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Foreword 

While the society becomes everyday more aware of environmental problems, the 
experts have to deal with a major issue: uncertainty due to incomplete data sets 
and spatio-temporal variability. Among the techniques used to quantify this un-
certainty and to improve environmental management, geostatistics is becoming a 
recognized standard, applied in fields as different as hydrogeology, remote sens-
ing, ecology or soil contamination. In recent years, the domain of application of 
these techniques has regularly grown together with the wide availability of Geo-
graphical Information Systems and geostatistical software packages. 

This book is the outcome of the fifth edition of the European Conference on 
Geostatistics for Environmental Applications (geoENV V) held in Neuchâtel 
(Switzerland) from October 13th to October 15th, 2004. The conference attracted 
more than 100 participants, mostly from Europe, but also from North America, 
South America, North Africa, Russia and Australia. Among the 140 abstracts 
submitted to the conference, the organization committee selected 53 for oral pres-
entation and 40 for poster presentation.  

The book reflects the current status of the research in the field of geostatistics 
for environmental applications. It opens with one keynote paper by Carol Gotway-
Crawford, senior researcher at the Center for Disease Control and Prevention, At-
lanta, which emphasizes the problem of the size of the data support when making 
spatial statistics. It is then followed by 38 research papers, classified according to 
their main topics, that describe recent methodological advances and applications. 
All these papers have been presented orally during the conference and accepted by 
the reviewers. The final version of the papers were again checked by the editors. 
Also included in the book is a CDROM containing the original posters and the 
companion poster papers. This material has not been reviewed. 

Finally, the editors wish to thank all the reviewers and the authors without 
whom this book could not exist, as well as the sponsors of the conference: the 
Swiss Federal Statistical Office (http://www.bfs.admin.ch), the Swiss Federal Of-
fice for Water and Geology (http://www.bwg.admin.ch/e/), the Swiss National 
Science Foundation (http://www.snf.ch/), the University of Neuchâtel 
(http://www.unine.ch), the Centre of Hydrogeology of the University of Neuchâtel 
(http://www.unine.ch/chyn), the Banque Cantonale Neuchâteloise 
(http://www.bcn.ch), and the NCCR Plant Survival (http://www.unine.ch/nccr/). 

 
Neuchâtel, February 2005 
 
The editors. 
 
Philippe Renard 
Hélène Demougeot-Renard 
Roland Froidevaux 
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Change of support: an inter-disciplinary 

challenge

C. A. Gotway Crawford1 and L. J. Young2

1 Centers for Disease Control and Prevention, Atlanta, GA USA 
2 Department of Statistics, University of Florida, Gainesville, FL USA 

1 An introduction to change of support in geostatistics 

One of the fundamental ideas underlying the field of geostatistics is the concept of 

a regularized variable, the average value of Z(s) over a volume B 
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where 
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dsB ||  is the called the support of Z(B).  The term support reflects the 

geometrical size, shape, and spatial orientation of the units or regions associated 

with the measurements (see e.g., Olea 1991).  Changing the support of a variable 

(typically by averaging or aggregation) creates a new variable.  This new variable 

is related to the original one, but has different statistical and spatial properties.  

Determining how these properties vary with support is called the change of sup-

port problem.  From the beginning, the field of geostatistics has incorporated solu-

tions to change of support problems (Matheron 1963).   

The practical problems driving the initial development of geostatistics were 

those encountered in the mining industry, with a primary problem being the pre-

diction of the average grade of a mining block from drill core samples.  Thus, 

most change of support problems were concerned with “upscaling,” the prediction 

of a variable whose support is larger than that of the observed data.  A common 

example of this is block kriging where Z(B) is predicted from data Z(s1),…, Z(sn)

that have mean E[Z(s)]=  and semivariogram (s-u)=1/2Var[Z(s)-Z(u)].  The 

block kriging predictor is given by 
n
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obtained by solving the equations (Journel and Huijbregts 1978, Chilès and 

Delfiner 1999) 
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Here
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There are many more sophisticated geostatistical solutions to this change of 

support problem, including nonlinear methods and those developed to infer the en-

tire probability distribution of the regularized variable (see, e.g., Journel and Hui-

jbregts 1978, Matheron 1984a and b, Cressie 1993b, Rivoirard 1994, Goovaerts 

1997, and the compilations in Chilès and Delfiner 1999 and Gotway and Young 

2002).  However, most practical applications that use them have data of point sup-

port (or data measured on small cores or boreholes), and the inferential goal is up-
scaling by regularization, so that the inferential goal is prediction of Z(B) (or 

some function of it) in Eq. 1.  Moreover, the volumes B of interest are rectangular 

blocks and so the integrations required can be done fairly easily and quickly.  

However, spatial data come in many forms. Instead of measurements associated 

with point locations, we could have measurements associated with lines, areal re-

gions, surfaces, or volumes.  In many disciplines such as geology and soil science, 

observations often pertain to rock bodies, stratigraphic units, soil maps, and large-

scale land use.  In geographic and public health studies, the data are often counts 

or rates obtained as aggregate measures over geopolitical regions such as census 

enumeration districts and postal code zones.  Moreover, the inferential goal may 

also not be limited to upscaling.  For example, modeling hydrological and soil 

processes often involves making predictions from models that have relatively 

coarse spatial resolution and these then need to be downscaled to the watershed 

level or combined with digital elevation data of point support.  In many studies in 

public health, sociology, and political science, the data are counts or rates aggre-

gated over areal regions (e.g., per postal code or per census unit), but individual-

level inference is desired.  Finally, the idea of regularization as defined through 

Eq. 1 is not always an appropriate mathematical description of either the data that 

are available or the inferential quantity of interest.  For example, in geographical 

studies, the data are totals (e.g., the number of people per enumeration district) or 

rates that are based on population totals and not on the area of the regions.  Devel-

oping valid inferential methods for upscaling, downscaling and “side-scaling” (in 

the case of overlapping spatial units) variables is of critical importance to numer-

ous scientific disciplines.  It seems natural to try to extend the relatively rich ide-

ology on change of support developed in geostatistics to more general change of 

support problems. 

In this context, we examine the change of support problem from an inter-

disciplinary point of view.  This viewpoint allows us to extract some key ideas, 

common themes, and general statistical issues common to change of support prob-
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lems.  We provide a brief summary of the various types of solutions that have 

been proposed to various change of support problems over more than five decades 

of research conducted in numerous fields of study.  The goal of this extroverted 

contemplation is the search for a general framework for statistical solutions to 

change of support problems.   

2 Why is support important? 

Changing the support of a variable through regularization creates a new variable 

with different statistical and spatial properties.  In particular, the variability in 

Z(B) decreases as the support B increases, the histogram of Z(B1) , …,Z(Bm), m<n

will tend to be more symmetric and approximately bell-shaped, and the spatial 

autocorrelation in the regularized values is altered as well (Journal and Huijbregts 

1978, Armstrong 1999).  Thus, any inferential procedure must take these factors 

into consideration.  There are numerous examples of this support effect in the geo-

statistical literature, and many methods have been suggested for adjusting for sup-

port effects in spatial prediction and resource estimation. 

While this view of support has served the mining industry quite well, the situa-

tion is more complex in other disciplines.  Global Positioning Systems, remote 

sensing technology, and Geographic Information Systems (GIS) allow greater ac-

cess to a variety of spatial data and easily permit analysis on almost a limitless 

choice of spatial units: points, postal code polygons, Census tracts and enumera-

tion districts, hydrogeologic regions, raster images with different pixel sizes, and 

even regions defined by the whim of the user.  More often than not, the data of in-

terest in any one analysis are of different supports that are irregularly shaped.  An-

other factor, related to support, comes into play here: the concept of scale.  From 

our review work in this area, we have found that the term is used differently in dif-

ferent disciplines. In fact, few good definitions exist.  For example, Bierkens et al.

(2000) use the terms scale and support interchangeably, defining scale to be sup-

port.  We argue that they while these two concepts are very much related, they are 

in fact quite different.  From our perspective, spatial scale is defined by both the 

number and the relative size of the spatial units used to partition a spatial domain 

of interest.  Corresponding to every spatial scale is a level of spatial aggregation 

that represents the particular mixture of sub-units that comprise the larger units of 

interest.  For a fixed domain, increasing the scale results in a fewer number of lar-

ger units.  Since size is one aspect of support, clearly support and scale are related.  

However, we prefer the more general definition of support that includes the shape 

and orientation and the units.  It is possible to partition two spatial domains into 

subunits with the subunits being of essentially the same size in both partitions, but 

of different shapes and/or different orientations (Fig. 1).   

Geographers have long encountered the interplay between support and scale, 

noting that the choice of spatial units for analysis is “modifiable,” and that statisti-

cal results depend heavily on the way the spatial units are created.  In geography, 
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the change of support problem is known as the Modifiable Areal Unit Problem
(MAUP) (Openshaw and Taylor 1979).  

Fig. 1.  Components of the support effect and sources of the MAUP.  Adapted from 

Wong(1996). 

Thus, the change of support problem and the MAUP are really comprised of 

two interrelated problems.  The first occurs when different inferences are obtained 

when the same set of data is grouped into increasingly larger areal units.  This is 

often referred to as the scale effect or aggregation effect.  Aggregation reduces 

heterogeneity among units. The uniqueness of each unit and the dissimilarity 

among units are both reduced.  However, spatial autocorrelation is a mitigating 

factor: When areal units are similar to begin with, aggregation results in much less 

information loss than when aggregating highly dissimilar units.  Spatial aggrega-

tion also affects the spatial variability in the resulting units, often inducing posi-

tive spatial autocorrelation, particularly if the aggregation process allows overlap-

ping units.  The second, often termed the grouping effect or the zoning effect,

arises from the variability in results due to alternative formations of the areal units 

that produce units of different shape or orientation at the same or similar scales 

(Openshaw and Taylor 1979, Wong 1996).  The zoning effect is much less pro-

nounced when aggregation of areal units is performed in a non-contiguous or spa-

tially random fashion.  It is most apparent only when contiguous units are com-

bined, altering the spatial autocorrelation among the units.  Combining smaller 

units through regularization is analogous to smoothing with different combina-

tions of spatial neighbors.  Depending on the similarity of the neighbors, different 

zoning rules may lead to different analytical results.    

In geostatistics, the aggregation effect and the zoning effect are usually treated 

in a combined fashion through the ideas of the dispersion variance, the regularized 

semivariogram and its theoretical relationship to the point semivariogram and 

change of support models that account for both issues simultaneously.  However, 



Change of support: an inter-disciplinary challenge      5 

to appreciate the solutions to the MAUP and the change of support problem de-

veloped in other disciplines, we found it helpful to separate the two components.  

Most solutions to upscaling problems address the effects of aggregation, and most 

solutions to downscaling problems recognize the need to reconstruct variation at 

the smaller scale, but the zoning effect issues associated with both of these prob-

lems are often ignored.   

3 Solutions to change of support problems 

Most solutions to change of support problems require spatial prediction of data as-

sociated with one set of units based on data associated with another set of units. In 

developing solutions to change of support problems, the criteria that such predic-

tions should satisfy varies widely across the different disciplines.  A collective list 

of some of the important considerations includes the following: 

1. The ability to explicitly account for the differing supports of the spatial 

units involved; 

2. A general framework that can be used for upscaling (aggregation), down-

scaling (disaggregation), or side-scaling (overlapping units); The frame-

work should allow for upscaling from points to volumes or from volumes 

to other volumes with larger support.  It should allow for downscaling 

from volumes to volumes with smaller support, or from volumes to 

points. 

3. The predicted surface generated should be smooth across unit bounda-

ries;

4. Standard errors of the predictions can be computed and these should ac-

curately account for the uncertainty involved; 

5. Covariates can be used to improve predictions; 

6. The method can be used when the data and predictions are averages (as 

in Eq. 1) or counts/totals; 

7. Predictions should lie in the parameter space (e.g., when predicting an 

inherently positive quantity, the predictions should not be negative); 

8. There should be consistency in predictions across scales: For example, 

consider predicting Z(Aij) from data Z(B1) , …,Z(Bm), where the Aij , j=1, 

… ni are nested within volume Bi where Aj  Ak=  for j k, and 

ij
n
j BAi

1
. Then the predictions within each volume B should add to 

the observed datum 
in

j

ij

i

i AZ
B

BZ
1

)(ˆ
||

1
)(

Huang et al. (2002) call this the mass balance property.  When down-

scaling observed data that are totals and not averages to point support, 

then the predictions )(ˆ sZ should satisfy the pycnophylactic (volume pre-

serving) property (Tobler 1979): 
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A

dssZAZ )(ˆ)( .

9. Ideally, the prediction method should be based on a paucity of model and 

distributional assumptions; 

10. The prediction method should be computationally feasible for routine use 

within a GIS where it is relatively easily to perform computations involv-

ing point-in-polygon operations and digital boundaries.  

Of course, asking for a solution that satisfies all of these properties is probably 

unrealistic.  However, this list provides a backdrop against which we can evaluate 

current solutions and understand their advantages and disadvantages.  In the fol-

lowing sections, we provide an overview of some of the general types of solutions 

to change of support problems and briefly outline some of their main advantages 

and disadvantages.  More comprehensive descriptions of the methods are found in 

the references provided and many of these are reviewed in more detail in Gotway 

and Young (2002).  We deliberately exclude the rich literature on upscaling and 

downscaling in many of the physical sciences such as hydrology, soil science, and 

petroleum engineering in which models that adhere to engineering laws often form 

a basis for solutions to change of support problems.   

3.1 GIS operations and raster calculations 

Description:  Basic geoprocessing operations with a GIS include union, intersec-

tion, and dissolve operations applied to the boundaries of the spatial units in order 

to create new spatial units.  Raster calculations include averaging of interpolated 

values over irregularly shaped regions (“zonal” statistics) and pixel-by-pixel com-

putations. 

Main Advantages:  Working with digital boundary files is the consummate utility 

of GIS.  The computations are fast, invisible to the user and can explicitly factor in 

the support of the different units involved.  Layers representing different variables 

can be combined using raster calculations so that covariates can be incorporated, 

although the effect of the covariate layers on the predictions must be specified, 

rather than inferred statistically.  Smooth surface generation is straightforward and 

visualization is automatic. 

Main Disadvantages:   The main disadvantage is the lack of uncertainty measures 

for the resulting predictions.  Moreover, when several layers with different sup-

ports are rasterized to the same cell size and then used in subsequent computa-

tions, error propagation is a big concern.  Volume-volume disaggregation is done 

using proportional allocation.  Depending on how many operations are used and 

their nature, the resulting predictions may not be aggregation consistent. 
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3.2 Spatial smoothing 

Description:  The goal with spatial smoothing methods is to make a smooth map 

from aggregated data.  Methods in this group vary greatly and include point 

kriging based on centroids, kernel smoothing (Bracken and Martin 1989), support-

adjusted locally weighted regression (Brillinger 1990, Muller et al. 1997), and 

pycnophylactic interpolation (Tobler 1979).  

Main Advantages:  Point kriging and kernel smoothing based on centroids are eas-

ily implemented and provide a measure of uncertainty associated with predictions.  

The kernel smoothing approach developed by Bracken and Martin (1989) and the 

pycnophylactic interpolation method of Tobler (1979) computationally constrain 

the predictions to be aggregation consistent.  The methods developed by Brillinger 

(1990) and Müller et al. (1997) are more statistically sophisticated and allow ad-

justment for covariates and provide a measure of uncertainty.  The methods devel-

oped by Tobler (1979), Brillinger (1990) and Müller et al. (1997) explicitly con-

sider the supports of the units involved.  

Main Disadvantages:  The major disadvantage to these methods is that are con-

cerned only with the volume-point change of support problem.  Constraining pre-

dictions to ensure aggregation consistency (as in the methods of Bracken and Mar-

tin 1989 and Tobler 1979) makes it difficult to adjust for covariates and to obtain a 

valid measure of uncertainty.  On the other hand, the methods developed by Brill-

inger (1990) and Müller et al. (1997) may not give predictions that are aggregation 

consistent. 

3.3 Regression methods 

Description:  Proposed by Flowerdew and Green (1992), a regression model is as-

sumed for data associated with “target” units, with the response data on target 

units treated as missing values.  Starting values from proportional allocation are 

used to obtain initial estimates of the regression parameters.  Updated estimates of 

target-unit data are then obtained from the regression model and constrained to 

satisfy the pycnophylactic property.  This process is repeated until the estimates of 

the target unit data remain essentially unchanged.  

Main Advantages:  The main advantage is the ability to use covariates to estimate 

data on the target units.  The regression framework can be used for a variety of 

change of support problems involving different types of data (binary, discrete and 

continuous)  The computations are fairly simple and could be easily programmed 

into a GIS script. 

Main Disadvantages:  Because of the iterative process that includes the pycnophy-

lactic constraint, accurate measures of the uncertainty in target-unit predictions 

cannot be obtained.  Also, the regression model must be built on units formed by 

the intersection of the target units and the “source” units (those for which data are 

observed), and so covariates on these “atomic” units must be derived.  The support 

of the units is not considered and spatial autocorrelation is ignored. 
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3.4 Bayesian hierarchical models 

Description:  A statistical model is specified for the data, given unknown vari-

ables, and then prior distributions are specified for the unknown variables.  The 

unknown variables may include unknown data to be predicted.  A posterior distri-

bution is derived from the likelihood of the data that is updated by prior informa-

tion in accordance with Bayes’ theorem.  Simulation methods are used to generate 

realizations from posterior distribution (see, Mugglin and Carlin 1998, Wikle et al.

2001, Gelfand et al. 2001, Kelsall and Wakefield 2002). 

Main Advantages:  The methodology is based on very elegant statistical theory 

combing Bayes’ theorem, likelihood estimation and Markov chain theory.  The 

posterior predictive distribution provides a comprehensive description of uncer-

tainty.  Complex models that include covariates on many different scales can be 

more easily constructed hierarchically than simultaneously.   

Main Disadvantages:  The models are computationally intensive. With the excep-

tion of the model in Gelfand et al. (2001) each model can be used to solve only 

one type of change of support problem, and solutions to other problems require 

complex statistical derivations.  Most rely too heavily Gaussian distributions and 

many account for support only through areal weighting and hence ignore the zonal 

effect completely.  The hierarchical specification can induce unknown constraints 

within the overall model.  There has been little evaluation of the resulting uncer-

tainty distribution (e.g., to assess ergodic properties, or the ability to contain a 

value of a transfer function of interest as described in Deutsch and Journel 1992 

and Gotway and Rutherford 1994).  

3.5  Multi-scale tree models 

Description: Chou et al. (1994) developed a scale-recursive algorithm based on a 

multilevel tree structure for image processing in engineering. Each level of the 

tree corresponds to a different spatial scale (see Fig. 2).  Data are observed at 

some of the nodes of the tree and the goal is prediction at other nodes of the tree.  

Algorithms are based on the Kalman filter.  To eliminate some of the artifacts im-

posed by the tree structure and to ensure mass balance, Huang and Cressie (2000) 

and Huang et al. (2002) extend these models to more general graphical Markov 

models. 

Main Advantages:  The recursive nature of the Kalman filter (for which kriging is 

a special case) is extremely computationally efficient for processing huge data 

sets.  It also provides a measure of uncertainty associated with the predictions.  

Main Disadvantages:  The tree structure ignores spatial support and it is not clear 

how it can be adapted to more general cases with overlapping spatial units.  Statis-

tical parameter estimation can be difficult. 
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Fig. 2.  A tree structure for multiscale processes. 

3.6 Geostatistical methods 

Description: Includes ``block" kriging, nonlinear geostatistical methods and iso-

factorial models (Journel and Huijbregts 1978, Matheron 1984a and b, Cressie 

1993b, Rivoirard 1994, Goovaerts 1997, and Chilès and Delfiner 1999). 

Main Advantages:  The field of geostatistics includes many innovative solutions to 

change of support problems.  These solutions have proven themselves in practical 

applications such as mining where profitability is of primary concern.  A measure 

of prediction uncertainty can be easily obtained.  The basic calculations needed for 

change of support predictions based on kriging and cokriging can be done in GIS.  

Main Disadvantages:  Most practical solutions were developed only for the up-

scaling problem.  Estimating the semivariogram from data that are not of point 

support may be problematic.  Prediction uncertainty may not adequately reflect es-

timation error in the semivariogram.  

4 Towards a general framework 

Clearly, the solutions to change of support problems range from those that are 

simple and require few assumptions, but are statistically unsophisticated (GIS and 

proportional allocation), to those that are complex and statistically elegant, but re-

quire many assumptions and are difficult to implement (Bayesian hierarchical 

models).  Moreover, many solutions are particular to the change of support prob-

lem they were developed to address.  We seek a compromise, one that provides a 

unified framework for the different types of change of support problems encoun-

tered in a variety of disciplines, is based on fewer assumptions, and can be imple-

mented in a geographic information system (GIS) using current GIS technology, 

but also one that can incorporate covariates and provide standard errors for the re-

sulting predictions.   
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While block kriging was developed for the upscaling problem, a slight modifi-

cation allows the same ideas to be adapted to more general change of support 

problems (Journel and Huijbregts 1978, Gotway and Young 2002, Gotway and 

Young 2004).  Consider the linear predictor 

)()()(ˆ

1

ij

n

i

ij BZAwAZ      

based on data Z(B1) , …,Z(Bn), where each weight wi(A) measures the influence 

of datum Z(Bi) on the prediction of another variable with differing support, Z(A).  

The theory of best linear unbiased prediction can be applied to determine optimal 

weights, wi(A) in a manner analogous to that used in the development of the block 

kriging predictor.  The key to this development is the relationship between the 

semivariogram of Z(B) and that of the underlying process Z(s) (Journel and Hui-

jbregts 1978, p. 77) 
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Given data of point support, (s-u) can be estimated and then used to determine 

the semivariogram of data at any other support, (Bi Bj) and (Ai, Aj).  Although in 

many applications, data of point support are available, in man others, such data are 

not available. However, it is possible to still use this relationship.  If a parametric 

model, (s-u; ), is assumed for point support semivariogram, an estimate of  can 

be obtained, and hence (s-u; ) can be determined, from data of volume support 

Z(B1) , …,Z(Bn) (Mockus 1998, Gotway and Young, 2004).  Computationally, it 

is easier to use the covariance functions  
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since only one multidimensional integration is required.  Then, if Y(Bi)= Z(Bi)-µ, 

 can be estimated by the value that minimizes (Mockus 1998) 
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and the minimized prediction mean squared error (kriging variance) is given by  
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Gotway and Young (2004) extend these ideas to the “external drift” case where 

)()]([ sxSZE  and develop an iterative generalize least squares approach to es-

timating the drift parameters and the autocorrelation parameters simultaneously.  
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If the data are totals instead of averages, so that 
B

dssZBZ )()(* , this approach 

can be used with the normalized  variables .||/)(*)( BBZBN

Since an optimal predictor is derived in terms of data with general supports A 

and B, it can be used for upscaling (spatial aggregation), downscaling (spatial dis-

aggregation), or side scaling (overlapping) units, and the spatial units may be of 

point, areal, or volumetric support. Because the predictor is linear and honors the 

data, mass balance properties are inherently satisfied.  

However, this approach suffers from the same problems encountered in using 

geostatistical methods with data of point support, namely the variability in the 

cross-products if not suitably binned and averaged, and the sensitivity of the esti-

mates of  to a few large cross-product values and choices for the lag spacing.  

Another disadvantage of the geostatistical framework when applied to count data 

is that negative predictions can occur; the predictions are not formally constrained 

be positive.   

5 Summary and challenges  

In spite of the rather substantial disadvantages associated with using GIS opera-

tions to combine spatial data, the ability to easily implement solutions to change of 

support problems within a GIS is overwhelmingly appealing.  Thus, overall, this 

approach is the most commonly used method for combining incompatible spatial 

data and solving complex change of support problems.  While Bayesian hierarchi-

cal models and isofactorial models offer elegant statistical solutions to a variety of 

change of support problems, their complexity (both statistical and computational) 

and their dependence on a large number of unverifiable, pedantic assumptions 

make them unattractive for routine use in most applied sciences at the present 

time.  Thus, as a compromise, we considered a geostatistical approach to general 

change of support problems that allows downscaling and side scaling.   This ap-

proach explicitly accounts for the supports of the data, can incorporate covariate 

information to improve the predictions, and provides a measure of uncertainty for 

each prediction.   

While the geostatistical framework presented here is not without its disadvan-

tages, it offers a way to put the concept of spatial support back into spatial analy-

sis.  Subsequent research and development could easily adapt this framework for 

use as a routine part of many software packages. 
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1 Introduction 

Usually, in environmental studies, categorical and continuous data are used 

jointly. Each type of data convey substantial information. For example, a thematic 

map may often be used as an auxiliary information source for the prediction of a 

continuous variable. Sometimes, categorical information is collected during the 

sampling campaign and may also be used as an auxiliary information source for 

the prediction of a continuous variable.  

In environmental sciences literature, several methods have been proposed so far 

for predicting a continuous variable with auxiliary categorical information. The 

most common are indicator kriging (Goovaerts 1997), stratified kriging (Stein et 
al. 1988, Goovaerts 1997), kriging with varying local means (Goovaerts 1997) and 

neural networks (Venables and Ripley 1994).   

On the contrary, methods used to predict a categorical variable with the help of 

a continuous one are less common. Among those methods, one can find general-

ized linear models (Diggle et al. 1998) and fuzzy classification (Wang 1990).   

All those methods suffer from limitations that prevent any kind of generaliza-

tion to combine categorical and continuous variables in an unique framework. 

Recently, the Bayesian Maximum Entropy approach has proved to be a power-

ful tool for processing spatial data sets (Christakos 2000, Christakos et al. 2002, 

D’Or et al. 2001). Based on sound information processing rules and classical 

probability laws, this geostatistical method has been developed first for continuous 

variables (Christakos 2000) and later for categorical data (Bogaert 2002). Its 

strongest feature is its ability to manage data of various nature and quality (’hard’ 

and ’soft’ data).  The paradigm of BME methods is based on a constrained maxi-

mization of an entropy. From an epistemic point of view, BME analysis involves 

three steps, namely the prior, the meta-prior and the posterior steps. The first one 

yields the prior pdf by maximization of the entropy. This reverts to maximize the 

expected information content while ensuring that all the available information, 

called the general knowledge, is taken in account. Constraints are the continuous, 

categorical and mixed first and second order moments. The posterior step is a 

bayesian conditionalization that consists in incorporating the specific information 
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provided by the data (the observed values in a neighborhood around the prediction

location).

We tackle the problem of combining categorical and continuous variables for

spatial prediction within the BME framework, this method will be named

BME/MIX hereafter. We propose a unique framework for estimating the joint dis-

tribution of both types of variables based on the entropy maximization. In this ar-

ticle, we will develop a two-points case with two spatial random fields (a continu-

ous and a categorical one) for which the specific information consists in the 

categorical values observed at the prediction point and at the nearest data point as

well as the continuous value at this last point.

The first part of the paper is dedicated to some theoretical developments. The

mixed random field is presented as well as the different BME steps applied to the

mixed case. In the second part, we present the experimental design with the simu-

lation of the reference map and the sampling strategy. In the third part we compare

the BME/MIX results with those obtained from different common geostatistical

methods.

2 Theroretical developments 

A definition of the mixed random field (RF) and some notational conventions will

be first presented. The three different kinds of covariance that can be defined for

the mixed case are then explained. The constrained maximization problem is de-

fined and it is shown that the prior probability density function (pdf) is a combina-

tion of Gaussian pdf’s. The estimation of this prior pdf is finally presented.

2.1 The mixed RF 

Given two random variables (RV’s) Z(x) and C(x), where x=(x1,…,xd)’  refers

to a spatial location over a d-dimensional domain d, such that FZ={ Z(x), x

  } and FC={C(x), x } are two spatial RF’s. The first one is assumed to be 

continuous with Z(x) 1, whereas the second one is categorical (ordinal or 

nominal) with C(x)  {c1,…,cm}, where the ck’s are forming a complete system of

events.

Using a disjunctive coding of the categorical variables, we have FYk = {Yk(x), x

}, k = 1,…,m where FYk ’s are binary RF’s that are summing to one. Each 

Yk(x) is a Bernoulli random variable taking as value 1 if C(x)=ck and 0 otherwise,

subject to the constraint that 
1

( ) 1
m

kk
Y x .
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2.2 Covariances in a mixed random field

Whatever the RF’s we are considering, it is useful to characterize them at least 

partially by computing the covariance between two RV’s taken respectively at lo-

cations xi and xj. For the continuous RF, we will simply make use of the classical

definition

[ (x ), (x )] [ (x ) (x )] - [ (x )] [ (x )]i j i j i jCov Z Z E Z Z E Z E Z (1)

If we compute the covariance between two RV’s  and ( )ikY x ( )jk
Y x , we get

' ' '

' '

[ (x ), (x )] [ (x ) (x )]- [ (x )] [ (x )]

( (x ) (x ) ) - ( (x ) ) ( (x ) )

jk i k j k i k j k i k

i k j k i k j k

Cov Y Y E Y Y E Y E Y

P C c C c P C c P C c
(2)

 Furthermore, we can also compute the covariance between any Bernoulli RV

Yk(xi) and any continuous RV Z(xj), with
[ (x ), (x )] [ (x ) (x )] - [ (x )] [ (x )]

[ (x ) | (x ) ] ( (x ) ) - [ (x )] ( (x ) )

[ (x ) | (x ) ] - [ (x )] ( (x ) )

k i j k i j k i j

j i k i k j i

j i k j i k

Cov Y Z E Y Z E Y E Z

E Z C c P C c E Z P C c

E Z C c E Z P C c

k

)

(3)

The first two covariances Cov[Z(xi),Z(xj))] and Cov[Yk(xi),Yk’(xj)] are well-

known and widely used in geostatistics, the second one corresponding to the popu-

lar indicator covariance (Journel 1983). The third covariance Cov[Yk(xi),Z(xj)] is 

more peculiar; it shows that, up to the multiplicative constant P(C(xi)=ck), the co-

variance values between the binary random variable Yk and the continuous random

variable Z are given by the difference between the conditional expectation

E[Z(xj)|C(xi)] and the unconditional expectation E[Z(xj)]. The mixed covariance

function is expected to be monotonic and it will drop down to zero or close to zero 

for high distances. Indeed, it is expected that the conditional expectation will be-

come more and more similar to the unconditional one when the two points are

more distant. The mixed covariance function may be increasingly or decreasingly,

depending on which mean is the highest (the conditional one or the unconditional

one).

2.3 BME/MIX constrained maximization

In the next part of this paper, we will assume that, under second-order stationarity

hypothesis, all first-order and second-order theoretical moments can be inferred

with reasonable accuracy from a dataset, so they constitute the general knowledge

that we have at hand about the mixed RF. We will consider hereafter that we have

all those moments for obtaining the joint multivariate pdf for a set of locations

xmap={ x0, x1,… xn}, that we will denote as 

0 0{ (x ), , (x )}, (x ), , (x ) 0 0( , ) ( { , , }, , ,
k k n nmap map Y Y Z Z k kn n

kk

f f y yy z z z (4)
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where yki refers to the Bernoulli variable Yk(xi), and where zi refers to the continu-

ous variable Z(xi). What we seek for is the distribution that has maximum Shan-

non’s entropy HYmap,Zmap, with

, - ln ( , ) ( , )
map map map map map map map mapH f fY Z y

y z y z zd

dz

(5)

where the integral is a n-fold integral and and that respects a set

of (direct and cross-) second-order moments given by those functions

1

n

map ii
dz

-
[ (x ) (x )] ( , )

mapi j i j map map mapE Z Z z z f d
y

y z z (6)

' '
-

[ (x ) (x )] ( , )
mapk i k j ki k j map map mapE Y Y y y f d

y
y z z (7)

-
[ (x ) (x )] ( , )

mapk i j ki j map map mapE Y Z y z f d
y

y z z (8)

where E[Z(xi)Z(xj)], E[Yk(xi)Yk’(xj)] and E[Yk(xi)Z(xj)] are values that were inferred

from the data set  i, j, k, and where summation covers all the possible combina-

tions of the binary variables.

2.4 The prior pdf, a mixture of Gaussian distributions

A well-known result states that the general expression for the maximum entropy

solution with moments incorporated as constraints has an exponential form

(Jaynes 1982). The lagrangian solution is,

(
1

( , ) exp , )map map map mapf g
A

y z y z (9)

where the µ are the lagrangians that must be identified from the constraints,

g (ymap, zmap) is the set of functions that correspond to the constraints we want to

incorporate, and where A is a normalization constant. For our specific problem, it 

is easier to develop and rearrange the terms by making use of the matrices B, Ni

and ij, that are lagrangian coefficients matrices respectively associated with the

terms zz, yiz and yiyj , so that

1
( , ) exp - ' - ' - 'map map i i i ij ji i j

f z
A

y z z Bz y N y y (10)

Let us define l=1,…,mn+1  as an index over the set of all possible combinations of

categories at locations x0,…xn. For a given choice yl,map of ymap at these locations, 

the joint conditional distribution of zmap can be written as

,

,( , )

exp - ' - '

map l map

l map map map

l

f y z z

z Bz z

,( , )
( | )

l map mapf
f

d

y z
z y

 (11)

where the values for ’l= iy’i Ni are depending on the specific choice for the con-

ditioning categories, and the denominator is a normalization constant so that
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f(zmap|yl,map) dzmap= 1. It is not difficult to prove that this is the general expression

for a multivariate Gaussian distribution N(µl, ) with a mean vector 

µl =(E[Z0|yl,map],…, E[Zn|yl,map])’ that depends on the conditioning categories and a 

covariance matrix =½B
-1. As the general expression of f(zmap|yl,map) always in-

cludes the same z’Bz that does not depend on the choice of the conditioning cate-

gories, this also shows that the covariance matrix of all conditional distributions

f(zmap|yl,map) will be the same, whatever the choice for yl,map; these distributions

will only differ with respect to their mean vector µl.

2.5 Prior pdf estimation

Our objective is to find the prior pdf that maximize the joint entropy HYmap,Zmap,

which is a mixture of Gaussian conditional distributions. However, both  and the

µl’s are unknown and have to be estimated. In order to find the solution, we pro-

pose to decompose the entropy in two terms using the well-known formula (Gray

1990)

, |map map map map map
H HY Z Z Y YH (12)

where HYmap is the entropy for the categorical variable and HZmap|Ymap is the total

conditional entropy, with

- ln ( ) (
map map map mapH fY y

y y )f

|H

(13)

| ( )
map map map mapmap mapH fZ Y Z yy

y (14)

where HZmap|Ymap is the conditional entropy defined as

| ln ( | ) ( | )
map map map map map map mapH f fZ y z y z y zd (15)

Maximizing HYmap,Zmap is not equivalent to maximizing separately HYmap and 

HZmap|Ymap, but provide that the joint probabilities estimates  that will be ob-

tained from the maximization of H

map

Ymap are not too different from the true map ’s,

it is a reasonable simplification. It also makes things much easier. Indeed, (i) HY-

map does not depend on Zmap so its entropy can be maximized subject to the con-

straints about bivariate probabilities (Bogaert 2002), and (ii) as the conditional dis-

tributions f(zmap|y,lmap) are all multivariate Gaussian with same covariance matrix

, as seen from eq.  14, the total conditional entropy becomes
1

2

|
ln(2 ) det( )

n

map map
H e

Z Y
(16)

Therefore, the first step of BME/MIX algorithms is equivalent to BME/CAT, 

that is determining the categorical distribution on the basis of the constrained

maximization of HYmap. The second step is based on the maximization of the en-

tropy HZmap|Ymap, which is equivalent to maximizing the determinant of the condi-

tional covariance’s, det( ). Conditional covariances are calculated on the basis of 
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corresponding general covariance (  Zmap), BME probability table ( l,map) and con-

ditional means ( l), with

1
2

1

n

map

m

Z mapmZ µ µ11 (17)

and where 1 is a n*1 unit vector. The BME/MIX prior pdf is easily derived

from those results.

2.6 Posterior step 

When the joint maximum entropy prior pdf has been obtained, the specific knowl-

edge can be used to obtain the conditional posterior pdf at the unsampled location

x0. The specific information is the hard and various types of soft data collected on

the study site. For the sake of brevity, we will focus on the prediction of the con-

tinuous variable. For example, in the case there is no soft information, the poste-

rior pdf is

0 0

0 0

0

( )
( )

( )

map map

map map

map map

f z c
f z c

f c

z c
z c

z c

(18)

Incorporation of soft information is also possible as for BME/CONT and 

BME/CAT (Christakos et al. 2002, D’Or 2003).

From this entire pdf, the relevant estimate can be chosen, according to the goals

of the study. It could be the mean, the mode, the variance or a quantile for exam-

ple.

3 Experimental design 

In order to compare BME/MIX prediction performance with those of the classical

approaches, reference maps are simulated; this will allow us to perform a fair and

objective performance comparison. Hard data are sampled from these maps and

will be considered as the only available information for each prediction method.

3.1 Simulation of the reference map 

To obtain a mixed RF, the first step will be to generate two correlated continuous

RF’s, Z and Q. They are jointly simulated at 900 locations over a regularly spaced

30 by 30 grid with a traditional non conditional simulation method based on a

Choleski decomposition. The theoretical covariance model is exponential with a 

range equal to 9 and a sill equal to 1. The covariance between Z and Q is equal to

0.8. Both RF’s are Gaussian and have a mean equal to zero.
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Second, for building a categorical RF, namely C, simulated values of Q are re-

placed by the interval to which they belong. The bounds of these intervals are the

0, 1/3, 2/3 and 1 quantiles of a zero mean unit variance Gaussian distribution.

Both the simulated Z and C (Fig. 1) RF’s are the reference to which simple

kriging, stratified kriging, simple kriging with varying local means and BME/MIX

estimates will be compared.

Fig. 1. Maps of the simulated (a) continuous RF and (b) corresponding categorical RF. 

Black indicates the lowest value and white the highest.

3.2 Sampling strategy

From the 900 simulated data, a hard data set is extracted. The continuous hard data

set consists in the continuous simulated values at 82 locations that are randomly

sampled over the grid. The categorical hard data set is the whole simulated cate-

gorical RF so that classical approaches like stratified or residual kriging can be 

used. Prediction is conducted over the whole grid and predicted values for the RF

will be compared to the reference (simulated) values given in Fig.1.

4 Comparisons between methods 

For comparing prediction performances between methods, two cases will be con-

sidered. The first one will be to conduct prediction for each method using all the

available information at hand in the neighborhood of a prediction location (the

neighborhood will consist in the five closest sampled locations around each pre-

diction location); this will allow us to see how well each method can perform in 

the most favorable situation. The second case will be to conduct prediction using

only the information about the sampled location which is the closest one to the

prediction location; as the current implementation of BME/MIX only makes uses

of this closest information, this allows us to perform a fair comparison between

the methods as performances are thus compared on the basis of the same used in-

formation.
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4.1 Geostatistical methods

The four methods that are compared using specific criteria for measuring predic-

tion accuracy are respectively simple kriging (SK), stratified kriging (StK), simple

kriging with varying local mean (SKlm) and Bayesian Maximum Entropy for a

mixed case (BME/MIX).

The first three methods are well-known (Goovaerts 1997). The simplest one

among them is SK, a method that does not take categorical information into ac-

count. As the categorical information is spatially exhaustive, StK and SKlm may

also be used in a straightforward way. For StK, prediction is performed within

each specific stratum (the stratum corresponding to a category in our case) using 

the corresponding covariance model and only the data belonging to the considered

stratum. In the second variant SKlm, the specific stratum mean is subtracted from

hard data before prediction and is added afterward; prediction is therefore per-

formed with all data and a unique covariance model.

4.2 Comparison criteria

Criteria that can be used for comparing the four methods are either local or global.

The local criterium used here is the pattern of the map produced by each method.

Those maps will allow us to emphasize the ability of the methods to reproduce lo-

cal features by comparison with the reference spatial pattern.

On the global scale, the methods are compared on basis of their mean errors

(ME) and root mean errors (RMSE), respectively computed as:

2

1 1

1 1
ME ( ) RMSE ( )ˆ ˆ

n n

k kk k

k k

z zz z
n n

with zk the reference value at location xk, the predicted value at the same loca-

tion and n the number of prediction locations. Ideally, ME should be close to zero,

so that there is no bias. The closest the RMSE value is to zero, the more accurate

will be the method on the average. Those global criteria evaluate the method’s

ability for yielding predictions as close as possible to the observations “on the av-

erage”.

ˆkz

4.3 Prediction performances

Table 1 summarizes the ME and RMSE results for SK, StK, SKlm and BME/MIX 

predictions. As expected from theory, ME's are not different from zero, indicating

that the estimators seem to be unbiased. Depending on the way categorical infor-

mation is incorporated, ME's and RMSE's are slightly different for all the meth-

ods. One can make the same observations for maps (Fig. 2).
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Table 1. ME and RMSE with five and one data points in the neighborhood, except for

BME/MIX that uses only one data point for prediction.

five data points one data point 

SK StK SKlm BME/MIX SK StK SKlm

ME -0.018 -0.067 -0.077 -0.042 0.033 -0.09 -0.085

RMSE 0.726 0.543 0.518 0.523 0.754 0.659 0.615

Obviously, the prediction that does not use categorical information has the

worst performances. The SK map shows only a partial idea of the structure and

reproduces only the global pattern of the reference map, and other maps that are

using the categorical information have a pattern closer to the reference one. The

higher RMSE values for SK compared to other methods also confirms a lower ac-

curacy.

Performances are slightly better for SKlm than for Stk; this can be explained by

the differences in the way categorical information is incorporated, as well as by

the amount of data they have at hand for prediction.

Single point BME/MIX map is quite similar to the reference map. Their pat-

terns are alike but small structures are not yet identified on the BME/MIX map.

Note also that BME/MIX map is quite similar to the SKlm and StK maps based

on a five sampled locations neighborhood. Similar performances with less infor-

mation comes from the fact BME/MIX is able to explicitly use the spatial link be-

tween categorical and continuous variables, whereas this is not the case for the

other methods.

RMSE values obtained for prediction based on a single neighboring value de-

crease from SK to StK, SKlm and finally BME/MIX. Among the corresponding

maps, it is also clear that the BME/MIX one is the closest one to the simulated

map. So, when all methods use the same information, BME/MIX shows the best

performances. The exploitation of the spatial relation between categorical vari-

ables and the links between the categorical and the continuous RF can explain this.

As a final remark, when using other ranges, covariance matrix and bounds of

the intervals for the categorical variable, the same type of results are obtained: (1)

BME/MIX predicts often a good as SKlm does with five data points, and (2) with

the same used information, BME/MIX is a better prediction method than classical

ones.
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Fig. 2. Maps of (a) simple kriging, (b) stratified kriging and (c) kriging with varying local

means where predictions are performed with five data points; (d) hard data points; (e) simu-

lation; (f) BME/MIX one point prediction; (g) simple kriging, (h) stratified kriging and (i) 

kriging with varying local means where predictions are performed with one data point.

Black indicates the lowest values and white the highest (color scale is the same for all fig-

ures).
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5 Conclusions 

The observed differences between the results obtained using different geostatisti-

cal methods are coming from the way the secondary information (i.e., the cate-

gorical information) is processed. While SK simply ignores it, SKlm and StK con-

sider a different mean value of the continuous variable for each categorical

stratum, whereas BME uses spatial links between the categorical and the continu-

ous RF's.

With only one hard data point, BME/MIX is able to perform predictions that

are as good as those obtained using StK or SKlm with more data points. With the

same information is used (only a single data point), BME/MIX is clearly more ac-

curate than SK and StK and at least as accurate as SKlm.

It is worth also noting that BME/MIX is the only method that is always able to

produce a complete posterior pdf, thus allowing an easy computation of a wide

range of indicators or estimates, like the mean, the median, the variance, the mode

or even confidence intervals. Therefore, the estimation step (obtaining a posterior 

pdf) can be separated from the decision step (choosing a single representative

value).

Although the methodology presented here focused on a single categorical RF in 

combination with a single continuous one, it can be generalized for several RF's

considered at the same time (multivariate case), as well as for combining hard and

soft data. E.g., for the categorical RF, soft data may come from the imprecise

knowledge that one may have about categories at some locations, whereas for the

continuous RF soft data may consist of intervals or pdf's.

For all those reasons, BME/MIX can be considered as a serious challenger

compared to traditional geostatistical methods, as the methods does really improve

the spatial mapping results by making used of the available information in a more

relevant and efficient way.
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1 Introduction 

The motivating example in this paper involves a region whose soils have been 

contaminated by tetrachlorodibenzo-p-dioxin (TCDD). Remediation is required 

when TCDD concentrations are above predetermined levels. That is, for a geosta-

tistical process {Z(s) : s D  IRd} and a given threshold t, we are interested in 

spatial prediction of such nonlinear functionals as I(Z(A) t) based on data Z

(Z(s1),…,Z(sn))', where  Z(A) ave{Z(s):s A} and A D.

The prediction of linear functionals of Z, such as Z(s0) at a known point s0 or 

Z(A) for a given block A, can be carried out via kriging (e.g., Matheron 1963, 

Journel and Huijbregts 1978 - Chapter V, Cressie 1993b - Chapter 3). When pre-

dicting nonlinear functionals of Z, the major thrust in geostatistics has been to use 

nonlinear predictors such as indicator kriging (Journel 1983), indicator cokriging 

(Lajaunie 1990), and disjunctive kriging (Matheron 1976). While these methods 

are appropriate for nonlinear functionals like I(Z(s0) t), they do not generalize to 

the problem of predicting I(Z(A) t). Clearly, conditional simulation (e.g., 

Deutsch and Journel 1992) can be used for inference, but we would like to show in 

this paper that a more analytic method based on loss functions targeted at spatial 

extremes goes beyond the usual inference from conditional simulation.  This 

method is compared with two types of kriging. 

The first kriging is ordinary or universal kriging (e.g., Journel and Huijbregts 

1978).  The second kriging is covariance matching constrained kriging (CMCK) 

due to Aldworth and Cressie (2003), where constraints are added to the kriging 

equations that force elements of the variance matrix of a vector of linear predictors 

to match those from the corresponding predictands. The CMCK predictor is unbi-

ased, has approximate optimal mean squared prediction error, handles additive 

measurement error straightforwardly, and can predict nonlinear functionals of 

Z(A) just as easily as those of Z(s0). Its strength is its generality for handling many 

types of nonlinearity, but it has not been tested properly on highly nonlinear func-

tionals like extrema and their spatial extent. Recently, Craigmile et al. (2004) have 

developed a method of tackling such functionals by directly building loss func-

tions (namely, IWQSELs) that put more weight on values of Z that are spatially 

extreme according to a target value of  near (but less than) 1.  
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The IWQSEL predictors are described in Section 2, and Section 3 contains a 

brief summary of CMCK prediction. Section 4 gives details on the example con-

cerning environmental characterization and remediation of TCDD contamination 

in soil. This is followed with a comparison of kriging and CMCK to IWQSEL 

prediction using the TCDD example. Conclusions and discussion are given in Sec-

tion 5. 

2 Loss functions for extremes 

Suppose that the geostatistical process Z satisfies, 

Z(s) = µ(s) + (s); s D, (1) 

where µ(s) = x(s)'  denotes a linear-trend component for fixed explanatory vari-

ables, x(s)  IR p, and  IR p are regression parameters. We assume that the proc-

ess { (s): s D} is a mean-zero, stationary spatial process with covariance func-

tion C ( ) and spatial parameters,  IRq. Let  ( ', ')'. Recall that the data are 

Z = (Z(s1),…,Z(sn))' observed at locations {s1,…, sn}. 

The cumulative distribution function of Z(s) at some spatial location s is 

defined by FZ(s)(z)  Pr(Z(s) z). As in Craigmile et al. (2004), we define the aver-

aged cumulative distribution function (ACDF) over the region B D to be 

,)(
||

1
)( )( ss dzF

B
zF

B
ZB

(2) 

where |B| denotes the d-dimensional volume of the region B. The inverse ACDF is 

then defined by p})(:IRinf{z)(1 zFpF BB
. Now we introduce the loss func-

tion for predicting the process Z( ) in B using )(
~
Z :
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where 
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          (4) 

I( ) is the indicator function, and the “importance function” w( ) : [0,1]  [0, ) is 

prespecified. Craigmile et al. (2004, Sec. 2.3) give examples of possible choices 

for w( ), such as the sigmoid-type function defined by 

;
1

1
)(

)( pCe
pw p [0,1], (5) 

where C > 0 is a scale parameter and 1/2 <  < 1 is the target value for which we 

wish to predict high extremes and their extent. For a given , larger values of C

put more weight on larger values of Z( ) in the loss function (3). Thus, C controls 
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the amount of shrinkage in the predictor. A good choice of C can be obtained by 

minimizing the bias in estimating the inverse ACDF, FB
-1( ), for known ; in 

practice, an estimate ˆ  is plugged in. 

Upon minimizing the loss function (3) componentwise, Craigmile et al. 

(2004) show that the IWQSEL predictor of Z( ) at a location s* B is given by 
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where fZ(s*)(z | Z) denotes the conditional density of Z(s*) given the data Z, some-

times called the predictive density.  Note that (6) is a special functional of this 

density and hence it could equally well be computed by conditional simulation. 

In practice, we need to approximate the integrals (2), (3), and (4). For a 

finite collection of points {s*j : j = 1,…,m} that cover B well, we can approximate 

the ACDF of the Z( ) process, FB( ), by 
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Under Gaussianity, these probabilities are obtained from the Gaussian cumulative 

distribution function. 

 The expression (7) is then substituted into (4) to obtain )(Bw . Finally, to ap-

proximate (6), let {Z(1)(s*), … , Z( )(s*)} be a random sample of size  from 

fZ(s*)(z | Z). Then we approximate *)(
~

sZwq
 by 

.
*))((

*)(*))((
*)(

1

)(

1

)()(

j

j

B

j

jj

B

wq

Zw

ZZw
Z

s

ss
s

(8) 

All the equations above simplify somewhat if the error process, ( ), is Gaus-

sian; in (7), the right-hand side is the average of Gaussian CDFs with parameter 

estimates plugged in, and the conditional distribution of  Z(s*) given Z (from 

which we simulate) is Gaussian. 

3 Covariance matching constrained kriging (CMCK) 

The universal kriging (UK) block predictor of Z(A) is well known to be, 

),()'()'()( 1
Zcx XAAAZuk

(9) 

where  = var(Z); c(A) = (C(s1,A),…,C(sn,A))' and C(s,A)  ( A C (s-u) du) / |A|; X

 (xj(si)) is an n p matrix of explanatory variables; x(A) A x (u) du / |A|; and 

 is the best linear unbiased estimator of , namely .')'( 111 ZXXX
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Now consider prediction of g(Z(A)), where g is a smooth nonlinear function 

and |A| > 0 or A is countable. Cressie (1993a) proposed the constrained kriging 

(CK) predictor )(AZck
, which is an optimal linear predictor that is unbiased for 

Z(A) (as is )(AZuk
) and satisfies the extra constraint, ))(var())(var( AZAZck

.

Cressie (1993a) showed that ~)))((( AZgE ck
)))((( AZgE .

In the spirit of wanting the predictor's statistical properties to match those of 

the target quantity, Aldworth and Cressie (2003) extended this methodology to in-

clude further constraints, where (some) covariances are matched in addition to the 

variance(s). This covariance-matching constrained kriging (CMCK) predictor

)(cmZ  includes )(ckZ  as a special case. 

Consider the problem of predicting the M-dimensional vector, Z(A)

(Z(A1),…,Z(AM))', where Ai D; i = 1, …, M and A  {A1,…,AM}. The CMCK 

predictor, given by Aldworth and Cressie (2003), is: 

),('' 1 ZZ XCKX MMcm
(10) 

where XM  (xj(Ai)) is an M  p matrix, CM  (c(A1),…,c(AM)) is an n M matrix, 

and K is an M M matrix defined as follows. Write )var())(var( AZ MXP  and 

).var()var(Z Muk XQ  Under the assumption that both of these M M matrices 

are positive-definite, there exist nonsingular matrices P1 and Q1 such that P=P'1P1

and Q=Q'1Q1. Then K Q-1
1P1. Notice that the two constraints, ))(()( AZZ EE cm

and )),(var()var( AZZcm
are satisfied; the latter constraint involves covariances 

as well as variances. 

When the CMCK predictor is not defined (i.e., P or Q is not positive-

definite), the covariance constraints can be relaxed until it is defined. Cressie and 

Johannesson (2001) took the approach of including the (M – 1) nearest data loca-

tions to prediction region A, and then predicting Z(A) using the implied M(M+1)/2 

variance-covariance constraints.  This is what we shall do in the next section on 

TCDD contamination. Also, in the next section, we shall detrend the data first and 

apply CMCK to the residual process R( ) with constant trend, namely E(R( )) = 0.

This amounts to putting p = 1 and x(s)  1 in the formulas above. 

4 TCDD contamination in soil 

4.1 Background 

In environmental-remediation problems, soil contamination at one location often 

leads to contamination at other locations because of the conductivity properties of 

soil. This has been demonstrated by many case studies such as for the TCDD (tet-

rachlorodibenzo-p-dioxin) data, which were analyzed by Zirschky and Harris 

(1986) and Waller and Gotway (2004). 
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In 1971, a truck transporting dioxin-contaminated residues dumped an un-

known quantity of waste in a rural area of Missouri in order to prevent citations 

for being overweight. Although the highest concentration occurred where the 

waste was dumped, contamination had spread to the shoulders of an adjacent state 

highway. In November 1983, The US Environmental Protection Agency (EPA) 

collected soil samples along transects and measured the TCDD concentration (in 

µg/kg) in each sample. Samples were composited along the transects. In our analy-

sis, we consider only the data close to the dumping location, where the TCDD 

concentrations tend to be larger. (Recall that our goal is to estimate high extrema 

and their extent.) These data are based on 50-foot transects and there are no non-

detects.

Thus, we consider measurements of 31 samples of TCDD within a region of 

D, a 458  78 square-foot rectangle. The direction parallel to the highway and the 

transects is defined to be the x-direction, and the y-direction is then perpendicular 

to the highway. The x-coordinates of the data are the x-values of the start of each 

transect. A plot of the data and their spatial locations is shown in Fig. 1a, where 

the decimal point represents the (x,y) coordinate of the data 

4.2 Spatial Analysis 

The TCDD data appear to be lognormally distributed; see Fig. 1b.  Let {Z(si) : i = 

1,…,31} denote the observed log concentrations. Based on some exploratory plots 

and regression analysis, we considered the model, );()()( sssZ ,Ds  for 

the log-concentration process, where µ(s) = x(s)' ,  = ( 0, 1)', and x(s)  (1, y2)' 

denotes a quadratic trend in the y-direction for s = (x, y). The ordinary least 

squares estimates of the regression coefficients are 6703.20
 and 0030.01

.

Recall that the x-axis runs along the center of the highway; then we conclude that 

the quadratic surface of log concentrations in the y-direction is probably due to the 

drainage system along the highway, which is designed to let water run off the road 

quickly. See Fig. 1c. 

We then removed the trend component and analyzed the spatial process gener-

ated by the residuals }31,,1:)'()()({ iZR iii sxss . Histograms of the residu-

als show that normality is a fairly good approximation (given the small sample 

size); see Fig. 2a.   
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Fig. 1. The top panel displays the spatial location and value of the log TCDD concentra-

tions; the decimal point represents the (x,y) coordinate of the data.  The bottom left panel 

shows a histogram of the log TCDD concentrations.  The bottom right panel displays the 

estimated trend for the log TCDD concentrations.   

Directional empirical semivariograms of the residuals demonstrated that the resid-

ual process is severely anisotropic. To make the empirical semivariograms look 

isotropic, we multiplied the y-values by a factor of 7 (and the x-values were left 

unchanged). With this transformation, the data almost lie on a square coordinate 

system (the transformed y-values range between [-266, 280] and the x-values 

range between [-230, 228]).  We then considered various semivariogram models 

for the residual process. Using the weighted-least-squares method (Cressie 1993b, 
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Fig. 2.  The left panel displays a histogram of the residuals.  The right panel shows the em-

pirical semivariogram for the residuals; the solid line is the estimated spherical 

semivariogram )(h .

p. 99), we deemed that the spherical model fitted best. The general form for the 

covariance function derived from the isotropic spherical model is, 

,;0

||);)/(5.0)/(5.11()0(
)(

32

0

otherwise

rhrhrhhIc
hC

(11) 

where h denotes the Euclidean distance on the transformed coordinate system and 

the vector of spatial parameters is  = (c0,
2,r)'. The estimate of the nugget effect, 

c0, was 0; the estimate of the range, r, was 91.61; and the estimate of the partial 

sill, 2, was 0.36. Fig. 2b. shows the estimated semivariogram )(h . Notice that 

the estimated value 0ˆ
0c  implies a stronger spatial dependence than is apparent 

from the empirical semivariogram values, also shown in Fig. 2b. The estimated 

covariance function is ).()( 2

0 hchC

4.3 Comparison of prediction methods 

Based on the spatial analysis we carried out in Section 4.2, we now consider pre-

diction of the log-concentration process. Our aim is to estimate the value and ex-

tent of high extremes of the log TCDD concentration process in a region B. For 

this analysis, we let B D, the rectangular region that encloses all the observed 

sites. We shall predict on a 2  2 ft. grid of points throughout D. We denote this 

discrete approximation to D by {s*j : j = 1,…,m = 9200}. 

As our standard we use the IWQSEL predictor calibrated to predict the 90th

percentile of the ACDF, which we shall compare to a CMCK predictor and an or-

dinary kriging predictor. 
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We estimated the ACDF of Z in B using Eq. 7. In the sigmoid importance 

function, the target value was set at  = 0.9; then, for various values of C, we cal-

culated the IWQSEL predictor (Eq. 6) based on a Monte-Carlo random sample of 

size  = 2000 from )|()*( Zs zf
jZ

, for each prediction location s*j, j = 1, …, 

m=9200. For our statistical model, 

)),*(),*((~|)*( 2

jjj NZ ssZs (12) 

where (using the notation of Section 3), (s*j) x(s*j)'  + c(s*j)' 
-1(Z – X ), and 

2(s*j) c0 + 2 - c(s*j)' 
-1

c(s*j). For this dataset, the value of C in w( ) that 

minimized the bias in estimating )9.0(1

BF was C=4.75. To calculate all these quan-

tities, we plugged in the parameter estimates,  and .

For the other two predictors, ordinary kriging plus trend, and CMCK plus 

trend, we first predicted the residual process R( ) using either ordinary kriging or 

CMCK and then we added the estimated trend component, x )'()( , to obtain 

predictions of the log-concentration process, Z( ). 

We start by comparing the extent of shrinkage in the prediction of high ex-

treme values in the three predictors. For a range of proportions p, from 0.85 to 

0.99, we calculated the inverse ACDF, )(
1

pFB . Then for each predictor we cal-

culated the proportion of prediction locations whose predicted values were smaller 

than this inverse ACDF. For example, for the CMCK predictor we calculated 

)),()*(( 1

1

1 pFZIm B

m

j jcm s for each value of p. These numbers are summarized 

in Fig. 3, where a value above/below the 45o line indicates that the predictor un-

derestimates/overestimates the inverse ACDF (i.e., denotes overshrink-

age/undershrinkage). Thus, the ordinary-kriging-based predictor overshrinks pre-

diction of extremes, whereas the CMCK-based predictor undershrinks prediction 

of extremes. By design, using a sigmoid importance function with C = 4.75 and 

= 0.9, the shrinkage at the 90th percentile of the inverse ACDF is just right for the 

IWQSEL predictor; and it experiences undershrinkage/overshrinkage for p be-

low/above p =  = 0.9. 

We now use the three predictors to estimate the spatial extent of exceedances 

of the log-concentration process as follows. The exceedance set for the process 

Z( ) in the region B associated with an absolute threshold t  IR is defined by 

})(:{)( tZBteB ss , which we estimate by })*(:*{ tZ jj ss  for some generic 

predictor )(Z ; see Craigmile et al. (2004). The four panels of Fig. 4 display the 

exceedance sets obtained when we use ordinary kriging plus trend, the IWQSEL 

predictor, and CMCK plus trend with M=1 (i.e., zero neighbors and constraining 

only the variance of the predictor) and M=2 (i.e., one neighbor and constraining 

the variance and the covariance between nearest neighbors). In each case, we let 

the threshold be the 90th percentile of the inverse ACDF; that is, )9.0(1

BFt .
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Fig. 3.  Plots show the proportion of locations with predicted values smaller than the in-

verse ACDF evaluated at proportion p for ordinary kriging plus trend, the IWQSEL predic-

tor, and CMCK plus trend.  The 45o line is shown for comparison.  A predictor that predicts 

extremes well will be close to the 45o line, for large values of p.  A predictor that 

over(under)shrinks when predicting extremes, will be above (below) the 45o line. 

The spatial pattern of exceedances are qualitatively similar; there are two re-

gions of exceedance centered at around x  100 feet and there is at most one re-

gion of exceedance centered at x  -100 feet. Since the IWQSEL predictor is cali-

brated at the 90th percentile of the inverse ACDF, and hence we expect neither 

undershrinkage nor overshrinkage at that level, we use it as a standard to compare 

the exceedance sets based on ordinary kriging plus trend and CMCK plus trend.

Ordinary kriging underestimates the extent of the exceedance set because the 

predictor overshrinks prediction of the extreme values of the log-concentration 

process. For this predictor, 3.16% of the prediction locations are in the exceedance 

set, compared to 10.16% for the IWQSEL-based exceedance set. On the other 

hand, CMCK overestimates the extent of the exceedances; 13.18% (zero 

neighbors) or 17.09% (one neighbor) of its prediction locations are in the ex-

ceedance set. Comparing the points that are in the IWQSEL-based and CMCK-

based exceedance sets, it is obvious that the exceedance set centered around the x-

coordinate of x  100 feet is wider for the CMCK predictor than for the IWQSEL 

predictor. 
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Fig. 4.  The gray regions denote those locations with predicted values that exceed the 90th 

percentile of the inverse ACDF for ordinary kriging plus trend, the IWQSEL predictor, and 

CMCK plus trend. 

5 Discussion 

In this paper, we have calibrated the IWQSEL predictor to predict extreme values 

by choosing the importance function w( ) in the predictor to estimate the th quan-

tile of the inverse ACDF well. In terms of this standard, we have demonstrated 

that CMCK undershrinks the predictions of large values of the process, which 

leads to an overestimation of the spatial extent of the exceedances of the log-

concentration process. In practice, overestimating the exceedance set (region of 

remediation) increases the cost of remediation. However, this tends not to be as 
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consequential as the environmental impact when one underestimates the ex-

ceedance set, such as when ordinary (or universal) kriging is used. 
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1 Introduction 

Monitoring network optimisation is a challenging problem for a number of real-

life applications. This problem is closely related to the cost optimisation and is of 

particular importance for decision making process. Traditional optimisation of 

spatial data monitoring networks deals with geostatistics, which is a model-

dependent approach based on analysis and modelling of spatial correlation 

structures. Network optimisation is performed by means of the analysis of the 

kriging/simulation variances.  

Recently there has been an explosive growth in development of adaptive 

methods for learning from data. A number of very important problems of how to 

handle, understand and model the data if there are too many or too few of them 

were in the focus of developments. A family of data-driven and model-free 

contemporary approaches is based on Statistical Learning Theory, Vapnik-

Chervonenkis theory (Vapnik 1998). Concerning spatially distributed data these 

learning methods predict unknown mapping between inputs (spatial co-ordinates 

and secondary variables) and outputs (random function) from available data and a 

priori knowledge. One of the most successful paradigms is called Support Vector 

Machines (SVMs). SVMs provide non-linear and robust solutions by mapping the 

input space into a higher-dimensional feature space using kernel functions. The 

strength of the method is that it attempts to minimise simultaneously the empirical 

risk of the training error and the structural risk (complexity of the model). SVM 

solutions depend on Support Vectors and not on statistics such as means and 

variances. Support Vectors (SVs) are the only data samples that influence the 

prediction and they are uniquely determined from data by solving a quadratic 

programming optimisation problem.  

In the present paper, a new approach to the monitoring network optimisation 

based on SVM is proposed. The approach deals with categorical data, and the task 

is to improve the current monitoring network, similar to the task considered in 

Carrera (1984). The idea is to check new sampling sites as a potential Support 

Vectors. New Support Vectors have a priority to become sampling sites. The 

presented method can be improved by the recently developed solutions that 

incorporate confidence measures into SV-based models. The presented method 
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proposes an alternative for kriging-based approaches. It is clearly task-oriented 

and aims to improve the decision boundary directly, thus minimizing the testing 

error. Kriging-based methods are indirect in the sense that they basically improve 

the topology of the current network thus rely on improving the classification 

model. 

A real case study deals with the monitoring network optimisation for modelling 

environmental categorical variables such as soil types.  

2 SVM for spatial data analysis 

Traditionally, geostatistics (statistics for spatial data) is one of the well-established 

approaches for working with spatially distributed data. Geostatistics, in general, is 

a model-dependent approach based on the exploratory analysis and modelling of 

spatial correlation structures (Kanevski and Maignan 2004). 

On the other hand, data-driven and model-free contemporary approaches, based 

on Statistical Learning Theory, were successfully applied to a number of 

environmental problems. It should be noted that the challenges in learning from 

data (biocomputing, hyperspectral remote sensing images, data mining, etc.) have 

led to a revolution in the statistical sciences during the last decade.  

In the early nineties a new learning paradigm emerged called Support Vector 

Machines (SVM). At first, it was proposed essentially for two-class classification 

problems (dichotomies), but later it has been generalised to multiclass 

classification problems, regression tasks, as well as to estimation of probability 

densities. Concerning spatially distributed data, the learning methods based on 

Support Vector Machines were applied to tasks, such as soil type classification, 

contamination level estimation, medium porosity prediction, contaminant 

concentration predictive mapping, etc (Kanevski et al. 2002). SV-based 

algorithms can be applied to modelling environmental phenomena at different 

spatial scales. Expert knowledge in the form of maps or confidence measures can 

be included in SVM models. Next, SV-based regression models have shown 

promising results in hybrid ML/geostat models for non-stationary multi-scale data 

(Pozdnoukhov 2002). 

Generally, SVM provides non-linear and robust solutions by mapping the input 

space into a higher-dimensional feature space using kernel functions. By using 

different kernels one obtains learning machines analogous to well-known 

architectures such as Radial Basis Function neural networks and multilayer 

perceptrons. Thus, this method has the advantage of placing into the same 

framework some of the most widely used models such as linear and polynomial 

discriminating surfaces; feedforward neural networks; and networks composed of 

radial basis functions. In contrast to the Bayesian methods based on a modelling of 

the probability densities of each class, SVMs are focusing on the marginal data 

samples. SVMs provide the classification model directly, without solving a more 

general task of modelling the class densities at an intermediate step. SVMs 

provide sparse models, i.e. only a (small) subset of data possesses nonzero 
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weights. These data samples, called Support Vectors, usually lie close to the 

decision surface. They can be considered as a robust characteristic of the problem 

(given fixed model parameters). The basic facts of SVM theory and some 

properties of the SVs are considered in more details below. 

2.1 Statistical learning theory 

In Machine Learning one’s aim is to find (“learn”) an algorithm 

(modelling/mapping function) that describes training data and has good 

generalization abilities (that is, allows for accurate predictions at the new points, 

where the desired quantity is unknown). Statistical Learning Theory (SLT) is 

devoted to such problems of extracting knowledge from finite empirical data.

The following bounds of the generalization error were derived in SLT:

)()()( confemp RRR , (1) 

where R is a bound of testing error, Remp is an empirical risk on the training data 

(training error), and Rconf is a confidence term which depends on the “complexity” 

of the modelling function. The complexity can be controlled by the hyper-

parameters  of the modelling functions. 

Fig. 1. Bound on test error derived in SLT. The minimum corresponds to some optimal 

complexity of the model for a given dataset. 

The parameter that characterizes the «complexity» is called the VC-dimension 

of the modelling functions. It is denoted by h on Fig. 1. Hence the relevant 

strategy for constructing a learning machine is to minimize the training error while 

maintaining h small (see Fig. 1). This idea is realized for the specific learning 

tasks and results in a family of Support Vector algorithms. 
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2.2 Support Vector Classification 

The SVM classification algorithm was initially derived for linear discriminating 

surfaces - hyper-planes. The criteria which controls the model complexity is the 

width of the margin between samples of different classes. It was proven that in 

order to minimize the model complexity one has to maximize the margin.  

Given the discriminating hyper-plane f(x,w,b) = w x+b, the following 

optimisation problem can be formulated to minimize its complexity for given 

dataset {(xi, yi), i=1,…L} : 

.max 2

2
1 w  (2) 

This should be done under the following constraints, which correspond to 

correct classification of the training data samples: 

.,...,1,1][ Libxwy ii  (3) 

The algorithm can be extended to allow for training errors (i.e. misclassifying 

the training data, which is reasonable if the presence of noise in data is probable). 

Non-linear solutions emerge from applying the kernel trick – substituting the 

scalar product with kernel functions. These are symmetric positive-definite 

functions, which correspond to scalar product in some high-dimensional feature 

space.

The final formulation of the optimisation problem of SVM classification 

algorithm is presented below. 

2.2.1 Optimisation Problem 

Given a training set of pairs {(xi, yi), i=1,…L}, non-linear SVM seek the decision 

function in the form: 
L

i

iii bxxKysignxf

1

),()( , (4) 

where K(.,.) is a symmetrical positive definite function – kernel (see also  section 

2.2.3).  The weights i a are obtained from the solution of the convex QP 

optimisation problem: 
L

ji

jijiji

L

i

i xxKyy

1,1
2

1 ),(max , (5) 

with the following constraints: 
L

i

ii y

1

,0 iCi ,0 . (6) 

It was observed by a number of researchers, that optimal solutions provided by 

SVM are often sparse. It means that a larger part of the weights are zero, while 

only the rest nonzero ones contribute to the decision function. 
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2.2.2 Support Vectors 

Concerning the weights, the following cases are possible according to the Kuhn-

Tucker conditions: 

If i = 0, then yif(xi)  1

If C i > 0, then yif(xi) = 1

If i = , then yif(xi)  1

The two major possibilities are: i = 0 and i > 0. Those training data samples 

that correspond to i > 0 are called the Support Vectors. The Support Vectors with 

C i > 0 are the closest to the decision boundary. Notice, if we remove all other 

points except the SV from the training data set and train SVM on the SV only, 

we’ll obtain the same decision boundary, i.e. SV have the determinant meaning 

for the given classification task. In particular, it gives us an opportunity to use the 

number of SV, their locations and corresponding weights as the criteria for the 

search for the locations where additional measurements would change (improve) 

the current model. 

The meaning of parameter C has to be emphasized. This parameter is an upper 

bound for weights. It defines the trade-off between model complexity and 

allowance of training errors. If C is set to a sufficiently large value (infinity), the 

model is forced to discriminate the training data without errors. It can be a 

doubtful choice if the data are known to be noisy. Noisy data are often better 

modelled with values of C, which allow for training errors.  

2.2.3 Kernel Function 

The parameter(s) of the kernel are the hyper-parameter(s) of the support vector 

machine, and should be tuned using data and available knowledge. Kernel 

parameter(s) and the constant C are the only values that have to be provided by a 

user.  

Gaussian Radial Basis Functions, 

2

2

2),(

yx

eyxK  (7) 

were found to be well suited for environmental applications such as predictive 

spatial mapping. Its bandwidth  is proportional to some characteristic distance 

implied by the data. Anisotropic RBF can also be used. 

Kernel parameters, as well as C, are usually tuned by minimizing cross-

validation or testing error calculated on an independent set.  
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2.3 Multi-Class Classification  

A generally used approach for multi-class classification task is to combine several 

binary classifiers. Given the basic SVM algorithm, we will apply the class-

sensitive “one-to-rest” classification scheme. 

2.3.1 One-to-Rest Scheme 

A classifier (SVM) is trained for every subset of data of each class, considering all 

the rest samples of the samples as an opposite class regardless their true class 

membership. The final result is then obtained by: 

)()()(
),(maxarg m

i
m

i

i
m

i
m

bxxKyy  (8) 

where upper index m correspond to the m-th class. In other words, one simply 

compares the binary decision functions and takes one that provides the maximum 

output value for a tested sample. An advantage of this approach is the simplicity 

of realization and easy interpretable results. It was found that this scheme provides 

reasonable results for a number of environmental classification tasks. However, to 

obtain a flexible class-sensitive model, one has to tune m sets of parameters, one 

for each binary model. 

A real case study involving the described approach is presented below. 

2.3.2 Case Study: Soil Types 

The real case study deals with the classification of soil types classification in the 

Briansk region of Russia. This is the most contaminated part of Russia due to 

Chernobyl radionuclides. Soil type data often accompanied the data on 

radionuclide activity. 

 Migration of radionuclides in soil depends on the properties of radionuclides, 

precipitation, etc. At the same time, the influence of soil type on 90Sr radionuclide 

vertical migration was found to be a very important factor. High variability of 

environmental parameters and the multi-scale nature of initial fallout highly 

complicates the solution of the general modelling problem. Concerning soil types 

predictive mapping, geostatistical classification method – indicator kriging – fails 

since there are too few data in some classes to model the correlation structures 

adequately.

The original geographical coordinates were transformed to Lambert map 

projection and then linearly projected to (-1; 1) segment. All data and results are 

presented in this coordinate system. The training set consists of 310 

measurements; the postplot of the data is presented in Fig. 2, left. Different 

colours represent different soil types. The postplot of SVM prediction mapping 

(Fig. 2, right) is accompanied with the validation data (500 samples), shown by 

crosses. Optimal mapping parameters were chosen according to the minima of 

cross-validation error. 
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Fig. 2. Left: Training data for 5 types of soils. Right: SVM’s solution for soil types 

classification problem. Validation data are shown by crosses. 

Validation error over all classes (the whole number of misclassified validation 

samples divided by validation set size) obtained with SVM classifier is 12.8%. 

Other methods such as probabilistic neural network (PNN) and nearest neighbour 

classifier (NN) provided 18.2% and 17.8% of misclassified samples 

correspondingly. 

3 SV Monitoring network optimisation 

A network optimisation task can be approached in a number of ways, depending 

on the problem statement. We don’t consider here the general and the hardest 

problem of designing a new monitoring network. Our task is to refine the current 

network to improve the classification model.  

Simple geometrical approaches suggest analysis of the monitoring network by 

means, for example, of Voronoi polygons or other geometrical characteristics.  

In geostatistics, network optimisation is performed by means of the analysis of 

the kriging/simulation variances (Carrera 1984). This method is highly dependent 

on a proper analysis and modelling of spatial correlation structures. It can be, 

however, awkward in the case of insufficient data or unobvious spatial structure. 

Things are even more complicated when one deals with categorical data. 

Another geostatistical approach deals with stochastic simulation technique, as 

described in detail in Kyriakidis (1996). 

Next, physics-based models can establish a foundation for monitoring network 

optimisation. For example, mass transfer models can provide tools to estimate the 

dependence of the results variability on the spatial locations of the measurements. 

The SVM-based approach proposed in this paper is task-oriented in the sense 

that it directly explores whether the proposed spatial location would influence the 
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classification model, and how significant this influence can be. Next, since the 

baseline SVM algorithm is model-free and data-driven, the consequent advantage 

of the proposed method is its universality.  

3.1 The proposed SV approach 

The proposed method of monitoring network optimisation is based on the Support 

Vectors’ properties. Suppose one is given a training set and a set of possible 

locations for taking the additional measurements. These spatial locations can be 

specified by an expert who takes into account environmental conditions, the 

significance of prediction accuracy in different sub-regions, etc. Otherwise (if the 

whole region is investigated) one can consider a dense grid covering the entire 

region as the set for exploration. 

Given a new location for prospective measurement, one includes it into the 

current model. Two possible labels are consecutively assigned to the sample and 

the model’s weights are updated. The update procedure can be organised in such a 

way so as to avoid the complete re-solving the optimisation problem, Eq. 3 - 4. If 

the new measurement obtains zero weight and is not a SV, it doesn’t contribute to 

the prediction model and is somehow “useless”. On the other hand, a sample that 

becomes a SV is of particular importance to the task since it defines the decision 

function.  

The main steps of the method are: 

Take one sample from the examined set; assign it a "positive" label. 

Update the model on the extended training set (with the added "positive" 

sample). 

Store the weight that the sample obtained as a result of updating the 

current SV model, then remove the sample. 

Assign the "negative" label to the specified sample. 

Update the model on the extended training set (with the added "negative" 

sample). 

Store the weight the sample obtained as a result of updating the current 

SV model, then remove the sample. 

Repeat all the previous steps for all the examined samples 

At the output of this scheme we are given two weights for every examined 

sample: +
k and -

k, according to the possible labelling of the point. The following 

cases are possible: 

1) +
k =0, -

k>0. The sample is not a SV when labelled as positive and is a SV 

when negative. Note that -
k might be equal to C, which is an upper limit for 

the weights.  

2) +
k >0, -

k=0. The sample is a SV when labelled as positive and is not a SV 

when negative. Note that +
k might be equal to C.
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3) +
k >0, -

k>0. The sample is a SV while assigned both to positive and negative 

labels. 

Let’s take into account that two types of SV are possible: boundary SV ( =C)

and ordinary SV (0< <C). If the sample becomes a boundary SV for either 

labelling, its location is out of our interest. The reason comes from the meaning of 

C parameter mentioned in Section 2.2.2 and can be expressed as follows: the 

samples with limit weights are either mislabelled or too atypical and can be 

considered as noise. In the presented scheme those samples that belong to the third 

case are the points of our interest – these are the desired locations of potential 

additional measurements. 

In fact, the scheme is simplified since it considers samples one by one and all 

the mutual interactions are being neglected. One can try considering the samples 

in an ensemble or apply some prior knowledge to overcome this difficulty. The 

problem vanishes if the measurements are taken consecutively and true labels 

become known step by step. However, the presented scheme is preferable in the 

sense of low computational time it takes. 

Another important question is how to rank by significance those samples, that 

were found to become SVs. The magnitude of corresponding weight is not really a 

true significance measure. However, as the value of  determines some influence 

of the corresponding sample on the model, we can consider some heuristic values 

based on  ’s, such as a sum of + and -. Recent results on incorporating 

confidence measures into SV models can be applied for deriving the desired 

ranking criteria. 

In conclusion, let’s mention that the presented scheme also provides a way to 

remove the unnecessary (inefficient) sites. These are basically the sites, that obtain 

zero weights according to the SVM model. 

4 Case study: soil types 

An example of SVM application for multi-class classification of the soil types was 

presented before in Section 2.2. Suppose that one particular class (class 3, see Fig. 

2) correspond to the soil type, which is of crucial importance for radionuclide 

migration modelling.  The task is to improve the current model for selected class 

given the possibility of obtaining a small number of additional measurements. 

Current model parameters for class 3 model are: C=100, =0.19. The parameters 

were tuned according to the minima of cross-validation error. The training error is 

0%, and validation error for class 3 is 5.8%. 

4.1 Importance level mapping 

The following results were obtained after applying the algorithms over a dense 

regular square grid that covers the entire region. The grid contains 4321 points. 
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SVM prediction map obtained with the current model of soil type 3 (shown in 

dark) is presented in Fig. 3 (left). Fig. 3 (right), presents a postplot of the proposed 

indirect “importance” measure discussed in Sect. 3.1. 

Fig. 3. Left: SVM predictive mapping for class 3. Right: Network Optimisation Results, 

sum of weights ( - + +) is plotted as indirect “importance” measure. 

As expected, the regions that are close to decision surface are of most 

importance for modifying the monitoring grid. At the same time, some regions 

with small amounts of data are also taken into consideration, as well as regions 

close to the region border. 

4.2 Network optimisation efficiency 

The following scheme is proposed to control and illustrate the efficiency of the 

method. Suppose we are given a set of measurements (310 samples), and a 

number of spatial locations where some additional (potentially expensive and 

uneasy) measurements can be carried out (500 samples). Our task is to choose 

those that would improve the current classification model most efficiently. We 

will control the model’s performance using independent validation set of 500 

samples, reserved beforehand. The graph on Fig. 4 presents validation error 

obtained by using two extended training sets. The first set was supplied by 

additional samples advised by network optimisation algorithm, where the samples 

were added according to their importance level. The other training set was 

extended with the same number of randomly selected samples. The “randomly” 

taken samples are not absolutely random, however. They are measurements taken 

from real monitoring network, hence they can be used for providing a correct 

comparison.  
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Fig. 4. Evolution of the validation error while including additional measurements. 

The presented example illustrates that more then 60% of soil probes taken were 

“useless” in the sense that they do not give any improvement to SVM 

classification model for the considered soil type. The result also confirms the 

assumption of the exceptional significance of Support Vectors, which initiated the 

presented monitoring network optimisation algorithm.  

5 Conclusions 

Machine Learning opens promising perspectives for approaching the tasks of 

monitoring network optimisation. This paper presents a novel method for 

monitoring network optimisation, which can be used to increase the accuracy of 

classification models by taking a small number of additional measurements. This 

problem statement is common for the fields of modelling the hydro-geologic units, 

reservoir modelling, environmental monitoring, etc.  

The method is based on the recent ML technique known as Support Vector 

Machine. The method is problem-oriented in the sense that it directly answers the 

question of whether the advised spatial location is important for the classification 

model. However, the question of ranking the samples according to their 

“importance” still has to be investigated. Similar ideas involving Support Vector 

Regression models can be applied for continuous data analysis. Next, hybrid 

ML\geostat models (Kanevski 2002) offer approaches for further extensions of the 

proposed SV-based algorithm. Application of geostatistically adjusted kernels can 

improve both the efficiency and interpretability of the approach proposed.  

Further research deals with comprehensive comparisons of the proposed 

algorithms with different geostatistical approaches for the optimization of 

monitoring networks, elaboration of the SVM-based approach to multi-class 

classification and regression problems. 
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Bayesian Kriging with lognormal data and 

uncertain variogram parameters 

J. Pilz, P. Pluch and G. Spöck 

University of Klagenfurt, Austria 

1 Introduction 

The usual proceeding in geostatistical analyses is to assume the model contents as 

known, i.e. to fix the trend function, the variogram model and the distribution 

function of the data. For example, the trend is modeled by a low order polynomial 

(usually only by some constant), the variogram is chosen to be spherical, exponen-

tial or Gaussian, and the data are assumed to be normally distributed. The last as-

sumption is often not explicitly stated, but implicit in the model. 

First attempts to geostatistical modeling with non-normal data are made in Dig-

gle et al. (1998) and De Oliveira et al. (1997), in the latter paper Box-Cox-

transformations are considered. In our paper we start from lognormal data; the 

logarithmic transformation is a special case of the Box-Cox-transformation. As-

suming the data, after an appropriate transformation, to be normally distributed 

then the quality of the results of geostatistical (Kriging) interpolation crucially de-

pends on the underlying variogram. Instead of a “true” variogram we only have an 

empirical estimate of it and the usual practice is then “Plug-in-Kriging”, i.e. 

Kriging on the basis of the estimated variogram. Hence, the plug-in-predictor is 

only an estimate of the unknown Kriging predictor; the claimed BLUP-optimality 

(BLUP = best linear unbiased predictor) is therefore no longer valid. The plug-in-

predictor, also called EBLUP = empirical BLUP by Stein (1999), is neither unbi-

ased nor linear. The characterization as “best” predictor (in the sense of minimum 

variance) is thus more than questionable. With the exception of some asymptotic 

results in Stein (1999), very little is known about the statistical properties of the 

EBLUP. It is already known from Christensen (1991) that the actual mean squared 

error of prediction (MSEP) may be much larger than the theoretical one resulting 

from the assumption that the variogram has been specified exactly. 

Pilz et al. (1997) proposed a minimax approach to prediction which takes ac-

count of the uncertainty with respect to variogram choice and estimation. Instead 

of focusing on a simple estimated variogram, this approach starts by admitting a 

whole class of plausible (nonparametric) variogram functions and then looks for a 

predictor which leads to a minimum MSEP in the “worst case”. The numerical 

computation of the minimax predictor is, however, a rather complex and computa-

tionally intensive task. In this paper we present an alternative Bayesian approach 

to prediction which models the uncertainty by means of suitable (posterior) prob-
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ability distributions for the parameters of a flexible class of (nested) Matèrn and 

Gaudard variogram functions, respectively. 

2 The Model 

Consider a lognormal random function )(xY such that 

1,);()()(log)( dRDxxxmxYxZ d  (1) 

where )(xm is the trend function and )(x a (nonobservable) random error term 

with expectation zero for all points x from a given region D. Usually, a linear re-

gression setup is chosen to model the trend function, 

T
rr xfxfxfxm )()()()( 11  (2) 

with given functions rff ,,1  and unknown regression parameter vector 

T
r ),,( 1 , e.g. a low-order polynomial. We assume the transformed obser-

vations to be covariance-stationary, i.e. 

)())(),(( hCxZhxZCov  (3) 

for all Dhxx, , where )(C is the covariance function. Clearly, )(C  must be 

positive semidefinite. Having available observations at n points Dxx n,,1 , it 

is well-known that the best linear unbiased predictor (BLUP) for )( 0xZ  at an un-

observed location Dx0  takes the form   

)ˆ()(ˆ)(ˆ 1
00 FZKkxmxZ T

oUK  (4) 

where  
T

n
T

nooo xZxZZxxCxxCk ))(,),((,))(,),(( 11 ,

njiji

rj

niij xxCKxfF ,,1,

,,1

,,1 ))((,))((

and ˆ)()(ˆ 00
Txfxm  stands for the estimated trend at 0x  with 

ZKFFKF TT 111 )(ˆ , the generalized least squares estimator of . The 

BLUP (4) is known as the universal Kriging predictor, see e.g. Cressie (1993). A 

Bayesian analogue to this predictor has been presented by Omre and Halvorsen 

(1987). Their predictor assumes prior knowledge about the trend parameter vector 

 such that  

)(and CovE  (5) 

i.e. prior knowledge allows the specification of the mean  and covariance ma-

trix of . The Bayes Kriging predictor then reads  
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)()())(()()(ˆ 1
0000 FZFFKxfFkxfxZ TTT

BK  (6) 

this predictor builds the bridge between simple Kriging (corresponding to 0 ,

i.e. “perfect” knowledge of the trend) and universal Kriging (corresponding to 

01 , i.e. “nothing” is known a priori about the trend). 

Omre and Halvrsen (1987) show that )(ˆ
0xZBK  minimizes the total MSEP, i.e. 

the MSE averaged with respect to the trend parameter .

The weak point of both universal Kriging and Bayes universal Kriging as pre-

sented by Omre and Halvorsen (1987), as well as of many other spatial interpola-

tion methods, lies in the fact that the covariance function and thus 0k  and K must 

be known exactly to guarantee the BLUP-optimality. In practice, however, a plug-

in-Kriging is performed, i.e. the unknown covariance (or variogram) function is 

estimated empirically and then fitted to some covariance model. This means, 0k

and K in Eq. 4 are replaced by empirical estimates 0

~
k  and K

~
, usually based on 

the empirical moment estimator for the related variogram function. The resulting 

plug-in-predictors )(
~

0xZUK  and )(
~

0xZBK , where e.g. 

