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Preface to the first edition

One might well ask why one should write a book about so specialized a
subject as glacier mechanics when there are already other good books on
this subject written by eminent glaciologists. This book is an outgrowth
of a course that I teach to students who, in many cases, do not have
any background in continuum mechanics. Consequently, it was neces-
sary to start at a level considerably less advanced than that at which
other similar books begin, and to develop the theoretical principles one
step at a time. Thus, unlike other books on the subject and the general
scientific literature, in which space is at a premium, the steps leading
from one equation to another are, in most cases, easily seen. In addition,
qualitative interpretations of the equations are often provided to clarify
the physics behind the mathematics. Capable students with a solid back-
ground in basic physics and in differential and integral calculus, and with
some modest exposure to differential equations, will have little difficulty
understanding the concepts and derivations presented.

My goal in writing this book was not to produce a comprehensive
treatise on glacier mechanics, but rather to develop the basic foundation
upon which the modern literature on this subject rests. Thus, many topics
are not covered, or are treated in less detail than some readers might wish.
However, students who have a full appreciation for the concepts in this
book will have the background they need to understand most of the
current literature.

Beginning students in glaciology will find that this book will save
them many long hours of searching through the background literature
to clarify basic concepts. Glacial geologists and geomorphologists will
also find much of value, including applications of glacier physics to the
origin of some glacial landforms. Structural geologists and others with
interest in stress and deformation will likewise discover that glaciers
are, in fact, monomineralic rock masses that are deforming at the Earth’s
surface where they can be observed in detail. The book is, thus, appro-
priate for upper division and graduate level courses in glaciology, and
as a supplementary text for courses in glacial geology and in structural
geology.
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xii Preface to the first edition

In the preliminary pages, readers will find a compilation of physical
constants relevant to ice, and a list of SI units and conversion factors. A
series of problems keyed to individual chapters is also included.

The encouragement I have received in this undertaking from many
present and former students, as well as from other glaciologists, has been
a major stimulus in bringing it to completion. I trust the final product
is worthy of their confidence. The book has benefited from the critical
comments of R. W. Baker at the University of Wisconsin, River Falls;
C. R. Bentley at the University of Wisconsin, Madison; G. K. C. Clarke
at the University of British Columbia; E. M. Grace, and B. Hanson at the
University of Delaware; N. R. Iverson at the University of Minnesota; T.
Jóhannesson at the Icelandic Meteorological Office; M. Kuhn at the Uni-
versity of Innsbruck, Austria; M. F. Meier at the University of Colorado;
J. F. Nye at the University of Bristol, England; C. F. Raymond at the
University of Washington; R. L. Shreve at the University of California,
Los Angeles; J. Weertman at Northwestern University, and especially I.
Whillans at Ohio State University.

June 25, 1996



Preface to the second edition

When I wrote the preface to the first edition of this book seven years ago,
nothing was further from my mind than a second edition. The first edition
was well received, however, and on numerous occasions colleagues have
lamented the fact that it was no longer available. When Cambridge Uni-
versity Press agreed that a new edition was desirable, little did I realize
what I had gotten into.

When I told Matt Lloyd (my editor at Cambridge) that my goal was
to have the text ready by a certain time, he graciously gave me a target
date that was nearly double that time. I told him that his time schedule
was fine, but that I did not want to be held too strictly to it. As it happens,
I had an unrealistic view of the volume of new material that needed to
be sifted through, absorbed, and translated into language appropriate for
the upper-division undergraduate and graduate-level students for whom
this book is written. As with the first edition, my goal is not to provide an
encyclopedia of research in glaciology, as other books do that well, but
rather to give students the basic background they will need to understand
the modern literature. At the same time, the book has proven to be a
useful reference for professionals who don’t keep all of the equations
and conversion factors stored for instant recall. I myself use it for that
purpose frequently.

I am indebted to many who have encouraged me in this undertak-
ing, and especially to those who have generously given their time to
review new sections or entire chapters, who have resurrected archived
computer files to provide images or data files from which new fig-
ures were produced, or who have made new calculations especially
for this volume. The following have assisted me in this effort: Richard
Alley, Bob Bindschadler, Ginny Catania, Chris Clark, Lee Clayton, Paul
Cutler, Gordon Hamilton, Brian Hanson, Bruce Hooke, Peter Hudleston,
Kolumbian Hutter, Philippe Huybrechts, Neal Iverson, Peter Jansson,
Susan Kaspari, Katie Leonard, Paul Mayewski, Shawn Marshall, Howard
Mooers, Nadine Nereson, Felix Ng, Charlie Raymond, Vandy Spikes,
Slawek Tulaczyk, and Joe Walder.
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Physical constants relevant to ice

Symbol Parameter Value

g Acceleration of gravity 9.81 m s−2

ρ Density of bubble-free ice 916 kg m−3

ρ Density of water at 0 ◦C 999.84 kg m−3

θm Melting point at atmospheric pressure 0.0 ◦C

273.15 K

C Heat capacity 2093 J kg−1 K−1

(For temperatures above ∼−0.5 ◦C the

effective heat capacity increases owing

to the presence of a liquid phase, the

amount of which depends upon the

concentration of chemical impurities.)

Cw Heat capacity of air-free water at constant

pressure

256.9 J kg−1 K−1

C Depression of the melting point due to

pressure

Pure ice and air-free water 0.074 K MPa−1

Pure ice and air-saturated water

(Harrison, 1972)

0.098 K MPa−1

ζ Depression of the melting point due to

solutes

1.86 ◦C kg mol−1

L Heat of fusion 3.34 × 105 J kg−1

K Thermal conductivity at −1 ◦C 7.1 × 107 J m−1a−1K−1

K varies with temperature, thus:

K = 7.10 × 107 − 1.96 × 105 θ =
3.63 × 103θ2

where θ is in degrees Celsius (a

negative number) (Ratcliffe, 1962)
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Physical constants relevant to ice xv

Symbol Parameter Value

κ Thermal diffusivity at −1 ◦C 37.2 m2 a−1

(Below −0.5 ◦C, κ varies with

temperature owing to the variation in K

(see above). Above −0.5 ◦C, κ

decreases owing to the increase in

effective C (see above). Paterson (1971)

estimates that at −0.1 ◦C κ is half its

value for pure ice, and at −0.01 ◦C it is

1% of the value for pure ice. These

estimates assume a salinity of 10−6.)

R Gas constant 8.31 J mol−1 K−1

462 J kg−1 K−1

Q Activation energy for creep

below −10 ◦C

78.8 kJ mol−1

(Barnes et al., 1971) (Above −10 ◦C, Q

is presumably the same but the ε̇ vs 1/θ

curve steepens, probably owing to the

presence of a liquid phase.)

v Poisson’s ratio for polycrystalline ice 0.31*

(Gold, 1958) (The ratio of the

transverse strain (contraction) to the

axial strain (extension) of a bar in a

uniaxial tensile test.)

µ Shear modulus (at −5 ◦C) 3.8 × 103 MPa*

(Gold, 1958) (The ratio of shear stress

to elastic shear strain in a test in simple

shear.)

K Bulk modulus (at −5 ◦C) 8.7 × 103 MPa*

(Gold, 1958) (The ratio of applied

pressure to fractional change in

volume.)

E Young’s modulus 8.3 × 103 MPa*

(Gold, 1958) (The ratio of axial stress

to elastic axial strain in a test in

uniaxial tension. E = 2µ(1 + ν).)

a Coefficient of linear thermal expansion of

ordinary water at 0 ◦C (Kell, 1967) −22.3 × 10−6 K−1

ice at ∼ −10 ◦C 51.6 × 10−6K−1

b Burgers vector 4.5 × 10−10 m



xvi Physical constants relevant to ice

Symbol Parameter Value

γ SL Specific surface energy of liquid–solid

interface

(Ketcham and Hobbs, 1969)

0.034 J m−2

γ gb Specific surface energy of grain

boundary

0.065 J m−2

β Dihedral angle (cos β = γ gb/2γ SL)

(Nye and Mae, 1972)

2β = 32±3 ◦

PTP Triple point pressure 600 Pa

θTP Triple point temperature +0.0098 ◦C

Scr Crushing strength of ice formed from

natural snow.

1.8 MPa at 0 ◦C

The strength increases substantially

with decreasing temperature. Hobbs

(1974, p. 331) gives a graph from

Butkovitch (1954) that can be

approximated by:

Scr = 1.8 − 0.266θ − 0.0202θ2

− 7.72 × 10−4 θ 3 − 1.39 × 10−5θ4

− 9.37 × 10−8θ 5

where θ is the temperature in degrees

Celsius (a negative number). There is

considerable variability depending on

the type of ice tested and its orientation.

KIc Fracture toughness (Rist et al., 1999) 0.05–0.15 MPa m1/2

* Values given are based on the work of Gold (1958) as reported by Hobbs

(1974, pp. 255–258). Hobbs also reports other values based on the work of

other (earlier) investigators.



Derived SI units and conversion factors

1 N = 1 kg m s−2 Force (mass · acceleration)

1 Pa = 1 N m−2 = 1 kg m−1 s−2 Stress

1 J = 1 N m = 1 kg m2 s−2 Work or energy

1 W = 1 J s−1 = N m s−1 Power

1 bar = 0.1 MN m−2 = 0.1 MPa = 0.9868 atm

1 cal = 4.18 J

1 a = 3.155 69 × 107 s

0 ◦C = 273.15 K

xvii





Chapter 1

Why study glaciers?

Before delving into the mathematical intricacies with which much of
this book is concerned, one might well ask why we are pursuing this
topic – glacier mechanics? For many who would like to understand how
glaciers move, how they sculpt the landscape, how they respond to cli-
matic change, mathematics does not come easily. I assure you that all
of us have to think carefully about the meaning of the expressions that
seem so simple to write out but so difficult to understand. Only then do
they become part of our vocabulary, and only then can we make use of
the added precision which mathematical analysis, properly formulated,
is able to bring. Is it worth the effort? That depends upon your objectives;
on why you chose to study glaciers.

There are many reasons, of course. Some are personal, some aca-
demic, and some socially significant. To me, the personal reasons are
among the most important: glaciers occur in spectacular areas, often
remote, that have not been scarred by human activities. Through glaciol-
ogy, I have had the opportunity to live in these areas; to drift silently in
a kayak on an ice-dammed lake in front of our camp as sunset gradually
merges with sunrise on an August evening; to marvel at the northern
lights while out on a short ski tour before bedtime on a December night;
and to reflect on the meaning of life and of our place in nature. Maybe
some of you will share these needs, and will choose to study glaciers for
this reason. I have found that many glaciologists do share them, and this
leads to a comradeship which is rewarding in itself.

Academic reasons for studying glaciers are perhaps difficult to sep-
arate from socially significant ones. However, in three academic disci-
plines, the application of glaciology to immediate social problems is

1



2 Why study glaciers?

at least one step removed from the initial research. The first of these
is glacial geology. Glaciers once covered 30% of the land area of the
Earth, and left deposits of diverse shape and composition. How were
these deposits formed, and what can they tell us about the glaciers that
made them? The second discipline is structural geology; glacier ice is a
metamorphic rock that can be observed in the process of deformation at
temperatures close to the melting point. From the study of this deforma-
tion, both in the laboratory and in the field, much can be learned about
the origin of metamorphic structures in other crystalline rocks that were
deformed deep within the Earth. The final discipline is paleoclimatology.
Glaciers record climatic fluctuations in two ways: the deposits left dur-
ing successive advances and retreats provide a coarse record of climatic
change which, with careful study, a little luck, and a good deal of skill,
can be placed in correct chronological order and dated. A more detailed
record is contained in ice cores from polar glaciers such as the Antarc-
tic and Greenland ice sheets. Isotopic and chemical variations in these
cores reflect present atmospheric circulation patterns and past changes
in the temperature and composition of the atmosphere. Changes during
the past several centuries to several millennia can be rather precisely
dated by using core stratigraphy. Changes further back in time are dated
with less certainty using flow models.

Relatively recent changes in climate and in concentrations of certain
anthropogenic substances in the atmosphere are attracting increasing
attention as humans struggle with problems of maintaining a healthy liv-
ing environment in the face of overpopulation and the resulting demands
on natural resources. Studies of ice cores and other dated ice samples
provide a baseline from which to measure these anthropogenic changes.
For example, levels of lead in the Greenland ice sheet increased about
four-fold when Greeks and Romans began extracting silver from lead
sulphides (Hong et al., 1994). Then, after dropping slightly in the first
millennium AD, they increased to ∼80 times natural levels during the
industrial revolution and to ∼200 times natural levels when lead addi-
tives became common in gasoline (Murozumi et al., 1969). These studies
are largely responsible for the fact that lead is no longer used in gasoline.
Similarly, measurements of CO2 and CH4 in ice cores have documented
levels of these greenhouse gases in pre-industrial times.

Other applications of glaciology are not hard to find. An increas-
ing number of people in northern and mountainous lands live so close
to glaciers that their lives would be severely altered by ice advances
comparable in magnitude to the retreats that have taken place during
the past century in many parts of the world. Tales of glacier advances
gobbling up farms and farm buildings and of ice falls smashing barns
and houses are common from the seventeenth and eighteenth centuries,
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a period of ice advance as the world entered the Little Ice Age. Records
tell of buildings being crushed into small pieces and mixed with “soil,
grit, and great rocks” (Grove, 1988, p. 72). The Mer de Glace in France
presented a particular problem during this time period, and several times
during the seventeenth century exorcists were sent out to deal with the
“spirits” responsible for its advance. They appeared to have been suc-
cessful, as the glaciers there were then near their Little Ice Age maxima
and beginning to retreat.

Other people live in proximity to streams draining lakes dammed
by glaciers. Some of the biggest floods known from the geologic record
resulted from failure of such ice dams, and smaller floods of the same
origin have devastated communities in the Alps and Himalayas.

Somewhat further from human living environments, one finds
glaciers astride economically valuable deposits, or discharging icebergs
into the shipping lanes through which such deposits are moved. What
complications would be encountered, for example, if mining engineers
were to make an open pit mine through the edge of the Greenland Ice
Sheet to tap an iron deposit? What is the possibility that the present rapid
retreat of Columbia Glacier in Alaska will increase perhaps ten-fold, per-
haps one hundred-fold, the flux of icebergs into shipping lanes leading to
the port of Valdez, at the southern end of the trans-Alaska pipeline? Were
shipping to be halted there for an extended period so that the oil flow
through the pipeline had to be stopped, oil would congeal in the pipe,
making what one glaciologist referred to as the world’s longest candle.

Glacier ice itself is an economically valuable deposit; glaciers con-
tain 60% of the world’s fresh water, and peoples in arid lands have seri-
ously studied the possibility of towing icebergs from Antarctica to serve
as a source of water. People in mountainous countries use the water not
only for drinking, but also as a source of hydroelectric power. By tun-
neling through the rock under a glacier and thence up to the ice–rock
interface, they trap water at a higher elevation than would be possible
otherwise, and thus increase the energy yield. Glaciologists provided
advice on where to find streams beneath the glaciers.

With the threat of global warming hanging over the world, the large
volume of water locked up in glaciers and ice sheets represents a poten-
tial hazard for human activities in coastal areas. Collapse of the West
Antarctic Ice Sheet could lead to a worldwide rise in sea level of 7 m in,
perhaps, less than a century. Were this to be followed by melting of the
East Antarctic Ice Sheet, sea level could rise an additional 50 m or so.
Concern over these prospects has stimulated a great deal of research in
the past two decades.

Lastly, we should mention a proposal to dispose of radioactive waste
by letting it melt its way to the base of the Antarctic Ice Sheet. How long
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would such waste remain isolated from the biologic environment? How
would the heat released affect the flow of the ice sheet? Might it cause a
surge, with thousands of cubic kilometers of ice dumped into the oceans
over a period of a few decades? This would raise sea level several tens
of meters, with, again, interesting consequences! To accommodate these
concerns, later versions of the proposal called for suspending the waste
canisters on wires anchored at the glacier surface. The whole project was
later abandoned, however, but not on glaciological grounds. Rather, there
seemed to be no risk-free way to transport the waste to the Antarctic.

A good quantitative understanding of the physics of glaciers is essen-
tial for rigorous treatment of a number of these problems of academic
interest, as well as for accurate analysis of various engineering and envi-
ronmental problems of concern to humans. The fundamental principles
upon which this understanding is based are those of physics and, to a
lesser extent, chemistry. Application of these principles to glacier dynam-
ics is initially straightforward but, as with many problems, the better we
seek to understand the behavior of glaciers the more involved, and in
many respects the more interesting, the applications become.

So we have answered our first question; we study glaciers for the
same reasons that we study many other features of the natural landscape,
but also for a special reason which I will try to impart to you, wordlessly,
if you will stand with me looking over a glacier covered with a thick
blanket of fresh powder snow to distant peaks, bathed in alpine glow,
breathless from a quick climb up a steep slope after a day of work,
but with skis ready for the telemark run back to camp. “Mäktig,” my
companion said – powerful.



Chapter 2

Some basic concepts

In this chapter, we will introduce a few basic concepts that will be used
frequently throughout this book. First, we review some commonly used
classifications of glaciers by shape and thermal characteristics. Then we
consider the mathematical formulation of the concept of conservation of
mass and, associated with it, the condition of incompressibility. This will
appear again in Chapters 6 and 9. Finally, we discuss stress and strain rate,
and lay the foundation for understanding the most commonly used flow
laws for ice. Although a complete consideration of these latter concepts
is deferred to Chapter 9, a modest understanding of them is essential
for a fuller appreciation of some fundamental concepts presented in
Chapters 4–8.

A note on units and coordinate axes
SI (Système International) units are used in this book. The basic units of
length, mass, and time are the meter (m), kilogram (kg), and second (s)
(MKS). Temperatures are measured in Kelvins (K) or in the derived unit,
degrees Celsius (◦C). Some other derived units and useful conversion
factors are given on p. xvii.

In comparison with the earlier glaciological literature, one of the
most significant changes introduced by use of SI units is that from bars
to pascals as the principal unit of stress. The bar (= 0.1 MPa ≈ 1 atmo-
sphere) was a convenient unit because stresses in glaciers are typically
∼1 bar.

In most discussions herein we use a rectangular coordinate system
with the x-axis horizontal or subhorizontal and in the direction of flow,

5



6 Some basic concepts

the y-axis horizontal and transverse, and the z-axis normal to the other
two and thus vertical or slightly inclined to the vertical. Some derivations
are easier to approach with the z-axis directed upward, while in others it
is simpler to have the z-axis directed downward.

Glacier size, shape, and temperature
As humans, one way in which we try to organize knowledge and enhance
communication is by classifying objects into neat compartments, each
with it own label. The natural world persistently upsets these schemes by
presenting us with particular items that fit neither in one such pigeonhole
nor the next, but rather have characteristics of both, for continua are the
rule rather than the exception. This is as true of glaciers as it is of other
natural systems.

One way of classifying glaciers is by shape. Herein, we will be
concerned with only two basic shapes. Glaciers that are long and com-
paratively narrow, and that flow in basically one direction, down a valley,
are called valley glaciers. When a valley glacier reaches the coast and
interacts with the sea, it is called a tidewater glacier. (I suppose this name
is appropriate even in circumstances in which the tides are negligible,
although with luck no one will ever find a valley glacier encroaching on
such a tideless marine environment.) Valley glaciers that are very short,
occupying perhaps only a small basin in the mountains, are called cirque
glaciers. In contrast to these forms are glaciers that spread out in all
directions from a central dome. These are called either ice caps, or, if
they are large enough, ice sheets.

There is, of course, a continuum between valley glaciers and ice caps
or ice sheets. For example, Jostedalsbreen in Norway and some ice caps
on islands in the Canadian arctic feed outlet glaciers, which are basically
valley glaciers flowing outward from an ice cap or ice sheet. However,
the end members, valley glaciers and ice sheets, typically differ in other
significant ways (see, for example, Figure 3.1). Thus, a classification
focusing on these two end members is useful.

Glaciers are also classified by their thermal characteristics, although
once again a continuum exists between the end members. We normally
think of water as freezing at 0 ◦C, but may overlook the fact that once
all the water in a space is frozen, the temperature of the resulting ice can
be lowered below 0 ◦C as long as heat can be removed from it. Thus,
the temperature of ice in glaciers in especially cold climates can be
well below 0 ◦C. We call such glaciers polar glaciers. More specifically,
polar glaciers are glaciers in which the temperature is below the melt-
ing temperature of ice everywhere, except possibly at the bed. Because
the presence of meltwater at the base of a polar glacier has dramatic
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Figure 2.1. Schematic phase
diagram for H2O near the
triple point, TP. At the
triple point, liquid, solid,
and vapor phases are in
equilibrium. As long as all
three phases are present,
neither the pressure nor the
temperature can depart from
their triple-point values.

consequences for both glacier kinematics and landform development, it
will be convenient to refer to such glaciers as Type II polar glaciers and to
those that are frozen to their beds as Type I polar glaciers. In Chapter 6,
we will investigate the temperature distribution in such glaciers in some
detail.

Glaciers that are not polar are either polythermal or temperate. Poly-
thermal glaciers, which are sometimes called subpolar glaciers, contain
large volumes of ice that are cold, but also large volumes that are at the
melting temperature. Most commonly, the cold ice is present as a surface
layer, tens of meters in thickness, on the lower part of the glacier (the
ablation area).

In simplest terms, a temperate glacier is one that is at the melting
temperature throughout. However, the melting temperature, θm, is not
easily defined. As the temperature of an ice mass is increased towards
the melting point, veins of water form along the lines where three ice
crystals meet (Figure 8.1). At the wall of such a vein:

θm = θTP − CP − θmKγSL

Lρirp
− ζ

s

W
(2.1)

(Raymond and Harrison, 1975; Lliboutry, 1976). Here, θTP is the triple
point temperature, 0.0098 ◦C (Figure 2.1); C is the depression of the
melting point with increased pressure, P (Figure 2.1); θmK is the melting
point temperature in Kelvin, 273.15 K; γ SL is the liquid–solid surface
energy, 0.034 J m−2; L is the latent heat of fusion, 3.34 × 105 J kg−1;
ρ i is the density of ice; rp is the radius of curvature of liquid–solid
interfaces; s is the solute content of the ice in mols kg−1, W is the
fractional water content of the ice by weight (kg kg−1), and ζ is
the depression of the melting point resulting from solutes in the ice,
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1.86 ◦C kg mol−1. The third term on the right in Equation (2.1) repre-
sents a change in melting temperature in the immediate vicinity of veins.
C is the Clausius–Clapeyron slope, given by:

C = dθ

dP
=

(
1

ρi
− 1

ρw

)
θTPK

L
(2.2)

Here, ρw is the density of water and θTPK is the triple point temperature in
Kelvins. C is 0.0742 K MPa−1 in pure water, but rises to 0.098 K MPa−1

in air-saturated water. As glacier ice normally contains air bubbles, the
water is likely to contain air even if it is not saturated with air. Thus, under
most circumstances it is probably appropriate to use a value higher than
0.0742 K MPa−1 (Lliboutry, 1976).

Clearly, the melting temperature varies on many length scales in
a glacier (Equation (2.1)). On the smallest scales, it varies within the
veins that occur along crystal boundaries. On a slightly larger scale, it
varies from the interiors of crystals to the boundaries because solutes
become concentrated on the boundaries during crystal growth. On the
largest scale, it varies with depth owing to the change in hydrostatic
pressure.

As a result of these variations, small amounts of liquid are apparently
present on grain boundaries at temperatures as low as about −10 ◦C,
and the amount of liquid increases as the temperature increases. This
led Harrison (1972) to propose a more rigorous definition of a temperate
glacier. He suggested that a glacier be considered temperate if its heat
capacity is greater than twice the heat capacity of pure ice. In other
words, this is when the temperature and liquid content of the ice are such
that only half of any energy put into the ice is used to warm the ice (and
existing liquid), while the other half is used to melt ice in places where
the local melting temperature is depressed.

Harrison’s definition, while offering the benefit of rigor, is not easily
applied in the field. However, as we shall see in Chapter 4, relatively
small variations in the liquid content of ice can have a major influence
on its viscosity and crystal structure, among other things. Thus, this
discussion serves to emphasize that the class of glaciers that we loosely
refer to as temperate may include ice masses with a range of physical
properties that are as wide as, or wider than, those of glaciers that we
refer to as polar.

Ice caps and ice sheets are commonly polar, while valley glaciers
are more often temperate. However, there is nothing in the respective
classification schemes that requires this. In fact, many valley glaciers in
high Arctic areas and in Antarctica are at least polythermal, and some
are undoubtedly polar. However, none of the major ice caps or ice sheets
that exist today is temperate.
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Figure 2.2. Derivation of the
condition of incompressibility.

The condition of incompressibility
Let us next examine the consequences of the requirement that mass be
conserved in a glacier. In Figure 2.2 a control volume of size dx·dy·dz is
shown. The velocities into the volume in the x-, y-, and z-directions are
u, v, and w respectively. The velocity out in the x-direction is:

u + ∂u

∂x
dx

Here ∂u/∂x is the velocity gradient through the volume, which, when
multiplied by the length of the volume, dx, gives the change in velocity
through the volume in the x-direction. The mass fluxes into and out of
the volume in the x-direction are:

ρ u dy dz and

(
ρu + ∂ρu

∂x
dx

)
dy dz

kg

m3

m

a
m m = kg

a

Here, ρ is the density of ice. (The dimensions of the various parameters
are shown beneath the left-hand term to clarify the physics. This is a
procedure that we will use frequently in this book, and that the reader is
likely to find useful, as errors in equations can often be detected in this
way.) Similar relations may be written for the mass fluxes into and out
of the volume in the y- and z-directions. Summing these fluxes, we find
that the change in mass with time, ∂m/∂t, in the control volume is:

∂m

∂t
= ρu dy dz −

(
ρu + ∂ρu

∂x
dx

)
dy dz + ρv dx dz −

(
ρv + ∂ρv

∂y
dy

)
dx dz

+ ρw dx dy −
(

ρw + ∂ρw

∂z
dz

)
dx dy

Note that each term on the right-hand side has the dimensions M · T−1,
or, in the units which we will use most commonly herein, kg a−1.
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Simplifying by canceling like terms of opposite sign and dividing by
dx·dy·dz yields:

− 1

dx dy dz

∂m

∂t
= ∂ρu

∂x
+ ∂ρv

∂y
+ ∂ρw

∂z
(2.3)

Ice is normally considered to be incompressible, which means that
ρ is constant. This is not true near the surface of a glacier where snow
and firn are undergoing compaction, but to a good approximation it is
valid throughout the bulk of most ice masses. In this case, Equation (2.3)
becomes:

− 1

ρdx dy dz

∂m

∂t
= ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
(2.4)

The mass of ice in the control volume can change if the control volume
is not full initially. When it is full of incompressible ice, however,
∂m/∂t = 0, and Equation (2.4) becomes:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (2.5)

This is the condition of incompressibility; it describes the condition that
mass and density are not changing.

Stresses, strains, and strain rates
A stress is a force per unit area, and has the dimensions N m−2, or Pa.
Stresses are vector quantities in that they have a magnitude and direction.
Stresses that are directed normal to the surface on which they are acting
are called normal stresses, while those that are parallel to the surface are
shear stresses.

Notation

Referring to Figure 2.3, σxz is the shear stress in the z-direction on the
plane normal to the x-axis. Thus, the first subscript in a pair identifies
the plane on which the stress acts, and the second gives the direction of
the stress.

The sign convention used in such situations is as follows. Let n̂ be
the outwardly directed normal to a surface; n̂ is positive if it is directed in
the positive direction and conversely. If a normal stress is in the positive
direction and n̂ is also positive on this face, the normal stress is defined
as positive, and conversely if one is positive and the other negative, the
stress is negative. Thus in Figure 2.3, σzz is positive on both of the faces
normal to the z-axis and σxx is negative on both of the faces normal
to the x-axis. In other words, tension is positive and compression is
negative.
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Figure 2.3. Sign convention
for stresses in plane strain.

Similarly, if a shear stress, σzx, is in the positive x-direction on a
plane on which n̂ is positive, that shear stress is considered to be positive
and conversely. By this definition both shear stresses σxz and σzx in the
diagram are positive.

As an example, consider the variation of u with depth in a glacier
(Figure 2.4). As depicted by the arrows around the box in Figure 2.4, the
shear stress, σzx, is negative in the coordinate system shown. The veloc-
ity derivative, du/dz, is also negative (u decreases with increasing z).
Thus the negative shear stress results in a negative strain rate, as one
would expect.

u

x

z

bed

Figure 2.4. Vertical profile
of horizontal velocity, u.
Sense of shear stress, σzx, is
shown by arrows above and
below box.

Tensors

The three-dimensional diagram in Figure 2.5 shows stress vectors on
three faces of a cube. Similar stresses occur on the concealed faces,
but they are in the opposite directions. The cube is considered to be
infinitesimal, representing, say, a point in the glacier. Thus, stresses on
any given face can be regarded as uniformly distributed and constant.

To completely describe the state of stress at this point, we need nine
stress components; thus:

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

This assemblage of stress vectors is called a second-rank tensor. For
comparison, to describe a first-rank tensor, a vector, we need its compo-
nents along three coordinate axes.
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Figure 2.5. Stresses on a
cube.

For steady (non-accelerating) uniform motion, forces must be bal-
anced. Thus, to ensure that there is no tendency for the cube in Figure 2.5
to rotate, it is necessary that σxy = σyx, σxz = σzx, and σyz = σzy. Such
tensors are called symmetric.

When a tensor is symmetric, it is common to see, for example, xy
used where, rigorously, yx might be more correct. In another common
abbreviation often encountered, σx is written for σxx.

Strains and strain rates

In a deformable medium, stresses induce deformation or strain. Strain
is defined as the change, ��, in length of a line divided by the initial
length of that line, �0, thus: ��/�0. The symbol ε is commonly used
to denote strain. The rate at which strain occurs, or the strain rate, is
denoted by ε̇. The dot superscript is commonly used to denote a time
derivative, making it a rate. As nine separate stress vectors are needed to
describe fully the state of stress at a point, so also are nine strains or strain
rates needed to describe the state of straining at that point. Thus, these
assemblages of strains and strain rates are also second-rank tensors, the
strain and strain-rate tensors. As was the case with the stress tensor, these
tensors, too, are symmetric, so εxy = εyx, ε̇xz = ε̇zx, and so forth.

In Chapter 9, we will show that:

ε̇xy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
(2.6a)

and similarly for the other shear strain rates. When x = y, this becomes:

ε̇xx = ∂u

∂x
(2.6b)
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and so forth. Note that in terms of expressions like Equation (2.6b), the
incompressibility condition, Equation (2.5), becomes:

ε̇xx + ε̇yy + ε̇zz = 0 (2.7)

Equations (2.6a) and (2.6b) define strain rates in terms of differences
in velocity between points that are an infinitesimal distance (for exam-
ple, dx) apart. However, when measuring strains or strain rates in the
laboratory or field, it is technically impossible to resolve differences in
velocity over “infinitesimal” distances. Thus, we make measurements
over longer distances and use what is called logarithmic strain. The
quantity measured is the change in the distance between two points over
a time interval, �t. If the initial distance is �0 and the final distance is �,
then ε̇ is defined as:

ε̇ = 1

�t
ln

�

�0

This relation will be derived in Chapter 9.

Yield stress

In some materials there is no deformation at stresses below a certain
stress, called the yield stress. The yield stress is a property of that par-
ticular material. In other materials, deformation rates are so low at low
stresses that theoretical models sometimes assume the existence of a
yield stress even though there may not actually be one. Ice is such a
material.

Deviatoric stresses

Ice does not deform in response to hydrostatic pressure alone. In other
words, in a topographic depression containing ice (Figure 2.6), the hydro-
static (or cryostatic) pressure would increase linearly with depth, z, at a
rate ρgz, where g is the acceleration due to gravity. As a rule of thumb,
the pressure increases at a rate of 0.1 MPa for every 11 m of depth. Thus,
it becomes quite high at large depths. However, if the surface of the ice
in the depression is horizontal, as in a lake, the only deformation that
would occur would be a relatively insignificant elastic compression.

On the other hand, if the ice surface slopes gently (Figure 2.6, dashed
line), and if points A and B are on a horizontal plane, then the pressure at
A would be greater than the pressure at B. This pressure difference would
result in a compressive strain between A and B. The strain rate would
depend upon the small pressure difference and not, in any significant
way, on the much larger hydrostatic pressure at depth z.
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Horizontal
surface

BA z

Figure 2.6. Sketch to
illustrate non-hydrostatic
pressure.

Because straining in glaciers is related to such stress differences,
it is convenient to define a stress, called the deviatoric stress or stress
deviator, which reflects this principle. The deviatoric normal stress in
the x-direction is:

σ ′
xx = σxx − P (2.8)

where P is the mean normal stress:

P = 1

3
(σxx + σyy + σzz) (2.9)

P is close to, but not necessarily equal to, the hydrostatic pressure. As
P is a normal stress, it contributes only to the normal stresses, and not
to the shear stresses in Figure 2.5. In other words, the deviatoric shear
stresses are the same as their non-deviatoric or total counterparts, but
the deviatoric normal stresses are very different from the total normal
stresses, especially at depth.

Effective and octahedral shear stresses and strain rates

Theoretical studies and a limited amount of experimental data suggest
that the strain rate in a given direction in ice depends not only on the
stress in that direction, but also on all of the other stresses acting on the
medium. To take this into account, we define the effective shear stress,
σe, and the effective strain rate, ε̇e, by:

σe = 1√
2

(
σ ′2

xx + σ ′2
yy + σ ′2

zz + σ 2
xy + σ 2

yx + σ 2
xz + σ 2

zx + σ 2
yz + σ 2

zy

)1/2
(2.10)

and

ε̇e = 1√
2

(
ε̇2

xx + ε̇2
yy + ε̇2

zz + ε̇2
xy + ε̇2

yx + ε̇2
xz + ε̇2

zx + ε̇2
yz + ε̇2

zy

)1/2
(2.11)

Alternatively, some glaciologists use the octahedral shear stress, σ o, and
octahedral shear strain rate, ε̇o, defined by:

σo = 1√
3

(
σ ′2

xx + σ ′2
yy + σ ′2

zz + σ 2
xy + σ 2

yx + σ 2
xz + σ 2

zx + σ 2
yz + σ 2

zy

)1/2
(2.12)
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and

ε̇o = 1√
3

(
ε̇2

xx + ε̇2
yy + ε̇2

zz + ε̇2
xy + ε̇2

yx + ε̇2
xz + ε̇2

zx + ε̇2
yz + ε̇2

zy

)1/2
(2.13)

respectively.

Principal stresses and strain rates

In Chapter 9, we will show that, at any point in a medium, it is always
possible to orient a rectangular coordinate system in such a way that
shear stresses vanish. Equation (2.12) then becomes:

σo =
(

σ ′2
xx + σ ′2

yy + σ ′2
zz

3

)1/2

(2.14)

We give the name principal stresses to the remaining normal stresses,
and the axes in this coordinate system are called the principal axes of
stress. Similarly, if the coordinate system is oriented such that shear
strain rates vanish, the remaining strain rates are called the principal
strain rates and the axes are the principal axes of strain rate.

Equation (2.14) shows that the octahedral shear stress is the root-
mean-square of the principal stress deviators. When the coordinate axes
are aligned parallel to the principal stresses, the octahedral shear stress
is the resolved shear stress on the octahedral plane, a plane that intersects
the three axes at points equidistant from the origin (Figure 2.7). Hence
the name: octahedral shear stress.

Octahedral
    plane

x

z

y

1

1

1
1

Figure 2.7. A plane that
intersects the x-, y-, and
z-axes at points equidistant
from the origin, in this case
a unit distance, is called the
octahedral plane. If similar
planes are drawn involving
the negative directions
along the axes, the solid
figure formed is a regular
octahedron.

The flow law

The most commonly used flow law for ice is Glen’s flow law, named after
John W. Glen upon whose experiments it is based (Glen, 1955). We will
normally write Glen’s flow law in the form he originally used:

ε̇e =
(σe

B

)n
(2.15)

where B is a viscosity parameter that increases as the ice becomes stiffer,
and n is an empirically determined constant. Most studies have found
that n ≈ 3. At very low stresses, however, there is some evidence that
n → 1. An alternative form of the flow law that is commonly used is:

ε̇e = Aσ n
e (2.16)

Here, B is normally given in MPa a1/n, while A is in MPa−n a−1 or
kPa−n s−1. If the octahedral shear stress and strain rate are used, the
numerical values of B and A must be adjusted accordingly, but the units
stay the same.
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Both forms of the flow law have their advantages, and as A = (1/B)n

it is easy to convert between the two forms as long as n is known. The
form ε̇e = Aσ n

e resembles conventional constitutive relations in rheol-
ogy, and is also easier to generalize if greater precision is needed in
situations involving complicated stress configurations (Glen, 1958). For
example, some materials, when subjected to a shear stress, swell or con-
tract perpendicular to the plane of shear. In other words, deformation
occurs in directions in which the stress is zero. Such rheologies require
an extra term in the flow law, and this is more readily accommodated with
a flow law of the form ε̇e = Aσ n

e . So far, however, the forms presented
in Equations (2.16) and (2.17) seem adequate to represent phenomena
observed in studies of ice deformation, both in the laboratory and on
glaciers, so the additional term is not needed.

The form ε̇e = (σe/B)n is similar to that used in fluid mechanics with
the viscosity, η, defined by:

τ = η
du

dz
(2.17)

Here τ is the shear stress. Thus B, like η, is a ratio of stress to strain rate.
An increase in B results in a decrease in strain rate. Scientists interested
in geomorphological applications of glaciological principles are more
likely to be familiar with principles of fluid mechanics than with those
of rheology, so the form ε̇e = (σe/B)n is used throughout this book.

In Chapter 9, we will show that if the principle axes of stress and
strain rate coincide, as is normally the case, the flow law can be written
as:

ε̇i j = σ n−1
e

Bn
σ ′

i j (2.18)

where i and j can represent x or y or z. Eliminating σe from Equations
(2.15) and (2.18) yields:

ε̇i j = ε̇
n−1

n
e

B
σ ′

i j (2.19)

Equation (2.18) re-emphasizes a fundamental tenet of Glen’s flow law
mentioned above: namely that the strain rate in a given direction is a
function not only of the stress in that direction, but also of all of the
other stresses acting on the medium. Equation (2.19) shows that we can
express this concept in terms of strain rates, which are generally easier
to measure than stresses.

In the next several chapters we will be dealing with situations in
which it is feasible to assume that one stress so dominates all of the
others that the others can be neglected. However, the reader should be
aware of the implications of this assumption.



Chapter 3

Mass balance

Glaciers exist because there are areas, generally at high elevations or
in polar latitudes, where snow fall during the winter exceeds melt (and
other losses) during the summer. This results in net accumulation, and
this part of the glacier is thus called the accumulation area (Figure 3.1).
As each snow layer is buried, the pressure of the overlying snow
causes compaction, and movement of molecules in the liquid and vapor
phases results in snow metamorphism. Snow that is more than a year
old, and has thus been altered by these processes, is called firn. The
end result of the firnification process, normally after several years, is
solid ice.

Where there are lower elevations to which this ice can move, grav-
itational forces drive it toward these areas. This eventually brings the
ice into places where the annual melt exceeds snow fall. Here, all of the
winter snow and some of the underlying ice melts during the summer.
This is called the ablation area. The line separating the accumulation
and the ablation areas at the end of a melt season is called the equilib-
rium line. Along the equilibrium line, melt during the just-completed
summer exactly equaled net snow accumulation during the previous
winter.

In this chapter, we first discuss the transformation of snow to ice,
and show how the processes involved result in a physical and chemical
stratigraphy that, under the right circumstances, can be used to date ice
that is thousands of years old. We then explore the climatic factors that
result in changes in the altitude of the equilibrium line, and hence in
advance and retreat of glaciers.

17
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Figure 3.1. Cross sections of: (a) a typical polar ice cap or ice sheet, and (b) a
typical valley glacier, showing the relation between equilibrium line and flow
lines. Sketches are schematic, but relative proportions are realistic.

The transformation of snow to ice
The first phase of the transformation of snow into ice involves diffusion of
water molecules from the points of snow flakes toward their centers; the
flakes thus tend to become rounded, or spherical (Figure 3.2a), reducing
their surface area and consequently their free energy. This is an example
of an important thermodynamic principle, namely that the free energy of
a system tends toward a minimum. Such rounding occurs more rapidly
at higher temperatures.
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Figure 3.2. Transformation of snow to ice. (a) Modification of snow flakes to a
subspherical form. (b) Sintering. (c) Processes during sintering: 1 = sublimation,
2 = molecular diffusion within grains, 3 = nucleation and growth of new grains,
and 4 = internal deformation of grains. (Based on Sommerfeld and LaChapelle,
1970, Figures 2, 16, and 17; and on Kinosita, 1962, as reported by Lliboutry,
1964, Figure 1.14.)

The closest possible packing of spherical particles would be one with
a porosity of about 26%, the so-called rhombohedral packing. However,
in natural aggregates of spheres of uniform diameter, the pore space is
usually closer to 40%. In the case of firn, this corresponds to a density
of ∼550 kg m−3.

Further densification involves a process called sintering (Figure
3.2b), which involves transfer of material by sublimation and by molec-
ular diffusion within grains, nucleation and growth of new grains, and
internal deformation of the grains (Figure 3.2c). Sublimation is more
important early in the transformation process when pore spaces are still
large. Internal deformation increases in importance as the snow is buried
deeper and pressures increase. In warm areas, the densification process
is accelerated, both because grains may be drawn together by surface
tension when water films form around them, and because percolating
melt water may fill air spaces and refreeze.

An important transition in the transformation process occurs at a
density of ∼830 kg m−3. At about this density, pores become closed,
preventing further air movement through the ice. Studies of the air thus
trapped provide information on the composition of the atmosphere at the
time of close off (see, for example, Raynaud et al., 1993). Measurements
of the volume of such air per unit mass of ice yield estimates (albeit fairly
crude, given present technology) of the altitude of the pores at the time
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Figure 3.3. Variation in snow facies with altitude. (After Benson, 1962.)
Horizontal distance from equilibrium line to dry-snow line is tens to hundreds
of kilometers.

of close off (Martinerie et al., 1992). Knowing the depth in the glacier
at which this occurs then permits an estimate of the elevation of the ice
surface at that time. Pore close off can occur at depths of tens to over a
hundred meters, depending on temperature (Paterson, 1994, Table 2.2).

Snow stratigraphy
At high elevations on polar glaciers, such as the Antarctic or Greenland
ice sheets, there are areas where no melting occurs during the sum-
mer. At somewhat lower elevations, some melting does occur, and the
meltwater thus formed percolates downward into the cold snow where it
refreezes, forming lenses or gland-like structures. The higher of these two
zones is called the dry-snow zone and the lower is the percolation zone
(Figure 3.3) (Benson, 1961; Müller, 1962). In keeping with stratigraphic
terminology in geology, parts of the annual snow pack on an ice sheet
that have distinctive properties are referred to as facies – in this case
the dry-snow facies and the percolation facies, respectively. The bound-
ary between these two zones or facies, the dry-snow line, lies approxi-
mately at the elevation where the mean temperature of the warmest month
is −6 ◦C (Benson, 1962, cited by Loewe, 1970, p. 263).

At lower elevations, summer melting is sufficient to wet the entire
snow pack. This is called the wet-snow zone (Figure 3.3). When this snow
refreezes, a firm porous layer is formed. In downglacier parts of this zone,
the basal layers of the snow pack may become saturated with water. If the
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underlying ice is cold, this water-saturated snow may refreeze, forming
ice that is called superimposed ice. As long as it is still undeformed,
superimposed ice is readily recognized by its air bubbles, which are
large and often highly irregular in shape.

At still lower elevations, only superimposed ice is present at the end
of the melt season, and this is thus called the superimposed ice zone.
The lower boundary of the superimposed ice zone at the end of the melt
season is the equilibrium line.

On typical alpine glaciers, the first water percolating into cold snow
at the beginning of the melt season may refreeze to form glands and lenses
as on polar ice sheets. However, by the end of the melt season, the entire
snow pack will have been warmed to the melting point. Thus, neither
the dry-snow nor the percolation facies are present on these glaciers.
Furthermore, on a temperate glacier, heat conduction downward into the
glacier beneath the snow pack is minimal, so little superimposed ice is
formed.

Most of the warming of alpine snow packs is a result of the release
of latent heat during refreezing of the first water to infiltrate. Freezing of
1 kg of water can warm 160 kg of snow 1 ◦C. Conduction of heat from
the surface is insignificant by comparison.

In addition to the zonation in snow stratigraphy with altitude (or
temperature), particularly on polar glaciers, there is also a distinct vertical
zonation at any given point on a glacier. Because the autumn snow in an
annual layer is warmer than the overlying winter snow, the former has a
higher vapor pressure. Thus, a vapor-pressure gradient exists, resulting in
diffusion of molecules from the autumn to the winter snow. The autumn
snow thus becomes coarser, and its density may decrease. These layers
of coarse autumn snow are called depth hoar. Tabular crystals are the
norm in depth hoar, but in extreme cases, large prism-shaped, pyramidal,
or hollow hexagonal crystals develop.

Dating ice using preserved snow stratigraphy

Depth hoar layers are important because they can be recognized at depth
in snow pits and ice cores. Using such stratigraphic markers, glaciologists
have been able to determine accumulation rates, averaged over several
years or decades, in many areas of Antarctica and Greenland, and in
some cases over millennia in deep cores from these ice sheets.

In one of the most remarkable examples of the use of such physical
stratigraphy, Alley et al. (1993) found that the accumulation rate high
on the Greenland Ice Sheet increased by approximately a factor of two
at the end of the Pleistocene, and that the change took place in a time
span of only three or four years! The increase in the accumulation rate
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Figure 3.4. Variations of �18O in the Camp Century, Greenland, ice core.
(a) Ice from 1963 to 1968. (b) Ice that is approximately 8300 years old, and in
which seasonal variations can still be detected. (Adapted from Johnsen et al.,
1972. Reproduced with permission of the authors and Nature.)

was attributed to a warming of the climate, and it was this warming that
caused retreat of the ice sheets.

Dating of ice can also be accomplished by detailed laboratory studies
of cores or of samples from pit walls. The most commonly used technique
for this purpose involves measuring �18O variations. Because the air is
colder during the winter, �18O values in winter snow are more negative
(the snow contains less of the heavier isotope of oxygen, 18O) than in
summer snow. Thus, a series of samples taken from a single annual
layer will show a roughly sinusoidal variation in �18O (Figure 3.4). A
prodigious number of samples must be analyzed when this technique is
used to date very old ice. However, annual layers, much compressed but
still recognizable by their isotopic variations, have been identified in ice
more than 8000 years old (Figure 3.4). Thus, the potential is there, and
techniques for making the analyses rapidly have been developed.



Mass balance principles 23

The electrical conductivity of ice and the concentration of micropar-
ticles in ice also vary seasonally. The former is a consequence of seasonal
variations in the aerosol content of the snow. The seasonality in micropar-
ticle concentration is the result of entrainment of dust by wind during the
summer when outwash plains and similar surfaces are free of snow (see,
for example, Thompson et al., 1986). Both these variations are used for
dating.

When such techniques are used to date relatively old ice, errors accu-
mulate because some annual layers either lack a variation of the param-
eter being used, or on occasion have two cycles of variation. However,
volcanic ash layers are frequently found in cores, and when ash chemistry
permits attribution of a layer to an eruption of known age, an absolute
date can be assigned to the ice containing the ash. In this way, the age
of ice that is thousands of years old has been established quite accurately.

Mass balance principles
A number of terms are used to describe different aspects of the mass
balance on a glacier. The winter balance is the amount of snow that
accumulates during the winter months. Conversely, the summer balance,
a negative quantity, is the amount of snow and ice lost by melt. Over the
course of a balance year, which is commonly taken to extend from the
end of one melt season to the end of the next, the sum of the winter
and summer balances is the net balance. Normally, these balances are
expressed in terms of the thickness of a layer of water, or in water equiva-
lents. When referred to a specific place on the glacier, they are expressed
in m a−1, or kg a−1m−2, and are called specific balances. Sometimes the
word budget is used instead of balance, particularly when referring to
the net balance.

Significant amounts of accumulation may occur during the summer
in the accumulation areas of polar glaciers, and conversely melt may
occur throughout the winter in the ablation areas of some temperate
glaciers. The terms summer and winter balance are applied with some
poetic license in these instances. The most extreme example of this is on
tropical glaciers where accumulation and melt may alternate on a time
scale of hours to days. Despite these complications, the basic principles
are still applicable.

There are a number of ways of measuring mass balance, and we will
not go into them all here. Perhaps the most common method, and the
one that is easiest to visualize, is to measure the height of the snow or
ice surface on stakes that are placed in the glacier in holes drilled for the
purpose. The measurements are made first at the end of one melt season,
then at the end of the following winter to obtain the winter balance, and
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finally at the end of the next melt season to obtain both the summer
and the net balances. Snow density measurements must also be made
in order to convert the winter accumulation and summer snow melt to
water equivalents.

We define bs(x,y,z) as the specific summer balance, bw(x,y,z) as the
specific winter balance, and bn(x,y,z) as the specific net balance. Clearly,

bn = bs + bw (3.1)

and the overall state of health of the glacier can be evaluated from:

Bn =
∫
A

(bs + bw)d A (3.2)

where A is the area of the glacier and Bn is the net balance. Bn is often
normalized to the area of the glacier, thus: bn = Bn/A. When Bn or
bn are positive, the glacier is said to have a positive mass balance; if
this condition persists for some years, the glacier will advance, and con-
versely. Thus Bn is an important parameter to measure and to understand,
and to this end we now consider meteorological factors influencing its
components, bs and bw.

It is convenient to restrict our discussion to variations in bs and bw

with elevation, z. This is not normally valid in practice because of the
effects of drifting and shading, which result in lateral variations in both
accumulation and melt.

It is common to plot bn(z) as a function of elevation; this is illus-
trated with data from a valley glacier in the Austrian Alps, Hintereis-
ferner, in Figure 3.5a. The curve labeled “o” in this figure represents
the situation during a year in which the mass budget is balanced, or
Bn = 0. (Despite the low values of bn at higher elevations,

∫
Abnd A = 0

in this instance because, as is true of most valley glaciers, the width
of Hintereisferner increases with elevation.) Curves labeled “+” and
“−” represent years of exceptionally positive or negative mass balance,
respectively. Note that melting normally increases nearly linearly with
decreasing elevation, so the lower parts of the curves in Figure 3.5a are
relatively straight. However, at higher elevations in this particular case,
snow fall decreases with elevation, resulting in curvature in the upper
parts of the plot.

The differences between the “o” curve and the “−” and “+” curves
are shown in Figures 3.5b and c, respectively. These differences are
referred to as the budget imbalance, bi (Meier, 1962). In years of excep-
tionally negative bn (Figure 3.5b), bi typically increases with decreas-
ing elevation; this means that such years are normally a consequence
of unusually high summer melt. Conversely, unusually positive budget
years commonly result from exceptionally high winter accumulations
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Figure 3.5. (a) Specific net budget, bn, plotted against elevation for
Hintereisferner. Curve “o” is for a year of balanced mass budget, while curves
“−” and “+” are for years of exceptionally negative or positive budget,
respectively. (b) and (c) Difference between curve “o” and curves “–” and “+”,
respectively. (After Kuhn, 1981, Figure 1. Reproduced with permission of the
author and the International Association of Hydrological Sciences.)

(Figure 3.5c). Budget years that are only moderately positive or nega-
tive can result from deviations of either accumulation or melt from their
values in years when the budget is balanced.

Programs of mass balance measurements normally continue for sev-
eral years. Cumulative mass balances can then be calculated by summing
the annual values of Bn. There are two ways of doing this, however. In the
conventional approach, A in Equation (3.2) should be adjusted annually
to reflect expansion or shrinkage of the glacier. (In practice, new maps of
the glacier are not prepared every year, and as A varies slowly it is more
common to use the same value of A for several years and then adjust it
when a new map is made.) In the reference-surface approach (Elsberg
et al., 2001), on the other hand, A is the area of the glacier surface at
a particular time, such as the time of the first mass balance survey if a
good map exists for that time, and is not changed during the course of
the program. Furthermore, the annual measurements are then adjusted to
the level of the reference surface with the use of measured or estimated
values of d Bn/dz. The conventional approach is better for hydrologi-
cal forecasting and other applications when the actual change in glacier
volume is desired. However, for studies of climate, the reference-surface
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approach is more useful because it provides a measure of climate change
at a fixed reference elevation.

Climatic causes of mass balance fluctuations
Let us assume that bw is composed of precipitation and drifting alone,
thus ignoring mass additions by condensation and avalanching. Like-
wise, we take bs to be a function only of surface melt, ignoring mass
losses by evaporation, calving, bottom melting, and so forth. Although
we assume that mass additions and losses by condensation and evapo-
ration, respectively, are negligible, the energy involved in these phase
change processes is taken into consideration in the following analysis.

Surface melting is controlled by the available energy:∑
Q = R + H + V (3.3)

where Q is the energy in kJ m−2d−1; R is the net radiation; H is the
sensible heat input; and V is the latent heat input due to condensation,
or loss due to evaporation (Kuhn, 1981). Then, neglecting any summer
snow fall:

− bs = T

L

∑
Q (3.4)

where T is the length of the melt season and L is the latent heat of fusion,
334 kJ kg−1. (In the remainder of this discussion it will be convenient to
use kg m−2a−1 for the units of mass balance.)

Assume further that the transfer of sensible and latent heat to the
glacier surface is proportional to the temperature difference between the
air and the glacier surface, thus:

H + V = γ (Ta − Ts) (3.5)

where Ta and Ts are the temperatures of the air and the glacier surface,
respectively, and γ is a constant of proportionality. Kuhn (1989) suggests
that γ lies between 0.5 and 2.7 MJ m−2d−1K−1; a value frequently found
for firn is 1.0 MJ m−2d−1K−1, while a reasonable mean value for glacier
ice is ∼1.7 MJ m−2d−1K−1. The range of values reflects the fact that the
actual heat transfer is strongly influenced by such factors as the wind
speed and the roughness of the glacier surface.

Combining Equations (3.1), (3.3), (3.4), and (3.5), rearranging terms,
and writing all of the parameters as functions of elevation, z, yields:

bw(z) = T

L
[R(z) + γ (Ta(z) − Ts)] + bn(z) (3.6)

As we are dealing with melting conditions, Ts = 0, and does not vary
with z.
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Our objective now is to study quantitatively how changes in win-
ter precipitation, summer temperature, and radiation balance affect a
glacier’s mass balance. Curves “−”, “o”, and “+” in Figure 3.5a are
nearly parallel to one another, suggesting that one may be “derived”
from another simply by a lateral translation. Such a translation, however,
results in a change in the equilibrium line altitude (ELA), represented
in Figure 3.5a by the point where the curves cross the 0 specific net
balance line. This suggests that changes in equilibrium line altitude may
be a fairly good measure of the impact of climate variations. The effects
of changes in the principal measures of climate, namely precipitation
and temperature, on the ELA are best studied with the use of perturba-
tion theory, a technique used by Kuhn (1981), whose approach we adopt
herein.

At the equilibrium line, bn(z) = 0 by definition. Thus if h is the
elevation of the equilibrium line and ho is its elevation in a year of
balanced mass budget, Equation (3.6) can be rewritten as:

bw(ho) = T

L
[R(ho) + γ (Ta(ho) − Ts)] (3.7)

The standard approach in perturbation theory is to rewrite Equation (3.7)
for a situation in which the equilibrium line is at an elevation, h, which is
slightly higher or lower than in the “o” state, and then to subtract this new
relation from Equation (3.7), which we now proceed to do. Let primed
values represent the perturbed state, thus:

b′
w(h) = T

L
[R′(h) + γ (T ′

a (h) − Ts)] (3.8)

Subtracting:

b′
w(h) − bw(ho) = T

L
[R′(h) − R(ho) + γ (T ′

a (h) − Ta(ho))] (3.9)

Any of the primed parameters in Equation (3.9) that vary with z can
be represented by perturbation equations of the form, using Ta as an
example:

T ′
a (h) = Ta(ho) + ∂Ta

∂z
�h + δTa (3.10)

Here, �h may be an observed change in altitude of the equilibrium
line, so (∂Ta/∂z)�h represents the change in temperature that would
be expected simply because the ELA changed. However, a change in
mean summer air temperature may have been partially responsible for
the change in ELA, and this part of the change in Ta is represented by δTa.
Figure 3.6 is a graphical representation of Equation (3.10). Writing equa-
tions similar to (3.10) for bw and R, rearranging them, and substituting



28 Mass balance

Table 3.1. Possible causes of a 100 m increase in ELA

δbw = – 400 kg m−2 if δTa = δR = 0

δR = +1.35 MJ m−2d−1 if δbw = δTa = 0

δTa = + 0.8 ◦C if δbw = δR = 0

z

h

ho

T 'a(h) Ta(ho)
Ta

∆h

δTa

∂Ta
∂z

∆h

Figure 3.6. Sketch illustrating parameters in Equation (3.10). Consider a year
during which the equilibrium line is at elevation h, �h m above its elevation, ho,
in years when the mass budget is balanced. The lapse rate during a year of
balanced mass budget and during the year in question are represented by the
slopes of the slanting solid and dashed lines, respectively. To obtain the mean air
temperature, T ′

a , at elevation h during this warm summer, start with Ta(ho), add
(∂Ta/∂z)�h keeping in mind that ∂Ta/∂z is negative so this is a negative number,
and add �Ta, following the arrows in the figure. Note that �Ta is the amount by
which the temperature at elevation h exceeds the temperature at this elevation
during a year of balanced mass budget.

into Equation (3.9) yields:

∂bw

∂z
�h + δbw = T

L

[
∂ R

∂z
�h + δR + γ

(
∂Ta

∂z
�h + δTa

)]
(3.11)

The significance of this relation can be elucidated with the use of a
numerical example. Suppose ∂bw/∂z = 1 kg m−2m−1, T = 100 d,
γ = 1.7 MJ m−2d−1K−1, and the lapse rate, ∂Ta/∂z, is −0.006 K m−1.
Suppose further, for the purposes of this example, that ∂R/∂z = 0, as the
radiation input does not vary significantly with elevation. Now consider
an increase in the ELA of 100 m (= �h) in a particular year. Calculate
the changes δbw, δR, and δTa that would be sufficient, if they occurred
alone, to cause this change in ELA. The reader is encouraged to carry
out this calculation in order to gain familiarity with the relation. The
answers are given in Table 3.1.
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To place the results of this calculation in perspective, at 3050 m
on Hintereisferner in the Austrian Alps, an elevation that is slightly
above the normal position of the equilibrium line, the mean winter snow
fall is 1620 kg m−2 and its standard deviation is 540 kg m−2. Likewise,
the mean summer temperature is +0.4 ◦C, and its standard deviation is
0.8 ◦C. Comparing these standard deviations with the values of δbw

and δTa in Table 3.1, it is clear that a 100 m change in the ELA could
result, with nearly equal likelihood, either from a change in bw or from
a change in Ta. Similarly, the total radiation input is ∼46 MJ m−2d−1,
while the loss is ∼40 MJ m−2d−1, leaving a mean radiation balance,
R, of ∼6 MJ m−2d−1. Changes of 1.35 MJ m−2d−1, owing to changes
in cloud cover for example, are small compared with the total radiation
budget, and thus are not unreasonable.

For comparison, the mean winter balance on Barnes Ice Cap on
Baffin Island is ∼400 kg m−2 (Hooke et al., 1987). Here, a δbw of
−400 kg m−2 is highly improbable, as this would mean virtually no
accumulation. Thus in this case, a 100 m change in the ELA would most
likely be a result of a change in Ta.

This comparison illustrates a fundamental difference between
glaciers in relatively dry but cold areas, areas that we refer to as having
a continental climate, and glaciers in warmer wetter maritime climates.
Glaciers in continental settings owe their existence to low temperatures,
and fluctuations in their mass budgets are strongly (inversely) correlated
with mean summer temperature. Conversely, glaciers in maritime set-
tings form in response to high winter snow fall; on such glaciers, the
mass balance is less well correlated with Ta alone, and correlations can
be improved significantly by adding winter precipitation to the regres-
sion. In fact, on some maritime glaciers the correlation of net balance
with bw alone is quite good (Walters and Meier, 1989, p. 371).

In the above analysis, Ta and R have been treated as independent
variables. This is not strictly correct because an increase in Ta of 1 ◦C
increases R by about 0.3 MJ m−2d−1 (Kuhn, 1981). This is a result of the
increase in “black body” radiation, which varies as T 4. Incorporating
this effect into the above calculation (Table 3.1) reduces δTa to +0.7 ◦C.

The budget gradient
Recall that curve “o” in Figure 3.5a represents the distribution of bn in
a year in which the mass budget is balanced. The slope of this curve
at the elevation of the equilibrium line in a year of balanced budget,
(∂bno/∂z)ho

, is known as the budget gradient. High budget gradients
represent situations in which there is a lot of accumulation above the
equilibrium line and a lot of ablation below the equilibrium line, and



30 Mass balance

High

bn
(_) 0 (+)

Low

zFigure 3.7. Sketch
illustrating difference between
low and high budget
gradients.

conversely (Figure 3.7). High budget gradients are thus indicative of
high flow rates, as a lot of ice must be transferred from the accumulation
area to the ablation area in order to maintain a steady state profile. For
this reason, Shumskii (1964, p. 442) referred to ∂bno/∂z as the energy of
glaciation and Meier (1961) called it the activity index. (For simplicity
we will omit the subscript ho in this discussion, but all derivatives should
be understood as being evaluated at the elevation of the equilibrium line
during a year of balanced budget.) High subglacial erosion rates are
likely to be associated with high budget gradients.

The budget gradient tends to be high on glaciers in maritime
settings and low in continental settings. Typical values might be
10 kg m−2m−1a−1 in the former and 3 kg m−2m−1a−1 in the latter
(Haefeli, 1962).

To explore factors controlling (∂bno/∂z), rearrange Equation (3.6)
and take its derivative, noting again that Ts = 0 on a melting glacier
surface:

∂bno

∂z
= ∂bw

∂z
− T

L

[
∂ R

∂z
+ γ

∂Ta

∂z

]
(3.12)

Thus ∂bno/∂z depends upon ∂bw/∂z, (T/L) (∂ R/∂z), and (Tγ /L) ×
(∂Ta/∂z).

On valley glaciers, the precipitation gradient, ∂bw/∂z, is commonly
almost negligible. It may become significant if snow drift is important at
higher elevations, and is also larger in areas where a significant amount
of the summer precipitation occurs as snow at high elevations and rain
at low elevations. In the Alps, where this is commonly the case, Kuhn
(1981) suggests that a value of 0.5 kg m−2m−1a−1 is reasonable.

The net radiation gradient, ∂R/∂z, is small as long as snow covers the
ablation area. However, once ice is exposed, particularly if it has a thin
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dirt cover, the albedo drops and there is a significant change in R across
the firn edge, or boundary between firn and ice. The first ice to become
exposed is normally near the snout of the glacier or the margin of an ice
cap, and the firn edge rises as the melt season progresses. Taking this
into consideration, (T/L) (∂ R/∂z) may be as high as ∼7 kg m−2m−1

over a 120-d melt season (Kuhn, 1981).
The lapse rate, ∂Ta/∂z, is limited by the dry adiabatic rate,

∼0.010 ◦C m−1, but a more realistic free air lapse rate along a glacier sur-
face is ∼0.007 ◦C m−1. Thus, for a 120-d melt season, (Tγ /L) (∂Ta/∂z)
is ∼4.3 kg m−2m−1.

So to explain the differences in ∂bno/∂z between maritime and con-
tinental climates, the dominant terms are those involving the lapse rate
and, below the equilibrium line, the radiation balance. As ∂Ta/∂z is likely
to be comparable in maritime and continental settings, we have to appeal
largely to differences in the length of the melt season, T, and in ∂R/∂z.
Melt seasons in high arctic continental settings may be a half to a third
as long as those in, say, the Alps. Similarly, glaciers in continental set-
tings also tend to be cleaner, thus reducing the albedo contrast across
the firn edge, and hence the effective ∂R/∂z. Differences in ∂bw/∂z may
contribute some, as summer rain is less likely to be a factor in arctic
continental areas.

During a year of balanced mass budget, the ratio of the area of the
accumulation zone to that of the entire glacier, the accumulation-area
ratio, is typically ∼0.7 (Glen, 1963). Using terminal and recessional
moraines, one can use this ratio to estimate the change in size of an
accumulation area, and hence the change in ELA, during a glacier retreat.
Then it is clear that the imbalance in bn is:

bni(h) = −
(

∂bno

∂z

)
ho

�h (3.13)

(see Figure 3.5). Thus, if moraines suggest that an equilibrium line rose
by an amount �h, and if (∂bno/∂z)no

can be estimated, bni(h) can be
calculated. To a good approximation, bni(h) is equal to the average of
bni(z) over the glacier. In this way, one can estimate the change in climate
that produced an observed change in glacier area.

Other modes of ice loss from valley glaciers
Calving

Cliffs form at the snouts of tidewater glaciers and of valley glaciers that
end in lakes. Blocks of ice, ranging in size from single ice crystals to
hundreds of cubic meters, break off these cliffs and float away to melt in
more distant places. This process is called calving. The cliffs typically
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Table 3.2. Mass balance of the Greenland and Antarctic ice sheets and of smaller glaciers
and ice capsa

Location

Accumulation,

Gtb a−1

Runoff,

Gt a−1

Calving,

Gt a−1

Bottom

melting,

Gt a−1

Net balance,

Gt a−1

Equivalent

sea-level rise,c

mm a−1

Greenland 520 ± 26 297 ± 32 235 ± 33 32 ± 3 −44 ± 53 0.05 ± 0.05

Antarctica 2246 ± 86 10 ± 10 2072 ± 304 540 ± 26 −376 ± 384 −0.1 ± 0.1

Glaciers and

ice caps

688 ± 109d 778 ± 114d −91 ± 36 0.3 ± 0.1

a Data from Houghton et al. (2001, p. 648–651 and Table 11.10).
b 1 Gt = 1012 kg or a billion metric tons.
c Values are for period 1910–1990, and are based, in part, on models and thus may not agree with figures in

previous column.
d Values calculated from data given in Houghton et al. (2001, Tables 11.3 and 11.4).

stand 60–80 m above the water level, and may extend to depths of a few
hundred meters below the water level (Brown et al., 1982). Most of these
glaciers are grounded. The termini of some outlet glaciers in Greenland
and Antarctica, however, are afloat.

For the most part, the following discussion applies equally to tide-
water glaciers and to valley glaciers ending in freshwater lakes. Thus, we
will use the term “tidewater” to refer to both, and will understand “sub-
marine” to include sub-lacustrine. In addition, the reader should keep in
mind that most tidewater glaciers are in valleys or, once they reach sea
level, in fjords.

Although only a fraction of the world’s glaciers end in water, calv-
ing is an important, if not the dominant, mode of mass loss on these
glaciers. It is estimated, for example, that nearly 50% of the ice loss
from Greenland is through calving from outlet glaciers that end in fjords
(Table 3.2).

The characteristics of ice in the snouts of tidewater glaciers control
the size of the ice blocks shed from them and the subaerial height of
the faces. The ice is normally temperate; thus water is present along
crystal boundaries and this weakens the ice. In addition, the snouts are
typically heavily crevassed. These two factors limit the size of ice blocks
discharged from such glaciers. The crushing strength of a free-standing
column of temperate ice with appreciable intergranular water may be
reached at depths as shallow as 60–80 m, and this may limit the height
of the calving face.

Ice blocks also become detached below the water level and float
upward to the surface, creating dramatic disturbances in the process.
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Careful observations of calving events on San Rafael Glacier in Chile
suggest, however, that the volume of ice released by these submarine
events is not sufficient to account for the observed rate of retreat of
the subaerial part of the terminus (Warren et al., 1995). This suggests
that melting below the water surface may be an important part of the
process we call calving. This suspicion is reinforced by the observation
that calving rates are highest in October (Meier et al., 1985), when the
water is warmest (Matthews, 1981; Walters et al., 1988).

The calving rate, uc, is usually determined by measuring the width-
averaged rate of ice flow toward the calving face and the mean position
of the calving face at two different times, usually a year apart, to obtain
an annual average. If the glacier retreats during this time interval, uc is
greater than the ice speed, and conversely. It turns out that uc is propor-
tional to the mean water depth, hw, thus:

uc = chw (3.14)

(Brown et al., 1982). The physics behind this relation are poorly under-
stood and hotly disputed (Van der Veen, 1996, 2002), but the relation
seems to be robust. In Alaskan marine environments, c ≈ 27 a−1, whereas
in freshwater c ≈ 2 a−1 (Funk and Röthlisberger, 1989). This difference
is probably a consequence of the greater density difference, in marine
environments, between water immediately adjacent to the calving face
and that further away. The water against any calving face is diluted by
melting. In marine environments, the resulting density contrast is large,
resulting in strong free convection and thus enhancing heat transfer to
the face. Thus, the observation that c is larger in marine environments
further supports the inference, above, that melting is an important part
of the calving process.

The dependence of uc on water depth results in an unusual cycle of
advance and retreat of tidewater glaciers. As is the case with normal val-
ley glaciers, tidewater glaciers advance during periods when the climate
is cool and accumulation exceeds surface melting. During the advance,
however, they build a submerged moraine and slowly push it down the
fjord (Figure 3.8). This process can take hundreds of years, so the climate
may become warm again long before the terminus reaches a stable posi-
tion. Once the mass balance finally turns sufficiently negative to halt the
advance and initiate retreat, the terminus withdraws from its moraine
bank, and backs into deeper water. The calving rate thus increases.
This increases the budget imbalance, and the retreat accelerates. The
retreat usually continues until the terminus reaches shallow water near
the head of the fjord. Since the end of the Little Ice Age, all glaciers
in coastal Alaska have retreated dramatically in this way. However, the
retreats have not been synchronous and have not been in response to
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Figure 3.8. Schematic diagram showing how calving tidewater glaciers
advance by rolling over their moraines. Arrows show how sediment is washed
and dragged up proximal slope of moraine and slumps down distal slope,
resulting in migration of the moraine.

identifiable climatic changes. Some glaciers reached their maximum
extent and began to retreat in the late 1700s, but Columbia Glacier, the
last of these glaciers to begin retreating, did not back off its moraine
until the mid 1980s.

Bottom melting

If the base of a glacier is at the pressure melting point and the glacier
is sliding over its bed, frictional heating associated with the sliding and
with deformation in the basal ice can melt significant quantities of ice.
For example, on the lower part of Columbia Glacier, the specific net
balance at an elevation of ∼400 m is ∼−4.5 m a−1 (Rasmussen and
Meier, 1982). The glacier is ∼600 m thick at this elevation, its surface
slope is ∼0.032, and the depth-averaged velocity is ∼1.3 km a−1 (Meier
et al., 1994). Thus, a column of ice of unit cross sectional area would
drop ∼40 m in a year, releasing ∼2.2 × 108 J of potential energy, which
is sufficient to melt ∼0.7 m of ice. Some of this melting will be internal,
but much of it will occur near or at the bed. Thus, bottom melting may be
as much as ∼14% of the total ice loss at this elevation. On most glaciers,
however, the amount of such melting is a much smaller fraction of the
total, and can be neglected in mass balance studies.

Mass balance of polar ice sheets
On polar ice sheets, owing to their scale, the accumulation pattern reflects
elevation and degree of continentality. If there is significant melting
near the margin of a continental ice sheet, as is the case in Greenland
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but not Antarctica, bn increases with elevation because the temperature
decreases and the melt season becomes shorter. However, owing to oro-
graphic effects storms also lose much of their moisture within a few
hundred kilometers of the coast. Thus, in the interior of the Greenland
and Antarctic ice sheets, bn decreases with distance from the moisture
source (which also means that it decreases with increasing elevation). For
example, in Antarctica accumulation rates are typically 0.3–0.6 m a−1

(water equivalent) around the perimeter of the continent, but decrease to
<0.1 m a−1 at the South Pole (Figure 3.9) (Giovinetto and Zwally, 2000).
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Thus, along the margins of ice sheets, accumulation patterns resemble
those of maritime glaciers while between the margins and the interiors
the pattern reflects the change from a maritime to a continental environ-
ment.

Calving of ice shelves

Over 90% of the ice loss from Antarctica is through calving, and most
of this is from ice shelves. The blocks of ice released by such calving
are commonly much larger than those from tidewater glaciers. This is
probably because ice shelves are stronger. Their colder temperatures and
less-extensive crevassing would increase their strength. Reeh (1968) has
shown that under such conditions the width of an iceberg, measured
normal to the calving face, is likely to be comparable to the thickness
of the shelf. Many icebergs, however, are much larger than this. Iceberg
B-15, which broke off from the Ross Ice Shelf in Antarctica in April
2000, measured 37 × 290 km and was ∼430 m thick (WISC, 2003).
Processes producing bergs of this size are still poorly understood.

