 

where ( , ),X X x t=  0( , ) sin ( ),F F x t F x Vtθ= = −  
           0( , ) sin ( );G G x t G x Vtθ= = −  
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− antiplane  

2

2 2
0

1 2 ( ) ,Z B Z Z H AZ K
c t t z

∂ ∂ ∂
− + + + =

∂ ∂ ∂
 (9.16) 

where ( , ),Z Z z t=  0( , ) sin ( ),K K z t K z Wtϑ= = −   
          0( , ) sin ( ).H H z t H z Wtϑ= = −  

 

 
Fig. 9.2  Fault plane: simultaneous inplane and antiplane motions 

 

 
Fig. 9.3  Inplane motion and induced antiplane motion on the neighbouring fault 

These equations are solved numerically under the assumption that the 
final result of numerical solution of the equation will serve as initial condi-
tions for the equation solved in the next step and so on. 

Solutions were obtained with the help of Mathematica Version 5.1 Pro-
gram. 

We consider two cases, as shown in Figs. (9.3)-(9.10).  
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The third step 

Equation (9.16) can be solved numerically with the assumed initial and 
boundary conditions: 

( ,0) ( , ), ( ,0) ( , ) , (0, ) 500 .xZ z X z Z z X x z Z t t
t x ππ =

∂ ∂
= = =

∂ ∂
  

An example of the obtained solution is presented in Fig. 9.5c in the rectan-
gular domain (t, z) ∈ [0, π] × [0, π].  (Time derivatives in Fig. 9.6c).  

The second case  

We will consider a sequence of three consecutive solutions as shown in 
Fig. 9.7. 

 

Fig. 9.7  The sequence of three consecutive solutions  

The first step 

Equation (9.15) can be solved numerically with the assumed initial and 
boundary conditions: 

( ,0) sin , ( ,0) 0, (0, ) 0, ( , ) 0.X x x X x X t X t
t

π∂
= = = =

∂
  

An example of the obtained solution is presented in Fig. 9.8a in the rectan-
gular domain ( , ) [0, ] [0, ].x t π π∈ ×  
The second step 

Equation (9.16) can be solved numerically with the assumed initial and 
boundary conditions:  

2( ,0) ( , ), ( ,0) ( , ) | , (0, ) .xZ z X z Z z X x z Z t t
t x ππ =

∂ ∂
= = =

∂ ∂
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The third case − 3D model 

Finally under the load of shears {S32, S31}, we will consider a sequence of 
three consecutive solutions, as part of the model shown in Fig. 9.9. Under 
a given stress load, Sni, a fracture process may develop in the 3D pattern: 
we may have a progress of the edge and screw dislocation motions along 
the planes perpendicular to directions {n, i}: 
 

 

 

Fig. 9.9  The 3D model of fracture sequence and its projection used in presenta-
tions of simulations 

for S32, 2sΔ  and 3b  we get 

2 3 32 3 3 32 1 1 3 32 3{ , },j jk kF b S F b S F b Sε ζ ζ ζ= → = = −  

for S31, 1sΔ  and 3b  we get 

2 3 31 1 3 31 3 3 3 31 1{ , }.j jk kF b S F b S F b Sε ζ ζ ζ= → = − =  

In simulations we will consider only the three consecutive solutions. 

The first step 

Equation (9.15) can be solved numerically with the assumed initial and 
boundary conditions: 

( ,0) sin , ( ,0) 0, (0, ) 0, ( , ) 0.X x x X x X t X t
t

π∂
= = = =

∂
  

An example of the obtained solution is presented in Fig. 9.10a in the rec-
tangular domain ( , ) [0, ] [0, ].x t π π∈ ×  

The second step  

Equation (9.15), where unknown function is Y(y, t), can be solved numeri-
cally with the assumed initial and boundary conditions: 

  W. Boratyński 
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9.5 Discussion 

The presented approach permits to better understand a relation between the 
inplane and antiplane motions. A relation between these simultaneous mo-
tions on a common fault becomes evident. For a sequence of independent 
fault motions, extending in time to a neighboring faulting domain, we can 
take the final value of first solution as the initial condition for the equation 
describing the next fault motion. Such sequences shown in Figs. 9.3 and 
9.6, can also describe an aftershock processes following the first solution − 
the main shock (shock and aftershock). 

We have given some examples of the numerical simulation of the re-
lated edge and screw dislocation motions; the presented sequences related 
to a shear load give a fault propagation for both the 2D and 3D models. 
However, the governing equations used in numerical procedure lead very 
quickly to the instabilities; therefore, it will be important in future  re-
search to introduce the damping factors into the governing theory.  

Finally, we shall note that the presented simulations are given only in a 
relative scale; moreover, there is a lack of proper proportions between the 
different constants in the governing equations. To improve this inadequa-
cy, new experimental data are needed.  
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10.1 Introduction 

Before significant earthquakes, and during them, various anomalies in 
electric field and currents are often observed in the atmosphere and in the 
ground. The unusual phenomena include telluric current anomalies, EM 
radiation in radio frequencies, and light phenomena. An analysis of electric 
phenomena preceding and accompanying seismic events is out of the 
scope of this chapter. A considerable number of papers reviewing co- and 
preseismic electric anomalies, and possible mechanisms of their formation, 
has been published; we refer the reader to Gershenzon and Gokhberg 
(1992), Park et al. (1993), Freund (2002), Varotsos (2005), and to the book 
of Thanassoulas (2007). Varotsos with his co-workers have been develop-
ing a method of searching for, and recording the preseismic anomalies  
of potential differences; seismic electric signals (SES) were observed in 
certain sensitive areas, up to a distance of about 100 km from the epicen-
tral area.  

We present a review of possible mechanisms responsible for electric 
precursors in the lithosphere, concentrating on initial charge separation and 
interactions of dislocations and other crystal lattice defects in the presence 
of the stress field. We include certain complementary consideration to that 
presented by Teisseyre and Nagahama (2001), where some formulae have 
been derived for the energy transfer during the dislocation motions, charge 
separation and the electric/electromagnetic field emission. The interplay 
between the electric field, dislocations and asymmetric stresses is impor-
tant for processes in the focal area.  

Charge separation, large enough to give effect outside the focus, and 
some telluric and atmospheric currents evade easy explanation. There are 
many inspiring hypotheses, including the opinions that strong electric 
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fields and currents play their own role in the fracture preparation and initi-
ation. Hypothetical mechanisms governing tectono- and seismo-electric 
processes are quite numerous; some masking and, reversely, synergic am-
plification of effects may occur.  

In the search of earthquake precursors, most promising is the phase of 
dilatation. Here open cracks nucleate at tips of a progressing dislocation 
array. This process, along with shear stresses, should promote rotations 
and deformations of grains, which change their polarization state. It is 
clear that the charge separation processes occur also at other times, and 
at the time of rupture they may be very intense in some parts of the focal 
area. The analysis of mylonite material along the faults points to the oc-
currence of pre- or coseismically generated high-intensity electric fields 
(see Ferré et al. 2005, and Freund et al. 2007). Pseudotachylite, i.e., the 
molten and subsequently cooled rock found in faults where a strong 
earthquake took place – is a glassy material that gives evidence for fric-
tion-driven melting. Partial melting causes lubrification; therefore, pseu-
dotachylites are formed only in small quantities, usually as thin vein 
along the fault. Most of these materials are dark brown due to the magne-
tite content. Natural remnant magnetisation of the pseudotachylites 
reaches values 330 times higher than that of their host rock. This implies 
that currents which flowed in the faults when this molten material cooled 
below its Curie temperature (580°C) had to be on the order of 1 A/cm2. 
Upon experimental basis, these authors state that such strong current 
densities may be produced in rocks subjected to stress, when the p-holes 
activation occurs. 

We also touch unclear phenomena in the domain of triboelectricity, 
fractoemission and dielectrics conductivity or photoconductivity. Nu-
merous articles have been devoted to these problems, mainly to the expe-
riments. In geophysics, the basic physico-chemical processes are mostly 
hidden, and the problem of charge transfer through dielectric material is 
very complex. The small polaron model can be mentioned in this context, 
as well as concepts of electron tunnelling or charge transport via hop-
ping vacancies in the O-2 sub-lattice which exists in many minerals. The 
latter approach, named p-holes conductance, has been developed in many 
papers by Freund and his co-workers; they present also a model of a 
large-scale electric circuits in and around the zone of earthquake prepara-
tion (Freund et al. 2007).  

Principles of electrokinetic processes are discussed too. The discovery 
of ferroelectric structure of water is recalled here (Rusiniak 2000). 
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10.2 Effects of Varying and Transient Polarization Due to  
        Mechanical Stimulation 

10.2.1 Piezoelectric polarization 

When classical piezoelectric material is subject to external force, the pola-
rization occurs and the electric current forms; these entities are joined by 
the formulae: 

pp
0 0( Q ) V, – , .d

t
∂

= Σ = ε =
∂

D E j Π
Π Π  (10.1) 

Polarization vector Π is the sum of the products of individual charges Q 
(of one sign) and the related dipole moments (separation vectors d) per 
volume unit, D is the electric induction vector, E is the vector of electric 
field, ε0 is the electric permittivity of free space and j0

pp is the density of 
the current component at the source. Here V is the considered volume of 
rock. 

In composite rocks which contain grains or movable dipoles of piezoe-
lectric minerals, mechanical forces shift and rotate these elements; such a 
process may be mediated by dislocation system and the defects. The mov-
ing dislocation core may act both mechanically and electrostatically, as it 
carries an excess charge. Movable, polarized entities tend to orient parallel 
to the forming slip or microfracture plane; electrostatic forces and some 
transient excitations interfere with this process. In the same, deformation 
of polarizable grains causes their polarization or depolarization.  

10.2.2 Transient stimulation 

The transient stimulation is an electric polarization caused by change of 
external mechanical force. The polarization thus obtained decays quickly, 
which distinguishes it from real piezoelectric effect persisting under con-
stant load. The electric current created in a transient process was also  
named the deformation-induced charge flow (Varotsos et al. 2001, Varot-
sos 2005). Experiments on very dry rock samples subjected to variable 
load revealed the ability of several rock types to transient electric stimula-
tion; the observed potential curve was similar to the first time-derivative of 
load (Mavromatou and Hadjicontis 2001, Teisseyre K.P. et al. 2001). The 
results suggest that after each increment of load, the sample gets a new 
balance; this process may continue until the sample breaks. During each  
period of load stabilization, some complementary processes take place and 
manifest themselves as changes in relaxation.  
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Some experiments of Hadjicontis and Mavromatou have been later nu-
merically simulated (Teisseyre K.P. 2002, Teisseyre K.P. et al. 2001). As 
the input data, the time-derivative of load was used; output had to simulate 
the voltage. From the shapes of the rising part of simulated voltage and the 
relaxation stage, we infer that there occurs a summation of some processes 
in the rock – each stimulus (when a certain threshold is exceeded) gives 
rise to a certain increase in potential difference. This effect drops imme-
diately with exponential relaxation.  

The concept of division of the observed potential differences into few 
parts of different relaxation times (Varotsos et al. 2001) enabled to achieve 
rough agreement of simulation curves with the experimental ones. A closer 
look at the experimental curves reveals that different rocks, for example 
granite and limestone, may also react to an abrupt break in the load in-
crease episode, showing a small bay of opposite-oriented polarization. This 
effect is included in the simulation. Some other effects were introduced to 
the simulation algorithm, like the effect of second time-derivative of the 
load and the saturation factor. The latter, perhaps the most important one, 
corresponds to the observed load history: a strong stimulation exhausts the 
rock’s charge carriers. Further repeating loads cause the polarization ef-
fects to become smaller, but after some time, this saturation effect disap-
pears slowly.  

A removal of load results in transient stimulation of reversed polarity, 
except for the LiF (a ionic crystal) which behaves differently – the removal 
of load gives no electric signal at all. It is to be noted that the case of gra-
nite is complex, as this rock contains grains of quartz which is a piezoelec-
tric material. Polarization of these grains seems to be not important be-
cause of the chaotic dispersion of the axes ot these crystals.  

Transient stimulation is generally attributed to the motion of disloca-
tions caused by mechanical force. The dislocation core usually bears an 
excess electric charge and is surrounded by a cloud of dispersed charge of 
the opposite sign, borne by point defects. Mavromatou and Hadjicontis 
(2001), along with Varotsos (2005), attribute the observed effects to 
quicker response of the dislocation core system to the load stimuli. A com-
plementary process – motion of opposite charges in point defects− causes 
the subsequent vanishing of the polarization, and also of the current. The 
key factor in the whole process is the appearance and variation of the tran-
sient distance d between the dislocation core and the center of the cloud 
related to it. When this charged cloud catches up the moving dislocation, 
the distance d disappears. Polarization caused by this ephemeral distance is 
the gradient polarization which we denote by Π∇  or Π~ . We assume that 
the generated component of electric current, j0

ts, is a time derivative of 
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transient polarization and is proportional to density rate of dislocations 
through the volume of material (Teisseyre 1992, Teisseyre 2001, and Teis-
seyre and Nagahama 2001): 

,Π ≡ ∇Π       ts
0 ,

t t
α∂Π ∂

= ∝
∂ ∂

j  (10.2) 

where α is the number of moving dislocations, e.g., counted on a certain 
cross-section perpendicular to the main direction of dislocation movement. 

Let us consider an elementary episode of transient stimulation  caused 
by the movement of a  single dislocation. In a given moment, polarization 
of the rock volume is the sum of resultant charges of the dislocation core 
and the point-defects cloud: cd Π+Π=Π~ , the latter having an opposite 
sign. In the first stage of transient stimulation episode, the polarization 
rises. The compensation process is equivalent to the dislocation-caused 
polarization in the time-moment t = b after which the polarization starts to 
relax. The following formula may be used to estimate the maximum pola-
rization, xΠ~ : 
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t t

= =

= =

∂ ∂
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from which we get 
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∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞Π = + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫
0 0

 (10.3) 

Here q is the charge at the dislocation core and c is the charge of the cloud 
of point defects (this has an opposite sign). The transient distance between 
the dislocation core centre and the centre of the point-defects cloud is 
symbolized by d. The time span between the start of the episode and the 
point of balance t = b will be symbolized as τe . These entities are interre-
lated: 

   ( –  ),e d cd V Vτ=  (10.4) 

where Vd is the velocity of dislocation core and Vc is the velocity of the 
cloud of charged point-defects associated to it (or the velocity of other 
compensating process, to be strict).  

More precisely, this distance at the moment of balance (where polariza-
tion is at maximum) is 
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0 0

,
t b t bd c

t t

C Cd dt dt
t t

= =

= =

∂ ∂
= −

∂ ∂∫ ∫  (10.5) 

where Cd is the position of the centre of dislocation core and Cc denotes the 
position of the centre of related cloud, both in relation to the direction of 
dislocations movement.  

In the initial stage, when the stimulation rises, the velocity of the first 
process, Vd , should depend on external forces. Both this speed and the 
velocity of complementary process, Vc , should belong to a certain re-
stricted range. Probably, the investigated stimulation occurs only for a 
certain range of load variation velocities.  

After the start of each transient stimulation episode, the difference be-
tween both velocities varies and finally both processes stop, so that the 
core-cloud distance d diminishes and disappears. Meanwhile, other epi-
sodes may start in other points; for these episodes the separation of 
charges, expressed as d, may be different. The same concerns the time τe  
and the relaxation time. Summation of many simultaneous episodes of 
transient stimulation may result in an apparent split of the process into 
many portions, each with different time of relaxation, as mentioned in the 
description of experimental results. Further compensation processes may 
well have different physical nature; we cannot state that the only allowed 
mechanism is the pursuit of the dislocation by a cloud of point charges.  

We may express the transient polarization in a certain volume of rock as 
a product of the moving dislocations density and the density, per disloca-
tion length, of core-cloud dipole moments qd: 

,qdαΠ =  (10.6) 

where q is the mean charge of dislocation cores, d is the mean of distances 
defined above. 

From this, we obtain the expression for density of the generated current 
component: 

ts

0
j .d qqd q d

t t t
α α α∂ ∂ ∂

= + +
∂ ∂ ∂

 (10.7) 

Assuming that time-variation of mean charge may be neglected, we equate 
the last term to zero: 

ts

0
j .dqd q

t t t
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 (10.8) 
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For the distance d we put τ V, where V = (Vd – Vc) is the velocity differ-
ence (between dislocation motion and the compensation process, before 
the balance point) for a given group of transient stimulation episodes. Fur-
ther, we get:  

ts
0

( )j ,V Vq V q q V q q V
t t t t t
α τ α ττ α τ τα α∂ ∂ ∂ ∂ ∂

= + = + +
∂ ∂ ∂ ∂ ∂

  

or 

ts
0j .VqV q

t t t
α ττ α τα∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (10.9) 

As we see, the generated current depends both on the relative velocity V of 
the piezo-stimulating motion and on its acceleration; this may be related to 
the first and second time-derivatives of the load. The precise calculating of 
transient distance d, as in (10.5), would complicate the formula.  

In this paper, we do not treat time τ  as constant for a given material and 
conditions, because we are aware of concurrence of various relaxation 
processes which strongly implies that time τ  shall vary also before the 
balance point when Vc = Vd. Moreover, the assumption that τ  = const. will 
not significantly change the conclusion, and we get: 

ts
0j .V Vq V q q V

t t t t
α ατ τα τ α∂ ∂ ∂ ∂⎛ ⎞= + = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

  

So far, we assumed that the transient stimulation develops only in the de-
scribed way, due to moving charged dislocation; j0

ts = j0
cd. We cannot ex-

clude, however, the presence of other mechanisms. Mavromatou and Had-
jicontis (2001) discuss the propagation of the electric excitation through a 
rod of rock, positioned very close to the sample subjected to above-
mentioned experiments; this is a kind of ultra low frequency electromag-
netic radiation. These authors present also some additional experiments; 
their findings give some light on transient stimulation mechanisms in LiF 
and granite. Irradiation of these minerals with γ rays before the experi-
ments leads to different results: granite reacts to loads in the usual way, 
and LiF shows reduced transient excitation. For higher doses (above 10 
Mrad), the transient stimulation and EM radiation completely disappear 
(still, in the case of LiF). Thermal annealing of irradiated samples removes 
the irradiation effect. These results point again to different mechanisms of 
transient stimulation in LiF in comparison to other investigated rocks. In 
another paper, Hadjicontis et al. (2004) indicate that the color centers (F-
centers) in LiF crystal, produced by irradiation, act as traps for charges 
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caused by moving microcracks. Whatever the mechanism underlying the 
transient stimulation might be, the speed of external load variation should 
bear a great importance. 

10.2.3 Coalescence of opposite dislocations, microcrack  
          coalescence 

For a given material, parallel dislocations or microcracks carry an excess 
of charges of the same sign regardless of the dislocation sign in mechani-
cal sense. Thus, when two parallel dislocations or microcracks approach 
each other, they are attracted through mechanical forces but in the same 
time repelled due to identical sign of electric charge. Coalescence leads to 
some mechanical energy release while excess charges would be expelled – 
these may be the exoelectrons, impurity ions or for example the O− radicals 
(p-holes); these topics will be mentioned later. The generated current com-
ponent is symbolized by j0

em.  

10.2.4 The effects of large dielectric body under vibration or  
          varying load 

In the Earth’s lithosphere, there occur many dielectrics and ferroelectrics – 
see Corry (1994). We assume that most of dipoles have the same orienta-
tion of crystallographic axes, and the material is not antiferroelectric. We 
may consider different situations: 

A. Under mechanical forces, the electric field appears in the body; this 
may be either the piezoelectric effect or the gradient polarization. 
Therefore, the seismogenic oscillation gives rise to some pulses to 
the electric field, in the ULF range.  

B. Electric polarization may also be modified due to rotation waves; 
for example, the polarized grains may be rotated. In a most com-
mon situation, the electric dipoles are oriented in such a way that 
they attenuate the external electric field; in this case, the rotational 
oscillations will produce an oscillating episode of enhanced prop-
agation of this field. Strong electric fields, both of natural and in-
dustrial origin may be a valuable source of information. 

10.3 Electrokinetics and the Properties of Water 

The main interest of earthquake science in the electrokinetics lies in elec-
tric fields generated in rocks when aqueous solutions filtrate through them. 
An additional electric field on the ground or the change in ionic content of 
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water are often referred to as preseismic electric anomalies. Problems of 
colloids and particulates seem to be less important, at least according to the 
present knowledge. 

From laboratory research on liquid filtration through a porous (e.g. fibr-
ous) material, the streaming potential is found and then its source, the so-
called zeta potential ζ, is calculated.  

When water contacts with a solid material and this material, bearing 
electric charge on its surface, comes into reaction with water (for example, 
the reaction of hydration), ions gather in the liquid on the solid-liquid in-
terface and near it due to dissociation and electrostatic induction (see, e.g., 
Ishido and Mizutani 1981). At the contact zone, the diffuse double layer 
is formed. The content of this sheath varies from the solid to the liquid side 
as follows: to the solid surface, mainly ions of opposite sign are firmly 
attached, although water molecules are also present there; the outer part 
contains ions of again opposite sign (it means again the same sign as on 
the solid surface) and a higher content of water molecules adsorbed 
through hydration of ions. The border surface between liquid phase and 
this complex sheath of ions and molecules is called the shear surface, 
where slip motion can occur. Outside this slipping surface, there still are 
clouds of ions – this is the outer zone in diffuse double layer. Zeta poten-
tial ζ  is the electric potential difference between the bulk of liquid and this 
slipping surface. The sign and value of zeta potential depend on physico-
chemical features of involved materials, and on specific conditions, among 
them the water pH (see, for example, Guichet et al. 2006).  

The gravity and pressure cause the filtration processes. The observed 
potential difference – the streaming potential – is generally proportional 
to the applied pressure gradient. The streaming potential coefficient C  is 
introduced here in the simplest formula: 

,VC
p

εζ
ησ

Δ
≡ =

Δ
 (10.10) 

where ΔV is the streaming potential, p is the pressure, ε  is the dielectric 
constant of liquid,  ζ  is its zeta potential, η  the dynamic viscosity for 
shear motion and  σ  is the liquid’s conductivity. The current density gen-
erated in a given direction is:  

ce
0 0j ,p V

F F
εζ σ

η
= ∇ − ∇  (10.11) 

(from Varotsos 2005) where F and F0 are electric formation factors; the 
first term on the right-hand side is the convection current (in aqueous solu-
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tions treated in standard diffuse double layer theory, this is the current of 
ions from outside the slipping surface, swept along with water); the second 
term is the conduction current forced by the streaming potential ΔV (sum 
of the streaming potential gradient over an investigated way of fluid or 
over a rock sample). 

The conduction current is the reaction to the charged fluid flow. To be 
strict, it also hampers (to some extent) this flow. In the steady fluid flow 
condition, absolute values of both terms on the right-hand side are equal; 
the first term, the convection current, is completely compensated by the 
conduction current. As a result, there is no electric current flowing, despite 
of the presence of streaming potential ΔV (it is known that the electrokinet-
ic electric current appears due to a certain change on the way of fluid). For 
the case when j0

ce = 0, we come to the Helmholtz–Smoluchowski equation: 

0 ,V F
p F

εζ
ησ

Δ
=

Δ
 (10.12) 

from which we get the corrected expression for the streaming potential 
coefficient C: 

0 .V FC
p F

εζ
ησ

Δ
≡ =

Δ
 (10.13) 

Each of electric formation factors, F and F0, includes permeability coeffi-
cient and the pores/cracks saturation factor. Factor F0 does not depend on 
eventual conductance of the interface between solid and fluid, while factor 
F does depend: 

0

,21 s

FF S
rσ

=
+

 
(10.14) 

where Ss is the surface conductance (the conductance of those interfaces 
along the way of fluid in the rock), r is the pore radius (at cross section) 
and  σ is again the fluid conductivity. If Ss is absent, we obtain F = F0. 
This relation is strictly applicable for a very simple geometry of pores, 
e.g., for the set of identical parallel capillaries. In other cases, kind of inte-
gration will be needed, containing the spectrum of pore radii r together 
with certain geometrical coefficients; moreover, such an integration might 
involve the local Ss variation.  

Electrokinetic relations proceed in three dimensions: the zeta potential 
forms perpendicular to solid surface, and the streaming potential, i.e., the 

  K.P. Teisseyre 



147 

experimentally obtained potential difference ΔV, emerges from integration 
of ζ  and other relevant factors  along the filtrating fluid way. We propose  
to express this dependence by the following linear integral form derived 
from (10.11): 

2
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0

0

0 0 0 0

2

1 1 1 1 1 d
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Expression (10.15) includes changes of the fields and parameters along the 
path, due to variations, e.g., in temperature and porosity, when filtrating 
water enters the system of cracks/fractures. During dilatation phase, 
crack/fractures system increases its volume and, as a result, an increased 
ion content may appear in underground fluids or in the air above ground. 
Another precursor – change in ground self-potential – may appear even 
without any sight of electrokinetic currents. 

We shall treat, however, such an analysis with care, because the electric 
behaviour of water is more complex than it was thought. As revealed by 
Rusiniak (e.g., Rusiniak 2000, 2004), electric permittivity of distilled wa-
ter depends on many factors, and by no means it is constant even in stable  
temperature. Measured in higher frequency range, above 1 kHz, it has a 
value of about 80, provided that the sample is not too thin; in low fre-
quency, e.g., 5 Hz, its electric permittivity ranges between 2×104 and 
2×106. The electric permittivity appears to be depending on the sample 
thickness; it is higher in thin water samples. In the sample that is only 0.2 
mm thick, the distilled water measured at 5 Hz had electric permittivity 
bigger than 3×105; for higher frequencies it dropped and fell below 100 at 
frequencies of 6×104 – 105 Hz.  

Moreover, the electric permittivity of water grows with time after filling 
the measurement chamber; Rusiniak explains this effect by an increasing 
structurization – growth of the concentration of ordered domains in the 
water (we feel, however, that the time needed for such an arrangement of 
domains is too long to make this phenomenon important in the processes 
of filtration). Therefore, in very low frequencies, water (not only ice) ex-
hibits ferroelectric properties.  

In geophysical research, the relative dielectric permittivity of water is 
taken from classical, high frequency measurements (so, for room tempera-
tures, the value of ca. 80 is adopted), while in the research on blood in 
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medicine, the permittivity factors similar to those found by Rusiniak have 
already been applied for some time, but they were attributed to the water-
bearing mixture (see Balan et al. 2004). In the light of these findings, we 
have to emphasize that the mechanism underlying streaming potential oc-
currence may depend also  on the domain system in water. If there is a 
layer of dipoles, the domains firmly adjacent to the surface of solid, then 
the zeta-potential will retain its meaning. Possibly the natural waters – 
aqueous solutions – should be best treated as a fluid abundant with do-
mains and ions, both having an influence on electrical properties. Anyhow, 
the realistic values of dielectric water permittivity should be taken into 
account.  

Recent experiments with rocks samples dripped with distilled water and 
subjected to standardized strokes have shown that the pattern of post-
stroke polarization (on which sides the signs “+” and  “–” will appear) 
depends on the direction from which the stroke came (Rusiniak, 2007,  
personal communication). The experimenter explains his results as being 
due to progressing domain-type organization, that is polarization, along the 
impact wave.  

During percolation and due to the progress of strains, the dislocation and 
crack net may vary. The magnetic and electric properties of rock skeleton 
may change too (Park et al. 1993).  

Streaming potential, due to its dependence on the conditions, leads us 
towards spontaneous potentials sensitivity to local inhomogeneities (Ger-
shenzon and Gokhberg 1992).  

Widening the scope of considerations: fluids interact with electric and 
magnetic fields both in the preparation phase and during the rupture. Elec-
trokinetics and magnetohydrodynamics, the domains important for Earth 
sciences, may be applied also to processes during rupture; not only to the 
water influence but also to the granulated rock material (see: Chap. 8), and 
to temporarily melted parts of fault walls (Freund et al. 2007). 

Before the earthquake, circulation of fluids in the area of a future seis-
mic event usually undergoes changes. The system of fractures and chan-
nels may be temporarily connected with deeper layers or magma cham-
bers; this sometimes leads to spectacular pre- and co-seismic phenomena 
as geysers, water fountains, flames and so on (see Gold and Soter 1985). 
The above-mentioned hydraulic variations influence the electric/electro-
magnetic anomalies.  
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10.4 Less-Known Mechanisms of Charge Separation 

10.4.1 The contact electrification and variation of rock  
          properties 

Electrification, in the micro-scale meaning, may rely on the already 
evoked dislocation reaction with stresses, and on dipoles arrangement, and 
the conductance typically relies on electron motions via a conduction band 
(as in metals) or a valence band (typical for semicondutors), or on the mo-
tion of ions. The last two topics are related to the reduction/oxidization 
problem. We came onto the process called contact electrification which 
Freund (2002) considers to be one of the fundamental processes occurring 
between electrically dissimilar materials contacting each other. We should 
recall here two basic terms which are in use in the contact electrification 
domain. When two materials are brought into contact (to make the things 
simpler, let both bodies be electrically neutral in macroscopic sense), 
transfer of certain amount of electrons from one to the other occurs. When 
these materials are later torn apart, they remain charged (see Horn and 
Smith 1992), although partial charge redistribution, via various processes, 
occurs during the time-interval when the distance between the two bodies 
increases (until it passes a critical distance). The force causing electrifica-
tion (and in part also the redistribution of electrons) is related to the differ-
ence in electrochemical potentials. These potentials depend (see: Nernst 
equation) on temperature and other physico-chemical conditions; in the 
case of dissolved substances – on activities of the reduced and the oxy-
dized agent. In contemporary research, another approach is in use – the 
attractiveness of various materials to the electrons is compared. The work 
function is the measure of attractiveness of the body to electrons. 

Processes of electrification and the change of conductance may occur in 
a rock even without mediation of dislocations or the aqueous solutions. In 
the changing conditions, as pressure and temperature, the work functions 
of minerals, and portions of rock, change along. Change in distance or 
work functions is enough for producing variation in the intrinsic electric 
field. These variations affect the Fermi levels of electrons inside the body; 
therefore they lead to migration of electrons, seen as the charge motion. 
The related current density will be symbolized as j0

wf. 

10.4.2 Electromagnetic processes caused by fracturing and  
          rubbing 

Plastic deformation and fracturing of rocks is sometimes accompanied by 
emission of electrons, molecules and ions and photons; the EM radiation 
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also appears there. These phenomena may appear even under not very 
strong loads, if only the material of one kind is rubbed by another. The 
emission of electrons in these conditions is called triboelectricity, the 
emission of light is known as triboluminescence. In geophysics, the term 
triboelectricity has two meanings; it may mean charge separation caused 
by fracturing the crystal lattice or electrification by contact change or by 
rubbing that occurs between two materials when at least one of them is 
dielectric. The electric phenomena accompanying fracturing may be 
caused, at least in part, by polarization and/or transient polarization, dis-
cussed earlier.  

When an advancing fracture separates charges, the freshly formed crack 
surfaces may contain many uncompensated charges; the electric dipoles 
are formed and this leads to electromagnetic radiation, especially if the 
newly formed fracture is forced to vibrate. This is one of the explanations 
to pre- and coseismic EM radiation. Charge separation related to formation 
of cracks and fracturing gives rise to still another current component j0

fr. It 
is to be noted that this kind of electrification process becomes especially 
difficult to understand when the distance between two bodies starts to in-
crease; the processes of electron hopping (tunneling) between the defect 
surfaces may take place. The same concerns the reverse distribution of 
charges: besides the “back-tunneling”, also corona discharges may occur. 
Electron hopping processes are responsible for charge movement in dielec-
trics and occur also in semiconductors. At the triboemission and fractoe-
mission processes, electrons of low energy, up to 4 eV, are mainly re-
leased, but also ions and molecules. Such a low energy of the released 
electrons points to the excitation lower than the work function of the bulk 
material.  