)
~

(
~~~

)()(
~ 1

000 FZKkxfxZ
TT

UK

with ZKFFKF TT 111 ~
)

~
(

~
, are then no longer linear (in Z), since 0

~
k  and K

~

depend on Z in a complicated non-linear manner. Also, unbiasedness no longer 

holds, which implies that the MSEP no longer coincides with the variance of pre-

diction and an additional (squared) bias term occurs: 
2

0000UK ))()(
~

()()(
~

Var)Z
~

(MSEP xZxZExZxZ UKUK  (7) 

Hence, the BLUP-optimality is completely lost. 

Thus, it is not only necessary to study the empirical MSEP (7) and the conse-

quences of a misspecification of the covariance function )(C but also to develop 

“robust” alternatives to the universal and Bayes universal predictors, respectively. 

Stein (1999) points out that this requires further elaboration of the model and 

the underlying distribution law, in particular it is important to model the local be-

haviour of )(Z  sufficiently well and in a flexible way. The degree of “smooth-

ness” of the random function is of primary importance for the MSEP of the plug-

in-predictor, which, in turn, is determined by the analytical properties of the co-

variance function, especially by its behaviour near the origin. To this purpose, we 

will consider here two such variogram models: the Matérn variogram and the less 

known (convex) combined exponential-Gaussian variogram introduced by Gau-

dard et al. (1999).  

Before we develop a Bayesian alternative to the plug-in (Bayes) universal pre-

dictors, which takes account of variogram model uncertainty, we will briefly 

summarize some of the sources of this uncertainty. 
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3 Sources of variogram uncertainty 

3.1 Uncertainty due to model assumptions 

Implicit in all geostatistical considerations is the assumption of ergodicity of the 

random function to be considered. This assumption cannot be verified, however. 

The covariance function cannot be determined completely from the knowledge of 

paths in a finite region, see e.g. Cressie (1993) for a general discussion on this is-

sue. The situation becomes still worse when we have only few data from a single 

realization of the random function, which is but the usual case in practical applica-

tions. 

Moreover, there is the dilemma with the choice of scale, i.e. we have to decide 

which part of the observed variability is to be attributed to the global scale (trend) 

and to the local scale (random fluctuations), respectively. In the geostatistical lit-

erature, there exists a multitude of proposals for detrending and ensuing modeling 

of residuals, ranging from e.g. classical trend surface analysis followed by ordi-

nary Kriging of the residuals, universal, median-polish and IRF-Kriging proce-

dures to quite sophisticated nonparametric and local smoothing techniques, again 

followed by Kriging of the residuals. 

A further source of uncertainty results from the various approaches to modeling 

of anisotropy. Very often directional variograms exhibit different behaviour of the 

random function in specific directions, but due to insufficient data there are doubts 

on the reliability of the variograms. 

3.2 Different estimation and fitting methods 

There are numerous methods for empirical estimation of covariance functions and 

variograms, respectively, which are all in common use. Besides the well-known 

moment estimator there exist robust estimation versions (see Cressie (1993), p. 

74) and estimators based on variogram clouds. But with all these different meth-

ods we are faced with the problems of choosing appropriate group sizes, lag 

classes, the maximum lag, etc. 

The next source of uncertainty results from the process of fitting the empirical 

variogram to some theoretical variogram model. Usually, this is done on a subjec-

tive basis. Apart from stationarity and isotropy assumptions, and even if we con-

fine ourselves to the few well-known parametric variogram models, we still have 

to decide on the “correct” type of variogram, about possible nested structures and 

then on the specification of the variogram parameters such as nugget, sill and 

range. After having chosen a theoretical model, we are again faced with a great 

variety of parameter estimation methods, e.g. (weighted) least squares, generalized 

least squares, maximum-likelihood and REML-methods, Bayesian methods, and, 

finally, classical estimation methods for variance components such as MINQUE 

or MVUE, see e.g. Mardia and Mashall (1984) and Zimmermann (1989). The mis-

specification of the model type and model parameters may have dramatic effects 
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on the prediction. In particular, a critical evaluation of the choice of the nugget ef-

fect is necessary, since this requires extrapolation of the variogram into the origin. 

3.3 How to specify uncertainty about the covariance structure? 

From the above discussion of the various sources of uncertainty about the covari-

ance structure it should be natural to start a geostatistical prediction task with a 

whole class of plausible covariance functions instead of focusing on a single esti-

mated covariance function, then proceeding with the usual Kriging “apparatus” 

and, finally, ending up with “nice” but unrealistic smooth Kriging error maps. 

This way we will also be able to cope with artefacts which arise from fitting with 

insufficient data. 

Some proposals for specifying a sufficiently flexible class of plausible covari-

ance functions may be found in Pilz et al. (1997). The approach chosen there is 

nonparametric and based on spectral decompositions of covariance functions as 

given e.g. in Yaglom (1986). In the sequel we develop an alternative approach, 

which is more intuitive and starts from parametric covariance function models; 

where the uncertainty about the covariance parameters is modeled on the basis of 

conditional simulation. 

4 Flexible parametric classes of covariance functions 

Since it was first mentioned in the monograph of Matérn (1986), the four-

parameter variogram 

|)]|(|)|(1[);( 0 haKhacchM  (8) 

named after him has gained increasing attention in geostatistical research and ap-

plications. Here ),,,( 0 acc  denotes the vector of covariance parameters, 

where 00c  (nugget effect) and 0,,ac , K  is the modified Bessel function 

of order . Important special cases include the exponential variogram )5.0( ,

Whittle’s variogram )1( , which is widely used in hydrology, and the Gaussian 

variogram, which results as a limiting case when .

The parameter  in (7) is referred to as smoothness parameter, the integer part 

][k  indicates the order of differentiability of the random function (in the mean 

square sense).  

As a simple alternative we further consider the variogram  
2||||

0 )1(1);( hh
Gd eecch  (9) 

10);,,,( 0 acc

which has been proposed by Gaudard et al. (1999). 
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This is a convex combination of the exponential variogram (set 0 ) and the 

Guassian variogram (set 1); thus the Gaudard variogram builds the “bridge” 

between linear and parabolic behaviour of the variogram near the origin. 

5 The full Bayesian approach 

The Bayesian apparatus provides a general methodology for taking account of un-

certainty w.r.t. the model and its components. This is particularly important for the 

specification of the variogram model and its parameters. The four-parameter 

classes introduced in the previous section seem very promising, since, on the one 

hand, they offer more flexibility than the tree-parameter models currently used, 

and, on the other hand, the number of parameters is still small and manageable and 

these allow a simple and natural interpretation. 

Let denote );(h  with },{ GdM  and ),,,( 0 acc  such a four-

parametric variogram where ),0(  in case of M  and ]1,0[  in case of 

the Gaudard variogram. 

The full Bayesian approach requires a completely specified distributional 

model, i.e. besides the distribution of the data, displayed by the likelihood func-

tion, we need to specify probability distributions for the trend parameter  and 

the covariance (variogram) parameter vector . We get a reward, however, for the 

bigger efforts necessary for a Bayesian modeling: first, we may handle more 

flexible distributional models for the data (not only normally or lognormally dis-

tributed data), second, the uncertainties with respect to the model parameters can 

be modeled by appropriate (prior or posterior) probability distributions and, fi-

nally, the so-called predictive density offered by the Bayesian paradigm gives us a 

complete probability distribution for the predicted values, not only expected 

(kriged) values and (Kriging) variances. 

The Bayes-optimal prediction of )(: 00 xZZ  at an unobserved location 

Dx0  is based on the predictive density 

B

ddZpZZpZZp )|,(),,|()|( 00  (10) 

This is the conditional probability density of  0Z  for given data 

T
nxZxZZ )(,),( 1 , averaged over all trend parameters 

r
r RB),,( 1  and variogram parameters 4R , where the aver-

aging is done with respect to the posterior probability density  )|,( Zp  of ,

for given data Z. Here rRB  and 4R  denote the regions of possible trend 

and variogram parameters, respectively. 

In case of the Matérn variogram model we have 

),0(),0(),0(),0[ xxx  and in case of the Gaudard model 
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]1,0[),0(),0(),0[ xxx . The first factor under the integral sign in Eq. 10 

represents the conditional distribution of  0Z  for given parameters ,  and data 

Z. The second factor is, as mentioned above, the posterior probability density of 

the parameters, which can be obtained according to Bayes’s theorem as 

B

ddpZp

pZp
Zp

),(),|(

),(),|(
)|,(  (11) 

where ),|(Zp  is  just the likelihood function of the data and ),(p  stands 

for the prior probability density of the parameters. 

Since )(Z  is a Gaussian random function, the observation vector Z follows an 

n-dimensional normal distribution with expectation F  and covariance matrix 

)(K  having elements njixxccK jiij ,,1,);;()( 0 . Hence, the 

log-likelihood function reads 

)()()(
2

1
)](det[log

2

1
)2log(

2
),|(log 1 FZKFZK

n
Zp T

The density ),,|( 0 ZZp  occurring in Eq. 10 

is then the density of the univariate normal distribution 

),( 2N  where Txf )( 0  and 0
1

00
2 )( kKkcc T  with 

T
nxxccxxcck ));(,),;(( 001000 , where, again, we have used 

the well-known relationship )()0()( hCCh  between the variogram and the 

covariance function. 

The only missing “ingredient” to compute the predictive density (Eq. 10) is 

then the prior probability density ),(p . In the literature, the Bayesian ap-

proaches to geostatistical prediction assume that the trend parameter  and the 

variogram parameter  are independent a-priori, i.e. )()(),( ppp .

Usually, )(p  is assumed to be locally uniform, i.e.  1)(p  for all 

rRB .  Of course, this is not a proper probability density, since the integral 

dp )(  over B does not converge. Such densities are often called noninforma-

tive prior densities; they are simply used to model the situation of total ignorance, 

where nothing is known a-priori about . The fact that the noninformative prior 

density 1)(p  is not proper does not cause problems as long as the resulting 

posterior density (after applying Bayes’s theorem) becomes a proper density. A 

thorough discussion on the use of noniformative prior densities and the situations 

under which they lead to proper posterior densities may be found in Berger et al.

(2001).  

We argue that usually we know “more” about the trend than just assuming that 

any parameter is equally likely to occur. E.g. we know that the expected level of 
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radioactivity in a given region is nonnegative and does not exceed a certain 

threshold. Such type of relatively weak prior knowledge implies, in turn, some re-

striction on . Proposals on how to “transform” different types of prior knowl-

edge about the trend into “adequate” and proper probability densities may be 

found in Pilz (1994), Pilz et al. (1997) and Dubois et al. (2000). A good part of the 

proposals in the literature just cited has already been implemented in the statistics 

program system “R”, work in this direction is ongoing (see e.g. Gebhardt (2004)). 

Modelling of adequate prior distributions for the variogram paramter vector 

is a much more comlex and difficult task. For the Matérn variogram, Handcock 

and Wallis (1994) and Qian (1997) proposed to use  

221
0 )1()1()()( accp , for 0,,,0 acc

This is an improper density, too; moreover, it ignores dependencies among the 

nugget, sill, range and smoothness components. Non-informative priors for the 

Matérn variogram parameter  based on Jeffreys’s (invariance) rule have been 

derived in Berger et al. (2001). Other “automatic” solutions, as presented e.g. in 

Cui et al. (1995), are non-satisfactory as well. 

Our objection against all such “non-informative” and automatic” priors is that 

existing a-priori knowledge should be used to model proper priors for the trend 

and to take into account the inherent uncertainty about  by specifying an infor-

mative prior or posterior distribution for the variogram parameter as well. Some 

results on the distribution of the estimated covariance function can be found in 

Cressie (1993). 

6 Our proposal 

We propose to avoid the cumbersome task of specifying a prior density )(p  for 

the variogram parameters, and thus also to avoid the dangers of a possible mis-

specification, and let the data “speak” themselves about the inherent uncertainty: 

instead of )(p  we generate the posterior density )|( Zp  via conditional simu-

lation. This is then used to factor the joint posterior density of trend and variogram 

parameters according to 

)|()|(),|(

)|(*),|()|,(

ZppZpk

ZpZpZp
 (12) 

where k denotes the normalization constant. 

The posterior density )|( Zp  of the variogram parameters is computed ac-

cording to the following algorithm: 

(A1) Generate  N (= 5000, say) simulated data sets from the random function 

)(Z , conditional on the actual observations 
T

nxZxZZ )(,),( 1  and based on 

the (Matérn or Gaudard) variogram  fitted to the usual empirical variogram of 

the data. As a result we obtain N new empirical variograms. 
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(A2) The new empirical variograms are fitted to the chosen (Matérn or Gaudard) 

variogram using nonlinear weighted least squares. We thus obtain N realizations 

of the variogram parameter 

),,,(,),,,,( )()()()(
0

)()1()1()1()1(
0

)1( NNNNN accacc

Having obtained a sufficient number )(N  of realizations of the posterior den-

sity )|( Zp  we can then go on with the computation of the predictive density 

)|( 0 ZZp  as given in Eq. 10. 

Assuming a normal prior ),(N  for the trend parameter , the posterior 

density ),|( 0 ZZp  is also normal with mean )(ˆ
0xZBK  = Bayes Kriging predic-

tor and variance 

))(x()())(x(

)f(x)f(xc)(

00
1T

00

0
T

000
2

fFkFFKfFk

cx
T

BK

= Bayes Kriging variance. The final step to be made is then the backtransforma-

tion of the density of 0Z  given Z to the original (lognormal) scale of radioactivity 

)exp( 00 ZY , i.e. we need to compute the predictive density )|( 0 YYp of 0Y

given the original observations ))).(exp(,)),((exp( 1 nxZxZY

With the Jacobian of this transformation, 000 /1/ YYZ , we thus have 

dZpZZpZZp )|(),|()|( 00  and 000 /)|(log)|( YZZpYYp .

This means that the final predictive density can be obtained by simply averag-

ing normal densities. Also, the above indicated numerical integrations over the re-

gions B and  are accomplished by simple averagings in the Monte Carlo sense. 

Our numerical experiences so far confirm that these approximations using only a 

few hundred of simulated parameters work sufficiently well. This way we may 

avoid time-consuming Gibbs sampling techniques for the computation of the pre-

dictive density, as done e.g. in Diggle et al. (1998) and Ecker and Gelfandt (1998). 

7 Illustration for an example data set 

We will illustrate our solutions for a data set consisting of 592 measurements of 

Cs137 activities in the region of Gomel (approximately 330 km Northeast from 

Chernobyl) taken in Autumn 1996. 

These data are lognormally distributed with logmean = 0.664 and logsigma = 

1.475. We fitted a Matérn variogram to these data with parameters 

)5.0,79.122,452.2,066.0(),,,( 0 acc

and for the sake of comparison, a Gaudard variogram with parameters 

accacc and,),,,,( 00  as above and 02.0 . Both estimated values of 

clearly favour an exponential variogram. 
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During the simulations we observed a high variability with respect to the 

variograms generated, see Fig. 1. 

Fig. 1. Simulated variograms 

The predictive densities were computed on the basis of 300 simulations each, 

which gave already satisfactory numerical accuracy. The next figure shows the 

predictive density at the point 0x  = (Easting, Northing) = (-80,40) which had been 

identified as a hot spot. 

Fig. 2. Predictive density with mode, mean, median and quantiles 
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This figure demonstrates the great strength of the Bayesian approach, which 

gives us a complete probability distribution from which we may derive all interest-

ing quantities such as the median and (95%-)quantiles, not only an expected value 

and variance as with “classical” Kriging methods.  

If we are interested in threshold values, e.g. in the 95% threshold value, then we 

may simply produce a map of the 95% quantiles from the predictive distributions 

computed at a corresponding grid of points Dx0 .

Finally, if we are interested in an uncertainty map then we may plot the inter-

quartile ranges (IQR), which are defined as the differences between the upper 

quartiles (75%-quantiles) and the lower quartiles (25%-quantiles), possibly 

devided by some constant a. Choosing e.g. a = 1.45 we get a map of approximate 

standard deviations of the predictive densities. 
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1 Introduction 

A critical aspect of kriging is the choice of a suitable autocovariance model that 

adequately describes the statistical relation between the observed data. Tradition-

ally, there has been a rather limited repertoire of commonly used autocovariance 

models, the most popular of which are the exponential, spherical and Gaussian 

autocovariance functions (Deutsch 2001). The observation that many scientific 

data and phenomena are inherently scale-invariant or “fractal” (Mandelbrot 1983, 

Turcotte 1997) led to the introduction of corresponding autocovariance models for 

geostatistical applications (Hardy and Beier 1994). Despite their clear phenome-

nological justification and their undoubted potential, such autocovariance models 

are relatively rarely used and their performance has never been rigorously as-

sessed.

One reason for this could be that scale-invariant autocovariance models are pre-

dominantly characterized by their behavior at short lags, which tends to be poorly 

constrained for typical, rather sparsely sampled geostatistical data. Another reason 

could be that, compared to more traditional autocovariance models, the parame-

terization of kriging estimators using pure scale-invariant autocovariance models 

is rather cumbersome and prone to produce numerical artifacts. Finally, the ab-

sence of an outer band-limiting scale implies that the variance of such autocovari-

ance models becomes scale-dependent, which violates one of the key assumptions 

of linear geostatistics. These problems can be alleviated by using a band-limited 

scale-invariant autocovariance model (Chilès and Delfiner 1999, Goff and 

Jennings 1999). The attractiveness of such an approach is further enhanced by the 

fact that the limited scale of observation inherently introduces a band-limiting ef-

fect in the observed data even if the considered phenomenon is truly scale-

invariant (Western and Blöschl 1999). In addition, “true” scale-invariance can be 

readily emulated with corresponding band-limited autocovariance models by sim-

ply choosing the outer range of scale-invariance to be larger than the actually con-

sidered range.  

In this study, we present a kriging approach based on a versatile band-limited 

scale-invariant autocovariance model. Although we focus on 2-D datasets and lin-

ear kriging, the method can be readily extended to 3-D problems and the results 

obtained also apply to non-linear kriging techniques, as long as the autocovariance 
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structure of the original data is not fundamentally altered. We first introduce the 

autocovariance model, explore the optimal parameterization of the corresponding 

kriging algorithm, and finally interpret the results and discuss their implications. 

2 Autocovariance model 

This study is based on the anisotropic band-limited scale-invariant von Kármán 

autocovariance model (von Kármán 1948) 

,
)(2

)(
1

2

rr a
K

a
C

rr
r (1) 

where r is the lag vector, ar is the correlation length in the direction of the lag vec-

tor, is the standard deviation,  is the gamma function, and K  is the modified 

Bessel function of the second kind of order 0  1. The correlation length corre-

sponds approximately to the outer range of scale-invariance. This autocovariance 

model has been successfully used to characterize a wide variety of scientific phe-

nomena, such as turbulent fields (von Kármán 1948), seafloor morphology (Goff 

and Jordan 1988), and wave propagation in heterogeneous media (Tatarski 1961, 

Wu and Aki 1985). Despite its intriguingly simple parameterization, the von Kár-

mán autocovariance model is extremely versatile and diverse. It encompasses es-

sentially the entire spectrum of scale-invariant phenomena. For example, the 

popular exponential autocovariance model represents the special case of  = 0.5 of 

the von Kármán family of autocovariance functions. It should also be noted that 

autocovariance model defined by Eq. 1 remains fundamentally valid for  < 0 and 

  > 1, but in those cases the thus characterized data are not scale-invariant.  

Fig. 1 shows von Kármán autocovariance functions for various values of . We 

see that with decreasing -value, the autocovariance function decreases more and 

more rapidly at short lags while still leveling off rather gradually at larger lags. 

The former implies that the local variability increases with decreasing -value, 

whereas the latter indicates that heterogeneity persists over a wide range of scales. 

This finds its quantitative expression in the fact that the parameter  is related to 

the “Hausdorff” fractal dimension D through D = E + 1 –  with E denoting the 

underlying Euclidean dimension of the stochastic process under consideration 

(Goff and Jordan 1988).  and D thus control the roughness and complexity of a 

stochastic process. For a topographic surface, for example, E is equal to 2 and D
thus lies between 2.0, which represents a very smooth, quasi-flat surface, and 3.0, 

which represents a very rough, quasi-space-filling surface. Stochastic processes 

with -values close to zero are referred to as flicker noise, or, equivalently, as frac-

tional Gaussian noise (fGn) with a Hurst parameter H close to one (Hardy and 

Beier 1994). Flicker noise behavior is probably the most commonly observed sto-

chastic phenomenon and characterizes a wide variety of data throughout virtually 

all fields of the natural and social sciences (West and Shlesinger 1990). 
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Fig. 1. Plot of a set of normalized von Kármán autocovariance functions. r and a denote the 

lag and the correlation length, respectively. 

The versatility of the von Kármán autocovariance model is illustrated in Fig. 2a-

2c, which show 2-D synthetic spatially anisotropic stochastic data fields for -

values of 0, 0.5, and 1. The average autocovariance functions of these synthetic 

data fields are consistent with the corresponding parametric models. To generate 

these synthetic data fields, we take the amplitude spectrum of the corresponding 

stochastic process, as defined by the square-root of the Fourier transform of Eq. 1, 

uniformly randomize the phase spectrum, and take the inverse Fourier transform 

(Goff and Jordan 1988). The resulting stochastic dataset has a Gaussian probabil-

ity density function. Von-Kármán-type stochastic data fields characterized by con-

tinuous (e.g., lognormal) or discrete (e.g., bimodal) non-Gaussian probability den-

sity functions can be obtained through subsequent transformations of the original 

Gaussian-distributed datasets (Goff et al. 1994, Lampe and Holliger 2003). 

Fig. 2. Dimensionless synthetic data fields characterized by von Kármán autocovariance 

functions with -values of a) 0, b) 0.5 and c) 1. All models have a standard deviation of 0.5 

and horizontal and vertical correlations lengths of 100 m and 10 m, respectively. The mod-

els were generated using the same seed number to initialize the random number generator 

and hence exhibit the same overall structure but differ in terms of their “roughness”. 
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3 Kriging of scale-invariant data 

3.1 Validation of the algorithm 

In the following, we apply the von Kármán autocovariance model outlined above 

(Eq. 1) to ordinary kriging, which estimates the value  at the non-sampled loca-

tion ro as (e.g., Kelkar and Perez 2002)  

)()(ˆ

1

i0
rr YY

n

i

i
, (2) 

where Y(ri) are the observed data, i are the corresponding weighting factors and n
the number of observed data used for the estimation. These weighting factors are 

related to the autocovariance model characterizing the data through the following 

system of equations (e.g., Kelkar and Perez, 2002) 
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j
    for i=1,…, n, (3) 

where C(ri, rj)  denotes the value of the used parametric model for the autocovari-

ance function for the lag vector r = ri - rj  (Eq. 1) and  is the Lagrange multiplier. 

Ordinary kriging does not make any assumptions with regard to the mean value of 

the data and is probably the most widely used geostatistical estimation technique. 

Because of the close mathematical analogies between essentially all kriging tech-

niques, the corresponding algorithms can be readily interchanged by applying mi-

nor modifications to the governing equations. Please note that  corresponds to the 

expected value at a given location and hence the autocovariance function of a 

kriged dataset does not correspond to the used parametric model (e.g., Gelhar 

1993). 

Ideally, the number of points n used for the interpolation procedure should 

comprise all available observations. In practice, however, this may be computa-

tionally too costly, particularly for large datasets. Moreover, the value of the 

kriging weights, and thus their relative importance, decreases rapidly with increas-

ing autocovariance lag. This decay is particularly pronounced for rapidly decaying 

autocovariance models, such as von Kármán autocovariance functions with small 

-values (Fig. 1). Based on extensive tests with subsets of the synthetic data fields 

shown in Fig. 2a-2c, we decided to use the 32 observations that are closest to the 

non-sampled location in a search neighborhood, the shape of which is consistent 

with the anisotropy ellipsoid of the autocovariance model. This approach con-

forms to the accepted practice for large datasets (Kelkar and Perez 2002).   

An effective way to verify the implementation of a kriging algorithm is through 

cross-validation, that is, by “blindly” estimating data whose values are actually 

known. To this end, we estimate a number of omitted values from the synthetic 

stochastic data field shown in Fig. 2b using the basic “leaving-one-out” cross-

validation approach (Kelkar and Perez 2002). The results shown in Fig. 3 indicate 

that the estimated values are uniformly close the actual ones (Fig. 3a), that the 

magnitudes of the errors are independent of the magnitudes of the values to be es-
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timated (Fig. 3b) and that the spatial distribution of the kriging errors is seemingly 

uncorrelated (Fig. 3c). These results also imply that the corresponding estimation 

is conditionally unbiased and that the error variance is spatially uncorrelated. All 

of these observations are consistent with the fundamental assumptions of kriging 

(Kelkar and Perez 2002). 

Fig. 3. Results from the cross-validation of part of the dataset shown in Fig. 2b. Shown are 

a) actual versus kriged values, b) actual values versus kriging errors, and c) the spatial dis-

tribution of kriging errors.  

3.2 Optimal parameterization  

Constraining and parameterizing the autocovariance model based on the observed 

data is a particularly delicate and time-consuming aspect of geostatistical analyses. 

Based on the theoretical foundations of kriging, optimal estimation results should 

be obtained when using the autocovariance model that best fits the observed data 

(e.g., Journel and Huijbregts 1978).  For sparsely sampled datasets, the estimation 

of the autocovariance model is, however, notoriously uncertain and error prone 

due to the lack of information at short lags (e.g., Kitanidis 1997). Consequently, it 

is important to assess the sensitivity of the estimation with regard to the choice of 

the autocovariance model and to determine whether the autocovariance parameters 

characterizing the observed data do indeed provide the best results.  

For this purpose, we have cross-validated the four-fold decimated stochastic 

data fields shown in Fig. 2a-2c using a “jackknife” approach (Kelkar and Perez, 

2002) for variable -values and anisotropic aspect ratios (ratios of horizontal to 

vertical correlation lengths). In doing so, we initially fixed the horizontal correla-

tion length at the correct value. Fig. 4a-4c show the sums of the absolute estima-

tion errors as functions of the autocovariance parameters. These results indicate 

that, with increasing -value of the input data, the sum of the absolute errors de-

creases sharply and the minima of these parameter trade-off maps defining the op-

timal parameterization of the autocovariance model become increasingly broad 

and ill defined. Regardless of the -value of the input data, this trade-off analysis 

estimates the anisotropic aspect ratio of the input data with remarkable accuracy. 

The most puzzling and interesting result of this sensitivity analysis, however, is 

that the optimal -value for kriging is always larger than the -value actually 

characterizing the input data. This discrepancy is most pronounced for input data 

with very small values of  and decreases with increasing -values of the data. 
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Fig. 4. Sum of absolute cross-validation errors as functions of -value and anisotropic as-

pect ratio used in autocovariance model. The horizontal correlation length in the autoco-

variance model was fixed at the correct value of 100 m. The input data correspond to those 

in Fig. 2a-2c after four-fold decimation and are characterized by -values of a) 0, b) 0.5, 

and c) 1 and horizontal and vertical correlation lengths of 100 m and 10 m, respectively. 

White dots denote the locations where the sum of the estimation errors is at a minimum.  

To assess the sensitivity of kriging estimation to the absolute values of the correla-

tion lengths, we have repeated the above analysis for the input dataset shown in 

Fig. 2b, kept  fixed at the correct value of 0.5, but varied the horizontal correla-

tion length in the autocovariance model used for the sensitivity analysis between 

half (50 m) and twice (200 m) the actual value (100 m). The resulting trade-off 

maps (Fig. 5a-5c) are quite similar to the corresponding trade-off map determined 

with the horizontal correlation length fixed at the actual value of the input data 

(Fig. 4b). These results indicate that kriging estimation of spatially anisotropic 

scale-invariant data is sensitive to the choice of the -value and aspect ratio, but 

remarkably robust with regard to the choice of the absolute values of the correla-

tion lengths. This finding is of significant practical importance because accurate 

estimates of the correlation lengths are notoriously difficult to obtain and in many 

cases may be influenced by “filtering artifacts” due to the inherently finite ex-

perimental scales (Gelhar 1993, Western and Blöschl 1999). 

Fig. 5. Sum of absolute cross-validation errors as functions of -value and anisotropic as-

pect ratio used in autocovariance model.  was fixed at the correct value of 0.5 and the 

horizontal correlation length at a) 50 m, b) 100 m and c) 200 m. The input data correspond 

to those in Fig. 2b after four-fold decimation and are characterized by a -value of 0.5 and 

horizontal and vertical correlation lengths of 100 m and 10 m, respectively. White dots de-

note the locations where the sum of estimation errors is at a minimum.  
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Finally, Fig. 6-8 compare the data fields shown in Fig. 2a-2c after ten-fold deci-

mation and subsequent kriging estimation of the decimated values with both the 

actual and the optimal -values estimated from Fig. 4a-4c. Differences in the cor-

responding estimates are quite pronounced for the input dataset characterized by 

= 0 (Fig. 6c and 6d). An interesting observation is that the dataset kriged with 

the -value of the input data is characterized by a subtle but highly systematic 

“salt-and-pepper” pattern consisting of high-amplitude values coincident with the 

locations of the data used for kriging. This is illustrated in the blown up part of 

Fig. 6c. Moreover, the estimate obtained with the -value of the input data is much 

too smooth and exhibits significant distortions with regard to the character of the 

input data. Kriging the data with the optimal -value notably attenuates these arti-

facts and the result can be clearly identified as an adequately smoothed version of 

the input data. In contrast, the differences between the kriging estimates obtained 

with the actual and optimal autocovariance models are quite modest for the input 

data characterized by  = 0.5 (Fig. 7c and 7d) and insignificant for the input data 

characterized by  = 1 (Fig. 8c and 8d). Moreover, the overall similarity between 

the original input stochastic data fields and their kriged equivalents increases sig-

nificantly with increasing -value of the input data. This finding is consistent with 

the systematic decrease in the sum of the estimation errors with increasing -

values of the input models observed in the parameter trade-off analyses (Fig. 4a-

4c). 

Fig. 6. a) Dimensionless synthetic data characterized by  = 0 shown in Fig. 2a. b) Same 

data after ten-fold decimation. Kriging of decimated data c) with the -value of the input 

data (note the “salt-and-pepper” pattern in the blown up part) and d) with the optimal -

value minimizing the sum of the absolute errors (Fig. 4a). 
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Fig. 7. a) Dimensionless synthetic data characterized by  = 0.5 shown in Fig. 2b. b) Same 

data after ten-fold decimation. Kriging of decimated data c) with the -value of the input 

data and d) with the optimal -value minimizing the sum of the absolute errors (Fig. 4b). 

Fig. 8. a) Dimensionless synthetic data characterized by  = 1 shown in Fig. 2c. b) Same 

data after ten-fold decimation. Kriging of decimated data c) with the -value of the input 

data and d) with the optimal -value minimizing the sum of the absolute errors (Fig. 4c). 
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4 Discussion 

An important outcome of the above analysis is that the best results, in terms of the 

estimation errors, are obtained when scale-invariant data are kriged with -values 

that are systematically higher than those characterizing the actual input data. This 

finding is at odds with the theoretical foundations of kriging as well as the com-

mon practice in geostatistical data analysis and hence is of considerable practical 

importance. In the following, we quantify the relationship between the actual and 

optimal -values and explore the origins of this rather puzzling phenomenon. 

Fig. 4a-4c show that the difference between the actual and optimal -values de-

creases with increasing -value of the input data. To constrain the relationship be-

tween the -value of the input data and the optimal -value for kriging in more de-

tail, we have conducted the parameter trade-off analysis outlined above with for 

the -values only. The synthetic input data fields used for this parameter analysis 

are the type of those shown in Fig. 2 and only differ in terms of their -values, 

which are incremented in steps of 0.1. These input data fields are then decimated 

by a factor of four prior to “jackknife”-type parameter trade-off analysis. The av-

erage autocovariance functions of the synthetic input data are found to be consis-

tent with the corresponding parametric models. The same is true for the decimated 

data, although the behavior at short lags, which primarily constrains the -value, 

becomes more ambiguous, particularly for small -values. 

The results of the analysis are summarized in Fig. 9 and corroborate the find-

ings inferred from the trade-off maps shown in Fig. 4a-4c. As expected from the 

results shown in Fig. 4a, there are large differences between actual and optimal -

values for data characterized by very small -values. For example, an actual -

value of 0 (flicker noise) corresponds to an optimal -value for kriging of ~0.5. 

Based on this parameter trade-off analysis, the relationship between the actual -

values characterizing the input data true and the -values that provide the optimal 

kriging results opt can be approximated through the following empirical polyno-

mial relation 

54.020.164.0 2

truetrueopt
. (4) 

Together with Fig. 9, this empirical relation illustrates that the difference between 

actual and optimal -values diminishes with increasing actual -values, such that 

for -values close to 1 the actual and optimal -values converge. An intriguing 

outcome of this analysis is that the range of actual -values from 0 to 1 character-

izing the input data is mapped into a “compressed” range of optimal -values be-

tween 0.5 and 1. The reason for this could be that the nature of scale-invariant 

data, in particular their predictability, changes fundamentally around  = 0.5 (Her-

garten 2002). Data characterized by -values smaller than 0.5 are referred to as 

anti-persistent, such that a positive gradient between two data points is likely to be 

associated with a negative gradient between adjacent data points. Conversely, 

scale-invariant data characterized by -values larger than 0.5 are referred to as 
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persistent, such that a positive gradient between two data points is likely to be as-

sociated with positive gradients between adjacent data points.  

Fig. 9. Plot quantifying the relationship between the actual -values of the input data and 

the -values that provide the best kriging estimates. Stars: estimates obtained from parame-

ter trade-off analyses of the kind shown in Fig. 4; solid line: best-fitting polynomial ap-

proximation (Eq. 4).  

The predictability of anti-persistent data is inherently limited and decreases with 

decreasing -value. For scale-invariant data characterized by -values close to 0, 

the predictability is essentially as poor as for totally random white noise, where 

the best prediction simply corresponds to the expected or mean value of the entire 

dataset. Kriging of such a dataset thus simply estimates the data at an unsampled 

location as the expected value of the corresponding search neighborhood. This re-

sults in a smooth data field centered around the global mean value, from which the 

observed values with their high intrinsic variability stand out as anomalies, form-

ing the “salt-and-pepper” pattern observed in the blown-up part of Fig. 6a. 

The predictability of persistent data is inherently better than that of their anti-

persistent equivalents and for -values of 1 converges to a basic linear estimation. 

This is consistent with the smooth appearance of the kriged data fields shown in 

Fig. 7 and 8, which are quite similar to the corresponding input data. It also ex-

plains why the sums of the absolute errors displayed in the parameter trade-off 

maps in Fig. 4a-4c decrease markedly with increasing -values of the input data. 

The finding that the range of optimal -values for the kriging of scale-invariant 

data is limited to values between 0.5 and 1 can thus be interpreted as a reflection 

of the fact that kriging, like essentially all other estimation techniques, is inher-

ently based on the assumption of persistency of the underlying database.  

Another intriguing outcome of this analysis is that actual -values close to 0 

correspond to optimal -values close to 0.5 (Fig. 9). -values of 0 and 0.5 define 

two of the best known parametric autocovariance models in stochastic data analy-



Kriging of scale-invariant data     73 

sis. As mentioned above, scale-invariant data characterized by -values close to 0 

are referred as flicker noise, a ubiquitous and seemingly universal stochastic char-

acteristic of data observed in a wide variety of scientific disciplines (West and 

Shlesinger 1990). In the earth sciences, for example, there is increasing evidence 

that the spatial distributions of virtually all petrophysical properties seem to ex-

hibit flicker noise behavior (Hardy and Beier 1994, Kelkar and Perez 2002). Al-

though the origins of this immensely common scaling phenomenon are still enig-

matic (Holliger and Goff 2003), its practical potential for providing critical a
priori information for the conditional stochastic simulation is increasingly being 

realized (Hardy and Beier 1994). A -value of 0.5, on the other hand, corresponds 

to an exponential autocovariance function, which is widely regarded as one of the 

most common and robust parametric models, particularly in geostatistics. It is 

therefore interesting and important to note that, although exponential autocovari-

ance models are commonly used for kriging estimation, there seem to be rather 

few studies that convincingly applied this model to characterize the observed 

autocovariance behavior of densely sampled, high quality datasets (Turcotte 

1997). Fig. 4a and 9 demonstrate that for a dataset characterized by -value close 

to zero, cross-validation and/or parameter trade-off analyses would unambigu-

ously point towards the use of an exponential autocovariance model for kriging. 

Conversley, data characterized by an exponential autocovariance function should 

actually be kriged using a considerably smoother autocovariance function (Fig. 4b 

and 9). Moreover, it can be shown that a sparsely sampled autocovariance function 

characterized by a -value close to 0 can be adequately matched through an expo-

nential autocovariance model in combination with a nugget effect. The results of 

this study may therefore indicate that the popularity and robustness of the expo-

nential autocovariance model in geostatistics could, at least in part, be a reflection 

of the ubiquity of flicker noise (  0) behavior in the observed data.  

5 Conclusions 

This study illustrates the suitability, versatility and robustness of the von Kármán 

autocovariance model for kriging scale-invariant data and provides clear guide-

lines for with regard to the optimal choice of the autocovariance parameters. De-

spite the inherently band-limited nature of the von Kármán autocovariance model, 

the corresponding kriging algorithm proves to be surprisingly robust with regard 

to the absolute values of the horizontal and vertical correlation lengths as long as 

the anisotropic aspect ratio of the observed data is honored. An important finding 

is that for input data characterized by -values between 0 and 1, the range of -

values that provide optimal kriging estimates is compressed to a range between 

0.5 and 1. This phenomenon is interpreted as a reflection of the inherently persis-

tent nature of the estimation process and may suggest that the popularity of the 

exponential autocovariance model (  = 0.5) in geostatistics could indeed be an 

“artifact” related to the inherent sparseness of typical geostatistical data and the 

ubiquity and universality of flicker noise statistics (  0) in natural phenomena.  
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1 Introduction

There is growing evidence that the hydrogeologic properties of porous and frac-

tured media may be statistically nonhomogeneous and behave as random fractals 

(Molz et al. 2003). Aspects of this behavior are captured by a variety of fractal 

models such as fractional Gaussian noise (fGn) (Hewett 1986, Robin et al. 1991, 

Molz and Boman 1993, 1995, Tubman and Crane 1995, Liu and Molz 1996, 

Eggleston and Rojstaczer 1998), corresponding power law approximations 

(Glimm et al. 1993, Dagan 1994), Weierstrass-Mandelbrot fractal function (Molz 

et al. 1998), fractional Levy motion (fLm) (Painter 1996a-b, 1998), or multifrac-

tals (Liu and Molz 1997, Molz et al. 1997, Boufadel et al. 2000). We focus in this 

paper on power-law variograms that lack a finite sill (asymptotic value represent-

ing variance) or correlation scale. Such variograms have been inferred from poros-

ity and/or permeability data at several sites (Hewett 1986, Grindrod and Impey 

1992, Desbarats and Bachu 1994, Molz and Boman 1993, 1995, Tubman and 

Crane 1995, Guzman et al. 1996, Liu and Molz 1996) on distance scales ranging 

from meters to 100 km. They are indicative of a nonhomogeneous (nonstationary) 

random field with homogeneous spatial increments (differences between values at 

points separated by some distance or lag). 

A statistically isotropic random field Y(x) with homogeneous spatial incre-

ments, defined on an infinite domain, is characterized by a power (semi)variogram 

(PV) or second-order structure function 

,
2

1 2
0

2 HCYY sxsxs  (1) 

where x is a vector of spatial coordinates, s is a displacement (lag) vector, s is the 

magnitude of s,  indicates ensemble mean (expectation), C0 is a constant and H
is the Hurst coefficient. Since the variogram scales as (rs) = r2H (s) the field is 

self-affine and, within the range 0 < H < 1, constitutes a random fractal with di-

mension D = E + 1 – H where E is Euclidean (topologic) dimension (Voss 1985). 

If the field is additionally Gaussian, it constitutes fractional Brownian motion 

(fBm). 
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Let (s, ) be an exponential or Gaussian variogram having variance 2(n) = 

C/n2H  where n = 1/   is a mode number,  being the integral scale, C is a constant 

having dimensions [L-2H], 0 < H < 0.5 in the exponential case and 0 < H < 1 in the 

Gaussian case. Then one can express PV as a weighted integral of such 

variograms over all modes (Di Federico and Neuman 1997), 

.),()(

0
n
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nss  (2) 

Introducing a lower cutoff nl = 1/ l yields a truncated power variogram (TPV) 
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given in the case of exponential modes by 
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where, SE = [1-exp(-nls)+(nls)2H (1-2H,nls)], C0 = C (1-2H)/2H,  being the com-

plete gamma function and (a,x) the incomplete gamma function (Abramowitz 

and Stegun 1972, equation (6.5.3), p. 260). This TPV defines a homogeneous field 

associated with a constant variance 2(nl) = C0/ (1-2H)nl
2H and finite integral 

scale I(nl) = l2H/(1+2H). In the case of Gaussian modes we have 
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where SG = [1-exp(-( /4)nl
2s2)+(( /4)nl

2s2)H (1-H,( /4)nl
2s2)] and C’0 = C( /4)H

(1-H)/2H. Gaussian TPVs have variance 2(nl) = C’0/[ (1-H)( /4)Hnl
2H] and 

again integral scale I(nl) = l2H/(1+2H). In the limit as nl  0, Eq. 3 to 5 reduce to 

Eq. 2. 

The integral scale I(nl) = l2H/(1+2H) of the truncated field is proportional to, 

and smaller than, the cutoff scale l (integral scale of the lowest mode retained). 

For nls << 1, or equivalently s << l, (s,nl) C0s
2H indicating that TPV coincides 

with PV over lags much smaller than the lower cutoff scale. In this paper we ask 

two related questions: 

(a) At what value of s/ l does the approximation (s,nl) C0s
2H become accept-

able? 

(b) How is l related to the length scale L of a finite domain (window) superim-

posed on an fBm defined on an infinite domain? In other words, is there a rela-

tionship between the truncation criterion (since l = 1/nl) and the domain of a trun-

cated field? 

A tentative answer to the second question was proposed by Di Federico and 

Neuman (1997) and Di Federico et al. (1999) (for the implications of their work 

vis-à-vis flow and transport see Di Federico and Neuman 1998a,b). It had been 
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noted earlier by Neuman (1994) that upon plotting published integral scales of log 

hydraulic conductivity and transmissivity in a variety of soils and aquifers versus a 

characteristic length of the sampling domain on logarithmic paper (Fig. 1), the 

data appear to delineate a straight line with a 1/10 slope. Di Federico and Neuman 

(1997) set l = µL and wrote I(nl) = l2H/(1+2H) = l = µL to obtain µ  0.1. 

From juxtaposed apparent dispersivity data derived on the basis of tracer studies 

world-wide, Neuman (1990, 1995) deduced a generalized value of the Hurst coef-

ficient, H  0.25. This gave  1/3 and, correspondingly, µ  1/3. However, there 

has been no independent theoretical verification of this quasi-empirical result. 

In this paper we address the above two questions through numerical Monte 

Carlo simulation and variogram analysis of two-dimensional fBm fields. 

Fig. 1. log-K and log-T integral scales [after Neuman (1994), data from Gelhar (1993, Ta-

ble 6.1)] 

2 Generation of fields characterized by power variograms 
using HYDRO_GEN 

To generate random realizations of fBm fields we used the HYDRO_GEN soft-

ware of Bellin and Rubin (1996) and Rubin and Bellin (1998). HYDRO_GEN is a 

sequential Gaussian simulator of stationary or non-stationary, conditional or un-

conditional random field replicates over a grid of arbitrary geometry. It achieves 

computational efficiency by relying on a fixed sequence of conditioning points, 

and associated interpolation coefficients, for all replicates. 

Two sets of 200 fBm realizations each were generated on a square grid of 

101 101 points coinciding with the centroids of unit cells. One set corresponded 

to H = 0.25, the other to H = 0.75, and both to C0 = 0.027 (deduced by Neuman 

1990, 1995, from world-wide apparent dispersivity data). Fig. 2a shows one of the 
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200 fBm realizations with H = 0.25, and Fig. 2b one with H = 0.75. The realiza-

tion in Fig. 2a illustrates antipersistence (negatively correlated increments) and 

that in Fig. 2b persistence (positively correlated increments). 

To obtain sample variograms for a given realization over the entire length L of 

our grid, 202 pairs of points were considered at each horizontal and vertical lag s = 

1, 3, 5, … , L. We found the resulting sample variograms of individual realizations 

to vary widely in shape, magnitude and degree of anisotropy as shown in Fig. 3a 

and 3b, implying a distinct lack of ergodicity. Averaging these sample variograms 

over 100 and 200 realizations of each field resulted in rapid convergence toward 

the corresponding isotropic power variogram, as illustrated in Fig. 4a and. 4b. 

Normalized versions of the 200-sample (dashed) and theoretical (solid) 

variograms in Fig. 5 suggest that convergence to the power model is slower for H
= 0.75 than for H = 0.25 as a result of persistence. 

Fig. 2. Example of generated fields with a) H=0.25 and b) H=0.75  

Fig. 3. Example of directional sample variograms extracted a) from a single realization 

with H=0.25 and b) from a realization with H=0.75 
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Fig. 4. Model vs average sample variograms over an ensemble of 100 and 200 fields with 

a) H=0.25 and b) H=0.75

Fig. 5. Normalized model (solid) vs 200 fields average-sample variograms (dashed) for 

H=0.25 and H=0.75 

3 Effect of sampling window size 

In practice, sampling is always limited to finite size domains (windows). To inves-

tigate the effect of sampling an fBm within a finite size window, it is necessary to 

generate realizations of the fBm over a domain that is much larger (ideally infi-

nite) than the window. Computational constraints have limited us in this study to 

square domains of 101 101 points. We have superimposed on each set of 200 re-

alizations (corresponding to H = 0.25 and 0.75) two sampling windows, one con-

taining 60 60  points and the other 40 40  points, both centered about the mid-

point of the larger domain. Fig. 6a and 6b show sample variograms across each 

window corresponding to H = 0.25 and 0.75, respectively, averaged over all 200 

realizations. Regardless of window size or H, each 200-sample average variogram 

is seen to lie very close to the corresponding theoretical power model. 
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Fig. 6. Sample variograms inferred from square windows of decreasing side extracted from 

fields a) with H=0.25 and b) H=0.75

4 Fitting TPVs to power variogram on finite windows 

We now investigate the relationship between truncated power variograms (TPVs) 

and average (over a set of realizations) sample (over a given realization) 

variograms of fBm fields on finite windows of length scale L. Given our finding in 

the previous section that such average sample variograms tend to the power 

model, we compare in Fig. 7a and 7b TPVs characterized by various lower cutoffs 

with PVs for H = 0.25 and H = 0.75, respectively. These figures show that as the 

lower cutoff nl decreases, the TPVs in each case tend asymptotically to the corre-

sponding PV over the entire length L of our grid. When nl is relatively large, the 

TPVs lie below the power model; as nl decreases, they initially rise above this 

model and then diminish toward it asymptotically. This provides a partial answer 

to our earlier question at what value of s/ l (or snl) does the approximation (s,nl)

C0s
2H become acceptable? Fig. 11 and 12 suggest that, for the approximation to be 

valid more or less uniformly over the entire range 0 s L, one must have nl << 

0.0001. A perfect reproduction of the model over the whole domain (not shown in 

the figures) is only obtained for nl = 0.00001 or l = 100,000 (corresponding to µ = 

l/L  1,000). 

Next we examine for L = 101 what nl (and l) values are required to obtain 

(s,nl) = C0s
2H to four significant figures when s = 29, 51, 59, 99. Fig. 8a shows 

such a fit between a Gaussian truncated power model with H = 0.75 and the power 

model for s = 59. The fit appears acceptable over the entire range 0 s  59. Fig. 

8b shows that for H = 0.25 and s = 99 the exponential TPV approximates the 

power model more closely than does the Gaussian TPV. Fig. 9 plots the l values 

obtained by fitting three TPVs to the power model at the above four lags. For any 

given TPV these cutoff scales delineate straight lines representing fixed ratios µ = 

l/s. This provides a strong numerical confirmation that, for a given TPV, µ is in-

dependent of lag (or, equivalently, window size). Di Federico and Neuman (1997) 

considered µ to be additionally independent of the choice of TPV model and H;
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Fig. 9 and Table 1 suggest that µ may in fact vary somewhat with this choice, 

though the variations may perhaps be an artifact of our particular way of fitting 

TPVs to the power model. The theoretical µ values in Table 1 are much smaller 

than the asymptotic values deduced earlier from Fig. 7a and 7b, and much closer 

to the semi-empirical value µ = l/L = 1/3 deduced by Di Federico and Neuman 

(1997) for H = 0.25 on the basis of hydraulic conductivity, transmissivity and ap-

parent dispersivity data. 

Fig. 10a and 10b show how exponential and Gaussian TPV models compare 

with the power model when µ is set equal to 1/3 and to its value in Table 1 corre-

sponding to H = 0.25. It is instructive to note that earth and/or environmental data 

typically represent a single realization of what is assumed to be some underlying 

random field (in our case, an fBm). As the number of data pairs often diminishes 

rapidly with their separation distance (lag), it is common in variogram analyses to 

disregard or assign very low weights to data pairs with lags in excess of L/2. Quite 

often one infers from the remaining data pairs a variogram which, subject to pos-

sible filtering out of an underlying drift, represents a statistically homogeneous 

field. Our results suggest that, if the fitted variogram is a truncated power model, 

it may be associated with a relatively low µ value on the order of 1/3 – 2. It is 

worth noting here that the latter values of µ provide a “good” fit over lags up to 

half the considered 101 101 domain, while a very high value of the same pa-

rameter (i.e. µ  1,000) is required in order to achieve a perfect reproduction of the 

model over the entire window. 

Fig. 7. a) Exponential TPVs with H=0.25 and b) Gaussian TPVs with H=0.75 for varying 

nl
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Fig. 8. a) Gaussian TPV with H=0.75 fitted to PV model at s=59; b) Exponential TPV with 

H=0.25 vs Gaussian TPV with H=0.25 at s=99

Fig. 9. Discrete integral scales interpolated by lines with constant µ

Table 1. µ values corresponding to Fig. 9 

TPV fitted to PV µ

Exponential modes with H=0.25 2.03 

Gaussian modes with H=0.25 0.83 

Gaussian modes with H=0.75 2.26 
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Fig. 10. a) Exponential TPV with H=0.25 and varying µ (light solid: µ=1/3, dashed: 

µ=2.03); b) Gaussian TPV with H=0.25 and varying µ (light solid: µ=1/3, dashed: µ=0.83). 

In both cases the model PV is provided for comparison. 

6 Conclusions and future developments 

The following major conclusions can be drawn from this paper: 

1. The software HYDRO_GEN can be used with success to generate uncondi-

tional random fields characterized by isotropic power variograms on finite 

domains of length scale L. Due to lack of ergodicity, sample variograms of 

individual realizations are direction dependent and differ from each other 

sharply in form and magnitude. However, the average of such sample 

variograms over 200 realizations lies very close to the theoretical power 

model, more so in the case of anti-persistent fields with Hurst coefficient H = 

0.25 than in the case of persistent fields with H = 0.75. 

2. The previous conclusion applies to arbitrary size sampling domains (win-

dows) of length scale smaller than L.

3. Truncated power variograms with a low frequency cutoff scale l approximate 

the power model more or less uniformly well over a finite domain of length 

scale L when l  100,000 (corresponding to µ = l/L  1,000). 

4. Fitting such truncated power models to the power model at any discrete lag s

yields ratios µ = l/s that are independent of s (and hence window scale). This 

provides numerical support for a corresponding postulate by Di Federico and 

Neuman (1997). The latter authors considered µ to be additionally independ-

ent of the choice of TPV model and H; our results suggest that µ may in fact 

vary somewhat with these choices (within a range of about 0.8 – 2), though 

these variations may perhaps be an artifact of our particular way of fitting 

TPVs to the power model. Ratios µ within this range are much smaller than 

the asymptotic ratio µ = 1,000 listed in the previous conclusion and much 

closer to the semi-empirical value µ = 1/3 deduced by Di Federico and Neu-

man (1997) for H = 0.25 on the basis of hydraulic conductivity, transmissivity 
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and apparent dispersivity data previously analyzed by Neuman (1990, 1994, 

1995). 

5. Earth and environmental data typically represent a single realization of what 

is assumed to be some underlying random field (in our case, an fBm). As the 

number of data pairs often diminishes rapidly with their separation distance 

(lag), it is common in variogram analysis to disregard or assign very low 

weights to data pairs with lags in excess of L/2. Quite often one infers from 

the remaining data pairs a variogram which, subject to possible filtering out of 

an underlying drift, represents a statistically homogeneous field. Our results 

suggest that if the fitted variogram is a truncated power model, it may be as-

sociated with a relatively low µ value on the order of 1/3 – 2. It is worth not-

ing here that the latter values of µ provide a “good” fit over lags up to half the 

considered 101 101 domain, while a very high value of the same parameter 

(i.e. µ  1,000) is required in order to achieve a perfect reproduction of the 

model over the entire window. 

6. Multiscale fields characterized by TPVs are statistically homogeneous and 

should therefore be easier to generate than fields characterized by power 

variograms. Individual realizations of the former, when generated over suffi-

ciently large domains, should yield sample variograms that reproduce closely 

the underlying TPV model. We are therefore modifying HYDRO_GEN so it 

can generate random fields characterized by truncated power variograms. 
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1 Introduction 

In this paper we use scallop survey data and lognormal ordinary kriging (Chiles 

and Delfiner 1999) to obtain a spatial mapping of estimated scallop density in the 

Red Cliff and NW Peron regions of the Shark Bay managed scallop fishery in 

Western Australia. The results can then be used, together with the annual pre-

season scallop survey, to inform the management decision as to the opening time 

of the subsequent scallop fishing season.  

The Shark Bay Scallop Fishery is Western Australia’s largest scallop fishery. 

Its outer boundaries encompass the waters of the Indian Ocean and Shark Bay be-

tween 23 34' south latitude and 26 30' south latitude and adjacent to Western Aus-

tralia on the landward side of the 200 m isobath, together with those waters of 

Shark Bay south of 26 30' south latitude (Department of Fisheries 2002).  

The scallop catch depends primarily on the strength of recruitment from the 

breeding season of the previous year. Spawning commences in mid-April and 

meat condition declines as spawning continues, so the process of setting the open-

ing date of the season needs to balance breeding stock and the seasonal decline in 

meat condition. In order to determine the opening date for the fishing season a 

pre-season survey is conducted in November and December of the previous year. 

The survey covers the three fishing regions Red Cliff, NW Peron, and Denham 

Sound but, as there has been little fishing activity in Denham Sound during the 

years considered,  only the Red Cliff and NW Peron regions are used.  

2 The survey data 

The survey data we considered are for the years 2000 to 2003. The fishing 

grounds Red Cliff and NW Peron are adjacent and are treated by the Department 

of Fisheries, Western Australia as one fishing ground for stock prediction and we 

treat them in the same manner here. Each survey was carried out by FRV Natural-

iste, equipped with two six-fathom headrope nets. The combined fishing ground is 
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north of 25 30' south latitude and south of 24  40', with the Red Cliff survey loca-

tions lying north of 25 10' south latitude. For our analysis the locations were con-

verted to nautical miles and a local coordinate system with origin at 24  south lati-

tude and 113  east longitude was chosen. A map of the three fishing grounds 

together with the survey locations is shown in Fig. 1. The area outlined in grey 

shows the region for which estimates were computed. 

Fig. 1. Shark Bay scallop fishery, the dots indicate survey locations, the legends on the 

right and on the top give distances in nautical miles relative to the chosen origin 

The data comprise the fishing ground, the longitude and latitude in degrees of the 

start and end locations of each trawl, the counts of recruit and residual scallops 

caught per net, the trawl duration, distance and speed. The number of survey loca-

tions varies from year to year. The numbers, giving the regional split, are shown in 

Table 1. 

Table 1. Number of sample locations by year and data set 

Fishing Ground 2000 2001 2002 2003 

Red Cliff  23 18 33 30 

NW Peron 19 12 12 17 
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The number of residuals and recruits caught per trawl and net were aggregated 

into total number of residuals and recruits per trawl respectively. As the trawling 

speed influences the efficiency of the trawl gear, the catch (by category and total)  

was standardised to the equivalent catch at a speed of 3.4 knots 

v

c
cst

6485.02331.3
. (1) 

Here v, c and stc  denote the trawl speed in knots, the catch and the standardised 

catch respectively. This formula was derived via a combination of practical ex-

perience to decide on a suitable adjustment factor and a subsequent linear regres-

sion of this adjustment factor on trawl speed (J. Penn, unpublished) and is deemed 

reliable by the Department of Fisheries, WA. For this study the standardised num-

ber of residuals, recruits and total number of scallops were converted to densities 

according to 

Tw

c
d st

2
, (2) 

where T and w denote the trawl distance and the width per net in nautical miles.   

The scallop density distributions are highly positively skewed with the 2003 re-

siduals density and 2002 recruits density the most strongly skewed (see Tables 2 

to 4).  

Table 2. Descriptive statistics of the density of residuals

Residuals Density 2000 2001 2002 2003 

Mean 3641 3057 1717 5621 

Standard Deviation 7054 3288 1941 13349 

Minimum 0 143 0 0 

Lower Quartile 0 814 314 713 

Median 336 2016 991 2180 

Upper Quartile 3960 4470 2539 5013 

Maximum 33272 14564 7065 89610 

Skewness 2.9 2.1 1.5 5.7 

Table 3. Descriptive statistics of the density of recruits

Recruits Density 2000 2001 2002 2003 

Mean 9117 10404 14817 17233 

Standard Deviation 10561 9619 31808 21117 

Minimum 0 369 0 0 

Lower Quartile 1555 3848 1428 2382 

Median 5865 6737 3541 7784 

Upper Quartile 14425 15573 14856 24143 

Maximum 55347 34101 196560 86739 

Skewness 2.5 1.3 5.0 1.6 

A comparison of the mean densities for recruits and residuals during the four 

years shows that residuals comprise respectively 29, 23, 10 and 25 percent of all 

scallops caught in the combined Red Cliff and NW Peron fishing region. 
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Table 4. Descriptive statistics of the density of total scallop catch

Total Scallop Density 2000 2001 2002 2003 

Mean 12758 13461 16534 22853 

Standard Deviation 14524 11444 32973 27344 

Minimum 0 590 142 351 

Lower Quartile 3382 5314 2750 6345 

Median 7067 9460 4456 10568 

Upper Quartile 16576 20906 17192 33097 

Maximum 68060 42674 203626 125440 

Skewness 2.2 1.1 4.0 2.0 

Spatial maps for the densities of residuals, recruits and total catch for Red Cliff 

and NW Peron for the year 2001 are shown in Fig. 2.  There are more locations 

with high residuals density in the Red Cliff fishing ground than in NW Peron fish-

ing ground. For recruits the locations of high density are more evenly distributed 

through the two fishing grounds and the locations of low density lie in the centre 

of the fishing ground.  Locations of high density of residuals are not co-located 

with those of high recruit density. Overall residuals density values are much lower 

than recruits densities.  

Fig. 2. Spatial maps of residuals density and recruits density 2001 

The density patterns for recruits and residuals change from year to year indicat-

ing variable settlement patterns in these areas. In 2000 residuals scallop density 

was highest in the central part of Red Cliff and was low in NW Peron and the 

northern part of Red Cliff. In 2002 residuals scallop density was low to moderate 

in NW Peron, high at the western rim of Red Cliff, and low at the eastern rim of 
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Red Cliff. In the year 2003 the density distribution was similar to that in 2002 ex-

cept for the occurrence of a high density patch in the south east of NW Peron.  

In the year 2000 high recruits densitiy occurred throughout most of the western 

part of the combined fishing ground, with low density along the eastern rim. In 

2002 recruits density was highest in the north west close to the permanent closure 

area and low throughout NW Peron. In 2003 recruits density in the north west 

were similar to (and greater in absolute terms than) those in 2002. Values in the 

NW Peron ground were low overall compared with the rest of the study region 

with the exception of two locations with high density in the centre. 

The spatial distributions of the annual total scallop survey density for each of 

the four years are strongly influenced by the recruits distributions and follow simi-

lar patterns. 

3 Estimation 

Three-parameter lognormal ordinary kriging was used to obtain estimates for the 

densities of the three variables. We denote by )(uy the lognormal variable ob-

tained from the attribute )(uz  by putting ])(ln[)( czy uu , with c being an 

added constant. In each case the constant was chosen so that the transformed vari-

able follows a normal distribution at the 5% level of significance. The constants 

for the specific distributions are given in Table 5. 

Table 5. Added constants for lognormal distributions 

Variable 2000 2001 2002 2003 

Residuals 25 1 100 10 

Recruits 1500 1 150 50 

Totals 2000 1 0 0 

The corresponding random variable will be denoted by .)(uY The estimate for the 

natural logarithm of the value of the attribute at the unsampled location u may be 

expressed as 

)(

1

* )()()(
u

uuu
n

i

ii yy ,
(1) 

where n(u) denotes the number of data near u, and )(uj  denotes the ordinary 

kriging weight of the j-th nearby sample. The estimate )(*
uz  is then obtained 

from the logarithmic estimate )(*
uy , the ordinary kriging variance )(2

uY  and 

the Lagrange multiplier )(u  by 

cyz Y ))(2/)()(exp()( 2**
uuuu  (2) 

with variance 
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))2))()))(exp(()((exp(1))((exp()(ˆ 222
uuuuu YY . (3) 

Spherical models were fitted to the experimental semivariograms. The parameters 

used in the estimation are summarised in Table 6.  

Table 6. Variogram model parameters for the variables (residual, recruit, total) 

 2000 2001 2002 2003 

Nugget (0, 0.4, 0.4) (0.5, 0.2, 0.28) (0.3, 0.38 0.36) (0.39, 0.99, 0.7) 

Sill1 (6.1, 0.42, 0.42) (0.2, 0.7, 0.8) (1.2, 0.53, 0.92) (2.36, 1.59, 0.95) 

Range1 (13, 4.6, 4.6) (5, 4, 5.3) (4.8, 2.4, 5.3) (6.3, 5.3, 4.6) 

Sill2  (0.62, 0.28, 0) (0, 1.53, 0.7)  

Range2  (17, 8.4, 0) (0, 10.9, 8.6)  

The experimental semivariograms for the residuals and recruits density of 2001 

and the corresponding models are shown in Fig. 3. In each case the sample vari-

ance has been chosen as the total sill. 

Fig. 3. Experimental semivariograms and models for residual and recruit density 2001 

Cross validation results for lognormal kriging using these models are given be-

low. From Table 7 it can be seen that the mean errors for all three variables are 

close to 0, there is greatest variability in the errors for the residuals density in 2000 

and for all densities in 2003. 

Table 7. Cross validation results for lognormal kriging

Density Statistic 2000 2001 2002 2003 

Mean Error 0.078 0.035 -0.006 0.070 
Residuals

Variance 2.130 1.04 0.970 2.073 

Mean Error 0.021 0.071 0.035 0.113 
Recruits 

Variance 0.973 1.124 1.188 2.638 

Mean Error 0.023 0.071 0.052 0.087 
Total Catch 

Variance 0.876 1.029 0.918 1.984 
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From Table 8 it can be seen that, with the exception of the results for 2002, the 

mean square error exceeds the mean kriging variance. The results are typically 

worse for the residuals density with the mean square error exceeding the mean 

kriging variance by 48%.  

Table 8. Crossvalidation results for lognormal kriging, MSE/ )(2
uY

Density 2000 2001 2002 2003 

Residual 1.48 1.35 0.96 1.11 

Recruit 1.26 1.24 0.91 1.17 

Total Catch 1.18 1.25 0.86 1.30 

Fig. 4. Estimates of residual density and recruit density 2001 

Spatial maps of the density estimates for residuals, and recruits for 2001 are 

shown in Fig. 4. They exhibit trends similar to those of the sample location maps 

discussed earlier. In all four years, there was a region of high residuals density in 

the Red Cliff ground. For the years 2000 and 2001 the residuals density in NW 

Peron was low. In 2002 and 2003 there was a different pattern in this part, with 

some high densities emerging in the south east. For recruits there were locations of 

high density in the south-east of the NW Peron ground in 2000 and 2001.  In the 

remaining years the density was greatest in Red Cliff. Similar trends prevailed for 

the total catch density. The mean, standard deviation and skewness for the esti-

mates are given in Table 9.  
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Table 9. Abridged descriptive statistics of the density estimates 

Density 2000 2001 2002 2003 

Residual    

 Mean 3658 3718 1774 6670 

 Standard Deviation 5902 2934 1368 9295 

 Skewness 2.20 0.84 1.32 2.89 

Recruit     

 Mean 10118 12769 11075 22540 

 Standard Deviation 5775 6944 18180 16218 

 Skewness 1.15 0.23 3.17 0.95 

Total Scallop      

 Mean 14389 16464 12713 26062 

 Standard Deviation 7727 9275 18865 16791 

 Skewness 0.73 0.36 3.41 1.49 

Except in the year 2002, when the proportion of residuals was 14%, the contri-

bution of residuals to the expected total catch was approximately 25%. In all four 

years the expected total number of scallops in the Red Cliff ground was greater 

than that for NW Peron (see Table 10). This feature was particularly pronounced 

in the year 2002, where the total number of scallops in NW Peron was 12% of the 

estimated number of scallops in the combined Red Cliff and NW Peron ground. In 

the remaining years the percentage fluctuated about the 30% mark.  

Table 10. Estimated percentage of scallops by fishing ground 

 2000 2001 2002 2003 

Red Cliff 66% 72%  88%  69%

NW Peron  34% 28% 12% 31%

4 Prediction of catch

Currently prediction of the expected annual scallop catch is based on a regression 

of the actual catch of previous years against the scallop index of the corresponding 

survey years (Joll and Caputi 1995). The scallop index is computed as the average 

standardised (as in Eq. (1) of Sect. 2) survey catch in the combined NW Peron and 

Red Cliff ground. The index treats Red Cliff and NW Peron as a whole and differ-

ences in the index between the two fishing grounds are disregarded. The predicted 

catches for the following years are used to set the opening date for the fishery.  If 

predicted catch is high, an early opening date is set, while for low expected catch a 

late opening date is chosen. From Table 10 in Section 3 it is apparent that scallop 

density in the Red Cliff ground is higher than in NW Peron, even though there 

may be local more dense pockets in NW Peron, as was the case in 2000 and 2001. 

This may indicate a need to treat NW Peron and Red Cliff separately when setting 

the opening date.  



Delineation of fishing times and locations for the Shark Bay scallop fishery      95 

The contributions to the expected total catch by size class for the two grounds 

are given in Table 11. In Red Cliff the expected contribution of recruits to the total 

catch exceeded 70% except in 2000 and in NW Peron this was the case in 2000 

and 2001. Setting of the opening date could be further refined by taking into ac-

count the percentage contribution of recruits and residuals to the total catch by 

fishing ground.  

Table 11. Expected percentage of scallops by size class and fishing ground  

Year RCRec RCRes NWPRec NWPRes 

2000 63 37 95 5 

2001 73 27 88 12 

2002 90 10 59 41 

2003 80 20 68 32 

RCRec=Recruits, Red Cliff, RCRes=Residuals, Red Cliff, NWPRec=Recruits, NW Peron, 

NWPRes=Residuals, NW Peron 

To derive a method of setting the opening date based on the spatial estimates 

for the two size classes, we define abundance as large, if the expected percentage 

lies above 70%, moderate if it lies between 30 and 70% and small otherwise. The 

spatial maps of recruits and residuals densities for 2001 in Fig. 5. show this classi-

fication for each location.  

Fig. 5. Spatial maps of residuals, recruits and expected total catch classified as high (above 

70th percentile, low (below 30th percentile) or moderate (between 30th and 70th percentile) 

First, the current practice scallop index could be used to determine if the ex-

pected catch is to be classed as high, moderate or low to decide on an early or late 

opening date. Then the opening date can then be adjusted to take into account the 



96      U. Mueller, L. Bloom, M. Kangas, N. Caputi, T. Tran 

relativities between the two size classes. A template indicating possible decisions 

is shown in Table 12. 

Table 12. Possible refinement startegy for setting opening dates 

Recruits \ Residuals High Moderate Low 

High open earlier no change no change 

Moderate open earlier no change open later 

Low open earlier no change open later 

For the year 2002 the use of this method would have led to an early opening in 

the north, the opening at the time indicated by the index in the centre and a later 

opening date than derived from the index in NW Peron. 

5 Comparison with actual catch 

Fourteen boats with class A licenses (scallop only) and 27 with class B licenses 

(scallop and prawn) are eligible to fish for scallops in Shark Bay. The annual catch 

is highly variable, and ranged from 121 to 4414 tonnes meat weight in the last 20 

years (Department of Fisheries 2002). The total tonnage of scallops caught in Red 

Cliff and NW Peron is given in Table 13 together with the contribution from the 

scallop fleet. 

Table 13. Total scallop catch in tonnes meat weight (percentage contribution of scallop 

fleet to total catch in brackets) 

 2001 2002 2003 

All boats 205 264 54 

Scallop boats 83.3 (41%) 163.3 (62%) 24.8 (45%) 

The catch data (in tonnes meat weight) discussed here are those for the scallop-

only fishing fleet.  For each datum the position at the start of the trawl, the number 

of shots (a shot is the activation of the trawl gear), the total duration, the total meat 

weight and the date of the trawl were recorded. For the purposes of this study the 

temporal aspect was ignored. The duration of the scallop fishing season ranged 

from 2 weeks in 2003 to 6 weeks in 2001. The actual area fished by the scallop 

fleet varied from year to year and comprised 30% of the total available area in 

2001, 14 % in 2002 (Kangas and Sporer 2002, 2003) and 4 % in 2003 (Kangas, 

pers. comm.). Consideration of the catch locations of the scallop fleet for 2001 to 

2003 indicates that there was a tendency for the scallop fishing fleet to concentrate 

in the Red Cliff ground. In fact, in 2001 and in 2003 it was the case that 93% of all 

trawls fell within Red Cliff. In 2002 this percentage was 88%.  

In 2001 part of the area fished was not contained within the region for which 

density estimates were derived using the survey locations, but lay closer to the 

coast. For a qualitative comparison of the commercial catch data with the density 
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estimates only data with locations in the estimation grid were considered. The 

catch was converted to a catch per unit effort measure with the unit time set equal 

to the duration to the survey trawl (i.e. 20 minutes). The summary statistics for the 

catch per unit effort for the years 2001 to 2003 are given in Table 14. The number 

of shots in 2003 is much smaller reflecting the shorter duration of the scallop fish-

ing season in Shark Bay.  

Table 14. Descriptive statistics, catch per unit effort (kg/20 min) 

 2001 2002 2003 

Mean 6.6 8.0 34.1

Standard Deviation 13.6 8.8 58.8

Minimum 0.6 0 0.7

Median 3.8 4.87 15.0

Maximum 151. 7 78.4 344

Count 287 531 42

Fig. 6. Spatial maps of total catch density estimates 2001 and catch per unit effort per 

square nautical mile 2002 

The catch per unit effort data were further standardised by moving windows to 

represent mean catch per unit effort per square nautical mile. The spatial maps of 

the expected total catch for 2001 and the subsequent (2002) fishing season are 

shown in Fig. 6 and indicate that the estimates derived from the survey adequately 

predict locations of large abundance.  
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6 Concluding discussion 

In this paper our objective has been to analyse scallop survey data to help inform 

fishery management decisions on fishing opening times for the Red Cliff and NW 

Peron fishing regions. We have seen that the scallop survey data are amenable to 

analysis by intrinsic geostatistics and we have been able to identify substantial 

differences in both scallop settlement and scallops-only boats fishing behaviour 

between the Red Cliff and NW Peron fishing regions and to question the assump-

tion that the results from these two regions be taken together when deciding on the 

starting date and length of the scallop fishing season. In addition, spatial maps of 

residuals and recruits density estimates were seen to open up possibilities for the 

refinement of current practice for setting the opening date for the scallop fishery. 
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1 Introduction 

Paleoecology is the science of reconstructing past environments using fossil mate-

rials of plants, animals, or other indicators of past environments. These studies are 

useful for understanding the dynamics of ecosystem changes and thus for predict-

ing their future evolution. They also provide tools to reconstruct conditions that 

existed before the impacts of industrialized societies on natural ecosystems. 

As far as vegetation is concerned, the basic idea is to consider that plant disper-

sal is in equilibrium with climate and that it is sensitive to climate change. The 

geographic distribution of pollen frequencies is supposed to reproduce more or 

less properly plant ranges. Several biases disturb this representation. Some of 

them are: different pollen production rate between taxa and unequal transport of 

pollen grains depending on their shapes and densities. Rather than considering 

specific pollen taxa that may be rare, one approach is to combine taxa with similar 

environmental envelopes, thus defining Bioclimatic Affinity Groups (BAGs) of 

plants. The use of these functional groups provides more complete information but 

increases distortions between observed ranges and those reconstructed from pollen 

data. Our goal is to provide palaeoecologists with a tool to discriminate between 

absence or presence of plants using pollen frequencies of each BAG. 

We have chosen discrete vegetation information as this database is the most 

complete, recent and digitally available dataset. Pollen data are continuous vari-

ables. From a statistical point of view, map comparison can be considered as pre-

dicting a class of vegetation with a continuous variable. This situation is character-

istic of discriminant analysis (also known as supervised classification). A direct 

application of supervised classification would provide biased estimates because 

the sampling scheme of pollen data is very irregular. By giving the same weight to 

every record, region with high sampling density would be over-weighted when 

constructing the discriminant rule. An analogous question in geostatistical litera-

ture is the estimation of the regional average of spatial dependent data. Kriging is 

a classical tool within this framework. We will use the kriging weights to equili-
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brate the observed points such that every part of the domain under study has a 

comparable importance in the construction of the discriminant rule. We propose 

an adaptation of a non parametric discriminant technique (CART) to the case of 

spatial data. Our approach will be illustrated with simulated and real data. 

2 Methodology 

Prediction of a discrete variable by a continuous variable is a classical task of dis-

criminant analysis. A powerful method for discriminant analysis is the Classifica-

tion and Regression Trees (CART; Breiman et al., 1984). We first describe the 

method in the usual framework of independent data. After briefly recalling kriging 

of a regional average, we present how CART can be adapted to the case of spa-

tially dependent data. 

2.1 CART 

CART is a rule based method that generates a binary tree through binary recursive 

partitioning, a process that splits a node based on yes/no answers about the values 

of the predictors. Each split is based on a single variable. Some variables may be 

used many times while others may not be used at all. The rule generated at each 

step maximizes the class purity (or minimizes the class heterogeneity) within each 

of the two resulting subsets. Each subset is split further based on independent 

rules.  

The splitting criterion is based on purity criterion. Let us denote l and m the in-

dices of the two leaves generated by the split of the node k and let nil be the num-

ber of observations of leaf l that belong to class i. n+l is the number of observa-

tions of leaf l and pil=nil/n+l is the proportion of observations from class i within 

leaf l. We only consider split with n+l>0 for all leaves. The two most popular het-

erogeneity criteria are the entropy and the Gini index. Since the entropy imposes 

that nil>0 we only consider the Gini index: 

i

iljl

ji

ill pppD 21  (1) 

The Gini index is 0 when there is only one class present in leaf l, it is maximum 

when all classes are present with the same probability. 

Among all partitions of the explanatory variables at the node k (here pollen re-

cord) the aim of CART is to maximize the heterogeneity difference 

m
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nD . (2) 

The procedure is finished when there is no more admissible splitting. Each leaf is 

affected to the most present class (conditional mode). This rule can be adapted in 

case of a cost function. In general the final tree Tn overfits the available data and 

the error of prediction R(Tn) is typically large.  In designing a classification tree, 
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the ultimate goal is to produce from the available data a tree T whose probability 

of error prediction R(T) is as small as possible. Thus, in a second stage the tree Tn

is "pruned" to produce a subtree whose expected performance is superior to Tn. If 

Y is the discrete variable and X the continuous variable, then R(T)=E[T(X)  Y]. 

Since the distribution of Y and X is generally unknown, the pruning is based on the 

empirical risk  

),)((I1)(ˆ
1

YXT
n

TR
n

 (3) 

where I(A) is the indicator function: I(A) is equal to 1 when A is true, and to 0 oth-

erwise. If the same data are used to construct and to prune the initial tree, )(ˆ TR

underestimates the risk of large subtrees. On the other hand, using separate data 

sets for growing and pruning is not feasible and additional data are difficult to ob-

tain. The CART pruning algorithm seeks to balance optimistic estimates of em-

pirical risk by adding a complexity term that penalizes larger subtrees. Thus the 

final tree is   

)(size.)(ˆminarg TTRS
nTT

 (4) 

where size(T) is the number of nodes of the tree T. We choose =0.01, the default 

value of rpart library in the R software. 

The main drawback of CART models is that when there are more than just a 

handful of predictor variables or cases to classify the generated models can be ex-

tremely complex and difficult to interpret. This is exemplified by the work on 

Australian forests by Moore et al. (1991), generating a tree with 510 nodes for just 

ten predictors. Such complexity makes the tree impossible to interpret, whereas in 

many studies interpretability is a key issue.  

2.2 Kriging 

For estimating the regional average ˆ  of the variable X over a domain D, using 

spatially dependent data (X ) =1,n, the best (unbiased with minimal variance) linear 

estimator is the kriging (Wackernagel, 2003),  
n

X
1

ˆ  with  
m

n,1    such that   cC ~~
, (5) 

where 
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and 1 is a vector of ones of length n, m is a Lagrange multiplier,  C is the covari-

ance matrix with elements C , =Cov(X ,X ) and dyyxCov
D

Dxc ),(),( 1 is the 

average of the covariance between the data point x  and a point y of the domain D.

The weights are called the kriging weights, and when assumptions of station-

arity and isotropy are made, they only depend on the relative position of the data. 
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2.3 Spatial CART 

When the sampling design is very irregular, using the same weights for all sam-

ples leads to uneven weight for regions of equal area: intensively sampled regions 

will be over-represented and regions with sparse sampling will be under-

represented. To correct for this bias, it seems natural to give a smaller weight to 

clustered samples as they bring similar information; conversely, isolated samples 

carry much more information and need to have larger weight in the decision rule. 

Kriging of the mean (or kriging of the regional average) provides  natural and op-

timal weights. It  can be interpreted as a "natural declustering": the weight of clus-

tered samples tend to be small or even negative; the weight of isolated samples 

sufficiently remote to other samples is nearly equal to the inverse of the equivalent 

number of independent observations. 

The CART algorithm is thus adapted so that each sample is weighted using the 

kriging weights above. Specifically, 

ll

il ip )classin(I and
kl

kl nn . (7) 

The Gini index and the heterogeneity difference are then computed using these 

new values. For the pruning procedure, the empirical risk is 

))((I)(ˆ
1

YXTTR
n

.

The drawback of this method is that the kriging weights can be negative. The 

partitioning algorithm needs positive weights because they are used to calculate 

positive indices. Hence we will have to impose a positiveness condition on the 

while solving the system of kriging equations. 

3 Simulations 

The method described in the previous section is firstly tested on a simulated ex-

ample in order to evaluate the improvement from the standard method. On a 101 x 

101 grid of unit 1, a Gaussian field  with mean 0, variance 1, and exponential co-

variance of range 10 is simulated. 

Each point in the grid is said to belong to class 1 if (x-50.5)(y-50.5)>0, to class 

0 otherwise. This rule generates four subsquares: the upper right and the lower left 

subsquares are in class 1 while the two remaining ones are in class 0.
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Fig. 1. The variable Z = a*sign(x-50.5)(y-50.5)+  for various values of a, where  is a (0,1) 

Gaussian random field with an Exp(10) covariance function 

The variable Z used to classify the data is Z =a*sign(x-50.5)(y-50.5)+ . Since 

E[ ]=0, we expect the classification rule to allocate to class 1 the points with Z>0 

when a>0 (resp. points with Z<0 when a<0) and to class 0 otherwise.  We con-

sider four different values for a: -2, -1, 1 and 2, depicted Fig. 1. The sample set is 

made of 100 points, 75 of them randomly sampled in the entire square, the 25 oth-

ers in a subsquare of length 10 in the upper right corner (see Fig. 2a). We choose 

this subsquare because in this area <<0. Therefore if a>0, in this subsquare Z can 

still be negative for many points and this will perturb the classification rule if they 

all have the same weight. This discrepancy will be minimized if the sum of their 

weights is not too large. Conversely if a<0, it will be extremely rare to get a posi-

tive Z and the clustered points will not perturb the classification rule even with 

important weights. The test set is made of 100 other points randomly sampled in 

the entire square (see Fig. 2a). 
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Fig. 2. a) Location of learning and test points; b) Kriging weights for the sample set. Size of 

points is proportional to the weights 

Fig. 2b shows the kriging weights for the sample set when estimating the aver-

age ˆ of Z over the simulation domain. As expected isolated sample points have 

larger weights than clustered ones. Out of the 25 clustered sample points, 16 of 

them have null weight, while the other ones have small weights; the latter are usu-

ally located on the boundary of the cluster. 

Fig. 3 shows the partition generated by the two algorithms for the four different 

values of a. As expected, when a is negative both algorithms lead to the same par-

tition. In this case the clustered points help for a good classification rule. When a

is positive the two methods give quite different results. For a=1 Spatial CART 

gives a single split at the value Z=-0.09 which is close to the expected value Z=0, 

while standard CART gives 6 more splits, presumably trying to adapt to the noise. 

For a=2 both methods have an unique split, Standard CART at the value Z=-0.73, 

Spatial CART at the value Z=-0.47 which is closer to 0. 

To evaluate the quality of the classification procedure we compare these parti-

tioning rules with the theoretical ones on the test set and we look at the number of 

misclassified points. One may notice that misclassification can have two sources: 

(i) classification rule can provide wrong prediction if the threshold value  is not 0, 

(ii) perturbation can reverse the sign of Z and change the prediction obtained from 

the classification rule. Both sources of error will be studied. 
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Fig. 3. Comparison of Spatial CART and standard CART on simulations for different val-

ues of a

For each value of a, Table 1 indicates the value of Z for all missclassified 

points, together with the true class (0 or 1) and the origin of the misclassification: 

C when it is due to the classification rule (i.e.,  Z is of the right sign), and N when 

it is due to the noise (i.e., Z has the wrong sign). When a<0, the discrimination 

rule is strictly identical for standard CART and  Spatial CART and leads to only 8 

misclassifications (3C and 5N) for a=-2. For a=-1 the variable Z does not dis-

criminates as well and there are many misclassifications due to the presence of 

noise. In both cases the clustered points do not perturb the classification rule. 

When a is positive, the clustered sample points have negative Z values, instead 

of positive values expected for points in class 1. Since they have small weights in 

the Spatial CART method their (bad) influence is lower in the analysis, and most 

misclassifications for Spatial CART are due to the noise, especially when 

a=1.This simulated example shows that clustered samples perturb the classifica-

tion rule of standard CART when the noise has a sign opposite to the class differ-

ence. In this case, the spatial extension presented in Section 2 improves the results. 

When the noise has the same sign as the class difference, both methods are 

equivalent. 
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Table 1. Misclassified points for various a. The value of the continuous variable Z  is given 

with the true class of the point. The origin of the misclassification is indicated by a letter: C 

for “cut” and N for “noise”. 

a=-2 a=-1 a=1 a=2
BOTH BOTH Spatial CART Stand. CART Spatial CART Stand. CART 

0.1 (0) C -0.39 (0) N -0.05 (0) C -0.05 (0) C 0.09 (0) N -0.67 (0) C 

-0.02 (0) N -0.9 (0) N 0.01 (0) N 0.81 (1) C 0.28 (0) N -0.55 (0) C 

0.17 (0) C -1.02 (0) N 0.33 (1) N -0.05 (0) C -0.1 (0) C 0.09 (0) N 

0.72 (1) N 0.18 (0) C -0.05 (0) C -1.82 (0) C -0.42 (0) C 0.28 (0) N 

-1.29 (0) N 0.18 (0) C -1.02 (1) N -0.87 (0) C 0.4 (0) N -0.1 (0) C 

1.04 (1) N -0.2 (0) N -1.47 (1) N -1.82 (0) C -0.09 (0) N -0.42 (0) C 

0.05 (0) C 0.14 (1) N -1.57 (0) C 0.21 (0) N 0.4 (0) N 

1.21 (1) N -0.77 (1) N -0.05 (0) C -0.53 (1) N 0.09 (0) N 

0.33 (1) N -0.05 (0) C 0.75 (1) C -0.1 (0) C 0.21 (0) N 

0.58 (1) N 0.45 (0) N -1.51 (0) C 0.36 (0) C -0.67 (0) C 

0.71 (1) N 0.14 (0) N -1.51 (0) C -0.42 (0) C -0.1 (0) C 

0.11 (0) C 1.09 (0) N -0.81 (0) C -0.36 (0) C 

0.52 (1) N 1.28 (0) N -0.87 (0) C -0.67 (0) C 

-0.83 (0) N 0.2 (0) N -1.89 (0) C -0.42 (0) C 

-0.26 (0) N 0.9 (0) N 0.49 (1) C  

1.72 (1) N -0.52 (1) N -0.94 (0) C  

0.58 (1) N 0.58 (0) N -0.75 (0) C  

-2.29 (0) N 1.4 (0) N 1.09 (0) N  

2.04 (1) N 1.09 (0) N 1.28 (0) N  

0.96 (1) N 1.21 (0) N 0.9 (0) N  

1.34 (1) N -0.33 (1) N -0.52 (1) N  

-0.2 (0) N 0.33 (0) N 1.4 (0) N  

0.39 (1) N -1.53 (1) N 1.09 (0) N  

-1.02 (0) N 0.9 (0) N 1.21 (0) N  

0.9 (1) N -0.71 (1) N -0.33 (1) N  

-0.08 (0) N 0.2 (0) N 0.9 (0) N  

-0.64 (0) N 0.64 (0) N -1.51 (0) C  

-0.33 (0) N -0.2 (1) N -0.81 (0) C  

 0.33 (0) N -0.45 (1) N  

 0.58 (0) N  

 -0.45 (1) N  

8  3C/5N 28  4C/24N 31  3C/28N 29  19C/10N 11  5C/6N 14  9C/5N 
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4 Application to ecological data 

Future climate change will strongly affect vegetation distribution (Beerling et al.

1997). Reconstructing modern and past plant cover is essential to understand 

vegetation dynamic and to predict their future ranges under changing climate 

(IPCC 2001). Pollen data are one of the most appropriate proxies to reconstruct 

modern and past vegetation. They are abundant in fossil records but they give a 

biased image of surrounding vegetation. Pollen records depend on: population dis-

tance from sampling site, population density, pollen production rates (rates are dif-

ferent between species, individuals and even between years), transport (depending 

on pollen morphology and density) and preservation (more or less resistant ac-

cording to the thickness of their envelope). Palynological species were gathered 

into functional groups of plants, the Bioclimatic Affinity Groups of plants (BAGs) 

(Laurent et al., in press). Laurent et al. (in press) georeferenced geographic ranges 

of 320 European species of plants and  gathered these data following palynologi-

cal taxonomy. Combination of taxa ranges with climate variables (New et al.
1999) provided potential distribution of taxa. These inferred ranges correctly re-

produced observed ones. Twenty five BAGs were created using hierarchical clus-

ter analyses on potential ranges. They are characterized by different geographical 

ranges and climatic tolerances and requirements. 

The distribution of taxa (families, genera or species) is georeferenced from the 

database SOPHY (http://sophy.u-3mrs.fr/sommaire.html). For each point of the 

grid, a binary variable indicates  the presence or absence for each species. These 

binary values for plants belonging to the same BAG were averaged to create one 

single map for each group. 

356 pollen samples were evenly collected in France. We added pollen counts of 

samples collected at the same place. The resultant 154 samples provided pollen 

percentages of BAGs. In this work we focus on BAG 8, which is principally lo-

cated around Mediterranean sea and near the Atlantic coast of south-western 

France (Fig. 4a). 

Fig. 4. a) Presence and absence of specie from BAG8; b) boxplots of pollen frequencies ac-

cording to presence or absence 
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We affect to each sample site the nearest point class value and we study the link 

between pollen percentage and the presence/absence of the BAG. Only 11 sites 

are in class 1, in which the pollen mean rate is 0.126 with a standard deviation of 

0.09. The mean for class 0 is 0.008 with a standard deviation of 0.01. Hence class 

0 implies low pollen percentage but the converse is not true. Kriging weights of 

the average of the pollen frequencies over France are computed according to Eq. 5 

and 6 for a fitted exponential variogram of range 50km. 

Fig. 5a shows the kriging weights for this sampling design. Two points with 

important weights occur where BAG 8 is present: one in Oriental Pyrenees and the 

others in the Southern Alps. 

Fig. 5. a) Kriging weights for Spatial CART; b) classification for Standard and Spatial 

CART

Fig. 5b shows the comparison between the two methods. Standard CART gives 

only 1 split when the pollen percentage is 0.11, that is it missclassifies four pres-

ence points with low pollen percentage and none of the absence points. Despite 

these four points, this threshold seems relevant to palynologists. Pollen grains 

from these four sampling sites come from anthropised environments, where popu-

lation of that BAG is restricted to small inhabited areas. This probably explains 

such low pollen rates. The sampling design has the particularity that many points 

are closely clustered especially in Occidental Pyrennees where 39 points are 

within a distance of 3 kilometers. They are located at points where BAG 8 is not 

present (0) and pollen percentages are included within 0.002 and 0.06. With stan-

dard method, they are classified as absence points. Spatial CART predicts a sup-

plementary interval [0.0169 ; 0.037] in class 1. In this range lie 18 Occidental 

Pyrennees points with null weight and 3 presence points. These 18 samples in the 

Pyrennees are in fact almost 18 times the same sample. Hence Spatial CART gen-

erates approximatively only two misclassifications, one in the Pyrennees and one 

false negative on the Atlantic coast, with a very  low pollen percentage (0.0004). 

The weighted misclassification 
.miscl
 is equal to 0.01 (0.0001 for Pyrennean 

sites).
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In this case, the use of Spatial CART method allows palynologists to highlight 

disturbed sampling sites. These sites are located in altitude, where pollen transport 

may be very different from one valley to another. The effect of ascension winds is 

known to disturb pollen registration. This implies that they have to be excluded 

from future analysis. 

5 Discussion

We proposed a spatial extension of the CART algorithm in which the samples are 

weighted according to the kriging weights of the regional average. On simulations 

it has proven to improve the classification rate in presence of clustered samples. 

On the pollen data, Spatial CART was useful to decrease the importance of clus-

tered samples in the Pyrennees. The gross number of misclassified points seems to 

increase, but if the kriging weights are taken into account for counting the number 

of misclassification, this number actually decreases. Our simulations show the im-

portance of the classification rule in presence of clustered samples. 

References 

Beerling DJ, Woodward FI, Lomas M, Jenkins AJ (1997) Testing the responses of a dy-

namic global vegetation model to environmental change: a comparison of observations 

and predictions. Global Ecology and Biogeography Letters, vol 6, 439-450 

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees, 

Wadsworth, Belmont 

Moore DM, Lee BG and Davey SM (1991) A new method for predicting vegetation distri-

butions using decision tree analysis in a geographic information system. Environ. 

Manage. Vol 15, 59-71 

Intergovernmental Panel on Climate Change (2001) Climate change 2001: The scientific 

basis, Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell 

K, Johnson CA (eds). Cambridge University Press, Cambridge 

Laurent JM, Bar-Hen A, François L, Ghislain M,  Cheddadi R (2004) Bioclimatic Affinity 

Groups of European plants defined by climate seasonality: statistical analysis for vege-

tation modeling. Journal of Vegetation Science, in press 

New M, Hulme M, Jones P (1999) Representing twentieth-century space-time climate vari-

ability. Part I: Development of a 1961-90 mean monthly terrestrial climatology. J. 

Clim., vol 12, 829-856 

Wackernagel H (2003) Multivariate Geostatistics, 3rd ed., Springer, Berlin. 



Using a Markov-type model to combine trawl and 

acoustic data in fish surveys 

M. Bouleau and N. Bez 

Ecole des Mines de Paris, Centre de Géostatistique, 35 Rue Saint Honoré, F-

77305 Fontainebleau, France, tel: +33 1 64694778, fax: +33 1 64694705, e-mail : 

mireille.bouleau@ensmp.fr, nicolas.bez@ensmp.fr

1 Introduction 

Fisheries management is based on estimations of fish abundances derived from 

commercial catches. Models used to produce these estimates are, most of the time, 

tuned with indices of abundances estimated from scientific surveys. In the Barents 

Sea used for application in this paper, the surveys consist in deploying a net every 

twenty nautical miles (n.mi.). With the objective to compensate for this large dis-

tance between catches, acoustic measurements are also collected all along the ves-

sel track when the vessel is shipping from one station to the next. This additional 

measure of fish concentration does not actually capture fish but estimate their 

number through their echoes (echoes of all the fish present in the insonified cone 

beneath the boat). Acoustic echoes are generally integrated over regular distance 

bins (say one nautical mile) and provide a spatially very dense sampling of fish 

distribution but different in nature from the spare tows. The purpose of the study is 

to take as much as possible advantage of this additional information for estimation 

and mapping purposes.  

Here, we consider a partially heterotopic sampling where the target variable is 

observed on a subset of the auxiliary variable samples. Theoretically cokriging al-

lows performing estimates in such heterotopic configurations. However it can be-

come difficult when the number of samples is high or/and when spatial structures 

are difficult to model. In such cases, simplifications either assumed or data con-

trolled, are welcome. For instance, for two variables, a Markov-type model, also 

called model with orthogonal residual, is a well-known simplification (Rivoirard 

2001) as one of the two variables is self-krigeable. Two kinds of Markov-type 

models are mentioned in literature (Schmaryan and Journel 1999): when the cross 

structure is proportional to the structure of the auxiliary variable or when it is pro-

portional to the structure of the target variable. Here, we consider the first case, 

The trawl variable is decomposed into an acoustic and a residual components, 

these two components being spatially uncorrelated, but not independent.  In this 

model, the trawl variable is subordinated to the acoustic, which is the master vari-

able.
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After a quick presentation of the data and of the notations, this paper presents 

the problems of the practical implementation of such a model in the particular case 

of strong heterotopy (hypothesis testing, structural tools, skew distributions).  

2 Data and Notations 

Six scientific Norwegian winter surveys (1997-2002) in Barents Sea are used. The 

sampling scheme (i.e. the tow locations) is targeting a regular grid with a haul 

every 20 n.mi (Fig. 1a). Sampling size is quite large as surveys get between 200 

and 300 hauls. The mean towed distance is 1 n.mi. The acoustic data turned into 

Nautical Area Scattering Coefficient (NASC) and expressed in m2·n.mi-2

(MacLennan et al. 2002) are collected continuously along the vessel track during 

and between trawl hauls (Fig. 1b). In this study, acoustic echoes are integrated 

vertically over the first 40 meters above the bottom (this was found to provide the 

larger correlation between the two variables) and horizontally over fixed distance 

bins of 1 n.mi. Given this latter parameter, between 5000 and 7000 acoustic re-

cords are available in each survey. 

To get variables with comparable units, the fish catches are turned into an 

equivalent acoustic energy, i.e. the acoustic energy that the fish caught in the trawl 

hould have generated. Because fish characteristics influence this transformation, 

two groups of fish have been used: demersal (bottom) fish and pelagic (mid water) 

fish. For each group of fish, the equivalent NASC of the corresponding fish in the 