We have recently found that polar ice shelves can break up exceed-
ingly rapidly. The 1600 km2 Larsen A ice shelf disintegrated in 39 d in
1995, and then in February 2002, in only 41 d, the 3250 km2 Larsen B
shelf collapsed. It appears that climate warming resulted in extensive
melting on the shelf surface. Water percolated into crevasses, and because
water is denser than ice, high stresses were generated at the tips of
the crevasses (Weertman, 1973). As a result, the crevasses apparently
propagated through the shelf, resulting in the collapse (Scambos et al.,
2000).

During the Wisconsinan glaciation, calving periodically produced
armadas of icebergs that spread out across the North Atlantic Ocean,
dropping coarse sand as they drifted along. The resulting sand layers were
first identified by Hartmut Heinrich, and now bear his name (Heinrich,
1988). These ice-age calving events are widely believed to have been
associated with rapid discharges of ice through Hudson Strait and partial
collapse of the Laurentide Ice Sheet over Hudson Bay. Whether they were
initiated by collapse of a buttressing ice shelf in the Labrador Sea or were
entirely a consequence of a tidewater-glacier type of retreat is a matter
of speculation.

Bottom melting

Ocean currents penetrate beneath floating ice shelves, and the saline
water mixes with fresh water draining subglacially from the interior of
the ice sheet. At the base of the ice shelf, either melting or freezing can
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take place, depending on the temperature and salinity of the mixture, the
pressure, and the temperature gradient in the basal ice. Indeed, melting
can occur in one place and freezing in another. In Antarctica, bottom
melting beneath ice shelves may account for as much as 20% of the
mass loss (Table 3.2).

Effect of atmospheric circulation patterns on
mass balance
There are at least two spatial scales of variation in coherence of glacier
mass balance patterns. On the one hand, there are world-wide climatic
changes such as those that resulted in the major ice advances of the
Pleistocene and the minor advances of the Little Ice Age. These are both
well-known and poorly understood, except that variations in the Earth’s
orbit that affected the timing and amount of solar radiation received at
higher latitudes appear to have modulated the longer cycles (Hays et al.,
1976).

On a smaller scale there are regional variations in weather that may
cause glaciers only a few hundred kilometers apart to behave differently.
Let us consider some examples of these regional-scale variations.

Between the mid 1960s and the late 1980s, the net balances of mar-
itime glaciers in Alaska were generally out of phase with those of glaciers
in southwestern Canada and adjacent areas in the United States. When
glaciers in one area had a relatively good year, those in the other normally
had a bad year (Walters and Meier, 1989; Hodge et al., 1998). Walters
and Meier found that when the atmospheric low pressure region that lies
off the Aleutian Islands, the Aleutian Low (Figure 3.10), is normal in
the fall and winter, storms are deflected into Alaska, resulting in high
winter balances there. However, when this low is not as deep as it usually
is, storm tracks remain further south and accumulation rates are high in
Washington and British Columbia. This pattern began to break down
in the mid 1980s. Since then, winter balances on Wolverine and South
Cascade glaciers have still been out of phase, but a dramatic increase in
ablation has resulted in negative net balances on both, so net balances
are in phase (Hodges et al., 1998).

Summer balances in western North America are likewise affected by
the summer low along the west coast. When this low is relatively deep
and there is a corresponding high over British Columbia, conditions tend
to be hot and dry, leading to large negative summer balances.

Asynchroneity of mass balances can also result from the scale of
pressure patterns. In the winter, small-scale low-pressure disturbances,
identified by variations in the height of the 500 mbar surface (the surface



38 Mass balance

110o130o140o150o

110o120o130o140o

70o

60o

50o

40o

60 o

50 o
15

0
o

Aleutian
   Low

40o

Alaska

Gulkana

Wolverine

Canada

Place
Peyto

Sentinel

South Cascade

United States

Pacific Ocean

Figure 3.10. Map of the west coast of North America showing the Aleutian
Low and locations of some glaciers for which there are good mass balance
records. (Based on Walters and Meier, 1989, Figures 1 and 9.)

on which the atmospheric pressure is 500 mbar or about half the pres-
sure at Earth’s surface), result in cyclonic storms characterized by
counterclockwise winds. Such storms, related to migratory perturba-
tions embedded in larger-scale air flows, increase the winter balance on
Sentinel Glacier in British Columbia. Conversely, frequent high-pressure
disturbances resulting in anticyclonic patterns and thus accompanied by
clockwise winds, inhibit accumulation in winter and increase melt in
summer. In contrast, Peyto Glacier, which lies about 500 km east of
Sentinel Glacier (Figure 3.10), is affected only by larger disturbances
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related to long-wave patterns over the North Pacific. Storms from smaller
disturbances do not penetrate that far inland (Yarnal, 1984).

ENSO and Decadal Oscillations

At a larger scale, we are beginning to find that patterns of the type
just described are linked to hemispheric and even global patterns. One
of the most important of these is the El Niño–Southern Oscillation, or
ENSO. Under “normal” conditions winds blow westward in the equato-
rial Pacific. This drives a westerly surface current in the ocean, resulting
in an increase in elevation of the sea surface in the western Pacific relative
to that off Peru. This surface current and the resulting super-elevation
propel an eastward return current at depth, leading to upwelling of cold
water off Peru. At intervals of between 2 and 6 or 7 years, the westerly air
flow weakens, the upwelling is damped, and the ocean and hence the air
off Peru become warmer. This is an El Niño. The warmer air decreases
the pressure gradient between Peru and the western Pacific, thus further
weakening the westerly air flow. Consequently, a region of heavy rainfall
that is normally located in the western Pacific shifts eastward. This, in
turn, shifts the position of the jet stream, and hence weakens the Aleutian
Low, causing storms to enter North America hundreds of kilometers
south of their normal entry points (Rasmussen, 1984). Eventually, El
Niño conditions weaken and normal or even slightly cooler than normal
(La Niña) conditions return.

We do not know how El Niños are initiated, but the consequences
are far reaching, affecting not only glaciers along the northwest coast
but weather patterns around the Pacific, throughout North America, and
even globally. Even in Antarctica, accumulation was consistently higher
in parts of West Antarctica, and there is a hint that it was lower at the
South Pole, during El Niño years (Kaspari et al., 2004). The pattern
in West Antarctica persisted during much of the twentieth century; a
low-pressure cell in the Admundsen Sea shifted clockwise during El
Niño events, and this increased accumulation in the eastern part of West
Antarctica and decreased it in the western part (Cullather et al., 1996).
This pattern, however, appears to have broken down after 1990.

Although global in its effect, ENSO is generated by ocean–
atmosphere interactions that are internal to the tropical Pacific and over-
lying atmosphere (Houghton et al., 2001, p. 454). Recently, we have
become aware of other similar oscillations in the atmosphere and ocean.
One is the Pacific Decadal Oscillation, or PDO. During the warm phase
of the PDO, sea-surface temperatures in the eastern equatorial Pacific are
somewhat warmer than normal, while in the northwest Pacific, they are
significantly cooler. The PDO seems to have two dominant periodicities,
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15–25 years and 50–70 years (Mantua and Hare, 2002). The transitions
between the warm and cool phases are abrupt: a warm phase began in
1977, and appears to have ended in 1998. El Niños tend to be strength-
ened during the warm phase of the PDO, and moderated during the cool
phase (Maxwell, 2002).

Another recently discovered oscillation occurs in the north Atlantic.
During the positive phase of this oscillation, there is a strong low-pressure
region over southern Greenland and Iceland during the winter, and the
jet stream is further north. Northern Europe is thus warmer and wetter
than normal, while north Africa is drier (NOAA, 2003). This could affect
glacier mass balance in Scandinavia and the Alps. Cook et al. (1998)
have identified periodicities in the north Atlantic oscillation of 2, 8, 24,
and 70 years.

On a still broader scale, temperature and accumulation patterns
in Antarctica appear to reflect processes in the upper levels of the
atmosphere. Warming of the troposphere, the layer of air between the
Earth’s surface and ∼11 000 m, prevents heat from reaching the higher
stratosphere. Consequently, the stratosphere cools and becomes denser,
strengthening downwelling over the South Pole. Thus, when the periph-
ery of the continent is warmed by a warm troposphere, the interior is
cooled by increased downwelling from the stratosphere, and conversely.
As cool air contains less moisture, this results in a similar oscillation in
accumulation (P. Mayewski, personal communication, 2003).

Clearly, atmospheric circulation patterns that we are just beginning
to understand result in regional variations in mass balance on a variety of
spatial and temporal scales. The data base necessary for identifying and
studying these circulation patterns is expanding rapidly, and much will be
learned as glaciologists and meteorologists begin to extend and exploit
it. Particularly intriguing are the remarkable teleconnections between
oceanic and atmospheric circulation that are beginning to appear. Beyond
this, however, is the question of what controls variations in atmospheric
and oceanic circulation on time scales of decades to centuries.

Global mass balance
Of considerable interest currently is the question of whether global
warming is responsible for melting enough ice to account for the
observed world-wide rise in sea level. The best estimates of this rise
presently lie between 1 and 2 mm a−1 (Houghton et al., 2001, p. 665).
Because any estimate of the change in mass of a glacier or ice sheet
involves calculating a small difference between two large numbers,
namely the total accumulation and total loss, uncertainties are large
(Table 3.2). Indeed, even with the best figures available we are still unable
to say whether the Greenland and Antarctic ice sheets are growing or



Summary 41

shrinking. The uncertainties for smaller glaciers and ice caps are lower,
however, and suggest that melting of these ice masses may be responsible
for 15% to 25% of the sea-level rise. (In fact, Arendt et al. (2002) esti-
mate that in the late 1990s the mass loss from Alaskan glaciers alone was
−96 ± 35 km3 a−1, which is more than the estimate in Table 3.2 for all
valley glaciers and ice caps.) Other contributions to sea level are thermal
expansion of the oceans (0.5±0.2 mm a−1), melting of permafrost (0.025
± 0.025 mm a−1), sedimentation in the oceans (0.025 ± 0.025 mm a−1),
and terrestrial storage in lakes and groundwater reservoirs (−0.35 ±
0.75 mm a−1).

Although the mass balance data for Greenland are ambiguous, yield-
ing a net balance of −44 ± 53 Gt a−1, the pattern is suggestive. The obser-
vational data show that the ice sheet is growing thicker in the interior, at
least locally, as warmer air transports more moisture inland. However, it
is thinning along the margins where the increased temperature results in
more melting (Krabill et al., 2000; Thomas et al., 2000). As mentioned
earlier, this is precisely the pattern inferred from Greenland ice cores for
the end of the Younger Dryas (Alley et al., 1993).

Summary
In this chapter we discussed snow accumulation and the transformation
of snow to ice. We found that in polar environments where there is little
if any melting, the physical and chemical stratigraphy in an annual layer
of snow persists for many thousands of years and can be used to date
the ice.

We then defined some terms used to discuss mass balance, particu-
larly summer, winter, and net balance, and used a perturbation approach
to study the influence of winter balance, temperature, and radiation on
net balance. By comparing observed variations in these parameters with
calculated values, it became clear that the net balance of glaciers in con-
tinental environments was sensitive, primarily, to summer temperature,
while that of glaciers in maritime areas was sensitive to both winter bal-
ance and summer temperature. Radiation balance, principally resulting
from differences in cloud cover, could play a role in either environment.
The lower budget gradient, and consequently the more sluggish behavior
of polar glaciers compared with their temperate counterparts, turned out
to be largely related to the shorter melt season in polar environments.
On ice sheets, we also noted that accumulation decreases with distance
from the moisture source.

We then discussed the importance of calving and bottom melting in
mass balance, and discovered that on tidewater glaciers calving can lead
to retreats that are, at best, only weakly related to climate. On ice sheets,
calving turns out to be a dominant process of mass loss. Bottom melting
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is an important component of mass balance on some fast-moving valley
glaciers and beneath ice shelves.

Finally, we found that variations in intermediate and large scale
weather patterns that we are just beginning to understand can result
in asynchronous mass balance patterns on glaciers only a few hundred
kilometers apart.



Chapter 4

Flow and fracture of a crystalline
material

Before proceeding to a more theoretical discussion of the dynamics of
glaciers, it will be useful to present a brief introduction to the voluminous
literature on deformation or creep of ice. We will begin by looking at
deformation processes on an atomic scale and then introduce empirical
and semi-empirical relations that provide a macroscopic description of
the deformation. Finally, we will show how principles of linear fracture
mechanics can be used to predict crevasse depth.

Crystal structure of ice
There are nine known crystalline forms of ice, but seven of them are
stable only at pressures in excess of about 200 MPa, and the eighth, a
cubic form, ice Ic, is stable only at temperatures below about −100 ◦C
(Figure 4.1). As the highest pressures and lowest temperatures in glaciers
on Earth are about 40 MPa and −60 ◦C, respectively, these eight forms
need not concern us. We thus restrict our attention to the common form
of terrestrial ice, ice Ih.

The structure of ice Ih is shown, in stereoscopic view, in Figure 4.2a.
It is a hexagonal mineral (hence the “h”) with a rather open structure in
which every oxygen atom, represented by the large circles in Figure 4.2a,
is bonded to four additional oxygen atoms at the corners of a tetrahedron.
The tetrahedra are joined together in such a way that the oxygens form
hexagonal rings with the O=O bonds zigzagging lightly up and down as
one progresses around the ring (Figure 4.2b); three of the oxygens thus
lie 0.09 nm above the other three. The plane of these rings is called the
basal plane of the crystal structure.

43
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The fourth oxygen atom in the tetrahedron is ∼0.28 nm above or
below that in the center of the tetrahedron. A line parallel to this bond,
and hence normal to the basal plane is called the c-axis.

It is evident from Figure 4.2b that there are many more O=O bonds
within a basal plane than there are between basal planes. Thus, bonding
between basal planes is much weaker than that within the basal plane.

Around each oxygen atom there are, of course, two hydrogen atoms.
The hydrogen atoms, represented by the small circles in Figure 4.2a, lie
on the bonds between the oxygen atoms. They are situated close to the
oxygen to which they are bonded. As each oxygen atom is bonded to
four other oxygens, only two of these hydrogen sites, selected at random,
are occupied.

There are two hydrogen sites along each O=O bond. Normally only
one of these is occupied. Situations in which neither site is occupied are
called Bjerrum L defects, and situations in which both sites are occupied
are called Bjerrum D defects, or just L and D defects, respectively.

Dislocations
Another type of defect in a crystal is the dislocation. Dislocations are
places where the crystal structure is discontinuous or offset in some
way. The two basic types of dislocation, the edge dislocation and the
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Figure 4.2. (a) Stereographic view of the structure of ice Ih, viewed down the
c-axis. Only half of the possible hydrogen sites, indicated by small circles, are
occupied. (After Hamilton and Ibers, 1968.) (b) Structure of ice Ih viewed normal
to the c-axis. Two of the hexagonal rings are shown. Short lines leading upward
and downward from these rings are bonds to rings above and below. The
oxygen shown with an open circle is the center of a tetrahedron, part of which is
shown by the light dashed lines. (Modified from Hobbs, 1974, Figure 1.7.)

screw dislocation, are illustrated in Figure 4.3. Virtually all crystalline
materials contain dislocations.

Dislocations play a vital role in the deformation or creep of crys-
talline materials. If one tried to deform the perfect crystal in Figure 4.3a
by shearing the top three layers of atoms over the bottom two, the stress
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Figure 4.3. (a) A perfect crystal. (b) An edge dislocation. (c) A screw
dislocation. (Modified from Hull, 1969, p. 17.)

required would be enormous as every one of the bonds indicated by an
“×” would have to be broken simultaneously. In contrast, the crystal in
Figure 4.3b would deform much more easily because the bonds could be
broken sequentially, one at a time. For instance, the bond between E and
F could be broken and a new bond formed between D and F. Calculations
show that, in the absence of dislocations, crystalline materials could not
possibly deform under the stresses at which they are observed to deform.
In fact, it was through such theoretical studies that the existence of dis-
locations was first inferred.

Upon application of a stress, the number of dislocations in a crys-
tal increases. Some of these new dislocations are generated at Frank–
Reed sources. A Frank–Reed source consists of a dislocation lying
between two points at which the dislocation is fixed, called pinning points
(Figure 4.4). Impurities or immobile tangles of dislocations may serve
as pinning points. When a stress is applied, this dislocation is bowed
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Figure 4.4. Generation of
dislocations at a Frank–
Reed source. Each line in
(a) represents a successive
position of a dislocation as it
is bowed out between two
pinning points. (b) shows the
final stage with the new
dislocation expanding
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Figure 4.5. Generation of
dislocations at a three-grain
intersection due to
grain-boundary slip.

out until it meets itself at “a”. At this point, dislocations coming from
opposite directions are of opposite sign, and the dislocation is locally
annihilated, leaving a ring and a new dislocation between the pinning
points (Figure 4.4b). This new dislocation can then repeat the process,
so there is a continuous source of dislocations. The dislocation is of
the edge type ahead of and behind the source, of the screw type at the
sides, and of mixed type at intermediate positions. Some dislocations
generated by a Frank–Reed source never complete a full cycle but rather
multiply by spreading to neighboring planes, a process called multiple
cross glide (Hull, 1969, pp. 165–7).

Dislocations also form at points of stress concentration on grain
boundaries. For example, shear along a discrete atomic plane in one
crystal can result in an offset of the crystal boundary. To accommodate
this offset, the neighboring crystal must also yield, so dislocations are
formed at the boundary and move into this crystal.

Slip along grain boundaries is believed to occur at temperatures
above −10 ◦C. This, too, results in stress concentrations in neighbor-
ing crystals, and hence in generation of dislocations in these crystals
(Figure 4.5).
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Figure 4.6. Lateral movement of kinks causing forward movement of a
dislocation. The symbol represents situations in which a normal bond would
form by passage of a kink. The symbol represents situations in which a
Bjerrum defect would be formed.

Dislocations move by formation of kink pairs (Figure 4.6), followed
by lateral movement of the kinks. As long as the bond formed by move-
ment of a kink is a normal bond, with only one hydrogen between two
oxygens, the kink can move readily. However, if the movement would
result in a Bjerrum defect the energy required for movement would be
much higher. It is presumed that in such situations, movement of the kink
is delayed until diffusion or rearrangement of the hydrogen atoms (pro-
ton rearrangement) results in a geometry such that the kink can migrate
without formation of a Bjerrum defect. As shown in Figure 4.6, there
may be a number of kinks along a dislocation line. Two kinks moving
toward one another will annihilate each other when they meet, resulting
in advance of the dislocation line.

Rate-limiting processes
The rate of deformation of a crystal or of a polycrystalline aggre-
gate depends on how rapidly dislocations can move. This, in turn, may
depend upon factors such as the effectiveness of the mechanisms resist-
ing motion, the ability of a dislocation to move from one atomic plane
to another, and the orientation of the atomic plane in which the dislo-
cation is moving. Usually, one process is significantly more important
than the others, principally because it is more effective than the others in
retarding dislocation motion. This process is called the rate-controlling
or rate-limiting process.

It is, in general, not easy to identify the rate-limiting process. This is
because it is different in different materials, and within any one material it
changes with temperature and stress, and possibly also impurity content.
Furthermore, the rate-limiting process may be different in single crystals
and in polycrystalline aggregates.
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In the next few paragraphs, we describe some possible rate-limiting
processes in ice and present evidence for them.

Drag as the rate-limiting process

At the moderate stress levels normally found in glaciers, dislocations
moving in a crystallographic plane are restrained in their motion by a
number of drag mechanisms. The velocity of such a dislocation is given
by:

v = cσb3e− Q
RθK (4.1)

where c is a constant of proportionality that depends, in part, on
Boltzman’s constant; σ is the applied stress; b is the Burgers vector
of the dislocations (a measure of the distortion of a crystal produced
by a dislocation, and approximately equal to the atomic spacing in the
crystal (Hull, 1969, pp. 19)); R is the gas constant; θK is the temperature
in Kelvins; and Q is the activation energy for the rate-limiting defor-
mation mechanism (Weertman, 1983). Derivation of this equation, as
well as some others in this chapter, is beyond the scope of this book.
Noteworthy, however, is the dependence on very fundamental physical
parameters.

A brief comment on activation energy is in order. The activation
energy is the magnitude of an energy barrier that must be overcome
for a kinematic process to occur. Each kinematic process has its own
activation energy, so there is an activation energy for self-diffusion of
hydrogen and oxygen in ice (≈60 kJ mol−1), an activation energy for
creep of ice (≈79 kJ mol−1), and so forth.

The creep rate, ε̇, resulting from movement of dislocations in a crys-
tallographic plane is:

ε̇ = αbρdv (4.2)

(Weertman, 1983), where α is a constant with dimensions of length and
ρd is the dislocation density (m−2); α depends on the orientation of the
slip planes, but is ∼4.5 × 10−10 m. Of interest is the fact that the steady-
state dislocation density, which reflects a balance between the applied
stress and the internal stress from dislocations, is given by:

ρd ≈
(

σ

µb

)2

(4.3)

(Weertman, 1983; Alley, 1992), where µ is the shear modulus. (The table
on p. xiv gives definitions of parameters such as µ and values appropriate
for ice.) Thus, combining Equations (4.1), (4.2), and (4.3) leads to:

ε̇ ∝ σ 3 (4.4)



50 Flow and fracture of a crystalline material

Time, t

S
tr

ai
n,

 e

Figure 4.7. Variation of total
strain with time during
deformation of a single crystal
oriented so that glide occurs
on the basal plane (easy
glide).

at constant temperature. In other words, the velocity of dislocations varies
with σ , and their density varies with σ 2, leading to a cubic dependence
of ε̇ on σ .

A large volume of experimental data on ice deformed in the labo-
ratory and on natural ice in glaciers and ice shelves yields such a cubic
dependence, particularly for stresses above 0.1 MPa. This suggests that
the theoretical model presented above is fundamentally sound, and thus
that drag mechanisms which determine the velocities of dislocations may
be the rate limiting factors.

When a single crystal of ice is stressed in such a way that there is an
appreciable component of the stress on the basal (0001) plane, the defor-
mation rate increases with time (Figure 4.7). This can be explained by the
fact that the dislocation density is normally low in unstressed crystals,
and increases gradually to its steady-state value, given by Equation (4.3),
after the stress is applied. This further supports the suggestion that drag
is the rate limiting process.

Climb as the rate-limiting process

There is, however, an additional dislocation process that must be consid-
ered. As dislocations multiply, they commonly begin to interfere with one
another, resulting in gridlock. These dislocation tangles inhibit defor-
mation. Under such conditions, application of a stress to a previously
unstrained sample results in a deformation rate that initially decreases
with time, a process called work hardening (Figure 4.8a). At sufficiently
low temperatures this decreasing creep rate may continue indefinitely,
but at higher temperatures recovery processes come into play. One such
process involves diffusion of atoms away from (or vacancies toward)
dislocations resulting in movement of the dislocation from one crystal-
lographic plane to another. For example, if the atom at D in Figure 4.3b
diffused away, the dislocation would move upward. This is called
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dislocation climb if the dislocations are of the edge type, and cross slip
if they are of the screw type. Both processes relieve tangles and, after an
initial transient period, allow deformation to continue at a more-or-less
steady rate (central part of curve in Figure 4.8a). As climb is the recovery
process requiring more energy, it would be rate controlling.

Another recovery process, believed to be active particularly at low
stresses, involves movement of grain boundaries as some crystals grow
at the expense of their neighbors. The ice behind the moving boundary is
unstressed, and thus relatively free of dislocations; ρd is thus decreased
by grain-boundary migration.

It is noteworthy that samples of polycrystalline ice deformed in com-
pression invariably go through a transient phase of decelerating creep and
then a period of nearly constant creep rate. (If the test is continued long
enough, the creep rate normally increases again in what is called ter-
tiary creep (Figure 4.8a); this is attributed to recrystallization, which
is discussed further below.) This supports the suggestion that recovery
processes are rate limiting. Furthermore, it may be significant that the
activation energy for creep (79 kJ mol−1) is close to that for self-diffusion
(60 kJ mol−1), again suggesting that climb (which is a result of diffusion)
is the rate-limiting process. However, the difference between these two
activation energies seems to be larger than can be explained by experi-
mental error so other processes may also be involved.

Slip on other crystallographic planes

Deformation of one crystal in a polycrystalline aggregate necessi-
tates deformation of neighboring crystals to preserve continuity of the
medium. Thus, all crystals must take part in the deformation. Most crys-
tals will be oriented so that the applied stress on that crystal will have a
component parallel to the basal plane. However, a few crystals will not
be so oriented, and these must therefore deform in some direction that
is not parallel to the basal plane.

Slip on either the prismatic or pyramidal planes (Figure 4.9) is a
possibility. However, on the prismatic planes the slip would probably be
parallel to the basal plane (Figure 4.9), and so would not accommodate
stresses normal to that plane. Thus, slip on pyramidal planes may be
necessary, and because such slip is likely to be much harder than that on
other planes, it could be rate limiting.

Inhomogeneous strain

The above considerations are based on the assumption of homogeneous
strain. However, in polycrystalline ice, the stress on any single crystal is



Internal stresses 53

a1 −a2

a3

Pyramidal planes (0111) etc.
_

Prismatic planes (0110) etc.
_

Basal plane (0001) Figure 4.9. Crystallographic
planes in a hexagonal crystal.

not equal to the stress on the bulk sample, as crystals that slip easily in one
direction but not in others will transmit the stress nonuniformly (Duval
et al., 1983). If it is assumed, instead, that the strain is inhomogeneous,
plastic strain is possible without slip on either prismatic or pyramidal
planes. This is because processes such as climb of dislocations normal
to the basal plane, grain-boundary migration, and grain translation and
rotation can accommodate stresses normal to this plane and facilitate
adjustments between crystals (Alley et al., 1997).

Internal stresses
The inhomogeneity of internal stresses in a polycrystalline sample merits
further discussion. When an ice sample is loaded, it first deforms elas-
tically. Then, grains that are favorably oriented begin to deform by slip
on the basal plane. The load is thus transferred to grains less favorably
oriented, and high stresses can develop in such grains. As deformation
continues the inhomogeneity of the stress distribution becomes more
pronounced, with peak stresses in individual grains that may be many
times the mean stress in the sample (Duval et al., 1983).

It has been found experimentally that the resistance to shear on basal
planes in monocrystals (single crystals) is much less than the resistance
to shear on other crystallographic planes. This is because of the paucity
of bonds between basal planes mentioned earlier (Figure 4.2b). For
example, to produce a strain rate of 1.0 a−1 at −10 ◦C requires a stress
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of about 0.03 MPa in a monocrystal oriented for easy glide, and a stress
of about 3 MPa in a monocrystal oriented for hard glide (Figure 4.10).
Thus, within a sample of polycrystalline ice the local stress may vary
over two orders of magnitude. Not surprisingly, the bulk strain rate of
the polycrystalline sample lies between the values for the monocrystal
in the easy-glide and hard-glide orientations.

A consequence of this inhomogeneous internal stress distribution is
that grains that are not favorably oriented for basal glide may accommo-
date some of the plastic deformation in adjacent crystals by deforming
elastically. These crystals, therefore, have stored elastic strain energy.
Upon release of the load, this elastic energy exerts a “back stress” on
the crystals that previously deformed plastically, and a small amount
of reverse creep results (Duval, 1978) (Figure 4.11). This reverse creep
is not instantaneous, as would be the case in a purely elastic medium,
because the grains favorably oriented for basal glide under the original
loading must now creep “backwards” to relieve the stored elastic energy.

Recrystallization
Crystals of glacier ice vary in size and also in the degree to which they
are interlocked. If there were no bonding across grain boundaries, for
example, some polycrystalline ice samples would fall apart into a pile of
roughly equant grains, up to a few millimeters in maximum dimension,
while others would hang together like a three-dimensional jigsaw puzzle.
We will use the term texture to refer to these characteristics of crystal size
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and shape. In addition, under prolonged strain the c-axes of the crystals
develop a variety of preferred orientations, or fabrics. Both texture and
fabric affect the rheology of ice.

In order to study these processes, glaciologists, like petrologists,
use thin sections. The thin sections are typically somewhat less than a
millimeter thick and 60–80 mm across. When polarized light is passed
through a thin section and then observed through another polarizing
filter oriented at right angles to the first, the individual crystals can be
seen because the crystal structure rotates the light as it passes through
the crystal, and the amount of rotation depends on the orientation of the
crystal. When thus viewed, the different crystals have different colors
(or grayscale tones in a black and white image – Figure 4.12). With the
use of a universal stage on which the thin section can be both rotated
around a vertical axis and tilted about either of two mutually perpendic-
ular horizontal axes, crystals can be oriented so their c-axes are vertical.
In this orientation, the crystal remains black as the stage is rotated around
its vertical axis. The orientation of the crystal is then noted and plotted
on an equal-area net (Figure 4.13). To interpret such a plot, visualize a
hemisphere with its convex side down and with a crystal in its center.
The c-axis of the crystal intersects the hemisphere. A point on a fabric
diagram like those in Figure 4.13 is the projection of this point of inter-
section onto the flat surface. Thus, a vertical c-axis plots at the center
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0 20 mm

Figure 4.12. Photographs of thin sections of ice from the Greenland ice sheet
near Thule. Photographs were taken under crossed polarizers. The different
grayscale tones of the grains reflect different orientations of the c-axes. (a) Initial
texture formed by compaction of snow with addition of small amounts of
melt water. The c-axes have a weak preferred orientation, with a preference for
vertical orientations. (b) Texture resulting from grain growth with little or no
deformation. The c-axes still have a weak vertical preferred orientation.
(c) Texture resulting from polygonization. Adjacent grains with nearly the same
grayscale tone (arrows) have c-axes that are nearly parallel to one another. The
grain in the lower center is bent; in the one to left of center, distinct boundaries
have formed between parts with slightly different orientations. (d) Texture
following significant deformation. Grains are interlocked, and c-axes have a
strong preferred orientation. (From Hooke, 1970.)

of the circle, and a c-axis dipping “south” plots between the center and
the bottom of the circle. The points are normally plotted on a Schmidt
equal-area net; this net is designed so that a unit area on the hemisphere
plots into a unit area on the net. Consequently, a c-axis dipping at 45◦

actually plots about 55% of the distance from the center of the net to the
boundary.
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Figure 4.13. Examples of crystallographic fabrics observed in ice. Plots are
projections on lower hemisphere of an equal-area net. Triangles on edges show
direction of bubble elongation. In fabrics produced by simple shear, direction of
shear, shown by arrows, is presumed to be parallel to bubble elongation. All
fabrics except (c) were measured on cores from boreholes in Barnes Ice Cap
(Figure 4.15); (c) is schematic. (a) Fabric with weak preferred orientation of
c-axes in superimposed ice. (b) Fabric resulting from uniaxial compression
normal to the plane of the diagram. (c) Schematic fabric formed in pure shear.
(d) Broad single-maximum fabric. (e, f, g) Fabrics resulting from simple shear in
plane of diagram. ((a) and (d)–(g) from Hooke and Hudleston, 1980; (b) from
Hooke and Hudleston, 1981.)
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Ice that forms from compaction of snow, perhaps with some addition
of percolating meltwater, usually consists of crystals that are 2–4 mm
in diameter (Figure 4.12a). Through a series of processes that we will
refer to, collectively, as dynamic recrystallization, the texture and fabric
of this ice are altered during deformation. Dynamic recrystallization,
or simply recrystallization, is a consequence of the high local internal
stresses mentioned above, and the resulting widely differing internal
energies in adjacent grains.

One or more of three processes may be involved in recrystallization.
In order of increasing energy difference between adjacent grains, these
are grain growth, polygonization, and nucleation of new grains (Duval
and Castelnau, 1995). (Note that the terminology for these processes
differs among authors.) Grain growth results from relatively slow migra-
tion of grain boundaries. This migration is driven by the decrease in free
energy that accompanies the reduction in total area of grain boundaries
(Montagnat and Duval, 2000). Typical rates range from ∼10−3 mm a−1

at −30 ◦C and 1 kPa (local driving stress) to ∼10 mm a−1 at −10 ◦C and
300 kPa (Duval et al., 1983). The migration is driven by the curvature
of the grain boundaries. Higher pressures occur on the concave sides of
such boundaries, which is commonly the side of the smaller grain, and
molecules tend to move from the high-pressure side to the low-pressure
side of the boundary (Alley, 1992). Thus, smaller crystals disappear. The
result is a characteristic texture with equant crystals of relatively uniform
size (Figure 4.12b). Because temperatures in the accumulation zones of
polar ice sheets are relatively constant to depths of a few hundred meters
(see Figure 6.6a), grain boundary migration occurs at relatively constant
rates and grain size thus increases nearly linearly with depth. At greater
depths, grain size becomes approximately constant because polygoniza-
tion, which decreases grain size, balances grain growth (Alley et al.,
1995).

Polygonization (also called rotation recrystallization) involves the
alignment of dislocations to form a new grain boundary within a bent
crystal. The crystal is thus divided into two grains with nearly the same
orientation (Figure 4.12c, arrows). Under relatively high strain rates,
polygonization begins at strains of ∼1% (Duval and Castelnau, 1995),
but at the much lower strain rates found in the central regions of conti-
nental ice sheets, cumulative strains can approach 100% without causing
polygonization (Alley, 1992). Thus, polygonization occurs at relatively
shallow depths in temperate glaciers, but is normally found only at depths
greater than a few hundred meters in polar ice sheets.

Nucleation of new grains entails the appearance of small grains
that are oriented for easy glide, with their basal planes parallel to the
maximum resolved shear stress. When they first appear, such grains
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are relatively unstrained in comparison with adjacent older deformed
grains. As the free energy of the system can be lowered by migration
of boundaries of the new grains into the adjacent ones, the new grains
grow at the expense of the older ones (Alley, 1992). This is probably
partly responsible for the interlocking textures seen in highly deformed
ice (Figure 4.12d).

Such nucleation and grain growth (also called migration recrys-
tallization) occurs at relatively high strain rates and predominantly at
temperatures above ∼−10 ◦C. It is thus characteristic of basal ice in
temperate glaciers and of ice in the lowermost few hundred meters of
polar ice sheets.

Development of fabrics with preferred orientations
of c-axes

As just noted, newly nucleated unstrained crystals tend to grow at the
expense of older deformed ones. However, as they grow, the continued
straining gradually rotates them into orientations that are no longer opti-
mal, and they begin to accumulate strain energy. Consequently they, in
turn, are eventually consumed by even newer grains. It is the resulting
preference for orientations with basal planes parallel to the maximum
resolved shear stress that results in the increase in creep rate, in laboratory
experiments, after about 1% strain (Figure 4.8b). Preferred orientations
of c-axes are the manifestation of this preference (Figure 4.13). Thus two
basic processes are involved in the development of these c-axis fabrics:
recrystallization and grain rotation.

Let us illustrate these processes by tracing the development of such
fabrics, starting with ice near the surface in the accumulation area (Figure
4.12a). The c-axes of the crystals are either uniformly distributed or have
a weak preference for vertical orientations (Figure 4.13a). The latter
probably results from the orientation of snowflakes that have thin disk-
like shapes, and thus, like a pile of poker chips, tend to lie flat as they
accumulate. In addition, the vertical temperature gradient may have had
some influence during sintering.

As the ice becomes buried, it is compressed vertically and stretched
longitudinally and sometimes also laterally. Where longitudinal and lat-
eral strain rates are comparable in magnitude, the stress field is referred
to as uniaxial compression (Figure 4.14a), whereas if lateral strain rates
are negligible it is pure shear (Figure 4.14b). In such stress configu-
rations, slip occurs most readily on the basal planes of crystals whose
c-axes are inclined at ∼45◦ to the compression axis (Figure 4.14d).
Thus crystals are nucleated in this orientation, and these crystals grow at
the expense of adjacent more highly stressed ones, leading to a conical
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Figure 4.14. Stress configurations and their relation to orientations of c-axes.
(a) Uniaxial compression. (b) Pure shear. There is no strain normal to the plane
of the diagram. (c) Simple shear. (d) The c-axes and basal planes in a newly
nucleated crystal in uniaxial compression or pure shear. With continued
compression, the c-axes rotate toward the axis of compression. (e) Simple shear
viewed parallel to the shear direction with basal planes also parallel to the shear
direction as in the fabric of Figure 4.13f. The symbols and signify stress
vectors directed into and out of page, respectively. (f) Simple shear viewed
normal to the shear direction with basal planes inclined to the shear direction as
in the fabric of Figure 4.13g. In (d)–(f) short-dashed lines show orientations of
basal planes.

distribution of c-axes in uniaxial compression (a small-circle fabric:
Figure 4.13b.) and to two maxima aligned in the direction of extension
in pure shear (Figure 4.13c). (Small-circle fabrics are also commonly
referred to as girdle fabrics, although “girdle” implies a great circle.)
The vertical compression and lateral extension, however, have the effect
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of rotating basal planes clockwise on the left and counterclockwise on the
right in Figure 4.14d. Thus, as the crystals grow, the c-axes rotate toward
the compression axis (Alley, 1992), with the result that the mean angle
between the compression axis and the c-axes is typically only ∼30◦–35◦,
not 45◦ (Kamb, 1972; Hooke and Hudleston, 1980). Crystals that have
been rotated too far, and thus become highly stressed, are resorbed, while
nucleation develops new crystals in more favorable orientations.

If the ice at this depth is close enough to the bed, drag exerted
by the bed results in a stress configuration approximating simple shear
parallel to the bed (Figure 4.14c). Crystals with vertical c-axes are
then preferred. The resulting fabrics, which are common in ice sheets
(Gow and Williamson, 1976; Hooke and Hudleston, 1980), have single
maxima that range from relatively broad (Figure 4.13d) to quite tight
(Figure 4.13e).

The fabrics in Figures 4.13b,c,d all seem to form under roughly
equivalent cumulative strain. The differences among them are primarily
caused by stress configuration. As a class, we will refer to them as broad
single-maximum fabrics.

Although the increase in creep rate associated with recrystallization
usually begins at effective strains, εe (see Equation (2.11)) of ∼0.01 in
the laboratory (Figure 4.8b), broad single-maximum (and equivalent)
fabrics are not particularly evident until εe

∼= 0.04 and only become well
developed at εe = 0.4 (Kamb, 1972; Jacka and Maccagnan, 1984). In the
field, Hooke and Hudleston (1980) found that such fabrics first appeared
at εe

∼= 0.7−0.8. For reference, circles that have been deformed into
ellipses by strains of these magnitudes have axial ratios of 1.02, 1.08,
2.22, and ∼4.5, respectively. Thus, creep rates increase long before a
detectable preferred c-axis orientation develops.

In simple shear at cold temperatures or high strain rates (or high
cumulative strains), the single-maximum fabric strengthens (Figure
4.13e). However, at lower strain rates and temperatures above −10 ◦C,
an unexpected fabric appears. First, the single maximum splits in two,
with a maximum on either side of the shear direction (Figure 4.13f). The
basal planes corresponding to these c-axis orientations are still parallel to
the shear direction, but do not have optimal orientations (Figure 4.14e).
Then, with increased cumulative strain, strain rate, or temperature, first
one and then a second maximum appears inclined to the direction of
shear (Figures 4.13g and 4.14f). These planes are definitely not well
oriented for glide, and thus must stiffen the ice, at least slightly. These
multiple-maximum fabrics appear at εe

∼= 1.3 (Hooke and Hudleston,
1980). The corresponding axial ratio of the strain ellipse is ∼15.

The origin of these multiple-maximum fabrics is not understood.
They have been attributed to annealing under conditions of near stagna-
tion (Budd and Jacka, 1989) and have been reproduced in the laboratory
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Figure 4.15. Vertical cross section along a flow line on Barnes Ice Cap showing
zones characterized by particular fabrics. Arrows show locations of cores used to
determine fabric type. (After Hooke and Hudleston, 1980.)

by repeatedly compressing a sample and then annealing it (Huang et al.,
1985). However, these processes are not consistent with the occurrence
of such fabrics in ice that is actively deforming, as in Barnes Ice Cap
(Figure 4.15) (Hooke and Hudleston, 1980).

Matsuda and Wakahama (1978) measured the orientations of a-axes
as well as c-axes in ice with multiple-maximum fabrics. They did this
by observing etch pits in the thin sections. In ice with four-maximum
fabrics, they found that the a-axes of adjacent crystals were systemati-
cally aligned in a way that suggested mechanical twinning. Noting that
strong shear deformation under high temperatures is required to pro-
duce such fabrics, they suggested that the large amount of plastic strain
energy thus produced can be absorbed by propagation of twin bound-
aries without changing the relative structural relation between crystals
or the crystal-boundary structure, and without resulting in strong bubble
elongation.

Because the various fabrics appear to form under fairly specific con-
ditions of cumulative strain, strain rate, and temperature, and because
these parameters all tend to increase systematically with depth in the
accumulation area of a glacier, fabric type also varies with depth. For
example, in Barnes Ice Cap transitions from weakly oriented to broad
single-maximum (or equivalent) fabrics occur at depths of 80–140 m,
and the broad single maximum gives way to multiple-maximum fabrics
at 140–200 m (Figure 4.15). At Byrd Station in Antarctica, the transition
to broad single maximum fabrics (small circle variety) occurs at a depth
of ∼350 m. Then, a strong single-maximum fabric appears at ∼1200 m
and multiple-maximum fabrics show up at ∼1830 m. Differences in tem-
perature are probably largely responsible for the difference in depths to
the transitions, although cumulative strain may also play a role; Barnes
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Ice Cap is near or above −10 ◦C throughout, whereas at Byrd Station
the temperature exceeds −10 ◦C only below 1900 m. In Barnes Ice Cap,
as the various layers are advected outward they become exposed at the
surface in the ablation area (Figure 4.15).

Summary

Given these various processes of recrystallization and crystal deforma-
tion, one may well ask how we should visualize the deformation of poly-
crystalline ice on an intergranular scale. Available evidence suggests
that stresses are heterogeneous, that intracrystalline glide takes place on
basal planes within individual grains, that this glide results in internal
rotation of the crystal structure, and that nucleation of grains with basal
planes parallel to the maximum resolved shear stress and resorption of
grains that have rotated out of this orientation results in the develop-
ment of fabrics with preferred orientations. Mismatches between adja-
cent grains resulting from unequal slip at grain boundaries are accom-
modated by grain-boundary migration and by rotation and translation of
grains. These grain-boundary processes are thus likely to be rate limiting.
Computer models incorporating these principles successfully simulate
many characteristics of fabric evolution in ice sheets (Etchecopar, 1977;
Van der Veen and Whillans, 1994).

Deformation mechanism maps
Our discussion so far has focused on the type of creep most commonly
observed in glaciers, called power-law creep because the creep rate is
proportional to the stress raised to some power >1 (Equation (4.4)). The
dominant processes in power-law creep are dislocation glide and climb.
For completeness, some other types of creep should be mentioned.

In recent years, scientists working on ice deformation mechanisms
have found it useful to plot “maps” showing the deformation mechanisms
operating at different temperatures and stresses (Figure 4.16). The tem-
perature is usually normalized by dividing by the melting temperature in
Kelvin, θKm. This is called the homologous temperature. Similarly, the
stress is normalized by dividing by Young’s modulus. In Figure 4.16 the
stress used is

√
3σe. Note that the equivalent octahedral stress is shown

on the right ordinate.
The heavy lines in Figure 4.16 divide the diagram into fields in which

a single deformation mechanism is dominant. Power-law creep occupies
much of the right side of the diagram. Below and to the left of the power-
law creep field is the field of diffusional flow. In this type of flow, atoms
move from crystal boundaries that are under compression to ones that are
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Figure 4.16. Deformation mechanism map for ice with a grain size of 1 mm.
(Adapted with permission from Duval et al., 1983, Figure 1. Copyright 1983
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under tension. At low temperatures, atoms are believed to move along
grain boundaries (grain-boundary or Coble creep) whereas at higher tem-
peratures they probably move through the crystal lattice (lattice diffusion
or Nabarro–Herring creep). These two diffusional creep fields are sepa-
rated by a vertical dashed line at about 0.8 θ/θKm. The shading along the
heavy lines separating these two diffusional creep fields from each other
and from the power-law field represents the zone of overlap of the fields.
On the right edge of the shaded zone, power-law creep contributes 90% of
the deformation and on the left edge, diffusional creep contributes 90%.

At octahedral stresses between 2 and 10 MPa, fracture also con-
tributes to the deformation. The onset of fracturing occurs at lower
stresses in tension than in compression, so this field has an apprecia-
ble width. Under sufficiently large confining pressures, fracture is sup-
pressed, and the upper part of the diagram is then accessible.

Another field shown on the diagram is that labeled “dynamic
recrystallization and grain-boundary mobility”. At temperatures above
about −10 ◦C, the increase in creep rate with temperature is more rapid
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than predicted by an activation energy of 79 kJ mol−1. In addition, there
is a rapid increase in the electrical conductivity of ice (Mellor and Testa,
1969), and a less striking but still significant increase in the heat capac-
ity (Harrison, 1972). Finally, multiple-maximum fabrics are common in
glacier ice deformed at temperatures above −10 ◦C, but rare or absent
in ice below −10 ◦C (Hooke and Hudleston, 1980). The first three of
these phenomena can be explained if grain-boundary melting begins at
about −10 ◦C. Grain-boundary melting involves the formation of a
widened zone with a liquidlike structure at grain boundaries and par-
ticularly at multiple grain junctions (Duval et al., 1983; de La Chapelle
et al., 1995). This liquidlike layer is, in part, a consequence of impuri-
ties that become concentrated at grain boundaries, lowering the melting
point (Equation (2.1)). In addition, molecules on such a surface are not
well bonded to adjacent molecules on all sides, and thus form a liquid-
like layer even in the absence of impurities. This layer can explain the
increase in creep rate (as the liquid phase reduces grain interactions and
thus attenuates the internal stress field), the increase in electrical con-
ductivity (as impure water has a much higher conductivity than pure ice),
and the increase in heat capacity (as some heat is absorbed by melting).
Whether it can explain the development of multiple-maximum fabrics
is uncertain, but attempts to develop a theory explaining these fabrics
should take it into consideration.

In glaciers, stresses rarely exceed 0.2 MPa, and temperatures are
rarely below −50 ◦C, so for our purposes only the lower right-hand
corner of the deformation mechanism map is of interest. It appears from
this part of the diagram that both diffusional and power-law creep should
occur, as long as the grain size of the ice is about 1 mm. However, this
is actually a lower limit for the grain size in glacier ice. Grain sizes of
10–30 mm are common in polar and polythermal glaciers (Figure 4.12),
and much larger crystals can be found deep in polar glaciers and in
temperate glaciers. As grain size increases, the power-law creep field
increases at the expense of the diffusional creep field. This is intuitively
reasonable as larger grain sizes imply longer diffusion paths.

In diffusional creep, the strain rate is linearly proportional to stress, in
contrast to the situation with power-law creep. At present, there seems to
be no unequivocal field evidence suggesting that pure diffusional creep is
important in glaciers. However, Alley (1992) and Montagnat and Duval
(2000) have suggested that during grain growth (p. 58), migration of
grain boundaries can annihilate dislocations and thus reduce the dislo-
cation density below that predicted by Equation (4.3). In this case, n is
likely to be less than 3. Thus, diffusive processes associated with grain-
boundary migration may be important, in combination with dislocation
glide, to depths of a few hundred meters in colder parts of the Antarctic



66 Flow and fracture of a crystalline material

and Greenland ice sheets. On the other hand, in a study of floating ice
shelves bordering the Antarctic ice sheet, Thomas (1973b) and Jezek
et al. (1985) found that power-law creep with n ≈ 3 seemed to prevail at
temperatures of ∼ −15 ◦C and stresses of only 0.04–0.06 MPa.

A flow law for glacier ice
In the preceding sections of this chapter we have looked at details of
the deformation process, and have found some uncertainty, particularly
in attempts to identify the rate-limiting process. In the remainder of
this book, we will frequently need a simple yet reasonably accurate
expression relating stress and strain rate in ice. In general, we will use
the expression:

ε̇e =
(σe

B

)n
(4.5)

which, as mentioned briefly in Chapter 2, is often referred to as Glen’s
flow law, as it was first suggested by John Glen (1955) on the basis of
his early uniaxial compression experiments on ice.

As noted, the exponent, n, depends on the creep mechanism oper-
ating. A substantial body of experimental data on laboratory ice and
on natural glacier ice supports adopting a value of 3 for this exponent
(Hooke, 1981), and this seems to be consistent with theoretical expecta-
tions (Equation (4.4)). Older experimental data suggesting a lower value
at low stresses are often questionable because tests were not continued
long enough to be sure that the transient phase of creep (Figure 4.8) was
complete. However, recent experiments by Pimienta and Duval (1987)
and studies by Alley (1992) and Montagnat and Duval (2000) again raise
the possibility of values between 1 and 2 for deformation at low stresses,
temperatures, and cumulative strains. As noted, they argue that grain-
boundary migration is particularly efficient under these conditions so
internal strain energy is small, and the density of dislocations therefore
does not increase as rapidly with stress as suggested by Equation (4.3).
Healing of dislocations by diffusional processes may also limit the
density (Alley, 1992).

B is a measure of the viscosity of the ice. The viscosity depends
upon a number of factors; we have already mentioned the importance
of temperature and fabric, and have hinted at the role of water content,
particularly along grain boundaries. Other factors of possible signifi-
cance are pressure, texture, and other molecular or macro-scale structural
features such as dislocation density or grain-boundary structure. Thus,
Equation (4.5) with a constant value of B is useful only in situations in
which an average value of B can be chosen that is reasonably represen-
tative of the viscosity of the ice mass as a whole. In the remainder of this
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section, we will explore modifications of Equation (4.5) that incorporate
some of these variables.

The easiest variable to incorporate is temperature, thus:

ε̇e =
(

σe

Bo

)n

e− Q
RθK (4.6)

where, as before, Q is the activation energy for creep. Bo is now a ref-
erence parameter; literally, it is the viscosity at θK = ∞, but this is
physically meaningless. Bo is still a function of the other parameters
listed above, such as fabric, texture, microstructure, and so forth.

The activation energy for a process can be determined by running
a series of tests at constant stress but varying temperature. In the case
of the activation energy for power-law creep, the parameter measured is
the strain rate, ε̇, and Q is determined from:

ε̇1

ε̇2
= e

Q
R ( 1

θK2
− 1

θK1
) (4.7)

where the subscripts 1 ands 2 refer to data from two tests at the same
σ e but different temperatures, θK. Equation (4.7) is readily derived from
Equation (4.6). Figure 4.17 shows a plot of ln ε̇ vs 1/T in such a series
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of tests. The data points at lower temperatures fall on a straight line with
slope Q/R. However, at temperatures above −10 ◦C, the points deviate
from a straight line in a direction implying a higher activation energy. In
other words, the increase in creep rate with temperature is greater than
expected. This is because the grain-boundary processes discussed above
begin to influence the creep rate. In particular, the decrease in grain
boundary interactions with increasing water content probably allows the
creep rate to increase faster than is the case at lower temperatures.

For some applications, the temperature effect can be represented by:

ε̇ = ε̇oekθn (4.8)

where k is a “constant” that is typically between 0.1 and 0.25 ◦C−1, θn

is the temperature in Celsius degrees (hence a negative number), and ε̇o

is a reference strain rate. This relation has the benefit of mathematical
simplicity, and it is a reasonable approximation in situations in which the
temperature varies within a restricted range. However, k varies slowly
with temperature and with Q, so the approximation becomes increasingly
imperfect as the temperature range increases.

The next parameter we will incorporate is hydrostatic pressure, P,
thus:

ε̇e =
(

σe

Bo

)n

e− Q+PV
RθK (4.9)

where V is the activation volume for self-diffusion, and the quantity
(Q + PV) is the activation enthalpy. In ice, it turns out that V is very
low, and it is not clear whether it is positive or negative. Rigsby (1958)
conducted some experiments at constant temperature that suggested a
slight increase in creep rate with P, implying a negative V. However, when
he varied the temperature in such a way that the difference between the
experimental temperature and the melting-point temperature remained
constant, the creep rate was essentially independent of pressure. In other
words, V was 0. Later experiments have suggested that it might be slightly
positive. In any case, it is small enough to be neglected in most if not all
applications.

Some experiments have been interpreted as indicating that ε̇

increases with increasing grain size (Baker, 1978). As grain size is
believed to influence the creep rate in metals, this was not unexpected.
However, subsequent experiments failed to find a dependence on grain
size (see, for example, Jones and Chew, 1983; Jacka, 1984). It was thus
suggested that Baker’s samples were too small, and that samples with
larger crystals may have been able to creep faster because too much of
the strain was occurring in single crystals, favorably oriented for basal
glide, that were not buttressed by surrounding crystals with unfavorable
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orientations. In later experiments, however, Baker (1981, 1982) used
larger samples, deformed in simple shear, and still found a clear depen-
dence of ε̇ on crystal size.

It is true that crystal size varies directly with temperature and
inversely with strain rate. Crystals in rapidly deforming cold ice may
be in the millimeter to submillimeter size range, while those in slowly
deforming temperate ice may exceed a decimeter. The key question is
whether these variations in size are merely a consequence of the temper-
ature and strain rate, or alternatively whether they actually influence the
strain rate.

The effect of crystal orientation on the strain rate is normally included
in the flow law by multiplying the right-hand side by a factor, E, called
the enhancement factor, thus:

ε̇e = E

(
σe

Bo

)n

e− Q
RθK (4.10)

Rigorously, however, Glen’s flow law is based on the assumption that
the material is isotropic (see Chapter 9). Thus, adding an enhancement
factor in this way to accommodate anisotropy is tacit admission of the
failure of this assumption.

We do not yet have enough understanding of the recrystallization
process to write an empirical relationship between E and the factors such
as temperature, strain rate, and cumulative strain on which it depends
(Hooke and Hudleston, 1980). Therefore, selection of the appropriate
values of E to use in any given situation is largely subjective.

Laboratory experiments provide some basis for estimating E.
Russell-Head and Budd (1979) and Baker (1981, 1982) studied natu-
ral ice with a single-maximum fabric. When deformed in simple shear
in the laboratory, with the sample oriented so that the c-axes were approx-
imately perpendicular to the shear plane, this ice deformed about four
times faster than comparable samples with random c-axis orientations.
Russell-Head and Budd also found that a section of a borehole in Law
Dome, Antarctica, that passed through ice with a single-maximum fabric
deformed about four times faster than it would have in ice without such a
fabric. More recently, Budd and Jacka (1989) and Jacka and Maccagnan
(1984) have suggested that enhancement factors of ∼3 are reasonable
for ice in uniaxial compression once a small-circle fabric has developed,
and that factors of 8–10 may be appropriate for ice in simple shear.
Borehole deformation experiments in Barnes Ice Cap suggest that, rela-
tive to ice with a broad single-maximum fabric (Figure 4.13d), ice with
a two-maximum fabric (Figure 4.13f) deforms about 10% faster while
that with a three- or four-maximum fabric (Figure 4.13g) deforms about
40% slower (Hooke and Hudleston, 1980). The former is reasonable, but
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Figure 4.18. Variation in B with water content of the ice. (Data reported by
Duval, 1977.)

the latter, while in the expected direction, is probably unreasonable in
magnitude.

Finally, we return to the effect of the water content on the creep
rate. This was studied by Duval (1977) in a pioneering set of sophis-
ticated experiments. His results, expressed in terms of the decrease in
B with increasing water content, are shown in Figure 4.18. With an
increase in water content from 0.01% to 0.8%, B decreases from ∼0.24 to
∼0.16 MPa a1/3. Lliboutry (1983) reports that the water content of basal
ice of temperate glaciers typically varies between 0.6% and 0.95%. Based
on the line in Figure 4.18, this corresponds to a variation in B from 0.177
to 0.170, and hence in ε̇ of ∼12%. The individual data points in Figure
4.18 suggest an even greater sensitivity. Lower water contents, and hence
higher values of B, are likely in temperate ice of polythermal glaciers.

Fracture
At sufficiently high stresses, ice fractures (Figure 4.16). Crevassing,
resulting from high tensile stresses, is the type of fracturing with which
people are most familiar. However, fracturing near the base of the sub-
aerial part of a calving face may be largely a consequence of crushing
(compression).

Owing to the importance of fracture in design of structures rang-
ing from buildings to airplanes, the study of linear elastic fracture
mechanics is well developed, and we will only skim the surface of this
field. Basically, flaws or microcracks exist in most if not all crystalline
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materials, and any far-field stresses on the material are amplified at the
tips of these cracks. Thus, cracks may propagate at stresses far below
the strength of an unflawed specimen of the material.

The elastic stress field around the tip of a vertical crack in the surface
of a solid of infinite horizontal extent, subjected to a far-field tensile
stress, σ , that is normal to the crack, is given by:

σx = KI√
2�r

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)

σz = KI√
2�r

cos
θ
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2
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)
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σxz = KI√
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2
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θ

2
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3θ

2

(see, for example, Lawn, 1993, p. 25). Here, r is the distance from the
crack tip measured along a line making an angle θ with the crack axis
(Figure 4.19), and KI is a parameter known as the stress intensity factor.
In general, KI = βσ

√
a, where a is the crack length. Thus, KI increases

as either the far-field stress or crack length increase. The β is a geo-
metrical parameter that, in our case, depends upon factors such as the
spacing of crevasses, the ice thickness, and the far field stress. Thus, KI,
and particularly β, describe how the far-field stresses are amplified or
intensified around a crack tip.

Clearly, high values of KI translate into high stresses around the crack
tip and, if the stresses become high enough, the crack will propagate.
Rather than express this critical value in terms of the stresses themselves,
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the standard procedure is to express it in terms of a value of K called the
fracture toughness, KIc. KIc is a material property of the medium. If KI

exceeds KIc, the fracture will propagate unstably. Rist et al. (1999) have
summarized their own measurements of KIc on ice cores from Antarctica
and other workers’ measurements on other types of samples and find that
it increases approximately linearly with density (Figure 4.20). The scatter
in the data is large, however.

Stress intensity factors are complicated and often tedious to derive,
but they can be obtained from handbooks such as Sih (1973). Conve-
niently, they obey the principal of superposition; thus, in problems with
a complex stress configuration, if one can obtain stress intensity factors
for each of the stresses separately, they can be added to obtain the stress
intensity factor for the whole problem (Kanninen and Popelar, 1985,
p. 27). We will illustrate this below.

The alert reader may have noticed that the stresses in Equations (4.11)
become infinite as r → 0. However, deformation in a region immediately
around the crack tip is plastic, and this keeps the stresses finite. To
estimate the radius, rp, of this plastic region, take θ = 0 in the first or
second of Equations (4.11), assume that plastic behavior will occur once
the stress exceeds 0.1 MPa (a commonly cited plastic “yield strength” for
ice), adopt a value for KIc of 0.16 MPa m−1/2, and solve for rp. The result
is rp ≈ 0.4 m. The principles of linear elastic fracture mechanics only
apply if rp is small compared with a. As we are concerned principally



Fracture 73

Figure 4.21. Variation in
stress intensity factor with
crevasse depth for an air-filled
crevasse formed by a tensile
stress of 0.2 MPa. (Modified
from Kenneally, 2003.)

with crevasses, and as most crevasses reach depths of at least 10–20 m,
this condition is satisfied.

Let us consider the case of a single crevasse in a glacier of infi-
nite horizontal extent subjected to a tensile stress, σ . Two stresses are
involved: the tensile stress that tends to open the crack and the weight
of the overlying ice that tends to squeeze it closed. We need a stress
intensity factor for both. For the case of a crack of depth d in a medium
of thickness H 
 d subjected to a tensile stress, σ , KIt = 1.12σ

√
πd

(Kanninen and Popelar, 1985, p. 31). The subscript “t” signifies tension.
The hydrostatic stress from the weight of the ice is −ρ igz, where ρ i is the
density of ice, g is the acceleration of gravity, and z is the depth below
the surface. The negative sign indicates that the stress is compressive.
For a crack of depth d with a load varying from 0 at the surface to −ρ igd
at the crack tip, KIo = −0.683ρigd

√
�d (Kenneally, 2003). Here, the

subscript “o” is used for overburden. Vaughan (1993) found that tensile
stresses between 0.09 and 0.32 MPa were necessary to open crevasses.
(These are considerably lower than the stresses bounding the fracture
field in Figure 4.16, probably because glacier ice has more and deeper
surface flaws that can develop into crevasses.) For purposes of illustra-
tion, let us assume σ = 0.2 MPa. KITotal = KIt + KIo then varies with
crevasse depth as shown in Figure 4.21.

From Figure 4.21, we see that once a crack ∼0.16 m long is formed,
KITotal exceeds KIc and the crack will propagate unstably to a depth
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of ∼35 m. The depth, of course, depends on σ , but this is a realistic
depth for crevasses.

Of considerable interest in view of the recent collapse of the Larsen
B Ice Shelf mentioned in Chapter 3, is the effect of water on crevasse
depth. By analogy with the KIo above, the stress intensity factor for
stresses induced by water pressure in a crevasse that is filled with water is
KIw = 0.683ρwgd

√
�d , where ρw is the density of water. KIw is positive

because the water pressure tends to open the crevasse. Because ρw > ρ i,
KITotal, which now includes KIw, increases continuously with depth. Thus,
once it exceeds KIc, it never drops below KIc again, and the crevasse will
penetrate to the bed.

Three additional factors that influence crevasse depth are: (1) the
presence of low-density firn at the surface, (2) the water level in the
crevasse if it is not filled, and (3) the effect of other crevasses. In all
three cases, the consequences of taking these factors into consideration
are fairly obvious. Low-density firn reduces KIo so crevasses penetrate
deeper; if there is not enough water in the crevasse, KIw will not exceed
KIo and the crevasse may not penetrate to the bed; and if there is a field
of crevasses, the tensile stress will be relieved by adjacent crevasses
and no one crevasse will penetrate as deeply as would a single crevasse.
Stress intensity factors can be obtained for these three situations (Van
der Veen, 1998), but the algebra, while straightforward, becomes con-
siderably more complicated and is beyond the scope of this book.

Summary
In this chapter we first reviewed the crystal structure of ice, and noted that
there are imperfections in this structure, called dislocations, that allow ice
(and other crystalline materials) to deform under stresses that are low
compared with the strength of individual molecular bonds. Processes
that may limit the rate of deformation are those which (1) inhibit motion
of a dislocation in a single crystallographic plane (drag), (2) prevent
dislocations from climbing from one crystallographic plane to another
to get around tangles, (3) impede motion on certain crystallographic
planes, and (4) inhibit adjustments of boundaries between crystals.

Experimental data do not, at present, provide a basis for choosing
between these possible rate-limiting processes. However, the drag mech-
anism does provide a theoretical basis for the commonly observed value
of the exponent, n, in the flow law (see Equation 4.4). Perhaps equally
important, however, are the mechanisms that allow adjustment of grain
boundaries.

Because some crystals in a polycrystalline aggregate are not ori-
ented for easy glide, stress concentrations develop. These result in
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recrystallization by three distinct processes: grain growth, polygoniza-
tion, and nucleation of new grains. Recrystallization leads to preferred
orientations of c-axes, and hence to more rapid deformation. The prin-
cipal processes involved in the development of these fabrics appear to
be nucleation of new grains and rotation of grains as slip occurs on their
basal planes.

To place the creep processes in ice in a more general framework,
we introduced a deformation mechanism map in which we displayed the
range of temperatures and stresses under which different deformation
processes occur. Within the temperature and stress ranges normally found
in glaciers, power-law creep is likely to be the dominant process although
diffusional creep may occur in some low stress situations.

Next, we introduced Glen’s flow law, and related the exponent, n, in
the flow law to the creep mechanisms discussed earlier. Then we con-
sidered how temperature, pressure, texture, fabric, and water content
affect the viscosity parameter, B. Temperature and pressure effects may
be incorporated into the flow law by rigorous, physically based modi-
fications, whereas ad hoc procedures based on empirical evidence are
used to incorporate the other effects.

Finally, we introduced principles of linear elastic fracture mechanics
and demonstrated that these principles can be used to estimate crevasse
depths.



Chapter 5

The velocity field in a glacier

Many problems in glaciology require an understanding of the flow field
in a glacier. For example, the way in which flow redistributes mass deter-
mines the shape of a glacier, and also the rapidity with which glaciers
respond to climatic change. Flow also redistributes energy and thus
affects the temperature distribution. This, in turn, has important impli-
cations for the nature of the coupling with the glacier bed. Spatial vari-
ations in speed, or strain rates, are of concern to structural geologists
using glaciers as analogs for deformation of rocks. From a geomorphic
perspective, the entrainment of debris and the character of moraines
constructed from this debris are dependent upon the flow field. In short,
understanding the flow field is fundamental to the analysis of many prob-
lems in glacier mechanics.

For a full description of the flow field in a glacier, we need the
horizontal and vertical components of the velocity at every point. By
making several assumptions, we can obtain approximate solutions to this
problem that will give insights into certain characteristics of glaciers and
the landforms they produce. Initially, we will limit the analysis to two
dimensions and also assume a steady state.

We will begin by studying the distribution of horizontal velocity.
Given the pattern of accumulation and ablation over a glacier, we can use
conservation of mass to determine the mean (depth-averaged) horizon-
tal velocity. Then, by using conservation of momentum and a simplified
version of the flow law (Equation (4.5)), we will consider the variation
in horizontal velocity with depth in an ice sheet and in a valley glacier.
Differences between these solutions and measured velocity distributions
reveal inadequacies of the theory, and draw attention to the need for a

76
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better understanding of the basal boundary condition. Finally, by inte-
grating the velocity over depth, we calculate the mass flux, and also obtain
an expression for the mean velocity in terms of the glacier thickness.

The vertical velocity field is treated next. Again we will use the
steady-state assumption and the pattern of mass balance (conservation
of mass) to determine the vertical velocity at the surface. We then use the
longitudinal strain rate, or rate of stretching in the longitudinal direction,
at the surface to estimate its variation with depth, and thus calculate the
variation in vertical velocity with depth. This yields an approximation
to the full velocity field.

Next, we discuss the role of drifting on the flow field, and show that
drifting patterns at the surface of an ice sheet can be traced at depth using
radio echo sounding techniques. Drifting also affects the topography of
a glacier surface, and plays an important role in the formation of certain
types of moraine. Finally, we will explore inhomogeneous flow in ice
sheets, as manifested by ice streams.

Measurement of velocity
Before describing the velocity field, a brief overview of measurement
techniques may be helpful. In the early days of glaciology, velocity
measurements were commonly made by triangulation from fixed points
on stable surfaces off of the glacier. I have spent many hours peer-
ing through a theodolite at stakes drilled into a glacier. In the 1970s,
electronic theodolites with laser distance-ranging capabilities greatly
reduced the effort needed to make a measurement. Because the distance
can be measured directly with such an instrument, a stake location can
be determined by occupying only one fixed point rather than two, and
electronic display of angles saves hours of adjusting a vernier. Later
technological developments have resulted in computer-driven systems
that can activate the theodolite and track the stakes. Thus, measurements
can be made automatically as often as desired.

Velocity measurements far from stable fixed points are next to impos-
sible with theodolite-based techniques. The advent of geographical posi-
tioning systems (GPS) technology solved that problem. GPS units mea-
sure the distance to a fleet of satellites with orbits that are known very
accurately. With the most precise GPS units, the location of a point can
be determined to within a couple of centimeters. Such units are now used
to measure rates of continental drift.

An exciting development that is quickly leading to a much better
understanding of flow fields in large ice sheets is the use of satellite
images taken at, say, intervals of days to a year or so, to determine the
velocity field. The images are coregistered based on the assumption that
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certain features are stationary or moving only slowly compared with
others. Then, cross-correlation techniques are used to compare crevasse
patterns or other recognizable moving features on the two images and to
determine how far they have moved between the dates of the respective
images (Bindschadler and Scambos, 1991; Whillans and Tseng, 1995).
High-speed digital computers are used to make these comparisons. In this
way, a detailed quantitative map of the flow field can be produced. This
technique, called satellite interferometry, is revolutionizing the measure-
ment of velocities that, a scant 35 years ago, could be obtained only by
tedious precision surveying with a theodolite.

Balance velocity
The general pattern of flow in a glacier is determined by the net budget.
Consider an idealized glacier which, over a period of years, is in a steady
state so its thickness (or surface profile) does not change. Then, at some
distance, x, from the divide, the mean horizontal velocity averaged over
depth is:

u = 1

h(x)

x∫
0

bn(x) dx (5.1)

where h(x) is the glacier thickness, and for convenience, the units of bn

are taken to be meters of ice per year (Figure 5.1). This equation is an
expression of the principle of conservation of mass in an incompressible
medium. As much mass must be moved out of the control volume, V, by
flow, u h(x), as enters it by accumulation on the surface,

∫
bn(x) dx . The

velocity u is called the balance velocity.
Balance velocities on the Antarctic ice sheet are shown in Figure

5.2. To calculate these velocities, Huybrechts et al. (2000) used detailed
maps of the surface and bed elevations to obtain ice thicknesses at nearly
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80 000 points of a grid. They then used the surface elevations to calculate
surface slopes, and hence directions of ice flow. This allowed the calcu-
lation of balance velocities, using a two-dimensional form of Equation
(5.1) to take convergence and divergence of flow into consideration. Ice
divides show up well on the map as regions of essentially zero velocity.
Note also the general increase in velocity toward the coast, and the focus-
ing of flow into relatively narrow zones near the coast. Because most of
the ice loss from Antarctica is by calving, there is no decrease in velocity
near the coast as there would be if ice were lost by melting in an ablation
zone of appreciable width.

Shear stress distribution
To determine the velocity distribution at depth in a glacier, we will find,
below, that we need an expression for σ zx as a function of z. Thus, we
digress briefly from the principal objectives of this chapter to derive two
similar expressions for σ zx that are commonly used in the literature. The
derivations differ only in the orientation of the axes and of the plane on
which σ zx operates.
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Consider, first, the situation in Figure 5.3a. The origin is at the sur-
face. The x-axis is taken parallel to the surface, which slopes at an angle
α. The z-axis points downward, normal to the surface. We want the
shear stress on a plane at depth h. The column of ice is taken to be 1 m
on a side. Therefore, the weight of the column is ρgh, where ρ is the
density of ice and g is the acceleration due to gravity. The component of
that weight parallel to the plane of interest is, thus, ρgh sin α. For static
equilibrium, this must be balanced by a shear stress on the plane, so:

σzx = −ρgh sin α. (5.2a)

The shear stress is negative because it acts in the negative x-direction
on a plane with an outwardly directed normal in the positive z-direction
(see p. 5 and Figure 2.3).

Next, consider the situation in Figure 5.3b. The x-axis is now hori-
zontal and the z-axis is vertical. Again, the origin is on the surface and the
column is of unit cross-sectional area. On the right side of the column,
the plane of interest is at depth h below the surface. To a good approxi-
mation, the hydrostatic (or lithostatic) pressure at this depth is ρgh and
the pressure varies linearly with depth. Thus, the mean pressure is 1

2ρgh,
and the force on this side is 1

2ρgh h, where the second h represents the
area of the face. Similarly, on the left side, the force is 1

2ρg(h + �h)2.
The force on the plane of interest is −σ zx �x. Summing forces on the
column yields:

1

2
ρg (h + �h)2 − 1

2
ρgh2 − (−σzx�x) = 0

Expanding the first term, neglecting the term in �h2, noting that tan

α = �h/�x, and rearranging terms leads to:

σzx = −ρgh tan α (5.2b)

This equation is appropriate for a situation in which both the x-axis and
the plane of interest are horizontal, but the glacier surface is sloping.
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Because glacier-surface slopes are normally small, sin α ≈ tan α ≈α.
Thus, Equations (5.2a) and (5.2b) are nearly interchangeable, and for
small slopes we commonly write:

σzx = −ρghα (5.2c)

Note that in a coordinate system in which the z-axis is directed upward,
σ zx would be positive.

Local stresses may be augmented or reduced by gradients in longitu-
dinal stress, σ xx. Thus, Equations (5.2) provide only an estimate of σ zx,
and they cannot be used to calculate changes in σ zx over short distances.
As a rule of thumb, the values of h and α that are used in Equations (5.2)
should be averages over horizontal distances that are several times the
ice thickness.

Horizontal velocity at depth in an ice sheet
Demorest (1941, 1942) argued that the horizontal velocity in a glacier
should increase with depth. He thought that the pressure of the overlying
ice would soften the deeper ice, making it flow faster. Nye (1952a),
however, pointed out that this concept was physically unsound because
the faster-moving deeper ice would exert a shear stress on the overlying
ice, and there would be no corresponding resisting forces to oppose this
shear stress. Therefore, the overlying ice must move at least as fast as that
below. We now know from numerous borehole deformation experiments
that Nye’s analysis was basically correct.