In addition to triboemission and fractoemission, we shall also mention 
pyroelectricity which means either thermal ionization or the emission of 
charged particles caused by heating of material (which often coexists with 
triboelectric process). Triboemission, fractoemission and pyroelectricity 
are sometimes treated jointly as exoemission. Dislocations-related exoe-
mission, j0

ex , was discussed by Teisseyre and Nagahama (2001). 
The traps from which exoemission can be released, for example the F- 

centers in alkali-halide crystal, called also the color centers, are a kind of 
defects in the transparent crystals. Such centers can absorb light of specific 
wavelengths. The crystal F-center is probably a vacancy in the negative-
charged sub-lattice (vacancy in which an electron, or a few electrons, are 
trapped). The exoelectrons, exoions and exoatoms (the trapped electrons, 
ions or atoms) can be released at low energy impact, for example due to 
EM or thermal  excitation. Poletaev and Shmurak (1984) explain disloca-
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tion-related exoelectron emission from colored alkali-halide crystals with 
F- centers as follows. Dislocations moved by plastic deformation capture 
electrons which were localized in an electronic trap (F-center). These elec-
trons become quasi-free. Such an electron may move to the bottom of 
atoms’ conduction band. This process causes movement of other electrons 
to higher energy level – further from the atomic nucleus; this is a kind of 
reverse Auger process. Later, due to thermal excitation, one of the elec-
trons may be emitted. This would explain – in one of possible ways – the 
triboluminescence phenomena. 

According to Prevenslik (2001, 2003), the repeating rubbing – which 
creates friction between metal and insulator – produces a small quantity of 
fine powder from the latter. This pulverized matter forms and gathers, 
under pressure, in a very narrow gap between metal and insulator. Such a 
small gap acts as QED – a trap for radiation energy. Regular low frequen-
cy EM radiation from molecules of powder (this is the radiation related to 
ambient temperature) is inhibited; therefore, the energy trapped in this way 
rises. An impulse of a higher frequency and thus a higher energy is emitted 
from the powder. This is an impulse of EM radiation in vacuum ultraviolet 
(VUV) range which in turn frees the electron from the metal surface. The 
metal acquires a locally positive charge and in the next episode of still 
closer contact with insulator, free electrons are transferred to the insulator. 
There remains a possibility that the VUV impulse, when absorbed by the 
insulator, raises its electrons from the valence to the conduction band, faci-
litating a subsequent charge transport. Prevenslik’s articles throw also a 
new light on electric discharges.  

Consideration of mechano-electric processes leads us to another pheno-
mena: obscuring of polarization by adsorbed material, emission of this 
material and the pyroelectricity. All are found in the experiments such as 
reported by Fukao et al. (2003).  

10.4.3 P-holes activation 

Papers by Ferré at al. (2005) and Freund et al. (2007) bring experiments on 
various rocks, discussion on psedotachylite veins along faults, as well as 
new models of large natural electric circuits around an earthquake focal 
zone. An important mechanism is presented for electric precursory 
processes: excitation of the p-holes which abound in various rocks in the 
form of dormant p-hole pairs. Metal oxides, as MgO and silicates, contain 
vacancies and impurities in their crystal lattices, mainly the constituents of 
water which are built into a distorted lattice. When MgO crystallizes in the 
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presence of water, some water molecules become only trapped and some 
incorporated into the crystal lattice: 

(H2O)dissolved + (O2)structure ↔ (OH−)structure + (OH−)structure  

These hydroxyl pairs can undergo redox conversion, splitting off molecu-
lar hydrogen and forming two O− which in turn undergo self-trapping to a 
peroxy anion, O2

−2, which is the positive hole pair (PHP): 

(OH−)structure + (OH−)structure → (H2)structure + (O2
−2)structure  

The presence of H2 molecules and PHPs was confirmed by many methods. 
Such a PHP locates in the vacancy in Mg+2 sublattice; molecular hydrogen 
remains in the crystal lattice too. In silicates, even nominally anhydrous, a 
certain amount of water is present, which reacts with crystal lattice in a 
somewhat similar mode: 

(H2O)dissolved + (O3X/O\XO3)structure ↔ (O3X/OH
HO\XO3)structure  

where X is the ion of silicium, aluminium etc. Here the peroxy-pairs un-
dergo redox transformation, by analogy to the situation in magnesium 
oxide: 

(O3X/OH
HO\XO3)structure → (H2)structure + (O3X/OO\XO3)structure  

Peroxy-bonds in the rock may undergo dissociation in response, e.g., to 
mechanical force. If this occurs, the insulator turns into a semiconductor 
with p-type conductance, in the following way: one of O− ions becomes a 
“mobile” carrier of positive charge – it can accept an electron to change 
into regular O−2, later it can release an electron, and so on. In the sublattice 
of O−2 ions, these O− radicals play role of holes O ⋅ . The other O ⋅ from the 
pair does not partake in the conductance. Compare the wider explanation 
in Malinowski (2001).  

Positive charges, due to mutual repulsion, migrate to the surface of rock, 
until the charge stored there is compensated by negative charge which 
gathers inside the rock. These signs are relative, because O- site is positive 
only in comparison to regular elements of O−2 sublattice. Anyhow, the 
accumulation of these oxygen radicals is ready to accept adequate number 
of electrons. The evidence that the defect electrons transfer may be the 
main mechanism in electric effects, comes from a series of experiments 
described by Freund (2002).  
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10.4.4 Exemplary experiments with friction and fracturing and  
          their interpretation 

The electric phenomena caused by friction at the stick-slip event are of 
considerable interest and were also subject of laboratory research. Takeu-
chi and Nagahama (2006) report results of tests performed upon quartz 
pegmatite cylinders pre-cut in such a way that in the middle of axis the 
cylinder was divided by oblique (45o) plane of cut. The sample was kept 
under confining pressure and loaded by piston from above through one of 
circular sample walls. Around the sample, the coil was placed, solenoid or 
toroid, in the plane of cut. During loading period, of about 100 s, each 
sample reacted with 2-4 stick-slip events. When a solenoid coil was used, 
one type of EM radiation was detected during the stick-slip events. The 
waveform of the induced voltage was composed of damped oscillations at 
frequencies f ≈ 300, 700 and 9000 Hz that were almost in phase with the 
damped oscillations of the piston strain at f ≈ 300, 700, 2300, 4400 and 
9000 Hz. The toroidal coil also reacted when the sample underwent stick-
slip event, but the shape of induced voltage was different – it was a sharp 
rise followed by an exponential decrease (decay time was about 2×10−4 s) 
upon which small-amplitude damped oscillations were superimposed (of 
frequencies f ≈ 300, 2300, 4400 and 9000 Hz). These oscillations again 
were almost in phase with the damped oscillations of the piston strain (an 
external cause for these oscillations is rather improbable as the sample was 
kept in a metal vessel). Judging from the typical experimental results, the 
polarity of signal did not change despite the occurrence of these oscilla-
tions – the curve was above the zero level. Only the toroidal coil detected 
also a number of small EM impulse few seconds before the stick-slip. 
Such signals were accompanied by very small vibrations of the piston 
strain, but sometimes these vibrations were not detected, or were undistin-
guished from the noise. These small EM pulses had the same waveforms 
and polarity as the larger EM impulses during stick-slips. Occasionally, 
abnormally strong spike or burst of spikes was detected, irrespective of the 
type of coil used, their polarity varied even during the burst.  

The coil produces voltage in response to magnetic field variations, and 
the type of coil is very important here. A solenoid coil is most sensitive to 
the magnetic impulses oriented perpendicularly to the plane of solenoid; it 
is less sensitive to oblique pulses and insensitive to variations proceeding 
in the plane of coil. A toroidal coil reacts to components in the plane of 
coil (i.e., in the plane of slip); its reaction on oblique magnetic pulses is 
smaller and perpendicular pulses cause no reaction. Therefore, the solenoid 
reacts mainly to electric field variations in its plane, while the toroidal coil 
is most sensitive to electric field oscillations in the perpendicular direction. 
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The results clearly show pronounced polarity of electric phenomena ac-
companying slip events in the sample and their preparatory stages. During 
slip, movement of electric charges had both perpendicular and in-plane 
component and repeatable directions, because all larger impulses were 
similar. Such a signal started with a sharp peak of voltage perpendicular to 
the slip plane. Sources of these larger signals may be various: 

− rotation of polarized quartz grains,  
− change of polarization state of quartz grains, 
− transient stimulation in other minerals, 
− triboelectric processes an/or p-holes currents. 

Any of these mechanisms shall be directed by oriented system of moving 
dislocations or/and microcracks. Damped oscillations were most probably 
caused by some mechanical imperfection of the whole measuring ar-
rangement (it appears to be prone to vibrations).  

Smaller signals were probably the effect of charge transport through the 
pre-cut gap, due to triboelectric or p-hole conductance. These signals were 
sometimes accompanied by small mechanical vibrations; both electrical 
and mechanical disturbances indicate that stress-strain rearrangement goes 
on and stronger events, e.g., of slip, are expected. The origin of “atypical”, 
very strong signals is in our opinion unclear. They may come either from 
some breaks or slips in other parts of the sample, not at the pre-cut, or they 
might be caused by rapid release of some excitation stored in the crystal 
lattices of minerals, e.g., the intense triboelectric process or/and release of 
many p-holes, probably at the pre-cut, caused by intense milling at some 
asperities, present despite previous polishing of the sliding surfaces.  

In the recent paper, Rabinovitch et al. (2006) discuss emission of LF 
(20-25 MHz) electromagnetic waves from rocks during fractures/cracks 
formation and during provoked friction episodes. These authors wonder 
why the obtained signal is not uniform but distorted into wavelets, and 
they come onto conclusion that the story of crack formation is written in 
the signal shape. The crack is created as a junction of several microcraks, 
each of them starting with a short burst of EM radiation. As these micro-
cracks merge, also the EM radiation pattern develops. These authors post-
ulate the following mechanisms. Breaking the bonds by the moving frac-
ture moves atoms (on both created sides) into non-equilibrium positions 
which starts their oscillations around steady state, if cracks are formed 
when the rock vibrates. In these oscillations, positive charges move to-
gether in opposite phase to the negative ones. Initial charge separation 
could be either transverse to the crack surfaces, or along them. Damping of 
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these oscillations is attributed to interactions with bulk phonons. In this 
model, the crack surfaces and edges may be electrically neutral.   

10.5 Pre-earthquake Stress Variations as the Source of  
       Rotations and Electric Processes 

We follow the paper by Teisseyre et al. (2006). The inner preparation 
processes depend on the external stresses configuration; in extreme cases, 
for external shear and compression, we are dealing with a difference in 
preparatory stage before fracture. Shear stresses in the focal zone produce 
a definite organization of the dislocation arrays and cracks formed; the 
twist motions, as oscillations of the off-diagonal shear axes, take place. 
Repeated spatially-organized variations in shear stress and the resultant 
motions may facilitate both the material crushing and dipoles rearrange-
ment along the fracture planes. Open cracks nucleation facilitates also 
rotations of grains in a common sense along the main fracture being 
formed, but opposite along some perpendicular sub-fractures.  

Under a compression load, the induced shears and rotations appear: the 
confining conditions force the shears of opposite orientations, while a 
common sense of rotations helps in rearrangement of dipole directions.  

In both cases, the progressing dislocation arrays, cracks nucleation and 
rotational motions produce charge separation, rotation of dipoles and other 
motions, via the discussed processes. In the first case – that of external 
shears – the shear processes play main role in fragmentation and fractur-
ing; therefore, various tribolectric phenomena should be expected; these 
are less probable in the second case. Release of significant portion of ener-
gy before the main rupture is also more probable for the shear case.  

For the compression load, a small part of energy may be released before 
the rupture, so that the probability of any precursory phenomena is lower, 
and the shock will probably be strong. The rotational motions play an  
important role both in the preparatory phase and in the main episodes of 
fracturing. Due to common sense of rotation, we may expect an amplifica-
tion rather than annihilation of the generated rotational (spin) waves.  

In a more realistic approach, we treat the focus zone as a volume sub-
jected both to shear and compression load and we suppose that short time-
periods with rotational motions prevalence alternate with those with shears 
and twist prevalence. This applies both to the preparatory stage and the 
rupture (see Chap. 8). Hence, an alternation in the type of electric precur-
sors should also be expected.  
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10.6 Charge Separation and the Rise of Current 

Following the consideration presented above, we distinguish many com-
ponents of current generated in the rupture preparation zone (cf. Nagahama 
and Teisseyre 1998 or Teisseyre and Nagahama 2001): 

j0
pp – current due to change of piezoelectric polarization in anisotropic  

         crystals,  
j0

ts  – current caused by transient stimulation; the charged dislocations:  
         j0

ts =  j0
cd,  

j0
em – charge emissions caused by coalescence of opposite dislocations, 

j0
fr  – current caused by charge separation at fracturing episode, 

j0
ex – exoemission current after fracturing or rubbing, 

j0
tr  – current resultant from surface triboelectrical reactions, 

j0
hs – release of p-holes: the O − radicals. 

The current caused by electrokinetic effect(s), j0
ce, has no direct relation-

ship to dislocations. Also the currents caused by spatial and simulta-
neously temporal variation of materials’ work function, j0

wf do not fit to 
the class of dislocation-caused charge separations which may be symbo-
lized by j0

d.  
Summarizing, when mechanical stimulation induces charge separation, 

the generated current density at the source may be expressed as:  
 

j0 = j0
ce +  j0

wf + j0
d. (10.16) 

Of course, not all components listed occur in every case. It may happen, 
for a given direction and distance, that certain constituents will have dif-
ferent signs. The above-mentioned processes are generally sensitive to 
conditions, and the possibility must be taken into account that they react 
with electric fields and electromagnetic oscillations occurring in the focal 
volume. If the generated current has to flow further, it must meet a me-
dium that can conduct and has connections with acceptors of charges. The 
current will depend on materials’ impedances. Mechanisms of conduction 
may be various: it may be, for example, a wave of certain excitation.  

10.7 Large-Scale Electric Circuits 

An electric current caused by mechanical process is inevitably followed by 
local compensating processes, as, for example, back-discharges through 
the gap, electrons tunneling, polarization of neighbouring susceptible rock 
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or conduction through it, not to mention ionic conduction. However, elec-
tric currents do flow in the lithosphere, which implies a large scale organi-
zation of electric currents and partial separation from compensating phe-
nomena.  

A probable solution to the large-scale currents mystery was proposed by 
Mavromatou and Hadjicontis (2001). According to their idea, in the rock 
subjected to asymmetric or changing stress, there occurs electric current, 
causing secondary compensating flow in surrounding rocks; probably this 
compensating current is the one which is registered on the surface.  

We have to return to the article of Freund et al. (2007), as these authors 
present a different model of charges accumulation and electric connections 
over wide distances around the focal area. They propose that stresses of 
tectonic origin “push horizontally” the positive charges created in the 
process of p-holes activation. When the border surface of p-holes accumu-
lation zone reaches a well-conducting vertical fault (containing, for exam-
ple, partially molten rock), the circuit closes, and the deep, well conducting 
layers of the lithosphere are able to complete the lacking electrons. From 
this moment, the stressed rock starts to act like a battery during exploita-
tion.  

Here, we would like to sketch a more general scheme. The activated p-
holes repel each other which causes positive polarization of sample surface 
in respect to the central part. In favourable conditions, this may cause cur-
rent flow on large spatial scale, provided that massive acceptors/donors of 
charges come in contact with the stressed rock volume. Let us imagine that 
the rock in which the massive activation of p-holes takes place, contacts on 
one side with a certain conducting formation (rocks with conducting capil-
laries or tectonic fault, especially if it is deep-penetrating and contacts with 
relatively good conductors at depth) and on the other side it contacts with 
some other conducting formation, soil or the atmosphere. The direction in 
which the current starts to flow may be a matter of chance. But, if we take 
into account that the Earth surface has usually a negative charge in relation 
to the atmosphere, it may be that this charge is caused by the p-holes cur-
rent!  Movement of O− sites, which are electron-deficient, is accompanied 
by opposite movement of electrons or transfer of some points of electron 
excess. For some unknown reason, the O− sites might migrate downwards 
and laterally, while the excess electrons – toward the Earth surface. The 
above-mentioned contact with good conductors, as a mineral vein or fault, 
may locally alter this scheme and allow to canalize the  current into a nar-
row path. 
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10.8 Final Remarks 

Experiments on contact electrification, p-holes activation and electric 
processes accompanying fracturing and rubbing show that a very strong 
electric field may be generated on a rock surface, leading to electric dis-
charge – underground or to the atmosphere. Whatever the mechanism of 
triboelectric process is, it is quite probable that it will take place in the 
earthquake preparatory zone, e.g., between grains of various contents 
rubbed in the stream of gas, or between sliding rock surfaces. Definitely, 
these phenomena are more probable during the earthquake itself. Tribo-
electric phenomena are often accompanied by EM emission, sometimes 
also by absorption. The problems of charged dislocations and charge proc-
esses are to be now considered on physicochemical and even quantum 
level, so the electric precursors and all earthquake-related phenomena ap-
pear more and more complicated.  

The presence of water and its influence is always taken into account in 
the studies on physical/chemical processes in rocks. Therefore, the discov-
ery of ferroelectric behaviour of water (Rusiniak 2000) is of great impor-
tance as it changes some views on the electricity in nature. Also the ma-
croscopically observable pre- and coseismic hydraulic anomalies, and 
sometimes drastic changes in fluids flow regime, as for example unex-
pected outflows of liquids and gases or, reversely, drying of the area (see 
Gold and Soter 1985) – important per se, also influence the seismic, elec-
tric and electromagnetic precursory activities.  

Among the records of potential differences on the ground, probably 
most puzzling are those where the variation of voltage on one electrode 
array mirrors vertically the results from the other array. Such opposite 
precursory signals were found by Thanassoulas (2007). The generation of 
such signals may be due to various reasons, as local differences in charge 
separation processes, or the resistivity changes due to variations in oriented 
crack systems – see Teisseyre, K.P. (1991).  

Despite many observations and attempts to systematise the research re-
sults, and to devise a coherent theory, scientific world did not yet manage 
to resolve questions dealing with electric precursors to the earthquakes. 
Thus, it will be not surprising if quite other, exotic explanations emerge in 
the future, as for example some processes in the lower crust, or even be-
low.  
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11.1 Introduction 

An advanced approach to the theory of asymmetric  continuum relates to 
our former studies (Teisseyre 2004, 2005) and to our former  monograph 
(Teisseyre et al. 2006a); here we follow the standard asymmetric theory 
presented in Chapter 7. 

This theory may be generalized for the case of medium anisotropy, but 
we shall be aware of the additional influence of fracturing and micro-
processes. The asymmetry of strain and stresses follows from the consider-
ations by Shimbo (1975, 1995) and Shimbo and Kawaguchi (1976) as 
related to the friction processes and rotations of grains. We shall take into 
account the new constant μ* representing the rotation rigidity of bonds and 
related to the inner friction; further on we assume its equality to the rigidi-
ty constant μ. Further, we shall note that fracture processes develop usually 
along the main fault plane, giving rise to the initial asymmetry of the frac-
ture pattern; such a process already causes a deviation from isotropy. The 
same concerns the micro-fracturing. As a result, also internal friction may 
become an anisotropic phenomenon. Then, due to friction, the rotation of 
grains adjacent to the micro-slip planes causes the appearance of antisym-
metric part of stresses. Antisymmetric stresses relate to the internal rota-
tion motion; these stresses become important in zones with higher disloca-
tion densities, under high stresses, or in zones where micro-fracturings 
nucleate; in such zones we can expect the presence of rotation nuclei. Ow-
ing to the additional constitutive law between the antisymmetric parts of 
stresses and strains we may arrive at the asymmetric and anisotropic conti-
nuum. 

We refer to the former chapters on Asymmetric Continuum Theory 
(Chaps. 7 and 8) and we will consider the deviations related to original 
material anisotropy, and those related to friction and fracture processes.  
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We follow the asymmetric standard theory entirely based on the dis-
placement field (see: Chap. 7). Such a theory employs the asymmetric 
stresses and asymmetric deformations (symmetric strains and antisymme-
tric rotations) on the one hand, and the related constitutive laws and mo-
tion equations on the other. Stresses are asymmetric while strains remain 
symmetric and rotations antisymmetric (notation same as in Chap. 7)  

( ) [ ] ( ) [ ], , .kl kl kl kl kl kl klS S S E E ω ω= + = =  (11.1) 

Instead of the Kröner method with the self-stresses, strains and rotations 
(see: Teisseyre and Boratyński 2003), we introduce the new parameters 
(material structure indexes: e0, χ0) to join the deformations, in an indepen-
dent way, with some reference displacement or rotation motions (uk, Ωs):  
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where further on we put for a solid elastic medium 0 1e =  and 0 1,χ =  

where e0 means the phase shift between the motions 0
klE  and 0 .klω  

Co-action of these independent fields (Ekl, ωkl) may lead to some ex-
treme phenomena and to structural defects; for fracture processes, the in-
dexes e0 and χ0 may take various values. 

For the deviatoric motions/deformations, as explained in the former 
chapters (7 and 8), we have the wave equations for the spin and twist 
fields:  
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11.2 2D Uniform Anisotropy 

Instead of the contemporary approach to anisotropy based on the eikonal 
equation, we may use a more direct geometrical approach; we refer the 
reader to the papers by Teisseyre (1955) related to the problem of ray 
theory (see: Yajima and Nagahama 2006, and Teisseyre 2006; we follow 
the latter paper with the important improvements and corrections).  
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For the anisotropy problems, and in particular for friction, micro-
fracturing and fracture induced anisotropy, we will try to apply the geome-
try methods; we limit ourselves to the 2D problem. We will consider two 
cases: the 2D uniform skew system anisotropy and the 2D fracture skew 
system anisotropy; the first is useful when considering the problem of 
wave propagation, while the other applies mainly to the part of continuum 
in which the fracturing develops from the microscale to the macropro-
cesses.  

It will be convenient to express the 2D anisotropy using the related skew 
coordinate system. The fracture processes trace the pre-slip structure of 
media revealed in formation of the mylonite layers; the mylonite zones 
form an anisotropic system in which the difference in the grain radii causes 
the inertia-related anisotropy determining the fracture ability and friction 
properties.  

Considering the 2D fracture skew anisotropy, we observe the occurrence 
of a main fracture plane and a system of weaker skew-oriented auxiliary 
fracturings. The related anisotropy can be expressed by the 2D skew coor-
dinate system XK (K, S, …. = {1, 2}) as related to the anisotropy system 
(with an angle ϕ between the axes X 1 and x1 related to the rectangular sys-
tem {x1, x2}, and angle ψ  between the axes X 2 and x2; see: Fig. 11.1). 

The skew system of the privileged slip planes presents different abilities 
for slip motions; such an ability could depend on the different radii of 
grains. In the considered 2D skew coordinate system {XS} = {X 1, X 2}, we 
recall the contravariant (parallel) and covariant (perpendicular) projections 
of any vector L and the base versors, e1 and e2, of the skew system. 

According to the invariant rules, the wave equations for spin and twist 
(11.3) can be written, in the skew anisotropic system, as follows:  

2

[ ] [ ]2

1 0 ,n nK
KX X V
ω ω∂

− =
∂ ∂  

2 2

[ ] [ ] [ ]2

1 0,n n nK S K
K SKX X g X X V
ω ω ω∂ ∂

= − =
∂ ∂ ∂ ∂

 

2

( ) ( )2

1 0 ,n nK
KX X V
ω ω∂

− =
∂ ∂  

2 2

( ) ( ) ( )2

1 0n n nK S K
K SKX X g X X V
ω ω ω∂ ∂

= − =
∂ ∂ ∂ ∂

 

(11.4) 

where the velocity for the anisotropic state shall be written as 
2 .k s

ksV g V V=  
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Fig. 11.1  The  skew system of pre-slip or fracture planes 

Referring to the 2D skew coordinate system {XS} = {X 1, X 2}, (Fig. 
11.1), we recall the contravariant (parallel projection) and covariant (per-
pendicular projection) components of any vector L and the base vectors, e1 
and e2, of the skew system: a square of a finite length element L can be 
expressed with the help of the metric tensor gNS 

2 1 1 2 2 1 2
11 22 12

1 1 2 2 2 2 1 2
1 2 1 2

2

cos cos 2 cos cos .

L g l l g l l g l l

l l l l l lα α α α

= + +

= + +
  

where KS K Sg = e e  and 2
11 1cos ,g α=  2

22 2cos ,g α=  12 1 2cos cos .g α α=  
This relation can be applied to velocity relation in the anisotropic state 

2 1 1 2 2 1 2
11 22 12

1 1 2 2 2 2 1 2
1 2 1 2

2

cos cos 2 cos cos

V g V V g V V g V V

V V V V V Vα α α α

= + +

= + +
 (11.5) 

leading at a constant density to 

11 1 22 2 12 1 22 ,g g gμ μ μ μ μ= + +            K Se eKSg =  (11.6) 
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where we have assumed that the rigidity anisotropic moduli s
ikμ  are equal 

for both motions and they become reduced to two values, μ1 and μ2: 
3 3 3 3
[12] (12) 1 [21] (21) 2, .μ μ μ μ μ μ= = = =  (11.7) 

We can write for the related solutions: 

0 0
[ ] [ ] [ ]exp i( ) exp i( ) ,K SK
n n K n K SX K t g X K tω ω ϖ ω ϖ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦  

0 0
( ) ( ) ( )exp i( ) exp i( ) .K SK
n n K n K SX K t g X K tω ω ϖ ω ϖ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦  

 

Our considerations are equivalent to the problem of stress moment aniso-
tropy.  

In addition to the basic isotropic elastic constitution relation, we will re-
ly on the following anisotropic constitutive laws (cf. Eqs. 11.1 and 11.2):  

[12] [21]
1 [3] 2 [3]

(12) (21)
1 (3) 2 (3)

, ;

, .

S S

S S

μ ω μ ω

μ ω μ ω

= =

= =
 (11.8) 

We might note that for a sequence of such systems with variable angles 
ϕ and ψ between the consecutives skew systems and the initial orthogonal 
system, we may arrive at curvilinear 2D coordinates and related anisotropy.  

11.3 2D Fracture/Friction Induced Anisotropy  

In this system we keep the relations (11.7) only near the fracture planes. 
Thus, we can apply our consideration to the fracture related  anisotropy 
compatible with the axes X 1 and X 2.  

We assume the rigidity modulus anisotropy; in the near-fracture planes 
we put μ1 and μ2 , and for farther regions we put μ0 

In this definition we included the isotropic constitutive law valid for 
regions far from the fracture planes and the definitions describing the low 
values of the rotation rigidity occurring closely to the fracture planes  
X 1 = 0 and X 2 = 0. These drops of rigidity may be of different rates and 
could be visualized by the different radii of grains in Fig. 11.2.  

In this case we will arrive at different equations in the domains near to 
each of the fracture planes and also in the domain outside those zones: 

2
2 2 2 2

[ ] [ ] 1 2 02

1 0 where { , , }.n n ZONE
k k ZONE

V V V V
X X V

ω ω∂
− = =

∂ ∂
 (11.9) 
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Fig. 11.2  2D fracturing skew system anisotropy 

For both the spin and twist motions, we obtain anisotropy of the wave 
velocities along the axes X 1 and X 2 and an isotropic velocity for the do-
main outside the fracture zones: 

2 2 2 01 2
1 2 0, , .V V V μμ μ

ρ ρ ρ
= = =  (11.10) 

The constitutive laws for a given zone can be presented as  
[ ] ( )

[3] (3)and ,KS KS
ZONE ZONES Sμ ω μ ω= =  (11.11a) 

[ 3] ( )
3 [ ] 3 ( )and ,K KS

ZONE NK N ZONE NK NS Sμ ω μ ω= ∈ = ∈  (11.11b) 

where 1 ,
2

S K
KS

K S

u u
E

x x
⎛ ⎞∂ ∂

= +⎜ ⎟∂ ∂⎝ ⎠
 1 ,

2
S K

KS
K lS

u u
x x

ω
⎛ ⎞∂ ∂

= −⎜ ⎟∂ ∂⎝ ⎠
 and 3

3 ,
2K

K

uE
x

∂
=

∂
 

3
3 .

2K
K

u
x

ω
∂

=
∂

 

For the dislocation field we obtain (cf. Chap. 7): 
2 2

3 3 33 3
3

and .K K
L MK MK

M L M

u u
x x x x

α ε α ε∂ ∂
= =

∂ ∂ ∂ ∂
 (11.12) 

11.4 Conclusions 

We have related our consideration on the antisymmetric stresses and rota-
tions to the wave equations for 2D anisotropy: both the uniform 2D aniso-
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tropy and the skew system of fracture planes. We have applied to this 
problem the geometry methods related to covariant and contravariant com-
ponents in the skew system of coordinates. 
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12.1 Introduction 

The extreme wave phenomena in oceans, like soliton waves, are usually 
described by some differential non-linear equations, like soliton equations 
and other ones, not related directly to the fundamental Navier-Stokes equa-
tions.  

However, a plausible physical basis for a more general approach to the 
mechanics of fluids can be based on the standard asymmetric continuum 
theory as developed recently (see: Chap. 7). In this theory, we assume that, 
besides the translational motions, there appear independent rotations of 
points (particles/grains) which supplement the former motions. Further on, 
we assume that a fluid may be described by the constitutive laws joining 
the time rates of the asymmetric stresses with time rates of the symmetric 
strains and antisymmetric rotations. Moreover, we shall include to the rota-
tional motions not only the spin but also the twist rate motion related to 
oscillations of the strain shear rates.  

Finally, we consider the extreme phenomena following directly from the 
interaction between spin and shear/twist rate motions. 

12.2 Standard Asymmetric Fluid Theory 

Asymmetric fluid theory has to account for deviations from the classical 
approach; it includes, among other things, the interaction between spin and 
shear rate motions. Some unusual wave phenomena, as e.g. extreme (soli-
ton) ocean waves, lead us to formulate the theory in which the shear/twist 
rate motion related to viscosity is introduced and possible deviations from 
the Navier-Stokes equations may be also included. The asymmetric fluid 
theory could naturally explain the above-mentioned extreme wave pheno-
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mena and, using the system of the obtained relations, we can replace the 
nonlinear soliton equations as introduced without strict theoretical relation 
to the classical fluid dynamics. 

Thus, our theory is based on two groups of relations, for the symmetric 
and antisymmetric stress and deformation field rates:  

( ) [ ] ( ) [ ], ,kl kl kl kl kl kl klS S S E E ω ω= + = =  (12.1) 

and fluid properties are defined by the following constitutive relations:  

( ) [ ]2 , 2ik ik ik ikS E Sη ηω= =  (12.2) 

where η is viscosity. Further on, we introduce the dynamical indexes (see: 
Chap. 7), 0 1e =  and 0 1,χ =  related to the phase differences and joining 

these deformation fields, klE  and ,klω  with the reference displacement 
velocities:  

0 0 0 1 ,
2

l k
kl kl

k l

E e E e
x x
υ υ⎛ ⎞∂ ∂

= = +⎜ ⎟∂ ∂⎝ ⎠
      0 1

2
l k

kl kl
k lx x
υ υ

ω ω
⎛ ⎞∂ ∂

= = −⎜ ⎟∂ ∂⎝ ⎠
 (12.3) 

where υk is the displacement velocity. 
For simplicity, we will consider a non-compressible fluid, 0,ssE =  and, 

following the Standard Asymmetric Continuum Theory (see: Chap. 7), we 
define the twist rate oscillations related to the deviatoric shear rate tensor, 
and the 4D invariant definition of twist as based on the off-diagonal D

kiE  
values). 