net is provided. The trawl variable will refer alternatively to the demersal or the 

pelagic equivalent NASC depending on which of these two variables happen to 

get larger correlation with the acoustic variable. 

We get then two measurements of fish abundance (trawl and acoustic) available 

at equivalent supports (1 n.m.), expressed in the same similar units but sampled 

differently. They are modelled by two random functions: ( )T x the trawl and/or the 

target variable available at the sampling locations, x stations  and ( )A x the 

acoustic and/or the auxiliary variable available at the sampling locations 

x stations underways .

When sampling skew distributions, the experimental variance varies considera-

bly with the number of samples, especially when this number is low (for a given 

number of samples, the sampling fluctuations of the variance are all the more im-

portant that the variance is large). We observe (Table 1) that the ratio 
2k between 

the variance of the underway acoustic observations (few thousands data) and that 

of on station observations (few hundreds data) diverges from 1. This problem is 

referred to hereafter as “the variance discrepancy problem”. Proportional effects 

are examples of this problem. 
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Fig. 1a. Locations of underway recordings (left) and of stations (right). Survey 

1998. X-axes unit is in degrees of longitude and Y-axes unit is in degrees of lati-

tude. b Representation of a N-S section of the vessel track. The vertical dotted 

lines represent the stations locations. The fluctuant slight curve is the acoustic un-

derway, the slight line joins the acoustic on-stations values and the bold line joins 

the demersal NASC-equivalent values collected on-stations. Distances are in de-

grees of latitude.  

Table 1 Ratio between the variance of the underway acoustic observations and the 

variance of the on station acoustic observations 

Year
2 var ( ),

var ( ),

A x underway

A x station

k

1997 1.33 

1998 1.83 

1999 2.23 

2000 1.35 

2001 3.55 

2002 2.65 

Let us consider the entire line followed by the vessel during a survey. This line 

is made of N underway acoustic values located at the centre of their segment of 1 

n.mi. each. Let us also consider a subset of the n segments, to be considered as the 

(a)

(b)
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stations following a regular sampling with random origin (given the sampling de-

sign N = 20.n). In that case, the additive relation of the dispersion variances ap-

plies: 
2 2 2( ) ( ) ( )D segment line D segment stations D stations line   (1) 

The term of the left-hand side is the average variance of underway data while the 

first term on the right-hand side corresponds to the average variance of station 

data. In case of pure nugget effect, the third term equals 
1 1

nugget
n N

and is 

negligible with regards to the other terms. In this study, we have assumed that the 

spatial structure is short enough to neglect the dispersion variance of the stations 

in the line. This amounts to assume that the variances of the underway data and of 

the on station data are similar on average. Actual differences are then explained by 

the sole statistical fluctuations and are corrected for by a multiplicative term 
2k (see part 4.1 variance rescaling). 

3 Methods

3.1 Model and estimation 

One can show (e.g. Rivoirard, 2001) that if the acoustic is autokrigeable, its cross 

covariance with the trawl variable is proportional to its covariance: 

,
( )   ( )

A T A
C h C h  (2) 

and the trawl variable is linearly related to the acoustic up to an additive spatially 

orthogonal residual R(x):

( ) . ( ) ( ) T x A x R x  (3) 

,
( ) 0   

A R
C h h  (4) 

The target variable is then subordinated to the auxiliary but master. This model 

has a “Markov-type” property as, in Gaussian case with known means, A(x+h) and 

T(x) are independent when A(x) is given (conditional independence, Chilès and 

Delfiner, 1999). More generally the screen effect makes the cokriging weight of 

A(x+h) equal to zero when A(x) is known, whatever the histogram of the data.  

The model is factorized with the two factors A(x) and R(x), and the cokriging of 

the target variable reduces to the sum of two krigings as the acoustic variable is 

known at any location where the trawl variable is known: 
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0 0 0

0

0

( ) ( ) ( )

( ) ( )

where  

( ) ( )

CK K K

K

stations

underways

neighbourhood

K

stations

neighbourhood

A

R

T x A x R x

A x A x

R x R x

 (5) 

and the cokriging variance is: 
2

0 0 0
( ) ( ) ( )

CK K K

T A R
x x x  (6) 

The constant  is in practice filtered by the ordinary kriging of the residual, and 

does not need to be assessed. 

The estimation of the target variable at a point where the acoustic is known 

(underway) only uses the acoustic at the target point and on station (by the resid-

ual). Then, in the Markov-type model, cokriging is multi-collocated: for estimat-

ing an underway point, the auxiliary variable is only used at the target point and 

on stations. It is the only case where the cokriging is collocated (Rivoirard 2001). 

In a different model, the previous estimation is only an approximation of cok-

riging. 

3.2 Practical implementation in partially heterotopic samplings 

Compared to cokriging in general, an advantage of the previous estimation, based 

on residual, is that cross structures do not need to be modelled. Cross structures 

only serve to experimentally test for the validity of the model.  

Two tools are used to test for the proportionality between the cross and simple 

structures; the cross variogram and the cross covariance. The cross variogram, not 

restricted to stationary cases, uses, only on station data (“isotopic tool”) and 

misses short scale structures. The cross covariance, or preferentially in strong het-

erotopic cases, the cross correlogram, assumes stationarity but uses all the avail-

able information (“heterotopic tool”).   

The advantage of the estimation based on residual (no cross structure model) is 

compensated by the need to estimate the parameter . Equation 4 is general and 

not specific to any sampling scheme. However, in the particular case of partially 

heterotopic sampling, Equation 4 is viewed as an “on station” relationship to be 

parameterised with on station data only and applied to underway data afterwards. 

In this case, rescaling is required. As a matter of fact, theoretically, the cokriging 

estimation variance is necessarily less or equal than the kriging estimation vari-

ance as long as the same data and the same model for the target variable are used. 

Here, the model is parameterised on a subset of a data which happens to be less 

variable (variance discrepancy problem). When applied to the more variable un-
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derway acoustic data, it does not protect from inconsistent estimation variances. 

To solve this problem, the cokriging variance has to be rescaled, so that finally we 

have: 
2

0 , 0 02
( ) ( ) ( )

CK K K

T A un R
x x x

k
 (7) 

where 
, 0

( )
K

A un
x  is the acoustic kriging variance, when all the data available are 

used, i.e., the stations and the underways. 

The estimation of the parameter  can be made by many ways theoretically 

equivalent. It can be estimated by the slope of the linear regression of T(x) on 

A(x). This approach has the advantage to allow quantifying the quality of the es-

timation (e.g. visual inspection of the scatter plots, R-square, etc). A weakness of 

the regression is that only the pairs of samples at the same location contribute to 

the estimation. An alternative is to use the mean ratio between the cross and sim-

ple experimental variograms computed only with data on station. The gain of this 

approach is to take into account all distance lags. However, no quality is directly 

associated to the estimation of . To enhance the robustness of the estimate, one 

could have used the simple variogram for all the underway observation or cross 

covariances. However, the advantage of using all the data is thwarted by loss of 

statistical coherence. We thus chose not to retain this last estimation. 

4 Results 

4.1 Variance rescaling 

We have simulated 500 sets of 7000 lognormal data (independently) from which 

500 subsets of 300 points have been taken randomly (7000 corresponds to the 

number of underway samples and 300 to the number of stations in 2001). 

We are in a special case of pure nugget effect in the equation (1), the variance 

underway and on-station have to be equal in mean.  

The variance and the mean of the simulated lognormal distribution are equal to 

the mean and the variance of the acoustic underway in 2001 (m = 63 and 
2

= 23061). In 80% cases, the ratio 
2k  between the empirical variance of the 

main 7000 samples and the empirical variance of the 300 subsamples is greater 

than 1 (Fig. 2). The value 3.55 observed in 2001 (represented by a vertical dotted 

line) is quite singular but not impossible. When a large value is taken, the variance 

of the subsample becomes extreme because of the small number of samples. 

So the observed discrepancy between the experimental variances can be inter-

preted as a sampling problem (heterotopic sampling of skew distributions) and are 

in no way particular to the data used in this study. In fact, it can be considered that 

the variance observed underway is more realistic as it is based on 20 times more 

data justifying a multiplication of on-station variance. Nevertheless to be compa-
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rable to a (monovariate) kriging variance the equation (7) is based on a down-

scaling of the underway variance. 

Fig. 2. Histogram of ratio between the empirical variances of the main sample 

(7000 points) and the subsample (300 points) for 500 draws of a lognormal distri-

bution with the mean and the variance of the acoustic for the 2001 survey. The 

plain vertical line is equal to 1 and the dotted vertical line is equal to the observed 

ratio (3.55). 

4.2 Hypothesis testing and selection of favourable cases 

To test the autokrigeability assumption, experimental simple and cross correlo-

grams have been plotted for each of the variables. Cross correlograms are poten-

tially non symmetrical. They happened to be symmetrical and have been sym-

metrized before representation (Fig. 3). The single and cross correlograms have 

been calculated along the vessel track, i.e. in one dimension: In four surveys out of 

six (1997-1998-2001 with demersal catches and 2000 with pelagic catches), the 

Markov-type model hypothesis are grounded (Fig. 3, graphs with grey back-

ground). They have then been selected for application of a Markov type model.  



118      M. Bouleau and N. Bez 

Fig. 3. Symmetrical cross correlograms calculated along the vessel track (1D). 

The x-axis is the distance from station (in n.mi) and the y-axis is the correlation 

between the acoustic underway and, according to the column: the acoustic on sta-

tion (on the left), the demersal NASC-equivalent collected on station (on the mid-

dle) and the pelagic NASC-equivalent (on the right).  
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4.3 Estimation of parameter 

The parameter  is first estimated by the slope of the linear regression of T(x) 

on A(x). The cross plots between T(x) and A(x) allow evaluating visually the es-

timation (Fig. 4).  We can see that the estimations (and the R-square) are very sen-

sitive to the large values and the fitting of the cloud is not perfect.  

The parameter  (Eq. 3) of the linear regressions happens to be very small 

(about zero in most cases). If the additional assumption =0 were made, the target 

variable would be strictly proportional to the on-station acoustic. The  parameter 

would then be stable for different level of data. The estimation obtained for the 

whole distribution of data (Fig. 4) could be processed without some outliers, or 

just for the low values. The estimation should probably be more robust. In fact, the 

estimation of  changes according to the threshold chosen and is still different for 

each survey. 

The parameter  is also assessed by the mean ratio between the cross and sim-

ple experimental variograms computed only with data on station. The gain of this 

approach is to take into account all distance lags. Results obtained (Fig. 5) are 

similar to those obtained with the regression. 

Fig. 4. Cross plot acoustic – catch on- station for the estimation of the multiplica-

tive parameter. The lines represent the linear regressions between the two vari-

ables for each year. The values of the multiplicative coefficient  and the value of 

the R-square of the regression are written above each graph. 
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Fig. 5. Estimation of parameter  by the ratio between the 
, ( )A T h and ( )A h

for on-station data only. The horizontal lines represent the mean value, i.e. the es-

timation. The x-axis represents distance in n.mi.  

4.4 Estimations maps 

To evaluate the improvement provided by the acoustic information, the bivariate 

approach (using a model with acoustic as master variable) is compared with a 

mono-variate approach based on the sole trawl values. This comparison is mean-

ingful only if the variogram model for the trawl variable is the same for the 

kriging and the cokriging. It is then totally determined by the models chosen for 

the acoustic and the residual with the relation: 

2( ) ( ) ( ) ( )K CK

T T A Rh h h h  (1) 

Given that the sampling grid covers regularly the study area, the cokriged and the 

kriged maps have the same general long distance patterns and the use of the acous-

tic variable only impacts the short scale features of the distribution (Fig. 6). In 

1997, the kriging interpolation in the south western area where no sample is avail-

able amounts to the local mean concentration. A bivariate approach makes it pos-

sible to use the underway observations and to suggest some spatial pattern for the 

fish concentration in this area. In 2000, even if the weight of the acoustic is low 

( = 0.12), the cokriged map computed with a Markov-type model honours some 

rich areas (in the North-East) which are not observed in the kriged map of the 

trawl data. 

4.5 Variance of the estimation error map 

For the four surveys, the estimation variance is smaller for the Markov-type ap-

proach than for the single variable approach. It is not surprising since the variance 

of cokriging is always less or equal than the variance of the correspondent kriging. 
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Fig. 6. Estimation maps obtained by the Markov-type model (left column) and a 

simple model using only the catch information available on station in a compati-

ble model (right column).  The maps on the left hand side are very more detailed.  

To compare the models, the grey scales are identical for each year but different 

from survey to survey. 
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4.6 Cross-validations 

The cross validation consists in re-estimating a known point. Here we re-estimate 

each on-station point where the two variables, acoustic and catch, have been re-

moved.  It allows appraising the robustness of the model. For each survey the re-

sults provided are better in the bi-variate model than with the single variable 

model. The correlation coefficients between the estimated and observed catch val-

ues are shown in the table 2.  

Table 2 Correlation coefficient between estimated and observed catch values

Year Bivariate model Monovariate model 

1997 0.51 0.17 

1998 0.30 0.09 

2000 0.39 0.06 

2001 0.41 0.34 

5 Discussion 

The estimation of the  parameter is a key step of the process as it this parame-

ter quantifies the weight of the acoustic. In the model, the acoustic drives the 

catches and the residual allows rescaling the estimation on stations. Such behav-

iour is physically well understandable: acoustic provides a good representation of 

the fish abundance and the fish abundance is just obtained by adding a corrective 

term calculated by the divergence observed on stations between acoustic and 

catches (the residual). The main structure is then provided by the acoustic and the 

residual, in the general case, would not be strongly structured. However, in prac-

tice, the residual can have a long range structure because of one or few large val-

ues at the edge of the sampling area. 

The use of an auxiliary variable largely more densely sampled than the target 

variable improves its estimation. The bi-variate model improves the estimation of 

the catch by combining acoustic with a simple relation exhibiting the role of each 

variable. However it is important to mitigate the results at least by the quality of 

the estimation of the parameter . This key parameter has to be estimated and the 

quality of its estimation drives the quality of the whole process.  

When variables get skew distributions like in the present study, once again, lin-

ear approaches happen to be fragile and we have indeed a weak confidence in the 

actual value of this parameter. When an estimation routine need to be processed 

every year, like the estimation of fish abundance, it is important to find a model 

robust enough to work for all the configurations, not only for a particular year 

with particular relation between the variables. Here the assumptions of the regres-

sion model are funded in four surveys out of six. For the two other cases (1999 

and 2002) the erratic cross-structures do not allow to conclude to any model. The 

fact that the catch is driven by the acoustic, can be considered like a physical 

property, and we can think that the model will be also pertinent for the next years.  
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Because of the large skewness of the data, the use of linear approaches is ques-

tionable.  Linear tools are indeed very sensitive to the large values which often 

hide the behaviour of the lower values (Rivoirard et al. 2000). Some non-linear 

tools like disjunctive kriging allow minimizing this impact. However the computa-

tion of a bivariate disjunctive model is laborious and requires heavy assumptions 

(Goovaerts 1997). The leading idea of this study has been to find a model simple 

enough and robust enough to be relevant in most available surveys.  
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1 Introduction 

In the vineyard plain of Languedoc, many parcels with a high rate of vine stock 

mortality have been observed recently (Legros et al. 1998, Lagacherie et al. 2001). 

As this could affect the global vineyard production of the region, it is important to 

determine the causes of this mortality. Beside a number of well-known permanent 

causes of vine stock mortality (e.g. vineyard diseases, inadequate rootstocks), a 

special attention have been paid recently to a new one, namely the degradation of 

soil physical conditions that have been often observed in association with mortal-

ity. Two types of degradations are concerned, both of them potentially affecting 

the vineyard water balance a) surface crusts that limits infiltration of rainfall water 

in soil b) compacted zones which reduce the volume of soil available for root ac-

tivity. These degradations are under the influence of soil physical properties that 

can be identified as soil texture and soil hydromorphy. The aim of this paper is to 

investigate the relations between these two soil factors and the vine stock mortal-

ity over a small region located in the Languedoc vineyard plain. 

2 General Methodology 

2.1 Data and statistical framework 

96 plots of 15m 20m were sampled on 4 sites of the studied zone (Caux, Neffiès, 

Pezenas and Roujan). On each one, the state of all vine stock were observed and 

depicted though two modalities, healthy vs. declining or dead. Note that 3 plots 

are contained in a parcel. Additionally, two soil samples were made on each plot. 

The rate of hydromorphy and the textural type, two orderly factors, each with 

three modalities were deduced. The total number of soil samples, say n is 192. We 
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have chosen to associate soil factors to the vine stock states in a small neighbour-

hood of soil sample. 

Fig. 1.  (a) A schematized plot. Cross = soil sample location; circle = vine stock location : 

empty = healthy, full = declining. (b) Neighborhoods of vine stocks considered for the 

study.  

Fig. 1 shows a typical plot. In the sequel, we assume that the states of vine 

stock were mutually independent conditionally to soil factors. As a consequence, 

the number of declining vine stock around each soil sample is a binomial count 

and the generalized linear model (GLM) framework suggests itself quite naturally. 

We refer to Mac Cullagh and Nelder (1989) for a detailed account about this 

framework. 

Let Ni
tot , i = 1,…, n  the number of vine stock considered around the ith soil sam-

ple, and 3,1, )( kjjkiN   the corresponding number of declining vine stock 

where j and k designate respectively the rate of hydromorphy and the textural 

type for the ith  soil sample. We have 

jkiN , ~ ),( , jki
tot
i pNB  (2.1) 

where 

jkkjjkiph )( ,  (2.2) 

with h is a link function, j , k  and jk are the parameters associated to the rate 

of hydromorphy, textural type and their interaction. In our study, we take 

1
log)(log)(

x
xxitxh  (2.3) 

For sake of simplicity, jkiN ,  and jkip ,  will be denoted as iN and ip  in the se-

quel. 
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Fig. 2. Experimental semi-variogram of the residuals 

Parameters are estimated by likelihood maximization. We set a goodness of fit 

test based on the difference of deviance between full model and saturated model. 

The model is strongly rejected. In similar cases, the usual conclusion is that other 

causes not taken into account in the model have to be investigated. Such a result 

justifies the introduction in the model of an offset term which intends to capture 

the effects of those unobserved causes.  

Let iii ppr ˆ  the residuals, where tot
iii NNp /ˆ  and ip  is given by (1) where the 

parameters are replaced by their estimation. From Fig. 2.1, it is clear that the re-

siduals are spatially correlated. In order to take into account these spatial depend-

ences, the offset term is considered as a random field. Our objectives are to map 

this unobserved field and to perform estimations of the soil parameters when 

working with such a model. Such a map could be a great help to identify new po-

tentials causes of mortality. 

2.2 Model formulation 

We consider a model similar to the one  proposed by Diggle et al. (1998). Let S be 

a stationary gaussian random field  with  

E(S(x))=0  and  Cov(S(x),S(x+h))=C(h) (2.4) 

We chose the classical exponential model with nugget effect for C :

2

2 )exp(
)(

h
hC

if
if

0
0

h
h  (2.5) 
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 and  are respectively nugget effect  and  range parameter. Conditionally on S,

the random variables Ni, i=1, … , n, are supposed as mutually independent with 

distribution function  

itot
ii nN

i
n
itot

i

i
i ppN

nSnf )1(  (2.6) 

with  

)()( , ijkkjjki xSph  (2.7) 

where )( ixS  is the current value of  S at the thi  soil sample location. 

2.3 Method 

Since the Ni, i=1, …, n are not independent but only independent conditionally 

to S, an approach by likelihood maximization can't be used to estimate the pa-

rameters. We refer to Diggle et al. (1998) for more details.   

 We used MCMC algorithm in a Bayesian infererential framework.  

2.3.1 Bayesian framework and MCMC algorithms 

Assume that x is a realization of |~ xgX  where  is a parameter of the distri-

bution g. In the Bayesian framework  is seen as random and a prior distribution 

with density ( )  has to be chosen for this parameter. This prior allows to  incor-

porate the knowledge we have about the studied phenomenon or it can be vague if 

no information is available or/and if we want to let the data drive the inference.  

Information brought by the data x is combined with the prior and summarized in a 

probability distribution x|  according to the Bayes formula:  

)(

|
x|

xm

xg
 (2.8) 

where dxgxm )()|()(  is the marginal density of X. Inference will then be 

made on the posterior distribution x| . When x| is analytically intractable 

as in our case, a usual way is to set a MCMC algorithm. The idea is to set up a 

Markov chain whose transition probabilities are analytically tractable and which 

has the required multivariate distribution as its equilibrium.  By producing a suffi-

ciently long run of this chain, we can therefore simulate a sample  from the re-

quired distribution. Robert and Casella (2002) describe a large set of MCMC algo-

rithms. Here we combined two types of MCMC: Gibbs sampler and Metropolis-

Hasting-algorithm.  
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Fig. 3.  Schematized dependence structure of our model. 

2.3.2 Algorithm Metropolis-within-Gibbs 

We use bayesian framework for our study. We note  nxSxSS ,,1  the vector 

of S values at sites xi , i=1,…,n, N=(N1,…, Nn) the numbers of vine stock declining 

and =( , , , ) the vector of  parameters of the linear part of the model, and 

=( , 2, ) the vector of parameters of C(h). Furthermore, let 
**

1
* ,, mxSxSS denotes the values of  S at locations **

1 ,, mxx  where we want to 

estimate the unobserved field S in order to map it. 

We choose uniform and independent priors ( ) and ( ) for   and  .

Our concern is  now a posterior joint distribution of N|,,S  for inference and 

of  ,S,|*S  for interpolation. 

According to Gibbs sampler method, we  sample successively , S, and   from 

the conditional distributions S,N,| , ,N,|S , and S,N,|  respec-

tively. The dependence structure  we use to compute these distributions is schema-

tised Fig. 3. Since these distributions are not classical, we use a Metropolis-

Hasting step.  For this algorithm, we only need to know the distributions up to a 

constant. The likelihood is : 
n

i

infN
1

S,|,S,|  (2.9) 

and the conditional distributions of the parameters are:   

|S|)S,N,|( S  (2.10) 

S,|SN,|S,N,| N  (2.11) 

For S we decompose the problem according to Gibbs sampler algorithm and we 

sample each component  

of the vector from the distribution of this one conditionally to the others. 

We note niii xSxSxSxSS ,,,,, 111 . Then, 

,S|S,|,,,S| i-i- ii xSNNxS  (2.12) 
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where ,S| i-ixS  is the univariate gaussian distribution. Finally, 

SSS ,|N,S,,| **  (2.13) 

2.2.3 Parameters of the algorithm 

Here we present the choices that had to be done in order to speed up the algorithm 

convergence : 

-Choice of priors: 

The choice of a prior is rather a model specification  than a parameter of the algo-

rithm. Nevertheless, this choice is often made when the algorithm is implemented 

since it plays a role in convergence speed. As we have no information  available 

for soil  effects  on vine stock mortality and for the spatial characteristics of the 

unobserved random field, we chose non informative priors. In fact, we took uni-

form priors on [-5,5] for all soil effects since the inverse function of logit is close 

to 0 and 1 at the range of this set. In the same way we took uniform priors on [0,5] 

for the values of the nugget effect  and for the variance parameter 2. For an ex-

ponential covariance function, the practical range (distance until  the process reach 

90 % of its variance) is 3/ . For the parameter  we chose an uniform prior on 

[0,1]. So the practical range can explore [3,+ ]. 

-Choice of the initial values: 

Initial values  has to be chosen for all the parameters.  

 We use the way proposed by Diggle et al. (1998) to do it in order to speed up the 

convergence. 

-Choice of the transitions kernel of the Metropolis-Hasting steps:  

We use Metropolis-Hasting step for ,  and the components of  S.

For the mean and the variance of the gaussian transition kernel in  updating   ,

we set a first run with mean given by the generalized linear model procedure 

without the unobserved random field  (see section 2.1) and an arbitrary variance 

fixed to 1. Then the mean and the variances of this sample are taken  for a new 

run.  In order to simplify the expression of acceptance probability for updating the  

components of  and S,  we chose respectively  and ,| ii SxS  as transition 

kernel. 
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Fig. 4.  Time series plots monitoring the MCMC output every 100 iterations for the inter-

cept (a), one soil effect parameter (texture 1) (b), nugget effect (c) and range parameter (d). 

For S*  the implementation consists in a simulation of a gaussian random field 

conditionally to observations (which are in our case the current value of S at the 

soil sample locations). We used the method proposed by Chilès and Delfiner 

(1999). 

-Other specifications:  

We used 500 000 iterations and we sampled every 100 iterations to reduce auto 

correlations between the iterations. We ignored the first 500 samples, by which 

time convergence is  judged to have occurred. Note that we only need to  update  

S* every 100 iterations since its components don't play any role for the other pa-

rameters update.  

We refer to Diggle et al. (1998) for more details about the algorithm. 
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Fig. 5. Histograms of the samples of the intercept (a), of one soil effect parameter (texture 

1) (b), of nugget effect (c) and of range parameter (d) 

3 Results 

In this section, we present the main results by considering  a neighbourhood of 

Ntot=16 vine stocks  around each soil sample. Results given by such algorithm are 

samples from posterior distributions for each parameters. Fig. 4 shows MCMC 

output for ( , 1, , 2) and  Fig. 5  the corresponding histograms.  Summaries of 

those distributions  are given in table 1 for  soil effects and in table 2 for the pa-

rameters of covariance function. For the map of the unobserved field we used pos-
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terior medians of the distributions. Fig. 6 provides theses maps on Roujan, Caux 

and Neffies, 

Fig. 6.  Locations of the soil samples on the studied zone (a) and maps of the unobserved 

random field intensity on Roujan, Caux and Neffies. Axis graduating are in Lambert 3. Soil 

sample locations are indicated by the points. The grey scale indicate the field intensity (dark 

= low intensity; light = high intensity) 

and Fig. 7 a zoom for Roujan. If we apply the inverse logit function to the poste-

rior median of the intercept we obtain about 0.20 which is close to the frequency 

of declining vine stocks (23%). Since zero is included in all the 95 % confidence 

interval of soil effects parameters, we could conclude that they are not signifi-

cantly different from zero. Nevertheless, zero is close to the range of the confi-

dence interval for two interaction parameters. So, the interpretation must be done 

carefully. This two soil classes could have an effect on vine stock declining. Pos-

terior median of is 0.016 so the practical range of the unobserved random field is 

about 187.5 meters which is close to  the range of the variogram of the vine stocks 

states (about 150 meters) (see Desassis (2003) for a detailed study of the spatial 
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dependences of vine stock state process). We exhibited a nugget effect. Nugget ef-

fect is characteristic of individually vine stock sensitivity to declining or of micro 

scale variation of the random field. The fact that this nugget effect  is greater than 

the variance parameter of the unobserved random field tends to show that a large 

part of the mortality is due to local variation. Nevertheless, the  spatial structura-

tion of the structured part of the unobserved random field has to be considered. 

Table 1.  Posteriors summaries of soil effects 

Effects 2.5% Median 97.5% 

Intercept

Texture 1 

Texture 2 

Texture 3 

Hydromorphy 1 

Hydromorphy 2 

Hydromorphy 3 

Text. 1 Hydro. 1 

Text. 1 Hydro. 2 

Text. 1 Hydro. 3 

Text. 2 Hydro. 1 

Text. 2 Hydro. 2 

Text. 2 Hydro. 3 

Text. 3 Hydro. 1 

Text. 3 Hydro. 2 

Text. 3 Hydro. 3 

-1.762 

-0.675 

-0.773 

-0.240 

-0.899 

-0.284 

-0.397 

-0.289 

-0.872 

-0.609 

-0.489 

-1.151 

-0.077 

-1.423 

-0.176 

-1.070 

-1.379 

-0.185 

-0.317 

0.505 

-0.344 

0.284 

0.056 

0.343 

-0.254 

-0.091 

0.142 

-0.570 

0.425 

-0.479 

0.820 

-0.337 

-1.009 

0.313 

0.146 

1.244 

0.206 

0.848 

0.506 

0.997 

0.382 

0.398 

0.795 

0.036 

0.929 

0.411 

1.840 

0.439 

The patterns of the values of the unobserved random field are highly dependent 

on the soil sample location pattern. Nevertheless, there are zones of marked effects 

of S, easy to identify,  having very  different behaviours from one map to another. 

Remarkably, there is no evident gradient between zones of highest and lowest in-

tensity, but rather sharp variations of S between close soil sample locations (see 

e.g. Fig. 6, Caux) which probably depict strong heterogeneity in the environmental 

factors involved in vine stock mortality. In other cases, we observed homogeneity

of S on several parcels (see e.g. Fig. 7, Roujan). This could reflect the effect of an 

agricultural practice, yet to identify.

Table 2. Posterior summaries of the parameters of covariance function 

Parameters 2.5% Median 97.5% 

Nugget effect 

Variance parameter 

Range parameter 

0.563 

0.414 

0.004 

1.254 

1.057 

0.0016 

2.046 

2.248 

0.076 
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Fig.7. Map of the unobserved field on Roujan (zoom of the Fig. 6, Roujan) 

4 Conclusions 

The method presented in this paper provides a powerful tool to interpolate an un-

observed random field introduced in a hierarchical way in the model. Bayesian 

framework allows to consider parameters uncertainty in order to make the infer-

ence. Nevertheless, several comments have to be formulated. First, the model cho-

sen results of an approximation in our specific configuration. Indeed we supposed 

that the number of declining vine stock around a soil sample is a binomial count 

but this assumption requires that vine stock states are independent  and identically 

distributed conditionally to soil factors and S. Spatial  dependencies between vine 

stock states exhibited in Desassis (2003) could proceed from soil effects or from 

the field of unobserved effects. But other causes can be responsible of this ob-

served structure. Our method cannot be used to detect if the exhibited structure 

arises from a spatially structured factor or from  another phenomenon as conta-

gion. The micro scale variations of the random field or the individual sensitivity to 

mortality of each vine stock makes the hypothesis of smoothness of the unob-

served random field unacceptable. So the binomial approximation is rough and 

over dispersion should be introduced in the model. Finally, we did not detect sig-

nificative effects of soil factors but we neglected nearly 2/3 of the data when keep-

ing only vine stock in the neighbourhoods of soil samples. On the other hand, in 

the estimation, we give the same weight for all the vine stock in the neighbour-

hood of a soil sample without taking account of their distance to soil sample. Vine 

stock which are far from soil sample location  have more risk than the one close, 
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to be associated to another  soil type. So we should propose a model which allows 

to take into account the entire data set and the distances to soil sample location. In 

such model, we would consider each vine stock individually. Spatial structures of 

soil and spatial dependencies between soil and vine stock states should be mod-

elled.
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1 Introduction 

Temperature is one of the main determinants of phenological plant development 

(Schnelle 1955 and 1973, Worral 1993, Dieckmann 1996 and Sparks 2002). Espe-

cially in the temperate middle latitudes plants have to rely on synchronising their 

growth with the seasons to achieve a maximal degree of reproduction (Kramer 

1996). Here we demonstrate the supposed influence of variable temperature pat-

terns on the distribution of observed budburst dates and their dependency on alti-

tude. For this purpose we calculated the dependency on altitude of budburst for 

every analysed year and developed an interpolation method which uses the calcu-

lated gradient. We interpolated phenological point data using another method 

which also explicitly incorporates elevation (External Drift Kriging) and applied 

Gaussian Probability Functions to describe the different budburst distributions. 

Based on meteorological records from 1951-1980 Mendl (1995) calculated the 

relative frequency of general weather situations in Germany. It was demonstrated 

that the spring is, unlike to other seasons, characterised by a super-proportional 

occurrence of the so called weather situation north and east, i.e. often a constant 

alternation of cold shower weather coming in from Scandinavia and dry continen-

tal air mass from Eastern Europe which can already heat up the continent due to 

the increasing sunshine duration. In consequence, this yields in general to discon-

tinuous and variable temperature patterns. We hypothesise that years with discon-

tinuous and variable temperature patterns produce a bi- or multimodal distribution 

of the observed budburst dates while an undisturbed leaf unfolding generally pro-

duces a unimodal distribution. 

The current phenologica1 database of the German Weather Service (DWD) 

provided continuous time series from 1951-2000 over whole Germany. We ana-

lysed 12 randomly chosen years of budburst of Beech (Fagus sylvatica), Birch 

(Betula pendula) and Oak (Quercus robur). On average about 2000 equally dis-

tributed phenological observations over whole Germany were available per year. 

Goovaerts (2000) as well as Hudson and Wackernagel (1993) used elevation data 

as an external variable to estimate spatially interpolated rainfall and temperature. 
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Here we incorporated a Digital Elevation Model (DEM) with a resolution of 

1*1km over whole Germany. 

2 Application of the outlier detection algorithm 

An outlier detection routine (Schaber and Badeck 2002) was applied on three dif-

ferent species of deciduous trees: Beech (Fagus sylvatica), Oak (Quercus robur)

and Birch (Betula pendula): 0.42%, 0.44% and 0.46% of the data respectively 

were identified as outliers. An outlier is detected by the distribution-free 30-day 

residual rule in combination with a robust estimation procedure based on the 

minimisation of the sum of absolute residuals. This is due to one of the few de-

tectable mistakes in phenological databases, a so called “month-mistake” resulting 

from the conversion of the observed budburst date to the absolute day of year 

(DOY). A deviation above 30 days cannot be explained by the natural variability 

and/or the observer mistake (i.e. precision of measurement). Schaber and Badeck 

(2002) postulated a danger of false outlier identification in case of a distinct bi-

modal distribution of observed budburst dates. This distribution “is produced by 

an intermittent occurrence of environmental conditions unfavourable to 

phenological development, e.g. a cold spell when the buds in a part of the popula-

tion have already broken”. We suggest that this phenomenon is caused by the re-

sponse of phenological development to discontinuous temperature patterns in 

spring. 

Fig. 1. Number of detected outliers per year for Birch (dashed line), Oak (thick line) and 

Beech (dotted line). 

The high variation of detected outliers between years can be taken as an indica-

tor of the potential of false outlier identification as one would expect an even dis-

tribution of outliers in time if they were caused by human errors only (s. Fig. 1). 
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The years with a great number of detected outliers correspond to relatively high 

standard deviations of observed budburst dates (correlation coefficient=0.39). 

Furthermore, we determined that in regions east of the river Elbe (each region 

represents a geographical unit in terms of climate, vegetation, geomorphology and 

water balance, s. Schmithuesen et al. (1962)) no or only a few outliers are detected 

while all other regions of Germany show a considerably larger amount of detected 

outliers. The extremely low numbers of outliers in the easterly regions correspond 

to a low variance of observed budburst dates in the very same areas which might 

be due to a different behaviour of deciduous trees in easterly parts to avoid the 

danger of late frost regarding the more continental climate. Finally, it should be 

taken into account that different varieties in easterly regions (with modified be-

haviour) are the reason for a lower variability, although the types of variety of the 

trees are not included in the database. 

3 Inverse altitudinal gradient of budburst dates close to 
the sea 

The long lasting records of mean daily temperatures in Germany, considering the 

area between the coasts of the Northern and the Baltic Sea and the northern edge 

of the low mountain range (“Norddeutsches Tiefland”), show that the general pat-

tern of decreasing temperature within increasing altitude is reversed here. This is 

because of the thermal influence of the sea, especially in autumn and spring. The 

sea dampens extreme temperatures in summers and winters on the one hand and 

delays the cooling down in autumn as well as the warming up in spring of coastal 

regions on the other. Thus, the delayed warming up of regions close to the coast 

leads to an increase of mean daily temperatures with increasing altitude of mete-

orological observation stations in the Northern Germany lowlands (s. Fig. 2). The 

phenological development of deciduous trees in this very area mirrors these tem-

perature patterns, i.e. an earlier budburst is observed at greater altitude. The mean 

budburst date of Oak for example in vicinity of the coast (below 20 m) is delayed 

about five days in comparison with inbound regions (50-100 m, s. Table 1). 

Table 1. Mean observed budburst date (DOY) of Beech, Oak and Birch from 1951-2000 in 

different altitudinal belts in Northern Germany.  

  Birch Beech Oak 

0-20 m 114.7 121.9 129.5 

20-50 m 112.6 120.7 126.8 

50-100 m 110.8 119.3 124.2 
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Fig. 2. Mean daily temperatures during March and April from 1950-2000 in Northern Ger-

many. The dashed line represents regions under 20 m asl, the thick line 20-50 m and dotted 

50-100m.

4 Calculation of elevation gradient – Detrended Kriging 

The dependency of phenological development on temperature is well documented 

in case of growth rate in different altitudinal belts. The vertical decrease of air 

temperature of ca. 0.7 ºC per 100 meters of altitude (lapse rate) is reflected in de-

layed budburst. Baumgartner (1956) showed a delay of budburst of Beech of 1-2 

days for every 30 m increase of altitude. These results are corresponding with in-

vestigations of Worral (1983), Benecke (1972), Oberarzbacher (1977) and Schnel-

le (1973). In this paper we will use a simple linear model to determine the depend-

ency of phenological phases on altitude (s. Fig. 3 as well). 
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of observation stations, hag = global dependency on altitude (delayed budburst 

day per m increase), obsd = Difference of budburst date of the two compared ob-
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servation stations and h = Difference of altitude of two compared observation 

stations. All possible observation data pairs will be compared in terms of budburst 

date and altitude. The weights iw  are defined as the inverse distance between the 

stations. The index of the global dependency on altitude is used to avoid an un-

neccesarily strong influence of local values. This is essential because of the high 

variability of phenological data even on a local scale which could lead to a false 

calculation of the gradient. On the basis of the phenological database of the DWD 

we determined a delayed budburst dependent on species and year respectively be-

tween 0.42 – 4.6 days per 100 m increase of altitude (s. Table 2). Years with a 

significant high value (delayed budburst) are 1979, 1981, 1990 and 1997. 

Fig. 3. Linear regression (black line) for the budburst dates of Oak and altitude of the year 

1991. Here, only observations stations above 100 m asl are analysed. Residual standard er-

ror: 13.64 on 1332 degrees of freedom; Multiple R-Squared: 0.1834 

Now the global gradient is used as a component for the so called Detrended 

Kriging: subtraction of the product of the altitude of the observation station and 

the calculated global gradient from the original budburst date. The resulting values 

(residua) are interpolated using Ordinary Kriging as it is more robust than Simple 

Kriging. Finally, the product of the global gradient and the respective value of an 

underlying DEM will be added. According to the detected reverse of the global 

gradient on temperature with elevation in Northern Germany observation stations 

below 100 m where not included to calculate the dependency of budburst on alti-

tude. Just as well we did not compare observation stations with less than 50 m dif-

ference of altitude because of insufficient details of the altitude of the observation 

stations in the original database. 
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Table 2. Delayed budburst in days per 100 m increase of altitude of Birch, Beech and Oak. 

Year  Birch  Beech  Oak  

1956 2.38 1.1 2.2 

1961 1 1.22 2.84 

1970 1.8 1.79 2.47 

1974 0.42 1.3 2.82 

1977 1.34 1.61 3.14 

1979 2.6 2.27 2.7 

1981 1.7 2.47 4.58 

1986 1.04 1.87 2.24 

1987 1.25 1.67 2.51 

1990 2.63 3.26 2.91 

1993 1.19 1.24 1.84 

1997 2.23 1.69 2.78 

5 EDK vs Detrended Kriging 

Kriging with External Drift is an approach for incorporating secondary informa-

tion in statistical interpolation. The variance of the external variable using EDK 

stands in close relationship to the variance of the estimated variable, i.e. a physical 

correlation is a basic requirement. Furthermore the external variable should vary 

smoothly in space and must be known at all locations of the primary data values 

and at all locations to be estimated (Deutsch and Journel 1998). For a theoretical 

background please refer to Isaaks and Srivastava (1989) and Wackernagel (1998). 

Due to high natural variability the interpolation (Kriging with External Drift) of 

phenological ground observations requires special procedures: In contrast to the 

common procedure of not using more than 10 surrounding observation stations to 

predict values at unknown locations (to highlight local effects), we incorporated 

30 or more surrounding observation points. In addition a method of the same qual-

ity based on the described global gradient of altitude could be established. 

Despite the high phenological variance this method is robust but not available 

to be applied on a local scale. Estimated values for both interpolation methods are 

in a good agreement with observations and even with phenological models for 

budburst prediction. An improvement in quality can only be achieved while using 

additional information, e.g. exposition (aspect) of the analysed objects. However, 

a good understanding of all mechanisms influencing budburst is still missing. Fig. 

4 shows the different behaviour of budburst events of Oak through time. 1981 

represents a year with an early mean budburst date in contrast to the year 1986, 

which is relatively late. In both years the mountainous regions vary only slightly 

in terms of budburst date while the lowlands show differences of about 20-30 

days. Thus lowlands and mountainous regions are acting differently by corre-

sponding to the weather characteristics of the particular year, even in cases of spa-
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tial contiguity. The technique of cross-validation allows us to compare estimated 

and observed values (Isaaks and Srivastava 1989). Thus, the results of different in-

terpolation methods could be checked in terms of interpolation quality. The par-

ticular interpolation method is tested at locations where a sample value is avail-

able. This sample will be removed from the dataset within the interpolation 

process and it will be interpolated on exactly this sample point. This procedure is 

repeated for each sample value. 

Table 3. Averages of statistical variables of all cross-validations for Detrended Kriging 

with mean=mean error, MAE=Mean Absolute Error, SD=standard deviation of MAE, 

Var=variance of MAE, G=skewness of MAE, min/max=Minimum and Maximum of local 

estimation errors, Err-sum=sums of estimation errors. 

  Mean MAE SD Var G min max Err-sum 

Oak -0.02 5.85 7.79 63 0.02 -32.86 41.3 -45.2 

Beech -0.01 5.35 7.2 55.06 0.07 -34.75 41.03 -16.83 

Birch -0.03 5.35 7.3 56.36 0.07 -34.59 36.75 -59.85 

Table 4. Averages of statistical variables of all cross-validations for EDK with mean=mean 

error, MAE=Mean Absolute Error, SD=standard deviation of MAE, Var=variance of MAE, 

G=skewness of MAE, min/max=Minimum and Maximum of local estimation errors, Err-

sum=sums of estimation errors. 

 mean MAE SD Var g min max Err-sum 

Oak 0 5.78 7.72 61.9 0.03 -32.25 42.96 -4.26 

Beech 0.02 5.26 7.1 53.53 -0.06 -34.41 40.66 49.93 

Birch 0.01 5.2 7.1 53.6 -0.03 -34.19 38.25 35.02 

Both interpolation techniques are of nearly the same quality (s. Tables 3 and 4). 

On average the MAE of the date of budburst is about 5 days for each tree species 

and interpolation method. Looking at the sums of errors it appears that Detrended 

Kriging (DK) tends to underestimate while EDK tends to overestimate the pre-

dicted value. In Fig. 5 the MAEs of DK and EDK are compared for every year. 

The values differ considerably between years (range 3 to 9). This is due to the 

changing variability of observed budburst dates which is depending on the 

weather conditions in the spring of each respective year. There is hardly any ap-

parent difference in terms of estimation performance. The correlation coefficient 

of the standard deviation of observed budburst dates and the MAE is 0.86, 0.90 

and 0.97 for Oak, Beech and Birch respectively. 
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Fig. 4. Maps of the interpolated budburst day of Oak of the years 1981 (left) and 1986 

(right) over whole Germany using EDK. The legend represents the julian day (Day Of 

Year) of budburst. 

Fig. 5. MAE of EDK (cross) and DK (triangle) for Oak on the left, Beech in the middle and 

Birch on the right hand side for all analysed years (randomly chosen from 1950-2000 ). 

6 Gaussian probability mixture models 

To describe different distributions of observed budburst dates we used Gaussian 

Probability Mixture Models. The quality of the model fit was tested using a chi-
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square test at the 0.05 significance level. A mixture model was applied to the ob-

served budburst date distribution for every year. In most cases the observed shapes 

suggested that data might arise from an underlying pattern of two or more over-

lapping bell-shaped distributions maybe dependent on changing weather condi-

tions during spring. Occasionally the observed distribution was similar to a normal 

unimodal distribution. We fitted a mixture model of one, two or more Gaussian 

components to the data by the maximum likelihood method, and its parameters, 

which include the mixing proportions and the parameters of the component distri-

butions, were estimated. Gaussian Mixture Models have the property of being able 

to represent any distribution as long as the number of Gaussians in the mixture is 

large enough (Gilardi et al. 2002). A mixture distribution with n  continuous 

components has a density of the form (Poland and Shachter 1994): 

xfpxfpxf nnm ...11 (2) 

where mpp ,...,1  are positive numbers summing to one and xfxf m,...,1  are the 

component densities. Mixtures of analytically tractable component distributions, 

such as Gaussians, are useful to model not only true mixtures but any continuous 

probability distributions with which fast calculations are desirable. Mixture mod-

els provide a useful way to identify homogeneous groups within a given popula-

tion, whenever there is no a priori knowledge of any group structure on the under-

lying population but heterogeneity is suspected (Mclachan and Peel 1999 after 

Tentoni et al. 2004). Maximum likelihood estimates of the mixture model parame-

ters were derived by the Generalised Reduced Gradient (GR52) nonlinear optimi-

sation algorithm. 

The approach can be used to distinguish years with different temporal evolution 

of the budburst date in a quantitative manner. A correlation of the type of the dis-

tribution with the elevation gradient was found so that in cases of relatively high 

elevation gradients at least two or more Gaussian Mixture Functions with high dis-

tance of their corresponding means had to be used to achieve a good model fit. All 

distributions of budburst dates which could be produced by the behaviour of the 

weather (described in Sec. 1 and Sec. 2) of the respective year could be character-

ised: Years with an undisturbed continuous phenology (Fig. 6: 1970, 1977, 1986, 

1993), years with bi- or multimodal distributions (Fig. 6: 1974, 1981, 1990) as 

well as years with steady but slow development (and early budburst: 1961) or late 

budburst due to a cold spell when budburst is nearly finished in most of the re-

gions (1956). Also, we compared the calculated elevation gradient of each year 

with the respective standard deviation of the observed budburst dates. The correla-

tion coefficient for Oak, Beech and Birch was 0.79, 0.43 and 0.48 respectively. 

The results show a correlation of these two parameters. It is obvious that the de-

layed budburst in higher regions can only explain a part of the variance because 

there is as well a delayed budburst in cool regions in lower areas, i.e. the general 

gradient of temperature from the southwest to the northeast of Germany. 
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Fig. 6. Histogram of the density of the observed budburst dates and predicted budburst 

dates (black line) using Gaussian Probability Mixture Functions. 

7 Conclusions 

In this paper we tested the quality of two methods for interpolation of budburst 

dates which both incorporate explicitly elevation as additional variable. It could be 

shown that using Ordinary Kriging together with a simple linear model which cal-

culates a global gradient of dependency of budburst on altitude leads to results 

with the same quality as using External Drift Kriging. The high variability of 

phenological data even on a local scale (trees on a south facing slope might have 

an earlier budburst as trees in a valley despite higher altitude) makes it very diffi-

cult to predict values based on a few surrounding observation stations only. Thus, 

both interpolation methods cannot be applied on a local scale without more de-

tailed data, e.g. aspect. The quality of estimation varies between the analysed 

years and seems to be based on the general weather conditions during the respec-
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tive spring (s. Section 8). Furthermore the computed global gradient on elevation 

showed a variable dependency of budburst on altitude between successive years. 

We could also show a reverse altitudinal gradient of budburst dates close to the 

sea. The calculated delayed budburst in vicinity to the sea is in good agreement 

with long time temperature measurements within the very same area showing de-

layed heating of the air masses close to the sea in spring. 

8 Interpretations and Recommendations 

We tried to show the interrelationship of the applied methods, as they are all af-

fected by interannual variance of budburst. Years with an intermittent cold spell 

could be identified as well as years with an undisturbed leaf unfolding. Bi- or mul-

timodal distributions are correlated with the computed elevation gradient in terms 

of the difference of the means of used Gaussian distributions to fit the Gaussian 

Mixture Model: the correlation coefficient is 0.61 and 0.36 for Oak and Beech re-

spectively. Years with a great number of detected outliers correspond also to bi- or 

multimodal distributions with a great difference of their corresponding means 

(1974, 1981 and 1990 for Beech, compare Fig. 1 and 6). The quality of estimation 

of both interpolation methods tends to be considerably better when applied in 

years with a continuous and undisturbed budburst (compare Fig. 5 and 6). The de-

scription of the interannual variance of budburst via Gaussian Mixtures Distribu-

tions can be used for modification of the outlier-detection algorithm. Extreme val-

ues of a bi- or multimodal distribution tend to differ more from their 

correspondent means than the ones in unimodal distributions. Therefore, the algo-

rithm detects more outliers in years with varying temperature patterns, which are 

eventually part of the natural variability. In years with a cold intermittent spell the 

outlier detection algorithm might be improved by taking into account the member-

ship in the mixture component considering the relative probability within the over-

lapping distributions. A better understanding of the devolution of the spatial pat-

tern of the so called “green wave” could be achieved by knowing that variability 

of budburst is mainly dependent on delayed budburst in lowlands while mountain-

ous regions do not differ considerably in terms of budburst date (s. Fig. 3). This is 

especially useful for interpreting remote sensing data. 
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1 Introduction 

Cancer mortality maps are important tools in health research, allowing the identi-

fication of spatial patterns, clusters and disease ‘hot spots’ that often stimulate re-

search to elucidate causative relationships. Their analysis is typically performed 

using a statistical pattern recognition approach whereby a statistic (e.g. spatial 

cluster or autocorrelation statistic) quantifying a relevant aspect of spatial pattern 

is first calculated.  The value of this statistic is then compared to the distribution of 

that statistic’s value under a null spatial model. This provides a probabilistic as-

sessment of how unlikely an observed spatial pattern is under the null hypothesis.   

Most statistical tests for spatial pattern are based on the “normality” and “ran-

domization” null hypotheses (Waller and Gotway 2004). Under the normality hy-

pothesis all observations follow independent, identically distributed normal distri-

butions. Under the randomization hypothesis, each permutation of the observed 

values is equally likely. These translate into a null hypothesis of spatial independ-

ence (SI) of observed rates and, provided the population sizes of areal units (e.g. 

ZIP codes) are fairly homogeneous, the assumption of constant or spatially uni-

form risk. However since some spatial pattern is almost always present, rejecting 

this hypothesis has little scientific value. Also, as emphasized by Ord and Getis 

(2001), Type I errors may increase when tests of hypothesis using the randomiza-

tion assumption are applied to spatially correlated data, leading us to reject the 

null hypothesis of no clustering more often that we should. What are needed are 

realistic null models that incorporate background pattern. The term “Neutral 

Model” captures the notion of a plausible system state that can be used as a rea-

sonable null hypothesis. The problem then is to identify spatial patterns above and 
beyond that incorporated into the neutral model, enabling, for example, the identi-

fication of “hot spots” beyond background variation in a pollutant or the detection 

of clusters beyond regional variation in the risk of developing cancer.  

Geostatistical simulation (Goovaerts 1997) provides fast and flexible ways to 

generate a large number of realizations of the spatial distribution of attribute val-

ues that reproduce the sample histogram and spatial patterns displayed by the data, 

and also account for any auxiliary data or information on the local trend. Its appli-

cation to the generation of neutral models in health sciences must however ac-
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count for specific features of cancer rates, that is 1) the irregular and non-punctual 

support of the data, and 2) the presence of noise which is often caused by unreli-

able extreme rates recorded over small areas, such as United States ZIP code areas 

or census tracts.   

There have been relatively few applications of geostatistics to cancer data, with 

alternative solutions to the problem of non-stationarity of the variance caused by 

spatially varying population sizes. In his book (p.385-402), Cressie (1993) ana-

lyzed the spatial distribution of the counts of sudden-infant-death-syndromes for 

100 counties of North Carolina. He proposed a two-step transform of the data to 

remove first the mean-variance dependence of the data and then the heteroscedas-

ticity. Traditional variography was then applied to the transformed residuals. In 

another study on the risk of childhood cancer in the West Midlands of England, 

Oliver et al. (1998) developed an approach that accounted for spatial heterogene-

ity in the population of children to estimate the semivariogram of the “risk of de-

veloping cancer” from the semivariogram of observed mortality rates. Binomial 

cokriging was then used to produce a map of cancer risk.  In their review paper 

Gotway and Young (2002) showed how block kriging can account for differing 

supports in spatial prediction (aggregation and disaggregation approach), allowing 

the analysis of relationships between disease and pollution data recorded over dif-

ferent geographies. More recently, Goovaerts et al. (2005) presented an adaptation 

of semivariogram and factorial kriging analysis that accounts for spatially varying 

population size in the processing of cancer mortality data.  

Capitalizing on earlier works on binomial cokriging and weighted semivario-

grams of cancer mortality data, this paper presents first a geostatistical filtering 

approach for estimating cancer risk from observed rates. Sequential Gaussian 

simulation is then used to generate realizations of the spatial distribution of mor-

tality rates under increasingly stringent conditions: 1) reproduction of the sample 

histogram, 2) reproduction of the pattern of spatial autocorrelation modeled from 

the data, 3) incorporation of regional background obtained by kriging of the local 

mean, and 4) integration of local trends in cancer rates inferred from the calibra-

tion of an exposure model. These alternate sets of neutral models are incorporated 

into traditional local cluster analysis algorithms. This approach is similar to the 

one described in more details in Goovaerts and Jacquez (2004), except that a new 

filtering procedure is implemented here and exposure data are used to derive the 

non-uniform risk model. The methodology is illustrated using Long Island, New 

York, breast cancer and exposure data which have been investigated under the 

spatial independence hypothesis in Jacquez and Greiling (2003a,b).  

2 Setting the Problem 

Consider the problem of detecting significant clustering and spatial outliers in the 

map of breast cancer incidence rates displayed in Fig. 1 (top graph). These data 

represent newly diagnosed cancer cases in the period 1993-7, and they are calcu-

lated as the number of cancers for each 100,000 people in the population. To pro-
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tect patient privacy, the New York State Department of Health provided data ref-

erenced to ZIP codes rather than individual residences.  

The local Moran test (Anselin 1995) evaluates local clustering or spatial auto-

correlation. Its null hypothesis is that there is no association between rates in 

neighboring ZIP codes. The working (alternative) hypothesis is that spatial clus-

tering exists. For each ZIP code, referenced geographically by its centroid with the 

vector of spatial coordinates u=(x,y), the so-called LISA (Local Indicator of Spa-

tial Autocorrelation) statistic is computed as:  
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where z(u) is the incidence rate for the ZIP code being tested, which is referred to 

as the “kernel” hereafter. z(uj) are the values for the J(u) neighboring ZIP codes 

that are here defined as units sharing a common border or vertex with the kernel u

(1-st order queen adjacencies). All values are standardized using the mean m and 

standard deviation s of the 214 ZIP codes. Since the standardized values have zero 

mean, a negative value for the LISA statistic indicates a negative local autocorre-

lation and the presence of spatial outlier where the kernel value is much lower or 

much higher than the surrounding values. Cluster of low or high values will lead 

to positive values of the LISA statistic. 

In addition to the sign of the LISA statistic, its magnitude informs on the extent 

to which kernel and neighborhood values differ. To test whether this difference is 

significant or not, a Monte Carlo simulation is conducted, which traditionally con-

sists of sampling randomly and without replacement the global distribution of ob-

served rates (i.e. sample histogram) and computing the corresponding simulated 

neighborhood averages. This operation is repeated many times (e.g. L=999 draws) 

and these simulated values z(l)(uj) are multiplied by the kernel value to produce a 

set of L simulated values of the LISA statistic at location u:
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This set represents a numerical approximation of the probability distribution of the 

LISA statistic at u, under the assumption of spatial independence (Model I). The 

observed statistic, LISA(u), is compared to the probability distribution, allowing 

the computation of the probability of not rejecting the null hypothesis. The so-

called p-value is compared to the significance level  chosen by the user and rep-

resenting the probability of rejecting the null hypothesis when it is true (Type I er-

ror). The smaller  the fewer ZIP codes will be declared significant clusters or 

outliers. Following Jacquez and Greiling (2003a), an adjusted significance level 

=0.01101 was used to account for the fact that the multiple tests (i.e. 214 in this 

study) are not independent since near ZIP codes share similar neighbors. This 

level was obtained using the Bonferroni adjustment which divides the chosen level 

 (here 0.05) by the average number of neighbors in each test. Every ZIP code 

where the p-value is lower than 0.01101 is classified as a significant spatial outlier 
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(HL: high value surrounded by low values, and LH: low value surrounded by high 

values) or cluster (HH: high value surrounded by high values, and LL: low value 

surrounded by low values). Table 1 and Fig. 1 indicate that most of the significant 

ZIP codes are declared low-low clusters and located in the western part of Long 

Island. A couple of high-high clusters occur in the eastern part of the island, 

nearby the single spatial outlier detected under this Model I. 

The use of the SI null hypothesis means that the distribution of cancer rates is 

assumed to be spatially random with uniform risk over the study area. In most 

cases, however, rates are spatially correlated while the risk of developing cancer 

varies regionally as a result of changes in environmental exposure or other demo-

graphic, social, and economic factors. Another weakness of the above test is that it 

ignores whether incidence data are based on many or a few cases, thereby ignoring 

the instability of rates computed from small population sizes. Several modifica-

tions of the local Moran’s I test of hypothesis have been proposed to take into ac-

count heterogeneous population sizes (e.g. see Assunçao and Reis 1992). An al-

ternative is to randomly shuffle the counts rather than the rates (e.g. see Waller 

and Gotway 2004). A third option is to transform or standardize the rates prior to 

the application of the test, thereby removing much of the noise due to the small 

population size (Anselin et al. 2004, Goovaerts and Jacquez 2004). This is the op-

tion adopted in this paper and described in Section 3.  

Fig. 1. Map of breast cancer incidence data in Long Island, New York, and the results of 

the cluster analysis under the hypothesis of spatial independence (Model I). 
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Table 1. Number of significant zip codes for the different types of cluster/outliers and 

neutral models. Numbers between parentheses indicate ZIP codes that have similar 

classification under the reference Model I (spatial independence).  

Neutral Model Type 

 Model I Model II Model III Model IV Model V 

High-High 2 12(2) 2(2) 2(0) 12(0) 

High-Low 1 0(0) 0(0) 0(0) 4(0) 

Low-High 0 0(0) 0(0) 0(0) 1(0) 

Low-Low 9 28(9) 9(9) 3(0) 13(4) 

P-value
     

Mean 0.222 0.191 0.261 0.257 0.168 

Std. dev. 0.155 0.162 0.155 0.149 0.156 

3 Geostatistical Analysis of Cancer Rates

The rates recorded at N=295 counties can be modeled as the sum of the risk of de-

veloping cancer and a random component (error term ) due to spatially varying 

population size, n(u ):

Z(u )=R(u )+ (u )          =1,…,N (3) 

Conditionally to a fixed risk function, the counts d(u )=z(u ) n(u ) follow then a 

binomial distribution with parameters R(u ) and n(u ). The following relations are 

satisfied: 

E[ (u )]=0   and   Var[ (u )]=R(u ) {1-R(u )}/n(u ) (4) 

E[Z(u )]= E[R(u )]=    and   Var[Z(u )]= Var[R(u )]+Var[ (u )]   (5) 

For estimation purpose and in agreement with Oliver et al. (1998), the variance of 

the error term can be approximated as Var[ (u )]= 2= (1- )/n(u ), where  is 

estimated by the population-weighted average of rates, z . The risk is then esti-

mated from s(u ) neighboring observed rates using a form of cokriging: 
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The kriging weights are solution of the following system: 
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(7) 

where C(ui-uj)={1-1/n(ui)}CR(0)+ z (1- z )/n(ui) if ui=uj and CR(ui-uj) otherwise. 

The addition of the measurement error variance for a zero distance accounts for 

variability arising from population size, leading to smaller weights for less reliable 

(i.e. measured over smaller population) data.  System (7) requires knowledge of 

the covariance of the unknown risk, CR(h). Oliver et al. (1998) proposed an esti-

mator for the semivariogram of the risk but its application to Long Island data 

leads to negative values, a feature that has been observed on various datasets with 

different geographies and population sizes. According to simulation studies 

(Goovaerts 2005) this problem is caused by the overestimation of the variance of 

the error term by the expression z (1- z )/n(u ). In other words, all developments 

(3) through (7) are based on the modeling of the error term (expressed in terms of 

counts) as a Binomial random variable, an assumption which might not always be 

consistent with the observed variability. The following empirical modification of 

the binomial cokriging approach has been tested on simulations and proved to be 

more robust with respect to misspecification of underlying hypothesis. 

 A more robust estimator of the semivariogram of the risk is the population-

weighted semivariogram, which is similar to the weighted semivariogram de-

scribed in Rivoirard (2000):  
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The weighting scheme attenuates the impact of data pairs that involve at least one 

rate computed from small population sizes, revealing structures that might be 

blurred by the random variability of extreme values. 

The second modification relates to the kriging system (7) itself. In particular the 

term z (1- z )/n(u ) can become disproportionately large relatively to the vari-

ance of the risk CR(0), leading to very large diagonal elements in the kriging ma-

trix (and indirectly very large nugget effect). Such a severe understatement of the 

spatial correlation between rates typically results in over-smoothing since the risk 

becomes a simple population-weighted average of observed rates. An easy way to 

check for any discrepancy is to compare the sill of the semivariogram of observed 

rates CZ(0) with the value of the error variance averaged over all locations: 

(9) 

For Long Island data CZ(0)=4.48910-9, while G is one order of magnitude larger 

G=7.93710-8. The proposed modification of the binomial cokriging system con-

sists of rescaling the correction of the diagonal term to account for any discrep-
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ancy between estimates of the rate and error variances, that is C(ui-uj)={1-1/n(ui)} 

CR(0)+{ z (1- z )/n(ui)}{CZ(0)/G}. Simulation studies (Goovaerts 2005) have 

shown that: (1) the use of population-weighted semivariogram and empirical re-

scaling of diagonal terms of the cokriging system yields estimates of the risk that 

are nearly as accurate as the ones obtained using the true (but unknown in prac-

tice) semivariogram of the risk, and (2) the rescaling of the diagonal term system-

atically outperforms the formulation in Eq. (7).   

Fig. 2 shows the omnidirectional semivariogram of breast cancer incidence data 

obtained using a traditional or population weighted estimator. Incorporating the 

population size into the estimation reduces the overall variability (lower sill) as 

well as the nugget variance, and leads to smaller fluctuations around the nested 

model. The central scattergram highlights the greater variability of rates recorded 

for small population sizes. These extreme rates disappear after filtering by the 

modified binomial cokriging algorithm: the standard deviation is halved while the 

averaged rate is unchanged. The map of filtered rates, displayed at the top of Fig. 

3, appears more homogeneous or smoother than the map of raw rates in Fig. 1. 

Therefore, the cluster analysis leads to the detection of larger clusters of high and 

low values, located in the eastern and western parts of Long Island, respectively. 

The only spatial outlier detected on Fig. 1 is non-significant anymore, as it corre-

sponds to the sparsely populated Shelter Island (574 habitants).  

4 Cluster Analysis using Spatial Neutral Models 

Results in Fig. 1 and 3 are based on spatial independence as the null hypothesis, 

which means that the spatial distribution of cancer incidence rates is assumed to 

be random (no autocorrelation) with uniform risk over the study area. This as-

sumption clearly disagrees with the structured semivariogram of Fig. 2, and more 

realistic neutral models would be ones that reproduce not only the sample histo-

gram, but also the pattern of spatial correlation observed in the data. 

Fig. 2.  Experimental semivariogram of observed rates before (top curve) and after weight-

ing by the population size, with the model fitted. Scatterplots illustrate the impact of filter-

ing on variability among rates, as a function of the female population size. 
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Fig. 3.  Map of filtered breast cancer incidence data in Long Island, New York, and the re-

sults of the cluster analysis under SI hypothesis (Model II). 

Following Goovaerts and Jacquez (2004) spatial neutral models are generated 

using sequential Gaussian simulation, using either a global conditioning (only the 

histogram and semivariogram model of filtered rates are incorporated) or a global 

and local conditioning to reproduce the location of high and low-valued zones.  

This local conditioning was achieved using simple kriging with spatially varying 

local means instead of a global constant mean to derive the mean and variance of 

local probability distribution functions (see Goovaerts 1997 for more details). 

These local means were identified to the regional background of incidence data 

(i.e. obtained by setting CR(ui-u )=0 in the kriging system (7)) or derived by cali-

bration of an airborne carcinogen exposure model described in Jacquez and Greil-

ing (2003b). In this later case, the relationship between exposure and incidence 

rates was modeled using linear functions fitted separately to low exposures ob-

served in the eastern part of Long Island and high exposures in the western part.  

Since the number of simulated values equals the number of observed values, the 

normal score transform and back-transform which precedes and follows the simu-

lation are fairly straightforward. The simulation can then be viewed as a two-step 

procedure: 1) normal scores are simulated in space according to a given spatial 

covariance and local means, 2) the simulated normal scores are ranked from the 

smallest to the largest and replaced by the filtered rates that have the same rank in 

the sample histogram (i.e. equal p-quantiles correspondence). In other words, the 
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rates are not directly simulated but rather their arrangement in space is simulated 

using sequential Gaussian simulation.   

Depending on the type of secondary information used for the local conditioning, 

the neutral models are referred to as Models IV (background defined by regional 

incidence) and V (background modeled using environmental exposure). Model III 

corresponds to non-conditional simulation which reproduces only the pattern of 

spatial autocorrelation. The different neutral models and the corresponding null 

hypothesis are summarized in Table 2. Once the L sets of N simulated rate values, 

{z(l)(u ); =1,…,N} have been generated, they are imported into Eq. (2) to com-

pute the simulated values of the LISA statistic at each location u  and the resulting  

p-value for the test of hypothesis. 

For each of the three types of neutral models, 999 realizations were generated 

and used to compute the LISA statistic defined in Eq. (2). For example, Fig. 4 

shows the distribution of simulated LISA values for the ZIP code # 11435 under 

Models II through IV. Clearly, the variance of the distribution in Model III (cen-

tral graph) is much larger than the results obtained under spatial independence 

(Model II, left graph), while the means are very similar and close to zero. The spa-

tial autocorrelation of simulated rates increases the likelihood that the J neighbor-

ing values are jointly small or high, causing the neighborhood average, hence the 

LISA value, to exhibit much larger fluctuations among realizations. Consequently, 

the probability that the observed LISA statistic lies in the tails of the simulated 

distribution decreases, leading to a larger p-value (0.116 versus 0.008 for this ZIP 

code). The same pattern is observed for all ZIP codes, with an average p-value in-

creasing from 0.191 to 0.261 (see Table 1). These larger p-values cause a substan-

tial reduction in the size of significant LL or HH clusters, which confirms previous 

findings regarding the increased risk of type I error when ignoring the presence of 

spatial autocorrelation in the data.  

Table 2. Typology of neutral models based on the spatial characteristics of the risk being 

simulated.  

Model  Risk 

 I Uniform, spatially random (raw rates)  

II Uniform, spatially random (smoothed rates) 

III Uniform, spatially correlated 

IV Heterogeneous (regional background), spatially correlated 

V Heterogeneous (environmental exposure), spatially correlated 
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Fig. 4. Histograms of the values of the LISA statistic simulated for ZIP code # 11435, iden-

tified in Fig. 5, under different neutral models. The black dot denotes the observed LISA 

statistic which lies inside the 0.95 probability interval for Model III. 

The local conditioning of realizations generated under Models IV and V entails 

that locations of high and small values are now reproduced by the neutral models. 

This causes less variation among realizations, leading to the J neighboring values 

being consistently either small or large across the realizations. Thus the distribu-

tion of 999 simulated LISA values is expected to be narrower than for the two 

previous models with a shift in the mean. This is illustrated for the ZIP code # 

11435 in Fig. 4 (right graph). Because this unit has a small rate and is located in a 

low-valued area, the use of neutral models reproducing the regional background 

yields large positive simulated LISA values (average=2.48 instead of -0.05). If 

this unit had a high rate, the shift would have been in the opposite direction.  

Fig. 5. Background risk inferred from the environmental exposure model, and the results of 

the cluster analysis to detect spatial pattern above and beyond this risk (Model V). 
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Incorporation of local information in the generation of neutral models allows 

the testing of more complex null hypotheses. For example, Model IV is useful to 

detect any departures from the regional background of incidence values. Model V 

reflects the situation where environmental exposure makes the risk of developing 

cancer non-uniform. In this instance the researcher wishes to detect spatial pattern 

above and beyond this non-uniform risk. These questions are more specific than 

the ones tackled under the previous neutral models; hence the cluster analysis 

leads to substantially different results, see Table 1. For example, the exposure 

model leads to a very different map of spatial clusters and outliers. Fig. 5 (bottom 

graph) reveals a series of ZIP codes that are significant high clusters in the North 

western part of the Island. Cancer incidences in these ZIP codes are higher than 

expected under the environmental exposure model and should warrant further in-

vestigation to identify additional cofactors. Note that for situations where health 

professionals are mostly interested in identifying areas with generally high (or 

low) disease rates, the focus would be on the detection of cancer clusters above 

and beyond a null hypothesis of constant risk. 

5 Conclusions 

The approach presented in this paper enables researchers to assess geographic re-

lationships using more realistic null hypotheses that account for spatial correlation 

and background variation modeled from observed rates and any ancillary informa-

tion, such as exposure. An immediate consequence of using spatially correlated 

neutral models are larger p-values, leading to a substantial reduction in the number 

of ZIP codes declared significant outliers or clusters across Long Island. This re-

sult confirms earlier finding that the SI hypothesis often leads to an over-

identification of the number of significant spatial clusters or outliers. When the 

constraint of local conditioning of neutral models is superimposed to the reproduc-

tion of spatial autocorrelation (i.e. models IV and V), the approach allows one to 

detect local departures from the incidence background specified by the user. 

Another issue, which often impacts the results of cluster analysis, is the lack of 

reliability of rates inferred from small populations. If ignored, large differences in 

population size decrease the ability of Moran's I to detect true clustering or depar-

tures from spatial randomness. Binomial cokriging has been adapted to the situa-

tion where the variance of observed rates is smaller than expected under the bino-

mial model, thereby avoiding negative estimates for the semivario-gram of the 

risk. The smoothing of local fluctuations, in particular the ones recorded in 

sparsely populated ZIP codes, resulted in the detection of larger and more compact 

clusters of low or high SMR values as well as the disappearance of some unreli-

able spatial outliers. Other methods could be used (i.e. Empirical Bayes smoother) 

and a performance comparison with binomial cokriging is under way.  
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1 Introduction 

Health Impact Assessment (HIA) on air pollution is a scientific based approach 

that allows to forecast impact of air pollution on public health. Epidemiological 

studies investigate the relationship between temporal variation of pollutant air 

concentrations (data from air monitoring network) and health outcomes in the 

population (data from hospitals or other public health institutions or measured in a 

representative sample of the population). Exposure response functions (ERF) are 

derived from these studies; these functions estimate the number of cases (morbid-

ity or mortality) for a given atmospheric concentration of a given air pollution in-

dicator. This approach can be used to compare different scenarios or the efficiency 

of measures introduced to reduce air pollutant concentration. Complementary to 

epidemiological or other research efforts, HIA studies are frequently used for de-

cision making and evaluating the economic consequences of the impact of air pol-

lution on health (APHEIS 2000). 

Specific HIA on transport-related air pollution requires the accurate assessment 

of the population exposure to chemical compounds that are indicators of transport-

related pollution. This assessment implies the ability to separate traffic-related air 

pollution from other air pollution sources (building, industry, energy, etc.). The 

paper focus on a preliminary step of this HIA: the assessment, with data from the 

French air monitoring network, of ambient air concentrations of particulate matter 

PM10 (particulate matter with an aerodynamic diameter less than 10 micron). 

These concentration results are issued from the French national air quality databse 

managed by ADEME (Agence de l’Environnement et de la Maîtrise de l’Energie).  

Numerous concordant epidemiological study results established exposure re-

sponse functions between PM10 air concentration and an increased frequency in 

many health outcomes (see Mosqueron et al. 2003 for a comprehensive list). 

Though black smokes and PM2.5 (particulate matter with an aerodynamic diameter 

less than 2.5 micron) seem to be better indicators of exposure to traffic emissions 
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than PM10, the lack of available measures and exposure functions did not permit 

us to base the HIA on these pollutants. 

As the interest is put on long-term exposure effects, the study is based on aver-

age annual PM10 concentrations from existing measuring stations in France. The 

exposure estimation ignores the day to day variability of the ambient PM10 air pol-

lution. Special attention is paid to the heterogeneous nature of the available data 

(rural, roadside, industrial and urban stations), excluding in particular proximity 

stations because of their lack of representativity. 

Geostatistics is applied in air pollution since a few years, mainly to map air pol-

lutants at urban (Cressie 1998), regional (Roth 2001) or national scale (Deraisme 

et al. 2002). Computing the exposure of population to given levels of air ambient 

pollutants with geostatistics is more recent (Deraisme et al. 2002). This computa-

tion requires quantifying the local uncertainty associated with air pollutant levels. 

Linear estimation techniques such as kriging or cokriging are not adapted to solve 

non linear problems. Furthermore, though non linear techniques allow the compu-

tation of specific characteristics such as the probability to exceed a threshold, only 

simulations provide a general framework if the interest is to quantify populations 

exposed to specific pollutant levels (Deraisme et al. 2002). 

A significant increase in the reliability of the results is obtained by taking into 

account the existence of: (i) a correlation between PM10 concentrations and more 

densely acquired NO2 data, and (ii) more recent PM10 data that supplement the 

PM10 monitoring network in otherwise entirely non sampled areas.  

Air concentration results are then coupled with geo-data from the last national 

census (1999). The population is stratified in 5 years age classes equal to those 

used in epidemiological studies from which the exposure response function are de-

rived. The population exposed to different levels of average annual concentrations 

is then calculated. Statistical parameters from the resulting distributions are de-

rived in the perspective of carrying out the HIA study on transport related air pol-

lution. 

The exposure and health assessment case studies are part of the French research 

effort contributing to the UNECE-WHO Pan European Program for Transport, 

Health and Environment (THE PEP Project): “Transport-related health impacts 

and their costs and benefits with a particular focus on children”. The aim of the in-

ternational project is to: 

provide sound scientific information on social costs and the impact of road traf-

fic to the European Environment Minister,  

recommend action or regulation that can decrease external costs or protect 

population health. 

Firstly the paper recalls the main geostatistical methods involved in the sug-

gested approach in order to (i) take into account additional data though kriging 

with variance of measurement error, (ii) introduce auxiliary variable with cok-

riging and (iii) compute the exposure of population through a stochastic simula-

tion approach. Then the two major aspects of the case study are presented: spatial 

modeling of PM10 and evaluation of population exposure to PM10 pollution. The 

relevance of the approach in the framework of an HIA is finally discussed. 
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2 Methodological aspects 

2.1 Kriging with Variance of Measurement Error 

Numerical values with varying levels of precision might be available for the vari-

able of interest. For example, the data may come from several surveys: old ones 

and new ones, the latter being more accurate due to advances in measurement 

techniques. In such cases error variances albeit different for each sub-population 

may be known. Certain data might be assumed to have an error variance of 0, 

whilst some indirect or old measures are uncertain with a known error variance. 

Suppose that, instead of the “true” concentration value zi we only know zi +ei

where ei is a random error satisfying the following conditions for each sampling 

point i: E[ei]=0, Cov[ei , ej]=0 for j  i, Cov[zi,ei]=0 and Var[ei]=vi, where the con-

stant value vi may differ for each i. Kriging with variance of measurement error 

(VME) consists of integrating these error variances. From a kriging system point 

of view, the variance of measurement error simply consists of adding the vi values 

to the diagonal covariance terms, or in replacing the 0 diagonal values by   -vi in 

variogram terms (Geovariances 2004). 

2.2 Cokriging 

Secondary information about the phenomenon is usually available in addition to 

the pollutant concentrations available over a set of sample points: concentrations 

of correlated pollutants potentially measured at other locations, cofactors exhaus-

tively known over the area of interest, etc. Cokriging techniques aim at integrating 

this secondary information and therefore reducing the uncertainty about the vari-

able of interest at non-sampled locations. Ordinary cokriging is the classical mul-

tivariate extension of ordinary kriging and is therefore not described here (see for 

example Chilès and Delfiner 1999). 

2.3 Stochastic simulations 

Stochastic simulations require the variable of interest to follow a gaussian distri-

bution, which is generally not the case. It is then recommended to transform the 

raw distribution into a standard gaussian one. Therefore, we consider the station-

ary random function Z(x) as a function Z(x)= [Y(x)] of a gaussian one Y(x),

where x is the spatial location in 2D. The “anamorphosis” function  is deter-

mined by the coefficients of its truncated development in orthogonal Hermite 

polynomials. Finally, we associate to each raw value zi a gaussian transform value 

having the same cumulate frequency as zi  (Rivoirard 1994). 

Moreover, stochastic simulations require the multivariate distribution of vari-

ables (Y(x), Y(x1), …) to be multigaussian, i.e. any linear combination of these 

variables should be normally distributed. Except in the case of an exhaustive sys-
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tematic sampling, the validation of the multigaussian assumption is quite inextri-

cable and is most often reduced to the validation of the bigaussian assumption. 

Several tests exist to evaluate the bigaussian assumption: examination of h-

scatterplots, computation of the ratio )(/)( 1 hh  between variogram and mado-

gram (first order variogram), which has to be constant and equal to , validation 

of the relationship between raw and gaussian covariances (Lajaunie 1993, Chilès 

and Delfiner 1999). 

Co-simulations are performed using the Turning Bands (TB) technique. The 

basic idea of the TB algorithm consists of simplifying the 2D simulation in several 

1D simulations along randomly generated lines, and then reconstructing the 2D 

simulation by averaging the projected values from the 1D simulations (Matheron 

1973). The only parameter required to ensure consistency of the resulting simula-

tions (i.e. histogram and variogram reproduction) with the TB technique is the 

number of turning bands. Although theoretical results may give some hints about 

this number (Lantuéjoul 2002), a pragmatic approach usually consists in analyzing 

visually the quality of the simulations, that should not reveal the existence of the 

generated bands, and then to check the quality of the simulations. 

All the geostatistical results are obtained using version 5.0 of the Isatis software 

(Geovariances 2004). 

2.4 Estimation of population exposure 

The number of inhabitants is known for each 4km x 4km cell of the estimation 

grid. This spatial resolution is thought to be a good compromise between precision 

and representativity. From each stochastic simulation of air pollutant, the knowl-

edge of the population within each cell easily allows the computation of the total 

population exposed to a given interval of pollution over France, e.g. total popula-

tion exposed to PM10 concentrations between 5 and 10 g/m3. Repeating this op-

eration for all the simulations leads to the distribution of the French population 

exposed to an average annual PM10 concentration between 5 and 10 g/m3. Clas-

sical characteristics about this statistical distribution (mean, standard deviation, 

median, quantiles) are finally derived for conducting the HIA. 

3 Spatial modeling of PM10 concentrations 

3.1 Data analysis 

Air quality monitoring in France is based on a network of 740 measuring stations 

designed to respect the European and National regulations on air quality (Direc-

tive 96/62/EC and LAURE, Dec. 30 1996). Each station belongs to one of the fol-

lowing classes: urban, near-city background, regional rural, national rural, road-

side, industrial and specific observation. Urban, peri-urban and rural 



Geostatistical assessment of long term human exposure to air pollution      165 

(regional/national) stations constitute the “background stations”, as opposed to 

“proximity stations” (ADEME 2002). 

185 monitoring stations provided PM10 average annual concentrations in 2000 

(see Fig. 1a). Among them, 54 proximity stations were not considered for model-

ing the annual background pollution in PM10, due to their lack of spatial represen-

tativity. The most noticeable fact is the absence of measures in most of the rural 

stations. 
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Fig. 1. Monitoring network for PM10 in 2000, background (empty squares) and proximity 

stations (filled black squares): (a) base map, (b) histogram of PM10 with global statistics. 

The 131 PM10 concentrations from background stations are lying between 10 

and 36 g/m3 with an average concentration of 20.7 g/m3 , slightly inferior to the 

overall (from the 185 stations) PM10 average concentration of 21.7 g/m3 (Fig. 

1b). This difference is due to the fact that we have removed proximity stations, as-

sociated to large particle emissions. Peri-urban stations have an average concen-

tration of 18.8 g/m3 slightly less than the urban stations (21.1 g/m3).

The sampling density of the monitoring network is highly heterogeneous, par-

ticularly away from the urbanized areas. The development of the monitoring net-

work led to more abundant PM10 measures in 2001; we therefore planned to inte-

grate this indirect information for mapping PM10 in 2000. 

Fig 2a illustrates the location of the 23 new monitoring stations of PM10 in 

2001. In order to quantify the information brought by these additional stations, we 

used linear regression between existing 2000 and 2001 stations, calculated on the 

129 background stations where both data are present (see the Fig 2b, correlation 

coefficient equal to 0.84). On the 23 stations only available in 2001, the missing 

PM10 values have been replaced by the result of the linear regression. 
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Fig. 2. a) Stations where PM10 measurements are only available for 2001. b) Scatter dia-

gram of the 2000 vs. 2001 PM10 background concentrations, first bisector indicated. 

As these additional data cannot be put at the same level as real measurements, 

they have been “penalized” by a VME equal for all the stations to the value of the 

variance of residuals around the linear regression, i.e. 4. A standard cokriging ap-

proach could similarly have been used to introduce these 23 additional data. The 

interest here is to evaluate whether or not kriging with VME, which avoids the 

bivariate modeling required by the cokriging, leads to satisfactory results. The ef-

ficiency of kriging with VME and cokriging will be compared. 

In order to introduce additional information for improving PM10 modeling  we 

finally studied the potential correlation with more densely sampled NO2, this pol-

lutant being measured at 296 stations in year 2000 (see Fig. 3). 
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Fig. 3. Scatter diagram of PM10 and NO2 (both in g/m3), regression line indicated. 
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Both pollutants having a partly common origin linked to traffic emissions, their 

positive correlation (correlation coefficient equal to 0.49), although not strong, 

justifies the integration of NO2 data in the our PM10 modeling. 

3.2 Modeling spatial variability 

Because of the significant correlation between PM10 and NO2, a bivariate 

variogram calculation is performed on this heterotopic dataset (see Fig. 4). 
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Fig. 4. Simple and cross experimental variograms for PM10 and NO2. Statistical (a priori) 

variance / covariance indicated by a dash line; fitted variogram models in bold. 

The bivariate variogram model is obtained by an automatic sill fitting proce-

dure (Lajaunie and Behaxétéguy 1989) of the following basic structures to the ex-

perimental variograms: 

• Nugget effect: Variability at very small scale, due to potentially important 

local variations; 

• Exponential structure of range 50 km: Steep increase of the variability at the 

scale of 50 km, particularly close to agglomerations; 
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Spherical structure of range 500 km: Slight correlation at large scale due to the 

large representativity of the rural stations. 

The procedure ensures that the obtained linear model of coregionalization is 

authorized. 

3.3 Model validation 

Different models have been compared to predict PM10 concentrations in 2000: a 

quick interpolation by Inverse Squared Distances, an ordinary kriging of PM10

(2000), an ordinary kriging of PM10 (2000) completed by PM10 (2001) with a 

VME approach, an ordinary cokriging of PM10 (2000) and PM10 (2001), an ordi-

nary cokriging of PM10 (2000 completed by 2001 with a VME approach) and 

NO2. 

The comparison is performed by randomly dividing the dataset into five un-

connected validation sets (constituted of 22 to 30 monitoring stations); each tech-

nique is sequentially used to re-estimate the PM10 concentrations on these valida-

tion sets.  A moving neighborhood involving the 50 closest data within a circle of 

radius 300 km centered at the target point is systematically used. Median squared 

errors between estimated and real PM10 concentrations are computed and ranked 

for each validation set from 1 (smallest MSE) to 5 (largest MSE); MSE and mean 

rank results are summarized in Table 1. 

Table 1. For each estimation technique, Mean Squared Error (MSE) from each validation 

set and Mean Rank. Abbreviations: inverse squared distance (ID2), ordinary kriging (IK) 

and ordinary cokriging (OCK).

MSE for validation set 

Estimation Technique 
1 2 3 4 5 

Mean 

Rank

ID2 PM10 2000 25,95 13,88 16,30 12,44 21,63 4,6 

OK PM10 2000 10,09 7,26 15,34 11,91 6,80 2,8 

OK PM10 2000 comp2001 11,77 6,52 12,18 14,89 4,35 2,8 

OCK PM10 2000 / PM10 2001 10,13 6,78 12,35 13,13 6,41 3,0 

OCK PM10 2000comp / NO2 10,53 6,67 11,79 12,21 4,10 1,8 

Several conclusions can be drawn from these results. Firstly, kriging with 

VME and cokriging lead to similar validation results to integrate the 23 additional 

PM10 data from 2001; kriging with VME is therefore preferred because of its sim-

plicity. Then, the ordinary cokriging of PM10 in 2000 (completed by data from 

2001) and NO2 leads to the best results and therefore constitutes the recommended 

approach for this case study. The resulting PM10 map is illustrated in Fig. 5. 
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Fig. 5. Estimation of PM10 (integrating 2001 data) by cokriging with NO2 (in µg/m3).

4 Population exposure to PM10

4.1 Analysis of gaussian transforms (anamorphosis) 

PM10 data have been transformed into gaussian data. Simultaneously the anamor-

phosis function has been modeled. Because the spatial distribution of PM10 con-

centrations is highly heterogeneous, this clustering has been taken into account us-

ing a standard cell declustering algorithm (Isaaks and Srivastava 1989), to avoid 

any bias in the gaussian transformation and on the resulting simulations. The va-

lidity of the underlying bigaussian assumption has been checked with the compu-

tation of h-scatter plots and of the ratio )(/)( 1 hh , which is reasonably con-

stant and equal to . Even though we are only interested in PM10, the gaussian 

transform is recommended for both PM10 and NO2 variables, as: 

analyzing the correlation and bivariable spatial structure between two gaussian 

transforms usually yields to better results, and ensures the homogeneity of the 

process, 

the Turning Bands co-simulation algorithm requires first the non conditional 

simulation of both variables in the gaussian space. 

Variograms of PM10 and NO2 gaussian transforms have been calculated and 

modeled using the same basic structures as those used for the raw concentrations. 

Attention is paid to the fact that the simple variograms sills should not be larger 

than 1 (variance of a standard gaussian variable), to avoid unrealistic simulated re-

sults after back-transformation. 
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Note that the VME approach presented for the spatial modeling is in general 

not applicable to gaussian transforms. Indeed, we usually only know the error 

variance of raw measurements, and not its counterpart for gaussian transforms. 

However, in our particular case, the approach used to compute this error variance 

for the 2001 data is based on regression using gaussian transform values, not ac-

tual knowledge of measurement error, and is therefore integrated in the analysis.

4.2 Stochastic simulations of PM10 concentrations 

200 conditional co-simulations have been performed using the Turning Bands al-

gorithm, with 500 turning bands. The number of turning bands is the only key pa-

rameter required to ensure the quality of the simulations. The latter has been veri-

fied on a few simulations, in terms of histogram and spatial structure reproduction, 

before the back-transformation in raw scale. 

4.3 Exposure frequency of the population 

The number of inhabitants per grid cell is derived from the last national census 

(1999). For the HIA purpose, the focus is on the population exposed to consecu-

tive PM10 classes of 5 g/m3 and the results are stratified according to several cri-

teria (age class, restricted to urban areas only, etc). 

The statistical results for the total population over the entire French territory are 

presented in Table 2. Mean exposed populations show a major exposure to PM10

levels comprised between 15 and 30 g/m3. These values might be compared with 

the current limit value for PM10 annual average concentration (based on scientific 

knowledge, maximum concentration value accepted to avoid, prevent or reduce 

harmful effects on human health), equal to 40 g/m3 while the French quality ob-

jective is equal to 30 g/m3.

Table 2. Population (in billions) exposed to classes of annual PM10 concentrations (in 

g/m3) over the entire French territory.

 PM10 class ( g/m3) 5-10 10-15 15-20 20-25 25-30 30-35 35-40 

 Mean 0.22 1.88 26.87 23.12 5.11 0.75 0.29 

 Standard deviation 0.12 0.44 1.48 1.27 0.78 0.26 0.18 

 Percentile 2.5% 0.07 1.15 24.01 20.66 3.84 0.30 0.06 

 Percentile 97.5% 0.49 2.73 29.43 25.29 6.78 1.31 0.74 
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5 Conclusions 

This paper illustrated the efficiency of geostatistics in providing the basic figures 

of a specific Health Impact Assessment (HIA) on air pollution based on PM10. A 

significant correlation with NO2 has been exploited. The capability of geostatisti-

cal methods to go beyond a mere mapping, by providing a quantification of the 

uncertainty has been emphasized. The geostatistical framework offers the possibil-

ity to generate PM10 stochastic simulations that take into account the correlation 

between PM10 and NO2. The population exposure to different levels of PM10 con-

centrations is derived from these simulations. The statistical analysis of the results 

will be used for carrying out a health and economic impact assessment. The com-

putation of the part of the PM10 pollution specifically attributable to traffic will be 

considered in future work. 

Even though the use of auxiliary variables like the NO2 data may lead to more 

realistic results, the geostatistical approach highly depends on the availability and 

spatial distribution of PM10 measurements. When this information is scarce, the 

approach would really benefit from the knowledge of the physico-chemical proc-

ess of the pollution. Such information could be obtained from detailed analysis of 

the emissions and transformation process, through a classical numerical simulation 

of air pollutant transport. This simulation output could be incorporated in the geo-

statistical framework as an accurate cofactor through a collocated cokriging or 

kriging with external drift approach (Blond 2002). The final model would then 

present the advantage of integrating the actual data from the air monitoring net-

work and the best knowledge on the pollution phenomenon. 
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1 Introduction 

Air quality is normally characterized using different indicators, generally ex-
pressed by the concentration of a certain pollutant for a determined time period. 
The most frequently used indicators are: sulphur dioxide (SO2), nitric oxides 
(NOx), carbon monoxide (CO) and total suspended particles (TSP).  

Air pollution systems integrate three main components: emission source, trans-
port medium (atmosphere) and receptor. Pollution reaching a receptor depends not 
only on the emitted quantity, but also on atmospheric dynamics (Seinfeld 1986, de 
Nevers 2000). The impact on the receptor can be estimated by developing source-
receptor linkages through the atmosphere. In some cases its transport may occur 
over great distances until it reaches ground level, reason for which these sub-