To pursue Nye’s reasoning quantitatively, we start with the flow law,
Equation (4.5), and assume that strain rates other than ε̇xz and ε̇zx and
stresses other than σ xz and σ zx are negligible. Then, using Equations
(2.10) and (2.11), and making use of the symmetry of the tensor so that
ε̇xz = ε̇zx and σ xz = σ zx we obtain:

ε̇zx =
(σzx

B

)n
(5.3)

By using an equation analogous to (2.6a) and assuming that all of the
shear takes place in the plane normal to z so ∂w/∂x = 0, the mode
of deformation that we identified as simple shear in Chapter 4 (see
Figure 4.14c), this becomes:

du

dz
= 2

(σzx

B

)n

(5.4)

To integrate this, σ zx must be expressed as a function of z. We will
use the coordinate system of Figure 5.3a and Equation (5.2a), and will
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integrate from the surface down to depth z (Figure 5.4), thus:

u(z)∫
us

du = −2

(
ρg sin α

B

)n
z∫

0

zndz (5.5)

Carrying out the integration and rearranging terms yields:

u(z) = us − 2

n + 1

(
ρg sin α

B

)n

zn+1 (5.6)

This is the desired solution for the velocity profile. It was first obtained
by Nye (1952b). Knowing us, B, and α, we can calculate the velocity as
a function of depth, u(z). If the total thickness, H, is known, we can solve
Equation (5.6) for the velocity at the bed, ub, thus:

ub = us − 2

n + 1

(
ρg sin α

B

)n

H n+1 (5.7)

Because n ∼= 3, the velocity at the bed is quite sensitive to the values of
α, B, and H.

us

uz

ub

H

x

z

a

Figure 5.4. Parameters
involved in integrating
Equation (5.4).

This derivation is rigorously correct only for a glacier that is in the
form of a slab of infinite extent on a uniform slope. If the glacier is
bounded laterally, drag on the sides must be considered in calculating
σ zx. We will take this up in the next section. If the thickness is not
uniform in the longitudinal direction, there are likely to be gradients
in the longitudinal stresses that either augment or diminish σ zx relative
to the values calculated from any of Equations (5.2). Normally, these
gradients are sufficiently small that this source of error is not of major
concern in comparison with some others. This is discussed further below
and in Chapter 10.

A velocity profile for an ice sheet 300 m thick with a surface slope
of 2.2◦, n = 3, and B = 0.2 MPa a1/n, calculated from Equation (5.6),
is shown in Figure 5.5. The profile has a distinctive form; the velocity
is nearly independent of depth in the upper part of the glacier, and then
decreases rapidly near the bed. For comparison, the dashed line shows
the profile for a linearly viscous (n = 1) material, with the value of B
adjusted to give the same velocity at the bed. The distinctive form of the
n = 3 profile is a consequence of the “high” value of n.

Note also in Figure 5.5 that the velocity at the bed, ub, is composed of
two components. If the glacier is at the pressure melting point at the bed, it
can slide over its substrate (with speed usl), whether that substrate be hard
bedrock or unconsolidated material. If the substrate is unconsolidated
material such as glacial till, this substrate may also deform. This adds
a speed ud to the total. These contributions to the speed of a glacier are
discussed in detail in Chapter 7.
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Horizontal velocity in a valley glacier
In a valley glacier, some of the resistance to flow, or drag, is provided by
valley sides. To see how this alters the situation, consider first a glacier
in a semicircular valley of radius R (Figure 5.6a) and slope α. Balancing
forces on a cylindrical surface of radius r and of unit length parallel to
the flow gives:

σr x �r = −ρg
�r 2

2
sin α (5.8)
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Here, �r is the area of the surface and ρ�r2/2 is the mass of ice inside
the surface. The latter, multiplied by g sin α, is the total force parallel
to the surface that must be resisted by a shear stress, σrx, on the surface.
Thus, now:

σr x = −1

2
ρgr sin α (5.9)

Inserting this in Equation (5.4) with r in place of z as the depth dimension
and integrating as before yields:

u(r ) = usc − 2

n + 1

(
ρg sin α

2B

)n

rn+1 (5.10)

where usc is the velocity at the surface on the centerline. But for the
change to a cylindrical coordinate system, this result differs from that
of Equation (5.6) only in the factor of 2 in the denominator of the term
in brackets. However, as n ≈ 3, the difference in velocity between the
surface and a given depth is a factor of 8 less in the valley glacier. This
represents the effect of drag on the valley sides.

Semicircular cross sections are not common in nature, so let us
consider a more realistic shape (Figure 5.6b). By analogy with Equation
(5.8) we write:

τ b P = −ρg A sin α (5.11)

Here, τ b is the drag exerted on the glacier by the bed, averaged over the
length of the ice–bed interface, P, and A is the cross-sectional area of the
glacier. Although τ b is a force per unit area and is often called the basal
shear stress, it is confined to a plane and is thus a vector, not a tensor
quantity. Therefore, we will use the term drag and the symbol τ for it.
Dividing by P and multiplying the top and bottom of the right-hand side
by the thickness of the glacier at the centerline, H, yields:

τ b = −ρg
A

P H
H sin α = −S f ρgH sin α (5.12)

Here, we have defined A/PH = Sf. Sf is known as the shape factor. The
reader will readily see that Sf is 1 for an infinitely wide glacier and 1

2 for
a semicircular glacier.

We now make the assumptions:

τb,cL = τ b (5.13)

and

σzx = z

H
τb,cL = z

H
τ b (5.14)

In these equations, the subscript “cL” stands for centerline. Assumption
(5.13) says that the basal drag at the centerline is equal to the average
over the cross section, and assumption (5.14) says that the shear stress
at the centerline varies linearly with depth and approaches τ b at the bed
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Figure 5.7. Trimlines above an Alaskan glacier. Photo by B. G. Hooke.

without any discontinuity. With these assumptions, Equation (5.12) can
be rewritten as:

σzx = −S f ρgz sin α (5.15)

Inserting this in Equation (5.4) and integrating as before yields:

u(z) = us − 2

n + 1

(
S f ρg sin α

B

)n

z n+1 (5.16)

If one knows us and can make reasonable estimates of H, B and Sf,
Equations (5.15) and (5.16) can be used to calculate the basal drag and
speed, respectively. With such calculations, Nye (1952b) demonstrated
that a large fraction of the movement of temperate valley glaciers was due
to sliding (or till deformation) at the bed, and that despite a large variation
in thickness and surface slope, basal drags fell within a relatively narrow
range: 0.05 < τ b < 0.15 MPa. In practice, however, values of ub thus
calculated are not very reliable because small errors in τb are amplified
when it is raised to the nth power (Equation (5.16)).

The narrow range in τ b is a consequence of the nonlinearity of the
flow law. Small increases in H result in comparatively large increases in
us, and hence in the rate at which mass is transferred from the accumu-
lation area to the ablation area. Thus, positive net balances may lead to
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longitudinal velocity in a
transverse cross section of
Athabasca Glacier. Contours
are based on measurements
in boreholes shown. All
boreholes reached the bed
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(b) Theoretical distribution
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the International Glaciological
Society.)

significant increases in speed, and hence to advances of glaciers, with
only modest increases in thickness, and conversely. Following retreat of
a glacier, evidence for this effect is commonly seen in vegetation bound-
aries, called trimlines, that reflect the former position of the ice surface
(see Figure 5.7). Near the terminus, such trimlines are typically high
above the present glacier surface, and they meet the valley bottom well
down-valley from the terminus. However, when traced up-valley, they
become quite close to the level of the present surface.

Comparison with measurements

It is revealing to compare the velocity distribution measured in a tem-
perate glacier with one calculated on the basis of arguments similar to
those leading to Equation (5.16). The measurements in Figure 5.8a were
made by Raymond (1971) on Athabasca Glacier in the Canadian Rocky
Mountains and are compared with calculations (Figure 5.8b) made by
Nye (1965a) for a glacier in a cylindrical parabolic channel with a similar
aspect ratio. Nye assumed that basal sliding was uniform over the cross
section.

There are some interesting discrepancies between the observed and
calculated distributions. First, the basal velocity is 80% to 90% of the
surface velocity over the central section of Athabasca Glacier, and then
decreases rapidly towards the valley sides. These large lateral gradients
in ub conflict with Nye’s assumption. The gradients are attributed to
lateral variations in water pressure at the ice–rock contact. The role of
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water pressure in sliding and till deformation will be discussed further
in Chapters 7 and 8.

Secondly, in the field measurements, ∂u/∂y > ∂u/∂z (where the
y-axis is transverse), whereas in the theoretical model the reverse is true.
Unless the ice is quite anisotropic, the contrast in strain rates indicates a
similar contrast in stress. The higher shear strain rates near the margin
of Athabasca Glacier indicate that the glacier is supported by drag on
the margin more than by drag on the bed.

Thirdly, although σ zx increases approximately linearly with depth as
in the theory, τ b,cL<τ b, contrary to our assumption (Equation (5.13)). In
other words, if Sf is calculated from its definition, A/PH, and if this is
then used to calculate σ zx at the centerline, the value of σ zx will be too
high. Put differently, to calculate u(z) and τ b at the centerline of a valley
glacier, one should use a value of Sf that is less than A/PH. The fact that
the velocity contours are nearly semicircular in shape, which is quite
different from the shape of the margin, suggests that Sf = 1

2 would give a
better estimate of τ b. Furthermore, in some situations, the variation of σ zx

with depth may not be linear. Calculations with a numerical model have
shown that σ zx depends on the basal water pressure, and that at high water
pressures it may actually decrease near the bed (Truffer et al., 2001).

Mean horizontal velocity and ice flux
The ice flux per unit width, q, is readily obtained by integrating the
velocity profile (Equations (5.6), (5.10), or (5.16)) over depth. We will
illustrate this with Equation (5.16), thus:

qcL =
H∫

0

u(z)dz =
H∫

0

[
us − 2

n + 1

(
S f ρg sin α

B

)n

zn+1

]
dz

= us H − 2

(n + 1)(n + 2)

(
S f ρg sin α

B

)n

H n+2 (5.17)

Possibly of greater use is the mean velocity over depth, u = qcL/H :

u = us − 2

(n + 1)(n + 2)

(
S f ρg sin α

B

)n

H n+1 (5.18)

Combining this with Equation (5.16) and simplifying the result leads to:

u = ub + 2

(n + 2)

(
S f ρg sin α

B

)n

H n+1

= ub + n + 1

n + 2
(us − ub)

= 4

5
us + 1

5
ub (5.19)
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where the numerical values are calculated assuming n = 3. This relation
will be of use in Chapter 14.

Vertical velocity
Let us now consider the variation in vertical velocity with depth. Because
we are dealing with a two-dimensional situation, the incompressibility
condition (Equation (2.5)) becomes:

∂u

∂x
+ ∂w

∂z
= 0 (5.20)

We will ignore the compressibility of firn near the surface, and also,
initially, assume that the longitudinal strain rate, ∂u/∂x, is independent
of depth. Thus ∂u/∂x = −c, where c is a constant. Equation (5.20) then
reduces to ∂w/∂z = c. Finally, continuing to use the coordinate system of
Figure 5.4, we assume that w = 0 on the bed where z = H, thus ignoring
any contribution from the normally small rates of melting or refreezing.
Then:

w∫
0

dw = c

z∫
H

dz

or

w = c(z − H )

At the surface, z = 0, we have w = ws so c = −ws/H. Therefore,

w = H − z

H
ws (5.21)

In other words, the vertical velocity decreases linearly with depth.
The key assumption in this derivation is that ∂u/∂x is independent

of depth. Because u is nearly independent of depth in the upper part
of a glacier (Figure 5.5), the upper parts of two deformation profiles
in locations some distance apart in the longitudinal direction will be
nearly parallel. Thus, the assumption that ∂u/∂x is independent of depth
seems like a reasonable first approximation. This argument is stronger
in polar glaciers because the ice near the surface is colder, and hence
more viscous (higher B). The shear strain rate, ε̇zx, is thus lower, so u is
nearly constant over a greater fraction of the ice thickness. In view of
these rationalizations and the simplicity of Equation (5.21), this approx-
imation is widely used in calculations, as we shall see in Chapter 6 and
elsewhere.

However, it is clear that if the ice is frozen to the bed, ∂u/∂x = 0
at the bed. Thus, if it is non-zero higher in the glacier, it must decrease
(in absolute value) with depth. We can incorporate this effect in the
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following way. Setting ub = 0 in Equation (5.7) and using the resulting
expression for us in Equation (5.6) leads to:

u(z) = us

[
1 −

( z

H

)n+1
]

whence, ignoring small terms involving ∂H/∂x:

∂u

∂x
= ∂us

∂x

[
1 −

( z

H

)n+1
]

Substituting this into Equation (5.20) and integrating upward from the
bed where w = 0, z = H :

w∫
0

dw = −∂us

∂x

z∫
H

[
1 −

( z

H

)n+1
]

dz

leads to:

w = −∂us

∂x

[
z − zn+2

(n + 2)H n+1
− H + H n+2

(n + 2)H n+1

]
(5.22)

At the surface, z = 0, this yields:

ws = ∂us

∂x
H

[
1 − 1

n + 2

]
(5.23)

Combining Equations (5.22) and (5.23) gives:

w = ws

{
1 − z

H

[
n + 2

n + 1
− 1

n + 1

( z

H

)n+1
]}

(5.24)

a result first obtained by Raymond (1983). Equations (5.21) and (5.24)
are plotted in Figure 5.9. The difference between them does not appear
large, but we will find that it has important consequences.

Let us follow this line of inquiry somewhat further, giving special
attention to conditions at an idealized divide on an ice sheet. We will
assume there is no flow parallel to the divide, so v = 0 and ε̇yy, ε̇xy, ε̇yx,
ε̇zy, and ε̇yz are all 0. Ice on either side of the divide flows symmetrically
away from it. Therefore, u is 0 at (and everywhere beneath) a divide, and
so, therefore, is ∂u/∂z. Finally, if the accumulation rate is symmetrical
across the divide, ∂w/∂x = 0. Thus ε̇xz and ε̇zx are 0 (see Equation (2.6a)),
and ε̇e = (1/

√
2)(ε̇xx + ε̇zz)1/2. Now if |∂u/∂x| decreases with depth as

just suggested, |∂w/∂z| must also decrease (Equation (5.20)). Thus, ε̇e

decreases. But from Equation (2.19), a decrease in ε̇e stiffens the ice,
effectively increasing the viscosity. This reduces |∂u/∂x| and |∂w/∂z|
still further, in a positive feedback.

If |∂w/∂z| is higher at the surface than it is at depth, a plot of w against
depth must be convex upward like the curve obtained from Equation
(5.24) in Figure 5.9. We cannot derive the actual shape of the curve ana-
lytically because of the positive feedback effects and because the stresses
are not known well enough. Raymond (1983), however, has studied the
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Figure 5.9. Variation in
vertical velocity, w, with
depth. The parabolic relation
is a good approximation
beneath a divide. Equation
(5.24) is appropriate at
distances greater than one ice
thickness from a divide. The
linear approximation is often
used for simplicity.

flow field by using a numerical computer model. Under isothermal con-
ditions, he finds that directly beneath the divide the vertical variation of
w is closely approximated by a parabolic curve:

w =
(

H − z

H

)2

ws (5.25)

(Figure 5.9). Outward from the divide, the convexity decreases, so that
at a distance of one ice thickness from the divide, the variation of w
with depth given by the numerical model is very similar to that given by
Equation (5.24) (Raymond, 1983, Figure 3).

In reality, the stiffening resulting from the decrease in ε̇e is likely to
be partially offset by warming of the ice, with a consequent decrease
in B (Equation (2.19)). Raymond studied this effect, and found that the
convexity of the profile, although diminished, was still present even when
the temperature difference between the surface and the bed was nearly
40◦ C.
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Figure 5.10. Diagrams illustrating (a) submergence, and (b) emergence
velocities.

Submergence and emergence velocities
Earlier (Equation (5.1)), we gained insight into the magnitude of the
horizontal velocity by considering a glacier in a steady state, such that
its surface profile remained unchanged. Let us now use this idealization
to study vertical velocities. In such a steady state, the surface in the
accumulation area must everywhere be sinking at a rate that balances
accumulation, and conversely in the ablation area. Thus, the vertical
velocity at the surface, ws, is clearly related to the net balance rate, bn.
Remembering that a point on the surface is also moving with a horizontal
velocity, us, and that the surface has a slope,α, we find that the appropriate
relation is (Figure 5.10):

bn = −ws + us tan α (5.26)

Here, we have taken the x-axis as horizontal and positive in the
downglacier direction, and the z-axis as positive upward. Thus, in the
accumulation area, both ws and α are negative and, owing to the rela-
tive magnitude of the two terms on the right-hand side of the equation
(see Figure 5.10a), the minus sign in the equation makes the right-hand
side positive. In the accumulation area, the right-hand side is called the
submergence velocity.

Equation (5.26) also applies in the ablation area (Figure 5.10b),
except that here ws is positive so both terms on the right-hand side
take on negative values. Thus bn is negative, reflecting ablation. Here,
the right-hand side is called the emergence velocity.

Clearly, the submergence and emergence velocities are defined for
any point on a glacier surface. However, they equal bn only in the ide-
alized steady-state situation that we have specified. This is because bn

varies from year to year, and because, even averaged over several years,
glaciers are rarely in a steady state. Put differently, if the accumulation
rate consistently exceeds the submergence velocity and the ablation rate
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consistently falls short of the emergence velocity, the glacier is becoming
thicker and will advance, and conversely.

Other possibilities can also be visualized. For example, if the equality
in Equation (5.26) holds everywhere except in the lower part of the
ablation area where the ablation rate exceeds the emergence velocity, the
glacier may be in the final stages of adjustment to a climatic warming.
The implication of such a situation would be that the accumulation area
has essentially adjusted to the warming, but the glacier is still retreating
slightly.

We have shown that on a glacier that is in a steady state and that
has a balanced mass budget, the velocity field at the surface is related to
bn. It is instructive to consider in greater detail the physical mechanisms
behind this relation. In this case, bn is the independent variable, and
the velocity field is the dependent variable. (In a larger system involv-
ing glacier–climate interactions, bn would be dependent upon the cli-
mate.) The physical mechanism by which bn and the velocity field are
related is viscous flow, in which the flow rate increases with the driving
stress, ρghα. If the velocities are, say, too low (in absolute value), the
submergence velocity will be less than the accumulation rate so the
glacier will become thicker in the accumulation area (Figure 5.10a).
Similarly, the emergence velocity will be less than the ablation rate, so
the glacier will become thinner in the ablation area (Figure 5.10b). The
slope of the glacier surface thus increases. The increase in slope, cou-
pled with the increase in thickness in the accumulation area, increases
the driving stress and hence us. Because u = 0 at the head of the glacier
and at the terminus, an increase in us in the middle makes ∂u/∂x more
extending in the accumulation area and more compressive in the ablation
area. Thus, by the arguments leading to Equation (5.26), |ws| increases.
The increases in both us and |ws| tend to restore the steady state.

Flow field
We now have the tools needed to make a first-order estimate of the flow
field in a glacier, given bn(x). In a steady-state situation, Equation (5.1)
gives the depth-averaged horizontal velocity, u(x), which is probably
sufficient for most applications. However, various levels of sophistication
could be added; Equations (5.16) (with z = H) and (5.19) could be solved
simultaneously for us and ub, and Equation (5.16) could then be used
to estimate the variation in u with depth. This would give u(x,z). Then,
Equations (5.24) and (5.26) provide a reasonable first estimate of w(x,z).
Thus, one could plot vectors u and w at a large number of points in a
glacier cross section and sketch flowlines based on these vectors. The
result would be flowlines much like those in Figure 3.1.
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It may be worthwhile studying Figure 3.1 in connection with the
above equations to develop an intuitive sense of why the flowlines appear
as they do. From Equation (5.26) and Figure 5.10, it is clear that the ver-
tical velocity must be downward in the accumulation area and upward in
the ablation area. Owing to the slope of the glacier surface, the location
where ws = 0 is not at, but rather slightly downglacier from, the equi-
librium line (Equation (5.26)). From Equation (5.1) it is obvious that u
increases outward from the divide, reaching a maximum again not at,
but rather slightly downglacier from, the equilibrium line. Because the
variation in ws is small compared with that in us, the resultant velocity
vectors plunge most steeply near the divide and ascend most steeply near
the margin, as us is low in these locations. In fact, at the divide on a polar
ice sheet, us = 0 so the vector points directly downward. Near the bed,
ws is low so the vectors approach parallelism with the bed.

In summary, flowlines tend to be downward in the accumulation area
and upward in the ablation area. At the bed they are parallel to the bed
and at the equilibrium line (of our idealized steady-state glacier) they are
parallel to the surface. The flowline starting at the divide on an ice sheet
will go straight downward until it reaches the bed, and then will follow
the bed, remaining strictly parallel to the bed in the absence of melting
or refreezing, until it emerges at the margin.

In the steady state, the volume of ice moving between two adjacent
flowlines remains constant along the full length of these two flowlines.
This is true by definition; material cannot cross a flowline, so all material
that starts between two flowlines must remain between them. A conse-
quence of this is that the velocity will be highest where the flowlines are
closest together, as the ice is assumed to be incompressible. Thus the
highest velocities will be near the equilibrium line, as is evident from
Equation (5.1).

Steady-state conditions are, of course, a theoretical abstraction,
rarely if ever actually realized in nature. The annually averaged velocity
field of a retreating or advancing glacier should not, however, differ too
significantly from that described above. On the other hand, seasonal and
spatial variations in the velocity field, particularly on valley glaciers, can
be appreciable. A number of studies have shown that when water from
the surface is able to reach the glacier bed, glaciers speed up in the sum-
mer (see Figure 12.10). This is because water pressures increase, thus
increasing the sliding speed. There are even diurnal variations in surface
speed (see Figures 7.8 and 7.23). Because sliding speeds are highest
beneath the centerline of the glacier (Figure 5.8), seasonal accelerations
are highest here. These accelerations result in measurable changes in the
magnitude and direction of velocity vectors, both at the surface and at
depth (Hooke et al., 1992). In contrast, Harper et al. (2001), in a study
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Figure 5.11. Schematic cross
sections of a valley glacier in
(a) the ablation area, and (b)
the accumulation area; and
(c) a plan view of the glacier
showing the transverse
variation in us in the ablation
area.

utilizing 31 boreholes in the central part of Worthington Glacier, Alaska,
did not find seasonal variations. They did, however, find significant spa-
tial variations at a length scale of tens of meters. In a transverse cross
section of the glacier, there were variations in horizontal speed of as
much as 5% that did not seem to be related to side drag, but may have
been caused by longitudinal stresses originating in an ice fall higher on
the glacier.

Transverse profiles of surface elevation on a
valley glacier
In the ablation area of a valley glacier, transverse profiles of surface
elevation are commonly convex upward (Figure 5.11a), whereas in the
accumulation area they are concave upward (Figure 5.11b). This can be
understood by considering the emergence and submergence velocities.
In a steady-state situation, ws cannot be zero along the margins of a
glacier in either the accumulation area or the ablation area because there
is accumulation or ablation, respectively, in these locations. However,
the ice thickness goes to zero at the margin. Thus to provide a downward
ws near the margin in the accumulation area, ice must be drawn away
from the valley sides, and conversely in the ablation area. The transverse
surface slopes, towards the center of the glacier in the accumulation area
and away from the center in the ablation area, provide the forcing for this
flow.

Consideration of transverse variations in the emergence and submer-
gence velocities provides insight into lateral variations in ws and into the
mechanism of adjustment of transverse profiles. Let us start with the
ablation area. Horizontal velocities are normally highest near the center
of a glacier and decrease towards the margins owing to drag on the valley
sides (Figure 5.11c), in much the same way that velocities decrease with
depth owing to drag on the bed. The ablation rate, however, is normally
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Figure 5.12. Transverse
velocity field measured in a
cross section of Athabasca
Glacier by Raymond (1971,
Figure 12). (Reproduced with
permission of the author and
the International Glaciological
Society.)

approximately constant across the glacier. It may, in fact, be somewhat
higher near the margins as a result of heat radiated or advected from dark
rocks of the valley walls. The longitudinal surface slope, α, will also be
approximately constant across the glacier. Thus, from Equation (5.26)
or Figure 5.10b, it is clear that ws must be higher near the margins than
along the centerline, as illustrated in Figure 5.12.

The process by which the transverse profile in the ablation area is
adjusted is easy to understand. Consider what would happen if the profile
were flat and ws were constant along this profile. Suppose the ablation
rate equals the emergence velocity at the centerline. Along the margins
where us is lower, bn would exceed the emergence velocity, so the glacier
surface would decrease in elevation, leading to the convexity that is com-
monly observed. The resulting transverse surface slope would force a
transverse component to the flow. Because the valley walls inhibit such
flow, a transverse compression develops, thus increasing the rate of ver-
tical extension near the sides of the glacier (assuming no compensating
change in the longitudinal strain rate). The magnitude of the transverse
slope would continue to increase, thus increasing ws, until the emergence
velocity equaled the ablation rate. Of potential interest in trying to under-
stand landforms produced by glacial erosion is the fact that the trans-
verse component of the flow is apparently greatest near the bed, accord-
ing to measurements made by Raymond (1971) on Athabasca Glacier
(Figure 5.12).

In the accumulation area, the situation is reversed. As in the ablation
area, us is lower near the margin, so if the longitudinal component of α is
approximately constant across the glacier, us tan α will be less negative
near the margin than on the centerline. In addition, bn is likely to be higher
along the margin owing to drifting and avalanching. The flow field thus
has to develop in such a way that ws is more negative (downward) near
the margins than near the centerline (Equation (5.26) or Figure 5.10a).
However, the ice is thinner near the margin so the longitudinal stretching
rate is likely to be lower, thus contributing less to a negative ws. Some-
how, ws must become more negative. The concave cross-valley profiles
(Figure 5.11b) that are typical of accumulation areas accomplish this.
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To visualize the physical processes involved in this adjustment, con-
sider again a hypothetical case in which the transverse profile is initially
flat, rather than concave upward. In this case, there would be no trans-
verse component to the surface slope, and hence little or no transverse
component to the flow. Flowlines would be parallel to the glacier mar-
gin, and longitudinal strain rates along flowlines near the margin would
be too low to provide the negative ws needed to balance the accumu-
lation. In other words, the left-hand side of Equation (5.26) would be
larger than the right-hand side, and the glacier would become thicker
in this area. This thickening along the margins would continue as long
as the imbalance persisted, thus establishing the characteristic concave-
upward transverse profile. The transverse surface slope would result in
a transverse component of flow toward the center of the glacier, and
because glaciers normally increase in thickness rapidly away from the
margins, stretching rates are high along flowlines that diverge from the
margin. The resulting transverse stretching provides the more negative
ws required near the margins.

If transverse profiles are generally convex upward in the ablation
area and concave upward in the accumulation area, it is interesting to
consider exactly where the transition between the two types of profile
should occur. Let us return to our idealized steady-state glacier with a
balanced mass budget. At the equilibrium line on this glacier, bn = 0,
so from Equation (5.26) ws = us tan α. As α < 0 and us > 0, ws must still
be somewhat negative (downward), as mentioned previously. The place
where ws = 0 is somewhat downglacier from the equilibrium line, where
bn = us tan α. It is approximately at this point that one might expect the
transition to occur. Leonard and Fountain (2003), in a study of 40 glaciers,
found that this indeed was the case. For reasons that are not obvious,
the difference in elevation between the transition and the equilibrium
line increased systematically with elevation of the equilibrium line. The
location of the transition relative to the equilibrium line depends on bn,
us, and α, so it will vary from glacier to glacier.

Radar stratigraphy
Prior to World War II, pilots flying over Greenland and Antarctica found
that their radar altimeters were giving unreliable data. Upon investiga-
tion, it was discovered that the radar waves were passing through the ice
sheet and reflecting from the bed (Waite and Schmidt, 1961). Thus was
born the tool of radio echo-sounding of glaciers (Gogineni et al., 1998).
Initially, the primary objective was to determine the thickness of the ice,
as previously gravity measurements, seismic profiling, and drilling were
the only techniques available to glaciologists for this purpose. However,
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Figure 5.13. A 20 km radar profile across the divide of Siple Dome, Antarctica,
showing internal layering. The black band at the top is caused by interference
from radio waves passing directly through the air. (From Nereson et al., 1998,
Figure 2. Reproduced with permission of the International Glaciological Society.)

it was soon discovered that internal layering of glaciers and ice sheets
was also being imaged. By adjusting the frequency of the radio waves
and imposing sophisticated filtering on the return signals, remarkably
sharp images of this layering are now being obtained routinely (Figure
5.13). Reflections are caused by subtle contrasts in the dielectric con-
stant. Those from shallower layers probably result from differences in
density; those from deeper layers are attributed to acidic fallout from
volcanic eruptions or to changes in impurity concentration associated
with climatic transitions (Morse et al., 1998). Accordingly, such lay-
ers are commonly assumed to be stratigraphic horizons, representing
isochrones, and they thus can be used to study the flow field and changes
in it over time.

A radar profile (Figure 5.13) across the divide of Siple Dome, an
elongate high area in West Antarctica (see Figure 5.20), provides one
example of a feature that merited study. A bump is clearly visible
in the internal layering. The amplitude of this bump increases with
depth, reaching a maximum of ∼50 m. The bump suggests a change
in the vertical velocity outward from the divide. There are two possible
explanations for such a change (Nereson et al., 1998). As we discov-
ered above, ε̇e decreases with depth beneath a divide, so the deeper ice
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is stiffer than that at the surface. Consequently, the vertical velocity
generally decreases more rapidly beneath the divide than it does on the
flanks (Figure 5.9), so as layers form at the surface and are buried by
subsequent accumulation, they are draped over the stiffer plug. Because
this explanation is based on Raymond’s (1983) analysis of the vertical
velocity field (Equations (5.24) and (5.25)), the resulting distortion of
the internal layering has become known as the Raymond bump. Alter-
natively, drifting or wind scouring may reduce the accumulation over
the divide, in which case the flow field would have to adjust so that ws

was lower there. Thus, again, isochronous surfaces would be buried less
rapidly beneath the divide than on the flanks.

Nereson et al. (1998) analyzed the layer shapes with the use of a
numerical flow model. The modeling was complicated by the fact that
accumulation gradients are likely to exist across the divide even if drifting
has not resulted in a local low in bn. Unfortunately, the true accumulation
pattern is not known so these gradients had to be free parameters in the
modeling. In addition, the bump is offset to the north with increasing
height above the bed (Figure 5.13), suggesting migration of the divide.
The divide migration rate thus becomes another free parameter. With
this many free parameters it was possible to model the bump rather well,
but the relative contributions of a decrease in ε̇e and drifting could not be
evaluated. It seems likely that both are involved. The estimated migration
rate, based on the modeling, is ∼0.3 ± 0.2 m a−1 over the past several
thousand years.

In another example, Morse et al. (1998) found that beneath the divide
on Taylor Dome, Antarctica, shallower layers thickened southward while
deeper layers thickened northward. Isotopic and chemical variations in
a core were used to establish an age/depth time scale; it turned out that
the northward-thickening layers were deposited during the Late Glacial
Maximum (LGM). By using a numerical model of ice flow, they also
found that the accumulation rate was much lower during the LGM. The
change in thickness gradient in the radar layering was then attributed to
a change in storm tracks during the LGM, with storms coming from the
north rather than from the south as at present. Such studies are important
in trying to unravel the climatic changes that resulted in the ice ages.

Effect of drifting snow on the velocity field
Glaciers flow over irregular beds, and thus have undulating surface pro-
files. Furthermore, their transverse flow patterns may be influenced by
nunataks or irregular valley walls. Patterns of both accumulation and
ablation thus can be uneven owing to drifting and to shading from the
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Figure 5.14. Effect of
drifting snow on the surface
profile of a glacier. Owing to
the additional accumulation
in the lee of the surface
convexity at A, ws does not
need to be as high at B as
otherwise would be the case.

sun during the melt season. We have just discussed one example of this
from Siple Dome. Let us now consider some other examples.

To understand how drifting influences the flow field and surface
profile, consider the hypothetical situation shown in Figure 5.14 in which
a glacier flows over a convexity in the bed, resulting in a similar convexity
in the surface. Owing to drifting in the lee of the surface convexity, the
normal June snow depth at B is, say, 2 m, while that at A it is only 1 m.
During a normal melt year, suppose that at A all of the snow and 0.5 m of
the underlying ice melts, whereas at B, melting removes only the snow
cover. Thus, the emergence velocity at A must be 0.5 m a−1, whereas
at B it is 0. In the absence of the extra accumulation at B, the glacier
would probably be thinner here as shown schematically by the dotted
line in Figure 5.14. The greater surface slope between A and C would
then provide the increased longitudinal compression needed to develop
a positive emergence velocity at B.

The situation shown in Figure 5.14 occurs on a large scale on the
surface of the Antarctic ice sheet above the western edge of Lake Vostok,
a subglacial lake under 4 km of ice in central East Antarctica (see Figure
6.13). The increase and then decrease in surface slope reflects flow of
ice over a steep slope down into the lake and then an abrupt decrease in
basal drag as the ice moves out over the lake. As this is an accumulation
area, the thicker accumulation (as at B) is advected downglacier and
buried. Because flow rates are relatively low, ice moving over the lake
experiences this excess accumulation for about 30 000 years. The excess
shows up in radio echo profiles as an increase in the vertical distance
between reflectors, and in an ice core from a borehole on the east side of
the lake as a zone of high accumulation rate between ∼800 and ∼1100 m
depth (Leonard et al., 2003).

Thule–Baffin moraines (Figure 5.15), first studied in detail by
Goldthwait (1951), provide another geomorphologically significant
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Figure 5.15. Thule–Baffin moraines (on skyline) in one of the type areas, Thule
(Qânâq), Greenland. Note folding in foliation (sedimentary stratification) in
superimposed ice in center of photograph. (From Hooke, 1970, Figure 8.
Reproduced with permission of the International Glaciological Society.)

example of the importance of drifting snow. The casual observer will
commonly be surprised to learn that although the crest of the moraine
in Figure 5.15 is several tens of meters above the margin, the till is usu-
ally no more than a meter or so thick. Beneath the till is dirty ice with
quite variable debris concentrations. The dirt in the ice is typically seg-
regated into laminae or folia, millimeters in thickness, that dip steeply
upglacier (Figure 5.16b). The sediment content of the dirt-bearing folia
is normally only a few percent. Layers of clast-supported frozen till,
sometimes exceeding 1 m in thickness, are also present. The wedge of
ice downglacier from the moraine is clean. It is too thin to flow at an
appreciable rate, and is frozen to its bed, preventing sliding. The low
flow rate, in conjunction with the observed dip of the foliation, led to the
mistaken impression that the foliation planes were shear planes, and that
the dirty ice was actively shearing over the wedge of clean ice in such a
way that debris, entrained at the bed, was carried to the surface on these
planes.
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Figure 5.16. Data from a Thule–Baffin moraine on Barnes Ice Cap, Baffin
Island. (a) Map showing moraine and line of stakes used for velocity and mass
balance measurements. Velocities are shown by arrows. (b) Surface profile along
stake line, showing dip of foliation at surface and inferred dip beneath surface.
(c) Strain rates. (d) June snow depth. (e) Net balance and emergence velocity
along stake line. (Modified from Hooke, 1973a, Figure 3D. Reproduced with
permission of the Geological Society of America.)

The geometry of this type of glacier margin can be understood in
terms of the concepts we have been discussing. At “a” in Figure 5.16b, the
mean June snow cover was about 1 m thick in the 1970s (Figure 5.16d).
During an average 1970s summer, this snow and ∼0.55 m of the under-
lying ice melted. Longitudinal compression here (Figure 5.16c) resulted
in a positive (upward) ws, and the emergence velocity was ∼0.50 m a−1

(Figure 5.16e). This was slightly less than the net balance, but high
enough that a slight cooling could have brought about a steady state with
Equation (5.26) satisfied.

At “b” in Figure 5.16b, the snow cover was 0, but so was the ablation
rate as the till layer insulated the ice. On ridges like these, it is difficult
to know what is meant by “emergence velocity”, as a ridge has both
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up- and downglacier slopes. However, because there was still some lon-
gitudinal compression, the ridges were gradually increasing in height.
This is a non-steady-state process: as the height of such a ridge increases,
it becomes steeper until, eventually, till slumps off of it, exposing the
underlying ice. This ice then melts rapidly owing to the lack of snow
cover and to the thin covering of dirt that remains on it, decreasing its
albedo. However, a new ridge begins to develop under the slumped till.

At “c” the June snow cover was nearly 2.5 m thick. During an average
1970s summer, this snow melted, but essentially no ice was lost: bn ≈ 0.
Thus, this sloping margin could exist despite the fact that the emergence
velocity in it was negligible.

Thus, during a period of balanced mass budget along a glacier margin
like this, till-covered ridges would go through cycles of growth and decay
while the ice surface upglacier and the wedge of deformed superimposed
ice downglacier remained unchanged. The primary change would be an
increase in dirt cover as more debris melted out of dirty ice exposed by
slumping from the ridges.

During a series of cool summers the sloping margin downglacier
from the moraines becomes a local accumulation area at the edge of the
glacier. If cool climatic conditions persist long enough, the glacier will
advance, overriding and deforming this accumulation of superimposed
ice, as shown in Figure 5.17. Recognition of this process provided an
alternative to the shearing mechanism proposed by Goldthwait.

Three lines of evidence support the origin of Thule–Baffin moraines
shown in Figure 5.17. Firstly, the less-deformed superimposed ice is fine
grained (1–2 mm) and lacks any development of a deformation fabric
such as would be present in highly deformed basal ice. Secondly, oxygen
isotope ratios show that the deformed superimposed ice accumulated
under conditions broadly similar to those prevailing today, yet it, in
part (Figure 5.17), underlies ice with isotopic ratios characteristic of
Pleistocene ice. Thirdly, folding of the downglacier dipping layers of
superimposed ice occasionally can be observed in ice cliffs with the
proper orientation (Figures 5.15 and 5.18). Further discussion of this
process and the evidence for it is presented by Hooke (1970, 1973a,
1976) and Hooke and Clausen (1982).

Moraines are formed by the process illustrated in Figure 5.17 only
under relatively cold climatic conditions. For example, in the Kanger-
lussuaq area of Greenland, a few hundred kilometers south of Thule
(now Qânâq), summer temperatures are warm enough to melt all of the
snow at the margin, even though drifting can result in a rather thick
June snow cover there. Thus, there is no marginal zone of superim-
posed ice. However, the process illustrated in Figure 5.17 was probably
important in northern Wisconsin, Minnesota, North Dakota, Alberta, and
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Figure 5.17. Sequential cross sections showing schematically the processes by
which superimposed ice is overridden during an advance of a glacier that is
frozen to its bed at the margin. Light lines in superimposed ice show deformation
of sedimentary layering. Last cross section shows how moraine becomes
separated from glacier during subsequent retreat. (Modified from Hooke,
1973a, Figure 1. Reproduced with permission of the Geological Society of
America.)

Saskatchewan where, over time spans of millennia as the ice advanced
in the late Wisconsinan, geomorphic features indicate that huge quanti-
ties of till accumulated on the glacier surface (Attig et al., 1989; Moran
et al., 1980) despite the lack of nunataks projecting above the surface.
Ice wedge casts and other evidence indicate that the ice advanced over
permafrost in these areas.

Disintegration ridges (Gravenor and Kupsch, 1959) are one of the
primary geomorphic features suggestive of such a thick till cover.
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Figure 5.18. Ice cliff near Thule, Greenland. Sedimentary bedding on the left
is wrinkled and overturned by ice advancing from the right. The boundary
between the active and the less rapidly deforming superimposed ice is marked
by a dirt band (arrows) which can be traced into a Thule–Baffin moraine. (Person
in white circle for scale.)

Disintegration ridges are believed to form through a series of topo-
graphic reversals such as those just described as occurring on Thule–
Baffin moraines (Clayton and Freers, 1967). As the ice sheet stagnated
and began to melt down, it is suggested that ridges grew under areas
of thicker debris and then melted when the debris slumped, only to be
replaced by new ridges that developed under the slumped debris (Figure
5.19a). The only difference between this process and that which forms
Thule–Baffin moraines is that in stagnating ice there is no significant
longitudinal (or transverse) compression to generate upward flow, so the
surface is continually lowered. Thus, the final slumping event deposits
the debris directly on the bed. Relatively linear ridges are commonly
formed by this process, although hills and circular ridges, informally
called doughnuts (Gravenor, 1955), are also found. These features can
be several meters high. Linear ridges can be hundreds of meters or kilo-
meters in length, and may have most any orientation with respect to the
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Figure 5.19. Schematic sketches showing origin of (a) a disintegration ridge,
and (b) an ice-walled lake plain. (Based on Clayton and Freers, 1967.)

ice margin, depending on whether they formed from morainal accumula-
tions like those illustrated in Figures 5.16 and 5.17 or alternatively from
accumulations of debris in crevasses or superglacial stream channels.

Ice-walled lake plains are another geomorphic feature formed dur-
ing disintegration of debris-covered ice masses and commonly found in
the upper midwest of the United States and adjacent areas of Canada
(Clayton and Cherry, 1967). The lakes would have first formed when
differential melting resulted in depressions in the ice surface. Because
water is densest at +4 ◦C, surface water that warms to this temperature
sinks. The resulting convection would have circulated +4 ◦C water to
the bottoms of the lakes, where it could melt ice if the ice was not too
cold and the sediment layer in the bottom of the lake not too thick. The
lakes thus would have deepened. Field evidence shows that some eventu-
ally penetrated all the way to the bed. Superglacial streams then brought
sediment to the lakes, forming typical lacustrine deposits with sand and
gravel deltas near stream mouths and lacustrine silts and clays further
from shore. When the surrounding ice melted, these deposits were left
as flat-topped hills on the landscape (Figure 5.19b).

Ice streams
In the mid 1980s, glaciologists became aware that the flow field in large
ice sheets was not as homogeneous as previously believed. In particular,
several linear zones of accelerated flow were found in an area of West
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Antarctica, known as the Siple Coast, which drains to the Ross Ice Shelf
(Figure 5.20). These features, called ice streams, are tens of kilometers
wide and hundreds of kilometers long. Recently, it has been discovered
that they also have long tributaries, albeit with lower flow rates (Figure
5.20) (Joughin et al., 1999; Hulbe et al., 2000). In some cases, tributaries
to different ice streams drain a common source area.

The surfaces of the faster-moving parts of ice streams are marked
by longitudinal ridges that show up spectacularly on satellite imagery
(Figure 5.21). Ice stream margins are delineated by en echelon crevasses
in linear zones that can be up to 5 km wide. While some ice streams
occupy distinct bedrock valleys, the channels beneath those on the Siple
Coast are shallow and poorly defined, and their sides do not always
coincide with the edges of the ice streams (Shabtaie and Bentley, 1988;
Retzlaff et al., 1993). However, geophysical measurements suggest that,
in at least one case, streaming flow begins in a linear trough underlain by
a thick sequence of sedimentary rock (Bell et al., 1998; Anandakrishnan
et al., 1998).
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The best studied ice stream, Whillans Ice Stream1, has a maximum
speed of about 825 m a−1 while ice on either side of it typically moves
only 10–20 m a−1 (Whillans and Van der Veen, 1993). The high velocity
gradients across the lateral boundaries are responsible for the intensely
crevassed shear zones that border the ice streams. In fact, it was recog-
nition of these shear zones that, in part, led to the discovery of the ice
streams.

Despite thicknesses approaching 1000 m, surface slopes of ice
streams on the Siple Coast are so low that driving stresses, ρghα, are
only 10–20 kPa. These driving stresses do not differ appreciably from
those in intervening areas. Thus, differences in driving stress cannot
account for the great difference in speed. Rather, conditions at the bed
are inferred to be responsible. Experiments utilizing boreholes through
Whillans Ice Stream show that it is underlain by till with a high clay
content, and that water pressures at the ice–till interface are very close

1 Mercer, Whillans, Kamb, Bindschadler, and MacAyeal Ice Streams were formerly known

as Ice Streams A, B, C, D, and E, respectively.
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to the overburden pressure (Engelhardt et al., 1990). The high water
pressures either decouple the ice from the bed, allowing it to slide rapidly,
or weaken the till allowing it to deform, or both. It turns out that drag
provided by the bed is actually less than half of the driving stress in most
cases; the rest of the resistance comes from drag in the lateral shear zones
(Raymond et al., 2001). The role of fine-grained till in the rapid flow of
ice streams is reinforced by the finding that sedimentary rocks, which
are likely to produce such till, underlie the onset zones.

Kamb Ice Stream (Figure 5.20) is also bounded by shear zones, but
in this case the crevasses, recognized only on radar images, are buried
beneath several meters of snow. The shear zones indicate that Kamb Ice
Stream must once have been active, but velocity measurements show that
the lower part of it is now nearly stagnant. Based on the thickness of the
snow cover over the crevasses and the accumulation rate, it is estimated
that the lower 250 km has been inactive for about 130 years (Retzlaff and
Bentley, 1993). Further upstream, the crevasses are less deeply buried,
and the ice stream seems to have been inactive for only ∼30 years, and
tributaries to it are still flowing at 50 m a−1. This suggests that a wave
of stagnation propagated upstream from the Ross Ice Shelf.

Comparable non-steady-state changes also occurred earlier on Kamb
Ice Stream and recently on Whillans Ice Stream. On the former, high-
resolution imaging from satellites and internal layer stratigraphy from
radio echo profiles suggest that a branch of the ice stream, or perhaps the
entire ice stream, once flowed north of Siple Dome (Jacobel et al., 1996).
Then, about 1300 years ago, this branch slowed and the branch south of
Siple Dome expanded northward. Similarly, satellite images of the area
where Whillans Ice Stream merges with the Ross Ice Shelf indicate that
its speed decreased ∼50% between 1963 and 1992 (Bindschadler and
Vornberger, 1998). The reasons for these temporal changes constitute
one of the great mysteries of ice stream behavior; currently it is thought
that they are a consequence of changes in water pressure at the bed as
the basal drainage system changed (Retzlaff and Bentley, 1993).

Ice stream shear margins can also migrate, resulting in changes
in width, W. In their study of Whillans Ice Stream, for example,
Bindschadler and Vornberger (1998) found that the northern shear mar-
gin had migrated outward at a rate of∼140 m a−1 between 1963 and 1992.
If only one margin is moving, the rate of migration can be described,
kinematically, by:

∂W

∂t
= ve − v (5.27)

where v is the speed with which ice outside the ice stream is moving
toward the shear margin and ve is the rate at which this ice is entrained
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into the ice stream (Raymond et al., 2001). Along the south margin of
Whillans Ice Stream, GPS measurements yield v ≈ 1 m a−1. Estimates
of ve range from 5 to 28 m a−1, suggesting an outward migration rate
of order 101 m a−1. If the strength of the substrate remains constant, an
increase in width increases the force that must be resisted by the shear
margins, and thus is likely to increase the speed of the ice stream.

As noted above, networks of tributaries with elevated speeds have
been detected recently, extending upstream from the onset regions of
some ice streams (Figure 5.20) (Joughin et al., 1999). These tributaries,
discovered with satellite interferometry, are typically 10–20 km wide
and, unlike the main ice streams, they do occupy distinct valleys in the
subglacial topography. Driving stresses in the tributaries are higher, and
speeds lower (<∼100 m a−1), than in the main ice streams, so they
are not considered to be part of the actual streams (Hulbe et al., 2000).
Furthermore, they do not have crevassed shear margins.

Understanding ice streams has taken on new urgency because rising
sea levels, induced by global warming, could destabilize the Ross Ice
Shelf causing it to break up. Should this occur, ice streams that are
currently buttressed by the ice shelf might accelerate, causing a rapid
draw down of the West Antarctic Ice Sheet and a further rise in sea level,
perhaps amounting to several meters over the next century.

Streaming of ice is apparently not a new phenomenon. Parts of
Antarctica seem to have been drained by ice streams during the last
glacial maximum, ∼20 ka. Imagery of the ocean floor off the northern
end of the Antarctic Peninsula, using swath bathymetry, has revealed
a set of subparallel ridges and grooves, 100 km long and up to 20 km
wide, that extends most of the way across the continental shelf (Canals
et al., 2000). The structure is attributed to molding of viscous till by
fast-flowing ice, probably in an ice stream.

Similar megalineations (Figure 5.22) bear testimony to the likely
presence of ice streams in the Laurentide Ice Sheet that covered the
northern part of North America during the Wisconsin glaciation. The
number of such ice streams is not known, but based on topography
Hughes (1987) has suggested that there may have been as many as 10
major ones and more than a dozen minor ones. Among these are several
in the southern part of the ice sheet. In particular, geomorphic features
in central Canada suggest the possibility of streaming flow feeding the
Des Moines lobe of Minnesota and Iowa (Patterson, 1997). Such ice
streams would be unusual in that the bottoms of most known ice streams
are well below sea level. Also widely discussed is the possibility that the
Laurentide Ice Sheet was drawn down rapidly and repeatedly by a major
ice stream discharging through Hudson Strait. The layers of ice-rafted
detritus that have been identified in cores from the North Atlantic Ocean
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 Ice
flow

Figure 5.22. Landsat TM image of the boundary of M’Clintock Channel paleo
ice stream on Victoria Island, arctic Canada. The western (left) side of the
image shows topography formed beneath slow moving ice bounding the ice
stream. (See Clark and Stokes (2001) for further details. Image courtesy of
C. D. Clark.)

by Heinrich (1988, see also p. 36) are inferred to have been deposited
by icebergs that originated in such relatively catastrophic discharges.
Broecker (1994) summarizes the evidence for these events, and gives a
number of references.

Summary
In this chapter we first developed a broad picture of the flow field in a
glacier or ice sheet using a conservation of mass approach based on the
distribution of income from accumulation and loss from ablation over the
surface. We found that this leads to a flow field in which vertical velocities
are downward in the accumulation area and upward in the ablation area,
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and in which horizontal velocities increase with distance from the head
of the glacier, reaching a maximum just below the equilibrium line, and
then decrease again. In developing this model, we assumed a steady state.
Steady-state conditions are rarely if ever strictly achieved in nature, but
deviations from a steady state are usually sufficiently small that gross
patterns of flow are approximated well by this model.

We then used conservation of momentum principles to make more
precise calculations of the distribution of both horizontal and vertical
velocity with depth. The calculation depends upon being able to choose
a viscosity parameter, B, that is reasonably representative for the entire
thickness of the glacier (or being able to specify a variation with depth),
and also assumes that all deformation takes place as simple shear. Com-
plications resulting from the presence of valley sides and a non-uniform
basal boundary condition were discussed.

Next we explored the effects of drifting snow, and found that this
could lead to significant differences in the flow field near the termi-
nus in polar and temperate environments. In polar environments, such
snow accumulation can lead to the development of ice-cored moraines
some distance upglacier from the margin. In addition, variations in layer
thickness resulting from local differences in accumulation rate can be
traced at depth, using radio-echo sounding techniques. This has led to
the detection of changes in the flow field over millennial time scales.

Finally, we noted that inhomogeneous bed conditions can lead to
streaming flow within ice sheets. This is a topic of considerable current
interest.



Chapter 6

Temperature distribution in polar
ice sheets

In this chapter, we will derive the energy balance equation for a polar ice
sheet. Solutions to this equation yield the temperature distribution in an
ice sheet and the rate of melting or refreezing at its base. We will study
some analytical solutions of the equation for certain relatively simple
situations. A solution of the full equation is possible, however, only with
numerical models. This is because: (1) ice sheets have irregular top and
bottom surfaces; (2) the boundary conditions – that is, the temperature or
temperature gradient at every place along the boundaries – vary in space
and time; (3) longitudinal transport (or advection) of heat by ice flow
cannot be handled well with the analytical solutions; and (4) there may
be extension or compression transverse to the flowline, which makes
the problem three dimensional. Furthermore, because the temperature
distribution is governed, in part, by ice flow, and conversely, because
the flow rate is strongly temperature dependent, a full solution requires
coupling of the energy and flow (momentum) equations.

The thermal conditions in and at the base of an ice sheet are of
interest not only to the glacier modeler, concerned with flow rates and
the possibility of sliding, but also to the glacial geologist with interest in
the erosive potential of the ice and processes of subglacial deposition.

Energy balance in an ice sheet
Advection

Consider a control volume of length dx, width dy, and height dz, as shown
in Figure 6.1. This volume represents an element of space within an ice

112
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Figure 6.1. Parameters used
in derivation of the advection
term in the energy balance
equation.

sheet. Ice flows into the volume from the left with a velocity u, and out
on the right with the same velocity. The temperature of the ice flowing
into the volume is θ , and that of the ice flowing out is θ + (∂θ/∂x) dx.
The rate of energy transfer into the control volume, measured in joules
per year, is:

(u dy dz) ρ C θ

m3

a

kg

m3

J

kgK
K = J

a

where ρ is the density of ice and C is the heat capacity or specific heat.
Here, as in some of the equations in earlier chapters and in some to
follow, the dimensions of the terms are written beneath the equation to
clarify the physics. A similar expression can be written for the rate of
energy transfer out of the volume at temperature θ + (∂θ/∂x) dx. The
change in energy within the volume per unit time, ∂q/∂t, is the difference
between these two expressions, or:

∂q

∂t
= u dy dz ρC

[
θ −

(
θ + ∂θ

∂x
dx

)]

= −u dx dy dz ρC
∂θ

∂x

To obtain the change of temperature in the volume per unit time, it
is clear from the dimensions of the terms that it is necessary to divide
by ρC dx dy dz, thus:

∂θ

∂t
= 1

ρC dx dy dz

∂q

∂t
= −u

∂θ

∂x
(6.1)

1
kg

m3

J

kgK
m3

J

a
= K

a

Here, ∂θ/∂t is the rate of change of temperature in the volume as a result
of the fact that ice is being advected into the volume at a temperature that
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Figure 6.2. Parameters used
in derivation of the
conduction term in the
energy balance equation.

is different from that of ice leaving it. Similar equations may be written
for the y- and z-directions, and the results summed to obtain the total
change in temperature per unit time in the control volume.

Note that we have been careful to emphasize changes in a particular
element of space, the control volume, as distinct from those in an element
of ice moving through space. This is because we are using an Eulerian
coordinate system, with the coordinate axes fixed in space. Sometimes
it is more convenient to use a Lagrangian coordinate system in which an
element of ice is followed as it moves through space.

Conduction

The energy content of the control volume may also change as a result
of conduction of heat. Consider the situation depicted in Figure 6.2 in
which the temperature gradient across the left-hand face, dy dz, is ∂θ/∂x,
and that across the corresponding right-hand face is:

∂θ

∂x
+ ∂

∂x

(
∂θ

∂x

)
dx .

The heat flux is proportional to the temperature gradient. The constant
of proportionality is K, the thermal conductivity of ice. Thus, on the
left-hand face there is a heat flux:

q = K
∂θ

∂x
dy dz (6.2)

J

m a K

K

m
m m = J

a

Heat flows from warm areas to cold areas, which means that for positive
∂θ/∂x, the heat flux is to the left, or out of the left-hand side of the
control volume in Figure 6.2.
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As before, we write a similar expression for the heat flux into the
control volume, and subtract the flux out from the flux in, thus:

∂q

∂t
=

[
K

∂θ

∂x
+ ∂

∂x

(
K

∂θ

∂x

)
dx − K

∂θ

∂x

]
dy dz

= ∂

∂x

(
K

∂θ

∂x

)
dx dy dz

=
(

K
∂2θ

∂x2
+ ∂K

∂x

∂θ

∂x

)
dx dy dz

The change in temperature in the control volume is then:

∂θ

∂t
= K

ρC

∂2θ

∂x2
+ 1

ρC

∂K

∂x

∂θ

∂x
(6.3)

K/ρC is called the thermal diffusivity, κ , so Equation (6.3) becomes:

∂θ

∂t
= κ

∂2θ

∂x2
+ 1

ρC

∂K

∂x

∂θ

∂x
(6.4)

Thus, the change in temperature with time in the control volume due to
conduction is related to the changes, as one moves from one side of the
volume to the other, in the temperature gradient, ∂θ/∂x, and in K. Again,
similar equations may be written in the y- and z-directions.

Strain heating

Finally, a certain amount of heat is generated within the control volume
owing to straining of the ice. During deformation, the energy expenditure
is the work done divided by the time required to do the work, and work
is force times distance, thus:

work

time
= force × distance

time
(6.5)

In simple shear (Figure 6.3), the average distance moved in a unit time

Figure 6.3. Work done in
simple shear.

is one-half of the displacement of the top of the control volume with
respect to the bottom, or 1

2 (∂u/∂z) dz, and the force exerted is σ zx dx dy.
In Chapter 2 (Equation (2.6a)) we noted that strain rates may be defined
in terms of velocity derivatives, thus:

ε̇zx = 1

2

(
∂u

∂z
+ ∂w

∂x

)

As ∂w/∂x = 0 in simple shear, 1
2∂u/∂z = ε̇zx and Equation (6.5)

becomes:
work

time
= σzx dx dy ε̇zx dz

N

m2
m m

1

a
m = N − m

a
= J

a
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Dimensionally, this is seen to be a rate of energy expenditure, so again
we divide by ρC dx dy dz to obtain the rate of change of temperature per
unit volume:

∂θ

∂t
= σzx ε̇zx

ρC
(6.6)

Equation (6.6) was derived for a situation in which deformation
was restricted to simple shear in the x–z plane. In the general case,
other components of the stress tensor will be different from 0, so other
deformations will be occurring. With a little more background, it is
relatively easy to show that the general form of Equation (6.6) is:

∂θ

∂t
= σeε̇e

ρC
(6.7)

but we will not do this here. For convenience, Q is commonly used to
represent the heat production instead of σ eε̇e or σ zxε̇zx, thus:

∂θ

∂t
= Q

ρC
(6.8)

If deformation is restricted to simple shear, we can approximate σ zx

by ρgdα and ε̇zx by (σ zx/Bo)nekθ (see Equations (4.6)–(4.8)). Then:

Q

ρC
= (ρgdα)n+1 ekθ

ρC Bn
o

(6.9)

The generalized energy balance equation

The rate of change of temperature in the control volume is the sum of the
changes represented by Equations (6.1), (6.4), and (6.8), plus changes
resulting from heat advection and conduction in the y- and z-directions,
thus:

∂θ

∂t
= κ

[
∂2θ

∂x2
+ ∂2θ

∂y2
+ ∂2θ

∂z2

]
+ 1

ρC

[
∂K

∂x

∂θ

∂x
+ ∂K

∂y

∂θ

∂y
+ ∂K

∂z

∂θ

∂z

]

− u
∂θ

∂x
− v

∂θ

∂y
− w

∂θ

∂z
+ Q

ρC
(6.10)

As Equation (6.10) is rather cumbersome, it is often convenient to
simplify it by using the del operator, defined by:

∇ = ∂

∂x
î + ∂

∂y
ĵ + ∂

∂z
k̂ (6.11)

where î, ĵ, and k̂ are unit vectors in the x-, y-, and z-directions, respec-
tively. When applied to scalar quantities such as either κ or θ , the del
operator gives a gradient, which is a vector quantity. Accordingly, the
fourth to sixth terms and the seventh to ninth terms, respectively, in
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Equation (6.10) become scalar or dot products of two vectors, thus:

∂θ

∂t
= κ∇2θ + 1

ρC
∇K · ∇θ − ⇀

u · ∇θ + Q

ρC
(6.12a)

Here,
⇀

u is the vector velocity. The first term on the right in Equation
(6.12a) also represents a scalar product: ∇ · ∇θ .

It is sometimes convenient to define:

Dθ

Dt
= ∂θ

∂t
+ ⇀

u · ∇θ

in which case, Equation (6.12a) becomes:

Dθ

Dt
= κ∇2θ + 1

ρC
∇K · ∇θ + Q

ρC
(6.12b)

Equation (6.12a) is the Eulerian form of the equation, in which the coor-
dinates are fixed in space, whereas Equation (6.12b) is the Lagrangian
form in which the coordinate system is moving with the ice. Dθ/Dt is
known as the substantial or Lagrangian derivative.

Dependence of K on temperature
The thermal conductivity of ice is ∼66 MJ m−1a−1K−1 at 0 ◦C and
∼83 MJ m−1a−1K−1 at −60 ◦C. Thus, to the extent that the temperature
varies in any of the coordinate directions, K also varies. This effect is
normally neglected, except in relatively sophisticated numerical models,
and we will follow this custom. Equation (6.10) thus becomes:

∂θ

∂t
= κ

[
∂2θ

∂x2
+ ∂2θ

∂y2
+ ∂2θ

∂z2

]
− u

∂θ

∂x
− v

∂θ

∂y
− w

∂θ

∂z
+ Q

ρC
(6.13)

Neglecting the temperature dependence of K is reasonable because the
effect is relatively small which, in combination with small temperature
gradients, makes these terms negligible in comparison with the others
in Equation (6.10).

The steady-state temperature profile at the
center of an ice sheet
Our next task is to solve Equation (6.13) for some relatively simple sit-
uations. The first is that at an ice divide, at the center of an ice sheet,
a problem first investigated by Robin (1955). The following develop-
ment follows his closely. The coordinate system we will use is shown in
Figure 6.4: x is horizontal and directed down glacier, and z is vertical
and positive upward; z = 0 is at the bed.
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z

x

H

Figure 6.4. Coordinate
system used in calculating the
steady-state temperature
profile at the center of an ice
sheet.

Simplifying assumptions

At an ice divide, there is no flow in the horizontal directions, and the
temperature field is assumed to be symmetrical about the divide. Thus, u
and v are zero, as are any derivatives in the x and y directions. We further
assume that strain rates are small, so strain heating can be neglected.
Finally, we seek a steady state solution so ∂θ/∂t = 0. Equation (6.13)
now becomes:

0 = κ
d2θ

dz2
− w

dθ

dz
(6.14)

As θ is now a function of z alone, this is an ordinary differential equation.
In order to integrate this, w must be expressed as a function of z.

To do this we assume that ice is incompressible, that w = 0 on the bed,
and, initially, that the longitudinal strain rate is independent of depth.
These are the conditions used to derive Equation (5.21). In our present
coordinate system with the origin on the bed and the z-axis positive
upward, Equation (5.21) is:

w = z

H
ws (6.15)

We have not yet specified either the sign or the magnitude of ws. At
an ice divide, the vertical velocity is downward (Figure 3.1a), so the
sign of ws is negative in the coordinate system of Figure 6.4, and in the
steady state |ws| = bn, the accumulation rate. Thus replacing ws with−bn

in Equation (6.15), combining it with (6.14), and rearranging, we
obtain:

0 = d2θ

dz2
+ bnz

κ H

dθ

dz
(6.16)

To calculate the temperature distribution, this equation must be inte-
grated twice.

The first integration

For the first integration, let 2ζ 2 = bn/κH and β = d θ/dz. Equation (6.16)
then becomes:

0 = dβ

dz
+ 2ζ 2zβ (6.17)
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Separating variables, we obtain:∫
dβ

β
= −2ζ 2

∫
zdz

which may be integrated to yield:

ln β = −ζ 2z2 + c

or:

β = ece−ζ 2z2
(6.18)

The next task is to evaluate the constant of integration, ec.

The basal boundary condition

The constant of integration may be evaluated by using the boundary con-
dition β = βo on z = 0. In other words, we presume that the temperature
gradient at the bed, βo, is known or can be estimated. Making these sub-
stitutions in Equation (6.18) yields ec = βo. Thus, replacing ec with βo

and β with dθ/dz in Equation (6.18) yields:

dθ

dz
= βoe−ζ 2z2

(6.19)

This is a solution for the temperature gradient as a function of elevation
above the bed.

The requirement that the temperature gradient in the basal ice be
known is fundamentally unavoidable. However, this is not as serious a
problem as one might, at first, expect. In the steady state, βo is adjusted
so that all of the heat coming from within the Earth, the geothermal flux,
can be conducted upward into the ice. Thus, if the geothermal flux can be
estimated, βo can be calculated because the constant of proportionality
between the two, the thermal conductivity of ice, K, is known.

To clarify the physical processes by which βo is adjusted, consider a
non-steady-state situation in which βo is too low. Some of the geothermal
heat would then remain at the ice–rock interface where it would warm
the ice. Because the temperature decreases upward in the glacier, the
ice being colder than the Earth’s interior, such warming would increase
βo until all of the heat could be conducted upward into the ice, thus
tending to re-establish the steady state. (For the moment, we neglect
basal melting.)

Geothermal heat is produced by radioactive decay in the crustal
rocks as well as by residual cooling of the mantle and core. Numer-
ous measurements of the geothermal flux have been made, so we have
a fair idea of its magnitude in different geological terranes. Geophysi-
cists use the heat flow unit, or HFU, to describe this flux: 1 HFU is
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Table 6.1. Geothermal fluxes in some geological terranes in which
glaciers are or were found

Heat flux
Basal gradient

Locality HFU mW m−2 K m−1 Reference

Canadian Shield 0.8 33 0.0151

World average 1.2 50 0.0226

East Antarctica 1.21 50 0.0226 Budd et al., 1971

Baffin Bay 1.35 56 0.0255

West Antarctica 1.41 59 0.0264 Budd et al., 1971

1 Estimated.

1 �cal cm−2 s−1. In glaciology, however, it is more common to use
W m−2. The world-wide average geothermal flux is 1.2 HFU or
50 mW m−2. This corresponds to a temperature gradient in basal ice of
0.0226 K m−1. The gradient in the underlying rock will normally be
somewhat different as the thermal conductivity of the rock will not be
the same as that of the ice. In general, geothermal fluxes are highest
in volcanic terranes, high in geologically young terranes, and lowest in
geologically ancient terranes. A few examples of geothermal fluxes in
glaciated areas are given in Table 6.1.

In the discussion above, we asserted that knowledge of βo was “fun-
damentally unavoidable”. It is true, of course, that a boundary value
problem such as this could be solved with some other basal boundary
condition, such as the basal temperature. (This will be left as an exercise
for the reader.) However, as the basal temperature is one of the quantities
that we are particularly eager to determine, and as basal temperatures
are much harder to estimate from existing data than are basal tempera-
ture gradients, choosing βo as the basal boundary condition is the only
logical choice in most situations.

The second integration

To obtain the actual temperature distribution, it is necessary to integrate
Equation (6.19). Separating variables as before yields:

θs∫
θ (h)

dθ = βo

H∫
h

e−ζ 2z2
dz (6.20)

Here, the integration is from some level, z = h, in the glacier, where
the temperature is θ (h), to the surface at z = H where the temperature
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is θ s. (Note that in this case, rather than solve Equation (6.19) as an
indefinite integral and then evaluate a constant of integration by applying
a boundary condition, it is more convenient to express the integrals as
definite integrals. Thus the boundary condition, θ = θ s on z = H, is
incorporated into the limits of integration. Further discussion of this
boundary condition is deferred for the moment.)

The integral on the right-hand side of Equation (6.20) does not have
a solution in closed form. However, it occurs frequently, and thus has
been tabulated. In addition, many computer statistical packages have
solutions. The challenge is to express it in the terms used in these tables.

We first express the integral on the right-hand side as the difference
between integrals over the range 0 → H and 0 → h, thus:

θs − θ (h) = βo


 H∫

0

e−ζ 2z2
dz −

h∫
0

e−ζ 2z2
dz


 (6.21)

and then make the substitution: ζ z = t, whence dz = dt/ζ , and t = ζh
on z = h. We also multiply and divide by

√
π/2, thus:

θs − θ (h) =
√

π

2

βo

ζ


 2√

π

ζ H∫
0

e−t2
dt − 2√

π

ζh∫
0

e−t2
dt


 (6.22)

By definition:

erf (x) = 2√
π

x∫
0

e−t2
dt (6.23a)

where erf (x) is called the error function of x. Thus, our final solution for
the temperature, θ (h), at depth h is:

θ (h) = θs −
√

π

2

βo

ζ
[erf (ζ H ) − erf (ζh)] (6.24)

As noted, erf (x) has been tabulated, so values of it can be looked
up, much as can values of a sine or cosine. Caution is required, how-
ever, as some tables define erf (x) slightly differently than we have in
Equation (6.23a), and thus require a different set of substitutions in
Equation (6.21). A common alternative definition is:

erf (x) = 1√
2π

x∫
0

e− t2
2 dt (6.23b)
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Figure 6.5. Values of the
error function, erf (x), as
defined by Equation (6.23c),
and of Dawson’s integral, E(x),
for a typical range of values
of x = ζH. (Modified from
Budd, 1969, Figure 4.10.
Reproduced with permission
of the Australian Antarctic
Division.)

which requires the substitution: ζ z = t/
√

2. This leads to other changes
in Equations (6.22) and (6.24). Budd (1969) uses a less common defini-
tion, namely:

erf (x) =
x∫

0

e−t2
dt (6.23c)

and has plotted this (Figure 6.5) along with another function that arises
in calculations of temperature distributions in ice sheets. With this defi-
nition, Equation (6.22) can be written:

θ (h) = θs − βo

ζ
[erf (ζ H ) − erf (ζh)] (6.25)

In applying Equation (6.24) or (6.25), note that βo is negative in the
coordinate system of Figure 6.4.

The boundary condition at the surface

As noted, the boundary condition at the surface, z = H, is the ice tem-
perature, θ s, and this must be known in order to calculate a temperature
profile from Equations (6.24) or (6.25). Below, we will show that the
temperature at a depth of about 10 m in a glacier is very close to the
mean annual atmospheric temperature, θ a, so it is normally assumed
that θ s = θ a. However, it may be well to note some situations in which
this approximation is not very good.

Temperatures in the ablation zones of some glaciers may be some-
what warmer than the mean annual temperature. This is because snow
insulates the ice during the winter, preventing cooling. In addition, per-
colating meltwater reaches the snow/ice interface soon after melting
starts in the spring, thus warming the ice faster than would be the case
with conduction alone. On Barnes Ice Cap, these two effects result in



The steady-state temperature profile 123

near-surface ice temperatures that are about 2 ◦C above the mean annual
temperature (Hooke et al., 1983).

Somewhat higher on a glacier, near and above the equilibrium line,
percolating meltwater can penetrate into the firn of prior years. When
this water refreezes the heat of fusion is released at a significant depth
in the glacier, not just at the snow/ice interface. The warming effect is
thus much enhanced, and ice temperatures in this zone may be several
degrees warmer than the mean annual temperature.

At high latitudes and altitudes on polar ice sheets, the ice temperature
may be slightly below the mean annual temperature because radiative
cooling during the clear winter night is more effective than heating during
the summer day.

Further discussion of these effects and additional references may be
found in Hooke et al. (1983).

Melting and freezing at the bed

In our analysis so far, we have tacitly assumed that the temperature at the
base of the glacier is below the melting point. However, this assumption
has not been incorporated into Equation (6.24) or (6.25). To be specific,
if the bed is at the pressure melting point and melting is occurring there,
some of the geothermal heat is clearly being used for that purpose and
is not being conducted upward into the ice. Thus, our estimate of βo is
likely to be too high. If we inadvertently insert such a value of βo into
Equation (6.24) or (6.25), the calculated temperature at the bed, θo, will
turn out to be greater than the pressure melting temperature which is
clearly impossible.

To obtain a correct solution for the temperature profile in this case, βo

must be adjusted downward. The procedure is straightforward. Because
erf (0) = 0 and θ (0) = θpmp, then at the pressure melting point temper-
ature, Equation (6.24) can be solved for βo, thus:

βo = 2ζ√
π

(θs − θpmp)

erf (ζ H )
(6.26)

The melting point is depressed approximately 0.098 K MPa−1 (if the
water produced is saturated with air) so, for example, θpmp under 500 m
of ice would be ∼ −0.4 ◦C. Inserting the value of βo obtained from
Equation (6.26) into Equation (6.24) and solving for temperatures at
other depths in the glacier will give the desired temperature profile.
(Note that this approach is equivalent to solving Equation (6.17) with a
temperature boundary condition at the bed.)

The basal melt rate, dm/dt, can also be calculated. The heat available
for melting is the difference between the geothermal heat flux and the
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heat flux into the ice, or K (βG − βo), where βG is the gradient that
would be required to conduct the geothermal flux upward into the ice.
Thus, we obtain:

dm

dt
= K

(βG − βo)

L
∼= 220(βG − βo) mm a−1 (6.27)

where L is the latent heat of fusion, and the result is in mm a−1 if the
gradients are in K m−1.

It is also possible that water formed by basal melting at some dis-
tant locality has moved along the bed to the site at which the tempera-
ture profile is to be calculated. Until all such water is refrozen, perhaps
incorporating sediment into the ice in the process, it will keep the basal
temperature at the pressure melting point. Again, Equation (6.24) does
not know about this water, so the intelligent scientist must intervene.
Presumably, he or she has calculated basal melt and freeze rates further
upglacier, and has kept track of how much of the water produced has not
refrozen. In any case, the procedure is similar to that above, except that
now the value of βo calculated from Equation (6.26) will be greater than
that necessary to conduct the geothermal heat upward into the ice, and
dm/dt in Equation (6.27) will be negative, indicating freezing.

Character of the temperature profile

Several temperature profiles calculated from Equation (6.24) are shown
in Figure 6.6a. For the conditions assumed, the ice is nearly isothermal
in the upper few hundred meters and then warms rapidly near the bed.
Higher vertical velocities, resulting from higher accumulation rates at
the surface, increase the thickness of the isothermal zone and decrease
the basal temperature.

In essence, cold ice is advected downward from the surface, and
the upward-moving geothermal heat warms this descending ice. With
higher rates of advection (higher vertical velocities), the heat supplied
can warm a smaller fraction of the descending ice, so the ice column as
a whole is colder.