The balance equations for field rates lead us to the wave equations for 
the related spin and twist rate fields, [ ]sω  and ( ) :kω   

[ ] ( ) ( ) [ ]
1 4 1, 0.s k s kkps k kps

p p
Jx V t V x V t

π ωε εω ω ω ω
∂ ∂ ∂ ∂

− = + =
∂ ∂ ∂ ∂

 (12.4) 

The appearance of the coupled waves transversal to the transport motion 
brings physical background for diffraction in fluids as explained usually by 
the Huygens principle. 

We may already note that a co-action of the rotation motions (spin rate: 
[ ] [ ] ,ki ski sω ε ω=  and twist rate: ( )

D
ski kis Eε ω = ) can lead to the extreme phe-

nomena in fluids.  
In 2D we can demonstrate this co-action in the following way; let us 

consider the following sum of these motions: 
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1212 (2 1) (2 1)
1 1
2 2

k i k i

i k i k

E C C
x x x x
υ υ υ υ

υ υω , ,

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ = + = + + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (12.5) 

where for C = 0 we have only the spin motion, while a full coincidence 
will occur at C = 1.  

The effect of such a superposition of the spin and twist motions is pre-
sented in Fig. 12.1.  

 
Fig. 12.1  Extreme motions: soliton wave represented by deformation of a circle 
for different parameters C [Amplitude plot (Mathematica 5.0)] 

We shall define, as well, the possible dynamic discontinuities using the 
following integral along a closed circuit (see: Chap. 7):  

0 0 0d d .l kl kl k kl kl kB E l e E lω ω⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= + = +∫ ∫  (12.6) 

In this way we arrive at some dynamic objects – v-dislocations:  

1
2

dl pl ss pl pB sα α δ⎛ ⎞= −⎜ ⎟
⎝ ⎠∫∫  (12.7) 

and with the constitutive relations (12.2) we arrive at the relation between 
the v-dislocation density and asymmetric stress rates:  

( ) [ ]
1
2

.
2 1
pmk

pl ss pl klkl ii kl
m

S S Sx
ε ν δα α δ
η ν

∂ ⎛ ⎞− = − +⎜ ⎟∂ +⎝ ⎠
 (12.8) 

In some extreme dynamic situations, there may start a bond breaking 
process between molecules/grains of fluid; just after it, we can expect the 
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released rebound spin motion retarded in phase. Such a hypothesis is sup-
ported by the following solution of the homogeneous wave equations for 
the twist and spin rates (see: Chap. 7):  

[ ] [ ]0 0
(.) [.] [.] [.] (.) (.)i , exp i( ) , exp i( )kx t kx tω ω ω ω ϖ ω ω ϖ= = − = −  (12.9) 

where with the constants: 0
[ ]sω = abs( 0

[ ]sω )exp(i / 2π ), abs( 0
( )sω ) = abs( 0

[ ]sω ) 
we can fulfill the field Eq. (12.4).  

Here, an important role may be played by the turbulence related solution 
in the system {r, φ, z}: 

( ) [ ] [ ]( ) i (r),  ( ) 0.r rϕ ϕ ϕω ω ω= =  (12.10) 

Using the introduced waves, [ ] ( )i ,s sω ω=  we arrive at a possibility to 
study the dynamic defect objects and to explain the synchronization of 
these dynamic processes due to an influence of the propagating waves. The 
conjugate solutions presented suggest that the spin rebound motion is de-
layed in phase by π/2; for the integral (12.6) we obtain 

( )0 0 0i d ,      il kl kl kB E l eω= − + = −∫  (12.11) 

arriving at the conjugate dynamic disclosure and the conjugate dislocation 
objects (v-dislocations) connected to the stress and deformation in a com-
plex manner.  

The presented conjugate solutions (12.9 and 12.10) suggest that the spin 
rebound motion shall be delayed in phase by π/2; when the breaks of bonds 
between particles occur, the micro-spin motions become released; we may 
expect that a correlation between the recorded twist rate motions and spin 
rate motions shifted by π/2 in phase could exist in some wavelets.  

Further, when we approach the extreme processes, we may observe the 
“accumulation” phase with the co-action of the twist and spin and forma-
tion of the above-mentioned dynamic objects: v-dislocations. For an in-
compressible fluid, the related dynamic disclosures, v-dislocations (12.7) 
may follow the conjugate solutions (12.9) and lead to the turbulence phe-
nomena (12.10), or even to a foam formation.  

12.3 Conclusions 

We have presented new ideas how to construct the asymmetric fluid theory 
with the asymmetric stress rate field. We believe that this approach can 
help to explain some extreme fluid phenomena related to atmosphere and 
oceans including the soliton waves and turbulence motions. 
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13.1 Introduction 

Basing on the fracture band model, we consider the thermodynamic condi-
tions related to seismic energy release and the rotation counterpart in a 
fracture process.  

We shall be aware of different nature and scale of the rotation processes 
that take part in such extremely complicated fracture phenomena in which 
the dynamic processes proceed together with the simultaneous changes of 
material properties (see: Teisseyre 1996). We shall recall a special role of 
rotations in the energy release effectiveness under different load condi-
tions, and, further on, we shall include the rotation impact on the granula-
tion processes accompanying the material crushing.  

The constitutive laws undergo simultaneously considerable changes, 
from those describing the elastic, to plastic and, further, mylonite-type 
material. In the narrow zones adjacent to fracturing, the shear stresses 
break the molecular bonds and in the crashed rock material the stresses 
immediately drop to a much lower level, while together with the advancing 
material granulation, we shall include a rapid increase of the stress and 
strain rates. Finally, in that narrow zone adjacent to fracturing, the stresses 
and strains may be gradually neglected and progressively replaced by their 
time-rates. To describe these processes we shall simultaneously introduce 
the changes into the related constitutive relations. As a result, the rock 
properties in this zone may even approach those similar to fluid. Such con-
ditions may permit to include in fracture description the transport Navier-
Stokes relations. The fracturing transport, the bond breaking and granula-
tion processes force us to include, into the fracturing description, the hypo-
thesis that the twist-shear deformations leading to the bond breaking pre-
cede by π/2 in phase the rebound rotation motion; this means that the dif-
ference between the shear motion and spin motion shall reach minimum 
when the latter is shifted by π/2 in phase.  
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We shall underline that the considered conditions in the mylonite zone 
can serve as a basis to formulate the asymmetric fluid theory with the ex-
treme motion phenomena and dynamic defect objects.  

A counterpart of rotations and rotation energy release at fracture 
processes (e.g., in an earthquake source) explains fragmentation and spall 
processes and permits to estimate the efficiency of different fracturing 
modes. We shall again underline that in any theoretical approach, the elas-
tic rotation energy can be considered only when assuming the constitutive 
law joining rotations with the antisymmetric stresses or stress moments.  

Teisseyre et al. (2006) have reexamined Dieterich’s compression expe-
riments (Dietrich 1978) coming to the conclusion that, under the compres-
sion load, induced precursory shear stresses may arise at some centers in 
the source region; at the fracturing event, we arrive at the coseismic re-
bound compensation leading, also, to the release of induced stresses by 
rebound process. Similarly, the precursory rotations, associated with the 
newly formed dislocations or cracks, shall have an opposite orientation to 
that related to the coseismic process. At the precursory stage these re-
peated processes lead to micro-fractures, while during the seismic event 
there will occur, under compression load, the fracturing with the rock 
fragmentation and the rebound macro-rotations at the inner centers where 
the precursory induced stress had accumulated.  

13.2 Earthquake Dislocation Theory 

The Earthquake Dislocation Theory (Droste and Teisseyre 1959, Teisseyre 
1961, 1964, 1970) has been based on the the elastic dislocation theory 
(e.g., Eshelby et al. 1951, Nabarro 1951, Kröner 1981). Dislocations, in a 
physical meaning, are related to disorder in a crystal lattice (e.g., slip along 
a certain glide plane): a lattice disorder appears only at the edges of dislo-
cation plane; this notion differs from a geological dislocation − fault. We 
recall some basic ideas of this theory: 

− Dislocated area with a constant slip value (the Burgers vector, 
Δu = λ, where λ is the lattice constant) is bounded at its edges by the 
dislocation line, called in physics just a dislocation.  

− Elastic energy is concentrated around a dislocation line being a 
source of elastic deformation. 

− Dislocations can have different signs (orientation of slip vector as 
related to the normal of the dislocated area): the dislocations of op-
posite signs attract each other to merge in the dislocated areas, while 



Chap. 13  Fracture Band Thermodynamics 

 

177 

dislocations of the same sign repel each other; a dislocated area is 
bounded at the dislocations of opposite sign. 

− An external stress field acts on a dislocation line; when this load 
overpasses a stress resistance, the dislocations moves (the Koehler 
force). 

− Under an external load the dislocations of the same sign form a dis-
location array; this happens when the first leading dislocation is 
stopped by some barrier with a greater stress resistance. 

− An array forms a concentration of stress field S = nAS0 (S0 is the ex-
ternal stress load, nA is the number of dislocations) at a first disloca-
tion and when the concentration of stresses is very high, such an ar-
ray can be approximated by a dislocation with the slip nAλ. 

− An array, with a sufficiently great number of dislocations, well ap-
proximates the field of a crack tip. 

− A moving array, under shear load, can meet an opposite array; the 
external forces and additionally the attraction of the opposite arrays 
may break the barriers and the stresses attached to the two arrays 
will be mutually canceled with a release of their energies. Recall 
now the basic elements of the Earthquake Dislocation Theory 
(Droste and Teisseyre 1959, Teisseyre 1961, 1964, 1970): 

− In an early premonitory time-domain, the dislocation arrays of dif-
ferent signs are formed; their interaction generates the micro-cracks 
(we come from quasi-static to dynamic processes and from stress re-
sistance to friction). 

− In an advanced premonitory time-domain, the interactions between 
the microcracks and also their mutual annihilations lead to the for-
mation and expansion of bigger and bigger cracks: fragments of slip 
fracture develop with a rapid dynamic process, in which the frag-
mented parts merge together in a main fault. 

− An earthquake process may develop along two perpendicular planes, 
but in reality, due to the fact that any geological space is extremely 
complex, one main fracture plane is usually formed (for such effect, 
see: Chap. 8). 

In this Earthquake Dislocation Theory, an energy release is explained by 
the mutual annihilations of the strain energies of the opposite groups of 
defects: dislocation arrays, tips of micro-cracks and cracks and those of 
fragments. 
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13.3 Fracture Band Model 

Next, we present some basic elements of fracture band model (Teisseyre 
1996, 1997, Teisseyre et al. 2001): 

− Under a situation with a high density of dislocations (earthquake 
preparation zones), besides the basic lattice we expect an existence 
of a super-lattice related to the interactions between the densely dis-
tributed dislocations (such a super-lattice may be associated with an 
internal structure and band of the old slip planes); the super-lattice 
constant Λ shall fulfill the condition: Λ λ. 

− In earthquake preparation zone the super-lattice may be very irregu-
lar; in order to make it more coherent, we define the vacant disloca-
tions: the difference between the best fitted regular super-lattice and 
that of the really existing ones defines a number of the vacant dislo-
cations. 

− The thermodynamics of a super-lattice (Teisseyre 2001) is based on 
the Gibbs formation energy ˆ fg  for a vacant dislocation and relates 
to an equilibrium number of vacant dislocations: 

3

ˆ1ˆ exp .
f

eq
gn
kT

⎛ ⎞
= −⎜ ⎟Λ ⎝ ⎠

 (13.1) 

− For a fracture model we assume for simplicity a disc model of an 
earthquake volume ΔV = πR2D. 

− The slip bands are active at a premonitory time-domain and during a 
fracture process: dislocation and crack slips and fracture slip. 

− A local shear stress before an earthquake can be estimated by the 
value of the related stress drop (see: Teisseyre 1996, Teisseyre and 
Wiejacz 1993, Teisseyre 2001): 

, andS A S b u N N B Sλ= Δ = Δ = = Δ  (13.2) 

where the Burgers dislocation vector b (slip vector) can be given by a 
product of number of dislocations and lattice constant, while the number of 
dislocations entering an array can be estimated as proportional to the shear 
local load.  

− We arrive at the expression for the slip vector:  

.Bb u B S S
A

λ λ= Δ = Δ =  (13.3) 
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− For a band of shear planes, the slip vector shall be multiplied by the 
ratio of a band width D and a super-lattice constant Λ (Fig. 13.1): 

.D B Db u B S S
A

λ λ= Δ = Δ =
Λ Λ

 (13.4) 

 

 
Fig. 13.1  Shear band model 

13.4 Earthquake Thermodynamics 

Basic thermodynamic relations for line defects (dislocations and vacant 
dislocations) are derived under the assumption of a dense network of de-
fects forming a kind of superlattice (Teisseyre and Majewski 1990, 1995, 
2001, and Majewski and Teisseyre 1997). The thermodynamic functions of 
line defects can be associated with defects in the superlattice. Let us con-
fine our considerations to the irreversible (plastic) deformations of solids.  

To distinguish the thermodynamic functions used here from those used 
under pressure conditions, we introduce the symbols with hat and we con-
sider only a pure shear work under shear load S(..) and under induced fric-
tion stress moment S[..] with dE being an incremental strain and that of 
rotation dω. We consider deformations under a constant volume; the work 

ˆdW  done on a body (per unit of volume), the internal energy change ˆd ,U
and the heat received in an exchange with the surrounding dQ become: 

(..) [..]
ˆ ˆd d d d 0, d d d .W S E S E S U Q S Eω= = + ≥ = +  (13.5) 

while for an internal energy stored in a medium we put (see: Chap. 7): 
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( ) [ ] .ks ks ks ksE S E S ω= +   

For the Helmholtz free energy F̂  and Gibbs free energy Ĝ  we have:  

ˆˆ ˆ , , d d , d 0F U TS G U SE T T S Q S= − = − − ≥ ≥  (13.6) 

where T is the absolute temperature and S  is the entropy; dS  would be 
the entropy production due to the irreversible processes occurring inside 
the system.  

The local formulation of the second law of thermodynamics requires 
that the entropy production be positive wherever an irreversible process 
occurs (Teisseyre and Majewski 2001). It is postulated that even outside 
the equilibrium, the entropy depends only on the same variables as at equi-
librium. In order to derive the expression for the entropy production, Pri-
gogine (1979) introduced some additional assumptions. Namely, it has 
been assumed that the entropy production can be determined for the condi-
tions near the equilibrium.  

Formation of a dislocation gives negative contribution to the Gibbs 
energy (Kocks et al. 1975) and therefore it is not possible to find a mini-
mum of the Gibbs function in respect to the number of dislocations. Thus, 
the dislocation distribution cannot exist as the thermodynamically stable 
system, since the Gibbs free energy has no minimum of any equilibrium 
concentration of dislocations.  

As we mentioned in the former section of this chapter, for a dense dislo-
cation distribution there appear the repulsive interactions between disloca-
tions, and a kind of dislocation supper-lattice could be considered (Teis-
seyre and Majewski 1990, 2001, Majewski and Teisseyre 1997).  

These processes are accompanied by an internal friction related to dis-
placement formed by dislocations and hence a spin motion appears as in-
herently present there (see: Chap. 3). 

The Gibbs energy minimum can now exist as the equilibrium number of 
the vacant dislocations. We can consider the structure of a cross-zone con-
sisting of bands of layerlets; such a structure favors the appearance of 
some macroscopic dislocations under conditions of shearing deformation. 
The particular values of the Burgers vector become related to particular 
layer thicknesses. In this sense we suppose that a fine boundary structure 
could play the role of a quantization factor; this problem is related to the 
earthquake shear band model.  

Consider a continuum that contains a regular (cubic) supper-lattice of 
dislocation lines with a certain supper-lattice parameter Λ ( λΛ  where λ 
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relates to a basic rock lattice). The notion of the supper-lattice is directly 
related to the shear band model of fracturing (Teisseyre and Majewski 
2001), see Fig 13.1.  

We associate the thermodynamic functions of line defects with the de-
fects in a super-lattice; the Gibbs free energy may have a minimum corres-
ponding to the equilibrium concentration of the vacant dislocations in the 
super-lattice. Many results can be now transferred from the thermodynam-
ics of the point defects (Varotsos and Alexopoulos 1986). The regular su-
per-lattice which includes the dislocations and vacant dislocations may be 
described in a very rough approximation by a characteristic distance Λ 
(super-lattice constant). For the ideal super-lattice (no vacant dislocations), 
the mean value of distances following from distribution of dislocations 
defines the reference dislocation density 0 2 ,α λ= Λ  while for a real body 
with n dislocations we may add to it other n̂  vacant dislocations in such a 
way that the whole set ˆn n N+ =  (dislocations and vacant dislocations) fits 
to a regular super-lattice with the smallest error. For the density of disloca-
tions α, and vacant dislocations ˆ ,α  we can write (Teisseyre and Majewski 
2001):  

2 2 2

ˆ ˆ ˆ1 , exp
fn n g

N N kT
λ λ λα α

⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟ Λ Λ Λ⎝ ⎠ ⎝ ⎠
 (13.7) 

where the number n̂  can be identified with an equilibrium value in relation 
to the formation energy of vacant dislocation ˆ fg  per length of the crystal 
lattice λ. 

The stress field and the resistance stress (e.g., the drag resistance in a 
dislocation motion and the friction stress in a crack motion) are defined as 
(Kocks et al. 1975): 

ˆ ˆ
, F

W FS S
E E

∂ ∂
= ≡
∂ ∂

  

while the Gibbs function for a crystal containing the vacant dislocations 
can be written as  

0ˆ ˆ ˆˆ ˆ f
cG G ng TS= + −   

where cS  is the configuration entropy.  
Near the equilibrium state under a constant local shear S and tempera-

ture T, the Gibbs energy is close to its minimum and the equilibrium val-
ues can be found as follows: 

Chap. 13  Fracture Band Thermodynamics 



 

182 

f
eq

f

c2

ˆ ˆ
0, exp ,ˆ

ˆ

ˆ ˆˆ ˆexp ,

S T

f

G gNn
n kT

g gn kSkT T
λα

,

⎛ ⎞∂
= = −⎜ ⎟∂ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − = +⎜ ⎟ ⎜ ⎟Λ ⎝ ⎠ ⎝ ⎠

 (13.8) 

while the Gibbs energy function becomes  

0ˆ ˆ ˆ ˆ f
cG G ng TS= + −  (13.9) 

where ˆ,n  ˆ fg  and ˆ
cS  mean the number of vacant dislocations, its forma-

tion energy and configurational entropy, respectively.  
The equilibrium free energy is less than that for an ideal superlattice 
0ˆ ;G  the difference is kT per line vacancy, per length of crystal lattice.  
For the point defect thermodynamics, Varotsos and Alexopoulos (1986) 

have introduced the so-called CBΩ theory approximating the contribution 
to the Gibbs energy from the formation of point defects.  

For the line vacancies a change of the Gibbs energy depends on the 
stress level and resistance stress. Therefore, we postulate for the approx-
imative value of such change per unit element (formation energy of vacant 
dislocation) the following expression defining the Cμbλ2 model:  

2
2ˆ , expˆf eq C bC b Ng n

kT
μ λμ λ

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
 (13.10) 

where C is a constant; ˆ fg  becomes here independent of stress load and 
resistance, μ is the rigidity, b is the Burgers vector of dislocation.  

Concluding, a body containing some number of dislocations cannot be 
in the state of equilibrium; there is no minimum of the Gibbs function, 
because, by reducing the number of dislocations, we always get a smaller 
value of the free energy. For a dense distribution of dislocations we can 
assume, due to their interaction, that there exists a certain supper-lattice 
composed of dislocations.  

The equilibrium density of the vacant dislocations may be written now 
with the help of (13.8)  

2

2
ˆ exp C b

kT
λ μ λα

⎛ ⎞
= −⎜ ⎟Λ ⎝ ⎠

 (13.11) 
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and becomes useful, when looking for the most probable density value of 
defects after the energy release in a fracturing process. The density 
α0 =λ/Λ2 may be identified here with the reference density.  

We can assume that before an earthquake a supper-lattice is almost 
completely filled in by dislocations (n ≈ N and n̂  ≈ 0). The maximum 
number of dislocations in arrays could reach (Λ/λ)2 per area Λ2. The total 
moment for an area Δs =N/Λ2 affected by the arrays of dislocation along 
the slip planes becomes: 

2 3.M s N Nμλ μλ μ
λ
Λ⎛ ⎞= Δ = Λ = Λ⎜ ⎟

⎝ ⎠
  

After an earthquake, the number of vacant dislocations n̂  shall increase, 
probably to the equilibrium value (see: Eq. 13.11) and hence we can ex-
press the seismic moment by the number of coalescence processes related 
to surface element Λ2 as equal to ˆ ˆ ( );eqn n λΔ = Λ  the introduced factor 
expresses the maximum of concentration of dislocations in arrays. We 
obtain for the seismic moment 

2
3 3

0 ˆ ˆ exp CM n N n NM kT
μλμ μ

λ λ
⎛ ⎞Λ Λ Λ⎛ ⎞ ⎛ ⎞= Δ = Λ Δ = Λ −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (13.12) 

where C is a constant for the given structure.  
Using the expression for a change of the free energy values we may in-

clude the formation of dislocation arrays along the glide planes and we put  

0 ˆ .G G n kT
λ
Λ⎛ ⎞= + Δ ⎜ ⎟

⎝ ⎠
  

According to these results, the total energy release ΔE  and seismic 
moment become:  

2
0

0 3

ˆ exp

and .

CG G n kT NkT
kT

M
kT

E

E

μλ
λ λ

μ

⎛ ⎞Λ Λ Λ⎛ ⎞ ⎛ ⎞Δ = − = Δ = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Δ
= Λ

 (13.13) 

This formula is an important relation between the energy release density 
and seismic moment density; for instance, for a given ΔE the elementary 
seismic moment 0M  decreases with temperature. A free energy related to 
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defect formation, ˆ ,fg  is proportional to μλΛ2 being constant for a given 
structure; for a greater value of Λ the seismic moment becomes greater too.  

Neglecting the term related to the formation entropy, we can write for 
the entropy density change: 

2 2

1 exp .C b CS kN
kT kT
μ λ μλ

λ
⎛ ⎞ ⎛ ⎞Λ Λ⎛ ⎞Δ = + −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
  

All these relations concern the quantities referred to the multiple of the 
cubic volume NΛ3 as multiple of parallelepipeds; thus, we can correct 
these quantities to that related to a given source volume by the factor 

2 3π :R D N/ Λ   

2
2

0

2 3
2 0

2 rad

2 2
2

2

π exp ,

π exp and ,

π 1 exp

CM R D
kT

MkT CE R D
kT E kT

k C CS R D
kT kT

μλμ
λ

μλ μ
λ η

μλ μλ
λ

⎛ ⎞Λ Λ⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞Λ Λ
Δ = − =⎜ ⎟Λ ⎝ ⎠

⎛ ⎞ ⎛ ⎞Λ Λ
Δ = + −⎜ ⎟ ⎜ ⎟Λ ⎝ ⎠ ⎝ ⎠

 (13.14) 

where ηΔE = Erad, η is the seismic efficiency; Erad is the radiated energy.  

13.5 Conclusions 

In the above consideration we took into account the processes related to 
slip and rotation; a total released energy includes that related to wave radi-
ation and that to heat caused by friction.  

The basic elements of the earthquake thermodynamics are based on the 
former results related to dislocation interactions and fracture processes. 

A role of micro-fracturing in the bond breaking process is similar under 
both the confining pressure and external shears; however, we observe the 
essential differences for rotations in the larger scales. A confining condi-
tion leads to formation of induced opposite arrays of dislocations, resulting 
in fragmentation processes and chaotically oriented macro-rotations, lead-
ing therefore to a rotation release process, while a shear condition leads to 
more concentrated fracturing along some planes, high shear strain release 
and the correlated rotations.  
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Considerations on the fracture band model and earthquake thermody-
namics show how we can better understand physics and geometry of frac-
ture and energy release processes.  
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14.1 Introduction 

We present a logical development of the Standard Asymmetric Continuum 
Theory in which the interaction terms are introduced to the deformations: 
strains and rotations. In a concise theory, we shall not only include the 
relations between stresses and dislocation fields and some aspects of frac-
ture processes, but also take into account various interactions related to 
thermal, electric, magnetic and other source fields. 

There are different ways how to include such interactions. One way re-
lies on the special choice of the constitutive relation in order to join the 
stress field with strain and other fields; equivalently we can use the Kröner 
method with the total, elastic and self fields; however, our aim is to include 
the interactive fields into the Standard Asymmetric Theory. To do so, we 
may present some equivalences between the Kröner fields and those used 
in the asymmetric theory. 

An appropriate choice of the constitutive laws is a typical approach to 
influence of the thermal, electric and other fields on the stress changes; for 
the asymmetric stresses we may write: 

( )1 2
( ) ( )

1 3
[ ] [ ]

2 ,

2 ,

kl kl kl kl

kl kl kls s kl

S E e F e F

S G G

μ δ

μ ω χ ε χ

= + +

⎡ ⎤= + +⎣ ⎦
 (14.1) 

where F, F(kl), Gs, G[kl] are the non-mechanical fields influencing stresses; 
and e1, e2, χ1, χ3 are the constants and according to the Standard Asymme-
tric Theory, we may write for strain and rotation (see: Chap. 7):  

0 0 0 0, .kl kl kl klE e E ω χ ω= =   

In the Kröner method the physically significant elastic fields, Sks, Eks, 
ωks, are given by the differences between the total fields, 0 ,ksS  0 ,ksE  0

ksω  
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(related directly to the displacement differentials), and the self fields, ,S
ksS  

,S
ksE  S

ksω  (related to internal interaction nuclei):  

0 0 0, , .S S S
ks ks ks ks ks ks ks ks ksS S S E E E ω ω ω= − = − = −  (14.2) 

Only the total field preserves the usual symmetry properties, the elastic 
and self fields may be asymmetric.  

In the Standard Asymmetric Theory we have the following relations 
(Chap. 7)  

0 0 0 0 0
[ ] , , .ks ks ks ks ks ks ksS S S E e E ω χ ω= + = =   

Here, stresses are asymmetric, while strains remain symmetric, and rota-
tions are antisymmetric. Comparison between these fields and those in the 
Kröner theory may be valid only for the restrained values of the self fields: 

0 0 0 0
[ ] , ( 1) , ( 1) .S S S
ks ks ks ks ks ksS S e E E ω χ ω⇔ − − ⇔ − − ⇔ −  (14.3) 

A comparison with the micromorphic theories brings the following rela-
tions joining the strains, e(ks), and the micro-strains ( micro-rotations), ϕks 
(φlk), with the rotation field, ωks:  

0 0 0
( ) , .ks ks ks lk ks kse E ϕ φ ω χ ω⇔ = ⇔ =  (14.4) 

Here the self fields, ,S
ksS  ,S

ksE  S
ksω , are restricted to antisymmetric self-

stresses, symmetric self-strain and antisymmetric self-rotations. 
However, in the asymmetric theory the stress and the deformation ten-

sors would remain asymmetric:  
0 0 0 0

( ) [ ] ,  ks ks ks ks ks ks ks ksS S S D E e Eω χ ω= + = + = +  (14.5) 

and then we can write the equivalence relations between the asymmetric 
and self fields of the Kröner theory: 

11
0 0 0 0

0 0

1 1  1 1 .S S
ks ks ks ks ks ks ksD E e E E

e
ω χ ω ω

χ

−− ⎛ ⎞⎛ ⎞= + = + ⇔ − + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (14.6) 

To formulate the interactive linear asymmetric theory we could replace 
the definition (14.5) by the following ones 

0 0 1 2
( ) , ,ks ks ks kl kl kl klD E E e E e e Fω δ= + = + +  

0 0 1 3
[ ].kl kl kls s klG e Gω χ ω χ ε= + +  

(14.7) 
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For the elastic solids: 0 1,e =  0 1,χ =  and we take the simplified ver-

sions of the constitutive relations (14.1) for asymmetric stresses:  

( )0 0 0
( ) ( ) [ ] [ ]2 , 2 .kl kl kl kl kl kl kls s klS E F F S G Gμ δ μχ ω ε⎡ ⎤= + + = + +⎣ ⎦  (14.8) 

14.2 Thermal Interaction Field 

We introduce a thermal field, ther
0( ),F T Tα= − −  to the corresponding 

elastic fields in the asymmetric theory:  
0 ther 0 0

0( ), .kl kl ik kl klE E T Tδ α ω χ ω= − − =  (14.9) 

The related compatibility condition becomes  

( )
2

ther
0

2 2 2
ther

( )

0.

ikm jtn mn
k t

mn
ikm jtn ij

k t k k i j

E T T
x x

E T
x x x x x x

ε ε α

ε ε δ α

∂
− − =

∂ ∂

⎛ ⎞∂ ∂ ∂
= − − =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

  

For the thermal nucleus, we can take the temperature distribution 

,T
r
ϑ

=   

where ϑ  is a source intensity; this expression follows from the stationary 
case, 2 0.T∇ =  However, for a wide temperature range the thermal heat 
transfer is not constant and the stationary case can be described as  

0,i is
i i s

q k T
x x x

⎛ ⎞∂ ∂ ∂
= − =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (14.10) 

where k is the tensor of heat transfer (heat conduction) which may be ani-
sotropic.  

14.3 Dislocation Related Polarization: Polarization Gradient  
        Theory 

The classical piezoelectric effect appears in the anisotropic crystals, piezo-
electric dielectrics (see: Toupin 1956, Mindlin 1972); the piezo-electric 
constants are discussed for the different crystalographic classes by No-
wacki (1983).  
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However, some experiments indicate that in different isotropic bodies 
the anomalous piezoelectric effects are observed - laboratory tests proved 
that an electric response is then proportional to time change of the applied 
load (see: e.g., Hadijcondis and Mavromatou 1994, 1995). Mindlin (1972) 
generalized the Toupin (1956) theory assuming that internal energy de-
pends also on polarization gradient. The respective mechanism relates to 
displacement of a dislocation core (electrically charged) under applied load 
in respect to its surrounding cloud of defects (having the opposite, com-
pensating charges) and, thus, to the formation time dependent dipoles (see: 
Chap. 10). Dislocation core-cloud shift (due to motion of the dislocation 
system) follows the Mindlin theory (1972).  

For isotropic bodies we assume that the internal energy is a function of 
strains, electric polarization and gradient of polarization.  

We define the polarization and polarization gradient fields : 

,i i iD EεΠ = −  

( ) [ ]
1 1
2 2

,j ji i i
ij ij ij

j i j i jx x x x x
⎛ ⎞ ⎡ ⎤∂Π ∂Π∂Π ∂Π ∂Π

Π =Π +Π = = + + −⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎣ ⎦
 (14.11) 

where ε is the permittivity of vacuum. 
The local internal energy ( , , )ij i ijU E Π Π  is now depending on elastic 

deformation, strains 0
ksE  and rotations (14.6):  

0 0 0 0 , 1ks ks ks ks ksD E E eω χ ω= + = + =  (14.12) 

and on polarization gradient field. 
For isotropic bodies we may put for the internal energy:  

0 0 0
(  ) [ ] [ ]

1 ,
2 ij ij ss kk i j ij ij ijU S D k E n E m Uχ ω Π= + Π + Π + Π +  (14.13) 

where ( ) ( ) [ ] [ ] ,ss kk ij ij ij ijU a b cΠ = Π Π + Π Π + Π Π  or with 1
3

D
ns ii ns ikS S Sδ= +  

and 1
3

D
ns ns ii nsS S S δ= − . 