stances are also object of agreements and international conventions.  

It is well known that air pollutants at ground level can be harmful to human 
health, if their concentrations exceed certain limits (de Nevers 2000). As pollut-
ants accumulate in, or near, large metropolitan areas, populations are typically 
more exposed to unhealthy pollutant concentrations (Seinfeld 1986, Cobourn et al.
2000, Kolehmainen et al. 2000).  

Considering the effect that air pollutants’ concentrations have on human health, 
a study that allows the identification of regional emission-receptions patterns for 
some pollutants and the quantification of the contribution of local industrial units, 
is of great interest for the health system, the environment, the economy and also to 
local management (Cobourn et al. 2000, Kolehmainen et al. 2000) 

Even so, in order to develop robust predictive air quality (AQ) models, wide-
range monitoring systems are necessary. Modelling therefore often needs to be 
used in conjunction with other objective assessment techniques, including moni-
toring, emission measurement and inventories, interpolation and mapping (WHO 
1999). However, obtaining suitable and representative AQ samples can be quite 
difficult. 

A predictive model of the different emissions’ contribution to the pollutant con-
centrations captured at each monitoring station, will allow an analysis of the im-
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pact caused in the monitoring station’s area and its translation into an air quality 
index. 

The purpose of this study is to analyse possible relations between sulphur diox-
ide (SO2) emissions from industrial complexes located in the Sines area (Portu-
gal), and air quality data colleted at monitoring stations, by means of linear and 
non-linear modelling. 

2 Objectives 

The objective of this study consists in developing and implementing a methodol-
ogy that allows classifying the contribution of different emission sources to air 
quality (AQ) in the region of Sines (Fig. 1). This methodology is based on the use 
of artificial neural networks (ANN’s), in order to identify non-linear relations be-
tween meteorological parameters, emissions and air quality data measured at 
monitoring stations. Within the scope of this work, the following tasks were per-
formed: 

Identification of regional emission-reception patterns for some pollutants; 
Quantification of the individual contribution of local industrial units; 
Development of an instrument that allows, simultaneously, to evaluate temporal 
forecasts of AQ parameters and, also, to simulate situations of extreme atmos-
pheric pollution. 

We present a case study where possible relations between sulphur dioxide 
(SO2) emissions, generated by three industrial complexes (Petrogal, Borelis and 
CPPE) located in the Sines area (Portugal), and air quality data colleted at four air 
quality monitoring stations (Santiago do Cacém, Sonega, Monte Chãos, Monte 
Velho), are analysed by means of linear and non-linear modelling, as described in 
the section 4. 

Typically, the distributions of daily data of the emissions of the three industrial 
complexes and air quality data colleted at the four AQ monitoring stations have 
large values of skew. Thus, it is natural to consider that the physical processes re-
lated to these distributions are of a non-linear nature.  

Presently, ANN’s constitute the best technique (as flexible mathematical struc-
ture) that is able to identify complex non-linear relations between inputs and out-
puts, without previous integral understanding of the phenomenon’s nature. 

In recent years there has been a tendency to use more statistical methods in-
stead of traditional deterministic modeling (Kolehmainen et al. 2000). A number 
of linear methods have been applied to time-series for air pollutants (Simpson and 
Layton 1983, Ziomas et al. 1995, Shi and Harrison 1997), including comparisons 
with neural network methods (Yi and Prybutok 1996, Comrie 1997, Gardner and 
Dorling 1999, Cobourn et al. 2000, Kolehmainen et al. 2000). Gardner and Dor-
ling (1998) concluded, in their overview of applications of ANN’s to the atmos-
pheric sciences that ANN’s generally provide as good or better results than linear 
methods. 
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Fig. 1. An overview of the Sines Peninsula (Petrogal, Borealis and CPPE industrial com-
plexes in light gray; AQ monitoring stations in Santiago do Cacém, Sonega, Monte Chãos, 
Monte Velho in dark gray).  

3 Data 

Sulphur dioxide emissions (mg/m3) from three industrial complexes – Petrogal, 
Borealis and CPPE – are periodically measured in a set of monitoring stations  – 
Santiago do Cacém, Sonega, Monte Chãos, Monte Velho – and converted to daily 
averages for a period of 12 months (from 1/1/2002 to 31/12/2002) (Fig. 2 and 3). 
Meteorological data – wind speed and direction on an hourly basis, for the same 
period – was also collected and analysed (Fig. 4). 

2 km2 km
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Fig. 2. SO2 emitted by the three industrial complexes, standardized to zero mean and unit 
standard deviance. 

Fig. 3. SO2 measured by the monitoring stations. MC - Monte Chãos, MV - Monte Velho, 
SC - Santiago do Cacém, SO - Sonega, standardized to zero mean and unit standard devia-
tion.
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Fig. 4. Wind speed and of the modal wind direction registered, standardized to zero mean 
and unit standard deviance. 

The available data was standardized in order to minimize the effect of different 
local means and variances in the evaluation of the emissions/AQ measurements 
relationships. Afterwards, the days, which did not have any register of data in at 
least one of the emission-reception stations, were annulled. Thus, only the period 
common to all the available data sets or to each pair emission-monitoring station 
was used (365 days - N error values).  

4 Methodology 

A two steps methodology was approached for this study. First, the time series of 
each data pair – industrial emission and monitoring station records – was filtered 
out, in order to obtain contiguous time periods with high correlation of that spe-
cific industrial emission with the equivalent monitoring-station measurements. For 
this purpose, an iterative optimisation process was developed, using the correlo-
gram between industrial emissions standardized data and monitoring station time 
series as the objective function (e.g. Fig. 5). After this classification of “historical” 
data, the process becomes automatic for any future pair of data (same industrial 
emission source and monitoring station) through the use of a probabilistic neural 
network (PNN). The PNN automatically classifies the time series into two classes:  

Class 1:  Pairs of highly correlated points; 
Class 2:  Pairs of points without correlation.  
In a second step, artificial neural networks (ANN’s) were applied in order to 

identify non-linear relations between the SO2 emitted by the industrial complexes, 
AQ parameters measured at the monitoring stations and meteorological informa-
tion. 

4.1 Classification of time periods with high correlation between 
emission and monitoring station records 

After the first attempts of including meteorological variables into prediction mod-
els, we concluded that the available data of wind speed and direction wasn’t re-
sponsible for the dynamics of the different pollutant plumes. The main reason is 
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that the meteorological data was often collected at an altitude and locations inade-
quate to capture emissions from the different industries’ chimneys. 

Hence, in a first step, the time series of each data pair – industrial emissions 
and monitoring stations records – was filtered with the purpose of obtaining con-
tiguous time periods with high correlation between that specific industrial emis-
sion and the equivalent monitoring station measurements. 

Basically, a simple iterative procedure was implemented. The variogram of 
each pair emissions-monitoring station AQ measurements along a period T (365 
days - N error values): 
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where z1(i) and 1(i) are the measurements of the emission source z1 and of the 
monitoring station 1 for the instant i after standardization, was assumed as an ob-
jective function that tends to decrease (increasing the correlation between z1 and

1) as, iteratively, pairs of points with less contribution are removed.  
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Fig. 5. Borealis and Sonega class 1 correlogram. 

A probabilistic neural network (PNN) was used for an automatic data classifi-
cation into the two classes described above. PNN’s can be useful for classification 
problems and have a straightforward design. A PNN is guaranteed to converge to 
a Bayesian classifier providing it is given enough training data, and these net-
works generalize well. PNN’s have many advantages, but they suffer from one 
major disadvantage. They are slower to operate because they use more computa-
tion than other kinds of networks to do their function approximation or classifica-
tion (Haykin 1994, Beale and Demuth 1998).  
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4.2 Prediction Model Formulation  

Neural networks are composed by a number of interconnected entities, similar in 
many ways to biological neurons – the artificial neurons. These artificial neurons 
may be associated in many different ways – the network architecture. The network 
function is determined largely by the connections between neurons. An ANN may 
be trained to perform a particular function by adjusting the values of the connec-
tions (weights) between neurons (Haykin 1994, Beale et al. 1996, Gurney 1997, 
Beale and Demuth 1998). 

Commonly, neural networks are adjusted, or trained, so that a particular input 
leads to a specific target output. The network is adjusted, based on a comparison 
of the output and the target, until the network output matches the target. The 
choice of the network’s architecture depends on the task to be performed (Haykin 
1994, Sarle 1994, Beale et al. 1996, Gurney 1997, Beale and Demuth 1998, Dor-
ling and Gardner 1998). To model a physical system such as an air pollution sys-
tem, a feed-forward layer is normally employed (Wasserman 1989). It consists of 
layers of input neurons, and one or more hidden layers. For this study the 
MATLAB’s neural networks toolbox was used (Beale and Demuth 1998).  

Considering the construction of a neural network model, an air pollution system 
is looked upon as a system that is under various sets of inputs (e.g. weather pa-
rameters, AQ parameters), and will respond by producing different sets of outputs 
(e.g. pollutant concentrations). Such a model assumes no prior knowledge about 
the structure of the relationship that exists between input and output variables. The 
neural network model is trained and tested using the AQ data.  

After the classification process, the sets of industrial emission-monitoring sta-
tion pairs of points belonging to Class 1, were processed by a multiple layers neu-
ral network with feed-forward propagation (feed-forward multi-layer perceptron) 
trained by a back-propagation algorithm. Considering that the available data sets 
were limited, a simple random validation was used. Some of the models’ details 
are addressed below: 

Weights randomly initialised; 
One hidden layer; 
Number of hidden neurons limited to a minimum of two (for the non-linear 
model); 
Number of hidden neurons tested through trial and error (non-linear model); 
Number of epochs to train limited to 100 (non-linear model); 
Sum-squared error goal set to 0,5 (non-linear model); 
Learning rate set to 0,001 (non-linear model); 
Activation functions: 
Linear model: linear 
Non-linear model: log-sigmoid and linear. 

The linear and non-linear models were integrated. On the non-linear model, the 
number of neurons (s) in the hidden layer (s={1, 2, 3, 4, 5, etc.}) was systemati-
cally altered.
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5 Results and Discussion 

With the purpose of obtaining contiguous time periods with high correlation be-
tween each pair of industrial emission and monitoring station measurements, the 
time series of each data pair was filtered (c.f. Section 4.1). Scatters plots of the 
standardized values of the data series, before and after being filtered, are presented 
in Fig. 6 and 7, for the case of Borealis’ emissions and Sonega’s monitoring sta-
tion. Fig. 8 shows the respective time series after filtering. 

Fig. 6. Borealis (x-axis) and Sonega’s (y-axis) SO2 concentrations before being filtered.  

Fig.7. Borealis (x-axis) and Sonega’s (y-axis) class 1 data points. 
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Fig. 8. Borealis and Sonega’s Class 1 data points. 

After the classification process, the sets of industrial emission-monitoring sta-
tion pairs of points belonging to Class 1 were processed by a feed-forward multi-
layer perceptron (c.f. Section 4.2).  

Correlation coefficients between observed and modelled AQ values attained 
with the linear and non-linear models, for the same day (t=0) and for the day after 
(t=1), are represented in table 1.  

Table 1: Correlation coefficient between observed and modeled AQ values attained with 
the linear and non-linear models for the same day (t=0) and for the following day (t=1).  

Correlation coefficient (%) 
(t = 0) 

Correlation coefficient (%) 
(t = 1) 

Linear
Model

Non-Linear 
Model

Linear
Model

Non-Linear 
Model

MC Borealis 56 63 (9) 61 63 (2) 
MC Petrogal 72 73 (3-7) 58 66 (2) 
MC CPPE 78 80 (4) 75 76 (7) 
MV Borealis 59 62 (2) 64 66 (2) 
MV Petrogal 59 63 (2) 50 57 (2) 
MV CPPE 65 57 (1) 76 77 (2) 
SC Borealis 62 70 (2) 64 70 (2-4) 
SC Petrogal 70 75 (2) 61 63 (3) 
SC CPPE 67 75 (2 and 7) 64 62 (2) 
SO Borealis 67 69 (2) 72 82 (2) 
SO Petrogal 72 73 (2-3) 73 74 (2) 
SO CPPE 61 67 (2-3) 72 74 (2) 

Note: The number(s) between parentheses, on the non-linear models’ columns, refer to the 
number of hidden neurons. 



182      A. Russo, C. Nunes and A. Bio 

6 Discussion 

From the analysis of table 1 we may conclude that: 
The best AQ-emission correlations for Monte Velho and Monte Chãos, are ob-
tained with the CPPE’s industrial complex. For Monte Velho, the best correla-
tions attained for the same day, result from the integration of the linear model. 
The best correlations for Sonega, for the same day are obtained with Petrogal. 
The best correlations for Sonega and for the following day are reached with Bo-
realis, and result from the integration of the non-linear model. 
For Santiago do Cacém, the best correlations for the same day are attained with 
Petrogal and for the following day with Borealis, by the non-linear model. 

The developed neural network models establish a reasonable relationship be-
tween the values emitted by the tree industrial units and the values measured in the 
AQ monitoring stations.  

7 Conclusions 

The models developed present satisfactory correlations between pollutant values 
emitted by the tree industrial units (Petrogal, Borealis and CPPE) and those values 
measured at the AQ monitoring stations (Monte Chãos, Monte Velho, Santiago do 
Cacém and Sonega).  

Models’ performance could improve using longer AQ data series, and other 
types of meteorological data series. 

Note that this study merely aims to assess possible relationships between pairs 
of emission sources and air quality monitoring stations records. However, the re-
sults suggest that, more robust prediction models can be developed. 

Finally, we find it appropriate to point out that neural nets are far from being 
the solution to all statistical modelling problems. The use of such complex models 
should be considered with some caution. In particular, the possibility of adjusting 
a high number of coefficients in the non-linear ANN’s may lead to apparent yet 
spurious improvements in the results.

8 Further Work 

The methodology developed and applied to SO2 will be used for NOx measure-
ments, from the same period (2002). Subsequently, the same methodology will be 
applied for the same variables but for the year 2003. 

Based on the results attained with the calibration and validation models, we in-
tend, later on, to develop an operational air-quality assessment tool – time predic-
tion models. 
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These time prediction models may in future be improved coupling spatial in-
formation for the same pollutants captured by passive monitors (diffusive tubes). 
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1 Introduction 

The main issue addressed in this paper is related to the robust estimation of 
variograms, in space and time, representative of a given period and region. Several 
studies have addressed this issue: robust variograms, in the sense of less 
sensitivity to very high and low values (Armstrong 1984, Chauvet 1982, Cressie et
al. 1980, Cressie 1984); variograms estimation of non stationary phenomenon of 
space-time lattices (Switzer 1989, Sampson et al. 1992, Perrin et al. 1999); and 
robust measures of data affected by heteroscedasticity and clustering (Srivastava 
et al. 1989).  

When dealing with space-time data, e.g. a set of monitoring stations measuring 
the water quality of a river or the air quality of a region, some problems arise in 
modelling the space-time pattern of the main pollutants by a robust and 
representative variogram. Measurement errors (Wiersma 2004) or different factors 
conditioning the dynamics of different systems (water or wind) can substantially 
affect the deposition and mask the main space-time patterns of the pollutant in a 
given period. 

The objective of this study is to propose two simple approaches to filter the 
space-time data, removing the effects of assumed measurement errors and 
turbulent influences of external factors.  

The first approach, assumes that the data have some (few) measurement errors 
that significantly affect variogram values for short distances. The objective is to 
identify those measurement errors, in order to avoid them in the variogram 
computation. An optimisation technique (simulated annealing) is used to remove 
pairs of points using as criterion the assumption that the variograms have a linear 
behaviour near the origin. Obviously this approach is valid only if a small 
proportion of points is removed, to obtain the average behaviour. Here, the 
objective is to capture the major and representative space-time features, and not to 
drive data to a given continuity model.  
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When dealing with the noisy influence of secondary variables that condition the 
spatiotemporal patterns, a second methodology is proposed. Here, the problem re-
sults from the fact that the air pollution dispersion is dependent on wind speed, 
wind direction, atmospheric stability classes or turbulent conditions. 
Spatiotemporal dependencies can exist during some periods within some range of 
wind speed, and can, for example, disappear for high wind speeds or severe 
turbulence conditions. Hence a classification of short time periods with anomalous 
spatial continuities is performed. For a new set of data corresponding to a new 
period (which was not taken into account in the variogram estimation) each time 
can be classified in terms of its probability to belong to an anomalous period of 
time. 

2 Methodologies 

Assuming a value Z(xi,tj) of variable Z, measured at monitoring station xi for time 
tj, this value can be correlated with the concentrations measured in previous time 
periods at the same monitoring station, and with concentrations measured at 
neighbouring monitoring stations during the same or previous time periods. 

The spatial continuity for a given period of time can be characterized using a 
mean spatial variogram, γs(h), computed by averaging the spatial variograms of 
each time t slice and representing the mean spatial pattern for that given period of 
time: 
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where Nt is the number of time periods and Nh the number of pairs of monitoring 
stations at distance h from each other. 

A linear behaviour of the variogram, near the origin, is assumed in the presence 
of spatial and temporal dependencies. Both methodologies here proposed are 
developed based on this notion. The Pearson correlation coefficient was used as 
criterion to evaluate these linear behaviours. The concept of “near the origin” is 
theoretically vague, and the selected number of points depends on each case study.  

2.1 Optimisation technique 

This approach was developed under the assumption that only few data have 
measurement errors concealing the existing spatiotemporal patterns, and aims at 
identifying these data in order to remove them from the variogram calculation. 
Two basic principles underlie the proposed methodology: the data to be removed 
must be validated (a posteriori); the number of data removed should be minimal. 

For this purpose, an optimisation technique is used to remove pairs of points, in 
order to minimize the square differences from a linear behaviour of the variogram 
near the origin; being the approach based on the maximization of the 
corresponding correlation coefficient. 



Variogram estimation with noisy data in the space-time domain      187 

The idea of this process is to choose the values that affect most negatively the 
correlation coefficient of a linear behaviour of the variogram near the origin, to 
understand and clarify the mean spatiotemporal pattern. The values Z(xi,tj), at a 
given spatial location xi at a time tj, are iteratively removed until a pre-defined co-
efficient of correlation is achieved or until the maximum number of points allowed 
is removed. This maximum number must be an insignificant proportion of the data 
to preserve their specific spatiotemporal patterns.  

After defining the threshold for the correlation coefficient ρ (i.e. the objective 
function value considered satisfactory) or the maximum number of points allowed 
to be removed, and defining the “near the origin” range, the process can be sum-
marized as follows: 
1. Iteratively remove a value Z(xi,tj), for a given i and j.
2. Estimate the spatiotemporal variogram γij(h), according to Eq. 1, after Z(xi,tj)

has been removed. 
3. Compute the corresponding correlation coefficient ρij, between γij(h) and h. 

This coefficient represent the linear behaviour fitting quality of the spatiotem-
poral variograms near the origin, when Z(xi,tj) is not being considered. 

4. Return to step 1 and repeat for all Z(xi,tj), to identify the most influent point in 
the convergence of the objective function. The value Z(xi,tj), corresponding to i
and j, that results in the maximum correlation coefficient when omitted, is de-
finitively removed.  

5. The process continues until the pre-defined objective function limit is reached. 

2.2 Classification of short time periods 

The second approach has different goals and different applications. It deals with 
situations where a considerable proportion of data must be removed to obtain a 
good spatiotemporal variogram; situations that the first methodology is not appro-
priate to deal with. 

In those cases the problem is probably not the existence of measurement errors 
but, for instance, the influence of external variables that are conditioning the spa-
tiotemporal patterns. For instance, air pollution dispersion can be dependent on 
wind speed, wind directions, or atmospheric stability classes.  

An alternative methodology was developed to characterize the spatial continu-
ity in these situations. The process is similar to the first one, but instead of remov-
ing one anomalous value, an entire set of values of one period, which is assumed 
to be disturbed by the meteorological conditions of that period, is removed. The 
final goal is to obtain contiguous periods of evident space-time patterns and dis-
tinct periods with poor correlation between monitoring stations.   

The classification of time periods with different space-time patterns is identical 
to the previous.  
Note 1: Both methods can be generalized to achieve more robust space-time 
variograms, especially when time delays are verified between monitoring stations. 
In these cases the variogram in equation (1) is replaced by the space-time 
variogram: 
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where Nt is the number of time periods and Nh the number of pairs of monitoring 
stations at distance h from each other. 

The methodological sequences are identical to 2.1 and 2.2. 
Note 2: In those cases where measurement errors are assumed to disturb the aver-
age model and the first method (2.1) is applied to remove a few points to obtain a 
robust and representative variogram, the space time dispersion can be character-
ized for past or simulated for future scenarios with patterns identical to those of 
the recent past (Nunes et al. 2004). 

When different periods are classified using the second method – periods with 
evident space-time patterns and periods without any special or temporal structure 
– it is necessary to identify which class each period belongs to, before applying 
the space-time variogram model. Russo et al. (2004) suggest the use of a Probabil-
istic Neural Network to identify those periods prior to any estimation or simula-
tion.  

3 Applications 

3.1 Air quality of Setúbal Peninsula case study  

The proposed methodologies are illustrated with an air quality assessment case 
study. This case study aims at characterizing air quality in the Setúbal Peninsula 
(Portugal). Particulate emissions from three main non-diffuse sources – a cement 
factory, a power plant and a pulp mill – are periodically measured in a set of 
monitoring stations, on a daily average basis (Fig. 1).  

The first approach (2.1) was applied to the data measured in monitoring stations 
during a relatively homogeneous period of 6 months (from 1/2/1997 to 
31/7/1997).  

To ensure the presence of different meteorological conditions for the applica-
tion of the second methodology (2.2), daily data of particulate concentrations 
measured during 3 years (from 1996 to 1998) was used. 
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Fig. 1. View of part of the Setúbal peninsula with monitoring stations ( ) and pollutant 
sources ( )

Given the varying local means and variances, the original variables were, in 
both cases, standardised by their local means and standard deviations. These sta-
tistical measures are very sensitive to extreme values. Note that, noisy data are not 
necessarily extreme values but values that are not in agreement with the average 
spatiotemporal patterns. Therefore standardisation before filtering, to treat local 
heterogeneities, is a valid approach.  

Global statistics of the transformed experimental data, for the referred periods 
of time, are shown in Fig. 2. 

a) 6 Months                                                        b) 3 Years 
 Mean Variance Min Max Skewness P95 

6 Months 0 0.99 -2.11 4.95 0.71 1.67 

3 Years 0 1 -1.95 7.78 1.62 1.89 

Fig. 2. Histograms and descriptive statistics of the transformed datasets 

Mean spatial variograms (1) of the transformed experimental datasets are 
shown in Fig. 3. 

0         1        2 KM 



190     C. Nunes and A. Soares 

a) 6 Months                                                                b) 3 Years
Fig. 3. Mean spatial variograms of standardized datasets, for the given periods of times 

Both of the mean spatial variograms do not reveal any spatial pattern; it seems 
that the particulate concentrations do not display any mean spatial structure, dur-
ing the given periods of times.  

To identify potential measurement errors, the first methodology was applied to 
the 6-months dataset. In the 3-years dataset the existence of some short time peri-
ods, where the global space-time structures are disturbed by external variables 
(e.g. adverse meteorological conditions), is expected. To identify and classify 
those periods of times, the second methodology was applied. 

3.2 Estimation of robust variogram: method 1  

The methodology presented in section 2.1, was applied to the 6 months standard-
ized data. The dimension of the aureole, inside which the optimisation algorithm is 
applied, depends on the monitoring network, the spatial distribution of the pairs of 
points etc.. Several ranges were essayed.  

Fig 4 shows the application of best linear fit “near the origin” inside a 5000 me-
ters range aureole.  

Fig. 4. Robust mean spatial variogram, with a 5000 meters range aureole, for the given pe-
riod of time. 
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After removing 2% of the data (22 out of 1087), the mean spatial variogram 
shows a clear mean spatial pattern, near de origin, allowing the use of geostatisti-
cal techniques in future phases of this work (estimation or simulation). It became 
possible to identify the monitoring station(s) responsible for the erroneous meas-
ures, and to understand the main causes for those problems. 

In Fig. 5 an identical test, but with a 10000 m range aureole, is shown.  

Fig. 5. Robust mean spatial variogram, with a 10 000 meters range aureole, for the given 
period of time. 

The mean spatial variogram reaches an identical structure to that in Fig. 4, after 
removing 4,5% of the data (50 out of 1087). Both have 10 % of nugget effect and 
similar ranges. The slope in the Fig. 5 is lower than that of Fig. 4. In general, we 
observed that increasing the “near the origin” range beyond 5000 meters does not 
change significantly the variogram behaviour. The small-scale variability and/or 
some remaining measurement errors can be responsible for the 10% nugget effect.  

To test this methodology, a dataset with a uniform distribution and totally ran-
dom spatial and temporal structures, was simulated. In Fig. 6, the initial mean spa-
tial variogram (a) and the obtained mean spatial variogram (b), after filtering, are 
shown.  
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Fig. 6. a) Initial mean spatial variogram and b) final filtered mean spatial variogram (5 000 
meters range aureole), using a random test dataset.  

The initial variogram (Fig. 6a) and filtered variogram (Fig. 6b) do not reveal any 
spatial structures. After removing 5 % of data using a 5000 near the origin range, a 
linear behaviour was reached (0.9 as correlation coefficient) but with 81% of the 
sill as nugget effect, proving that if there are no structures in the model, this meth-
odology is useless, and can only capture spatial structures if they are really exist-
ing although masked by few measurements. This exercise demonstrates that the 
methodology does not “create” any spurious structure, by picking the best fitting 
data for a linear near-the-origin behaviour.  

3.3 Estimation of robust variogram: method 2 

The methodology presented in section 2.2 was applied to the 3 years standardized 
dataset, using identical parameters to those in section 3.2: 5000 and 10000 meters 
“near the origin” ranges. The detailed evolutions of the correlation coefficients as 
functions of the number of time slices (days) removed are shown in Fig. 7. 
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Fig. 7. Evolution of the correlation coefficients, for 5000 and 10000 meters “near the ori-
gin” ranges. 

In both cases, after removing 308 days, 28% of the total data set used in the 
computation of the mean spatial variogram (Fig. 7), the correlation coefficients 
reach approximately the value 0.98. A 0.8 correlation coefficient can be obtained 
removing 100 data (9% of the total), and after 200 omissions the correlation coef-
ficient function becomes practically constant at about 0.97. For the remaining 72% 
of daily measurements it is possible to fit a mean spatial variogram. The mean 
spatial variograms, using a 5000 and a 10 000 meters range aureoles, are shown in 
Fig. 8.  

Fig. 8. Mean spatial variogram omitting 308 daily measures 

The second variogram reveals a more clear spatial pattern. Using the second 
method it seems that the dimension of the range aureole has a more evident effect 
on the variogram structures. For the selected periods of time, the variograms, re-
vealing a spatial pattern, can be used in future estimation or simulation applica-
tions. Considering, for example, a new set of data corresponding to a new period, 
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each time period can be classified, in terms of the probability of belonging to an 
anomalous period of time (for instance using neural networks, Russo et al. 2004).  

In a posterior analysis, no direct relation between the identified periods of time 
and the available meteorological information (wind speed, wind direction, precipi-
tation, temperature, humidity) was found. Note that the available meteorological 
information is measure only in one location, and has to be considered as represen-
tative for the entire area; a very questionable assumption considering this case 
study and the region’s irregular topography. 

4 Final remarks 

The presented methodologies constitute simple algorithms to identify (and (possi-
bly remove) erroneous data or anomalous time periods, for the identification of 
critical situations (measurement errors or the influence of external factors) and for 
the estimation of robust and representative spatial variograms for space-time data.  

The approach is based on the assumption that external factors (measurement er-
rors, turbulent meteorological conditions) affect data at specific locations or an en-
tire set of data from a given period. Instead of analysing all factors (most of which 
unknown or unmeasured) that could possibly interfere with the data measure-
ments, we propose to filter the data according to a given optimisation criterion.  

Both methodologies here proposed are developed under the assumption that a 
variogram has a linear behaviour near the origin in the presence of spatial and 
temporal dependencies. Note that these methodologies can be easily adapted to 
others models (for instance, linear, exponential, Gaussian, or other prior variogram 
model), incorporating their respective parameters in the algorithms and using a 
correlation coefficient to evaluate the near-the-origin behaviours. The advantages 
of a linear behaviour assumption are that it describes the most common situations 
and that it is not necessary to adjust model parameters. 

In the here presented case study the original variograms are standardized by lo-
cal means and standard deviations, as a way to deal with local heterogeneities.  

Notice that, although the methodologies presented did produce good results for 
a set of airborne pollution data, there are some limitations that must be taken into 
account:

• Regarding the first method, the assumption of measurement errors can 
stand as long as just a few points are removed; otherwise one risks to ob-
tain a spurious variogram, that is neither robust nor representative of a 
consistent time period.  

• The second method consists in the classification of continuous time peri-
ods with a given structured spatial pattern. If the obtained variogram is 
representative of a dispersed set of time periods, it can be useless for any 
posterior application.  
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1 Introduction 

Groundwater flow and transport models rely on a detailed description of the hy-
draulic properties of the subsurface. Because of financial and physical limitations 
to data collection, the subsurface heterogeneity cannot be described in detail de-
terministically. In recent decades numerous stochastic approaches have been de-
veloped to overcome this problem. These methods interpolate between hard data 
and use geologic, hydrogeologic and geophysical information to create images of 
the property of interest. An excellent review (up to 1995) of structure-imitating, 
process-imitating and descriptive methods is presented by Koltermann and 
Gorelick (1996). To date, most applications of geostatistics in hydrogeology have 
employed variogram-based techniques. The use of two-point correlation methods 
can be justified to describe the heterogeneity within a single statistically homoge-
neous stratigraphic unit. However, they are too limited to adequately characterize 
the spatial continuity for multimodal distributions, such as sand-shale formations, 
fractured rock masses or dolomite rocks with dissolution channels. Mimicking 
such complex geological settings requires relations between variables at three or 
more locations at a time. Also, variogram-based methods cannot take full advan-
tage of existing prior geological knowledge or depositional information. 

Multiple-point (mp) geostatistics aims to overcome the limitations of the 
variogram-based techniques in representing the geological continuity. The premise 
of mp-geostatistics is to move beyond two-point correlations between variables 
and to obtain relations between variables involving jointly several locations at a 
time. Strongly connected, curvilinear structures often constitute preferential flow 
paths that largely affect groundwater flow and transport. Conductivity barriers of 
various sizes and shapes may be present and need to be adequately represented. 
Mp-geostatistics is an active area of research that recently emerged in the field of 
petroleum engineering (see e.g., Caers and Zhang 2003, Strebelle 2002, Strebelle 
et al. 2002). In this paper we show that some of the techniques developed could 
prove to be powerful tools for a wide range of hydrogeological applications. 
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Therefore, we employ a synthetic non-stationary bimodal reference field repre-
senting a typical fluvial deposition that consists of permeable sand channels em-
bedded in less permeable fine-grained floodplain material. We show results of a 
numerical analysis to evaluate groundwater flow and transport behavior in these 
types of settings and compare the mp-geostatistical approach with a more tradi-
tional 2-point variogram-based method.  

2 Multiple-point geostatistics 

The premise of mp-geostatistics is to generate models/images of the subsurface by 
borrowing patterns of geological heterogeneity from training images. Training im-
ages are merely conceptual and depict the expected patterns of geological hetero-
geneity. They need not be conditioned to any local data nor carry other locally ac-
curate information. Several training images may be used to reflect different scales 
and styles of heterogeneities, or alternative conflicting geological interpretations 
to account for uncertainty about the subsurface architecture. 3-D training images 
can be obtained from unconditional object-based or pixel-based techniques, 3-D 
interpretation of outcrop data or high resolution geophysical data from analog 
fields of study. An example training image is presented in Fig. 1. It represents a 
fluvial setting of W-E oriented sand channels with an average channel width of 8-
10 m. The training image was generated with the object-based algorithm fluvsim 
(Deutsch and Tran 2002). 

0 100 200 300 400
x

0

100

y

Sa

Fl

(m)

(m
)

Fig. 1. Training image representing a fluvial deposit (generated with fluvsim, Deutsch and 
Tran 2002): Sa = sand, Fl = floodplain 

Similar to variogram-based geostatistics, the training images are bound by the 
same principles of stationarity and ergodicity. They are essentially databases of 
geological architectures, and if patterns are to be extracted from them enough 
repetitivity and consistency of patterns is required. Ergodic considerations dictate 
the minimum size of the training image. Reproduction of large scale patterns like 
sand channels require training images of at least 2 times the size of the area in the 
direction of the channel continuity. Small training images will result in large er-
godic fluctuations and will deteriorate pattern reproduction (Caers and Zhang 
2002). 
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3 Single normal equation simulation algorithm 

The single normal equation simulation algorithm (snesim) developed by Strebelle 
(2000, 2002) is an efficient pixel-based sequential simulation algorithm that ob-
tains multiple-point statistics from the training image(s), exports it to the geostatis-
tical model and anchors it to the actual subsurface data, both hard and soft. For 
each location ),( yx=u  along a random path, the set of local data values and their 
spatial configuration, termed ‘data event’, is recorded. The training image is 
scanned for replicates that match this event. The central node values correspond-
ing to the replicates are used to calculate the conditional probability of the central 
value, given to the data event. Current implementations of snesim acquire signifi-
cant CPU efficiency by performing this scanning prior to simulation and storing 
the conditional probabilities in a dynamic data structure, called the search tree. In 
summary, the snesim algorithm works as follows: 

• construct a 2-D (or 3-D) grid for the area, assign hard data to closest grid 
cells

• scan the training image for data events and store them in a search tree 
• define a random path 
• until each non-datum cell with coordinates ),( yx=u  on the random path 

is visited 
1. search for the closest nearby well data and previously simulated 

cells (this set is the ‘data event’); 
2. obtain the probability distribution for the property to be simu-

lated from the search tree; and 
3. draw an outcome from the probability model in step 2 and as-

sign that value to the current grid cell. 
In two-point geostatistical methods, the probability distribution in step 2 is ob-

tained through some form of kriging based on a variogram model. In the snesim
approach no kriging or variogram is involved and the probability distribution is 
obtained directly from the training image. For details of this procedure the reader 
is referred to the works of Strebelle (2000, 2002). Soft data can be included 
through an extension of Bayes’ theorem, as discussed in Strebelle et al. (2002). 
Caers (2003) describes how production data can be incorporated using history 
matching. 

The stationarity requirement for the training image does not imply that only sta-
tionary fields can be generated. Similar as to building complex variogram models 
from basic variograms, the well known principles of nesting models, rotation and 
affinity transformation can be used to build complex strongly non-stationary 
fields, such as sand channels with locally varying channel widths or changing 
channel directions. Nesting of models is obtained by using different training im-
ages for different scales of observations (see Strebelle and Journel 2001). For the 
rotation and affinity transforms, each single datum with original coordinates 

),( origorigorig yx=u  in the entire data event is rotated and affinely transformed 
along the center node to the new coordinates ),( newnewnew yx=u  according to  
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contains the rotation angle azimuth )(uθ . Example maps for the affinity factors 

and rotation angles are presented in Fig. 2. Location-dependent rotation and affin-

ity information can be obtained from well-data, seismic, geological, or deposi-

tional information.  
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Fig. 2. a) affinity factors (ratio) 1)()()( , =uuu xyx aaa ; and b) channel rotation angles 

4 Synthetic fluvial case study 

A typical fluvial fan depositional system is presented in plan view in Fig. 3a. The 

area of interest is 200m by 150m, and is discretized in 1x1 m blocks. The system 

is characterized by high permeable sand channels embedded in less permeable 

fine-grained floodplain material. Sand channels compose 30% of the system and 

form an interconnected network. The channels are oriented W-E and diverge 

north- and southwards when moving along the x-axis. The channel width in the 

area decreases from 8-10 m to 3-5 m moving from west to east. The synthetic field 

is generated with snesim using the training image from Fig. 1 and the angle rota-

tion and affinity data presented in Fig. 2. Within each facies the natural log of the 

hydraulic conductivity (Y = ln K) is modeled as a realization of a second-order sta-

tionary Gaussian random field using the sequential Gaussian simulation algorithm 

sgsim (Deutsch and Journel 1998). The statistics of both random fields are pre-

sented in Table 1. The ln K histogram and experimental facies variogram for the 
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reference field are plotted in Fig. 3b and c, respectively. Despite the strong con-

nectivity of the sand channels, the facies variogram is characterized by short 

ranges. This is because the variogram is only a measure of rectilinear connectivity 

that does not capture the curvilinearity of the sand channels. Krishnan and Journel 

(2003) indroduced multiple-point connectivity measures that better value the con-

tinuity of these curvilinear structures. The histogram clearly shows that a unimo-

dal approach would be inappropriate and that the two facies composing the system 

should be modeled as distinct units.  

Table 1. Statistical and hydraulic parameters for the sand and floodplain facies 

 Sand floodplain 

variogram type exponential exponential 

mean ln K 2 -3 

geometric mean K 7.39 m/day 0.05 m/day 

sill )( 2
Yσ  1 0.25 

correlation length )(
xYλ  25 m 10 m 

anisotropy )(
yx YY λλ  2.5 2 

effective porosity )(θ  0.3 0.2 

dispersivity ),( TL αα  0.1 - 0.01 m 0.05 - 0.005 m 
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Fig. 3. a) ln K distribution for the reference field; b) ln K histogram; and c) experimental 

facies variogram  

The reference field was randomly sampled at 100 locations, with 30 samples 

located in the sand channels. A sample consists of the facies type and the ln K

value at that location. To compare the mp-statistics approach with a more tradi-

tional 2p-correlation approach, a random realization, conditioned on the extensive 

sample data set, was generated using the sequential indicator simulation program 

sisim (Deutsch and Journel 1998). The variogram used to generate the sisim reali-

zation is that of the training image shown in Fig. 1. The resulting ln K image, 

Kln  histogram and experimental facies variogram are presented in Fig. 4a, b and 

c, respectively. The corresponding results for a random conditional realization 

generated with the snesim algorithm are given in Fig. 4d, e and f. It is important to 

note that only the facies geometries differ, and that the conditional ln K realiza-

tions of the sand and floodplain formations are the same in the conditional facies 
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realizations generated with sisim and snesim. Both methods very closely repro-

duce the ln K histogram and experimental facies variogram of the reference field. 

However, results clearly indicate that the 2p-approach fails to reproduce the chan-

nel network, in contrast to the mp-approach. Hence, using a variogram model ac-

counting only for 2p-correlation fails to mimic the interconnected channel net-

work, even for extensive conditioning data sets. Also presented in Fig. 4, in plates 

g, h and i, are the results of an unconditional realization generated with snesim and 

sgsim. Again, the statistics and the channel structures are very well reproduced. 

However, the exact locations of the channels are not reproduced without condi-

tioning data.  
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Fig. 4. a), d), g) ln K distribution; b), e), h) ln K histogram; and c), f), i) experimental fa-

cies variogram: a), b), c) = sisim, conditional realization; d), e), f) = snesim, conditional re-

alization; and g), h), i) = snesim, unconditional realization.  

5 Some observations on flow and transport 

To investigate the impact of the interconnected channel structure on groundwater 

flow and transport we performed a numerical analysis for which the results are 

presented in this section. We consider the case of a confined aquifer. The govern-

ing equations for steady-state confined groundwater flow and non-reactive single 

species transport are 

0).( =−∇∇ qhT  (5.1) 
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bKT =  (5.2) 

h
b

∇−= Tv  (5.3) 

)().( ccqcbcb
t
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∂
∂ vD θθθ  (5.4) 

where v  is the groundwater flow velocity vector (L/T); T  is the transmissivity 
tensor (L2/T); K  is the hydraulic conductivity tensor (L/T);  is the effective po-
rosity (dimensionless); h  is the hydraulic head (L); q  are fluid sources/sinks 
(L/T); c  is the solute concentration (L/T); sc  is the solute concentration in the 
fluid sources/sinks (L/T); and D  is the hydrodynamic dispersion tensor (L2/T). 
Neglecting molecular diffusion, the principal terms of the dispersion tensor are  
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where Lα  and Tα  are the longitudinal and transverse dispersivity (L), respec-
tively.  

The simulation model used to predict groundwater flow behavior is 
MODFLOW-2000 (Harbaugh et al. 2000). Transport is simulated with MT3DMS 
(Zheng and Wang 1999), using the Third-Order TVD solution scheme. The con-
fined aquifer has a uniform thickness b = 25 m. At the north and south boundaries 
of the area no-flow boundary conditions are specified. Constant head values are 
set along the west (h = 22 m) and east (h = 20 m) boundaries. At location (x = 25, 
y = 75) a spill of an inert contaminant occurred during a 10-day period with a low 
constant flow rate of 100 l/day and a source concentration sc = 20 mg/l. It is as-
sumed that at the location of the spill the facies type is sand, and that this informa-
tion is known in all cases evaluated in the numerical analysis. Numerically solving 
the groundwater flow and transport model requires specification of values for the 
unknown parameters , K , Lα  and Tα  in each cell throughout the model area. 
The spatial distribution of Kln  is generated as described above using a combina-
tion of snesim and sgsim. The other hydraulic parameters are assumed homogene-
ous within the facies. The values used for the hydraulic parameters are given in 
Table 1. The small dispersivity values imply that transport is dominated by advec-
tion.  

The ‘true’ head distribution is obtained by running the groundwater flow model 
for the reference field and is presented in Fig. 5a. The head contours clearly show 
the effect of the permeable sand channels, which dominate flow through the sys-
tem. The head distributions for the conditional sisim and snesim, and the uncondi-
tional snesim realizations, are given in Fig. 5b, c and d, respectively. The condi-
tional snesim realization yields a fairly good prediction of the reference head 
distribution. For the unconditional snesim realization, the effect of the sand chan-
nels on heads can also clearly be seen. However, the different positioning of the 
sand channels results in a less accurate prediction of the heads. Despite the large 
number of conditioning data, the conditional sisim realization fails to reproduce 
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the reference head field. This can be attributed largely to the inability of the 
method to represent the channel structure. 

0 50 100 150 200
x

0

50

100

150

y

20

20.5

21

21.5

22

h (m)

(m)

(m
)

(a)
0 50 100 150 200

x

0

50

100

150

y

20

20.5

21

21.5

22

h (m)

(m)

(m
)

(b)

0 50 100 150 200
x

0

50

100

150

y

20

20.5

21

21.5

22

h (m)

(m)

(m
)

(c)
0 50 100 150 200

x

0

50

100

150

y

20

20.5

21

21.5

22

h (m)

(m)

(m
)

(d)

Fig. 5. Simulated head distributions: a) reference field; b) conditional sisim realization; c)
conditional snesim realization; and d) unconditional snesim realization.  

With the transport model we simulated the behavior of the released contami-
nant under natural steady-state flow conditions for a period of 500 days. Plates a, 
b, and c in Fig. 6 display the distribution of the contaminant plume for t = 100, 
300 and 500 days, respectively. The bulk of the released contaminant moves 
through the permeable sand channels. Fig. 6 also shows the transport predictions 
for the conditional sisim (plates d, e and f) and snesim (plates g, h and i) realiza-
tions, and the unconditional snesim (plates j, k and l) realization. The variogram-
based method underestimates solute movement in the direction of flow, as it is not 
able to reproduce the interconnected preferential flow paths. Once the solute mass 
enters into the floodplain material it moves downstream very slowly, until per-
haps, a new permeable sand body is encountered. The conditional snesim realiza-
tion yields a fairly good prediction of the location of the contaminant plume 
through time. Results for the unconditional snesim realization indicate that for 
transport predictions it is very important to accurately determine the location of 
the sand channels. The training image, angle and affinity information allow char-
acterizing the structural features of the system, but conditioning is needed to pre-
cisely locate the sand channels.  
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Fig. 6. Simulated contaminant concentrations for t = 100, 300 and 500 days: a), b), c) ref-
erence field; d), e), f) conditional sisim realization; g), h), i) conditional snesim realization; 
and j), k), l) unconditional snesim realization.  

6 Conclusions 

Results shown in this paper indicate that multiple-point geostatistics is potentially 
a very powerful tool to characterize subsurface heterogeneity for hydrogeological 
applications in a wide variety of complex geological settings. Geological struc-
tures or features such as sand channels or clay lenses often constitute preferential 
flow paths or obstacles to flow. Accurately representing and locating these struc-
tures is of high importance when predicting groundwater flow and transport, as 
was shown in this work. Because data are scarce, the mp-statistics are borrowed 
from training images that depict the expected patterns of geological heterogeneity. 
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The mp-statistics are exported to the geostatistical model and anchored to hard 
and/or soft data. Strongly non-stationary fields can be generated using several 
training images, angle rotation and affinity information. Mp-geostatistics should 
bring geological interpretation closer to hydrogeological modeling.  

We note that the analysis presented herein was based upon comparing the simu-
lation results of the example field with those of individual realizations. Further 
analysis is needed to systematically evaluate and quantify the effects of the differ-
ent levels of geological uncertainty on groundwater flow and transport predictions 
in multi-modal settings. 
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1 Introduction 

The safe disposal of nuclear waste is an important environmental challenge. Sev-
eral countries are investigating deep geological disposal as a long-term solution 
for high-level waste. The Belgian nuclear repository program, conducted by 
ONDRAF/NIRAS (Belgian agency for radioactive waste and enriched fissile ma-
terials), is in the process of characterizing the host rock capacities of the Boom 
Clay. This is a marine sediment of Tertiary age (Rupelian) (Wouters and Vanden-
berghe 1994). The research activities are concentrated at SCK CEN (Belgian Nu-
clear Research Centre) located on the nuclear zone of Mol/Dessel (province of 
Antwerp) where an underground experimental facility (HADES-URF) was built in 
the Boom Clay at 225 m depth. In this area, the Boom Clay has a thickness of 
about 100 m and is overlain by approximately 180 m of water bearing sand forma-
tions.  

The isolation of waste from the biosphere is obtained by means of a multi-
barrier concept, composed of engineered and natural barriers. In this study, the ra-
dionuclide migration through the most important natural barrier, the Boom Clay, 
is investigated. The average hydraulic conductivity value of this formation is very 
low (K=2.10-12 m/s), but the clay is not completely homogeneous. It contains al-
ternating horizontal sublayers of silt and clay with an average thickness of 0.50 m 
and a large lateral continuity (Vandenberghe et al. 1997). Furthermore, the clay 
exhibits excavation-induced fractures around the excavated galleries (Dehand-
schutter et al. 2002). The sublayers have hydraulic conductivity values up to 10-10

m/s (Wemaere et al. 2002) and the fractures may have even higher hydraulic con-
ductivity values. Therefore, the aim of this study is to model the transport of ra-
dionuclides through the clay, taking into account the geological heterogeneity and 
the excavation induced fractures around the galleries in which the waste will be 
stored. 
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2 Method 

2.1 Data analysis 

In order to analyze and simulate the heterogeneous hydraulic conductivity, meas-
urements of the hydraulic conductivity and several secondary variables were col-
lected. All measurements were carried out in the Mol-1 borehole (Wemaere et al.
2002). The resulting data set comprises of 52 hydraulic conductivity values, 71 
grain size measurements, an electrical resistivity log, a gamma ray log and a de-
scription of the lithology variation. Hydraulic conductivity and grain size were 
measured in the laboratory on cores of 3 to 10 cm and 10 to 20 cm respectively. 
Borehole resistivity and gamma ray logging was performed with a vertical spacing 
of 15 cm. The lithology description was derived from a Fullbore Formation Mi-
croImager log with a vertical resolution of 5 cm. The scales of all different meas-
urements are of the same order of magnitude. 

All secondary measurements show a clear correlation with hydraulic conductiv-
ity (Table 1). Electrical resistivity and hydraulic conductivity have a correlation 
coefficient of 0.73. Gamma ray, on the other hand, shows a negative and smaller 
correlation with hydraulic conductivity (R=-0.65). This lower correlation is 
probably caused by the presence of organic matter and glauconite in the Boom 
Clay, which both affect the gamma ray measurements. Grain size is observed to be 
well correlated with hydraulic conductivity. The correlation coefficient between 
d40 (i.e., the grain size for which 40% of the total sample has a smaller grain size) 
and hydraulic conductivity is 0.95. The lithostratigraphic column, determined on 
the basis of a Formation Micro Imager (FMI) log (Mertens and Wouters 2003), 
also shows a relationship with hydraulic conductivity: the mean log hydraulic 
conductivity of the clay layers (-11.7) is smaller than the mean log hydraulic con-
ductivity of the silt layers (-11.3). All secondary parameters are thus well corre-
lated with hydraulic conductivity and were therefore incorporated in the simula-
tion of hydraulic conductivity.  

In previous work (Vandenberghe et al. 1997), the Boom Clay formation was 
divided into three zones. This subdivision was confirmed by the statistical analy-
sis. The deepest zone (Belsele-Waas Member: 278m – 292.4m) shows a large 
variability of hydraulic conductivity and the secondary variables, the middle zone 
(Putte and Terhagen Member: 216m – 278m) shows a small variability and the 
upper zone (Boeretang Member: 190.4m – 216m) shows an intermediate variabil-
ity.  Variograms and cross-variograms of all primary and secondary variables were 
calculated and modeled for the three separate zones. Table 2 shows the fitted log 
K variograms of the three zones of the Boom Clay formation. Fig. 1 shows two 
examples of experimental and fitted variograms and cross-variograms: the 
variogram of gamma ray of the Belsele-Waas Member and the cross-variogram of 
gamma ray and resitivity of the Belsele-Waas Member. 
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Table 1. Correlation coefficients between hydraulic conductivity and secondary parameters 

Secondary parameter Correlation coefficient with hydraulic conductivity 
Electrical resistivity 0.73 
Gamma ray -0.65 
Grain size (d40) 0.95 

Table 2.  Fitted log K variograms of the three zones of the Boom Clay formation 

 Model Nugget Range  Sill 
Boeretang 
Member 

Spherical 0.035 4.6 m 0.03 

Putte and 
Terhagen 
Member 

Spherical 0.003 4.8 m 0.0056 

Belsele-Waas Spherical 0.23 5.5 m 0.38 

2.2 Simulation of hydraulic conductivity 

Detailed input fields reflecting the heterogeneity of hydraulic conductivity were 
simulated. These hydraulic conductivity fields serve as input for the hydro-
geological model. Since the Boom Clay shows a large lateral continuity (Wouters 
and Vandenberghe 1994) and since the hydrogeological model is a local scale 
model, it could be assumed that the properties of the Boom Clay do not change 
considerably in the horizontal direction. Therefore, one-dimensional vertical simu-
lations of the hydraulic conductivity were calculated. 
 These fields were generated using geostatistical sequential simulation which al-
lows to take spatial variability and secondary data into account. The simulation al-
gorithm is iterative and contains the following steps: 
1. The location to be simulated is randomly chosen. The spacing between the loca-
tions to be simulated was 0.2 m, which is of the same order of magnitude as the 
measurement scale of the different variables.  
2. The simple co-kriging estimate and variance are calculated using the original 
primary and secondary data and all previously simulated values using COKB3D 
(Deutsch and Journel 1998).  
3. The shape of the local distribution is determined in such a way that the original 
histogram of hydraulic conductivity is reproduced by the simulation. This is 
achieved by the following approach. Before the start of the simulation, a look-up 
table is constructed by generating non-standard Gaussian distributions by choos-
ing regularly spaced mean values (approximately from -3.5 to 3.5) and variance 
values (approximately from 0 to 2).  



212      M. Huysmans, A. Berckmans and A. Dassargues 

Fig. 1. Experimental and fitted a) variogram of gamma ray of the Belsele-Waas Member in 
the vertical direction and b) cross-variogram of gamma ray and resistivity of the Belsele-
Waas Member in the vertical direction 

The distribution of uncertainty in the data space can then be determined from back 
transformations of these non-standard univariate Gaussian distributions by back 
transformation of L regularly spaced quantiles, pl, l=1,...,L:

( )( )1 1 * , 1, ...,KKl lF G G p y l Lyσ− −= + =  (1) 

where FK(K) is the cumulative distribution function from the original K variable, 
G(y) is the standard normal cumulative distribution function, y* and y are the 
mean and standard deviation of the non-standard Gaussian distribution and the pl,
l=1,...,L are uniformly distributed values between 0 and 1. From this look-up table 
the closest K-conditional distribution is retrieved by searching for the one with the 
closest mean and variance to the co-kriging values (Oz et al. 2003). 
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Fig. 2. Simulation of the vertical hydraulic conductivity of the Boom Clay 

4. A value is drawn from the K-conditional distribution by Monte-Carlo simula-
tion and assigned to the location to be simulated. 
This approach creates realizations that reproduce (1) the local point and block data 
in the original data units, (2) the mean, variance and variogram of the variable and 
(3) the histogram of the variable (Oz et al. 2003). Fig. 2 shows one realization of 
the hydraulic conductivity of the Boom Clay. 

2.3 Simulation of fractures 

Around the galleries in the Boom Clay, excavation-induced fractures are observed. 
About 90% of the discontinuities are approximately parallel planes that are part of 
a twofold conjugated fault set (Fig. 3). The excavation-induced fractures around 
the future disposal galleries were modeled as discrete fractures. Their properties 
(i.e., extent, aperture, spacing, dip and strike) are simulated using Monte Carlo 
simulation. Since these fractures will probably have similar properties to the frac-
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tures observed in previously excavated galleries in the Boom Clay, the input prob-
ability distributions of the fracture properties were derived from measurements 
carried out during recent tunnel excavation in the Boom Clay (Dehandschutter et 
al. 2002, Dehandschutter 2002, Mertens et al. 2004). 
 Examination of a mounting chamber excavated in the Boom Clay revealed that 
the rock mass seemed to be damaged up to approximately 2 m, with a lot of small 
scale disturbances. The fractures were open and pyrite oxidation was present on 
the surfaces up to a depth of 2 m (Mertens et al. 2004). To account for potential 
variations in clay properties, tunnel design or excavation techniques, some varia-
tion of the extent of the fractured zone was allowed and the extent of the fractures 
was simulated as a random number between 1 m and 3 m.  
 Fracture apertures were examined using microtomography and scanning elec-
tron microscopy (Dehandschutter et al. 2004). Values of tens of micrometers were 
measured. The aperture could be as large as 1 mm at the tunnel walls and de-
creased rapidly as the distance to the excavation increased (Dehandschutter B. 
personal communication). Therefore, fracture aperture was simulated as a random 
number between 0 µm and 50 µm.  
 Faulting is very intense over most part of the excavation zone. The distance be-
tween subsequent fractures is generally less then 1 m. The average spacing is 
about 70 cm (Mertens et al. 2004). The fracture spacing was drawn from a distri-
bution reflecting these observations, i.e., a normal distribution with a mean of 
0.70 m and a standard deviation of 0.12 m.   
 Fracture dip angle varies between 30 and 80 degrees. 82 fracture dip measure-
ments of shear faults were carried out (Dehandschutter 2002). The average frac-
ture dip was 53° and the standard deviation was 11°. The fracture dip was there-
fore drawn from a normal distribution with a mean of 53° and a standard deviation 
of 11°.  
    

Fig. 3. Schematical representation of a vertical cross section through the Connecting Gal-
lery showing the typical symmetrical form of the encountered shear planes (1. Tunneling 
maching; 2. Supported tunnel; 3. Induced shear planes) 
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 Examination of the strike of discontinuities surrounding boreholes and larger 
excavations in the Boom Clay revealed that the strike of most discontinuities was 
perpendicular to the borehole or gallery axis (Dehandschutter 2002). The orienta-
tion of the fractures was fairly constant and all fractures were therefore assumed to 
have a strike perpendicular to the gallery axis.

The fracture geometry and properties were simulated by independent sampling 
from the proposed marginal distributions of fracture extent, aperture, spacing, dip 
and strike.  

2.4 Hydrogeological model 

A local 3D hydrogeological model of the Boom Clay, including the simulations of 
matrix hydraulic conductivity values and fractures, was constructed (Fig. 4). The 
model width in the x-direction is 20 m, i.e., half the distance between the disposal 
galleries. The model length in the y-direction is 15 m. This length was a compro-
mise between including as many fractures as possible and keeping the computa-
tion time manageable. The model dimension in the z-direction is 102 m, i.e., the 
thickness of the Boom Clay in the nuclear zone of Mol-Dessel. The grid spacing is 
1 m in the x-direction, approximately 0.17 m in the y-direction and between 0.2 m 
and 1 m in the z-direction. This fine grid was necessary to include the high resolu-
tion simulations of hydraulic conductivity and the geometry of the fractures. The 
vertical boundary conditions for groundwater flow are zero flux boundary condi-
tions since the hydraulic gradient is vertical. The horizontal boundary conditions 
for groundwater flow are Dirichlet conditions. The specified head at the upper 
boundary is 2 m higher than the specified head at the lower boundary since the 
downward vertical hydraulic gradient is approximately 0.02 in the 100 m thick 
Boom Clay (Wemaere and Marivoet 1995). This gradient could vary in magnitude 
or even change direction over the long time period associated with radioactive 
waste disposal. In this study the gradient was however assumed to be constant. 
The boundary conditions for transport of the upper and lower boundaries are zero 
concentration boundary conditions (Mallants et al. 1999) since the hydraulic con-
ductivity contrast between the clay and the aquifer is so large that solutes reaching 
the boundaries are assumed to be flushed away by advection in the aquifer.   
 The model was calculated for the radionuclide Se-79 since previous calcula-
tions revealed that this was one of the most important in terms of dose rates from a 
potential high-level waste repository for vitrified waste (Mallants et al. 1999). 
This radionuclide has a half-life of 65000 years, a solubility limit of 5.5e-8 mole/l, 
a diffusion coefficient of 2e-10 m²/s and a diffusion accessible porosity of 0.13. 
The transport processes that were taken into account in the model are advection, 
dispersion, molecular diffusion and radioactive decay.  
 The nuclear waste disposal galleries are assumed to be situated in the middle of 
the Boom Clay. This radionuclide source is modeled as a constant concentration 
source with a prescribed concentration equal to the solubility limit. The radionu-
clides slowly dissolve into the groundwater until all available radionuclides are 
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dissolved. The source term is thus a constant concentration equal to the solubility 
limit until exhaustion of the source.   
The radionuclide migration in the clay and the fluxes through the clay boundaries 
into the surrounding aquifers were calculated with FRAC3DVS, a simulator for 
three-dimensional groundwater flow and solute transport in porous, discretely-
fractured porous or dual-porosity formations (Therrien et al. 1996, Therrien et al.
2003). The fractures were modeled as discrete planes with a saturated hydraulic 
conductivity of (Bear 1972): 

( ) ( )2
2 12K g bf ρ µ=  (2) 

where  is the fluid density (kg/m³), g is the acceleration due to gravity (m/s²), 2b
is the fracture aperture (m) and µ is the fluid viscosity (kg/(ms)). The model was 
run with ten different simulations of hydraulic conductivity and fractures as input. 
The computation time of one run of the model with a PC with a 1.8 GHz CPU and 
512 MB RAM was approximately 6 to 8 hours. 

Fig. 4. Boundary conditions for a) flow and b) transport of 3D local hydro-
geological model.  

3 Results and discussion 

Fig. 5 and 6 show the total Se-79 fluxes through the lower and upper clay-aquifer 
interfaces for 10 different simulations. The fluxes through the clay-aquifer inter-
faces gradually increase until they reach a maximum after approximately 200’000 
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years and decrease slowly afterwards due to exhaustion of the source. The differ-
ence between the fluxes of the 10 different simulations is the largest in the time 
period from 100’000 till 200’000 years. The total amount of Se-79 leaving the 
clay was calculated as the flux integrated over time for each simulation. The total 
Se-79 masses leaving the clay vary between 2.200e+12 Bq and 2.438e+12 Bq 
through the lower clay-aquifer interface and between 2.045e+12 Bq and 
2.252e+12 Bq through the upper clay-aquifer interface. 
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Fig. 5. Total Se-79 flux (Bq/year) through the lower clay-aquifer interface 
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Fig. 6. Total Se-79 flux (Bq/year) through the upper clay-aquifer interface 

The range of total Se-79 masses leaving the clay is thus rather small. The dif-
ference between the largest and the smallest calculated mass is 10%. This result is 
important for the evaluation of the suitability of the Boom Clay Formation as a 
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host rock for vitrified nuclear waste storage. The total mass fluxes leaving the 
clay, taking excavation induced fractures and high-conductivity sublayers into ac-
count, are not very different from the mass fluxes calculated by a previous simple 
homogeneous model. This is probably caused by the relatively small importance 
of transport by advection compared to transport by diffusion in such media. 
Changes in the heterogeneity of hydraulic conductivity do not change the output 
fluxes significantly and do not affect its main safety function. This again shows 
that the Boom Clay is a very robust barrier. 

4 Conclusions 

In this study, the transport of radionuclides through a potential host formation for 
the disposal of vitrified nuclear waste was calculated, taking the geological het-
erogeneity and the excavation induced fractures into account. The calculated 
fluxes through the clay boundaries into the surrounding aquifers were very similar 
for all the different simulations. The difference between the largest and the small-
est calculated mass leaving the clay was 10%. These results show that changes in 
the heterogeneity of hydraulic conductivity do not change the output fluxes sig-
nificantly. The robust barrier function of the Boom Clay formation is thus con-
firmed by these results.  
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1 Introduction 

Within the framework of Safety Assessments for deep (geologic) repositories of 
radioactive waste, the behavior of the repository components (engineered, geo-
technical and natural barriers) is described using model calculations with regard to 
the potential migration of radionuclides and to hazards for man or the environ-
ment. An essential part of this modeling framework is the assessment of the reten-
tion potential of the host rock and the overburden ("geosphere", "far-field"), which 
forms an important component of the barrier system. 

Assessing the post-closure safety of deep repositories by means of safety analy-
ses implies the necessity to treat a variety of inevitable uncertainties caused by the 
complexity of the phenomena and systems under consideration and by the long 
timeframes of concern. It is necessary to demonstrate that assessment results are 
defendable and safety is not compromised even in the presence of uncertainties. 
This demonstration is based on multiple lines of reasoning, e.g. robustness argu-
ments, the use of conservative assumptions, and confidence-building in data and 
models. 

Recognized approaches are available to characterize uncertainties, to propagate 
them through safety analyses, and to present results. Namely, probabilistic uncer-
tainty analyses based on Monte Carlo simulations have been proven to be an ade-
quate means to explore ranges of possibilities, to propagate uncertainties amenable 
to characterization by probability density functions through numerical analyses 
and to assess uncertainties of potential (detrimental) consequences and sensitivi-
ties (Cadelli et al. 1996, Marivoet et al. 1997, Baltes and Röhlig 2004). However, 
in other areas such as (hydro-)geological modeling there is still a need to develop 
and improve appropriate methods. Although it is recognized that the utilization of 
geostatistical methods in hydrogeology might contribute to a consistent treatment 
of this problem (Bonano and Thompson 1993), most existing analyses are still 
based on manually derived hydrogeological models even though some attempts to 
utilize geostatistical methods have been undertaken (LaVenue Marsh and 
RamaRao 1992, Zimmerman et al. 1998, Jaquet et al. 1998, Jaquet et al. 2001). 
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The paper presented here describes a case study which illustrates how a variety 
of geological information can be incorporated stepwise into hydrogeological mod-
els derived by means of non-stationary indicator simulation. The aim of the study 
was
− to explore possibilities of addressing uncertainty and spatial variability in hy-

drogeological models by means of geostatistical methods,  
− to check how such methods can be used in the framework of probabilistic 

Safety Assessments, 
− to obtain conclusions about uncertainty ranges and bandwidths of calculation 

results for a given hydrogeological setting and database. 
Due to the availability of a large amount of hydrogeological, geophysical and 
other data and information, the Gorleben site (Northern Germany) has been used 
for the case study in order to demonstrate the approach. The study is a practical 
application of aquifer characterizations by firstly simulating hydrogeological units 
and then the hydrogeological parameters. Earlier work performed within the study 
was presented at the geoENV conferences in 1998 and 2000 (Röhlig 1999, Röh-
lig and Pöltl 2001). 

2 The Gorleben site and the database 

The Gorleben site is located in the federal state of Lower Saxony (Niedersachsen, 
Northern Germany). Its suitability for the final disposal of all kinds of solid and 
solidified, especially heat-producing radioactive waste had been investigated since 
1979. Since 2001, the exploration has been interrupted to clarify conceptual and 
safety questions. 

The repository is planned at a depth of about 850 m in the Gorleben salt dome. 
The tertiary clay cover of the salt dome has been partially removed by subglacial 
erosion forming a system of channels, one of which is the ”Gorleben Erosion 
Channel” (Fig. 1). This channel has a length of more than 16 km and its width 
ranges between 1 and 2 km. At a depth of about 250 m the erosion processes had 
reached the caprock and at some locations the rock salt. The channel is filled with 
sandy and gravely sediments forming a system of two aquifers separated by clay 
layers. The main clay-bearing structure, the so-called Lauenburg Clay Complex, 
contains apart from clay also the other materials present at the site (sand, silt, 
gravel). 

For the evolution expected for a repository in rock salt, salt creep will close the 
repository vaults (“convergence”) and the waste will be completely isolated by the 
surrounding rock salt. Only in a scenario which leads to a release of radionuclides 
from the repository and the salt dome, these radionuclides would migrate through 
the aquifer system of the Gorleben channel to the surface. Therefore, groundwater 
regime and a possible radionuclide transport through the channel have to be stud-
ied in a safety assessment. 

Hydrogeological investigations were performed in an area of more than 
300 km2 around the salt dome. 340 borehole logs have been compiled and inter-
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preted (Fig. 1). The compilation contains a consistent stratigraphic and petro-
graphic classification, remarks concerning the genesis and colour of materials, and 
a hydrogeological classification. In addition, the following information is avail-
able (Schelkes et al. 1990, Ludwig 1994, Ludwig and Kösters 2002): 
− geological and hydrogeological interpretation, 
− results of pumping tests, 
− results of salt concentration measurements, 
− groundwater ages, 
− seismic and geoelectrical data. 

Fig. 1. The Gorleben site: Positions of the Salt Dome, the Gorleben Channel, the explora-
tion drillings and of the vertical cross section used for modeling 

3 Stepwise approach for the integration of information 

Due to the different nature of the several information types to be integrated in hy-
drogeological models, an approach for utilizing them might take credit from a va-
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riety of methods. Spatial statistical methods have the potential to generate images 
of structures which can be conditioned using hard data and to generate either best 
estimates for such images or series of realizations which are equally probable un-
der given assumptions. The latter would allow fitting such methods into a frame-
work of probabilistic uncertainty analyses. Therefore, spatial statistical methods 
(especially indicator simulation) have been chosen as a basis for the case study. 
The steps undertaken within the study are sketched in Fig. 2 and described in the 
following paragraphs. 

1. Stratigrafic classification (quaternary, Lauenburg Clay Complex)
2D analyses for depths of layer boundaries

2. Definition  of curvi-linear co-ordinates

3. Hydrogeological classification
(aquifer, aquitard, aquiclude): 3D analyses

4. Hydrogeological parameters
(superimpose)

5. Model calculations in 2D
(groundwater, migration)

6. Comparison to additional data
(first: salt concentration)

N
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(idea: Porter 1997)

(cf. Delhomme 1978,
there: iteration for heads)

instationary
indicator
simulation

Fig. 2. Stepwise approach for the integration of information 

3.1 Two-dimensional analyses 

In order to identify trends and anisotropies, a preliminary two-dimensional hori-
zontal analysis of borehole data has been performed. The total thicknesses of 
petrographic and stratigraphic units, the portions of units in relation to the bore-
hole lengths, the depth of the base of quaternary (stratigraphic), and the depths of 
the upper and lower boundaries of the Lauenburg Clay Complex have been ana-
lysed as functions of two variables (easting and northing). The analysis included 
uni- and bivariate statistics, variography, and kriging (Röhlig 1999). While most 
of the obtained results served only to explore basic features of the dataset, the 
kriging results for the base of quaternary and for the depths of the boundaries of 
the Lauenburg Clay Complex were directly used as input for the definition of the 
curvi-linear co-ordinates described in the next section. 
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3.2 Curvi-linear co-ordinates 

Porter and Hartley (1997) stated that they achieved better kriging results for spa-
tial distributions of hydrogeologic units when they took into account the strati-
graphic information about the Lauenburg Clay Complex and the base of quater-
nary. It was considered useful to account for the features of the layered Gorleben 
channel by performing variogram analyses which allow for the changes in the 
shape of strata. Porter and Hartley (1997) defined a co-ordinate system mapping 
the boundaries of the Lauenburg Clay Complex and the base of quaternary to con-
stant values of the transformed vertical co-ordinate. “This can be thought of as us-
ing the geological age of the horizon to define a vertical coordinate.” The 
variograms for variables indicating the presence or absence of materials showed, if 
obtained in the transformed system, a much better “horizontal” correlation struc-
ture than for Cartesian co-ordinates.  

This approach can be further justified by the fact that the indicator variables 
characterizing the presence of the „Lauenburg Clay Complex“ (stratigraphic) 
show a strong correlation to the ones characterizing the presence of the material 
„clay“ (petrographic). The clay is mainly forming aquicludes the distribution of 
which influences the groundwater regime significantly.  

Developing the ideas of Porter and Hartley (1997), a curvi-linear co-ordinate 
system has been defined as follows: The boundaries of the outcrop of the Gorle-
ben Erosion Channel were transformed into surfaces of constant co-ordinate val-
ues for the “horizontal” co-ordinate. The kriging results obtained in the two-
dimensional analyses described above for the base of the quaternary as well as the 
lower and the upper boundaries of the Lauenburg Clay Complex have been as-
sumed to be surfaces of constant co-ordinate values for the „vertical“ co-ordinate 
(Fig. 3) (Röhlig 1999).  

1st step: 2D analysis & co-ordinate transform

Gorleben channel

Base of quaternary

Lauenburg Clay Complex

2D variography & kriging

better results for
3D indicator analysis
(hydrogeologic units)

transform
general trends & anisotropies

Fig. 3. Definition of curvi-linear co-ordinates 
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The simulations of hydrogeological units and parameters described in the fol-
lowing two chapters have been performed in curvi-linear co-ordinates. The 
variogram models used do not depend on the position in transformed co-ordinates. 
However, after being transformed back to Cartesian co-ordinates, they become 
dependent on spatial location. Thus, the simulations based on theses variogram 
models can be seen as non-stationary in the original co-ordinates. 

3.3 Three-dimensional geostatistics for hydrogeological units 

Using the curvi-linear system described above, variography and non-stationary 
conditional simulation of categorical variables characterizing 3 hydrogeological 
units (aquifer, aquitard, aquiclude) were carried out (Fig. 4 center). The hydro-
geological classification of borehole data (Ludwig 1994) served for conditioning. 
As discussed in Röhlig (1999), the curvi-linear co-ordinates allow, compared to 
Cartesian co-ordinates, a better fitting of variogram models and the simulation re-
sults coincide much better with the hydrogeological site interpretation given in 
(Schelkes et al. 1990).  

The variograms obtained show a much better horizontal correlation structure 
than the ones in Cartesian co-ordinates. Accordingly, the simulated units have a 
higher level of continuity which was seen as more realistic (Röhlig 1999). 

3.4 Simulation of hydrogeological parameters 

The only available data concerning hydrogeological parameters are bandwidths 
for each hydrogeological unit. These were obtained based on grain size analyses, 
pumping tests and literature reviews (Ludwig 1994). Therefore, no direct 
variography, kriging, or conditioned simulation is possible for these data.  

Dependent on the range of the variables (hydraulic conductivity, porosity, dis-
persion lengths), log-uniform or uniform distributions were assumed for the hy-
drogeological parameters. After having divided the range of each variable into in-
tervals, indicator variables have been defined for these intervals. The theoretical 
variance of each indicator function has been chosen as sill for the corresponding 
indicator variogram. Concerning the spatial continuity of parameters, varying as-
sumptions have been made. A spherical variogram model with a range of 10 % of 
the model area of 16 km x 16 km x 400 m has been chosen for most of the calcula-
tions. Spherical variograms with 50 % range as well as models with a pure nugget 
effect were also tested. In addition, as recommended by Journel and Alabert 
(1988), variants with high connectivity (spherical variograms with 50 %) for high 
conductivities and low connectivity (pure nugget effect) for low conductivity val-
ues and vice versa were tested in unconditional indicator simulation runs.  

However, the influence of these choices for the spatial continuity on the calcu-
lation results of hydrogeological modeling was, as discussed in the next chapters, 
not very significant.  
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Fig. 4. Representative cross section for groundwater and transport calculations: Hydro-
geological interpretation modified after Schelkes et al. (1990) (top), conditional simulation 
of categorical variables (center), and conductivity distribution (bottom) 
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The simulation of parameter distributions was carried out separately for each of 
the previously simulated hydrogeological units. (Fig. 4 bottom). Several algo-
rithms were tested with the result that indicator simulation using a GSLIB algo-
rithm (Deutsch and Journel 1992) was most suitable for the purpose of the study. 

3.5 Probabilistic uncertainty analyses for freshwater models 

The analyses described previously resulted in three-dimensional spatial distribu-
tions of hydrogeological parameters. Ideally, these distributions should serve for 
three-dimensional simulations of density-dependent flow, because the groundwa-
ter regime at Gorleben is highly influenced by the salinity gradients. However, 
those calculations are presently not practicable within acceptable calculation times 
for such large models. Therefore, most studies carried out for Gorleben are based 
on a vertical-plane (two-dimensional) cross section through the Gorleben Channel 
(Fig. 1 and 4). It is considered that such an approach captures major features since 
the cross-section follows the main groundwater flow direction (Schelkes et 
al. 1990, Ludwig 1994, Ludwig and Kösters 2002). 

However, even two-dimensional density-dependent calculations require calcu-
lation times of several days per run. Because this would prohibit a full probabilis-
tic uncertainty analysis, such an analysis has been only undertaken for freshwater 
models. The purpose of the analyses was rather the demonstration of methodology 
than an adequate assessment of the features of Gorleben. 

Probabilistic uncertainty analyses were carried out for performance measures 
like advective groundwater travel times and contaminant fluxes. For the contami-
nant fluxes the uncertainty of the flux evolution with time (Fig. 5) as well as the 
flux maximum and the time of its occurrence were assessed.  
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Fig. 5. Freshwater calculations: Percentiles of integrated nuclide fluxes (evolution with 
time) crossing the model boundary for 300 simulation runs (spherical model for conductiv-
ity distributions, range 10 % of model area) 
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In addition, a method to localize regional sensitivities for variables varying 
with position has been developed and tested (Röhlig and Pöltl 2001). 

As expected, the uncertainty bandwidths increased with increasing spatial con-
tinuity of the parameter distributions (cf. the preceding paragraph). However, the 
differences of the bandwidths were rather marginal, thus indicating that the mod-
els were mainly determined by the distributions of the hydrogeological units while 
parameter distributions are comparably less important. In comparison to earlier 
analyses based on stationary indicator simulation for only 2 hydrogeological units 
(Röhlig and Pöltl 2001) the uncertainty bandwidths were remarkably reduced. 
This reduction is caused by the integration of a greater amount of site-specific in-
formation (e.g. the stratigraphic data used for the definition of the co-ordinate 
transformation and the simulation of 3 instead of 2 hydrogeological units). 

3.6 Modeling of density-dependent groundwater flow 

In order to allow a comparison of simulation results with site-specific information, 
the freshwater models mentioned previously were replaced by density-dependent 
groundwater flow models. This was necessary because the groundwater density 
which depends on the salt content is an important feature for the groundwater 
movement on site. However, density-dependent models are based on coupled non-
linear equations. This causes a remarkable effort for each calculation run. Several 
numerical codes were tested for the density-dependent flow simulations with the 
result that the SPRING® code (König 2002) was most suitable for the purpose of 
the study. 

For most of the runs manual interventions for adjusting numerical parameters 
dependent on the numerical performance of the specific realization were neces-
sary. Therefore and due to the high calculation effort it was not possible to run 
automated probabilistic Monte Carlo uncertainty analyses for the density-
dependent models.  

However the use of density-dependent models allows comparing the calculated 
salinity profiles with the ones measured on site. Thus it was possible to evaluate 
the results of geostatistical simulation and judge about the quality of realizations 
best fitting the measured density profiles as recommended by Delhomme (1979). 
It was also possible to compare the results of calculations based on models with 
different spatial connectivities for the hydrogeological parameters (cf. 3.4). For 
these comparisons, several penalty functionals indicating either differences in the 
function values or in the function values and the derivatives (the latter similar to 
Sobolev norms) were tested. The latter are the ones shown in Fig. 6. 

Problems were caused by the variety of degrees of freedom for the modeling 
assumptions. In addition to the variations caused by the spatial distributions of fa-
cies and parameters varying from realization to realization and the choice of the 
spatial connectivity (paragraph 3.4), the results also showed to be sensitive against 
choices concerning boundary conditions and parameters like transversal dispersiv-
ity.
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Fig. 6. Density profiles: measured values versus results and Sobolev penalty functionals 
calculated for several realizations of hydrogeological units with constant underlying model-
ing assumptions (top) and for the same realization but with varying modeling assumptions 
(bottom) 

This is illustrated in the density profiles shown in Fig. 6: The diagram on top 
shows a comparison of the density profiles calculated for 5 realizations of hydro-
geological units (cf. 3.3) with the measured profile at a certain location. The range 
of variation of the results is rather small compared to the one in the bottom figure 
where the realization was left constant and different modeling assumptions were 
used. It is also evident that a change in the boundary conditions (“short mod.“ vs. 
“ext. mod.”) or of assumptions concerning the transversal dispersivity 
(“trans. dis. 0”) causes more significant changes than changing assumptions con-
cerning the spatial connectivity of the hydrogeological parameters (cf. 3.4, 
“pure nug.”, “sph. 10 %”, “sph. 50 %”). A similar outcome about the choice of pa-
rameter distributions being of relatively small influence was already achieved for 
freshwater calculations. 
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4 Conclusions 

The study has demonstrated that geostatistical analyses are promising as a first 
step towards an integrated assessment of the hydrogeological features of reposi-
tory sites covered or surrounded by sedimentary systems. Plausible hydrogeologi-
cal models consistent with the information used could be derived. It could be 
demonstrated that information additional to the “hard” borehole data could be ac-
counted for e.g. by performing simulations in transformed co-ordinates based on 
this information. The tested methods are especially efficient for sites like Gorleben 
where detailed data are given at a high density. 

The groundwater and contaminant migration calculations performed using the 
derived models can in principle be fitted into the frame of probabilistic safety as-
sessments and support the arguments used in a Safety Case. Using freshwater 
models, it has been shown how such analyses can contribute to a consistent treat-
ment of uncertainties coming from spatial variability and lack of knowledge in 
probabilistic safety assessments. However, in the case of a complex density-
dependent flow system the high computational effort still prohibits the perform-
ance of the high amount of density-dependent flow model runs necessary for 
probabilistic analyses. Instead, an approach where modeling results are compared 
with other site-specific information (here: measured density profiles) was used. 

The relatively small uncertainty bandwidths obtained for several realizations of 
hydrogeological units with constant underlying modeling assumptions showed 
that uncertainties caused by spatial variability could be narrowed down. 

However, the results showed to be sensitive against various model assumptions 
which were hard to test on reality. This caused remarkable problems which could 
only be resolved by means of more detailed (e.g. three-dimensional) hydro-
geological studies as described and envisaged by Ludwig and Kösters (2002). 

The methodology used for the case study strongly depends on the specific site 
under consideration. A “generic” approach or methodology for the integration of 
various geoscientific information into hydrogeological models will hardly be 
achievable.  
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1 Introduction and summary 

Seawater intrusion in coastal aquifers is a growing concern in mediterranean re-
gions, due to over-population and over-exploitation of coastal groundwater re-
sources. Under these circumstances, it is essential to model the extent of seawater 
intrusion and to locate the saltwater-freshwater interface taking into account het-
erogeneity and parameter uncertainty. There are different ways to couple salt 
transport and freshwater flow in groundwater models. We choose here the verti-
cally integrated sharp interface approach, with two immiscible fluid regions 
(freshwater and seawater). We use this model to analyze the effects of aquifer 
variability on the saltwater wedge in plane view, based on large numerical simula-
tions of 2D seawater intrusion in randomly heterogeneous unconfined aquifers.  

2 Groundwater flow equations with seawater intrusion 

We consider an unconfined coastal aquifer with an impervious bedrock at 
z = ZINF(x,y) and a fresh water table of elevation z = ZS(x,y). In addition, because 
we use a plane flow model, the vertically averaged freshwater hydraulic head 
H(x,y) coincides with the free surface elevation, i.e. : H(x,y) ZS(x,y). In this 2D 
framework, all variables and parameters are spatially distributed in (x,y). A sche-
matic representation of the coastal aquifer and its salt wedge is shown in Fig. 1. 

We assume that seawater and freshwater are separated by a sharp interface. 
More precisely, we rely on the Ghyben-Herzberg approximation(s), that is:  

the seawater and freshwater fluids are assumed immiscible (sharp interface); 
the subsurface seawater wedge is assumed quasi-hydrostatic; 
the freshwater is assumed vertically hydrostatic (negligible vertical velocities). 
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Fig. 1 Schematic view of seawater intrusion (sea level ZSEA shown at right) into a free sur-
face aquifer (shown at left), with saltwater interface ZSALT(x,y) and substratum ZINF(x,y) 

Now, let ZSALT(x,y) be the elevation of the salt/fresh water interface. Applying 
the hydrostatic assumptions and the pressure continuity condition at the interface, 
and modifying the Badon-Ghyben-Herzberg configuration to account for a finite 
outflow face of height Z located undersea, we obtain: 

ZgZZZgZHg FSALTSEASSALTF (1) 
This gives finally the desired closure relation: 

ZZHZZ SEA
SEASALT (2) 

In these equations, F is freshwater density, S is saltwater density, and  is the 
saltwater-to-freshwater density contrast: 

40
1

F

FS (3) 

Parameter Z is the vertical depth of the freshwater outflow face at the shore-
line, assumed much smaller than aquifer thickness. It can be obtained from exact 
solution of seawater intrusion in a vertical slice (x,z) of a homogeneous confined 
aquifer, without depth-averaging. Here, Z is about 0.77 m, compared to 30 m 
aquifer thickness.  

For freshwater flow, we use the Dupuit-Boussinesq plane flow approximation. 
The freshwater thickness is defined as: 

),(),(),( inf yxZyxHyx  or ),(),(),( yxZyxHyx salt (4) 

depending on spatial location (x,y), within the salt wedge or not. The freshwater 
transmissivity T(x,y) is then inferred from freshwater thickness (x,y) as follows : 

),(),(),( yxyxKyxT (5) 
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Note that T is spatially variable via K and ZINF , and also, nonlinear via the un-
known variables H and ZSALT on which it depends. Finally, we obtain the following 
system of vertically integrated flow equations (steady state case):  

1. Steady-state mass conservation (freshwater): 

)(Qdiv
t

 where  is the water content (6) 

2. Darcy’s law (vertically integrated):  
grad-Q H,x,y,ZH,ZT INFSALT (7) 

3. Freshwater transmissivity:  

INFSALTSALT

INFSALTINF
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3 Unconditional random aquifers (single replicates) 

In this paper, we choose to study uncertainty without regard for specific data. That 
is, we choose to simulate seawater intrusion in large unconditional single-
replicates of the heterogeneous aquifer. We use the XIMUL code to generate iso-
tropic log-normal random fields K(x,y) on 1 million node grids (1000 1000).  

The XIMUL code deals more generally with Bayesian estimation and condi-
tional simulation of 1,2,3-D random functions of space or time (Ababou et al. 1994). 
The unconditional generator uses the Fourier Turning Band method based on a 
representation theorem of Matheron (1973): see (Tompson et al. 1989) and refer-
ences therein.  

4 Numerical solution with the BIGFLOW code 

Numerical simulations of seawater intrusion are carried out using the BigFlow 
code BF 2000 (Ababou and Trégarot 2002). It solves a generalized model equa-
tion for flow in heterogeneous, anisotropic, partially saturated media. It can effi-
ciently follow multiple interacting free surfaces in 3D, and it can represent “open” 
or “macroporous” media (Trégarot 2000). A vertically integrated 2D flow module 
is also available, including Boussinesq-Dupuit aquifer flows, free surface hydrau-
lics based on kinematic-diffusive wave, Darcy-Forchheimer flow in rough frac-
tures (Spiller 2004), and the seawater intrusion module SWIM2D used here. 

The BF 2000 code is based on implicit 3D finite volume formulation of flux di-
vergence equations in conservative form (mixed form). It solves fully coupled 
transient and steady flow problems, using a single infinite time step for steady 
state. It uses Preconditioned Conjugate Gradients for matrix solution, and modi-
fied Picard iterations for nonlinear solution. The matrix-vector data structure is 
very sparse. For more details on the numerics, see (Ababou et al. 1992; Ababou 
and Bagtzoglou 1993; Ababou 1996).  
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5 Simulation results and statistical analysis of salt wedge 

5.1 Aquifer flow configuration and statistical inputs  

We consider steady flow in a heterogeneous unconfined coastal aquifer in a square 
domain (1 km  1 km). The mean freshwater flow is directed along the x axis. We 
apply constant head boundary conditions (Dirichlet) on boundaries orthogonal to 
mean flow: ZSEA=30 m (seawater level) and H1 = 31 m (freshwater inland). The 
hydraulic gradient, directed along (x), is 0.001 m/m, a typical value for regional 
flow in coastal regions. Lateral boundaries orthogonal to seashore are assumed 
impervious. Other statistical-geometric parameters concerning the planar grid and 
the random log-permeability field lnK (x,y) are shown in Table 1. 

Table 1 Summary of statistical parameters for two sets of simulations (small and large) 

Parameters Set 1 Set 2 

ni (number of nodes) 300  300 1000  1000 

xi (discretization cell size) (m) 10/3 1 

Li (domain length) (m) 1000 1000 

 (lnk- correlation scale) (m) 100/3 10 

xi/  (grid resolution) 1/10 1/10 

Li/  (sampling number) 30 100 

H/Lx (mean gradient)  1/1000 1/1000 

 (standard deviation of lnK) 1, 2  , 1.6, 2, ln(10) 1, 2 , 1.6, 2, ln(10) 

A statistically isotropic log-normal random field K(x,y) was generated on a one 
million node grid (1000  1000 cells), with either smooth (gaussian) or noisy (ex-
ponential) covariance structure. A good fit was obtained when comparing theo-
retical vs computed spatial autocorrelation function of lnK(x,y) for the gaussian 
covariance with lnK = 1 on a 1000  1000 grid. Smaller 300  300 fields were 
then extracted from the center of the domain, and single replicate simulations of 
seawater intrusion were conducted, with variability ranging from lnK = 1 to 
ln10.

In order to increase numerical accuracy, we used an iterative continuation 
method (or homotopy method) with respect to the  parameter, where  is the 
standard deviation of lnK (degree of heterogeneity). Thus, the output of a hetero-
geneous problem is used as initial condition for simulating a “more heterogene-
ous” problem. This procedure adds an external loop to the flow solver. Mass bal-
ance errors, in terms of net discharge rate normalized by global outflow rate, did 
not exceed about 1%, for all simulations presented here.  
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5.2 Effect of heterogeneity level on mean salt wedge  

Fig. 2 and Fig. 3 display perspective views of simulated seawater intrusion for a 
highly variable permeability ( lnK = ln10  2.30). Two surfaces are displayed in 
each figure : ZSALT(x,y), the salt/fresh interface level (mapped with color-coded 
logK values), and ZS(x,y), the freshwater piezometric surface (or hydraulic head), 
also mapped with the same color-coded or grey-scale logK values.  

On Fig. 2, one can clearly observe the sharp local gradients of the saltwater in-
terface occuring in low permeability zones, which act as barriers to seawater (it 
should be kept in mind, however, that K(x,y) is the depth-averaged permeability).  

Fig. 4 depicts the effect of heterogeneity level on the mean penetration of the 
salt wedge, for a 300 300 grid. The mean ZSALT(x) profile is plotted versus dis-
tance from sea (x), after averaging ZSALT(x,y) along the shorewise direction (y).
The three profiles correspond to: lnK = 0 (homogeneous), lnK = 1 (moderate het-
erogeneity) and lnK = ln10 (high heterogeneity). As the level of variability lnK
increases, the mean elevation ZSALT(x) increases and the mean salt wedge pene-
trates farther inland. The extra penetration of the mean wedge due to heterogene-
ity is about 200 m, for the most heterogeneous case.  

A similar result (not shown here) was obtained for the larger 1000 1000 grid 
with heterogeneity levels lnK = 0, 1.0, 2, 1.6, and ln10. It confirms the mono-
tonic increase of the mean penetration length of the salt wedge as lnK increases, 
compared to a homogeneous aquifer with geometric mean permeability.  

5.3 Statistical analysis of salt wedge fluctuations (1000 x 1000 grid) 

As a first step towards uncertainty analysis (next section), let us develop further 
the statistical analysis of the simulated salt wedge, based on single replicate un-
conditional simulations obtained on the largest grid (1000 1000 cells).  

The salt wedge is characterized by the shape of the saltwater interface eleva-
tion ZSALT(x,y) and its horizontal extension inland. We consider ZSALT(x,y) as a ran-
dom field and we analyze it statistically. We focus in particular on the first and 
second order moments of ZSALT(x,y), including its mean and its standard deviation. 
This analysis is applied to the 1000x1000 grid, with large variability ( lnK = ln10). 

Given the symmetries of the problem and the statistical stationarity of K(x,y), 
we expect the surface ZSALT(x,y) to be stationary (statistically homogenous) along 
the y direction parallel to the seashore. However, it will not be stationary along the 
x direction parallel to flow (transverse to seashore).  

Indeed, Fig. 5 shows 100 transects ZSALT(x,yn) along with the average profile, 
all plotted as functions of the x-coordinate (perpendicular to sea shore). The pro-
files ZSALT(x) are clearly non-stationary.  
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6 Stochastic analysis of salt wedge via -transform

It is clear from both Fig. 4 (mean ZSALT) and Fig. 5 (random ZSALT) that the interface 
elevation ZSALT(x,y) follows a nonlinear trend along x (for fixed y) and cannot be a 
stationary random function of x. This observation has two consequences:  
1. Given a single replicate of the coastal aquifer in (x,y), we can only sample in 

the shorewise direction (y) to produce a statistical description of the salt wedge.  
2. For theoretical purposes, we may seek a convenient transformation ZSALT

to obtain an approximate stationary field  from the non-stationary field ZSALT.

6.1 Transformation of ZSALT into a potential 

Following this idea, consider first the analytical solution of the homogenous prob-
lem (  = 0) using the Badon-Ghyben-Herzberg assumption, modified to include a 
submarine outflow face of height Z at the seashore : 

222
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xZZZxZ SEA

X
SEASALT (9) 

Eq. 9 holds for 0  x  LSALT, where x=LSALT is the intersection of the saltwater 
interface with the substratum. Thus, if the bedrock is at z = 0, the value of LSALT is 
defined by ZSALT (x) = 0. Other variables in Eq. 9 are defined below:  

LX is the domain size in the x-direction, between the two fixed head boundaries 
H=H0 (sea at left) and H=H1 (freshwater at right);   
ZSEA = H0 is the elevation and depth of the sea level above the substratum, at 
the sea boundary x=0; 
H1 is the depth of the freshwater level above the substratum at the inland 
boundary x=LX ;
ZSALT is the elevation of saltwater/freshwater interface above the substratum; 
LSALT is the x-wise penetration length of the salt wedge inland, on the bedrock; 

Z is the vertical length of the submarine freshwater outflow face into the sea. 
The term ( Z)/( +1) can sometimes be neglected in Eq. 9; we have here:  