The shape of the temperature profile can be understood qualitatively
in the following way. Consider the three elements of ice labeled A, B,
and C in Figure 6.7. All three are moving downward, but because w
decreases with depth (Equation (6.15)), element A will be moving fastest
and element C slowest. As element C moves down, it must warm up and
this requires heat. Thus, the heat flux out of the top of this element will
be less than that into the bottom, and the temperature gradient required
to conduct this heat will be less at the top of the element than at the
bottom. However, w is small in this part of the glacier, so despite the
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Figure 6.6. Calculated temperature profiles in polar ice sheets.
(a) Accumulation zone. Vertical velocity is negative or downward. Parameters,
other than w, are the same for all curves. Dashed profile labeled “R: w = −0.50”
is calculated from Equation (5.25) for w. (b) Ablation zone. Vertical component
of velocity is positive or upward. (Modified from Hooke (1977), Figure 3.
Reproduced with permission of The University of Washington.)

comparatively high temperature gradient here, this element does not
have to warm up very much and the change in temperature gradient
through it is small, as shown. Element B has a higher velocity, and the
temperature gradient is still comparatively high here, at mid-depth in
the glacier, so this element must warm up a lot. Thus, here the change
in temperature gradient through the element is rather large. Element A
has the highest vertical velocity, but at this level in the glacier nearly
all of the heat introduced at the base has been consumed in warming
deeper ice. Thus, the temperature gradient here is quite low, and despite



126 Temperature distribution in polar ice sheets

w

Geothermal
      heat

Bed

D
epth

Surface
0oCCold

A

B

C

Figure 6.7. Qualitative
illustration of effect of
downward vertical velocity
on a temperature profile.

its high velocity, element A does not have to warm up very much. Thus,
again, the change in temperature gradient through the element is small,
as shown.

Later we will examine temperature profiles in the ablation area,
where the vertical velocity is upward. However, the reader may find
it both challenging and instructive to try to deduce the character of the
profile there, using the logic just presented.

Error introduced by the assumed vertical
velocity distribution

One of the most tenuous assumptions we made in deriving
Equation (6.24) was that the longitudinal strain rate, ∂u/∂x, was inde-
pendent of depth. This led to the use of a linear decrease in w with
depth (Equation (6.15)) in Equation (6.16). As discussed in Chapter 5,
we know that ∂u/∂x decreases with depth under most conditions. Early
attempts to use a more realistic relation for w were made by Philberth
and Federer (1971) and Budd et al. (1971), but they relied on ad hoc
relations without good theoretical basis.

It would be convenient if we could simply use either Equation (5.24)
or Equation (5.25) for w, but this leads to solutions for β that cannot be
integrated a second time. Thus, a numerical integration is necessary.

To illustrate the importance of this effect, let us use Equation (5.25) in
place of Equation (5.21) for w. The solution for the temperature gradient
is then:

dθ

dz
= βoe−ξ z3

(6.28)

where ξ = bn/3κH2. Integrating this numerically with w = bn

= −0.5 m a−1 yields the dashed curve in Figure 6.6a. Thus, using this
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more realistic expression for w leads to basal temperatures that are nearly
10 ◦C warmer than given by Equation (6.24) for otherwise similar con-
ditions!

Temperature profiles in the ablation zone
In the ablation area, except very near the equilibrium line, w is posi-
tive, or upward. In this case, the solution for the temperature gradient
becomes:

dθ

dz
= βoeζ 2z2

(6.29)

Again, this equation cannot be integrated in closed form, and the inte-
gral has not been tabulated. Examples of profiles obtained by a numerical
integration are shown in Figure 6.6b. Of particular interest is the expo-
nential increase in gradient near the surface, a result that is apparent
from Equation (6.29). A consequence of this behavior is that basal tem-
peratures must commonly reach the melting point in the ablation zone,
even with modest ice thicknesses and vertical velocities. Furthermore,
when basal temperatures do reach the melting point, βo becomes small,
so most of the geothermal heat is trapped at the bed resulting in high
basal melt rates.

Temperature profiles near the surface
of an ice sheet
Earlier (p. 122) we noted that although the temperature at the surface, θ s,
varies seasonally, the temperature at a depth of ∼10 m is very close to the
mean annual temperature. Let us now verify this. We adopt a coordinate
system with z = 0 at the surface and the z-axis pointing downward.
At the surface we assume that the seasonal variation can be described
by θ (z = 0, t) = 1

2θr sin(ωt), where θ r is the annual temperature range
(twice the amplitude). Beneath the surface, we expect the oscillations
to be damped. Let the annual temperature range at depth be denoted by
�(z) = θmax(z) − θmin(z). Our goal is to calculate the depth at which
� decreases to an acceptably small value. Then, we can measure the
temperature at this depth and use it as our boundary condition at the
surface.

Ignoring horizontal gradients, strain heating, and vertical advection
(so there is no accumulation, ablation, or compaction), Equation (6.13)
simplifies to:

∂θ (z, t)

∂t
= κ

∂2θ (z, t)

∂z2
(6.30)
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The solution to this is:

θ (z, t) = 1

2
θre

−z
√

ω
2κ sin

(
ωt − z

√
ω

2κ

)
(6.31)

where ω is the period of the variation (in this case, 2� radians per year)
(Carslaw and Jaeger, 1959, p. 65). If the seasonal variation in temperature
at the surface is sinusoidal, the temperature profile at any given time
during the year can be calculated from Equation (6.31). Some profiles
for representative times are shown in Figure 6.8.

Now at any given depth, θmax(z,t) and θmin(z,t) occur when
ωt − z

√
ω/2κ = ±�/2, respectively. Thus, using Equation (6.31) to

obtain θ (z,t) at these two times, and solving for z yields:

z =
(

2κ

ω

) 1
2

ln
θr

�
(6.32)

From this we find that z = 10 m if κ = 16 m2a−1, a value appropriate
for unpacked snow, and � is 1.2% of θ r. In ice, with κ = 37.2 m2a−1,
z = 15.2 m. Thus, temperatures measured at a depth of 10 m in snow
and firn or 15 m in ice should closely approximate the mean annual
temperature.

The most serious assumption in this calculation is that accumulation
and ablation can be ignored. In the accumulation area, accumulating
snow insulates the surface, reducing θ r. This is probably not too serious
a problem. However, in the ablation area, as noted earlier, there is not
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only the insulating effect of snow during the fall and winter, but also
warming by percolating meltwater in the late spring or early summer
and then lowering of the ice surface later in the summer. Combined,
these processes result in 15 m temperatures that are likely to be warmer
than the mean annual temperature, as noted.

Equation (6.32) can also be used to calculate effects of temperature
oscillations over longer time spans. For example, oxygen isotope vari-
ations in ice cores have revealed temperature cycles during the Pleis-
tocene that have a range ∼5 ◦C and a period of ∼2000 years. These
cycles were discovered by Dansgaard and Oeschger (1989) and are called
Dansgaard–Oeschger cycles (see also Dansgaard et al., 1993). Their
cause is not yet understood. With κ = 38 m2a−1, a value appropriate
for ice at −10 ◦C, and a more liberal � of 0.05θ r, z = 466 m. Thus,
such cycles would affect basal temperatures significantly only near the
margin where the ice was less than ∼500 m thick.

The speed, ŵ , of propagation of a temperature maximum or mini-
mum resulting from such a sinusoidal cycle of temperature is (2ωκ)1/2,
and the time lag between the maximum at the surface and the maximum
at some depth, z, is thus, z/ŵ . In the case of the Dansgaard–Oeschger
cycles, the speed would be about 0.49 m a−1, and the signal would reach
a depth of 466 m after about 950 years.

Let us now consider the temperature profile in the firn area some
distance from an ice divide, a problem studied by Robin (1970). We
will restrict the problem to two dimensions; assume that strain heating is
negligible; and ignore conduction as K is low in firn, while the advective
terms are significant. Equation (6.13) then becomes:

∂θ

∂t
= −u

∂θ

∂x
− w

∂θ

∂z
(6.33)

∂θ/∂t may be thought of as being composed of two parts, a thickening
or thinning of the ice sheet with time, and climatic change, thus:

∂θ

∂t
= λ(ε̇zz H + bn) + ∂θo

∂t

Here, ε̇zzH represents the change in thickness of the ice sheet by flow (or
vertical strain), bn represents thickening by accumulation, and the differ-
ence between them is the net change in surface elevation. Multiplication
by the lapse rate, λ, or rate of decrease in temperature with increasing
elevation yields the resulting change in temperature at the glacier sur-
face. (As ε̇zz is normally compressive, or negative, in an accumulation
zone, ε̇zzH will be a negative number; bn is positive. If (ε̇zz H + bn) turns
out to be negative, representing net thinning, multiplication by the neg-
ative lapse rate yields a positive ∂θ/∂t.) To this is added any change in
temperature due to secular climatic change, ∂θo/∂t.
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The expression u · ∂θ/∂x represents the change in temperature at the
glacier surface as the ice flows to lower elevations; ∂θ/∂x can thus be
replaced with αλ, where α is the surface slope of the glacier. Finally, w
is equated with the accumulation rate, bn. Making these substitutions in
Equation (6.33) yields:

λ(ε̇zz H + bn) + ∂θo

∂t
= −uαλ − bn

∂θ

∂z
(6.34)

The meaning of the terms in Equation (6.34) can be clarified by reference
to Figure 6.9. A particle of snow deposited at A has moved to B after n
years, and is buried under nbn meters of new accumulation. In the absence
of conduction, it is still at the temperature at which it was deposited at
A. The surface above B was at C when the snow was deposited at A and,
owing to the lapse rate, snow then accumulating at C was nuαλ degrees
warmer than that which was accumulating at A. In addition, the ice sheet
has thinned by an amount n(ε̇zzH + bn) over the intervening years, and
the surface is now at D, which is n(ε̇zzH + bn)λ degrees warmer than C.
Finally, there may have been secular climatic warming at a rate ∂θo/∂t,
so snow at D is n ∂θo/∂t warmer than it would be otherwise. Thus the
surface at D is:

nuαλ + n(ε̇zz H + bn)λ + n
∂θo

∂t

warmer than the firn at B. To obtain the temperature gradient from B to
D, divide by nbn and cancel the ns, thus:

∂θ

∂z
= uαλ + (ε̇zz H + bn)λ + (∂θo/∂t)

bn
(6.35)

which, with minor manipulation, can be shown to be the same as Equation
(6.34).

When one is far from the edge of an ice sheet, it is very difficult
to determine whether the ice sheet is thickening or thinning; that is,
whether (ε̇zzH + bn) is positive or negative. One can measure bn in snow
pits; the problem is to measure ε̇zz without a stationary base upon which
to establish a survey point. Furthermore, such observations would span
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Table 6.2. Values of parameters in Equation (6.34) for
Site 2 in Greenland and Byrd Station in Antarctica

Site 2 Byrd Station

α −0.004 27 −0.001 61

us, m a−1 17 15

λ, K m−1 −0.011 −0.008

bn, m a−1 0.4 0.2

∂θ/∂z, K m−1 0.001 15 0.000 24

(ε̇zzH + bn), m a−1 0.031 −0.018

Note that ∂θ/∂z is measured below 150 m depth.

only a short time interval. However, suppose we can measure u, α, λ, bn,
and ∂θ/∂z and have reason to believe that ∂θo/∂t is negligible. Then,
Equations (6.34) or (6.35) can be solved for (ε̇zzH + bn). Two examples
are shown in Table 6.2. The results, a 0.031 m a−1 thickening rate at
Site 2 in Greenland and a 0.018 m a−1 thinning rate at Byrd Station in
Antarctica, are surprisingly reasonable.

While potentially providing a sensitive measure of the state of health
of an ice sheet, this technique is probably not especially useful because
moderately deep boreholes are needed to obtain ∂θ/∂z, and ∂θo/∂t is
not known well enough. However, the derivation of Equations (6.34) and
(6.35) serves to emphasize that, in general, as one moves away from the
divide, temperature gradients near the surface of an ice sheet become
positive; that is, the temperature decreases with depth (decreasing z). We
now turn our attention to a more sophisticated model that enables us to
investigate such temperature distributions deep in the ice and far from a
divide.

Temperature distributions far from a divide
The Column model

Budd et al. (1971) solved Equation (6.13) in a more general form than
those we have considered so far. Calculations using their model, which
they refer to as the Column model, can be done by hand.

The coordinate system they use is shown in Figure 6.10. The tem-
perature profile is to be calculated at a point a distance χ from the
divide. Starting again with Equation (6.13), we restrict the model to two
dimensions, thus eliminating derivatives in the y-direction; we assume
that temperature gradients in the x-direction are sufficiently small that
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their derivative is negligible; and we assume a steady state. With these
assumptions, Equation (6.13) becomes:

0 = κ
∂2θ

∂z2
− u

∂θ

∂x
− w

∂θ

∂z
+ Q

ρC
(6.36)

Let us now consider the strain heating term, Q/ρC. From Equation (6.9)
it will be seen that this term increases approximately as d 4, where d is the
depth below the surface. In other words, because the strain rate increases
rapidly near the bed, most of the strain heating occurs in the basal few
meters of ice. (The student may find it interesting to study this effect
by solving Equation (6.13) with the assumption that all advection terms
and the horizontal conduction terms are negligible, and that a steady
state exists. Equation (6.9) is used for Q/ρC. The problem is most easily
tackled by using a coordinate system in which the z-axis points vertically
downward.) Recognizing that significant strain heating occurs only near
the bed, Budd (1969) assumed that it occurs only at the bed, and that
this heat could thus be added to the geothermal flux. The basal boundary
condition, βb, thus becomes:

βo = βG + τbu

K
(6.37)

K

m

K

m

N

m2

m

a
J

maK

= K

m
1 Nm = 1 J

and Q/ρC is set to zero. Here, as before, βG is the gradient required to
conduct the geothermal flux upward into the ice; τ b is the basal drag,
approximated by ρgdα; and u is the mean horizontal velocity. For u at
χ we use the balance velocity:

u = 1

H

χ∫
0

bn(x) dx (6.38)

(Equation (5.1)). In calculations, care must be taken to ensure that the
sign of the (τbu)/K term is the same as that of βG; this sign is determined
by the choice of coordinate axes.
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We turn now to the term u · ∂θ/∂x in Equation (6.36). In Equation
(6.34) we set ∂θ/∂x = αλ, as this is the rate at which the atmospheric
temperature increases as one moves to lower elevations along the ice
surface. This is, therefore, the rate at which near-surface ice must warm as
a result of horizontal advection. If the glacier surface slope is sufficiently
low, the deeper ice will warm at the same rate, with negligible lag. This
led Budd (1969) to suggest that, to a reasonable first approximation,
u · ∂θ/∂x can be replaced with uαλ in Equation (6.36). The consequences
of this assumption are discussed below.

With the additional substitution of (ws − wb)z/H for w, Equation
(6.36) becomes:

κ
d2θ

dz2
− (ws − wb)

z

H

dθ

dz
= uαλ (6.39)

which is to be solved by using the boundary condition of Equation (6.37).
Here, ws and wb are the vertical velocities at the surface and bed respec-
tively; ws can be calculated from the submergence velocity (Equation
(5.26)) when bn, us, and α are known. If the velocity at the bed is assumed
to be parallel to the bed, wb can be estimated from knowledge of ub and the
bed slope. Assuming that ub = u = us is probably a reasonable approx-
imation in this calculation, but knowing u, one could also calculate us

and ub from Equations (5.18) and (5.19).
The solution to Equation (6.39) is (Budd, 1969; Budd et al., 1971):

θ (h) = θs − βb

ζ
[erf (ζ H ) − erf (ζh)] − 2uαλH

(ws − wb)
[E(ζ H ) − E(ζh)] (6.40)

where:

erf (x) =
x∫

0

e−t2
dt

E(x) =
x∫

0


e−y2

y∫
0

et2
dt


 dy

ζ =
[

ws − wb

2Hκ

]1/2

Note that this solution uses Budd’s definition of the error function, erf (x).
E(x) is the integral of a function known as Dawson’s integral (the quantity
in square brackets), and it too has been tabulated. A plot of it for a
reasonable range of ζ is shown in Figure 6.5.

Temperature profiles can be calculated readily by using Equation
(6.40) and Figure 6.5. A typical one is shown in Figure 6.11 (profile (a)).



134 Temperature distribution in polar ice sheets

−50 −40 −30 −20 −10 0
Temperature, oC

1500

0

1000

500

H
eightabove

bed,m
Glacier surface

(b) (a)

Figure 6.11. Temperature
profiles calculated from
(a) Equation (6.40) and
(b) Equation (6.41). The
following values of the
parameters, approximately
appropriate for Camp
Century, Greenland, were
used in the calculations:
α = −0.01, u = 15 m a−1,
λ = −0.01 K m−1,
κ = 37.2 m2a−1, H = 1368 m,
θH = −24 ◦C, and
βb = −0.0508 K m−1.

The minimum temperature occurs at some depth below the glacier sur-
face. This represents, as in Figure 6.9, cold ice that is advected downward
and laterally from some point further upglacier where the surface is at
a higher elevation and hence colder. However, the Column model does
not include this longitudinal advection rigorously, but simply specifies
a warming rate. Thus the temperature at depth is only an approximation
that becomes better as the warming rate decreases. This approximation
is best, therefore, where surface slopes (α) and lapse rates (λ) are lowest.

Both the magnitude and the curvature of the positive temperature gra-
dient near the surface are adjusted so that heat conducted downward from
the surface, in combination with heat advected downward, is sufficient to
warm the ice everywhere above the point of minimum temperature at the
rate uαλ. Ice below this point is warmed at this rate by heat from the bed –
both geothermal and frictional. When the warming rate at depth that is
specified (by representing it by uαλ) is larger than that in the natural
situation being modeled, the positive temperature gradient at the surface
becomes too high, and the temperatures at depth, thus, too cold.

Further insight into the mathematical properties of the solution can
be gained by comparing the profile calculated from Equation (6.40) with
one calculated from:

κ
∂2θ

∂x2
= uαλ (6.41)

together, again, with the boundary condition of Equation (6.37). (The
integration of Equation (6.41) is left as an exercise for the reader.) This
is profile (b) in Figure 6.11. Equations (6.39) and (6.41) differ in that the
vertical advection term is omitted in Equation (6.41). By analogy with
our discussion of Equation (6.24) and Figure 6.7, one might think that
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because vertical advection moves cold ice downward from the surface,
omission of this term would make profile (b) warmer than profile (a) at
depth. However, in this case the ice at depth is colder than that at the
surface, and because the vertical advection term operates on ice at the
surface at the point where the profile is being calculated, not at some
point upglacier therefrom, the ice advected downward is warmer than
the ice at depth. As a result of this downward advection of heat, included
in Equation (6.40), the uαλ warming rate does not need to be satisfied
entirely by conduction from the surface in profile (a).

Englacial and basal temperatures along a flowline
calculated using the Column model
Let us now consider the temperature distribution along a flowline cal-
culated with the use of the Column model (Figure 6.12). The original
objective of the modeling shown in Figure 6.12 was to investigate the
possibility that, along the margin of the Laurentide Ice Sheet in North
Dakota, there could have been a ∼2 km-wide zone in which the ice was
frozen to the bed. Such a temperature distribution is implied by glacial
landforms, as discussed further below (Moran et al., 1980). Thus, the
flowline modeled was assumed to extend from Hudson Bay to North
Dakota.

In the model, the accumulation rate was assumed to be 0.20 m a−1

65 km upglacier from the equilibrium line, and to decrease linearly to
0.05 m a−1 at the divide, and to 0 at the equilibrium line. The decrease
in bn toward the divide is consistent with the present accumulation pat-
tern in Antarctica (Figure 3.9) and northern Greenland, although not
southern Greenland (Zwally and Giovinetto, 2000). In the ablation area,
the ablation rate increased linearly downglacier from the equilibrium
line, and the rate of increase was adjusted to provide a balanced mass
budget. The horizontal velocity was approximated by the balance veloc-
ity (Equation (5.1) modified to allow for divergence of the flowlines).
The ice sheet profile was adjusted to provide the shear stress necessary
to yield this horizontal velocity, using a relation similar to the first of
Equations (5.19) with a sliding law to estimate ub. Isostatic depression
of the earth’s crust was included. The vertical velocity was calculated
from the submergence or emergence velocity relation (Equation (5.26)),
and was assumed to decrease linearly with depth (Equation 6.15). The
temperature at the margin was −7.5 ◦C. The temperature along the sur-
face was calculated assuming a lapse rate of −0.01 K m−1, and making
an empirical correction for warming effects of percolating melt water.
The geothermal fluxes used were appropriate to the geologic terrane
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along the flowline. To circumvent certain problems, discussed later, it
was assumed that the warming rate was 1

2 uαλ instead of uαλ.
Several features of the temperature distribution in Figure 6.12 merit

comment.

� The downward and outward advection of cold ice is represented by the
reversal in slope of the −20 ◦C and −25 ◦C isotherms ∼900 km from
the divide.

� The progressive compression of the isotherms near the bed
downglacier from the divide reflects the outward increase in basal
temperature gradient as strain heating increases.

� Basal melting occurs over the first 250 km of the flowline because the
accumulation rate here is low, and downward advection of cold ice
is, thus, less important than it is further downglacier. A more realistic
vertical velocity distribution would lead to more melting here, while
a higher accumulation rate would lead to less melting.

� Between ∼250 and ∼420 km from the divide, half of the meltwater
formed in the first 250 km is refrozen to the base. This keeps the bed at
the pressure melting temperature. The rest of the water was assumed
to have drained away into the bedrock. (Had it been assumed, instead,
that more of the meltwater stayed at the ice/bed interface, the zone of
subfreezing temperatures between ∼420 and ∼840 km from the divide
would be smaller or absent.)

� The zone of subfreezing basal temperatures between ∼420 and
∼840 km owes its existence to increased downward advection of cold
ice as the accumulation rate increases outward.

� Basal melting resumes downglacier from ∼840 km as strain heating
warms the basal ice. It becomes particularly important in the ablation
area where upward vertical velocities decrease the basal temperature
gradient, thus trapping more heat at the bed.

� The basal frozen zone at the margin, barely visible at the scale of the
figure, is a result of cold atmospheric temperatures at the margin and
decreasing vertical velocity as the margin is approached. The verti-
cal velocity decreases because, as the surface slope steepens, a greater
fraction of the ablation rate is balanced by the us tan α term in the emer-
gence velocity. In addition, it is assumed that the meltwater formed in
the outer ∼500 km of the glacier leaves the system as groundwater or
by way of localized subglacial conduits.

Even though the Column model is relatively crude in comparison
with numerical models being used today, it does reproduce what are
probably the essential features of the temperature distribution at the base
of a continental-scale ice sheet with an ablation zone of significant width,
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Figure 6.12. Temperature distribution along a flowline calculated with the use
of the Column model. The bed is at the pressure melting temperature except in
the section labeled “Basal temperature”. (From Moran et al., 1980, Figure 6.
Reproduced with permission of the International Glaciological Society.)

namely: (1) melting beneath the divide if the accumulation rate is suf-
ficiently low and freezing otherwise; (2) in the former case, a zone of
freeze-on in the lower part of the accumulation area followed by a pos-
sible zone in which the ice is frozen to the bed; (3) melting beneath the
ablation area; and (4) a possible frozen toe in areas where marginal tem-
peratures were relatively cold. The distribution of these zones depends
on bn, βG, and θ s. Temporal changes in bn and θ s due to climate change
will alter the basal temperature distribution, but there will be a lag
of order 103 years between any change in climate and a response at
the bed.

The fact that water from melting basal ice flows downglacier along
the bed and refreezes is consistent with observations of layers of dirty
ice, several meters thick, that were encountered at the bottoms of both the
Byrd Station, Antarctica, and the Camp Century, Greenland, ice cores.
In both cases, the dirt was dispersed throughout the ice, and the dirty
ice had fewer air bubbles than the overlying clean ice. In the Camp
Century core, the oxygen isotope ratios indicated that the basal dirty ice
was formed from water that originally condensed at lower temperatures
than the overlying ice. All of these observations are consistent with
melting of ice that originally formed at a higher altitude than the overlying
ice, downglacier flow of that water along the bed, and refreezing of
the water incorporating dispersed dirt in the process. It is difficult to
account for meters-thick layers of basal ice with dispersed dirt in any
other way, although regelation of ice downward into till is a possible
way of entraining layers of dirt with higher debris content (Iverson,
1993).
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A problem with high uαλ warming rates in the
Column model

As the warming rate required by the uαλ term in the Column model
increases, the curvature of the temperature profile increases, and the
minimum and basal temperatures decrease (see Figure 6.11 and discus-
sion on p. 134). Near the equilibrium line, the downglacier warming rate
is high because meltwater percolating into the firn raises near-surface
temperatures. (In the modeling for Figure 6.12 this effect was included
by using an effective value of λ that is higher than the atmospheric lapse
rate.) If the ice at depth is assumed to be warming at the same rate, cal-
culated minimum temperatures in profiles near the equilibrium line are
often lower than the minima in profiles just upglacier. In plots such as
Figure 6.12, this appears as a pocket of cold ice beneath the equilibrium
line that is surrounded by warmer ice (Hooke, 1977, Figure 4c). Such a
temperature distribution is physically impossible; to have cooled off, this
ice would have had to have lost heat to colder ice, yet it is surrounded
by warmer ice.

To circumvent this problem, as noted, a warming rate of 1
2 uαλ was

used.

Basal temperatures in Antarctica – comparison
of solutions using the Column model and a
numerical model
The reliability and weaknesses of the Column model can be illustrated
further by comparing basal temperatures in Antarctica calculated using it
(Budd et al., 1971) with those calculated using a state-of-the-art numer-
ical model (Huybrechts, 1990). First, however, it is instructive to discuss
some general characteristics of the Antarctic ice sheet that affect the
temperature distribution.

A digital elevation model (DEM) of the ice sheet is shown in
Figure 6.13 (Liu et al., 1999). By constructing this image with consid-
erable vertical exaggeration, Liu et al. have emphasized intricate details
of the surface topography, many of which would be difficult to discern
were one standing on the surface of the ice sheet. Noteworthy is the
apparent roughness of parts of the surface. This is caused by undula-
tions with wavelengths of 4–10 km and amplitudes of only 5–10 m that
result from flow over topography on the bed. Also of interest is the
remarkably flat area labeled “Lake Vostok”. As discussed previously
(p. 99), this area is over a subglacial lake. Lake Vostok is the largest
of many subglacial lakes that have been detected through radio-echo
sounding.
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Lake Vostok

Figure 6.13. Digital elevation model of Antarctica. From Liu et al., 1999.
(Courtesy of G. Hamilton.)

The basal drag in Antarctica, calculated from the surface profile
and ice thicknesses, is shown in Figure 6.14. In contrast to the situation
on valley glaciers, where τ b is typically between 0.05 and 0.15 MPa
(p. 85), the basal drag is below 0.05 MPa over most of Antarctica. Note
also that τ b decreases inland. The low accumulation rates near the center
of the ice sheet result in low balance velocities. Thus, the driving stresses
required to provide those balance velocities are also low. Because both
τ b and u (Figure 5.2) increase toward the coast, the basal temperature
gradient, βo, also increases (Equation (6.37)). The geothermal gradient,
βG, is estimated to be only about 0.02 K m−1 in East Antarctica, whereas,
owing to strain heating, βb is nearly five times that near the coast.

Basal temperatures calculated with the use of the Column model
and by Huybrechts (1990) are shown in Figures 6.15a and 6.15b,
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Figure 6.14. Basal drag in Antarctica calculated by Ph. Huybrechts, especially
for this book, using the model described in Huybrechts (2002).

respectively. In both maps one of the coldest spots is in central East
Antarctica, over a mountain range where the ice is only 1.5–2 km thick.
In nearby areas it is over 4 km thick. Both also predict basal melting
in the same areas in West Antarctica. However, there are important
systematic differences between the maps. Most obvious is the large
area of basal melting in East Antarctica in Huybrecht’s map. This is, in
part, attributable to the fact that Huybrechts used a geothermal flux of
54 mW m−2, while Budd et al. used 50 mW m−2. This, however, cannot
account for so large a difference. Possible explanations for the remaining
difference are the use of an unrealistic linear decrease in w with depth in
the Column model and requiring that the warming rate at depth equal that
at the surface. As we have seen, the former can lead to basal temperatures
that are too cold (Figure 6.6), and the latter can result in temperature
gradients at the surface that are too high (Figure 6.11), thus also making
deeper temperatures too cold. In contrast, Huybrecht’s model predicts
colder temperatures in Queen Maud Land. This appears to be because
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Budd et al. were using balance velocities that were an order of magni-
tude higher than Huybrechts in this sector, thus overemphasizing strain
heating.

The differences between the temperature distributions in Figure 6.15
emphasize the need for caution in using the Column model. However,
the Column model does illustrate the basic physical factors affecting the
temperature distribution in ice sheets, and can be used to obtain reason-
able estimates of the temperature distribution with only a calculator or
spreadsheet. For geomorphologists wishing to test ideas on the origin of
certain landforms, for example, the errors introduced by the simplifying
assumptions made in the Column model are probably no greater than
the uncertainties in the ice age values of parameters like bn, H, βb and u
that are used in it.

Geomorphic implications
Temperature distributions such as that in Figure 6.12 have implications
for glacial erosion and deposition and the origin of some glacial land-
forms. Erosion rates are likely to be highest where basal melt rates are
low, and particularly where meltwater is refreezing to the glacier sole.
Thus, we might expect to find that erosion was most intense some dis-
tance from the divide. Conversely, the formation of lodgment till by
subglacial melting should be most prevalent beneath the ablation zone.
Both are consistent with observation.

The calculations shown in Figure 6.12 also suggest that zones of
frozen bed, a couple of kilometers wide, should develop along ice sheet
margins in regions where mean annual temperatures are sufficiently low.
This, indeed, seems to have been the case in North Dakota and adjacent
areas of Alberta and Saskatchewan. Here, blocks of bedrock, tens to
hundreds of meters on a side, became frozen to the base of the glacier
and were moved outward a kilometer or so (Figure 6.16). Detachment
may have been facilitated by high pore-water pressures in the unfrozen
rock beneath the frozen zone. Upon deposition, these blocks formed
hills. When the ice eventually receded, the basins from which the blocks
were plucked became lakes (Moran et al., 1980).

In some places, subglacial frozen bed conditions persisted through-
out the last glacial period. The best studied such areas are in western
Sweden, in the divide region of the Weichselian ice sheet. These cold
zones were probably a consequence of a combination of high accu-
mulation rates, cold temperatures, and thin ice in the topographically
high divide region. Relict periglacial landforms like patterned ground
(Kleman and Borgström, 1994) and weathering features such as tors
(Kleman and Hättestrand, 1999) are found in these areas. These features
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Figure 6.16. Hill–lake pair formed by thrusting at a frozen margin.

developed under ice-free conditions during the last interstadial. Around
the edges of these zones of relict landscape, frozen bed conditions per-
sisted on higher ground while lower areas were at the pressure melting
point. Kleman and Borgström (1994) have described a distinctive set of
landforms in such situations (Figure 6.17). Up- and downglacier from the
higher areas the ice was sliding, whereas it remained frozen to the sub-
strate over the hill itself. This led to longitudinal compression on the stoss
side of the hill, and longitudinal extension on the lee side. Till dragged
by the ice thus became stacked in transverse moraines on the stoss side.
On the lee side it was pulled away, forming an abrupt scarp (Figure 6.17).
Along the lateral boundaries, there is a narrow transition separating the
relict surface from an area of glacially modified topography.

Ribbed moraine is another distinctive landform that is commonly
present around the edges of areas where frozen bed conditions either per-
sisted throughout a glaciation or perhaps developed during deglaciation
(Hättestrand and Kleman, 1999). Ribbed moraines are anastomosing,
somewhat sinuous ridges oriented transverse to ice flow (Figure 6.18a).
The ridges typically consist of glacial drift similar to that in adjacent
areas without ridges. The drift is usually till but may be glaciofluvial
sediment or a combination of the two. In troughs between ridges, seis-
mic investigations and limited exposures suggest that the drift sheet is
generally thin or missing (Figure 6.18c). If one could decouple the ridges
from the substrate and slide them together, they would fit remarkably well
(Figure 6.18b). These characteristics suggest that the ridges were formed
by pull-apart of a once-continuous drift sheet at the boundary between
zones of thawed and frozen bed (Figure 6.18d). Hättestrand and Kleman
have argued convincingly that this is the case. They have shown that
ribbed moraine is confined almost exclusively to the core areas of late
Pleistocene ice sheets. They find that the ridges are transverse to ice flow
directions during deglaciation and not to flow directions during the Late
Glacial Maximum, suggesting that they formed during deglaciation.

As our understanding of the origin and distribution of features such
as hill–hole pairs, relict surfaces, and ribbed moraine improves, they
will become increasingly valuable in constraining numerical models
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Figure 6.17. Schematic map (a) and cross section (b) through a low hill that
remained frozen throughout a glacial advance and on which periglacial
landforms are thus preserved. Stoss side moraines were formed in the zone of
compressive ice flow on the stoss side of the hill, and transverse till scarps were
formed on the lee side.

of Pleistocene ice sheets. Some modeling studies have already used
the distribution of these features for this purpose (see, for example,
Fastook and Holmlund, 1994; Moran et al., 1980) but much remains to be
done.

Summary
We began this chapter by deriving the energy balance equation. Given
boundary conditions appropriate for a polar ice sheet, solutions to this
equation yield the temperature distribution in the ice sheet. The boundary
conditions most commonly used are: (1) the temperature at the surface,
which is approximated by the mean annual temperature, perhaps with a
correction for heating by percolating melt water; and (2) the temperature
gradient at the bed. The latter is based on estimates of the geothermal
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Figure 6.18. Formation of ribbed moraine. (a) Map of ribbed moraine ridges
near Lake Rogen in west-central Sweden. The line pattern on the ridges shows
the direction of faint fluting. (b) Inferred original relative positions of ridges.
Areas of overlap are attributed to streamlining after the ridges were pulled apart.
(c) Schematic cross section through a series of ridges showing thickness of
material above decollément. (d) Schematic diagram showing how a layer of
frozen soil overlying thawed material could be pulled apart by extensional flow
in the ice. ((a) and (b) from Hättestrand and Kleman, 1999. Reproduced with
permission of the authors and Elsevier Science.)

flux. If calculations suggest that the bed is at the pressure melting point,
the temperature gradient is adjusted to ensure that calculated basal tem-
peratures do not exceed the melting point.

By using appropriate simplifications, we studied solutions to the
energy balance equation for the situation at an ice divide, for the situa-
tion near the glacier surface but some distance from the divide, and for
a column of ice extending through an ice sheet some distance from the
divide. Two key assumptions in the latter, the so-called Column model,
are that w decreases linearly with depth and that longitudinal advection
can be approximated by assuming a warming rate at depth that equals that
at the surface. Both of these lead to basal temperatures that are too cold,
and the second may result in physically impossible temperature distri-
butions in areas where surface temperatures are changing rapidly in the
longitudinal direction. With suitable caution, however, we found that the
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Column model was useful for illustrating how various physical processes
that affect the temperature distribution were reflected in calculated tem-
peratures along a flowline of the Laurentide Ice Sheet. Comparison of
basal temperatures beneath the Antarctic ice sheet calculated by using
the Column model and with a state-of-the-art numerical model served
to emphasize both the value and the limitations of the former.

Finally, we discussed some geomorphic features formed at bound-
aries between zones of thawed and frozen bed, and noted that these could
be used to constrain numerical models of ice sheets.



Chapter 7

The coupling between a glacier and
its bed

In Chapter 4 we found that the rate of deformation of ice, ε̇e, could be
related to the applied stress, σe, by: ε̇e = (σe/B)n (Equation (4.5)). The
rigorous basis for this flow law will not be developed until Chapter 9,
but some indications of the complexities involved in applying it have
already been mentioned. Despite these complexities, calculations using
it are reasonably accurate. Computed deformation profiles are an exam-
ple. This is, in large part, because ice is a crystalline solid with relatively
uniform properties. The principal causes of inaccuracy in such calcu-
lations are a consequence of impurities in the ice, including water, of
anisotropy associated with the development of preferred orientations of
crystals, and of incomplete knowledge of the temperature and boundary
conditions.

As mentioned briefly in Chapter 5 (Figure 5.5), glaciers also move
over their beds readily when the basal temperature is at the pressure
melting point. However, the rate at which this movement occurs is far
more difficult to analyze. This is again, in part, because the boundary
conditions, principally the water pressure and the morphology of the
bed, are not known. However, a more fundamental problem is the fact
that granular rock debris is usually present, either in the ice or between
the ice and the bed, or both. There is considerable uncertainty surround-
ing the processes involved in the deformation of such material and the
appropriate constitutive relations describing its deformation and that of
ice containing it. Furthermore, unlike the situation with pure ice, the
properties of the rock debris vary, not only from glacier to glacier, but
also from point to point beneath a single glacier.

147
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Figure 7.1. Bed geometry
used in Weertman’s (1964)
analysis of basal sliding.

Although it may be impossible to know the boundary conditions
well enough to predict accurately the rate of movement of a glacier over
its bed, it is nevertheless important to understand the processes in order
to place limits on the rate. Thus, a significant effort has been made to
analyze these processes, using judicious assumptions where necessary
as a substitute for detailed data. This analysis has led to relations between
the rate of movement and measurable quantities such as water pressure
and driving stress that can be tested with field data.

We start this discussion by looking at the movement of clean ice
over an irregular hard rigid bed – the traditional sliding problem. Some
of the principal shortcomings of the analysis are then discussed. Finally
we take up the problem of deformation of the granular materials over
which many glaciers move.

Sliding
The basic processes by which ice moves past an obstacle on a rigid bed,
regelation and plastic flow, were first discussed by Deeley and Parr (1914)
and later quantified by Weertman (1957a, 1964). Regelation involves
melting of ice in the region of high pressure on the upglacier or stoss side
of the obstacle and refreezing of that water in the region of lower pres-
sure on its lee face. Plastic flow is simply deformation of ice in a three-
dimensional flow field around the obstacle. In his analysis, Weertman
used a simplified model of the bed geometry, sometimes called the tomb-
stone model, consisting of uniformly spaced rectangular blocks on a flat
surface (Figure 7.1). This model has been roundly criticized as being



Sliding 149

ss sl

Ice flow

Higher pressure,
Colder

Lower pressure,
Warmer

Figure 7.2. Pressure and
temperature on stoss and lee
sides of a rectangular bump
on a glacier bed.

unrealistic, and inappropriately defended by arguing that fudge fac-
tors can be inserted to make it applicable to real situations. The real
value of the model is that the physical principles involved in the sliding
process are illustrated without resorting to sophisticated mathematical
techniques.

Consider the bed shown in Figure 7.1. For simplicity we will use
cubical obstacles with sides of length, �, instead of Weertman’s rectan-
gular ones. The mean spacing between obstacles is L, and we therefore
define r = �/L as the roughness of the bed. The mean drag on the bed is
τ . As the ice is separated from the bed by a thin film of water, we assume
that faces parallel to the flow cannot support a shear stress. Thus the
entire drag over an area L 2 must be supported by one obstacle. The total
force on the obstacle is then F = τL 2, so the stress difference across the
obstacle, σ s − σ l, is:

σs − σl = τL
2

�2
= τ

r 2
(7.1)

where the subscripts, s and l, refer to stoss and lee, respectively.

Regelation

Let us deal with regelation first. The average temperature at the bed
is constrained to be at the pressure melting point determined by the
average pressure in the water layer. The average pressure is a function
of the local glacier thickness. The pressure in the water film on the
stoss face of the obstacle is higher than the average, and the pressure
on the lee face is lower (Figure 7.2). We denote the pressure difference
across the obstacle, σ s− σ l, by �P. This pressure difference results in a
temperature difference, �T = C�P, where C is the change in melting
temperature with pressure (Equation (2.2)).

The temperature difference across the obstacle, from Equation (7.1),
is thus:

�T = C
( τ

r 2

)
(7.2)
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and the temperature gradient through it is �T/�. The heat flow through
the obstacle is thus:

Q = �T

�
Kr�

2 = �T Kr� (7.3)

where �2 is the cross-sectional area of the obstacle and Kr is the ther-
mal conductivity of rock. Kr has the dimensions J m−2 s−1 (K/m)−1, or
J m−1 s−1 K−1. A typical value for rock or ice is 2.2. Q has the dimensions
J s−1.

This heat flow can melt ice at a rate Q/Hρ, where H is the heat of
fusion, 3.3 × 105 J kg−1, and ρ is the density of ice, ∼900 kg m−3.
Thus, the melt rate is expressed in m3 s−1. Dividing this rate by the
cross-sectional area of the obstacle, �2, gives the speed with which ice
can move past the obstacle by regelation, Sr. Thus, using Equations (7.2)
and (7.3):

Sr = Q

�2 Hρ
= Cτ Kr

�Hρr 2
(7.4)

In reality, some heat also flows from the low-pressure region to the high
pressure region through the ice above the obstacle and through the rock
beneath it, so this relation slightly underestimates Sr.

The water formed by melting in the high-pressure area on the stoss
side of the obstacle flows either upglacier or downglacier to areas of
lower pressure. The area of low pressure in the lee of the obstacle that
we have been analyzing is one such sink. Because heat is conducted
away from this area by the temperature gradient through the obstacle,
this water refreezes. Thus, to complete the regelation cycle, the water
flux to the lee of the obstacle must equal the melt on the stoss side. We
will examine the consequences of a failure of this condition later, and
consider plastic flow next.

Plastic flow

Plastic flow (or creep) of ice around an obstacle clearly must contribute to
flow of a glacier past the obstacle. Weertman suggested that this plastic
flow is enhanced owing to the high stresses on the obstacle. He thus
assumes that the speed with which ice moves past the obstacle by this
process, Sp, is proportional to � and to the creep rate obtained by using
the stress difference from Equation (7.1) in the flow law:

Sp = bε̇� = b
( τ

Br 2

)n
� (7.5)

where b is a dimensionless constant of proportionality. Note that dimen-
sionally ε̇� is a speed.
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Sliding speed

Comparing Equations (7.4) and (7.5), you will note that as � increases,
Sr decreases but Sp increases (Figure 7.3). Sr decreases because the path
that heat follows back through the obstacle increases with �, so the tem-
perature gradient decreases, thus decreasing the heat flow. The physical
reasons for the increase in Sp are less obvious; dimensionally, it results
from the fact that to obtain a speed from a strain rate, one must multiply
by a length scale, and the obvious length scale in the present situation
is �.

The total sliding speed, S, is generally considered to be the sum of
the contributions from regelation and plastic flow (Figure. 7.3), thus:

S = Sr + Sp = Ar
τ

�r 2
+ Ap

( τ

r 2

)n
� (7.6)

where, for simplicity, the factors that are physical constants for any given
situation have been lumped into the parameters Ar and Ap. We, also,
will consider the contributions to be additive, but note that Nye (1969,
pp. 455–456) finds that this is not strictly correct on real beds consisting
of roughness elements of many different sizes. This is because the pres-
sure distribution resulting from regelation is then not the same as that
resulting from plastic deformation.

Let us seek the obstacle size, �c, for which, as shown in Figure 7.3,
S is a minimum. To do this we take the derivative of S with respect to �,
thus:

d S

d�
= −Ar

τ

�2r 2
+ Ap

( τ

r 2

)n
(7.7)

set the result to 0, and solve for �c:

�c =
√

Ar

Ap

( τ

r 2

) 1−n
2

(7.8)
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Inserting this back into the expressions for Sr and Sp (Equations (7.4)
and (7.5)) yields:

Sr = √
Ar Ap

( τ

r 2

) n+1
2

and Sp = √
Ar Ap

( τ

r 2

) n+1
2

(7.9)

Thus when S is a minimum, Sr = Sp and S = 2Sr = 2Sp.
A glacier bed has irregularities of many sizes, but the sliding speed

in any one area of the bed must be the same for all of them. Suppose
that r is also the same for all obstacle sizes in this area. Then, in the size
range where plastic flow dominates, it is clear from Equation (7.5) (or
Figure 7.3) that the drag exerted on the base of the glacier by obstacles of
size �c will be greater than the drag exerted by larger obstacles. (With Sp,
b, B, and r all constant, τ varies inversely with �.) Similarly, in the size
range where regelation dominates, the drag exerted by obstacles of size
�c will also be greater than that exerted by smaller obstacles. In other
words, obstacles of size �c exert more drag on the base of the glacier
than do obstacles of any other discrete size, and this has thus come to be
called the controlling obstacle size. As implied by Sr = Sp, regelation and
plastic flow contribute equally to motion of ice past roughness elements
of size �c.

When one considers a bed composed of a continuous spectrum of
obstacles sizes, and particularly of roughnesses, on the other hand, the
concept of a controlling size is no longer as relevant (Nye, 1969, p. 459).
Nevertheless, an obstacle size for which Sr = Sp normally appears when
bed geometry is simplified in order to make theoretical studies of sliding
mathematically tractable. The name controlling obstacle size for this size
is probably irrevocably ingrained in the literature.

Making use of the fact that S = Sr + Sp and the relations in Equation
(7.9), assuming that n = 3, and combining the constant factors into a
single constant, A, yields:

S = A
τ 2

r 4
(7.10)

This is true only for beds composed of uniform obstacles of size �c or for
beds with a homogeneous distribution of roughness elements – so-called
white roughness. For beds composed of much smaller obstacles, S →
Arτ/(�r2) (Equation (7.4)) whereas for beds of much larger obstacles,
S → Ap�τ

3/r6 (Equation (7.5)). Of particular interest in Equation (7.10)
is the quadratic dependence of S on τ , and the strong inverse dependence
on r.

Nye (1969) and Kamb (1970) have analyzed sliding of glaciers over
a bed with a more realistic geometry consisting of superimposed sine
waves. As in Weertman’s development, the two processes by which ice
moved past roughness elements on the bed were regelation and plastic
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flow. The mathematical techniques that Nye and Kamb employ are ele-
gant (and beyond the scope of this book). A price paid for this realism
was that to obtain exact solutions, both Nye and Kamb had to assume
a linear rheology (n = 1) for ice. Kamb also obtained an approximate
solution for a nonlinear rheology. Both Kamb (Equation (45)) and Nye
(Equation (34)) concluded that S ∝ τ/r2 in the linear theory. This is
consistent with our Equation (7.9) with n = 1. In Kamb’s (Equation
(79)) nonlinear theory, the dependence of τ on �c (see Equation (7.8)
above) also leads to S ∝ τ 2, at least for certain roughness spectra; this
is of interest in the light of some laboratory and field studies discussed
below. The dependence of S on r in Kamb’s nonlinear theory is more
complicated owing to the way in which roughness is defined. Let us now
examine this in more detail.

Roughness in the Nye–Kamb theory

A different definition of bed roughness is needed in the Nye–Kamb
models in which the bed topography is modeled by superimposed sine
waves. Thus, Kamb introduces a relative roughness parameter, ς = a/λ,
where a and λ are the amplitude and length of a sine wave (Figure 7.4).
Note that ς is not so much a measure of the heights of bumps, a, but
rather of the steepness of the adverse slope that they present to the
glacier. As before, we can define a controlling wavelength, λc, for which
Sr = Sp.

Lliboutry (1975) has suggested a modification of the Kamb–Nye
approach. Let x be the direction of flow and let z(x,y) describe the ele-
vation of the bed above some reference plane. Then let z∗ (x,y) weight
the contribution of various roughness elements to the total roughness in
such a way that wavelengths bigger and smaller than the controlling size
contribute less resistance to flow. The roughness is then defined by:

r = 1

A

∞∫
−∞

∞∫
−∞

(
∂z∗
∂x

)2

dx dy
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where A is the area of the bed. Thus, the roughness is considered to be
related to the square of the bed slope in the direction of flow, averaged
over the bed and weighted as just described.

When ς is constant for all wavelengths, the spectrum is called white.
This is one of the spectra for which S ∝ τ 2 in Kamb’s nonlinear theory.
From casual observations of glacier beds, however, it is quickly clear
that ς is not constant; there is commonly a distinct absence of short
wavelengths. In his studies, Kamb found almost no obstacles with wave-
lengths less than 0.5 m in the direction of flow. He further observed
that ς was commonly ∼0.05. On bedrock exposed in front of Glacier
de Saint-Sorlin in France, on the other hand, roughness elements with
wavelengths shorter than 0.5 m are common (Benoist, 1979).

The frequent absence of short wavelengths is usually attributed to
preferential abrasion of these features by regelating ice. As noted, rege-
lation is most effective over small obstacles. During regelation, any
rock particles that become incorporated into the regelation layer, say
by entrainment during refreezing in the lee of a previous obstacle, are
forced into strong contact with the next obstacle upon the stoss side of
which this ice melts. Thus small obstacles are abraded away whereas
larger ones, accommodated principally by plastic flow, are not.

Tests of sliding theories

The only sliding theory that can be reasonably tested with field data
is Kamb’s approximate nonlinear one. The sliding speed and other
data used for the test were collected on Blue and Athabasca Glaciers,
using boreholes to the bed and tunnels along the bed. In neither of
these techniques was a large enough area of the bed exposed to permit
direct measurement of the roughness. Thus, instead, Kamb calculated ς

and λc from the measured sliding speeds and known glacier geometry
(Table 7.1).

When Kamb used a full white roughness spectrum in his calculations,
the values of ς were about one-third those in the table. Thus, in accord
with his observations, he assumed that obstacles with short wavelengths
had been abraded away, and instead of the full white roughness spectrum
he used a truncated spectrum that did not have obstacles with those
wavelengths. This yielded values of ς (Table 7.1) that are consistent
with observations on exposed bedrock outcrops, thus providing support
for the theory. (It is noteworthy that in the absence of these shorter
wavelengths, S ∝ τ 3 (our Equation (7.5); Kamb’s Equation (90)).)

Another test of the theory comes from observations of the thickness
of the regelation layer at the base of a glacier. Regelation ice can be
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Table 7.1. Measured sliding speeds and corresponding calculated
roughnesses and controlling wavelengths (from Kamb, 1970)

Location

Measured

S, m a−1

Calculated

ς

Calculated

λc, m

Blue Glacier

Borehole K 22 0.05 0.32–0.45

Borehole V 4 0.09 0.47–0.67

Western ice fall 6 0.02–0.04 0.62–1.12

Central ice fall

On ridge 128 0.03 0.15–0.28

In trough 4 0.13 0.37–0.53

Athabasca Glacier

Hole 1B 41 0.02 0.50–0.70

Hole 1A 42 0.02 0.33–0.47

Hole 209 3 0.06 0.59–0.84

Means 0.054 0.53

Regelation ice

Figure 7.5. In the lee of a
bump of the controlling size,
regelation ice should fill the
lower half of the space
between bumps.

distinguished from more highly deformed ice by grain size and crystal
orientation. Thin sections of the ice viewed through crossed polarizers
are used for this purpose. Kamb and LaChapelle (1964) measured thick-
nesses of the regelation layer in ice tunnels beneath Blue Glacier. They
judged the average thickness to be about 5 mm while the maximum
was 29 mm. These values can be compared with those calculated from
Kamb’s theory. The calculation is based on the fact that the thickness
of the regelation layer in a depression in the lee of a bump is propor-
tional to the degree to which the bump was accommodated by regelation.
For example, for obstacles of the controlling size, accommodated half
by regelation and half by plastic flow, regelation ice should half fill the
depression between bumps (Figure 7.5). The predicted thicknesses were
1–10 mm. The fact that these thicknesses were less than those observed
suggests that regelation may be more important than predicted by the
theory.
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Weaknesses of present sliding theory

There are a number of processes involved in sliding of ice over a hard
bed that are not adequately described in the above theoretical models.
An obvious example is the failure to consider frictional forces between
rock particles in the basal ice and the underlying bedrock. To study this
effect, Iverson et al. (2003) conducted an experiment at the Svartisen
Subglacial Laboratory in Norway. The laboratory is situated in a tunnel
system in the bedrock beneath Engabreen (the Enga Glacier), an outlet
glacier from the Svartisen Ice Cap. The tunnels were excavated for a
hydroelectric power project. One inclined tunnel, excavated specifically
for scientific studies, leads upward to the base of the glacier, giving access
to the bed beneath 210 m of sliding temperate ice. Using this inclined
tunnel, Iverson and his colleagues placed an instrumented panel at the
base of the glacier. The upper surface of the panel consisted of a 0.09 m2

smooth granite tablet. Debris-laden ice slid across the tablet and the shear
traction on it was recorded along with sliding speed, water pressure, and
temperatures in the panel. Shear tractions on the panel varied from 60 to
110 kPa, and at one point rose to 200 kPa. The spatially averaged driving
stress is estimated to be between 150 and 300 kPa, so the measured shear
tractions on the panel were a significant fraction of the total drag. As the
tablet was smooth and mounted flush with the fixed edges of the panel,
shear tractions on it would presumably have been negligible if the ice
had been free of sediment.

Let us explore the reason for the high frictional forces between the
panel and the dirty ice. Ice is relatively soft, so one might imagine that
a particle imbedded in basal ice would simply be pushed up into the ice
rather than exert a sustained high contact force against the bed. However,
in a temperate glacier, ice at the bed is melting and some or all of the
meltwater may drain away. To replace this loss, ice must flow past the
particle toward the bed. As first recognized by Hallet (1979a), it is this
flow that drives particles toward the bed and maintains high contact forces
between the particles and the bed. This is why glacier beds are striated.
As with flow of ice past obstacles on the bed, flow of ice past particles
toward the bed can be analyzed in terms of regelation and plastic flow.
And as with bumps on the bed, particles of a certain size, ∼0.1 m, are
forced against the bed more vigorously than smaller or larger particles.
The ice moves more readily past smaller particles by regelation and past
larger particles by plastic flow.

“Frictional” drag may also occur in areas where ice becomes tem-
porarily frozen to the bed. Robin (1976) proposed two mechanisms for
forming such cold patches. In the first, which he termed the “heat pump
effect” (Figure 7.6a), water that is formed in the zone of high pressure
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Figure 7.6. Formation of
cold patches (after Robin,
1976). (a) Water that is
squeezed out of the ice on the
stoss side of an obstacle may
drain away and thus not be
available to refreeze in the low
pressure zone at the top of
the obstacle. (b) Small
changes in pressure between
obstacles result in large
changes on tops of obstacles.

on the stoss side of a bump, where the melting point is depressed, is
squeezed out of the ice through veins formed where three ice crystals
abut one another (see Figure 8.1). When this “cold” ice is transported
to the top of the bump, where the pressure is less, any water remaining
in the ice and along the ice–rock interface refreezes, releasing the heat
of fusion and thus warming the ice. The water within the ice is likely
to freeze first, followed by that at the interface. If the amount of water
present is sufficient, enough heat will be released to warm the ice to
the new pressure melting point without freezing all of the water at the
interface. However, if some of the melt water escaped around the bump
as shown in Figure 7.6a, all of the water at the interface may freeze, thus
cementing the glacier to the bed.

The second mechanism discussed by Robin involves local increases
in water pressure in areas between bumps. Because the weight of the
glacier is constant, any such increase will decrease the pressure on stoss
sides of bumps, where the pressure is already higher than average. In
the example shown in Figure 7.6b, the area between bumps is 10 times
the area of the bumps. Thus a 0.1 MPa increase in pressure between
bumps reduces the pressure over the bumps by 1 MPa, resulting in a
∼0.7 ◦C increase in the pressure melting point. The ice, being at the
pressure melting point, was colder while the pressure was high. Thus,
the decrease in pressure leads to freezing of any water present, potentially
including any at the ice–rock interface.
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In addition to increasing the drag between the glacier and the bed,
such cold patches may be an effective erosional mechanism. Rock frag-
ments that have been loosened from the bed but do not project appreciably
above it are separated from the ice by a melt film. As long as the melt
film exists, they may be held in the bed by rock-to-rock frictional forces
that exceed the drag exerted by the ice through the film. However, such
fragments may be entrained if the melt film becomes frozen.

There are also a number of problems surrounding the use of the
simple regelation theory presented above. Nye (1973a) notes, for exam-
ple, that at any point on an obstacle, the melt rate (or freezing rate)
required for movement of ice past that obstacle by regelation is com-
pletely determined by the geometry of the obstacle, and in particular
by the inclination of the face to the direction of motion. The melt rate
determines the heat sources and sinks, so the temperature distribution is
known, and hence also the pressure distribution. The melting and freez-
ing rates also determine the water fluxes required. The awkward fact is
that for normal bed geometries, the pressure distribution predicted by
the simple theory commonly does not provide pressure gradients in the
melt film that are consistent with the water fluxes required. To resolve
this discrepancy, one has to take into consideration spatial variations in
the thickness of the melt film and temperature gradients across it.

Impurities provide a second problem for regelation theory. Water
moving in a melt film over an obstacle on the bed may absorb ions from
the bed or from rock flour between the bed and the ice. Such impurities
lower the freezing point. Thus, the temperature in the lee of the obstacle
is lower than would be the case with pure water, and the temperature gra-
dient through the obstacle is correspondingly reduced (see Figure 7.2).
This reduces the heat flux through the obstacle, and thus reduces Sr.

When impurities collect in the freezing water film in the lee of a
bump, fractionation occurs; some of the impurities are carried away by
the ice that forms, while the rest remain in the melt film. The steady-
state situation is one in which the concentration of impurities in the
film is such that the rate of removal of ions from the lee side during
freezing equals the influx of ions in water coming from the stoss side
of the bump. The impure ice thus formed will melt on the next suitable
bump downglacier around which regelation is occurring, and the result-
ing impure melt water will acquire more impurities. After several such
cycles, the concentration of ions in water on the lee sides of obstacles
becomes high enough to induce precipitation. The most common such
precipitates are CaCO3, but Fe/Mn coatings are also observed. Hallet
(1976a, 1979b), Hallet et al. (1978), and Ng and Hallet (2002) have
made detailed studies of the calcium carbonate precipitates, and Hallet
(1976b) has calculated the degree to which basal sliding over a hypothet-
ical bed composed of sinusoidal waves of a single wavelength would be
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reduced by various concentrations of CaCO3 in the melt film (Figure 7.7).
Note, in Figure 7.7, that the wavelength for which S is a minimum, that
is λc, is reduced from 0.6 m for the case of no solutes to 0.2 m for the
highest solute concentration. This is because solutes reduce the efficacy
of the regelation process, effectively shifting the Sr curve in Figure 7.3
downward.

A further effect of solutes has been observed in regelation experi-
ments with wires (Drake and Shreve, 1973). As the stress driving the
regelation increases, the pressure in the lee of the wire decreases, and
may reach the triple point pressure. At this point a vapor pocket forms
and the temperature cannot be raised further. Because the temperature
on the stoss side can continue to decrease as the pressure increases, the
mean temperature around the wire is less than the far-field temperature,
and heat will flow from the surroundings toward the wire. This increases
the rate of melting, but also means that some of the melt water formed on
the high-pressure side of the wire will not refreeze on the lee side. This
water collects in pockets that are then left behind in the ice, resembling a
wake, as the wire advances. Such a process might occur beneath glaciers
in areas of relatively high basal shear traction.

Finally, the rheology of basal ice may be somewhat different from
that of ice well above the bed, thus altering the role of plastic flow, and
cavities may form in the lee of obstacles. These effects are discussed
next.

Rheology of basal ice

In comparison with ice higher in a glacier, basal ice may have fewer
bubbles, a different solute content, and more sediment. In addition, it
is quite likely to have more interstitial water because strain heating is
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significant here, and there is no way to remove this heat other than by
melting ice. Finally, the constant changes in stress field as the ice flows
around successive bumps may result in zones of transient creep as the
crystal structure adjusts to the changes.

In a unique experiment to study these effects, Cohen (2000) utilized
the facilities of the Svartisen Subglacial Laboratory described above.
He placed an instrumented flat-topped conical obstacle at the base of the
glacier under 210 m of ice. The obstacle was 0.15 m high, and was 0.05 m
in diameter at its top and 0.25 m at its base. Cohen measured forces on
the obstacle, temperatures at many places in it, and the speed with which
ice flowed past it. He then modeled the flow with the use of a fully three-
dimensional numerical model employing the finite-element method
(Chapter 11). Assuming n = 3, he found that the observed forces and ice
speeds could be reproduced in the model with values of B ranging from
0.06 to 0.13 MPa a1/3. A normal value for temperate ice with little or no
interstitial water would be slightly more than 0.2 MPa a1/3 (Figure 4.18).
Because n ≈ 3, the 2- to 4-fold reduction in B results in an 8- to 64-fold
increase in ε̇.

Cohen (1998, 2000) also studied the structure and texture of the basal
ice at the site of the experiment. The ice contained sediment-bearing
lamellae, several millimeters thick, interlaminated with clean ice. This
is very typical of basal ice from both temperate and polar glaciers. Debris
concentrations in the sediment-rich layers at the level of the obstacle were
about 20% by volume. The cross-sectional area of the crystals averaged
∼7 mm2 compared with ∼50 mm2 in the overlying clean ice. There
was no preferred orientation of c-axes, so this could not explain the low
value of B. Cohen also measured the water content of the basal ice and
found that it was ∼2%. A nonlinear extrapolation of the data in Figure
4.18 suggests that even this high a water content cannot explain the low
viscosity. Instead, Cohen suggested that unbound water at the interface
between the ice and the sediment particles acts as a lubricant, enhancing
sliding between the sediment-rich layers and the lamellae of clean ice.
Such interfacial water layers are nanometers in thickness.

Echelmeyer and Wang (1987) also found that ice in the basal zone
of Urumqi Glacier No. 1 in western China deformed much more readily
than clean ice. In this case, the material involved was ice-cemented drift
with an ice content of ∼31% by weight. The temperature was −2 ◦C.
The measured deformation rate would correspond to a value of B of
∼0.04 MPa a1/3. They, too, attributed the softness of the drift to liquid-
like interfacial water layers.

At lower temperatures, dirt appears to strengthen ice, presum-
ably because the amount of unbound water decreases. In a series of
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experiments at −9.1 ◦C, Hooke et al. (1972) found that B was ∼85%
higher in ice with 20 volume percent dispersed fine sand than it was in
clear ice. They also found that B increased approximately linearly with
sand content. They concluded that sand particles inhibited movement of
dislocations, and attributed the strengthening of the ice to development
of dislocation tangles in the vicinity of the particles.

The role of normal pressure

Another effect that is overlooked in the sliding theories discussed above
is that of normal stresses. Budd et al. (1979) carried out some laboratory
experiments in which ice blocks upon which a normal load, N, had been
placed, were dragged across rough rock surfaces. Temperature control
was achieved by immersing the ice and rock surfaces in an ice-water
bath. They found that S ∝ τ 3/N. The cubic dependence on τ might
suggest that plastic flow was the dominant sliding process, and this may
very well have been the case as it was possible for melt water formed at
the interface to escape to the surrounding bath. Thus, heat released by
refreezing of this melt water in the lee of the obstacle might not have
been available. In that case, the only heat available for melting would
be frictional heat and heat conducted from the bath to the interface.
(The interface would be colder than the bath owing to depression of the
melting point.)

More puzzling is the inverse dependence on N; this is what one
expects in a purely frictional system, such as would be provided by
a rock being dragged across a bedrock surface. To the extent that the
ice–rock interface in the experiments was perfectly lubricated by a melt
film, however, we would presume that no tractions could have been sup-
ported parallel to the surface. In this case, the sliding speed should have
been independent of the normal pressure. However, some erosion of the
rock surface occurred during the experiments, and the erosion rate was
proportional to N 2/3. Rock particles entrained in the basal ice and in
contact with the bed would have increased the drag. It seems doubtful,
however, that the small amount of rock debris involved could account
for a significant reduction in sliding speed.

Budd et al. suggested that in studies of real glaciers, N should
be replaced by the effective normal pressure, Ne, or the normal pres-
sure minus the water pressure, a factor first vigorously emphasized by
Lliboutry (1968 and earlier). The importance of water pressure on sliding
speed is now widely recognized (see, for example, Figure 7.8), but, as
we will discuss next, some of the mechanisms involved are not frictional
as first suggested.
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Figure 7.8. Diurnal variations in surface speed on Storglaciären, Sweden,
measured with the use of a computer-controlled laser distance meter. The
distance from a point off the glacier to a stake on the glacier was determined
every 10 min. The dashed line shows corresponding water pressures measured
in nearby boreholes. Only the major peaks in speed are clearly related to water
pressure peaks. (Modified from Hanson et al., 1998. Reproduced with
permission of the author and the International Glaciological Society.)

Cavities and the effect of water pressure

Elevated water pressures increase the sliding speed in two ways: (1) by
increasing the degree of separation of ice from the bed, thereby increasing
the shear traction on parts of the bed still in contact with the ice; and
(2) by exerting a net downglacier force on ice that bridges cavities.
In addition, they weaken any deforming subglacial till over which the
glacier is moving, thus increasing ud (Figure 5.5). Here, we consider the
first two of these. The third will be addressed in connection with our
discussion of subglacial till deformation.

The degree of separation of ice from the bed in the lee of obstacles
is increased when water pressures remain elevated for periods of a few
days or weeks. Let us briefly examine the conditions required for such
separation in an idealized situation. The pressure at the bed is:

P(x, y) = σo + Po(x, y)
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where σ o is the ice overburden pressure and Po(x, y) is a fluctuating
contribution that is positive on the stoss sides of bumps and negative on
lee sides (Iken and Bindschadler, 1986). The basal drag due to this effect
can be expressed in terms of Po, thus:

τb = 1

Ar

∫
Ar

Po(x, y)
∂z

∂x
dx dy (7.11)

Here, the x-axis is directed downglacier and z is normal to the mean bed
and positive upward, so a positive ∂z/∂x is a slope opposing flow, while
negative values indicate downglacier-sloping surfaces. Ar is an area of
the bed large enough to be representative of average conditions.

If we consider a sinusoidal bed of amplitude a and wavelength λ,
Po will vary sinusoidally; Iken and Bindschadler (1986) find that its
maximum amplitude is:

|Po|max =
√

2
〈
P2

o

〉1/2 = λτb

a�
(7.12)

where 〈P0
2〉 is the root mean square of Po. The minimum pressure will

occur at inflection points on the downglacier faces of the undulations,
and is:

Pmin = σo − λτ b

a�
(7.13)

Note that Pmin decreases as τb increases, and hence as the sliding speed
increases. If the water pressure exceeds this minimum value, separation
occurs and cavities will grow to a size determined by the degree to which
the water pressure exceeds Pmin. Roughness elements on the bed that are
bridged by such cavities no longer exert any drag on the ice. The task
of balancing the driving force, ρghα, is thus shifted to places where
the ice is still in contact with the bed. S increases, and this results in
the necessary increase in shear traction on these surfaces. (Note that S
is the independent variable in this situation, while τb is dependent. This
is a subtle but important distinction.)

The second mechanism by which elevated water pressures lead to
acceleration of a glacier is a type of hydraulic jacking. If the subglacial
drainage system is reasonably well connected to cavities on the lee sides
of bumps, increasing water pressures in the drainage system result in
increased water pressures in the cavities. (Pressures in the water film
on the stoss sides of the bumps are always in excess of the overbur-
den pressure, and thus are not affected appreciably by changes in the
(lower) pressure in the cavities.) The water in the cavity thus pushes
upglacier against the bedrock and downglacier against ice. The result is
a downglacier force that is added to the downglacier component of the
body force. Drag forces on the bed must then increase to balance this
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Figure 3. Reproduced with
permission of the authors and
the International Glaciological
Society.)

additional downglacier force. Again, an increase in sliding speed results
in this increase in drag.

Over time spans of the order of hours, cavity sizes cannot change
appreciably because such changes require ice flow. Thus, on bedrock
beds, diurnal changes in speed resulting from input of meltwater or from
storms (Figure 7.8) must be a result, principally, of hydraulic jacking.
Of course, cavity size increases during hydraulic jacking as a result of
the increased flow rate, so if high speeds are sustained the degree of sep-
aration will increase sufficiently to result in a significant further increase
in speed.

The effect of changing water pressures in a lee-side cavity is nicely
illustrated by a numerical modeling study conducted by Röthlisberger
and Iken (1981) (Figure 7.9). When the pressure in the model cavity
was 0.05 MPa lower than the 2.41 MPa necessary to support it, velocity
vectors were toward the cavity (Figure 7.9a), tending to close it. An
increase in pressure of only 0.07 MPa was sufficient to start enlarging the
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cavity at a rate of about 10 mm d−1 (Figure 7.9b). Note, in particular, the
substantial reductions in normal pressure, indicated by the bold numbers
in Figure 7.9b; the decrease of over 1.2 MPa at the crest of the bump could
easily have resulted in freezing there in a real situation, as suggested by
Robin (Figure 7.6b).

Iken (1981) notes that for a given adverse bed slope,β, measured with
respect to the average slope of the bed, there is a critical pressure, Pcrit,
above which the glacier may accelerate without bound. Such acceleration
would occur if (Figure 7.10):

Pwλ sin β > ρgdλ sin(β − α) (7.14)

Here, Pw is the pressure in the cavity and λ sin β is the projected area
of the cavity face, normal to the back slope of the bump, against which
Pw acts. Thus, this is the force trying to push the glacier up the back
slope of the bump. The right-hand side of the equation is the compo-
nent of the body force acting parallel to the back slope of the bump
and in the upglacier direction. Using the expressions for σo and τb

shown in Figure 7.10 and the trigonometric identity sin (β − α) =
sin β cos α − cos β sin α, we obtain:

Pcrit = σo − τb

tan β
(7.15)

On an actual glacier bed consisting of a variety of sizes and shapes of
obstacles, Pcrit would not be exceeded everywhere simultaneously. Thus,
for most situations, Pcrit ≈ σo is probably more realistic.

Working on Findelengletscher (Findelen glacier), Iken and Bind-
schadler (1986) have collected an outstanding set of field data on the
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relation between water pressure and surface speed (Figure 7.11). Here,
the expected exponential increase in speed with increased water pressure,
with water pressure asymptotically approaching the limit σo, is clearly
demonstrated.

Iken and Bindschadler suppose that the character of the bed in front of
Findelengletscher is similar to that beneath the glacier, and thus are able
to calculate sliding speeds using Kamb’s (1970) theory. For wavelengths
and roughnesses that they believe to be appropriate, the theory gives
sliding speeds that are too large, compared with the surface speed, to be
realistic. They attribute the discrepancy largely to failure of the theory
to take rock-to-rock friction into consideration.

Jansson (1995) has studied the relation between effective pressure,
Ne, and surface speed, us, on Findelengletscher and Storglaciären, using
Iken and Bindschadler’s (1986) data (Figure 7.11) for Findelengletscher,
and finds that a relation of the form

us = C N−0.4
e (7.16)

fits the data well (Figure 7.12). Note that τ b does not vary significantly
within either of the two data sets, so its effect is incorporated into the
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Figure 7.12. Relation
between surface speed, us,
sliding speed, S, and effective
pressure, Ne, on
Findelengletscher and
Storglaciären. Dashed lines
show sliding speed estimated
by subtracting internal
deformation from us. (After
Jansson, 1995. Reproduced
with permission of the author
and the International
Glaciological Society.)

constant factor, C, which is more than an order of magnitude higher
on Findelengletscher (Figure 7.12). Even after subtracting the contribu-
tion of internal deformation, estimated with the use of Equation (5.16),
Jansson found that Findelengletscher still seemed to be sliding more than
ten times as fast as Storglaciären under comparable effective pressures.
Such a difference in sliding speed would have resulted in a basal drag
beneath Findelengletscher that was two to three times that beneath Stor-
glaciären, but driving stresses (albeit uncorrected for longitudinal stress
gradients; see Figure 12.7) at the sites of the measurements were nearly
equal on the two glaciers.

More recent data from Findelengletscher (Iken and Truffer, 1997)
serve only to further emphasize our lack of understanding of the effect of
water pressure on sliding. By 1985, three years after the measurements
shown in Figures 7.11 and 7.12, the surface speed had decreased 25%
for comparable water pressures. By 1994 there had been an additional
35% decrease. There have not been any changes in the geometry of the
glacier, and hence in driving stress, that could explain this deceleration.
Iken and Truffer suggest that the basal water system was better connected
in 1982, so that high water pressures reached more subglacial cavities.
Thus, in effect, there may have been more subglacial hydraulic jacks
urging the glacier forward in earlier years.
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Deformation of subglacial till
We have known for decades that ice moving over granular subglacial
materials can deform these materials. (Herein, the term “granular mate-
rial” should be understood to include materials with significant amounts
of clay, although a distinction between granular materials and clays is
usually made in the soil mechanics literature.) Commonly, the granular
material is till, either formed by erosion during the present glacial cycle,
or left from a previous one. Recently it has become clear that a large frac-
tion of the surface velocity of a glacier may be a result of deformation
of such till (Figure 5.5).

Intense interest in the rheology of till dates from work on Whillans
Ice Stream in Antarctica where studies of seismic velocities suggested
that a layer with high porosity, saturated with water under high pressure,
and 2–13 m thick was present beneath the ice (Blankenship et al., 1986).
The high porosity suggested active deformation, facilitated by the high
water pressure. Thus, the high speed of the ice stream, about 450 m a−1,
was attributed to deformation of the till. Subsequent drilling revealed
that the ice stream was, indeed, underlain by till, and also confirmed
that the water pressure was close to the overburden pressure (Engelhardt
et al., 1990). A key question, then, is whether the till is deforming, or
alternatively whether the high water pressures have simply decoupled
the ice stream from the till. Experiments addressing this question will
be described later in this chapter.