0 0 0 0 0

0 0
( ) [ ] [ ]

1 1 1
3 2 2

D D
ii kk ik ik ik ik ss kk

ij ij ij ij

U S E S E S k E

n E m U

χ ω

χ ω Π

= + + + Π

+ Π + Π +
 (14.14) 
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and hence for stresses we obtain: 

0 0 0 0
( ) [ ]2 2 2 2 .ij ij ss ij ij ss ij ij

ij

US E E k n m
D

λδ μ μχ ω∂
= = + + + Π + Π + Π
∂

 
(14.15) 

There appears a 2D current related to gradient polarization: 

.ij ijJ ρ= Π  (14.16) 

The current amplitude in a given direction can be found from the dis-
tance from center to the appropriate point on the surface: 

, where = 1.ij i j s sJ J x x x x=   

Depending on measurement system, we can find the different components 
of this current. 

14.4 Conclusion 

In the frame of asymmetric continuum theory, we have presented a new 
approach to the interaction problem. We considered the isotropic cases 
related to thermal excitation and gradient polarization. The new result we 
obtained is the relation between the asymmetric stresses and strains, rota-
tions and gradient polarization.  
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15.1 Introduction 

From soliton theory there is a natural route to fracture physics, by way of 
energy carriers and interactions. Solitons are quanta of energy (Majewski 
2006a, b, c, d, e). Energy is the most decisive factor in fracture processes 
(Teisseyre and Majewski 2001, 2002). Solitons are rooted in the theory of 
nonlinear differential equations and their integrability conditions. Many of 
extreme and fracture processes are described in the language of nonlinear 
wave equations. Solitons are exact solutions of the nonlinear wave equa-
tions. Recently, it has become more evident that solitary equations such as, 
for instance, the Klein-Gordon equation or nonlinear Schrödinger equa-
tion, are applicable in many physical problems where interactions play an 
important role. Since interactions constitute an essential feature of many 
physical phenomena, it seems reasonable to attempt to construct some 
mathematical models that will enable us to illuminate characteristic fea-
tures of nonlinear wave processes in interacting media. A possible way to 
describe such nonlinear models is to apply solitons. 

15.2 The Dilaton Mechanism 

According to Polchinski (2000), “dilaton is the massless scalar with gravi-
tational-strength couplings, found in all perturbative string theories. An 
exactly massless dilaton would violate limits on nongravitational interac-
tions, but a mass for the dilaton is not forbidden by any symmetry and so 
dynamical effects will generate one in vacua with broken symmetry (the 
same holds for other moduli). The string coupling constant is determined 
by the value of the dilaton field.” Thus, the dilaton is a particle in a scalar 
field that is associated with gravity. Dilaton is to a scalar field as photon is 
to the electromagnetic field. Polchinski (2000) also mentioned that in the 
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strong interactions, large fluctuating gauge fields in the vacuum are re-
sponsible for quark confinement. 

The idea of fluctuating fields was adopted in fracture physics as well. 
For example, Zhurkov (1983) investigated a dilaton mechanism of the 
strength of solids. He assumed that negative density fluctuations affect the 
strength of solids. He referred to these fluctuations as dilatons. He viewed 
them as short-living objects. The good feature of dilatons is that they can 
absorb energy from their neighborhood in the surrounding medium. They 
can accumulate the energy like capacitors in electricity only up to a certain 
threshold value. Next, they release their energy, and the dilaton breaks, 
nucleating a crack. Kozák and Šilený (1985) considered a similar idea, 
when they described seismic energy release in earthquake processes. Frac-
ture in solids usually occurs along some inhomogeneities as asperities, 
cracks, inclusions, and so on. Kozák and Šilený (1985) investigated a 2D 
homogeneous medium with a linear inhomogeneity compressed in one 
direction. They were modeling an earthquake process along a tectonic 
fault. In such a case the directions of stresses were induced by the geome-
try of the fault. The fault area is determined by the value of stresses and is 
increasing up to the fracture level. When the fracture takes place, then the 
seismic energy is released. Gusev (1988) considered two similar dilatancy-
based models to explain coda-wave precursors and P/S spectral ratio. He 
assumed that the mechanism of seismic wave propagation is related to fast 
variations of the dilatancy. Kozák and Šilený (1985) and Gusev (1988) 
were carrying their considerations in terms of linear waves. Nikolaev 
(1989) applied nonlinear approach to this problem and took into account 
dissipation as well. Engelbrecht and Khamidullin (1988) and Engelbrecht 
(1997) used the concept of dilaton to modeling the Earth’s crust. Namely, 
they idealized the crust as a hierarchy of elastic blocks with a thin interface 
layers between them. These layers were viewed as dilatons, i.e., the inho-
mogeneities that absorbed, stored and released energy. The authors derived 
an equation that took into account the dilaton mechanism by including the 
related body force.  

15.3 The Nonlinear Klein-Gordon Equation 

In order to describe the dilaton mechanism, we start with the nonli-
near Klein-Gordon equation (KG) in the following form 

2 2

2 2 ( ) 0 ,
t
ω ω ω

φ ω
∂ ∂ ∂

− + Ψ =
∂ ∂ ∂

 (15.1) 
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where Ψ is a general nonlinear function of the spin ω  that may be ex-
pressed in different ways as a function of the rotational angle φ. We may 
introduce here a lot of forms of nonlinearity. For example, in case of an 
exponential nonlinearity 

( ) exp( ),ω ω
ω

∂Ψ
=

∂
 (15.2) 

Eq. (15.1) can be used as a modeling equation for various physical 
processes. In case of a cubic nonlinearity  

3( ) ,ω ω ω
ω

∂Ψ
= −

∂
 (15.3) 

Eq. (15.1) also can model many physical phenomena (cf., Rajaraman 
1982). For our purpose, we shall consider the nonlinear Klein-Gordon 
equation in the following form 

2 2

2 2 ( ) .f
t
ω ω ω

φ
∂ ∂

− =
∂ ∂

 (15.4) 

Here, the function ƒ(ω) is the body force connected to the so-called dila-
tancy mechanism and it takes the form 

3( ) ,f C Dω ω ω= −  (15.5) 

where C and D are positive constants. 
The soliton solution of this equation is as follows 

( )1/21/2
1( ) tanh .

2
CC

D
φ φ

ω φ
⎡ ⎤−⎛ ⎞

= ± ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

 (15.6) 

Figure 15.1 displays a soliton solution ω(φ) of the Klein-Gordon equa-
tion (15.4) and the energy density E(φ) of the soliton. It is noteworthy that 
the energy curve has a pulse-like profile. The solution above the φ-axis 
plotted in Fig. 15.1 is called the “kink” and the one beneath the φ-axis the 
“antikink.” The invariance of the solution with respect to translation is 
clearly visible, since a change in φ1 merely moves the solution along the  
φ-axis. Solutions to Klein-Gordon and the sine-Gordon equations have 
“kink” profiles. It should be mentioned that if we wish to obtain soliton 
graphs in a form of pulse profiles, we should plot derivatives of the solu-
tions. 
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Fig. 15.1  The function ω(φ) represents the static kink solution of the Klein-
Gordon equation (15.2). The function E(φ) describes the energy density of the 
kink (modified from Rajaraman 1982) 

15.4 Coupled Klein-Gordon Equations 
  Applied to Modeling a Two-Layer Model 

We discuss here a nonlinear model consisting of two layers of grains (or 
blocks) with linear spin (twist) interactions between the grains and nonli-
near spin (twist) interactions between the layers. We assume the so-called 
degenerated medium introduced by Teisseyre (2004) where only rotational 
motions exist and translational motions vanish. So, we assume that grains 
may rotate and their angular position is denoted by φi. The moment of iner-
tia of any grain of the upper layer is Iu and that of the lower layer is Id. A 
distance between centers of adjacent grains in each layer is denoted by a. 
Spin (twist) interactions between the adjacent grains in the layer are 
represented by the spin (twist) interaction coefficients ℜu and ℜd for the 
upper and lower layer, respectively. The function representing interactions 
between the layers is expressed as function of spins (twists) of correspond-
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ing grains of the upper and lower layers. The form of this function depends 
on the interface structure. 

We introduce the following notation: ωi and φi are the spins (or twists) 
of the i-th grains of the upper and lower layer, respectively, and ℑ(ωi, φi) is 
the spin (twist) energy of interactions between these grains. Processes of 
spin (twist) interactions in the two layers of grains are characterized by the 
following system of equations 

( ) ( )
2

1 12 2 , ,
iu u i i i i iI

t ω
ω ω ω ω ω ϕ+ −

∂
−ℜ − + = −ℑ

∂
 (15.7) 

( ) ( )
2

1 12 2 , .
id d i i i i iI

t ϕ
ϕ ϕ ϕ ϕ ω ϕ+ −

∂
−ℜ − + = −ℑ

∂
 (15.8) 

In order to simplify the above set of equations, we adopt the following 
dimensionless variables 

2, , , , ,u d

u u u

V t It
a a a a I I V

φ ω ϕφ ω ϕ ℜ
= = = = ℜ =  (15.9) 

2 2
2 2, , .d d u u d

u d
u u d u d

V I a aV V V
V I I I

ℜ ℜ ℜ
= = = =

ℜ
 (15.10) 

Following a procedure presented by Khusnutdinova and Silberschmidt 
(2003) in the context of translational motions, we apply the force function 
in the form ( ) ( ), , .f ω ϕ ω ϕ= −ℜ  After employing the long-wave approx-
imation, we obtain from Eqs. (15.7) and (15.8) the system of coupled 
Klein-Gordon equations for spins (twists) 

( )
2 2

2 2 , ,f
t ω
ω ω ω ϕ

φ
∂ ∂

− =
∂ ∂

 (15.11) 

( )
2 2

2
2 2 , ,V f

t ϕ
ϕ ϕ ω ϕ

φ
∂ ∂

− =
∂ ∂

 (15.12) 

where the overbar is omitted and the force function ƒ(ω, φ)  represents the 
spin (twist) interactions between the layers of grains. A similar set of 
coupled Klein-Gordon equations for translational motions was derived by 
Khusnutdinova and Silberschmidt (2003) in the framework of lattice mod-
eling of nonlinear waves in a bi-layer with delamination. 
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15.5 The Generalized Korteweg-de Vries (KdV) Equation 

Porubov et al. (2003) investigated selection of localized nonlinear seismic 
waves. They considered a longitudinal wave of displacements. On the con-
trary, we consider a spin wave. They took into account the phenomena 
associated with the dilaton mechanism. These phenomena are characte-
rized by fluctuations of energy field. We should consider the role of the 
microstructure of the material. Let us consider the Korteweg-de Vries 
(KdV) (cf., Korteweg and de Vries 1895) equation for a spin solitary wave 
in the following modified form 

3

3 ( ) ,D f
t
ω ω ω ωσ ω ε ω

φ φ φ
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

 (15.13) 

where σ = 0 or σ = 1, and ω = ω(φ, t) is the spin at the angular position φ 
and time t, and ε is a small parameter; here the quantities of spin and time 
were scaled, and the function ƒ(ω) is the body force related to the dilatancy 
mechanism and has the form 

2 3( ) ,f A B Cω ω ω ω= − + −  (15.14) 

where A, B and C are constants. 
If the RHS of Eq. (15.13) equals zero, then this equation transforms into 

the KdV equation. The nonlinearity is modeled in this equation by the third 
term that is proportional to the spin while the dispersion is described by the 
fourth term that is proportional to the third derivative of the spin. The in-
terplay between these two terms is crucial for the formation of solitons. 
However, a soliton is characterized by its stable shape and constant propa-
gation velocity. According to the dilaton mechanism, the internal energy is 
stored in a solid body. When the spin soliton propagates through the body, 
then the locked-in internal energy can be released. Moreover, an additional 
energy influx can amplify the spin wave. Following Porubov et al. (2003), 
and assuming σ = 0 and ƒ(ω) = 0, we can write the solution of Eq. (15.13) 
as follows 

( )2 -2 2( , ) 12 cosh 4 ,t D D tω φ λ λ φ λ⎡ ⎤= −⎣ ⎦  (15.15) 

where λ is a free parameter.  
In addition, Porubov et al. (2003) attempted to find an asymptotic solu-

tion of the Eq. (15.13) for the case when ƒ(ω) is expressed by Eq. (15.14).  
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15.6 The Spin and Twist Strain Solitons 

Samsonov (1988) investigated some exact solutions of nonlinear longitu-
dinal wave equations with dispersion and dissipation and referred to them 
as to the DDE equations. In the following years, Samsonov (2001) consi-
dered theoretical and experimental aspects of strain solitons in solids and 
how to construct them. He considered longitudinal waves, but we apply his 
equations to describe rotational waves. We write his nonlinear equation in 
terms of spin and rotational angle in order to describe the spin and twist 
strain solitons (Majewski 2006b) 

2 2 2 2 2
2

2 2 2 2 26 ,a b g
t t t
ω ω ω ω ωε ω

φ φ φ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

− = + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (15.16) 

where ω is the rotational field, φ is the rotational angle, ε is a small para-
meter, g is the dimensionless ‘viscosity’, and a and b are constant coeffi-
cients. This equation is called the double dispersive equation (DDE), de-
scribing dispersion and dissipation and having exact solitary solutions. 
This equation can describe the spin and twist strain solitons. Let us consid-
er this equation in the framework of the theory of a degenerated asymme-
tric continuum, in which the displacement motions vanish, and only rota-
tional motions are retained. Both the spin motions characterized by anti-
symmetric fields and the bend-twist motions characterized by symmetric 
fields have been considered (cf. Teisseyre 2004). Now we write equations 
for spin and twist strain waves in the form of the DDE equations: 

( )
2 2 4 4 2

[ ] [ ] [ ] [ ]2 2 2
1 2 3 [ ]2 2 2 2 4 2 ,s s s s

sV C C C
t t
ω ω ω ω

ε ω
φ φ φ φ

⎛ ⎞∂ ∂ ∂ ∂ ∂
− = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 

 

 (15.17) 

( )
2 2 4 4 2

( ) ( ) ( ) ( )2 2 2
1 2 3 ( )2 2 2 2 4 2 ,t t t t

tV D D D
t t
ω ω ω ω

ε ω
φ φ φ φ

⎛ ⎞∂ ∂ ∂ ∂ ∂
− = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 

 

where ω[s] and ω(t) denote the spin and twist components of the rotational 
strain field, respectively; the velocities for spin and twist strain waves are 
equal, V 

2 = 2μ∗/ρ, where μ∗ is the rotation rigidity, ρ  is the material densi-
ty, ε is a small parameter, and Ci and Di (i = 1, 2, 3) are constant coeffi-
cients. In our case, the spin strain solitons take the following form (see 
Samsonov 2001, Majewski 2006b) 
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( )2
[ ]

1 2

cosh 1 ,
2 (1 )s t

C C
ω φ−Ψ Ψ

= ± +Ψ
Ψ + +

 (15.18) 

where  Ψ = 6(V 

2
 C1 + C2) /C3. 

Correspondingly, the twist strain solitons can be expressed in the form 

( )2
( )

1 2

ˆ ˆ ˆcosh 1 ,ˆ2 (1 )t t
D D

ω φ−Ψ Ψ
= ± + Ψ

Ψ + +
 (15.19) 

where  2
1 2 3

ˆ 6( ) /V D D DΨ = + . 

15.7 Splitting the Spin Strain Solitons Propagating 
  along the Fracture Surface into the Fracture-Zone 
  Related Part and the Elastic Part 

We follow here a splitting procedure proposed by Teisseyre and Yamashi-
ta (1999) who split the stress motion equations into seismic wave and 
fault-related fields (see Chapter 8 in Teisseyre et al. 2006). We apply this 
method to Eq. (15.17)1 and split the equation for elastic spin strain solitons 
into elastic soliton and fracture-zone related soliton equations. A total spin 
strain ω can now be presented as the sum ω ω+  of the elastic field ω  and 
the self-spin (or plastic spin) part, which is assumed to rapidly decrease 
away from the fracture surface (Teisseyre 2001, Boratyński and Teisseyre 
2006). We can identify these parts with an elastic field ω  and a fracture-
zone related field ω . After splitting, the first equation for the elastic strain 
soliton takes the form  

( )
2 2 4 4 2

[ ] [ ] [ ] [ ]2 2 2
1 2 3 [ ]2 2 2 2 4 2

s s s s
sV C C C

t t
ω ω ω ω

ε ω
φ φ φ φ

⎛ ⎞∂ ∂ ∂ ∂ ∂
− = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (15.20) 

The fracture-zone related equation for the self-spin strain soliton is as fol-
lows 

( )
2 2 4 4 2

[ ] [ ] [ ] [ ]2 2 2
1 2 3 [ ]2 2 2 2 4 2

s s s s
sV C C C

t t
ω ω ω ω

ε ω
φ φ φ φ

⎛ ⎞∂ ∂ ∂ ∂ ∂
− = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (15.21) 

The above two equations have soliton solutions in the form of the DDE 
type solitons determined by Eq. (15.18). These solitons are spin strain 
waves. The latter equation describes the fracture-zone related soliton that 
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Fig. 15.2  Illustration of the splitting the spin strain solitons propagating along the 
fracture surface into the fracture-zone related part and the elastic part 

can be generated by past fracture events and may propagate along the frac-
ture surface to trigger new fracture events. Figure 15.2 depicts the splitting 
the total spin strain soliton equation into an elastic spin strain soliton and 
fracture-zone related soliton equations. 

15.8 The Sine-Gordon Model of Moving Dislocations 

The sine-Gordon equation (SG) is a special case of the Klein-Gordon eq-
uation (KG). It was employed in the modeling of many physical processes 
such as: motion of crystal dislocations in the periodic Peierls potential, 
motion of charged particles, biological processes like DNA dynamics, 
magnetic flux in the theory of Josephson junction ladders, Bloch wall mo-
tion in magnetic crystals, and two-dimensional models of elementary par-
ticles in the unified field theory (Rajaraman 1982). More information con-
cerning soliton applications can be found in Barone et al. (1971), Scott et 
al. (1973), and Infeld and Rowlands (2000). The sine-Gordon equation can 
be expressed in the following form 

2 2

2 2 sin ( , ).x t
x t
ω ω ω∂ ∂
− =

∂ ∂
 (15.22) 

The motion of dislocations in the periodic Peierls potential was analyzed 
by Hashizume (1993) starting from a kink-antikink solution of the sine-
Gordon equation. He assumed that the movement of the dislocation climb-
ing the potential peak occurs by bending of a part of the dislocation line 
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toward the potential ridge, formation of double kinks and their propagation 
in the opposite directions along the dislocation line. Small effects of exter-
nal stress, friction and random force for the moving dislocation line were 
calculated by Hashizume (1993) by using soliton perturbation theories 
directly based on the inverse scattering transform. 

15.9 Soliton Ratchets 

Salerno and Quintero (2001) investigated the so-called soliton ratchets. 
They used a generalized double sine-Gordon equation in order to describe 
a ratchet system, i.e., a periodically forced Brownian particle moving in an 
asymmetric potential in presence of damping and periodic driving. The 
soliton ratchet is a unidirectional motion of the soliton in an asymmetric 
potential with damping and periodic forcing. Salerno and Quintero (2001) 
showed that the asymmetry of the potential yields a spatially asymmetric 
internal mode on the soliton profile that can be generated using the period-
ic force. Due to the damping mechanism, this mode is able to exchange 
energy with the translational mode. In a result, the soliton has a resultant 
unidirectional motion in spite of the action of an ac force. Here the damp-
ing can be viewed as a coupling mechanism between the internal and 
translational modes of the soliton. The job of a periodic force is to disturb 
the system and drive it out of equilibrium. An associated thermal energy 
can induce the conversion of the ac force into effective work that results in 
a unidirectional motion of the soliton. Salerno and Quintero (2001) found 
that a kind of resonance occurs when the internal mode and the external 
driving force are phase locked. In such a case the solitons moves at the 
maximum velocity. A similar resonance occurs when the frequency of the 
external ac force is varying and suddenly perfectly matching the damping 
value that is fixed together with other parameters of the system. 

Salerno and Quintero (2001) considered the generalized double sine-
Gordon equation 

2 2

2 2

( )sin( ) sin(2 ) ,d
t x d
ω ω ωω λ ω θ

ω
∂ ∂

− = − − + = −
∂ ∂

A  (15.23) 

where the asymmetric potential is expressed as follows 

( ) cos( ) cos(2 ).
2

C λω ω ω θ= − − +A  (15.24) 
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Here λ denotes the asymmetry parameter, θ denotes a phase constant, and 
C denotes a constant which determines the zero of the potential. 

The soliton ratchet system can be applied to describe motions of dislo-
cations during deformational and fracture processes. 

15.10   The Generalized Sine-Gordon Model of Rock Fracture 

Bykov (1999) presented a mathematical model for the unstable deforma-
tion of rock along an existing fracture zone. He showed that this deforma-
tion process is really nonlinear and the sine-Gordon equation can be ap-
plied as the best modeling tool. He was carrying an analysis on the influ-
ence of geometric irregularities and friction of the contact surfaces on the 
evolution of the velocity of solitary slip waves that are generated by local 
deformation effects and propagate along the fracture zone.  

Moreover, Bykov (2006) considered solitary waves in crustal faults and 
their application to earthquakes. His starting point was a generalized sine-
Gordon equation in the form 

2 2

2 2 sin ( ) ( )sin ( ),U U UU L Uα γ ξ δ ξ σ τ
ξ τ τ
∂ ∂ ∂

− = + + − +
∂ ∂ ∂

 (15.25) 

where U = 2πu /a, ξ = πx /ap, τ = πω0t /p, p2 = a2D /4mgh, 2
0 / ,D mω =  

α ≈ aμ  /dΔρ(gh)1/2, γ = H / L, and U is the displacement of blocks situated 
periodically along the fracture zone, a is the distance between the block 
centers, d is the diameter of the circular contact of the blocks, D is the 
tangential contact stiffness, g is the gravity acceleration, h is the distance 
between the block centers of the adjacent block layers, m is the mass of the 
block, μ is the viscosity of the layer between the blocks, Δ is the layer 
thickness, ρ is the density of the block material, α and γ are the parameters 
of friction and inhomogeneity, respectively, H and L are the height of the 
asperities and the distance between them normalized to ap /π, δ (ξ) is the 
Dirac delta-function, and σ(τ) is the function which reflects the external 
load at the contact of the fault surfaces. 

Bykov (2006) gave a physical interpretation to all the terms on the RHS 
of the above equation. Namely, he interpreted the first term as the “restor-
ing” force, the second term is the friction force, the third term is responsi-
ble for corrections for inhomogeneities, the last term describes the initia-
tion external load on the fault. After numerical treatment of this equation, 
he found the displacement function in the form of a kink soliton and the 
slip velocity function in the form of a pulse soliton. 
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15.11  Links Between Solitons and Moving Cracks 

Sharon et al. (2001) considered rapidly moving tensile cracks in a brittle 
material. In 3D, they form a singular front. The front has to interact with 
asperities or material inhomogeneities on the fracture surface. The cracks 
propagate as single coherent entities, despite random interactions with 
asperities. Sharon et al. (2001) revealed that perturbations to a crack front 
in a brittle material yield lasting and localized solitary waves. They re-
ferred to these waves as to ‘front waves.’ The front waves propagate along 
the crack front at the speed of sound. 

15.12  Fracture Solitons in Polymer Chains 

Manevitch et al. (2003) noted that a large part of polymer chain energy is 
stored in localized excitations of soliton-like packets. These solitons take 
active part in the process of mechanical degradation and fracturing of po-
lymer chain. In a result of their experimental and molecular-dynamic mod-
eling of the process of mechanical degradation of polymer chain, the dis-
covered high-energy molecular products of mechanical degradation gener-
ate a chain branching process yielding an explosive nucleation of submi-
crocracks.  

15.13  Chaos of Soliton Systems 

Lou et al. (2001) described chaos in two different soliton systems and dis-
cussed special Lax pairs for chaos systems. They considered the (2+1) 
Davey-Stewartson (DS) model and the asymmetric Nizhnik-Novikov-
Veselov (ANNV) model. They derived the Lorenz system and its general 
form from the DS equation and the ANNV equation. They considered in-
tegrability of these two models using the Lax pairs or IST (Inverse Scatter-
ing Transformation). They found that the both systems have some special 
chaotic solutions. Lou et al. (2001) used the fact that these two models are 
related to the Kadomtsev-Petviashvili (KP) equation whereas the self-dual 
Yang-Mills (SDYM) equation is the generalization of the DS and KP eq-
uations. 

15.14  The Soliton Complexes 

Bogdan et al. (1999) proposed the idea of soliton complexes in a nonlinear 
dispersive medium. They suggested that strongly interacting solitons con-
stitute bound soliton complexes that propagate without any loss of energy. 
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Usually the complexes consist of three or more identical solitons. The soli-
ton complexes can attain their excited states. They represent solutions of 
nonlinear dispersive equations with the fourth and higher spatial deriva-
tives. Bogdan et al. (1999) investigated the dispersive sine-Gordon (dSG), 
double sine-Gordon (dDSG) and triple sine-Gordon (dTSG) solitons. They 
described the classification of the excited states of soliton complexes. They 
used also the two-soliton ansatz approximation to find the existence condi-
tion for the soliton complex in the dSG and dDSG equations. They de-
scribed these soliton complexes using appropriate Lagrangians and Hamil-
tonians. The soliton complexes can be used to form the nonlinear dynam-
ics of dislocations. 

 

                                                      

                                                    

                                                   

Fig. 15.3 Illustration of spin soliton complexes. The triple spin soliton complexes 
move downward  

15.15   The Soliton Arrays 

Solitons can form discrete arrays that move together, for instance, as an 
array of dislocations or disclinations (see Fig. 15.3).  
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Fig. 15.4  Illustration of the discrete array of spin solitons moving downward 

15.16   Conclusions 

This chapter briefly presented a review of the most characteristic examples 
of soliton applications to problems of fracture physics. We started with the 
dilaton mechanism and its applications. The two-layer model of spin 
(twist) interactions was proposed. We applied the DDE equations to de-
scribe the spin and twist strain solitons. In addition, we reviewed some 
results concerning rock fracture processes and relations of solitons with 
moving cracks and dislocations. We mentioned about chaotic soliton sys-
tems and about soliton complexes and arrays.  
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16.1 Introduction 

This chapter presents a canonical approach to the theory of asymmetric 
continua in terms of Lagrangians and Hamiltonians. The Lagrangian is 
expressed in terms of the spin structure and spin rates. Consequently, the 
Hamiltonian is described as a function of the spin structure and angular 
momenta (Majewski 2006a). Landau and Lifshitz (1958, 1960) gave a 
clear exposition of the Lagrangian and Hamiltonian formulations of clas-
sical mechanics. In their formulation for a system of material points, the 
Lagrangian is a function of generalized positions and generalized veloci-
ties of the material points. They viewed Hamiltonian as a function of the 
generalized positions and generalized momenta. Maugin (2003) formu-
lated the canonical mechanics of a nonlinear elastic material. Kleinert 
(1988, 1989, 2008) elucidated an action approach to gravitational and elec-
tromagnetic fields. A Lagrangian formulation of an asymmetric elastic 
continuum was applied by Majewski (2006b) in the context of rotational 
seismic waves and accompanying them spin and twist solitons. Moreover, 
Majewski (2006c) used a Lagrangian approach in the framework of the 
gauge field theory of an elasto-plastic continuum with dislocations. In the 
gauge field theory the fundamental equations are obtained by variations of 
the gauge invariant Lagrangian. 

The goal of the canonical approach in physics is to start from a single 
Hamilton’s Principle of Least Action and to find an extremum of an 
integral describing energy in order to derive differential equations of mo-
tion, called in mechanics Lagrange’s equations. In the variational calculus 
they are called Euler’s equations for the general mathematical problem of 
determining the extrema of an integral. The Lagrangian of a mechanical 
system represents the difference between its kinetic and potential energies 
and allows us to derive the equations of motion of the system. They relate 
coordinates, velocities and accelerations. 
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Mathematically speaking, the number of equations of motion is equal to 
the number of generalized coordinates, which are treated as unknown func-
tions. Let us say that we have n generalized coordinates. In such a case, the 
set of equations of motion comprises a set of n second-order differential 
equations for n unknown functions—generalized coordinates. The general 
solution has 2n arbitrary constants. In order to find these constants and to 
describe completely the motion of the system in question, we have to de-
termine the initial conditions. By the initial condition we mean the initial 
numerical values of the coordinates and velocities. They define the state of 
the system at the initial time. 

We should be aware that the construction of the Lagrangian is con-
nected with a choice of variables. Consequently, the same variables will 
reappear in the derived Lagrange’s equations of motion. Classically, the 
generalized coordinates and velocities are used to construct the Lagrangian 
that describes the difference between the kinetic and potential energies of 
the mechanical system. We should emphasize that this is not the only poss-
ible choice of variables. Sometimes, particularly, when we need to know 
the total energy of the system, it is more convenient to describe the system 
in terms of the generalized coordinates and momenta. The best way to 
transfer from one set of variables to another set is to use the Legendre’s 
transform. In order to find the energy of a Lagrangian system, it is conve-
nient to construct the so-called Hamiltonian. Using the Hamiltonian, we 
can obtain a new set of first-order differential equations of motion. These 
equations of motion are called Hamilton’s equations or canonical equa-
tions. In these equations, the unknown functions are the generalized coor-
dinates and the generalized momenta of the system. They can be treated as 
evolution equations for the generalized coordinates and generalized mo-
menta.  

As far as we know, the canonical approach was applied to translational 
motions. Our goal, here, is to show how the canonical approach can be 
applied to rotational motions. Rotational motions can be realized in asym-
metric media. Thus, our contribution consists in the application of a differ-
ent set of variables: spin structure and spin rates to create the Lagrangian, 
and the spin structure and angular momenta to form the Hamiltonian. 

16.2 Hamilton’s Principle  

The fundamental variational principle of mechanics is Hamilton’s Prin-
ciple that can be viewed as a Principle of Least Action on intuitive 
grounds. Hamilton’s Principle states that from all possible paths of motion 
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of a mechanical system of material points, in reality, the path of motion is 
realized for which the following integral  

d ( )
b

a

t

t

t K U−∫  (16.1) 

attains an extremum, where K and U are the kinetic and potential energies 
of the system of material points, respectively.  

Hamilton’s Principle, formulated for a mechanical system of material 
points, can be easily generalized to apply to a material continuum. In such 
a case, we have to consider an elementary reference volume of the conti-
nuum, and instead of the kinetic and potential energies of material points, 
we should use the kinetic and potential energy densities per elementary 
reference volume of the continuum (cf., Maugin 2003). In order to general-
ize Hamilton’s Principle to apply to electromagnetic or gravitational fields, 
one should consider an extremum of field action (cf., Kleinert 1988, 1989, 
2008).   

16.3 Action of Spin and Twist Fields 

Here, for the purpose of clarity, we confine ourselves to spin and twist 
motions. We neglect translational motions at this stage of our considera-
tions. Teisseyre (2004) considered the theory of a degenerated continuum, 
in which there exist only the spin and twist axial motions but displacement 
motions vanish (see also Teisseyre et al 2006, Teisseyre and Boratyński 
2006). Thus, the main variable in this asymmetric theory of spin and twist 
motions is the rotation angle φκ(xκ) about the xκ axis κ = 1, 2, 3. The direc-
tion of the pseudo-vector φκ coincides with the rotation axis xκ of the con-
tinuum elementary volume and its length is equal to the angle of rotation. 
The angle of rotation is dual to the spin structure field ωμν(xκ), thus, 
ωμν = εμνκφκ, where μ, ν, κ =1, 2, 3, and εμνκ = εμνκ = 0, +1, –1 is the totally 
antisymmetric 3D permutation symbol called Eddington’s epsilon, 
εμνκ = +1, –1 if μ ν κ  is an even and an odd permutation of (1, 2 ,3), re-
spectively, otherwise εμνκ = 0. 