018.01/Z  m , which is indeed small compared to ZSEA = 30 m and 
to H=H1-ZSEA = 1 m.  Also, to simplify the above expression Zsalt(x), we de-
fine a new parameter h0:

)1(
)1(22

10
SEAZHh (10) 

This parameter, h0 , is a length scale on the same order as the thickness of the 
freshwater lens imposed at the inland boundary (upstream). The solution of the 
homogenous problem  = 0 can now be expressed as:  
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X
SALTSEA L

xhxZZZ 0)( (11) 

This simple analytical expression (11) shows that there exists, for the homoge-
neous case, a quadratic transform which makes the saltwater profile exactly linear 
in x. For the heterogeneous case, with random field permeability, this suggests ap-
plying the same quadratic transform to the nonlinear random function ZSALT(x,y). 
The transformed field is a new random “potential” field SALT(x,y) with: 

2)( SALTSEASALT ZZZ (12) 
We may expect that the random SALT(x,y) has a roughly linear trend. Further-
more, it is possible to derive analytically the mean and variance of ZSALT from the 
moments of the random field SALT(x,y). Let us first normalize ZSALT and SALT

by ZSEA as follows: Z=(ZSALT- Z)/ZSEA; = SALT/ZSEA. The -transform is now: 
2,1, yxZyx (13) 

with  = 0 (exactly) on the sea boundary x = 0, and  = 1 at some fixed distance 
L1, the characteristic length of penetration of the salt wedge. The latter is given, to 
order O( ), by the analytical solution for a homogeneous aquifer:  

OLLL SALTSALT 101 (14) 

Thus, we may write the (approximate) boundary condition of the random case as: 

OLxx 1:;0:0 1 (15) 

The main idea, here, is that we prefer to solve for the -field because it is more 
easily amenable to statistical analysis than the Z-field (more on this below). With 
this goal in mind, let us define the random fluctuations of  and Z:

)(),(),( xyxyx  and )(),(),( xZyxZyxz (16) 

where the mean potential is given by: )²1()( Zx .
The brackets < > represent either the shorewise spatial average (spatial mean 

of a single replicate along direction “y”), or the mathematical expectation E( )
over an ensemble of replicates : the two are equivalent if ergodicity is assumed.  

Now, substituting the random fluctuations in Eq. 13 and taking averages, we obtain: 

²1
2

zZ  and 
22 1 ZZ (17) 

where the mean <Z> remains to be determined. On the other hand, from Eq. 13: 
2/11Z  (for 0<x<L1 and 1>Z>0). (18) 

2/12/1 11Z  with <1 (19) 
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Fig. 2 Perspective view of ZSALT (x,y), H(x,y), and log K(x,y) for a gauss-shaped isotropic 
covariance with  = ln10 and L/  = 30. Simulation grid: 300 300 

Fig. 3 Perspective view of ZSALT (x,y), H(x,y), and log K(x,y) for a gauss-shaped isotropic 
covariance with  = ln10 and L/ = 100. Simulation grid: 1000 1000 
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Fig. 4 Mean ZSALT(x) profile transverse to seashore for a 300 300 grid : analytical solution 
for  =  0 and computed mean profiles for  = 1.0 to ln10 (ZSALT increases with )

Fig. 5 Transverse profiles of ZSALT(x) (the seashore is at left) : comparison of mean ZSALT 
(x) (shorewise average) with 100 distinct transects of ZSALT(x,yn) sampled at equally spaced 
shorewise positions (yn). Simulation grid : 1000x1000. Heterogeneity:  = ln10 
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Using a Taylor expansion cut off to 2nd order, yields:  
322/1

8
111 OZ ; ; (20) 

We finally substitute Eq. 20 into Eq. 17 to calculate the standard deviation of Z. 
Neglecting 4/64 and other “higher order terms” (“h.o.t.”), we obtain:  

...
2
1 tohZ

(21) 

This analytical expression can be used to predict Z using either numerical es-
timates or theoretical spectral estimates of -statistics : the two procedures yield 
similar results (see comments about Fig. 6 further below).  

6.2 Statistics of transformed potential via spectral theory 

We know need to determine the statistical moments of , e.g. mean and variance. 
Two approaches are possible concerning the transformed potential :

a) Empirical evaluation of -moments (sampling numerical simulation);  
b) Theoretical evaluation of -moments (analytical spectral perturbation).  
Empirically, the first two lines in Table 2 show some of the numerically com-

puted moments of SALT , assuming a linear trend < >, and stationary fluctuations 
(x,y) around the linear trend:  

axxyx, axyxyx ,, (22) 

constant
2/12x (23) 

Note: These relations hold only in a subdomain comprised between the sea boundary 
x = 0 (where  = 0) and the tip of the salt wedge x  L1+O( ) (where  1+O( )).

On the other hand, we demonstrate that the -equation in the salt wedge zone 
is a stochastic PDE, analogous to the Boussinesq equation for vertically averaged 
groundwater flow with random K(x,y). Indeed, from Eq. 5, 6 and 7, we have: 

i
SALT

i x
HZHxxK

x
)(),( 21 (i=1,2) (24) 

The freshwater head H is given by the Ghyben-Herzberg relation Eq.(2): 

SALTSEA ZZZH )1( (25) 

Substituting H in Eq. 24, and using the -transform, we obtain: 

0),( 21
ii x

xxK
x

(i=1,2) (26) 

We observe that this -equation is equivalent to a stochastic groundwater flow 
equation with 2D random field transmissivity in a confined aquifer (cf. “infinite 
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domain” spectral perturbation solutions by (Mizell et al. 1982)). Thus,  can be 
evaluated from the spectral solution of Eq. 26, at least far enough from the sea and 
the saltwedge tip. The “theoretical” standard deviation of  is deduced from the 
Mizell et al. (1982) solution, for a “modified Wittle” correlation structure:  

xKKTHEORY Jc lnln ac KK lnln (27) 

where Jx is the mean -gradient denoted “a” in this paper. The coefficient “c” is a 
dimensionless constant of order 0(1) (Mizell et al. 1982). For the problem at hand, 
the value of “c” can be obtained by matching numerical and theoretical “ ” at 
low levels of heterogeneity ( lnK  1). This procedure gives: 

10.1c  (28) 

Similarly, the relevant value of the mean -gradient, a = <d /dx>, can be ob-
tained from the exact analytical solution (x) in a homogeneous aquifer, which 
corresponds to the asymptotic case lnK  0. Thus, asymptotically:  

O
L

hOaa
x

THEORY

2
0

0:0 (29) 

Table 2. Empirical and theoretical moments of the transformed potential SALT(x,y). 

Kln 0 1 60.1 30.2

dx
daNUMˆ 54.1a 54.1â 40.1â 33.1â

NUMˆ
0 17ˆ 27ˆ 42ˆ

THEORYˆ
0 17 2.27 1.39

To check whether “a” is nearly constant and close to its predicted value “a0”, con-
sider the results summarized in Table 2. We conclude that the theoretical predic-
tion of  given by Eq. 27 with a  a0 is robust.   

Finally - after some manipulations involving statistics from the Z-  transform 
(Eq. 20 and 21) and the spectral solution for   - one obtains, to first order: 

(a):
x
acx KKZSALT lnln2

)(  or (b):
x
Zcx KKZSALT lnln2

(30) 

Both versions of this equation require mean gradient information: the first 
equation (a) requires knowledge of the (stationary) mean -gradient “a”, while the 
second version (b) requires knowledge of the (non-stationary) mean interface ele-
vation gradient.  

6.3 Numerical moments of seawater of interface and comparisons 
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Fig. 6 shows 100 superimposed transects of the “potential” SALT(x,yn), sampled 
at equally spaced shorewise locations “yn”, and plotted versus (x), for  = ln10. 
The figure also shows the analytical profile SALT(x) for a homogeneous aquifer 
(  = 0), as well as the numerical average of SALT(x,y). The fluctuations of 

SALT(x,y) around its mean trend were also plotted as transects (not shown here). 
These numerical plots indicate the level of fluctuation of the salt interface in terms 
of the transformed field SALT. They also confirm the quasi-linear trend of SALT.

We computed the fluctuations of ZSALT around its nonlinear mean trend, and 
we estimated Z by sampling ZSALT parallel to the seashore and plotting the result-
ing moment Z as a function of distance (x) from the sea. One result is shown in 
Fig. 7 for large heterogeneity ( =ln10). The standard deviation of ZSALT seems 
approximately stationary far enough from the seashore (x = 0) and far enough 
from the salt wedge tip (x  700 m). In the stationary region of Fig. 7, we find 

ZSALT  1.3 m. The 95% confidence band of the salt interface is several meters, 
which represents a rather significant fraction of the total aquifer thickness of 30 m. 

Fig. 6 One hundred transects of SALT (transformed from ZSALT); “analytical mean” 
curve SALT (homogeneous aquifer); and "numerical mean" curve SALT (mean of 

SALT sampled shorewise along “y”). The sea shore is at left. Grid: 1000x1000. Hetero-
geneity:  = ln(10) 

The results appear different for lesser heterogeneity: see Fig. 8 for  = 1.60, 
and note that similar results were obtained for  in the range 0  2.0. In all 
these cases, ZSALT(x) is non-stationary with respect to (x) and decreases with (x), 
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as predicted by the theoretical -transform analysis. This can be seen by compar-
ing the “numerical” and “analytical” (Eq. 30a) ZSALT(x) curves in Fig. 8.  

Fig. 7 Standard deviation of ZSALT vs. distance (x) from seashore (sea located at left), ob-
tained by sampling ZSALT fluctuations in the shorewise direction (y). The global value of Z
appears to be about Z  1.3 m. Grid: 1000x1000 cells. Heterogeneity: lnK = ln10 = 2.30 

Fig. 8 Numerical and theoretical ZSALT vs distance from sea (x) for lnK = 1.60 
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7 Summary and conclusions 

We have presented numerical experiments of seawater intrusion based on uncon-
ditional simulations of random permeability fields K(x,y), where K(x,y) represents 
a depth-averaged permeability. The effects of planar heterogeneity on the extent 
and shape of the salt wedge were discussed, and we presented a statistical study of 
interface elevation ZSALT(x,y) on a 1 million node grid (single replicates). The sta-
tistic ( ZSALT) can be viewed as the root-mean-square vertical uncertainty of the 
seawater interface due to heterogeneity. It is found to be more or less proportional 
to the mean gradient of ZSALT, at least for low and moderate variability, which vali-
dates our perturbation theory. However, for higher variability, the observed stan-
dard deviation of ZSALT tends to a constant value more or less independent of x, 
which is not quite reproduced by the same perturbation theory. Overall, our results 
indicate that ZSALT can be typically on the order of several meters.  
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1 Objectives 

Regulations for the protection of drinking water wells require the designation of 
the recharge area or catchment of wells. Very often in practice only limited in-
formation is available for their delineation. Therefore, we may ask: How uncer-
tain are well catchments resulting from deterministic groundwater modeling? 
Stauffer et al. (2002) formulated a first-order, unconditional semi-analytical La-
grangian method, which allows to approximately evaluate the uncertainty in the 
location of two-dimensional, steady state catchments of pumping wells due to the 
uncertainty of the spatially variable hydraulic conductivity field. They applied 
their method successfully to a set of simple rectangular flow configurations. 
Stauffer et al. (2004) extended this method by incorporating conditioning by 
transmissivity and head measurements in observation wells. 

In this paper we investigate the effect of conditioning by transmissivity data 
from observation wells alone. The uncertainty bandwidth of the catchment 
boundary is approximated in first order by formulating the conditional transversal 
second moment of the tracer particle displacements along the expected mean 
catchment boundary. Special relationships have to be developed for the estima-
tion of the uncertainty in the location of the stagnation point. Applications of the 
approach are presented for a synthetic test case with four different arrangements 
of a total ten measurement locations. The results are compared with the results 
from conditional numerical Monte Carlo simulations. The comparison should al-
low an assessment of the accuracy, and the applicability of the method. More-
over, it should enable an assessment of the effect of conditioning on the reduction 
of uncertainty, which is achieved by the chosen observation networks.  

The following assumptions are adopted for this paper for simplicity and/or 
feasibility reasons: 

The flow field can be modeled as a horizontal plane system according the flow 
equation [T(x) h(x)]+P(x)=0, where T(x) is the transmissivity, which is 
variable in space with location x, h(x) is the hydraulic head, and P(x) is a 
source/sink term, which includes the effect of areal recharge of rate N, and/or 
of the pumping rate Qw of wells. For unconfined aquifers the above equation is 
often referred to as linearized equation, or as semi-confined model. 
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The flow domain is a rectangular region, which is characterized by two paral-
lel boundaries with prescribed head, and two impermeable boundaries. 
The pumping rate Qw of the well is constant. 
The areal recharge rate N is constant and is homogeneously distributed over 
the domain, which contains the capture zone and the catchment of the well. 
The porosity n of the aquifer is constant. 
The spatial variability of transmissivity T(x) can be described by an exponen-
tial covariance function of the form 2 exp /Y Y YC Ir r , with 

Y(x)=ln(T(x)) and the variance Y
2 and correlation length IY (integral scale). 

The ensemble mean flow field is approximated by that for equivalent homo-
geneous transmissivity Tg (geometric mean). This assumption may lead to de-
viations close to wells. 
Only advective transport mechanisms are considered thus neglecting local dis-
persion and molecular diffusion. 
The velocity covariance can be locally approximated by a scaling procedure 
based on the analytical first order approximation for uniform mean flow con-
ditions according to Dagan (1989). 

Note that the method can also be formulated for more general conditions. 
The prerequisite for the uncertainty analysis is to first establish a deterministic 

steady state groundwater model for equivalent transmissivity. Then the second 
task consists of finding the boundary streamlines of the well catchment, which 
usually start at a stagnation point S. The location of S can be easily found by an 
appropriate numerical procedure searching for the location with minimum (zero) 
velocity. The number of relevant stagnation points of a well flow field depends 
on the prevailing flow conditions. 

2 Lagrangian approximation of the uncertainty in the 
location of well catchment boundaries 

2.1 Unconditional expected location of a well catchment 

The aim is to formulate the uncertainty in the location of the well catchment 
boundary by considering the trajectory X(t) starting at the stagnation point S and 
proceeding upstream. The ensemble mean trajectory is <X(t)> and is determined 
for the flow field calculated with equivalent transmissivity Tg. For constant areal 
recharge rate N and constant thickness H of the aquifer the lateral second moment 
of the particle displacements X’pp(t) along <X(t)> can be approximated by the in-
tegral (Stauffer et al. 2002): 

' ' '' ' '' ' ''
2

0 0

1 , 2
pp

L t L t

pp

l

NX t u l l exp t L t l t l dl dl
n HU L t

(1) 
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The symbols l and p denote the longitudinal and lateral directions along and per-
pendicular to the mean flow direction, L(t) is the end position along the mean tra-
jectory, n is the porosity, and Ul(l) is the longitudinal velocity along the mean tra-
jectory. The function upp(l’,l’’) is the transversal velocity covariance. 

2.2 Conditional expected location of a trajectory or well catchment 

As a result of the conditioning of the random velocity field by measured trans-
missivity data both the ensemble mean and the second moment of the particle 
displacements may be affected. The conditional expected particle displacement is 
approximated by: 

0
0

' '
t

cond cond cond condt t dtX x U X (2) 

based on the conditional ensemble mean velocity Ucond(x). Accordingly, the con-
ditional lateral second moment of the particle displacements may be approxi-
mated by Eq. 1 using the conditional transversal velocity covariance function 

', ''
pp

condu l l  instead of the unconditional one. For a well catchment the trajectory 
starts at the conditional expected mean stagnation point S and the lateral condi-
tional second moment ,

cond
pp sX of the location of the stagnation point has to be 

added to the integral in Eq. 2. 
For given nY transmissivity measurements Ti(xi), i=1,..nY, the conditional ex-

pected mean velocity Ucond(x) and covariance function , 'cond
ppu x x can be deter-

mined by the method of conditional probabilities (Rubin 1991). The conditional 
mean velocity component Ui(x) gets: 

1
; ,
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i m meas m
m

U U Y Y i l px x x x (3) 

The conditional lateral velocity covariance , 'x xcond
ppu  is: 

1
, ' , ' ',

Y

p

n
cond
pp pp m U Y m

m
u u Cx x x x x x x (4) 

The weight coefficients m are determined by the following set of equations: 

1
, , ; 1,

Y

i

n

m YY m k U Y k Y
m

C C k nx x x x x (5) 

The unconditional lateral velocity covariance upp(x, x’) is analytically approxi-
mated for quasi-uniform flow and scaled according to Stauffer et al. (2002): 

2( = - ') ( , ')/ 'pp pp Yu u U Ur x x x x x x (6) 
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The scaled covariance is evaluated according to Rubin (1990). 

2.3 Unconditional location uncertainty of the stagnation point 

The approximate ensemble mean location of the stagnation point S is easily 
found for equivalent transmissivity. However, we are not aware of a theoretical 
approach to formulate the uncertainty in the location of the stagnation point. 
Therefore an empirical approach is suggested to fill the gap. Such a procedure 
may be based on principles of dimension analysis. 

Consider stagnation point S1 in Fig. 1. Provided that the distances to the 
boundaries are large enough and not relevant, the lateral variance ,pp SX  of the 
location of the stagnation point depends essentially on L, Y

2, Y, Qw, and N,
where L is a length scale. Comparison with various Monte Carlo simulations re-
sulted in the following (crude) approximation for ,pp SX for stagnation point S1:

2 / 32
,

/
0.0043 exp 0.09 ww

pp S Y
Y

Q NQ
X

N I
(7) 

For stagnation point S2 at the water divide in Fig. 1, the relevant length scale is 
expected to be the distance D from S2 to the nearest prescribed head boundary, in 
this case the eastern boundary. This holds true if the recharge rate N is of minor 
importance and the distance to the well is large compared to S1. Therefore, a 
(crude) approximation for ,pp SX  for S2 may be: 

2 / 32 2
, 0.0115 exp 0.05pp S Y

Y

DX D
I (8) 

Eq. 7 and 8 need that N>0. In the case of N=0, a similar equation can be found. In 
an approximate manner these relations may also be applicable to non-rectangular 
conditions. 

2.4 Conditional expected location of the stagnation point 

A conditional variance 2
, ( , , )cond

pp S Y YX L I  may be obtained by conditioning the 
variance Y

2(x) in Eq. 7 and 8, neglecting an influence of conditioning on the cor-
relation length IY. Conditioning the variance Y

2(x) at a location x can be accom-
plished by kriging, given nY transmissivity measurements. The kriging system is 
given by (de Marsily 1986): 

1
, , ; 1,

Yn

m Y m k Y k Y
m

C C k nx x x x x (9) 
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Fig. 1. Boundaries of the catchment of a pumping well for equivalent transmissivity and 
uniform recharge; they are trajectories starting at stagnation points S1 and S2.

The resulting conditional variance 2
, xY cond  at location x is: 

2 2
,

1
,

Yn

Y cond Y m Y m
m

Cx x x x x (10) 

Since the possible stagnation points of the realizations are distributed close to the 
conditional expected mean location, the variance 2

, xY cond S  is computed as 
weighted average within this distribution assuming Gaussian distribution of the 
location of all possible stagnation points. 

3 Numerical evaluation of flow related covariance 
functions

The two-point covariance relations needed are CUlY
(xi,xj) and CUpY(x,xi), given 

the covariance CYY(x,x’). Since the desired locations are not known in advance 
the covariance relations are evaluated for a regular finite difference grid. For all 
pairs of the ncells cell centers the two-point covariance CYY(x’,x’’) can be ex-
pressed in matrix form [CYY] as a matrix of size ncells by ncells. The two-point co-
variances CUlY

(xi,xj) and CUpY(x,xi) can be approximately determined by differen-
tiation (Zhang 2002): 

, ' , ' , '
l

g
U Y l YY hY

T
C U C C

n l
x x x x x x (11) 

and
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, ' , '
p

g
U Y hY

T
C C

n p
x x x x (12) 

where Tg is the geometric mean transmissivity, and n the porosity. The matrix 
corresponding [ChY] can be approximated in first order by (Zhang 2002): 

T
hY YY YhC C D  (13) 

where [DYh] is the sensitivity matrix with elements hi/ Yj. The sensitivity matrix 
can be evaluated for the above mentioned finite difference grid with the help of 
the adjoint state method (Zhang 2002). 

4 Numerical Monte Carlo simulation of conditional 
expected location of a well catchment 

The expected location of a well catchment based on given transmissivity data is 
numerically analyzed using a Monte Carlo based method (Gómez-Hernández and 
Journel 1993). The analysis consists of the following steps: 
1. Multiple equally likely log-transmissivity realizations are generated condi-

tioned to the log-transmissivity measurements. 
2. The groundwater flow equation is solved for each of the generated transmis-

sivity fields. In its current implementation, these equations are solved by 
block-centered finite differences. 

3. For each of the realizations a particle is released at the center of a grid cell and 
it is recorded whether the particle is captured by the pumping well. Averaging 
over the ensemble of realizations yields the probabilistic well catchment. 

5 Test case 

The methodology was applied in a synthetic study to investigate the uncertainty 
of the determination of a well catchment. The two-dimensional domain (Fig. 1) 
has extensions of 4900m x 5000m and is discretized by 50 x 50 squared grid cells 
of size x= y=100m. The northern and southern boundaries are impervious, 
along the western boundary a fixed head of hwest=0m is imposed, and along the 
eastern boundary a fixed head of heast=5m prevails. A pumping well with pump-
ing rate Qw=5000m3/d is located at a distance of 1900m from the western bound-
ary, and 2450m from the southern boundary. The area receives a spatially uni-
form recharge of N=1mm/d. Porosity is taken as n=0.1. Steady-state groundwater 
flow in a semi-confined aquifer is simulated. A reference transmissivity field was 
generated with a geometric mean transmissivity equal to Tg=86.4m2/d and an ex-
ponential covariance function with variance Y

2=1 and a correlation length of 
IY=500m. For the chosen conditions a water divide along the eastern part of the 
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area is present and the well pumps water from a considerable area located west of 
the water divide (see Fig. 1). The groundwater flow and mass transport equations 
were solved for the reference field. The reference transmissivity fields were sam-
pled according to four different sampling designs. In the first sampling design ten 
locations of transmissivity measurements were randomly chosen (see Fig. 2). In 
the second design the measurement locations were systematically located in 
zones with largest uncertainty in the capture probability (see Fig. 3). In the third 
design the measurement locations were systematically located in zones with no 
uncertainty in the capture probability (see Fig. 4). In the fourth design the meas-
urement locations were systematically located in zones with uncertainty in the 
capture probability (see Fig. 5).  

The uncertainty bandwidth b of the semi-analytical approach in Fig. 2 - 5 (up-
per part) is taken as 4 ppb X normal to the mean catchment boundary, assum-
ing Gaussian distribution. The results of the semi-analytical approach are con-
fronted with those from unconditional and conditional numerical Monte Carlo 
solutions, in which the ensemble average and the variance were evaluated for 100 
realizations each. The ensemble mean catchment boundary is characterized by 
the line with the probability of 0.5. The uncertainty bandwidth is presented in 
Fig. 2 - 5 (lower part) as the two lines with a probability of 0.025 and 0.975 that a 
location belongs to the catchment. 

6 Discussion and conclusions 

The semi-analytical results (Fig. 2 - 5) are generally in rather good correspon-
dence with the Monte Carlo solutions. However, the validity of the results is lim-
ited to a minimum distance of about two correlation lengths IY from the domain 
boundary. This limitation is mainly due to the chosen analytical velocity covari-
ance approximation. Nevertheless, a certain distance to a boundary is anyway 
needed in order to justify the assumption of a Gaussian probability density of the 
lateral particle’s location given its variance. Furthermore, it should be kept in 
mind that the solution is acceptable as long as advection is the dominant transport 
process and that therefore local dispersion and molecular diffusion can be disre-
garded. 
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Fig. 2. Semi-analytical solution (top) for the uncertainty well catchment, conditional to 10 
randomly located transmissivity measurements; Monte Carlo solution (bottom, solid lines) 
together with unconditional solution (dashed lines). 



Uncertainty estimation of well catchments: semi-analytical post-processing      257 

Fig. 3. Semi-analytical solution (top) for the uncertainty well catchment, conditional to 10 
transmissivity measurements, located in zones with largest uncertainty in the capture prob-
ability; Monte Carlo solution (bottom, solid lines) together with unconditional solution 
(dashed lines). 
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Fig. 4. Semi-analytical solution (top) for the uncertainty well catchment, conditional to 10 
transmissivity measurements, located in zones with no uncertainty in the capture probabil-
ity; Monte Carlo solution (bottom, solid lines) together with unconditional solution 
(dashed lines). 
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Fig. 5. Semi-analytical solution for the uncertainty well catchment, conditional to 10 
transmissivity measurements, located in zones with uncertainty in the capture probability; 
Monte Carlo solution (bottom, solid lines) together with unconditional (dashed lines). 
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The synthetic study shows that the consideration of ten transmissivity meas-
urements resulted in an only marginal reduction of the uncertainty bandwidth of 
the boundary of the well catchment. Obviously, ten transmissivity measurements 
are not enough to enhance the precision of the results. None of the sampling de-
signs showed a clear improvement compared to the unconditional case. However 
this does not necessarily mean that the design of the monitoring network is not 
relevant in general.  

The results (Fig. 2 - 5) can directly be compared with those from Stauffer et
al. (2004), which were based on the same definition of the test problem. They 
used 25 transmissivity and 25 co-located head data for conditioning in two sam-
pling designs. They found a substantial reduction in uncertainty in both cases. 
However, in the case where the measurement locations were randomly chosen 
within the unconditional uncertainty bandwidth close to the catchment boundary, 
the uncertainty reduction was larger. 

The application of the proposed semi-analytical method to non-rectangular 
domains is in principle possible and straightforward. The method can be used for 
post-processing of deterministic steady-state models of well catchments. 
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1 Introduction 

A most typical aquifer remediation scheme is that of extracting the solutes dis-

solved in groundwater through pumping. Assuming that the natural background 

flow is not very important with respect to the flow regime imposed by the abstrac-

tion, a pseudo radial flow develops. The objective of this paper is to analyze the 

influence of a number of hydraulic and hydrogeochemical parameters, which play 

a role in the processes governing displacement of a pollutant in an aquifer reme-

diation scenario. The remediation method considered consists on extracting 

groundwater from a pumping well. Water advected to the well would carry the 

pollutants dissolved to the biosphere, where they can be removed before disposing 

(or reinjecting) the treated water. An accurate knowledge of the processes control-

ling the space-time evolution of the pollutant is needed in order to perform an ef-

fective aquifer remediation. It is also essential to properly recognize the natural 

heterogeneity of the medium. A convenient way to accomplish this relies on the 

assumption that all relevant natural properties (physical and chemical) can be 

treated as Spatial Random Functions. Here we consider that the solute undergoes 

reversible linear instantaneous equilibrium sorption (LIE), with spatially variable 

distribution coefficient (and hence, retardation factor).  

Analysis of travel time for conservative and sorbing solutes in heterogeneous 

media has been broadly addressed in the literature. Shapiro and Cvetkovic (1988) 

and Dagan et al. (1992) study travel time to a plane perpendicular to (uniform) 

mean flow direction in a 2- or 3-D aquifer, providing the first analytical expres-

sions. Selroos and Cvetkovic (1992) extend the previous work to non-conservative 

solutes undergoing non-instantaneous sorption, again for uniform flow conditions 

and using a numerical methodology. Analytical results are provided by Cvetkovic 

et al. (1998) for the non-conditional case and by Sanchez-Vila and Rubin (2003) 

for the conditional one.  

The main objectives of this work are: (1) studying the variation of the travel 

time (time taken by a solute particle to reach the pumping well) as a function of a 
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number of parameters such as statistical moments (mean, variance, and integral 

scale) of transmissivity, T and distribution coefficient, Kd, plus their cross-

correlation; (2) determining until which extent the uncertainty in T and Kd is 

transmitted into the uncertainty in travel time of a given solute particle; and (3) 

analyzing the impact of measurements (in terms of both location and actual meas-

ured values) in the reduction of uncertainty. The methodology is based on a nu-

merical Monte Carlo analysis, and the results for unconditional and conditional 

travel time are presented in statistical form. 

2 Statement of the problem 

We consider a thin aquifer of porosity  which is polluted by a sorptive solute. 

Furthermore, we assume an individual solute particle to be initially located at a 

given distance r0 from an existing well. We focus on the process of forcing the ex-

traction of this particle by pumping. The particle trajectory is uncertain due to het-

erogeneity in hydraulic conductivity (or transmissivity). Further, the solute under-

goes retardation due to sorption, which is characterized by the local values of the 

distribution coefficient. The heterogeneous nature of the medium is modeled by 

assuming that transmissivity and distribution coefficient are spatially auto- and 

cross-correlated. 

This study can be seen as the kernel for a real pollution problem, where a cer-

tain area is considered polluted initially. Since the first step in a real remediation 

study is to eliminate the source, in our analysis we consider no pollution source 

term, while the only sink term is the pollutant removed through pumping. We also 

disregard areal recharge (representing either a confined aquifer or fast remediation 

problem during a dry season). Furthermore, no dispersion is considered. In sum-

mary, the transport equation reduces to: 

c
R c

t
q , (1) 

where  is porosity [-] and R is the retardation factor [-] which, for a solute un-

dergoing linear reversible instantaneous equilibrium in a saturated medium, is 

given by (e.g. Domenico and Schwartz 1990): 

b

dR 1 K , (2) 

where b  is the bulk density [ML-3] and dK  the distribution coefficient [L3M-1].  

Travel time for a sorptive solute, tR, is defined as the time needed for a particle 

to travel from point A to point B along a flow path assuming that no dispersion 

occurs and is given by: 
B

R

A

d
t R

V( )
, (3) 

where V( ) is the velocity of a particle traveling from point A to point B along 

trajectory . Under perfectly radial flow conditions, Eq. 3 can be integrated ana-

lytically. If location B corresponds to the pumping well and point A is located at a 
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distance r0 from a well pumping a total flow per unit width of aquifer, Q [L2T-1], 

the travel time is:  

tR = R 
2

0r  / Q, (4) 

In physically and geochemically heterogeneous domains, the particle trajectory 

and the travel time would be uncertain. Uncertainty in travel time would arise 

from the limited knowledge of the transmissivity distribution in space (and thus, 

that of the particle trajectory), and from the local variability in the retardation fac-

tor. 

A most common way to address a problem involving heterogeneity is by means 

of regionalized variables. Here we would assume that both T and Kd are Spatial 

Random Functions. Then the output, in this case the travel time from a given re-

lease point, becomes a random variable. In general we would be interested in find-

ing the complete probability density function (pdf) of the output variable. How-

ever, in most cases we would only be able to find the first few statistical moments. 

Sanchez-Vila and Rubin (2003) provided the following analytical expression of 

the expected value of travel time for a solute injected at a distance r0 from the 

well:

R C

0 0 0t (r ) R t (r ) (r ) , (5) 

where C

0t (r )  is the travel time corresponding to a conservative solute, <R> is the 

mean retardation factor (< > accounts for expectation throughout the text), given 

as b

dR 1 K . The last term in Eq. 5 corresponds to the contribution of 

the physico-chemical correlation, and is given by  
0(r )

b d d

0

0

K ( ) K
(r ) d '

V( ')

x
, (6) 

The expression in Eq. 6 vanishes if T and Kd are independent variables. However, 

there is empirical evidence that these two variables should be correlated (Roberts 

et al. 1986; Robin et al. 1991; Allen-King et al. 1998). Robin et al. (1991) postu-

late the following relationship between T and Kd:

d d,GZ ln(K ) ln(K ) Y ' W , (7) 

where Y=ln(T); Y’ = Y  <Y>; Kd,G is the geometric mean of the local distribu-

tion coefficient;  is a coefficient reflecting the degree of linear correlation be-

tween the variables (Y and Z); and W is a Gaussian process, 2

W
W N(0, ) , to 

account for imperfect correlation between Z and Y. Even though Robin et al. 

(1991) used a white noise for W, their expression can easily be generalized to in-

clude a variable with a non-zero correlation length. The actual value of  would 

depend on the solute and the medium mineralogy. It can be either negative (Robin 

et al. 1991) or positive. As an example, Allen-King et al. (1998) found positive 

values of  (in some cases even larger than 1) for PCE and in some given facies. 
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Some expressions for the first and second moment of Kd can then be written af-

ter Eq. 7: 

2

d d,G Z
K K exp / 2 ,

2

Z Y W
(h) (h) (h) ,

2 2 2 2

Z Y W
,

(8) 

For the cross-variogram we obtain: 

YZ Y(h) (h) , (9) 

Expressions for the variance of travel time that account for the correlation between 

Y and Z are available in Sanchez-Vila and Rubin (2003).  

3 Monte Carlo approach 

The numerical approach undertaken in this work can be summarized as follows:  

1. Generation of a number of conditional simulations of correlated Y and Z fields.  

2. Solution of the groundwater flow equation for convergent flow conditions. 

Study of transport of sorbing solutes by means of a particle tracking code (see 

Fig. 1 for the set-up of the problem). 

3. Statistical analysis of travel time. 

Using this methodology we analyzed different scenarios accounting for varia-

tions in the integral scale of the Spatial Random Functions, and for value and loca-

tion of the conditioning data. For each scenario 2,000 simulations were run. Sensi-

tivity to the number of simulations was checked against the results from 10,000 

simulations in selected scenarios, with similar values for the travel time moments. 

Simulations were performed within a square domain of size 2L = 20 (arbitrary 

units), discretized into squares of size 0.2 (10,000 elements in total). The 

variograms used are spherical and isotropic for both variables. The mean values 

used are <Y> = 0 and <Z> = 1.27. Additional parameters are 2

Y = 1, b = 1.6 and 

 = 0.3. With the values selected the mean retardation factor is a function of :

when  = 0, then <R> = 3.46; when =1, then <R> = 5.06. The variance of Z 

depends on  through (8). We consider two main cases for the integral scale, : (1) 

 = 1 (L/  = 10), so that the integral scale is small with respect to the domain size; 

and (2)  = 10 (L/  = 1), rendering an integral scale of the order of the domain 

size. Throughout the text we denote them as short range and long range heteroge-

neity, respectively.

Radial flow is analyzed by locating a steady-state pumping well (Q = 100 in 

consistent units) at the center of the domain, while keeping a fixed head at the ex-

ternal boundary. A particle is then placed at a point located at radial distance 

r0=8.9 (see Fig. 1), and it is tracked since it reaches the well. Particle tracking is 
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performed by evaluating the location of the particle at a given time. Velocity is 

computed from the nodal heads through finite elements. Velocity is then minored 

by the local retardation factor at that particular position. Then particle is displaced 

and travel time is updated. 

Extraction

point
Injection

point

Extraction

point
Injection

point

Fig. 1. Set-up of the numerical analysis. 

4 Effect of conditioning. Constant Kd

In order to separate the impact of conditioning upon transmissivity from that of 

heterogeneity in Kd, we first study the displacement of a solute with a constant re-

tardation factor. We analyze the impact on mean and variance of travel time of 

one transmissivity datum located either at the injection or at the pumping point. 

This is a common situation in reality, where these are two of the few available 

points where transmissivity measurements can be taken through hydraulic testing. 

In our study, we analyze dimensionless travel time, t*, which is obtained by divid-

ing the actual computed time by the equivalent time for homogeneous media pro-

vided by (4). Our result is then insensitive to the value of Q, , and R. Results of 

normalized travel time mean, <t*>, and variance, Var t*, are displayed in Table 1, 

together with the values for the variance of the natural logarithm of t*, ln-t*. The 

latter is much more informative than Var t*, as the pdf of travel time is asymmet-

rical and positively skewed. 

From Table 1 we can see that the mean travel time is larger than the one for 

homogeneous media (t*>1) in almost all cases. For the unconditional case this re-

sult was already presented by Riva et al. (2004). Due to the asymmetry in the 

travel time pdf, the probability of normalized travel time being smaller than 1 is 

0.37 for the case L/ =10 and 0.40 for L/ =1. On the other hand, there is a small 

probability that very large times occur, thus leading to a large asymmetry.  



266      C. Castillo, X. Sanchez-Vila, L. Nuñez-Calvet and A. Guadagnini  

For short range heterogeneity (L/ =10), conditioning on transmissivity at the 

well has almost no effect on mean travel time or variance of ln-t*, while condi-

tioning on the value at the injection point produces a remarkable effect. The 

physical explanation of this result is the following: on one side, we note that solute 

at the injection point travels at a low velocity and spends quite a large time in that 

vicinity. Contrariwise, the solute spends less time close to the well. Therefore, any 

modification in the local velocity, due to conditioning, close to the injection point 

would have a very significant effect in increasing (or decreasing) travel time. 

Table 1. Mean and variance of normalized travel time (and natural logarithm of travel time) 

for different conditioning values and integral scales. The unconditional cases are presented 

for reference. Yw and Yinj are the conditioning values of log-transmissivity at the well and 

at the injection point, respectively. 

   <t*> Var t* Var ln t* 

Yw -3 1.313 0.525 0.238 

Yw -1 1.316 0.562 0.251 

Yw 1 1.329 0.580 0.256 

Yw 3 1.335 0.569 0.247 

Unconditioned 1.356 0.620 0.256 

Yinj -3 3.229 2.254 0.185 

Yinj -1 1.604 0.674 0.210 

Yinj 1 1.063 0.307 0.221 

L/ =10

Yinj 3 0.830 0.192 0.218 

Yw -3 1.170 0.202 0.125 

Yw -1 1.167 0.248 0.141 

Yw 1 1.232 0.314 0.160 

Yw 3 1.224 0.350 0.175 

Unconditioned 1.228 0.408 0.188 

Yinj -3 3.017 1.894 0.174 

Yinj -1 1.551 0.361 0.127 

Yinj 1 0.896 0.096 0.100 

L/ =1

Yinj 3 0.562 0.023 0.066 

Finally, from the table we can also identify that conditioning is more significant 

when the integral scale is comparable to the travel distance. In such a case, the 

impact of a conditioning datum extends throughout the aquifer, and the transmis-

sivity field is somehow homogenized in each individual realization, thus leading 

to smaller variances (both in t* and in ln-t*). 

5 Effect of conditioning. Heterogeneous T and Kd

A similar numerical methodology is used to estimate the combined impact of het-

erogeneity in transmissivity and distribution coefficient, which are assumed cross-

correlated through Eq. 7. In this case we should differentiate between the effects 

of conditioning in each variable separately. Notice that due to the existence of 
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cross-correlation, conditioning on a primary variable would have an indirect effect 

on the value of the secondary variable. 

First, some simulations are performed for the unconditional case. We consider 

different values for  ranging from 1.0 to 1.0. In Table 2 the mean values are 

presented, normalized with respect to an equation similar to Eq. 4 but using the 

mean retardation value given by Eq. 8. The remaining parameters selected for the 

simulations are: <Y> = 0, <Z> = 1.27, Var(Y) = 1.0, Var(W) = 1.0  

Table 2. Normalized mean travel time and variances for different correlation parameter ,

and two L/  values. The scenarios corresponding to constant Kd are reported for reference. 

  <t*> Var ln t* 

-1 1.507 0.872 

-0.5 1.387 0.583 

0 1.271 0.364 

0.5 1.137 0.243 

1 1.006 0.216 

L/ =10

Constant Kd 1.356 0.256 

-1 1.509 1.099 

-0.5 1.266 0.665 

0 1.166 0.463 

0.5 1.111 0.461 

1 0.957 0.552 

L/ =1

Constant Kd 1.224 0.188 

Two conclusions can be drawn from Table 2. First, similar to the constant Kd case, 

the mean travel times are larger for short range heterogeneity (L > ). Second, 

travel times decrease monotonically for increasing . If  < 0, not accounting for 

cross-correlation between Y and Z would lead to an underestimation of the reha-

bilitation time. The opposite holds for positive .

Regarding the variance, while in the constant Kd case it was larger for the sce-

nario corresponding to L > , in the cross-correlated case we obtain larger vari-

ances for L = . Conditioning in this set-up has been performed both at the injec-

tion and the pumping well. We consider now conditioning both in Y or Z.  

5.1 Conditioning at the well 

When conditioning is performed at the well, the behavior of the system strongly 

depends on the ratio L/ . When this ratio is large (results not presented in the pa-

per), the impact of conditioning upon transmissivity on the moments of travel time 

is almost negligible. When conditioning upon Kd measurements, there is a slight 

tendency of increasing mean travel time for increasing measured values of Kd.
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Fig. 2. Impact of conditioning on transmissivity at the well when L/ =1. Broken lines rep-

resent the values corresponding to the non-conditional case for each  value (top line  = 1

and increasing  for downward lines).

On the other hand, for large range correlation (L = ), even when the only con-

ditioning point is the pumping well the effect of conditioning extends throughout 

most of the trajectory. For this reason, the effect of conditioning has a major im-

pact on travel time mean (see Fig. 2) and variance. As an example, when we con-

dition only on transmissivity the impact on mean travel time is different depending 

on the value of . When  is negative, mean travel time decreases with increasing 

the transmissivity, Tw, measured at the well and used for conditioning. On the 

other hand, a positive  leads to an increase of the mean travel time with increas-

ing conditioning value. The reason for this particular behavior is an effect of indi-

rect conditioning on Kd. A negative correlation (  < 0) causes Kd to decrease when 

transmissivity increases, thus resulting in a generally shorter mean travel time. On 

the other hand, large Tw values lead to large retardation factors in the case of posi-

tive correlation (  > 0), thus dispalying a tendency to increase mean travel time. 

The effect of conditioning on a Kd value is always monotonic, since increasing 

Kd,W (Kd measured at the well) leads to larger travel times, independently of  (see 

Fig. 3). In this case, the effect of  can be clearly recognized, in that mean travel 

times are generally smaller when  is larger. The results for the variance are pre-

sented in Table 3. In this case, conditioning clearly affects travel time variance, 

particularly for large range heterogeneity. When conditioning on Tw, variance re-

duces in the presence of larger Tw values whenever  < 0, while the opposite hap-

pens for  > 0. Again, when conditioning upon Kd,w, travel timevariance always 

increases with increasing value of the conditioning parameter. 
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Fig. 3. Dependence of thre mean travel time on the correlation coefficient, , and the value 

of the conditional log-distribution coefficient at the well, Zw, when L/ =1.  

Table 3. Variance of ln-t* as a function of  for different conditional values and L/ =1. 

Conditioning on ln T Conditioning on ln (Kd) 

-3 -1 1 3 -3 -1 1 3 

-1.0 1.284 1.028 0.619 0.359 0.406 0.723 0.873 0.873 

-0.5 0.789 0.646 0.535 0.431 0.287 0.460 0.551 0.594 

0.0 0.415 0.437 0.433 0.447 0.186 0.278 0.396 0.418 

0.5 0.206 0.322 0.470 0.574 0.141 0.211 0.308 0.318 

1.0 0.125 0.278 0.555 0.762 0.125 0.242 0.368 0.379 

5.2 Conditioning at the injection point 

In this case only two values of  were analyzed. Table 4 reports the mean variance 

of ln-t* for different conditioning values of log-transmissivity and ln(Kd) at the in-

jection point when  =  0.5, 0.5, and L/ =10. We start by noting that a major dif-

ference with respect to conditioning at the well is that now we see an important 

impact of conditioning also when L/ =10. From Table 4 we can observe that a 

larger Tinj (conditional value at the injection point) results in a smaller mean travel 

time when L/ =10. This behavior is independent of , even though it appears to be 

more evident when  < 0. When  =  0.5, an increase in transmissivity causes Kd

to dimish as well, thus resulting in a strong decrease of the resulting contaminant 

travel time. Conversely,  = 0.5 indicates that Kd increases with transmissivity. 

Even though this produces contrasting effects on the travel time it appears that the 
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distribution coefficient effect dominates that of transmissivity. The results ob-

tained when conditioning on the distribution coefficient (Table 4) reveal that the 

larger Kd,inj (conditional value at the injection point), the larger mean travel time, 

regardless of the  value. 

Table 4. Dependence of mean and variance of ln-t* on  for various conditioning values at 

the injection point. L/ =10. Each cell displays mean value (top) and variance (bottom). For 

comparing purposes, unconditional variances of ln-t* are 0.583 (  = 0.5) and 0.243 (  = 

0.5).

Conditioning on ln Tinj Conditioning on ln Kd,inj 

-3 -1 1 3 -3 -1 1 3 

6.640 1.938 0.992 0.747 0.932 1.386 3.324 17.50 
-0.5

0.668 0.534 0.498 0.537 0.487 0.522 0.573 0.682 

1.985 1.342 1.003 0.908 1.046 1.168 1.590 3.141 
0.5

0.207 0.243 0.250 0.270 0.236 0.249 0.263 0.314 

When L/  = 10, variance of ln-t* (Table 4) tends to be larger for negative .

Moreover, increasing in Tinj in the presence of >0 leads to a slight increase in the 

log travel time variance. Contrariwise, <0 leads to a non-monotonic behavior of 

the variance. In any case, the most relevant result is that conditioning leads to very 

small variation in the variance.  

The effect of conditioning at the injection point on travel time variance for lar-

ger log-transmissivity correlation scales (L/ =1) is depicted on Fig. 4. As opposed 

to the non-monotonic behavior observed for L/ =10, increasing the log transmis-

sivity causes the variance of travel time to decrease when  = 0.5. On the contrary, 

a negative correlation (  =  0.5) results in a clear increase of the travel time vari-

ance with increasing log-transmissivity conditioning value. 

Fig. 4. Variance of log-travel time when conditioning is performed at the injection point 

and L/ =1. The conditioning parameter is either transmissivity (left) or distribution coeffi-

cient (right). Dashed lines correspond to the unconditional values. 
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Conditioning on log-transmissivity does not result in a reduction of the travel 

time variance with respect to the unconditional case in all situations tested. On the 

other hand, conditioning on the distribution coefficient always results in a reduc-

tion of the travel time variance, with respect to the unconditional case. 

6 Conclusions and Final Discussion

Our work leads to the following major conclusions: 

Additional information about the expected value of the travel time is not ob-

tained by conditioning at the pumping well location when the transmissivity in-

tegral scale is much smaller than the solute travel distance. On the other hand, 

when both distances are of similar order, conditioning upon measurements 

taken at the pumping well influences visibly the travel times; however, this in-

fluence is in all cases smaller than in the cases where conditioning is performed 

at the injection point.  

Conditioning upon transmissivity values, when performed at the injection point, 

has a lesser impact on travel time that doing it upon distribution coefficients. 

The linear correlation coefficient between the transmissivity and the distribu-

tion coefficient plays an important role in the behavior of the travel time (both 

in the conditional and unconditional cases).  

In general, conditioning reduces travel time variance (increases confidence in 

predictions), even though this is not true in all the cases. We provide an exam-

ple of this counterintuitive finding. Our results suggest that it is not possible to 

insure in all cases that conditioning at the injection point renders results which 

are on the safe side with respect to the time needed for aquifer remediation. A 

conclusive answer to this problem might be provided by a more extensive se-

ries of simulations.  

A method to help evaluate whether or not the Pump-and-treat method could be 

efficient in a given context has been presented. Efficiency is measured here in 

terms of rehabilitation time, remnant concentrations and cost. The challenge is to 

be able to define a priori, given a polluted site, whether the method is going to be 

feasible. The ultimate aim of our work is to develop methods to simulate the real 

medium and the behavior of a given pollutant, in order to, first, postulate a priori 

the aquifer reclamation time, and second, to recommend whether pump-and-treat 

is a good alternative for any given site remediation problem.  
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1 Introduction 

Prediction of hydraulic head, flux and contaminant travel time/trajectories in natu-

ral aquifers is uncertain due to the geologic media complexity and lack of infor-

mation. Hence it is appropriate to cast the equations that govern groundwater flow 

and contaminant transport within a stochastic framework. The latter is oriented 

towards rendering ensemble moments of the analyzed quantities.  In this view the 

spatial variable transmissivity is usually modeled as a Stochastic Continuum, 

characterized by a set of parameters (covariance shape, geometric mean, variance 

and correlation length). These are generally assumed to be known with certainty 

even though they are usually derived using a limited amount of experimental data, 

which are often not enough for a complete characterization.  

Full-Bayesian approaches (e.g. Woodbury and Rubin 2000, Woodbury and Ul-

rych 2000) take into account the uncertainty in the knowledge of the variogram 

parameters (geometric mean, variance and correlation length). Feyen et al. (2002) 

illustrate an application of these methodologies to determine the uncertainty asso-

ciated with the delineation of well capture zones. Hendricks Franssen et al. (2002) 

investigate the impact of the uncertainty of variogram parameters on the same 

topic using sequential Gaussian simulation (Gómez-Hernández and Journel 1993) 

to generate transmissivity fields and the sequential self-calibrated method for in-

verse conditioning. In all these works the shape of the correlation structure of the 

natural logarithm of transmissivity is fixed and assumed known without uncer-

tainty. Salandin and Rinaldo (1989) analyze the influence of the form of the log-

conductivity covariance on dispersion coefficients in random permeability fields 

under mean uniform flow conditions.

Here, we focus on the impact of the choice of the functional form for the log-

transmissivity variogram on (ensemble) moments of hydraulic head and contami-

nant residence time under convergent flow conditions, such as those created by a 

single pumping well.  
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Although of high relevance in practical applications, problems associated to 

contaminant transport in the vicinity of extraction wells in heterogeneous media 

have been tackled only recently (e.g. Guadagnini and Franzetti 1999, Riva et al.

1999, Dagan and Indelman 1999, van Leeuwen et al. 2000, Feyen et al. 2002). 

We perform a numerical Monte Carlo analysis of (a) the predictors of hydraulic 

head and residence time (rendered by their means) for conservative solute parti-

cles injected at various radial distances from the well, and (b) the associated pre-

diction errors (rendered by the variance of the state variables investigated).  

The natural logarithm of aquifer transmissivity, Y, is modeled as a statistically 

homogeneous Gaussian random field. Three functional forms of the variogram 

(namely Exponential, Gaussian and Spherical), chosen amongst the most common 

models used in the literature, are considered. The impact of the choice of the 

variogram model on flow and travel time predictors is analyzed for different do-

main sizes in terms of correlation scale of Y (i.e. extent of the aquifer within which 

the effects of pumping are not negligible) and degrees of heterogeneity (in terms 

of the variance of Y, 2

Y ).

2 Statement of the problem and numerical Monte Carlo 
simulations

We consider incompressible groundwater steady state convergent flow created by 

a well of zero radius, located at the center of a circular randomly heterogeneous 

domain of radial extent L. The well pumps at a constant deterministic rate, and the 

head drawdown is assumed negligible at a given distance (L) from the well.  This 

Dirichlet-type of boundary condition is based on the work of Sanchez-Vila et al.

(1999), who showed that the differential drawdown between the pumping point 

and any observation point becomes constant with time for large pumping times, so 

that the drawdown conus keeps its shape. Therefore, a surface can be defined with 

all points having the same drawdown. Mathematically this is analogous to define 

this surface as zero drawdown. The shape of this surface would depend on the ac-

tual spatial distribution of transmissivity, but in the mean it will be a circumfer-

ence.

We focus on the evaluation of (a) the hydraulic head distribution and (b) the 

travel time of solute particles released at time t0 = 0 at a general point of polar co-

ordinates 00 ,r0r  centered at the well. In order to obtain the (ensemble) mo-

ments of the variables of interest, Monte Carlo simulations were conducted using 

the same code of Riva et al. (1999), with different boundary conditions. Flow and 

transport are simulated in a square domain with 100 rows and 100 columns of uni-

form size ( x = y = = 0.2). A circular boundary of radius L = 50  was defined 

around the well by designating all cells outside it as inactive. The hydraulic head

along the circular boundary was set constant. A pumping well at a constant rate 

Q = 100 (in consistent units) was placed at the central node of the grid.  
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We model the log-transmissivity, Y(r) = ln T(r), as a statistically homogeneous 

and isotropic random function of space. Three different variograms between two 

points has been adopted in this study: 

- Gaussian model (GV) 

2

YY dexpd
2

2

4
1 (1)

- Exponential model (EV) 

d
expd YY 12 (2)

- Spherical model (SV) 

d

dfor
dd

d

Y

Y
Y

2

3

3
2 0

2

1

2

3

(3)

where 2

Y  is the variance of Y,  is the correlation length and d is the Euclidean 

distance.  To isolate the influence of the choice of the variogram model we con-

trast results obtained by keeping fixed the spatial integral scale 

2
0

1
1Y Y

Y

I r dr (4)

A Gaussian sequential simulator code (GCOSIM3D, Gómez-Hernández and 

Journel 1993) was used to generate unconditional random realizations of Y on the 

above defined two-dimensional grid. Each realization constituted a sample from a 

multivariate Gaussian, statistically homogeneous field, with mean Y  = 0, vari-

ances 2

Y  ranging from 0.1 to 1.0 and two different values of the spatial integral 

scale

- Test case 1 – TC1: Y = 5       (=1 = 0.1L)

- Test case 2 – TC2 :  Y = 50     (= 10 = L)

Y = for the for the Gaussian and Exponential variogram and Y = 3/8 for the 

Spherical model.  

The effective porosity, n, was taken as a constant and set to 0.3. Flow in each 

realization was solved by Galerkin finite elements using bilinear shape functions 

and solute transport was simulated by particle tracking, modeling only the convec-

tive component of motion and disregarding diffusive effects at smaller scales. To 

compute residence times, conservative solute particles were located at grid nodes 

of radial distances from the well, r0, ranging from  to 50  and various angular 

positions, 0. Tracking was stopped when the particles reached one of the cells 

sharing the well node. To obtain the total travel time we added the time to get 
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from the trajectory end-point to the well (separated by a distance r), which is 

computed by means of the well known equation for the steady state radial flow in 

a homogeneous and isotropic field, as t = n  r2 / Q.

A crucial point was the determination of the number of Monte Carlo realiza-

tions (NMC) needed to obtain the convergence of the ensemble moments ana-

lyzed. Due to the radial symmetry of the problem (domain, flow and boundary 

conditions), the statistical moments of hydraulic head, h , and residence time, t, are 

independent of the angular coordinate, when the convergence is attained. We ap-

plied the methodology proposed by Ballio and Guadagnini (2004) with reference 

to the mean and variance of hydraulic head and particle residence time.  As an ex-

ample of the results, Fig. 1 depicts the stabilization analysis of mean, h , and 

variance, 2

h , of the hydraulic head (black lines) computed at a monitoring point 

located at radial distance from the well r = 5 = L/2 for TC1, using the Exponential 

Variogram model and 2

Y  = 1.0. 
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Fig. 1. Dependence of convergence of hydraulic head mean and variance on the number of 

Monte Carlo simulations (black lines) together with the 95% estimated confidence intervals 

(grey lines). 

Fig. 1 also reports the 95% estimated confidence intervals (grey lines) which

have been computed on the basis of the following expressions 

1 1
1 1 1

2 2

NMC NMC
NMC NMCNMC NMC

S S
Pr t t

NMC NMC
(5)
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Pr S S

/ /
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respectively for the mean (Eq. 5) and for the variance (Eq. 6) of the variable of in-

terest (hydraulic head in our example), where 1  (  = 0.05 in our example) is 

the probability that the value of the process mean  (or variance 2) lies within the 

confidence interval around the sample mean NMC  (or sample variance 2
NMCS ),

tNMC-1() is the Student distribution with (NMC–1) degrees of freedom and NMC() 

is the chi-square distribution with NMC degrees of freedom. 

The confidence intervals provide the order of magnitude of the uncertainty as-

sociated to the first and second moments evaluated on the basis of a finite sample 

of Monte Carlo realizations. Obviously, their width decreases as NMC increases. 
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Fig. 2. Hydraulic head variance as a function of the radial distance from the well, r, and 

NMC for TC1 with 
2

Y  = 1 evaluated using an Exponential (black continuous line) and a 

Gaussian (grey continuous line) variogram. Dashed curves indicate the 95% estimated con-

fidence intervals (black for EV and grey for GV). 

As an example of the rate of convergence of the Monte Carlo procedure, Fig. 2 

depicts 2

h  and its 95% estimated confidence intervals as a function of the radial 

distance from the well for TC1 and 2

Y =1, computed using a Gaussian and an Ex-

ponential variogram model and increasing NMC from 100 to 10,000. 
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The crossings of the confidence intervals clearly evidences that not only a few 

hundreds, but also 1,000 Monte Carlo simulations are not sufficient to fully iden-

tify the effects of the variogram shape on 2

h , even though Fig. 1 suggests that 

1,000 Monte Carlo iterations allow attaining (quasi-)stable values of 2

h .  Similar 

results have been noted for the other cases and statistical moments considered. 

An acceptable compromise between CPU time requirements and accuracy of 

reproduction of the statistical moments of hydraulic head and travel time was ob-

tained with 10,000 Monte Carlo runs. The 95% confidence intervals computed af-

ter 10,000 iterations have a maximum width of 3.9%  and 5.5% 2 , re-

spectively for the first and second order statistical moments, 2  being the 

variance of the variable of interest (hydraulic head or travel time).  We also note 

that stopping at 1,000 iterations causes the width of such confidence intervals to 

increase up to 12.4%  and 17.6% 2 , respectively. 

3 Results and discussion 

In this Section the effect of the choice of the variogram model on hydraulic head 

and residence time statistical moments is investigated for TC1 and TC2. This is 

performed by introducing the quantities: 

100100
G

GS

S

G

GE

E ; (7)

where  represents a given ensemble statistical moment (i.e. either mean or vari-

ance of hydraulic head or travel time); the superscripts G, E, S indicate moments 

computed on the basis of Gaussian (GV, Eq. 1), Exponential (EV, Eq. 2) or 

Spherical (SV, Eq. 3) variogram model, respectively.  

3.1 Mean hydraulic head 

From a practically standpoint, the choice of the variogram model has not meaning-

ful effects on the mean hydraulic head for all the cases analyzed.  Larger E

and S values occur near the well, where the maximum E absolute value of 

about 8% has been obtained for TC2 and 2

Y  = 1.0. Consistently with our results, 

Riva et al. (2001) show that the heterogeneity effect on mean hydraulic head is 

relevant only near the well and increases as 2

Y  increases and L/IY decreases. In 

particular, for L/IY = 10 (Riva et al. 2001, their Fig. 8) the effect of 2

Y is detect-

able only at radial positions r < 0.5 IY.
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However, a qualitative analysis reveals that the mean drawdown close to the 

well is larger using the Gaussian variogram for both TC1 and TC2. This behavior 

is explained by noting that two points are more correlated using the Gaussian 

model than other variogram models. Thus, at location close to the well, the source 

effect is stronger in the presence of a Gaussian variogram. At the same time, we 

also observe that the use of an Exponential variogram renders the smallest mean 

drawdown near the pumping well.  

3.2 Hydraulic head variance 

The effect of the variogram model on the assessment of the hydraulic head vari-

ance, 2

h , is more pronounced.  Fig. 3 shows 2

h  as a function of the radial dis-

tance from the well, r, computed with three variogram models and three values of 
2

Y  (0.1, 0.5 and 1.0) for TC1 (Fig. 3a) and TC2 (Fig. 3b).  Fig. 3 also depicts the 

relative differences evaluated by Eq. (7) for TC1 (Fig. 3c) and TC2 (Fig. 3d) and 
2

Y  = 1.0, together with the uncertainty bandwidths. These have been calculated 

by 10,000 Monte Carlo iterations.  Here and in the following pictures we also re-

port the uncertainty bandwidths since they allow discriminating between the rela-

tive differences due to the effect of the variogram model choice and those due to 

an incomplete convergence of the Monte Carlo results. 

Similar results (not reported) have been obtained for the other 2

Y values.  

In general, E and S increase with 2

Y for TC2, while for TC1 both the per-

centage differences seem not to be significantly affected by the heterogeneity of 

the conductivity field, at least until 2

Y = 1. 

Fig. 3a - c shows that the three variogram models provide very similar values of 
2

h near the boundary in TC1 (where the domain is larger, in terms of Y). In the 

middle portion of the aquifer (3 < r < 7) the results obtained with GV (Eq. 1) and 

EV (Eq. 2) coincide for all practical purposes ( 0E ), while SV (Eq. 3) results 

in larger values of 2

h .  Maximum values of the percentage differences (about 

40%) have been obtained at radial distances from the well between one and two 

integral scales for all the values of 2

Y  tested. 

In TC2 and at locations close to the well, the effect of the source on 2

h  is 

stronger using GV (Fig. 3d), resulting in the largest 2

h values. Adoption of EV 

results in the smallest 2

h values in most of the domain (except within a region 

close to the boundary), in analogy to what already observed for the mean hydrau-

lic head. Similarly, the effect of the imposed deterministic hydraulic head at the 

external boundary on 2

h is stronger when adopting a Gaussian variogram, as evi-

denced by the smallest values obtained for 2

h .
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Fig. 3 Variance of the hydraulic head computed using 3 variogram models for a) TC1, and 

b) TC2 with 
2

Y  = 0.1, 0.5, 1.0.  Relative percentage differences in the hydraulic head 

variance for c) TC1 and d) TC2 with 
2

Y = 1.0. Dashed curves indicate the uncertainty 

bands.

3.3 Mean Travel time 

Fig. 4 depicts the mean travel time as a function of the particle injection point, r0,

computed with the three variogram models adopted and three 2

Y values for TC1 

(Fig. 4a) and TC2 (Fig. 4b); for comparison, with a continuous line is also re-

ported the solution obtained with an homogeneous deterministic field with con-

stant transmissivity equal to the geometric mean of T. We observe that t  in-

creases with 2

Y ; thus, as opposed to what observed for the mean hydraulic head, 

the aquifer heterogeneity affects the mean residence time, t , not only for TC2 but 

also for TC1. 

Fig. 4 also depicts the relative percentage differences in the mean residence 

time for TC1 (Fig. 4c) and TC2 (Fig. 4d) with 2

Y  = 1.0, together with the corre-
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sponding uncertainty bandwidths. As in the case of the mean hydraulic head, the 

mean travel time is not significantly influenced by the variogram model adopted.  

The percentage differences (Eq. 7) generally increase with 2

Y  regardless the 

domain size and reach a maximum value of about 5% for 2

Y = 1. This value is of 

the same order of magnitude as the uncertainty bandwidths. 
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Fig. 4. Mean residence time as a function of particle released position computed using 3 

variogram models for a) TC1 and b) TC2 with 
2

Y = 0.1, 0.5, 1.0.  Relative percentage dif-

ferences in the mean residence time for c) TC1 and d) TC2 with 
2

Y = 1.0. Dashed curves 

indicate the uncertainty bands.

3.4 Travel time variance 

Similarly to what observed for 2

h , the impact of the variogram model on the 

travel time variance, 2

t , is significant.  Fig. 5 shows 2

t  as a function of the par-

ticle injection point computed with the three variogram models and three values of 
2

Y  for TC1 (Fig. 5a) and TC2 (Fig. 5b).  Fig. 5 also shows the relative percentage 
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differences, E and S, for TC1 (Fig. 5c) and TC2 (Fig. 5d) and 2

Y  = 1.0 to-

gether with the uncertainty bandwidths. In general E and S increase with 2

Y

for both the test cases analyzed.  

-50%

-25%

0%

25%

50%

75%

100%

0 2 4 6 8 10

-50%

-25%

0%

25%

50%

75%

100%

0 2 4 6 8 10

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

0 2 4 6 8 10

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

0 2 4 6 8 10

10-7

2

t

10

10-5

10-1

10-9

r0

r0 r0

r0

TC1

2

Y

TC2

2

Y

10-7

2

t

10

10-5

10-1

10-9

GV

SV

EV

GV

SV

EV

S E

2 1.0YTC1

(c)

S E

2 1.0YTC2

(d)

(a) (b)

p
er

ce
n
ta

g
e 

d
if

fe
re

n
ce

p
er

ce
n
ta

g
e 

d
if

fe
re

n
ce

-50%

-25%

0%

25%

50%

75%

100%

0 2 4 6 8 10

-50%

-25%

0%

25%

50%

75%

100%

0 2 4 6 8 10

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

0 2 4 6 8 10

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

0 2 4 6 8 10

10-7

2

t

10

10-5

10-1

10-9

r0

r0 r0

r0

TC1

2

Y

TC2

2

Y

10-7

2

t

10

10-5

10-1

10-9

GV

SV

EV

GV

SV

EV

S E

2 1.0YTC1

(c)

S E

2 1.0YTC2

(d)

(a) (b)

p
er

ce
n
ta

g
e 

d
if

fe
re

n
ce

p
er

ce
n
ta

g
e 

d
if

fe
re

n
ce

Fig. 5 Residence time variance as a function of particle released position computed using 3 

variogram models for a) TC1 and b) TC2 with 
2

Y  0.1, 0.5, 1.0.  Relative percentage 

differences in the residence time variance for c) TC1 and d) TC2 with 
2

Y  = 1.0. Dashed 

curves indicate the uncertainty bands. 

Fig. 5a and 5c show that, for TC1 at locations close to the well, the choice of a 

Gaussian model yields smaller values of 2

t , in analogy to what we observed for 

2

h . On the other hand, at larger distances from the well, the adoption of a Spheri-

cal model provides the largest 2

t values, while the Exponential model results in 

the lowest prediction variances.  The maximum differences have been obtained 

close to well, where E  attains values larger than 50%. 

For TC2 (Fig. 5b and d), as observed for TC1, the maximum differences are 

reached for release position close to the source. Adopting a Gaussian model re-
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sults in the smallest values of 2

t  in this part of the domain. The largest travel 

time variances are obtained using the Exponential model ( E >100%).  This large 

value for E  is related to the fact that all injection points in TC2 are very close to 

the well (in terms of the integral correlation scale, r0 IY) and the well (where 
2

t = 0) has a larger impact than in TC1. 

4 Conclusions 

We consider the effect of the choice of the log transmissivity variogram model on 

the estimation of the mean and variance of hydraulic head, h, and contaminant 

residence time, t. This is presented for two-dimensional steady convergent flow 

created by a well, located at the center of a randomly heterogeneous domain. The 

natural logarithm, Y, of transmissivity is modeled as a statistically homogeneous 

Gaussian random field. The effect of three different functional forms of Y (Expo-

nential, Gaussian and Spherical) is examined. Flow and particle movement were 

solved in a Monte Carlo framework. An extensive analysis of the stability of the 

moments (mean and variance) of h and t highlighted that as many as 10,000 itera-

tions were necessary to carry out the present analysis. Our work leads to the fol-

lowing major conclusions:  

- Ensemble mean of hydraulic head and travel time is not affected by the choice of 

the variogram model for fixed transmissivity geometric mean (TG), variance ( 2

Y )

and integral scale (IY).  This implies that numerical Monte Carlo results and ana-

lytical solutions which are usually presented in the literature for a particular co-

variance structure (e.g. Riva et al. 2001, Riva et al. 2002) together with their ap-

plications in pumping test analysis in order to obtain the statistical properties of 

conductivity fields (e.g. Neuman et al. 2004), have a more general validity.  

- The influence of the model of Y is relevant on the second order statistical mo-

ments of the variables of interest.  Differences in the spatial distribution of hydrau-

lic head ( 2

h ) and travel time ( 2

t ) variance due to different Y models increase at 

locations near the well. Variance of hydraulic head and travel time are also af-

fected by the domain size (L) and by the heterogeneity level.  Generally, the 

choice of the variogram functional form has a more profound impact on 2

t  than 

on 2

h .
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1 Introduction 

Prediction of the fate and transport of dissolved contaminants in groundwater is 

required in conducting risk analysis and in decision-making in problems involving 

hazardous waste management and remediation of contaminated sites. In order to 

make such predictions, it is necessary to estimate dispersivity, which is the aquifer 

parameter that measures the spread of a contaminant plume. Field tracer tests con-

stitute a practical tool to estimate field-scale dispersivities by which the underly-

ing heterogeneous structure is directly incorporated into an effective parameter. 

However, tracer tests can be materialized in the field using different site-specific 

schemes that involve different flow configurations, tracer source sizes, and meth-

ods of sampling and interpretation. Aquifer parameters estimated from a given se-

lected tracer test scheme may significantly differ from one scheme to another due 

to natural heterogeneity. In this paper, the influence of the method of interpreta-

tion on dispersivity estimated from tracer tests is investigated in a heterogeneous 

porous medium, which is generated considering the natural log of hydraulic con-

ductivity as a second-order stationary random function.  

Two major types of field tracer tests may be distinguished based on the flow 

configuration: (a) In natural-gradient tracer tests, the tracer is added into the sub-

surface by means of injection wells and is let to freely move along with the natural 

groundwater flow system. This type of tracer tests has the disadvantage that 

groundwater natural velocities are frequently very small giving large test duration 

times, i.e. hundreds of days (Mackay et al. 1986, LeBlanc et al. 1991), and that the 

groundwater flow direction is not well controlled being difficult to design a good 

well layout configuration that truly captures the tracer plume; (b) In forced-

gradient tracer test, the tracer is forced to migrate through an artificial flow system 

that is conveniently modified by means of water injection and/or pumping wells. It 

provides better controlled conditions but the groundwater flow system is signifi-

cantly different from the natural one. Many different forced-gradient flow con-

figurations can be envisioned: convergent flow tracer tests, divergent flow tracer 

tests, single-well tracer tests, dipole tracer tests, etcetera. In this respect, recent 

uniform flow tracer tests and forced-gradient tracer tests conducted under well 

controlled laboratory conditions in the same heterogeneous test aquifer have 
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shown that dispersivities for conservative and sorptive tracers and retardation fac-

tors can be significantly modified by simply changing the flow configuration 

(Fernàndez-Garcia et al. 2004). 

Three different methodologies to interpret tracer field concentration data can be 

distinguished: (a) curve matching techniques (b) the method of moments, and (c) 

model calibration. The first approach is the most common among practitioners. 

Field data is somehow fitted to analytical or numerical model solutions that are 

commonly given in the form of dimensionless type curves (Sauty 1980, Carrera 

and Walters 1985, Welty and Gelhar 1994). The second approach uses statistical 

information on the concentration distribution (either in space or in time) to yield 

aquifer properties (Freyberg 1986, Goltz and Roberts 1987, Das et al. 2002). Mo-

ments provide information about the size and shape of the concentration distribu-

tion such that if all moments were known the distribution would be completely de-

fined (Das et al. 2002). Aquifer properties such as dispersivity may be inferred 

using the first two moments: the first moment is a measure of the center of the dis-

tribution and is related to the advective solute transport. The second moment is a 

measure of the spread of the concentration distribution and describes the solute 

spreading mechanism in the subsurface. Finally, in the third approach, calibration 

of an analytical or numerical model is used to infer aquifer parameters (Poeter and 

Hill 1997, Carrera et al. 1997). Numerical simulations by Jan Vanderborght et al.

(1998) showed that curve matching techniques can yield dispersivities considera-

bly smaller than those obtained using the method of moments. 

It has been widely recognized nowadays that the influence of the source size on 

aquifer parameters such as dispersivity is of great importance. Tracer source sizes 

smaller than the characteristic scale of heterogeneity sample a small portion of the 

spatial variability of groundwater flow velocity, which is expected to result in a 

reduction of “macrodispersivity” (e.g., Rajaram and Gelhar 1993, Dentz et al.
2000). This theoretical result has been experimentally validated by Fernàndez-

Garcia et al. (2004).  

Two different sampling procedures can be distinguished. Several authors (Kreft 

and Zuber 1978, Parker and van Genuchten 1984) have established that concentra-

tions obtained from observation wells are better described by flux-averaged con-

centrations (CF), whereas concentrations from multilevel samplers that extract a 

certain volume of pore water are believed to yield volume-averaged concentra-

tions (CV). Flux-averaged concentrations are defined as the ratio between the 

fluxes of the solute mass and the groundwater mass, that are passing through a 

representative elemental area (REA) at a given time; at the fluid continuum scale, 

they are physically seen as an average concentration weighted by the fluid veloci-

ties (Parker and van Genuchten 1984).  
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Volume-averaged concentrations are seen as the arithmetic average of the con-

centrations in the pore space of the Representative Elemental Volume (REV),  

p p
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v n dA
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V

    (1) 

where CF and CV stand for flux- and volume-averaged concentrations, vp and Cp

are respectively the fluid velocity and concentration at the fluid continuum scale, 

is the porosity, and n is a unit vector perpendicular to the Representative Elemen-

tal Area (REA). The relationship between these two types of concentration is 

given by Kreft and Zuber (1978), and is written after neglecting molecular diffu-

sion as 

                         V

i F i i V i ij i

i i i j j

C
v C n v C n v n

x
 (2) 

Where vi is the ith-component of the average interstitial velocity, and ij is the 

dispersion tensor. In addition to the difference between flux- and volume-averaged 

concentrations, the sampling volume used during field tracer test can also largely 

influence the ultimate parameter estimate. For instance, the spread in a break-

through curve obtained from a sampling volume much smaller than the character-

istic scale of heterogeneity is a measure of mixing and dilution occurring along the 

travel path of the tracer, whereas the information expressed by the averaged break-

through curve over a control plane quantifies the overall spreading of the tracer 

plume (Cirpka and Kitanidis 2000).

Traditionally, it is implicitly assumed that those dispersivity estimates resulting 

from field tracer tests designed with deep-penetrating observation wells that sam-

ple flux-averaged concentrations with time at fix locations, and those based upon 

multilevel samplers which monitor the distribution of volume-averaged concentra-

tions in space at given times, leads to similar effective input parameters. In an 

ideal homogeneous porous media, both dispersivities are equal provided that the 

mean plume travel distance (L) is much larger than the Peclet number, Pe = L/ L

> 100 (Parker and van Genuchten 1984), considering that pore-scale dispersivities 

are in the range of 0.1 to 1 cm, the latter restriction is generally always the case. 

However, in a heterogeneous porous media in which dispersivity is a scale de-

pendent parameter and solute particles may be favoring different preferential 

paths, the relationship between these two dispersivities is unclear. 

The objective of this paper is to provide some insights into the true meaning of 

these two conceptually different dispersivity estimates in heterogeneous aquifers. 

To achieve this, natural-gradient tracer tests were numerically simulated in a het-

erogeneous porous media using different source sizes. The advection-dispersion 

equation is solved in a three-dimensional lnK random field; the heterogeneous 

structure is represented by a spatially variation of the natural log of hydraulic con-

ductivities within the domain, which follows a second-order stationary random 

field with an isotropic exponential covariance function. Temporal moments from 

flux-averaged concentrations breakthrough curves are calculated at several known 

control planes that are perpendicular to the mean flow direction. These temporal 
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moments are used to evaluate dispersivities from temporal moments of break-

through curves (recorded flux-averaged concentrations with time at given loca-

tions) as a function of distance. In addition, spatial moments of tracer plumes are 

computed as a function of travel times using several snapshots of the solute plume 

(volume-averaged concentrations distributed in space). These spatial moments are 

then used to estimate dispersivities from spatial moments. Comparison between 

dispersivities from temporal and spatial moments is then examined as a function 

of the source size for a given realization of the lnK stochastic process.  

2 Design of computational investigations 

2.1 Numerical features 

The computational domain was discretized into a regular mesh formed by 

250 250 200 parallelepiped cells. The hydraulic conductivity field was generated 

with a variance of the natural log of hydraulic conductivity ( 2
lnK) of 1.0 and a 

correlation scale ( ) of 176 cm. The resolution was of five grid cells within a cor-

relation scale in all directions.

The hydraulic conductivity field was incorporated into a seven-point finite dif-

ference ground-water flow model, MODFLOW2000 (Harbaugh et al. 2000). The 

model calculates the flow rates at the grid interfaces, which were employed to 

compute the velocity field considering porosity as a homogeneous variable with a 

value of 0.35. This velocity field was then used in a Random Walk Particle Track-

ing transport code (Tompson and Gelhar 1990, Wen and Gómez-Hernández 1996, 

Labolle et al. 1996) that solves the advection-dispersion equation. This method 

simulates the solute migration by partitioning the solute mass into a large number 

of representative particles (the number of particles used for all simulations is 

10000); moving particles with the velocity field simulates advection, whereas a 

Brownian motion is responsible for dispersion. For the type of analysis done in 

this research, this method provides better computational efficiencies than tradi-

tional numerical models. This method is well suited for large number of simula-

tions for the simultaneous computation of temporal and spatial moments. In addi-

tion, it is free of numerical dispersion. Longitudinal and transverse pore-scale 

dispersivities were respectively 0.2 and 0.02 cm, which are based on laboratory 

homogeneous sand column tracer studies (Fernàndez-Garcia et al. 2004). Up-

stream and downstream boundaries are specified as constant heads, such that the 

hydraulic gradient in the mean flow direction is of 0.004. Mean flow direction is 

aligned with the x1 coordinate. No-flow conditions are prescribed at the trans-

verse, top and bottom boundaries.  

Initially, particles were randomly distributed (uniformly) in a plane transverse 

to the mean flow direction. This plane was located three correlation scales away 

from the upgradient boundary to avoid boundary effects (Rubin and Dagan 1988 

and 1989). The shape of the particle source is a rectangle centered within this 

plane. The source size was progressively increased from a point source to 40 cor-
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relation scales in the transverse direction to the mean flow and 35 correlation 

scales in the vertical direction. Spatial moments and temporal moments were 

based on particle distributions at times when none of the particles has exited the 

domain.  

2.2 Evaluation of dispersivities from temporal moments of 

breakthrough curves 

Temporal moments of flux-averaged concentrations breakthrough curves obtained 

at given control planes can be easily calculated with particle tracking codes. Flux-

averaged concentrations are proportional to the arrival time probability distribu-

tion function of particles passing through a control plane (Shapiro and Cvetkovic 

1988), such that it is only necessary to track the first passage time of particles 

passing through the control plane to estimate these temporal moments. Statistical 

moments of breakthrough curves can be estimated without having to evaluate the 

probability density function of the arrival times as  

                       
a

n

F 1 NP
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n 1 p 1
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where ’n(x1) is the nth temporal moment of the breakthrough curve obtained at 

the x1-control plane, CF(x1,t) denotes flux-averaged concentrations obtained at the 

x1-control plane, tp
(k)(x1) is the first arrival passage time of the kth particle cross-

ing the x1-control plane, and NPa is the total number of particles arrived at the con-

trol plane. This approach bypasses the need to compute smooth concentrations and 

avoids the problems involved in constructing a histogram. The nth central tempo-

ral moment is defined as the moment about the mean  
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First-passage arrival times were computed by seeking the time at which the par-

ticle intersects the control plane. This was done based upon the particle location 

information right before Xp(t
n) and after Xp(t

n+1) passing through the control plane. 

Central temporal moments were computed using the relationship by Kendall and 

Stuart (1977), written as 

                            
n

r
' '

n 1 n r 1 1 1

r 0

n
(x ) (x ) (x )

r
     (5) 

Dispersivities from temporal moments of breakthrough curves were calculated 

following Aris (1958), Valocchi (1985), and Goltz and Roberts (1987) as 
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                               1 2 1 2

11 1 2
' '

1 1 1

x (x ) (0)
A (x )

2 (x ) (0)
 (6) 

where x1 is the x1-distance from tracer source to the control plane, and ’1(x1)

and 2(x1) are the first temporal moment and the second central temporal moment 

at the x1-control plane, respectively. 

2.3 Evaluation of dispersivities from spatial moments of tracer 

plumes

Spatial moments of volume-averaged concentrations distributed in space were cal-

culated following the approach developed by Tompson and Gelhar (1990). Spatial 

moments were calculated from snapshots of the distribution of particles at given 

times as follows: 

         
tNP

1 V (k)

G,1 p,1

k 1tV

x C x, t dV 1
X (t) X (t)

NPC x, t dV
  (7) 

       
t

2
NP

1 G,1 V (k) (k)

11 p,1 p,1 G,1 G,1

k 1tV

x X C x, t dV 1
S (t) X (t)X (t) X (t)X (t)

NPC x, t dV
  (8) 

where integrals with respect to dV denote the integration over all space, XG,1 is 

the x1 coordinate position of the plume center of mass, S11 is the second central 

spatial moment in the mean flow direction associated with the distribution of par-

ticles at a given time, NPt is the number of particles in the system at time t, and 

Xp,1
(k) is the x1 coordinate position of the kth particle.  
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Dispersivities associated with spatial moments and volume-averaged concentra-

tions were calculated following Freyberg (1986):  

                          11 11

11

G,1 G,1

S (t) S (0)1
A (t)

2 X (t) X (0)
              (9) 

where t is the elapsed time from particles injection, and S11(t) is the second spa-

tial moment in the mean flow direction at elapsed time t. 

3 Results of computational investigations 

Fig. 1 compares the effect of the source size on the scale-dependence of disper-

sivities estimated from temporal moments of flux-averaged concentrations break-

through curves obtained at control planes with those dispersivities calculated from 

spatial moments of volume-averaged concentrations of the tracer plume for a sin-

gle realization of the lnK random field. Dispersivities are presented as the ratio of 

the simulated A11 values to the product of 2
lnK and are plotted as a function of 

x1/  (where x1 is the x1-distance to the control plane) for temporal moments and as 

a function of XG,1/  for spatial moments. Simulated A11 values are plotted with 

Dagan’s (1984) first-order stochastic analytical solution of dispersivity to better 

appreciate the effect of the source size on ‘macrodispersivity’. In accordance to 

stochastic theories (e.g., Rajaram and Gelhar 1993, Dentz et al. 2000) and experi-

mental tracer studies (Fernàndez-Garcia et al. 2004), Fig. 1 shows that, for the 

same test scale, small source tracer tests exhibit smaller dispersivities than those 

obtained from larger sources, reflecting that small sources cannot entirely capture 

the underlying heterogeneous structure of the porous media. As the size of the 

plume increases (e.g., for large source sizes and mean travel distances), the tracer 

plume samples a larger portion of heterogeneity and simulated dispersivities ap-

proach a more representative value for the entire system. Likewise, as the plume 

size increases, the erratic behavior of dispersivity expected in a single realization 

of the aquifer due to non-ergodic effects is reduced and simulated dispersivities 

approach Dagan’s model (1984).    

It is seen that significant discrepancies between dispersivities estimated from 

two different methods of sampling and interpretation of field tracer tests can exist 

for all source sizes. For instance, dispersivities estimated from temporal moments 

and flux-averaged concentrations associated with a source of size Ix2=40  and 

Ix3=35  (Ix2 and Ix3 denote respectively the source size in the x2 and x3 directions) 

were 1.2 to 1.7 times larger than those dispersivities calculated from spatial mo-

ments and volume-averaged concentrations within the first 10 correlation scales. 

However, these differences seem to diminish for large sources and travel dis-

tances. At large travel distances, dispersivities estimated from temporal and spatial 

moments in transport simulations with source sizes greater than Ix2=Ix3=20  were 

very similar.    
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Fig. 1. Effect of the source size on the scale dependence of dispersivity estimated from 

temporal and spatial moments in a single realization of an isotropic heterogeneous random 

lnK field with 2
lnK=1.0 (Ix2 and Ix3 denote the source size transverse and vertical to the 

mean flow direction, respectively), Comparison of simulated dispersivities with Dagan’s 

model (1984).
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4 Summary and conclusions 

Numerical simulations of uniform-flow conservative tracer tests associated with 

two different methods of sampling and interpretation to estimate aquifer disper-

sivities were conducted to examine the importance of the method of sampling and 

interpretation on the design of field tracer tests in heterogeneous porous media. 

The scale-dependence of dispersivity associated with temporal moments of flux-

averaged concentrations and spatial moments of tracer plumes were evaluated and 

compared as a function of the source size for a given realization of the lnK ran-

dom field. It is shown that caution must be taken during the interpretation of field 

tracer tests. Dispersive processes occurring in the aquifer due to heterogeneity are 

captured differently in breakthrough curves than in snapshots of the tracer plume. 

Consequently, dispersivities from temporal moments were found significantly dif-

ferent than dispersivities from spatial moments for all source sizes. For instance, 

dispersivities estimated from temporal moments of breakthrough curves were seen 

1.2 to 1.7 times larger than those dispersivities calculated from spatial moments of 

volume-averaged concentrations snapshots within the first 10 correlation scales 

for large sources. However, these differences diminished as the size of the plume 

increases (e.g., for large source sizes and travel distances). Hence, from the practi-

cal standpoint, it is seen that the method of interpretation can play an important 

role on the final estimated dispersivity values that will be used to assess ground-

water remediation problems. It is concluded that the selection of the tracer test 

scheme should be contemplated during characterization of the aquifer by means of 

field tracer tests.  

It is noted that these simulations were based upon a single realization and 

thereby further analysis should be conducted to systematically evaluate these ef-

fects in an average sense examining numerous realizations of the lnK random 

field.
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1 Introduction 

Numerical modelling of groundwater systems is a task frequently performed by 

hydrogeologists to determine groundwater flow paths and travel times and to asses 

the efficiency of possible remediation measures. The numerical solution of such 

systems requires the transmissivity field to be perfectly known in the whole do-

main.  Scarce and often unreliable transmissivity data hinders direct reconstruction 

of transmissivity fields which reproduce numerically the observed heads.  In order 

for the simulation prediction to be as accurate as possible, the spatial distribution 

of aquifer hydraulic parameters must be known.  This is usually done by solving 

the so-called inverse problem.  Several approaches have been suggested for the so-

lution of this ill-posed problem.  The zonation method (Carrera and Neuman 

1986), the pilot point method (de Marsily et al. 1984) and the self-calibrated 

method (Gòmez-Hernàndez et al. 1997) are among the most used inverse proce-

dures.  Inverse methods which assume the real head field to be perfectly known 

are presented in Guo and Zhang (2000), Ponzini and Lozej (1982) and Sagar et al.

(1975). 

The inverse problem is typically an ill-posed problem. Solution non-uniqueness 

is often addressed in a stochastic framework to take into account the uncertainty of 

the solution.  Since direct evaluation is time consuming, a fast and robust inver-

sion algorithm is essential to assess uncertainty for practical applications. 

The main purpose of this paper is to present an adaptation of the comparison 

model method (Ponzini and Lozej 1982) which efficiently calibrates groundwater 

numerical models under steady-state conditions.  The modification consists of  the 

inclusion of a damping function which ensures  rapid calibration while preserving 

the structure of the transmissivity field initially given to the algorithm.  Inversion 

is performed using kriged head field.  To account for the effect of pumping wells 

and boundary conditions, kriging is modified following the methodology de-

scribed by Brochu and Marcotte (2003).  The effect of head field estimation errors 

is evaluated using a synthetic study.  The approach is tested on a synthetic model. 
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2 Successive Flux Estimation

2.1 Methodology 

Without loss of generality, consider a saturated and incompressible groundwater 

flow in a confined two-dimensional aquifer with regional and radial flow to a 

pumping well.  Under appropriate boundary conditions, the state equation describ-

ing this model is given by: 

( ) 0, ( , ) ( )T h x y

1

2

3

1( )

2( )

3( )

ˆ( , ), ( , ) ( )

( ) 0, ( , ) ( )

( ) , ( , ) ( )
2 w

h h x y x y

T h n x y

Q
T h n x y

r

(1) 

where h is the hydraulic head [L], T is the isotropic transmissivity tensor [L2T-1],

Q is the well pumping rate [L3T-1], rw is the well radius [L], n is the unit vector 

normal to the boundary ( ) and ( ) is the flow domain bounded by 

1 2 3( ) ( ) ( ) ( ) .

Assuming h to be known over ( ), Emsellem and de Marsily (1971) show that 

the inverse problem reduces to a Cauchy problem if the flux along a line intersect-

ing every streamline in ( ) is known or if one T value is known on every flow 

line.  The solution to such a problem is given by:   

( )
( , )

( , )

q
T s

h s s
(2) 

where s is the distance along a flow line,  is the isopiezometric line and q [L2T-1]

is the flux per unit height along a streamline.     

To solve Eq. 2, an estimation of h and q must be available on ( ).  Realistic 

head field estimations can be easily obtained by kriging (Brochu and Marcotte 

2003, Tonkin and Larson 2002) but obtaining fluxes geostatistically is difficult 

under realistic conditions. The flux is seldom known far from Neumann’s bound-

ary and even if flux measurements are available, the estimated vector field must be 

conservative, a condition which is, presumably, difficult to satisfy in real cases.   

To obtain a robust flux field respecting the boundary conditions as well as the 

condition 0q , the comparison model approach (Ponzini and Lozej 1982) is 

adopted here.  This numerical model has the same geometry, the same boundary 

conditions, the same numerical discretization and the same state equation as the 

real numerical model that one attempts to calibrate.  Using a seed transmissivity 

field ( )oT  as input in the comparison model method, the flux vector field can be 

obtained by solving the direct problem (Eq.1) once.  To obtain a formulation con-

sistent with the numerical discretization of the direct problem, Eq. 2 is expressed 

discretely in terms of the mesh element j:
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2
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j

j

j

q
T

h
(3) 

Using Darcy’s law to express the flux obtained by the comparison model 

method results in: 

2

2

ˆ

o

jo

j j

j

h
T T

h
(4) 

where oh  is the solution of Eq. 1 obtained with oT T , and ĥ  is the real head 

field or its estimation.  Since an estimation of q is used, the Cauchy problem can-

not be solved directly.  Thus, the transmissivities given by Eq. 4 will not repro-

duce the head data if input in Eq. 1.  Instead, successive flux field estimations are 

obtained iteratively. New transmissivity estimations are obtained at every iteration 

by solving as many “discrete” Cauchy problems. Rearranging Eq. 4 yields:  

1 2

2

0, 1
ˆ

i

ji i

j j el

j

h
T T i j n

h
(5) 

where i is the iteration counter, j is the cell index and nel is the total number of 

elements in the model. 

At this point, Eq. 5 is similar to that of Ponzini and Lozej (1982).  This ap-

proach was found capable of reproducing the head data but the corresponding 

transmissivity field was often very unrealistic.  To reduce this effect, a damping 

factor ( )  is used to suppress strong transmissivity modifications during the first 

iterations.  It was found that reducing the damping factor at each iteration ensures  

rapid calibration while maintaining the structure of the seed transmissivity field.  

Moreover, the damping factor ensures convergence and suppresses oscillation of 

the solution in areas of low gradient.  It also accounts for errors in the estimation 

of ĥ .  The damping factor is reduced exponentially: 

3i o i ae  (6) 

where  is the initial damping factor, i  is the damping factor at iteration i and 

a is the iteration range.  When i=a , the damping factor is reduced to 5% of its ini-

tial value.  Incorporating i  in Eq. 5 results in: 

1 2

2

0, 1
ˆ

i i

ji i

j j el
i

j

h
T T i j n

h
(7) 

Using a seed transmissivity field at i=0, this relation is iteratively applied si-

multaneously at every mesh element until a satisfactory match between calculated 
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and observed head fields is reached.  A schematic description of the algorithm ap-

plied to the finite element method is presented in Fig. 1. 

Fig. 1. Schematic description of the algorithm

2.2 Head field estimation 

To obtain a realistic estimation of the head field under steady-state conditions in 

the presence of a pumping well and impervious boundaries, Brochu and Marcotte 

(2003) and Brochu (2002) used the Bear and Jacob (1965) analytical solution and 

the concept of double points (Chilès and Delfiner 1999, reporting Delhomme 

1979).   
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Bear and Jacob (1965) showed that under steady-state conditions, the head of a 

bi-dimensional confined aquifer can be expressed by:

2

2
( , ) ( ) ( ) ln

4
w w w

w

H H Q r
h x y H x x y y

x y T r
(8) 

where H is the head field before pumping, Hw is the initial head in a well of radius 

rw located at (xw,yw), Q is the pumping rate, T is the aquifer constant transmissivity 

and r  is the distance between a point and the well.   

To obtain an unbiased kriging estimate of h(x,y), matrices of drift coefficients 

are added to the covariance matrix (Eq. 9 and 10).  The first column corresponds 

to the unbiasedness conditions for any constant term. The next two columns take 

care of the regional head gradients H/ x and H/ y. The fourth column describes 

the influence of the well at an observation point located at a distance r.  The ma-

trix corresponding to nobs head observation data is: 

2

1 1 1

2

1 ln( )

1 ln( )
obs obs obs

h

n n n

x y r

F

x y r

(9) 

and the matrix for double points is given by: 

2

1 1 1

2

0 ln( )

0 ln( )n n n

x y r

F

x y r

(10) 

where n  is the number of double points, x  and y  are the coordinate differ-

ences of the extremities of a double point and 
2ln( )r  is the difference in the well 

constraints of the extremities of a double point .  Using the dual (co)kriging for-

malism, an estimation of the head field can be expressed as: 

1

0

'

0

' '

0

ˆ 0

0

hhh h h

obs h

h

F

h h F

F F f

(11) 

where the subscripts h and  refer to observed heads and double points respec-

tively;  hobs is the 1 x nobs vector of observed head values;  is the 1 x n  vector 

of double point head differences  (0 for an impervious boundary); hh  is the nobs x 

nobs  head covariance matrix; h  is the nobs x n  head-double point covariance 

matrix;  is the n x n  double point covariance matrix; ho  is the nobs x 1

vector of head covariances between observation points and estimation points; o

is the n  x 1 vector of head covariances between double points and estimation 

points and of  is the 4 x 1 drift vector evaluated at the estimation point. 
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For common hydrogeological application, only a few piezometers are installed 

in the field.  It is thus difficult to infer an experimental variographic model with so 

few data.  Brochu and Marcotte (2003) justify the use of a gravimetric covariance 

function (Chilès and Guilhen 1984, Marcotte and Chouteau 1993) to represent the 

behaviour of the hydraulic head.  To construct the covariance matrix , the gra-

vimetric covariance function is used with ad hoc range, sill and nugget values that 

result in a realistic head map.  The range is chosen large enough to produce a con-

tinuous head field. The nugget is specified based on existing knowledge and the 

sill is approximated based on the variance of the residuals. 

3 Synthetic study 

The algorithm depicted in Fig. 1 is tested on a synthetic model (Fig. 2).  The north 

and south boundaries are impervious while the east and west boundaries have pre-

scribed head values of 125 m and 110 m, respectively.  A pumping well, located at 

(500 m, 1000 m), has a radius of 0.5 m and a pumping rate of 0.0125 m3/s.

The field extents over 2000 m by 2000 m and includes 3088 quadratic finite 

elements.  A heterogeneous isotropic log10 T field (Fig. 2b), noted YR, was gener-

ated on the mesh and constitutes the reference field.  The direct problem is solved 

under steady-state conditions with the software Femlab© 3.0a (Comsol inc. 2004).  

          
Fig. 2. Synthetic model. a) Boundary conditions and T data locations. b) Reference log10

transmissivity field.

3.1 Evaluated Scenarios  

To evaluate the influence of the head field estimation error in the proposed 

method, Eq. 7 is applied on one hundred seed transmissivity fields (To) using four 

different ĥ  fields (Fig. 3).  In scenario A, ĥ  is the reference head field (Fig. 3a) 

while for scenarios B, C and D (Fig. 3b - d), ĥ  is obtained by solving Eq. 11 with 

various numbers (50, 25 and 10 data) of head observations, hobs. To adequately 

represent the impervious boundaries, 20 double points, separated by 50 m, were 
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placed on each ( 2).  A gravimetric covariance function with ad hoc nugget of 

0.001m2, sill equal to the variance of the centered data and range of 400m were 

used to construct .  No measurement error is considered and the constant head 

boundaries ( 1) are assumed known.   

The seed transmissivity fields are generated by geostatistical conditional simu-

lation using Cholesky decomposition of the covariance matrix (Davis 1987).  

Since in practice the lack of data, the scale effect and the large uncertainty on the 

measurements hinder the inference of the log10 T covariance model, the seed fields 

were obtained with fourteen T data (Fig. 2a) and a covariance model chosen to be 

different from the covariogram of YR.  The iteration parameters used are a=15 it-

erations and o =0.025.  During the calibration process, the fourteen T data were 

assumed unknown.  

3.2 Evaluation Measures 

Each calibrated field was compared to the reference T and h fields to evaluate the 

efficiency of the method.   To evaluate the fit between the reference fields and the 