More recently, some scientists studying the Quaternary period have
suggested that the large volumes of material found in till sheets in the
midwestern United States and the large volumes of glacigenic material
found in some submarine fans surrounding the Barents Sea could only
have been transported to their present locations in deforming subglacial
till layers (e.g. Alley, 1991; Hooke and Elverhøi, 1996). It is estimated
that the amount of material that could be transported in basal ice or by
subglacial melt streams is too low to account for the volumes of these
deposits in the time inferred to be available for their formation. In the
Barents Sea case, calculated basal melt rates are so high that little material
is likely to have been entrained by basal ice, and yet they are too low to
provide the water volumes required for significant fluvial transport.

Because glacial till is a granular material, its rheology is quite dif-
ferent from that of ice. Granular materials normally have a yield strength
below which they deform only elastically. This yield strength, s, is related
to two physical properties of the material, the cohesion, c, and the angle
of internal friction, ϕ, by the classical Mohr–Coulomb relation:

s = c + Ne tan ϕ (7.17)
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Figure 7.13. Relation
between s and Ne obtained
from a laboratory test on a
sample of till from beneath
Storglaciären (Iverson,
unpublished data). Inset
shows, schematically, how s
may actually vary with Ne at
low effective pressures.

where Ne is the effective normal pressure. To determine c and ϕ, labora-
tory tests are conducted in which the stress needed to initiate deformation
of a material is measured at various effective normal pressures. When s
varies linearly with Ne (Figure 7.13), the slope of the line is tan ϕ, and
the intercept is the apparent cohesion.

The term apparent cohesion is used because detailed measurements
often show that the variation of s with Ne is not linear at low effective
normal pressures, but rather is as shown by the dashed line in the inset
in Figure 7.13. The true cohesion is the value of s at the intercept of
this dashed line with the ordinate. Because the apparent cohesion varies
directly with the true cohesion, however, we normally will not draw a
distinction between the two quantities.

Let us now examine the physics involved in cohesion, and the phys-
ical significance of ϕ.

Cohesion

True cohesion in soils is a consequence of cementation, of electromag-
netic forces between clay particles, and of electrostatic forces resulting
from charge imbalances among ions absorbed on clay minerals (Mitchell,
1993, pp. 125, 373–374). Cementation is the major source of cohesion
in subaerial soils, but would not be significant in continuously deform-
ing subglacial tills. Thus, the magnitude of c in such tills is determined
primarily by the amount and species of clay minerals present.

In situ deforming subglacial tills formed by erosion in the current
cycle of glaciation do not seem to have much clay-sized material unless
the glacier has moved over a bed containing such material. Furthermore,
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most of the clay-sized particles that are present in such clay-poor tills are
not clay minerals. Thus, c may be small in such tills. For example, records
from tiltmeters emplaced in till beneath Storglaciären demonstrate that
this till is deforming. However, only ∼5.4% (by weight) of the particles
in samples collected through boreholes are less than 2 µm, and these
particles are largely quartz and hornblende (Iverson, unpublished data).
Laboratory tests yield c = 8 kPa for this till (Figure 7.13). Similar tests
on till samples collected from beneath Whillans ice stream, containing
∼35% clay, gave c = 3 ± 1.3 kPa (Tulaczyk et al., 2000a). (In this case,
the clay-sized material, which does consist of clay minerals, is inferred
to have been derived from Tertiary glaciomarine sediments (Tulaczyk
et al., 1998; Kamb, 2001).) For comparison, values for silty and clayey
sands are typically between 20 and 75 kPa (Hausmann, 1990).

The absence of clay-sized material in deforming tills is likely to be
largely a consequence of flushing by subglacial streams. In addition,
however, it is noteworthy that the deviatoric stress required to fracture a
grain increases as the particle size decreases, and that in the limit very
fine grains deform plastically rather than fracture into still smaller par-
ticles (Kendall, 1978). That the clay-sized particles present in such tills
tend not to be clay minerals is the result of the absence of subaerial
weathering processes. Higher concentrations of clay-sized particles and
of clay minerals in Pleistocene tills may be a consequence either of sub-
aerial weathering after retreat of the ice, or of incorporation of previously
weathered material over which the ice moved.

Cohesion is not increased by saturation by water unless clay minerals
are present. The well-known fact that the walls of wet sand castles stand
up better than dry ones is, rather, a result of surface tension. Surface ten-
sion effects are present when the sand is wet but pore spaces still contain
air. This is because surface tension is a result of stresses associated with
the air–water interface.

Consolidation

When a granular material accumulates gradually, it compacts under its
own weight. Such a material is called normally consolidated. If an addi-
tional load, such as a shear stress, is then placed on the material, it
becomes overconsolidated. The term overconsolidated is also used to
describe a granular material which, after being normally consolidated,
experiences a reduction in overburden pressure due to erosion or, per-
haps, to melting of an overlying glacier. The highest past effective stress
to which a sample has been subjected is called the preconsolidation
stress.



Deformation of subglacial till 171

b

(a)

N

Motion

(b)

Figure 7.14. Deformation of
a granular medium involves
both (a) dilation as grains
move apart in order to pass
over one another; and
(b) friction between grains
that are constrained to slide
past one another.

The state of consolidation is altered whenever a granular material is
sheared. Thus, for example, if a subglacial till, previously consolidated
by an effective pressure of 100 kPa, is later deformed at an effective
pressure of 30 kPa, the preconsolidation stress is reset to the lower value
(Tulaczyk et al., 2001a).

Angle of internal friction

When an overconsolidated granular material begins to deform under a
shear stress, it must dilate so that individual grains can move over one
another (Figure 7.14a). A normally consolidated material may either
dilate or compact slightly, depending on the granulometry (size distribu-
tion of particles) and the conditions under which it accumulated. Dilation
increases pore space, which is why the high porosity of the till beneath
Whillans Ice Stream suggests deformation.

Grains in such a deforming material must also slide past one another
locally (Figure 7.14b). The forces resisting this sliding motion are fric-
tional. Frictional forces are a consequence of the interlocking of micro-
scopic asperities on the surfaces of the materials (Mitchell, 1993, p. 362).
The maximum shearing stress that can be supported by friction between
two surfaces, τp, is proportional to the effective normal pressure, Ne:
τp = µNe. The constant of proportionality, µ, is called the coefficient of
friction.

Let us define β as the angle, relative to the shear plane, that
particles must ascend during dilation from an overconsolidated state
(Figure 7.14a) and also define ω = tan−1 µ. Then ϕ = β + ω (Iverson
et al., 1996). In granular materials that do not have much clay, ω is typ-
ically 20–25◦ and ϕ is typically between 25◦ and 40◦ (Mitchell, 1993,
pp. 343, 366). Thus, more than half of the resistance to deformation of
such a material is a consequence of frictional forces, while the remain-
der is due to processes such as dilation and crushing (Mitchell, 1993,
p. 401).
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Figure 7.15. Schematic
illustration of the variation of
mean shear stress with time
(or displacement) in a
granular medium that is
sheared at a constant rate.

As a result of the dependence of ϕ on β, ϕ depends, also, on the
granulometry of the material. For example, if spaces between particles
in Figure 7.14a were filled with finer material, a particle could not settle
down into the gap between subjacent particles, and thus would not have
to rise so much to move over its neighbor. Then β would be lower, and
hence so would ϕ. For example, ϕ is 31◦ in the sandy Storglaciären till
(Figure 7.13) and 24◦ in the clay-rich till from beneath Whillans Ice
Stream (Tulaczyk et al., 2000a).

Normal pressures suppress dilation and also force particles into
firmer contact, thus increasing τp. These two factors account for the
dependence of s on Ne.

When a granular material is deformed at a constant strain rate (with
the shear stress, τ , being measured as a function of time or displacement),
τ first increases rapidly to a peak. The initial linear portion of the rise
reflects elastic (recoverable) deformation. The point at which the rise
begins to deviate from linearity is called the yield strength (Figure 7.15).
Subsequent strain reflects irrecoverable visco-plastic deformation. The
peak of the curve is the failure strength. If the material was initially
overconsolidated, τ then declines slightly before reaching a constant
value. The final value of τ , normally reached after a shear strain of the
order of only 10%, is called the residual or ultimate strength (Skempton,
1985). The difference between the peak and the residual strength reflects
the additional stress needed to induce dilation. The decrease from the
peak to the residual strength reflects a decrease in β and hence in ϕ. Once
dilated, the material remains dilated as long as Ne remains constant. Thus,
the stress required for deformation remains constant. (In materials in
which clay-sized particles are abundant (>20%) and are predominantly
clay minerals, a further decline in strength may occur as the platy clay
particles become aligned parallel to the direction of shear.)
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Figure 7.16. Schematic
diagram showing variation of
void ratio with effective
normal pressure. See text for
explanation.

Void ratio

The void ratio, e, is the ratio of the volume of pores, Vp, to the volume of
solids, Vs: e = Vp/Vs. (Note that this is not the same as porosity; porosity
is the percentage of voids in the total volume.) The void ratio varies with
Ne, thus:

e = eo − Cp log
Ne

Neo
(7.18)

where eo is the void ratio at an effective normal pressure of Neo, and Cp

is a dimensionless coefficient of compressibility (e.g. Tulaczyk et al.,
2000a).

As a normally consolidated material accumulates, the void ratio will
decrease as shown, schematically, by the line labeled NCL (normal con-
solidation line) in Figure 7.16. The slope of this line is −Cp. In an
overconsolidated material, the void ratio will be below the NCL. If the
material is sufficiently overconsolidated and is then sheared, resulting
in dilation, the void ratio will increase initially and then reach a steady
value shown by the line labeled CSL (critical state line) in Figure 7.16.
Note that the CSL is below the NCL so if deformation stops, the mate-
rial will not consolidate again unless Ne is increased by more than the
amount indicated by the horizontal spacing between the two lines. If
the load on a consolidated material is relaxed, the material will expand
elastically along a path like the one labeled URL (unloading–reloading
line) in Figure 7.16. Upon reloading, it will follow the same path back to
its original position, and will then begin to consolidate further along the
NCL line. By collecting an undisturbed sample in the field and subject-
ing it to a gradually increasing load in the laboratory, in what is called
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Figure 7.17. Variation in
local pressure with time in a
granular medium, ∼55 mm
thick, as it is deformed in a
ring shear experiment. (Data
courtesy of N. R. Iverson and
T. S. Hooyer.)

a preconsolidation test, this property can be exploited to determine the
maximum effective normal pressure, Ne

max, to which the sample has
been subjected.

Hooyer and Iverson (2002) did such preconsolidation tests on several
samples of till deposited by the Des Moines Lobe, a lobe of the Laurentide
ice sheet that advanced out of North Dakota into Minnesota and Iowa
about 13 800 radiocarbon years ago. Their values of Ne

max ranged from
120 to 300 kPa. These values are quite low, considering the probable ice
thickness, suggesting that pore water pressures beneath the lobe were
high. This, in turn, implies that motion of the lobe could have been largely
by a combination of sliding over the underlying till and deformation of
that till, thus providing an explanation for the considerable extent of the
lobe despite other evidence suggesting that driving stresses were quite
low.

Grain fracture and the granulometry of deforming
subglacial till

If a granular medium is sheared at a constant rate between moving
platens, in one of which there is a pressure sensor that is many times
the diameter of individual grains but much smaller than the platen
itself, the pressure recorded by this sensor varies with time (Figure 7.17)
(Mandl et al., 1977; Iverson et al., 1996). Sometimes it exceeds the mean
normal load on the sample by as much as 25%, while at other times it is
significantly less than the mean. One logical explanation for this is that
grains in the medium become aligned to form bridges such as that shown
in Figure 7.18a. When traced through a granular material of significant
thickness, these bridges are much more complicated than suggested by
the simple sketch in Figure 7.18a; high contact stresses are distributed
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Figure 7.18. (a) A grain bridge, formed by nearly coaxial alignment of several
grains in a deforming granular medium, may fail by: (b) fracture of a grain; or
(c) slip between grains. (d) Stresses at contacts between grains are reduced
when additional particles occupy pore space. Heavy arrows show the shear stress
applied to material, τ , and the component of this stress along a grain bridge, σ .
(Modified from Hooke and Iverson, 1995, Figure 1.)

Figure 7.19. Grain bridges
in a two-dimensional array of
photoelastic disks under shear.
(Adapted from Howell et al.,
1999.)

along a three-dimensional array of routes, forming what could be called
a grain-bridge network (Iverson et al., 1996). The complexity of a two-
dimensional network can be studied by shearing an array of photoelastic
disks and viewing them in transmitted polarized light (Figure 7.19).
Changes in the optical properties of disks under stress makes them
appear lighter. Thus, the bridges show up as chains of lighter disks in
Figure 7.19.

For deformation to occur, grain bridges must fail. Failure may be a
consequence either of fracture of a grain (Figure 7.18b) or of slippage
between grains (Figure 7.18c). Fracture is most likely when two adjacent
grains are of roughly equal size and when the space between them is not
filled with smaller grains that absorb some of the stress. Slip between
grains occurs when resolved stresses parallel to contacts between parti-
cles are greater than τp. Because the deviatoric stress required to fracture
a grain varies with particle size, and because contacts between grains
may have different orientations leading to different resolved stresses,
there must be a wide range of bridge strengths.



176 The coupling between a glacier and its bed

N
um

be
r 

of
 p

ar
tic

le
s

−1

Figure 7.20. Grain-size
distributions in two subglacial
tills that were deforming.
Fractal dimension of each till is
shown. (Modified from Hooke
and Iverson, 1995, Figure 2.)

Grain fracture alters the granulometry of a material. Biegel et al.
(1989) argue that the end product of this process is a granulometry that
maximizes the support that each particle receives, and thus minimizes
stress concentrations capable of causing fracture. For example, forces
between particles in Figure 7.18d are distributed over several contact
points, so local stresses are less likely to reach a level that will cause
fracture. The granulometry that provides maximum support, according
to Biegel et al., is one in which no two particles of the same size are
in contact. Such a material has a fractal particle-size distribution with a
fractal dimension of ∼2.6. That is, if N o is the number of particles of a
reference size, do, then the number of particles of size d, N (d), is:

N (d) = No

(
d

do

)−m

(7.19)

The fractal dimension is m. (As is evident from Equation (7.19), fractal
size distributions appear to be the same at all scales. Thus, if there is one
particle of unit size in a field of view, there will be 10m particles that are
1/10 this size, regardless of the units used in making the measurement.)
Sammis et al. (1987) have shown that gouge from the Lopez Canyon
Fault in California has such a particle-size distribution.

Deforming subglacial tills also have a fractal granulometry, with a
fractal dimension close to 2.9 (Figure 7.20). This suggests that grain
fracture may play an important role in till deformation. That the fractal
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Table 7.2. Sliding speed, till thickness, and strain rate in the till beneath various glaciers

Glacier

Sliding speed,

ub, m a−1

Till thickness,

ht, m ε̇t = ubht, a−1 Reference

Blue Glaciera 4 0.1 40 Engelhardt et al. (1978)

Breidamerkurjökull 24 0.5 48 Boulton and Hindmarsh

(1987)

Storglaciärena 10 0.2 50 Hooke et al. (1992)

Trapridge Glacier 33 0.5 66 Fischer and Clarke (1994)

Whillans Ice Stream 450 6b 75 Alley et al. (1987a)

Whillans Ice Stream 360 2.5–0.5 144–720 Tulaczyk et al. (2001b)

Whillans Ice Stream 360 0.3–0.03 1200–12000 Engelhardt and Kamb

(1998)

Columbia Glacier 1300 0.65 2000 Humphrey et al. (1993)

a Values of ε̇t for Blue Glacier and Storglaciären may be maximum estimates of the critical strain rate as the

deformation is inferred to extend to the till/bedrock interface.
b Thickness of deforming till layer beneath Ice Stream B is inferred on the basis of geophysical data, whereas

other values of ht are based on more direct measurements.

dimension is larger than the ideal of 2.6 is attributed to the production
of fine material by abrasion, a process that would be inhibited by the
higher effective normal pressures characteristic of deformation in active
faults (Hooke and Iverson, 1995). However, more work is needed fully
to understand the processes that give rise to fractal size distributions.

Strain rates in subglacial till

Estimates of strain rates in till based on field data all exceed 40 a−1

(Table 7.2). Many of these may be minimum estimates as observations,
discussed at greater length below, suggest that deformation is commonly
concentrated in shear zones. The thickness of these shear zones may be
limited by the length of grain-bridge networks. The length of a network
may be limited if stress build up is slow and multiple small adjustments
between particles relieve stresses. Thus, thicker shear zones may indicate
higher rates of deformation.

Till rheology – the Coulomb plastic model

Our discussion thus far has focused on the strength of granular materials.
There is a considerable volume of literature on this topic because of the
interest in the conditions under which slopes fail, leading, for example,
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to landslides or the collapse of highway embankments. In contrast, stud-
ies of the time-dependent behavior of deforming granular materials are
less common. Furthermore, they often deal with materials containing
an abundance of clay minerals, as clays are an important constituent of
many slow-moving landslides.

As noted, failure occurs when the failure strength of a material
is exceeded (Figure 7.15). We, however, are interested in the rate of
steady deformation some time after failure. Thus, the relevant mea-
sure of strength for studies of rheology is the residual strength. More
specifically, we need to know whether the residual strength increases
with strain rate, other factors such as effective pressure, granulometry,
mineralogy, and so forth, remaining constant (Kamb, 1991). If such an
increase occurs, the strain rate may be a unique function of the applied
stress, and a “flow law” for till may exist. If the residual strength does
not increase with strain rate, till is a perfectly plastic substance; once the
residual strength is reached, it will deform at whatever rate is necessary
to prevent the applied stress from rising above that strength.

In Chapter 4 we discussed possible mechanisms that might control
the rate of deformation of ice. Let us now do the same for till. The princi-
pal processes we have discussed are dilation and failure of grain bridges.
Dilation occurs early in the deformation process, and once the medium is
dilated it remains so. Thus, dilation should not be rate controlling, and in
the absence of repeated formation of grain bridges, we might expect the
material to deform steadily and homogeneously, once the failure strength
is exceeded. Grain bridges do form, however, and deformation proceeds
only when a bridge fails. This suggests that failure of grain bridges may
be the rate-controlling process in till deformation. If this is the case, and
if the formation of grain bridges is stochastic in time and space, then
a mechanistic rheological model for till deformation should be based
on these processes. Analysis should focus on the frequency of failure
of grain bridges and on the amount of deformation resulting from each
failure.

Studies of processes that are thermally activated, such as the creep of
ice (Equation (4.6)), provide a conceptual framework for such a model.
In thermally activated processes, the process operates or proceeds when
a certain energy barrier is exceeded. In the creep of ice, the barrier is
the energy needed to break an atomic bond, thus allowing movement of
a kink in a dislocation (Figure 4.6). Fundamental to the theory of ther-
mally activated processes is a premise, based on principles of statistical
mechanics, that the probability distribution, p(f ), of energy levels, f, in
atomic bonds is given by:

p( f ) = Ae−α f (7.20)
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where A and α are constants (Glasstone et al., 1941, p. 159). In containers
filled with beads and subjected to a normal load, the distribution of force
levels at intergranular contacts is, indeed, given by Equation (7.20) with
f now defined as the force at such contacts (Liu et al., 1995). Thus, it
seems plausible that the theory of thermally activated processes can be
adapted to the analysis of deformation of granular materials. Mitchell
et al. (1968) and Mitchell (1993, pp. 349–361) have used this approach,
and conclude that a relation of the form:

ε̇ = �eγ τ (7.21)

should describe the steady strain rate in a granular material. Here, τ is
a mean shear stress sufficient to cause deformation and thus maintain
dilation, and � and γ are constants presumably dependent upon the
strength and granulometry of the material.

A flow law for till that is of this form is:

τ

τo
= 1 + b ln

ε̇

ε̇o
(7.22)

(e.g. Mitchell, 1993, Figure 14.15). This relation is consistent with lab-
oratory data. Here, τ o is normally taken to be the stress at a reference
strain rate, ε̇o; τ o must be greater than s (Equation (7.17)) as the material
is deforming. In other words, the Coulomb yield criterion must be met.
Thus, for example, if we choose ε̇o to be some constant low strain rate,
independent of Ne, we can write τ o = s + �s where �s is the amount
by which τ o must exceed s to yield that ε̇o. The reference stress, τ o,
depends on Ne; an increase in Ne increases τ o and therefore decreases ε̇

as expected.
In engineering tests on sandy materials preconsolidated to 392 kPa,

b ≈ 0.013 (Nakase and Kamei, 1986, Figure 14), whereas for materials
with significant quantities of clay, it is ∼0.043 (Mitchell, 1993, Figure
14.15). Tests on till from beneath Whillans Ice Stream yielded values
that ranged from 0.10 for samples preconsolidated at 35 kPa to 0.002 for
samples preconsolidated at 343 kPa (Figure 7.21) (S. Tulaczyk, written
communication, 8/03). Nakase and Kamei’s value is broadly consis-
tent with the latter (Figure 7.21). Tulaczyk et al. (2001a) found that the
preconsolidation stresses of samples from beneath Whillans Ice Stream
were typically 10–20 kPa, so a value of b of ∼0.1 is probably appropriate,
at least for these fine-grained tills.

Treating ε̇o as a constant, Equation (7.22) may be written:

ε̇ = k1e
τ

bτo (7.23)

where k1 = ε̇oe−1/b. Comparing this with Equation (7.21) we see that
k1 = � and 1/bτ o = γ . Based on the experimental values of b, it is clear
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Figure 7.21. Effect of preconsolidation stress on b. Data are based on
undrained triaxial tests on samples of till from beneath Whillans Ice Stream
(Tulaczyk et al., 2000a). Values of b were kindly calculated by Tulaczyk (written
communication, 8/03). Error bars are estimated from plots supplied by Tulaczyk.
Line is drawn by eye, ignoring points with largest uncertainties. Point labeled
N&K is from Nakase and Kamei (1986).

that strain rates should increase substantially with only a small increase
in τ , as Kamb (1991) recognized.

Such a dependence of ε̇ on τ in till is also consistent with field
measurements on Storglaciären (Hooke et al., 1997). The measurements
were made by inserting instruments into till beneath ∼120 m of ice, using
boreholes through the glacier to gain access to the till. One instrument
consisted of a cylinder with conical ends (the “fish”) that was dragged
through the till by a wire connected to a load cell. The force required to
drag the fish varied between about 407.4 N and 408.6 N during a period of
several days when the speed of the glacier varied diurnally (Figure 7.22).
The variations were basically in phase with those in Ne, which is con-
sistent with Equation (7.17). However, the force was not related to the
surface speed. As the speed with which the fish was pulled through
the till should have varied in phase with the surface speed and the
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Figure 7.22. Relation among drag on a cylinder pulled through subglacial till
beneath about 120 m of ice, surface speed, water pressure in a nearby borehole,
and shear strain rate in the till. Data are from a period of about 10 d in August,
1992, at a time when all parameters were varying diurnally, and are “stacked” by
averaging values obtained at the same time of day each day. (After Hooke et al.,
1997. Reproduced with permission of the International Glaciological Society.)

variations should have been of similar amplitude, it appears that the
force on the fish did not depend significantly on its speed through the
till, and hence did not depend on the strain rate in the till immediately
adjacent to it. This is consistent with a constitutive relation of the form of
Equation (7.23).

If till is a Coulomb-plastic material (Equations (7.17) and (7.23))
one would also expect that increases in Ne would strengthen the material
and thus decrease the strain rate, and conversely. This may be seen in
many of the small diurnal variations shown in Figure 7.23 (see especially
July 28–August 1 and August 7–10). (Because changes in pressure in a
borehole take time to penetrate into the subglacial till, ε̇ lags Ne slightly
in these diurnal signals.)

The alert reader may have noticed that the variations in Ne and ε̇

in Figure 7.22 are in phase, contrary to what one would expect in a
Coulomb-plastic material. The reason for this seemingly contradictory
behavior becomes apparent if one notes that Ne averages ∼0.1 MPa
in Figure 7.22, but is >0.4 MPa during the diurnal fluctuations in
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Figure 7.23. Relation among shear strain rate in till beneath Storglaciären,
water pressure in a nearby borehole, and surface velocity. (Modified from
Iverson et al., 1995.)

Figure 7.23. Low values of Ne correspond to high water pressures, and
at high enough water pressures the coupling between the glacier and the
bed may be reduced, thus decreasing the shear stress applied to the till
by the ice, and hence ε̇ in the till. The in-phase variations of ε̇ with Ne

in Figure 7.22 are attributed to such partial decoupling. The physics of
coupling is discussed further below.

Because the strength of granular materials appears to increase
slightly with strain rate, it is pseudo-plastic rather than perfectly plastic.
However, the rate of increase is so small that referring to such materials
as Coulomb-plastic is justified.

Tulaczyk et al. (2000a) have suggested that the increase in strength
with increased strain rate is the result of a process called dilatant hard-
ening. Dilatant hardening occurs when a sample dilates but the water
content cannot vary; the dilation then reduces the pore pressure, result-
ing in an increase in Ne, and hence in strength (Equation (7.17)) (Lambe
and Whitman, 1969, p. 445). In their tests of till samples from beneath
Whillans Ice Stream, Tulaczyk et al. used undrained tests (in which the
water content does remain constant) and found that the pore pressure did
indeed decrease when the strain rate was increased. They attributed this
to dilation and dilatant hardening.
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Figure 7.24. Experimentally
determined relation between
stress and strain rate in
granular media (solid line)
compared with a commonly
used viscous constitutive
relation for till rheology
(dashed line).

Alternatively, one could attribute the increase in strength to the phys-
ical nature of frictional processes. As noted above, friction results from
interlocking of asperities on two surfaces that are in contact with one
another. Failure of a contact between two interlocked asperities may
occur by fracture or by dislocation creep within the asperities. In the
latter case, a frictional interface that initially appears to be stable may, in
time, slip. Thus, if the stress builds up slowly on such a contact, it may
eventually fail at a stress that could be sustained, at least briefly, if the
stress increased rapidly.

Till rheology – the viscous model

In a number of papers (see, for example, Alley et al., 1987b; Boulton and
Hindmarsh, 1987; MacAyeal, 1989), a constitutive relation of the form:

ε̇ = k2
(τ − τc)m

N p
e

(7.24)

has been used to describe till rheology. Here, k2 is a constant and τ c is a
critical shear stress below which no deformation occurs. Some authors
assume that τ c = 0, and others let τ c = s (Equation (7.17)). This relation
is entirely intuitive; there are no reliable field or laboratory data that
support it.

In Equation (7.24), it is normally assumed that 1 < m < 2, so
the sensitivity of ε̇ to τ is far less than suggested by Equation (7.23).
This is illustrated in Figure 7.24. The other major difference between
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Equations (7.23) and (7.24) is in the way in which the effective pressure
is incorporated. As τ o (Equation (7.23)) must be greater than s by an
amount sufficient to deform the material at a rate ε̇o, τ o must vary directly
with Ne, albeit in a poorly constrained and perhaps nonlinear way. Thus,
lower effective pressures increase ε̇. In Equation (7.24), lower effective
pressures also increase ε̇, but in this case the influence is through both
the explicit effect in the denominator and the implicit effect on τ c in the
numerator.

Viscosity is defined as τ/ε̇ (Equation (2.17)) implying a linear depen-
dence of strain rate on stress. Equation (7.24) implies a linear (m = 1) or
mildly nonlinear (1 < m ≤ 2) dependence of ε̇ on τ , and thus is generally
referred to as the viscous model of till deformation.

Sliding of ice over till

At sufficiently high water pressures, or low effective pressures, a glacier
on a deformable bed may become partially decoupled from the underly-
ing till. This may result in a decrease in ε̇ despite the decrease in Ne (which
should weaken the till). As discussed above, this appears to be what hap-
pened during the experiment shown in Figure 7.22. Partial decoupling
also appears to have occurred during the three periods of low effective
pressure on about July 26, August 3, and August 12 in Figure 7.23.
Other examples are discussed by Iverson et al. (1995) and Hooke et al.
(1989, 1997).

The process of decoupling is rather complicated. As the water pres-
sure rises, it seems likely that a glacier will begin to slide over the till
in some places whereas in others, clasts that are gripped in the ice and
project down into the till will continue to plough through it, causing
local bed deformation. Evidence for such ploughing is occasionally pre-
served in tills in deglaciated areas (Clark and Hansel, 1989). Because of
the extent of the local bed deformation, the stress exerted on a clast by
the ice, τ c, must be ∼5 times the shear strength of the till, s, in order
for ploughing to occur. Thus, if fc is the fractional area of the interface
covered by ploughing clasts, τ i is the strength of the interface between
the ice and the till, and τ ic is the strength contributed by ploughing clasts,
we have:

τic = fckcτc

where kc ≈ 5, as noted (Tulaczyk, 1999).
The total strength of the interface must include any traction, τ im,

between the ice and macroscopically flat parts of the boundary, thus:

τim = (1 − fc)kims
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where 0 < kim < 1.0. Physically, kim → 1 as the roughness of the ice–till
interface approaches the roughness of the failure planes in the till, and
kim → 0 as the ice–till interface becomes smooth. Thus, in this idealized
model the total strength of the interface is (Tulaczyk, 1999):

τi = (1 − fc)kims + fckcτc (7.25)

Two factors that affect kim need to be considered at this point. First,
where melting is occurring, there will be a water film between the base of
the glacier and the till. The thicker the water film, the lower the value of
kim. Secondly, under high effective pressures, ice can regelate into pore
spaces in the till (Iverson, 1993). Thus, at high effective pressures the ice
base will conform to the till surface better than at low effective pressures,
so kim will be higher at high effective pressures. This infiltration of ice into
till is inhibited, however, by surface tension between water and sediment
grains in capillary spaces. Such surface tension effects are particularly
important in fine-grained tills with small pore spaces, so kim will be lower
for such tills.

In summary, Equation (7.25) shows that the strength of the interface,
τ i, will be higher when the till is coarse as fc is then larger and ice will
be able to penetrate into pore spaces more readily, increasing kim. The
strength will also be higher when the effective pressure is higher and
the water film thinner. Tulaczyk has shown that τ i is likely to be less
than s in fine-grained tills like those underlying Whillans Ice Stream
but greater than s in coarse-grained tills like those common to most
valley glaciers. Thus, the preferred mode of basal motion is likely to be
sliding with ploughing in the former, and coupling with more pervasive
till deformation in the latter. Extensive sliding would limit sediment
transfer in deforming till sheets, so this again raises the question of how
the large volumes of till deposited by the Pleistocene ice sheets were
moved. Deformation concentrated in shear zones at depth in the till,
discussed below, may provide an answer.

Ploughing

The ploughing process has been studied by Brown et al. (1987). They
considered spherical clasts of radius R, embedded half in the ice and
half in the till, and suggested that the force required to push such a
clast through the till scales with the cross-sectional area of the clast;
that is, with R2. As this force must be provided by the ice, and as the
ice is at the pressure melting point, regelation and plastic flow must
be occurring around the clast. As with obstacles on a glacier bed, the
stress that the ice exerts on the clast will be low for both small clasts
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Figure 7.25. Stress exerted
by ice on a spherical clast half
embedded in till. Curves are
for ice sliding at 25 and
100 m a−1 and were
calculated with the use of
Equation (2) of Brown et al.
(1987).

accommodated largely by regelation and for large clasts accommodated
largely by plastic deformation (Figure 7.25). Whether a clast ploughs or
not will be dependent upon the strength of the till, which is controlled
by the effective pressure. However, based on Figure 7.25, it appears that
clasts in the 20–40 mm size range will be the first to move.

Depth of deformation in a subglacial till

Let us now address two questions, to which there are currently no firm
answers: (1) what controls the thickness of the layer of subglacial till
that can be mobilized by an overriding glacier; and (2) what is the shape
of the velocity profile through this layer?

Evidence for thick layers of deforming till is ambiguous. As noted,
Alley (1991) and Hooke and Elverhøi (1996) have suggested that, dur-
ing the Pleistocene, huge amounts of sediment must have been moved
long distances in deforming subglacial layers of till. This would seem to
require layers at least a few meters thick. However, studies of cores of sub-
glacial till obtained through boreholes that penetrated the kilometer-thick
Whillans Ice Stream revealed little evidence for deformation (Tulaczyk
et al., 1998; Kamb, 2001, p. 172). Clasts were not striated and there were
no distinct shears or other visible macroscopic or microscopic fabrics or
textures suggestive of deformation. On the other hand, diatoms of differ-
ent ages were mixed together, requiring some sort of deep deformation
process.
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Analysis of the variation of τ and Ne with depth provides a basis
for calculating the thicknesses of deforming layers and velocity profiles
in them. Beneath a glacier of thickness h with surface slope α and a
horizontal bed:

τ = ρighα + ρtgzα = τb + ρtgzα
(7.26)

Ne = Neb + (ρt − ρw)gz

Here ρ i, ρ t and ρw are the density of ice, the bulk density of the till, and
the density of water, respectively, subscript b refers to the conditions at
the ice–till interface, and z is measured downward from the interface.
Alley (1989b) refers to the second of Equations (7.26) as a hydrostatic
variation of Ne with depth because the pressure in the water increases as
ρwgz. Assuming ρ t ≈ 2000 kg m−3, and taking derivatives with respect
to z yields:

dτ

dz
= ρtgα ≈ 20α kPa m−1

(7.27)
d Ne

dz
= (ρt − ρw)g ≈ 10 kPa m−1

For typical surface slopes, the rate of increase of Ne with depth clearly
exceeds that of τ , so the strength of the till should increase faster than the
applied stress. Thus, the decrease in ε̇ in the till is likely to be nonlinear,
and deformation will cease at the depth at which s exceeds τ .

Elaborating on this approach, Iverson and Iverson (2001) calcu-
lated the velocity profile shown in Figure 7.26. In their model, displace-
ments are assumed to occur across shear zones several millimeters thick
when grain bridges fail. Their analysis is based on the assumptions that:
(1) the deforming part of the till can be viewed as consisting of a stack
of shear zones, (2) slip on any given shear zone occurs intermittently,
(3) the frequency of slip is the same on all shear zones, and (4) the
amount of slip on a shear zone during a given event decreases with depth
owing to the relative rates of change of Ne and τ with depth. By varying
some of their less well-constrained parameters within reasonable limits,
they were able to match a profile measured in a coarse-grained till quite
well.

In situations in which water is produced by melting at the ice–till
interface and is lost downward by flow through a permeable substrate, the
hydraulic head must decrease downward through the till. Then dNe/dz
will be higher than in the purely hydrostatic case represented by the
second of Equations (7.27), and the deforming layer should be thinner
than otherwise (Alley, 1989b).

On the other hand, Tulaczyk et al. (2001a) found that in sediment
cores, up to 3 m long, obtained from beneath Whillans Ice Stream the
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in a deforming subglacial till
calculated by Iverson and
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void ratio did not vary with depth. This suggests that dNe/dz = 0
(Figure 7.16). Alley (1989b) refers to this as a lithostatic variation of
Ne with depth because the pressure in the water increases as ρ tgz. Such
a situation would seem to be possible only in situations in which the per-
meability of the till was quite low and the till was at least occasionally
deforming to depths of at least 3 m.

To actually measure the ratio of till deformation to sliding at an
ice–till interface, Engelhardt and Kamb (1998) implanted stakes in the
till, again through boreholes drilled for the purpose. As the ice moved
away from a stake, a wire attached to the stake was pulled off of a
spool anchored in the basal ice and the rate of rotation of the spool was
measured. In such a “tethered-stake” experiment on Whillans Ice Stream,
the top of the stake was believed to be about 30 mm below the base of the
ice, and the rate of relative motion between the spool and the stake was
∼1.0 m d−1, or 83% of the surface speed. Thus, sliding and deformation
in the top 30 mm of the till accounted for most of the ice movement. The
remaining 17% could have been either internal deformation of the ice or
deformation deeper in the till layer.

In a similar tethered-stake experiment on Bindschadler Ice Stream,
however, the sliding speed, including deformation in the upper 0.34
m of the till, was only 10%–20% of the 1 m d−1 surface speed
(Kamb, 2001). As the driving stress was too low to cause significant
internal ice deformation, Kamb attributed the remaining 80%–90%
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of the motion to deformation below the level of emplacement of the
stake.

In another experiment, observations in a tunnel beneath the glacier
Breidamerkurjokull in Iceland demonstrated that within about 0.5 m of
the glacier sole deformation of the till was pervasive, while at greater
depths it was localized in shear zones (Boulton and Hindmarsh, 1987).
Such shear zones are characteristic of virtually all laboratory experiments
on granular materials, and similar zones are a well known characteristic
of granular materials that have been overridden by glaciers (Brown
et al., 1987; Menzies and Shilts, 1996, pp. 48–49).

Evidence for still deeper deformation comes from an experiment
on Black Rapids Glacier in Alaska. Truffer et al. (2000) emplaced tilt-
meters at depths of ∼0.1, 1, and 2 m in a 7-m thick till layer beneath the
glacier. The tiltmeters recorded little deformation of the till in 410 days,
despite the fact that the base of the glacier and the 2 m of till containing
the tiltmeters moved 35–45 m during that time interval. They concluded
that the motion must be along one or more shear zones at greater depths
in the till.

Iverson et al. (1998) have proposed a mechanism for distributing
deformation through a significant thickness of till as observed in the
upper 0.5 m of till at Breidamerkurjokull. They suggest that deformation
starts in a thin shear zone which then dilates. Dilatant hardening then
strengthens the zone, causing the locus of deformation to shift. The
process is facilitated by frequent water-pressure fluctuations because a
dilated zone will begin to consolidate back to its original porosity when
the water pressure drops (Figure 7.16), so the next episode of deformation
may initiate a shear zone in a quite different place.

Tulaczyk (1999) has suggested two possible physical explanations
for concentration of deformation in a single shear zone at depth, as
inferred from the Black Rapids data.

(1) If the basal water pressure fluctuates, alternating waves of high and
low pressure will penetrate into the till much as seasonal temperature
waves penetrate into the surface of a glacier (see Figure 6.8). The
rate at which these waves penetrate depends on the hydraulic diffu-
sivity of the till. If we presume that the till is homogeneous and that
deformation occurs in a relatively narrow shear zone at the weakest
point in it – namely the point where the water pressure is highest –
then this shear zone will migrate downward through the till with
the pressure wave. According to the calculations of Tulaczyk et al.
(2000a), diurnal pressure fluctuations could distribute shear through
∼0.07 m of till like that from the bed of Whillans Ice Stream and
through over a meter of a coarser till typical of valley glaciers.
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(2) Alternatively, because the peak strength of a non-deforming till is
greater than the residual strength (Figure 7.15), shear zones may not
migrate readily. In this case, the strength of the till may be determined
by the maximum effective pressure that the material experiences dur-
ing a water pressure cycle. A shear zone could develop and persist at
the depth at which this maximum pressure was lowest. Till above this
level would move as a plug without significant internal deformation.

In the case of Black Rapids Glacier, calculations suggested that the
lowest maximum effective pressure in an annual cycle would be between
3.5 and 4.6 m below the ice–till interface (Truffer et al., 2000). Thus,
Tulaczyk’s second explanation could explain the lack of deformation in
the uppermost 2 m of this till.

In summary, first-order models suggest that layers of deforming till
should be relatively thin, particularly in fine-grained tills, and some
measurements support this interpretation. However, other observations
suggest that layers may be meters thick in certain situations, and more
sophisticated models are emerging that explain such layers. The seem-
ingly contradictory evidence from till from beneath Whillans Ice Stream,
in which diatoms of different ages were mixed but few deformation struc-
tures were found, may be explained by the cushioning effect of soft clay
minerals, which comprise ∼35% of the matrix of this till. Cushioning
would inhibit formation of striations and other deformation structures.

Stability of ice streams
As we have noted previously, the driving stress in ice streams is typically
only 10–20 kPa, but the strength of the subglacial till layer is significantly
lower so only 20%–50% of the driving stress is supported by the bed
(Raymond et al., 2001). Because the stress supported by the bed is so
small, one might expect that the stability of ice streams would be sensitive
to conditions in the bed. Tulaczyk et al. (2000b) and Raymond (2000)
have studied this question. They focus on the melt rate, ṁ, at the bed,
which is given by:

ṁ = τbub + G − Kβo

Lρi
(7.28)

Here τ b is the basal drag (which equals the strength of the till), ub is the
sliding speed, τ bub is the frictional heat production (see Equation 6.37),
G is the geothermal heat flux, and Kβo is the heat conducted away from
the interface upward into the ice. G and Kβo are constant for any given
location, and as τ b is a function of ub, ṁ can be plotted against τ b. This
is done in Figure 7.27 for three possible values of G. It turns out that
τ bub has a maximum at τb = (1/4)τd, where τ d is the driving stress.
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Figure 7.27. Variation of basal melt rate with shear stress and geothermal flux
for a cross section of Whillans Ice Stream. (Modified from Tulaczyk et al., 2000b,
Figure 6. Reproduced with permission of the author and the International
Glaciological Society.)

Tulaczyk et al. (2000b) obtained this result by partitioning the driving
stress between the ice stream margins and the bed, and considering the
internal deformation that would result from the drag exerted by both the
margins and the bed.

A steady state water balance exists when ṁ = dr, where dr is the rate
of loss of meltwater either by drainage along the bed or by advection in
the deforming till layer. Let this state be represented by the horizontal
dashed line in Figure 7.27. In this state, any decrease in void ratio, e,
would increase τ b and decrease ub, and conversely. When the steady state
is one in which τb < (1/4)τd, as at A in Figure 7.27, it turns out that the
increase in τ b exceeds the decrease in ub and more meltwater is formed,
thus increasing e and restoring the steady state (Table 7.3, Case 1).
Similarly, an increase in e decreases τ bub and hence ṁ, once again restor-
ing the balance (Case 2). Thus A is a stable steady state. In contrast, if
the steady state is one in which τb > (1/4)τd, as at B in Figure 7.27, an
increase in e results in an increase in τ bub because ub increases faster
than τ b decreases. Thus, in this case ṁ increases and e then increases
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Table 7.3. Effect of changes in void ratio, e on ṁ in
Figure 7.27

Stable: τ b < (1/4) τ d

(1) ↓e → ↑ τ b > ↓ ub → ↑ τ bub → ↑ṁ→ ↑e

(2) ↑e → ↓ τ b > ↑ ub → ↓ τ bub → ↓ṁ→ ↓e

Unstable: τ b > (1/4) τ d

(3) ↑e → ↓ τ b < ↑ ub → ↑ τ bub → ↑ṁ→ ↑e → τ b < (1/4) τ d

(4) ↓e → ↑ τ b < ↓ ub → ↓ τ bub → ↓ṁ→ ↓e → frozen bed

Up and down arrows represent increases or decreases.

Horizontal arrows may be read as “leads to” or “results in”.

further, driving the system back toward A (Case 3). Similarly, a decrease
in e decreases τ bub, thus decreasing ṁ and driving the system to a frozen
bed condition (Case 4). In other words, there appear to be two stable
states, one in which the bed is frozen and one in which it is at the melting
point, ṁ = dr, and τb < ( 1

4 )τd.
Raymond (2000) has considered an alternative situation in which a

change in ṁ changes dr by changing the thickness of the water layer, δ,
separating the ice from the till. An increase in ṁ increases δ and hence
dr. He defines two possible states. In the first, an increase in δ increases
ub more than it decreases τ b, so ṁ increases, and conversely. He refers to
this state as drainage limited because if the rate of increase in drainage
exceeds that in ṁ the situation is stable; otherwise it is unstable. In the
second state, the increase in δ decreases τ b more than it increases ub, so
ṁ decreases. He refers to this as production limited. This state is always
stable.

Also meriting consideration are the relative magnitudes of τ bub, G,
and Kβo. If the heat produced by straining, τ bub, is greater than the
heat loss to the overlying ice, Kβo, no geothermal heat is necessary to
maintain pressure melting conditions at the bed. This appears to be the
case beneath Bindschadler, Kamb, and MacAyeal Ice Streams (Raymond,
2000). However, if τ bub < Kβo, geothermal heat is required to maintain
sliding. This seems to be the case beneath Whillans Ice Stream. Indeed,
at the lower end of Whillans Ice Stream the required value of G is close
to the measured value, suggesting that freezing may be occurring there.
This could account for the deceleration of this part of the ice stream
documented by Bindschadler and Vornberger (1998).

In some cases, water input from upglacier may be crucial for main-
taining a stable state. Consider a unit area of the bed, say 1 km2. Clearly,
dr = qout − qin, where qout and qin are the water fluxes into the control area
on its upglacier side and out of it on its downglacier side. If qin decreases
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without a corresponding decrease in qout, e (or δ) will decrease, thus
increasing τ b. For small increases in τ b, τ bub will increase (Case 1),
thus increasing ṁ to compensate for the decrease in qin. However, if the
decrease in qin is large enough, the increase in ṁ may not be sufficient
to compensate for it. In this case, τ b would rise above its unstable equi-
librium value at B and the ice stream would shut down. Thus, Retzlaff
and Bentley’s (1993) speculation that the shut down of Kamb Ice Stream
might be the result of changes in subglacial drainage in the area where
Kamb and Whillans Ice Streams are close together (Figure 5.20) seems
well founded.

The dashed curves in Figure 7.27 illustrate the sensitivity of the
ice streams to the geothermal flux. If the flux were slightly lower the
ice streams would not exist, while if it were higher, they might be even
more common.

The extreme sensitivity of ice streams to external conditions is
illustrated by a recent experiment at the mouth of Whillans Ice Stream.
Bindschadler et al. (2003) used Geographical Positioning Systems (GPS)
units to measure the movement of the ice stream at 5-min intervals. They
discovered that movement occurred in pulses lasting 10–30 minutes sep-
arated by periods of quiescence lasting 6–18 h. The pulses were in phase
with the diurnal ocean tidal cycle (one high tide per day) often occurring
just after high tide and just before low tide. The event just after high tide
is attributed to strain accumulated over about 18 h since the last event.
The event just before low tide is attributed to reduced back pressure from
the sea. Clearly, very small variations in stress can cause failure, either
of the ice–till interface or of the till itself.

Effect of a frozen bed
When the temperature at the base of a glacier is below the pressure melt-
ing temperature and the ice is frozen to the bed, it is usually assumed that
sliding cannot take place. For most purposes, this is a reasonable assump-
tion. However, Shreve (1984) showed that a liquid-like layer, present at
interfaces between ice and foreign particles (including a glacier bed),
could result in regelation of ice past bumps on the bed at subfreezing tem-
peratures. The presence of the liquid-like layer is commonly attributed to
a change in chemical potential of water adjacent to the foreign surface,
much as molecules of a solute change the chemical potential of the water
in which they are dissolved (Gilpin, 1979). For a driving stress of 0.1 MPa
and a bed roughness spectrum measured by Nye (1970, pp. 386–387),
Shreve calculated sliding rates ranging from 3.5 mm a−1 at −20 ◦C
to 35 mm a−1 at −5 ◦C. Echelmeyer and Wang (1987) measured a slid-
ing speed of 180 mm a−1 at −4.6 ◦C under Urumqi Glacier No. 1 in
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Figure 7.28. Hypothetical
distribution of frozen and
thawed areas within a
transition zone from a region
of frozen bed to one of
thawed bed. (Modified from
Hughes, 1992, Figure 14.)

western China. After adjusting for differences in driving stress and bed
roughness, this speed was consistent with Shreve’s theory. These sliding
speeds are too low to be of significance glaciologically. However, over a
period of years they could result in striations, a possibility which should
give nightmares to glacial geologists who commonly interpret striations
as evidence of a thawed bed.

As ice moves from a region of frozen bed to one of thawed bed,
the sliding speed increases, resulting in geomorphic features like the
transverse till scarps (Figure 6.17) and ribbed moraine (Figure 6.18)
described in Chapter 6. However, as suggested in Chapter 6, the transition
from frozen to thawed bed occurs in a broad zone, not along a single line.
Within the transition zone, hill tops and areas underlain by materials with
lower thermal conductivity may remain frozen while intervening areas
reach the pressure melting point. Thus, there is a gradual transition from
completely frozen to completely thawed (Figure 7.28). As the fraction of
the bed that is wet increases, the sliding speed increases, but the increase
is nonlinear. Even when 85% of the bed is thawed, ub is still only 25%
of the speed when the bed is completely thawed, ubmax (Figure 7.29).
However, as the fraction of the bed that is frozen decreases, frictional
heating from high shear tractions on the remaining frozen areas should
raise temperatures fairly rapidly.

Summary
In this chapter we have explored the coupling between glaciers and both
rigid and deformable beds. In the former, the dominant processes by
which ice moves past irregularities on the bed are regelation and plastic
flow. As small obstacles are accommodated more readily by regelation
and larger obstacles by plastic flow, there are, theoretically, obstacles
of intermediate size that exert more drag on a glacier than do larger or
smaller ones, at least if the roughness is constant. This intermediate size
has come to be called the controlling obstacle size, although on a glacier
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bed with a continuum of obstacle sizes and roughnesses, the concept of
a “controlling” size becomes less relevant.

Theoretically, the speed with which ice moves past obstacles by
regelation is proportional to τ b, whereas for plastic flow it is proportional
to τ 3

b . When both processes are involved, S ∝ τ 2
b .

The theory of sliding over rigid beds is imperfect because it does not
take into account friction resulting from rock fragments entrained in the
basal ice and dragged over the bed, local freezing of the ice to the bed,
certain complications in the regelation theory for obstacles of irregular
geometry, impurities in the melt water formed during regelation, and
effects of changing water pressure. A good deal of recent research effort
has been focused on the last of these effects. Increases in water pres-
sure can increase sliding speed by hydraulic jacking and, over somewhat
longer time spans, by increasing the degree of separation of the glacier
from the bed.

Our understanding of movement of glaciers over soft beds is still
modest. It is well known that the strength of granular materials depends
on cohesion, on friction between individual grains, and on the need for
such materials to dilate before appreciable deformation can occur. Once
the strength is exceeded, however, we wish to know the relation between
the stress and the strain rate. Theoretical considerations, geotechnical
studies, and field measurements suggest that ε̇ ∝ eγ τ , although an alter-
native relation in which ε̇ is far less sensitive to τ has often been used.
Equally crucial, however, is developing an understanding of the condi-
tions under which a glacier becomes decoupled from such a soft bed so
that it glides over it without deforming it significantly.

Factors controlling the velocity profile in deforming subglacial till
and the depth to which deformation extends are still elusive. This has
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significance for our understanding of the time scales for accumulation
of Pleistocene moraines and till sheets.

Intricate feedbacks among the sliding speed, till strength, basal melt
rate, void ratio, and thickness of the subglacial water layer appear to
result in two stable states. In one, the ice is frozen to the bed. In the
other, the shear strength of the till is a small fraction of the driving
stress, basal melting occurs, and ice stream flow is possible. These states
are consistent with observations of ice streams on the Siple Coast in
Antarctica. Ice stream flow appears to require a subglacial source of
fine-grained material and may not occur if the geothermal flux is too low.
Transitions between states may occur if subglacial drainage conditions
change.



Chapter 8

Water flow in and under glaciers:
geomorphic implications

A great deal has been learned about water flow through glaciers in the past
three decades. Much of the progress has been theoretical, as experimental
techniques for studying the englacial and subglacial hydraulic systems
are few and not yet fully exploited, and observational evidence is difficult
to obtain for obvious reasons. An added benefit of the recent progress
is that we have gained a much better understanding of glacial erosional
processes and of the origin of certain glacial landforms that owe their
existence to the interaction between water and ice.

We begin this chapter with a discussion of the development and
geometry of englacial water conduits in temperate glaciers. Then, the
subglacial part of the system is examined. Finally, we consider geomor-
phic implications of some of the recent research.

The upper part of the englacial hydraulic system
Veins and the initial development of passages

Nye and Frank (1973) argued that veins should be present along bound-
aries where three ice crystals meet, and that at four-grain intersections
these veins should join to form a network of capillary-sized tubes through
which water can move. They thus concluded that temperate ice should
be permeable.

Such capillary passages have been observed in ice cores obtained
from depths of up to 60 m on Blue Glacier, Washington (Figure 8.1a)
(Raymond and Harrison, 1975). The veins are triangular in shape
(Figure 8.1b) and roughly 25 �m across.
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(a)

Ice

Ice

Ice

Water

(b)
~ 25 µm

Figure 8.1. (a) Veins in ice from Blue Glacier. (b) Cross section of a vein with
approximate scale. (c) Millimeter-sized tubes from a depth of 20 m in Blue
Glacier. ((a) and (c) from Raymond and Harrison, 1975. Reproduced with
permission of the authors and the International Glaciological Society.)

Estimates of the permeability of glacier ice resulting from this vein
system vary widely. Expressed in terms of the thickness of a water layer
that would be transmitted downward into the ice, values range from
∼1 mm a−1 in coarse-grained ice with relatively few crystal boundaries
per unit volume (Raymond and Harrison, 1975) to 1 m a−1 in fine-grained
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(c)

Figure 8.1. (cont.)

ice (Nye and Frank, 1973). Lliboutry (1971) noted that the existence
of supraglacial streams precludes the possibility of significantly higher
permeabilities. He further argued that, at permeabilities near the upper
end of this range, the potential energy released by the descending water
would rapidly enlarge the conduits to the point of completely melting
the glacier.

Lliboutry (1971) concluded that deformation and recrystallization
of ice must constrict the veins, rendering the ice essentially imper-
meable. Alternatively, air bubbles located along the veins might block
water movement. Lliboutry considered and rejected the latter idea, but
Raymond and Harrison thought that it might have merit in coarse ice
with few veins.

When water moves through such a vein system, viscous energy is
dissipated in the form of heat. The amount of heat produced is pro-
portional to the water flux. To a first approximation, the ice is already
isothermal and at the pressure melting point. Thus, the heat cannot be
conducted away from the veins, but instead must be consumed by melting
ice. In this way, passages are enlarged. Shreve (1972) and Röthlisberger
(1972) argued that when two such passages of unequal size separate
and rejoin, the larger passage carries more flow per unit of wall area
and is thus enlarged at the expense of the smaller passage. They sus-
pected that some of the capillary passages would thus become enlarged
to millimeter-scale tubes a short distance below the surface.

Raymond and Harrison confirmed the existence of such tubes in a
slab of ice cut from a core from a depth of 20 m in Blue Glacier (Figure
8.1c). The tubes formed an upward-branching arborescent network, as
expected. Because the Shreve–Röthlisberger argument applies equally
well to larger anastomosing passages, we may imagine that at greater
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depths, the arborescent network continues to evolve, with ever larger con-
duits developing. These conduits drain water produced by strain heating
in the deforming ice in addition to that from the surface.

Connections to the surface

In the accumulation area, one can visualize continuous connections
between the vein system and the overlying porous firn. As the veins
do not necessarily transmit downward all of the percolating meltwater,
a local water table commonly forms in the firn (Vallon et al., 1976;
Fountain, 1989). Measurements of the slope of this water table in the
vicinity of crevasses demonstrate that the latter are actually the principal
conduits for movement of water deeper into the glacier (Fountain, 1989).

In the ablation area there may be a surface layer of cold ice, several
meters in thickness, in which the veins are frozen. This cold layer forms
on glaciers in more continental climates where snow fall is low enough
to allow appreciable cooling of the ice by conduction during the winter
(Hooke et al., 1983). It is less likely to form in maritime climates where
larger snow falls form an effective insulating layer. When present, it
is likely to persist well into the melt season, if not entirely through it,
and thus forms an effective barrier to penetration of surface meltwater.
Because of this cold layer, and because the vein system, even on glaciers
without such a cold layer, is relatively ineffective in transmitting water
downward, it is, again, principally by way of crevasses that surface water
in the ablation area is able to reach the interior of the glacier.

When a crevasse first forms, it may fill with water and overflow. In
larger crevasses, however, this situation normally does not persist for
long. It seems probable that once a crevasse penetrates deep enough to
intersect the millimeter-scale conduit system, increasing the water supply
to these conduits dramatically, the conduits are quickly enlarged until
they can transmit all of the incoming water downward into the glacier.

Crevasses may close as they are moved into areas or are rotated into
orientations with lower tensile stresses. However, where melt streams in
the ablation area pour into such a crevasse, the viscous energy dissipated
maintains a connection to the englacial conduit system. The hole thus
formed in the glacier surface is called a moulin.

When a crevasse opens across a melt stream upglacier from a moulin,
it cuts off the water supply to the moulin. In the absence of further dis-
sipation of viscous heat, the moulin’s connection to the deeper drainage
system is then constricted by inward flow of ice, and during the win-
ter the upper part of the moulin fills with snow. In due course, the snow
becomes saturated with water which eventually freezes. These processes
result in distinctive structures in the ice.
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Figure 8.2. Illustration of
difference between pressure
field and potential field.

Over a period of several years Holmlund (1988) carefully mapped
such structures on Storglaciären as ablation exposed ever deeper levels in
the glacier. He also descended into some of the moulins during the winter.
He found that moulins are typically 30–40 m deep, although deeper
ones occur on other glaciers, that channels leading from the bottoms
of moulins are typically meandering and trend in the direction of the
initiating crevasse, and that after some distance the meandering channel
ends in a vertical conduit leading deeper into the glacier.

Shreve (1972) has compared the drainage system we have just
described with one developed in a permeable limestone in which karst
has developed. The anastomosing vein system provides the basic perme-
ability, while the moulins and larger arborescent network of conduits are
the analog of the karst system. Our task now is to consider the geometry
of the system of larger conduits deeper in the glacier, below the level
of Holmlund’s mapping. One possibility is that these conduits are not
vertical, but rather slope steeply downglacier, normal to equipotential
surfaces in the glacier. We develop the theory behind this idea next,
following closely the analysis of Shreve (1972).

Equipotential surfaces in a glacier
In a permeable porous medium, water flows in the direction of the neg-
ative of the maximum gradient of the potential, �, where � is defined
by:

� = �o + Pw + ρwgz (8.1)

Here, �o is a reference potential, Pw is the pressure in the water, ρw is
the density of water, g is the acceleration of gravity, and z is the elevation
above some datum level such as sea level.

To gain some appreciation for this concept, consider the situation in
a lake (Figure 8.2). Let � = �1 at point 1 on the lake surface. Moving
down a distance �z to point 2 increases Pw by ρwg�z but decreases the
third term on the right in Equation (8.1) by the same amount. Therefore
�2 = �1 and there is no flow between points 1 and 2. However, if the lake
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surface slopes gently towards the outlet, moving horizontally at constant
z = z2 from point 2 to point 3 will result in a decrease in Pw, and hence
in �. Flow will then be toward the position of lower Pw, which also is
a position of lower �. In other words, it is not the gradient in Pw that
controls the direction of flow, but the gradient in �.

To determine the potential field in a glacier from Equation (8.1), we
must determine Pw everywhere. Pw is not hydrostatic because the water
is moving, and most of it is a long way from the surface through many
small passages.

In general, the pressure in the ice, Pi, is different from that in the
water, and the ice deforms as a result of this pressure difference. Pw

rarely exceeds Pi significantly, but it can be much less than Pi. Passages
may thus increase in size slightly at very high water pressures, and they
decrease in size rapidly at low pressures. In addition, as noted, heat
generated by viscous dissipation melts conduit walls, enlarging passages
(Figure 8.3). In a steady state, the rate of closure of passages by creep of
ice, u, is equal to the melt rate, ṁ, so the net rate of increase in size of the
passages, ṙ = ṁ − u, is 0. (Although mathematically untidy, note that
we have defined positive u as being inward, while positive ṁ is outward.
This simplifies some of the later equations.)

Pw

u

Pi

m

Figure 8.3. In a steady
state, closure of a cylindrical
conduit, u, is balanced by
melt, m.

Let us assume that the flow of ice can be represented by ε̇e = (σ e /B)n,
that ice is incompressible and isotropic, and that the passages are circular
in cross section. We further define the pressure causing creep closure,
Pc, by:

Pc = Pi − Pw (8.2)

(Figure 8.3). To a good approximation, Pi = ρ ig(H − z), where H is the
elevation of the ice surface above the datum level (Figure 8.4). Then:

u

r
=

(
Pc

nB

)n

(8.3)

(Nye, 1953). This relation will be derived in Chapter 12 (Equation
(12.22)). In the derivation it is assumed that σe = (1/

√
2)σ ′

rr, where σ ′
rr is

the radial stress deviator. In other words, other components of the devi-
atoric stress tensor, and hence of the strain rate tensor, are assumed to
be negligible (see Equation (2.10)). Thus, there can be no deformation
of the ice other than that resulting from the presence of the passage.
In the present application, in which this assumption is clearly violated,
we add a multiplying factor, K, which is approximately 1. K equals 1
if σe = (1/

√
2)σ ′

rr. Rearranging and substituting for Pc and Pi, we can
rewrite Equation (8.2) as:

Pw = ρig(H − z) − K nB
(u

r

) 1
n

u ≥ 0 (8.4)



Equipotential surfaces in a glacier 203

H

(H−z)

z

x

Ice surface

Bed

Figure 8.4. Coordinate axes
used in discussion of conduit
closure.

(If u < 0, implying that the passage is opening as a result of water
pressures in excess of the ice pressure, |u|must be used, and the sign of the
second term adjusted accordingly, but u < 0 is rare in nature.) In excess
of a couple of kilometers from the glacier terminus, parameters in the last
term on the right change relatively little along a tunnel. Thus, combining
Equations (8.1) and (8.4) and taking the derivative with respect to an
arbitrary direction, s, yields:

∂�

∂s
= ρig

∂(H − z)

∂s
+ ρwg

∂z

∂s
(8.5)

To determine the orientations of equipotential planes in the glacier, we
make use of the fact that if s lies in such a plane, ∂�/∂s = 0, so:

− (ρw − ρi)
∂z

∂s
= ρi

∂ H

∂s
(8.6)

Our objective is to define the dip of this plane, β. The dip in some
horizontal direction, x, will be dz/dx because z is the vertical coordinate
of the plane (Figure 8.5). Therefore, multiply Equation (8.6) by ∂s/∂x
and rearrange, thus:

∂z

∂s

∂s

∂x
= − ρi

ρw − ρi

∂ H

∂s

∂s

∂x

or, inserting numerical values for the respective densities, letting α =
d H/dx , the slope of the glacier surface, and noting that tan β = dz/dx :

β ≈ − tan−1(11α) (8.7)

Thus, the equipotential planes dip upglacier (note the minus sign) with

dx

dz
ds

b

Figure 8.5. Sloping
conduit showing how ds
and β are defined.

a slope of about 11 times the slope of the glacier surface (Figure 8.6), a
result first obtained by Shreve (1972), and water entering the glacier
through a moulin should reach the bed of the glacier some dis-
tance downglacier from the entry point. In support of this, Iken and
Bindschadler (1986) found that pressure fluctuations in boreholes drilled
to the bed of Findelengletscher, just below the firn edge, did not correlate
with marked variations in stream flow entering nearby moulins. Rather,
the pressure fluctuations seemed to reflect a slower delayed input of water
through the snow cover above the firn edge.
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Figure 8.6. Longitudinal section of a glacier showing upglacier-dipping
equipotential surfaces and the theoretical directions of englacial water flow. Inset
shows dimpling of an equipotential surface and consequent diversion of flow in
smaller passages toward the main conduit. (After Hooke, 1989, Figure 1.)

Rigorously, the equipotential surfaces are defined only within the
water passages, but with suitable caution, they can be treated as though
they were defined throughout the glacier. Because Pw < Pi under normal
conditions, � is slightly lower in the conduit than in the surrounding
ice. Thus, the equipotential surfaces are dimpled in the vicinity of the
conduits. As � decreases downglacier, the dimples point upglacier as
shown in Figure 8.6. With the use of the theory presented below, it can be
shown that the difference between Pi and Pw increases with increasing
conduit size, so dimples around larger conduits are larger. Thus, water
in smaller conduits flowing normal to equipotential surfaces will be
deflected toward the larger ones. This strengthens the tendency of the
conduit system to evolve toward an arborescent pattern.

Alternative derivation of equipotential-plane dip

Consider the situation in Figure 8.7. There is a conduit along the bed
between points 1 and 2. We wish to determine under what conditions
the upglacier slope of the hill will be parallel to an equipotential plane
so that water in the conduit will not flow. The ice pressure at (1) is
Pi1 = ρ ig(h1 + h2 + �h), and that at (2) is Pi2 = ρ igh2. In the absence
of water flow and conduit closure, the pressure in the water at (1), Pw,
would be the sum of Pi2 plus the hydrostatic head in the conduit, ρwgh1.
If Pi1 > Pw, the conduit will begin to close and water will be forced out
over the hill. Thus, the condition we seek is Pi1 = Pw, or:

ρig(h1 + h2 + �h) = ρigh2 + ρwgh1 (8.8)

Solving this for h1, dividing by �x, noting that α = −�h/�x and tan
β = h1/�x, and inserting numerical values for the densities leads directly
to Equation (8.7) Q.E.D.
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Figure 8.7. Sketch illustrating alternative derivation of dip of equipotential
planes in a glacier.

Melt rates in conduits
Let us now consider the rate of melting of conduit walls, following Shreve
(1972). The total amount of energy available per unit length of conduit,
�s, per unit time is:

Q
∂�

∂s
�s

m3

s

N/m2

m
m = N − m

s
= J

s

(8.9)

Some of this energy must be used to warm the water to keep it at the
pressure melting point as ice thins in the downglacier direction. The rest
is available to melt ice, thus:

ṁ �s (2�r ρi L) + ρw Cw C
∂(H − z)

∂s
ρi g �s Q = Q

∂�

∂s
�s

m

s
m m

kg

m3
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kg

m3
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kgK
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m
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m

s2
m

m3

s
(8.10)

Here, r is the radius of the conduit, L is the latent heat of fusion, Cw is the
heat capacity of water, and C is the change in the melting point per unit
of pressure (see Equation (2.2)). As you will see from inspection of the
terms and the dimensions of the various quantities in them, the first term
on the left is the energy used to melt tunnel walls, and the second is the
energy needed to warm the water to keep it at the pressure melting point.
Here, we have implicitly taken the positive s-direction to be upglacier,
in the direction opposite to that of the water flow. Thus, both ∂�/∂s and
∂(H − z)/∂s are positive.

It is common to define k = ρwCwC. Inserting numerical values
(ρw = 1000 kg m−3, Cw = 4180 J kg−1K−1, and C = 0.074 × 10−6

K Pa−1) we find that k = 0.309 and that it is dimensionless. If we assume
that the water is saturated with air, and adjust C accordingly, k = 0.410.



206 Water flow in and under glaciers

Then, using Equation (8.5) and dividing by �s yields:

ṁ(2�rρi L) + k

(
∂�

∂s
− ρwg

∂z

∂s

)
Q = Q

∂�

∂s
(8.11)

or solving for ṁ:

ṁ =
Q

[
(1 − k)

∂�

∂s
+ kρwg

∂z

∂s

]
2�rρi L

(8.12)

It is interesting to insert some numbers into this equation to get a
sense of the magnitude of ṁ. Consider a horizontal tunnel so ∂z/∂s = 0.
Suppose the tunnel has a diameter of 0.5 m and that it is under a glacier
with a surface slope of 0.01. We now need a relation between Q and the
tunnel roughness. The Gaukler–Manning–Strickler equation is one of
two that are commonly used for such calculations. It is:

v = Q

�r 2
= R2/3 S1/2

n′ (8.13)

Here, v is the mean velocity over the tunnel cross section, R is the
hydraulic radius of the tunnel, or the cross-sectional area divided by
the perimeter (so R = r/2 in circular tunnels), S is the nondimensional
headloss:

S = 1

ρwg

∂�

∂s
(8.14)

which is approximately equal to the glacier surface slope, and n′ is known
as the Manning roughness coefficient. For smooth channels, n′ may be as
low as 0.005 m−1/3 s, but studies of floods, called jökulhlaups, resulting
from drainage of ice-dammed lakes through subglacial conduits yield
values ranging from 0.08 to 0.12 m−1/3 s (Björnsson, 1992). A still higher
value was obtained from dye-trace experiments on Storglaciären; flow
velocities there suggested n′ ≈ 0.2 m−1/3 s (Seaberg et al., 1988; Hock
and Hooke, 1993). Where roughness elements on the tunnel walls and
floor are large in comparison with the tunnel size, n′ will be higher; this
is probably responsible for the relatively high value from Storglaciären.
Choosing an intermediate value of 0.1 m−1/3 s, Equation (8.13) gives a
mean velocity of about 0.25 m s−1, or Q ≈ 0.05 m3 s−1, and Equation
(8.14) gives ∂�/∂s ≈ 98 N m−3. Whence ṁ ≈ 0.22 m a−1. This may not
seem like a lot but, volumetrically, the amount of ice melted in a year is
2.6 times the size of the original conduit.

A consequence of this melting and the resulting inward flow of ice
towards the conduit is that structures such as foliation in the ice are also
bent inward. A beautiful example of this is shown in Figure 8.8.
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Figure 8.8. Foliation deflected into a conduit by inward flow of ice in response
to melting of conduit walls. (From Taylor, 1963, Figure 11. Reproduced with
permission of the author and the International Glaciological Society.)

Some heat may also be advected into the glacier in water originating
at the glacier surface and entering the englacial conduit system by way
of moulins. The melt rate from such water, ṁs, is:

ṁs = QρwCw(∂�/∂s)

2�rρi L
(8.15)

(Shreve, 1972). Here, ∂�/∂s is the rate at which the water cools as it flows
through the conduit. If we assume that ∂�/∂s ≈ 0.1 K km−1 and use the
discharge in the previous example, ṁs ≈ 0.08 m a−1. Thus, this is a heat
source that cannot be neglected. A possible mitigating factor, however,
is that ice crystals are often carried in streams on a glacier surface. Thus,
some of the heat would be used to melt these crystals rather than the
conduit walls. It is not clear how the energy will be partitioned in this
situation. One would also expect most of this heat to be consumed in the
moulin itself or in the first few hundred meters of flow in an englacial
passage.
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Water pressures in subglacial conduits
on hard beds
Our next task is to determine the water pressure in conduits. Our dis-
cussion focuses on subglacial conduits on hard beds, but much of the
development is equally applicable to englacial ones that are deep enough
that Pw is greater than atmospheric pressure. The water pressure in sub-
glacial conduits is of considerable interest owing to its effect on the
sliding speed.

Qualitatively, we expect Pw to increase upglacier because the ice
thickness increases, and Pc must remain relatively constant so that
u = ṁ. The increase in Pw, or more rigorously in �, provides the poten-
tial gradient that drives water toward the terminus. Less obvious is the
way in which Pw should vary with Q, yet this is quite important because
if Pw decreases as Q increases, water will be drawn from smaller con-
duits toward larger ones, leading to the development of an arborescent
drainage network. Conversely, if Pw increases as Q increases, the conduit
system will tend to remain braided or distributed. In the type of system
that we have been discussing, consisting of conduits that may vary in
size but not in shape in the longitudinal direction, it turns out that Pw

decreases as Q increases. However, in subglacial drainage systems in
which conduits locally lie in the lee of bedrock steps, so that conduit
geometry is controlled by the steps, the reverse may be true. Qualita-
tive explanations of these phenomena are difficult because the result
depends upon the details of the way in which conduit size changes with
discharge and in which u and ṁ change with conduit size. We thus turn
to a quantitative analysis, following closely the work of Röthlisberger
(1972). Initially, we will focus on circular conduits.

We start with the steady-state condition, u = ṁ , and obtain an expres-
sion representing this condition by combining Equations (8.3) and (8.12),
thus:

r

(
Pc

nB

)n

=
Q

[
(1 − k)

∂�

∂s
+ kρwg

∂z

∂s

]
2�rρi L

(8.16)

Noting that R = r/2 in circular conduits and solving Equations (8.13)
and (8.14) for r yields:

r 2 = 2
1
2 n′ 3

4 Q
3
4 (ρwg)

3
8

�
3
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) 3
8

(8.17)

Combining Equations (8.16) and (8.17) to eliminate r, letting:

D = 2
3
2 �

1
4 (ρwg)

3
8 ρi L = 3.63×1010

(
N

m2

) 11
8

m− 3
8
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Figure 8.9. Definition of ds
in terms of β and dx.

and simplifying, we obtain:(
∂�

∂s

) 11
8

+ k
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ρwg
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∂s

(
∂�

∂s

) 3
8

= Dn′ 3
4 Pn

c

(1 − k)Q1/4(nB)n
(8.18)

We now need to relate ∂�/∂s to Pw and to the geometry of the tunnel
system. Differentiating Equation (8.1) with respect to s yields:

∂�

∂s
= ∂ Pw

∂s
+ ρwg

∂z

∂s
(8.19)

Referring to Figure 8.9, we see that:

ds = dx

cos β
(8.20)

so, noting again that dz/dx = tan β, Equation (8.19) becomes:

∂�

∂s
=

[
dPw

dx
+ ρwg tan β

]
cos β (8.21)

Letting:

G =
[

dPw

dx
+ ρwg tan β

]
(8.22)

and using Equations (8.21) and (8.22) in Equation (8.18) yields:

G
11
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11
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G − dPw

dx

)
G

3
8 = Dn′ 3

4 Pn
c

Q1/4(nB)n cos11/8 β
(8.23)

Canceling the two terms in kG11/8 and replacing Pc and G by their
equivalents from Equations (8.2) and (8.22) results in the relation we
have been seeking:[

dPw

dx
+ ρwg tan β

] 11
8

− k

[
dPw

dx
+ ρwg tan β

] 3
8 dPw

dx
= Dn′ 3

4 (Pi − Pw)n

Q1/4(nB)n cos11/8 β

(8.24)

Equation (8.24) is a nonlinear differential equation that can be inte-
grated numerically to obtain the water pressure, Pw, in a conduit as a
function of distance from the terminus, x = 0, subject to the boundary
condition that Pw = 0 at the terminus. If the conduit is not full of water
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at the terminus, the boundary condition applies some distance upglacier
from the terminus, where the conduit first becomes full, and the integra-
tion must start at this point. (Atmospheric pressure is ignored, as it is
uniform over the area.) To carry out the integration, one uses the surface
and bed topography along the course of the conduit to calculate Pi and
β at each step, dx.