Landau and Lifshitz (1960) gave an excellent exposition of the Lagran-
gian and Hamiltonian formulations of classical mechanics. From now on, 
we follow the general line of reasoning from their exposition. However, 
there are some differences. Their exposition is for a system of material 
points and their Lagrangian is formulated in terms of the generalized coor-
dinates and generalized velocities, and their Hamiltonian is expressed in 
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terms of the generalized coordinates and generalized momenta. On the 
contrary, our presentation deals with an elementary reference volume of 
the continuum and we use a different set of variables. For the Lagrangian, 
we use the spin structure and spin rates, but for the Hamiltonian, we use 
the spin structure and angular momenta.  

The most elegant approach to the formulation of the law governing the 
spin and twist fields is the principle of an extremum of field action. This 
principle requires that the spin and twist field should be determined by a 
Lagrange function ( , , ),L tω ω  where ω is the spin (twist) field, ω  is the 
spin (twist) rate field, and t is time. The action of the spin and twist fields 
satisfy a certain condition.  

Here nine quantities ωμν(μ,ν = 1, 2, 3) completely defining the spin 
structure of a system are called spin coordinates of the system, and the spin 
rates μνω  are called its angular velocities. These quantities define the posi-
tion of the system in the so-called state space Σ. Let the positions of the 
system in the state space Σ at times ta and tb be determined by the spin 
coordinates ω(a) and ω(a), respectively. Thus, we assume that the curve 
representing a path in the state space Σ has both ends a and b fixed. Then, 
in order to move the system between these positions in the state space Σ, 
the action of the spin (twist) field must satisfy the condition that the fol-
lowing integral 

d ( ( ), ( ), )
b

a

t

t

A t L t t tω ω= ∫  (16.2) 

attains an extremum. The integrand L is called the Lagrangian of the sys-
tem concerned, and A is called the action of the spin (twist) field. Note that 
the mechanical state of the system is completely defined when the spins 
and spin rates are given. 

16.4 The Euler-Lagrange Equations 

Let us compare the action for the path ω = ω (t) with that of another path  
ω′ = ω (t) + δω (t), where the small function δω (t) is called a variation of 
function ω (t) or a variation of the path. The variation of the action A when 
ω  is replaced by ω + δω is 

d ( , , ) d ( , , ).
b b

a a

t t

t t

A t L t t L tδ ω δω ω δω ω ω= + + −∫ ∫  (16.3) 
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The end points are fixed, thus, the variations of the path vanish at the end 
points 

( ) ( ) 0.a bt tδω δω= =  (16.4) 

Thus the condition for attaining an extremum is as follows 

d ( ( ), ( ), ) 0.
b

a

t

t

A t L t t tδ δ ω ω= =∫  (16.5) 

The extremum condition is that the time derivative equals zero 

d ( , , ) 0.
b

a

t

t

A t L t
t t

ω ω∂ ∂
= =

∂ ∂ ∫  (16.6) 

Now, we are in a position to take the variation in Eq. (16.5), and in a re-
sult, we obtain  

d 0.
b

a

t

t

L LA tδ δω δω
ω ω
∂ ∂⎛ ⎞= + =⎜ ⎟∂ ∂⎝ ⎠∫  (16.7) 

Note that the variation of the time derivative is equivalent to the time de-
rivative of the variation, i.e., d / dtδω δω= . In other words, the variation 
of the path commutes with the time derivative. Employing this fact and 
integrating the second term by parts, we get 

dd 0.
d

b b

a a

t t

t t

L L LA t
t

δ δω δω
ω ω ω
∂ ∂ ∂⎡ ⎤ ⎛ ⎞= + − =⎜ ⎟⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎝ ⎠∫  (16.8) 

From the fixed ends described by Eq. (16.3), it follows that the boundary 
term in Eq. (16.8) must vanish. The remaining integral also must vanish 
for all variations δω, thus the spin structure ω(t) must fulfill the following 
Euler-Lagrange equation of motion 

d 0.
d

L L
t ω ω

∂ ∂⎛ ⎞ − =⎜ ⎟∂ ∂⎝ ⎠
 (16.9) 

Due to the fact that the spin structure ω(t) has nine tensor components, 
nine different functions ωμν(t) must be varied independently according to 
Hamilton’s principle of least action. Actually, we get a set of nine equa-
tions of motion of the system  
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d 0, ( , 1, 2, 3).
d

L L
t μν μν

μ ν
ω ω

⎛ ⎞∂ ∂
− = =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (16.10) 

These are second-order differential equations for the spin structure ω(t). In 
order to solve this set of equations, we have to supplement it with the ini-
tial conditions, which determine the state of the system at an initial time, 
i.e., the initial values of all the components of the spin structure and spin 
rates. 

16.5 Additive Decomposition of the Lagrangian 

If a mechanical system is a combination of three independent fields X, Y, 
and Z, e.g., elastic field, defect field, and electromagnetic field, and each of 
these fields can be described by its own Lagrangian LX, LY and LZ, respec-
tively, then, the Lagrangian of the whole system can be decomposed as the 
sum of all partial Lagrangians 

.X Y ZL L L L= + +  (16.11) 

The additive decomposition of the Lagrangian yields consequences for the 
form of the equations of motion of the above-mentioned fields. Due to the 
independence of these fields from each other, i.e., due to the lack of any 
interactions between these fields, the motion equations should be free from 
quantities pertaining to the other fields. For example, Majewski (2006c) 
applied a Lagrangian formulation using the gauge field theory of an elasto-
plastic continuum with dislocations, and decomposed the total Lagrangian 
into two parts: (i) the part describing the deformational energy of the ma-
terial, (ii) the part describing the energy of moving dislocations.   

16.6 The Canonical Equations (Hamilton’s Equations) 

The Lagrangian in the previous section was expressed in terms of the spin 
structure and spin rates. However, sometimes, it is useful to describe the 
system by the spin structure and the angular momenta. In order to find the 
energy of a Lagrangian system, it is convenient to construct the so-called 
Hamiltonian H. It can be obtained by Legendre’s transform  

,H M Lμν
μνω= −  (16.12) 

where  
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LM μν
μνω

∂
≡
∂

 (16.13) 

is called the canonical angular momentum. 
Note that the Hamiltonian expresses the energy of the system, whereas 

the Lagrangian represents the difference between the kinetic and potential 
energies. In order to elucidate Legendre’s transform here, we have to ex-
press the total differential of the Lagrangian in terms of the spin structure 
and spin rate, i.e. 

d d d .L LL μν μν

μν μν

ω ω
ω ω
∂ ∂

= +
∂ ∂

 (16.14) 

By virtue of Eq. (16.13), the above relation can take the form 

d d d ,L M Mμν μν
μν μνω ω= +  (16.15) 

because it follows from Lagrange’s equations that / .L Mμν μνω∂ ∂ =  If we 
reshape the above relation as follows 

d d d( ) d ,L M M Mμν μν μν
μν μν μνω ω ω= + −  (16.16) 

then, we move the expression d( )M μν
μνω with the opposite sign to the 

LHS of Eq. (16.16), we obtain 

d( ) d d .M L M Mμν μν μν
μν μν μνω ω ω− = − +  (16.17) 

Let us now take a closer look at the argument of the differential. It has a 
physical interpretation as the energy of the Lagrangian system. It is called 
the Hamilton’s function or Hamiltonian of the system 

( , , ) .H M t M Lμν
μνω ω= −  (16.18) 

Note that the Hamiltonian is expressed in terms of the spin structure and 
angular momentum. The energy determined by Eq. (16.18) is the founda-
tion of the Hamiltonian theory. Using the Hamiltonian, from Eq. (16.17), 
we get 

d d d .H M Mμν μν
μν μνω ω= − +  (16.19) 
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It should be emphasized that the above differential consists of two inde-
pendent variables, i.e., the spin structure and angular momentum. Now, 
from the structure of the differential, we infer that 

, .H HM
Mμν μν

μν μν

ω
ω

∂ ∂
= = −
∂ ∂

 (16.20) 

These equations of motion are called Hamilton’s equations or canonical 
equations. It is a set of first-order differential equations. The unknown 
functions are here the components of the angular momentum Mμν (t) and 
the components of the spin structure ωμν (t). They can be treated as evolu-
tion equations for the spin structure and angular momentum. 

In a particular case, when the Hamiltonian is not an explicit function of 
time, we get dH /dt = 0. This relationship expresses the law of conservation 
of energy. 

So far, we were describing the mechanical system using the dynamical 
variables ,ω ω  or ω, M. In order to enrich our description, we can intro-
duce to the Lagrangian and to the Hamiltonian some other parameters or 
variables which will give a better description of the mechanical system in 
question. Thus, in order to enrich our Lagrangian, we introduce the varia-
ble Ψ. In such a case, Eq. (16.15) takes the form 

d d d d .LL M Mμν μν
μν μνω ω ∂

= + + Ψ
∂Ψ

 (16.21) 

Consequently Eq. (16.19) yields 

d d d d .LH M Mμν μν
μν μνω ω ∂

= − + − Ψ
∂Ψ

 (16.22) 

Applying here partial differentiations, we keep other quantities constant. 
Following Landau and Lifshitz (1958, 1960), we can obtain 

, ,

,
M

H L

ω ω ω

∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂Ψ ∂Ψ⎝ ⎠ ⎝ ⎠
 (16.23) 

where the suffixes to the derivatives indicate the quantities which are to be 
kept constant during the differentiation. 

We can illustrate this relationship in a very simple way. If we disturb the 
Lagrangian by adding a small value ΔL, then, the new Lagrangian will be 
of the form L = L1 + ΔL. Next, we disturb the Hamiltonian by correspond-
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ing addition of ΔH, and the new Hamiltonian will be H = H1 + ΔH, then, 
we obtain 

( ) ( ), ,
.

M
H L

ω ω ω
Δ = − Δ  (16.24) 

Thus, we can compare this situation to the relationship between the poten-
tial and kinetic energies in the pendulum motion. When the potential ener-
gy of a swinging bob increases by a particular amount, then the kinetic 
energy decreases by the same amount. Thus, the total mechanical energy 
can be viewed as continuously shifting between the kinetic and potential 
forms. 

It should be emphasized that time t can be treated as one of the parame-
ters. So, by analogy to Eq. (16.23), the partial time derivatives of L and H 
are related by (Landau and Lifshitz 1958, 1960) 

, ,

.
M

H L
t tω ω ω

∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (16.25) 

The Hamiltonian for a spin (twist) motion for a unit volume of mass of 
density ρ in the orthogonal Cartesian coordinates x1, x2, x3 takes the form 

( ) ( )1 2 3
2 2 2 1 2 31 , , ,

2 x x x
H M M M U x x x

ρ
= + + +  (16.26) 

16.7 Conclusions 

This chapter briefly presented the main results concerning the canonical 
approach to asymmetric media. Hamilton’s Principle was the starting point 
of our considerations. Based on this principle, the equations of motion 
were formulated in terms of the spin structure and spin rates. On the basis 
of different variables taken into considerations, we pointed out that the 
Lagrangian and Hamiltonian approaches deal with the energy of the me-
chanical system and adding a new variable is equivalent to shifting energy 
between the Lagrangian and the Hamiltonian.  
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Theoretical descriptions of defect field based on differential geometry 
(Kröner 1981) or gauge theory (Edelen and Lagoudas 1988, Yamasaki and 
Nagahama 2002) are referred to as the continuum theory of defects. In the 
last few years, continuum theory of defects has created considerable inter-
est in application to space and planetary sciences such as cosmic strings 
(e.g., Katanaev and Volovich 1999), Einstein-Cartan gravity (e.g., Hehl 
and Kröner 1965, Puntigam and Soleng 1997), seismicity (e.g., Teisseyre 
1995c, Takeo and Ito 1997) and geodesy (Yamasaki and Nagahama 1999). 
In this chapter, we introduce the continuum theory of defects. 

17.1 Geometry of Deformation 

In the Riemannian space, a holonomic system of coordinates ξ 
k (the Greek 

letter is for a variable, the Latin one for index) can be introduced following 
Teisseyre (1995a). In practical application, we will assume that the se-
quence of tangent spaces forms an Euclidean space, and that further trans-
formation is possible from the coordinates ξ 

k to coordinates describing the 
state of undeformed medium xk (its natural state). Then we can see that the 
generalization of the problem of medium deformation leads to interesting 
geometric and topologic analogies. 

Of utmost imporfance for us is to introduce the deformation described 
by the field of dislocational displacements. This means that when we 
choose a certain arbitrary, closed path in the real medium and proceed 
along it through the particular elements brought to the natural state, then 
we obtain in general an open contour. 
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Now, let us return to the question which interests us here, that is, to the 
real state of the medium. In the geometric sense, to the real state of the 
medium there corresponds a certain manifold. To this manifold, we will be 
able to introduce an affine connection field as well as a metric tensor field. 
In every point of our manifold, an Euclidean space tangent to it can be 
introduced. We demand that the sequence of those spaces form a Rieman-
nian space and thus we define the medium in its intermediate state. In this 
intermediate state, it becomes possible to introduce a holonomic coordi-
nate system ξ 

k. 
Thus, for real state elements, we can introduce in every point a local 

tangent Euclidean space, with a basis vector iμ, where the Greek index 
letters refer to the real state of the medium’s element. Obviously, the inte-
grability of the basis vector field cannot be assumed in advance. The arc 
length for an element of a medium in the real state can be expressed by 

,dS i d μ
μ ξ=  (17.1) 

where the local increments of the coordinates dξ 
μ and the corresponding 

increments in the tangent space are connected by the relationship 

, ,k k k
kd c d d c dμ μ λ

λξ ξ ξ ξ= =  (17.2) 

where 

, ,k i i
k k kc c c cμ μ μ

λ λ μδ δ= =  (17.3) 

Owing to the medium’s inhomogeneity, the deformation (Eq. 17.2) is, in 
general, nonholonomic, but we postulate that the increments ξ 

k form a 
holonomic system. The changes in basis vectors at passing to the adjacent 
point can be expressed by the relation 

.i
idi d i i c dν λ ν λ

μ μ λ ν μ λ νξ ξ⋅⋅ ⋅⋅= Γ = Γ  (17.4) 

This relation defines the coefficients of affine connection ν
μλ
⋅⋅Γ . Here the 

Greek indices refer to the curvilinear coordinates and the Latin ones to the 
Cartesian coordinates; Einstein’s summation convention is used in respect 
to the indices appearing twice in one expression. In general, relations 
(17.2) and (17.4) are not integrable along the contour passing through the 
sequence of elements in the real state of the medium. The transformation 

icν  is in general nonholonomic, and [
]( / ) 0.k

ix cν∂ ∂ ≠  Therefore, the torsion 

tensor defined S ν
δρ
⋅⋅  by 



Chap. 17  Continuum Theory of Defects: Advanced Approaches 223 

[ ]S ν ν
δρ δρ
⋅⋅ ⋅⋅= Γ  (17.5) 

differs from zero (Kondo 1955). Using the condition of holonomity for the 
ξ 

k system, we get from Eq. (17.1) 
2 2

0,k i i k

S S
ξ ξ ξ ξ
∂ ∂

− =
∂ ∂ ∂ ∂

 (17.6) 

and hence 

( ) ( ) 0.i kk ii c i cμ μ
μ μξ ξ

∂ ∂
− =

∂ ∂
 (17.7) 

Now, from Eqs. (17.4) and (17.5), we can get 

[ ] ][ .k i
ikS c c c

x
ν ν ν

δρ δρ ρ δ
⋅⋅ ⋅⋅ ∂

= Γ = −
∂

 (17.8) 

The linear connection is as follows (Schouten 1954): 

{ }

{ } 1
2

,

.

S S S

g g gg

α α α α α
νλ νλ νλ ν λ λν

μ λ μνα αμ νλ
νλ ν λ μξ ξ ξ

⋅⋅ ⋅⋅ ⋅
⋅ ⋅ ⋅Γ = + − −

∂ ∂⎛ ⎞∂
≡ + −⎜ ⎟∂ ∂ ∂⎝ ⎠

 (17.9) 

{ }α
νλ  is the Christoffel symbol and gαμ  is the contravariant metric tensor 

in of a Riemannian (or non-Riemannian) space; it is usual to recall the 
Riemann-Cartan space time of the Eistein-Cartan theory (e.g., Hehl and 
Kröner 1965, Sabbata and Gasperini 1984, Sabbata and Sivaram 1994, 
Puntigam and Soleng 1997, Kawai 2000) or moving dislocation theory 
(Yamasaki and Nagahama 1999, 2002) when an affine asymmetric con-
nection is introduced. 

For a holonomic system, we have 0,S ν
δρ
⋅⋅ =  and the symmetry of the 

coefficients of connection [ ] 0.ν
δρ

⋅⋅Γ =  If the torsion tensor vanishes, the 
connection coefficients are therefore equal to the Christoffel symbols 
(Riemannian connection). 

( )[ ] ][2 2 ,v vR κ κ κ ρ ρ κ
νμ λ μ λ μ λ νμ ρ λρ
⋅⋅⋅ = ∂ Γ + Γ Γ + Ω Γ  (17.10) 
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where ,xν
ν∂ = ∂ ∂  R κ

νμ λ
⋅⋅⋅  is the Riemann-Christoffel curvature tensor, ρ

νμΩ  
is the anholonomic object and [ ]v ρ μ  means alternation in regard to μ 
and ν alone.  

The deformation state can be defined by fifteen parameters. In the 
theory of elastic deformation, the full characteristic of the state is given by 
six parameters – components of the symmetric tensor .gμρ  In the dis-
cussed general case of a continuous field of inhomogeneities (dislocations) 
we  have, in addition to the six components of tensor ,gμν  also nine com-

ponents of the torsion tensor S ν
δρ
⋅⋅  which is antisysmetric in the indices ρ 

and δ (or – which is equivalent – nine coefficients of a nonholonomic de-
formation icμ ). Let us now consider a small closed circuit in a Riemannian 
space (no torsion) described by the differentials dξ 

k (intermediate state). 
Applying now the nonholonomic transformation (Eq. 17.2), we obtained 
an open circuit in system dξ 

μ (real state). 
Now we will express the quantities related to those transformations, 

that is: 
− the resultant change Δξ 

μ which we obtain in proceeding along a 
closed contour in the real state of the medium; 

− the resultant change Δ iμ in basis vectors. 
Those quantities express the previously mentioned inhomogeneity of the 

field of internal stresses related to the dislocation field. Finally, integrating 
relation (17.2) over a closed circuit in the x coordinate system we get the 
vector Δξ for the full displacement in the form, according to Kondo 
(1955).  

( ) .S R d dμ μ ν α β
βα βνα μξ ξ ξ⋅⋅

⋅Δ = + iξ  (17.11) 

The authors believe that here the correspondence between the non-
holonomic transformation introduced by plastic distortions and the Rie-
mannian-Christoffel curvature R and torsion S leads to the physically ade-
quate definitions for dislocations and rotational dislocations (Kondo 1955, 
Teisseyre 1995a); after deformation for the disclosure of any closed (be-
fore deformation) circuit L, we get the increment of the displacement vec-
tor uμ  along a closed contour in generalized space describing the state of 
stress in the form:  
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( )1
2

[ ] ,Lu S R u dsμ ναβ μ μ λ
αβ αβλ ν
⋅⋅ ⋅⋅⋅= ∈ +  (17.12) 

where S μ
αβ
⋅⋅  and μ

αβλ
⋅⋅⋅R  are the tensors of torsion and curvature of a specified 

non-Riemann space, and ds is the surface element related to the circuit. 
Here we introduced a product of two antisymmetric tensors, so the divi-

sion by 2 is required. Dividing the dislocation field into fields of Burgers 
type and rotational dislocations and introducing the density of dislocations 
α and density of rotational dislocation η, we obtain the density of Burgers 
dislocations (Kondo 1955, Teisseyre 1995a, Minagawa 1971, 1979): 

[ ] , ,Lu S ds Sμ ναβ μ μν ναβ μ
αβ ν αβα⋅⋅ ⋅⋅=∈ =∈  (17.13) 

as well as the density of rotational dislocations (Teisseyre 1969) 

1
4

[ ] , .Lu u ds Rμ μ σν λ τν τλμ ναβ
σλ ν αβλνη η=∈ = ∈ ∈  (17.14) 

Here we shall note that in our definition the first index in dislocation densi-
ty relates to its Burgers vector and the second one to the direction of its 
line (contrary to some other authors). The tensor ητν corresponds in the 
theory of Kröner (1958) to the incompatibility tensor Imn.  

The difference Δξ is therefore a measure of displacement of points of 
the medium in proceeding along a closed line, and constitutes the total 
value of the dislocation displacements. The density of those displacements 
as related to a surface unit is, of course, given by the expression in paren-
theses in Eq. (17.11). Density S μ

αβ
⋅⋅  expresses the density of Burgers type 

dislocations, and R μ ν
αβλ ξ⋅⋅⋅  that of rotation type dislocations (disclinations). 

In general, those expressions correspond to the respective expressions for 
the Volterra dislocations: 

.k k kim
i mu b xω= +∈  (17.15) 

17.2 Deformation Measures and Incompatibility 

In our approach, plastic distortions are the only sources of the incompati-
bilities. However, the plastic part of any field may be chosen arbitrarily; 
the definitions of defects, like dislocations and disclinations, shall be phys-
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ically plausible and reasonable. Making the linear approximation after 
Kröner (1958), we get (Teisseyre 1995a): 

( )
2

,

,

PL PL
ik isr kab sa as

b r

ak ai
ik iab kab

b b

x x

x x

η β β

α α
η

∂
=∈ ∈ +

∂ ∂

∂ ∂
=∈ + ∈

∂ ∂

 (17.16) 

0, , 0.ik ik
ik ki

k kx x
α η

η η
∂ ∂

= = =
∂ ∂

 (17.17) 

Our definition of rotational dislocation indicates also that its line corres-
ponds, for the particular case of distortion field βik

PL = βδik, to the dilatan-
cy/compression line as formed by the surrounding field of the edge dislo-
cations (Teisseyre 1969). In our approach the plastic distortions are the 
only sources of incompatibilities and the above definition of disclination 
density leads to its direct relation with the incompatibility tensor (Teis-
seyre 1995b): 

2 .ij ijIη = −  (17.18) 

Some authors take a more general assumption that the plastic strain and 
the plastic (incompatible) rotation (to be more exact: the plastic equivalent 
of gradient of rotation) are the independent sources of incompatibility 
(DeWit 1971, Kossecka and DeWit 1977a, b); in our approach (Teisseyre 
1995b), plastic strain and plastic rotation are related to plastic distortions  

( )

( )

1
2
1
2

,

.

PL PL PL
ik ik ki

PL PL PL
ik ik ki

ε β β

ω β β

= +

= −
 (17.19) 

In the definition by Kossecka and DeWit (1977a) the dislocations and dis-
clinations are independent sources of incompatibilities. Their results are 
more general and apparently too complicated, but explain the relation be-
tween dislocation density αik and disclination density θpq, the latter being a 
source of dislocation lines:  

0, 0.ik ik
ijk jk

k kx x
α θ

θ
∂ ∂

+ ∈ = =
∂ ∂

 (17.20) 
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Note that in our convention the first tensor indexes both in dislocation 
density and disclinations refer to the Burgers vector and the second ones to 
vectors of density lines.  

Earlier, Anthony et al. (1968) and Minagawa (1971, 1979) obtained the 
same relation by introducing the incompatible rotations for the Cosserat 
continuum (deformation in this continuum is characterized by displace-
ment vector and micro-rotation tensor), where an independent role of plas-
tic rotation increment, in this generalized continuum, justifies such an ap-
proach completely. As shown by Kossecka and DeWit (1977a), the general 
linear relation between the dislocations, disclinations and incompatibility 
is the following: 

1
2

.aj ai
ij iab jab ij ji

b k

I
x x
α α

θ θ
∂⎛ ⎞∂

= −∈ −∈ + +⎜ ⎟∂ ∂⎝ ⎠
 (17.21) 

Preserving the definition of rotation dislocations (17.15), we get  

1 1
2 2

( ) .ij ij ij jiI η θ θ= + +  (17.22) 

Independently, we shall note that the consideration by Kossecka and 
DeWit (1977a, b) on the loop dislocation density relate to its wrong defini-
tion. The definition of the disclination loop density is usually taken after 
Nabarro (1967), who probably introduced by a simple mistake the follow-
ing definition: 

, .ik
ik k ik k is smk

m

dS dx
x

α α
∂Δ

= Δ =∈
∂∫∫ ∫  (17.23) 

It has been shown that this definition is wrong (Teisseyre 1995c); the loop 
density Δ shall be derived from the integral relation 

ik k ik kdS dxαΔ =∫∫ ∫  (17.24) 

where on the left-hand side the loop dislocations are summed over a sur-
face element (this corresponds to the well known synthesis of the disloca-
tion fields presented earlier by Nabarro 1951) and the right-hand side 
represents the resulting dislocation line density encircling that surface. 
Further we get (Teissyre 1995c): 

.ik
is smk

mx
α∂

Δ =∈
∂

 (17.25) 
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Thus, it is not possible to identify the plastic distortion βPL with the loop 
dislocation tensor Δ as proposed by Kossecka and DeWit (1977a). 

In our approach (plastic distortions βPL are the only sources of incompa-
tibilities and θ = 0) we can derive the field of rotational dislocations from 
the dislocation density by relation (17.16) and similarly to Eq. (17.25) we 
might define the loop density of disclinations from density of disclination 
lines. 

Another question which we would like to rise is the use of scalar density 
function for dislocation fields as proposed by Aifantis (1982, 1984, 1985, 
1986, 1987). Scalar density can be used either for the specified unique 
component of dislocations or for isotropic distribution of dislocations. 
Dislocations move and evolve under the influence of an external stress 
field and under mutual interactions; only for the case of pressure load we 
can believe that the distribution of all dislocation density tensor compo-
nents is isotropic. 

17.3 Evolution Equations for Stresses and Dislocations 

The system of evolution equations (Teisseyre 1990, Teisseyre and Cze-
chowski 1993, Czechowski et al. 1994, 1995) consists of the continuity 
condition for line dislocations: 

( ) ,ik
ik j ik

j

V
t x

α
α

∂ ∂
+ = Π

∂ ∂
 (17.26) 

where Π denotes the dislocation source/sink function; V = v/c is the rela-
tive velocity; v is the dislocation velocity and c is the shear wave velocity. 

This relation shall be supplemented by the expression for relative ve-
locity of motion of dislocation density field (Magata et al. 1987), written 
by Teisseyre (1996) in the tensorial form (Sin and Rin are the stresses and 
stress resistances, respectively): 

( )22

ik in in
j jnk

ik
in in in

S RV
R S R

α
α

−
=∈ +

+ −
 (17.27) 

and by the differential relation between stresses and dislocation density 
tensor: 

1
2

1 ,
2 1mj ss mj jtn mn ss mn

t

S S
x

να α δ δ
μ ν

∂ ⎛ ⎞− = − ∈ −⎜ ⎟∂ +⎝ ⎠
 (17.28) 
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where μ is the rigidity modulus and ν is the Poisson ratio. 
However, we shall note that a more general relation for the stresses and 

dislocations shall include the asymmetric stresses (equivalent to stress 
moments (see: Chap. 7).  

The form of Eqs. (17.26) and (17.27) permits, with the help of (17.28), 
to integrate them (eliminating dislocation density) in order to get the diffe-
rential evolution equation for stresses (Czechowski et al. 1994); in another 
approach we can eliminate stresses (Teisseyre 1997) and get a system de-
scribing the evolution of dislocation density. 

17.4 Source/Sink Functions of Dislocation Density 

On the other hand, in his approaches to the choice of a source/sink func-
tion by using the dislocation density tensor, Mura (1963) proposed the 
following local balance law 

( ) 0ik
ikl ilk

l

V V
t x

α∂ ∂
+ − =

∂ ∂
 (17.29) 

using the notation Vikl = cαikVl . 
The same form is discussed by Teisseyre (1990, 1995c) with the addi-

tional source/sink term 

( ) .ikkillik
l

ik VV
x

c
t

Π=−
∂
∂

+
∂

∂
αα

α
 (17.30) 

Upon assuming 0k lV x∂ ∂ =  (here index k relates to line of dislocation) 
and noting that 0,il lxα∂ ∂ =  this equation leads to (17.26). 

For the elasto-plastic continuum body, Teodosiu (1970) derived the 
equivalent continuity condition of the defect density which is expressed by 
the “dislocation flux”, Jit = c 

qnt∈ αiqVn , as follows: 

0.ik
kjt it

j

J
t x

α∂ ∂
+ ∈ =

∂ ∂
 (17.31) 

His definition of J does not account for plastic velocity of dislocations; 
Kossecka and DeWitt (1977a, b) proposed the dislocation current tensor 
defined as difference between time and space derivatives of plastic distor-
tion and plastic velocity as follows: 

.
PL

PLit
it i

t

J v
t x

β∂ ∂
= −

∂ ∂
 (17.32) 
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However this equation has not accounted for local creation or annihilation 
of dislocations.  

Lardner (1969a, b) has considered effects of local creation or annihila-
tion of dislocations as in Eq. (17.16) with the source/sink function of a 
form which could be motivated by the work of Webster (1966a, b). How-
ever, they have not proposed any concrete tensor form of this function; the 
same remark concerns the works by Werne and Kelly (1978) and Caglioti 
and Bottani (1988). 

Teisseyre (1990, 1995c) proposed proportionality P of the source/sink 
function to the dislocation current: 

( ) ,ik ik l il k
t

P V V
x

α α∂
Π = −

∂
 (17.33) 

while Teisseyre and Nagahama (1997) proposed another formula for Π: 

0 2 .ik ik l ik kjs is jP P P Vδ α αΠ = + + ∈  (17.34) 

This form is supplemented with the production and coalescence rates of 
dislocations with the respective probability coefficients P0, P1 and P2, 
which in general may depend on the space coordinates (due to material 
properties) and on time (due to creep damage processes). The last form of 
source/sink function is similar to that of the scalar rate equation of disloca-
tion densities from the work of Webster (1966a, b). These tensor rate equa-
tions of dislocation densities, (17.33) and (17.34), have been proposed 
under the assumption of the distant parallelism criterion which means the 
absence of disclination. 

A new form of the source/sink function is discussed by Teisseyre (1997) 
and is linked to the rebound mechanism of earthquakes. Moreover, the 
numerical simulations of an interacting model with the source/sink of dis-
locations reproduce the self-organized intermittency of dislocation move-
ments (Miguel et al. 2001). 

Anthony et al. (1968) obtained the relation between the dislocations and 
disclinations as presented in Eq. (17.20); considering the Cosserat conti-
nuum he considered the dislocation density tensor and disclination density 
tensor. When dealing with dislocations alone, Eq. (17.20) should reduce to 
Eq. (17.17) and therefore the disclination term is compared with the distri-
bution of sources or sinks of dislocation lines (more on the sources or sinks 
of dislocation lines: Minagawa 1971). Similarly, DeWitt (1971) and Harris 
and Scriven (1971) have also considered the relation between disclinations 
and sources of dislocation line from the crystallographic point of view.  
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Consideration of the Riemann-Christoffel curvature tensor of a Rieman-
nian (or non-Riemannian) space, under the assumption of non-distant par-
allelism criterion, may lead us to the relation between the incompatible 
tensor and the Riemann-Christoffel curvature tensor in the form suitable 
for exploring the defect properties in the material: 

1
4

.Rλχ λχ λνμ πχρ
νμτρη θ+ = ∈ ∈  (17.35) 

Under this assumption, Minagawa (1971, 1979) expressed the density of 
the sources of dislocations given by  

1
2

.R Rχ λνμ χ
λνμ
⋅⋅⋅= ∈  (17.36) 

By substituting Eq. (17.36) into Eq. (17.35) we obtain (cf. Minagawa 
1971, 1979): 

( ).R λμ λμ
χ λχμ θ η=∈ +  (17.37) 

This equation means that the sources of dislocations are converted into a 
distribution of disclination and line centers (rotational density). This role 
of disclinations has also been discussed by DeWitt (1971) from the crystal-
lographic point of view. 