calibrated fields (Y and h), the following performance measures are defined: 

1

( , )
elen

ji R i R

j j

j

A
MAE x x x x

A
(13) 

where MAE is the mean absolute error between parameter x evaluated at iteration 

i and the reference parameter xR, Aj is the area of the jth element mesh and A  is the 

area of the whole domain.  At the observation points, the MAE is given by: 

1
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obs obs
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h h
MAE h h

n
(14) 

where the subscript obs refers to an observation  and where nobs is the total number 

of head observations, hobs.  The ensemble average EMAE(xi,xR)  over the nsim in-

versions is also defined: 
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m sim

MAE x x
EMAE x x

n
(15) 
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Fig. 3. Head fields used in scenarios A to D and hobs locations. a) Reference head field, b)

head field estimated from 50 observations, c) head field estimated from 25 observations, d)

head field estimated from 10 observations. 

4 Results 

4.1 Head and Transmissivity calibration 

Fig. 4 shows a single realization obtained for scenario D.  Even if the seed field 

(Fig. 4a) is very different from the reference field, the main features of the real 

field (Fig. 2b) are retrieved in the calibrated transmissivities (Fig. 4c).  Also, the 

head field used to perform the inversion and the reference head field are repro-

duced quite well (compare Fig. 4d to 3d and 3a).  For this realization, the 

( , )i R

obs obsMAE h h  and the ( , )i RMAE Y Y  after 30 iterations are respectively of 4.98 

cm and 0.55. 

Mean initial and calibrated errors after 30 iterations are shown in Table 1 for 

scenarios A to D.  The cumulative frequency of the individual realizations is pre-

sented in Fig. 5.  For all scenarios, an improvement in transmissivity estimation is 

observed.  Moreover, the mean head error at data locations and the mean discrep-

ancy between ĥ  and the final head field is always less than 5 cm.  The fit of the 

head field is improved by a factor of 10 to 100 when comparing initial and 
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Fig. 4. Single realization for scenario D. a) Seed log10 T field and b) corresponding head 

field, c) calibrated log10 T field and d) corresponding head field. 

calibrated heads.  The best EMAE statistics are for scenario A which uses the real            

head field to perform the inversion. It would appear that with more head data 

available, the transmissivities are more constrained and the final fields estimate 

well the reference fields.  However, the results for scenarios B to D show that 

even when an estimated head field is used to perform the inversion, the method is 

able to reconstruct the transmissivity field adequately. 

The method tends to better reproduce the field used to perform the inversion 

( ĥ ) than the reference field ( , )i REMAE h h .  However, even in scenario D (10 

head data), the reference head field is well reproduced.  This indicates that few 

head data combined with some knowledge of the boundary conditions is sufficient 

to obtain a realistic transmissivity field. 

Table 1. Ensemble average mean absolute error of log10T, head field and observed head for 

seed and calibrated fields 

( , )i REMAE Y Y

 (log10 T)

( , )i R

obs obsEMAE h h

 (m) 

ˆ( , )iEMAE h h

 (m) 

( , )i REMAE h h

(m) 

 i=0 i=30 i=0 i=30 i=0 i=30 i=0 i=30 

Scenario A 0,89 0,41 2,73 0,028 2,73 0,028 2,73 0,028 

Scenario B 0,89 0,55 3,12 0,036 2,74 0,034 2,73 0,14 

Scenario C 0,89 0,58 3,00 0,043 2,73 0,041 2,73 0,16 

Scenario D 0,89 0,56 2,86 0,039 2,64 0,040 2,73 0,29 
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space123456

Fig. 5. Cumulative frequency of a) ˆ( , )iMAE h h , b) ( , )i RMAE Y Y . c) Mean variogram of 

log10 T (evaluated on a regular grid) for the seed fields, the reference field and the cali-

brated fields of scenarios A to D. 

Even if the variographic structure was not imposed during the calibration proc-

ess, an improvement in the experimental log10 T variograms is observed for each 

scenario (Fig. 5c).  The variogram obtained for scenario A is similar to the refer-

ence variogram.  Due to smoothing of the estimated head fields in scenarios B to 

D, the experimental variograms are smoother and do not show a nugget effect. 

4.2 Execution Time 

A strength of the method is its fast execution time.  The inversion shown in Fig. 4 

was completed in less than 17 seconds on a 2.66 Ghz Pentium© IV computer with 

512 Mb of RAM.  Most of the time was used to solve the direct problem involving 

3088 quadratic finite elements.  Since no time-consuming function evaluations 

(ex. matrix inversion) are performed when solving Eq. 7, the transmissivity is up-

dated quickly.  Table 2 shows the time partition for this single realization. 

In the proposed method, the direct problem is solved only once per iteration.  

Thus, the overall cost of the inversion is very small.  By comparison, methods 

based on non-linear optimization of an objective function require the costly com-
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putation of the objective function gradient followed by a line search which typi-

cally requires many more solutions of the direct problem.  

Table 2. Time partition for the inversion shown in Fig. 4 after 30 iterations 

Operation Time Ratio 

Direct problem solution 13,2 sec 78,6% 

Correcting T  (Eq. 7) 3,6 sec 21,4% 

Total calculation time 16,8 sec  

5 Conclusions 

A simple and computationally efficient method to solve the ground water inverse 

problem is proposed.  The method consists of  iterative estimation of the flux field 

and a discrete solution of the Cauchy problem.  The method assumes that a realis-

tic head map can be obtained from the available data.  It is demonstrated that with 

as few as 10 data to perform the inversion, the method is able to generate a realis-

tic transmissivity field.  Also, even while transmissivities at data locations and 

variographic structure were not imposed during the calibration process, the final 

transmissivity variograms reproduced quite well the reference variogram.   

The fast execution time of the method allows significant reduction in head data 

misfit in a few seconds.  This enables quick uncertainty assessment in stochastic 

inverse modelling.   

The method relies on the use of an estimated head map which is sometimes dif-

ficult to obtain.  However, in most practical applications, it is common practice to 

draw preliminary piezometric maps in order to obtain conceptual models of the 

groundwater system.  The synthetic study presented shows that such a preliminary 

map is sufficient to retrieve quite well the main characteristics of the transmissiv-

ity field. 

The algorithm could be modified to fix transmissivities where it is assumed 

known or confined within a given interval of possible values.  Generalisation to 

the transient case does not pose any particular problem and extension to 3D flow 

is possible.  If the real variogram of Y is known, geostatistical conditional simula-

tion can be introduced in the algorithm, but the problem of passing from meas-

urement scale to the finite element scale still needs be addressed.   In the present 

study, the problem of boundary condition determination and head measurement 

error was not evaluated. 
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1 Introduction 

The accuracy and the reliability of mathematical models for groundwater systems 

depend on the comprehensive knowledge about the physical properties and the 

dynamics of the systems. As the knowledge on transmissivity field cannot be 

complete, a statistical approach is used to describe the uncertainty in transmissiv-

ity estimates. The presence in porous media of different materials, whose statisti-

cal properties are not uniform, is a critical issue. Much of the existing literature on 

stochastic hydrogeology, and geostatistical approach in inverse problem (Kitanidis 

and Vomvoris 1983, Hoeksema and Kitanidis 1984, Dagan 1985) accounts for the 

assumption of statistically uniform porous media with relatively small variance of 

log-transmissivity, which limits the applicability of the stochastic approach in aq-

uifer modelling to mildly heterogeneous porous media. The more recent literature 

considers the challenge in estimating transmissivity fields with large and complex 

variability (high and low-transmissivity areas, discontinuities...), as well as not 

stationary multi-gaussian log-transmissivity fields (Zimmerman et al. 1998, 

Hendricks Franssen et al. 1999, Guadagnini et al. 2002). The study provides a 

possible way in discrete inverse problem, to deal with the identification of both the 

geometry and the spatial variability of transmissivity field for different materials 

in highly heterogeneous porous media, by considering a geostatistical approach 

within the Differential System Method (Parravicini et al. 1995, Giudici et al.

1995). DSM calculates the transmissivity values along an integration path begin-

ning at any point with known transmissivity value. If source terms are negligible, 

the variability in transmissivity field is completely described by a spatially distrib-

uted parameter, aL, depending on hydraulic heads, integration path and cell size L

of the numerical grid. The non-uniqueness of discrete solution, that is the uncer-

tainty in transmissivity estimates, depends on the discrete approximations on a
L

values, the errors in hydraulic heads, as well as the uncertainty in determining the 

integration path. The geostatistical approach within DSM takes into account the 

structural analysis of aL, which is a variable including all the factors of uncertainty 

in transmissivity estimates. All the possible aL values at any location correspond to 

all the possible transmissivity estimates in that point, depending on directions of 
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integration. Assumptions of stationarity, and multi-gaussian distribution of a
L

variable are requested, being not restrictive on transmissivity distribution. The 

geostatistical analysis of a
L takes into account i) head data from multiple inde-

pendent flow conditions, ii) transmissivity variability in different directions at any 

location, by running the multivariate analysis of aL distributions for different inte-

gration paths; moreover, it provides iii) factorization of error in aL values, which 

can be filtered out to improve transmissivity estimates, as well as geometry identi-

fication. The analysis of error makes effective iv) the identification of geometry, 

and v) the estimate of equivalent transmissivity values for each statistically homo-

geneous area. Finally, the geostatistical analysis of a
L is meaningful in aquifer 

modeling, as the variability in transmissivity field is considered at the cell size L

(Lunati et al. 2001). The geostatistical approach in DSM was applied for a syn-

thetic confined aquifer, with nine homogeneous areas, whose transmissivity values 

are constant and vary of two orders of magnitude within the flow domain, with 

differences between adjacent areas which are up to two orders of magnitude. In 

this numerical application, the variability of transmissivity within the statistically 

homogeneous areas was not considered.  

2 The geostatistical approach in DSM 

2.1 The DS method 

Let us consider a confined aquifer with zero source terms. The following differen-

tial system for the unknowns ∂xT and ∂yT can be written, starting from the flow 

equations for two steady head fields (Parravicini et al. 1995):  

)()()()( xhxxxA ∆−=∇ TT  (1) 

T is the transmissivity field, A is the matrix of the hydraulic gradients, and ∆h is 

the vector of the Laplace operator of the two head fields. Solution for linear sys-

tem (1) exists if the hydraulic gradients are non-zero and different for the two flow 

conditions (i.e., independence condition between head data), and it is:  

)()()( xaxx TT −=∇  (2) 

where the vector parameter a is defined as )()(1
xhxA ∆− . Starting from Eq. 2, the so-

lution T for each point x in the space is calculated along any integration path be-

tween points x0 (where the transmissivity value has to be known) and x. If the in-

tegration path consists of a few straight segments, the solution comes from:  

−= +
i

ii dssaTT

1

0

1,0 )(exp)()( xx  (3) 

where ai,i+1 is the projection of the a vector on direction of the segment between 

two consecutive points, xi and xi+1; ai,i+1 value varies within the segment, as s var-

ies from 0 to 1. Finally, the discrete solution at any node (i, j) of a numerical grid 
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with cell size L is (Giudici et al. 1995):  

( )−=
=

N

n

n

L

ji aTT
1

0, exp  (4) 

T0 is the known transmissivity value at the starting node of an integration path, (i0,

j0), the parameter aL is derived from a(s) values within the internode segment n,

and the sum is extended to the N internode segments which constitute the integra-

tion path, between nodes (i0, j0) and (i, j). The discrete solution and its stability

depend on the integration path (Giudici et al. 1995).  

2.2 The structural components of a
L

Let us consider the function of space A(x) ≡ - aL(x), which is discontinuous and 

defined just in the grid nodes. It depends on the cell size L, as well as on the inte-

gration path. Moreover, the error components in aL, which derive from the errors 

on a values estimated in a discrete domain, depend on the integration path. A is a 

random function, whose spatial structure is related to the spatial distributions of 

transmissivity and error as well. The parameter aL
completely describes the spatial 

variability of transmissivity field (which is considered at the cell size L), as it can 

be derived from Eq. 4:  

( )',',ln jiji

L
TTa ±−=  (5) 

Ti,j and Ti’,j’ are the transmissivity values estimated in two consecutive nodes along 

the integration path, and the sign depends on the verso of integration along the in-

ternode. The geostatistical approach in DSM accounts for the spatial correlation 

structure of the random function A, which is assumed to be multigaussian and in-

trinsic; the variogram has a nested structure:  

)()()( hhh
L

Sc

L

N

L γγγ +=  (6) 

)()()( xxx
LL

ScNA +=  (7) 

where h is the vector of distance. γN
L and γSc

L represent the variability, respec-

tively, at the local, and the small and large scales; the structural components, NL

and Sc
L, are the nugget and the spatially correlated components, respectively. If a 

few correlated functions A
i (two at least) are considered, each of them related to a 

different integration path, one of the possible decompositions (Eq. 7) in uncorre-

lated structural components is provided by factorial kriging analysis (Wackernagel

1998).

The nugget component, NL, considers the variability of A at each node, depend-

ing on discontinuities in the field of transmissivity (i.e. the Uncorrelated Gradient 

Component of A), which stem from the presence in porous medium of different 

materials. Moreover, N
L depends on the uncorrelated errors which affect the a

L

values at each node (i.e. the Uncorrelated Noisy Component of A). The compo-

nent Sc
L considers the spatial correlation in variability of A, which depends on the 
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geometry of the different materials (i.e. the Correlated Geometric Component of 

A), and the spatially correlated errors on aL values (i.e. the Correlated Noisy Com-

ponent of A). CNC is due to the spatial distributions of the directions of integra-

tion (i.e., the integration path). The occurrence of periodic behaviour in variogram 

exhibits the repetition in space of some structures, which are related to the exten-

sions of the different materials. These structures are lines along which aL values 

are maximum, or larger than the neighbouring ones; they correspond to the dis-

continuity lines between different materials, which are crossed by the integration 

path. The characteristic lengths of periodicity in spatial structure of Sc
L describe 

the geometry of different materials. Moreover, the same sign in Sc
L values along 

discontinuity lines crossed by integration path - which stem from correlated direc-

tions of integration across those lines - gives information on transmissivity gradi-

ents between different materials. 

3 The equivalent parameter 

Equivalent transmissivity values characterise the different materials, which are 

statistically homogeneous. The transmissivity field T
H, within each statistically 

homogeneous area H of a porous medium with transmissivity T, is described by:  

)()( xx HH
H

TT δ+=  (8) 

T
H(x) is a random function, HT  is its mean value (i.e., the equivalent parameter), 

and the spatially correlated residuals δH(x), with zero mean value, satisfy the con-

dition 22

TH
σσ δ < . Factorial analysis of the structural components of A is used to 

make reliable the HT  estimate by identifying the error on A. Let us consider the 

following decomposition of A into independent factors:  

)()()()( xxxx ε++= LL
InnerGradA  (9) 

the random function Grad
L is non zero only at the extremes of  internodes crossing 

discontinuity lines between homogeneous areas, the random function Inner
L is non 

zero only at the nodes within each area; ε is the error on aL. Grad
L and Inner

L de-

pend on those components of NL and Sc
L, which are not error components:  

)()()( xxx CGCcUGCcGrad
G

Sc

G

N

L +=  (10) 

)()( xx CGCcInner
I

Sc

L =  (11) 

being the coefficients G

Nc , G

Scc , and I

Scc  the fractions of variance of Grad
L and In-

ner
L, respectively, that are due to the components UGC and CGC.

The functions Grad
L and Inner

L can be expressed as linear combinations of 

some random functions, mutually spatially uncorrelated, each of them related, re-

spectively, to the discontinuity line between two specific homogeneous areas, and 

to the inner part of a specific homogeneous area, being zero-value elsewhere:  
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( )
=

=
K

k k

L

HH

L

ji
GradGrad

1
)()( xx  (12) 

( )
=

=
J

j j

L

H

L

j
InnerInner

1
)()( xx  (13) 

K is the number of discontinuity lines for adjacent homogeneous areas, and J is 

the number of homogeneous areas. The mean value of L

HH ji
Grad ,

jHiHa , depends 

only on the discrete transmissivity gradients, across the discontinuity line between 

Hi and Hj areas, while the mean value of L

H j
Inner ,

jHa , depends only on the  spatial 

variability of transmissivity within the Hj area. If the inner variability of transmis-

sivity is much less than the variability between the different areas, the variances of 
L

H j
Inner  and L

HH ji
Grad are negligible, with respect to the spatial variability of their 

mean values, then the estimate of equivalent transmissivity values can take into 

account just the mean values 
jHa  and 

jHiHa , as illustrated hereinafter. The trans-

missivity value Ti,j at any node (i, j) within the H area is: 

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]δ

ε

expexpexp

'expexpexp

110

11
0

=

=

==

==

M

m mHH

N

n nH

M

m m

L
HH

N

n n

L
H

k k
hk

l l
l

k k
hk

l l
l

aaT

GradInnerT

(14) 

according to Eq. 4, 12 and 13. N is the number of nodes within the homogeneous 

areas, and M is the number of internodes crossing the discontinuity lines between 

homogeneous areas, along the integration path between the starting node (i0, j0) (in 

the area H0) and the node (i, j). The indexes nl and mk are referred, respectively, to 

the inner nodes for which just the function L

Hl
Inner  is non zero, and the nodes 

across the discontinuity line for which just the function L

HH hk
Grad  is non zero. The 

quantities ε’ and δ depend, respectively, on the errors ε, and the residuals of 
L

Hl
Inner  and L

HH hk
Grad  together with the errors ε, which are cumulated along the in-

tegration path. Eq. 14 is equivalent to the following one:  

( ) ( ) ( ) HHHH

M

k
kHH

N

l
lHji TaaTT

k

hk

l

l δεδ ++≡+=
== 11

0, expexp (15) 

In Eq. 15, the error εH on the equivalent parameter HT  is due to errors on aL val-

ues, and the sums are extended not to the internodes along the integration path be-

tween nodes (i0, j0) and (i, j), but to the Nl homogeneous areas and the Mk discon-

tinuity lines which are crossed by the integration path, between areas H0 and H.

That is a new integration path, each step of which crosses a discontinuity line be-

tween adjacent areas (i.e. upscaled integration steps). The variability of transmis-

sivity within area H is completely described by δH. Finally, the equivalent trans-

missivity value HT  depends on i) the known value T0, ii) the upscaled integration 

path, iii) the mean values
lHa  and 

hHkHa . If the ergodicity hypothesys is assumed, 
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the estimate of 
lHa  and 

hHkHa  values considers the spatial means:  

[ ] ( )
=

=≡
n

n n

L

H

L

HH
l llll Inner

n
InnerEa

1

1
 (16) 

[ ] ( )
=

=≡
m

m m

L

HH

L

HHHH
k khkhkhk Grad

m
GradEa

1

1
 (17) 

where n is the number of nodes within the area Hl, and m is the number of nodes 

across the discontinuity line between areas Hk and Hh. The determination of a ref-

erence integration path is required to calculate Eq. 16 and 17; that is an integration 

path including a statistically significant number of internodes for each of the dis-

continuity lines that are crossed by the upscaled integration path. Each upscaled 

integration step has the mean direction among those of the internodes across the 

respective discontinuity line, which belong to the reference path. If εΙ and εG are 

zero-mean errors, affecting L

Hl
Inner  and L

HH hk
GradT , respectively, the following 

equations hold:  

[ ] ( )
=

≡+=
n

n
nI

L

HH
l

lll A
n

InnerEa
1

1ε  (18) 

[ ] ( )
=

≡+=
m

m
mG

L

HHHH
k

khlhl A
m

GradEa
1

1ε  (19) 

where the n and m nodes are just located after having identified geometry, through 

the factorial analysis of the structural components NL and Sc
L.

4 The numerical application 

The geostatistical approach in DSM was applied to a synthetic confined aquifer 

with unit thickness (Ortuani 2002), and nine homogeneous areas, each of them 

with constant transmissivity value. In this case, Eq. 15 becomes:  

HHji TT ε+=, (20) 

The transmissivity values vary of two orders of magnitude throughout the flow 

domain, with differences between adjacent areas, which are up to two orders of 

magnitude (Fig. 1). The cell size L is equal to 0.05 m. Independent head fields 

have been calculated with different Dirichlet conditions on boundaries, by using a 

model with a finite difference numerical scheme. The independence condition be-

tween two head fields is shown in Fig. 2. It determines the errors on A values: the 

smaller the determinant of matrix A (i.e., detA), the worse the independence con-

dition, and the larger the errors on A could be.

The spatial distributions of the random function A1, related to a particular inte-

gration path, is shown in Fig. 3. The spatial distribution of the actual values (i.e. 

free error values) correspondent to A1 values is represented in Fig. 4; they were 

calculated from the ‘true’ values of transmissivity (Eq. 5).  
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By comparing Fig. 2 with Fig. 3, it can be noticed that the large values of A1 in 

some nodes within homogeneous areas, where A1
should be zero and the determi-

nant is almost zero, are due to errors. 

T8 = 5.25⋅10-7

T4 = 3.94⋅10-5

T9 = 3.94⋅10-7
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Fig. 1. The synthetic confined aquifer. The nine homogeneous areas, and the relative 

transmissivity values T1-T9 [m
2s-1] are shown. 
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Fig. 5. Multivariate geostatistical analysis. Experimental variograms, variables aL-1, aL-2. 

D1 and D2 are the directions along the axes, respectively, x and z 

4.1 The regionalised factorial analysis of a
L

The identification of geometry, as well as the estimation of equivalent transmissiv-

ity values depend on the factorisation of A in structural components. The more ac-

curate the determination of actual components NL and Sc
L, the more accurate the 

identification of geometry, and the estimates of equivalent trasmissivity values. 

The accuracy on NL and Sc
L depends on the errors which affect the A values. A 

multivariate geostatistical analysis was carried out, in order to identify the error 

components of A and filter them out. 

4.1.1 Evaluation of the structural components 

Two random functions, A
1 and A

2, were considered. Their experimental 

variograms and the cross-variogram are represented in Fig. 5. The structural com-
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ponents, NL and Sc
L, were calculated by factorial kriging analysis, as linear com-

binations of the principal components of the respective co-regionalisation ma-

trixes. Figs. 6 and 7 show the spatial distributions of NL-1 and Sc
L-1, which are the 

structural components of A1. The two principal components for each of the struc-

tural components are related to the common factors of variability which induce 

correlation between NL-1 and N
L-2, and Sc

L-1 and Sc
L-2. They depend on the same 

direction and verso of integration, and the same direction and opposite verso of in-

tegration.  

4.1.2 Identification of the error component 

The errors in Ai functions are correlated, even if the directions of integration are 

different, because the head fields and, consequently, the independence condition 

are the same. The above factorisation of N
L and Sc

L was not useful in order to 

identify the error component of Ai; in fact, it considers the correlation due to the 

same directions of integration. Another factorisation of N
L and Sc

L was deter-

mined, by considering four different random functions Ai (Ortuani 2002): A1 and 

A
2, (A1)’ and (A2)’ which differ from the previous ones only for the sign as they 

don’t consider the verso of integration. NL and Sc
L were expressed as linear com-

binations of four principal components, each of them related to an independent 

factor of variability. The factors related to error were recognised from the correla-

tion circles of the standard structural components (Ortuani 2002); the error com-

ponents in N
L are correlated even if the versos and the directions of integration are 

different at the same node, while the error components in Sc
L are not positively 

correlated even if the spatially correlated versos and directions of integration are 

the same. The principal components associated to error were filtered from NL and 

Sc
L. A reduction of the error components was obtained, mainly where the inde-

pendence condition between head data was the worst and the errors were the larg-

est (Fig. 8). Table 1 reports the statistical properties of the A1 and A2 samples, as 

well as the properties of the (A1)filtered and (A2)filtered samples, with reduced error 

components. The sample variances decrease (Tables 1 and 2), because the vari-

ability due to the error components was reduced. Besides, the correlation between 

variables decreases (Table 2). In fact, the correlation between NL components de-

creases (it depends mainly on the occurrence of the same directions of integration, 

and weakly on the common sources of error), more than the correlation between 

Sc
L components increases (it depends just on the extension of homogeneous areas, 

and nomore on the spatially correlated errors). 

4.2 Identification of geometry and equivalent parameters 

The identification of geometry accounts for the lines along which the (NL-1)filtered

and (Sc
L-1)filtered values are larger than the neighbouring ones; these lines were 

identified as the boundaries of homogeneous areas which are crossed by integra-
tion path, assuming that the major variability was nomore due to error compo-
nents, but just to discontinuities in transmissivity field as well as to the correlated 
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directions of integration along them. The nodes for calculation of the equivalent 
parameters (Eqs. 18 and 19) were selected through the analysis of the (NL-1)filtered

and (Sc
L-1)filtered distributions: they were localised where (NL-1)filtered and (Sc

L-
1)filtered values are minimum within homogeneous areas, and (relatively) maximum 
along the boundaries crossed by integration path; furthermore, (NL-1)filtered and 
(Sc

L-1)filtered values at the selected nodes along the crossed boundaries have the 
same sign along the mean direction of integration.  

Finally, the (A1)filtered values were used to evaluate the equivalent parameters for 

each homogeneous area. The results are given in Table 3; the T1 and T5 values 

were assumed known, so that the upscaled integration path required eight steps. 

The comparison with the ‘true’ transmissivity values is rather good, as the order of 

magnitude was identified for each homogeneous areas, except for value T8.
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Table 1. Statistical description of the (A1)filtered, (A2)filtered, A1 and A2 samples. 

 Minimum Maximum Mean Variance Corr. Coeff. 

(A1)filtered
-2.013 1.591 0.004 0.006 

(A2)filtered
-1.347 2.200 0.007 0.011 

0.44 

A1
-4.296 4.423 0.004 0.023 

A2
-3.756 4.423 0.007 0.026 

0.61 

Table 2. Statistical description of the structural components samples. 

 Minimum Maximum Mean Variance Corr. Coeff. 

(NL-1)filtered
-1.862 1.256 0.000 0.003 

(NL-2)filtered
-1.477 2.212 0.000 0.006 

-0.08 

NL-1 -3.805 3.449 0.000 0.018 

NL-2 -3.507 3.449 0.000 0.018 
0.55 

(ScL-1)filtered
-0.687 0.936 0.004 0.003 

(ScL-2)filtered
-0.729 1.141 0.007 0.005 

0.97 

ScL-1 -0.750 1.011 0.004 0.004 

ScL-2 -0.707 1.101 0.007 0.006 
0.71 

Table 3. The estimates of equivalent parameters. 

True value  

[m2s-1]

Equivalent parameter  

[m2s-1]

T1 5.25 10-6 5.25 10-6

T2 2.63 10-5 1.34 10-5

T3 1.31 10-5 8.58 10-6

T4 3.94 10-5 1.89 10-5

T5 3.94 10-6 3.94 10-6

T6 1.31 10-6 2.10 10-6

T7 2.63 10-6 3.42 10-6

T8 5.25 10-7 1.33 10-6

T9 3.94 10-7 9.47 10-7

5 Conclusions and further developments 

The results showed the effectiveness of the geostatistical approach within DSM in 

order to identify the geometry of different materials in highly heterogeneous po-

rous media and to estimate the equivalent transmissivity values. The factorial 

analysis of each structural component of the random function A provided the iden-

tification of some error components which have been filtered out to make more re-

liable the determination of both the geometry and the equivalent transmissivity 

values. The identification of other factors of variability, through a more accurate 

analysis of correlation, could produce further reduction in error. Through the mul-
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tivariate analysis of a few random functions A
i, each of them related to a different 

integration path, the discrete transmissivity gradients have been explored in differ-

ent directions at the same node, increasing the information on transmissivity field, 

and making weaker the dependence of its characterisation on a particular integra-

tion path. Then, the description of heterogeneity in porous media is more consis-

tent with the real condition, while error components can be identified by correla-

tion analysis of random functions A
i. The identification of geometry and the 

estimation of equivalent parameters have been operated considering the analysis 

of stability, through: the cell size L, the error on Ai values as well as the independ-

ence condition between head data sets.  

Further studies should consider the uncertainty in head fields, and the transmis-

sivity variability at small scale, within the statistically homogeneous area. 
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1 Introduction 

Capture zones of drinking water wells are estimated in order to know from which 

areas the contaminants could reach the well. However, these estimates are always 

uncertain due to the spatial variability of transmissivity, in the first place. Also 

uncertainty with respect to the mean recharge, the spatio-temporal variability of 

recharge and the boundary conditions are important. Depending on the situation 

there may be other important sources of uncertainty. 

The uncertainty of the well capture zone estimate is quantified with stochastic 

methods. Here Monte Carlo methods will be used. Conditioning to transmissivity 

data reduces the uncertainty, and is also straightforward with Monte Carlo meth-

ods. Conditioning to hydraulic head data is more cumbersome, and is done here 

with the sequential self-calibrated method (Gómez-Hernández et al. 1997, 

Hendricks Franssen 2001). As a result, an ensemble of equally likely well capture 

zones is generated, each of them conditioned to transmissivity and hydraulic head 

data. 

The methodology has been applied on the Lauswiesen site close to Tübingen, 

in Germany. This site is characterized by fluvial deposits that show large con-

trasts in hydraulic conductivity. A river, that is well connected to the aquifer is 

also present, and is also of concern in the inverse calibration. 

2 Methodology 

A stochastic well capture zone characterization yields for all grid cells at which 

the transport problem is solved the probability that that grid cell belongs to the 

well capture zone. This stochastic well capture zone is obtained in the following 

steps:

1. Equally probable realizations of the input parameters to the groundwater flow 

problem are built. In case of a stochastic characterization at least one parame-

ter is modeled as a random variable. Frequently, only the uncertainty of the 
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logtransmissivity is considered, while other parameters are deterministic. Nev-

ertheless, also recharge, storativity and boundary conditions can be random 

variables. The equally probable transmissivity realizations are generated by 

the sequential Gaussian simulation algorithm that is implemented in the soft-

ware GCOSIM3D (Gómez-Hernández and Journel 1993). The realisations 

could also be generated by other methods. 

2. For each of the realizations the groundwater flow equation is solved by finite 

differences, by INVERTO (Hendricks Franssen 2001). The computed heads 

are compared with the measured heads. The following formula is evaluated:  

 (1) 

where Nh is the number of head measurement locations, hi the head at a meas-

urement location, the weight i is chosen inverse proportional to the estimated 

measurement error, SIM refers to simulated and MEAS to measured. If J is 

smaller than a pre-defined tolerance value the measured heads are reproduced 

close enough. In case J is larger than the tolerance value the simulations con-

tinue with step 3. In case also concentration data would be present, the objec-

tive function would be extended with an additional term. In this paper we do 

not consider concentration data. 

3. J was too large and therefore the gradient of the objective function with re-

spect to the perturbation parameters (a parametrization of the random vari-

ables) is calculated. This gradient is minimized by a combination of non-linear 

optimization and geostatistics, and the parameters are updated. Then step 2 is 

repeated, and steps 2 and 3 are repeated until the objective function is repro-

duced close enough. As a final result, updated equally likely realizations of the 

random input parameters are obtained. These equally likely realizations are 

also conditioned now to hydraulic head data. 

4. For each of the updated realisations the well catchment is determined. The 

particle tracking problem is solved by releasing a particle from the centre of 

each grid cell and tracking it until a boundary or the well has been reached.  

5. The ensemble variances are calculated over the generated realisations. The fol-

lowing definitions hold: 
N

i

ZiN
ZAESD

1

1
)( (2) 

where AESD is the average ensemble standard deviation, N the number of grid 

cells, i a grid cell index, Z stands for either log transmissivity or hydraulic 

head and  is the ensemble standard deviation. The uncertainty with respect to 

the capture probability is given by: 
N

x

xCZxCZ
N

CZAESD
1

))(1),(min(
1

)( (3) 

where AESD(CZ) is the domain averaged uncertainty with respect to the cap-

ture probability. For instance: if CZ(x)=0 or CZ(x)=1 the grid cell x does not 

contribute to AESD(CZ); if CZ(x)=0.5 the contribution is 0.5 (the largest con-
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tribution possible; the maximum uncertainty). With respect to the capture 

probability: CZ(x,i)=0 if a particle released from grid cell x for realisation i

does not reach the pumping well and CZ(x,i)=1 if the particle reaches the 

pumping well. The average capture probability CZ(x) for that grid cell is de-

termined by averaging the obtained CZ(x,i).

3 Case study 

The Lauswiesen site is located in the Neckar Valley close to Tuebingen in 

Southwest Germany. The site consists mainly of fluvial deposits with a large hy-

draulic conductivity. The fluvial deposits result in a layered sediment with many 

very thin layers that may show a relatively strong variation in hydraulic conduc-

tivity in the vertical direction. On top of these fluvial deposits is a clay layer with 

a very low permeability. It is believed that no recharge passes through this layer. 

The aquifer is unconfined (the clay layer does not form a confining layer; the up-

per level of the aquifer is somewhat below the bottom of the clay layer) and has 

an estimated thickness of approximately 5 meters. The river Neckar passes 

through the area and is a boundary of the modelling area. The river bottom acts 

as a resistance for water flow between the river and the aquifer. In the central part 

of the Lauswiesen site there is a main pumping station of the Tuebingen water 

works. In the Northern part of the area there is a new pumping station installed, 

which pumps during the tracer tests. The tracers are injected southwest of the 

new pumping station, far enough from the Tuebingen water works, so that the 

tracer is not transported southwards. 

The aim was to estimate the drinking water well catchment, to predict the 

travel times from the injection wells to the pumping well and compare these es-

timates with the measured values. 

3.1 Experimental data 

The following data are available for conditioning: 

11 hydraulic conductivity data. 

46 steady-state hydraulic head data (when the two main pumping wells were 

not working). 

the breakthrough curves from six tracer injections. 

porosity data. A few core samples have been analysed from which the porosity 

is estimated to be 8%. 

the water levels in the Neckar river. 

pumping rates. All the pumping rates at the wells are known. 

The hydraulic conductivity data and the hydraulic head data have indeed been 

used for conditioning. The breakthrough curves served for verification. The po-
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rosity and the pumping rates have been taken deterministically, although there is 

also some considerable uncertainty regarding the porosity value. 

Besides these data some initial estimates were available concerning the 

boundary conditions: 

inflow rates. The amount of water inflow at some points of the border of the 

Lauswiesen site is available. 

prescribed heads. At some other boundaries of the Lauswiesen site prescribed 

head values are known. 

leakage factors. The leakage factors between the river bottom and the aquifer 

are given for the whole river length. 

The inflow rates were not subject to calibration, but the prescribed heads on 

the boundaries and the leakage factors were, in a manner that will be explained in 

the section 3.3. 

3.2 Model setup 

The discretization of the domain has been adopted from Martac and Ptak (2002). 

The model has an irregular mesh with grid cells that vary in size between 20 cm 

and 25 m. See Figure 1. The grid is refined around pumping wells and the zones 

close to the river. The modelled area is about 3km x 1km. The total number of 

grid cells is 68,036. The aquifer has been modelled as confined, although it is un-

confined. It is assumed that the decreases due to pumping are relatively limited as 

compared to the aquifer thickness. A constant saturated thickness of 5.08 m has 

been assumed. 

The sequential self-calibrated method cannot handle the calibration of Cauchy 

type boundary conditions. Therefore, as an alternative, the prescribed head values 

on the river grid cells have been subjected to calibration. The modelling of the 

river as a prescribed head boundary can be justified by the fact that the aquifer 

shows an immediate response to modifications in the water level of the river. 

3.3 Stochastic modelling 

The well catchment and its uncertainty, and the results of the tracer tests, have 

been estimated for the unconditional simulations and the inversely conditioned 

simulations. 

Unconditional simulations were generated by GCOSIM3D (Gómez-

Hernández and Journel 1993). The adopted variogram model of logT is exponen-

tial, with a correlation length of 50 m and the sill is 0.10. The geometric mean of 

logtransmissivity is –2.70. The logtransmissivities had to be generated on an ir-

regular grid. First the logtransmissivities were generated on a 5m x 5m grid. As a 

next step, the logtransmissivities on the irregular grid were obtained by taking the 

logtransmissivity value of the 5m x 5m grid that was the closest to the centre of a 

grid cell of the irregular grid. It means that if many small grid cells are contained  
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Fig. 1. Set-up of the model including information with regard to pumping wells (numbers 

10-14), prescribed inflow (between 3 and 4), prescribed heads (between 5 and 7, between 

8 and 9, between 1 and 2). Given are also the coordinates of the locations 1-14 and obser-

vation locations. 

in a 5m x 5m grid cell, all these smaller grid cells become the same logtransmis-

sivity value. If on the contrary many 5m x 5m grid cells are contained in a larger 

grid cell of the irregular grid, only one of these values is selected. This procedure 

is not ideal as the grid cells do not have all the same support, and the logtrans-

missivity statistics that are used to generate the random fields are support de-

pendent (scale dependent), but it is thought to be an acceptable compromise of 

getting a good numerical solution, a not too large number of grid cells and a rea-

sonably good representation of the spatial heterogeneity of logtransmissivity. 
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Although these simulations were unconditional, they were used in order to 

compare the simulated heads with the measured heads. The objective is to see 

whether the unconditional simulations reproduce on average the measured heads. 

It was found that there was a systematic bias in the head values. For nearly all the 

measurement data the simulated heads were above the measured heads, for 

(nearly) all the realisations. This suggests a bias, and it was found that this was 

due to the interaction between the river and the aquifer, and it pointed to the need 

to calibrate the prescribed heads along the river. Table 1 summarizes some results 

for the unconditional realisations. 

The equally likely conditional realizations are conditioned to 11 transmissivity 

measurements, obtained from pumping tests, and the 46 head measurements un-

der natural flow conditions. The conditioning to the hydraulic head data has been 

carried out in two steps. In the first step the prescribed heads along the river were 

calibrated. During this first calibration step the transmissivities are fixed, so that 

the calibration of the river heads only corrects the bias of the water balance. This 

is done in such a way that for all cells of the river the perturbation of the pre-

scribed head value is the same, as such avoiding the development of lo-cal de-

pressions. By calibrating the prescribed heads along the river the water balance of 

the model area is corrected. After this first step the hydraulic 

head measurements are conditioned by modifying the transmissivity field, and 

fixing the boundary heads. Table 1 also summarizes some results for the condi-

tional simulations. Results are again evaluated according the average ensemble 

standard deviation. 

It is found that the ensemble averaged standard deviations for the transmissiv-

ity field and the hydraulic head field are considerably larger for the simulations 

conditioned to hydraulic head data, than for the unconditional realisations. This 

surprising observation may be related to the fact that the estimated prior log-

transmissivity variance has been too low and the range too long. However, due to 

the limited number of calibrated realisations (20) the calculated statistics can dif-

fer considerably from the “true” statistics. In case of an additional conditioning to 

11 transmissivity data, the ensemble variances decrease. The larger transmissivity 

variance propagates through the groundwater flow equation and the mass trans-

port equation and also results in increased ensemble variances of head. The fact 

that the ensemble head variance after inverse modelling is larger than before in-

verse modelling is unique in the sense that with the Self Calibration Method this 

observation never could be made, not for synthetic studies and neither for practi-

cal case studies. 

Table 1. Scores on the evaluation criteria for pre-pumping calibration with the Sequential 

Self Calibration Method. These values are calculated over the active cells only 

AESD(Y) AESD(h) AESD(CZ) 

Unconditional 0.61 0.064  

0 T, 46 h data 1.43 0.141  

11 T, 46 h data 1.08 0.104 2.08 x 10-2
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Fig. 2. Map of the catchment of abstraction well F0 for calibration with head measure-

ments obtained from the pre-pumping stage. The mapped area corresponds to the area 

plotted in Figure 1. Only very locally the capture probability was 100%. 
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The conditioned transmissivity realisations have been input to forward 

groundwater flow simulations with the well pumping at F0. The calibrated initial 

heads along the river (different for each realisation) were left unmodified and a 

change in the water level of the Neckar has not been taken into account. The cal-

culated hydraulic head fields have been used as input, together with the log-

transmissivity fields, for calculating the well catchment of F0. For this purpose 

the software 3DTRANSP (Hendricks Franssen 2001) has been modified, so that 

it can handle the particle tracking for non-squared grid cells. Nevertheless, it was 

found that the implemented procedure is not very efficient for such a grid. There-

fore, only the catchment for the conditioned realizations could be calculated, and 

only for the very limited amount of 20 realizations. 

Also the mean and standard deviation of travel times to well F0 of conserva-

tive particles injected in wells F1-F6 were calculated and are presented in Table 

2. It should be stressed that for non of these injection wells the capture probabil-

ity was 100%, but always above 50%. In Figure 2 the capture probability of con-

servative particles is mapped. 

The calculated mean travel times are in the same order of magnitude as the 

measured ones. The calculated catchment, the catchment uncertainty and the 

travel times are therefore not very surprising results. Main question remains why 

inverse conditioning results in such a dramatic variance increase in these stochas-

tic inverse calculations. 

Table 2. Predicted travel time in days (and standard deviation) from conservative tracers 

to abstraction well F0 for pre-pumping calibration.  

F1 F2 F3 F4 F5 F6 

Mean 6.6 3.7 4.1 19.1 13.8 10.8 

St dev 3.1 2.4 0.7 9.7 3.4 2.3 

4 Discussion and conclusions 

A main conclusion of the stochastic inverse simulations is that the methodologies 

are indeed capable of yielding conditional stochastic estimates of the well catch-

ment, for a real world case. However, there exist several complications that point 

to the need of future research and developments in the nearby future. 

A main issue in this particular case is the increase of the variance during con-

ditioning, yielding posterior ensemble variances (after conditioning) that are lar-

ger than prior ensemble variances (before conditioning). In synthetic studies this 

behaviour also occasionally occurs, and it may be related to the fact that the 

“true” variogram differs considerably from the model variogram, or that meas-

urements were taken by chance at locations that were very little representative 

(for example very local extreme values). Nevertheless, the increases are normally 

very limited and for a larger amount of measurement data the variance always 

will decrease again. In this case ensemble standard deviations were more than 

double as large after conditioning than prior to conditioning. Also the ensemble 
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head standard deviation was more than double as large after inverse modelling 

than prior to conditioning. The following explanations are possible: 

The variance increase might be related to an error in the estimated prior sill 

and/or the range. If the estimated sill is too low, the ensemble variances of output 

variables of the flow and transport equation will also be too low. Also a range 

that is much longer than the real range will have a similar effect. At the same 

time, it is shown that inverse modelling is able to correct – partly – this error. As 

a result, the posterior ensemble variance is larger than the prior one. It is impor-

tant to stress that the estimated variance is a model variance, and can even be 

based in some cases on postulations (e.g., a postulated variogram without any 

hydraulic conductivity measurements). Therefore the output variances – espe-

cially in cases with only few measurement data – should be looked at with some 

reservation. In relation to the variogram estimation, a research need remains to 

develop inverse stochastic methodologies that are more robust regarding the es-

timation of the hydraulic conductivity variogram, or are able to handle the uncer-

tainty of the variogram (e.g. Bayesian methodologies). 

Another possible explanation is that the modelling of the river-aquifer interac-

tion was conceptually not completely correct. Further research is needed to han-

dle the inverse stochastic modelling of river-aquifer interactions in an adequate 

and concise manner. In addition, in order to enable a successful inverse stochastic 

simulation of the river-aquifer flow conditions more measurement locations 

along the river are needed. 

The little amount of inverse conditioned realisations. It is possible that 100 re-

alisations would yield a considerably smaller posterior ensemble variance. Al-

though there would still be an increase of the ensemble variance during condi-

tioning, the increase could be less dramatic. 

In general, a research issue remains the calibration of complex regional mod-

els, where not only the logtransmissivity but also the boundary conditions and the 

recharge are uncertain. In this case, averaging out the strong hydraulic conductiv-

ity variations in the vertical plane in a 2-D model may also be problematic. How-

ever, a fine discretization along the vertical axis was not feasible, and remains ex-

tremely CPU-intensive for inverse models. 
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1 Introduction 

Monitoring data used in exposure mapping and risk assessment is usually associ-

ated with uncertainty caused by measurement equipment error and measurement 

methodology problems. These measurement uncertainties are difficult to process 

in the framework of classical geostatistics. As a result, the value at a monitoring 

site is often replaced by a “hard” datum that is treated as exact, and is determined 

by an official using an expert interpretation that takes into account the measure-

ment methodology and raw measurements. In reality this value is not a “hard” da-

tum, it is truly just an “expert” value and it is associated with some uncertainty. 

Such value we refer to as a “soft” datum. 

The geostatistical methods pay special attention to the description of the uncer-

tainty of the obtained result.  The tradition starts from the classical measure of un-

certainty – kriging variance, which later evolved to probabilistic description pro-

vided, for example, by indicator (Goovaerts 1997) or disjunctive kriging 

(Rivoirard 1994). Usually input information obligatorily includes “hard” data, and 

the “soft” data are used as additional information that allows to improve the esti-

mation, but still it is treated as an addition to exact “hard” data (Savelieva et al 

2003). The current work is an attempt to work exclusively with “soft” data – dif-

ferent repeated raw measurements, minimizing any preliminary expert interpreta-

tion.  

We used two different approaches to work exclusively with “soft” data – the 

Bayesian Maximum Entropy (BME) and the “soft” indicator kriging methods. 

Both these methods allow to incorporate “soft” probabilistic information and they 

provide probabilistic interpretation of the result. Since this work is mainly devoted 

to an attempt to deal rigorously with situations that do not involve any “hard” 

data, we refer to it as “soft” geostatistics.  

When a sufficient number of repeated raw measurements are available at a 

given sampling site, these repeated measurements can be used to obtain the (soft) 

pdf describing the true contamination concentration at that site. Such soft pdfs are 

incorporated into the methods as probabilistic “soft” data. The main goal of this 
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work is to investigate whether an analysis based only on “soft” data leads to rea-

sonable results that are useful for decision-makers. For this purpose we performed 

a special validation procedure using real data on 137Cs radioactive soil contamina-

tion caused by the Chernobyl fallout.  

The validation procedure is complicated by the absence of data providing the 

true contamination level with which to compare estimated values.  So, the valida-

tion process is made of two steps – comparison between the most probable value 

provided by the methods’ posterior pdf with the value that occurred most often in 

the data set of repeated raw measurements; and comparison between methods’ 

posterior pdf with the pdf of the repeated raw measurements. According to results 

obtained it is evident that “soft” geostatistics provides promising results and opens 

an area for future research work. 

2 Some theoretical remarks on the methods used 

2.1 The BME method  

A detailed description of the BME theory is certainly beyond the scope of this pa-

per, and the interested reader can find all computational and theoretical aspects of 

the method in Serre and Christakos (1999) and in Christakos (2000) and practical 

recommendations concerning the application together with the BME-based com-

puter software BMELIB library in Christakos et al. (2002).  In this section we 

briefly discuss the main features of the BME method that are relevant to the pre-

sent work.    

The spatial distribution of a physical variable (in our case, the radioactive soil 

contamination by 137Cs) is routinely represented by means of a spatial random 

field (SRF) X(s), where the vector s denotes spatial location.  The BME mapping 

framework integrates various physical knowledge bases, such as the general 

knowledge base G  (physical laws, empirical relations, statistical moments of any 

order, scientific theories etc) and the site-specific knowledge base S (real meas-

urements, uncertain observations, secondary information etc) to construct the pos-

terior pdf of X(s) at any mapping point sk.  In the Chernobyl fallout case consid-

ered in this work, the general knowledge G was limited by the variogram of SRF 

(the bar denotes stochastic expectation) 

2

2

1 ))'()(()',( ssssX XX , (1) 

which expresses the spatial correlation between any two points s and s’.  The site-

specific knowledge S includes only the set of soft data soft at points ssoft.  An ex-

ample of soft used in this work are soft probabilistic data in the form of the soft 

pdf fS( soft), which represent the distribution of repeated measurements at the sam-

pling sites ssoft.  The BME approach consists of three main stages of synthesizing 

and processing the general and site-specific knowledge bases, as follows: 
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1. Structural stage:  The general knowledge G is considered and used to derive the 

structural (or prior) pdf model, fG, of the radioactive 137Cs contamination at all 

mapping points smap=(ssoft, sk). 

2. Specificatory stage:  The site-specific knowledge S is organized in terms of the 

soft data soft so that, map=( soft, k).
3. Integration stage:  The total knowledge base, K=G S, is assimilated by means 

of an operational Bayesian conditionalization rule, thus leading to the posterior 

pdf fK of 137Cs soil contamination at all mapping points as follows 

fK ( ) A 1 d soft fS( soft ) fG( map)   (2) 

where A is a normalization parameter. Clearly this posterior pdf is not limited 

by any specific form (since it is a function of the soft pdf, which may take any ar-

bitrary form), leading to a realistic stochastic description of the radioactive con-

tamination across space. 

The posterior pdf, fK, varies across space offering a complete stochastic de-

scription of the 137Cs contamination at each mapping point.  BME estimate of 
137Cs contamination at each mapping point is the most probable value according to 

obtained posterior pdf. Uncertainty can be described by confidence intervals, also 

estimated basing on the posterior pdf. 

2.2 “Soft” indicator kriging 

“Soft” indicator kriging, mentioned in the work of Saito and Goovaerts (2002), is 

a generalizing modification of the well-known indicator kriging. The main modi-

fication is that the indicator value is not a discrete function with values 0 and 1, 

but is a continuous function taking a value in an interval (0,1). Such continuous 

indicator transform is possible only based on some “soft” knowledge presented as 

local pdf, which is available in our case from the sets of repeated samples.  

Again we consider a SRF X(s), where the vector s denotes spatial location. The 

continuous indicator transform for location s and level zn can be written as 

)z;(F}z)(XPr{)z;i( nnn sss  (3) 

and it is estimated based on the modeled local pdf for location s (p(s;z)) by a nu-

merical integration: 
n

ss n

z

dz)z;p()z;F( . (4) 

Using kriging for indicators we obtain the estimates of cumulative distributions 

F*(sk;z| S) conditional for site specific initial information.  

Modeled cdf, F*(sk;z| S), varies across space allowing probabilistic mapping of 

the 137Cs contamination to exceed (or not to exceed) a corresponding level. It pro-

vides a probabilistic description of the uncertainty.  
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3 Description of the data 

For our analysis we use the data on soil radioactive contamination by 137Cs due to 

the Chernobyl fallout. The region under study is located approximately 200 km 

North-East of the Chernobyl Nuclear Power Plant (South-Western part of Briansk 

region). The territory of the study polygon is approximately 420 km2 (70 km by 80 

km). The real geographic coordinates are transformed to metric Lambert coordi-

nate system projection, with (0,0) coordinate referring to the center of the most 

contaminated area in Russia. In the current work we focused on the area contain-

ing more locations with large number of measurements. 

The dataset used in this work consists of 537 sampled locations with more than 

3 measurements. Repeated measurements were taken in a close neighborhood 

(much smaller then the average distance between sample locations) of the position 

prescribed to a sample set, and the measurements taken at different times where all 

used to back-calculate the contamination value at the date of Chernobyl accident – 

26.04.1986. None of temporal trends were studied, as real time of a measurement 

was unknown. Thus the distribution of the repeated measurements describes noth-

ing than uncertainty. 

At 410 sampled locations of our database we only have a minimum, a maxi-

mum and a value deemed as “official”.  These “official” values are truly the result 

of some kind of expert’s judgment, so their usage as “hard” exact knowledge is 

not accurate.  Here we treat the “official” values as the most probable value for the 

location and we construct for these locations triangular pdfs as the “soft” data.  

The other 127 locations have more than 15 measurements each. Such number 

of measurements allows to perform an analysis of the local distribution of raw 

values, which can be used in place of less informative “official” values. Several 

examples of raw histograms and fitted pdfs of known probability distribution 

function models are presented in Fig.1. The quality of pdfs fitting was checked by 

traditional statistical tools (qq-plots).   

36 locations from the 127 described above were extracted for the validation 

purpose, so the final training data set is composed from 501 location described by 

soft pdf's fitted to the repeat raw measurements.  

4 Application 

4.1 Data preparation  

The BME method was used to process the knowledge provided by the “soft” 

probabilistic data (pdfs) and the model of spatial correlation structure of the vari-

able under study (137Cs soil contamination). The usage of the soft data to model 

the spatial correlation structure poses a problem of estimation, which is out of 

scope of the current work and will be considered in future research. In the current 

work the correlation structure was modeled using the most probable values. The 
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experimental variogram appeared to be close to isotropic, especially for small dis-

tances ( 10 km). Hence a simple isotropic model was used (Fig. 2).  

“Soft” indicator kriging requires additional preliminary analysis. The selection 

of an adequate set of cut levels is a usual problem for the indicator approaches. In 

the current work we used a set of 19 cuts, based on 7 quantiles estimated for the 

most probable values (1/8q – 144.4; 1/4q – 228.85; 3/8q – 327.82; 1/2q – 448.1; 

5/8q – 618.35; 3/4q – 829.3; 7/8q – 1179.23) and some additional values from 

each interval. The final set of cut levels is the following: 30 70 144 160 229 270 

328 380 448 520 618 720 829 870 970 1070 1179 2000 3000.  

The variogram analysis for the data after the “soft” indicator transform indi-

cated 4 groups of variogram structures (I – first 4 cuts; II – following 4 cuts; III – 

following 8 cuts; IV – last 3 cuts). Group III is the only group presenting clear iso-

tropic structure. Group IV is the most complex for modeling, because of the high 

variogram variability. In Fig. 3 we present examples (1 for each group) of experi-

mental indicator variograms and the variogram models selected.  

BME and “soft” indicator kriging predictions of the 137Cs radioactive contami-

nation distribution for each mapping point (both from validation data set and from 

the regular grid) were computed using the “soft” data from the nearest minimum 5 

up to 10 samples found within the circular search area with radius of 25 km. No 

un-estimated locations were detected. 

Fig. 1. Examples of raw histograms and fitted models of pdf (scaled to be compared with 

the histogram): 1 – Extreme distribution; 2 – Uniform distribution; 3 – Rayleigh distribu-

tion; 4 – Cauchy distribution 
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Fig. 2. Experimental variogram and variogram model roses for most probable values of 
137Cs soil contamination 

4.2 Validation 

Validation of the results of our analysis is the most important part of the current 

work, as it can show the ability of “soft” geostatistical methods. As mentioned 

earlier, performing validation is a problem in the absence of any exact measure-

ments, so we use the value that occurred most often in the data set of repeated raw 

measurements (the mode of the raw histogram) for validation purpose. The BME 

method provides the posterior pdf at the estimation point, from which we can rig-

orously derive the most probable value (the BME mode estimate). So for the case 

of BME such type of comparison can easily be performed and yields a set of BME 

estimation errors calculated as the BME mode estimates minus mode of the raw 

histogram for each of the 36 validation locations. The mean error obtained for the 

BME errors is negative (-35.14), which indicates some overestimation. The statis-

tical distribution of BME errors is rather symmetric (the 1/4 and 3/4 quantiles are 

correspondingly –151.6 and 104.8). The correlation coefficient between BME 

mode estimates and the mode of the raw histograms for corresponding validation 

locations is 0.8, which indicates a satisfactory correspondence. 

In the case of the “soft” indicator kriging method, we only obtain the probabil-

ity cumulative distribution function (cdf) estimated for set of selected cut values. 

The pdf can be crudely calculated as a numerical derivative of the cdf, but the 

most probable value according to such pdf is always equal to a value of a cut, as 

the change in the slope of the cdf can only be detected for the cuts. Thus, for 

“soft” indicator kriging we can only estimate the interval where the most probable 

value belongs. According to our results for 27 of 36 validation locations the inter-

val containing the highest values of pdf covers the mode of the raw histogram, 

which indicates a good performance (75%). 

The other aspect of comparison is the reproduction of local pdfs. For the com-

parison we used the approach widely distributed in statistics – qqplots (Fig. 4). In 

the current case qqplot is constructed as the graph of values of quintiles from the 

posterior distribution versus the values of same quintiles according to raw sam-

ples. The solid line indicates the bisector – the closer the markers line is to a bisec-

tor, the better is the reproduction of the local pdf. One can see, that both methods 
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give rather good reproduction and it is not easy to indicate which one is better. It 

means that both methods are useful within the “soft” geostatistical approach. 

Fig. 3. Examples of raw indicator variograms and their models 
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Fig. 4. QQplots for comparing reproduction of posterior pdfs: + correspond to “soft” indi-

cator kriging pdf, O correspond to BME posterior pdf, line corresponds to abisector 
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4.3 Mapping Results 

As a final result decision-makers usually want to obtain the estimation on the 

dense grid with the corresponding interpretation of uncertainty. “Soft” geostatis-

tics can be used to obtain such information. Results on the dense grid (70x80 cells 

with a size of 1x1 km2 – the total number of nodes is 4200) provided by both 

methods are presented in Fig. 5 and 6.   

Fig. 5 presents four probabilistic maps obtained from “soft” indicator kriging. 

The darkness of a pixel in the figure is in accordance with the probability not to 

exceed the corresponding level indicated above the map (the darker, the higher 

probability). 

.

Fig. 5. Probability mapping after “soft” indicator kriging: the darker the higher probability 

not to exceed the cut level 
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Fig. 6. BME estimates surface with several examples of posterior pdfs 

In Fig. 6 we present a map of the BME estimates (the most probable value ac-

cording to the BME posterior pdf) together with seven examples of BME posterior 

pdfs. BME pdfs characterize the uncertainty. Not all BME posterior pdfs are 

symmetric. Also the dependence of pdf’s width can be observed: the pdf is wider 

where the gradient of the variable is higher – hence higher uncertainty is related to 

the prediction of spatial changes in contamination. 

Also we present cumulative distribution functions (cdfs) estimated using “soft” 

indicator kriging (Fig. 7) and BME (Fig. 8) for 6 locations. These cdfs can be used 

to compare the local probabilistic characteristics of results by different ap-

proaches. The correspondence in the features of “soft” indicator kriging cdfs and 

BME posterior cdfs is visible. 
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The general agreement between two different approaches is evident from both 

spatial presentation of results and their local probabilistic characteristics 

Fig. 7. Examples of cumulative distribution functions after BME 

Fig. 8. Examples of cumulative distribution functions after “soft” indicator kriging 

5 Concluding remarks

Two different approaches were applied to the spatial analysis of data presented as 

pure “soft” data, without any exactly known (“hard”) information. “Soft” data was 

interpreted in the probabilistic way – as pdf. The main conclusion of this work is 

that “soft” geostatistical analysis may provide reasonable results of both spatial 

distribution of the value and the associated uncertainty. This conclusion is based 

on both validation procedures presented in the current work. 

Both methods (BME and “soft” indicator kriging) provided reasonable results 

and it is not easy to make a conclusion whether one performs better. Even though 
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the comparison of these two methods is not the objective of this work, still some 

comparisons concerning their abilities and simplicity of application can be made: 

“Soft” indicator kriging does not always allow to estimate precisely the most 

probable value. This is due to the limited number of steps of the cumulative dis-

tribution function. 

The BME method can be used for probabilistic mapping, as presented in the 

current work. 

“Soft” indicator kriging allows to introduce the spatial correlation structure 

without any problems by a set of indicator variograms, but estimation and mod-

eling of large amount of indicator variograms requires a lot of expert work. The 

situation allowing to apply the median kriging (Goovaerts 1997) is not a fre-

quent one. Otherwise application of a set of variograms makes “soft” indicator 

kriging a rich tool for spatial evaluation, perhaps even more rich then BME 

version using one model as in the current work. 

The analysis of “soft” data also leads to a set of interesting problems for future 

theoretical and practical research. One of the problems is connected with “soft” 

analysis of spatial correlation structure. Another problem is connected with the 

validation, which needs to be more directed to the estimation of the difference be-

tween probability distributions. Special qualitative measures are required for com-

parison of numerical presentation of statistical distributions.  
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1 Introduction 

Since 1895 a metal smelter operates in the village of Dornach (northwestern Swit-

zerland). The smelter produces copper products and alloys for the manufacturing 

industries. Until 1972 metal dust, containing mainly copper, zinc and cadmium, 

was released into the atmosphere without any filtering. During the next decade fil-

ters were installed, and this greatly reduced the emissions. Since the end of the 

1980s the emissions of the smelter comply with the Swiss air quality standards. 

Nevertheless, because of the long period during which the smelter was in opera-

tion, the soils around the smelter are polluted by heavy metals. A first survey, 

conducted in 1983-1986, revealed elevated metal concentrations over an area of a 

few square kilometers (Wirz and Winistörfer 1987). In the vicinity of the smelter 

concentrations up to a few g Cu per kg of soil were recorded in the topsoil. The Cu 

content of the soil reaches background levels only at a distance of 2-3 km from the 

smelter. Additional surveys conducted in the 1990s (cf. Keller et al. 1999) con-

firmed these findings. 

In 1997/98 the Swiss environmental protection law was revised. A new ordi-

nance introduced guide, trigger and clean-up thresholds for the various heavy 

metals. If the concentration exceeds the clean-up value then either restrictions on 

land use are imposed, or the land owner is requested to clean-up the land. If the 

content is below the clean-up but exceeds the trigger threshold then the authorities 

must evaluate the risk arising from the contamination. If there is some unaccept-

able risk restrictions will again be imposed. Concentrations exceeding only the 

guide threshold are less severe, here the authorities have to take measures to pre-

vent a further rise of the concentration of the pollutant and to prevent uncontrolled 

displacement of soil from contaminated building grounds. 

There is enough evidence that both clean-up and trigger thresholds are ex-

ceeded in Dornach (Fig. 1). The soil protection agencies and the owner of the 

smelter therefore started a new survey, with the aim to collect sufficient data to 
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predict for each parcel (contiguous piece of land belonging to same owner[s]) 

whether its heavy metal content exceeds any of the thresholds of the ordinance. In 

addition to the 236 sites studied so far, the heavy metal content of the topsoil will 

be measured at another 450 locations at the most. 

In the past surveys observations were recorded at “points” (support of meas-

urements 10-100 m2). However, to classify the parcels according to their pollution, 

one must predict the mean metal content of entire parcels of land that may be 

much larger than the support of the data (mean area 2300 m2). Thus, we face a 

non-linear and non-stationary spatial prediction problem with change of support. 

In this paper, we discuss the choice of a suitable geostatistical approach (section 

2), we explain our analysis (section 3) and demonstrate its validity (section 4) by 

comparing the predictions, computed from past survey data, with the measure-

ments obtained in the first stage of the new survey in summer 2003.  

2 Review of modelling approaches for non-linear and non-
stationary prediction problems with change of support 

2.1 Disjunctive and indicator kriging 

Non-linear prediction problems, arising in mining, prompted in the 1970/80s the 

development of disjunctive (DK) and indicator kriging (IK) (cf. overview in Chi-

lès and Delfiner 1999, chap. 6). Whereas for DK the (Gaussian) discrete model of-

fers a consistent method for change of support, ad-hoc variance corrections were 

suggested for IK (Oz et al. 2002). DK and IK further require that the bivariate dis-

tributions of a random process, {Z (s)} , are stationary. There have been attempts 

to overcome these limitations and to use DK and IK for modelling non-stationary 

patterns of spatial variation. Kolbjørnsen and Omre (1997) put DK into a Bayesian 

setting for modelling a non-stationary mean, but this is done at the price that the 

anamorphosis is no longer possible.  

Goovaerts and Journel (1995) and followers tried to generalize IK for  the same 

purpose (simple indicator kriging with varying local means). They suggested to 

compute the simple kriging predictions of the indicator residuals, 

R(z; s) I (z,s) F̂ (z; s) , where I (z,s) 1 if Z (s) z and I (z,s) 0 otherwise, 

F (z; s) E[I (z,s)] is the cumulative distribution function of Z (s)  and F̂ (z; s)  is 

some estimate of F (z; s)  (called local soft prior probability by Goovaerts). We 

denote the bivariate cumulative distribution function of a pair of random vari-

ables (Z (s),Z (s ))  by F (z,z ; s,s ) E[I (z; s)I (z ; s )]. For the time being, let us as-

sume that we know F (z; s)  for all s  (which is not the case in reality and poses a 

difficult problem). Then using the definition of the variance of the difference of 

two correlated random variables we obtain for the variogram of the indicator re-

siduals 
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2 R (z,z; s,s ) Var[R(z; s) R(z; s )]

Var[R(z; s)] Var[R(z; s )] 2Cov[R(z; s),R(z; s )]

Var[I (z; s)] Var[ I (z; s )] 2Cov[I (z; s), I (z; s )]

F (z; s) [F (z; s)]2 F (z; s ) [F (z; s )]2

2F (z,z; s,s ) 2F (z; s)F (z; s ).

(1) 

Now, if F (z; s)  varies spatially, R (z,z; s,s ) is a function of the absolute positions 

s  and s  and not merely of the displacement s s . Thus, we cannot get rid of the 

non-stationarity by working on the indicator residuals and we require that {Z (s)}

has stationary bivariate distributions. Only if F (z; s) F (z; s ) F (z) and 

F (z,z ; s,s ) F (z,z ; s s ) can we estimate the correlation structure of the indica-

tor (residuals) by the customary method-of-moment estimator. Notwithstanding 

this difficulty, the advocates of the method estimate R  by grouping the centred 

indicator data into lag classes, and they proceed as if the indicator residuals were 

stationary (cf. Goovaerts 1997, p. 307-308). But we cannot see any grounds on 

which one might justify such a procedure and we conclude that the whole ap-

proach is flawed.  

2.2 Trans-gaussian model and lognormal kriging 

The observations, z(s i ) , are modelled as a 1:1-transform, ( ), of a weakly statio-

nary Gaussian random process, {Y (s)}, i.e. Z(s) = (Y (s)) . The Gaussian process 

has a linear mean function, E[Y (s)] = x(s)'  and a stationary covari-

ance Cov[Y (s + h),  Y (s)] = C (h) . Here, x(s)  denotes the vector with the explana-

tory variables for location s ,  is the vector of the regression coefficients and ' de-

notes transpose.  

A particular case is the lognormal model with ( ) exp( ) . This model has 

found some attention in the early 1980s, when attempts were made to model 

change of support for this approach (Rendu 1979, Journel 1980, Dowd 1982). The 

former two authors assumed that the distribution of point and block val-

ues, {Z (B)}, is jointly lognormal, although lognormality is not preserved when we 

average spatially. Dowd did not assume this, but the joint distribution of the pre-

dicted and true block means remain unspecified in his approach, and probabilistic 

statements are impossible. Marcotte and Groleau (1997) proposed yet another 

block LK-predictor that does not rely on the assumption of joint lognormality of 

{Z(B)} and {Z(s)} . They suggested to predict a block mean, say Z (B0) , by some 

linear predictor, Ẑ (B0) , (e.g. by universal kriging) from the data. Then they as-

sumed that the joint distribution of the predicted and the true block mean is bivari-

ate lognormal and derived a closed-form expression for the conditional distribu-

tion of Z (B0) | Ẑ (B0) . For ( )  other than exp( ) no closed from expressions are in 

use, and it appears that one has to resort to conditional gaussian simulations to 
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predict Z(B)  or any non-linear functional, say g(Z(B)) , of that quantity. Of 

course, simulations can also be used when ( ) exp( )  to avoid the approximation 

of joint lognormality of point and block values.  
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Fig. 1. Sampling locations of 4 soil pollution surveys around the metal smelter in Dornach. 

The star marks the position of the smelter. The grey level of the symbols codes the Cu con-

tent of the topsoil (0-20 cm depth). The coordinates are centred on the smelter. 

Two remarks on the trans-gaussian model appear essential: (i) The trans-

gaussian model provides a consistent way to parametrize a non-stationarity mean 

function. The transformed data, y(s i )
1(z(s i )) , are analysed by the well-

established model building tools offered by regression analysis. Unlike the tradi-

tional paradigm of geostatistics which tends to consider the spatial dependence of 

the target data as the signal, we try to model the signal by the mean function and 

consider the remaining unexplained (and autocorrelated) part of the variation as a 

nuisance quantity. If we avoid an overparametrization of the mean function then 

we are likely to obtain more precise predictions because the explanatory variables 

will add some independent information at the prediction locations which we other-

wise would not be able to incorporate into our algorithm. 

(ii) By choosing the transformation function in the light of the results of the re-

gression analysis we can model heteroscedastic patterns of variation. Fig. 2 (top 

left) shows that the local variation of the Cu content is not constant: close to the 

smelter, where the concentration is large, we observe a much larger spread of the 

data than farther apart. The absolute values of the residuals of the loess-smoother 
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increase with increasing concentration (Fig. 2, top right). A logarithmic transfor-

mation of the Cu content linearizes the relation to the logarithm of the distance 

(Fig. 2, bottom left) and leads to homoscedastic residuals (Fig. 2, bottom right). It 

is important to note that the type of transformation function should be chosen in 

the course of model-building and not a priori. In practice, a Box-Cox-transform is 

likely to stabilize the variance of the residuals in many instances.  
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Fig. 2. Scatterplot of Cu content (top left) or logarithm of Cu content (bottom left) of top-

soil samples (0-20 cm depth), plotted against the distance to the smelter. We show only the 

data of the survey locations east of the smelter (sector NE E SE ). The data are 

smoothed by a loess function (top left) or by a robust fit of a linear regression model (MM-

estimator) where the logarithm of the distance was the only explanatory variable. The plots 

on the right show the residuals of the two smoothing approaches plotted as a function of the 

smoothed values (Tukey-Anscombe plots). 

2.3 Further approaches: covariance-matching constrained and 

model-based kriging 

Cressie (1993) suggested to predict a nonlinear functional g(Z(B))  by 

g(Ẑ (B)) g iZ (s i )i  where the weights, i , of the linear predictor are chosen 

such that the mean-squared error is minimized subject to the constraints 
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E iZ (s i )i E[Z (B)] and Var iZ (s i )i Var[Z (B)]. For Gaussian {Z (s)} ,

g(Ẑ(B))  is an unbiased predictor for any g( ) , and Cressie argues that g(Ẑ(B))  is 

approximately unbiased for non-gaussian {Z (s)}  and “smooth” g( ) . Aldworth 

and Cressie (2003) generalized the constrained kriging predictor by imposing the 

additional constraints that the covariances of the predictions, Ẑ(Bj ), must match 

the covariances of Z(Bj ) for a set of blocks, Bj  (covariance-matching constrained 

kriging CM). In the same way as ordinary kriging generalizes to universal (or ex-

ternal drift) kriging, CM can be used with a non-stationary linear mean function. 

All the methods mentioned so far are “plug-in” procedures in the sense that 

they ignore the uncertainty in the estimates of the covariance structure when com-

puting the predictions. The so-called parameter uncertainty can be taken into ac-

count by adopting a Bayesian approach to spatial prediction. Diggle et al. (1998) 

proposed model-based kriging, a Bayesian non-linear kriging method, which ex-

tends generalized linear mixed models to spatial random processes. However, our 

own experience (e.g. Moyeed and Papritz 2002) with the appraoch is that the 

computational burden is large and the implementation of the Markov-Chain-

Monte-Carlo methodology requires considerable care.  

2.4 Choice of modelling approach for Dornach survey 

IK and DK are not valid approaches because neither method allows us to model a 

non-stationary mean function. Traditional lognormal universal block kriging relies 

on an inconsistent model for change of support. Both Marcotte and Groleau's LK-

predictor and CM seem valid candidates, but rather little is known about their per-

formance. Thus, in view of the legal implications that the results of the geostatisti-

cal analysis will have, we therefore decided to use the trans-gaussian model, com-

bined with “plug-in” conditional simulations to predict the mean Cu content of 

parcels of land around the smelter in Dornach.  

3 Geostatistical analysis of Dornach survey data 

3.1 Structural analysis of Cu content of topsoil samples  

Apart from the heavy metal data from 236 sites, incomplete and inconsistent in-

formation about the land use at the sampling locations was available. An explora-

tory analysis revealed that besides the distance to the smelter, land use had some 

effect on the Cu content of the topsoil (Fig. 3 left): forest sites had somewhat lar-

ger concentration than arable land, grassland and gardens were intermediate. Since 

we had only maps showing the spatial distribution of forests we could only model 

the influence of this land use. The orientation of a site relative to the smelter had 

some effect, too (Fig. 3, right): locations to the west of the smelter had smaller Cu 

content. However, since there were not many sites in this group (cf. Fig. 1), we 
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decided that we will model this effect only at the second stage of the new survey, 

when more data from sites in the west are available. Thus, we used the logarithm 

of the distance and an indicator variable for forest as the only explanatory vari-

ables in the regression model for log(Cu). 
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Fig. 3. Boxplots of residuals of a robust fit (MM-estimator) of the linear regression model 

log(Cu) ~ log(distance) . The residuals are grouped according to land use (left) or orienta-

tion of the sampling locations relative to the smelter (right). 
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Fig. 4. Sample variogram of residuals of regression model log(Cu)  log(distance) + forest 

and graphs of estimated stable variogram model. 

The distribution of the residuals showed heavier tails than the normal distribu-

tion. In particular, two sites (no. 115, 198, cf. Fig. 3) had very small residuals. 

These two observations were excluded when we studied the spatial dependence of 

the residuals because one observation appeared grossly wrong and the other was 

from a site where contaminated soil had probably been replaced by clean soil. 

Figure 4 shows that the residuals were indeed spatially correlated (nugget:sill ra-

tio  0.1, range  200-400 m). 
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We fitted several model functions to the sample variogram (all combined with a 

nugget effect) by non-linear least-squares using Cressie's weights. In addition, we 

estimated the variogram model parameters by (restricted) maximum likelihood. 

Figure 4 shows the fits we obtained for the stable model (Chilès and Delfiner, 

1999, p. 90). The various variants were then compared in a cross-validation using 

universal kriging (mean function model: log(Cu) ~ log(distance) forest ) for 

log(Cu). We used the bias, mean-squared error and MAD of the prediction errors 

to compare the precision, and we checked the modelling of prediction uncertainty 

by computing the coverage of one-sided prediction intervals (Papritz and Dubois 

1999). The precision of the predictions did not differ markedly for the various mo-

dels and fitting algorithms, but the coverage probabilities were consistently better 

when we used the maximum likelihood estimates. On the whole, the maximum 

likelihood estimates of the stable model seemed best, and we used this parameter 

set for the conditional simulations.  

3.2 Conditional simulations of mean Cu content of parcels 

We did not use sequential Gaussian simulations, but we conditioned unconditional 

realizations of log(Cu) by kriging (e.g. Chilès and Delfiner 1999, sec. 7.3). The 

unconditional realizations were simulated on a 7x7m2-grid by the fast circulant 

embedding algorithm of Chan and Wood (1997). In moderate to large problems 

such as ours (370'000 grid nodes) sequential algorithms can condition only locally 

and the order how the nodes are visited may introduce artifacts. Conditioning by 

kriging is straightforward and fast, provided that the matrix with the kriging 

weights can be kept in computer memory. The simulated values of log(Cu) were 

then transformed back to the original scale, and the Cu values of all the nodes that 

were in the same parcel were averaged. We simulated 2000 realizations of the 

mean Cu content of 7370 (area 18.101 km2) out of 7780 parcels (area 18.112 

km2), the remaining parcels were too small to contain a node of the grid. This al-

lowed us to approximate the conditional distribution of the parcel means numeri-

cally by a maximum error of 2% (95%-confidence level).  

3.3 Choosing the sampling locations for the new survey 

To select the new locations for sampling soil, we computed the conditional 5%-

quantile, Q05, and 95%-quantile, Q95, of the mean Cu content of the parcels and 

grouped them into classes by comparing the quantiles with the thresholds of the 

ordinance and another two ad-hoc thresholds (trigger A [300 mg/kg] and trigger B 

[500 mg/kg]), chosen to subdivide the large range between trigger (150 mg/kg) 

and clean-up thresholds (1000 mg/kg). 

For five parcels Q05 exceeded the clean-up threshold (Table 1), leaving little 

doubt that these pieces of land were heavily polluted. For another 95 parcels Q95 

exceeded the clean-up threshold, but Q05 was either in class 5 (42), in class 4 (26) 

or even in class 3 (27). For all these parcels there was a risk > 5% that the clean-
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up value might be exceeded. For the remaining parcels (Q95 in classes 1-5) the 

corresponding risk was less than 5%. If we accept a maximum misclassification 

rate of 5% for false negatives (polluted but not detected) then we can declare a 

parcel as safe if Q95 is not in class 6. However, by using Q95 as criterion, we in-

cur a considerable number of false positives (erroneously declared polluted).  

Table 1. Absolute frequency of parcels of land in 6 contamination classes and number of 

parcels sampled in first phase of new survey (in parentheses). Q95: 95%-quantile; Q05: 

5%-quantile; class I: quantile  guide threshold; class II: guide < quantile  trigger thresh-

old; class III: trigger < quantile  trigger A threshold; class IV: trigger A < quantile  trig-

ger B threshold; class V: trigger B < quantile  clean-up threshold; class VI: clean-up 

threshold < quantile. 

 Q95 I Q95 II Q95 III Q95 IV Q95 V Q95 VI

Q05 I 12 (0) 4713 (38) 1078 (18) 1 (0)   

Q05 II  82 (2) 644 (21) 415 (37) 134 (14)  

Q05 III   3 (0) 43 (3) 127 (20) 27 (5) 

Q05 IV     16 (5) 26 (10) 

Q05 V     2 (1) 42 (39) 

Q05 VI      5 (5) 

The classification was done in the same way for the other thresholds. Table 1 

summarizes the results. Then we used the following rules to allocate the new sites 

to the contamination classes: 

1. All the parcels not yet sampled and with Q95 in class 6 will be selected. By that 

we avoid any false positives and we ensure that for the clean-up threshold the 

rate of false negatives is less than 5%. 

2. The other sites will be chosen among parcels with Q95 in classes 4 or 5. Thus, 

the rate of false negatives is also limited to 5% with respect to trigger A and B 

thresholds. 

3. Parcels with 95%-quantile in classes 1 to 3 will not be sampled except for a 

small number of sites west of the smelter. These data will be used to model the 

effect of orientation in later stages of the survey. 

When selecting the new sites, we tried to fill in gaps in the spatial arrangement of 

locations sampled previously. When several parcels seemed equally fit then we se-

lected that with the largest conditional coefficient of variation.  

4 Validation of geostatistical analysis of Dornach data 

In summer 2003 soil was sampled on 217 parcels of land (cf. Table 1) and chemi-

cally analysed. An additional datum was available from another project. Figure 5 

compares the measured and predicted Cu content of the 218 samples. Since the 

support of the measurement was not constant we either used the simulation results  

for sites with Q95 in class 6 or with irregularly shaped sampling area or punctual 

universal lognormal kriging for sites where a 10x10m2-square had been sampled.  
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Except for a few samples with very large Cu content the predictions matched 

the data fairly well (Fig. 5). There were a number of sites where the predictions 

were too large. Based on a comparison with data from adjacent locations and on 

inspection of aeral views, we suspect that polluted soil had been replaced at 13 

sites by clean soil. In general, the differences between predicted and measured 

content increase with increasing concentration (Fig. 5 left). Therefore, it seems 

more natural to compare the logarithms of the concentration (Fig. 5 right). On the 

log-scale (results for the linear scale in parentheses) the mean prediction error was 

-0.078 (-18), the root mean square error was 0.316 (396) and the correlation was 

equal to 0.84 (0.75). The predictions were somewhat conditionally biased (predic-

tions too large for large content), but this was partly due to the sites with suspected 

soil exchange. 
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Fig. 5. Scatterplot of measured vs. predicted Cu concent of soil samples, collected in the 

first phase of the new survey around the metal smelter in Dornach, linear scale (left) and 

doubly logarithmic scale (right). Open symbol: samples from parcels of land where con-

taminated soils was probably exchanged by clean soil; dashed line: loess smoother fitted to 

all the data; dotted line: loess smoother fitted without open symbols. 

We assessed the modelling of prediction uncertainty by the coverage of one-si-

ded predictions intervals (Papritz and Dubois 1999). The coverage was too large 

for small nominal probabilities (Fig. 6 left). This indicates that we underestimated 

the extent of the lower tails of the conditional distributions, but also this failure 

was partly due to the sites with suspected soil removal. The coverage was a bit too 

small for probabilities > 0.9. This shows that also the extent of the upper tails of 

the predictive distributions were somewhat underestimated. 

We further computed the frequency of false negatives and positives when the 

percentiles of the conditional distributions were used as criteria for exceedance of 

the clean-up threshold (Fig. 6 right). The observed misclassifcation rate for false 

negatives was always smaller than the allowed maximum rate. The same was true 

for false positives. In accordance with theory, the sum of both types of misclas-

sifications was minimized by percentiles close to the median of the conditional 
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distributions. When the median was used as criterion the misclassification rates 

were around 5% for both types of error, and this is deemed acceptable by the con-

tracting authorities. In reality, there will be no false positives because the Cu con-

tent will be measured for all the parcels with Q95 > clean-up threshold.  
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Fig. 6. Coverage probability plot of one-sided prediction intervals (left) and rates of mis-

classification when the percentiles of the predictive distribution are used as criterion for ex-

ceedance of the clean-up threshold (right). The maximum tolerable rates are shown by the 

dotted lines. 

5 Conclusions 

The review of non-linear kriging approaches revealed that conditional simulations 

with the trans-gaussian model are the method of choice to map the non-stationary 

distribution of pollutants around point sources. Although used in the past for the 

same purpose, simple indicator kriging with varying local means has no sound 

scientific basis and its use should be discouraged. With the trans-gaussian model, 

we can use the well established tools of linear regression analysis to model both 

non-stationary mean functions and heteroscedastic patterns of variation. Further-

more, change of support is straightforward with this approach.  

The results of the validation demonstrate that conditional simulations with the 

lognormal model were quite successful to adequately describe the uncertainty of 

the predictions which involved change of support. At some sites, the prediction er-

rors were very large. We suspect that undocumented removal and displacement of 

contaminated soil are the cause, and we think that this is a major obstacle when we 

try to precisely map the distribution of soil pollutants in settled areas.  
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1 Introduction 

Sampling is a crucial issue in many studies related to potentially contaminated 

sites. At the beginning of the study, the first sampling phase aims at assessing the 

presence/absence of a contamination. Once a contamination has been identified, 

the volume Vrem of soil to remediate has to be quantified as accurately as possible. 

To achieve this task, new sampling phases may be necessary. They should be op-

timized in order to minimize the uncertainty on the estimation and on the position 

of Vrem.

As objective function, existing methods may consider the minimization of the 

kriging variance (see, e.g., Van Groeningen et al. 1999). This function is inade-

quate in our context since our aim is not to reduce the uncertainty on the estimate 

of some random variable Z (the contaminant), but rather to minimize the uncer-

tainty of some classification of Z at location ix .

In the literature, several methods are proposed. They can be classified as one-

phase, two-phase or multi-phase. Most of them consider the optimization is made 

at the beginning of the study or after a first sampling phase. Anyway, they are not 

interactive since Vrem can only be computed once all the data collected during the 

various sampling phases are available. 

In 1994, Englund and Heravi proposed an interactive multi-phase strategy. 

They compared it to a one- and a two-phase strategy using total remediation costs 

as criterion. In their conclusions, they recommend the use of the two-phase strat-

egy even if the multi-phase results in lower costs. They conclude that the cost re-

duction obtained when using the multi-phase strategy is not sufficient to balance 

the logistical costs, which are not taken into account in their study. 

In the last years, several techniques were developed to identify and characterize 

contaminations on site and nearly in real-time. Among many other possible tech-

niques, let us mention: (i) Photo Ionization Detector (PID) or Flame Ionization 

Detector (FID) for volatile organic compounds, (ii) colorimetric reactive kit or La-

ser Induced Fluorescence (LIF) for BTEX, PAH and PCB, and (iii) Field Portable 

X-Ray Fluorescence for mineral components (e.g., lead, copper or cadmium). 
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With fast on-site measurement devices now readily available, it becomes possi-

ble to develop real-time on-site multi-phase sampling strategies. In such strategies, 

the most recently collected samples are immediately incorporated to the data set. 

The estimate of Vrem is then updated and the next sampling phase optimized. 

In this paper, we first present the specific context in which we place this study. 

We then expose in detail the multi-phase sampling strategy. After that, we apply it 

to a simulated case study. Finally, we discuss its efficiency in relation with the 

choice of some parameters such as the number of samples to be collected in a 

same phase or the relative variance of the samples. 

2 Context 

Let us consider a contaminated site. A first sampling phase has been conducted, 

yielding a given number of accurate measurements about the target contaminant 

(e.g., from laboratory analyses). The analysis of this first data set has established 

the presence of a contamination and an investigation study has to be carried out in 

order to position and quantify the volume Vrem of soil to remediate.  The available 

data are then used to classify the soil into one of the three following classes: safe, 

contaminated or uncertain. 

A possible way for obtaining this classification consists in implementing a con-

ditional sequential Gaussian simulation (SGS) procedure following the methodol-

ogy described by Demougeot-Renard et al. (2004). A large number of realizations 

are produced conditionally to the data, allowing us to estimate at each location xi

the probability for the contaminant Z to exceed the critical threshold zc by comput-

ing the proportion of realizations for which Z(xi) zc. Locations where this prob-

ability is higher than a given Max threshold (say, 80%) are classified as contami-

nated. Those with a probability to exceed zc smaller than a given Min threshold 

(say, 20%) are considered as safe, and the remaining ones (with a probability be-

tween Min and Max) are classified as uncertain. 

The choice of the Min and Max thresholds is a matter of economical efficiency 

and risk management. Indeed, with a Max threshold at 80%, there is potentially 

20% chance of classifying safe soil as contaminated. Taking thresholds closer to 

the 0 and 1 probability bounds will reduce the error risk. But it is done at the cost 

of an enlargement of the uncertainty area where additional sampling should be 

conducted and it thus results in higher sampling costs. A detailed discussion of 

this issue may be found in Demougeot-Renard (2002). 

This first simulation stage produces a soil classification map that will further be 

denoted as the first intervention map (Fig. 1c). 

In order to delineate with the highest accuracy the soil volume to remediate, 

additional sampling has to be carried out. The objective of this sampling is to re-

duce the volume of the uncertain zone. 
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3 Methods 

The development of every sampling strategy begins by defining or choosing: (i) a 

selection criterion for the sample locations, (ii) a method for updating the classifi-

cation following the incorporation of new data, and (iii) an objective function. In 

this section, we review these points and justify our choices. 

3.1 Selection of the next locations to sample 

As we are interested in minimizing the uncertainty on the soil classification into 

safe/contaminated, we choose to select preferentially those locations where the 

uncertainty about soil classification remains the highest. 

In order to quantify this uncertainty, several criteria may be considered. Con-

sidering that the binary classification into safe or contaminated corresponds to a 

Binomial situation at each location xi, uncertainty can be measured using the vari-

ance of a Binomial random variable: 

iii pp 1.2
x  (1) 

Where pi =P(Z(xi) zc), i.e. the probability for the soil at location xi to be safe. 

This criterion is appropriate since (i) it reaches its maximum ( ²(xi) = 0.25) 

when pi is equal to 1- pi (error risk equal to pi and thus maximum uncertainty) and 

(ii) ²(xi) = 0 when either pi or 1- pi is equal to 1 (soil is then classified as safe or 

contaminated, respectively, with a probability of 1 and there is thus no uncer-

tainty).  

Practically, from the simulations described above, the probability for the soil to 

be safe has been inferred at each location by computing P(Z(xi) zc). Using Eq. 

(1), it is straightforward to obtain a map of the variance, i.e. of the uncertainty on 

the soil classification (Fig. 1d). 

The candidate locations for further sampling are selected within the set of local 

maxima on this map. Indeed, it is expected that the reduction in uncertainty will be 

the largest when sampling at these locations. At each phase of the sampling proce-

dure n local maxima are sampled together. The classification is then updated in the 

neighborhood of these locations 

The choice of the number n of locations to be sampled together may have an in-

fluence on the optimization. Its effect is analyzed and discussed further.  

3.2 Update of the intervention map

At the n locations selected using the method exposed here above, measurements of 

the contaminant concentration are made using a fast on-site measurement tech-

nique. 
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However, most of this type of techniques, while being fast, are less accurate 

than laboratory analyses. They often yield semi-quantitative or qualitative infor-

mation. That rather imprecise information will further be denoted as "soft" data. In 

the semi-quantitative case, a measurement error has to be accounted for: the true 

value may belong to a given interval of values (interval-type soft data), or a prob-

ability density function (pdf) for the true value may be inferred (probabilistic-type 

soft data). In the qualitative case, a distribution of the continuous variable may be 

estimated conditionally to the qualitative value using those locations where both 

types of variables have been observed. Again, this yields probabilistic-type soft 

data. In both cases, we have to deal with imprecise information and the estima-

tion/simulation method that is implemented must be able to take that information 

into account without loss. 

To achieve this task, we propose to use the Bayesian Maximum Entropy (BME) 

approach (Christakos 2000). Using this approach, the imprecise information deliv-

ered by the sampling device is incorporated as soft data and used to update the ini-

tial pdf’s in the neighborhood.  

By lack of place, we refer to Christakos (2000), Christakos et al. (2002), D'Or 

(2003) and to the abundant literature on the subject for a detailed explanation of 

the BME approach. We here only present the main steps of a BME study. 

Consider the vector of random variables Zmap = (Zhard, Zsoft, Z0) and let zhard, zsoft

and z0 respectively denote the values at hard, soft and prediction locations. Let 

also fG(zmap) be the multivariate pdf accounting for the general knowledge KG, be-

fore any specific knowledge KS has been considered. 

The prior step aims at finding the most general joint pdf fG(zmap) while ensur-

ing that all the available information is taken into account. This step is achieved 

using a maximum entropy procedure where the entropy is computed as: 

ZD
mapmapGmapGmapG dfffH zzzZ log  (3) 

The entropy is maximized under the constraint of respecting the prior available 

information KG, generally expressed as the global mean and a covariance function. 

At the posterior step, we seek the posterior pdf for the random variable Z at 

prediction location x0, given the hard and soft data at hand: 

softhardGK zfzf zz ,00  (4) 

When the soft data are of probabilistic type fS(zsoft) , the soft pdf, or equivalently 

FS(zsoft), the soft cumulated density function, the BME solution is given by (Chris-

takos 2000): 
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Eq. (4) yields at each location an entire (non-discretized) posterior pdf from 

which various statistics can be computed, like the mean, the variance, confidence 

intervals or the probability to exceed some given threshold. In our situation, we 

are precisely interested in this last result. 
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In case of probabilistic-type soft data, the shape of the soft pdf may be of any 

type. There is no specific requirement about the shape of the soft pdf in the BME 

framework, except that it has to be a valid pdf. 

The BME framework is thus used to update the soil classification and redraw 

the intervention map. Re-estimating the contaminant concentration at every grid 

node at each phase may be time consuming and partially useless as the pdf’s of 

grid nodes located far from the samples will probably not be modified by those 

latter. In order to reduce the computation time without loss of efficiency, only the 

grid nodes located at a distance less than a given threshold distance are updated. 

The threshold distance may be chosen in accordance with the range of the 

variogram or after empirical assessment of the pdf changes as a function of the 

distance from the new soft datum.  

3.3 Objective function 