In the derivation of Equation (8.24), we assumed that the conduit
was circular. If, instead, we were to assume that it was semicircular,
a more rational assumption for a conduit on a hard bed, and modified
Equations (8.12) and (8.13) accordingly, we would find that the form
of Equation (8.24) was unchanged. However, D would be 2.00 × 1010

(N m−2)11/8m−3/8. We would then be assuming, implicitly, that Equation
(8.3) still applied. These assumptions will be discussed further in the next
section.

Equation (8.24) is clearly quite complicated, but we can gain insight
into the general behavior of the water pressure field by studying some
idealized cases. Consider, for example, a circular tunnel at the base of a
slab of ice, 250 m thick, resting on a horizontal bed. Then, β = 0 and
Pi = constant. Röthlisberger presented some solutions for this case. They
are shown in Figure 8.10, in which the water pressure is represented on the
ordinate by the height to which water would rise in a vertical borehole
that intersects the tunnel, or the piezometric head. A line connecting
these water levels in a series of boreholes along a tunnel is called the
hydraulic grade line or energy grade line, and its slope is ∂�/∂s. The
water equivalent line in Figure 8.10 is the piezometric head at which
the glacier would float. The values of n′ and B used in the calculations
are shown.

Aside from the obvious increase in Pw in the upglacier direction, thus
providing the hydraulic head necessary to drive the flow on a horizontal
bed, there are two characteristics of the patterns in Figure 8.10 that merit
comment.

1. Water pressures increase as B decreases (compare curves (1), (2) and
(3)). This is because lower values of B imply softer ice and hence
higher tunnel closure rates. Thus, higher pressures are necessary to
reduce the closure rate so that u = ṁ.

2. Water pressures increase as Q decreases (curves (3), (3a), and (3b)).
Although obvious from inspection of Equation (8.24), this is some-
what counterintuitive. Consider the consequences of halving Q, hold-
ing, for the moment, Pw and hence ∂�/∂s constant. ṁ will thus be
halved (Equation (8.12)). Clearly, halving Q will require a decrease
in the cross-sectional area of the conduit, A. Now A varies as r2 but
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slab of ice 250 m thick. (Modified from Röthlisberger, 1972, Figure 2.
Reproduced with permission of the International Glaciological Society.)

the conduit closure rate, u, varies as r (Equation (8.3)). Thus, by the
time r has decreased enough to halve u and hence match the new ṁ,
A would have decreased so much that Pw would be forced to increase
to continue to drive the flow.

A simple numerical calculation may be useful. If subscripts “o”
refer to the conditions before the change and subscripts “1” after the
change, we find from Equation (8.17) that r1 = 0.77 ro and, because
u ∝ r (from Equation (8.3)), u1 = 0.77 uo. Now when ∂�/∂s is
constant, Equation (8.12) can be written as ṁr = �Q, where � is a
constant. Therefore, ṁ1r1 = 1

2 ṁoro. So, ṁ1 = 1
2 ṁoro/r1 = 0.65ṁo.

Thus, ṁ is reduced 35% while u is reduced only 23%, and they are
now unequal. The tunnel will thus close, constricting the flow and
raising the pressure.

Röthlisberger also presented some solutions for other idealized sit-
uations, and three of these are shown in Figure 8.11. Three interesting
points merit discussion.

1. The negative Pw in Figure 8.11b implies that for u = ṁ, there must be
suction. In other words, the u provided by the pressure of the overlying
ice, alone, is not adequate to match ṁ, even with Pw = 0. Suction is
necessary to increase u. Actually, the natural result is more likely to
be that air will enter the channel from the terminus, resulting in open
channel flow.
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In this case, u is low because the ice is thin, and ṁ is high because
the bed slopes downward in the direction of flow, thus increasing the
contribution of the second term on the right in Equation (8.5) to the
energy dissipation. In fact, it is easy to show that unless the ice is
more than a couple of hundred meters thick, even slight positive bed
slopes will increase the energy dissipation sufficiently to lead to open
channel flow in circular or semicircular conduits (Hooke, 1984). The
energy available to melt ice is then easily calculated from the decrease
in potential energy, mgh.

2. In Figure 8.11c, Pw > Pi some distance from the terminus. In this
situation, the tunnel would be expanding, if it existed, and the tunnel
size would be maintained by freezing of ice to the walls. Actually, in
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these situations it is more likely that water leaks out along the bed
and the glacier, in effect, floats.

This condition arises when, as in Figure 8.11c, the bed has an
adverse slope that is so steep that water flowing up it does not dissipate
enough energy to remain warmed to the pressure melting point. Math-
ematically, the second term on the left in Equation (8.10) exceeds the
term on the right, forcing ṁ to become negative. Physically, the water
becomes supercooled, leading to freezing. The latent heat released
warms the rest of the water to keep it at the pressure melting point.
We will discuss this further later, in connection with the origin and
shape of overdeepenings in glacier beds.

3. Finally, it will be noted that with increasing distance from the termi-
nus, the hydraulic grade lines in both Figures 8.10 and 8.11 become
nearly parallel to the water equivalent line. As the slope of the water
equivalent line represents the gradient in ice pressure at the bed, this
means that (Pi − Pw), and hence also u/r, are nearly constant (see
Equations (8.2) and (8.3)). This justifies ignoring the KnB(u/r)1/n

term in Equation (8.4) when differentiating to obtain ∂�/∂s
(Equation (8.5)).

Shapes of subglacial conduits

Equation (8.24) makes specific predictions about basal water pressures.
These predictions have been tested in the field, and the agreement
with theory is not good. Water pressures are significantly higher than
expected. Röthlisberger (1972) and Iken and Bindschadler (1986) found
that in order to obtain agreement between measurement and theory
they had to use values of B of ∼0.1 and ∼0.03 MPa a1/3 respectively.
In earlier discussions of this problem, these values seemed low com-
pared with typical values of ∼0.2 MPa a1/3 for temperate ice. However,
Cohen’s (2000) study of basal ice in Engabreen, discussed in Chapter 7,
suggests that at least Röthlisberger’s value may not be unreasonably low.

On the other hand, there are three potential problems with application
of Equation (8.24) to subglacial conduits. First, as noted, it was derived
for conduits with circular cross sections. Clearly, tunnels at the bed of a
glacier are not circular. Thus, it is appropriate to see whether agreement
can be improved by assuming some other tunnel shape. Secondly, stresses
and the resulting strain rates parallel to the conduit axis are ignored in
the derivation. Thirdly, sinuosity of the conduit is not included.

Let us deal first with the question of tunnel shape. Unfortunately,
Equation (8.3) is only valid when the conduit is circular, whereas a
semicircular shape would be a more reasonable first approximation for
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Figure 8.12. Some of the
stresses around a semicircular
subglacial tunnel.

a conduit at the bed. In a semicircular conduit, Equation (8.3) should
closely approximate the true closure rate if τ θ r (Figure 8.12) is vanish-
ingly small. However, when the value of D for semicircular conduits is
used in Equation (8.24), the agreement of theory with field measurements
is only marginally improved.

On an irregular bed τ θ r is not likely to be negligible. In addition,
when a significant fraction of the water is derived from the glacier sur-
face, water fluxes vary diurnally. During periods of low flow, the water
may not fill the tunnel, in which case melting will be concentrated low
on the walls. As τ θ r also inhibits closure there, one might expect the
tunnel to become broad and low. Closure of a broad, low conduit will be
faster than that of a semicircular one with the same cross sectional area.
This is because the conduit roof receives much less support from the
walls.

Faster closure rates can be simulated by multiplying the right-hand
side of Equation (8.24) by a factor, � > 1, and rather good agreement of
theory with field measurements can be obtained in this way (Figure 8.13).
However, � can be interpreted as reflecting either softening of the ice by
unbound water as suggested by Cohen (2000) or weakening of the tunnel
arch by widening. The result shown in Figure 8.13 was obtained with
� = 150, which corresponds to B ≈ 0.03 MPa a1/3. Numerical modeling
using the finite-element method suggests, alternatively, that this value
of � would correspond to a tunnel that was ∼6 m wide and 0.03 m
high (Hooke et al., 1990). Neither seems reasonable alone, so a com-
bination of the two effects may be involved. However, in other cases
studied � was as low as 4, corresponding to B ≈ 1.0 MPa a1/3 or to
a width-to-height ratio of ∼12, both of which are within the realm of
possibility.

Equation (8.24) also ignores the effect that stresses parallel to the
conduit axis have on the closure rate. As noted previously (Equation
(2.10)), such stresses increase the rate of tunnel closure even though
they do not act in the direction of the closure. However, it turns out that
the additional stresses are normally small compared with Pc so including
them has a negligible effect on σ e.
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Finally, because d P/dx is calculated along a flow path, the more
sinuous the flow path the higher the pressure at a point a given straight
line distance from a glacier margin. However, to achieve the agreement
between measured and calculated pressures shown in Figure 8.13, the
flow path would have to be ∼30 times the straight line distance (Hooke
et al., 1990). This seems extreme, but some sinuosity of the flow path is
likely and this may be partially responsible for the high observed water
pressures.

In conclusion, where drainage along a glacier bed is in well-defined
tunnels, the tunnels are likely to be broad and low. This is because melting
may be concentrated low on tunnel walls, and closure is inhibited there.
In addition, the conduits are likely to be at least slightly sinuous. Finally,
unbound water along interfaces between entrained sediment particles and
ice is likely to make basal ice softer than clean ice higher in a glacier.
Observed water pressures in glaciers can be modeled well with the use
of Equation (8.24) either by assuming that conduits are broad and low
or by adopting a lower value of B. In all likelihood, high observed water
pressures are a consequence of a combination of these two factors with
some additional contribution from sinuosity.

Types of subglacial drainage system
Heretofore in our discussion of subglacial drainage, we have been deal-
ing, implicitly if not explicitly, with systems composed of relatively
straight channels cut upward into the ice and resting on hard beds. Such
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channels are commonly called Röthlisberger channels, or simply R chan-
nels. Nye (1973b) suggested, alternatively, that channels might be incised
into the bed of a glacier, and such channels, frequently called Nye or
N channels, have been described (Walder and Hallet, 1979; Hallet and
Anderson, 1980). They are typically 0.1–0.2 m deep and 0.2–0.5 m wide,
although some reach widths and depths of several meters. Nye channels
are not common, perhaps because changes in ice surface profile, move-
ment of the ice, and melting of the conduit walls can all displace the flow
laterally, so streams do not stay in one place long enough.

Two other types of drainage system on hard beds have also been
suggested: the linked-cavity system and the multi-branched arborescent
system. In addition, there are drainage systems on soft beds. These are
described in the next three sections.

The linked-cavity system

In some experiments on Variegated Glacier, Alaska, it was found that
despite a water discharge, Q, of 5 m3 s−1, dye moved through the sub-
glacial drainage system with a speed, v, of only 0.025 m s−1. Because
Q = vA, where A is the cross-sectional area of the conduit, A must have
been ∼200 m2. If the flow were in a single conduit, this would present
a problem because, for any reasonable conduit roughness, n′, Equation
(8.13) would then predict velocities that were one to two orders of mag-
nitude higher than those observed.

Kamb (1987) suggested that the flow, rather than being in a single
conduit, was in a network of linked cavities (Figure 8.14a). The cavi-
ties are believed to form in the lee of steps in the bed (Figure 8.14b),
and indeed precipitates and the lack of striations in such locations on
deglaciated bedrock surfaces argue strongly for their existence. The cavi-
ties are linked together by orifices that are much smaller in cross-sectional
area than the cavities (Figure 8.14b). The cavities provide the large A
required, and the orifices throttle the flow, reducing the velocity.

A cavity or orifice formed in the lee of a step is shown in Figure
8.15. Panel (a) shows the geometry under certain basal-water-pressure
and sliding-velocity conditions. Panel (b) illustrates the geometry when
heat released by viscous dissipation in the flowing water enlarges the
orifice by melting its roof. Note that the cavity or orifice becomes both
longer and more arched in this case. In the case of an orifice, Kamb
assumes that all of the heat is used to melt ice in the orifice in which
the heat is produced. As some of the heat will be advected into the
next cavity, this will overestimate the orifice size. He also assumes that
deformation of ice can be represented by a Newtonian flow law (n = 1)
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if the viscosity is chosen appropriately. (This assumption is commonly
made when the problem is otherwise mathematically intractable.)

A critical parameter in Kamb’s theoretical development is the orifice
stability parameter, ξ . For an orifice in the lee of a step of height h, � is
given by:

� = 2
1
3√
�

S
1
2

�n′

(
µ

ub(Pi − Pw)

)
h

7
6 (8.25)

where � is a constant factor involving the latent heat of fusion, µ is the
equivalent Newtonian viscosity, ub is the sliding speed, and the other
parameters are as defined previously. The hydraulic head, S, contains a
correction for the sinuosity of the flow.

The cross-sectional shape of the orifice is governed by � (Figure
8.16). In this figure, η is the height of the orifice, so the ordinate, η/h is
the height of the orifice scaled to the height of the step. With increasing
�, the orifice becomes increasingly arched until a point of instability is
reached at � ≈ 1.0. The orifice also becomes longer by about a factor of
3 as ξ increases from 0 to 1.0, but this is not shown because the ordinate
is scaled to the final length, �, in each case.
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Note that the orifice roof is less arched when ub is high. This is
because higher sliding speeds replenish the melting ice more quickly.
Conversely, it is more arched when Pw is large (Pc small) because closure
rates are then reduced.

The instability at � ≈ 1 is of considerable interest. Actually, the
instability shown is of a mathematical nature only. It does not have a
direct physical interpretation. However, it is a manifestation of a physical
instability that Kamb has investigated further. He finds that if ξ is high
enough, say about 0.8, and that if Pw is increased enough to decrease Pc

by about 20%, the length of the orifice, � in Figure 8.15, will increase
without bound. This may be the point at which a linked-cavity system is
transformed into a tunnel system.

The way in which Pw changes with Q in a linked-cavity system is
also of interest. We noted that decreasing Q in a tunnel system resulted
in an increase in the steady-state pressure in the system (Figure 8.17).
However, in a linked-cavity system, decreasing Q has a relatively small
effect on ξ and an even smaller effect on the cross-sectional area of the
orifices. This is because the orifice is, in effect, propped open by the
step (Figure 8.15). As a result, the lower discharge can be driven with a
decreased head gradient (represented in Figure 8.17 by the piezometric
head on the left ordinate).

As noted, a consequence of the direct dependence of Q on Pw in
the linked-cavity system is that a stable system of many interconnected
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cavities can exist. In a tunnel system, in contrast, the larger tunnels have
lower pressures and thus capture the flow of the smaller ones.

Another important feature of Figure 8.17 is that for discharges in
excess of ∼0.1 m3 s−1 and with orifices generated by step heights less
than ∼0.1 m, a much higher pressure is required to drive the flow in a
linked-cavity system. This is because high pressures are required to open
and maintain the orifices. High water pressures, of course, increase the
speed of a glacier (Chapter 7).

Transitions between conduit and linked-cavity systems

Tunnels are commonly observed emerging from the margins of glaciers,
and the rapidity with which dye poured into moulins often appears in
outlet streams at the terminus (see Hock and Hooke, 1993; Seaberg et al.,
1988; among others) argues strongly for tunnel flow. However, as long
as part of a glacier’s movement is by sliding, linked cavities are certainly
present, as ice must separate from the bed in the lee of at least some
obstacles, and striations or joints in the rock will provide connections
between resulting cavities. We thus need to investigate the conditions for
stability of tunnels in the presence of cavities.

Fowler (1987) and Raymond (unpublished, cited by Fowler, 1987)
have studied this problem. Their approach is to consider the conse-
quences of a small increase in pressure in, for example, the tunnel part
of the system. This will lead to flow of water from the tunnels to linked
cavities, thus necessitating an increase in volume of the cavities, and
hence of the pressure in the cavities. If the increase in cavity pressure
thus required is greater than the initial increase in pressure in the tunnels,
the pressures will eventually equilibrate and the combined system will
be stable. However, if the required increase in cavity pressure is less than
the initial increase in tunnel pressure, the cavities will grow larger than
required, sucking water out of the tunnel system and leading, possibly,
to its collapse.

Whether the change in pressure in the cavities satisfies the require-
ment for stability depends upon the sliding speed, bed geometry, water
pressure, and water discharge in the conduits. Lower sliding speeds and
lower water pressures tend to favor stability, whereas lower discharges
favor collapse of the tunnels, with only the linked-cavity part of the
system surviving.

Both the Kamb (1987) and the Fowler (1987) theories suggest that
the limit of stability of the tunnel system is approached in winter when
discharges are low, tunnels are thus shrinking, and water pressures
are increasing. Locally, the tunnel system may collapse entirely, espe-
cially under thicker glaciers. More commonly, however, remnants of the



Types of subglacial drainage system 221

previous year’s tunnel system, maintained by the small winter discharge
provided by subglacial melt, are likely to survive. These conduits will
increase in size rapidly as water inputs increase in the spring. This is
because the water backs up in the undersized conduit system, resulting
in high potential gradients and hence high melt rates on conduit walls,
and also high pressures that inhibit closure. If such remnant tunnels do
not exist, or if they do not enlarge rapidly enough, the water pressure may
rise to the level where Kamb’s stability limit for the linked cavity system
is exceeded. New tunnels may then form by growth and coalescence of
links. In either case, water pressures drop abruptly as the tunnel system
is reestablished. Measurements of seasonal variations in water pressure
(Hooke et al., 1989), of dye dispersion (Seaberg et al., 1988; Hock and
Hooke, 1993), and of surface velocity (Hodge, 1974; Hooke et al., 1989)
lend strong support to this model.

A reasonable supposition is that the linked-cavity and tunnel models
represent end members of a continuum of drainage types. The drainage
system beneath fast-moving glaciers, including those that are surging
(discussed below), may be near the linked-cavity end member in this
continuum. Conversely, ice sheets that are nearing stagnation, and thus
beneath which there is little separation and cavity formation, may have
drainage systems approximating the tunnel end member.

Multi-branched arborescent system

A conduit system that has some of the characteristics of both the tun-
nel and the linked-cavity systems is one that consists of an arborescent
network of broad, low conduits, each of which is individually braided
(Figure 8.18). Hock and Hooke (1993) called this a multi-branched
arborescent system. They envisaged subglacial streams flowing in tun-
nels that are, in comparison with the linked-cavity system, relatively
straight and uniform in size. As in the linked-cavity system, it is specif-
ically recognized that no part of the glacier bed should be far from a
conduit.

Hock and Hooke developed the idea of the multi-branched arbores-
cent system from tracer studies on Storglaciären. Dye was injected into a
moulin about a kilometer from the terminus, and its arrival in one of the
two streams draining the glacier, Sydjåkk (Figure 8.18a), was recorded.
As is commonly observed in tracer studies, the water velocities obtained
from these tests were too low to be consistent with the existence of
a single large tunnel from the moulin to the terminus. However, the
velocities could be modeled rather well by assuming that the drainage
system bifurcated several times between the terminus and the moulin,
so that each of the highest tributaries of the system carries an average of
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system postulated to exist beneath Storglaciären, and (b) of an individual
braided channel in the system. (After Hock and Hooke, 1993, Figures 4 and 6.)
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only ∼3% of the discharge at the terminus (Figure 8.18a). This model
is also consistent with the observation that there are many small streams
and moulins at this location on the glacier, implying many sources.

That the individual channels are braided (Figure 8.18b) is suggested
by multiple peaks in some of the dye-return curves (Figure 8.19). Such
peaks occur when dye following one anabranch of a braided system
moves more slowly than that in another anabranch. The two packages of
dye then reach the terminus at different times.
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The multi-branched arborescent model is consistent with two basic
observations: (1) that measured water velocities are much lower than they
would be in a single conduit; and (2) that water pressures are relatively
uniform over the bed, as observed by Iken and Bindschadler (1986) on
Findelengletscher. The uniform drainage for all parts of the glacier bed
provided by the multi-branched arborescent system should result in such
relatively uniform water pressures. It is likely, however, that many of the
smaller tributaries providing this uniform drainage are actually linked
cavities.

As noted (Figure 8.13), winter water pressures beneath Storglaciären
have been modeled rather well with the use of Röthlisberger’s theory
modified to reflect, approximately, the wide shallow geometry of the
channels. Thus, in contrast to the situation in a linked-cavity system, it
seems likely that steady-state water pressures in the wide shallow chan-
nels that characterize the multi-branched arborescent system decrease
with increasing discharge.

Even within the framework of the multi-branched arborescent model,
however, there can be appreciable differences among nearby glaciers.
Iken and Bindschadler (1986, p. 110), for example, used electrical con-
ductivity measurements in proglacial streams and other observations
to study the differences between the subglacial drainage of Findelen-
gletscher and Gornergletscher. These two glaciers are both near Zermatt
in the Swiss Alps and are of comparable size. They concluded that the
drainage of Gornergletscher was in a few large tunnels, whereas that of
Findelengletscher was in a larger number of smaller conduits. They did
not propose an explanation for this difference.

Conduits on deforming till

Heretofore, our discussion of subglacial conduits has focused on situ-
ations in which the bed was comparatively rigid. Many glaciers, how-
ever, move over beds of deformable till. In Chapter 7 we found that
the deformability of till and the nature of the coupling between it and
the glacier sole are both strongly dependent upon the effective pressure,
Pi − Pw. In turn, the effective pressure depends, through Pw, on the
nature of the drainage system at the ice–till interface. As Pw at such
an interface is clearly of prime importance in the development of ice
streams and also in surging by a mechanism proposed by Truffer et al.
(2000), a quantitative understanding of conduits on deformable sub-
strates is clearly needed.

As with a conduit at an ice–rock interface, the roof of a conduit at an
ice–till interface also tends to close when Pw < Pi, and in the steady state
this tendency is balanced by melting. In addition, however, creep of till
into the conduit may tend to constrict it, and in the steady state any such
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Figure 8.20. Possible geometry of a subglacial conduit incised into till. Vectors
are based on Ng (2000b, Figure 9) and show approximate transverse velocity
distribution in the ice and in the till for a situation in which the effective viscosity
of the till is substantially less than that of the ice (see text). Some vectors on the
right are omitted for clarity.

flow must be balanced by erosion of the till by the flowing water (Alley,
1989a; Walder and Fowler, 1994; Ng, 2000a, b). The physics of the latter
processes are still poorly understood, as neither the rheology of till nor
the mechanics of sediment transport are known well enough.

Nevertheless, we can make some predictions about the nature of
the drainage system. Consider the channel shown in Figure 8.20. If any
sediment on the sloping “bank” of the channel, as at A in Figure 8.20, can
be moved downstream by the current, gravitational forces will tend to
move it, also, toward the middle of the channel. Consequently, channels
should become wider and shallower until the velocity and shear stress
on the banks are too low to move sediment. Parker (1979) has proposed
that in the transition zone between the bed and the bank, lateral diffusion
of downstream momentum results in a gradual outward decrease in the
shear stress, τw, exerted by the water on the bed, so that movement of
bed material actually decreases gradually toward the banks rather than
ceasing abruptly at some particular threshold depth. Although Parker’s
model was developed for subaerial gravel-bedded rivers, there is no
obvious reason why it should not also apply to subglacial conduits in
noncohesive till, even if the till is fine grained, so long as there is an
inward-sloping bank region. Channels in till are thus likely to be wide and
shallow, as illustrated in Figure 8.20, a conclusion shared by Engelhardt
and Kamb (1997), Walder and Fowler (1994), and Ng (2000a, b).

Ng (1999) has suggested that in such a conduit, the vertical closure
rate, w, due to flow of ice should be given approximately by:

w(y) =
(

Pc

2B

)n √
�2 − y2 (8.26)
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where � is the half width of the conduit, y is the distance from its center,
and the appropriate value for B is ∼ 0.16 MPa a1/3. Thus, w is highest in
the middle of the channel, at y = 0, and decreases toward the bank, y = �.
(w �= 0 at y = � for reasons described below.) This would be consistent
with the suggestion (Shreve, 1985a) that melt rates should be higher
where the water is deeper and the energy dissipation thus greater. Ng also
proposes a similar relation for creep of till into the conduit, with (Pc/2B)n

in Equation (8.26) replaced with an appropriate relation for till.
In Figure 8.20, w �= 0 at y = � because the till layer is of finite thick-

ness and removal of sediment creeping into the conduit results in thinning
of the till layer adjacent to the conduit. Thus, the ice–till boundary adja-
cent to the channel sinks, and vectors in the till are nearly horizontal.
In addition, the vectors in Figure 8.20 reflect a situation in which the
effective viscosity of the till is substantially less than that of the ice. If
the effective viscosities are roughly equal, flow of the till is much slower,
owing in part to the limited thickness of the till (Ng, 2000b).

Let us now consider the water pressure in such a conduit. Walder
and Fowler (1994) note that a low water pressure will promote flow of
ice toward a conduit but strengthen till. Under these conditions, they
argue that the channel bed may be relatively flat, and the conduit will
be melted upward into the ice. Conversely, a high water pressure will
promote flow of till into a conduit but inhibit inward flow of ice. In this
case, the channel may tend to be cut downward into the till. Their analysis
suggests that the transition between these two regimes should occur at
an effective pressure of ∼ 0.8 MPa, but the uncertainty in this figure is
quite large.

Ice sheets tend to have relatively low surface slopes. Potential gra-
dients are thus low, so ṁ is low (Equation (8.12)). The conduit system
must then adjust to provide a high Pw, thus inhibiting closure by ice flow.
This may enhance deformation of till into conduits. Conversely, valley
glaciers normally have higher surface slopes, so ṁ will be higher and Pw

lower, perhaps leading to conduit geometries controlled by the inward
flux of ice.

We have seen that in circular or semicircular conduits, Pw decreases
as Q increases so water is diverted from smaller conduits to larger ones,
leading to an arborescent drainage network. Of interest, then, is the ques-
tion of whether this relation between Pw and Q also holds for conduits
on deforming till.

Let us leave this question for the moment to describe an elegant
analysis by Ng (2000a) in which he derived three coupled ordinary dif-
ferential equations that could be solved numerically for the discharge,
Q, and sediment discharge, Qs, in a conduit, and the effective pressure,
Pc, all as functions of distance along a conduit from its source. The
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principal independent variables in the analysis are the fluxes of water
and sediment into the conduit. The water flux is from basal melting over
some distance on either side of the conduit, and the sediment flux is from
small tributaries along the conduit. The coupling among these variables
occurs because Pc is a measure of: (1) the flux of ice toward the conduit,
and thus of the contributions of melting of the conduit roof to Q, and
(2) the strength of the till and hence of the flux of till into the bottom
of the conduit. Knowing these three parameters, Ng calculates �, τw,
ṁ, d�/ds, conduit height, h (Figure 8.20), mean water velocity, u, and
mean sediment concentration, c, subject to the constraints, expressed as
equations, that:

� c = Qs/Q;
� c is related to τw and h because they determine the intensity of turbu-

lence;
� τw is related to u and the hydraulic roughness of the conduit;
� u times the cross-sectional area of the conduit must equal Q;
� w, integrated across the conduit, must equal ṁ�;
� d�/ds is related to the slope of the ice surface and to dPc/ds (Equation

(8.5)); and
� ṁ is related to d�/ds and Q (Equation (8.12)).

Thus, there are seven equations and seven unknowns. Closure of the
conduit by ice flow is assumed to be given by Equation (8.26) and closure
by flow of till by a similar equation. Taken as constant in the solution are
sediment grain size, conduit roughness, and the slope of the ice surface.
In addition, energy used to keep the water at the pressure melting point
(Equation (8.10)) is neglected, so rigorously the solution applies only to
an ice sheet of uniform thickness. Particularly noteworthy in this solution
is the fact that conduit size and shape and the rate of erosion of the bed
are all determined solely by the independent variables – the water and
the sediment fluxes from basal melting and small tributaries – together
with some parameters like grain size that are specified and held constant.

In an illustrative calculation based on this model, Ng assumed that a
small amount of water was seeping through the till and along the ice–till
interface upstream from the head of the conduit. This water entered the
conduit without transporting any sediment, so Q > 0 but Qs = 0 here.
Pc was taken to be 0.1 MPa at the head, well below the hypothesized
transition at ∼0.8 MPa. Along the conduit, basal melting was presumed
to supply water at a constant rate of 0.01 m3 s−1 km−1, and the sediment
flux from tributaries was taken to be 265 g s−1 km−1.

Downstream changes in several key variables are shown in Figure
8.21. At the upstream end of the conduit there is a boundary zone
about 30 km long in which dPc/ds �= 0 (Figure 8.21b), and � and h
vary somewhat erratically (Figure 8.21d); downstream from this zone,
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Figure 8.21. (a) Discharge and sediment load in a stream 100 km long
beneath an ice sheet of uniform thickness. (b) Effective pressure and
(c) sediment concentration in the stream, (d) width and height of the conduit,
and (e) melt rate on the conduit roof and sediment flux into conduit by till
creep. (Plotted from data kindly supplied by Felix Ng, some of which were used
in his 2000a paper.)

Pc ∝ Qs
1/2Q−5/6 which turns out to be essentially constant. The con-

tribution of roof melting (Figure 8.21e) to Q is negligible in compari-
son with the total Q so the discharge increases nearly linearly (Figure
8.21a). On the other hand, Qs increases nonlinearly (Figure 8.21a). This
is because c also increases (Figure 8.21c), and Qs = cQ. The increase
in c is a consequence of increases in both u and τw in response to the
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increase in h (Figure 8.21d). As deduced earlier, h � � (Figure 8.21e)
so the conduit is wide and low. Generally, dQs/ds is substantially more
than the 265 g s−1 km−1 supplied by tributaries. For example, 70 km
from the head of the conduit dQs/ds ≈ 1800 g s−1 km−1. Thus the bulk
of the sediment load is supplied by erosion of till creeping into the con-
duit. Indeed, the rate of erosion of the conduit floor ranges from ∼2 to
nearly 7 m a−1 (Figure 8.21e). This is substantially higher than the melt
rate of ∼0.17 m a−1 on the conduit roof.

In the foregoing analysis, the fact that Pc ∝ Q−5/6 is particularly
important because this means that Pw increases as Q increases and a
distributed drainage system with many wide low conduits like the one
in Figure 8.20 is to be expected. Field evidence also suggests that the
drainage is distributed when water pressures are high (or Pc is low). On
Storglaciären, Hooke and Pohjola (1994) found that in an area where
water pressures were uniformly high, neither dye-trace experiments nor
water pressure records gave any indication of channelized drainage along
the bed. Indeed, both the dye-trace studies and video observations of
the bed suggested a drainage system in which low conduits with high
aspect ratios were frequently opened and closed, resulting in episodic
movement of water from one pocket to another. Flow velocities were of
order 10−2 m s−1. These observations were made in an overdeepened
basin in which much of the viscous energy may have been needed to keep
the water at the pressure melting point. However, they are consistent with
observations in boreholes in West Antarctic ice streams (Engelhardt and
Kamb, 1997; Kamb, 2001). The holes were drilled with the use of a hot
water drill. During drilling, the water level in a hole is at the ice–firn
transition, but upon breakthrough to the bed, it falls rapidly until the
pressure exerted by the column of water in the hole equals the pressure
in the local subglacial hydraulic system. By measuring the rates at which
water levels fell, Engelhardt and Kamb calculated that a gap between the
ice and the bed that was only ∼2 mm high would be sufficient to account
for the observed rate of fall. Analysis of oscillations in water pressure in
nearby holes, interpreted as indicating seiche-like flow back and forth
between the holes when the second hole reached the bed, also suggested
a gap of this size (Kamb, 2001, p. 187).

Engelhardt and Kamb made other observations that provide insight
into the nature of the drainage system beneath ice streams. In some holes,
water levels dropped more slowly or, rarely, not at all. This suggests
that the hole reached the ice–till interface at a place where gaps were
smaller or where there was no gap at or near the hole bottom. They also
observed that, upon breakthrough, the falling water level resulted in a
pressure pulse in other nearby holes on some occasions but not on others.
Over time spans of several months they noted that water levels fluctuated
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Figure 8.22. Possible
geometry of a linked-
water-pocket drainage system
on till at the base of an ice
sheet.

and that the fluctuations in some holes were well correlated, while those
in others showed no correlation whatsoever. Indeed, holes that showed
good correlation over some time periods showed no correlation over
other time periods. Finally, while water levels in holes within ∼102 m
of one another were often, but not always comparable, levels in more
distant holes commonly differed by several meters. Pressures in some
holes even rose above the estimated overburden pressure on occasion.

A distributed drainage system consisting of wide shallow linked
water pockets (Figure 8.22) with links periodically blocked by deforma-
tion of till or ice, would be compatible with all of these observations.
Individual pockets might be meters across and millimeters to tens of
millimeters deep and links might be centimeters wide. In such a system,
one can readily imagine that some holes might bottom in areas between
pockets and have difficulty forcing a connection to one, that a pressure
wave initiated at one borehole might have to travel a long distance down
one tortuous waterway and then up another in order to reach a nearby
hole, that when a conduit became blocked the water pressure in it might
rise temporarily and be out of phase with pressure variations in other
holes, and even that pressures might rise above the overburden pressure
in waterways that were blocked downstream but remained connected
upstream. Also conducive to development of a distributed drainage sys-
tem is the fact that the water source, basal melting, is distributed.

In summary, there is good theoretical and observational evidence
supporting the conclusion that conduits on till beneath ice sheets are
probably wide and shallow and that they form a distributed drainage
network. Beneath steeper valley glaciers, conduits may be narrower and
deeper, and may form an arborescent drainage system. Consistent with a
distributed drainage system on till beneath ice sheets is the observation
that landforms characteristic of dendritic drainage networks, such as
eskers (see below), are much less common in areas where the ice sheet
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moved over a thick till unit (Clark and Walder, 1994). Instead, gravel
lenses, some of which are known to be ribbon-like, elongated in the
direction of ice flow, are common in till deposited by continental ice
sheets. These are interpreted to be the beds of wide shallow subglacial
conduits (Eyles et al., 1982; Brown et al., 1987).

Temporal and spatial distribution of drainage system types

Although we have been treating drainage systems on hard beds and
soft beds separately, most glaciers rest on bedrock in some areas and
on loose material in others. The character of the loose material is also
quite variable. Till beneath valley glaciers commonly contains substantial
amounts of sand and gravel, while that beneath Antarctic ice streams and
that overridden by the Laurentide Ice Sheet in the midwestern United
States is much finer. This is probably largely a consequence of the nature
of the bedrock supplying the debris: resistant mountain ranges on the
one hand and large areas of weak sedimentary rock on the other. The
granulometry of the till affects the angle of internal friction and thus its
strength (Chapter 7). Also affecting till strength is the effective pressure,
which is typically higher beneath valley glaciers and lower beneath ice
sheets. These two factors combined make till deformation more likely
beneath ice sheets. From the point of view of a valley glacier, coarse
till that is not deforming may look very much like rough bedrock and
the drainage system developed on it may thus have characteristics of a
system on a hard bed.

Thus, the nature of the drainage system must vary from place to
place beneath a glacier and from one glacier to another. Where basal
melting occurs, the melting is distributed, so some parts of any subglacial
drainage system must be distributed. Some systems may be entirely
distributed, while others may have an arborescent component. On short
time scales, both types of system are likely to be altered or disrupted by
flow of the ice, though the linked cavity system, stabilized by the location
of cavities on the lee sides of bedrock obstacles, is less subject to such
change. On longer time scales, the drainage system at a particular place
must vary as the glacier profile changes, the bed is eroded, and subglacial
materials are rearranged. The challenge, therefore, is to determine not
what type of conduit system is present beneath a particular glacier, but
rather the spatial distribution of the different types of system.

Surges
A surge is a rapid advance of a glacier, lasting from a few months to a
couple of years, that is unrelated to changes in mass balance. During a
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surge, the terminus may advance as much as a few kilometers at speeds
of 101–102 m d−1, and relatively stagnant ice in the terminus region may
be overridden. As a result of the high strain rates, surges are accompanied
by dramatic crevassing.

During a surge, a large amount of ice is transferred from a reservoir
area, which is usually, though not always, in the accumulation area, to a
receiving area in the terminus region. Accordingly, the surface elevation
in the reservoir area is drawn down and the receiving area thickens.
Changes in thickness of tens of meters are common.

Surges are followed by a period of quiescence, lasting on the order of
decades. During quiescence ice speeds are less than the balance velocity
so the glacier thickens in the reservoir area and thins in the receiving
area, thus becoming steeper. Before the resulting increase in driving
stress can raise speeds to equal the balance velocity, however, another
surge occurs. Thus, the process is periodic.

Surges may occur on glaciers resting on either hard beds composed
mainly of bedrock, or on soft beds composed of till. Surges may also
occur on glaciers that are, at least in part, frozen to their beds. Any
complete theory of surging must accommodate all of these possibilities.
While such a theory does not yet exist, it is likely that high basal water
pressures play a role in all surges.

In the case of temperate glaciers on hard beds, the increase in thick-
ness and speed during build up to a surge means that water pressures
must rise higher before the limits of stability of the linked-cavity sys-
tem are exceeded (Figure 8.16) and the transition to a tunnel system
thus initiated. Surging may begin on the upper thicker part of the glacier
when this stability limit is not reached as water pressures rise in the late
winter or spring (Kamb, 1987). The resulting increase in sliding speed
decreases the size of orifices (Figure 8.16), thus further increasing Pw

and hence ub in a positive feedback process. According to this model,
surging occurs when the glacier geometry is such that the linked-cavity
system can persist for several weeks or months beneath the upper part of
the glacier, the destabilizing effect of increases in water pressure being
exceeded by the stabilizing effect of the increase in sliding speed. As the
surge front moves downglacier, the tunnel system beneath the lower part
of the glacier is transformed into a linked-cavity system behind the front
(Humphrey and Raymond, 1994). Eventually, however, owing either to
further increases in water pressure or to changes in glacier geometry or
both, the tunnel system is finally re-established under the bulk of the
glacier and the surge ends.

This model is consistent with observations leading up to and dur-
ing the 1982–1983 surge of Variegated Glacier, Alaska, one of the best
studied examples of a surging glacier in the world (Kamb et al., 1985;
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Kamb, 1987). During the decade leading up to the surge, the glacier
became thicker and steeper and the surface speed during the winter on
the upper part of the glacier increased (Figure 8.23a, b) (Raymond and
Harrison, 1988). Calculated and measured rates of internal deforma-
tion indicate that the increase in us was largely a result of an increase
in ub. The acceleration to surge speeds started in the early winter on
the upper part of the glacier (Fig. 8.23c) when decreasing water input
is likely to have led to increasing water pressures, and the high sliding
speed may have resulted in destruction of a tunnel system. Dye-trace
data, mentioned earlier (p. 216), suggest that the drainage system con-
sisted largely of linked cavities at this time. The dye moved slowly and
emerged at a number of points across the width of the glacier terminus,
and the water was extremely turbid. The speed gradually increased, pre-
sumably in the positive feedback process mentioned above. Eventually,
large floods of dirty water emerged at the terminus, the glacier surface
dropped abruptly, indicating that the water had been in subglacial stor-
age reservoirs, and the surge ended. A dye trace following the surge
suggested that the drainage system had reverted to a tunnel configu-
ration. The dye moved quickly and appeared in only one stream, and
the sediment concentration was lower. Measurements of water pressure
in a borehole confirm that Pw was within 0.5 MPa of the overburden
pressure during the surge, with frequent fluctuations to within 0.15 MPa
of overburden, and occasionally above it. Before and after the surge it
was typically 0.8–1.6 MPa below the overburden pressure, which was
3.6 MPa at the site of the hole.

Presenting a contrary view, Truffer et al. (2000) suggest that if a
glacier is underlain by till, surges could be initiated when water pressures
and shear stresses become large enough to mobilize the till. Any efficient
tunnel drainage would be disrupted when the till is mobilized, and would
be replaced by an inefficient distributed drainage. A substantial amount
of water can be stored in such a drainage system, and water pressures
will be high, thus sustaining the fast motion. A sudden release of the
stored water would end the surge, as commonly observed.

Subglacial drainage paths and the
formation of eskers
Traces of subglacial drainage paths are often preserved in the landscape.
Eskers are one of the more common geomorphological features that
define these paths. Eskers are sinuous ridges of gravel deposited by
streams flowing in subglacial tunnels. They typically have undulating
crests. They are largest and best developed in areas that were covered
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Figure 8.23. Evolution of the: (a) surface profile, and (b) speed of Variegated
Glacier during its build up to a surge. (c) Surface speed of the upper part of
Variegated Glacier during its surge in 1982–1983. ((a) and (b) from Raymond
and Harrison, 1988, Figures 4 and 5b; (c) from Kamb et al., 1985, Figure 2b.
Reproduced with permission of the authors, the International Glaciological
Society, and the American Association for the Advancement of Science.)
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by continental ice sheets during the late Pleistocene. Some are tens of
meters in height and tens or hundreds of kilometers in length.

Eskers often appear to follow bizarre paths when viewed from the
perspective of people accustomed to the courses of subaerial streams.
Eskers may climb hills, trend diagonally down valley sides, and run
along valley sides instead of in valley bottoms. Shreve (1972, 1985a,
1985b) has shown that these characteristics can be readily understood
from consideration of the hydraulic potential field beneath an ice sheet.

We have noted (Figure 8.6) that englacial water is expected to move in
directions that are normal to equipotential planes in a glacier. Similarly,
along the bed of a glacier water flow should be normal to the intersections
of these equipotential planes with the bed. This is equivalent to saying that
water flow down a hillslope should be normal to topographic contours, as
topographic contours are the intersections of surfaces that are a constant
height above sea level (≡ equipotential surfaces) with the topography.

Let us consider a couple of examples of this. The solid lines on the
map in Figure 8.24a are topographic contours. They depict a gentle slope
leading down to a valley that drains to the south. East of the valley there is
a ridge that varies in elevation. Now, visualize the situation when an ice
sheet covered the landscape, as shown in Figure 8.24b. The surface of the
glacier sloped to the east, so the equipotential planes dipped westward.
The dashed contours show the intersections of these planes with the
landscape. These intersections are precisely analogous to the outcrop
pattern that would be formed on the landscape by a westward-dipping
sedimentary rock unit.

Under subaerial conditions, creeks would run down the gentle slope
on the west side of the map, and then turn south. However, when ice
covered the area, subglacial water would not have turned south. Instead,
flowing normal to the contours of equipotential, it would have been
deflected toward the low point in the ridge. If such a subglacial stream
could not carry all of the sediment delivered to it, we might now find an
esker crossing the ridge at its lowest point. This is commonly observed
in situations in which ridges cross the paths of eskers.

The equipotential planes in the vicinity of the ridge are distorted.
This is because the ice is flowing and the pressure is thus higher on the
stoss side of the ridge than on the lee. To understand why the planes are
distorted as shown, remember that in a situation in which z is constant, the
decrease in potential from A to C is the result of a decrease in pressure, Pw

(Equation (8.1)). Thus, if some distance away from the ridge a potential
drop of 10 units occurs over the horizontal distance AB, nearer the stoss
side of the ridge a longer distance, BC, is required for the same drop
because the pressure at C is elevated. In the lee of the ridge, the distortion
is in the opposite sense.
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Figure 8.24. (a) Contour map of a landscape on which are superimposed
contours (dashed) of equipotential from a time when an ice sheet covered the
landscape. (b) Topographic cross section from a time when ice was present,
showing the equipotential surfaces in the ice sheet.

Because the velocity of water in the tunnel is proportional to
∂�/∂s (Equations (8.13) and (8.14)), this distortion of the potential
field affects the velocity. In particular, where ∂�/∂s is higher over
the crest of the ridge, the velocity would be higher. This is consistent
with the observation that eskers are commonly discontinuous across the
crests of such ridges; the higher velocity flow there presumably inhibits
deposition.

Another hypothetical situation is shown in Figure 8.25. Here, a topo-
graphic valley drains southeastward, diagonally across the direction of
glacier flow. As a result, the trough in the equipotential contours is on
the valley side rather than in the valley bottom, and this is where an
esker would be found if conditions were otherwise suitable for its for-
mation. Again, eskers are commonly found in such positions under these
circumstances.
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map of a valley trending
diagonally across the direction
of ice flow, showing how an
esker formed in such a
situation would be on the side
of the valley.

With an understanding of the physical processes that determine the
locations of eskers in situations such as those in Figures 8.24 and 8.25,
it is sometimes possible to determine the surface slope of the glacier
beneath which the esker formed. As an example of this, consider the
section of the Katahdin esker near the town of Medway in Maine shown
in Figure 8.26a. Ice flow was roughly from north to south in this area.
In the northern part of the map, the two branches of the esker follow
respective branches of the Penobscot River, but are slightly offset from
the river, up onto the valley sides, in the downglacier direction. However,
south of the junction between the two branches, the esker departs from the
valley of the Penobscot to run up the valley of a small tributary and then
across the divide between this tributary and another small southward-
flowing creek. To clarify the reasons for this, Shreve (1985a) constructed
a series of maps of the potential field in the Medway area for different
possible ice surface slopes. The one that best explained the course of the
esker (Figure 8.26b) utilized a surface slope of 0.0048.

By determining ice-surface slopes in this way at a number of loca-
tions along a single esker system, one might be able to reconstruct the
surface profile of an ice sheet, and from this calculate the basal shear
stress. For such a reconstruction, however, the entire esker system must
have been active simultaneously. In situations in which contemporane-
ity can be demonstrated, this is one of the few techniques available for
determining surface profiles of vanished ice masses.

Sediment supply to eskers

Eskers form where the sediment load delivered to a subglacial stream
exceeds the transport capacity of the stream. The debris-laden basal ice
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Figure 8.26. (a) Map of the Penobscot River and a section of the Katahdin
esker near Medway, Maine. Near the middle of the map, the esker leaves the
valley of the river and trends south-southwestward up a small tributary valley.
(b) Map of equipotential contours beneath a glacier with a southward surface
slope of 0.0048. The esker generally follows a trough in the potential surface.
(After Shreve, 1985a. Reproduced with permission of the author and the
Geological Society of America.)

of the glacier is one source of such sediment. As the energy dissipated
by the flowing water melts this ice, debris is released and an inward flow
of ice toward the tunnel is induced.

A nice demonstration of this process is provided by lithologic pebble
counts from the Great Pond section of the Katahdin esker, down-flow
from a point where the esker crosses bedrock units of distinctive lithology
(Van Beaver, 1971). The concentration of pebbles of these lithologies in
the esker reaches a maximum about 3 km down-flow from the point
where the esker crosses the units (Figure 8.27). Had the stream been
acquiring the pebbles directly from the bedrock, a difficult task at best
once the esker began to develop on top of the rock, the concentration
should have peaked at the down-flow edge of the unit. Rather, we infer
that it was the glacier that eroded the pebbles from the bed and carried
them along arcuate paths, as shown, until they were released into the
stream (Shreve, 1985a).

Calculations suggest that this source of sediment is quite adequate
to overload a subglacial stream, leading to deposition. For example,
suppose the median (by weight) grain size in an esker is 0.03 m, and that
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the esker is forming in a tunnel beneath a glacier with a surface slope of
0.005. Then, based on equations for sediment transport in gravel-bedded
streams (Parker, 1979), a conduit ∼0.7 m high with a discharge of 1.0
m3 s−1 per meter of conduit width would be required to transport this
material, and the sediment load would be about 0.04 m3 d−1 per meter
width. Under these conditions, the energy available for melting would
be ∼50 J m−2 s−1, and the melt rate on the conduit roof would be
∼0.014 m d−1 (Equations (8.9) and (8.12)). If the basal ice contained
10% debris by volume, the debris released by this melting would overload
the stream after it flowed along the conduit for only 30 m (0.014 × 0.10 ×
30 = 0.04 m3 d−1 per meter width).

In some eskers, however, some of the water and sediment load may
have been derived from the glacier surface by way of moulins. For exam-
ple, Mooers (1990a) found eskers in central Minnesota that headed
in conical hills of glaciofluvial gravel. He inferred that the hills were
formed by sediment-laden supraglacial streams that reached the glacier
bed through moulins and deposited a significant fraction of their load
there before continuing to the margin through the subglacial conduits in
which the esker formed.

Size and location of water conduits on eskers

It is natural to assume, as a first approximation, that the tunnel within
which an esker formed was comparable in size to the esker (Figure 8.28a).
This is consistent with the observation that some eskers are composed
of coarse gravel with a dearth of sedimentary structures. However, this
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(a) (b) (c)
A

B

Figure 8.28. Esker of height �h with: (a) conduit comparable in size to
esker; (b) small conduit on top of esker; and (c) small conduit low on side
of esker.

may be a poor assumption in many instances, as the flux of water implied
by a tunnel of this size would be horrendous. As basal melt rates are
relatively low, such high fluxes would require either collection of water
from a very large area of the bed or a surficial source. In some areas the
former is improbable as the drainage area between the heads of eskers and
inferred ice divides is insufficient. Likewise, surficial sources many tens
of kilometers from the glacier margin are problematical, as near-surface
ice temperatures are likely to be well below 0 ◦C at these elevations, and
it is not clear how moulins could develop through a thick cold surface
layer.

An alternative is that the tunnel was comparatively small
(Figure 8.28b). This might further suggest that the esker formed slowly
over a period of many years.

If the tunnel is small compared with the size of the esker, it is also
of interest to determine whether it is on top of the esker or low on the
side (Figure 8.28c). The intersections of upglacier-dipping equipoten-
tial planes with an esker will be convex down-flow, as in a ridge, and
streams are not noted for flowing along ridge crests. This suggests that
the conduits should be low on the side of the esker. However, one might
then expect eskers to be broad-crested and low rather than sharp-crested
and high, as is commonly the case.

Shreve (1985a) suggests that debris washed from the crest of the
esker down the flank, together with that released from ice near the bed,
which has a higher debris content, will accumulate on the lower side of
the conduit, at A in Figure 8.28c. Melting will then be concentrated at B
and the conduit will migrate back to the top of the esker. He visualizes
a situation in which the conduit spends most of the time on top of the
esker, but periodically slips down one flank or another and then migrates
back to the top. However, the steepest potential gradient would still be
away from the esker so it is not clear why the conduit would migrate
back up onto the esker rather than laterally away from it, leaving a sheet
of gravel in its wake.

Alternatively, this problem can be addressed using the following
argument, adapted from (Lliboutry, 1983). If the height of the esker is �h
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(Figure 8.28), and there are two channels that are connected hydraulically,
one on top of the esker and one on the side, then:

P side
w = P top

w + ρwg�h

P side
i = P top

i + ρig�h
(8.26)

The pressure causing tunnel closure is Pc = Pi − Pw, so subtracting the
first of Equations (8.26) from the second:

P side
c = P top

c − (ρw − ρi)g�h

Now, from Equation (8.18), holding all other factors constant and using
n = 3, we find that Q ∝ P12

c . Thus:

Qtop

Qside
=

[
P top

c

P side
c

]12

=
[

P side
c + (ρw−ρ i)g�h

P side
c

]12

(8.27)

Thus, Qtop > Qside so the conduit on top of the esker will expand at the
expense of that on the side. Phrased differently, owing to the nonlinearity
of the flow law, the increase in potential closure rate as one moves down
off the esker is not offset by the increase in Pw, so closure rates are higher
in the conduit on the side, and water in it is forced up onto the top of the
esker.

The model of Figure 8.28b is consistent with the observation that
sedimentary stratification in eskers is commonly discontinuous, both
laterally and longitudinally. The stratification, defined by variations in
grain size, could be produced by transverse variations in conduit height
combined with lateral migration of the conduit even if flow through
the conduit were steady. Pseudoanticlinal bedding is also commonly
observed, with beds mimicking the transverse profile of the esker. Such
a form would be likely if the conduit periodically slipped down the flank
and then migrated back to the crest as Shreve suggested.

In summary, although questions remain, the shape and stratigraphy
of sharp-crested eskers suggest that some combination of the processes
Shreve identified and those summarized by Equations (8.26) probably
result in a tendency for conduits to be on tops of eskers, despite the
potential gradient favoring positions on the flanks.

Ramp structures and esker nets

The analysis leading to Equation (8.27) is valid as long as u = ṁ .
However, near the terminus of a glacier where the ice is thin, ṁ may
exceed u as we discussed in connection with Figure 8.11b. In this sit-
uation, the flow may slip off the side of the esker and build daughter
eskers parallel to the parent, forming an esker net. Alternatively, the
conduit may expand leading to deposition of coarser sediment in a
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Figure 8.29. Sketch of small
daughter esker diverging from
and later rejoining parent
esker. This may occur near the
margin where the ice is thin
and conduit closure rates are
low. (Bruce Hooke assisted
with artwork.)

massive wedge-shaped deposit that increases in height downstream.
Steep distal slopes mark the downstream ends of these wedges, which I
call ramp structures.

Esker nets were apparently first described by Stone (1899), who
called them reticulate eskers. A particularly good example is found in a
valley called Atnedalen in Norway. Following the esker down-flow, one
first encounters several situations in which a small esker drops down
off the side of the parent, parallels it for a short distance, and then
climbs back up onto it again (Figure 8.29). This is probably because
the ice thickness required to keep the conduit on top of the esker was
becoming marginal. Closer to the ice margin, where the ice was still
thinner, these daughter eskers grow to nearly the same size as the parent,
forming an anastomosing pattern of ridges. Still further downstream, the
ridge character becomes indistinct and the system merges into a kettled
outwash plain.

Esker nets and ramps are characteristic of the Katahdin esker. A
typical segment of the esker begins as a relatively small, sharp-crested
ridge. Down flow, the ridge increases in size, at first rather gradually,
but near the end more rapidly. Some segments end in ramps. Others
end in esker nets or in a combination of the two forms (Figure 8.30).
Downstream from ramps and esker nets there is commonly either a fan
or a delta built into the sea in which the glacier terminated. These fans
and deltas are composed of sand and fine gravel that was flushed through
the enlarged conduit as coarser material was deposited. The transition
from ramp to fan has been described well by Ashley et al. (1991, p. 112).
The next segment down flow may develop from a continuation of one of
the ridges in an esker net, may emerge from a fan or delta, or may pick
up after a short gap.

Tunnel valleys
The margins of many ice lobes of the southern Laurentide Ice Sheet
are marked by broad, relatively straight valleys, oriented normal to
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Figure 8.30. Map of a section of the Katahdin esker showing a ramp and esker
net. There is a fan down-flow from the ramp. (The site is 4.5 km NNE of Lincoln
Center, Maine.)
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the former ice margin. These features, apparently first described by
Ussing (1903) from Jylland in Denmark, are called tunnel valleys. They
are typically 10–20 km long, although they may be shorter or longer;
a few hundred meters wide; and ∼10 m deep, though depths as great
as 70 m have been reported (Wright, 1973) and the depth of any fill
is generally not known. Small eskers are occasionally associated with
the valleys (Johnson, 1999; Mooers 1989), and some valleys have tribu-
taries or distributaries. The valleys end at former ice margins, where they
debouch onto proglacial gravel fans. Thus, they must have been formed
subglacially. The lack of evidence for modification by overriding ice
implies that any subsequent ice movement was probably not very vigor-
ous. Some tunnel valleys in Minnesota trend across the regional gradient
and are cross cut by present stream courses (Wright, 1973). Others ascend
adverse gradients near their termini (Cutler et al., 2002; Mooers, 1989).
Both characteristics suggest that they were excavated by pressurized sub-
glacial water. Mooers describes one situation in which a tunnel valley
terminating at one recessional moraine is cross cut by a younger tunnel
valley terminating at a younger recessional moraine. The process of for-
mation thus must have been intermittent, with the earlier valley becoming
completely closed, presumably by infilling with ice, before the later one
formed. Tunnel valleys are rare or absent along the most southerly margin
of the Laurentide Ice Sheet, suggesting that they may be characteristic
of colder environments where frozen bed conditions were likely to have
been present along the ice margin (Cutler et al., 2000). This, however, is
controversial.

The origin of the water and the nature of the flows that cut the tunnel
valleys are actively debated. Was the water from basal melt alone, or
was there a contribution from the surface? Was the water flow contin-
uous over a period of decades or centuries, or was the water released
catastrophically? Wright argued for a catastrophic release of subglacial
water because he thought that a number of tunnel valleys were carved
simultaneously and that the ice was cold enough to preclude drainage
from the surface. Cutler et al. found that some fans at the ends of tun-
nel valleys consisted of tens of meters of sand and gravel overlain by
a bed, 3–5 m thick, containing boulders up to 2 m in diameter. They
thought the gravel might have been deposited by superglacial melt-
water reaching the bed through moulins near the margin. The boulder
bed, however, seemed to require a water flux greater than could be sup-
plied by superglacial water or by steady-state basal melt. Accordingly,
they suggested that it was deposited by subglacial water that was released
when a seal was breached. They believed that the seal was a marginal
zone in which the ice was frozen to the bed. Relict permafrost features,
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Figure 8.31. Bed geometry and parameters used in Hallet’s (1996) analysis of
glacier quarrying.

pollen evidence, and numerical modeling all suggest that a wedge of
frozen ground might well have extended several kilometers in under the
ice sheet at this time (as in the left diagram in Figure 6.16). Patterson
(2002) thinks that sapping, driven by the high gradient in hydraulic head
across a marginal seal, may be an important process in initiating an
outburst.

Water pressure and glacier quarrying
Quarrying is an important process of glacier erosion. In quarrying, blocks
of bedrock must first be loosened, either along preglacial joints or along
fractures formed by subglacial processes. Then they must be entrained
by the glacier. Because rock fragments that have been loosened but not
removed are uncommon on deglaciated bedrock surfaces, Hallet (1996)
argues that loosened blocks are readily entrained. He thus concludes that
fracture must be the rate-limiting process.

To analyze the stresses causing fracture, Hallet considers an idealized
bed consisting of steps as shown in Figure 8.31. The distance between
steps is L. The treads slope upglacier at an angle β. The crests of the steps
are at the same elevation, so the average bed slope is 0. Ice sliding over
the crest of one step separates from the bed, forming a water-filled cavity
under pressure Pw. The ice regains contact with the bed a distance S from
the crest. The slope of the cavity roof is α. The glacier is supported in
part by water in the cavity and in part by a vertical stress, σ n, on the crest
of the step, so summing forces:

Pi L = Pw S + σn(L − S) (8.28)

The slopes α and β are related by:

S tan α = (L − S) tan β (8.29)

From Equation (8.28), noting that the effective pressure (or pressure
causing closure of the cavity), Pc, is Pi − Pw, we obtain:

σn = Pi + Pc
S

L − S
(8.30)
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Now σ n acts on the crest of a step, promoting fracture, but Pw supports
the rock face, resisting fracture. Thus, the total stress causing fracture
(the non-hydrostatic or deviatoric stress – see Chapter 2) is:

σ ′
n = σn − Pw = Pc

(
L

L − S

)
(8.31)

To determine σ ′
n we need to know S.

Hallet assumes that the rate of closure of the cavity roof, uc, can be
approximated by a relation of the form of Equation (8.3), thus:

uc = kS P3
c (8.32)

where k is a constant involving, among other things, the ice viscosity
parameter, B. If uc is considered to be vertical and uniform over the
cavity roof and ub is the horizontal sliding speed, then:

tan α = uc

ub
(8.33)

Combining Equations (8.29), (8.32), and (8.33) then yields1:

S2 k P3
c

ub
+ S tan β − L tan β = 0 (8.34)

Thus, for a given L, Pc, ub, and β, Equation (8.34) can be solved for S
and Equation (8.31) then gives σ ′

n.
Hallet then uses principles of fracture mechanics (Chapter 4), into

which we will not delve further here, to estimate the rate of crack growth.
In his calculations, deviatoric stresses in the ice are constrained to be less
than the tensile strength of ice. By assuming that the crack is initiated
at a distance (L − S) from the crest of the step (Figure 8.31), he then
calculates the quarrying rate (Figure 8.32) for two rock types, a gran-
ite and a marble. The softer marble erodes 1000 times faster than the
granite!

As expected, quarrying rates increase with sliding speed. In addi-
tion, as ub increases maximum quarrying rates occur at higher effective
pressures. To understand the latter, note in Equation (8.31) that as S → L,
the term in brackets increases without bound. An increase in S can result
either from an increase in ub or from a decrease in Pc. This is because
both of these changes cause ice in the roof of the cavity to regain contact
with the bed further from the crest of the preceding step. If an increase
in S is a consequence of a decrease in Pc, σ ′

n does not increase so much
because the two effects offset one another in Equation (8.31) (note that
S = L when Pc = 0 because the glacier is then afloat). Thus, quarrying

1 This differs from Hallet’s analysis because he takes uc to be normal to the cavity roof.

Considering the approximations in Equation (8.32) and the simplifications achieved by

using Equation (8.33), taking uc to be vertical seems justified.
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Figure 8.32. Theoretical
rates of quarrying of marble
(solid lines) and granite
(dashed lines) on a bed like
that shown in Figure 8.31.
Parameters used in the
calculation were L = 10 m,
β = 11.5o, and k = 5 a−1 MPa−3.
(Based on Hallet, 1996,
Figure 2. Reproduced with
permission of the author and
the International Glaciological
Society.)

rates have maxima at some fairly low Pc (Figure 8.32). On the other
hand, if the increase in S is a consequence of an increase in ub, then
the maxima in σ ′

n and the quarrying rate can occur at a higher Pc. Also
noteworthy in Figure 8.32 is the sensitivity of the quarrying rate to Pc;
under 450 m of ice, for example, Pc may vary from 0 to ∼4 MPa, but
significant erosion occurs over <10% of that range.

Because stresses that can be generated in the rock in this way are
limited by the tensile strength of ice, the maximum steady σ ′

n that can
be applied to a rock is about 10 MPa, while tensile strengths of strong
crystalline rocks without macroscopic flaws generally range from 10 to
20 MPa (Hallet, 1996). Water-pressure fluctuations in cavities in the lee
of a bump on a glacier bed provide a mechanism for fracturing this strong
rock. They also accelerate propagation of fractures in weaker rocks or
those with macroscopic flaws and play a role in the entrainment process
(Röthlisberger and Iken, 1981; Iverson, 1989). Let us consider fracture
first.

Water-pressure fluctuations are particularly rapid where moulins
provide connections from the surface of a glacier to the bed. Water
inputs from rain or melt can then cause subglacial cavities to fill and
drain faster than they can adjust by flow of the ice. The resulting pres-
sure fluctuations transfer the weight of the glacier first to and then from
the tops of bumps. Under 250 m of ice, for example, the pressure could
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vary from a relatively uniform 2.2 MPa on all faces of a bump to over
12 MPa, say, on the top, and nearly zero on the lee face.

All rocks contain microcracks, fractions of a millimeter to a few
millimeters in length, and the stress variations resulting from these water
pressure fluctuations can lead to propagation of tensile fractures at the
tips of favorably oriented cracks (Griffith, 1924). This can occur even
at stresses well below the experimentally determined tensile strength of
the rock (Atkinson and Rawlings, 1981; Atkinson, 1984; Segall, 1984).
The likelihood of crack growth increases when the water pressure within
cracks remains elevated while that in an adjacent cavity drops, or when
stress corrosion resulting from repeated pressure changes reduces the
strength of the rock (Iverson, 1991). Even higher and more concentrated
stress differences can result when a cobble or boulder is dragged over a
bump by the ice. Thus, it now seems safe to conclude that even sound
crystalline rocks can be fractured subglacially through the action of ice
and water, despite the fact that the ice is weaker than the underlying
rock.

Boulders with smooth stoss faces and plucked lee faces that are
embedded in till, called bullet boulders, provide convincing field evi-
dence for subglacial fracture (see, for example, Sharp, 1982). These boul-
ders must have been transported by the ice and become lodged in the till as
the basal ice melted. They would not have had their characteristic shape
prior to lodgement, nor could they have been transported to their present
location, intact, if they had pre-existing fractures. Thus their shape
must have been produced by the overriding glacier after they became
lodged.

Once a block of rock is isolated by fractures, bed-parallel forces
tending to slide it out of position must exceed frictional forces tending
to hold it in place in order for entrainment to occur (Iverson, 1989). Both
the bed-parallel and the frictional forces are affected by fluctuations in
water pressure. As noted earlier (Figure 7.6), pressure-release freezing
may occur on tops of bumps when increases in water pressure in cavities
transfer part of the weight of a glacier away from the bumps (Robin,
1976), and similar cold patches can also develop owing to simple flow
of the ice from the stoss side of a bump to its crest. Both processes
increase the drag exerted by the ice on the block. The latter process
is more effective at higher sliding velocities, so increases in subglacial
water pressure that cause increases in sliding speed should increase its
effectiveness.

Frictional forces resisting dislodgement of loosened blocks are
reduced as water pressures rise (Iverson, 1989). This is because the
normal pressure that ice exerts on a bedrock surface upglacier from a
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Figure 8.33. Longitudinal section of Storglaciären, Sweden, approximately
along a flowline showing cirque, overdeepened basins, water-input points
(crevasse zones and bergschrund), and inferred locations of quarrying (indicated
by ���). Here w.e.l. = water equivalent line; circles (o) show heights of water
in boreholes. (Modified from Hooke, 1991, Figure 2.)

cavity is reduced, thus decreasing the friction along fractures that bound
loosened blocks. In addition, once fractures are well-developed and in
hydraulic communication with cavities, increases in water pressure in
the fractures themselves reduce the effective pressure across fracture
surfaces.

In summary, it appears that steady flow and low effective pressures
can fracture weaker rocks or rocks with macroscopic flaws. However,
fluctuations in subglacial water pressure and associated transient changes
in glacier sliding speed facilitate quarrying, particularly of more resis-
tant lithologies. Abrupt reductions in water pressure promote subglacial
fracture while increases, whether rapid or more gradual, promote the
dislodgement of loosened blocks.

Origin of cirques and overdeepenings
Cirques and overdeepened basins in glacier beds, such as those in Figure
8.33, are similar in form. Both have steep headwalls and both tend to
have beds with adverse slopes. We will discuss the headwalls first.

Headwalls have ragged surfaces, apparently resulting from frac-
ture and removal of blocks of rock. This morphology suggests that
they are eroded by glacial quarrying. As we have just discussed, quar-
rying appears to be a result of water-pressure fluctuations on time
scales of hours to days. These fluctuations seem to be most pronounced
close to areas of water input (Hooke, 1991). In the case of cirques,
the water input is localized by the bergschrund, and in the case of
overdeepenings, by crevasses that form over the convexities at their heads
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(Figure 8.33). Thus, these water inputs and resulting pressure fluctua-
tions occur at precisely the points where erosion is necessary to maintain
the headwalls.

In the case of the headwall of an overdeepening, a positive-feedback
process appears to be operating. Crevassing over a minor convexity in
the bed, an initial perturbation, localizes water input and hence erosion.
The erosion is concentrated on the downglacier side of the convexity.
Thus, as the erosion progresses, the convexity is amplified, resulting in
further crevassing.

The other defining characteristic of cirques and overdeepenings is
the gentle adverse slope of their beds. The steepness of this slope may
be limited by the ability of water to flow along the bed. For example, if
k = 0.309 and ρ = 916 kg m−3 in Equation (8.12), it is easy to show (by
using Equation (8.5)) that ṁ = 0 when dz/ds = −1.7 d H /ds. (This is
left as an exercise for the reader. Note that the constant of proportionality
is lower if the water is partially or completely saturated with air and a
higher value of k is thus used.) In other words, when the adverse bed
slope, dz/ds, is 1.7 times the surface slope, all of the energy dissipated
in the flowing water is needed to warm the water to keep it at the pressure
melting point as the ice thins in the downglacier direction, and none is
available to melt more ice (see Equation (8.10) and discussion of Figure
8.11c). Where the adverse slope is steeper, Equation (8.12) predicts,
mathematically, that ṁ should become negative, so water should freeze
in the conduit, and Equation (8.24) then predicts that Pw > Pi. Indeed,
measured water pressures in the main overdeepening of Storglaciären
are quite close to the overburden pressure (Figure 8.33).

Actually, field data suggest that the water, rather than remaining in the
conduit, spreads out in a maze of linked water pockets with flow velocities
that are too low to move significant amounts of sediment (Figure 8.22).
If the adverse slope is steep enough, frazil ice (platelets of ice that form
in the flowing water) may form and further inhibit flow. Because the
subglacial drainage system is thus disrupted in overdeepenings, water is
forced to follow englacial conduits through them (Hooke and Pohjola,
1994).

Where subglacial streams are thus not available to flush out the
products of erosion, a layer of till must accumulate. Substantial amounts
of this sediment can be entrained if frazil ice forms and is eventually
incorporated into the glacier sole (Lawson et al., 1998). Continuity con-
siderations suggest that the till layer will increase in thickness until the
downglacier mass transfer by deformation within it and entrainment by
frazil ice at its surface equals sediment production by erosion. Such a
sediment layer would protect the bed throughout the downglacier reaches
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of an overdeepening, thus concentrating erosion at its head. This is prob-
ably why overdeepenings exist, and why their longitudinal profiles are
characteristically asymmetrical with the deepest point at their upglacier
ends (Hooke, 1991).

Summary
In this chapter we have investigated the glacier hydraulic system, start-
ing with the vein network along lines of intersection among three ice
crystals and progressing through the englacial to the subglacial system.
We found that theoretically water flow in the englacial system should be
normal to equipotential surfaces that dip upglacier at an angle roughly
11 times the slope of the glacier surface. Along the bed, water flow
is normal to the intersections of these equipotential surfaces with the
bed.

Water moving through conduit systems in or beneath glaciers
releases viscous energy. This energy melts ice on conduit walls. However,
the pressure in the water is generally less than that in the surrounding
ice, so the conduits close by creep. In the steady state, the water pressure
is everywhere adjusted so that u = ṁ . Along the bed u is inhibited by
drag. In addition, melting is concentrated low on the walls when tunnels
are not full of water. Thus, the steady-state conduit shape is likely to be
broad and low.

The water pressure in conduits increases upglacier, approximately
in proportion to the increase in ice thickness over the conduit. In conduit
systems consisting of tunnels, Pw decreases as Q increases, but in sys-
tems consisting of cavities in the lee of bedrock steps linked by orifices,
Pw increases as Q increases. Thus, tunnel systems are believed to be
arborescent, while linked-cavity systems are distributed. In all probabil-
ity, these are end members of a continuum of drainage system types.

Tunnel systems are likely to collapse when discharges are low, tun-
nels are shrinking, and water pressures are increasing. If the tunnel sys-
tem cannot regenerate when discharges increase again, water pressures
may rise high enough to initiate a surge.

In conduits between a glacier and a deformable bed, the steady-state
condition is one in which, in addition to u = ṁ, erosion of sediment by the
flowing water must balance the flux of sediment into the conduit. Under
these conditions, conduit systems are likely to be distributed. Analysis
suggests that this condition is most likely when glacier surface slopes
are low and water pressures high, as is commonly the case beneath ice
sheets. Beneath valley glaciers, water pressures are typically lower, so
bed deformation is not as likely.
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In the last part of the chapter, we investigated three problems of
geomorphic interest: the formation and courses of eskers, the origin
of tunnel valleys, and the erosion of cirques and overdeepenings. Many
esker characteristics can be understood in terms of gradients of hydraulic
potential at the base of an ice sheet. The source of the water that carved
tunnel valleys is unclear, but indications are that large discharges were
involved at least occasionally. Erosion of hard bedrock by glaciers is
greatly facilitated by fluctuations in water pressure at the bed.



Chapter 9

Stress and deformation

In this chapter we will derive general equations for calculating the force
per unit area, or traction, on a plane that is not parallel to the coordinate
axes, and then use these equations to determine the orientation of the
plane on which tractions are a maximum. We will see how this leads
to the concept of the invariant of a tensor, and show that this provides
the fundamental basis for Glen’s flow law. Then we derive the stress
equilibrium equations.

In the second half of the chapter we derive expressions for strain rates
in terms of velocity derivatives, and develop some relations based on
these expressions and some other basic equations. This will set the stage
for calculating stresses and velocities in a very simple ice sheet, consist-
ing of a slab of ice of uniform thickness on a uniform slope (Chapter 10)
and for investigating some more realistic problems (Chapter 12).

Stress
Although we have been referring to stresses and strain rates throughout
the last few chapters, we will now enter into a much more detailed
discussion, involving the tensor properties of these quantities. The reader
may find it helpful, therefore, to review the section on stresses and strain
rates in Chapter 2.