17.5 Virtual Tearing (Kondo 1964) 

At any rate, any real plastic manifold with imperfections can be torn into a 
teleparallelism (a distant parallelism) by virtual tearing (Kondo 1964). 
Kondo’s (1964) concept of a teleparallelism by virtual tearing is intro-
duced below. 

An important case of untearability or imperfect tearing is observed in 
the Riemannian approach to of all plastic disturbances including disloca-
tions or disclinations into the so-called incompatibility tensor. It should 
first be referred to a-posteriori continuum without tearing with a structure 
which is entirely Riemannian. Its curvature is, therefore,  

[ ]{ } { } ]{ }2 .K
x

κ κ κ ρ
νμλ μ λ μ λν ρν
⋅⋅⋅

⎡⎣

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠
 (17.38) 

By a virtual tearing, the manifold can be brought to a teleparallelism so 
that the non-Riemannian curvature tensor, formally defined by κ

νμλ
⋅⋅⋅R  as 

above, needs to vanish 
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0,R K Nκ κ κ
νμλ νμλ νμλ
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅≡ + =  (17.39) 

where κ
νμλ

⋅⋅⋅N  is originated by the tearing. This equation represents an equa-
tion of compatibility in dislocation theory. 

In three dimensions, nothing is lost from the non-Riemannian or incom-
patible metric characteristic represented completely by replacing it by a 
physically more significant 

1
2

,G K Kgμλ μλ μλ= −  (17.40) 

where μλK  is the contracted curvature tensor, or Ricci tensor, and K the 
scalar curvature defined respectively by 

andK K K g Kκ λμ
μλ κμλ μλ

⋅⋅⋅= =  (17.41) 

(see McConnel 1931). Equation (17.40) has been derived by Turski (1966) 
from a variational principle or gauge theory (Utiyama 1956). 

Hence, the contracted equation 

G Mμλ μλ= −  (17.42) 

can be substituted for Eq. (17.39), where 

1
2

,

, .

M N g N

N N N g N

μλ μλ μλ

κ λμ
μλ κμλ μλ

⋅⋅⋅

= −

= =
 (17.43) 

The tensor ,M μλ  as well as ,N κ
κμλ
⋅⋅⋅  depends on the tearing which needs to 

be perfect. If it is assumed as above, Eq. (17.42) is used for determining 

the internal strain expressed by the tensor ( )
1
2

( )gμλ μλμλε δ≡ −  included in 

.Gμλ  Hence, the latter is properly called the incompatibility tensor. Its 
four-dimensional analogue or the four-dimensional counterpart of μλM  is 
the general-relativistic ‘material-energy tensor’, as is well known. Tensor 

μλG  is obviously the Einstein tensor. It is non-divergent in the sense 

0,Gκ
κ λ

∗

⋅∇ =  (17.44) 
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where κ
∗
∇  gives the covariant derivative with { }κ

μλ  as the parameters of 
connection. 

The structure of the virtual teleparallelism permits us to assume that the 
incompatibility tensor μλG  can be expressed in terms of the torsion tensor 
field of true or virtual dislocation distributions as by Eq. (17.42). It is im-
portant to recognize this in respect of the analysis of the problem in which 
all distributed sources of internal stresses, whether dislocational or not, are 
virtually lumped into an incompatibility tensor. 

Sakata (1970) grasped Finslerian imperfections in plastic materials by 
the metrics ( , ),g x xκ κ  where κx  is the field of direction variables (the 
osculation) as a function of .κx  Then, by averaging microscopic Finslerian 
imperfections ( , ),g x xκ κ  he found non-Riemannian manifold (space) in 
consequence of averaging those features from the macroscopic point of 
view. From a similar view point, by averaging the micro-gravitational 
fields, Ikeda (1979) derived macro-gravity fields as a non-Riemannian 
space. Then under the assumption that this macro-field has a teleparallel-
ism, the Einsteinian formalism can be described by Eq. (17.40). 

17.6 High-Order Spaces and Non-Locality of Deformation 

In this chapter, we will reconsider the continuum with microstructures 
taking into account the concepts of non-locality, asymmetry and inner- 
rotation of deformation from the viewpoint of the differential geometry of 
high-order spaces.  

The high-order space (or the Kawaguchi space: Kawaguchi 1931, 1937, 
1962) of order M (= 1, 2, 3, ...) is a metrical space )(M

nK  in which the arc 
lengths along a curve )(txx κκ =  (t is an arbitrary parameter) are given by 
the integral 

(1) (2) (3) ( )( , , , , ..., ) ,MS F dt= ∫ x x x x x  (17.45) 

where F means the fundamental function satisfying some homogeneity 
conditions and where x(α)i are the independent internal variables: 

( )( )  / ; or / ;
1,2,..., 1.

i id dt x d x dt
M n

αα α α α α

α
≡ ≡

= ≤ −
x x   
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Of course, this space is regarded as a generalized Riemannian or Finsler 
space non-localized by x(α) (here x(1) is a vector, but x(α) )2( ≥α  are the 
tensors). It turns out that the Riemannian space is a higher-order space of 
order 0, the Finsler space is a higher-order space of order 1, and the Cartan 
space is a higher-order space of order α = n – 1. Moreover, when we re-
gard the non-Riemannian space and x(α) as a base space and a fiber, respec-
tively, this high-order space is a fiber bundle space (Kawaguchi 1931, 
1937, 1962). 

We shall consider a geometrical grasp of the inherent law of the inde-
pendent internal variables. At first, we shall write the related laws for 

( )καx  in the form 

( ) ( )
( )

( )

1
,x M dx N dx

α
α κ α κ β μλ λ

λ β μ
β

δ
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑  (17.46) 

which are essentially regarded as the base connections of high order spaces 
(Kawaguchi 1962); in this equation, ( )M α κ

λ  and ( )N λ
β μ  represent the inte-

ractions between each order of the internal variables.  
Concerning the concept of “non-locality”, this is carried by the internal 

variables such as x(α), so that a “non-local” field (Yukawa 1950) can be 
obtained by attaching an internal variable to each point of a local (or Rie-
mannian) field. This way of thinking descends from the theory of high 
order spaces (Kawaguchi 1931, 1962). 

Finsler space can be regarded as a generalization of Cosserat continua 
(Cosserat and Cosserat 1909). When an independent internal variable x(1) is 
a vector attached to each point of the continuum, the space can be regarded 
as an ordinary Cosserat continuum. When an independent internal variable 
x(1) is a deformable director attached to each point of the continuum, we 
can get the theory of continuum mechanics of oriented media (Ericksen 
and Trusdell 1958). x(1) is regarded as an osculation in the microscopic 
Finslerian imperfections (Sakata 1970). Moreover, when an independent 
internal variable x(1) is a tensor attached to each point of the continuum, we 
can derive the multipolar theory (Green and Rivlin 1964). More generally, 
when an independent internal variable x(1) is an m-dimensional manifold 
attached to each point of the continuum, we can derive Capriz’s continuum 
with microstructures (Capriz 1989) or space-time as a micromorphic con-
tinuum (Sławianowski 1990). 
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17.7 Interaction Between Microscopic and Macroscopic Fields:  
       Comparison Between the Different Approaches 

In this section, we shall derive an interaction field (Ikeda 1985) between 
microscopic and macroscopic fields based on the base connections of high 
order spaces. This interaction field is the physical interaction field (Ikeda 
1972) and the mathematical method is equivalent to the contact tensor 
calculus proposed by Yano and Davies (1954).  

At first, we shall consider an interaction field between microscopic de-
formation field (1)( )i ixζ ≡  and macroscopic deformation field xλ  (in our 
notation the Latin index letter refers to the microscopic deformation field 
and the Greek one to the macroscopic deformation field). When micro-
scopic deformation fields jζ  satisfy the inherent laws, we can put 

0.jδζ =  In this case, the base connection becomes 

,i
i dAdx ζλλ =  (17.47) 

where iAλ  is the interaction coefficient between microscopic and macros-
copic deformation fields and is equivalent to (1) .iN λ  The interaction coeffi-

cient iAλ  is non-symmetrical in general. 
Next, based on the differential geometry methods (Kondo 1953), we 

shall consider geometrical backgrounds of the inner-rotation. If small dis-
turbances alone are considered, the deformation state of macroscopic de-
formation field can be grasped by the metric gλκ  and the coefficient of 
connection after deformation in the form:  

( )2 , ,j i i
ji ig A Aλκ λ κ λκ λκ λ κλκδ δ ε ε β δ= = + =  (17.48) 

, ,i i
i iA Aκ κ κ κ κ

μ λ μ λ μ λ λ λε ε β δΓ = ∂ = ∂ ≡  (17.49) 

where ( )λκε  is an ordinary strain, i
λβ  represents deformation.  

The antisymmetric strain does not represent the metric imperfection, but 
the rotational characteristic of microelements. Moreover, using the sym-
metric and antisymmetric strains, the coefficient of connection after de-
formation can be expressed in the form: 

( ) [ ].μ λκ μ λκ μ λκ μ λκε ε εΓ = ∂ = ∂ + ∂  (17.50) 
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Thus, antisymmetric strains affect the metric imperfection, but the coeffi-
cient of connection after deformation remains unchanged. Let us introduce 
the inner-rotation ;κλϕ  the relation between the strain and the inner 
-rotation is generally given by 

.uλκ λ κ κλε ϕ= ∂ +  (17.51) 

Therefore, the object of anholonomity in the macroscopic deformation 
field after deformation can be expressed by 

[ ] [ ] .μλκ μ λ μ λ κκ ϕΩ = −Γ = −∂  (17.52) 

This shows the geometrical object for the inner-rotation. 
In the so-called Cosserat continuum (Cosserat and Cosserat 1909), the 

deformation and rotation tensors are given by 

( ) ( ) ( ) ( )

[ ] [ ] [ ] [ ]

,

,

u u

u u
λκ λ κ κ λ λ κ

λκ λ κ λκ λ κ λκ

ε ϕ

ε ϕ ω

= ∂ + = ∂

= ∂ + = ∂ +
 (17.53) 

where uκ  is the displacement of a material element and λ κω  is the rotation 
independent of the rotation [ ]uλ κ∂  originating from the displacement. In 
the micromorphic continuum theory (Suhubi and Eringen 1964), the de-
formations are represented not only by the displacement vector ,uκ  but 
also by a new tensor that describes deformations and rotations of micro-
elements (e.g., grains, blocks or some internal surface defects). It is a mi-
crodisplacement tensor .λ κφ  The deformation can be now expressed by the 
following strain measures (e.g. Eringen 1968): 

strain tensor 

,e uλκ λ κ= ∂  (17.54) 

microstrain tensor 

,uλ κ λ κ λ κε φ= ∂ +  (17.55) 

microstrain moment tensor 

.κ λ μ μ λκγ φ= −∂  (17.56) 

The microdisplacement tensor λκϕ  represents the relative deformation 
between microscopic and macroscopic fields. Regarding the microdis-
placement tensor λκϕ  as the inner-rotation ,λκφ  Eq. (17.55) is equivalent 
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to Eq. (17.53). In this case, the order of the microstrain moment is the or-
der of the coefficient of connection, and microdisplacement tensor λκϕ  
plays an important role as the inner-rotation or the object of anholonomity 
in the macroscopic deformation field after deformation. 

In Chapter 7 we have presented a new approach to asymmetric conti-
nuum with the structural indexes; such an approach is partly equivalent to 
that used in the Kröner method with the self fields and also that in micro-
polar theories.  

We can write some conditions presenting these equivalences for the 
stresses, strains and rotations. In the Kröner method we put: 

0 0 0, , ,S S S
ks ks ks ks ks ks ks ks ksS S S E E E ω ω ω= − = − = −  (17.57) 

where we write  
− for the elastic (physical) fields: , , ;ks ks ksS E ω  

− for the total fields: 0 0 0, , ;T T T
ks ks ks ks ks ksS S E E ω ω= = = ; 

− for the self fields: , , .S S S
ks ks ksS E ω . 

In the standard asymmetric theory we have (Chap. 7): 
0 0 0 0 0

[ ] , ,ks ks ks ks ks ks ksS S S E e E ω χ ω= + = =  (17.58) 

and for the deformation tensor 0 0 0 0 .ks ks ks ks ksD E e Eω χ ω= + = +  
In comparison with the self fields we would obtain only the restrained 

values of these fields: 
0 0 0 0

[ ] , ( 1) , ( 1) .S S S
ks ks ks ks ks ksS S e E E χ ω ω→ − − → − − → −  (17.59) 

The comparison with the micromorphic theories brings for the relations 
(17.54)-(17.56):  

0 0 0
( ) , .ks ks ks lk kse E ϕ φ χ ω= = =  (17.60) 

17.8 Asymmetric and Anholonomic Deformation 

Based on the base connections of high order spaces and the non-locality of 
deformation, an interaction field between microscopic and macroscopic 
deformation fields can be grasped by the ( , )-fieldsix Aλ λ  as non-local 
fields. Moreover, based on the differential geometry methods (Kondo 
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1953), the inner-rotations as asymmetric fields can be derived from the 
( , )-fieldsix Aλ λ , and the geometrical backgrounds of the inner-rotation are 
considered. Therefore, the interaction coefficient iAλ  can be used to inves-
tigate the correlation between the macroscopic deformation field and the 
microscopic deformation field with microstructures. The metric and the 
coefficient of connection in strain space are dual to the stress and couple 
stress in stress space, respectively (Amari and Kagekawa 1964, Yamasakai 
and Nagahama 1999, 2002). This means that the asymmetrical fields origi-
nate from the non-local fields: an interaction field between microscopic 
and macroscopic deformation fields is a non-local field with internal va-
riables as the inner-rotations φλκ or x(α). This internal variable x(α)-
dependence is combined, in general, not only with the concept of “non-
locality” but also the concept of “anisotropy” (Takano 1968). 

In the micromorphic continuum theory (Suhubi and Eringen 1964), ow-
ing to the axiom of affine motion, and by analogy with the deformation 
gradients, the microdisplacement as the inner-rotation is linked to the rela-
tive deformation defined by the position of a material point of the micro-
volume relative to the center of mass of the macrovolume of the body. In 
this case, non-linear or irreversible behaviours with the inner-rotation have 
not been clear and not been linked to anholonomity in an interaction field 
between microscopic and macroscopic deformation fields. According to 
the theory of the physical interaction field (Ikeda 1972, 1975, Muto and 
Nagahama 2004), the inner-rotation plays an important role in the object of 
anholonomity in the macroscopic deformation field after deformation. The 
object of anholonomity can describe the non-linear or irreversible beha-
viour of an interaction field between microscopic and macroscopic fields, 
because the interaction coefficient iAλ  is non-symmetric in general. 

The Lagrangian of these defects is invariant with respect to three- 
dimensional rotations SO(3) and spatial translations T(3) (Kadić and Ede-
len 1983), and the deformation of micromorphic structure (continuum) 
induces the appearance of dislocations and disclinations, (3) (3).SO T  
These structural defects are related to anholonomity caused by the inner-
rotation (microdisplacement or microstrains moment) in the form: 

,κλ λ μν μ κνφΛ = −∈ ∂  (17.61) 

where κλΛ  denotes the microdislocation density (Nagahama and Teisseyre 
2001b), λ μν∈  is Eddington’s epsilon (the skew-symmetric tensor; 0, 1, –1).  
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Therefore, the internal nuclei (dislocations, disclinations, vacancies, 
thermal nuclei or electric nuclei) are the objects/sources that create internal 
stresses (self stresses) (Teisseyre 2002).  

17.9 Micromorphic Continuum with Defects 

In the micromorphic continuum it is assumed that the body possesses a 
certain microstructure. After Suhubi and Eringen (1964) and Eringen and 
Claus (1970), we define the following strain measures (see also Teisseyre 
1973, 1974, 1995d, Teisseyre and Nagahama 1999, Nagahama and Teis-
seyre 1998, 2000, 2001a, b): strain tensor enl, microstrain tensor εnl, and 
microstrain moment tensor γklm. From the compatibility conditions for the 
strains and microstrains, we obtain 

1
2

, , ,n l l kl
nl nl nl klm

l n n m

u u ue ε γ
x x x x

φ
φ

⎛ ⎞∂ ∂ ∂ ∂
= + = + = −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (17.62) 

where un is a displacement and ϕkl is a microdisplacement. Here we will 
confine ourselves to the linear theory and Cartesian coordinate system. For 
rotation, we have 

1
2

,ji
ij

j i

uuω
x x

⎛ ⎞∂∂
= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (17.63) 

while the bend twist (gradient of rotation) is defined as follows: 

1 1
2 2

, .i l
mi ikl i ijk jk

m k m

u
x x x
ω

κ ω ω
∂ ∂

= = ∈ = ∈
∂ ∂ ∂

 (17.64) 

Moreover, from Eq. (17.62), the total strain is obtained by the sum of two 
strains: macrostrain and microstrain: 

.t
ij ij ij ije e ω φ= + +  (17.65) 

Now we assume that the microdisplacements ϕij and the microstrain 
moment tensor γijk are independent sources of incompatibilities (Nagahama 
and Teisseyre 2001a: case II). In such a case, we obtain 

1
2

.kn
sn smk

m

α
x
φ⎛ ⎞∂

= − ∈ ⎜ ⎟∂⎝ ⎠
 (17.66) 
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In this case, the disclinations also appear and we shall relate the discli-
nations to moments of microstrains: 

, .kq stk
kq qst stk pq pmk pmk qst

m m

κ γκ γ θ
x x

∂ ∂
=∈ = −∈ = −∈ ∈

∂ ∂
 (17.67) 

From Eqs. (17.66) and (17.67), dislocation density αsn and disclination 
density θpq are related to the microdisplacement φij , and the deformation of 
the micromorphic continuum leads to the appearance of defects (i.e., dislo-
cations and disclinations). 

17.10  Taylor-Bishop-Hill Model 

The derived formula on the theory of micromorphic continuum with de-
fects is applied to lattice preferred orientation (LPO) of polycrystals de-
scribed by Taylor-Bishop-Hill (TBH) model. In this chapter, we briefly 
introduce the TBH model (Taylor 1938, Bishop and Hill 1951, see also Gil 
Sevillano et al. 1980, Van Houtte and Wagner 1985, Fleck et al. 1994). 
 

 
Fig. 17.1  The schematic model for additional crystalline lattice rotation with the 
intracrystalline slip undergone. (a) The case when a crystal is not constrained by 
the external displacement. The base of the square rotates clockwise following the 
torque of the intracrystalline slip. (b) The case when the bases of the crystal are 
fixed by the piston. In this boundary condition, the crystal rotates counterclock-
wise against the torque of the intracrystalline slip. In polycrystal, the piston is 
replaced with other crystals (modified from Wenk et al. 1986) 

External rotation must be created in the case of polycrystal deformation, 
because the deformation of each grain in polycrystals is constrained by the 
surrounding grains (Fig. 17.1). The simplest model for the constrained 
deformation in polycrystals is the Taylor homogeneous deformation hypo-

dui
R

(b)(a)

dui
R
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thesis. Thus, the development of LPO is a natural outcome in the TBH 
model. In the TBH model, we assume that the material deforms through 
the crystal lattice by intracrystalline slip and the lattice undergoes rotation. 
The basic relation in TBH model used extensively in plasticity of polycrys-
tals is given by 

,S R
i i idu du du= +  (17.68) 

where 

, .S R
i ij j i ij jdu dx du dxτ φ≡ ≡  (17.69) 

Here, S
idu  is the relative displacement due to intracrystalline slip and 

R
idu  is due to additional lattice rotation for bringing the crystal lattice to 

rotate. In Eq. (17.69), S
idu  is linearly related to jdx  via the slip tensor ,ijτ  

and R
idu  is related to jdx  via the rotation tensor .ijφ  A particular slip sys-

tem (α) is specified by the slip vector is  and the vector of slip plane nor-
mal .jn  The slip tensor ijτ  is associated with an amount of slip ( )ατ  on 
each of the active slip systems, hence 

( ) ( ) ( ) ,a a a
ij i j

α
τ τ s n= ∑  (17.70) 

where the summation is taken over all active slip systems. 
The physical meaning of these equations is that the imposed strain in 

each crystal idu  (i.e. macroscopic strain in the Taylor model) can be ac-
commodated by the strain created by multiple slips in crystals S

idu  and the 
additional lattice rotation generating the LPO .R

idu  In other words, strain 
compatibility leads to the appearance of lattice rotation. From Eqs. (17.65) 
and (17.68), we have the correspondences of variables, i.e. 

, , .t S R
i ij i ij ij i ijdu e du e ω du φ⇔ ⇔ + ⇔  (17.71) 

The one-to-one correspondence (17.67) shows that deformation of micro-
morphic continuum is related to the TBH model. Moreover, microdis-
placements ϕij are equivalent to additional lattice rotation, and the defor-
mation of micromorphic continuum creates anisotropic textures in poly-
crystals. 

The deformation of micromorphic continuum leads to the appearance  
of defects. In Sects. 17.9 and 17.10, we reconsidered the relation of the 
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TBH models from the view point of the theory of micromorphic conti-
nuum with defects. In the micromorphic theory, the microdisplacement 
which corresponds to additional lattice rotation is related to dislocation 
density in Eq. (17.66). Thus, the increase in the deformation, i.e. the  
increase of the dislocation density, leads to the increases in the additional 
lattice rotation R

idu  in Eq. (17.68). As mentioned in Sects. 17.9 and 17.10, 
microdisplacements ϕij in micromorphic continuum correspond to addi-
tional lattice rotation R

idu  in polycrystals, and deformation of micromor-
phic continuum in polycrystals. 

In the mathematical description of defect fields, gauge theory has played 
the main role (e.g. Kadić and Edelen 1983, Nagahama 2001, Yamasaki and 
Nagahama 1999, 2002). In particular, a 45-fold Abelian gauge condition 
called the Golebiewska gauge (Golebiewska-Lasota and Edelen 1979, 
Kadić and Edelen 1983, Edelen and Lagoudas 1988) is admitted by the 
defect field (Yamasaki and Nagahama 1999, 2002). From this point of 
view, Yamasaki and Nagahama (2002) derived the TBH model from the 
Golebiewska gauge transformation. In the differential form, the physical 
quantity ψ 

i can be transformed under Golebiewska gauge transformation, 
as follows; 

H( ) ,i i i j
e jψ ψ ψ= − Γ ∧  (17.72) 

where i
eψ  is called the exact part of iψ , H is a linear homotopy operator, 

i
jΓ  is a connection 1-form and the symbol ∧  denotes the exterior product. 

From the differential geometrical description of a deformed medium in-
cluding a defect field (Edelen and Lagoudas 1988), the physical quantities 
in the strain space-time can be expressed as follows: ii B=ψ  and 

iji
j K=∧Γ ψ  where iB  and iK  represent distortion-velocity 1-form and 

bend-twist-spin 2-form, respectively. From definitions HBi = ui, HKi = ri, 
relation (17.72) can be rewritten: 

d .i i iB u r= −  (17.73) 

Relation (17.73) means that total distortions Bi are given by sums of two 
terms: gradient of displacement dui and internal rotation ri. From the one-
to-one correspondences between Eqs. (17.68) and (17.73), the Golebiews-
ka gauge transformation corresponds to another expression of the TBH 
model in strain space-time (Yamasaki and Nagahama 1999, 2002). 
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18.1 Introduction  

Inspired by the original ideas of Albert Einstein on the relativistic theory 
of the non-symmetric field (cf., Einstein 1955a), which were at the basis of 
unification of gravity and electromagnetism theories, we briefly review 
possible constructive analogies between an elastic solid body with a conti-
nuum defect distribution and the Einstein-Cartan Theory (ECT) of gravita-
tion. The aim of this approach is to illuminate the analogies between dy-
namical localized concentrations of continuous fields of crystalline defects 
in elastic continua, such as disclinations and dislocations, and the notions 
of curvature and torsion in the ECT. Beyond reviewing, a new element in 
this chapter is our attempt to relate the defect densities with spinors de-
fined in spin-spaces. In the result, we identify disclination and dislocation 
spinors. Moreover, using some analogies between the so-called degenerate 
continuum and electromagnetism pointed out by Roman Teisseyre, we 
formulate Maxwell-like equations for spin and twist motions in terms of 
spinors. Roger Penrose claims that spinors are more fundamental quanti-
ties than tensors. The applications of differential geometry in physics have 
become an extremely enlightening and spectacular intellectual achieve-
ment. However, sometimes the geometry remained only a background or 
visualization. Truly intimate relationships between gravity and geometry 
have been revealed by Einstein. On April 4, 1955 Albert Einstein wrote: 
“the essential achievement of general relativity, namely to overcome ‘ri-
gid’ space (i.e., the inertial frame), is only indirectly connected with the 
introduction of a Riemannian metric. The directly relevant conceptual 
element is the ‘displacement field’ ( k

ijΓ ), which expresses the infinitesimal 
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displacement of vectors. It is this which replaces the parallelism of spatial-
ly arbitrarily separated vectors fixed by the inertial frame (i.e., the equali-
ty of corresponding components) by an infinitesimal operation. This makes 
it possible to construct tensors by differentiations and hence to dispense 
with the introduction of ‘rigid’ space (the inertial frame). In the face of 
this, it seems to be of secondary importance in some sense that some par-
ticular Γ  field can be deduced from a Riemannian metric...” (cf., Einstein 
1955b). His General Relativity Theory (GRT) relates geometry of curvili-
near space with gravity field. Any mass generates Riemannian curvature 
which transforms the Euclidean space into a curvilinear, e.g., the Rieman-
nian space. If the mass is spinning, it causes Cartan’s torsion and trans-
forms the Riemannian space into the Riemann-Cartan space. Here we shall 
take a closer look at this beautiful branch of science, where geometry and 
physics live in real symbiosis. First of all, we shall consider some aspects 
of discontinuity fields. An idea of continuous distribution of infinitesimal-
ly small discontinuities illuminates the foundations and predictive powers 
of elasticity theory. This idea becomes more appealing and the obtained 
results much more attractive and universal when formulating them in the 
framework of the differential geometry. A mighty machinery of differen-
tial geometry allows us to describe elastic continua with continuous fields 
of disclinations and dislocations permeating the deformed crystal. Discli-
nations and dislocations are treated as rotational and translational defects, 
respectively. 

Here some basic concepts of Riemann-Cartan (RC) geometry have been 
briefly recalled. It is worth to mention that this approach is very universal 
and can be applied in other branches of science. It is only a question of 
time that new applications will appear. So far, a similar approach was used 
to deal with fields of errors in measurements of many physical quantities. 
For example, the discontinuity fields can describe the fields of disclosures 
of geodetic networks and telecommunication networks. 

A Riemann-Cartan approach to elasticity casts new light on some analo-
gies between the theory of elasticity and gravity with torsion. Mathemati-
cal formalisms describing the both theories are similar. Simply, the gravity 
theory describes an elastic crystal under tension. In fact, we can observe 
here a kind of duality in mathematical theories of elasticity and gravity 
with torsion. Geometrization of physics initiated by Einstein has profound 
significance for unification of all fundamental interactions. John Wheeler 
has coined a new name for this fascinating geometrical approach, i.e., 
“geometrodynamics.” 

Sacharov (1967) expressed an interesting idea that “the geometry does 
not possess a dynamics of its own, but the stiffness of spacetime could be 
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entirely due to the vacuum fluctuations of the fundamental fields in the 
universe, e.g., scalar, vector, tensor, and spinor fields.” 

Thus, we can compare the geometry to a flax sack. When it is empty, it 
is flat and it does not possess any dynamics of its own. However, when it 
is full of sand grains, it takes a shape determined by rotational and transla-
tional degrees of freedom of sand grains in the gravity field. A similar 
physical interpretation, comparing the geometry to an empty infinitely thin 
plastic bag and a field to water that can fill it up, was suggested by 

Usually, the field equations are derived from appropriate variational 
principles. A variational approach to an asymmetric elastic continuum was 
discussed by Majewski (2006b). He considered theoretical aspects of this 
phenomenon in the framework of the mechanics of a micromorphic conti-
nuum. The micromorphic continuum allows for rotational motions of each 
microvolume of the continuum. Rotational motions are the result of micro-
scopic defects in the form of dislocations and disclinations. Majewski 
(2006c) applied a Lagrangian formulation to a solid with dislocations in 
order to describe tectonic solitons propagating along an earthquake fault.  

Kondo (1952, 1962) formulated a geometrical theory of defects in the 
framework of Riemann-Cartan geometry. He revealed the roles played by 
curvature and torsion in the continuum theory of crystalline defects. It has 
been known for some time in the physical community that a mathematical 
structure of linear elasticity in a Riemannian space is identical with Eins-
tein’s general relativity theory. It means that the universe can be treated as 
a gigantic elastic solid crystal under tension. Space curvature in Einstein’s 
theory corresponds to a surface density of disclinations in the solid crystal. 
A space metric tensor in Einstein’s general relativity corresponds to a 
strain tensor in elasticity. It should be emphasized that both tensors are 
symmetrical. In order to observe an analogy between the solid crystal and 
general relativity describing vacuum without matter in a flat spacetime, we 
need only a pure elastic crystal without defects. Thus, the pure elastic crys-
tal represents the elastic ether in spacetime. In order to observe an analogy 
in a curved space, it is enough to introduce only one kind of defects in the 
crystal, namely, disclinations. Thus, the disclinations represent matter. 
When we add dislocations to the crystal, then we should add torsion to the 
spacetime and such a gravitational theory with curvature and torsion is 
called the Einstein-Cartan theory. The second Einstein-Cartan equation 
relates spin with torsion. Thus, the dislocations represent spinning of mat-
ter. Paraphrasing here the famous Wheeler’s expression about spacetime 
and mass, we can say colloquially in our situation that spacetime tells de-
fects how to move and defects tell spacetime how to curve and twist. De-

Kleinert (2008). 
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formations of the solid crystal with dislocations correspond to distortions 
of metric tensor. The connection is no longer symmetrical in the Einstein-
Cartan theory.  

Rotational motions (spin and twist) are present in many natural pheno-
mena and processes. For instance, they can be observed in earthquakes 
(cf., Majewski 2006a). It is noteworthy that other tectonic, volcanic, min-
ing, and land sliding events can be sources of rotational motions as well. 
Rotational motions in solids can excite rotational elastic waves and soli-
tons.  

Elasticity theory reproduces only the linear approximation of the Eins-
tein-Cartan theory of gravitation. The equations of asymmetric elasticity 
theory for the Cosserat media can also be naturally incorporated into the 
geometric theory as the gauge conditions. 

Geometrodynamics relates geometrical properties of space to physical 
fields, eg., space curvature is related to matter; space torsion is related to 
spinning of matter. In order to describe all four fundamental physical inte-
ractions, we need to enrich the geometry, i.e., to introduce more spatial 
dimensions. For instance, the recent string theories require 11 dimensions 
in order to describe all fundamental interactions. The more spatial dimen-
sions have been employed in a geometrical description, the more physical 
fields or interactions can be included. 

18.2 The Riemann-Cartan Geometry 

In 1922 Élie Cartan introduced torsion to the Riemannian geometry and 
formulated foundations of the Riemann-Cartan (RC) geometry. He was 
inspired by Cosserat brothers (1909). It is noteworthy that electron spin 
was discovered later, i.e., in 1925.  