The last step in defining a sampling strategy consists in choosing an objective 

function. The optimal sampling design is attained when this function reaches its 

minimum. 

As the goal of this multi-phase sampling is to reduce the uncertainty on the soil 

classification, the objective function has to be chosen in accordance. Conse-

quently, we choose to minimize the integral of the variance surface. This integral 

is approximated by: 
n

i

iI

1

2
x (6) 

The multi-phase sampling process is stopped when the last value of I is not at 

least 1% smaller than at least one of the three previous values. In other words, if 

four consecutive values of I are almost equal, the process is stopped. 

4 A simulated case study 

Working on a simulated case study offers some convenient features: (i) there is no 

limitation in the number of candidate locations for additional sampling. It is only a 

matter of grid resolution, (ii) the "reality" is known exhaustively and can be used 

to compute error statistics, and (iii) the variogram model is known and there is 

thus no interference between variogram inference techniques and the results of the 

sampling strategy optimization. 

4.1 Data generation and production of the first intervention map  

A random variable Z is simulated at the nodes of a 50 by 50 nodes grid using a 

Cholesky decomposition method. The internodes distance is set to unity. The spa-
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tial structure is characterized by an exponential variogram model with unit sill and 

a range equal to 30. 

Assuming we have no suspicion about the location of the contaminated area(s), 

we select a subset grid of 49 nodes out of the 2500 and further considered them as 

the initial data set (Fig. 1b). The entire grid is further considered as our “reality” 

or reference (Fig. 1a). On this map, the contaminated area is characterized by Z
values greater than a threshold zc =1.0425. 

Using this data set, SGS is implemented to generate 1000 realizations. At each 

node, the proportion of realizations for which Z(xi) zc is computed. The nodes 

where this proportion is higher than 80% are classified as contaminated, those 

where the proportions is found lower than 20% are classified as safe, and the re-

maining ones are considered to belong to the uncertain zone. The mapping of this 

classification gives us our first intervention map (Fig. 1c). 

To generate soft data as they are collected during the multi-phase sampling 

strategy, we use the reference realization. Using the “actual” value at the new 

sample location as mean value, we generate a Gaussian pdf with known standard 

deviation . Then we randomly draw a value zi from this pdf and use it along with 

the standard deviation  to build a new Gaussian pdf that is considered as our 

probabilistic type soft datum. This procedure guarantees the “actual” value is a 

member of this soft pdf without knowing this value. Please note that the Gaussian 

shape of the soft pdf is absolutely not a requirement of the BME approach. The 

Gaussian shape was chosen here for its easiness of construction as it depends only 

on two parameters. 

Beside the first intervention map, a map of the uncertainty (variance) is also 

drawn (Fig. 1d). As expected, the area with the largest uncertainty corresponds to 

the area classified as uncertain in Fig. 1c. Additional samples will be collected in 

this zone using the local maximum selection procedure described above. 

4.2 Influence of the standard deviation of the new samples and of the 

number of samples per phase 

Two main parameters may have an influence on the performance of the multi-

phase sampling strategy. The first one is the relative imprecision of the new sam-

ples. We are interested here in assessing the relation between the performance of 

the sampling strategy and the accuracy of the samples. The second parameter is 

the number n of samples collected at each phase. This number may have an influ-

ence on the convergence of the process since simultaneously collected samples 

may interact for reducing the uncertainty at some locations. It is worth mentioning 

here that while the latter is subject to a choice of the operator, the former is an in-

trinsic characteristic of the measurement device. 

Practically, we consider a suite of cases by letting vary ssoft, the standard devia-

tion of the soft pdf. Let us denote by shard the standard deviation of the 49 hard 

data values. In Table 1 are listed the studied values of ssoft, expressed as a propor-

tion of shard. In case n°1, ssoft = 0, i.e. no measurement error is considered and ob-

served values are considered as accurate or hard. In this situation, using BME,  
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Fig. 1. a) Actual extension of the contamination (black area); b) location of the 49 hard 

data; c) First intervention map produced by SGS. The map is subdivided in a safe (white), a 

contaminated (black) and an uncertain (grey) area; d) Variance (uncertainty) map. Dark ar-

eas correspond to maximum uncertainty. 

Table 1. Values considered for the standard deviation of the soft pdf’s. shard denotes the 

standard deviation estimated from the 49 hard data values. 

Case n° 
softs

1 0 

2 30hards

3 20hards

4 10hards

5 5hards

6 3hards

7
hards
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kriging or SGS yield the same results as (i) kriging is only a particular case of 

BME when only hard data are available and all the distributions are Gaussian, and 

(ii) kriging and SGS theoretically yield equal results for the computation of the 

probability to exceed a threshold when the distributions are Gaussian. Then, from 

case n°2 to 7, ssoft increases from shard/30 to shard. In this last case, the standard de-

viation of the soft pdf’s is thus equal to that of the hard data. We thus may suppose 

the soft data are very uninformative.  

To assess the influence of the number n of new samples collected at each phase, 

we choose for n the values 1, 5 and 30. We so will run the multi-phase sampling 

strategy for 21 cases, i.e. 7 values for ssoft times 3 values for n.

In order to compare the different cases, we use two criteria. Firstly, we plot the 

relation between the number of samples collected and the safe, contaminated and 

uncertain volumes. Secondly, we compute the classification errors. Two types of 

errors may occur:  when a node is classified as contaminated when it is actually 

safe (further referred as Type I error), and the reverse situation (further denoted as 

Type II error). 

5 Results and discussion 

In this section, we first analyze the influence of the standard deviation of the new 

samples and of the number of samples per phase. Then we discuss the classifica-

tion errors, and finally, we address the question of the financial resources. 

5.1 Influence of the standard deviation of the new samples and of the 

number of samples per phase 

The relations between the total number of samples and the safe, contaminated and 

uncertain volumes are represented in Fig. 2 for n equal to 5 and 30 for the first and 

second row, respectively. Results for n=1 are very similar to those of n=5 and are 

thus not shown.  

The comparison of the rows in Fig. 2 calls for four comments about the choice 

of n and the influence of the samples uncertainty. 

First, we may think intuitively that collecting one sample at each phase is the 

most efficient situation because it allows a direct optimization of the positioning 

of the next sample. The analysis of Fig. 2 shows us the opposite: collecting more 

samples at each phase allows reaching the minimum of the objective function with 

a higher total number of samples. The total recovered contaminated volume and 

the total identified safe volume are also closer to 100%. Note, however, that this 

remark is valid only if the budget limits are not reached. 
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Fig. 2. Evolution of the uncertain (first column), contaminated (second column) and safe 

(third column) volumes as a function of the number of samples collected. The number n of 

samples is equal to 5 and 30 for the first and second row, respectively. Each curve corre-

sponds to a given value for ssoft. Please note the difference in X scale between rows 1 and 2. 

Second, if all graphs are set to the same X scale (Fig. 3a), the curves are almost 

superposed within each soil class (uncertain, safe or contaminated). This means 

that the number n of samples collected at each phase has few impact on the evolu-

tion of the volumes as a function of n. Consequently, collecting 90 samples with 

n=1 or with n=30 will approximately give the same results. Again, cost linked to 

these different strategies may not be equal. Collecting 30 samples at each phase is 

probably more efficient financially. 

Third, the dispersion along the Y axis of the curves seems to increase with the 

total number of samples. This is particularly clear on the second row graphs of 

Fig. 2. Beyond 200 samples, using less accurate samples results in significant loss 

of performance in terms of safe/contaminated volume identification. 



364      D. D’Or 

Fourth, when ssoft = shard, the optimization systematically ends up after only a 

few phases because the objective function is not decreasing. Using data with such 

a large standard deviation can be thus considered as of little interest since they are 

not able to decrease significantly the uncertainty in their neighborhood. 

5.2 Analysis of the classification errors 

Fig. 3b and 3c represent the classification errors at the end of the sampling process 
for n equal to 5 and 30, respectively, and for ssoft =0 (Graph for n=1 not shown as 
it is very similar to n=5). From these plots, it appears that the Type II error seems 
to be very constant whatever the values of n and ssoft. This can be explained by the 
fact that no additional samples are collected in the area classified as safe after the 
simulations. Uncertainty in this area is small and locations belonging to it are not 
candidate for the local maximum selection criterion. The zones were Type II clas-
sification errors are met, are essentially the small contaminated spots at the south-
ern limit and in the left lower corner of the site. 

The Type I error, at the opposite, is considerably reduced in comparison with 

the first intervention map. However, the decrease is less important as the samples 

become less accurate. This relation appears to have a steeper slope when n is lar-

ger. 

Collecting samples with n=30 and ssoft =0, ssoft = shard /30 or ssoft = shard /20 yields 

the same performance in matter of classification errors. 

Fig. 3. a) Comparison of the contaminated volumes recovered with n=1 (plain line), 5 

(dash-dotted line) and 30 (dashed line) and with ssoft = 0. b) and c) Classification errors for 

n=5 and 30, respectively. The horizontal lines figure out the errors computed from the first 

investigation map with type I error (dashed line), type II error (plain line) and sum of the 

errors (dash-dotted line). 
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5.3 Financial considerations 

Financial aspects should also be taken into account. On-site measurement devices 

are often much cheaper than laboratory analysis. Let us consider a cost ratio of 

1/3. This means that 300 samples collected with an on-site measurement technique 

costs as much as 100 laboratory analyses (Fig. 4). Consider two situations with 

ssoft=shard /30 and ssoft=shard /3, respectively. Using these soft samples allows recov-

ering 60% (resp. 71%) of the total contaminated volume instead of 53% with labo-

ratory measurements (ssoft=0). 

Fig. 4. Comparison in financial terms of the recovered contaminated volumes with n=30 

and a cost ratio between hard and soft samples equal to 3. 

6 Conclusions 

In this paper, we present and illustrate a new multi-phase sampling strategy dedi-

cated to the real-time on-site investigation of contaminated areas. We show that 

the samples collected using on-site fast and cheap measurement devices can be 

fully valorized even if they are rather imprecise. In this line, the Bayesian Maxi-

mum Entropy approach offers a solution for taking such data into account without 

loss of information. 

Taking more samples at each phase allows recovering a larger contaminated 

soil volume, identifying a larger safe volume and reducing the uncertain volume to 

a small fraction of the total volume. 

Practical implementation of the multi-phase sampling strategy should be pre-

ceded by a thorough comparison of its efficiency with other (single phase) strate-

gies, in particular for the costs and the contaminated soil recovering performance. 

First results show that cheaper on-site measurement techniques may help recover a 

larger fraction of the contaminated soil volume at costs comparable to classic 

laboratory analyses. 
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Another point for further research concerns the updating of the variogram 

model using the new samples. The problem, at the moment, is to be able to esti-

mate a variogram from a mixture of hard and soft data. 

Finally, such a strategy should be extended to multivariate case and should take 

advantage of new algorithmic developments for optimizing of the positioning of 

the samples at each phase. 
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1 Introduction 

Sea floor sediment in the Dutch part of the North Sea is polluted by heavy metals 

and organic compounds. The origin of this pollution is found mainly in (past) in-

dustrial activity, as sediments are mainly contributed by the major rivers Rhine, 

Meuse and Schelde. The Dutch National Institute for Coastal and Marine Man-

agement (RIKZ) started monitoring heavy metals in sea floor sediment in 1981, 

and added various organic compounds in 1986. Previously, Laane et al. (1999) 

qualitatively described temporal trends in these data but they did not address spa-

tial variability in temporal trends in a quantitative way. This study attempts to 

quantify spatially distributed estimates of temporal trends (changes over time) in a 

sediment pollution variable, thereby assessing the errors in the trend estimates. 

2 Monitoring network data 

The sediment data set is collected by the RIKZ during a monitoring programme, 

aimed at describing spatial and temporal variability in sea floor sediment.  Sam-

ples were collected using box core samplers, and only the fraction smaller than 63 

m was analyzed for contaminants.  Fig. 1 shows the available observations for an 

organic compound, PCB138 (one particular polychlorinated biphenyl).  The moni-

toring frequency is 5 years, but for some reason at irregular intervals, additional 

measurements have been made, and the 2001 monitoring round has been done in 

2000. The four “main” monitoring years, 1986, 1991, 1996 and 2000 have 45, 42, 

49 and 31 measurements respectively. It can be seen that in the first year more 

emphasis was put to collect near-coast samples, and that in later years data were 

collected more in an off-coast directed transect. Table 1 gives distribution summa-

ries of the measurement years. These figures suggest a gradual decrease in 

PCB138 concentration over time. 
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Although we will try to use data for all years for identifying a model for spatial 

and temporal variability, for spatial predicting we will only focus on the four main 

monitoring years because we do not expect that years with very few measurements 

contribute much. 

Table 1. PCB138 ( g/kg dry matter) summary statistics; years marked with a * are the 

main monitoring years, other years result from additional sampling programs. 

Year 1986* 1987 1989 1991* 1993 1996* 2000* All 

Mean 7.29 8.39 4.08 3.70 1.03 1.58 1.27 4.20 

Median 6.90 7.50 2.65 3.05 0.775 1.40 0.90 2.85 

Max 21.1 19.7 12.3 13.1 2.70 4.90 3.30 21.1 

Min 1.60 2.10 1.00 0.70 0.25 0.20 0.20 0.20 

Nr. obs 45 29 14 42 6 49 31 216 

Fig. 1. Maps with PCB138 measurements (µg/kg dry matter) for each monitoring year. The 

unsampled white area in the south-east corner of the maps is the mainland of the Nether-

lands. In the area shown, the x -coordinate ranges from 464000 m. to 739000 m., the y -

coordinate ranges from 5696500 m. to 6131500 m., projection UTM31
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3 Exhaustive information 

The spatial pattern of PCB138 measurements (Fig. 1) shows a decreasing PCB138 

concentration with increasing distance from the coast. Although the summary sta-

tistics of Table 1 indicate that the PCB138 concentrations decrease over time, Fig. 

1 suggests that observations that are further off-shore have lower PCB138 concen-

trations, and that these off-shore observations form a larger part of the samples in 

later years.  Therefore, the temporal trend may be at least partially attributed to the 

increase of the fraction of offshore sampling points over time.  To further investi-

gate this, Fig. 2 shows how concentrations depend on water depth. Here, PCB138 

was graphed on a log-scale to linearize the relationship. The strong relation does 

not come as a surprise: most of the polluted sediment originates from the major 

rivers contributing sediment to the North sea, and the sediment is transported 

along-coast North-bound by governing sea flows. Sea depth is available as an ex-

haustive variable, and therefore may help predict PCB138 at unobserved locations.

Fig. 2. PCB levels (µg/kg dry matter) as a function of sea depth; fitted models (dashed 

lines) share a common slope 

Fig. 2 further supports the hypothesis that, despite the temporal variation in ob-

servation locations, PCB138 levels decrease over time. The overall change of 

log(PCB138) with water depth does not seem to change over time: under inde-

pendence assumptions the interaction of time and change in (log) PCB138 level 
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with water depth tests hardly significant, p=0.06, and under more realistic spatial 

dependence conditions any significance would vanish. As is evident from Fig. 2, 

the mean level (intercept) for the regression line does gradually decrease over 

time. 

Here, water depth is not the variable that causes PCB138 to have certain values; 

it rather hides a complex of transport processes with dynamic sources, convection 

and dispersion and complex water flow patterns.  In absence of knowledge of 

these processes, water depth serves as a simple proxy for much of this process, 

one that explains a fair proportion of the variability. Fig. 2 does not give evidence 

to remove outliers. 

4 A spatio-temporal model 

Fig. 2 suggests the model for the data: 

),()(),( tsesDmtsZ t  (1) 

with ),( tsZ  the log PCB138 at location s ,year t ; tm  the intercept for year t ,

which is the expected log-PCB138 concentration when )(sD , sea depth at location 

s , is zero, and ),( tse a residual. For ),( tse , we may assume spatial and temporal 

dependence, and given this dependence we will make predictions for ),( tsZ  or 

make inferences about its change over time.  

Spatial correlation of ),( tsZ is hard to infer for each year, as Table 1 tells that 

sample sizes are small. Fig. 2 however suggests that residual variability does not 

vary considerably over time. For that reason we assumed that residual spatial cor-

relation is constant over time and we calculated the variogram pooled over years 
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with 7,,1t corresponding to the available monitoring years (Table 1), and 

)(thN  the available number of point pairs with separation distance close to h
~

 for 

year t . This variogram only addresses point pairs taken in the same year. Fig. 3 

shows this variogram, along with the total number of point pairs used for each es-

timate, and a fitted exponential model  

))17247/exp(1(224.0))(1(08.0)( hhhm ,

 with 1)(h  if 0h  and 0)(h  if .0h

Fig. 4 shows for the four main monitoring years the direct and cross 

variograms. The noise on all variograms immediately confirms the trouble that 

one would face when modelling each of them individually, or to fit a full linear 

model of coregionalization (Goulard and Voltz 1992). The fitted models for all di-

rect variograms were set to the model fitted to the pooled variogram of Fig. 3. 



Spatio-temporal mapping of sea floor sediment pollution in the North Sea     371 

Cross variograms are scaled versions of this model, )(, hr mji , where jir ,  is the 

point-wise correlation between years i  and j . Given estimates for jir , this model 

is the simpler intrinsic correlation or proportional covariances model (Chilès and 

Delfiner 1999). 

Fig. 3. Pooled, within-year variogram for log(PCB) levels with fitted models (solid line) 

for all available years; numbers indicate the number of point pairs used 

We estimated R , the matrix with jir , entries, the following way. For each ob-

servation point in year i , the spatial nearest neighbour observation in year j  is 

obtained, and correlation is computed. This gave the following, asymmetric corre-

lation matrix estimates: R
~

:

 1986 1991 1996 2000 

1986 1.000 0.343 0.651 0.635 

1991 0.496 1.000 0.780 0.705 

1996 0.615 0.679 1.000 0.920 

2000 0.722 0.541 0.925 1.000 
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Because correlation matrices need to be symmetric, we symmetrized these simple 

estimates by simply averaging them )
~~

(5.0 RRR T where T denotes matrix 

transpose:

 1986 1991 1996 2000 

1986 1.000 0.420 0.633 0.678 

1991 0.420 1.000 0.730 0.623 

1996 0.633 0.730 1.000 0.923 

2000 0.678 0.623 0.923 1.000 

Fig. 4. Direct variograms (diagonal) and cross variograms (off-diagonal) for log(PCB) lev-

els with fitted intrinsic correlation models (solid line); see text for how correlations were 

estimated 

Clearly, Fig. 4 indicates that some cross correlations are not well represented by 

this model, but the overall agreement is not bad, given the amount of data avail-

able. The present approach will underestimate true temporal correlations, and the 

consequence of this will be discussed later. 
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5 Spatial prediction 

Cokriging predictions for the four main years under model (1), with cross 

variography shown in Fig. 4, are shown in Fig. 5. The cokriging is a four-variable 

universal cokriging with sea depth as predictor (or external drift) variable. Each 

variable has a unique constant (intercept), but the four variables share a common 

trend coefficient,  in Eq. 1. The sharing of a single coefficient across multiple 

variables extends the idea of collocated cokriging, by Wackernagel (1998) more 

precisely coined as collocated ordinary cokriging. Cokriging equations are, 

amongst others, found in Wackernagel (1998), Pebesma (2004) and Chilès and 

Delfiner (1999). 

Fig. 5. Cokriging predictions; estimates shown are obtained by taking the exponent of the 

cokriging prediction on the log-scale  
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Fig. 6. Cokriging prediction variances (diagonal) and covariances (off-diagonal) for log-

PCB138

6 Temporal Change 

Cokriging, as formulated e.g. by Ver Hoef and Cressie (1993) or Pebesma 

(2004) yields not only predictions and prediction errors for each of the four vari-

ables, but also prediction error covariances for all pairs of years. Cokriging predic-

tion error variances and covariances are shown in Fig. 6. 

Let the prediction vector be TtsZtsZsZ )),(ˆ,),,(ˆ()(ˆ
41 and let )(s  be the 

4x4  prediction error covariance matrix for )(ˆ sZ , which has prediction error 

variances on the diagonal and prediction error covariances on the off-diagonal 

elements. We can now define contrasts as 
4

1
),(ˆ)(ˆ)(

i ii tsZsZsC , and 
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each contrast has prediction error Ts)( . Simple examples of useful contrasts 

are e.g. 

a single year, for 2t  we take )0,0,1,0(

a difference, for the difference between year 2 and year 4 we take 

)1,0,1,0(

a mean value, e.g. for the four-year unweighted mean we can take 
)25.0,25.0,25.0,25.0(

A simple approach for estimating the gradual change over time is to calculate 

the contrast that would estimate the regression slope from four years by ordinary 

least squares. Consider the following regression model: 

),()()(),(ˆ
10 tsetsstsZ

with }2000,1996,1991,1986{t . The ordinary least squares estimate of )(1 s  is 

a contrast in ),(ˆ tsZ , with coefficients  

1986 1991 1996 2000 

-0.0655 -0.0203 0.0248 0.0609 

These coefficients are obtained by the usual ordinary least squares equations: if we 

write the regression model eXy , with y  the response vector and X  the de-

sign matrix with the predictor variables in its columns, then the coefficient vector 

is estimated by yXXX TT 1)( , and the second row of TT XXX 1)(  contains the 

contrast coefficients given here. 

In Fig. 7 we show the trend estimates, and the trend estimates divided by their 

standard error Ts)( .
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Fig. 7. Left: trend estimates, as yearly change in log-PCB138; right: trend estimates di-

vided by their standard errors.  The change estimate is for the period 1986-2000 

7 Discussion and conclusions 

The question posed at the start of this research, “can we estimate spatial time 

trends from North Sea sediment pollution data”, seemed, given the constraints of 

having less than 170 measurements distributed over the four “main” monitoring 

years and a strong variation in monitoring design over time, at least to the authors 

rather unlikely to be positively answered. It turned out however, that very distinct 

trends could be distinguished (Fig. 7). The main reasons for this must be sought in 

the data: the temporal change in sediment concentration seems evident (Table 1, 

Fig. 2) and the spatial variability is largely explained by a strong, temporally per-

sistent linear relation with the proxy variable sea depth, which is exhaustively 

available (Fig. 2). 

The constraint of having less than 50 measurements for each of the “main” 

monitoring years led to the following constraints: 

the spatial trend (change of log-PCB138 with increasing sea depth) was kept 

constant over time (see Eq. 1), Fig. 2 

temporal change in the trend was adapted by making the intercept of the trend 

line time-dependent (see Eq. 1) 

a single, pooled residual variogram (see Eq. 2) was fit to residuals for all years, 

only addressing residual pairs from identical years 

the intrinsic correlation model was used for cross correlation, leaving only a 

year-year correlation coefficient to be estimated for each cross correlation 

spatial nearest neighbours were sought to approximate spatial matching obser-

vations needed to estimate year-year cross correlations. 
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The analysis presented here has a number of shortcomings: 

true year-year cross correlations are underestimated by using spatial neighbours 

instead of spatially matching observations; our approach to approximate these 

cross correlations does not guarantee positive definite correlation matrices (al-

though we could easily modify the procedure to accomplish this) 

ordinary least squares was used to estimate spatial time trends from correlated 

predictions, whereas weighted or generalized least squares may have been more 

appropriate

uncertainties in variogram coefficients (Diggle et al. 1998) were not considered 

cokriging predictions of Fig. 5, estimated on the log-scale, were simply back-

tranformed by taking exponents; this only yields median-type estimates, and a 

more elaborate approach (e.g. Diggle et al. 1998) could be used to obtain ex-

pected values and predicting intervals on the observation scale. 

Other approaches to this same data set could possibly address the relation be-

tween water depth and sediment pollution in a correlation context, instead of in a 

regression context. Rivoirard (2002) showed that this leads potentially to a wider 

class of predictors. 

Data, software and acknowledgments 

The sea floor sediment data used in this chapter are available from the author's 

web site. The software used throughout this paper is the R system (Ihaka and Gen-

tleman 1996), an open source implementation of the S language (Becker et al.
1988). Within R, we used the gstat package (Pebesma 2004). This package ex-

tends the formula/models interface (Chambers and Hastie 1992) of S to multivari-

able geostatistical models. The models interface takes care of automatic transla-

tion of categorical variables into the necessary dummy variables, and allows a 

simple definition of e.g. interactions or nested effects; in addition gstat provides 

support for shared (common) trend coefficients across different variables. 

The sea floor surface sediment data set and financial support for the develop-

ment of the gstat S package were gratefully obtained from the Dutch National In-

stitute for Coastal and Marine Management (RIKZ). 
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1 Introduction 

In remote sensing, sensor pixels are observed in different portions of the electro-

magnetic spectrum. They also vary in spatial resolution. Because many bands im-

ply a large volume of data storage, the multispectral sensor does, usually, have a 

lower-spatial resolution in order to keep an adequate image size. Currently there 

are many environmental applications (for example, classification, image interpre-

tation, etc.) that require good spectral information (in order to obtain terrain in-

formation) with an adequate spatial information (in order to work with medium or 

large scales). Using appropriate algorithms it is possible to combine these data and 

produce synthetic imagery with the best characteristics of both – high-spatial and 

high-spectral resolution. This procedure is a kind of multisensor data merging.  

The objective of multi-resolution image merging is to generate synthetic high-

spatial resolution multispectral images that attempt to preserve the radiometric 

characteristics of the original low-spatial resolution multispectral data. Not distort-

ing the radiometric characteristics is important for calibrating purposes and to en-

sure that targets that are spectrally separable in the original data are still separable 

in the merged data (Chavez et al. 1991). For example, the combination of SPOT 

panchromatic (SPOT-P) image data, having a spatial resolution of 10m, with 

Landsat Thematic Mapper (Landsat TM) images, having six spectral bands at 30m 

resolution, can provide a synthetic image with a good spatial detail, and useful 

spectral information for identification of small stands of species, which is not pos-

sible from either the Landsat or the SPOT images alone.  

These merged images have important environmental applications such as in the 

identification of land cover (global monitoring studies, resource management and 

planning), in agriculture (health of the crop, extent of infestation or stress damage, 

or potential yield and soil conditions), forestry (sustainable development, biodi-

versity, deforestation and reforestation monitoring and managing, biophysical 

monitoring), cadastre and geology (environmental geology, lithological and struc-

tural mapping); applications that need to combine multispectral information with a 

good spatial resolution that allows one to make maps at adequate scales.  



380     J. Carvalho, J. Delgado-García and H. Caetano 

Several methods for spatial enhancement of low-resolution imagery combining 

high and low-resolution data have been proposed. Some widely used ones are: In-

tensity-Hue-Saturation (IHS) (Chavez et al. 1991), Colour Normalized (CN) (Vra-

bel 1996), Principal Components Analysis (PCA) (Pohl 1998, Chavez et al. 1991) 

and Brovery transform (Marr 1982). We present a new multisensor image merging 

technique; to merge low-resolution multispectral images with high-resolution pan-

chromatic images, and to compare the results with classical merging methods. The 

merging procedures are introduced in section 2. In section 3, an example using the 

proposed method is presented, and the quality of the images merged with the clas-

sical and geostatistical procedures is compared in section 4. The results are dis-

cussed in section 5. 

2 Merging Procedures 

2.1 Classical Merging Procedures 

To compare results, two commonly used non-geostatistical image merging proce-

dures were applied, as follows: 

2.1.1 IHS Transform 

The IHS transform is one of the most common methods of merging images. It 

consists of two basic steps. In the first step, red, green and blue colour values for 

three selected TM multispectral bands are converted to hue, saturation and inten-

sity colour components. The intensity component is equivalent to brightness, hue 

is equivalent to the dominant wavelength of colour, and saturation is colour purity 

defined as percent whiteness. Mathematical functions are used to convert RGB 

values to IHS values. The higher-spatial resolution image is constantly stretched in 

order to adjust the mean and variance to unit intensity. The second step is the sub-

stitution of the stretched panchromatic image for the intensity component of IHS 

and retransformation to RGB.  

2.1.2 Colour Normalized  

The colour normalized method uses a mathematical combination of the colour im-

age and high-resolution data to merge the higher-spatial and higher-spectral reso-

lution images. Each band in the higher-spectral image is multiplied by a ratio of 

the higher-resolution data divided by the sum of the colour bands. The function 

automatically resamples the three-colour bands to the high-resolution pixel size by 

nearest neighbour, bilinear, or cubic convolution. The output RGB images will 

have the pixel size of the input high-resolution data. 
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2.2 Geostatistical Merging Procedure 

The objective of the procedure we propose is to create a synthetic image of each 

Landsat band by a stochastic simulation that integrates the spatial structure present 

in the high-resolution SPOT-P image and preserves the spectral characteristics of 

the low-resolution Landsat channel, so that a downscaling of the simulated image 

produces the original Landsat band. 

Geostatistical simulation, in particular, Direct Sequential Cosimulation (Soares 

2001), allows us to obtain simulated values of the 10m Landsat image derived 

from the original 30m Landsat values and the existing correlation between the 

Landsat and SPOT-P images. It generates several realizations of the original val-

ues with a specific pixel size, preserving the basic statistical characteristic of the 

original images and using information derived from the high-resolution image ac-

cording to the level of correlation. 

Let us consider TMi(x0) as the digital value of the original 30mx30m Landsat 

TM image for the band i at the location x0, PAN(x1) the value of the original 

10mx10m SPOT-P image at the location x1 and TMs
i (x1) the simulated value of 

Landsat TM image for the band i at the 10mx10m grid  (SPOT-P grid) at the posi-

tion x1  (Fig. 1). 

Fig. 1.  Landsat and SPOT schematic spatial resolution 

With the proposed algorithm the simulated TMs
i (x1) image must have the spa-

tial pattern of SPOT-P image, the histogram of band i of TM but with a variance 

corrected for the 10mx10m grid and the same local mean of band i of TM; i.e., the 

mean of 9 pixels TMs
i (x1) must be equal to the correspondent value TMi(x0).

In short the simulated TMs
i(x1) must satisfy the following: 

1. For any digital number (DN): prob{TMi´(x)<DN}= prob{TMs
i(x)<DN}; where 

TMi´(x) is the corrected TM variable for the variance of a 10mx10m grid; 

2. γPAN(h)=γTM
s
i (h), where γPAN(h) and γTM

s
i(h) are the variograms of the original 

SPOT-P and simulated Landsat TM merged image, respectively; 

3. Conditioning of the simulated images to the local means of original TM: the 

mean of the simulated pixels grouped according to the 3x3 pixels scheme must 

be equal to the 30m Landsat original image values: 
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The idea of the proposed algorithm is to use the CoDSS – direct sequential co-

simulation – to generate TMs
i(x) in a 10m grid using SPOT-P(x) as secondary in-

formation. The histogram of band i of TM corrected for the variance of 10x10m 

grid is used for the simulation procedure. 

The spatial correlation between primary and secondary variables, Landsat and 

SPOT-P images (after upscaling to the 30mx30m grid), cannot be considered ho-

mogeneous and representative of the entire image. Hence a local model of co-

regionalization is applied using the Markov-type approximation (Pereira et al.

2000).  This means that local correlation coefficients between the two images are 

calculated (inside local windows), and adopted as the co-regionalization model of 

the two variables in the cosimulation procedure. 

 The cosimulation assures the previous conditions 1 and 2, i.e. the corrected his-

togram of TM and the variogram. But it does not assure condition 3, i.e. the local 

means of original TM. 

To meet condition 3, the proposed merging method is iterative, and can be sum-

marized in the following steps: 

1. Generation of high number of images by the direct sequential cosimulation, 

with Landsat TM as primary information, the high-resolution image (SPOT-P 

image) as secondary information and the map of local correlation coefficients 

between Landsat TM and SPOT-P (calculated for local windows, with dimen-

sions dependent on the variogram range); 

2. Averaging the simulated images, in cells of 30mx30m (equivalent to 3x3 pix-

els). For each 30mx30m cell, the mean of the simulated values is compared 

with the real TM value (condition 3, see Eq. 1); 

 Among the several different simulated images, the cell is selected that meets 

Eq. 1 and, simultaneously, presents the maximum local correlation with the 

SPOT image, at each location x0, calculated in the 3x3 pixels window; 

3. Rebuild a new secondary image replacing the original SPOT cells by the se-

lected ones – that meet local TM means and have highest correlation with 

original SPOT values.  High local correlation coefficients are assumed for the 

replaced cells, in order to ”freeze” them in the following simulation steps. Re-

turn to step i until all cells meet the local means condition. 

Shortcut: if local correlation coefficients between TM and upscaled merged image 

are sufficiently high, the simulated images are similar to each other. Hence, after 

step ii, the secondary image practically meets all three above conditions. 

The methodology is applied to all the Landsat multispectral bands, except for 

the TM6, which covers the thermal infrared region of the spectrum. 

3 Experimental results 

To show the capabilities of the proposed method, the merging procedures pre-

sented in section 2 were applied to a test area. The selected area covers a 

2400mx2400m area in the Jaén province (South of Spain), with several kinds of 

land use (urban, olive trees, riverside vegetation, roads, etc). 
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Fig. 2. Geographical localization of the test area 

The data set used for this application comprises a portion of the following im-

ages:

1. Landsat TM images. Scene: 20034/95. Date: 08/26/1995. Image size: 80x80 

pixels. GSD=30m (TM6 band has not been considered); 

2. SPOT-P image. Scene: 35-274/O-P. Date: 06/01/1995. Image size: 240x240 

pixels. GSD=10m. 

Both images were obtained on similar dates to ensure the merging process qual-

ity.

When simulating the Landsat image at a 10mx10m spatial resolution, we treat 

the Landsat data as the primary variable and the SPOT-P data as the secondary 

variable. With the CoDSS algorithm the simulated image is conditioned to repro-

duce the histogram of the Landsat image (corrected for the variance) and the 

variogram of SPOT, which means that we will obtain an image that has the spec-

tral characteristics of the Landsat and the spatial distribution of the panchromatic 

SPOT.

The basic statistics of the different images are presented in Table 1.  

Table 1. Basic statistics 

Image Mean Variance Std. Dev. Median Min. Max. 

TM1 99.10 224.68 15.00 97 66 166 

TM2 51.65 103.33 10.17 50 26 97 

TM3 67.37 214.87 14.66 66 28 131 

TM4 74.99 206.18 14.37 74 34 133 

TM5 123.56 762.55 27.62 122 45 226 

TM7 66.67 281.00 16.77 66 22 139 

PAN 140.58 662.78 25.74 137 63 254 

The SPOT-P image is considered resampled to 30m pixel size 
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For all the Landsat bands and the SPOT image the variograms are omnidirec-

tional, and we have fitted to the sample values exponential models. The sills meet 

the sample variances. The range of the variograms for the Landsat bands is 480m 

for TM1 and TM4, 420m for TM2, 450m for TM3, and 660m for TM5 and TM7, 

for the panchromatic SPOT image the variogram presents a range of 330m. The 

semivariograms and the histograms of the panchromatic SPOT image and, as an 

example, the Landsat TM4 are shown in Fig. 3. 

     

Fig. 3. Semivariograms and histograms of A) SPOT-P and B) Landsat TM4 

The information derived from the secondary data, i.e. the high-resolution im-

age, is reflected in the final simulated image according to the correlation between 

primary and secondary images. In terms of global correlation coefficients, the cor-

relation between the Landsat TM visible and SPOT panchromatic bands is high 

(0.83), but this value decreases considerably (to about 0.72) for the Landsat infra-

red bands (see Table 2). This difference between correlation coefficients of a pan-

chromatic image and the visible and non-visible channels of multispectral imagery 

is always verified. 

Table 2. Correlation matrix 

 TM1 TM2 TM3 TM4 TM5 TM7 PAN 

TM1 1.00 0.96 0.90 0.84 0.85 0.81     0.83 

TM2  1.00 0.97 0.90 0.88 0.87 0.83 

TM3   1.00 0.91 0.89 0.90 0.82 

TM4    1.00 0.88 0.85 0.74 

TM5     1.00 0.97 0.72 

TM7      1.00 0.70 

PAN       1.00 

The SPOT-P image is considered resampled to 30m pixel size 

A B
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Local correlations were computed to account for local differences in Landsat-

SPOT data correlation (Fig. 4). To compute the local correlations, a window size 

of 150mx150m, which is half of the variogram range, was considered the most 

appropriate. Local correlations range from 0 to 0.981, 0.988, 0.985, 0.954, 0.976 

and 0.973 for Landsat TM1, TM2, TM3, TM4, TM5 and TM7, respectively.  

Fig. 4. Local correlation coefficients truncated at 0 between SPOT-P and Landsat TM4 in a 

150mx150m radius 

Ten thousand simulations were computed for each iteration, until the hybrid 

Landsat 10mx10m image was complete. The final simulated image was checked 

for a correct visual appearance.  

Inherent to the procedure, the merged images respect the value of the low-

resolution data at their locations when they are subjected to a 30mx30m up scal-

ing. The final simulation reproduces the histogram of the Landsat band and the 

variogram of the SPOT-P (Fig. 5). 

Fig. 5. Variogram and histogram of the TM4 simulated in a 10mx10m grid 

4 Comparison between geostatistical method and 

classical approaches

To demonstrate the potential of the proposed methodology and compare differ-

ences, some Landsat bands and the results of the application of the proposed 
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method and the classical methods to the Landsat TM and SPOT-P images are pre-

sented in Fig. 6. 

Fig. 6. Landsat TM4; Simulated TM4; IHS 4; CN 4. Linear expansion 2% 

First of all, we can evaluate the visual appearance of the merged images (due to 

restrictions to colour images printing, it was not possible to present colour com-

posites images of the merged bands, with which the results would be more evi-

dent). 

The main characteristic of the images obtained from the classical methods is 

that they have a close resemblance with the SPOT-P. This could make the photo 

interpretation easier, but is an illusory advantage, once the spatial features are all 

reproduced in the original SPOT-P. Furthermore, these images have a final aspect 

of softly coloured SPOT-P images, in which the colour tones have been obtained 

from the Landsat TM ones. This is a clear drawback, because a thematic classifi-

cation can hardly be done with those digital values. 

The geostatistically merged image is more similar to the Landsat TM original 

images, but with better spatial feature details (derived from SPOT-P). For exam-

ple, several linear features (roads) that are difficult to distinguish in the Landsat 

images are visible in these merged images. But more importantly, colours of the 

different features have been preserved by this method. For example, to highlight 

the improvement obtained with the geostatistical method, when compared with the 

classical, notice the white features left of the labels A and B: the dimension of 

these features is different in TM4 and on the images obtained by IHS and CN, the 

only method that reproduces their dimensions is the Geostatistical one.  

A

B B

B B

A A

A
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Also interesting is the comparison of the statistical characteristics in Table 3. 

Here we can see that some basic statistics of Landsat TM are honoured only by the 

geostatistical merging procedure: the merged bands have an equal mean and vari-

ance. We emphasize that this failure of the traditional methods is due to the neces-

sary transformation that is applied previously to the merging process. 

The geostatistical merging procedure reproduces the spatial pattern of SPOT-P 

as they are revealed by the variograms. 

Table 3. Basic statistics of Landsat TM and merged images 

Image Band Mean Std. Dev. Min. Max. 

TM3 67.37 14.66 28 131 

TM4 74.99 14.37 34 133 Landsat images
TM5 123.56 27.62 45 226 

Geo3 67.37 15.56 28 131 

Geo4 74.99 15.35 34 133 
GEOSTATS merged 

images 
Geo5 123.59 29.44 45 226 

IHS3 75.14 45.83 0 245 

IHS4 65.41 36.38 0 202 IHS merged images 

IHS5 108.27 60.09 0 255 

CN3 42.89 9.42 17 91 

CN4 39.42 7.19 20 79 

CN merged images 

CN5 64.93 12.20 27 123 

The IHS and CN merging methods reduce the mean values (reaching a half of 

the original values for the CN method). The IHS method increases the variance 

(up to three times); giving final values higher than the corresponding bands that 

are merged. In contrast, the CN method produces a decrease of the variance in op-

position to the reduction in pixel size. Another important aspect concerns the 

global correlation coefficients between the different images (bands) used in the 

merging process. The quality of the spatially enhanced images can also be meas-

ured, for each band, by the correlation coefficient between the pixel values of the 

SPOT-P and the corresponding values of the spatially enhanced images. Column 1 

of Table 4 shows the correlation coefficient between SPOT-P and the real Landsat 

TM image for each band, and columns 2, 3 and 4 the equivalent statistics for the 

geostatistical procedure, IHS and CN, respectively. 

IHS and CN methods produce a very significant increase in the correlation co-

efficients between the merged bands and the panchromatic one. These coefficients 

that are around 0.82 (for visible bands) and 0.73 (for infrared bands) in the origi-

nal images, as mentioned before in section 3, reach values higher than 0.98 for the 

IHS merging method and 0.91 for the CN method, both methods presenting very 

similar values of correlation for visible and infrared bands. On the other hand, the 

proposed geostatistical method preserves the original correlation values (with an 

increase of about 0.04-0.05 due to the influence of the SPOT-P image in the final 

merged images) and reproduces the differences in the correlation values for the 

visible and non-visible channels. 
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Table 4. Global correlation between SPOT-P and Landsat TM and the merged images 

 PAN  PAN  PAN  PAN 

TM1 0.83 Geo1 0.84 IHS1 0.99 CN1 0.97 

TM2 0.83 Geo2 0.86 IHS2 0.99 CN2 0.99 

TM3 0.82 Geo3 0.84 IHS3 0.98 CN3 0.97 

TM4 0.74 Geo4 0.78 IHS4 0.98 CN4 0.91 

TM5 0.72 Geo5 0.76 IHS5 0.99 CN5 0.99 

TM7 0.70 Geo7 0.76 IHS7 0.99 CN7 0.96 

The conservation of the correlation coefficients is produced at both global and 

local levels. Local correlation coefficients can be calculated inside a 150mx150m 

moving window. In Fig. 7, TM4 vs. SPOT-P local correlation coefficients distri-

butions are shown.  

Fig. 7. Local correlation values (considering a 150mx150m window). A: Landsat 

TM4/SPOT-P; B: IHS4/SPOT-P; C: CN4/SPOT-P; D: Geostat4/SPOT-P 

In the original TM/SPOT-P minimum correlation values are around -0.69. This 

value is related to the presence of riverside vegetation (label E in Fig. 7), which 

produces large reflectance values in TM4 and small on the visible (panchromatic) 

bands (see Table 5). This behaviour is preserved only in the geostatistical method 

that has a minimum correlation coefficient of -0.41, while the other methods al-

ways produce positive correlation coefficients. 

Table 5. Local correlation statistics 

 Mean Std. Dev. Min. Max. RMS Abs.max.error 

TM4/PAN 0.5663 0.2903 -0.6179 0.9210 – – 

IHS4/PAN 0.9755 0.0284 0.6749 0.9969 0.4975 1.5898 

CN4/PAN 0.8963 0.1088 0.1251 0.9939 0.4023 1.2602 

Geostat4/PAN 0.6901 0.2178 -0.4061 0.9497 0.1598 0.5063 

RMS and Absolute maximum error consider differences between local correlation 

coefficients of original Landsat TM4/SPOT-P images and the merged images/SPOT-P 

5 Discussion and conclusions 

This study proposes geostatistical multi-sensor image merging based on the sto-

chastic Direct Sequential Cosimulation (CoDSS) procedure and on local corre-
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gionalization models. It shows that this algorithm produces images that, unlike 

those from other classical merging procedures, preserve the spectral characteristics 

of the higher-spectral resolution images. 

Visual and statistical evaluation of the merged images indicates that IHS and 

CN change the DN of the images, which means that the spectral features are dis-

torted. 

The visual aspect of the geostatistically merged images is different from that of 

the images obtained with classical methods (these images produce a relevant spa-

tial resolution improvement that makes their interpretation easier), but reveals per-

tinent spatial features of SPOT-P, honouring the variogram and the statistics of 

each band. 

The geostatistical method takes into account the global and local correlation 

coefficients between the images in the integration, and those coefficients are pre-

served in the merged image. This is important when working with non-visible 

spectral bands, which are poorly correlated with higher spatial resolution images 

that are usually panchromatic. 

Multiscale image merging is usually a trade-off between the spectral informa-

tion extracted from multispectral images and the spatial information extracted 

from the high spatial resolution images. Classical merging images have a rich spa-

tial quality (same as SPOT-P) but a poor spectral quality, which makes these 

transformed images suitable only for visual interpretation, and useless for thematic 

classification, since the spectral characteristics are distorted. The geostatistical 

method produces an image with improved spatial resolution (compared with the 

original Landsat) and, in addition, it preserves the radiometric characteristics of 

the original high-spectral resolution image. 

Most classical methods are not considered really merging methods but substitu-

tion methods. They consist of simple substitution of the high-spectral images with 

a high-spatial resolution image based on the correlation coefficient between the 

two data sets. The geostatistical method can be considered a true integration of the 

multisensor data, producing an image that can be upscaled back to the spatial reso-

lution of the lower spatial resolution image with exactly the same radiometric 

characteristics.

The main drawback of the geostatistical approach is its complexity, requiring 

understanding and suitable software. The latter must be designed and optimised 

for processing large sets of data. 
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1 Introduction

In this paper, texture in an airborne multispectral image from south eastern Eng-

land is characterised using the local variance, local semivariance and local 

variogram range. Local variation in these texture measures is then expressed as 

images and using the global histogram. The images and histogram are then used to 

question approaches for defining a single spatial resolution based on the mean of 

statistics such as the local variance. As a second component of the analysis, the 

discrete wavelet transform (DWT) is applied to the image and the amount of en-

ergy in each sub-image is quantified.  

Several authors realised in the late 1980s that choice of spatial resolution for 

remotely sensed imagery should be based on the scale of spatial variation in the 

property of interest or, more generally, scene of interest. Specifically, Woodcock 

and Strahler (1987) identified two general classes of interaction between spatial 

resolution and scale of spatial variation: (i) the L-resolution case in which the 

variation or objects are not resolved and (ii) the H-resolution case in which the 

continua or objects are resolved. Depending on the objective (e.g., to produce a 

thematic map of land cover) and the method of analysis (e.g., hard classification, 

area proportions prediction) a suitable spatial resolution could be chosen based on 

the scale(s) of spatial variation in the scene.  

The average local variance has been used previously to help select a suitable 

spatial resolution (Woodcock and Strahler 1987; Jupp et al. 1988, 1989)._The av-

erage local variance vw
2 may be estimated from a moving (3 by 3) window w ap-

plied to an image of L rows by M columns of pixels with support v using: 
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assuming that there is a buffer of one pixel surrounding the image to be analysed. 

The average local variance 
2

vw is calculated for a range of integer multiples of 

the original pixel size |v| and expressed as a function of pixel size. The plot usually 

rises to a peak and thereafter decreases with increasing pixel size. The peak is 

supposed to help identify the predominant scale of spatial variation in the image. 

From this information a suitable spatial resolution can be chosen (e.g., a spatial 

resolution considerably finer than that at which the peak occurs should be 

sufficient to resolve the variation of interest). 

Atkinson and Aplin (2004) suggested that local variation within a remotely 

sensed image can make choosing a spatial resolution on the basis of an average 

(see eq. 1) problematic. This paper challenges the assumption that the plot of av-

erage local variance against spatial resolution provides meaningful information on 

which to base a choice of spatial resolution. The hypothesis is that texture meas-

ures such as the local variance, local variogram and wavelet coefficients vary so 

much across a typical remotely sensed image that it is dangerous to choose a sin-

gle spatial resolution based on the average and that a more sophisticated approach 

based on the distribution of the statistics is required. 

2 Study site and data  

The study focuses on the town of St Albans in Hertfordshire, England. Compact 

airborne spectrographic imager (CASI) imagery with a spatial resolution of 4 m 

was obtained of the study site (Fig. 1). The study site was chosen as it has a mix-

ture of urban and agricultural landcovers. The spectral wavebands selected match 

those of the IKONOS satellite sensor (Aplin et al. 1997). They are: 0 45–0 52 m, 

0 52–0 6 m, 0 63–0 69 m and 0 76–0 9 m. Here, only two wavebands were 

analysed: the red (0 63–0 69 m) and near-infrared (0 76–0 9 m). More details 

about the imagery are provided by Atkinson and Aplin (2004).  

Fig. 1. Image of the study area. 
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3 Methods

Three techniques were used: the local variance, local variogram and the DWT. 

These techniques were used to (i) characterise local variation in image texture and 

(ii) inform the choice of spatial resolution locally. These are described below. 

3.1 Local variance 

Equation 1 describes computation of the average local variance. Here, the local 

variance is computed per pixel, but not averaged. Rather the image of local vari-

ances is retained for analysis. Further, the computation is structured such that (i) 

all spatial resolutions are included (not just integer multiples of the original) and 

(ii) all possible starting positions of the degraded grid are included. In practice, 

only odd spatial resolutions (1, 3, 5, …) are included such that an original pixel is 

always centred on a new larger pixel. Thus, the local variance v. spatial resolution 

plot can be obtained per original pixel (i.e., an image of plots is obtained). From 

each plot it is possible to extract the spatial resolution at which the maximum oc-

curs in the discrete sense. This image of spatial resolutions is a new concept pro-

posed in this paper and has not been produced previously. It is the basis for testing 

the hypothesis set out in the introduction. 

3.2 Variogram 

Since the local variance is related to, and can be derived from, the variogram (At-

kinson 1997, Atkinson and Curran 1997) we also explore local variation in the im-

age using the local variogram. The semivariance is defined as half the expected 

squared difference between paired Random Functions (RFs). The variogram (or 

semivariogram) (h) relates semivariance to lag h, the distance and direction be-

tween paired RFs. The experimental variogram can be estimated for the p(h)

paired observations, z(u ), z(u + h), = 1, 2,… p(h) with a support v:
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Webster and Oliver (1992) state that to estimate a variogram at least 100 obser-

vations are needed. According to Webster and Oliver, a variogram based on 150 

observations might be satisfactory, while using 225 observations is usually reli-

able. Attempts to use smaller data sets, in some cases as few as 30 observations, 

may produce reasonable results (e.g., Goovaerts, 1999). In this paper, the 

variogram is estimated for a moving window. 

The range, a, of a global variogram model may be used to identify the ‘charac-

teristic scale’ of variation in an image. In this paper, the variogram is estimated for 

a moving window and the range is estimated for each window position. The 

method of Ramstein and Raffy (1989) was used to estimate the range of the expo-

nential model locally. Given the theoretical value of the sill variance, C:
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a can be estimated with: 
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where U refers to the window. In addition, a weighted least squares (WLS) proce-

dure was employed to fit variogram models locally. With this procedure, initial 

values of the coefficients of a spherical model are provided and the routine of 

Boggs et al. (1989) was used to fit the model locally. 

3.3 Wavelet analysis 

Impressive results have been obtained in recent years with wavelet analysis (see 

e.g., Hubbard, 1998) and several papers have appeared in which wavelets are com-

pared to geostatistical procedures (e.g., Chen and Blong 2003). Therefore, in this 

paper we extend our analysis to include local variation in wavelet coefficients. 

Wavelets are mathematical functions used to split data into different frequency 

components and each component is analysed with a spatial resolution matched to 

its scale (Graps 1995). There are many introductions to wavelet transforms in im-

age analysis (e.g., Stollnitz et al. 1996) and remote sensing (e.g. Chan and Peng 

2003). The focus here is on the multiresolution analysis approach of Mallat (1989).  

3.4 Multiresolution analysis 

In multiresolution analysis the wavelet transform of a signal can be conducted us-

ing simple digital filters. The wavelet coefficients, jc  (where j is the scale index), 

may be thought of as a filter (Graps 1995). The coefficients are placed in a trans-

formation matrix that is applied to the raw data vector. The coefficients are or-

dered using two dominant patterns: one works as a smoothing filter while the 

other extracts information on local variation (detail). The DWT is achieved by 

successive low-pass filtering and high-pass filtering of the data vector. The out-

puts of the low-pass (scaling) filter, h, are the “smooth” components, c , and the 

outputs of the high-pass (wavelet) filter, g, are the “detail” components, w . The 

set )(1 kc j  can be computed from the set )(kc j
:

)()2()(1 ickihkc j

i

j (5) 
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where i specifies the translation and k  is the index for the input data (here pixels). 

These equations state that the wavelet and scaling coefficients at level j+1 are a 

weighted combination of the coefficients at level j. That is, we start with the finest 

spatial resolution and the recursion continues until the coarsest level is reached. 

3.5 2D wavelet transforms 

There are various approaches to applying the DWT to two (or higher) dimensional 

(2D) data. This section outlines the horizontal and vertical analyses of Mallat 

(1989). Starck et al. (1998) provide a summary. With this approach, the 2D algo-

rithm entails the application of several 1D filters. The steps followed are: 1. con-

volve the rows of the image with a 1D filter, 2. discard the odd numbered columns 

(where the left most column is numbered zero), 3. convolve the columns of the re-

sulting signals with another 1D filter and 4. discard the odd numbered rows 

(where the top row is numbered zero) (Mallat 1989; Castleman 1996). This proc-

ess is conducted with both the h filter and the g filter. The result is four images; 

three of these images (gg, gh and hg) represent “detail” components. Image hh is a 

smoothed representation of the original image and the filters can be applied to hh
in the same way as to the original image leading to four new images: gg(hh),

gh(hh), hg(hh) and hh(hh). The filters are then applied to the twice-smoothed im-

age hh(hh) and so on. The scaling function at spatial resolution j+1 is obtained 

from that at spatial resolution j with: 

x yl l

yxjyyxxyxj llcklhklhkkc ),()2()2(),(1 (7) 

                                       

and the “detail” components are obtained with (Starck et al., 1998): 

x yl l

yxjyyxxyxj llcklhklgkkw ),()2()2(),(1
1 (8) 

x yl l
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1 (9) 

x yl l
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1 (10) 

Where xl , yl  are the scaling coefficient indices and xk , yk  are the location indi-

ces for scale 1j .

3.6 Wavelet families 

The wide range of existing basis functions enables the user to select one that is 

well suited to the task in hand. Choice of a basis function represents a trade-off be-

tween how compactly the basis functions are localised in space and the degree of 
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smoothness (Graps 1995). Widely used basis functions (that is, wavelet families) 

include the Daubechies (Daubechies 1988) Mother functions.  

3.7 Quantifying energy  

The sub-images obtained through applying a DWT can be used to explore spatial 

variation in the input image. One summary of these sub-images is the wavelet en-

ergy signature — the sum of squares of the three directional sub-images at a given 

spatial resolution (Van de Wouwer et al. 1999; Chen and Blong 2003). By assess-

ing changes in energy with change in spatial resolution, an appropriate spatial 

resolution can be identified. The amount of variation resolved by the wavelet at 

different scales can be quantified and this information used to determine the 

amount of variation lost as the image is degraded. In this paper, the amount of en-

ergy contained in the sub-images at various spatial resolutions is explored. 

4 Analysis  

The local variance and semivariance were estimated from the data with a 3 by 3 

pixel moving window. Only the images for the red waveband are shown (Fig. 2) 

due to limitations of space. 

           (a)            (b)

Fig.  2. (a) Local variance and (b) semivariance (lag of 1 pixel) for red waveband. 
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The original image was smoothed using square filters of 3, 5, 7, 9, 11, 13, 15, 

17 and 19 pixels on a side. This created 10 images, each at a different spatial reso-

lution, but each with the same number of pixels as the original image. Each “de-

graded” image was then filtered to obtain an image of local variance at that spatial 

resolution. From the set of 10 images of local variance, each at a different spatial 

resolution, it was possible to obtain a plot of local variance against spatial resolu-

tion per-original pixel. Subsequently, the maximum local variance and the spatial 

resolution at which that maximum occurred were extracted and are shown as im-

ages in Figure 3. The histogram of all spatial resolutions is shown in Figure 4. 

Both the images (Fig. 3a: maximum variance; Fig. 3b: corresponding spatial reso-

lution) and histogram (Fig. 4) demonstrate clearly that a single spatial resolution 

chosen based on the mean local variance across an image (Eq. 1) will be appropri-

ate for only a very small proportion of the original scene. In particular, note that 

the histogram is multi-modal. Following this, the variogram was estimated within 

an 11 by 11 pixel moving window. This window size was considered large enough 

to estimate the variogram robustly, although comparison of larger window sizes 

would be a useful component of future work. The mapped range estimated using 

the approximation of Ramstein and Raffy (1989) is given in Fig. 5 while the range 

estimated using WLS (spherical model) is shown in Fig. 6.  

(a)
(b) 

Fig. 3. (a) Maximum variance and (b) spatial resolution corresponding to maxi-

mum variance. 
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Fig. 4. Histogram of spatial resolutions corresponding to maximum local variance. 

Fig. 5. Variogram range (Ramstein and 

Raffy) for an 11 by 11 pixel moving win-

dow for red waveband.

Fig. 6. Variogram range (WLS) for an 11 by 

11 pixel moving window for red waveband.

The DWT was applied to the imagery to nine levels. That is, nine sets of three 

sub-images were generated. The S+ Wavelet software (Bruce and Gao, 1996) was 

employed for the analysis. The Daubechies 4 (D4) wavelet (Daubechies, 1992) 

was applied in this case. Firstly, the energy contained in each of the subimages 
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was explored. Fig. 6 indicates the proportion of energy lost as the image was 

coarsened.  

Fig. 7. Reduction in energy as the spatial resolution is coarsened; based on DWT 

for 7 levels. 

One way of visualizing spatial variation in wavelet coefficients is to map signifi-

cant coefficients only. In fig. 7 the locations of the top 5% of coefficients are indi-

cated for decomposition to one level. 

Fig. 8. DWT decompositions to one level: top 5% of coefficients (red waveband).

5 Discussion 

As the images of local variance, local semivariance and variogram range indicate, 

there is marked spatial variation in the values of these statistics. Edges between 

areas representing different land cover types are demarcated clearly but also dif-

ferent land cover types are represented internally by clearly different local vari-

ances and semivariances. The obvious conclusion, as Atkinson and Aplin (2004) 
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indicate, is that as the frequency of spatial variation varies with land cover type 

then a range of spatial resolutions may provide as much information as a single 

fine spatial resolution but with less redundancy. As such, plots of mean local vari-

ance against spatial resolution (Woodcock and Strahler 1987) are likely to be of 

limited value for areas with a range of land cover types. 

Interestingly, Figure 3 (especially part b) reveals much that would be hidden in 

the plot of mean local variance against spatial resolution. Clearly, areas of urban 

land use are associated with a peak in local variance at a very fine spatial resolu-

tion (1 by 1 original pixels). In contrast, agricultural fields have a maximum local 

variance at a spatial resolution of 19 by 19 original pixels. Some linear features 

have local variance peaks at a range of spatial resolutions in-between these ex-

tremes. Therefore, the image (Fig. 3b) can be used to identify the optimal spatial 

resolution corresponding to the particular land cover or land use that is of interest. 

The histogram of spatial resolutions corresponding to maximum local variances 

(Fig. 4) is multimodal and it illustrates further that a single spatial resolution is 

unlikely to be appropriate for representing a real world scene. The histogram acts 

in a similar way to the plot of local variance against spatial resolution, but in the 

presence of a range of land cover types (corresponding to different spatial fre-

quencies) it provides information about spatial variation in a scene that is not 

available when only the average local variance is computed. The mapped 

variogram ranges (Fig. 5) illustrate how the scale of variation changes markedly 

from place to place and, as such, any approach based on the global variogram may 

be of limited value if the scene contains a variety of land cover types and, there-

fore, spatial frequencies. 

The plot in Fig. 6 indicates (for DWT decomposition to seven levels) reduc-

tions in the proportion of energy as the spatial resolution is coarsened. Such an 

approach provides a global summary and to be useful, like plots of local variance 

against spatial resolution, it is necessary to assume that a single spatial resolution 

is appropriate. In fig. 7, the top 5 % of coefficients are mapped for decomposition 

to one level. The three detail images (s1-d1, d1-s1, d1-d1) appear almost entirely 

black: the significant coefficients are visible in the smooth image (s1-s1), but are 

sparse in the detail images (they appear in the image as white specks). These im-

ages indicate further that a single fine spatial variation will result in redundancy. 

Future work should focus on the pros and cons of methods such as the local vari-

ance and variogram range (which could potentially be used to help inform sensor 

design) and the DWT (which could be applied to compress imagery once it has 

been acquired). All of the approaches applied in this paper provide information 

about spatial variation in imagery and more in-depth research may help to reveal 

how far these approaches duplicate information or compliment one another. 

6 Conclusions 

This paper supports previous work (for example, Atkinson and Aplin 2004) that 

argues selection of an optimal spatial resolution for remotely sensed imagery can-
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not sensibly be based on plots of average local variance against spatial resolution. 

Instead, use of images representing local variance and variogram range is recom-

mended.  

Identification of an appropriate spatial resolution is based upon assessing how 

much information is lost before the image becomes unacceptably degraded. The 

local variance, local semivariance and local variogram range provide useful ap-

proaches for characterising texture in successively degraded images and therefore 

identifying how much variation is lost locally at each stage. The histogram of spa-

tial resolutions corresponding to maximum local variances is a useful tool that 

could be used to inform any exercise where identifying appropriate spatial resolu-

tions is the objective. As well as assessing information loss with degradation of 

imagery, the images of local maximum variances and corresponding spatial reso-

lutions or the local range can be used as a basis for segmentation. An additional 

objective may be to compress imagery rather than to degrade it – possible ap-

proaches include retaining only the largest wavelet coefficients (and thus reducing 

storage space) or the use of quadtrees (Burrough and McDonnell 1998). 

In summary, the local variance, local semivariance, local variogram range and 

the DWT all demonstrate the inherent limitations of approaches for selecting a 

spatial resolution based on mean statistics or plots representing the entire image. 

To assess transferability of these methods in different situations, future work 

should be focused on applying these methods to other data sets. 
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1 Introduction 

Multi beam echo sounding (MBES) is the state of the art technique of surveying 

sea floors. A set of sound signals, a ping, is emitted simultaneously, at distinct an-

gles, towards the sea floor. The time it takes for a signal to travel to the sea floor 

and back is used, together with the angle of emittance, to determine the position 

and depth of the point of reflection on the sea floor. MBES surveys produce large 

data sets. Typically, several measurements are available for every square meter in 

coastal waters. In case of offshore engineering, often real-time processing of the 

MBES data is required, for example to verify if a pipeline construction turned out 

successfully. The processing of MBES consists basically of two steps: outliers 

should be removed and the data density should be decreased, while maintaining a 

realistic model of the sea bottom. For this purpose a first automatic filtering and 

thinning algorithm was designed, based on Kriging. Unfortunately, this algorithm 

had an important drawback: not only blunders, also points representing pipelines 

were removed by the algorithm. 

As the removal of features like pipelines is highly unwanted, methods for im-

provement were considered. In this paper we discuss these methods and test them 

on four different data sets of MBES data containing different configurations of 

pipelines. 

The first new method is an extension of the original algorithm. In the original 

algorithm, soundings are cross-validated in one specific direction, the so-called 

ping direction. A 1D covariance function is used by the interpolation method 

Kriging to predict a depth value that is compared with the measured value. If the 

difference exceeds a certain test value, the measured depth is considered an out-

lier. Measurements from pipelines perpendicular to the ping direction are easily 

considered outliers. We show that by using 2D cross-validation this problem can 

be partially solved. It should be noted that some of the definitions used in the two 

approaches discussed so far are not considered standard. But as these definitions 

are used in the implementation causing the problems that initiated this research, 

we have chosen to present the original definitions rather than standard methods. 
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An alternative method, also using the Kriging paradigm, was originally de-

signed for filtering laser altimetry data. This type of data, where the time is meas-

ured that an emitted light pulse needs for traveling from the laser sensor, mounted 

on an aircraft, towards the earth and back, is often used to determine a Digital 

Elevation Model of the bare earth. But laser points are not only reflected by the 

bare earth but by trees as well. The `tree points' are filtered away as follows. By 

using a covariance function with a smoothing effect, an average elevation is de-

termined of all available laser points. Now this average elevation divides the 

measurements in two groups: points below the average are probably bare earth 

points, points above it are probably tree points. An iterative version of this algo-

rithm turns out to be very effective. We apply this method on our pipeline data. In 

the multi beam setting we want to filter the `real' outliers/spikes from the sea bot-

tom data including the pipes. 

Finally the results of the methods are compared on the data sets, giving satisfy-

ing results in most cases. 

2 Multi Beam Echo Sounding 

Echo sounding is based on the principle that water is an excellent medium for the 

transmission of sound waves and that part of a sound pulse will return to its source 

as an echo. If a pulse is emitted from the bottom of the ship at an angle ψ with the 

vertical line through the emitter, the depth d and the position y of the sea floor hit 

by this pulse are determined from ( , ) (cos ,sin ) / 2d y ct ψ ψ= where t denotes the 

time it takes between the initiation of the sound pulse, traveling with velocity c,

and reception of the echo, see also Fig. 1. 

As illustrated, a swath MBES system (De Jong et al. 2002) transmits an acous-

tic pulse that resembles a fan. Per pulse transmission a high number of depths is 

thus generated. A ping contains, by definition, all soundings from one pulse 

transmission. Transversal to the pings are the beams: a beam consists of all sound-

ings with the same emittance angle , therefore a beam contains exactly one 

sounding of every ping. By combining the depth d and the position y with the po-

sition of the ship, determined real-time by GPS (Global Positioning System) and 

INS (Inertial Navigation System), one obtains coordinate system referenced xyz-

data of the sea floor. 

     

                                                           

                                                                   d 

                              y 

Fig. 1. The multi beam geometry. Shown is one ping of signals
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The total list of MBES error sources is extensive. A major error source is wave-

induced movement of the ship that can be divided in pitch, roll, heave and heading 

errors. However, these errors should be eliminated immediately by the INS motion 

sensors mounted at the ship. Another important error source is the positioning of 

the ship, done by GPS. The errors we consider however are not the systematic 

ones, but the real blunders, caused by reflection of the signal on fish or debris, or 

by occasional electronic errors. 

3 Filter methods 

All methods we consider are based on the geostatistical interpolation method 

Kriging (Chilès and Delfiner 1999 and Cressie 1991). Therefore we first recall its 

basics. The first two filter methods apply Kriging-based cross-validation. In the 

first case 1D cross-validation is used, in the second 2D. The last, iterative, method 

uses Kriging to define a smoothed approximation of the sea floor. 

3.1 Kriging 

Kriging determines weights wi for the prediction of a depth 0 1 1
ˆ

n nz w z w z= + at

location p0, given depth observations z1,…,zn at locations p1,…,pn and given a co-

variance function that returns a covariance value as a function of horizontal dis-

tance between the observations (isotropic case).  First we discuss theoretical and 

empirical covariance functions, then we show how Kriging uses a covariance 

function to determine the weights in an optimal way. 

The covariance function. The theoretical covariance function or second moment 

of a stationary random function Z(x) is defined as Cov(s) = E{Z(x)-m}{Z(x+s)-

m}, where m=E{Z(x)} denotes the mean or first moment of Z(x). Given some ob-

servations a discrete experimental covariance function can be determined by com-

puting experimental covariances between any two observations and by grouping 

the obtained outcomes according to some distance interval. A continuous covari-

ance function is obtained from the experimental values by fitting them into a co-

variance model. One can also take a covariance function that is suited to perform 

some special task. For example, a Gaussian covariance model without nugget ef-

fect but with a long range drops relatively slow and therefore has a smoothing ef-

fect on the data interpolation. 

Ordinary Kriging. Suppose that, as above, we are given height measurements z1,

…, zn and want to predict a height 0 1 1
ˆ

n nz w z w z= + at position (x0, y0). Assume 

moreover that we are given a covariance function cov(.) producing a covariance 

value Cij between two positions (xi,, yi) and (xj,, yj). The ordinary Kriging system 

consists of n+1 equations: 
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This implies that the weights can be found by: 
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The µ is a so-called Lagrange multiplier and is an extra variable added to make the 

system solvable. The ordinary Kriging system is obtained within a random func-

tion model. This means that with every position a random variable is associated. 

In the case of ordinary Kriging it is assumed that the expected height is inde-

pendent of the location and that the mean of the heights is unknown. Ordinary 

Kriging aims at optimizing two parameters and this optimization results in Equa-

tions (3.1) and (3.2).

First of all the expected error 000 ˆ zzr −= in the height prediction should be un-

biased. It can be shown that this condition E{r0} = 0 leads to the equation 

w1+…+wn=1. The other aim is to minimize the error variance Var{r0}. Looking 

for the best solution for the weights under this condition gives the other Ordinary 

Kriging equations.  Moreover, one obtains a formula for the error variance 
2

prediction =Var{r0}:

2
prediction  =

2

=

−
n

i

iiCw

1

0 µ (3.3) 

As the predicted height nn zwzwz ++= 110ˆ forms a linear combination of the 

measured heights, it is by now clear why Ordinary Kriging is often called BLUP, 

Best Linear Unbiased Prediction. 

3.2 1D cross validation 

The first method we discuss was developed, see (Bottelier et al. 2000), as part of a 

data thinning algorithm. Given one ping of MBES data, outliers are eliminated in 

two steps. In a first step, all blunders, defined as soundings above a certain mini-

mal depth and below some maximal depth, are eliminated. These two threshold 

values are based on a priori depth information on the surveyed area. 

The second step is a cross validation step: a depth value ( , )
ˆ

x yz  is predicted for 

every sounding location (x, y). This prediction ẑ  is compared to the actual meas-

urement z(x, y). If the difference between the predicted and measured depth, relative 

to the standard deviation, is tested too big, the sounding is rejected. 
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Predicting the depth value, 1D case. The prediction of the depth values is done 

ping-wise by means of Kriging using a covariance function based on the sound-

ings in the ping. For this purpose first an experimental, discrete covariance func-

tion dcov(Bk) is determined for every ping. A bin width B=
−
= +−1

1 1

n

i ii pp /(n+1)

is defined as the average horizontal separation distance between consecutive 

soundings in the ping. The bin Bk consist of all pairs of soundings {pi, pj} s.t. 

        BkppBk ji )()(
2
1

2
1 +≤−<−  (3.4) 

The experimental covariance function used in this approach is defined by the fol-

lowing rarely used expression.  
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To decrease the irregular tendency, this empirical covariance function is smoothed 

with a moving average of five points. From this smoothed function the distance d

of the first zero crossing, and the correlation length ξ, that is, the distance at which 

the covariance value is dropped, for the first time, to half of the value at distance 

zero, is determined. The curvature κ at the origin is defined as κ = (log 0.3149)/ 

log(ξ/d). These parameters, see also (Moritz, 1980), are used to fix the following 

rarely used analytical hole-effect model, (Kitanidis 1997): 

        cov(s) = C0 (1-f) exp(-f )    where    f = s/d    and    s,d > 0. (3.6) 

Using this covariance function, a predicted value ( , )
ˆ

x yz is determined for each 

measurement position (x, y) in the ping. Here, only the two neighboring soundings 

on the left and on the right of the sounding to cross validate are used in the inter-

polation. Note that from the Kriging we obtain σprediction as well. 

Testing the prediction. The last step is to compare the predicted value ( , )
ˆ

x yz  to 

the measured value z(x, y). This is not done directly, but, again, the variability of the 

measurements is taken into account. This variability is split in two components. 

One component is the measurement noise noise, that is included to prevent that an 

observation is marked an outlier just because of random errors. As an  indication 

of the measurement noise,  a percentage of 90% of the root of the difference be-

tween the first two experimental  covariance values is taken, that is 

noise=0.90 )(dcov 10 BC − .The other component is the prediction standard error 

prediction This leads to the following test: 

        
( , ) ( , )

1
2 2

noise prediction

ˆ
x y x yz z

C
σ σ

−
>

+
 (3.7) 
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If the test value C1 is exceeded, the measurement is considered an outlier and re-

moved. Here it is assumed that the depth data are normally distributed. The test 

value C1 is based on a 5% confidence level, yielding a critical level of C1 = 1.96. 

For normally distributed data this confidence level implies that 5% of the meas-

urements are expected to be tested as outlier. 

3.3 2D cross validation 

The main difference with the 1D cross validation method is that in the 2D method 

not only soundings in the current ping are used for determining a covariance func-

tion and for the actual cross validation. Instead of one ping, a data set of at least 

three pings and three beams is considered. Again, first the gross blunders are 

eliminated by thresholding. 

Selecting Neighboring points: The experimental covariance function is deter-

mined in basically the same way. All data in the data set, consisting of different 

beams and pings, are used for determining the experimental covariance function. 

The same analytic covariance function model is fitted on the experimental covari-

ance data as above. 

Since the purpose of this algorithm is to cross validate in two directions, man-

datory neighbors in both different pings and different beams are included in the 

Kriging prediction. Including the mandatory neighbors, a fixed number of e.g. 

eight closest neighbors is used in the cross validation. 

The soundings are tested in a specific order, following the ping and beam indi-

ces. If a sounding is considered an outlier it is removed from the list of observa-

tions and it will not participate in the testing of the following soundings. It did 

however participate in the testing of some soundings previous to its own testing. 

Therefore the tests can not considered to be independent. 

3.4 Robust Interpolation 

Like the cross validation techniques described in the previous sections, the robust 

interpolation is a method to filter outliers from a point set describing a surface, see 

also (Kraus and Pfeifer 1998, Pfeifer et al. 2001). One problem with the tech-

niques used so far is that the residuals have quadratic impact on the error variance 

and ordinary Kriging aims at minimizing the squares of this variance. One way of 

decreasing the impact of outliers is to minimize another sum of discrepancies

function, e.g. a function that is more close to the L1- norm as in that case the influ-

ence of residuals only would increase linearly with their size. Such minimization 

can be performed by changing the weights of the observations in an iterative way, 

by giving suspicious observations less and less influence during the iterations. 

This technique is known in the literature as the `robust approach', (Kraus 1997, 

Rottensteiner 2001). The residuals analyzed in our case are the differences be-

tween the observations and a surface. This surface changes during every iteration 
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and is obtained by a slightly adapted version of ordinary Kriging that incorporates 

the residual weights returned by the residual weight function. 

The residual weight function. The basic idea of this approach is to give less in-

fluence to soundings that are likely to be erroneous. How `good' the i-th sounding 

is considered after the k-th iteration, depends on the residual k
ii

k
i zzr ˆ−=  between 

the observation zi and the estimation k
iẑ after the k-th iteration. That is, the residu-

als k
ir  are the input of the residual weight function q( r ) given by 

        q: R  [0,1],              q( r ) = 
b

ra |)|(1

1

+
.          (3.8) 

So, the individual residual weight 1+k
iq for the next, the (k+1)-th, iteration is de-

termined as )( 11 ++ = k
i

k
i rqq . If, however, a residual weight 1+k

iq is smaller then a 

certain threshold value 0  < 1, the observation zi is marked as erroneous and 

removed from the set of observations. The shape of the residual weight function is 

described by the half-width 1/a and the slope 4/ab at the half-width point (1/a, 

q(1/a)). Before the first estimation step all residual weights are initialized to 1, that 

is, 0
ir  = 1 for all i.

The covariance model. In order for the residual weight function to work properly, 

the predictions should be on a rather smooth surface that runs on an averaging way 

between the `real' observations and the `erroneous' observations. Such surface can 

be obtained by combining two effects. One is to omit the nugget effect in the prox-

imity vector c of covariances with the interpolation position, compare Equation 

3.2. The other is to use a covariance model with an almost horizontal slope near 

the origin and with a not too small range. The covariance function for the area un-

der study follows the Gaussian model, (Wackernagel, 1998), with the same corre-

lation length , see Subsection 3.2 everywhere: 

cov(s) = C0 exp(

2
2ln

ξ
s

) ; s > 0 (3.9) 

Here, C0 denotes the maximum of the covariance function, defined by 

C0 =
2

)( −
i i zz

2, and s the horizontal distance between observations. The 

measurement accuracy is denoted by . To assume isotropy in the data sets con-

sidered seems justified by the satisfying results obtained by this method. Note that 

cov(s) is the same in every iteration, for s>0. So, the off-diagonal elements of the 

variance-covariance matrix are given by Cij = cov( || pi  pj || ), where pi and pj

denote the positions of the observations zi and zj.
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The interpolation step. The diagonal elements of the variance-covariance matrix 

however are iteration step, k, dependent and are given by k
i

k
ii qCC /2

0 σ+= .

They contain a nugget effect k
iq/2σ  that incorporates the individual residual 

weight k
iq . This ensures that suspicious observations have less influence in the in-

terpolation. The nugget effect is omitted in the proximity vector c = Ci0 of covari-

ances with the interpolation position, so Ci0 = cov ( || pi  p0 ||) if pi  p0 and Ci0 = 

C0 if pi =  p0. This is a well-known technique to filter short-scale signals and is 

known as filtering, (Goovaerts 1997). By now all entries of the Ordinary Kriging 

system of Equation 3.2 are given and the Kriging weights for the next iteration can 

be determined, resulting in new residuals between the observations and new esti-

mations and thereby in new residual weights. Finally, at every iteration, observa-

tions with a residual smaller than the threshold value  are marked as outlier and 

removed. This can simply be done by wiping out the row and column correspond-

ing to the outlying observation. The algorithm terminates after a fixed number of 

iterations, or after all residuals drop below some critical value. If, ideally, all re-

sidual weights are close to one, the distances from the observations to the interpo-

lated surface will be in the order of the measurement accuracy .

.

Fig. 2. Data set 1 before processing.

4 Filtering the data sets 

For testing the different methods, four data sets are used. We will concentrate on 

the first however, see Fig. 2., obtained by a multi beam system mounted on a 

ROV, a Remotely Operated Vehicle, operating at about 15 m above the sea floor. 

This data set has been acquired using a Reson Seabat 9001 multi beam system. 

This system has 60 beams and a ping rate of 7 pings a second. The average depth 

is around 145 meter and the distance between consecutive pings is approximately 

0.03 m and the approximate distance between two adjoining beams is 0.1 m.  
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The second data set has an average depth of approximately 13 meter in the first 

half and then 23 meter in the second half. The approximate distance between con-

secutive pings is 0.13 m and between two adjoining beams 0.45 m. This data set 

does not cover pipelines but represents a short steep sloop. 

The third and fourth data set have an average depth of around 300 meters and 

approximate distance of 0.12-0.14 m between consecutive pings and 0.19-0.24 m 

between adjoining beams. In both data sets a pipe and some templates are present. 

Parameter choices for the different methods: In the 2D method it was possible 

to vary the number of pings processed at once and to select the number of 

neighbors. The data presented here were obtained by processing 10 pings at a time 

while 8 neighbors were used for the cross validation. Although the exact numbers 

change, similar results were obtained with different parameter choices. 

The robust method was run with a maximum of seven iterations. The measure-

ment accuracy was σ=10 cm, the half-width was set on 1/a=2σ, while b=2. 

4.1 The results 

Table 1. Numbers and percentages of removed outliers by the different methods. 

1D method 2D method Robust method
MBES 1 104 040 111 476 111 476 

# outliers 3 149 1 394 193 

% outliers 3.03 1.25 0.17 

MBES 2 125 245 130 641 130 641 

# outliers 3 853 1 746 1 407 

% outliers 3.08 1.34 1.08 

MBES 3 297 958 303 014 303 014 

# outliers 4 364 3 084 256 

% outliers 1.46 1.02 0.08 

MBES 4 215 557 219 217 219 217 

# outliers 1 955 3 479 1 154 

% outliers 0.91 1.59 0.53 

Unfortunately it is not very clear what distinguishes good from bad soundings, or, 

which soundings should be removed. The methods discussed above all divide the 

soundings objectively in one of these two categories. In most cases it is, subjec-

tively, clear, by a simple visualization, if a wrong decision is made. Often (Te-

unissen 2000) the following two types of wrong decisions are distinguished: on 

one hand a Type I error: a sounding is rejected, although it is correct and on the 

other hand a Type II error: a sounding is accepted, although it is wrong 

In Table 1 the numbers of outliers removed are given. Clearly, the 1D method 

finds a lot of `outliers'. As the 1D method is designed as a data thinning procedure 

this is an essential part of the algorithm. In the case of data set 1 however, a lot of 

type I errors are made, due to the presence of the pipelines. This was the reason to 
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consider alternative methods. In general the 2D method removes fewer soundings, 

but as we will see later, still type I errors are made. Based on visual inspection, we 

conclude that the robust method removes the smallest number of points and seems 

to perform the best, by minimizing both the number of type I and type II errors. 

Results of 1D method. In Fig. 3 the results of the 1D algorithm applied on the 

first data set are shown. On the left a Digital Elevation Model (DEM) of the ac-

cepted soundings is given while on the right a top view is given of the accepted 

soundings in gray and the rejected soundings, in black. The DEM still contains 

spikes, while the top view shows that a lot of `outliers' were found on the diagonal 

pipe. The DEM of the data set before processing however, see Fig. 2, shows no 

outliers on the diagonal pipe. From this visual inspection we conclude that some 

outliers were not found while many `good' points were rejected by the algorithm. 

Results of 2D method. Fig. 4 shows the results of the 2D algorithm on the first

data set. In this case no more clear spikes are present in the Digital Elevation

Model on the left. The number of soundings marked as outliers is much lower than 

in the 1D case as can be seen in the top view image on the right. Still many sound-

ings are rejected as outlier situated near the diagonal pipe. We conclude that most 

of the reported outliers for the 1D and 2D approach are removed unwantedly and 

should be considered type I errors.

Results of the robust method. In Fig. 5 an overview is given of the accepted 

soundings, again in gray, and the rejected ones, in black. The digital elevation 

model of the accepted soundings is not given in this case, as it is similar to the one 

shown in Fig. 4: no obvious spikes are left after applying the robust method. The 

robust method only reports a small number of outliers, about one tenth of the 

number returned by the 2D method, while all spikes seem to be removed. More-

over, only a few `outliers' were found on the diagonal pipe. Still these `outliers' 

seems to be type I errors, indicating that even the robust method has some prob-

lems with the pipes. 

5 Conclusions 

Both the 1D and 2D method are forced to filter away good points by the 5% con-

fidence level. If the confidence level drops, the number of Type II errors will 

however increase. Before applying these methods one should have a rough idea on 

the expected number of outliers. Here, the analysis of Receiver Operating Charac-

teristic Curves could help in future to visualize how the proportion of false alarms 

increases as the confidence level increases. It should also be considered what the 

local impact (near features) of a globally set confidence level is. 
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Fig. 3. Data set 1 processed by the 1D method: on the left the DEM of the accepted sound-

ings, on the right a top view of the accepted soundings, gray, and the rejected, black. 

Fig. 4. Data set 1 after processing with the 2D method. 

Fig. 5. Accepted and rejected soundings of Data set 1, as found by the Robust method. 

In the 2D method, forced including of soundings of different pings is applied. 

But these included soundings do not get automatically a relevant interpolation 

weight: for the first two data sets, the ratio of ping width versus beam width is 1:3. 

Therefore the 2D method is to some extent still a `1D method'. 
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Both the 2D method and the robust method can be very time inefficient if im-

plemented without consideration. The parameters of the covariance function 

should preferably be determined in a heuristic way while the number of soundings 

processed at once should not become too big. The number of soundings included 

in the Kriging system should be strongly limited while in selecting small number 

of neighbors one could try to use the structure of the data file. 

Analyzing and comparing the results of the different methods is difficult, as it 

is uncertain which points are truth `ground points' and which points are outliers. A 

similar comparison on small simulated datasets could be helpful. This would also 

make it possible to analyze what kind and relative size of features will cause prob-

lems for the different methods.  
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1 Introduction 

Active volcanoes can generate severe natural hazards with consequences which 

are likely to be catastrophic on society. The permanent or temporary increase in 

population leads to the occupation of additional areas exposed to potential vol-

canic hazards. Therefore, in these threatened zones, the assessment and mitigation 

of volcanic hazards require the application of methods allowing forecasts of erup-

tive events. For many volcanoes, the forecast of volcanic activity can be attempted 

by monitoring measurable changes in geophysical and geochemical parameters 

prior to eruptions. 

Optimal monitoring at active volcanoes requires automatic recording of many 

geophysical parameters. The resulting multi-parametric time series are usually 

data sets which are prone to data losses due to geological hazards likely to occur 

on active volcanoes. Most statistical techniques, such as Fourier methods, require 

time series with fairly long data sets without gaps in the observations. In addition, 

non-oscillatory behaviours are often observed for volcanic time series sampled at 

active volcanoes. Therefore, the use of analysis methods in the time domain 

(Jaquet and Carniel 2001 2003), capable of handling incomplete time series, are 

needed for the interpretation of multi-parametric data sets. 

Several authors have proposed forecasting approaches using rises in seismicity 

(Kilburn and Voight 1998, Kilburn 2003, Ortiz et al. 2003) and ground deforma-

tion (Voight et al. 1998) as well as integrated approaches (Voight et al. 2000).  

These models enable forecasts of eruptive events at short term (days to weeks). 

Although some successful predictions of eruptions were carried out, these deter-

ministically based models fail to integrate aleatory and epistemic uncertainty 

(Woo 1999) when forecasting volcanic eruptions. Uncertainty is mainly related to 

imperfect knowledge of non-linear physical process inherent to volcanic activity 

and to limited amount of monitoring information. Therefore, a probabilistic for-

malism is required for the forecasting of volcanic eruptions (Sparks 2003).  

In order to account for uncertainty and small data sets (with gaps), a stochastic 

approach, named DEVIN (Deducing Eruptions of Volcanoes In Near Future), aim-

ing at forecasting volcanic activity was developed within the framework of the 

EU-project MULTIMO (multi-disciplinary monitoring, modelling and forecasting 
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of volcanic hazard). DEVIN is a multivariate approach, based on geostatistical 

concepts (Chilès and Delfiner 1999), which enables characterisation in the time 

domain of the behaviour for multi-parametric (incomplete) time series sampled at 

active volcanoes.

Volcanic processes develop at quite a number of different time scales, from de-

gassing regimes alternating on the time scales of minutes (Ripepe et al. 2002) to 

dynamical transitions that separate days-to-months long periods of rather stable 

activity (Carniel and Di Cecca 1999, Carniel et al. 2003). By estimating time 

scales at which these processes are likely to occur (see also Carniel et al. 2004), 

the DEVIN approach can provide insight into natural processes involved in vol-

canic eruptions.  

The DEVIN approach includes four steps: (1) detection of time correlation by 

(cross) variogram analysis, (2) parameterisation of time series behaviour, (3) iden-

tification of precursors by parameter monitoring and (4) forecasting - with uncer-

tainty - of volcanic activity using stochastic simulation methods. An application of 

the DEVIN approach using data from the Soufrière Hills volcano, located on the 

island of Montserrat (West Indies) is given. 

2 Detection of time correlation 

Occurrences of volcanic activity are often clustered in time; i.e., volcanic events 

seem not to occur at random, but rather suggest behaviour correlated in time. The 

variogram is a statistical tool allowing the detection and quantification of time cor-

relation. The variogram, popularized in geostatistics by Matheron (1962), was 

mainly applied to spatial problems. Jaquet and Carniel (2001; 2003) have shown 

the capabilities of variogram analysis for time series sampled at active volcanoes.  

Variogram and cross variograms allows quantifying the scale at which correla-

tion and cross correlation occurs in the time domain. When this time scale be-

comes significant, the behaviour of the time series tends to remain similar for that 

amount of time. This persistent behaviour for a time series expresses the memory 

of its past activity. For forecasting purposes, characteristics of persistence are 

needed for time series in order to be considered as potential precursor. 

3 Parameterisation of time series behaviour 

Once the sample variogram is computed from the data, a variogram model is fitted 

to the sample variogram in order to parameterise the observed behaviour. Mathe-

matical properties must be fulfilled in order to consider functions as variogram 

model (Chilès and Delfiner 1999). Among the available models, the following one 

enables the description of the behaviour for time series sampled at active volca-

noes (Jaquet and Carniel 2001): 
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where M ( ) is a model composed of a spherical variogram with a discontinuity 

at the origin. The parameter, b0, represents the intensity of the random component 

of the time series. This component is mainly related to variability occurring below 

the sampling scale and to measurement errors. The parameter, b1, corresponds to 

the intensity of the stochastic component for the time series. Finally the parameter, 

a, is the time scale which quantifies the persistence of the time series. 

4 Identification of precursors

Time series with persistent behaviour represent potential precursors. The evalua-

tion of the forecasting capabilities of these time series can be achieved by parame-

ter monitoring. It consists in identifying variogram parameters which time behav-

iour is likely to be precursory in relation to eruptive events. For a time series, 

V(t ), sampled at time t  (  = 1 ,…, N), parameters presenting potential as precur-

sors of volcanic activity can be estimated using a moving window approach as fol-

lows: 
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where w  is the time for the moving window and L· t its size. The parameter, 

B, specifies the relative intensity of the stochastic component. This parameter var-

ies between 0 (random behaviour without memory) and 1 (persistent behaviour 

with memory). The parameter, G, integrating the total intensity (random and sto-

chastic) and the persistence for the time series delivers a measure of the overall 

variability at the window scale. 

5 Forecasting by stochastic simulation 

Parameter monitoring can be applied for forecasting, but no uncertainty can be as-

sociated with such forecasts. Therefore, on the basis of precursory behaviour iden-

tification, the likelihood for the evolution of the time series is desired at short- to 

medium term. The realisation of such forecasts (with uncertainty) requires the use 

of stochastic simulation on basis of potential evolution scenarios. The chosen sto-

chastic simulation method starts from the following decomposition (Chilès and 

Delfiner 1999):   
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where V*(t0) is the kriging estimator (Wackernagel 1995) at time t0 using the 

data V(t ); and the term [V(t0) – V*(t0)] is the kriging error. Since the true value, 

V(t0), is unknown, one considers the same equation expressed in terms of simula-

tion: 
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where Vs(t0) is the simulation of V(t0) and Vs*(t0) is the kriging estimator using 

only the simulated values at the points t  and then the kriging error is replaced by 

its simulation: 
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where Vcs(t0) is the conditional simulation. This method allows generating 

simulations that honour the data points of the time series. This conditioning prop-

erty is important when performing simulation of the future behaviour of the time 

series; i.e., the simulation, starting off at the last data point available for the time 

series, allows integration of the latest characteristics of the data. A dilution method 

(Lantuéjoul 2002) is applied for the (non conditional) simulation, Vs(t0). Based on 

this method, simulations of a Gaussian stochastic process are produced with a 

spherical variogram. Since the data are usually not Gaussian, simulations match-

ing the observed histogram are obtained using a gaussian (bijective) transforma-

tion (Chilès and Delfiner 1999) applied to the time series. 

Potential scenarios for the evolution of volcanic activity can be considered us-

ing the following expansion: 
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where m(t)=E[V(t)] is the deterministic drift which form is assumed (arbitrary) 

polynomial and the Vr correspond to residuals with zero mean. The drift becomes 