General equations for transformation of stress
in two dimensions

Consider a domain in a slab of material of unit thickness (measured
normal to the page) as shown in Figure 9.1. Stresses are uniformly
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Figure 9.1. Stresses on a triangular prism of material isolated from a domain.

distributed over the domain; in terms of the x–y coordinate system
shown, they are σxx and σyx in the x-direction, and σyy and σxy in the
y-direction. Shear forces on any small element of the domain of unit
size in the x- and y-directions must be in equilibrium if there is to be no
tendency for the element to rotate. Thus, σxy = σyx, so we will use σxy

to represent both. Now cut the domain along plane AC, which makes an
angle θ with the y-axis. This plane has an area which we designate dA.
As a consequence of the stress field in the slab, the edges of the cut will
have a tendency to move with respect to one another. We will ignore the
part of the domain to the right of the cut, and ask what forces must be
applied on dA to balance this tendency. Specifically, we wish to find the
stress vectors σN(θ ) and σS(θ ) on this plane, where the subscripts N and
S refer to normal and shear respectively.

To do this, consider the prism ABC, and sum forces on it that act
normal (FN) and parallel (FS) to dA, remembering that a force is a stress
times an area, and set the sums equal to 0, the condition for static equi-
librium. Note that surface AB has area dA cos θ and surface BC has area
dA sin θ . The force summation yields:∑

FN = σN(θ )dA − σxx cos2 θdA − σxy sin θ cos θdA

− σxy cos θ sin θdA − σyy sin2 θdA = 0
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and ∑
FS = σS(θ )dA + σxx sin θ cos θdA − σxy cos2 θdA

+ σxy sin2 θdA − σyy cos θ sin θdA = 0

Simplifying results in:

σN = σxx cos2 θ + σyy sin2 θ + σxy(2 sin cos θ )

and

σS = − 1
2 (σxx − σyy)(2 sin θ cos θ ) + σxy(cos2 θ − sin2 θ )

These relations may be further simplified with the use of the trigono-
metric identities:

sin 2θ = 2 sin θ cos θ

and

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1 − 2 sin2 θ

to yield:

σN = σxx
(1 + cos 2θ )

2
+ σyy

(1 − cos 2θ )

2
+ σxy sin 2θ

or

σN = σxx + σyy

2
+ σxx − σyy

2
cos 2θ + σxy sin 2θ (9.1)

and

σS = −σxx − σyy

2
sin 2θ + σxy cos 2θ (9.2)

These are the desired relations for σN(θ ) and σS(θ ).

Principal stresses

We now wish to find the orientation, θ , of the plane on which σN is
either a maximum or minimum. Take the derivative of Equation (9.1)
with respect to θ and set the result equal to 0, thus:

∂σN

∂θ
= −2

σxx − σyy

2
sin 2θ + 2σxy cos 2θ = 0 (9.3a)

or

tan 2θ = 2σxy

(σxx − σyy)
(9.3b)

This equation may be satisfied by either of two values of 2θ , 180◦ apart.
Thus, there are two solutions for θ that are 90◦ apart. One is the plane
of maximum σN and the other is the plane of minimum σN. We call
the stresses acting in these directions the principal stresses. This is an
important concept to understand, and we will return to it frequently.
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2q

2sxy(s xx
−s yy)

2 + 4s xy
2

sxx −syy

Figure 9.2. Illustration of
relation among (σxx – σyy), σxy,
and 2θ in Equation (9.3b).

The magnitude of the principal stresses is obtained by substituting
for 2θ in Equation (9.1). Equation (9.3b) and the diagram in Figure 9.2
are used to get expressions for cos 2θ and sin 2θ . The result is:

σ1,2 = σxx + σyy

2
+ σxx − σyy

2

σxx − σyy√
(σxx − σyy)2 + 4σ 2

xy

+ σxy
2σxy√

(σxx − σyy)2 + 4σ 2
xy

or

σ1,2 = σxx + σyy

2
± 1

2

√
(σxx − σyy)2 + 4σ 2

xy (9.4)

σ1 is σNmax and σ2 is σNmin. Thus, (σ1 + σ2) = (σxx + σyy).
Comparing Equations (9.2) and (9.3a), it will be seen that

(∂σN/∂θ ) = 2σS. Thus when (∂σN/∂θ ) = 0, 2σS = 0. This is another
important principle. Shear stresses vanish on planes on which the
normal stresses are a maximum or minimum.

The orientations and magnitudes of the maximum shear stresses
can be obtained in a similar manner. This is left as an exercise for the
reader.

Mohr’s circle

A convenient way to illustrate the dependence of σxx, σyy, and σxy on 2θ

is to use a graphical construction known as Mohr’s circle (Figure 9.3).
To construct the figure do the following.

(1) Draw a rectangular coordinate system with normal stresses (σN) on
the abcissa and shear stresses (σS) on the ordinate, and plot points A
and A′ at (σxx, σxy) and (σyy, −σxy), respectively.

(2) Connect points A and A′ with a straight line, and draw a circle with
B as the center and passing through A and A′.
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Figure 9.3. Mohr’s circle.

In this figure, BE = 1
2 (σxx − σyy) so the radius of the circle is:√(

1
2 (σ xx − σyy)

)2 + σ 2
xy = 1

2

√
(σxx − σyy)2 + 4σ 2

xy

Thus, from Equation (9.4) the magnitudes of σ1 and σ2 are represented
by the lengths of lines OD and OC respectively, and angle ABD is 2θ .

Invariants of a tensor

Regardless of the orientation of the axes in Figure 9.1, the magnitudes
and orientations of σ1 and σ2 cannot change as long as the overall stress
field does not change. This is because σ1 and σ2 are functions of the state
of stress in the domain and not of θ . We now use this fact and Mohr’s
circle to illustrate another fundamental principle.

Because the magnitudes of σ1 and σ2, as represented by OD and
OC respectively, determine the size of the circle and its position on the
σN-axis, the size and position do not change as θ varies. Thus:

1

2
(σxx + σyy) (9.5a)

and

1

2

[
(σ xx − σyy)2 + 4σ 2

xy

]1/2
(9.5b)

(represented by OB and the radius of the circle, respectively) remain
constant. These two quantities are thus independent of the orientation of
the axes, or θ; they are known as the invariants of the tensor. On the other
hand, σxx, σyy, and σxy do vary as θ varies. This variation is represented
by movement of points A and A′ around the circle.

Phrased in terms of Equation (9.4), σ1 and σ2 will remain con-
stant and independent of θ only if the quantities 1

2 (σ xx + σyy) and
1
2 [(σ xx − σyy)2 + 4σ 2

xy]1/2 are independent of θ . Thus, these two quan-
tities must be invariant.
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Extension to three dimensions and introduction of
deviatoric stresses

It has been found empirically that, to a first approximation, deformation
of ice subjected to a normal stress is independent of the hydrostatic pres-
sure or mean stress, P (see discussion of Equation (4.9)). This might well
be anticipated from the observation that ice is (nearly) incompressible.
In three dimensions, the mean stress is given by:

P = 1

3
(σxx + σyy + σzz) (9.6)

Because deformation is independent of P, we define a new set of stresses,
denoted by primes, by σ ′

xx = σxx − P, σ ′
yy = σyy − P, and σ ′

zz = σzz − P.
These stresses are variously known as deviatoric stresses, stress devia-
tors, or non-hydrostatic stresses. “Deviator” refers to the fact that they
are deviations from the mean stress.

A more compact relation for the deviatoric stresses is:

σ ′
i j = σi j − 1

3
�i jσkk i, j, k = x, y, z (9.7)

Here, we have introduced the Kronecker �; �i j takes the values:

�i j = 1 i = j

�i j = 0 i �= j

We have also introduced the summation convention. Whenever two sub-
scripts are repeated in the same term, as in σkk, that term is summed
over all possible combinations of the subscripts. Equation (9.7), there-
fore, represents nine equations, of which three are identical owing to the
symmetry of the tensor. Two of the nine are:

σ ′
xx = σxx − 1

3
(σxx + σyy + σzz)

σ ′
xy = σxy

As you see, deviatoric shear stresses are identical to their non-deviatoric
(or total) counterparts. Only the normal stresses are different. In general,
deformation depends only on these non-hydrostatic components of the
stress field.

If we were to go through a derivation similar to that above (Equations
(9.1)–(9.5)) in three dimensions (Johnson and Mellor, 1962, pp. 23–25),
we would find that there were three invariants having the form:

J1 = σ ′
xx + σ ′

yy + σ ′
zz

J2 = σ ′2
xy + σ ′2

yz + σ ′2
zx − σ ′

xxσ
′
yy − σ ′

yyσ
′
zz − σ ′

zzσ
′
xx (9.8a)

J3 = σ ′
xxσ

′
yyσ

′
zz + 2σ ′

xyσ
′
yzσ

′
zx − σ ′

xxσ
′2
yz − σ ′

yyσ
′2
xz − σ ′

zzσ
′2
xy
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If total stresses were used instead of deviatoric stresses, the right-
hand sides of Equations (9.8a) would be the same, except for the primes,
but on the left, by convention, we would use I rather than J, thus:

I1 = σxx + σyy + σzz

I2 = σ 2
xy + σ 2

yz + σ 2
zx − σxxσyy − σyyσzz − σzzσxx (9.8b)

I3 = σxxσyyσzz + 2σxyσyzσzx − σxxσ
2
yz − σyyσ

2
xz − σzzσ

2
xy

It is easy to show that J1 is 0. Just use Equation (9.7) to express the
deviatoric stresses in terms of their total counterparts, and simplify. Note
also that:

1

3
I1 = P (9.9)

Let us now derive an alternative expression for J2. To do this, square the
first of Equations (9.8a), thus:

J 2
1 = σ ′2

xx + σ ′2
yy + σ ′2

zz + 2(σ ′
xxσ

′
yy + σ ′

yyσ
′
zz + σ ′

zzσ
′
xx ) = 0

This expression equals zero because J1 = 0, so we have:

σ ′2
xx + σ ′2

yy + σ ′2
zz = −2(σ ′

xxσ
′
yy + σ ′

yyσ
′
zz + σ ′

zzσ
′
xx )

Substituting this into the expression for J2 yields:

2J2 = σ ′2
xx + σ ′2

yy + σ ′2
zz + 2σ ′2

xy + 2σ ′2
yz + 2σ ′2

zx (9.10)

or, using the summation convention:

J2 = 1

2
σ ′

i jσ
′
i j

The reader will recognize the right-hand side of Equation (9.10) as 2σe
2

(Equation (2.10)). Thus, the effective shear stress that we have mentioned
several times previously is, in fact, the square root of the second invariant
of the stress tensor: σe = √

J2 = [ 1
2σ ′

i jσ
′
i j ]

1/2.
Using the summation convention, the effective strain rate Equation

(2.11) can also be written more compactly as ε̇e = [ 1
2 ε̇i j ε̇i j ]1/2.

A yield criterion

A yield criterion is a statement of the conditions under which deformation
will occur. If the condition is not met, there is no deformation, and
conversely. The simplest imaginable yield criterion is that of Tresca
(1864):

|σ� − σm | ≥ k �, m = 1, 2, 3

or when the difference between any two principal stresses exceeds a
material constant, k (determined experimentally for any given material),
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Figure 9.4. Variation of stain
rate, ε̇, with applied stress, σ ,
in perfectly plastic and
viscoplastic materials.

yielding will occur. An alternative, the von Mises yield criterion, is:

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 ≥ k

In this case, each of the three principal stresses contributes.
Let us investigate the relation between the von Mises criterion and

J2. After some manipulation we can obtain:

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = 2
(
σ ′2

1 + σ ′2
2 + σ ′2

3

) + 2J2 (9.11)

where the primes denote deviatoric stresses as before. Note that we
started with total stresses on the left side. Had we started with devia-
toric stresses, we would have obtained the same result, as P drops out.
Thus, the yield criterion is unchanged if we use deviatoric stress instead
of total stress. From Equation (9.10), noting that the shear stresses van-
ish because we are here dealing with principal stresses, we find that the
term in brackets on the right-hand side of Equation (9.11) is equal to 2J2.
Thus, the von Mises yield criterion reduces to 6J2 ≥ k, or since J2 = σe

2,
we have σe ≥ √

k/6. In other words, when σe equals or exceeds
√

k/6,
yielding will occur.

Yield criteria are often associated with perfect plasticity. A perfectly
plastic material does not deform at stresses below its yield strength, k.
However, once the applied stress reaches k, the material begins to deform,
and it deforms at a rate such that the stress does not exceed k (Figure 9.4).
In terms of Glen’s flow law, a perfectly plastic material would be repre-
sented by n → ∞ so there would be no strain until σe equaled B, where
B would be the equivalent of

√
k/6. Viscoplastic or Bingham materi-

als also exhibit a yield stress, but once the yield stress is reached, the
material deforms at a rate that depends on the amount by which the
applied stress exceeds the yield stress (Figure 9.4). Inasmuch as there
may, indeed, be a stress below which ice does not deform, it resembles a
nonlinear viscoplastic material. Glen’s flow law does not recognize this
yield stress, however, but approximates it by predicting very small strain
rates at low stresses.
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Thus, by using σe in the flow law, we are not incorporating a yield
stress per se. Rather, we are simply saying that the strain rate in any
given direction is likely to be a function of all of the stresses acting on
the material, not just the stresses in that direction. For example, the flow
law states that ice will shear faster under a stress σxy if there is also a
deviatoric normal stress, σ ′

xx, on it. Experiments by Li et al. (1996) firmly
support this concept.

The invariants in plane strain

Let us now examine the relation between the invariants in plane strain
(Equations (9.5)) and those in Equations (9.8). By plane strain we mean
that there is no deformation in one of the coordinate directions, in this
case the z-direction. As deformation is caused by deviatoric stresses, this
implies that σ ′

zz, σ ′
xz, and σ ′

yz are all 0. From Equation (9.7) we thus have:

σ ′
zz = σzz − P = 0 (9.12)

so σzz = P, and then from Equation (9.6):

P = 1

2
(σxx + σyy) (9.13)

(Note that since σzz = P, σzz does not equal 0 even though σ ′
zz does.)

With σ ′
zz = 0, J1 = (σ ′

xx + σ ′
yy). By using Equations (9.7) and (9.13),

it is then easy to show that, as in three dimensions, J1 also equals 0 in
plane strain.

Then from Equation (9.10), adding and subtracting 2σ ′
xxσ

′
yy to com-

plete the square:

J2 = 1

2

(
σ ′2

xx + 2σ ′2
xy + σ ′2

yy + 2σ ′
xxσ

′
yy − 2σ ′

xxσ
′
yy

)
So:

J2 = 1

2

[
(σ ′

xx − σ ′
yy)2 + 2σ ′2

xy + 2σ ′
xx σ ′

yy

]
Changing to total stress by substituting Equation (9.7) then yields:

J2 = 1

2

[
(σxx − σyy)2 + 2σ 2

xy + 2(σxxσyy − σxx P − σ yy P + P2)
]

After some manipulation using Equation (9.13), we then obtain:

J2 =
{

1

2

[
(σxx − σyy)2 + 4σ 2

xy

]1/2
}2

(9.14)

(It can then be shown that the J3 = J2 in two dimensions, but we will not
do this here.)

You will recognize the right-hand sides of Equations (9.13) and
(9.14) as being the invariants in Equations (9.5a) and (9.5b), respec-
tively. Using Equation (9.9) you will see that 1

2 (σxx + σyy) = 1
3 I1 and
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Figure 9.5. Stresses on a block of size dx dy dz. (a) Normal stresses. (b) Shear
stresses (in the x-direction only).

from Equation (9.14) that 1
2 [(σ xx − σyy)2 + 4σ 2

xy]1/2 = √
J2 = σe. So

the invariants we first identified in Equations (9.5) in two dimensions are
functions of I1 and J2.

The right-hand side of Equation (9.14) turns out to be the maximum
shear stress in plane strain. You can show this by setting the derivative
of Equation (9.2) equal to 0. If the axes were, in addition, chosen to be
parallel to the principal stresses, σxy would vanish, leaving:

σe = ±1

2
(σ1 − σ2)

The directions of the maximum shear stresses would then be 45◦ and
135◦ to the principal axes. (To show this, determine the orientation of
the planes on which σS is a maximum, using a procedure similar to that
which we used to obtain Equations (9.3), and compare these planes with
the orientations of the planes on which σN is a maximum.)

Momentum balance
The stress equilibrium equations are derived by balancing forces in the
directions of the coordinate axes. Consider forces in the x-direction on
a block of size dx dy dz as shown in Figure 9.5:

∑
Fx = −σxx dy dz+

(
σxx+∂σxx

∂x
dx

)
dy dz − σyx dx dz+

(
σyx+∂σyx

∂y
dy

)
dx dz

− σ zx dx dy +
(

σzx + ∂σzx

∂z
dz

)
dx dy + ρgx dx dy dz = 0

The first two terms on the right are the normal forces on the faces of
the block that are normal to the x-axis. Note that in each case, the stress
(shown in Figure 9.5) is multiplied by the area of the face, in this case
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dy dz, to obtain a force. The next four terms are the shear forces in the
x-direction on faces normal to the y- and z-axes, respectively. The last
term is the body force; gx in this term represents the component of the
gravitational acceleration that is parallel to the x-axis. Canceling like
terms of opposite sign and dividing by dx dy dz yields:

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
+ ρgx = 0

Similar expressions are readily obtained in the y- and z-directions. Using
the summation convention, these become:

∂σi j

∂xi
+ ρg j = 0 (9.15)

As i is repeated in the first term, this represents three terms. However,
j is not repeated, so we can write separate equations for j = x, y, and z.
Thus Equation (9.15) represents three equations.

Because F = ma = m(dv/dt) = (d/dt)(mv) where m is mass, a
is acceleration, v is velocity, and mv is momentum, Equations (9.15)
represent conservation (e.g. d/dt = 0) of linear momentum.

Deformation
Having applied a stress to a medium, we expect strain or deformation to
occur. Suppose x, y, and z (Figure 9.6) represent the displacement of a
particle from P to P′ in the directions of the coordinate axes, respectively.
We will consider infinitesimal displacements so the time required for the
deformation → 0.

P

P'

x

z

y

Figure 9.6. Components
of a displacement from P to
P′.

Normal strain in the x-direction at P is defined as:

εxx = Lim�→0
��

�
(9.16)

where � is the length of a line drawn in the x-direction, and �� is the
elongation of that line, so ��/� is the elongation of the line per unit
length. Referring to Figure 9.7, if a line, initially of length �, is translated
such that its left end moves a distance x in the x-direction, its right end
moves a distance x + �(∂x/∂x) in this direction, and the x-component of
its new length is � + ��, then substituting into Equation (9.16) yields:

εxx = Lim�→0
x + �(∂x/∂x) − x

�
= ∂x

∂x
(9.17)

By taking the limit as �→0 we eliminate the variation with x, thus obtain-
ing εxx at point P. Similarly: εyy = ∂y/∂y and εzz = ∂z/∂z.

�

� + ∆�x

x + � ∂ x
∂ x

Figure 9.7. Elongation of
a line during deformation.
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Figure 9.8. Change in a
right angle during
deformation.

Shear strain is defined as one half the decrease in an initially right
angle. Referring to Figure 9.8, this can be expressed as:

εxy = �θ

2
= 1

2
Lim�→0

[
tan−1 �(∂x/∂y)

�
+ tan−1 �(∂y/∂x)

�

]

For infinitesimal changes, θ ≈ tan θ so:

εxy = 1

2

(
∂x

∂y
+ ∂y

∂x

)
(9.18a)

and similarly

εyz = 1

2

(
∂z

∂y
+ ∂y

∂z

)
(9.18b)

and

εzx = 1

2

(
∂x

∂z
+ ∂z

∂x

)
(9.18c)

As before (Chapter 2), there are nine components of strain. Thus, this
is another second rank tensor, the strain tensor. It, too, is symmetric
because εxy = εyx and so forth.

In general, shear results in rotation as well as distortion. For example,
if ∂x/∂y �= ∂y/∂x in Figure 9.8, the dotted line inclined at 45◦ to the
x-axis will be rotated through an angle:

ωxy = 1

2

(
∂x

∂y
− ∂y

∂x

)

Similar expressions may be written for other rotations.
To obtain rates, which are normally of greater interest in a deforming

ice mass, we differentiate with respect to time. Thus, the normal strain
rate in the x-direction, ε̇xx, is:

ε̇xx = dεxx

dt
= d

dt

∂x

∂x
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Velocity is defined as a change in distance with time, or if u is the velocity
in the x-direction, u = d x/dt. Thus, we obtain:

ε̇xx = ∂u

∂x
(9.19)

Similarly, shear strain rates become:

ε̇xy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
(9.20)

and so forth.
The symmetry of Equation (9.20) suggests the possibility of again

using the summation convention to write expressions for the strain rates,
thus:

ε̇i j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
(9.21)

If i= j in this expression, it reduces to Equation (9.19), so this formulation
represents both shear and normal strain rates.

Similarly, the rotation rate tensor is:

ω̇i j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
(9.22)

The rotation rate tensor is antisymmetric because ω̇ij = −ω̇ji. Note also
that ω̇ij = 0 when i = j. In other words, pure stretching does not result in
rotation. If ω̇ij = 0 for all i, j the flow is said to be irrotational. Rotations
do not change the size or shape of an element, so they do not require the
application of a stress.

As implied by the notation ∂ui/∂xj (i, j = x, y, z), the velocity vector
has three components, and each of them can vary in each of the three
coordinate directions. Thus there are nine velocity derivatives.

∂u

∂x

∂u

∂y

∂u

∂z
∂v

∂x

∂v

∂y

∂v

∂z
∂w

∂x

∂w

∂y

∂w

∂z

This is sometimes called the velocity derivative tensor. The velocity
derivative tensor is not symmetric, as ∂ui/∂xj �= ∂uj/∂xi in general.
Therefore, it can be decomposed into symmetric and antisymmetric
parts. The symmetric part is represented by Equation (9.21), and the
anti-symmetric part by Equation (9.22).
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Logarithmic strain

In Equation (9.16) we defined strain by:

ε = Lim�→0
��

�

where � is the initial length of a line and �� is the elongation of that line.
This definition is suitable for small (infinitesimal) strains. However, when
calculating strains or strain rates from measurements, the total strain is
normally not infinitesimal. This is, in part, because deformations must
be large enough to exceed the uncertainty in the measurement method.

If strains are infinitesimal, we can replace �� with d�. The total
strain is then the sum of the infinitesimal strains, or:

ε =
�=�1∑
�=�o

d�

�
=

�1∫
�o

d�

�

where �o is the initial length of the line and �1 is its final length. Integrating
yields:

ε = ln
�1

�o
(9.23)

or in terms of rates:

ε̇ = 1

�t
ln

�1

�o
(9.24)

where �t is the time interval between measurements. This is known as
logarithmic strain.

General equations for transformation of strain
in two dimensions

Our next objective is to develop an expression for the strain rate in an
arbitrary direction, θ . To simplify the equations, we restrict the analysis to
the case of plane strain. We will then take the derivative of this expression
and set it equal to zero to find the directions in which ε̇(θ ) is maximum
and minimum (the principal strain rates). Finally we will look at the
implications of this in terms of the flow law.

Let us examine the elongation of line OP in Figure 9.9a. The line
has an initial length � and makes an angle θ with the x-axis. The line is
stretched to a final length OP′ through a displacement with components
x and y in the x- and y-directions, respectively. The elongation is given
by (Figure 9.9a):

�� = x cos θ + y sin θ (9.25)

The displacement x is a consequence of strain parallel to the x-axis and
a shear strain which results in tilting of any line that is initially normal



266 Stress and deformation

y

x

x

y

o

P

P'

�

q

∆�

y

xq

�

� 
si

n 
q

� cos q

� cos q∂ x
∂ x

� sin q ∂ x
∂ y

(a) (b)

x

Figure 9.9. (a) Components of strain of a line of initial length � = OP and final
length �OP, and (b) details of the shear component of the strain.

to the x-axis (Figure 9.9b), thus:

x = � cos θ
∂x

∂x
+ � sin θ

∂x

∂y
(9.26a)

The origin of the two terms on the right-hand side may be clarified by
reference to Figures 9.7 and 9.8, respectively. Similarly:

y = � sin θ
∂y

∂y
+ � cos θ

∂y

∂x
(9.26b)

Substituting Equations (9.26) into Equation (9.25) yields:

�� = � cos2 θ
∂x

∂x
+ � sin2 θ

∂y

∂y
+ �

(
∂x

∂y
+ ∂y

∂x

)
cos θ sin θ

Finally, dividing by �; noting that Lim�→0 (��/�) = ε(θ ), the strain along
the length of line OP; and using Equations (9.17) and (9.18a) to express
the derivatives in terms of strains yields:

ε(θ ) = εxx cos2 θ + εyy sin2 θ + 2εxy cos θ sin θ

With the trigonometric identities used earlier (p. 254), this becomes:

ε(θ ) = εxx + εyy

2
+ εxx − εyy

2
cos 2θ + εxy sin 2θ (9.27)

Strain rates can be obtained by taking the derivative with respect to time.
Equation (9.27) is a useful relation for obtaining normal strains or strain
rates in an arbitrary direction, θ , when values in the coordinate directions
x, y are known.

To obtain the maximum and minimum values of ε(θ ), the principal
strain rates, we proceed as before (Equations (9.3)) to take the derivative
with respect to θ , set it to zero, and solve for θ , thus:

tan 2θsr = 2ε̇xy

ε̇xx − ε̇yy
(9.28)
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The two solutions for θ are the directions in which the strain rate is a
maximum and minimum. The magnitudes of the principal strain rates
can be obtained as we did for the principal stresses (Equation (9.4)).

Condition that principal axes of stress and strain
rate coincide
In calculating the stress and velocity fields in a glacier in Chapter 10,
we will need to assume that the principal axes of stress and strain rate
coincide. Let us explore the consequences of this condition.

We found earlier (Equation (9.3b)) that the angle which the principal
stresses make with the x-coordinate may be obtained from:

tan 2θstress = 2σxy

σxx − σyy
= 2σ ′

xy

σ ′
xx − σ ′

yy

Note that it does not matter whether we use deviatoric or total stresses
here, as σ ′

xy = σxy and σ ′
xx − σ ′

yy = σxx − P − (σyy − P) = σxx − σyy .
The condition that the principal axes of stress and strain rate coincide

is θstress = θsr, or at any given point in the medium:

2σ ′
xy

σ ′
xx − σ ′

yy

= 2ε̇xy

ε̇xx − ε̇yy

The only way to satisfy this condition in the general case is to let:

ε̇xy = λσ ′
xy ; ε̇xx = λσ ′

xx ; ε̇yy = λσ ′
yy

where λ is a scalar; that is, its value at the particular point in the medium
is independent of the direction in which the stress is acting. However, λ

may vary from one point to another in the medium, so λ = λ(x, y, z).
The fact that λ is a scalar implies that the deforming material is

isotropic and incompressible. Thus, under a given stress, it will deform
at the same rate regardless of the direction in which the stress is applied.
Obviously, this is an approximation in a material such as ice that first has
an hexagonal crystal structure, and secondly can develop a fabric with a
preferred orientation. [If the material were compressible, a compressive
deviatoric stress in, say, the x-direction, σ ′

xx, would cause more defor-
mation than the corresponding tensile deviatoric stress in the y-direction
(which must equal σ ′

xx in magnitude in plane strain). Thus, λ would differ
between the two directions.]

We generalize this assumption to three dimensions and formalize it
by writing:

ε̇i j = λσ ′
i j (9.29)
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remembering that

ε̇i j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
(9.30)

and

σ ′
i j = σi j − 1

3
�i jσkk

Because the stress and strain rate in the flow law are defined in terms
of either the effective or the octahedral stress and strain rate, we can write
out the first few terms of the effective strain rate and substitute Equation
(9.29) into the right-hand side, as follows:

ε̇2
e = 1

2

(
ε̇2

xx + ε̇2
xy + ε̇2

xz + · · · )

= 1

2

(
λ2σ ′2

xx + λ2σ ′2
xy + λ2σ ′2

xz + · · · )

= λ2

2

(
σ ′2

xx + σ ′2
xy + σ ′2

xz + · · · )
= λ2σ 2

e

Dropping the subscript e for convenience (and also because the flow law
can be written in terms of either the effective or the octahedral stress and
strain rate), we obtain:

ε̇ = λσ = f (σ ) so λ = f (σ )

σ
(9.31)

Here, f (σ ) is used to emphasize that in the general case, λ is a function
of the applied stress.

A few examples will serve to illustrate the meaning of λ.

� Newtonian fluid: λ = 1/η, where η is the Newtonian viscosity so in
this case λ is not a function of σ (see Equation (2.17)).

� Power-law fluid: λ = σ n−1/Bn, so ε̇ = λσ = (σ/B)n .
� Perfectly plastic material: as noted earlier (Figure 9.4), in a per-

fectly plastic material there is no deformation below a critical stress,
σ = k, so λ = 0 for σ < k. When σ = k, the material deforms at a rate
such that the stress does not exceed k. In other words, λ depends on
ε̇ : λ = f1(ε̇).

In the case of the power-law fluid, λ varies with σ and B, and because
B is a function of temperature, density, crystal size and orientation, and
perhaps other factors, λ varies with these properties as well.

Combining Equations (9.29), (9.30), and (9.31), writing ε̇ in terms
of velocity derivatives, and using the summation convention, we now
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have the following relation between individual components of the stress
and strain rate tensors:

1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
= f (σ )

σ
σ ′

i j (9.32a)

This represents nine equations, only six of which are independent.
Together with Equation (9.15):

∂σi j

∂xi
+ ρg j = 0 (9.32b)

which represents an additional three equations, we have nine independent
equations which can be solved for the three normal stresses, three shear
stresses, and three velocities. Our objective in Chapter 10 will be to do
this, but to simplify the problem, we will confine our attention to plane
strain.

Summary
In this chapter, we have reviewed some elementary principles of con-
tinuum mechanics with a particular focus on those principles needed
to understand much of the classical as well as the modern literature on
glacier flow.

In the first part of the chapter, we defined stress and showed that if
we know the stresses in one coordinate system, we can calculate them
in another system rotated with respect to the first. This allowed us to
calculate the direction and magnitude of the maximum and minimum
normal stresses, the principal stresses. We did the calculation in two
dimensions, but the extension to three dimensions is straightforward,
though tedious. We found that shear stresses vanish in coordinate systems
chosen with axes aligned parallel to the principal stresses.

The orientation and magnitude of the principal stresses is a property
of the stress field and not of the orientation of the axes. Thus, there
are certain combinations of the stresses that must be independent of the
orientation of the axes: the invariants of the stress tensor. Glen’s flow
law for ice is based on the second of these invariants. This is logical
because it is invariant, and also because the von Mises yield criterion
can be expressed in terms of this invariant. Recent experimental data
have validated this approach.

In the second part of the chapter, we derived the stress equilibrium
or momentum balance equations.

In the third part, we defined strain and derived equations for calcu-
lating strains or strain rates in coordinate systems rotated with respect
to one another. These equations are similar to those for transformation
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of stress. As with stresses, we introduced the concept of principal strain
rates.

Finally, we showed that if a material is isotropic and incompressible,
the principal axes of stress and strain rate coincide. Ice is clearly not
isotropic and incompressible, but this approximation has proven to be a
convenient starting point for calculations of glacier flow.



Chapter 10

Stress and velocity distribution in an
idealized glacier

Let us now use Equations (9.32) to calculate stresses and velocities in an
idealized glacier consisting of a slab of ice of infinite horizontal extent
resting on a bed with a uniform slope. By appropriate choice of the
coordinate system, the problem is thus reduced to two dimensions, or
plane strain. The ice is assumed to be isotropic and incompressible. We
will consider first the case of a perfectly plastic rheology. Then a more
realistic nonlinear flow law is used. Our discussion is based on papers
of Nye (1951, 1957), which are classics in glaciology.

Although glaciers consisting of such slabs are uncommon, to say
the least, there are several reasons for undertaking this calculation. First,
it provides an opportunity to apply some of the material discussed in
the previous chapter. Secondly, the stress distributions are representa-
tive of those which we expect to find in glaciers, and are commonly used
approximations when the required assumptions can be justified by the
geometry of a problem. Thirdly, the calculations demonstrate the limi-
tations of analytical methods in situations in which boundary conditions
are complex. For calculations involving glaciers with realistic shapes,
numerical models are required for all but the simplest situations. Finally,
the effect of longitudinal stresses on velocity profiles is elucidated.

Solutions for stresses and velocities in plane strain
The coordinate system to be used for the calculation is shown in
Figure 10.1: x is parallel to the glacier surface in the direction of flow and
z is directed downward normal to the surface. The origin is on the surface
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Glacier surface
y

z

x

Bed

h

Figure 10.1. Coordinate
system used in calculating
stresses and velocities in plane
strain.

of the slab, which has a thickness h. The velocities are u, v, and w in the
x-, y-, and z-directions, respectively.

In our discussion of plane strain in Chapter 9, we took ε̇zz to be 0, but
here our choice of coordinate axes makes ε̇yy = 0, so σ ′

yy = 0. Therefore,
as in Equations (9.12) and (9.13):

σyy = P = 1

2
(σxx + σzz) (10.1)

Also:

σxy = 0
σzy = 0
ν = 0

(10.2)

Equations (10.1) and (10.2) are four of the equations needed to solve for
the three normal stresses, three shear stresses, and three velocities, so
we need five more from Equations (9.32). These are:

∂σxx

∂x
+ ∂σzx

∂z
+ ρgx = 0 (10.3)

∂σzx

∂x
+ ∂σzz

∂z
+ ρgz = 0

(10.4)

∂u

∂x
= λσ ′

xx = λ(σxx − P) = λ

[
σxx − 1

2
(σxx + σzz)

]
= λ

2
(σxx − σzz) (10.5)

and similarly

∂w

∂z
= −λ

2
(σxx − σzz) (10.6)

and

1

2

(
∂u

∂z
+ ∂w

∂x

)
= λσzx (10.7)

Note that ∂u/∂x = −∂w/∂z as required by the incompressibility condi-
tion in plane strain (Equation (2.5)).

Because λ = f (σ )/σ , we have to introduce an expression for σ ,
namely:

σ 2 = 1

4
(σxx − σzz)

2 + σ 2
zx (10.8)
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(see discussion following Equation (9.14)) which, as we have seen, can
be derived from the von Mises yield criterion in plane strain, and is, in
fact, the effective stress in plane strain. Still needed is an expression for
f (σ ); this will be based on the specific flow law chosen for any given
solution.

Stress solutions in a perfectly plastic medium

Suppose our slab is composed of perfectly plastic “ice”. Suppose, further,
that accumulation and ablation are occurring on the surface of the slab,
but that it is in a steady state so the profile does not change. Thus, it must
be deforming to accommodate the addition or loss of mass. In order to
avoid a discontinuity at depth, the deformation must extend throughout
the slab. Furthermore, in a deforming perfectly plastic material, the stress
must reach but cannot exceed the yield stress, k (Chapter 9). Therefore,
σ = k everywhere.

Near the bed, although a small uniform longitudinal strain rate is
present, deformation is principally by simple shear. Because any ten-
dency toward an increase in stress above k is absorbed by more rapid
deformation in a perfectly plastic material, ε̇zx → ∞ at the bed. Thus,
ε̇zx is the dominant term in ε̇, so σzx is the dominant term in σ (Equation
(10.8)), and σzx must approach σ (= k) at the bed. Therefore, we adopt
the following boundary conditions:

σzx = −k on z = h (bed)
σzx = 0, σ zz = 0 on z = 0 (surface)

Here σzz and σzx are 0 at the surface because atmospheric pressure is a
hydrostatic pressure that can be neglected and because there can be no
traction on a free surface, respectively. Note that σzx is set equal to −k on
the bed because the drag exerted on the ice by the bed is in the negative
x-direction. Because σzx is independent of x on the bed, we will seek a
solution in which σzx is independent of x everywhere.

The following solution, previously unpublished, is contained in a
manuscript by J. F. Nye that he kindly provided to the present author, and
is used with his permission. We take the derivative of Equation (10.3)
with respect to z and of Equation (10.4) with respect to x, thus:

∂2σxx

∂z∂x
+ ∂2σzx

∂z2
= 0

∂2σzz

∂x∂z
+ ∂2σzx

∂x2
= 0

(10.9)

As σxx and σzz are continuous functions, the order of differentiation can
be reversed in the first of these equations. Subtracting then yields:

∂2

∂x∂z
(σxx − σzz) =

(
∂2σzx

∂x2
− ∂2σzx

∂z2

)
(10.10)
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Substituting for σxx − σzz from Equation (10.8) and setting σ = k as
noted above, we find:

± ∂2

∂x∂z

(
2
√

k2 − σ 2
zx

)
=

(
∂2σzx

∂x2
− ∂2σzx

∂z2

)
(10.11)

Making use of the condition that σzx is independent of x allows us to
simplify this to:

∂2σzx

∂z2
= 0 (10.12)

which has the solution:

σzx = c1z + c2 (10.13)

To satisfy the boundary condition σzx = 0 on z = 0, we find that c2 = 0.
The boundary condition σzx = −k on z = h then yields c1 = −k/h. Thus
the solution for σzx becomes:

σzx = − kz

h
(10.14)

In other words, the shear stress varies linearly with depth.
Using this solution for σzx in Equations (10.3) and (10.4) yields:

∂σxx

∂x
= k

h
− ρgx

∂σzz

∂z
= −ρgz

which integrate to:

σxx = kx

h
− ρgx x + f1(z)

σzz = −ρgz z + f2(x)

(10.15)

where f1(z) and f2(x) are functions that are dependent only upon z and x,
respectively, so that ∂f1(z)/∂x = 0 and ∂f2(x)/∂z = 0. They are analogous
to the constants of integration in Equation (10.13), and must be evaluated
with the use of the boundary conditions. Substituting these solutions
for σxx, σzz and σzx back into Equation (10.8), the yield criterion, we
obtain:

kx

h
− ρgx x + f1(z) + ρgz z − f2(x) = ±2

√
k2 − k2z2

h2

which is true for all x and z because, as noted, the yield criterion must be
met throughout the slab. Thus, collecting the terms in x on the left-hand
side and those in z on the right results in:

kx

h
− ρgx x − f2(x) = −ρgz z ± 2k

√
1 −

(
z

h

)2

− f1(z) = c (10.16)
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Because the left-hand side is a function of x alone and the right-hand
side is a function of z alone, the two sides can be equal to each other in
the general case only if each, individually, is equal to the same constant,
c, as shown. We can thus solve Equation (10.16) for f2(x) in terms of c,
and for f1(z) in terms of c. These solutions are then inserted in Equations
(10.15) to yield:

σxx = kx

h
− ρgx x − ρgz z ± 2k

√
1 −

(
z

h

)2

− c

σzz = −ρgz z + kx

h
− ρgx x − c

(10.17)

Making use of the boundary condition σzz = 0 on z = 0 in the second of
Equations (10.17) gives:

c = kx

h
− ρgx x = x

(
k

h
− ρgx

)

As this must hold for all x, it is clear that k/h − ρgx must equal 0, and
therefore c must also be 0. Thus:

k

h
= ρgx

This implies that the block must have some critical thickness, h = k/ρgx.
Using these results in Equations (10.17), and repeating Equation (10.14),
allows us to write the complete stress solutions thus:

σxx = −ρgz z ± 2k

√
1 −

(
z

h

)2

σzz = −ρgz z (10.18)

σzx = − kz

h

As a check on these solutions, they may be substituted back into the yield
criterion, Equation (10.8), to show that σ = k.

A plot (Figure 10.2) will serve to illustrate the solutions. Scaling σzz

by k (= ρgxh) results in:
σzz

k
= − z

h

cos α

sin α

σzz is 0 at the surface and it decreases linearly with depth. With
tan α = 1/5, we find that σzz = −5k on z = h (Figure 10.2). Simi-
larly, σxx = ±2k on z = 0 and since σxx = σzz on the bed σxx = −5k
there. In this case, however, the distribution with depth is elliptic. Finally,
σzx also decreases linearly with depth to −k on the bed.

The deviatoric stresses can also be calculated. Noting that:

P = 1

2
(σxx + σzz) = −ρgz z ± k

√
1 −

(
z

h

)2
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Figure 10.2. Depth variation of stress in a deforming slab of material with a
perfectly plastic rheology. The slab is of uniform thickness and density, and is
resting on a bed with a uniform slope. (Modified from Nye, 1951, Figure 2c.
Reproduced with permission of the author and the Royal Society of London.)

we find that:

σ ′
xx = σxx − P = ±k

√
1 −

(
z

h

)2

σ ′
zz = σzz − P = ∓k

√
1 −

(
z

h

)2
(10.19)

so σ ′
xx is ±k at the surface and decreases to 0 at the bed, as shown by

the dashed lines describing a semi-ellipse in Figure 10.2. As required by
continuity, σ ′

zz = −σ ′
xx; that is, if our medium is homogeneous, isotropic,

and incompressible, as assumed, a deformation in the x-direction, ε̇xx ,
caused by a stress σ ′

xx must be accompanied by an equal deformation of
opposite sign, ε̇zz , in the z-direction, and this requires a stress equal to
σ ′

xx, but in the opposite direction.
Negative or compressive deviatoric stresses in the x-direction result

in longitudinal compression, and this flow regime is thus referred to as
compressive flow. Similarly, positive deviatoric stresses in the x-direction
result in what is called extending flow. The former is characteristic of
ablation zones of glaciers, where melt must be replaced by upward flow
of ice, and the latter is characteristic of accumulation zones.
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(a)

(b)

Figure 10.3. Slip line fields
in a deforming slab of
material with a perfectly
plastic rheology. (a) Extending
flow, and (b) compressive
flow. (Modified from Nye,
1951, Figure 5.)

It is also of interest to examine the orientation of the principal stresses
and of the maximum shear stresses. In Chapter 9 (Equation (9.3b)) we
found that:

tan 2θ = 2σzx

(σxx − σzz)

so:

θ = 1

2
tan−1 −2kz/h

±2k

√
1 −

(
z

h

)2
= 1

2
tan−1

(
∓ z√

h2 − z2

)

On z = 0, θ = 0◦ or 90◦ and on z = h, θ = 45◦ or 135◦. Thus at the surface,
the principal stresses are parallel and normal to the surface, and at the
bed, they make an angle of 45◦ or 135◦ with the bed. The former could
also be deduced from the fact that there is no shear traction on a free
surface, so the stresses parallel and normal to this surface are principal
stresses. The orientation of the planes of maximum shear stress may be
found by differentiating Equation (9.2) with respect to θ (replacing y by z)
and setting the result equal to 0, thus:

θss = 1

2
tan−1

(
±

√
h2 − z2

z

)

In this case, θ ss = ±45◦ at the surface and 0◦ or 90◦ at the bed. (Thus,
the planes of maximum shear stress make an angle of 45◦ with respect to
the principal stresses.) At any intermediate depth there are two solutions
for θ ss that are 90◦ apart. Thus, the loci of the zones of maximum shear
stress are as shown in Figure 10.3. This is what is known as the slip line
field for the particular stress configuration.
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Velocity solutions in a perfectly plastic medium

We now use the stress solutions, Equations (10.18), to obtain solutions
for the velocities from Equations (10.5) through (10.7). From Equations
(10.5) and (10.6) we obtain:

∂u

∂x
= −∂w

∂z
= λ

2
(σxx − σzz) (10.20)

= ±λk

√
1 −

(
z

h

)2

and from Equation (10.7):

∂u

∂z
+ ∂w

∂x
= 2λσxz = −2λ

kz

h
(10.21)

Let us first examine the applicable boundary conditions. The stress
solutions are valid only for the thickness h = k/ρgx. Therefore, we seek
a velocity solution that will maintain this thickness. Because there is
accumulation, bn (or ablation, −bn) at the surface, we know that:

w = bn on z = 0
w = 0 on z = h

We will now show that ∂w/∂x = 0. The stresses are independent of
x, and the material is the limiting case of a purely viscous material in
which stresses determine strain rates. Therefore, the strain rates must be
independent of x. In particular, ∂w/∂z is independent of x, so:

∂

∂x

(
∂w

∂z

)
= 0

or, as w must be continuous in x and z:

∂

∂z

(
∂w

∂x

)
= 0

Therefore, ∂w/∂x = const, independent of z. Then, because ∂w/∂x = 0
on the upper and lower boundaries from the boundary conditions,
∂w/∂x = 0 everywhere.

Equation (10.21) now becomes:

∂u

∂z
= −2λ

kz

h
(10.22)

Combining Equations (10.20) and (10.22) to eliminate λ yields:

∂u

∂z
= ± 2(kz/h)

k
√

1 − (z/h)2

∂w

∂z
(10.23)

= ± 2z√
h2 − z2

∂w

∂z
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Differentiating with respect to x and again making use of the fact that w
is continuous in x and z gives:

∂2u

∂x∂z
= ± 2z√

h2 − z2

∂w

∂x∂z

= ± 2z√
h2 − z2

∂

∂z

(
∂w

∂x

)
= 0

where the last equality results from the fact that ∂w/∂x = 0. Thus from
Equation (10.20), differentiating with respect to z, we obtain:

∂2u

∂z∂x
= −∂2w

∂z2
= 0 (10.24)

which has the solution:

w = c1z + c2

Using the first boundary condition, w = bn on z = 0, yields c2 = bn,
whereupon the second boundary condition, w = 0 on z = h, yields
0= c1h+bn. The solution for the velocity in the z direction thus becomes:

w = bn

(
1 − z

h

)
(10.25)

Note that w varies linearly with depth. We discussed this in Chapter 5
(pp. 87–90) and will analyze it in greater detail later.

Using this solution for w in Equation (10.20) we obtain:

∂u

∂x
= −∂w

∂z
= bn

h
(10.26)

and from Equation (10.23):

∂u

∂z
= ∓ 2z√

h2 − z2

bn

h
(10.27)

In the coordinate system we have chosen, σzx is negative for positive z.
Therefore ε̇zx , and hence in Equation (10.27), ∂u/∂z, must be negative so
that a negative stress produces a negative strain rate. (In other words, the
horizontal velocity must decrease with depth.) Thus, when bn is positive
in Equation (10.27) we use the upper sign, and conversely. Equation
(10.27) thus becomes:

∂u

∂z
= −2

|bn|
h

z√
h2 − z2

(10.28)

Integrating Equation (10.26) yields:

u = bnx

h
+ f (z)
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bn = w

u w
x
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xw

Bed

2 bn

z z

bn = w
u

(a) Accumulation area; bn positive (b) Ablalation area; bn negative

Figure 10.4. Velocity solutions for a deforming slab of material with a perfectly
plastic rheology.

where, as in Equation (10.15), f (z) represents some function of z alone.
Taking the derivative of this with respect to z, substituting the result into
Equation (10.28), and integrating gives:

f (z) = 2
|bn|
h

√
h2 − z2 + c

Thus, the solution for the velocity in the x-direction is:

u = bnx

h
+ 2

|bn|
h

√
h2 − z2 + c (10.29)

These velocity solutions are illustrated in Figure 10.4. On z = 0,
u = (bn x/h) + 2 |bn| + c and w = bn, while on z = h, u = (bnx/h) + c
and w = 0. Thus evidently (bnx/h) + c is the “sliding” speed. Note that
Equation (10.29) implies that the ice must be free to slide on the bed at
a speed determined by bn, and independent of σzx and bed roughness.

If, on the contrary, the sliding speed were presumed to be a function of
σzx and bed roughness, the distribution of stress and hence of w could not
be independent of x, and the ice mass would not remain a uniform slab.
A reasonable presumption is that the sliding speed would not increase
sufficiently rapidly with x, and that conservation of mass would then
require that the ice thickness increase upglacier, leading to a convex
surface profile. Depending on the degree of convexity and the consequent
change in ice thickness, such a profile would offer the potential for
increasing σzx downglacier. This would provide the required increase in
mass flux.

If the boundary conditions were selected such that u = 0 at x = 0,
z = h, then c would be 0, but the original differential equations are
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not necessarily valid at the ends of the slab. Note also that between
any two vertical sections, x1 and x1 + �x, u increases by bn�x/h, which
would be the increase in mean velocity required to transmit the additional
flux, bn�x, downglacier – the balance velocity that we discussed in
Chapter 5.

If there is no accumulation or ablation, bn = 0, and thus u = c and
w = 0 throughout the block. In this case there is no internal deformation.
All movement is confined to sliding. The yield criterion is then satisfied
only at the bed and σxx can take any value between the limits shown in
Figure 10.2.

Stress and velocity solutions for a nonlinear material

Let us now relax the assumption that the material with which we are
dealing is perfectly plastic, and instead allow it to have a nonlinear rhe-
ology, as is the case with real ice. We will still consider a slab of infinite
extent and uniform thickness resting on a bed with a uniform slope.
The stress equations are not changed, so the solutions for the stresses
(Equations (10.18)) remain basically the same. However, now σ does
not have a limiting value, k, the yield stress, so some changes must be
made.

As before (Equations (10.18)), we note that σxx ≈ σzz on the bed, as
both are dominated by the hydrostatic pressure. As σ 
 0 at the bed,
it is clear from Equation (10.8) that σ ≈ σzx 
 (σxx − σzz) ≈ 0 there.
Again, this emphasizes that deformation at the bed is largely by simple
shear. Thus σzx → σ on the bed, so we replace k with σ in Equations
(10.18). In other words, while we still require that σ and σzx be uniform
(independent of x) on the bed, we do not require that they are necessarily
equal to some specific value, as in a yield stress. In general, of course, σzx

is likely to increase with the budget gradient (Figure 3.7), as flow rates
must then be higher. In addition, we make use of the fact that k/h = ρgx

from the discussion following Equation (10.17). With these changes, the
stress solutions become:

σxx = −ρgz z ± 2
√

σ 2 − (ρgx z)2

σzz = −ρgz z (10.30)

σzx = −ρgx z

As before, the upper sign is for extending, and the lower for compressive
flow.

In order to evaluate σxx(z), we need to know how σ varies with depth,
z. This will emerge in the course of obtaining the velocity solutions.
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To solve for the velocities, we start by combining the stress solutions
with Equations (10.5) through (10.7) to obtain:

∂u

∂x
= −∂w

∂z
= λ

2
(σxx − σzz) = ±λ

√
σ 2 − (ρgx z)2

1

2

(
∂u

∂z
+ ∂w

∂x

)
= λσ xz = −λρgx z

(10.31)

As before (discussion preceding Equation (10.22)), because w = 0
on the lower boundary, and because w must thus be independent of
x everywhere to avoid discontinuities, ∂w/∂x = 0 everywhere. Thus,
using the arguments outlined in Equations (10.22)–(10.24) we obtain, as
before:

w = c1z + c2 (10.32)

The boundary conditions now are not as clear as they were earlier because
the thickness may change with time. Thus w �= bn on z = 0.

From Equations (10.31) and (10.32) we have:

∂w

∂z
= c1 = −∂u

∂x
(10.33)

Therefore, from the first of Equations (10.31):

c1 = ∓λ
√

σ 2 − (ρgx z)2 (10.34)

Using this to eliminate λ in the second of Equations (10.31) yields:

∂u

∂z
= ±2ρgx z

c1√
σ 2 − (ρgx z)2

(10.35)

As λ is defined by ε̇i j = λσ ′
i j, it must be positive if positive stresses are

to produce positive strain rates. To ensure that this is the case, we give
c1 the values ∓r where r is a positive constant. From Equation (10.33)
it is clear that r is the longitudinal strain rate. Equation (10.33) thus
becomes:

∂u

∂x
= ±r

The solution for w now becomes:

w = ∓r z + c2

Applying the boundary condition w = 0 on z = h, we get c2 = ±rh, so:

w = ∓r (z − h) = ±rh

(
1 − z

h

)
(10.36)

Note that w still varies linearly with depth as in the perfectly plas-
tic case, despite the variation in σ with depth. This is implicit in the
fact that the longitudinal strain rate is independent of depth, which in
turn results from the fact that stresses must be independent of x in a
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slab on a uniform slope (see discussion following Equation (10.21);
∂u/∂x = −∂w/∂z and by Equation (10.24), ∂w/∂z = constant).

To obtain u, integrate Equation (10.35) (with Equation (10.34)),
thus:

u = −2gx

∫ z

0
λρzdz + f (x) (10.37)

Setting the derivative of this with respect to x equal to ±r, and integrating
gives f (x) = ±rx +c. Combining this with Equation (10.37) and using
the boundary condition u = uo at x = z = 0 yields:

u = ±r x − 2gx

∫ z

0
λρzdz + uo (10.38)

The velocity, us, at the surface (z = 0), is ±rx + uo. Here uo is the velocity
at the origin, x = 0, and rx is the increase (or decrease) in velocity between
the origin and the point in question as a result of longitudinal straining.
In a real glacier, r = r(x), so one would have to integrate over x to obtain
us in this way. In practice, we would be more likely to simply take us

as known. Accordingly, we will replace ±rx + uo with us in Equation
(10.38).

To proceed further, we must assume a flow law; as before, we use
ε̇ = λσ = (σ/B)n with B and n constant, independent of position.
Hence,

λ = σ n−1

Bn
(10.39)

and Equation (10.38) becomes (assuming that ρ is independent of depth):

u = us − 2ρgx

Bn

∫ z

0
σ n−1zdz (10.40)

To integrate this, σ must be expressed in terms of z. From Equation
(10.34) with c1 = ∓ r:

λ = r√
σ 2 − (ρgx z)2

= σ n−1

Bn

Rearranging, this becomes:

z =
√

σ 2n − r 2 B2n

ρgxσ n−1
(10.41)

whence:

dz

dσ
= nσ 2n−1

ρgxσ n−1
√

σ 2n − r 2 B2n
− (n − 1)

√
σ 2n − r 2 B2n

ρgxσ 2(n−1)
σ n−2

= nσ n

ρgx

√
σ 2n − r 2 B2n

− (n − 1)

√
σ 2n − r 2 B2n

ρgxσ n
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When z = 0, σ 2n = r2B2n, or σ = r1/nB, so Equation (10.40) is to be
integrated from r1/nB to σ . Equation (10.40) thus becomes:

u = us − 2ρgx

Bn

σ∫
r1/n B

√
σ 2n − r 2 B2n

ρgx

×
[

nσ n

ρgx

√
σ 2n − r 2 B2n

− (n − 1)

√
σ 2n − r 2 B2n

ρgxσ n

]
dσ

= us − 2

ρgx Bn

σ∫
r1/n B

[nσ n − (n − 1)σ n + (n − 1)r 2 B2nσ−n]dσ

Carrying out the integration yields:

u = us − 2

ρgx (n + 1)

[
σ

( σ

B

)n
− (n + 1)r 2 Bnσ 1−n + nr 1+ 1

n B
]

(10.42)

which, together with Equation (10.41), provides the desired solution for
u in terms of z. Expressing u explicitly in terms of z is awkward. Rather,
it is better to assume a value of σ , and to use it to calculate the depth z
to that σ and the velocity at that depth.

When r = 0, these equations reduce to:

u = us − 2

ρgx (n + 1)

[
σ

( σ

B

)n]

and

z = σ n

ρgxσ n−1
= σ

ρgx

Thus:

u = us − 2

n + 1

(ρgx

B

)n
zn+1

which is the same as Equation (5.6). A fundamental assumption made
in the derivation of Equation (5.6) should now be more meaningful:
namely that all strain rates other than shear strain parallel to the bed, ε̇zx ,
were negligible. In deriving Equation (10.42) we added only one addi-
tional strain rate, ε̇xx (= r), yet the complexity of the solution increased
significantly.

Now that we have an expression relating σ and z, we can plot stress
distributions from Equations (10.30). This is done in Figure 10.5 for a
glacier with a longitudinal strain rate of 0.1 a−1 resting on a bed with a
slope of 0.1. As in the perfectly plastic case (Figure 10.2), σzz and σzx

vary linearly with depth, while σxx varies nonlinearly and is also double
valued. Furthermore, for any given depth σ is a function of n (Equa-
tion (10.41)). Thus, σxx varies with n. As n becomes large, the solution
for σxx converges on the elliptic distribution obtained earlier (Figure
10.2). For n = 1, σ (Equation (10.41)) and hence σxx (first of Equa-
tions (10.30)) decrease linearly with depth. As P(= 1

2 (σxx + σzz)) also
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Figure 10.5. Depth variation of stress in an ice sheet with a power law
rheology. The ice sheet consists of a slab of uniform thickness and density resting
on a bed with a slope of 0.1. The distribution of σxx is given by the pairs of curves
labeled with values of n. The distributions of σzz and σzx are the same for all n.
Calculations use n = 3, B = 0.141 MPa a− 1/n and r = 0.1 a−1. As n → ∞, the
thickness of the ice sheet is limited to h = B/ρgx, which in this case is ∼160 m.

decreases linearly with depth with the same constant of proportionality,
ρgz, σ ′

xx becomes independent of depth.
Further insight may be gained by considering the case when σ = 0.

If r �= 0, z becomes indefinite. This is because although σzx = 0 at the
surface, σ = 1

2σijσij > 0 there. Thus, when there is longitudinal strain,
there is no place in the slab where σ = 0.

Two velocity profiles calculated from Equations (10.41) and (10.42)
are shown in Figure 10.6. One profile is calculated with r = 0, and
the other with r = 0.1 a−1. Note that us is adjusted to yield ub = 20
m a−1 in both cases. One might initially think that the higher speed
represented by the dashed profile in Figure 10.6 was a consequence of
longitudinal stretching. However, r is a positive constant (so a negative
value of r cannot be entered in Equation (10.42)) and ∂u/∂x = ±r. Thus,
the dashed profile is applicable to compressive flow as well as extending
flow. This is because the magnitude of the increase in σ , and hence in
λ, resulting from the addition of a longitudinal stress, is independent
of whether the longitudinal stress is compressive or extending. As λ

increases so does ε̇i j for any given σij (Equation (9.29)). Specifically, ε̇zx

(= ∂u/∂z) increases, regardless of whether σxx is positive or negative.
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−1

−1

Figure 10.6. Velocity
profiles, calculated from
Equations (10.41) and
(10.42), in a glacier consisting
of an infinite slab of ice,
300 m thick, resting on a bed
with a slope of 0.046 and
sliding with a speed, ub, of
20 m a−1. Calculations use
n = 3 and B = 0.141 MPa a−1/3,
and two different values of r
as shown.

Comparison with real glaciers
Real glaciers are not slabs of ice of uniform thickness, nor are they
perfectly plastic. Thus, it is relevant to consider what aspects of the
solutions we have obtained are applicable in reality.

Consider first the result that σzz and σzx vary linearly with depth.
Such a linear variation is often assumed in studies of real glaciers and is
a reasonable approximation in many situations.

In addition we found that, in general, flow is extending in accumu-
lation areas and compressive in ablation areas. This is because r varies
directly with bn (if the glacier is not too far from a steady state), and σ

varies directly with r for any given depth (Equation (10.41)). Thus, σxx

varies directly with bn, being positive when bn is positive and conversely.
In an actual glacier, however, longitudinal stresses also depend on factors
such as the curvature of the longitudinal surface profile and the rate of
change in thickness. Thus, it is not productive to try to calculate longitu-
dinal stresses in a real glacier with the use of the theory presented here.

The physical processes by which the longitudinal strain rate is
adjusted to balance bn can be visualized qualitatively. If, in some loca-
tion, r is too large so that thinning by extension exceeds thickening by
accumulation, the profile will tend to become concave and this will have
a tendency to decrease r.
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Also relevant to real glaciers is the effect of longitudinal stress on
velocities. Clearly, longitudinal compression should result in upward
vertical velocities, and conversely. The linear decrease in w with depth,
however, is an artifact of our slab model (see discussion following Equa-
tion (10.36)), although it is an approximation that is commonly used in
calculations, as we noted in Chapter 5. With respect to vertical profiles
of u, longitudinal stresses, whether extending or compressive, increase
the effective stress, so they increase ∂u/∂z throughout the profile. This
may be particularly evident near a glacier surface where σzx is small so
ε̇zx would be negligible were it not for the contribution of σxx to σ . We
will find in Chapter 12, however, that certain peculiarities of measured
deformation profiles cannot be explained in this way.

Summary
In this chapter, we have shown that Equations (9.32) can be solved for
the three components of the velocity vector and nine components of the
stress tensor in certain simple situations. Our solutions were for a slab
of infinite horizontal extent resting on a bed with a uniform slope. We
first obtained a solution for a perfectly plastic material, and found that
the thickness of the slab was constrained by the yield strength of the
material. We then obtained solutions for a nonlinear material which are
more relevant to real glaciers.

We found thatσzz andσzx vary linearly with depth, which is probably a
reasonable approximation to the situation in many real glaciers. We also
found that longitudinal stresses should be extending in accumulation
areas and compressive in ablation areas, although the magnitude of the
longitudinal stresses is not well constrained by our simple model.

Vertical velocities vary linearly with depth for the idealized situation
that we studied, and this is commonly used as a first approximation in
real glaciers (e.g. Equation 6.15). Horizontal velocities decrease nonlin-
early with depth, as we found in Chapter 5. In this chapter, however, we
were able to investigate the effect of longitudinal stresses on the veloc-
ity profile, and found that either longitudinal extension or longitudinal
compression will increase ∂u/∂z, leading to higher velocities.



Chapter 11

Numerical modeling

On several occasions when we encountered problems that could not be
solved readily by analytical methods, we have referred to results from
numerical models. In Chapters 5 and 10 we found, in fact, that analytical
solutions to problems of glacier flow could be obtained only when the
problems were quite simple. The two numerical methods that are most
commonly used in modeling are the finite-difference and finite-element
methods.

The analytical methods of calculus are based on taking the limit as
intervals over which functions are evaluated are allowed to shrink toward
zero. In finite-difference and finite-element models, in contrast, we let
these intervals remain finite and assume that the functions describing
the variation of parameters across them can be replaced by constants, by
linear functions, or by low-order polynomials. The resulting equations
turn out to be much simpler than the original differential equations, but
because the domain of interest is now broken into many small inter-
vals, one must do a large number of repetitive calculations to obtain a
solution for the entire domain. Computers are thus used for all but the
simplest numerical calculations. Moreover, the numerical solutions are
not necessarily as accurate as analytical ones.

In this chapter, we first describe elementary numerical integration.
This leads into some straightforward finite-difference calculations that
can be carried out with the use of a spread sheet, a short computer
program, or available mathematical software. The numerical details of
more advanced finite-difference models and of finite-element models
are beyond the scope of this book. However, we will discuss some of the

288
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techniques used in these models, and then illustrate the use of models
with a few examples.

Goals of modeling
“Solving” a mathematical problem analytically usually means finding
values for one or more unknown quantities. This is true, also, of solutions
using numerical models. In typical problems with several unknowns, for
example, numerical models are commonly used to explore the universe
of physically reasonable values of the unknowns, and thus determine
which combinations give satisfactory agreement with observations. An
example is a study of a temperature profile measured in a borehole that
penetrated the Greenland Ice Sheet at Dye 3, where the ice is 2037 m thick
(Dahl-Jensen and Johnsen, 1986). The three unknowns, or free variables,
were the Pleistocene accumulation rate, Pleistocene surface temperature,
and geothermal heat flux. It was found that these could be constrained to
lie, respectively, between 33% and 75% of the present accumulation rate,
−30 and −35 ◦C (12 ◦C below the present mean annual temperature),
and 31 and 45 mW m−2. If the model took all significant processes into
consideration and did so accurately, these values are “solutions” for the
three unknowns. More precise solutions are not possible because equally
good matches to the observed temperature profile can be obtained with
several combinations of these three parameters within the above limits.

The observations that one seeks to match need not necessarily be
quantitative measurements. An exciting approach that is being used with
increasing frequency and sophistication is the use of observations of the
distribution of glacial landforms to constrain models of vanished ice
sheets and, in turn, to support hypotheses regarding the origin of the
landforms. Moraines obviously provide information on the extent of an
ice sheet, and some glacial landforms, as we have discussed, appear to
require a certain basal thermal regime. Combinations of model param-
eters that yield ice sheets of this size and with this basal temperature
distribution are thus more likely to represent reality.

Numerical integration
Consider a differential equation of the form:

dϕ

dx
= f (x)

with the solution:

ϕ =
X∫

0

f (x) dx (11.1)
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Figure 11.1. (a) Illustration
of a numerical integration to
obtain the area under a curve.
(b) Detail of the circled area in
(a). See text for discussion.

If f (x) is the curve shown in Figure 11.1a, for example, ϕ is the area
under the curve between 0 and X. If the function f (x) can be integrated
analytically, ϕ is easily obtained. However, if f (x) cannot be integrated
analytically we can still carry out the integration numerically. (Numerical
integration is sometimes called quadrature.) To do this, first divide the
interval 0 → X into n segments of equal length, �x, and then evaluate
the sum:

ϕ =
n∑

i=1

f (xi )�x (11.2)

This sum can be obtained by evaluating f (x) at the midpoint of every
interval �x, multiplying by �x, and adding the results. The shaded area
in Figure 11.1a would be one such product f (x)�x. This procedure makes
use of the fact that an integral is the limit as �x → 0 of the summation
in Equation (11.2).

A common alternative to this is to evaluate f (x) at the beginning and
end of every interval, �x, and then multiply �x by the average of these
two values. Because this approximates the shaded area as a trapezoid, it
is called trapezoidal integration.

Neither solution for ϕ is exact. To see why this is the case, consider
Figure 11.1b, which is an enlargement of the circled area in Figure 11.1a.
The point labeled “A” is f (x) at the midpoint of the interval �x. The
product f (x)�x overestimates the area under the curve in the interval �x
by the size of the shaded area to the left of A and underestimates it by
the size of the shaded area to the right of A. In this particular instance,
the latter is larger, so the area under the curve is underestimated. The
magnitude of the final error will depend upon the sum of these individual
errors. The smaller the intervals �x, the closer the numerical solution
will be to the exact solution.

More sophisticated techniques for numerical integration are also
available. For example, the shape of a curve between two points may
be approximated by a polynomial (Irons and Shrive, 1987, pp. 64–67).
This technique, sometimes called Gaussian quadrature, produces highly
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accurate results with fewer calculations, but the details are beyond the
scope of this chapter.

Finite-difference models
Finite-difference modeling is basically an extension of numerical inte-
gration. The defining characteristic of the finite-difference method is
that gradients in a parameter are approximated by obtaining values of
the parameter at grid points and dividing by the distance between the
grid points.

A simple example is the calculation of a temperature profile in the
ablation area of a glacier. The relevant equation is:

dθ

dz
= βoeζ 2z2

(11.3)

(Equation (6.29)) which, again, cannot be integrated analytically. We
start out, as before, by dividing the profile into n parts of equal height
�z. We then calculate βoeζ 2z2

at the midpoint of the interval, �z, or
alternatively at the end points and then average the two values. Either
approach yields an approximation of the average temperature gradient
through the interval �z. Multiplying this by �z gives an estimate of
how much the temperature decreases over this interval. Subtracting the
sum of these changes between this point and the bed from an assumed
temperature at the bed gives an estimate of the temperature at the top of
the interval �z. Analytically, the equations for the second approach are:

θi+1 − θi

�z
= βo

2

(
eζ 2z2

i+1 − eζ 2z2
i

)
so

θi+1 = θi + �z
βo

2

(
eζ 2z2

i+1 − eζ 2z2
i

)
(11.4)

Note that z = 0 is at the bed (Figure 6.4), so βo is the basal boundary
condition.

Equation 11.4 is easy to solve repetitively, but it still incorporates the
assumption that w varies linearly with depth (Equation (6.15)). Alterna-
tively, one could start with Equation (6.14):

0 = κ
d2θ

dz2
− w

dθ

dz
(11.5)

thus avoiding this assumption. Note that Equation (11.5) is one-
dimensional inasmuch as θ and w vary only with z. It can be written
as

κ
dβ

dz
= w

dθ

dz
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Figure 11.2. (a) The upper part of a temperature profile in the ablation area of
a glacier. (b) Detail of area in (a) showing definitions of subscripts used in
Equation (11.6). Light dashed lines show approximations to temperature
gradients at zi+1/2 and zi−1/2.

and then in finite-difference form as

κ

[
βi+1/2 − βi−1/2

�z

]
= wi

[
θi+1 − θi−1

2�z

]
(11.6)

where β i−1/2 and β i+1/2 are, respectively, the average temperature
gradients at depths zi−1/2 and zi+1/2, defined in Figure 11.2, and
�z = zi+1/2 – zi−1/2. Note that the gradient in β is taken over �z
while that in θ is over 2�z. Because βi−1/2 = (θi – θi−1)/�z and
βi+1/2 = (θi+1 – θi)/�z, this becomes:

κ

[
1

�z

(
θi+1 − θi

�z
− θi − θi−1

�z

)]
= wi

[
θi+1 − θi−1

2�z

]

or

θi = 1

2
(θi+1 + θi−1) − wi

�z

4κ
(θi+1 − θi−1) . (11.7)

With Equation (11.7) one can use nonlinear variations in w with depth,
such as Equations (5.24) or (5.25). However, when θi is being calculated,
θi+1 is not known so one must set up a system of simultaneous equations
in order to solve the problem.

A rather similar problem is to calculate changes in a temperature
profile through time as the climate, and hence the surface temperature
changes. To simplify the problem, let us just consider seasonal changes
so we can restrict the domain to the upper 20 or 30 m of the glacier, and
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thus neglect advection and strain heating. The appropriate differential
equation is then:

κ
∂2θ

∂z2
= ∂θ

∂t
(11.8)

(Equation (6.30)). This is now a two-dimensional problem in which θ

varies with both depth and time. Proceeding as above, Equation (11.8)
can be rewritten in finite-difference form as:

κ

[
βi+1/2 − βi−1/2

�z

]
�t = �θ (11.9a)

and then as

κ

[
1

�z

(
θi+1 − θi

�z
− θi − θi−1

�z

)]
�t = �θ (11.9b)

To continue, we need a profile to serve as an initial condition at time
t = t0. From this profile we can get θi−1, θi, and θi+1 and then solve
Equation (11.9a) for �θ . This is the amount that the ice between zi−1/2

and zi+1/2 warmed or cooled during the time interval �t. Once we have
done this calculation for every depth interval, �z, we will have the tem-
perature profile at time t0 + �t, and a new calculation for the next time
step can be initiated.

To clarify the physics involved, consider the profile in the inset of
Figure 11.2 to be part of the temperature profile of interest. This pro-
file may have been measured, calculated during an earlier time step, or
assumed. The temperature gradient, �θ/�z, at zi+1/2 is larger than that
at zi−1/2, so more heat will be conducted out through the top of the vol-
ume of height �z than is conducted in through the bottom. Thus the ice
will become cooler during the time step. (With the coordinates shown in
Figure 11.2, both βi−1/2 and βi+1/2 are negative, so since βi+1/2 is larger,
�θ is negative (Equation (11.9a)).)

To model seasonal variations in the temperature profile, the boundary
condition at the surface must be changed appropriately at the beginning
of each time step. For example, if the initial profile was measured on
January 1 and we choose a time step of 0.02 a (or 7.3 days), the boundary
condition at the surface for the next iteration should be the temperature
(measured or estimated) 7.3 days later. If the temperature variation at the
surface is sinusoidal, the solution should closely approximate that given
by Equation (6.31) after a number of iterations. However, the present
solution has added versatility, inasmuch as accumulation or ablation can
be simulated by adding or subtracting increments of thickness, �z, at
appropriate time steps.

Care must be taken in selecting �t and �z in such problems. The
finite-difference solution is said to converge (or be stable) if it approaches
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the exact solution as �t and �z → 0. Our solution will converge
if:

0 <
κ�t

�z2
<

1

2
(11.10)

(Irons and Shrive, 1987, p. 95; Carnahan et al., 1969, p. 432). Thus, if
�z = 1 m, �t would have to be less than about 1/75 of a year, or ∼5 d.
If the integration had to span centuries or millennia and �z could not be
increased, a very long calculation would be necessary.

Finite-difference techniques can also be used to integrate the momen-
tum equation, but simplified versions of the momentum equation can
be integrated analytically (e.g. Equations (5.6) and (10.42)), and ver-
sions including longitudinal stresses and varying ice thickness require
more advanced techniques, outlined below. Thus, we have focused on
the energy balance equation in these examples.

Because analytical solutions are not available for a large number of
differential equations of importance in science and engineering, consid-
erable effort has gone into refining the techniques we have just outlined,
and study of these techniques is now a major subfield of applied math-
ematics. As might be anticipated, the primary goals of this effort have
been to improve the stability and accuracy of the solutions without neces-
sitating ever finer grid spacing. A few common approaches are outlined
next.

Implicit methods

Equations like (11.9b) which use θi−1, θi, and θi+1 from a temperature
profile at time t1 to calculate the profile at time t2 are known as explicit
forms of the finite-difference equation. One could also write Equation
(11.9b) with θi−1, θi, and θi+1 defined as being the temperatures at time
t2 which are, as yet, unknown. This is known as an implicit form. In this
approach, equations must be written for all n points in the profile, and the
equations then solved simultaneously for all the �θi. The temperatures
at time t2 are then obtained by adding these �θi to the temperatures at
the respective grid points at time t1. This approach has the advantage of
being unconditionally stable so larger time steps can be used. Solution of
the equations is actually not as daunting as it may seem, as most contain
only three unknowns and those at the top and bottom, where the boundary
conditions are applied, contain only two. The resulting equation matrix
is a tridiagonal matrix with nonzero cells only on the diagonal and on the
sub- and superdiagonals immediately adjacent to the diagonal. Efficient
routines for solving such matrices are readily available.
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A variation on this implicit method is the Crank–Nicolson method.
In this approach, the gradients used in Equation (11.9a) are the averages
of the gradients at times t1 and t2. Because gradients at time t2 are
used, this is still an implicit method and requires solution of a system
of equations. However, the equations are only slightly more complicated
than those using just the gradients at time t2, and the increase in accuracy
is substantial (Carnahan et al., 1969, p. 451).