 

Fig. 18.1  Classification of spaces 
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The RC spacetime (Fig. 18.1), 4 , is a differentiable 4D material mani-
fold M  endowed with a metric tensor gμν and with a metric-compatible 
connection κ

μνΓ , which is non-symmetrical in its lower indices.  

An assumption of parallelism requires that lengths and angles should be 
preserved by parallel translation. A consequence of this requirement is the 
following condition for the covariant derivative of the metric tensor gμν in 
the form 

, 0,g g g gρ ρ
κ μν μν κ κμ ρν κν ρμ∇ = − Γ − Γ =  (18.1) 

where ∇κ and, κ denote a covariant derivative and a partial derivative with 
respect to xκ, respectively. 

The above equation is called a metricity condition for the connection 
and expresses the fact that the connection is compatible with the metric. 

The antisymmetric part of the connection defines a new tensor, the tor-
sion tensor (Fig. 18.2), 

( )[ ]
1 ,
2

T κ κ κ κ
μν μν μν νμ= Γ = Γ −Γ , (18.2) 

where (.) and [.] denote symmetrization and antisymmetrization, respec-
tively. For instance, 

( ) ( )( ) [ ]
1 1, ,
2 2μν μν νμ μν μν νμΓ = Γ + Γ Γ = Γ −Γ  (18.3) 

 

Fig. 18.2  Illustration of torsion. We shift two vectors in parallel directions and 
find that the obtained parallelogram is unclosed 
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Exclusion of an index from symmetrization or antisymmetrization is de-
scribed as follows 

( ) ( )( | | ) [ | | ]
1 1, .
2 2μν κ μνκ κνμ μν κ μνκ κνμΓ = Γ +Γ Γ = Γ −Γ  (18.3) 

In order to estimate torsion, Trautman (1973a, b, 2007) introduced the 
“Cartan radius” rCart ≈ 10–23cm that is greater than the Planck length, which 
is l ≈ 10–23cm. 

The curvature tensor is defined in terms of the connection as follows 

( )[ | |, ] [ | | ]2 .Rκ κ κ λ
μνρ ν ρ μ μ λ ν ρ= Γ +Γ Γ  (18.5) 

18.3 Spinors and Spin-Spaces 

In addition to vector bases, we shall introduce spinor bases to express 
geometrical objects in a spin-space that is a 2D complex vector space S 
with a symplectic form ε  or a fundamental spinor, which is an antisym-
metric complex bilinear form and is defined as follows (Penrose 1983, 
Penrose and Rindler 1986a, b) 

0 1
.

1 0
AB

ABε ε
⎛ ⎞

= = ⎜ ⎟−⎝ ⎠
 (18.6) 

Due to the fact that there are two spin-spaces: (i) unprimed spin-space 
(S, ε) and (ii) primed spin-space (S ′, ε ′), the primed symplectic form ε  or  
a primed fundamental spinor is defined in the following way  

' '
' '

0 ' 1'
.

1' 0'
A B

A Bε ε
⎛ ⎞

= = ⎜ ⎟−⎝ ⎠
 (18.7) 

Primed spin-spaces are the complex conjugates of their corresponding 
unprimed ones. Note that we must pay attention to the ordering of the un-
primed indices on a spinor symbol, and also of the primed ones, the rela-
tive ordering between primed and unprimed indices is unimportant  
(Penrose and Rindler 1986a, b). 

18.4 Elastic Crystal with a Continuous Defect Distribution 

Let us consider an elastic crystal with a continuous distribution of internal 
defects in the framework of the Riemann-Cartan geometry. For the first 
time, such a broad and elegant approach was developed by Kondo (1952, 
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1955, 1962) and later by Bilby et al (1955), and Kröner (1981). Moreover, 
Amari (1962, 1968, 1981), Holländer (1962), Teisseyre (1964a, b, 1969, 
1986, 1995, 2001, 2004), Minagawa (1971, 1979), Kleinert (1988, 1989, 
2008), Ruggiero and Tartaglia (2003), Teisseyre and Boratyński (2006), 
Takeo (2006) and others were extending the Kondo’s original idea of the 
geometrization of the theory of defects. We shall briefly review their main 
assumptions, concepts and results.  

The deformation processes described in the differential manifolds can 
be introduced by defining the Lagrangian (material) and/or Eulerian (spa-
tial) descriptions. We shall confine our considerations here to an elastic 
continuum and a spacetime coordinate system. However, a generalization 
for other spaces is straightforward. 

Before deformation and in a defect-free configuration, we shall describe 
the elastic continuum in the 3D Euclidean space with the coordinates 
xi(i = 1, 2, 3). After generating defects and deforming the elastic conti-
nuum, we shall describe it using the Riemann-Cartan (RC) space. We as-
sume that xμ(μ = 0, 1, 2, 3) are the coordinates in the 4D Riemann-Cartan 
space 4 in which an elastic crystal  is immersed. Here x0 = t is the time 
coordinate. The other coordinates xi(i = 1, 2, 3) are space coordinates. 
Greek indices range from 0 to 3 and refer to spacetime, while Roman in-
dices range from 1 to 3 and refer to space. We shall concentrate our con-
siderations on rotational motions (spin and twist).  

 

Fig. 18.3  Four material configurations for deformation processes of an elastic 
crystal with a continuous defect distribution 
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We assume that ζi (i = 1, 2, 3) are the vector basis at point Q of the ma-
terial manifold M . Moreover, we assume the existence of the tangent 
space QA as a vector space spanned by the vectors ζi . Usually, the elastic 
crystal  is deformed and under stress due to an external loading and it 
has internal stresses due to crystal defects existing inside. If we remove the 
external loading, then the crystal can be transformed to the strain-free con-
figuration. This process is named unloading. The configurations before and 
after the unloading are called the deformed and the undeformed configura-
tions, respectively (see Fig. 18.3). We can also consider a defect-free con-
figuration.  

We assume that the unloaded or undeformed configuration is realized by 
an affine transformation of the small material volume. Suppose that in the 
result of unloading the vectors ζμ transform into the vectors ˆ

μζ . The 

squared length 2
0ds  of sector ds after unloading can be expressed as fol-

lows 
2
0 ,ds g dx dxμ ν

μν=  (18.8) 

where ˆ ˆ( , )gμν μ νζ ζ= is the translational metric tensor in the tangent space 

QA  and ˆ ˆ( , )μ νζ ζ  is the inner product. We assume here the Einstein sum-
mation convention for repeated indices.  

The above metric was expressed in a vector basis. The translational me-
tric in a spinor basis can be expressed as follows 

' '
' ' ,AB CD

AC B Cgμν μ νε ε σ σ=  (18.9) 

where εAB denotes the symplectic form or the fundamental spinor, and 
'AB

μσ  denote the Newman-Penrose symbols (Newman and Penrose 1962).  

18.5 The Disclination-Curvature Analogy 

The total Franck vector Ωk can be written as follows 

1 ,
2

k l k ij
ijl

A

R daυΩ = ∫  (18.10) 

where the integration is carried out over surface A, and daij is an infinite-
simal surface element of A. The tensor k

ijlR  in the Eq. (18.10) is a curvature 
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tensor is defined by Eq. (18.5 ). We deal with a linear approach to elastici-
ty where second order and higher-order terms of curvature and torsion are 
discarded. We review the results obtained by Kondo (1952, 1955, 1962), 
Kossecka and deWit (1977a, b), Teisseyre (1995, 2004), Teisseyre and 
Boratyński (2006), and Takeo (2006). We express the disclination density 
tensor θmn in terms of the curvature tensor Rpqrs  as follows 

11 ,
4

mn mpq nrs
pqrsg Rθ ε ε−=  (18.11) 

where g = det (gij) and εmnp = εmnp = 0, +1, –1 is the totally antisymmetric 
3D permutation symbol, εmnp = +1, –1  if mnp is an even and an odd per-
mutation of (1, 2, 3), respectively, otherwise εmnp = 0. 

Eq. (18.11) reveals a kind of analogy between physical and geometrical 
quantities. The curvature tensor corresponds to defects called the disclina-
tions. Thus, we call it a disclination-curvature duality. 

18.6 The Dislocation-Torsion Analogy 

,k k ij
ij

A

B T da= ∫  (18.12) 

Now we are in a position to express the dislocation density tensor αmn in 
terms of the torsion tensor n

pqT  as follows 

1/2 .mn mpq n
pqg Tα ε−=  (18.13) 

Eq. (18.13) illustrates some links between physical and geometrical quanti-
ties. The defects that correspond to the torsion tensor are called the dislo-
cations. We observe here a dislocation-torsion duality. 

18.7 The Rotational and Translational Strain Tensors 

Now, we introduce two strain tensors, a rotational strain tensor ωijk and a 
strain tensor Eij defined by 

[ ] [ ] ,ijk i jk i jkω = Ξ −Γ  (18.14) 

2 ,ij ij ijg Eη= −  (18.15) 
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thus, 

1 1( ) ,
2 2ij ij ij ijE g hη= − =  (18.16) 

where ηij = (ζi , ζj) is a metric tensor in the 3D Euclidean space and hij is 
proportional to self distortion μνβ .  

We adopt a new independent variable, i.e., the vielbein, representing the 
partial derivatives of displacements ,

i iu uμ μ∂ =  in the form 

, .i iuμ μζ =  (18.17) 

The vielbein is a differentiable function. The incompatibility condition 
resulting from the presence of a dislocation can be expressed in terms of 
the vielbein as follows 

, , 0.i i
ν μ μ νζ ζ− ≠  (18.18) 

The vielbein has a physical interpretation as a distortion i
μβ , i.e., 

, .i i iuμ μ μζ β= =  (18.19) 

Employing the vielbein, we can express the following differentials 

, ,dx d Aμ ν μ μ ν μ
ν κ κ νζ ζ ζ ζ= =  (18.20) 

where  

, .dx A d A dxν ν μ ν ν μ ν ρ
μ κ μ κ κρζ ζ ζ ζ= = =  (18.21) 

Now, we are in a position to express the Cartan structural equations as 
follows  

d A T

dA A A R

μ ν μ μ
ν

κ ν κ κ
μ μ ν μ

ζ ζ− ∧ = −

− ∧ = −
 (18.22) 

where Tμ represents the 2-form of the torsion tensor, Rκ
μ  represents the  

2-form of the curvature tensor, and the sign ∧ denotes an external product 
that is defined as 

.μ ν μ ν ν μζ ζ ζ ζ ζ ζ∧ = −  (18.23) 
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Using Eq. (18.14), and taking into account that the connection Γijk is re-
lated to the metric as p

ijk pk ijgΓ = Γ , we obtain the relation  

, , ,
1 ( ).
2ijk jk i ik j ij kη η ηΞ = + −  (18.24) 

Applying a linear approximation, we can determine the strain tensor Eij in 
terms of deformed and undeformed metrics in the following way  

1/2 1/2( ) ( ) .i j i j i j
ij ij ijE dx dx dx dx g dx dxη= −  (18.25) 

The curvature tensor can be expressed in terms of the rotational strain ten-
sors as follows 

[ | |, ] [ | | ]2( ).rs
ijlk j lk i i kr j lsR gω ω ω= − +  (18.26) 

This equation can be expressed in a spinor basis as  

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' [ | |, ] [ | | ]2( ) ,
IJLK I J L K IJL K I J LK I J LK IJ L K

rs
I J L K IJ LK j lk i i kr j ls

X

X g

ε ε ε ε ε ε

ε ε ω ω ω

+Φ +Φ

+ = − +
 (18.27) 

where X and Φ are curvature spinors; the overbar denotes a complex con-
jugation, and εAB denotes the symplectic form or the fundamental spinor. 
Due to the disclination—curvature analogy, we call the above-mentioned 
curvature spinors by a new name, i.e., disclination spinors. 

The torsion tensor can be expressed in terms of the rotational strain ten-
sor and the strain tensor as follows 

[ ] [ | |, ] ,k
ij ij k j k iT Eω= − −  (18.28) 

and in a spinor basis it takes the form 
' '

' ' ' ' [ ] [ | |, ] ,KK KK
I J I J I J IJ ij k j k iEχ ε χ ε ω+ = − −  (18.29) 

where χ and χ  are torsion spinors that are symmetric in IJ and I′J′, respec-
tively (cf., Penrose and Rindler 1986a). 
The torsion spinors, due to the dislocation—torsion analogy, we call the 
dislocation spinors. 

The contortion tensor or the rotational Ricci coefficients can be ex-
pressed in the spinorial form as  

' ' ' ' .AB CD CD ABK μ
κ κ μσ σ= ∇  (18.30) 
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The compatibility conditions require vanishing of the curvature and torsion 
tensors, i.e., Rijlk = Tijk = 0. After linearization, the compatibility conditions 
for the displacement vector ui and the rotational tensor ωij  are as follows 

( , ) , ,
1 ( ),
2ij j i i j j iE u u u= = +  (18.31) 

, [ , ] .ijk jk i k jiuω ω= +  (18.32) 

18.8 Description of Moving Defects in 4D 

So far, we were describing static defects. In order to generalize our ap-
proach to describe moving defects, we change the Euclidean space into 
spacetime, i.e., we supplement the Euclidean space by a time dimension in 
order to construct a 4D Euclidean spacetime. So, the time factor will be 
considered from the very beginning of the deformation process. The Eucli-
dean spacetime will be our starting point from the undeformed and defect-
free configuration. Next, in the defected and deformed configuration, we 
shall use the Riemann-Cartan space. 

18.9 Rotational Metric 

Here, rotational coordinates are denoted by ωi . A rotational metric can be 
defined as follows 

2 ,n nm m n i j
m n ni mjd d d K K dx dxψ ξ ξ= =  (18.33) 

where dξmn = –dξnm, and m
niK  and n

mjK  are contortion tensors. 

The contortion tensor n
miK  also known as the rotational Ricci coeffi-

cients can be expressed as 

( ),k k kr s s
mn mn ms rn ns rmK T g g T g K= − + +  (18.34) 

and 1-form of contortion is 

,m m i
n niK K dx=  (18.35) 

where K(mn) = 0.  
The structural equations of a rotational group after discarding the matrix 

indices can be written as 
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[ ]
1 ,
2

k k
i j ijRζ ζ∇ ∇ =  (18.36) 

where 

[ ]2 [ , ].ij j i j iR T T T= ∇ +  (18.37) 

18.10  Complex Vielbein, Rotational Field, and Metric 

A complex vielbein k
μζ  and its inverse k

μζ are defined by i i
k k

μ
μδ ζ ζ=  and 

k
k

ν ν
μ μδ ζ ζ= and their 1-form is defined as dxν ν μ

μζ ζ= .  We can express the 
vielbein in the form  

ˆi .ν ν ν
μ μ μζ ζ ζ= +  (18.38) 

Teisseyre et al (2006) considered a complex rotational field that can be 
expressed as 

[ ] ( )i ,μν μν μνω ω ω= +  (18.39) 

where ω[μν] and ω(μν) are the spin and twist components, respectively. 
In general, we can express a complex translational metric tensor after un-
loading defined by ˆ ˆ( , )gμν μ νζ ζ= in the form  

ˆi ,g g gμν μν μν= +  (18.40) 

or as follows 

1 2 3 1 2 3

1 11 12 13 1 11 12 13

2 21 22 23 2 21 22 23

3 31 32 33 3 31 32 33

ˆ ˆ ˆ1 1
ˆ ˆ ˆ ˆ

i .
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

g g g g g g
g

g g g g g g
g g g g g g

μν

υ υ υ υ υ υ
υ υ
υ υ
υ υ

− − − − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (18.41) 

However, we shall use only a real part of the metric in the sequel.  

18.11  Disclination Density and Current Tensor 

The physical and mathematical interpretations of disclination density ten-
sor θmn

 will be elucidated in the sequel. In these calculations here, we use 
extensively properties of tensor transformations with respect to the expres-
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sion ε 
mnpg–1/2  and with respect to the tensor θmn. From Eq. (18.11) we can 

obtain the following expression 

,mn
pqrs mpq mrsR gε ε θ=  (18.42) 

and in a spinor basis (cf., Penrose and Rindler 1986a) it can be expressed 
as 

' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' .
PQRS P Q R S P Q R S PQ RS

mn
PQR S P Q RS P Q RS PQ R S mpq mrs

X X

g

ε ε ε ε

ε ε ε ε ε ε θ

+

+ Φ + Φ =
 (18.43) 

The disclination current tensor s
rϒ  is written as 

1/21 ,
2

s suv
r rtuvg Rε−ϒ =  (18.44) 

and in a spinor basis it is 

1/2
' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' '

1 (
2

).

s suv
r RTUV R T U V R T U V RT UV

RTU V R T UV R T U V RT R T

g X Xε ε ε ε ε

ε ε ε ε

−ϒ = +

+ Φ +Φ
 (18.45) 

18.12  Dislocation Density and Current Tensor  

From Eq. (18.13) we can obtain the following relation 

1/21 ,
2

n mn
pq mpqT g ε α=  (18.46) 

and in terms of spinors it is  

' ' 1/2
' ' ' '

1 .
2

NN NN mn
PQ P Q P Q PQ mpqgχ ε χ ε ε α+ =  (18.47) 

The dislocation current tensor s
rJ is defined in the form 

,s s s
r rt trJ T T= = −  (18.48) 

and it can be expressed spinorially as 
' '

' ' ' ' .s s SS SS
r rt RT R T R T RTJ T χ ε χ ε= = +  (18.49) 
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18.13  Additive Decomposition of the Total Strain Tensors 

Let us take now a closer look at the strain tensor Emn and the rotational 
strain tensor ωmnp. Due to the existence of defects in the elastic crystal, the 
deformation has elastic and self components (plastic). We may apply here 
an additive decomposition of the total tensors into elastic and self deforma-
tion (plastic) components in the following way 

,E
mn mn mnE E E= +  (18.50) 

,E
mnp mnp mnpω ω ω= +  (18.51) 

( ) [ ] ,mn mn mnS S S= +  (18.52) 

[ ] [ ]*

1 ,
2mn mnSω
μ

=  (18.53) 

( ) ( )*

1 ,
2mn mnSω
μ

=  (18.54) 

where the superscript E and the overbar denote the elastic and the self 
components (plastic), respectively, and the constant μ∗ represents the rota-
tion rigidity of bonds and is related to the inner friction (Teisseyre and 
Boratyński 2006). However, due to the incompatibility in the self deforma-
tion field, the displacement components uj and the rotational strain tensor 
ωjk become multi-value functions. We should be aware of the existence of 
multivaluedness here. Due to the fact that the elastic deformations perfect-
ly satisfy the compatibility conditions, then the elastic strain tensor E

ijE and 

the elastic rotational strain tensor E
ijkω  have no influence on the curvature 

and torsion tensors. This fact, after linearization, allows to express the 
curvature tensor in the simple way 

[ | |, ]2 .ijlk j lk iR ω= −  (18.55) 

and in a spinorial form (in terms of disclination spinors or curvature spi-
nors) it is as follows 

' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' [ | |, ]2 .
IJLK I J L K IJL K I J LK

I J LK IJ L K I J L K IJ LK j lk i

X

X

ε ε ε ε

ε ε ε ε ω

+Φ

+ Φ + = −
 (18.56) 

Now, the torsion tensor after the linear approximation takes the form  
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[ ] [ | |, ] ,ijk ij k j k iT Eω= − −  (18.57) 

and in a spinor basis it can be expressed as 

' ' ' ' ' ' [ ] [ | |, ] .IJKK I J I J KK IJ ij k j k iEχ ε χ ε ω+ = − −  (18.58) 

Consequently, the disclination and dislocation densities and their current 
densities n

mϒ  and Jmn can be expressed by the following relations  

, ,ij ipq j
q pθ ε= − ℘  (18.59) 

, .n Sn Sn
m m t mϒ =℘ −℘  (18.60) 

,( ) ,i ipq n
j qjm p qj pEα ε ε= − ℘ +  (18.61) 

,
1 ( ),
2

l t
mn mnl t mn n mJ Eε υ= ℘ + −  (18.62) 

where the self part is denoted by the overbar p Sp
n n℘ =℘  and 

1
2

j jpq
i ipqε ω℘ =  (18.63) 

18.14  The Einstein-Cartan Theory 

Seven years after creation of the Einstein General Relativity Theory 
(GRT), Élie Cartan (1922) extended it by including  torsion, and created a 
theory, which now is called the Einstein-Cartan Theory (ECT). He was 
inspired by Cosserat brothers (1909). Cartan (1922) assumed that the me-
tric connection of spacetime is antisymmetric. According to Cartan, the 
antisymmetric part of the metric connection should be related to the spin 
tensor of physical fields which are the source of gravity (Trautman 1973a, 
b, 2006). The Einstein-Cartan theory is a step closer to unification of gen-
eral relativity with quantum mechanics. In the Einstein-Cartan theory the 
spin is the source of torsion of spacetime. Spin is the angular momentum 
intrinsic to a particle. Spin is a physical quantity but torsion of spacetime is 
a geometrical quantity. From geometrical point of view, the curvature is 
connected with Lorentz transformations, but torsion is connected with 
translations. The Special Relativity Theory admitted the Poincaré group 
(Lorentz transformations and translations). In Einstein’s GRT translations 
were missing. Thus, by adding torsion and connecting it to spin, Cartan 
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(1922) reintroduced the Poincaré group to gravitational theories (Trautman 
2006). In order to illustrate it, let us consider a position vector field Ai de-
termined on the curve xi(t), defined by the formula (Trautman 1973a, b)  

.i j j
ix A x∇ =  (18.64) 

If the curve xj(t) is closed, then after going along it with a full cycle, the 
position vector gains the increment 

( ) ,l l j l kl
jkl klA R A TΔ ≅ + ΔΩ  (18.65) 

where ΔΩkl denotes an oriented surface element spanned on the curve. 
In the Einstein-Cartan theory the connection is asymmetric, but it satis-

fies the metricity condition 

0.i jkg∇ =  (18.66) 

Equations of gravity field, following from an appropriate variational prin-
ciple, take the form (Trautman 1973a, b, 2006) 

4

1 8 ,
2ij ij ijR g R P

c
πκ

− =  (18.67) 

3

8 ,k k l k j k
ij i jk j il ijT T T S

c
πκδ δ+ − = −  (18.68) 

where Rij  is the curvature tensor, R is the scalar curvature, gij is the metric 
tensor, Pij denotes the asymmetric canonical energy-momentum tensor, l

ijT  

is the torsion tensor, k
ijS  denotes the spin tensor, κ is the gravitational con-

stant, and c is the speed of light in vacuum. The second equation in the set 
of fundamental equations of the Einstein-Cartan theory relates spin with 
torsion. If there are some regions of spacetime where the spin vanishes, the 
torsion vanishes there as well and the equations of the Einstein-Cartan 
theory (ECT) reduce to equations of the Einstein’s general relativity theory 
(GRT). Hehl et al (1995) generalized the Einstein-Cartan theory by assum-
ing non-metric linear connections and dilation and shear currents. 

18.15  The Analogy Between the Disclination Density Tensor 
      and the Einstein Tensor 

Let us now show a link between the disclination density tensor and the 
Einstein tensor. Following Schouten (1954), it is necessary to find from 
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Bianchi’s identities the equations describing the torsion and curvature ten-
sors. After some calculations, assuming the value g = 1 for the Cartesian 
coordinates and Rμν(λκ) = 0, and following Takeo (2006), we arrive at the 
relation 

, .p pq
i p ipqα ε θ= −  (18.69) 

Following Schouten (1954) and Takeo (2006), we can write the following 
formula for the permutation symbol 

,

i h i s i u
h p s q u r

ijk lmn pl qm rn j s j h j i
s p h q i r

k u k u k h
u p u q h r

gg g g

ζ ζ ζ ζ ζ ζ

ε ε ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (18.70) 

where the vielbein k
μζ  and its inverse k

μζ are defined by i i
k k

μ
μδ ζ ζ=  and 

k
k

ν ν
μ μδ ζ ζ= and their 1-form is defined as dxν ν μ

μζ ζ= .   

After some calculations (cf., Takeo 2006), one can conclude that the 
disclination density tensor θ 

ij defined by Eq (18.11) is identical with the 
Einstein tensor G 

ji, thus it satisfies the following equation 

1 ,
2

ji ji jiR g Rθ = −  (18.71) 

in a 3D space. In a spinor basis it can be expressed as 
' ' ' '2 6 ,ji J I J I J I J Iθ ε ε= − Φ − Λ  (18.72) 

where Φ is the disclination spinor (or curvature spinor), Λ = R /24  and R is 
the scalar curvature. 

18.16  The Evolution Equation for the Disclination Density 

Let us now show a linear version of the evolution equation for disclination 
density. Following Takeo (2006), after some linearization, we have the 
relation  

[ | |, ] 0.Rνμ λκ ω =  (18.73) 

On one hand, taking the time derivative of the curvature, one can obtain 

, , 0.ijpq jtpq i tipq jR R R+ + =  (18.74) 
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On the other hand, taking the time derivative of the disclination tensor θ 

mn, 
we get 

,
1 .
4

mn mij npq mij n
ijpq j iRθ ε ε ε= = − ϒ  (18.75) 

Comparison of these two derivatives and using the definition of the discli-
nation current tensor, yields the evolution equation for disclination density 
in terms of the disclination current in the form 

, .mn mpq n
q pθ ε= − ϒ  (18.76) 

18.17  The Evolution Equation for the Dislocation Density 

Let us now show a linear version of the evolution equation for dislocation 
density. Following Takeo (2006), after some calculations, one can obtain  

,
1(2 ) .
2

m mij n mij
k jk i njk i ijtkJ Rα ε ε ε+ + ϒ =  (18.77) 

After some linearization, we can get the following relation 

, ,
1 ( ) 0,
2ijtk k ij k jiR υ υ= − =  (18.78) 

and, after combining these equations, we can arrive at the evolution equa-
tion for the dislocation density in the form 

,( ).m mij n
k jk i njk iJα ε ε= − + ϒ  (18.79) 

The previous equations allow us to find the following relationship between 
the dislocation tensor and disclination tensor   

, .p pq
i p ipqα ε θ= −  (18.80) 

18.18  Spin Energy Potential 

Following Hehl and Obukhov (2007), we can define a spin energy poten-
tial ℵ, which satisfies the following relation 

[ ]
ˆ ,S Cμν μν

μν

ω
α
∂ℵ

= =
∂

 (18.81) 
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where [ ] Ŝμν μνω =  is the spin tensor, C is a constant coefficient, and αμν is 
the dislocation density. 

18.19  Degenerate Asymmetric Continuum 
      in Terms of Spinors: Analogy to Maxwell’s Equations 

Using the properties of differential forms on a spacetime, one can express 
the equation of a superfluid in a form similar to Maxwell’s equations. Vor-
ticity current becomes the source term and the Euler equations can be 
viewed as the extention to the entire spacetime of the known fact that the 
number of vortex lines crossing any 2D surface spanned on a closed curve 
can be related with a circulation around this curve. A similar strategy can 
be applied for the ideal MHD. It appears that by applying this approach 
some helicity conservation laws may be obtained. Sciama (1962) pointed 
out the analogy between charge and spin in general relativity. Teisseyre 
(2005) introduced a concept of a degenerated asymmetric continuum that 
has only rotational motions but has no translational motions at all. He 
claimed that for such a continuum (where only spin and twist motions are 
present) the respective equations appear to have exactly the form of Max-
well-like equations (see also Teisseyre and Białecki 2005, Teisseyre et al 
2006). Here, we formulate these equations for spin and twist motions in a 
spinor basis as follows 

'
'( ) ,A

AB A A Bω = ∇ Θ  (18.82) 

' '2 ,A
B AB BBω π∇ = ϒ  (18.83) 

where 'A
BΘ  is the spin potential and 'BBϒ  is the disclination current. 

18.20  Conclusions 

This chapter briefly reviews the main results concerning analogies between 
the theory of elastic crystal with a continuous defect distribution and the 
Einstein-Cartan theory of gravitation. The Riemann-Cartan space provides 
a very general framework for our comparisons because it contains both: 
curvature and torsion. A defected elastic crystal can be described by the 
defected metric gμν = ημν + hμν , where hμν  is proportional to the self distor-
tion μνβ . This defected metric contains all rotational and translational 
effects which are a consequence of the defects presented in the crystal. We 
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recalled the disclination—curvature and the dislocation—torsion analo-
gies. Moreover, an analogy between the disclination density and the Eins-
tein tensor was recalled. We expressed the curvature and torsion in terms 
of spinors. Due to the disclination—curvature analogy, we identified the 
curvature spinors as disclination spinors. Consequently, due to the disloca-
tion—torsion analogy, we identified the torsion spinors as the dislocation 
spinors. In addition, we defined the spin energy potential as a function of 
defect density. Finally, we formulated the Maxwell-like equations for spin 
and twist motions in elasticity in a spinor basis. 

The presence of dislocations accompanied by the vanishing of curvature 
tensor (Rijlk = 0) can be very well described in the framework of the Weit-
zenböck space, which is also the most useful space for the description of 
the Einstein’s teleparallelism theory. The GRT was formulated in the Rie-
mann space, which is a very good framework for describing an elastic 
crystal with disclinations. The Einstein-Cartan theory is a more general 
theory of gravitation that is making use of the Riemann-Cartan geometry. 
A spacetime with torsion and curvature can be generated from a flat space-
time, e.g., the Minkowski spacetime, by employing general coordinate 
transformations and is similar to an elastic crystal which has undergone 
irreversible deformation and is filled with disclinations and dislocations. 
The physical laws in curved spacetime are the direct images of the flat-
spacetime laws under nonholonomic (i.e., multivalued) mappings.  

To be more specific, we can say that torsion in the Einstein-Cartan 
theory is proportional to the dislocation density αij. Disclinations generate 
spacetime curvature, i.e., an elastic crystal containing disclinations is 
curved in the differential geometric sense. Curvature is an evidence of 
existing of disclinations and these are rotational defects. The disclination 
density θij is identical with the Einstein tensor Gij. Using the defect lan-
guage, it is safe to say that the fundamental Bianchi’s identities are a non-
linear generalization of the conservation laws of defect densities. These 
conservation laws can be formulated as the conservation laws of energy-
momentum and angular momentum from an appropriate variational prin-
ciple. These laws results from the invariance under general coordinate 
transformations, which may be viewed as the Poincaré group acting on 
orthonormal frames in the tangent spaces of the material manifold M (i.e., 
local translations, and under local Lorentz transformations, respectively). 
These transformations correspond to elastic deformations (translational 
and rotational Lorentz transformations) of the space and the invariance 
insures that elastic deformations are independent on the defect structure. 
Thus, curvature and torsion can be viewed as the surface densities of Lo-
rentz transformations and translations, respectively.  
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19 Twistors as Spin and Twist Solitons 
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19.1 Introduction 

Penrose and Rindler (1986) applied twistors to describe massless spinning 
particles. They pointed out that twistors can describe twisted photons or 
charges for massless spin-3/2 fields. Due to the well-known particle-
soliton duality, it seems reasonable to relate twistors with spin and twist 
solitons. We adopt the twistor quantization theory developed by Penrose 
and Rindler (1986) and employ twistors to describe spin and twist solitons, 
i.e., quanta of spin and twist energy (cf., Majewski 2006a, b, c, d, e).  