time dependent solely when performing forecasts. This possibility allows the in-

troduction of external knowledge for performing sensitivity studies with respect to 

various scenarios of volcanic activity. 

The likelihood of volcanic activity is assessed by analysing the tendency of 

time series to exceed given thresholds. Using a Monte Carlo approach allows per-

forming a large number of stochastic simulations in order to estimate probability 

of threshold exceedance for a given period. These estimates are interpreted as 

forecasts (with uncertainty) of eruptive scenarios for a given period. These fore-

casts constitute valuable input as needed for probabilistic risk assessments.   

6 Case study 

Montserrat (island) is a dependency of the United Kingdom, one of the Leeward 

Islands of the Lesser Antilles, in the Caribbean Sea. The Lesser Antilles is a vol-

canic island arc formed along the junction where the Atlantic tectonic plate is sub-
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ducted beneath the Caribbean plate. Montserrat is only 16 km long (north - south) 

and 10 km wide (east - west), and is built almost exclusively of volcanic rocks. 

The island comprises several volcanic centres or massifs of differing age, among 

them the active volcano of the Soufrière Hills in the south. 

The current eruption of the Soufrière Hills Volcano began in July 1995 and 

continues to the time of writing (June 2004). The eruption followed a three-year 

period of precursor seismic activity. The eruption has been characterised by the 

growth of an andesite lava dome with associated pyroclastic flows, vulcanian ex-

plosion and debris flows. 

The Soufrière Hills eruption can be divided into several stages (Robertson et al.
2000, Sparks and Young 2002). The first stage involved phreatic explosive activ-

ity between July and November 1995. The andesite dome appeared in mid-

November 1995 and growth continued nearly continuously until March 1998 in 

the first major stage of dome growth. Our dataset includes part of this dome 

growth stage from 1 November 1996 to 9 March 1998 (Fig. 1). A stage of dome 

dormancy occurred between 10 March 1998 and 26 November 1999. A second 

stage of dome growth then started and then finished on 13 July 2003 when the 

volcano moved into a second period of dome dormancy accompanied by minor 

unrest. Our seismic dataset (Fig. 1) also captures most of the second dome growth 

stage.

Among the complex sequences of events that have occurred during the course 

of the Soufrière Hills eruption, we have decided to choose the onset of the dome 

growth in November 1999 as event for forecasting. The choice of this important 

event was motivated by: (a) correlated effects likely to be expressed in terms of 

seismic events and (b) the implications of forecasting the onset of the dome 

growth in relation to probabilistic risk assessments. 
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Fig. 1 a) Time series of volcano-tectonic, b) hybrid and c) long-period earthquakes, and d)

rockfall signals. 

6.1 Seismic data 

The MVO (Montserrat Volcano Observatory) digital seismic network was in-

stalled in October 1996, and uses a mixture of broadband and short-period seis-

mometers. Using these monitoring instruments, the number and type of earth-

quakes being produced underneath the volcano during the eruption were recorded. 

These seismic events were manually classified into the following categories: vol-

cano-tectonic earthquake, long-period earthquake, hybrid earthquake or rockfall 

signal (Miller et al. 1998). 

The daily activity was summarized by the total number of events (of each type), 

and the cumulative energy of those events, expressed as a cumulative magnitude.  

For this case study, the following time series were selected for the period from 

1 November 1996 to 28 February 2003 (Fig. 1):  

 - Number of volcano-tectonic earthquakes per day (VT). 

 - Number of hybrid earthquakes per day (H).  

 - Number of long-period earthquakes per day (LP). 
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 - Number of rockfall signals per day (RF).  

as well as: 

 -  Daily cumulative magnitude for volcano-tectonic earthquakes 

  (VT_cm).  

 - Daily cumulative magnitude for hybrid earthquakes (H_cm).  

 - Daily cumulative magnitude for long-period earthquakes  

  (LP_cm).  

6.2 Variogram analysis 

The analysis of correlation and cross correlation in time was performed using re-

spectively the variogram for individual times series and the cross variogram for 

pairs of time series. 

Differences in variability of event occurrences between stages of dome growth 

and dome dormancy were observed over the six years period (Fig. 1). Therefore, 

the variograms were calculated by periods of dome growth and dome dormancy 

for the time series VT, H, LP and RF events (Fig. 2). 
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Fig. 2. Variograms for time series VT, H, LP and RF during episodes of dome growth  

Nov. 96 - Mar. 98 and Nov. 99 - Feb. 03) and dome dormancy (Mar. 98 - Nov. 99). 

During stage of dome growth, except for the VT events, the growing behaviour 

of the variograms for H, LP and RF events were followed by a more stable part 

fluctuating around the variance of the data (dashed line).  For the first stage of 

dome growth (Nov. 96 to Mar. 98), the time scale corresponding to the first stabi-

lisation level of the variogram (around the variance) was estimated to be between 

20 and 40 days for H, LP and RF events.  

These time series exhibit a persistent behaviour; i.e., the activity occurring to-

day presents some similarity with the activity of the 3-5 weeks before. Such be-

haviour was not observed for VT events; its variogram was not showing a signifi-

cant growing behaviour. For the second stage of dome growth (Nov. 99 to Feb. 

03), the variographic analysis has lead to similar results, except for the time scale 

associated to the RF events which displayed a significant increase and reached a 

value equal to about 150 days.  
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For the stage of dome dormancy, no structured behaviour was observed for VT, 

H and LP events. The only persistent behaviour was displayed by the RF events 

with a time scale between 30 and 50 days.  

For the different dome stages, similar types of persistent behaviours were also 

detected for the time series of daily cumulative magnitude. The absence of persis-

tent behaviour during dormancy could be related to classification problems for the 

VT events and to the low level of seismic activity for the H and LP events during 

that period. 

Fig. 3. Cross variograms for time series RF – LP and LP – LP_cm during episodes of dome 

growth Nov. 96 - Mar. 98 and Nov. 99 - Feb. 03) and dome dormancy (Mar. 98 - Nov. 99). 

The calculation of cross variograms by period was performed on the basis of 

the largest correlation coefficients. The pairs RF – LP and LP – LP_cm events 

were selected due to their persistent behaviour during periods of dome growth 

(Fig. 3). The time scales for the first period of dome growth were equal to ap-

proximately 20 days for the pairs RF – LP and LP – LP_cm and then these time 

scales increased to about 70 to 100 days for the second period of dome growth. 

6.3 Precursor identification 

Time series with persistent behaviour represent potential precursors. Their capa-

bility needs however to be evaluated in relation to forecasting specific eruptive 
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events. Precursor identification was achieved by parameter monitoring of time se-

ries prior to the onset of dome growth in November 1999. 

Monitoring changes in parameters was performed by (cross) variogram calcula-

tion using a moving window approach. Instead of calculating the (cross) 

variogram for the entire period of dome growth (or dormancy), it was computed 

by applying a moving window of 100 days along the entire time series. By esti-

mating parameters for each (cross) variogram, the evolution of the behaviour for 

the time series can be monitored in terms of persistence and intensity. 

This approach was applied for the RF events and the time series LP and 

LP_cm. In both cases, the monitored (cross) variogram parameters display behav-

iours with higher parameters values for period of dome growths in comparison to 

the period of dome dormancy.  For the RF events, the variogram parameter, B, 

specifying the relative intensity of the stochastic component varies between 0 and 

1. For the time series LP and LP_cm, the cross variogram parameter, G, is ob-

tained by integration of the variogram at the window scale. This parameter deliv-

ers a measure of the overall time variability at the window scale between two time 

series.

Fig. 4. Forecasting the onset of dome growth using univariate parameter monitoring esti-

mated from rockfall events (above) and multivariate parameter monitoring estimated from 

long-period events and their cumulative magnitude (below). 

Both monitored parameters exhibit an upward trend occurring months before 

the onset of the dome growth in November 1999 (Fig. 4). These trends can be 

considered as precursory behaviours indicating changes in the volcanic edifice in 

terms of persistent behaviour for RF events as well as in terms of correlation be-

tween the time series LP and LP_cm. 

The monitoring of delay effects offers precursory potential. This parameter cor-

responding to a shift in time of the maximal correlation between two time series 

can be estimated using the asymmetrical behaviour with respect to the origin of 
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the cross covariance (Wackernagel 1995, Jaquet and Carniel 2001). The forecast-

ing capability of delay effects is currently under investigation. 

The application of parameter monitoring for forecasting remains problematic, 

since no uncertainty can be evaluated, the making of any decision becomes diffi-

cult. The realisation of forecasts with uncertainty requires the use of stochastic 

simulation on basis of potential scenarios. Such approach was attempted by Jaquet 

et al. (2004). The probability of occurrence for the onset of the dome growth over 

a period of several months was estimated on the basis of potential scenarios of 

seismic activity. Such forecasts constitute valuable input data as required by prob-

abilistic risk assessments.   

7 Conclusions 

A geostatistical framework is provided for analysis and forecasting of volcanic ac-

tivity using multi-parametric (incomplete) time series sampled at active volcanoes. 

This stochastic approach, applied in the time domain, allows detection and quanti-

fication of time (cross) correlation using (cross) variograms. The identification of 

precursors is achieved by parameter monitoring of specific parameters estimated 

from multi-parametric time series. Using precursory behaviour, forecasts are pro-

duced by stochastic simulation and their associated uncertainty is estimated within 

the framework of Monte Carlo approach. 

The DEVIN approach provides forecasts with uncertainty as required by prob-

abilistic risk assessments. In particular, such valuable input can be integrated to 

the formalism of generalised Bayesian Belief Networks (BBN) as applied by 

Aspinall et al. (2003). The BBN principle constitutes an increasingly accepted ap-

proach for performing decision-making under uncertainty. Using such approach, 

capable of accommodating any forecasting results (see, e.g., Aspinall et al. 2004), 

should enable to constraint the range of forecast uncertainty when performing de-

cision-making during volcanic crises. 

Further developments will consist in evaluating other types of multivariate pa-

rameters for monitoring time series in relation to specific volcanic events. In terms 

of forecasting, multivariate methods for stochastic simulations will be investigated 

in order to produce estimate of probability accounting of cross correlation between 

time series with potential precursory behaviour. 

In terms of perspectives, these developments can be applied to other domains of 

the earth sciences, in particular for the analysis of incomplete and short time series 

monitoring geophysical parameters in relation to the forecasting of geological and 

hydrological hazards such as landslides, rock instabilities and floods. 
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1 Introduction 

A costal zone management (CZM) program should have well defined zones that 

can be managed based on their specific characteristics and needs. Once estab-

lished, these management units constitute the backbone of the whole management 

strategy. The objective of a zoning plan is to delineate smaller areas that can be 

managed in a more flexible way (Cicin-Sain and Knecht 1998). Over the last few 

decades, there has been a move towards developing ways to identifying these units 

(McGlashan and Duck 2002). 

The definition of the transition zone between the ocean and terrestrial environ-

ment, ocean and coastal zones, and zones (or units) within the coastal areas is 

sometimes not an easy task. Physical criteria, political boundaries, administrative 

boundaries, arbitrary distances or selected environmental units can and are often 

used (Clark 1996). 

Most CZM projects use administrative boundaries instead of adopting an eco-

system approach looking at impacts coming from outside the area considered 

(Belfiore 2000). Coastal management units are evolving by becoming more inclu-

sive, relying more on processes than on administrative boundaries and by incorpo-

rating a wider range of expertise in defining relevant areas (McGlashan and Duck 

2002). The correct way to delineate estuarine management units is based on the 

development of robust and ecological representative processes. Eventually, these 

processes can be implemented using automatic procedures capable of providing 

promptly answers to complex problems. The automatic procedure proposed here 

draws inspiration on previous work developed in geographic zone design. In fact, 

the task of developing estuary management units can be viewed as a special case 

of the more general problem of geographical zone design (Martin 2000). Zone de-

sign is a long-standing geographical problem that is present in a number of geo-
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graphical tasks; the best known example probably is electoral districting (Williams 

1995, Macmillan and Pierce 1994). Zone design algorithms have also been used in 

a variety of tasks; such as school districting (Ferland and Guénette 1990), the de-

sign of zones with appropriate characteristics for posterior socio-economic and 

epidemiological analysis (Haining et al. 1994, Openshaw and Rao 1995, Open-

shaw and Alvanides 1999), the design of sales territories (Fleischmann and Para-

schis 1988) and census output geography (Martin 1997, Martin 1998). 

The aim of this paper is to develop an automatic optimization procedure, based 

on genetic algorithms, to delineate sediment estuarine management units, and to 

compare these results with a well-established multivariate geostatistical method. 

Both approaches will be illustrated using the Sado Estuary. The resulting man-

agement units will represent the support infrastructure of an environmental data 

management framework to monitor this ecosystem. 

1.1 Zone design using multivariate geostatistical tools 

Geostatistical techniques like kriging allow estimation of attribute values at un-

sampled locations taking into account the spatial continuity of the data (Soares 

2000). Since kriging is preceded by an analysis of the spatial structure of the data, 

the average spatial variability of the data is already integrated into the estima-

tion/interpolation process (Wackernagel 1995).  

Multivariate methods like principal component analysis, cluster analysis and 

discriminant analysis can be coupled with the different types of kriging (Oliver 

and Webster 1989, Reed et al. 2001, Goovaerts 2002) allowing one to group sam-

pling sites that both have similar properties and are geographically close. With 

these multivariate geostatistical techniques interpolation is improved, small occur-

rences of one kind of land within others of fairly similar kind are disregarded and 

undesirable fragmentation avoided (Goovaerts 1997, Reed et al. 2001). 

For example (MacDonald et al. 2000) developed an ecosystem-based frame-

work for assessing and managing sediment quality conditions in Tampa Bay pre-

viously defined management areas. Those areas were delineated using interpolated 

contour lines based on sediment chemistry data and guidelines of potential adverse 

effects. Picollo et al. (2003) used homogenous units for the coastal zone manage-

ment of the Ligurian region. These subdivisions of the coast corresponded to 

physiographic units (topographic elements). 

1.2 Zone design using genetic algorithms 

The constraints of the zone design problem are similar to the ones that character-

ize the clustering problem. Let the set of initial areal units be X = {x1, x2…, xn},

where xi is the ith areal unit. The number of zones is denoted  k, and Zi is the set of 

all the areal units that belong to zone Zi. Then: 

iZ , for 1,..., ,i k (1) 
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i jZ Z , for ,i j (2) 

1

k

i iZ X (3) 

These constitute the set of constraints that can be applied equally in clustering 

and in zone design. Nevertheless, the typical zone design task usually presents an 

additional constraint, which accounts for contiguity and creates a more complex 

problem (Macmillan and Pierce 1994). We will not address the issue of contiguity 

here, as it is irrelevant in the context of this research. However the automatic pro-

cedure described below guaranties that the zones created will be contiguous. 

To deal with the zone design problem a number of different algorithms have 

been proposed (for a thorough review in the context of electoral districting, see 

Williams 1995). Nevertheless, there are two major problems in applying the exist-

ing automatic zone design algorithms to the development of estuary management 

units. First, most of the algorithms described in the literature are not available as 

they result from research efforts and most of them were never implemented as 

software packages. Second, most algorithms are based on an areal perspective of 

the zone design problem, i.e. they use areas as the basic units for zone design, 

which conflicts with the point supports used in the context of this research.  

The zone design algorithms proposed in the literature use different optimization 

strategies ranging from hill climbing procedures (Horn 1995) to simulated anneal-

ing (Macmillan and Pierce 1994, Openshaw and Rao 1995), tabu search (Open-

shaw and Rao 1995) and linear programming associated with branch-and-bound 

(Mehrotra et al. 1998). Genetic Algorithms (GA) remain largely unexplored in 

this field. To our knowledge the only reference is Altman (1998) and no details 

are provided on how GA’s were applied to this particular problem. However, 

GA’s have been used extensively as search procedures in related fields such as the 

P-Median Problem (Correa et al. 2001) and Cluster Analysis (Murthy and Chowd-

hury 1996). Other fields facing complex optimization problems, such as Pattern 

Recognition, Image Processing and Machine Learning (Ankenbrandt et al. 1990, 

Belew and Booker 1991, Back et al., 1997) have also benefited from the use of 

GA’s. 

One of the reasons why the zone design problem is especially difficult is the 

size of the solution space. The dimension of a “usual” real world problem makes 

unfeasible any attempt to enumerate all the possible solutions explicitly (Cliff and 

Hagget 1970). The total number of possible solutions, S, for a zone design prob-

lem, is similar to the clustering problem and is calculated as the Stirling number of 

the second kind (Anderberg 1973, Keane 1975): 
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This means that for a medium size problem like the one addressed in the results 

section of this paper, S (153, 19) yields 3.65*10178 possible solutions. Addition-

ally, in terms of computational complexity the zone design problem has been 

shown to be NP-Complete (Altman 1997). Thus, heuristic techniques seem to be 

the best way available to produce solutions in reasonable computational time. 
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2 Methods 

2.1 Sampling design

Sediment samples were collected at 153 sites using a Global Positioning System, 

according to a systematic unaligned sampling design (500  750 m) to provide a 

uniform coverage of the area as well as pairs of close observations required for 

modeling the short-scale variability. In each site 3 sediment characterization at-

tributes were determined: Fine Fraction content (FF), Total Organic Matter (OM) 

and Redox Potential (Eh) (Caeiro et al. 2003a). The central problem consisted in 

building a small number of regions (areas) based on the original 153 sample 

points. This will enable the periodic monitoring and adequate management of the 

estuary. Boundaries of spatially contiguous and homogeneous regions of sediment 

structure were derived through two alternative approaches described below. 

2.2 Multivariate Geostatistical approach 

This method starts with a principal component analysis (PCA) of original data 

(FF, TOM and Eh), followed by the computation and fitting of a spherical model 

to the experimental semivariogram of principal components (PC) scores. Follow-

ing Oliver and Webster (1989), the dissimilarity between any two sampling sites i 

and j is then computed as: 
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Where: 

dij - Distance in the attribute space between i and j
c  - Sill of the spherical semivariogram model  

0c  - Nugget variance 

a - Range of the spherical semivariogram model 

uij - Euclidean geographic distance between i and j.
 These values are assembled into a dissimilarity matrix that undergoes hierar-

chical clustering using the complete linkage rule (Everitt and Dunn 2001). The 

spatial continuity of each cluster is characterized using semivariograms computed 

on indicators of occurrence of these clusters. Indicator kriging is then used to in-

terpolate the probability of occurrence of the clusters at unsampled locations. Fi-

nally, each grid node is assigned to the cluster with the highest probability of oc-

currence (maximum likelihood classification).  

This method generates relatively smooth maps showing locally dominant 

classes, uncluttered by outliers. This procedure fulfills the purpose of computing 

contiguous sediment regions for management and monitoring purposes. A detailed 

description of this method is available in Caeiro et al. (2003a). The area corre-
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sponding to the sampling points was further clipped with the study area boundary 

including the coast line (Caeiro et al. 2003b) using ArcGIS 8.0 software.  

2.3 Genetic algorithms approach 

Genetic algorithms (GA) are a subset of a broader and rapidly expanding area 

known as Evolutionary Computing (Fogel 2000). As the name indicates, these al-

gorithms drew inspiration on Darwin’s theory of evolution, and have been used to 

solve hard optimization and machine learning problems (Goldberg 1989). The ba-

sic idea is that each solution to the problem is coded as a bit string, a chromosome, 

possibly with a number of sub-strings that act as genes. At any given point in time 

(or generation), a number of such chromosomes are kept, each representing a dif-

ferent “individual” or solution to the problem. Natural selection is simulated by 

evaluating the fitness (or goodness) of each solution, measured by how well it 

solves the problem at hand, and giving the best individuals a higher probability of 

being chosen to breed (crossover) and thus passing their characteristics into the 

next generation. To obtain new solutions, two operators are used: crossover, and 

mutation. Crossover is implemented by combining bits of two different chromo-

somes (possibly divided along genes) to form a new solution, while mutation 

amounts at randomly changing some bits or chromosomes. The details of how this 

basic idea is implemented may vary considerably. 

Given enough time, a conveniently coded GA will always find an optimal solu-

tion. However, to obtain reasonable solutions within reasonable time, care must be 

taken in the encoding of the problem into chromosomes, and in the choice of the 

fitness function that will be optimized. 

The application of genetic algorithms to the development of estuary management 

units first requires a strategy for encoding a solution to the problem. In other 

words, a specific partition of the sampling points into a smaller set of management 

units needs to be encoded in such a way that genetic operators may be used. This 

could be performed using a number of different ways (Bação et al. 2004). Bearing 

in mind that in the specific case of estuary management units compactness is not a 

relevant constraint, the encoding used here enables the seed of each management 

unit to be placed anywhere within a rectangle comprising the study region.  

Each string represents a possible plan configuration, and the fitness of each 

specific configuration is evaluated using the following expression: 

k

i
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zvizv xxmin

1 1 1
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where izvx represents the value of sampling point i from management unit z for 

variable v, and zvx  represents the mean value of variable v in management unit z.

In order to assess the fitness of each solution we have to calculate the sum of the 

distances between each sampling point and the mean of the management unit to 

which it belong along all variables. Finally, the quality of the solution is assessed 

by the sum of the distances within all the management units. 
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The genetic algorithm is initialized with a random population of size p. For the 

encoding described above, p strings of length 2*k are initialized. This is done by 

forcing all elements of the strings to be located within a rectangle comprising the 

study region. GA literature does not provide guidelines for choosing the size of the 

initial population. In this study 10 parallel populations were used, with different 

string numbers. Migration of strings between populations can occur with a prob-

ability of 0.001. Identical strings are not allowed, so there are no twins in the 

population. 

The type of selection used is tournament (Goldberg 1989). Sensitivity analysis 

led to the choice of a uniform crossover, with a probability ranging from 0.95 to 1. 

Mutation rate was 0.001 and 0.002, and an elitist strategy was adopted, assuring 

that the best individual of the population would always be carried to the next gen-

eration. Different stopping criteria were also used. 

Thus, the algorithm proceeds as follows: 

1. Generate p sets of k points, according to the selected encoding.  

2. For each of the n sampling points find the closest seed, and assign the sam-

pling point to the seed.  

3. Evaluate the fitness of each string, based on equation 6. 

4. Apply selection, crossover and mutation operators, creating a new popula-

tion; 

5. Return to step 2 until the stopping criterion is met.  

The final result is a classification of the sampling points into n zones. To gener-

ate areas (management units) an allocation function was computed using the Spa-

tial Analyst extension of ArcGIS 8.0 software. 

3 Results 

In this section we compare the results provided by the two approaches. The major 

goal is to identify the differences rather than trying to prove the superiority of one 

technique over the other. The elusiveness of a strict objective criterion to the de-

lineation of estuary management units forces a somewhat subjective analysis of 

the results. The use of expert knowledge was one of the ways of circumvent this 

difficulty.  

3.1 Multivariate Geostatistical approach 

The hierarchical classification yielded four clusters that are reasonably distinct, 

with a decline in organic load from Cluster 1 to 4: HO – High Organic; MHO – 

Medium High Organic; MO – Medium Organic and LO – Low Organic loads 

(Fig. 1). For each cluster, the indicator semivariogram was computed along four 

directions and a geometric anisotropy model was fitted visually. All 

semivariograms display longer ranges in the direction of azimuth 120º, which cor-

responds to the water flow and is in agreement with other studies (Martins et al.



Delineation of estuarine management units: Evaluation of an automatic procedure      435 

2001). Maximum likelihood classification performed on estimated probabilities 

generated 70 areas after clipping with the estuary costal line. The areas smaller 

than the sampling grid size were assigned to the neighboring area with the longest 

common border, resulting in a final set of 19 management units. A detailed de-

scription of the methodology is available in Caeiro et al. (2003a). Results of clus-

ter classification of the 153 sampling points and the corresponding 19 manage-

ment units are displayed in Fig. 1.   

The results of this method are generally in agreement with earlier work per-

formed in the estuary (Rodrigues and Quintino 1993). Low organic load sediments 

correspond essentially to the estuarine entrance and tend to extend to the inside of 

the estuary, basically through the southern channel (see at the estuary entrance, a 

large homogenous area of low organic load, LO1 - Fig. 1). In the middle of the es-

tuary bay the gradient splits into two major components, one directed towards the 

North Channel and the other towards the South Channel in accordance with the 

water flow. Since high organic load areas are associated with low hydrodynamics 

and rich organic discharges, they are more common in the North Channel near in-

dustrialized zones and the city of Setubal. They are also distributed in small ho-

mogenous areas (Fig 1). These results were compared to the classification pro-

vided by two other multivariate approaches using map similarity measurements 

(Caeiro et al. 2003a, Caeiro et al. 2004). These previous studies demonstrated the 

robustness of this multivariate approach, indicating that the different methods 

yield similar results and thus are of equal value to delineate management units in 

the estuary.  

Fig. 1. Classification of the 153 sampling point produced using hierarchical classification 

(four clusters), and the final set of 19 management units obtained with the multivariate geo-

statistical approach. 

3.2 Genetic algorithms approach 

Genetic algorithm was run using five different sets of parameters (see Table 1) 

and under the constraint of creating 19 areas. Solution S1 achieves the worst result 
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in terms of within cluster variability, nevertheless it is important to note that only 

50000 individuals (10 populations of 10 individuals over 500 generations) were 

evaluated, which constitutes a very small fraction of the solution space 

(3.65*10178). This result indicates that genetic algorithms are quite robust, as they 

need to search only a small amount of this space in order to find good solutions. In 

the case of S5 the algorithm stops after 1000 generations without improvements in 

the objective function, yielding a total of 2907 generations. Only solution S1 did 

not lower the within cluster variability produced by the geostatistical method 

(134.17).  

Table 1. - Results and parameter specification of the 5 runs performed in the genetic algo-

rithm. 

Sum of Within 

management unit 

variability 

Population Mutation Stopping Criterion Crossover  

probability 

S1 143.92 10*10 0.001 500 generations 1 

S2 123.30 10*15 0.001 1000 generations 1 

S3 123.05 10*25 0.001 800 generations 1 

S4 126.16 10*25 0.002 800 generations 0.95 

S5 117.19 10*25 0.001 2907 generations 0.95 

Because of the page limitations, only the best (S5) and worst results (S1) are 

displayed (see Fig. 2 and 3). The analysis of the maps shows that S5 is able to iso-

late 6 sampling points into 4 areas, which creates smaller areas while improving 

the objective function. The two solutions are, however, characterized by similar 

spatial pattern of the management units.  

The genetic algorithm yields 19 management units without clustering them in 4 

groups, which makes the comparison with the geostatistical method more difficult. 

The final result is the classification of each sampling point into one of the 19 man-

agement units, unlike the geostatistical approach which produces surface areas. 

Despite these differences the analysis of the resulting maps shows that similar pat-

terns of small areas are found in the North Channel. In fact, the general results are 

quite similar in terms of the “macro” trends. The genetic algorithm identifies small 

management areas (like area nº 19 in Fig. 2 or nº 8 in Fig. 3), which were also de-

tected by the multivariate geostatistical method (see Fig. 1 cluster results), but as 

the interpolation procedure only yielded an area smaller than the sampling grid 

size, that was discarded. The split gradients in the North and South channels dis-

played by the hierarchical classification are less noticeable in the two solutions of 

the genetic algorithm. This can be explained by the fact that the genetic algorithm 

does not take into account the anisotropic pattern of variability of the attributes, 

which can be modeled and incorporated using the geostatistical approach. The es-

tuarine sedimentary environment is strongly controlled by the water flow, which 

supports the existence of the long areas identified by the geostatistical method, 

particularly in the south channel where the hydrodynamics is higher, representing 

the natural physical behavior. Due to distance restrictions imposed by the encod-

ing the genetic algorithm is unable to create elongated areas (see areas nº 7 and 11 
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in Fig. 2 or nº 7 and 18 in Fig. 3, that correspond to one single area – LO1 in 

Fig. 1). 

Fig. 2. Classification of the 153 points produced using the genetic algorithm approach – S1.  

Fig. 3. Classification of the 153 points produced using genetic algorithm approach – S5. 

About 60 % of the total number of the GA’s areas of both solutions 1 and 5 are 

mainly formed by one single cluster (i.e. proportion is higher then 80 %). How-

ever, in solution 5, only 31.6 % of the areas are 100 percent classified as belong-

ing to one single type of cluster, compared to 15.8 % for Solution 1. In spite of 

this S1 seems to represent better the estuary hydrodynamic behavior, and is more 

in accordance with the geostatistical approach. In addition, 47.4 % of the 19 cen-

troids of Solution 1 are associated with one single centroid of the management 

units of geostatistical approach compared to only 36.8 % in solution 5. 

In order to organize the major findings of this study, the quality of each solution 

was assessed using four point expert evaluation criteria, see Table 2. As expected, 

the quality of the ecological representation is superior in the geostatistical method, 

as it accommodates specific needs related to underlying phenomena, such as the 

hydrodynamic behavior. Nevertheless, it is noteworthy that the genetic algorithm 
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is not inadequate, since for instance the expert assessment is quite encouraging 

(does not need to have an in-depth understanding of the methods). 

Table 2. Assessment scores of the results of the multivariate geostatistical approach (MG) 

and solutions 1 and 5 provided by GA. Best score is 3. 
Method Sum of within 

management unit 

variability 

Ecological in-

terpretation (N-

S differences) 

Ecological inter-

pretation (Hydro-

dynamic behavior) 

Required knowl-

edge about the 

method from the 

user*

Expert As-

sessment

Total 

MG 134.17 3 3 1 3 10 

 S1 143.92 2 2 3 2 9 

 S5 117.19 2 1 3 2 8 

* 1 means that the user needs to have an in-depth understanding of the methods. 

4 Conclusions 

In this paper, we implemented a genetic algorithm approach for the delineation of 

management units in estuary and the results were compared to a multivariate geo-

statistical approach based on a hierarchical clustering of a spatial dissimilarity ma-

trix followed by indicator kriging. Although the task of comparing such different 

approaches is difficult, due to different types of outputs and the absence of a “ref-

erence truth”, this study indicates that the results of both methods are relatively 

similar. The automatic procedure presented here has the potential to become a 

valuable option in the delineation of estuary management units. The current ge-

netic algorithm can provide a benchmark for other approaches; enabling the possi-

bility of critical assessment of theoretical based approaches.  

The first solution S1, although with higher within area variability, seems to rep-

resent better the ecological behavior of the estuary (see Table 2). This fact may 

indicate that using the within management unit variability as the optimization cri-

teria might be misleading, or at least it can be improved. Finally, future work 

should investigate alternate encoding options which would enable the algorithm to 

produce more elongated, and still contiguous, areas. This improvement should 

lead to a better representation of the hydrodynamic effects, which play a relevant 

role in the definition of the management units. 

In this study the issue of defining the number of regions was not addressed. 

Clearly, in the future, the genetic algorithm should incorporate new strategies for 

the automatic computation of the number of regions to be built. This should capi-

talize on the work developed within cluster analysis, for instances the application 

of a pseudo F statistic developed by Calinski and Harabasz (1974) or the cubic 

clustering criterion proposed by Sarle (1983). 
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Estimating indicators of river quality by 

geostatistics

C. Bernard-Michel and C. de Fouquet

Ecole des Mines de Paris, 35 rue Saint Honoré, 77305 Fontainebleau, France. 

1 Introduction 

In order to assess river water quality, nitrate concentrations are measured in dif-

ferent monitoring stations. The information contained in these measurements is 

summarized in a few synthetic quantitative indicators such as the 90% quantile of 

yearly concentrations or the annual mean making it possible to compare water 

quality in different stations, and its yearly evolution. The current French recom-

mendations are based on the French water quality’s evaluation system (SEQ EAU, 

http://www.rnde.tm.fr/) and the water framework directive in Europe, which aims 

at achieving good water status for all waters by 2015. 

These calculations, however, use the classical statistical inference, essentially 

based on a hypothesis proved to be incorrect for nutrients (Bernard-Michel and de 

Fouquet 2003): time correlations are not taken into account. Moreover, the sea-

sonal variations of concentrations and the monitoring strategy are ignored. For ex-

ample, because of the run-off or the leaching of fertilizer, nitrate concentrations of 

Loire Bretagne basin are often high in winter and low in summer (Payne 1993). 

Thus, if sampling is increased in winter out of precaution, the annual mean and the 

quantile can be falsely increased. It is therefore necessary to develop methods that 

take into account both time correlations and sampling dates, especially in case of 

preferential sampling. We propose to assign kriging weights or segment of influ-

ence weights (Chilès 1999) to measurements for both indicators and to use a linear 

interpolation of the empirical quantile for the estimation of the 90th percentile. 

In this paper, methods are presented and compared for nutriments on simulations. 

2 Example 

Fig. 1 (left) shows an example of real nitrate concentrations measurements from 

the Loire River in 1985. The indicators have been estimated first with the totality 

of measurements (6 in summer, 12 in winter), then with an extracted sample of 

one regular measurement a month. 
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Fig. 1. Preferential sampling of nitrates concentration during one year at one monitoring 

station. Left: the measurements frequency is doubled in winter; Right: associated kriging 

weights.

Table 1. Statistical annual mean and quantile of nitrates concentrations.  

Sample size Sample mean 90% empirical quantile 

12 6.16 9.70 

18 7.41 14.19 

Classical estimations are presented in Table 1: usual indicators are obviously 

increased when sampling is reinforced in winter. It is a consequence of the prefer-

ential sampling and of the presence of time correlation showed for many nutri-

ments (Fig. 4). It therefore appears necessary to develop methods to better assess 

yearly temporal mean.  

3 The annual mean: statistical parameter or time average? 

3.1 Methods 

Experimental temporal variograms calculated on nitrates concentrations show for 

most of the monitoring stations the evidence of a time correlation. The sample 

mean (i.e. the arithmetic mean of experimental data) is an unbiased estimator for 

independent data or regularly spaced correlated data (with certain exception). In 

presence of time correlation, it is no longer the case when sampling is irregular or 

preferential. To correct this bias, two methods were studied:  

Kriging with unknown mean (OK) which takes into account correlation in the 

estimation of the annual mean and in the calculation of the estimation variance; 

A geometrical declustering whose objective is only to correct the irregularity of 

sampling.  

These methods are presented below and compared later on simulations (2.2): 

1. Classical statistical method (Saporta 1990): sample values 1 2, ,..., nz z z  are in-

terpreted as realizations of independent random variables 1 2, ,... nZ Z Z which all 
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have the same distribution, with expectation m . The yearly mean corresponds 

to the estimation of this expectation, using the sample mean (1) denoted *m .

The estimation variance (2) is deduced from the experimental variance 2  :

*

1

1 n

i

i

m Z
n

(1) 

2

n nVar Z m Var Z
n

 with 
2

2 *

1

1

1

n

i

i

Z m
n

(2) 

2. Temporal kriging (Chilès 1999): sample values are interpreted as a realization 

of a random correlated function Z t at dates 1 2, ,..., nt t t . We don’t estimate 

anymore the parameter of a distribution, but the temporal 

mean
1

T

T

Z Z t dt
T

, still defined even in absence of stationarity. This quan-

tity is estimated using ordinary “block” kriging, with constant but unknown 

mean :

*

1

n

T i i

i

Z Z where i  are kriging weights 
(3) 

*

1 1 1

( ) , 2
n n n

T T

T

Var Z Z C t t C T T C t t dt  (4) 

Analytical expressions are easy to calculate at 1D, without any discretization 

(Matheron 1970; Journel 1977). Fig. 1 (right) gives an example of kriging 

weights, assigning lower weights to winter values, which avoids an estimation 

bias. The estimation variance and confidence interval, overestimated by classi-

cal statistics, are reduced by kriging taking into account the temporal correla-

tion and the annual periodicity of the concentration. 

3. Geometrical method (Chilès and Delfiner 1999) by segment declustering, cor-

responding to 1D polygonal declustering. This technique consists in weighting 

each data by the relative length of its segment of influence, in the linear combi-

nation (5). An example for 4 measurements is given in Fig. 2. Calculating the 

estimation variance necessitates the variogram.  

*

1

n

T i i

i

Z Z where i  are segment of influence weights (5) 

2 3 4

d2/365.25

=  weight 2

d3/365.25

=  weight 3

d4/365.25

=  weight 4

1

d1/365.25

=  weight 1

3 6 5 ,2 5  d ays

Fig. 2. Example of segment declustering for 4 measurements 



446      C. Bernard-Michel and C. De Fouquet 

3.2 Testing methods on simulations 

3.2.1 Choice of the monitoring station 

In order to quantify the improvements of the new proposed methods, it would be 

necessary to have examples in which the annual mean is known. Because it is im-

possible, we propose to simulate 365 days of measurements based on a real data-

set. We then admit that one measurement a day exactly determines the yearly 

mean.

The best sampled monitoring station available was on the Loire river in Orlé-

ans: in 1985, 1 measurement was taken every 2 days, in 1986, 1 measurement a 

week, and for other years 3 measurements a month. A Gaussian sequential condi-

tional simulation of “daily” concentrations over ten years with respect to experi-

mental data in Orleans and the fitted experimental variogram (Fig. 4) was con-

structed (Fig. 3, only the 1985 simulated values are presented). Then, samples 

were extracted to compare the annual means exactly known to the three estimation 

methods. 
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Fig. 3. Conditional simulation based on the real measurements. Loire river in Orléans. 

3.2.2 Variogram model 

The experimental variogram calculated over several years for Orléans (Fig. 4, 

right), reflects the annual periodicity of nitrate concentrations. The variogram cal-

culated over one year with a lag of 2 days (Fig. 4) show the predominance of this 

periodical component. In these mean temporal variograms, winter or summer val-

ues are not distinguished. Variograms calculated for each season would differ, but 

as we are interested in the global annual statistics, the averaged variogram on one 

year is here sufficient (Matheron 1970). 
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Fig. 4. Experimental variogram for nitrate at Orleans. Left, calculation for one year, lags of 

2 days. Right, calculation for 8 years, lag of 30 days. This variogram has been fitted manu-

ally by the sum of a nugget effect, a spherical model and a cosinus model. 

3.2.3 Simulations and results 

In Fig. 5, a comparison between the estimation of the annual mean by statistics 

and geostatistics over 10 years is presented. The estimations are given with their 

95% confidence intervals and compared to the real value of the annual mean esti-

mated with 365 measurements. Samples are preferential (6 values in summer, 12 

in winter) and have been extracted from the simulation. Fig. 5 (left) confirms that 

the corresponding sample mean is often higher than yearly mean, and moreover it 

leads to a correspondingly large 95% confidence interval. The bias is well cor-

rected by the geostatistical and geometrical methods for which weights are equiva-

lent (Fig. 5, right). Nevertheless, kriging directly gives the estimation variance. 
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Fig. 5. On the left, estimations by sample mean and kriging are presented with their associ-

ated 95% confidence interval. They’re compared to real annual mean. On the right, scatter 

diagram between weights, for kriging (abscissa) and for segments of influence (ordinates).  

For most of the years, kriging gives better estimations than statistics and more-

over 95% confidence intervals are about twice smaller than the ones given by sta-
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tistics, and always include the true yearly mean. These results are confirmed on 

1000 simulations (Table 2). Other examples for different stations, parameters and 

with different sampling strategy can be found in Bernard-Michel and de Fouquet, 

2003. 

As first conclusion, kriging corrected the bias in case of preferential sampling, 

better assessed yearly mean, and better predicted the precision of this estimation. 

However, if we are only interested in the value of annual mean, segment declus-

tering can be used because of its simplicity. If the precision is needed, then kriging 

should be preferred. 

Table 2. 1000 simulations : comparison of statistics and geostatistics estimations in average 

for a preferential sampling (12 measurements in winter, 6 in summer)- 

Average of the 1000 annual mean estimated with 

365 measurements 
6.72

Preferential sampling Statistics Geostatistics 

Average of the annual means 7.62 6.72 

Average of the predicted standard deviations of es-

timation errors  
0.97 0.42 

Experimental standard deviation of error 0.93 0.31 

Experimental 95% confidence interval [7.10;8.12] [6.07;7.37] 

4 Estimation of the 90% quantile 

The 90% quantile is used by water agencies to characterize high concentrations, 

potentially the most dangerous for human health. However, today’s recommenda-

tion to approach the 90% quantile is based on the empirical quantile. This statisti-

cal method is proved to be problematic for the following reasons: 

It is a biased estimator (Gaudoin 2002). 

As the sample mean, it does not take into account time correlation, and sample 

irregularity. 

We first evaluated the bias of the empirical quantile in the case of independent 

variables, and proposed three methods to remedy. Then, we took into account the 

time correlation and the sampling irregularity by weighting the measurements. 

4.1 Bias of the empirical 90% quantile of independent data 

Generally, the estimation of percentiles is a part of extreme values theory (Coles 

2001). However, this theory is based on asymptotic theorems which require many 

measurements. As we will only dispose of an average of 12 measurements a year, 

we propose to use a classical non-parametric estimator: the empirical quantile 

(Saporta 1990, Gaudoin 2002). But this estimator is proved to be biased (Gaudoin 

2002). Moreover, this bias is a function of the sample size. This faces with a real 
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problem when tracing yearly quality or comparing stations with different sampling 

sizes.

Several methods were studied to reduce the bias: 

Linear interpolation of the empirical quantile : when all the n experimental data 

are different, the quantile of order i n is
1

2i

i i
Z Z

Z , the one of order  0 is 

the half of the minimum value, and the one of order 1 is the maximum experi-

mental value. Linear interpolation is applied between these quantile values.  

Use of a Gaussian anamorphosis linearly interpolated (Rivoirard 1994); 

Use of a Gaussian anamorphosis fitted with an Hermite polynomial function 

(Rivoirard 1994). 

The biases of the 90% quantile estimated by these methods are not theoretically 

calculable because the distribution of the concentrations is unknown. That’s why 

we propose to use simulations to evaluate them.  

In case of a usual distribution, the expression of the bias is known theoretically 

but sometimes hard to calculate. We’ve calculated it for a uniform distribution in 

order to compare it with simulations results. Because of the similarity of results, 

we deduced that simulations are a good method to evaluate the bias. 

Here we present results for 1000 realizations of an exponential distribution with 

expectation 1, samples sizes varying from 4 to 36. Because the variables are inde-

pendent, it is not necessary to construct all the 365 daily values of a year to extract 

the samples of different sizes. Results are given in average for each different sam-

ple size. The evolution of the 90% quantile, the experimental estimation variance, 

the 95% confidence interval and the distribution of errors are presented Fig. 6. 
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Fig. 6. Quantile estimation for independent variable, compared with theoretical value; re-

sults for 1000 simulations, as a function of sample size (a, b, c). Upper left figure a): aver-

age of quantiles estimation. Upper right figure b): experimental estimation standard error. 

Lower left figure c): experimental 95% confidence interval. Lower right figure d): histo-

gram of quantile errors for samples of size 12. Legend : 1 represents the empirical quantile, 

2 the linear interpolation of anamorphosis, 3 the hermitian interpolation of empirical quan-

tile, 4 the hermitian interpolation of anamorphosis, 5 the real quantile. 

The empirical quantile (Fig. 6a) presents a bias, strongly reduced by the other 

methods. Moreover, strong discontinuities for sample sizes proportional to 10 

make difficult the comparison between monitoring stations with different sam-

pling strategy. The three proposed methods are quite similar for samples whose 

sizes are greater than 10. They don‘t show any more discontinuities, but converge 

quite regularly toward the theoretical value. For this distribution, with 12 meas-

urements, the 90% quantile is overestimated using the three interpolations func-

tions, and clearly underestimated using the empirical quantile. 

Fig. 6b makes possible to evaluate committed errors in the quantile estimation. 

It gives the following experimental estimation standard error as a decreasing func-
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tion of the sample size. However, precision is not really satisfying even with 36 

measurements because it is still representing 20% of the real quantile. 

Fig. 6c presents for each sample size the interval containing 95% of the 1000 

quantile estimations, approximately symmetrical around the theoretical value. 

For sample of size 12, Fig. 6d shows that the distribution of the estimation er-

rors is nearly Gaussian for the 3 interpolation functions, but not for the empirical 

quantile. In this last case, the errors are not centered and not symmetrical.  

Other distribution examples (normal, lognormal, gamma and uniform distribu-

tion) have been tested leading to the same conclusions. Because of its equivalence 

to others methods, and its simplicity, the linear interpolation of quantile is advised 

for the estimation of 90% quantile and will always be used from now on. 

4.2 Case of temporal correlation: weighted data 

In presence of temporal correlation and in a limited field, we do not try any more 

to estimate the histogram or the quantile of the a priori distribution; this one corre-

sponds, for an ergodic model, to the distribution of a realization in an infinite 

field. For a fixed realisation, the distribution to calculate is the one of a random 

point in the field. Because of the limited number of data per station for one year, 

we examine an approximate calculation of this “global” distribution.   

4.2.1 Irregular sampling 

The bias of empirical quantile methods on independent variables can be resolved 

in practice with a linear interpolation of quantiles. As for the estimation of yearly 

mean, in presence of temporal correlation and irregular or preferential sampling, 

the weighting becomes necessary to avoid bias. The weights calculated for annual 

mean estimation (by kriging or segment of influence) are now used in the estima-

tion of the experimental histogram. Then, the estimated quantiles are calculated 

are compared below on simulations for irregular but not preferential sampling. 

The following example is based on real nitrate data of the Indre River. We have 

proceeded with 1000 conditional simulations of 365 days respecting real meas-

urements, using the fitted variogram presented on Fig. 7. From each simulation, 

samples of different sizes have been extracted, from 4 to 36 measurements a year, 

irregularly spaced in time. Thus we obtain 1000 samples of size 4, 1000 of size 5 

etc…. We estimate the 90% quantile for each sample and for each method. Results 

are given in average for each different sample size and shown in Fig. 8. They are 

compared to quantiles calculated in average on the 1000 simulations of 365 days. 

That means we consider that a 90% quantile is well determined with one meas-

urement a day.  
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Fig. 7. Mean experimental variogram (mg2 / L2 NO3) calculated with monthly sampling 

and fitted model for the monitoring station on the Indre River. The model is composed of 

nugget effect (21), cosinus model (period 365.25, amplitude 56) and spherical model (range 

1795, sill 35) 
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Fig. 8. Quantile estimation for temporal correlated variables, compared with the empirical 

quantity, for 1000 simulations. This empirical quantity corresponds to the mean, calculated 

on all the simulations, of the 90% quantiles of 365 values. All calculations are made by lin-

ear interpolation of quantiles. In abscissa for a), b), c), the sample size. Upper left figure a):

average of quantiles estimation. Upper right figure b): experimental estimation standard er-

ror. Lower left figure c): experimental 95% confidence interval. Lower right figure d): his-

togram of quantile errors for samples of size 12. 
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On Fig. 8a, the important bias of the empirical quantile is very well corrected 

by both kriging and segment of influence weighting. However, the estimation 

variance (Fig. 8b) is not clearly improved for the new proposed methods and is 

still quite important for a sample size of less than 36 measurements a year. Actu-

ally, for 36 measurements a year, errors still represent approximately 6% of the 

real quantile which gives an approximate 95% confidence interval (Fig. 8c) of 

%12 around the real quantile because of the quasi normal distribution of errors 

(Fig. 8d). For 4 measurements a year, it reaches 14% of the real quantile, and 9% 

for 12 measurements a year. By simulating data respecting variability and real 

measurements, we can determine the necessary sample size to reach a desired pre-

cision. The theoretical estimator of a confidence interval taking into account tem-

poral correlation would be difficult to construct. Even when random variables are 

independent, the theoretical announced interval (Gaudoin 2002) is not satisfying 

because it is limited by the higher order statistic. Simulations can be a solution to 

evaluate errors committed on estimations. Because results are similar with kriging 

and segment declustering, and because the estimation variance is difficult to assess 

for both methods, we propose in the future to weight measurements with segment 

influence segments, which is easier to automate. 

4.2.2 Preferential sampling 

Just as in paragraph 2.2.3, we compare statistical and kriging estimations on pref-

erential sampling in Orléans over 10 years. In Fig. 9, on the left we present a scat-

ter diagram between estimations on monthly sampling and preferential sampling 

in winter.  

10 11 12 13 14 15
estimated quantile

on monthly sampling

8
1
0

1
2

1
4

1
6

1
8

e
s
ti
m

a
te

d
 q

u
a
n
ti
le

 e
s
ti
m

a
te

d
 

o
n
 m

o
n
th

ly
 s

a
m

p
lin

g
 +

 
6
 m

e
a
s
u
re

m
e
n
ts

 i
n
 w

in
te

r

kriging declusturing

bisector

empirical quantile

8 10 12 14 16 18
quantile estimated on monthly

sampling + 6 measurements in winter

1
0

1
2

1
4

re
a
l 
q
u

a
n

ti
le

empirical quantile

bisector

kriging weights

Fig. 9. On the left a scatter diagram presents statistical and geostatistical estimations of 

quantile calculated with 12 or 18 measurements a year. On the right, the scatter diagram 

compares 18 measurements estimations to real quantile value 

Most of points are upper the bisector because of the bias created by the preferen-

tial sampling in winter. But kriging correct this bias (points are closer to the bisec-
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tor and always lower than statistics estimations. In Fig. 9, on the right, estimations 

are compared to the real 90% quantile. It shows a better precision of kriging. 

Conclusion

Kriging the annual mean allows to correct the bias induced by a preferential sam-

pling of high concentration periods. The kriging variance is lower than the pre-

dicted statistical variance of the mean of independent variables, namely because of 

the yearly periodic component of the variogram. Associated with a linear interpo-

lation of the experimental quantile function, the kriging weights give an empirical 

estimation of quantiles practically unbiased.  

The segment of influence weighting can be used to simplify the calculations. 

In all cases, one or two measurements a month are not sufficient for a precise 

estimation of the yearly 90% quantile. 
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1 Introduction 

Erosion of soil by water is a complex weathering phenomenon through which sur-

face soils are disaggregated and transported. Current human activity including 

construction, deforestation and reshaping of the surface accelerates erosion of the 

soil by rain and water streams and constitutes a growing problem, leading for in-

stance to desertification. It is increasingly considered a research priority, particu-

larly in sensitive areas with deep slopes, heavy rains and accelerated deforestation, 

natural or anthropogenic. 

Rainfall is one of the extrinsic factors that strongly affects the degree of erosion 

of a given site. The erosive capability of rain depends on several factors, but these 

can be summarised as kinetic energy and intensity. An approach involving kinetic 

energy is beyond the scope of this work but it is strongly related to intensity of the 

rain. Intensity, as expressed by the amount that falls for a unit of area and time, 

constitutes an important measure that affects the aggressiveness of heavy rain. It is 

measured by weather stations networks. 

All indices of soil erosion by water must take rainfall intensity into account 

(Loureiro and Coutinho 2001). For instance, Wischmeier (1959) proposed an in-

dex of aggressiveness that depends exclusively on rainfall intensity, measured 

over a period of 30 minutes. 

The main objective of this study is to present a space-time simulation method-

ology to enable the construction of sets of rainfall images, auto-correlated by 

global correlation measures. Unlike estimation methods whose main objective is 

the construction of an average map based on spatial continuity measures, stochas-

tic simulation methods consist of a set of methods able to generate numerical 

models or realisations of the spatial distribution of a categorical or numerical vari-

able. The set of outputs consists of equiprobable images in the sense that they 

have the same probability of occurrence (Journel and Alabert 1989, Goovaerts 

1997, 2000). These images obtained by simulation constitute an essential tool for 

the spatial analysis of a specific phenomenon, such as the probability of occur-

rence of extreme scenarios in each location and evaluation of the space of uncer-

tainty. 
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The set of simulated rainfall equiprobable images, which gives the space-time 

uncertainty, fed a deterministic surface dispersion model in a Geographical Infor-

mation System (GIS) to forecast the surface runoff of the selected area. Results 

from this space-time model - stochastic images of spatial dispersion of rainfall - 

can be used to visualise extreme situations of the hydrological behaviour of the 

watershed and local critical areas. 

2 Methodology 

Using climatic information from one year (monthly accumulated rainfall) based on 

measurements from 36 weather stations in the Algarve, southern Portugal, this pa-

per presents a combined methodology to simulate the hydrological behaviour of 

watersheds. A stochastic simulation technique is applied to characterise the space-

time dispersion of rainfall for a given period of time and to characterise the uncer-

tainty summarised for a specific watershed. 

Considering rainfall measurements z(tj, xi) from n weather stations (xi, i=1,…n)

and N time steps (tj, j=1,…N), a direct sequential cosimulation (CoDSS) algorithm 

is used (Soares 2001), which calls for the local estimates of rainfall in month tj at 

location xu, z(tj, xu) based on the rainfall of n neighbourhood values for the same 

month z(tj, x ) – the primary variable – and on the digital elevation model (DEM) 

at location xu, z1(xu), and the previously simulated rainfall images (z2(tk, xu), 

k=1,…tj -1) – the secondary variables. This is a collocated cokriging procedure 

with a multiple set of secondary variables. In order to avoid a large number of re-

dundant secondary images, principal component analysis (PCA) was used, which 

reduces the number of dimensions in the data for a maximum one or two principal 

components (PC) images, keeping most of the variance (NPC, with NPC << tj-1). 

This space-time geostatistical methodology for the stochastic simulation of 

rainfall can be summarised in the following sequence of steps: 

1. Calculation of basic statistics and correlation analysis for all measurements: 

elevation of each weather station z1(xi) and 12 monthly rainfall measurements 

z2(tj, xi), with i=1,n and j=1,N;

2. Use of PCA to calculate the PC corresponding to 11 datasets of monthly rain-

fall: 1) months t1 and t2; 2) months t1, t2 and t3, … and finally 11) months t1, t2,

t3, …, t11. For each run, selection of the PC with the highest eigenvalues above 

one (PC representing the amount of variance above the original variables, pre-

viously standardised). 

3. For the 11 datasets considered in the previous step, calculation of the global 

measures of correlation between each selected PC and the elevation of the 

weather station; 

4. Calculation of variograms and fitting theoretical models to monthly rainfall 

measurements and the selected PC as calculated with the 11 datasets of 

monthly rainfall; 
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5. Simulation of monthly rainfall images for the whole area by using the CoDSS 

algorithm for all time steps (ti,, i=1, …12), taking into account the following 

information: 

e.1) Month t1: rainfall measurements of this specific month (z(t1,xi),i=1,n)

and the DEM (z1(xu)) as a secondary information image.  

e.2) Month t2: rainfall measurements of this specific month (z(t2,xi),i=1,n)

and two images as secondary information, the DEM z1(xu) and the simu-

lated images for month t1: (z
s(t1, xu)). 

e.3) Month t3: rainfall measurements of this specific month (z(t3,xi),i=1,n)

and two sets of images as secondary information, the DEM z2(xu) and the 

selected PC images )( uPC xz
n

, built with data from previous months (t1

and t2).

…

e.12) Month t12: rainfall measurements of this specific month (z(t12,xi),i=1,n)

and two sets of images as secondary information, the DEM z2(xu) and the 

selected PC images )( uPC xz
n

, built with data from previous months (t1

through t11).

6. Using the DEM map, derivation of the flow direction and flow accumulation 

map for the entire area and identification of the Arade watershed; 

7. For each of the simulated monthly rainfall images 121),,( ,...jxtz uj

s

l ,

construction of the corresponding accumulation rainfall maps (one for each 

simulated scenario l);

8. Evaluation of the uncertainty of the rainfall model. Calculation of the maxi-

mum accumulation for each simulated scenario and displaying of comparative 

monthly results using box-plots.   

3 Direct sequential cosimulation 

To obtain the required simulation images, the CoDSS algorithm was used. This 

simulation method with a set of secondary variables is an extension of the algo-

rithm proposed by Soares (2001) and can be summarised as follows (Almeida et

al. 2002): 

1. Define a random path visiting each node of a regular grid of nodes. 

2. At each node xu, simulate the value zs(tj,xu) using the CoDSS algorithm: 

- Identify the local mean and variance of z(x), z(tj,xu)* and 2
sk(tj,xu), using the 

simple collocated kriging estimator with a multiple set of secondary vari-

ables:
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Using the matrix formalism, the simple collocated kriging system with a multi-

ple set of N secondary variables (N = NPC +1) is defined as follows: 
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where: 

jt
C  - Covariance of rainfall between samples at locations x  and x  in time period 

tj

DEMt

u
jC - Cross-covariance between DEM at location x  and rainfall in time period 

tj at location to estimate rainfall xu

ijPCt

uC - Cross-covariance between PCi at location x  and rainfall in time period tj

at location to estimate rainfall xu

jiPCPC

uC - Cross-covariance between PCi and PCj at location to estimate rainfall 

xu (equal to zero) 
DEMPC

u
iC - Cross-covariance between PCi and DEM at location to estimate rainfall 

xu

jt
,

DEM

u   and iPC

u  - Weights of primary information, DEM and PCi

jt

uC  - Covariance of rainfall between samples at locations x  and location to esti-

mate rainfall xu

DEMt

u
jC - Cross-covariance between DEM and rainfall in time period tj at location 

to estimate rainfall  

with = 1…n; = 1…n;

- Locally resample the histogram of z(xu), for instance using a normal score 

transform ( ) of the primary variable z(x), and calculate y(xu)*= (z(tj,xu)*);

- Draw a value p from a uniform distribution U(0,1);

- Generate a value ys from G(y(xu)*, 2
sk(xu)): y

s= G-1(y(xu)*, 2
sk(xu),p);

- Return the simulated value z1
s(xu)=

-1(ys) of the primary variable. 

3. Loop until all nodes are simulated. 



Stochastic simulation of rainfall using a space-time geostatistical algorithm      459 

Assuming a Markov-type approximation, the cross-covariance function can be 

calculated using the following relation in terms of covariance or correlograms 

(Almeida and Journel 1994), which calls only for inference of the primary variable 

covariance function and the correlation index 12(0) between the primary and sec-

ondary variable. 

The set of simulated rainfall images obtained for the entire area in time period tj

enables calculation of extreme scenarios and uncertainty assessment. 

Regarding the application of this extended kriging system, using more than one 

PC, all cross-covariances between PC are equal to zero, due to normality of all co-

ordinates. This constitutes a significant simplification, transforming cross-

covariances to zero.  

4 Case study 

In this case study the simulation of rainfall maps using the proposed methodology 

is presented. Data were collected from 36 weather stations in the Algarve area 

(southern Portugal) and show 12 months (from October to September, 2000). All 

rainfall values consist of total monthly quantity in mm. 

4.1 Basic statistics and correlation between measures 

The studied area of the Algarve is located in the southernmost part of Portugal, 

which includes the Arade watershed. For topographic information, a DEM of the 

entire area in GIS raster format is used. Rainfall is recorded by monthly measure-

ments in a network of 36 weather stations (Fig. 1). The 12 months of data from 

October to September 2000 were used. 

Fig. 1. DEM of the Algarve area in raster format with 1-kilometre spatial resolution and lo-

cation of the 36 weather stations 
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Univariate statistics and correlation coefficients were calculated for all data 

considered. The results are summarised in table 1 and 2. 

With the exception of the months of July and August, a strong correlation is ob-

served between rainfall measurements and the elevation of the station (always 

higher than 0.69 and with a maximum of 0.83 in June). Correlation between con-

secutive months is usually very high, with the exception of July and August, 

which are confirmed as atypical. 

Table 1. Basic statistics of collected data: monthly rainfall (mm) and elevation Z (m) 

 Z Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Mean 171,2 59,6 79,3 96,3 69,9 58,0 32,7 42,1 21,0 8,1 1,0 2,0 12,1

Var. 18511 261 485 1133 609 663 130 300 97 14 1 1 17

Min. 7 32.2 39.4 44.4 37.6 27.4 17.2 17.9 7.2 3.2 0 0 5.6

Max. 475 111 148,7 183 137 146,6 73,9 105,9 54,6 16,8 3,2 5,3 22,8

Table 2. Correlation statistics between collected data 

 Z Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Z 1,000 0,758 0,724 0,710 0,693 0,753 0,798 0,741 0,830 0,830 0,388 0,328 0,747 

Oct  1,000 0,894 0,814 0,880 0,918 0,887 0,908 0,898 0,844 0,123 0,371 0,752 

Nov   1,000 0,913 0,935 0,956 0,886 0,888 0,847 0,793 0,244 0,346 0,651 

Dec    1,000 0,938 0,927 0,812 0,780 0,780 0,717 0,338 0,310 0,502 

Jan     1,000 0,971 0,857 0,855 0,837 0,780 0,227 0,304 0,576 

Feb      1,000 0,918 0,907 0,874 0,806 0,218 0,418 0,644 

Mar       1,000 0,958 0,892 0,802 0,202 0,466 0,710 

Apr        1,000 0,911 0,820 0,204 0,417 0,708 

May         1,000 0,885 0,330 0,362 0,747 

Jun          1,000 0,380 0,337 0,771 

Jul           1,000 -0,038 0,259 

Aug            1,000 0,456 

Sep             1,000 
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5 Calculation of PC, correlation analysis and variogram 
models

Following the proposed methodology, the PCA algorithm was used to synthesise 

the number of variables (past monthly measurements) in each step. For instance, 

to simulate rainfall in May, monthly measurements from October to April were 

synthesised with PCA and only one PC was selected; to simulate rainfall in Au-

gust (atypical month), measurements from October to July were synthesised with 

PCA, and in this case two PC were selected. All PC with a corresponding eigen-

value equal to or greater than one were selected. Table 3 represents the main re-

sults from PCA. Table 4 shows global correlations between selected PC and the 

monthly rainfall and elevation. 

Table 3. Summary of PCA results 

Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Number of PC - 1 1 1 1 1 1 1 1 2 2 2 

Cumulative percent-

age of total variance 
 94,7 91,6 92,2 93,2 91,7 91,1 90,2 88,4 90,3 84,6 82,2

Table 4. Correlations between selected PC and monthly rainfall and elevation Z 

 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Z vs rainfall 0,76 0,72 0,71 0,69 0,75 0,80 0,74 0,83 0,83 0,39 0,33 0,75

PC1 vs rainfall - - 0,89 0,96 0,98 0,90 0,92 0,90 0,85 0,27 0,39 0,73

PC2 vs rainfall - - - - - - - - - - 0,16 -0,04

Z vs PC1 - - 0,76 0,76 0,75 0,75 0,77 0,77 0,79 0,81 0,81 0,81

Z vs PC2 - - - - - - - - - - -0,17 0,15

Spatial continuity structures of rainfall and PC are measured through spatial 

variograms calculated for each monthly period. Isotropic spherical models fit all 

experimental variograms, with ranges between 17 and 30 km (table 5). In Fig. 2 

variograms for October and November are presented. Differences in behaviour be-

tween some months, notably July and August, are not shown in the variograms. 
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Table 5. Models of variograms fitted to rainfall measures and PC 

Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

C1 261 485 1133 609 663 130 300 97 14 0,7 1,4 17

a1 (km) 30 23 27 22 22 17 17 21 22 19 30 20
Main vari-

able

Model Sph 

C1 - 0,947 0,916 0,922 0,932 0,917 0,911 0,902 0,884 0,804 0,746 0,730 

a1 (km) - 30 30 30 30 30 25 25 25 25 25 20 
PC1

variable 

Model - Sph 

C1 - - - - - - - - - 0,1 0,1 0,1 

a1 (km) - - - - - - - - - 22 22 22 
PC2

variable 

Model - - - - - - - - - Sph 

October November

Fig. 2. Experimental variograms and theoretical models fitted to this sequence of winter 

months

6 Simulation of monthly rainfall images 

CoDSS algorithm was applied to obtain the set of 10 stochastic rainfall images. 

Each unit cell represents a 1x1 km square. The total area of the Algarve is 6682 

km2, including all the Arade watershed (795 km2).

The earliest month, October, is the first to be simulated: for this month, only 

rainfall measurements from the same month (hard data) and the DEM are used 

(soft data). The next month to be simulated is November, conditioned to the Octo-

ber results: for this month rainfall measurements from this month are considered 

as hard data and the DEM and each of the 10 simulated images from October as 

soft data. 

Each of the remaining months must be conditioned successively to the data of 

the previous months. For instance, the simulation of July takes into account data 
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from the same month as hard data and the DTM and simulated images of the PC1, 

built with data from the previous months. 

At the end, each sequence of 12 simulated images constitutes an equiprobable 

scenario conditioned to all rainfall measurements, corresponding histograms, spa-

tial continuity measures and correlation coefficients, among months and between 

months and the DEM. It is important to note that in this type of simulation model 

integrating hard data (rainfall measures) and soft data (elevation and previous 

months data), the influence of the samples prevails over the soft data in the prox-

imity of the samples and the soft information prevails outside the influence of the 

samples. 

In Fig. 3 and 4 sets of 4 images are shown for the months of December (high 

rainfall) and August (low rainfall). Images corresponding to high rainfall months 

show that the results are strongly conditioned by elevation, and as a consequence 

the differences between them are small – the model carries very low uncertainty. 

On the other hand, in August, the correlation with the DEM is fair. This is a typi-

cal situation of localised and random rainfall (summer thunderstorms). The images 

obtained are mostly conditioned by the rainfall measurements of this month, and 

so the results show greater uncertainty. 

Fig. 3. Two simulated images of PC1 and corresponding rainfall images for December 

7 Accumulation uncertainty within the Arade watershed 

The final stage of this work is the overlapping of all simulated rainfall images with 

the flow direction map in order to evaluate the monthly uncertainty of the total ac-

cumulation in the Arade watershed. For illustrative purposes, Fig. 5 represents the 

local accumulation assuming constant rainfall, which equals one unit. 

A flow direction map enables monthly calculations of global and local accumu-

lated watershed rainfall. Based on the simulated images, 10 equiprobable out-
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comes of total watershed accumulation for each month were obtained; this set of 

values defines the space of uncertainty and was graphically plotted in a set of 12 

box-plots (Fig. 6). Table 6 represents maximum and minimum accumulation, av-

erage, difference (maximum-minimum) and difference in percentage of the aver-

age.

Fig. 4. Two simulated images of PC1 and PC2 and corresponding rainfall images for Au-

gust

Fig. 5. Example of an accumulation map assuming constant rainfall
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Based on these results it is possible to confirm that December is the month with 

highest rainfall; April is the rainiest month in spring, and the summer months of 

July and August are the least rainy and the little rain that falls is very dispersed, 

leading to uncertainty. For instance, the rainiest months between October and Feb-

ruary show comparatively low differences in percentage terms; February presents 

a difference between the total accumulation counted in the Arade watershed of 

1,9%. In contrast, July exhibits huge variability (uncertainty measure), higher than 

90%, and August with 28,1% appears in second place. Months with regimes of lo-

calised thunderstorms give the model an enormous uncertainty due to the small 

conditioning data effect, namely the digital terrain model and the previous months. 

Max
Min

75th %
25th %

Median

T
o
ta

l 
a
c
c
u
m

u
la

ti
o
n
 (

m
m

/k
m

2
)

     0

 20000

 40000

 60000

 80000

100000

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Fig. 6. Representation of the global uncertainty of the simulated rainfall images, converted 

into total accumulation of the Arade river hydrographical basin 

Table 6. Summary of global accumulation amounts (mm/km2) in the Arade watershed 

 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Max. 59902 79527 97871 70142 57228 31920 42577 22875 8856 1003 2595 13211 

Min. 56518 76539 91685 66779 56162 30693 40523 21205 8040 446 1985 11578 

Average 57941 78073 94439 67916 56772 31417 41590 21904 8370 588 2174 12528 

Range 3383 2988 6186 3362 1065 1227 2054 1670 816 557 610 1633 

Diff. % 5,8 3,8 6,6 5,0 1,9 3,9 4,9 7,6 9,7 94,6 28,1 13,0 
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8 Final remarks 

This paper presents a methodological sequence to create a space-time model of 

rainfall applied to describe the hydrological behaviour of the Algarve area. Based 

on the stochastic imaging of monthly rainfall, an important tool to evaluate ero-

sion hazard can be constructed. In fact, after overlapping with the local flow direc-

tion, local distribution and extreme scenarios of surface runoff can be predicted 

for particular meteorological conditions. 

In the construction of a spatial-temporal rainfall model, it is essential to impose 

in the model all of the correlations given by experimental data, namely among 

months and between these and elevation measures. The construction of rainfall 

simulated scenarios presents great potential, particularly as input data for erosion 

maps. As is known, greater or lesser erosion of soil depends on the occurrence of 

extreme situations of rainfall in which these kinds of models, reproducing extreme 

scenarios, are the most appropriate.  

It is possible to verify that geostatistical simulation tools and GIS functions 

complement each other in analysing data and deriving new spatial information. 

The result is a reliable model able to make an important contribution to a regional 

erosion map, even one using a smaller temporal unit. 
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1 Introduction 

Knowledge of the spatial correlation structure of the hydraulic properties of the 

shallow subsurface is a key prerequisite for the detailed characterization of aqui-

fers in general and for the realistic simulation of flow and transport phenomena in 

particular (e.g., Rubin 2003). Whereas the vertical component of the correlation 

structure is often well constrained from borehole information (e.g., Ritzi et al.

1994), the nature of the lateral component of the correlation structure is generally 

largely unknown. The primary reasons for this are that the spacings between indi-

vidual boreholes tend to be too large to allow for a reliable interpolation and that 

traditional hydrological methods, such as tracer and pumping tests, tend to capture 

the gross average properties of the entire probed region. 

Georadar data are highly sensitive to variations in the water-saturated porosity 

structure (e.g., Davis and Annan 1989), which in alluvial aquifers can be regarded 

as a proxy for the hydraulic conductivity structure (e.g., Oldenborger et al. 2003). 

This opens the perspective to extract the lateral correlation structure of the shallow 

subsurface from densely sampled and adequately processed georadar data ac-

quired along the earth’s surface. Rea and Knight (1998) were the first to pursue 

such an approach by comparing the overall correlation structure of a pertinent out-

crop image with that of corresponding georadar data. The assumption that the lat-

eral correlation of surface georadar data is directly related to that of a photo-

graphic image of an outcrop (Fig. 1) is based on the observation that discernible 

lithological variations tend to be primarily related to variations in grain size and 

thus to variations in porosity and water content (Heinz et al. 2003).  

Here, we complement and extend the seminal work of Rea and Knight (1998) 

by (i) clarifying the methodological foundations, (ii) using a realistic and highly 

versatile autocovariance model, whose parameters can be readily interpreted and 

used for the generation of corresponding synthetic models of the subsurface struc-

ture and (iii) assessing the robustness of this correlation analysis with regard to the 

processing of the georadar data and the corresponding outcrop images. 
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Hydraulic conductivity

Photograph Georadar data

Dielectric permittivity

Porosity

Grain size distribution / Water content

Water content

Porosity

Fig. 1. The assumption that the lateral correlation structures of a pertinent outcrop photo-

graph and corresponding surface georadar data are interrelated is primarily based on the 

mutual sensitivity of these measurements to variations in the water content. 

2 Methodological Foundations 

In analogy to perfectly imaged zero-offset seismic reflection data, surface geora-

dar data can be approximated as (Claerbout 1985) 

),()(~),()(~),()(),( txtwtxtwtxrtwtxs r ∆Θ∗∝∆∗∝∗= ε , (1) 

where x denotes the lateral distance along the profile, t the two-way travel time, w

the wavelet emitted by the transmitter antenna, r the distribution of the reflection 

coefficients in the subsurface, rε  the relative dielectric permittivity, Θ  the water 

content, ∆ the relative change and the asterisks the convolution over the time axis 

(Davis and Annan 1989; Neil 2004). The above relation between the dielectric 

permittivity and the water content is based on the common assumption of a two-

component mixing model (Wharton et al. 1980). The lateral autocovariance func-

tion of the surface georadar section s is thus given by 

),()(~),()(),( trCtwtrCtwtrC xwwxrrxss ∗∝∗= , (2) 

where rx is the lag along the horizontal direction and Css, Crr and Cww denote the 

lateral autocovariance functions of the georadar section s, the reflection coefficient 

distribution r and changes in the water content ∆Θ, respectively. 

Eq. 2 thus illustrates that the lateral correlation of surface georadar data is di-

rectly related to changes in the square-root of the dielectric permittivity structure, 

which in turn can be directly related to changes in the water content (Wharton et al 

1980; Knight 2001). Eq. 1-2 also indicate that the vertical correlation of the geo-

radar data is dominated by the source signal w(t) emitted by the transmitter an-

tenna and hence cannot be directly related to the vertical correlation of the subsur-

face structure. The band-limited nature of the source signal w(t) may also 

influence our estimates of the lateral correlation structure Css in that a vertical off-
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set within a horizontal reflector only comes into effect, if the magnitude of this 

offset is within the vertical resolution of w(t) (i.e., larger than approximately one 

eighth to one quarter of the dominant wavelength). This implies that correlation 

estimates from surface georadar data Css tend to overestimate the actual lateral 

correlation of the subsurface structure and that this bias increases with decreasing 

dominant frequency and thus decreasing vertical resolution, of the emitted source 

signal w(t).

3 Data Acquisition and Processing 

The outcrop images and the corresponding georadar data have been collected at a 

gravel quarry in Hüntwangen in northern Switzerland operated by Holcim AG 

(Fig. 2). The sedimentary inventory consists of gravel- and sand-dominated 

braided stream deposits. At the site considered in this study, these glacio-fluvial 

sediments are unconsolidated and predominantly horizontally layered (Fig. 2a). 

The local geology and its expression in georadar images have been described by 

Huggenberger (1993) and Beres et al. (1999).  

3.1 Digital Outcrop Photograph 

The quarry face was photographed from a distance of ~135 m using a digital cam-

era with a formal resolution of 2 million pixels. Several laterally overlapping im-

ages were taken and no zoom was applied in order to minimize distortions in the 

final composite image of the well-exposed central part of the cliff (Fig. 2a and 2b). 

Surveyed markers placed along the upper edge of the cliff as well as within the 

quarry face allowed for an accurate positioning and scaling of the photographs in 

reference to the georadar profile, for assembling individual photographs into a 

composite image, for constraining the spatial resolution and for the detecting and 

analyzing any remaining distortions in the final image. Using this approach, we 

found the resulting image to have a resolution of ~3 cm and a distortion of  ~2%.  

Prior to a geostatistical analysis, the original 3-D image matrix of the digital 

outcrop photograph in conventional color or RGB (“red-green-blue”) format had 

to be transformed into a corresponding 2-D matrix. The goal was to perform this 

transformation with as little loss of information as possible. To this end, we have 

compared the average horizontal and vertical autocovariance functions of all three 

color channels (red, green and blue) of the original image with those of the trans-

formed 2-D image matrices. This comparison was facilitated by the fact that, after 

normalization, the autocovariance functions of the three channels turned out to be 

quite similar. Several methods have been tested to convert the original color image 

to a grayscale image. All of these approaches were based on taking some form of 

weighted averages of the three color channels and provided rather similar results. 

The corresponding autocovariance functions compared favorably with those of the 

individual color channels. 
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Primarily for reasons of robustness and consistency, we chose to convert the 

original color image to a grayscale image through the so-called RGB-mean 

method, which simply replaces the values of the color channels by their arithmetic 

average. In addition, to this grayscale conversion, we also explored the binary 

black-and-white approach pursued by Rea and Knight (1998). We found this ap-

proach to be less robust than the conversion to RGB-mean format. The resulting 

autocovariance functions systematically exhibited significant deviations from 

those of the original color channels and also depended notably on the rather arbi-

trary choice of the threshold value governing the binary conversion to black-and-

white. An additional advantage of the grayscale approach compared to the binary-

and-white approach was that the corresponding probability density function was 

closer to a normal distribution and hence that the corresponding images were more 

adequately characterized by first and second statistical moments (mean and auto-

covariance function). 

3.2 Surface Georadar Data 

The surface georadar data were acquired along the upper edge of the quarry face at 

a largely uniform lateral distance of ~5 m from the cliff. We used commercial 

200 MHz antennas with a constant spacing between the transmitter and receiver 

antennas of 1 m. Using a sampling interval of 0.2 ns and 64 vertical stacks, this 

configuration was moved at 0.2 m increments along a straight and topographically 

even profile with a total length of ~75 m.  

Surface georadar data acquired in this bi-static mode can be regarded as the 

electromagnetic version of “echo-sound” measurements: the transmitter emits a 

compact pulsed signal, which travels into the subsurface, is reflected from changes 

in the material properties and is then recorded by the quasi-coincident receiver an-

tenna. To a first approximation, the thus recorded signals can be regarded to repre-

sent an image of the variation of the dielectric permittivity structure in the shallow 

subsurface, which in turn is primarily governed by variations in the water content. 

Comprehensive reviews of the methodological background and the applications of 

surface georadar measurements are provided by Davis and Annan (1989) and Neil 

(2004). 

The basic processing of the georadar comprised a “dewow” filter to remove any 

dc-current components in the data, a time-zero adjustment, a compensation of the 

decay of the amplitudes with increasing travel time due to the geometrical spread-

ing of the wave front and attenuation effects and the application of a 350/500 MHz 

low-pass filter. The recovery of the amplitudes was achieved by dividing each 

georadar trace by the average trace envelope of the entire profile. We also ac-

quired two common-midpoint (CMP) gathers along the profile to obtain an esti-

mate of the large-scale electromagnetic velocity structure based on the hyperbolic 

curvature of the reflections as a function of antenna separation. This analysis indi-

cated that the velocity in the probed region was remarkably uniform. For this rea-

son, the inferred average velocity of ~0.11 m/ns was used to convert georadar data 

from two-way travel time to depth (Fig. 2c). 
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Fig. 2. a) Digital photograph of the well-exposed central part of the gravel quarry face in 

RGB-mean format. b) Same as a) with the most prominent lithological features marked by 

white lines. c) Corresponding depth-converted georadar profile acquired along the upper 

edge of the cliff using 200 MHz antennas. Note the far-reaching consistency between the 

photographic image of the outcrop and the georadar section. 

4 Lateral Correlation Analysis 

In the following, the lateral correlation structures of the digital outcrop images in 

RGB-mean format (Fig. 2a) and surface georadar data (Fig. 2c) are interpreted 

based on the band-limited scale-invariant or “fractal” von Kármán autocovariance 

model (von Kármán 1948): 
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where rx is the lag vector in the lateral direction, ax is the horizontal correlation 

length,  is the standard deviation,  is the gamma function and K  is the modified 

Bessel function of the second kind of order 0  1.  is related to the “Haus-

dorff” fractal dimension D through D = E + 1 –  with E denoting the underlying 

Euclidean dimension (Goff and Jordan 1988). The correlation length corresponds 

approximately to the outer range of scale-invariance. The von Kármán autocovari-

ance model is highly versatile and has been successfully used to characterize a 

wide variety of scientific data. A detailed description of this autocovariance model 

is given in Sidler and Holliger (this volume).  

For the analysis of the lateral correlation structure, we have subdivided the da-

tabase (Fig. 2a and 2c) into several subsets. The main reason for this approach was 

to reduce the lateral geological variations within the data to be analyzed and thus 

to enhance their statistical stationarity in the lateral direction. The results obtained 

for the various subsets were found to be internally consistent and hence shall be il-

lustrated and discussed using a typical subset of the outcrop image shown in Fig. 

3a. Please note that the uppermost 2 m have been excluded from all analyses. The 

reason for this is that in the georadar data this depth range is dominated by the di-

rect air and ground waves, which do not contain any information about the lateral 

correlation structure of the subsurface. 

Fig. 3b shows a grayscale image of the lateral autocovariance function of the 

considered part of the outcrop image in Fig. 3a as a function of depth. This image 

is obtained by evaluating the experimental autocovariance function for each row 

of the 2-D image matrix under the assumption of local stationarity. It nicely quan-

tifies the dominant sedimentary stratification discernible in the photograph and 

thus illustrates that the various sedimentary units exhibit notable variations in the 

decay of their lateral autocovariance functions. The corresponding normalized av-

erage lateral autocovariance function together with its best-fitting parametric 

model (Eq. 4) is shown Fig. 3c. We used a Monte Carlo optimization approach to 

minimize the error between the observed and modeled autocovariance functions. 

Clearly, the von Kármán autocovariance model provides an excellent match to the 

observed data. The inferred ν-value of 0.08 is indicative of so-called “flicker 

noise”, probably the most common statistical characteristic of observed data 

throughout the sciences (West and Shlesinger 1990). This finding is consistent 

with the increasing evidence that the distributions of virtually all petrophysical pa-

rameters in sedimentary rocks, in particular also the porosity distribution, exhibit 

flicker noise character (Hardy and Beier 1994; Kelkar and Perez 2002). The in-

ferred correlation length of 2.18 m is qualitatively consistent with the average lat-

eral extent of the dominant lithological features discernible in Fig. 3a. 
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Fig. 3. a) Subset of the outcrop photograph in RGB-mean format shown in Fig. 2a, b) im-

age of horizontal autocovariance (evaluated for each row of the image matrix under the as-

sumption of local stationarity) displayed as a function of depth and c) average normalized 

horizontal autocovariance function (dots) with best-fitting von Kármán model superim-

posed (solid line). The root-mean-square (RMS) error quantifies the mismatch between the 

observed and modeled autocovariance functions. 

This analysis has been repeated for the corresponding subset of the georadar data 

shown in Fig. 4a. Overall, the structure of the corresponding lateral autocovari-

ance image (Fig. 4b) agrees very well with that of the outcrop photograph (Fig. 

3b). This is a valuable and exciting result in its own right, as it indicates that, even 

in the absence of outcrop or borehole information, this type of analysis can be 

used for quantitative stratigraphic analysis/zonation of surface georadar data. The 

corresponding average autocovariance function is again well explained by the 

used parametric model (Fig. 4c). Both the inferred ν-value and the correlation 

length are in good agreement with those obtained for the outcrop image (Fig. 3c). 

A subtle, but interesting difference in the correlation structures of the outcrop im-

age and the georadar data is the response of the foreset structures present in the 

depth range of ~2-3 m. These structures are clearly imaged by the georadar data 

(Fig. 4a) and result in a quasi-cyclical response in the lateral correlation image for 

the corresponding depth range (Fig. 4b) as well as in a corresponding oscillation 

of the average autocovariance function at larger lags. Conversely, these foreset 

structures are barely discernible in the outcrop photograph and hence find little or 

no expression in its lateral correlation structure. 
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Fig. 4. a) Subset of the georadar data shown in Fig. 2c, b) image of horizontal autocovari-

ance (evaluated for each row of the image matrix under the assumption of local stationarity) 

displayed as a function of depth and c) average normalized horizontal autocovariance func-

tion (dots) with best-fitting von Kármán model superimposed (solid line). The root-mean-

square (RMS) error quantifies the mismatch between the observed and modeled autoco-

variance functions. 

5 Discussion 

The results described above (Fig. 3 and 4) are representative for analyzed subsets 

of the outcrop image and the corresponding georadar data. The inferred ν-values 

are uniformly close to zero and thus indicative of the seemingly ubiquitous flicker 

noise character of scientific data. In particular, this finding is consistent with the 

growing empirical evidence for the universal flicker noise nature of petrophysical 

properties of sedimentary deposits in general and porosity distributions in particu-

lar (Hardy and Beier 1994; Kelkar and Perez 2002). The universality of this phe-

nomenon indicates that it could/should be used as a priori or conditional informa-

tion in a variety of geostatistical analyses. A unique characteristic of von Kármán 

autocovariance functions with small ν-values is their initially rapid decay at small 

lags followed by a gradual leveling off at larger lags (e.g., Sidler and Holliger this 

volume). It is quite likely for this reason that Rea and Knight (1998) used a com-
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bination of two spherical autocovariance models with short and long correlation 

lengths to explain some of their observations. Clearly, the use of such “nested” 

autocovariance models makes the generation of corresponding synthetic stochastic 

data fields rather awkward and can also be ambivalent to interpret in geological 

terms. Together with the ubiquitous and universal nature of flicker noise phenom-

ena in scientific data in general and petrophysical data in particular (Hardy and 

Beier 1994), this clearly favors the use of the von Kármán autocovariance model 

(Eq. 4) for such analyses over the more commonly used geostatistical autocovari-

ance models, such as Gaussian, exponential or spherical models. 

In contrast to the remarkable uniformity of the ν-values, the average horizontal 

correlation lengths were found to vary considerably (approximately by a factor of 

2 to 3) between the various subsets. However, the correlation lengths inferred 

from subsets of the outcrop image and the corresponding georadar data were 

found to be inherently consistent. In agreement with the theoretical considerations 

outlined above, the correlation length of georadar data tend to be longer (~10-30% 

on average) than the corresponding values interpreted from the outcrop image. 

The range of the lateral correlation lengths obtained in this study is also consistent 

with those inferred by Rea and Knight (1998) for a similar geological environ-

ment. The absolute values of the correlation lengths should, however, be consid-

ered with some caution, as they to tend be influenced by the scale of the experi-

ment (Gelhar 1993; Western and Blöschl 1999). 

We explored the effects of applying different processing strategies to the geo-

radar data and found the estimates of lateral correlation structure to be remarkably 

robust in this regard. The so-called cosine-of-phase approach illustrated in Fig. 5 

can be considered as a representative example in this regard. This processing 

method can be directly applied to the raw data and largely eliminates the need for 

further pre-processing of the data.  It replaces the original amplitude values by the 

cosine of their local/instantaneous phases and thus enhances the continuity of 

events with similar phase relations at the expense of all other events and reduces 

the overall dynamic range of the data (Yilmaz 1988). We found the application of 

the cosine-of-phase to be very robust and reliable, particularly also in regions of 

sub-optimal data quality. Due to its robustness and ease of use, we warmly rec-

ommend the use of the cosine-of-phase, possibly assisted by the application of a 

band-pass filter, as the preferred processing strategy of surface georadar prior to 

lateral correlation analysis. Finally, we found that the lateral correlation structure 

of the georadar data is not fundamentally altered by migration. Migration is an im-

age restoration process based on a solution of the acoustic wave equation, which 

refocuses the data in such a way that diffractions are collapsed and dipping reflec-

tors are moved to their correct subsurface positions (Yilmaz 1988). In analogy to 

an optical focusing process, which has little or no effects for objects that are close 

to the lens, the migration georadar data is often ineffective due to their inherently 

surficial nature and may indeed even be detrimental due to the introduction of 

numerical artifacts. Moreover, the georadar data considered in this study exhibit a 

predominantly horizontal stratification and are largely devoid of diffractions (Fig. 

2c). 
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Fig. 5. a) Cosine-of-phase of the raw version of a subset of the georadar data shown in Fig. 

2c, b) image of horizontal autocovariance (evaluated for each row of image matrix under 

the assumption of local stationarity) displayed as a function of depth and c) average nor-

malized horizontal autocovariance function (dots) with best-fitting von Kármán model su-

perimposed (solid line). The root-mean-square (RMS) error quantifies the mismatch be-

tween the observed and modeled autocovariance functions. 

In this study, we have concentrated on extracting the normalized horizontal auto-

covariance function from surface georadar data. In many practical situations, this 

is indeed the key information that is missing for a complete stochastic characteri-

zation of the shallow subsurface as the vertical correlation structure and the vari-

ance can be inferred from nearby borehole information. It is, however, important 

to note that, at least in principle, both the variance and the vertical correlation 

structure can also be inferred from surface georadar data. Eq. 1-2 indicate that the 

variance of the distribution of the reflection coefficients in the subsurface can be 

estimated using the approach described in this paper for non-normalized autoco-

variance models provided that the “true” absolute amplitudes of the georadar data 

have been restored prior to correlation analysis. This would imply that all ampli-

tude distortions due to geometric spreading, attenuation, scattering, and instrument 

effects were accurately accounted and compensated for. In practice, it is unlikely 

that all the necessary information will ever be available to perform this task with 

the desired accuracy. Eq. 1-2 also indicate that the vertical correlation length of 

the subsurface structure can be inferred from the georadar data provided that we 

can remove the effect of the source signal w(t) (i.e., perfectly deconvolve the geo-
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radar data) prior to correlation analysis in the vertical direction. The emitted 

source signal is considered to be unknown but generally not minimum phase and 

hence corresponding stochastic deconvolution approaches used in the reflection 

seismology (Yilmaz 1988) tend to be ineffective or even detrimental. This funda-

mental problem could be alleviated through a deterministic deconvolution ap-

proach, which in turn would require that we could estimate the emitted source 

waveform w(t) (Eq. 1-2) with reasonable accuracy. To date, very little research 

has been carried out on this topic. Based on theoretical considerations with regard 

to the radiative properties of electric dipoles located on or near a dielectric half-

space it is, however, conceivable that w(t) can be inferred from the direct waves 

traveling through the air and the ground. Interestingly, the air and ground waves 

are so far considered to represent undesired noise and are often removed from the 

data.

6 Conclusions 

Based on a well-controlled field experiment as well as theoretical considerations, 

we demonstrate that the lateral correlation structure of surface georadar data can 

be directly related to that of probed shallow subsurface. For the georadar data as 

well as for the photographs, the observed lateral correlation functions are well ap-

proximated by the band-limited scale-invariant von Kármán autocovariance 

model. The thus inferred autocovariance models invariably exhibit flicker noise 

character (i.e., ν-values close to 0), but differ significantly in terms of their hori-

zontal correlation lengths. Overall, we found a far-reaching consistency between 

the lateral correlation structures extracted from the surface georadar data with 

those inferred for the corresponding regions of the digital photograph. We also 

found that the horizontal correlation lengths inferred from the surface georadar 

data are quite sensitive to geological/lithological variations, but rather robust with 

regard to details of the processing applied to the data. Our results therefore con-

firm that the geostatistical analysis of surface georadar data offers an easy, robust 

and reliable way to estimate the average lateral correlation structure of the shallow 

subsurface as well as vertical variations thereof. Given the sensitivity of the geo-

radar method to variations in water content, the thus inferred lateral correlation 

structure may serve as a proxy for the lateral correlation of variations in porosity 

and hydraulic conductivity (Fig. 1). This study has focused on the normalized lat-

eral autocovariance structure. Based on the methodological foundations and to-

day’s understanding of the generation, propagation and recording of georadar 

waves, we believe that it is unlikely that the variance of the subsurface correlation 

structure can be inferred from surface georadar data with the desired accuracy. For 

the same reasons, we are, however, cautiously optimistic that it could be possible 

to remove the effects of the emitted source waveform and thus to also estimate the 

vertical component of the subsurface correlation structure directly from surface 

georadar data. 
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