19.2 The Twistor Equation 

To deal properly with a twistor, one needs a twistor equation. Let us 
start from the twistor equation introduced by Penrose (1968) in the 
form  

( )
' 0.A B

A ω∇ =  (19.1) 

The solutions of the twistor equation establish a vector space over the 
complex numbers. The solutions ωA  of the twistor equation are determined 
by the four complex components. These solutions ωA form a 4D vector 
space αT  over the complex numbers called twistor space. The elements of 
twistor space are called 1

0
⎡ ⎤
⎢ ⎥⎣ ⎦

-twistors. We can denote the solution ωA as 

Zα = [ωA]. Based on the 1
0

⎡ ⎤
⎢ ⎥⎣ ⎦

-twistors, one can create twistors of arbitrary 

valence p
q

⎡ ⎤
⎢ ⎥⎣ ⎦

. Unfortunately, the higher-valence twistors cannot be com-

posed of single fields of spinors. In order to have a more systematic ap-
proach to twistors in terms of spinor-field descriptions, it is better to apply 
the pair of spinor fields ωA, πA′  to describe Zα than to use ωA alone. 
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19.3 Twistor Definition  

Penrose (1968) introduced a concept of a twistor or an α-plane in flat 
spaces or α-surface in curved spaces. In fact, he introduced four definitions 
of twistors in curved spacetime, i.e., local twistors, global null twistors, 
hypersurface twistors and asymptotic twistors. A local twistor Zα at Q∈ℑ 
can be described by a pair of spinors ωA, πA′   at Q: 

( )', ,A
AZα ω π↔  (19.2) 

with respect to the metric g on ℑ. After a conformal rescaling of the me-
tric, according to the rule: 2ĝ g= Λ , the twistor Zα can be expressed in the 
form 

( ) ( )' ' 'ˆ ˆ, , i ,A A A
A A AAWω π ω π ω= +  (19.3) 

where  WAA′ = ∇AA′ log (Λ). The comparison of local twistors at different 
points of ℑ makes it necessary to introduce the local twistor transport 
along a curve ξ in ℑ with tangent vector υ. This does not lead to a dis-
placement of the twistor along ξ, but moves the point with respect to 
which the twistor is defined. 

19.4 Twistor Quantization Theory Applied 
        to Spin and Twist Solitons 

Following Penrose and Rindler (1986), let us recall some aspects of twistor 
quantization theory and consider the twistor wave functions f in order to 
formulate analogical spin and twist soliton wave functions Ψ. It is worth-
while to review here the standard quantization procedure of quantum me-
chanics. This procedure deals with the position xα and the linear momen-
tum pα of a particle. One of these quantities may play a role of an indepen-
dent variable in the particle complex wave function and at the same time it 
may play a role of a multiplication operator, while the other quantity may 
act on the wave function as a differentiation operator. However, these two 
quantities may exchange their roles and the former quantity may act on the 
wave function as a differentiation operator, while the latter may become an 
independent variable of the wave function and at the same time act as a 
multiplication operator. Thus, in the framework of this procedure, the posi-
tion xα and the linear momentum pα of a particle can be treated as opera-
tors in the following commutation law 
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i .p x x p gβ β β
α α α− =  (19.4) 

When we choose the x-space description, then a particle wave function is 
represented by a complex function ψ (xα). Note that this function has only 
one variable—the position xα. The wave function does not depend on the 
momentum pα On one hand, the momentum operator [pα] takes the form of 
the differentiation operator, 

[ ] i .p
xα α

ψψ ∂
→

∂
 (19.5) 

On the other hand, the position xα takes the form of the multiplication op-
erator, 

[ ] .x xα αψ ψ→  (19.6) 

If we choose the p-space description, then the wave function is represented 
by a complex function ( ).pαψ  This function has only one variable—the 
momentum pα  In this case, the wave function does not depend on the posi-
tion xα. Now, the momentum and position operators [pα] and [xα], respec-
tively, exchange their roles (cf., Penrose and Rindler 1986) 

[ ]p pα αψ ψ→  (19.7) 

and 

[ ] i .x
p

α

α

ψψ ∂
→ −

∂
 (19.8) 

If we apply the x-space description or the p-space description, then we deal 
with commuting variables and we have to use only one variable i.e., either 
the position xα or the momentum pα . We cannot use both as our variables 
at the same time, because there is no such thing as a particle with deter-
mined position and determined momentum at the same time. If one is de-
termined, the other is not. Thus, the other should act as a differential op-
erator. 

Penrose and Rindler (1986) applied a similar quantization procedure for 
twistors. They considered the twistors Zα  and Zα  and the dual twistors 
W α  and Wα . In the virtue of Eq. (19.4), the twistors Zα  and Zα  can be 
treated as operators in the following commutation law 

.Z Z Z Zα α α
β β βδ− =  (19.9) 
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Now, we apply twistors to describe spin and twist solitons. Before, we had 
the x-space description, now, using twistors, we apply the αT -description. 
However, in our case, we use the αT -description to describe the massless 
spin and twist solitons. In this description of spin and twist solitons, we 
consider a soliton wave function Ψ̂  which is a complex function ex-
pressed in terms of Zα. Thus, this function has only one variable—the twis-
tor Zα. The soliton wave function does not depend on the complex conju-
gate Zα , which can be expressed as the condition  

ˆ
0.

Zα

∂ Ψ
=

∂
 (19.10) 

So, the complex conjugate—the operator [ ]Zα  becomes a differentia-
tion operator acting on the soliton wave function in the form 

ˆˆ[ ] .Z
Zα α

∂Ψ
Ψ → −

∂
 (19.11) 

At the same time, the twistor Zα acts as a multiplication operator, 

ˆ ˆ[ ] .Z Zα αΨ → Ψ . (19.12) 

Now, if we apply the αT -description, then the twistor and its complex 
conjugate Zα and Zα , respectively, exchange their roles. The soliton wave 
function Ψ̂  has now only one variable—the complex conjugate Zα ; or if 
we denote Zα  as its dual twistor Wα and Zα as W α , then the soliton wave 

function Ψ̂  has only one variable—the dual twistor Wα. Correspondingly, 
the dual multiplication and differentiation operators [Wα] and [ ],W α  re-
spectively, act on the soliton wave function as follows 

ˆ ˆ[ ]W Wα αΨ → Ψ  (19.13) 

and  
ˆˆ[ ] .W

W
α

α

∂ Ψ
Ψ →

∂
 (19.14) 

If we apply the αT -description or the αT -description, then we deal with 
commuting variables and we have to use only one variable i.e., either the 
twistor Zα  or its complex conjugate Zα  or one of the dual twistors Wα or 
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its complex conjugate W α . We cannot use both as our variables at the 
same time. Thus, the other should act as a differential operator. 

19.5 The Spin Operator 

In order to obtain some interesting links between twistors and the space-
time variables, one can describe the mechanical system in terms of the 
linear momentum pα and angular momentum Mαβ . We can employ the 
transformation properties of linear and angular momenta of a spin soliton 
under a shift of origin from 0 to a point Q(xα) (Penrose and Rindler 1986), 

( ) (0) ,p Q pα α=  (19.15) 

( ) (0) .M Q M p x p xβ α
αβ αβ α β= + −  (19.16) 

One can express the Pauli-Lubanski spin vector in the form  

1
2

S p Mβ γ κ
α αβγ κε=  (19.17) 

For massless spin solitons, the Pauli-Lubanski vector can be expressed as a 
multiple of the momentum 

,S spα α=  (19.18) 

where the real number s is called the helicity of the spin soliton and | |s , or 
1| |s −  is called the spin. For quantum systems s is an integer multiple of 

½ ħ. In case of the non-commutative variables, the quantum operator ex-
pressing the helicity s, can be described as follows 

( )1 1[ ] 2 ,
4 2

s Z Z Z Z Z
Z

α α α
α α α

∂⎛ ⎞= + = − +⎜ ⎟∂⎝ ⎠
 (19.19) 

where the complex conjugate is determined as ( )', A
AZα π ω= . 

The spin operator for the commutative case (Penrose and Rindler 1986) 
can be expressed in terms of twistors in the following form 

1[ ] .
2

s Z Zα
α=  (19.20) 
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19.6 The Twist Operator 

A twist operator (Caneschi et al 1969) may take the form 

( 1) ,nΩ = −  (19.21) 

where the exponent n denotes the n-th oscillation. 
Now, the rotational field can be expressed as 

(19.22) 

where  ω[αβ] and ω(αβ)  are the spin and twist parts, respectively. 

19.7 Spin and Twist Solitons Described 
    by the Nonlinear Schrödinger Equation  

Spin and twist solitons were described in Majewski (2006a, b, c, d, e) as 
quanta of spin and twist energy, respectively. He investigated nonlinear 
waves. The wave nonlinearity introduces a new possibility that the spin 
soliton speed may depend on the magnitude of a spin vector. In such a 
case, the soliton width and amplitude are modulated during the process of 
propagation. Its profile changes as a function of the magnitude of a spin 
vector. The spin and twist solitons are self-trapped packets of energy that 
propagate without loss of energy and momentum. The solitons are a result 
of the balance of nonlinearity (due to finite deformations and elastic prop-
erties of the medium) and dispersion (due to the microstructure of the me-
dium). 

Nikolaevskiy (1996) started from a set of nonlinear equations for the 
twist and longitudinal waves in the form  

2 2 2
2 2

1 1 1 12 2 2 ,uV V C C
x x x t
ω ω ωω ω

⎛ ⎞∂ ∂ ∂ ∂
+ − − =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (19.23) 

4 2 2 2 2
2

2 3 2 44 2 2 2 ,u u u u uC C V C
x x x x x t

ω∂ ∂ ∂ ∂ ∂ ∂
+ + − =

∂ ∂ ∂ ∂ ∂ ∂
 (19.24) 

where ω is the twist angle, u is the displacement, C1, C2, C3, C4,  are the 
elastic constants, V1 and V1 are the twist and longitudinal waves speeds, 
respectively, and they are expressed as 

1 2
0 0

and ,A EV V
Jρ ρ

= =  (19.25) 
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where A and E are elastic moduli and J is the moment of inertia of a twist-
ing grain, ρ0 is the reference material density, and as deformation 
progresses, the material density depends on displacements as 

0 .
1 u

x

ρ
ρ =

∂
+

∂

 (19.26) 

It was assumed that the stress tensor is decomposed into the symmetrical 
and antisymmetrical parts as follows 

( ) [ ] .S S Sαβ αβ αβ= +  (19.27) 

The antisymmetrical part of the stress tensor was assumed as a function 
of the twist vector ωκ in the form 

[ ] 4 ,S Cαβ αβκ κε ω=  (19.28) 

where C4 is the elastic constant and εαβκ is the permutation symbol. 
The total stress is expressed as a function of the square of the twist an-

gle, i.e., 
3

2
5 6 73 ,T u u u uS C C E C

x x x x
ω∂ ∂ ∂ ∂

= + + −
∂ ∂ ∂ ∂

 (19.29) 

where  C5, C6, C7,  are elastic constants. 
The couple-stress is assumed as a function of the twist angle, i.e., 

.A
x
ω∂

=
∂

S  (19.30) 

Now, we collect the main relations between elastic constants in the form 

28 64
1 2 3 2

0 0

2, , ,C CCC C C V
Jρ ρ ρ

= = = +  (19.31) 

where C8 is the elastic constant. 
Following Nikolaevskiy (1996), we use the running coordinate system 

(Ξ, Θ) for a new length and time scales, as follows 
2( ), ,gx V t tΞ = Θ − ℘= Θ  (19.32) 

where Vg is the group velocity. 
Now, we change variables, according to the following substitutions 
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i, .u e ϕω∂
= = Ψ

∂Ξ
A  (19.33) 

where A  is the amplitude of deformation and Ψ is the amplitude of the 
twisting angle oscillations. 

The above assumptions allow us to transform Eqs. (19.23) and (19.24) 
into the following set of equations 

( ) ( )
2

2 2 2 2 2
2 2 022 i 2 ,gV V Vχ χ ω∂ Ψ ∂ Ψ

− − = + Ψ
∂ Θ ∂ Ξ

A  (19.34) 

( )
2 2 2 2

2 2 2( 1)
2 72 2

| |2 2 ,n
g gV V V C −∂ ∂ ∂ Ψ

− − Θ = Θ
∂ Ξ ∂℘∂ Ξ ∂ Ξ
A A  (19.35) 

where 

1
0, , .

2g

CdV
d

φϕ χ φ ω
χ

= Ξ − ℘ = =  (19.36) 

According to Nikolaevskiy (1969), we can infer that the wavelength of  
the twisting oscillations is the order of the size of twisting grains in the 
material. The characteristic internal length l J≈  corresponding to the 
grain size is present in the parameters of Eqs. (19.34) and (19.35).  
Taking n = 1 in the exponent in Eq. (19.35) and assuming that Θ → 0, Ni-
kolaevskiy (1969) obtained the following nonlinear relation between the 
amplitudes A  and Ψ 

2
7

2 2
2

2 | | .
g

C
V V

Ψ
=

−
A  (19.37) 

Finally, using Eq. (19.34), Nikolaevskiy (1996) arrived at the nonlinear 
Schrödinger equation for the amplitude of the twisting angle oscillations Ψ 
in the following form 

( )
2 2 22

2 2 22 0
2 42 2 2

1

22 i 2 | | .g
g

VV V C
V V

χ ω
χ

+∂ Ψ ∂ Ψ
+ − = Ψ Ψ

∂℘ ∂ Ξ −
 (19.38) 

Nikolaevskiy (1969) found that the envelope of high-frequency twisting 
oscillations described by the above equation has the soliton form as fol-
lows 
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( )2 2 2
1 20 0

0 0 0 02 2 2 2 2 2 2
2 0 2 1 2 1

2
exp i i sec h

42 2
gV V

t
V V V V Vχ ω

⎧ ⎫ ⎛ ⎞− ⎛ ⎞Ξ Ξ⎪ ⎪ ⎜ ⎟Ψ = Ψ − − Ψ Ψ −⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎪ ⎪⎩ ⎭ ⎝ ⎠

A A
A

  (19.39) 

The above equation describes an explicit form of the twist Schrödinger 
solitons. 

19.8 The Fracture Solitons 

Teisseyre and Yamashita (1999) split the stress motion equation into seis-
mic wave and fault-related fields (see also Boratyński and Teisseyre 2006, 
Teisseyre et al 2006). We apply this method to Eq. (19.38) and split the 
nonlinear Schrödinger equation for the amplitude of the twisting angle 
oscillations Ψ into the elastic soliton and fracture-zone related soliton equ-
ations. Equation (19.38) is nonlinear and superposition methods do not 
apply here. Nevertheless, the elastic part of the twisting angle is relatively 
small, because the self-field is dominant in the fracture zone. Thus, in the 
limit, we may assume that the self-twisting oscillation field along the frac-
ture zone is almost equal to the total twisting field during a fracture 
process. The equation for self-twisting amplitude obtained as a result of 
splitting Eq. (19.38) can be viewed as an approximation.  

An elastic part of the amplitude of the twisting angle oscillation Ψ can 
be presented as the difference ΨT - ΨS between the total ΨT field and the 
self-twist part ΨS, which is assumed to rapidly decrease away from the 
fracture surface. We can identify these parts with an elastic field TΨ = Ψ  
and a fracture-zone related field SΨ = Ψ . After splitting the nonlinear 
Schrödinger equation (19.38), the first equation for the elastic twist field 
can be expressed as 

( )
2 2 22

2 2 22 0
2 42 2 2

1

22 i 2 | | .g
g

VV V C
V V

χ ω
χ

+∂ Ψ ∂ Ψ
+ − = Ψ Ψ

∂℘ ∂ Ξ −
 (19.40) 

The above equation describes the elastic twist Schrödinger solitons. 
The fracture-zone related nonlinear Schrödinger equation for the self-

twist amplitude takes the form 

( )
2 2 22

2 2 22 0
2 42 2 2

1

22 i 2 | | .g
g

VV V C
V V

χ ω
χ

+∂ Ψ ∂ Ψ
+ − = Ψ Ψ

∂℘ ∂ Ξ −
 (19.41) 
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The above equation describes the fracture twist Schrödinger soliton. 
These solitons are twist pulses. The latter equation describes the self-twist 
soliton that can be excited by past fracture processes and may propagate 
slowly along the fracture zone to trigger new fracture processes. 

19.9 The Robinson Congruences 

Penrose visualization of Ivor Robinson congruence is based on a geome-
trical construction that was designed to find solutions of Maxwell’s free-
space equations. Maxwell’s field is geodetic, shear-free, non-singular and 
twisting. Robinson’s idea was to base these solutions on a twisting shear-
free congruence of light rays (null lines). Such a family of null straight 
lines (rays) whose tangent directions constitute this field is called the Ro-
binson congruence (cf., Penrose and Rindler 1984).  

Figure 19.1 illustrates a motion of the spin soliton in spacetime. It shows 
two time-slices of the tangents to a twisting family of circles at time t = 0 
and at t = t1. The figure is based on Penrose geometrical visualization of a 
Robinson congruence (Penrose and Rindler 1986). 

 

Fig. 19.1  Motion of the spin soliton in spacetime. The first time-slice of the tan-
gents to a twisting family of linked circles is visualized at time t = 0; the second 
time-slice is showed at time t = t1; the entire configuration moves downward along 
the time axis. The figure is a modification of Penrose geometrical visualization of 
a Robinson congruence (modified from Penrose and Rindler 1986) 
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19.10  Conclusions 

We summarized briefly a few results of the Penrose twistor theory and 
attempted to find some links to spin and twist solitons. The twistor wave 
function was identified as the spin and twist soliton wave function. The 
Schrödinger soliton equation derived by Nikolaevskiy (1996) for an ampli-
tude of twist waves, was recalled. Here, these results were applied to mod-
eling twist solitons propagating along the fracture surface. The soliton 
equation was split into the elastic soliton and fracture surface-related soli-
ton equations. The twist soliton can propagate along the fracture surface to 
trigger new fracture processes. The main conclusion here is that twistors 
can be used successfully to describe spin and twist solitons. Moreover, the 
twistor space can be helpful to characterize spin and twist solitons. Using 
the rich formalism of twistor theory, we can get much deeper insight into 
the spin and twist solitons. Whether the presented suggestions and links 
will help us improve the theory of spin and twist soliton propagation in 
structured media is, for the time being, an unanswered question. However, 
the presented links certainly reveal the power of twistor theory and the 
indication that we have essential analogies which hold for massless par-
ticles in quantum physics and for twistors in twistor theory but are likely to 
hold for spin and twist solitons as well. Last but not least, we can view all 
the above-mentioned links and analogies in a much broader perspective. 
As time progresses, they may contribute to a remarkable advance toward a 
possible duality between the physics of continua and twistor theory. 
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20.1 Introduction 

In the frame of Standard Asymmetric Continuum Theory (see: Chap. 7) we 
have introduced the defect density fields; the deformations caused by de-
fects can be adequately presented in the frame of the Riemannian geome-
try; many papers have been devoted to this kind of presentations; the first 
ones, that in the Cartan works (Cartan 1923, 1924, 1925), was influenced 
by work by Cosserat brothers (1909) in which a moment stress tensor is 
included in a generalized continuum. A gradual development of the Eins-
tein-Cartan Theory (ECT) started by works of Sciama (1962), Kibble 
(1961) and Trautman (1972a, b, c, 1973); for a review see: Hehl et al. 
(1995). Kopczyński (1973) has proved that in the ECT the cosmological 
solutions become free from the singularities, leading to the modified 
Friedmann equation supplemented with the conservation laws for mass and 
spin (Trautmann 2006).  

The continuum with defect content (dislocation and disclination densi-
ties) as described by the Riemannian curvature and torsion was considered 
by Bilby et al. (1955) and Kondo (1955, 1958) and later by Holländer 
(1962); Ben-Abraham (1970) and many other authors (for a review see: 
Teisseyre 1995a,b); the thermal stresses were found to have the same form 
as that related to dislocation field (Muskhelishvili 1953) and on this basis 
the thermal effects were included in the continuum with a Riemannian 
curvature by Kröner (1958), Teisseyre (1963, 1969) and Stojanovic et al. 
(1964).  

In this chapter we approach this problem with the appropriately defined 
potentials for the spin and twist fields.  

We recall the definition of the twist field as the oscillation of the shear 
off-diagonal axes and the derived equations of spin and twist motions (see: 
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Chap. 7). The Dirac tensor representation for the symmetric tensor was 
presented in Chap. 6:  

(3) (2) (1)

(1)(3) (2)1 2 4 2 3
( ) (1) (2) (3)

(3)(2) (1)

(1) (2) (3)

0
0

0
0

λκ

ω ω ω
ω ω ω

ω ω ε ε γ ε γ γ γ
ω ω ω
ω ω ω

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥= + + =
⎢ ⎥− −
⎢ ⎥− − −⎢ ⎥⎣ ⎦

  

where ω(k) are treated as scalars.  
The above-mentioned definition of twist is based on the presented tran-

sition from the off-diagonal form of shear tensor to the invariantly defined 
antisymmetric twist tensor. Therefore, when introducing the potentials for 
the complex rotation field, spin and twist, we shall try to define such po-
tentials in the adequate tensor forms.  

The presented definition can be transferred to 3D as follows:  

(3) (2)

( ) [( )] [( )] (1)(3)

(2) (1)

1
2

0
, 0 ,

0
s skn kn kn

ω ω
ω ω ω ω ω

ω ω

⎡ ⎤−
⎢ ⎥= ∈ = −⎢ ⎥
⎢ ⎥−⎣ ⎦

  

where ω[(kn)] means the antisymmetric twist tensor (we shall remember that 
another symbol, ω[kn] denotes the antisymmetric spin tensor).  

We shall also remind that the defined complex rotation field has a close 
analogy to the electromagnetic field; on this basis we will indicate a new 
classic approach to the unified Complex Relativity Theory.  

20.2 Natural Potentials 

For the rotation field, ω[k], ω(k), we can introduce the following system of 
the antisymmetric potentials (cf. Teisseyre and Białecki 2005), in which 
we introduce the natural vector potentials sA  and ˆ

sA  and the charge and 
current potentials ψ and ψs:  

[ ] ( )

ˆ
, ,

4 , 4 ,

s s
k kbs k kbs

b b k

s
k kbs

k b

A A
x x x

J
x x

ψω ε ω ε

ψψψ πρ π ε

∂ ∂ ∂
= = −

∂ ∂ ∂

∂∂
Δ = − = +

∂ ∂

 (20.1) 

where we put the conditions  
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ˆ1 , 0, 4 , 0.n n k n
ndk n

n n d n

A A J
x c x x x

ψ
ψ πε ψ

∂ ∂ ∂ ∂
= = = −Δ =

∂ ∂ ∂ ∂
 (20.2) 

To enable the derivation of equations for ω[k], and ω(k), (see: Chap. 7), we 
demand that 

ˆ ˆ1 1 1, 0.s k s k
kms k kms

m m

A A A A
x c t c x c t

ε ψ ε
∂ ∂ ∂ ∂

+ = + =
∂ ∂ ∂ ∂

 (20.3) 

For these potentials we come to the wave equations:  

[ ] [ ]
ˆ ˆ, , ,n n n nA Y A Y A Yαβ αβ= = =  (20.4) 

where  

2

1 1ˆ, ,

ˆ ˆ, i ,

k k
n ndk k

d

n n n n n n

Y Y
c x c t

A A iA Y Y Y

ψ ψ
ε

∂ ∂
= − =

∂ ∂

= + = +

  

3 32 1 2 1

11 23 2 3
[ ]

3 32 1 2 1

1 2 3 1 2 3

0 0
0 0

,
0 0

0 0

A A A Y Y Y
A A A Y YYA Y

A A A Y Y Y
A A A Y Y Y

αβ αβ

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  

and from (20.2) and the conditions in (20.1) we obtain:  

[ ]
1 ,A
cαβ β αψ, =  (20.5) 

with { , }kκψ ψ ψ= .  
This equation is fulfilled due to the conditions introdued in Eq. (20.1); note 
that the symmetric tensor of potentials could not satisfy this condition.  

The potential tensor, [ ] ,Aαβ  can be written with the Dirac matrices sε  
(see: Chap. 6):  

1 2 3
[ ] 1 2 3

31 4 2 4 1 21 2

i i ,

, ,

A A A Aαβ ε ε ε
ε ε ε ε ε εεε ε

= + +

= = =
 (20.6) 

where  
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1 2

0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1

i , i ,
0 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0

ε ε

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

3

0 1 0 0
1 0 0 0

.
0 0 0 1
0 0 1 0

ε

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

 

20.3 Spin and Twist Fields in the Riemannian Space  

Any Dirac matrices are defined by the conditions:  

2 αβα β β α ηε ε ε ε+ =  (20.7) 

and therefore to generalize the derived relations for the Riemannian space 
we shall define the following complex perturbations, h[α, β], to the metric 
tensor:  

2
[ ] [ ] ( ), , d d d d dg h h A s g x x g x xαβ αβ αβ α β α β
αβ αβ αβ αβη= + = = =

 
(20.8) 

Now we may define the complex Einstein-like tensor, Gαβ , and the related 
field relations:  

[ ] [ ] [ ] [ ]
1 1 .h h h YG c x c x

μ μ μ
αβ μβ α μα β αβ μ α β αβ

β α

ψ ψ∂ ∂
≈ + − = + −

∂ ∂
 (20.9) 

This tensor is asymmetric due to the introduced perturbations; however, its 
antisymmetry is not intrinsic as that related to torsion but is similar to that 
forced by strains in the material continuum: 2 ,ks ks ksg Eδ− =  where strains 
can be asymmetric, as follows from the asymmetric continuum theory (see: 
Chap. 7).  

Splitting expression (20.9) into symmetric and antisymmetric parts we 
obtain relations as in (20.4) and (20.5):  

[ ] [ ] [ ] [ ]
1 1, .h Y h h
c x c x

μ μ μ
αβ μ αβ μβ α μα β α β

β α

ψ ψ∂ ∂
= + = +

∂ ∂
 (20.10) 
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20.4 Natural Potentials: Analogy to Electromagnetic Field  

The analogy between the electromagnetic and rotation fields permits to 
introduce the antisymmetric tensor for the electromagnetic potentials; we 
can follow the sequence of relations (20.1-20.6) in a fully analogical way:  

1ˆ ˆ, , , 0,k kbs s b k kbs k n ns b n nc
B EA AA Aε ε ψ ψ, , ,, ,= = − = =  (20.11) 

1 ˆ
, 0, 4 , 0,n n k n

ndk n
n n d nc

JA A
x x x x

ψ
ψ πε ψ

∂∂ ∂ ∂
= = = −Δ =

∂ ∂ ∂ ∂
 (20.12) 

ˆ1 1 1ˆ, 0,k k
kms s m k kms s m

A AA Ac t c c t
ε ψ ε, ,

∂ ∂
+ = + =

∂ ∂
 (20.13) 

[ ] [ ]
ˆ ˆ, , ,n n n nA Y A Y A Yαβ αβ= = =  (20.14) 

2

1 1ˆ, ,

ˆ ˆ, i ,

k k
n ndk k

d

n n n n n n

Y Y
c x c t

A A iA Y Y Y

ψ ψ
ε

∂ ∂
= − =

∂ ∂

= + = +

  

3 32 1 2 1

11 23 2 3
[ ]

3 32 1 2 1

1 2 3 1 2 3

0 0
0 0

,
0 0

0 0

A A A Y Y Y
A A A Y YYA Y

A A A Y Y Y
A A A Y Y Y

αβ αβ

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

[ ]
1 ,A
cαβ β αψ, =  (20.15) 

with  { , }kκψ ψ ψ=  

1 2 3
[ ] 1 2 3

1 1 4 2 2 4 3 1 2

i i ,
, ,

A A A Aαβ ε ε ε
ε ε ε ε ε ε ε ε ε

= + +
= = =

 (20.16) 

and we repeat that only the antisymmetric tensor of potentials can satisfy 
relations (20.3a) in the form (20.15).  
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20.5 Complex Relativity Theory  

Again the Riemannian space physics presented for the rotation motions, 
sequence of relations (20.7-20.10), can be applied to the electromagnetic 
fields.  

From the electromagnetic antisymmetric tensor of potentials, as the me-
tric tensor perturbations, we may arrive at the Complex Relativity:  

2 ,α β β α αβε ε ε ε η+ =  (20.17) 

2
[ ] [ ] ( ), , d d d d d ,g h h A s g x x g x xαβ αβ αβ α β α β
αβ αβ αβ αβη= + = = =  (20.18) 

[ ] [ ] [ ] [ ]
1 1 ,h h h YG c x c x

μ μ μ
αβ μβ α μα β αβ μ α β αβ

β α

ψ ψ∂ ∂
≈ + − = + −

∂ ∂
 (20.19) 

[ ] [ ] [ ] [ ]
1 1, ,h Y h h
c x c x

μ μ μ
αβ μ αβ μβ α μα β α β

β α

ψ ψ∂ ∂
= + = +

∂ ∂
 (20.20) 

This Complex Relativity relations can be directly combined with that for 
gravity field.  

20.6 Concluding Remarks  

Our considerations related to physics in a complex Riemannian space in-
clude a genaralizaton of spin and twist motions in an asymmetric conti-
nuum and unification of fields in the Complex Relativity. We can repeat 
that an antisymmetry there introduced is not intrinsic as that related to 
torsion tensor. 

• We would like to add some final remarks.  
Numerous observations, in the whole spectrum of ranks, kinds and dimen-
sions, show the universal role of rotational motions. The rotational struc-
tures and motions appearing in astronomical observations, and observed in 
geological and tectonic structures and the continent evolution, have be-
come of recent interest in seismology and fracture mechanics and enter 
into micro-domains and their physics. In the related context, we may men-
tion the two books developing this point of view: “Vortex-Related Events 
of the Geological Processes” (Vikulin ed 2004) and “Rotational Processes 
in Geology and Physics” (Milanovsky ed 2007).  

Some remarks can touch the Universe evolution:  
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In the first chapter we have discussed the basic motions and deforma-
tions in an asymmetric continuum: the axial motions, displacements, spin 
fields and twist-oscillations of the off-diagonal shear axes; these fields are 
a function of time. 

Starting with the idea based on the Asymmetric Continuum Theory (see 
Chap. 7) we present some reflections concerning the Universe origin. Such 
implications, when do not interfere or deny the essential results of the 
quantum and relativity theories, may deliver a more simple and intuitional 
approach to the metric tensor perturbations in relativity and hypotheses 
related the inflation phase effects in cosmology.  

The presented approach to Complex Relativity was inspired by the rela-
tions formulated for the rotation motions in the Riemannian space. We 
believe that the analogies between the physics of the fields defined in the 
Standard Asymmetric Continuum and the proposed classic approach to 
relativity has a deep basis; not only the presented analogy between the 
rotation and electromagnetic field equations but also their extension to 
Riemannian space relations. 

Starting with this point of view, we may present some reflections con-
cerning the hypotheses related the inflation phase effects in cosmology; we 
may change the usual description to the following one.  

The initial explosion (or quantum virtual process) appearing at zero 
moment (determined with Planck precision) causes the axial spreading in a 
symmetric system. Such initial expansion runs with the “inflation phase” 
 

 

Fig. 20.1  Axial phase expansion followed with spiral forming motions 
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velocity, much greater then the light speed, the initial “condensate” 
(strings, quarks) could be subjected to motion similar to that for the axial 
motion in asymmetric continuum. At the end of this phase, rapid expansion 
slow down; this process is related to the phase transformation from sym-
metric expansion to a resulting physical state of our Universe with the light 
velocity limit: the initial “condensate” transforms to our Riemannian 4D 
space. The related phase transition would mean a transition from symme-
tric phase to asymmetric one with the possible rotation motions. At this 
phase change, an enormous expansion energy would be partly transformed 
to another form of motions with the initial rotations; both the initial rota-
tions and further “slow” expansion process can lead to formation of the 
spiral structures in the Universe (Fig. 20.1).  

Here, we may introduce another hypothesis related to possible appear-
ance of the spin back holes with the energy concentration related to rota-
tions.  
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