Alternating direction schemes

One way to avoid stability problems in explicit methods is to use alter-
nating direction schemes. In such schemes, using the problem in Figure
11.2 as an example, one first calculates �θ starting at the surface and
progressing downward, and then calculates �θ for the next time step,
starting at the lower boundary and progressing upward. In the downward
direction, βi−1/2 for time t2 is calculated from the temperatures from
time t1, and βi+1/2 is calculated from temperatures at time t2, thus:

κ

[
1

�z

(
θi+1,t2 − θi,t2

�z
− θi,t1 − θi−1,t1

�z

)]
�t = θi,t2 − θi,t1 (11.11a)

where the second subscript is the time step. This may be compared
with equation (11.9b). Here, θi+1,t2 is known from the calculation at the
previous depth so a simple algebraic transformation leads directly to a
solution for θi,t2 . In the upward direction, calculating temperatures for
time step t3, the appropriate equation is:

κ

[
1

�z

(
θi+1,t2 − θi,t2

�z
− θi,t3 − θi−1,t3

�z

)]
�t = θi,t3 − θi,t2 (11.11b)

Now, θi,t2 and θi+1,t2 are known from time step t2, and θi−1,t3 is known
from the calculation at depth i − 1. This scheme, known as the Saul-yev
alternating direction procedure (Carnahan et al., 1969, p. 451), is explicit
because calculations at any depth and time can be made using a single
equation. It is also unconditionally stable.

The Saul-yev procedure was used to model several temperature pro-
files in Barnes Ice Cap (Hooke et al., 1980). The study was motivated by
temperature measurements in boreholes that suggested a recent warming
at the surface and a systematic downglacier increase in the temperature
gradient at the bed. To model these profiles, Equation (6.13) was sim-
plified to two dimensions, thus:

∂θ

∂t
= κ

∂2θ

∂z2
− u

∂θ

∂x
− w

∂θ

∂z
+ Q

ρC
(11.12)

and then expressed in finite difference form. The modeling suggested
that temperatures at the glacier surface had increased 0.1–0.5 K over
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the past few decades, after a cooling in the early 1940s. The increase
in gradient at the bed appeared to be a consequence of a warming of
∼2 K about 250 years ago, near the end of the Little Ice Age. Use of
an unconditionally stable finite-difference scheme greatly reduced the
computer time needed for the calculations.

Other explicit unconditionally stable procedures, some of which
also utilize alternating direction schemes, are available, as are implicit
alternating-direction methods (Carnahan et al., 1969, pp. 541–543).
Some of these are readily extended to two and three dimensions.

Backward, forward, and centered differences

In some of the examples above, we estimated gradients from tempera-
tures. If we know temperatures θi−1, θi, and θi+1 and need the gradient
βi there are three possible approaches:

dθ

dz
= θi − θi−1

�z

dθ

dz
= θi+1 − θi

�z

dθ

dz
= θi+1 − θi−1

2�z

(11.13)

These are known as backward, forward, and centered differences, respec-
tively.

Non-dimensionalization

In writing computer code for finite-difference schemes, it should be
evident from Equations (11.4) to (11.11) that the code will be much
simpler if the units of spatial discretization (subdividing the domain
into many small discrete units) are of equal size. Thus, �z should not
change with depth. If the problem at hand involves a substantial part
of an ice sheet, say along a flowline that is broken into columns of
width �x, each of which is then subdivided into depth increments, �z
(Figure 11.3), it is clearly impossible to keep both the number of depth
increments and their size, �z, constant from one column to the next. To
avoid problems of this type, modelers commonly normalize the depth
by dividing by the thickness. Thus a point at a depth, z, of 600 m in
an ice sheet that is H = 1000 m thick will be at a normalized depth,
z*, of 0.6. The columns then all have a non-dimensional thickness, H*,
of 1.0, and if they are each subdivided into 20 equal depth increments,
all increments will have a non-dimensional thickness of H*/20. Non-
dimensionalization or scaling of lengths in this way generally requires
scaling of the other parameters in the equations.
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∆z

∆x

Figure 11.3. Illustration of
problems encountered with a
finite-difference discretization
of an ice sheet along a
flowline.

Such scaling greatly simplifies the mathematics in many situations.
However, results from such computations have to be restated in dimen-
sional form before most of us can derive useful physical insights from
them. As our goal is to develop an appreciation for physical concepts,
we will not delve further into this subject.

Shallow ice approximation

Most numerical models of ice sheets use what is known as the shallow ice
approximation. While the shallow ice approximation was first introduced
in glaciology by Fowler and Larson (1978) and in slightly different form
by Hutter (1981), our discussion is based on Hutter (1983, p. 256ff). This
approximation makes use of the fact that the horizontal extent of an ice
sheet is large compared with its thickness. Longitudinal derivatives of
stress, velocity, and temperature are thus small compared with vertical
derivatives. If the wavelengths of major undulations in the surface and
bed topography are relatively long, so the surface and bed elevations are
slowly varying functions of x, the longitudinal coordinate can be scaled
by using the relation ξ = µx, where µ is small. One logical possibility is
to take µ as the ratio of the mean thickness to the horizontal extent of the
ice sheet. The vertical coordinate is not changed. With this scaling, µ is
introduced into the momentum balance, energy balance, and continuity
equations, and into the boundary conditions. If all terms involving µ

are then neglected and the resulting equations are solved, the solution is
referred to as the zeroth-order solution. In this solution, the stress and
velocity fields are calculated as if the ice sheet were a slab of uniform
thickness, and the basal shear stress turns out to be ρghα. Longitudinal
stress gradients are thus not included. If terms involving µ1 are included
in the solution, the result is called a first-order solution. Longitudinal
stress gradients are included in this solution, and a flow law that includes
a linear term at low stresses is necessary to avoid a singularity in these
stresses at the surface. This is the solution used in most existing finite-
difference models of ice sheets. As might be expected from the above,
a solution including terms in µ2 is called a second-order solution. In
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Figure 11.4. A possible
finite-element discretization of
a tapered glacier margin,
showing the flexibility of the
finite-element method to
accommodate such
geometries.

modeling ice shelves, longitudinal stress effects first appear in second-
order solutions. Solutions including µ2 or higher powers of µ are called
higher-order solutions.

Finite-element models
The finite-element method is another way of obtaining an approximate
solution to the governing equations. In both finite-element and finite-
difference models, the domain of interest is broken up into a large num-
ber of small elements. In early applications of finite-element models to
glaciological problems the elements were quadrilaterals, but commercial
packages now in use commonly have higher-order element geometries.
The corners of elements are called nodes. Unlike finite-difference mod-
els, in a finite-element model there is no advantage in making all of the
elements rectangular and the same size.

As before, parameters are assumed to be constant over the elements
or to vary in some simple way. In finite-element calculations, however,
use is made of the fact that the relevant differential equations can be
expressed in a form consisting of a sum of integrals. A solution method,
called the method of weighted residuals, then guarantees that the result-
ing approximate solution will be the best possible solution mathemati-
cally obtainable with a given element configuration.

While initially more complicated to understand, finite-element for-
mulations have been shown to be generally more stable, numerically, than
finite-difference formulations (Strang and Fix, 1973). Furthermore, ele-
ment shapes can be adjusted to conform to boundaries that would be
awkward to model with rectangular elements (Figure 11.4). Finally, ele-
ment size can be reduced in areas of high gradients and increased in areas
of low gradients, thus increasing accuracy without increasing computa-
tion time. Complex, non-uniform, and variable boundary conditions are
also easier to include in finite-element models.

Once a domain is discretized, stress or velocity conditions are spec-
ified at boundary nodes and equations are written relating stresses and
velocities at interior nodes to each other, to the mean stress in the ele-
ment, and to the stresses or velocities at the boundaries. As usual, the



Initial conditions and forcing 299

basic equations being solved are those for conservation of momentum,
mass, and energy (Equations (9.32b), (2.7), and (6.12a), respectively).
Glen’s flow law is normally used. For the simplest models utilized in
two-dimensional plain strain calculations, this procedure yields approx-
imately 2N + M equations where N is the number of nodes and M is the
number of elements. Twenty-five years ago a problem with 200 elements
and 300 nodes was considered large, but owing to advances in computer
technology and in numerical methods for solving large systems of equa-
tions, a typical problem today may involve thousands of elements and
nodes. The number of equations to be solved simultaneously is, thus,
large, but the number of unknowns in each equation is small, so effi-
cient routines for solving sparse matrices can be used. Owing to the
nonlinearity of the flow law, the set of equations is nonlinear and an
iterative solution is necessary. A trial solution is given initially, and this
is corrected to obtain an improved solution at each iteration.

The two most common types of finite-element model are two-
dimensional flow-band models and map-plane models. In flow-band
models, the model domain extends along a flowline, which may be curvi-
linear, and is bounded at the top by the glacier surface and at the base
by the bed or, in the case of some models that include temperature cal-
culations, by a surface at some depth in the substrate. The domain is
considered to be of unit thickness perpendicular to the flowline. Some
models permit one to specify a transverse strain rate, and thus become
quasi-three dimensional. A few are fully three dimensional (Hanson,
1995).

In map-plane models (Fastook and Chapman, 1989), the domain is
bounded by the surface and the bed and by lateral boundaries which
may be flowlines, a glacier margin, a divide, or an arbitrary transverse
boundary in the glacier across which a mass flux is specified. Unlike
flow-band models, map-plane models do not require prior knowledge
of the direction of flow. Although many map-plane models are called
three dimensional, they are actually quasi-three dimensional inasmuch
as the basic elements are columns extending through the ice mass, and
parameters such as velocity are averaged over the column. The models
are thus said to be vertically integrated. In such models, some terms of
the stress tensor are replaced by assumptions in the core of the model,
and variations with depth are then obtained later by, for example, using
equations like (5.16) and (5.18) to calculate u(z) from u.

Initial conditions and forcing
In earlier chapters we have found that it is necessary to specify conditions
on the boundaries of a problem domain in order to obtain a solution for
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parameters within the domain. Vertical velocities at the surface were
specified in Chapter 5, temperatures and temperature gradients in
Chapter 6, and stresses and velocities in Chapter 10. In all of these
examples, the solutions we sought were steady-state solutions, so all
time derivatives were 0.

In many modeling studies, time-dependent solutions are desired.
Indeed one of the strengths of numerical modeling is that we can study
the evolution of a complex system through time – a goal that is only
rarely achievable with analytical solutions (Equation (6.31) is such an
exception). In time-dependent models it is necessary to specify condi-
tions at time t = 0, called initial conditions, and also, in most cases, the
temporal evolution of some of these conditions, usually those at the sur-
face. The latter is frequently referred to as the forcing. We have already
encountered an example of an initial condition earlier in this chapter, in
discussing the solution to Equation (11.8).

The choice of initial conditions depends on the extent of our knowl-
edge of those conditions. If there is no well-defined condition from which
to start the integration, it can be started with an unrealistic situation such
as a temperature profile that varies linearly with depth or an ice sheet with
a parabolic profile. This approach is particularly appropriate in problems
involving cyclical changes, such as seasonal changes in temperature at
the surface or changes in climate driven by variations in Earth’s orbit –
the Milankovitch cycles. The model would then be run through several
cycles until the solution at a given point in a cycle is essentially identical
to that at the same point in the previous cycle. One can then conclude
that the model has “forgotten” the unrealistic initial conditions. This
procedure is commonly referred to as a spin up of the model. The final
solution can then be saved for use as an initial condition in a subsequent
run.

Alternatively, one can start with a known condition at sometime in
the past. For example a model of cycles of ice sheet growth and decay
could use a condition of no ice sheet as an initial condition, or a two-
dimensional flowline model could use a profile measured 20 or 30 years
ago. In the latter case, the model could be validated by comparing the
final profile with one measured recently. The model might then be run
into the future to predict the effects of various climate-change scenarios.

As just noted, forcing a time-dependent model usually involves vary-
ing the boundary conditions at the surface in some prescribed way.
Boundary conditions at the bed or along an upstream or downstream
boundary might also be varied by the modeler, but more frequently these
will be calculated within the model as part of the solution. Relevant con-
ditions at the surface are usually precipitation and temperature. These
may be estimated from empirical relations, such as a relation between
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mean annual temperature and the Milankovitch cycles, or may be
calculated in another model, such as a global climate model (GCM).
If the output from an ice-sheet model is used as input for a time step in
a GCM, the output of which is then used for the next time step in the
ice-sheet model, the models are said to be coupled.

Validation
Once a model has been programmed and appears to be giving reasonable
results, it must be validated to ensure that there are no subtle errors
that affect the results significantly but not so much as to make them
obviously unrealistic. A common way to initiate the validation process
is to set parameters in the model in such a way that the model duplicates
a situation for which there is an analytical solution. For example, if
∂θ/∂t, u, and Q are set to zero in Equation (11.12) and w is assumed
to be downward and to decrease linearly with depth, the model should
reproduce the Robin (1955) solution (Equation (6.24)). In flow models,
the deformation of an infinite slab of ice on a uniform slope (Equation
(10.42)) is a good choice. Of course, once these comparisons have been
made, there is still the question of whether coding of some of the terms
neglected in the test, such as u(∂θ/∂x) in Equation (11.12), is correct.
The modeler will have to be more imaginative to find independent ways
to test these algorithms. One possibility is to compare the output of
similar models developed totally independently, as discussed next.

Intercomparison of models
Because of the large number of ice sheet models being developed, each
employing slightly different approaches and each subject to inadvertent
programming errors, a group of 16 modelers developed a set of tests
for comparison of models (Huybrechts et al., 1996; Payne et al., 2000).
One test, for example, utilizes a square domain, 1500 km on a side,
with grid points at 50 km spacing. Initially there is no ice sheet in the
domain. A radially symmetric mass balance pattern is specified as are the
flow law constants n and B, and other relevant parameters such as ρ, g,
and κ . Because the specified mass balance pattern is radially symmetric
and constant with time, a model, when stepped through time, eventually
produces a steady-state circular ice sheet.

An intercomparison of twelve finite-difference models done using
this test found that most of the differences among them were inconse-
quential. The only significant difference was between so-called Type I
and Type II models. Type I models used a mass flux parameterization that
conserves mass but requires short time steps to achieve stability. Type II
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Figure 11.5. Ice sheet
profiles calculated using Type I
and II finite-difference models
compared with an exact
solution. (After Huybrechts
et al., 1996, Figure 5a. Used
with permission of the authors
and the International
Glaciological Society.)

models do not conserve mass, but have the advantage of allowing longer
time steps. The means and standard deviations of the thicknesses of the
model ice sheets at the divide were 2997 ± 7.4 m and 2959 ± 1.3 m
for Types I and II models, respectively. An exact solution, obtained by
integrating the mass balance function analytically, produced an ice sheet
that was 20 km smaller in radius, and consequently somewhat thinner,
but a model with a 50 km grid spacing cannot get closer. Surface profiles
predicted by the two model types are compared with each other and with
the exact solution in Figure 11.5.

The tests developed by these modelers, normally referred to as the
EISMINT (European Ice Sheet Modeling INiTiative) benchmark tests,
are an invaluable tool. Both new models that are developed and existing
models that are being refined can be tested against these benchmarks to
expose errors in reasoning or programming.

Sensitivity testing and tuning
Because the parameters used to the define boundary conditions, initial
conditions, and forcing are rarely known precisely, modelers normally
test the sensitivity of their models by varying these parameters within
reasonable limits. Suppose, for example, that the most likely temperature
boundary condition for a particular model is −5 ◦C, and suppose further
that it is unlikely that the correct boundary temperature is lower than
−7 ◦C or higher than −1 ◦C. The modeler then might run the model
with all three temperatures to see if the conclusions changed when the
extreme temperatures are used. If the conclusions are unchanged, the
model is said to be robust against a reasonable range of temperature
boundary conditions. Such tests are called sensitivity tests.



Coupling thermal and mechanical models 303

If there are N parameters that are only known approximately and if
the maximum likely, minimum likely, and most probable values of all
combinations of the parameters is to be tested, the total number of tests
will be 3N. If N > 3, such a task becomes daunting.

In a similar vein, models are often tuned so that they reproduce
observed characteristics of a glacier. For example, in the model of the
Barnes Ice Cap temperature profiles discussed above (Equation (11.12)),
the surface temperature, θ s, under which the profiles were presumed to
have developed prior to the most recent warming, and the longitudinal
gradient, ∂θ/∂x were only loosely constrained by field measurements.
Thus, the model was tuned by adjusting these parameters until the model
profiles matched the lower parts of the measured profiles well. Then step
increases of various sizes in θ s were tested until the upper parts of the
profiles were modeled reasonably well. Tuning can be viewed either as:
(1) a way of solving for unknowns that cannot be evaluated analytically
as mentioned earlier (p. 289), or (2) a necessary step if the model is going
to be used to explore the consequences of future changes.

Coupling thermal and mechanical models
Because the viscosity parameter, B, is dependent on temperature and,
conversely, the temperature distribution depends on the flow field through
the advective terms in the energy balance equation, a complete model
of a polar glacier or ice sheet must include calculations of both the flow
field and the temperature distribution. It is not practical to combine these
two calculations, so they must be done iteratively. First a flow field is
determined, given an assumed or previously calculated temperature field.
Then the temperature distribution is modeled and used as input to the next
flow calculation. Time stands still during this iterative procedure. Once
convergence is achieved, so the difference between successive solutions
from one iteration to the next is within prescribed limits, the surface
profile can be updated by multiplying the calculated surface velocities
and prescribed mass balance rate by the time step. An updated tempera-
ture boundary condition at the surface can then be specified, and a new
calculation started.

When energy balance and momentum balance models are cou-
pled in this way, the result is commonly called a thermomechanical
model.

Results from ten thermomechanical models were compared in a sec-
ond phase of the EISMINT study (Payne et al., 2000). The ice sheet
modeled was again circular, and all models predicted a central zone in
which the ice sheet was frozen to the bed surrounded by an outer zone
in which the base was at the pressure melting point. This time, however,
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results of the comparison were somewhat less consistent, inasmuch as
the area of the inner cold zone varied among the models from 13% to
42% of the total area. Furthermore, when the surface temperature at the
center of the ice sheet was −50 ◦C, an instability appeared in all but one
of the models. This instability is believed to be related to the positive
feedback from velocity to frictional heat generation and thence to tem-
perature. The models were otherwise consistent in their predictions of
the area, volume, thickness at the divide, and basal temperature at the
divide.

Examples
Let us now examine a few modeling projects that have been undertaken.
The examples chosen utilize different types of models with differing
objectives. They are intended to be illustrative only, and by no means an
overview of the literature.

Calving

As we discussed in Chapter 3, a great deal of ice is lost from the
Greenland and Antarctic Ice Sheets and from tidewater glaciers by calv-
ing. However, the calving process is poorly understood. In the case of
tidewater glaciers, extending longitudinal strain in the last several kilo-
meters of the glacier usually results in extensive crevassing, so the ice
arrives at the calving face in a weakened condition. At the calving face,
blocks ranging in size from fractions of a cubic meter to 104 m3 break
off and fall into the water. Other blocks break off below the water sur-
face and float upward. Finally, there is a rain of smaller fragments, most
of which are probably released by melting along grain boundaries. In
Antarctica, in contrast, glaciers reaching the sea tend to form floating
ice shelves. Any crevasses that were present near the grounding line are
largely healed. Calving from ice shelves commonly involves blocks from
105 to 1011 m3. While the processes of calving from grounded tidewater
glaciers and floating ice shelves both involve propagation of fractures
(Chapter 4), it seems likely that the origin of the stresses is substantively
different in the two cases.

It is widely believed that the demise of the Late Pleistocene ice sheets
was facilitated by loss of ice in calving bays that formed at the ends of ice
streams and migrated rapidly headward. Such calving would resemble
that in grounded tidewater glaciers. For this reason, the process of calving
of such glaciers has attracted considerable interest over the past decade.
One of the first efforts to tackle this problem was by Brown et al. (1982).
Using the method described in Chapter 3 (Equation 3.14), they found
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that calving speeds, uc, were proportional to mean water depth, hw,
thus:

uc = chw (11.14)

However, as we noted, the physical reasons for this relation are unclear.
Analytical efforts to describe the static stress distribution in a calv-
ing ice tongue, involving both longitudinal stresses and torques due to
the imbalance between hydrostatic stresses in the ice and in the water
at the calving face, failed to detect any stresses that might vary with
water depth and hence be responsible for an empirical relation like
Equation (11.14).

To study this problem further, Hanson and Hooke (2000) resorted
to a plain-strain steady-state finite-element model. The model domain
was 2000 m long in order to buffer the area of interest, the last ∼500 m,
from a poorly constrained ice flux into the upglacier end. The reference
model had a calving face 200 m high and contained 16 000 elements and
16 440 nodes. (This necessitated solution of 48 440 simultaneous equa-
tions!) The lower 140 m of the face were submerged, so the subaerial
part was 60 m high, a typical average height (Brown et al., 1982). Sliding
was allowed along the bed.

Figure 11.6 shows calculated distributions of horizontal velocity, u,
and longitudinal stress deviator, σ ′

xx, in the reference model. A zone of
high u and σ ′

xx is present just below the water line near the calving face.
We hypothesized that this would tend to produce an overhang in the face,
and that this might facilitate calving. As a measure of the rate of overhang
development, we calculated the velocity gradient, du/dz, between this
point of maximum velocity and the bed (where the glacier was sliding).
Comparison of models with total calving-face heights ranging from 100
to 300 m, all of which had subaerial heights of 60 m, suggested that,
in nature, du/dz probably increases nearly linearly with water depth
(Figure 11.7). In addition, the rate of stretching along the bed just
upglacier from the calving face, σ ′

xx bed, increases with water depth
(Figure 11.7). The latter may facilitate the formation of bottom crevasses,
and hence submarine calving. The two effects, combined, provide a plau-
sible physical explanation for the empirical relation, Equation (11.14).

Role of permafrost in ice sheet dynamics and
landform evolution

For decades, glacial geologists have speculated on the effects that bed
conditions have on ice sheet profiles and dynamics (see, for example,
Matthews, 1974; Fisher et al., 1985) and on the relation between basal
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Figure 11.6. Contours of
(a) horizontal velocity and
(b) σ ’xx in a glacier 200 m
thick at the calving face,
calculated with the use of a
finite-element model.
(Reproduced from Hanson
and Hooke, 2000. Used with
permission of the authors and
the International Glaciological
Society.)

thermal conditions and glacial landforms (see, for example, Moran et al.,
1980; Mooers, 1990b; Attig et al., 1989). Models of increasing sophis-
tication have been used to study these effects. Here we discuss a recent
time-dependent modeling effort by Cutler et al. (2000), using a flow-band
finite-element model.

The modeled domain was a ∼1700 km flow band extending from
James Bay in Canada across the eastern end of Lake Superior and down
the axis of the Green Bay lobe in Wisconsin to a Late Glacial Maximum
terminal moraine and beyond. This flow band was chosen because ice-
wedge casts and similar features demonstrate that permafrost was present
along the margin in Wisconsin, and the modeling team wanted to estimate
the thickness and horizontal extent, measured along a flowline extending
upglacier from the margin, of the submarginal permafrost zone. Their
ultimate goal was to investigate the role that permafrost may have played
in the development of certain landforms.

The model domain was broken into ∼100 columns with 50 nodes in
the ice and 75 nodes in the substrate – a total of nearly 9000 nodes when
the ice sheet extended to the terminal moraine. The particular model
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Figure 11.7. Variation of the
rate of overhang development
and of σ ’xx at bed with water
depth. Subaerial part of
calving face was 60 m high in
all simulations. (Reproduced
from Hanson and Hooke,
2000. Used with permission of
the authors and the
International Glaciological
Society.)

run discussed here began at 55 ka, with ice already covering the first
275 km of the flowline, and ran to 21 ka, the Late Glacial Maximum.
Time steps were 25 years. The model was forced with a mass balance
pattern that depended on mean annual temperature and precipitation,
and on the daily temperature range. The latter was essential to ensure
melting when the mean daily temperature was still a few degrees below
0 ◦C. Temperature and precipitation were specified at the margin and
were assumed to decrease in specified ways with increasing elevation
and latitude along the ice sheet surface. The variation in margin tem-
perature with time was based on well-dated paleoclimate studies (Figure
11.8a). Included in the model is a routine for keeping track of the amount
of meltwater produced by subglacial melt and lost by flow through sub-
glacial aquifers. The viscous energy dissipated by this groundwater flow
was added to the geothermal flux. Divergence of the ice flow was not
included.

Results of the model run are shown in Figure 11.8b−e. Figure 11.8b
shows profiles of the ice sheet at eight times between 48 and 21 ka,
and Figure 11.8c shows the ice extent as a function of time. The abrupt
decrease in thickness of the ice sheet at distances greater than about
900 km from the divide (Figure 11.8b) is a consequence of the transition
in the bed from crystalline rocks to a deformable substrate at ∼30 ka
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Figure 11.8. Model of a flowline down the axis of the Green Bay lobe of the
Laurentide Ice Sheet. (a) Temperature specified at the margin from 55 to 20 ka.
(b) Profiles of the ice sheet at eight times between 48 and 21 ka (numbers to left
of curves). (c) Location of margin as a function of time. (d) Maximum thickness
of permafrost. (e) Width of submarginal frozen zone measured upglacier from
margin along the flowline. (Redrawn from Cutler et al., 2000, Figures 3, 9, and
11. Used with permission of the authors and the International Glaciological
Society.)
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(Figure 11.8c). Basal sliding was allowed only over the latter and only
when the bed was at the pressure melting point. With sliding, the balance
velocity (Equation (5.1)) is reached with thinner ice and a lower driving
stress (ρghα). Note the progressive isostatic depression of the bed as
the ice advances (Figure 11.8b) and the acceleration of the advance over
the soft deformable bed (Figure 11.8c). Figures 11.8d and 11.8e show the
maximum thickness of the permafrost and the width (measured along
the flowline) of the submarginal frozen zone (see Figure 6.16). The
permafrost is thickest when the glacier margin first reaches a given place
on the landscape, and then thins as the ice cover thickens and insulates
the site from the climate. The initial increase in maximum thickness is a
response to the cooling climate (Figure 11.8a). The subsequent decrease
from about 35 to 30 ka (Figure 11.8d) is a delayed reaction to the cli-
matic amelioration that began at 40 ka. The width of the subglacial frozen
zone reflects a balance between the rate of increase in width as the ice
sheet advances over permafrost and the rate of decrease in width as the
upglacier edge of the permafrost thaws. Changes in width thus result from
a combination of changes in rate of advance and changes in climate: the
decrease in rate of advance at ∼38 ka (Figure 11.8c) results in a decrease
in width (Figure 11.8e), and the increase in rate of advance at ∼30 ka
results in an increase in width. The abrupt ∼70 km decrease in width
at ∼42 ka is puzzling, but both it and the abruptness of the decrease at
35 ka suggest that at the upglacier edge there was a wide zone of relatively
thin permafrost that disappeared nearly simultaneously.

Cutler et al. (2000) reach three basic conclusions from this study.

� Permafrost persists for time spans of order 102–103 years beneath an
advancing ice margin.

� The maximum width of the submarginal permafrost zone is of order
102 km.

� Submarginal permafrost severely inhibits drainage of basal meltwater,
leading to high subglacial water pressures.

Although the dimensions of the permafrost layer (as well as many other
model results) are sensitive to the values of the parameters used to define
the climate, substrate characteristics, and sliding speed, these results
appear to be robust; the modeled Late Glacial Maximum (LGM) ice sheet
had a wide, persistent frozen toe with all tested values of the parameters.
A caveat is that in their sensitivity studies Cutler et al. varied only one
input parameter at a time. Their conclusion would be stronger if they had
varied two or more parameters simultaneously in a direction to minimize
the width of the frozen zone.

The probable existence of such a frozen margin during the LGM has
several geomorphic implications.
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� As the width of the frozen margin decreases, rather abrupt releases of
stored subglacial water are likely. This supports the authors’ hypothesis
that tunnel valleys found along the LGM margin in Wisconsin were
formed by such drainage.

� High subglacial water pressures are likely, so landforms associated
with deforming beds are to be expected. Bands of drumlins upglacier
from the presumed zone of frozen bed in Wisconsin (Attig et al., 1989)
are consistent with this, inasmuch as a mobile substrate appears to be
an essential requirement for drumlin formation (Patterson and Hooke,
1995).

� Thrust features formed by the mechanism discussed in Chapter 6
(Figure 6.16) might be expected but somewhat surprisingly are not
found in Wisconsin. Such features are present at comparable latitudes
in neighboring states.

� Large proglacial lakes like those that formed between the advancing ice
margin and the southern shores of Lakes Michigan and Erie would have
inhibited formation of submarginal permafrost. This may explain, in
part, why features such as drumlins, thrust features, and tunnel valleys
are rare or absent south of these lakes, but higher marginal temperatures
would also be a factor. It may also explain why ice lobes that filled
these lakes extended further south.

While glacial geologists had speculated that permafrost might persist
for some time under the margins of advancing continental ice sheets
(see, for example, Mickelson, 1987), numerical modeling such as that
carried out by Cutler et al. provides a much firmer theoretical basis for
this speculation.

Three-dimensional models of ice sheets

Recently, glaciologists have put considerable effort into modeling entire
ice sheets like those in Greenland and Antarctica. The results of some
of these models have already been presented in Figures 5.2, 6.14, and
6.15. Armed with models that closely reproduce the characteristics of
these modern ice sheets, one can examine the conditions under which
past ice sheets expanded to lower latitudes, or predict the behavior of
present ice sheets under various scenarios for climate change in the
future.

An interesting application of a three-dimensional thermomechanical
finite-difference model of a continental ice sheet is that of Marshall et al.
(2000), who studied the Laurentide Ice Sheet. The model run starts
at 122 ka, and is forced by a paleoclimate scenario based on a global
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climate model tuned with ice core records. With an enhancement factor
(Equation (4.10)) of 6 and without basal sliding, the model simulates
the modern Greenland Ice Sheet well, and is in close agreement with
other EISMINT models of Greenland. However, when it is then used
to model the Laurentide Ice Sheet, it produces an LGM ice mass with
a volume of 36.3 × 106 km3, whereas studies of moraines, LGM sea
level, and post-glacial isostatic recovery suggest that the actual volume
was only ∼22.5 × 106 km3. To try to bring the calculated volume into
better agreement with that observed, Marshall et al. first added a calv-
ing routine. With reasonable calving rates, this reduced the volume only
modestly. Higher calving rates led to inconsistencies with the known
ice sheet extent in Hudson Bay and Hudson Strait. They then added a
sliding routine but did not retain the calving algorithm. This reduced
the volume to 29.1 × 106 km3 and resulted in an ice sheet extent
that was in reasonable agreement with observations of glacial geolo-
gists (Figure 11.9). A further reduction in calculated ice volume could
have been achieved by increasing the enhancement factor or by reducing
precipitation in the climate forcing, but these options were not explored
quantitatively.

The enhancement factor that Marshall et al. used for Greenland
probably reflects: (1) development of strong single-maximum crystal
fabrics, and (2) sliding, which occurs in Greenland but is not allowed
in their model. Paterson (1991) has argued that the former is facili-
tated by impurities because impurities inhibit grain-boundary migration,
resulting in smaller crystals, and smaller crystals recrystallize readily,
leading to strong preferred orientations. Pleistocene ice tends to have
more impurities, smaller grain sizes, and higher strain rates. The softness
of Pleistocene ice was apparently first recognized in borehole deforma-
tion studies on Barnes Ice Cap (Hooke, 1973b) and later in similar studies
on Devon (Paterson, 1977) and Agassiz (Fisher and Koerner, 1986) Ice
Caps and then in Greenland (Dahl-Jensen and Gundestrup, 1987). During
the Holocene the basal layers of Pleistocene ice in these four ice masses
have thinned, so they now have less influence on the profile than was
likely to have been the case during the Wisconsinan in the Laurentide Ice
Sheet. Thus, it is reasonable to expect that the appropriate enhancement
factor for the Laurentide Ice Sheet would be higher than that for Green-
land today. Other modelers have also found that relatively high enhance-
ment factors were required to model the accepted volume of the Lau-
rentide Ice Sheet (Huybrechts and T’Siobbel, 1995; Tarasov and Peltier,
1999).

In conclusion, the Laurentide Ice Sheet can be modeled successfully
if algorithms for sliding and calving are included, if Pleistocene ice is
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Figure 11.9. Surface topography of the Laurentide Ice Sheet at 20 ka
calculated with a thermomechanical model that included a basal sliding routine.
(Modified from Marshall et al., 2000, Figure 9b. Used with permission of the
authors and the Canadian Journal of Earth Sciences.)

assumed to have been softer than Holocene ice, and if the Pleistocene
climate is assumed to have been somewhat drier than the Holocene cli-
mate. Marshall et al. (2000) do not pursue combinations of these effects,
arguing sensibly that the physics of the calving and sliding processes are
not known well enough. Sliding, for example, depends on pore water
pressures in the substrate, and pore water pressures, in turn, depend



Summary 313

upon basal temperatures and the efficiency of the basal drainage system.
Models of the basal drainage system are even more tenuous than those
of calving and, as noted above, basal temperature distributions are not
modeled consistently.

In short, we can choose between viewing the glass as half empty or
half full. We have a long way to go to write calving and sliding algorithms
that are well-supported by physics. On the other hand, the models seem
to have already revealed important characteristics of the Laurentide Ice
Sheet and of ice in it.

Summary
In this chapter we have reviewed the two main numerical modeling tech-
niques commonly used in glaciology: the finite-difference and finite-
element techniques. For simple problems, finite-difference approaches
can be implemented with a spread sheet or simple computer program.
Finite-element approaches and finite-difference solutions of more com-
plex problems both require more sophisticated computer programs.
While numerical details of these advanced techniques are beyond the
scope of this book, we have introduced some of the vocabulary com-
monly associated with them.

Owing to their complexity, numerical models can easily have flaws
that result in realistic but incorrect predictions. Parts of models can often
be tested against analytical solutions before the model as a whole is
applied to problems without such solutions. Output of models of entire
ice sheets can be compared with the EISMINT benchmarks. The lat-
ter tests have shown that models generally do well at predicting the
size and shape of an ice sheet, but relatively subtle differences among
the models result in significant differences in solutions for basal temper-
ature distribution, and in particular in the fraction of the bed that is at
the pressure melting point.

In the last part of the chapter, we explored three applications of
models to problems of glaciological and geomorphological significance.
In the first, a finite-element model was used to study the stress distribution
in a calving face in order to see if a physical explanation could be found
for the commonly cited proportionality between water depth and calving
rate. In the second, another finite-element model predicted that when
an ice sheet advances over permafrost, a frozen margin of appreciable
width is likely to develop and to persist for centuries or millennia. Certain
landforms have been interpreted as being a consequence of such a frozen
margin. Finally, we discussed a finite-difference model of the Laurentide
Ice Sheet and found that with certain reasonable assumptions relatively
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good agreement probably could be obtained between the size calculated
by the model and that determined from moraines, sea level records, and
isostatic rebound. The results point to the need for a better quantitative
understanding of sliding, calving, and the development of basal drainage
systems, and of climate history, while at the same time they constrain
the ranges of these parameters that will yield agreement between model
and probable reality.



Chapter 12

Applications of stress and deformation
principles to classical problems

In this chapter, we will study some glaciologically significant problems
for which an appreciation of the material presented in Chapters 9 and 10
is required. Our objective is not to provide a comprehensive overview of
theoretical developments in glaciology, but rather to solidify the gains
made in these preceding two chapters by applying the principles devel-
oped therein. In the course of this discussion, the student will be intro-
duced to some definitive studies, frequently referenced in the glaciolog-
ical literature.

Let us first consider the problem of closure of a cylindrical borehole,
in part because this is relevant to our earlier discussion of glacier hydrol-
ogy. Then we will investigate efforts to calculate basal shear stresses
using a force balance model, followed by study of the creep of ice shelves.
Finally, the problem of using borehole deformation experiments to obtain
estimates of the values of the parameters in the flow law will round out
the chapter.

Collapse of a cylindrical hole
The first problem we address is that of the closure of a cylindrical hole
in ice. This problem was studied by Nye (1953) in the context of using
closure rates of tunnels in ice to estimate the constants in Glen’s flow law,
and our development is based on Nye’s paper. More recently, the theory
has been used to analyze two problems in water flow at the base of a
glacier: (1) the closure of a water conduit, and (2) leakage of water into
or away from a subglacial conduit. We used the first of these analyses in
Chapter 8 (Equation (8.3)).

315
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sa
sqq

z
Figure 12.1. Stresses on the
wall of a cylindrical hole in a
weightless medium.

Our approach is very similar to that used in Chapter 10 to obtain
stresses and velocities in a “glacier” consisting of a slab of ice resting
on a bed with a uniform slope. We first reduce the problem to one of
plane strain by setting it up so that there is no deformation parallel to
the axis of the hole. This reduces the number of unknowns from nine –
the three components of the velocity vector and six components of the
stress tensor – to five. Expressions for the stresses and strain rates are
then obtained and inserted into the momentum and continuity equations.
Finally, we use a constitutive relation between stress and stain rate, Glen’s
flow law, to obtain the desired solution.

Consider, first, the closure of a hole of radius a in an infinite weight-
less medium (Figure 12.1). There is no strain parallel to its axis, the
z-direction. Once the solution to this problem is obtained, we will mod-
ify it to apply to a real glacier. On the surface of the hole, at r = a, an
internal tension, σa, is (somehow) applied. Eventually, this stress will be
equated with that resulting from the difference between the pressure in
the ice and that in the hole.

As there is no deformation in the z-direction, ε̇zz = λσ ′
zz = 0. Thus,

σ ′
zz = 0 = σzz − 1

3
(σrr + σθθ + σzz)

or

σzz = 1

2
(σrr + σθθ ) (12.1)

The mean stress thus becomes

P = 1

3
σkk = 1

3

[
3

2
(σrr + σθθ )

]
so

σ ′
rr = 1

2
(σrr − σθθ ) (12.2)

and

σ ′
θθ = −1

2
(σrr − σθθ ) (12.3)

This gives us expressions for the three deviatoric stresses and the mean
stress.
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As stated, there is no deformation in the z-direction and, in addition,
the hole wall cannot support shear tractions. Thus, in view of the radial
symmetry, there can be no shear stresses in the θ - and z-directions in the
medium away from the hole. Therefore, σrr, σ θθ , and σzz are principal
stresses. The effective stress is then

σ 2 = 1

2
2

[
1

4
(σrr − σθθ )2

]

or

σ = 1

2
|σrr − σθθ | (12.4)

Let us now obtain another relation between σrr and σ by considering

rdq

srr
r

dq

sqq

dq/2

sqq

dq/2
dr

srr + 
dsrr dr
dr

Figure 12.2. Stresses on a
segment of the wall of a
cylindrical hole.the condition for stress equilibrium. From Figure 12.2, we have

σrr (rdθ ) −
(

σrr + dσrr

dr
dr

)
(r + dr ) dθ + 2σ θθ dr

dθ

2
= 0

Canceling like terms of opposite sign, dividing by dr dθ , and ignoring
the term still containing a differential yields

r
dσrr

dr
+ σrr − σθθ = 0

or, by using Equation (12.4)

dσrr

dr
+ 2σ

r
= 0 (12.5)

At any radius r ≥ a the stress is σrr. At infinity σrr = θ . Thus, Equation
(12.5) may be integrated:

0∫
σrr

dσrr = −
∞∫

r

2σ

r
dr

or

σrr =
∞∫

r

2σ

r
dr (12.6)

In order to integrate Equation (12.6), we must express r in terms
of σ . We will do this by determining the velocity field, and hence ε̇,
and inserting a flow law. Let u be the velocity in the radial direction.
Other velocities vanish owing to the radial symmetry and the absence
of deformation in the z-direction. Conservation of mass requires that the
mass flux through two concentric cylindrical surfaces with radii r and
r + dr (Figure 12.3) must be the same in an incompressible medium.
Thus, we have

2u�r = 2

(
u + du

dr
dr

)
�(r + dr )
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r dr

u

u + 
∂u dr∂r

Figure 12.3. Radial velocity
field around a cylindrical hole.

which may be simplified, thus:

du

dr
= −u

r
(12.7)

and integrated to yield

ln u = − ln r + ln c

Because we obtained this without referring to the direction of u, a minus
sign is now inserted to indicate that u is in the negative r-direction.
Thus,

u = − c

r

So u is directed toward the hole and is a maximum on the hole wall, at
r = a. It decreases to 0 at r = ∞.

From its definition in terms of velocity derivatives (Equations
(9.21)), we see that ε̇rr = ∂u/∂r , so from Equation (12.7):

ε̇rr = −u

r

and by continuity, since ε̇zz = 0,

ε̇θθ = −ε̇rr = u

r

The effective strain rate is thus:

ε̇2 = 1

2
ε̇i j ε̇i j = 1

2

(
2

u2

r 2

)

As u = −c/r, this becomes:

ε̇ = c

r 2
(12.8)

We can retain the generality of the solution a little longer before
inserting a flow law. Because ε̇ = f (σ ), we have

f (σ ) = c

r 2
(12.9)
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To obtain r in terms of σ , note that (using Equation (12.9)):

d f (σ )

dσ
= d f (σ )

dr

dr

dσ
= −2c

r 3

dr

dσ

Again using Equation (12.9) to eliminate c:

d f (σ )

dσ
= −2

r
f (σ )

dr

dσ

so:

dr = − r

2

d f (σ )

f (σ )

Substituting this into Equation (12.6) yields

σrr = −
∫

2σ

r

r

2

d f (σ )

f (σ )
= −

∫
σ

f (σ )
d f (σ ) (12.10)

It is now necessary to make use of a flow law, specifically Glen’s
flow law, to obtain an analytical expression for the functional relation in
Equation (12.9), thus:

ε̇ = f (σ ) =
( σ

B

)n
= c

r 2
(12.11)

whence, differentiating:

d f (σ ) = nσ n−1

Bn
dσ

With the use of these last two relations, Equation (12.10) becomes

σrr =
σ∫

0

σ

(σ/B)n

nσ n−1

Bn
dσ =

σ∫
0

ndσ

so,

σrr = nσ (12.12)

In other words, the radial stress at any distance r ≥ a from the hole wall is
simply n times the effective stress. One cannot help but be impressed by
the simplicity and elegance of this result, considering the effort required
to obtain it. Unfortunately, real life is rarely so conveniently uncom-
plicated. Furthermore, we still have some way to go before obtaining
relations that can be applied to real glaciers.

In preparation for relaxing the assumption that the medium is weight-
less, let us now scale this solution to the normal stress, σa, on the hole
wall. Using the last equality in Equation (12.11) to obtain an expression
for σ , σrr and σa become:

σrr = nB
( c

r 2

)1/n
and σa = nB

( c

a2

)1/n

whence:

σrr

σa
=

(a

r

)2/n
(12.13)
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Solutions for the remaining stresses can now be written similarly, as
follows. From Equations (12.4) and (12.12):

σ = 1

2
(σrr − σθθ ) = 1

2
(nσ − σθθ )

whence, transposing and again using the last equality in Equation
(12.11):

σθθ = (n − 2) σ = (n − 2) B
( c

r 2

)1/n

so:

σθθ

σa
= n − 2

n

(a

r

)2/n
(12.14a)

Then, from Equations (12.1), (12.13), and (12.14a):

σzz

σa
= 1

2

(
σrr

σa
+ σθθ

σa

)
= 1

2

[(a

r

)2/n
+ n − 2

n

(a

r

)2/n
]

= 1

2

[(a

r

)2/n
(

1 + n − 2

n

)]

so

σzz

σa
= n − 1

n

(a

r

)2/n
(12.15)

Finally, from Equations (12.4 ), (12.13), and (12.14a):

σ

σa
= 1

2

(
σrr

σa
− σθθ

σa

)
= 1

2

[(a

r

)2/n
− n − 2

n

(a

r

)2/n
]

Thus,

σ

σa
= 1

n

(a

r

)2/n
(12.16)

We can now relax the assumption that the medium is weightless.
Suppose we have a horizontal hole at atmospheric pressure at a depth
ho in a real glacier. The hydrostatic pressure in the glacier is P = ρgh,
and around the hole it is P = ρgho. Note that P is not equal to the
mean stress, P(= 1

3σkk). If ho 
 a, P will be nearly uniform around the
hole. We have not previously specified the magnitude of σa, so let us
now solve Equations (12.13) through (12.16) for σi i (i = r, θ , z) with
σa = P . Furthermore, because P is hydrostatic, let us add a compres-
sive stress, −P , to the solutions. This is valid because a hydrostatic
pressure influences all of the stresses equally, and therefore does not
affect the local differences among the stresses given by Equations (12.13)
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through (12.16). The resulting equations are:

σrr = P
(a

r

)2/n
− P = P

[(a

r

)2/n
− 1

]
(12.17a)

σθθ = P n − 2

n

(a

r

)2/n
− P = P

[
n − 2

n

(a

r

)2/n
− 1

]
(12.17b)

σzz = P n − 1

n

(a

r

)2/n
− P = P

[
n − 1

n

(a

r

)2/n
− 1

]
(12.17c)

σ = 1

2
(σrr − σθθ ) = P

n

(a

r

)2/n
(12.17d)

and the mean stress is

1

3
σkk = P

3

[(a

r

)2/n
− 1 + n−2

n

(a

r

)2/n
− 1 + n−1

n

(a

r

)2/n
− 1

]

= P
[

n−1

n

(a

r

)2/n
− 1

]
(12.18)

Now, the stress causing closure is no longer a hypothetical traction on
the inside of the hole, σa. Rather it is the real hydrostatic stress in the
medium. Note that all of the stresses decrease to −P (i.e. compressive)
at large distances from the hole.

It is easy to show that the corresponding deviatoric stresses are:

σ ′
rr = −σ ′

θθ = P
n

(a

r

)2/n
(12.19a)

σ ′
zz = 0 (12.19b)

That σ ′
rr = −σ ′

θθ and σ ′
zz = 0 are a consequence of our assumption of

plane strain.
Setting r = a in Equations (12.17) we obtain the stresses on the hole

wall:

σrr = 0

σθθ = −2P
n

σzz = −P
n

σ = P
n

(12.20)

Tunnel and borehole closure

These relations have been used to determine values of the constants
n and B in the flow law with the use of measurements of the rate of
closure of a tunnel or borehole. To do this, it is necessary to incorporate
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the relations into the flow law. Deviatoric stresses are thus required.
Because we are interested in closure, only σ ′

rr(r=a) is needed. Thus, using
Equation (12.19a) with r = a, noting that σr=a = P/n, and remembering
Equations (9.29) and (10.39):

ε̇rr (r=a) = σ n−1

Bn
σ ′

rr (r=a) =
(
P

/
n
)n−1

Bn

P
n

(12.21)

Because ε̇rr(r = a) = −ua/a, where ua is the closure rate, we obtain

− ua

a
=

( P
nB

)n

(12.22)

To use Equation (12.22) to estimate the constants in the flow law,
one needs values of ua, a, and P at two or more places. Inserting values
for two such places in Equation (12.22) would yield two equations with
two unknowns (n and B). With three or more sets of data, it is useful to
plot log ε̇ against log P as is done for some tunnel-closure experiments
in Figure 12.4.

Some caution is required, however. In tunnel-closure studies, for
example, pegs are normally inserted in the tunnel walls and closure is
measured by determining the change in distance between the heads of
pegs on opposite sides of the tunnel. In this case, particularly in temperate
glaciers, the point where the pegs are actually gripped by the ice may
be some distance back in the wall. Furthermore, such tunnels are rarely
if ever circular in cross section. Thus the correct value of a must be
guessed.

In borehole-closure studies, closure rates are measured with calipers,
so determining the appropriate value of a is not a problem. However, the
time interval between measurements is often fairly large, and a substan-
tial amount of closure may occur between measurements. In this case,
approximating ua by �a/�t is likely to yield a poor estimate (Paterson,
1977). The correct procedure is to use the temporal mean value of ua/a,
which is, by the definition of a mean:

ε̇a = − 1

�t

t2∫
t1

ua

a
dt

Noting that ua = da/dt, this becomes:

ε̇a = − 1

�t

t2∫
t1

1

a

da

dt
dt = − 1

�t
ln

a2

a1

Some results from four borehole closure studies are presented in Figure
12.5 (open circles) along with data on the variation of B with temperature
from a large number of other laboratory and field experiments.
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−1

n

Figure 12.4. Rate of
contraction, ua, of tunnel
sections plotted against
overburden pressure, P
(Replotted from Nye, 1953,
Figure 1. Reproduced with
permission of the author and
The Royal Society of London.)

It is instructive to look at the results in Figures 12.4 and 12.5 in
somewhat greater detail. In Figure 12.4, it will be noted that several
of the sets of tunnel closure data fall along a line with n = 3.11 and
B = 0.18 MPa a1/n. This value of B is plotted as the open square in
Figure 12.5; it is quite consistent with other data from temperate ice.
However, the point representing data from the Arolla ice tunnel falls
well above the line in Figure 12.4. The Arolla tunnel is at the base of
an ice fall. Owing to the contribution of longitudinal stresses, σ may
be significantly higher than P/n here, and, as observed, one would thus
expect the actual closure rate to be higher than that calculated using
(P/n)n−1 to approximate σ n−1 in Equation (12.21).

The problem with the borehole-closure rates, which seem to be
too low and therefore yield values of B that appear to be too high in
Figure 12.5, is different. Here, we speculate that the crystallographic
fabric in the ice is adjusted to a stress regime in which the dominant
deviatoric stress is simple shear normal to the axis of the hole. Such a
fabric may have inhibited closure.
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Figure 12.5. Values of B from
various experiments in which
the minimum strain rate was
measured or estimated.
Octahedral stresses and strain
rates were used in calculating
B. Straight part of solid line is
based on data from Barnes
et al. (1971). Dashed lines are
values of B that would give
strain rates half or double
those on solid line. (After
Hooke, 1981, Figure 2).

Subglacial water conduits

In Chapter 8 we applied Equation (12.22) to closure of subglacial water
conduits. As noted there, problems arise when one attempts to estimate
closure rates of semicircular conduits, owing to drag on the bed. Even
more profound difficulties arise in attempting to estimate closure rates
of broad low conduits, as stresses in the ice are no longer symmetrically
distributed about the conduit.

Here, we look into another problem of interest: the normal stresses
on the bed at the boundaries of a semicircular conduit, and in particular,
the gradient in these stresses outward from the conduit (Figure 12.6).
This problem was first studied by Weertman (1972). If pressures are
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Figure 12.6. Stresses around
a semicircular conduit: σrr is
extending and σ θθ is
compressive (hence the minus
sign on P). The variation in
σ θθ away from the tunnel is
shown schematically. For
n > 2, σ θθ is less compressive
than P, and conversely.

higher adjacent to the conduit, water in a film at the ice–bed interface
will be forced away from the conduit, and conversely.

The significance of this problem lies in its application to water flow
beneath polar ice sheets. Several authors have suggested that for conduits
to exist beneath such ice masses in the absence of water inputs from the
glacier surface, there must be an influx of water from adjacent parts of the
bed (Alley, 1989a; Walder, 1982; Weertman and Birchfield, 1983; Ng,
2000a). The problem of the existence of such conduits is fundamental;
where they are present, subglacial water pressures are probably appre-
ciably lower than otherwise. Thus, any attempt to explain, for example,
the fast flow of ice streams hinges upon an understanding of the nature
of the water flow system.

The relevant stress in this problem is σ θθ . Thus, let us start with
the expression for σ θθ in Equation (12.14a). Note that in so doing, we
tacitly assume that the bed is flat and slippery so that shear stresses do
not impede movement of ice inward toward the tunnel. The appropriate
value for σa is now the difference between the pressure in the ice and
that in the water in the conduit, �P . As before, we add a pressure, −P ,
everywhere to account for the weight of the ice. With a little rearranging,
Equation (12.14a) thus becomes:

σθθ = n − 2

n
�Pa

2
n r− 2

n − P (12.14b)

Note that σ θθ is negative, or compressive, as P always exceeds the first
term on the right.

It may appear from Equation (12.14b) that σ θθ will not support the
weight of the glacier when n > 2, as then σ θθ → −P as r → ∞ but
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σ θθ > −P near the conduit. In other words, σ θθ is sufficiently compres-
sive to support the glacier far from the conduit but not near or beneath it.
However, σ(rr = R) is more compressive than σ(rr = a) (Equation (12.17a)),
and this provides the additional support. In other words, referring to Fig-
ure 12.6, the vertical force acting on the surface at radius R balances that
on the bed, which is: 2 ∫a

0(�P − P)dr + 2 ∫R
a (σθθ −P) dr.

Let us now consider a semicircular conduit at a depth ho on a horizon-
tal bed beneath an ice sheet of uniform thickness and infinite horizontal
extent. Taking the derivative of σ θθ with respect to r along the bed yields

dσθθ

dr
= − 2

n

(
n − 2

n

)
�Pa

2
n r−( 2

n +1) (12.23)

If n > 2, as might be expected, dσ θθ/dr is negative. Thus σ θθ decreases,
or becomes more negative, or more compressive, away from the tunnel
(Figure 12.6). In this case, water in a film will be forced toward the con-
duit, enhancing discharge in it. However, when one considers coupling
of stresses, particularly where there is a shear stress on the bed parallel
to the conduit, the situation is not so simple. It appears that in this case
water flow may be away from the tunnel (Weertman, 1972, pp. 299–300).

The physical reason for the change in behavior of dσ θθ/dr with n is
not obvious. We might expect that if a cavity is introduced at the base
of a glacier, compressive stresses adjacent to the cavity would increase
in order to support that part of the weight of the glacier that is no longer
supported by the bed under the cavity. However, toward the tunnel u,
and hence ε̇rr, increase and this requires an increase in σ ′

rr. The way in
which the stress field is modified to satisfy this requirement, and hence
the way in which the pressure on the bed is redistributed, depends upon
n. A more intuitive explanation of this effect is elusive.

Calculating basal shear stresses using
a force balance
To a first approximation, the basal drag can be estimated from τb = ρghα

(or τb = Sfρghα in a valley glacier). However, if longitudinal forces are
unbalanced, τb may be either greater or less than ρghα. For example, in
Figure 12.7, the body force, ρgh, has a downslope component, ρghα. In
addition, there are longitudinal forces Fu and Fd. If Fu > Fd, as suggested
by the lengths of the arrows in the figure, τb will clearly have to be
greater than ρghα in order to balance forces parallel to the bed, and
conversely. We now explore this effect in greater detail. The first part of
the development is a three-dimensional generalization of an approach
suggested by B. Hanson (Hooke and Hanson, 1986, p. 268).
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Figure 12.7. Longitudinal
forces on a segment of a
glacier on a sloping bed. If
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analysis.

Because our goal is to calculate the drag exerted on the glacier by
the bed, the momentum balance equations (Equations (9.32b)) are the
obvious starting point for the analysis. The coordinate system to be used
is shown in Figure 12.8. The x-axis is horizontal and in the direction
of flow, and the z-axis is vertical. Writing out the momentum balance
equations in the x- and z-directions, remembering that σi j

′ = σi j – δi jP,
leads to:

∂σ ′
xx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
+ ∂ P

∂x
= 0 (12.24a)

and

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σ ′

zz

∂z
+ ∂ P

∂z
= −ρg (12.24b)

The procedure now will be to solve Equation (12.24b) for P, substitute
the result into Equation (12.24a), and integrate over the depth to obtain
σzx(z=h) (= τb).

To solve Equation (12.24b) for P, separate variables and integrate
over depth z:

z∫
0

d P = −
z∫

0

∂σxz

∂x
dz −

z∫
0

∂σyz

∂y
dz −

z∫
0

dσ ′
zz −

z∫
0

ρgdz

or, noting that P = 0 at the surface:

P = −
z∫

0

∂σxz

∂x
dz −

z∫
0

∂σyz

∂y
dz − σ ′

zz + σ ′
zz |z=0 − ρgz
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Now take the horizontal derivative, assuming that ∂σzz
′/∂x|z=0 is negli-

gible and noting that dz/dx = α, and substitute the result into Equation
(12.24a), thus:

∂σ ′
xx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
−

z∫
0

∂2σxz

∂x2
dz −

z∫
0

∂2σyz

∂x∂y
dz − ∂σ ′

zz

∂x
− ρgα = 0

(12.25)

Equation (12.25) is in terms of stresses at any given level, z, in the glacier,
whereas we are interested in summing the stresses over depth to obtain
τb. Thus, as just noted, we integrate over depth:

h∫
0

(
∂σ ′

xx

∂x
− ∂σ ′

zz

∂x

)
dz +

h∫
0

∂σyx

∂y
dz +

h∫
0

dσzx

−
h∫

0

z∫
0

(
∂2σxz

∂x2
+ ∂2σyz

∂x∂y

)
dz dz − ρghα = 0 (12.26)

Clearly, σzx (z=h) (= τb) will be obtained from integrating the third term,
and the last term is the familiar ρghα. Some simplification is obviously
desirable, however.

The double integral term in Equation (12.26), also sometimes
referred to as the T-term, is difficult to interpret physically. In two dimen-
sions, Budd (1969, p. 116) has shown that it can be approximated by:

h∫
0

z∫
0

∂2σxz

∂x2
dz dz ∼= 1

6

[
ρg

∂2

∂x2
(αh3)

]
(12.27)

Van der Veen and Whillans (1989) argue that this term is related to
“bridging” effects, in which the pressure on the bed varies spatially owing
to the influence of bed irregularities and, particularly, cavity formation.
Because ice is “soft”, they suggest that these bridging effects should be
small compared with the average normal pressure. Thus, they neglect the
T-term in force-balance calculations, and we shall follow their lead in this
respect. They acknowledge, however, that the “physical implications” of
doing so are “not conceptually straightforward”.

Turning to the first term in Equation (12.26), σ ′
zz can be eliminated

by noting that, owing to the proportionality between deviatoric stress
and strain rate, the incompressibility condition, ε̇xx + ε̇yy + ε̇zz = 0, leads
to σ ′

xx + σ ′
yy + σ ′

zz = 0. In addition, because σzx would be zero on a free
horizontal surface, and is only slightly different from zero on the gently
sloping glacier surface, the third term in Equation (12.26) is the desired
basal drag, τb, as just noted. With these modifications, Equation (12.26)
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becomes:
h∫

0

∂

∂x

(
2σ ′

xx + σ ′
yy

)
dz +

h∫
0

∂σyx

∂y
dz + τ b−ρghα = 0 (12.28)

To get an intuitive sense for this relation, consider a situation in which
σ ′

xx and σyx are independent of depth and σ ′
yy is negligible. Then Equation

(12.28) reduces to:

ρghα − τ b = 2
∂σ ′

xx

∂x
h + ∂σyx

∂y
h (12.28a)

In two dimensions (σyx = 0), this equation says that if the driving stress,
ρghα, exceeds the drag provided by the bed, τb, the stretching rate
(ε̇xx ∝ σ ′

xx) will increase downglacier (∂σ ′
xx/∂x > 0), and conversely.

The second term on the right takes shear stresses on the valley sides into
consideration. (Adjusting for the fact the we have neglected bridging
effects and have taken the z-direction to be positive downward, Equation
(12.28) is identical to Van der Veen and Whillans’ (1989) Equation
(12.25). The rest of our development follows theirs.)

Our objective now is to express Equation (12.28) in a form that
will allow evaluation of τ b from strain rate measurements at the glacier
surface. To this end, we note that because

σ n−1 = (ε̇
1
n B)n−1

the flow law can be written:

ε̇i j = σ n−1

Bn
σ ′

i j = ε̇
n−1

n

B
σ ′

i j

Inserting this in Equation (12.28), reversing the order of differentiation
and integration, and rearranging terms yields:

τ b = ρghα − ∂

∂x

h∫
0

B

ε̇
n−1

n

(2ε̇xx + ε̇yy)dz − ∂

∂y

h∫
0

B

ε̇
n−1

n

ε̇yx dz (12.29)

Van der Veen and Whillans (1989) developed a numerical procedure
to carry out the integration over depth, z. However, for simple applica-
tions we assume that strain rates are independent of depth, and express
Equation (12.29) in finite-difference form, thus:

τ b = ρghα − Bε̇
1−n

n

[
(2ε̇xx + ε̇yy)h

∣∣
dwn − (2ε̇xx + ε̇yy)h

∣∣
up

�x

]

− Bε̇
1−n

n

[
ε̇yx h

∣∣
rgt − ε̇yx h |lft

�y

]
(12.30)

Here, the symbols | dwn, | up, | rgt, and | lft refer, respectively, to the
downglacier and upglacier ends, and to the left and right sides (look-
ing downglacier), of a “block” of the glacier of length �x and width �y.
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Table 12.1. Force balance calculations

Time ε̇xx (up), a−1 ε̇xx (dwn), a−1 Term 2*, kPa Term 3*, kPa τ b, kPa �τ b, %

Block A
Winter −0.016 −0.004 1 −34 −82 —

July 1983 0.001 −0.005 −25 −38 −52 −37

July 1983 −0.006 −0.011 −17 −36 −62 −24

May 1984 −0.008 −0.018 −19 −38 −58 −29

June 1984 0.001 −0.002 −26 −40 −49 −40

June 1985 −0.010 −0.007 −7 −38 −69 −16

Block B
Winter 0.006 −0.008 −28 −25 −92 —

July 1983 Data incomplete

July 1983 Data incomplete

May 1984 0.000 −0.053 −23 −31 −91 −1

June 1984 −0.002 0.037 40 −15 −170 +84

June 1985 −0.002 −0.002 9 −25 −129 +40

The values of ρghα were 115 kPa beneath block A and 145 kPa beneath block B.
*Terms 2 and 3 are the second and third terms on the right-hand side of Equation (12.30), the longitudinal and

transverse terms, respectively.

The second term on the right represents the contribution to τb of an
imbalance in forces on the ends of the block, while the third represents
the contribution of forces on the sides.

An example of an application of this procedure is provided by an
experiment conducted on Storglaciären, Sweden (Hooke et al., 1989).
Some stakes on the glacier surface (Figure 12.9) were surveyed fre-
quently between 1982 and 1985 to determine velocities (Figure 12.10).
The pattern of stakes was such that longitudinal and transverse strain
rates could be calculated at the upglacier and downglacier ends of the
“blocks” labeled A and B in Figure 12.9, and shear strain rates could be
calculated along the sides. Results of the calculations for six time periods
are shown in Table 12.1. One time period represents mean winter condi-
tions; τb was then −82 kPa beneath block A and −92 kPa beneath block
B. The other five time periods were those during which high velocity
events occurred (Figure 12.10). During these events, τb was reduced an
average of nearly 30% beneath block A. Beneath block B the change
in τb was more variable, but significant increases occurred during two
events.

Study of the patterns of changes suggests that acceleration of block
A was, in every case, accompanied by an increase in magnitude of
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Figure 12.9. Map of Storglaciären showing generalized surface and bed
topography (solid and dashed contours, respectively), locations of stakes used for
velocity measurements, velocities, and blocks used in force balance calculations.
(Data from Hooke et al., 1989, Figure 1a. Base map courtesy of Peter Jansson.)
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five-day running mean, is shown in the bottom panel. (Modified from Hooke
et al., 1989, Figure 3a. Reproduced with permission of the International
Glaciological Society.)

Term 2 (the second term on the right in Equation (12.30)). From the
strain rate data, it can be seen that at the upglacier end of the block ε̇xx

became less compressive, and in two cases, even extending, while at
the downglacier end it became more compressive in all but one case.
Thus, the accelerations were not due to either push from upglacier or
pull from downglacier. The clear implication is that they were a result of
a reduction in resistive drag at the bed, presumably induced by increases
in water pressure.

In the case of block B, the strain rate data indicate that the marked
change in Term 2 reflects push from upglacier and, in the case of the
June 1984 event, pull from downglacier. This combination of push and
pull resulted in higher strain rates in the basal ice, and hence, owing to
the proportionality between stress and strain rate, in higher basal drag.

Because we assumed that strain rates are uniform over the sides and
ends of the blocks, and also owing to other uncertainties in the calcula-
tions, the values of τ b obtained are only estimates. However, as the errors
are probably of comparable magnitude and sign in all calculations, the
direction and approximate magnitude of the changes in τ b are proba-
bly reliable. These calculations thus help us understand the mechanisms
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by which the accelerations took place in these instances. Through such
analyses, we can gain insight into spatial and temporal variations in
factors controlling the velocity of a glacier.

Creep of floating ice shelves
Ice shelves around Antarctica play an important environmental role,
as they act as dams, restraining the flow of ice from the interior of
the continent. Were they to break up, ice levels in the interior would
decrease rapidly over a period of a few centuries, and sea level would
rise accordingly. Break up of ice shelves in northeastern North America
may have contributed to the collapse of the Laurentide Ice Sheet at the
end of the Wisconsinan. Thus, understanding the flow of ice shelves is
a problem of both academic and environmental significance.

The problem of ice shelf flow is unique because τ b is likely to be
quite low where the shelf is grounded, and goes to zero in the limiting
case when the shelf is afloat. Herein, we consider only the latter case.
Weertman (1957b) was the first modern glaciologist to study this prob-
lem, and our approach follows his initially, but then incorporates some
important modifications introduced by Thomas (1973a).

The coordinate system to be used is shown in Figure 12.11. The origin
is at sea level, but is within the ice mass. The z-axis is vertical and positive
upward. H is the thickness of the shelf, and h is the height of the surface
above sea level. Inland, the surface rises gradually and the base drops
further below sea level, so H and h both increase. As long as the ice shelf
does not become grounded, however, we assume that hydrostatic equi-
librium is maintained; therefore, assuming a constant density and thus
ignoring the low density snow and firn at the surface, (H − h)ρw = Hρi,
where ρw and ρi are the densities of water and ice, respectively.

At the risk of being repetitive, it is convenient, once again, to write
out the momentum balance equation in the z-direction:

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
+ ρig = 0 (12.31)

Our objective is to obtain an expression for σ ′
xx, and then to use the flow

law to solve for ε̇xx.
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Because shear stresses are zero at the bed and surface, it is reasonable
to assume that σxz = σzx = σyz = σzy = 0. This means that velocities and
strain rates are independent of z. Equation (12.31) can thus be integrated:

0∫
σzz

dσzz = −ρig

h∫
z

dz

to yield:

σzz = ρig(h − z) (12.32)

Thus, σzz is simply the hydrostatic pressure at depth (h − z).
Suppose that field measurements at some point give:

ε̇yy = ηε̇xx and ε̇xy = vε̇xx (12.33)

Then, from the incompressibility condition:

ε̇zz = −(1 + η)ε̇xx (12.34)

Both η and ν are functions of horizontal position, but because strain rates
are independent of z, η and ν are also independent of z. Then because
we assume that ice is isotropic, we have ε̇i j = λσ ′

i j, where, as before,
λ = σ n−1/Bn. Thus,

σ ′
yy = ησ ′

xx , σ ′
xy = νσ ′

xx , and σ ′
zz = −(1 + η)σ ′

xx

From the last of these expressions, converting to total stresses, we obtain

σ ′
xx − σ ′

zz = σ ′
xx + (1 + η)σ ′

xx = (σxx − P) − (σzz − P)

or:

σ ′
xx = σxx − σzz

2 + η
(12.35)

When η = 0, this expression reduces to one that often appears in analyses
in plane strain. It can be derived, for example, from Equations (10.18)
and (10.19).

It is interesting to consider the implications of this relation: σzz varies
linearly with depth (Equation (12.32)) but ε̇xx is independent of depth.
However, because the temperature of an ice shelf is normally well below
0 ◦C at the surface and close to the pressure melting point at the base,
B, and hence σ ′

xx, also vary strongly with depth (Figure 12.5). Thus, σxx

varies with depth in a way that is not intuitively obvious. We will avoid
this problem by seeking an expression for ε̇xx in terms of the depth-
integrated values of B and σxx.
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Let us proceed by determining the total force per unit width. To do
this, integrate Equation (12.35) from the base, b, to the surface, s:

s∫
b

σ ′
xx dz = 1

2 + η

h∫
−(H−h)

[σxx − ρig(z − h)] dz

= 1

2 + η


 s∫

b

σxx dz − ρig

(
z2

2
− hz

∣∣∣ h

−(H−h)




= 1

2 + η


 s∫

b

σxx dz − ρig

(
−h2

2
− (h − H )2

2
+ h(h − H )

)


= 1

2 + η


 s∫

b

σxx dz + ρig
H 2

2




or defining:

F = −
s∫

b

σxx dz

we obtain
s∫

b

σ ′
xx dz = 1

2 + η

[
ρi g

H 2

2
− F

]
(12.36)

F is the total force opposing movement of a vertical section, of unit width
normal to the flow direction, of the ice shelf.

We now need to use the flow law to express the left-hand side of
Equation (12.36) in terms of strain rates. First, the effective stress is

σ =
[

1

2
σi jσi j

]1/2

=
[

1

2

(
σ ′2

xx + σ ′2
yy + σ ′2

zz + 2σ ′2
xy

)]1/2

=
[

1

2
(1 + η2 + 1 + 2η + η2 + 2ν2)σ ′2

xx

]1/2

= (1 + η + η2 + ν2)1/2|σ ′
xx |

Thus, from the flow law:

|ε̇xx | = (1 + η + η2 + ν2)
n−1

2

Bn

∣∣σ ′
xx

∣∣n

If n = 3, we can drop the absolute value signs, which we now do. Thus,
rearranging:

σ ′
xx = ε̇1/n

xx

(1 + η + η2 + ν2)(n−1)/2n
B
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As strain rates are assumed to be independent of z, Equation (12.36) now
becomes

s∫
b

σ ′
xx dz = ε̇1/n

xx

(1 + η + η2 + ν2)(n−1)/2n

s∫
b

Bdz = 1

2 + η

[
ρig

H 2

2
− F

]

Because B varies with depth, we define a depth-averaged B by

B = 1

H

s∫
b

Bdz

We also define θ by

θ = (1 + η + η2 + ν2)(n−1)/2

(2 + η)n

Solving for ε̇xx now yields

ε̇xx = θ

B
n

[
ρig

H

2
− F

H

]n

(12.37)

To proceed further, we need to evaluate F, the force per unit width
opposing motion. We do this for two special situations. In the first, the
ice shelf is free to expand in both the x- and y-directions, and movement
is restrained by seawater pressure only. Then, η = 1 and

Fw = −
0∫

−(H−h)

ρwgzdz = ρwg
(H − h)2

2

Making use of the condition of hydrostatic equilibrium,
ρw(H − h) = ρ iH, yields

Fw = 1

2
ρwg

(
ρi

ρw

)2

H 2 = 1

2
ρig

(
ρi

ρw

)
H 2

and Equation (12.37) becomes:

ε̇xx = θ

B
n

[
1

2
ρig

(
H − H

ρi

ρw

)]n

The term in the inner brackets on the right-hand side is simply h so this
becomes

ε̇xx = θ

[
ρigh

2B

]n

(12.38)

As this expression is always positive, strain rates will always be extend-
ing. Note that the surface slope does not appear in this solution; thus,
even an iceberg with a horizontal surface will deform. This solution does
not apply very near a calving face where bending moments are present.

It is instructive to compare this expression with that developed in
Chapter 5 (Equation (5.3) with (5.2c)) for ε̇zx at the bed of a land-based
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glacier in the absence of significant longitudinal strain:

ε̇zx =
[

ρigHα

B

]n

Assuming that n = 3 and noting that h = (1 − ρ i/ρw)H ≈ 0.1 H, and
that θ = 1/9 when η = 1, ν = 0, Equation (12.38) becomes:

ε̇xx =
[

0.024ρigH

B

]3

(12.39)

Thus, the driving stress (ρ igh) in an ice shelf is comparable to that in a
land-based glacier of the same thickness with a surface slope of ≈ 0.024.
However, because B increases with decreasing temperature, strain rates
in ice shelves are normally less than those in land-based glaciers of
comparable thickness.

The second example is that of an ice shelf between approximately
parallel valley walls. In this case, F = Fw + Fs, where Fs is the shear
force on the valley sides. Utilizing the expression for Fw just obtained,
ε̇xx becomes

ε̇xx = θ

[
ρigh

2B
− Fs

H B

]n

(12.40)

Here, ε̇xx can be negative, or compressive, if Fs is sufficiently large.
Fs merits further comment. Suppose that a is the distance from the

centerline of an ice shelf to the valley wall. Suppose further that the
depth-averaged drag on a valley wall is τ s. Then τ s H is the force on the
valley wall per unit length along the direction of flow. This force must
balance forces acting in the direction of flow over the half-width of the
ice shelf. In the absence of basal drag, it is reasonable to assume that any
vertical slice of unit width extending through the ice shelf and parallel
to the direction of flow will be restrained equally by this side drag. Thus,
any such slice will experience a drag of τ s H/a per unit length along the
direction of flow. Noting that τ s is a negative quantity, as it is directed in
the upflow direction (Figure 12.11), the resisting force per unit width is

Fs = −
L∫

x

τ s
H

a
dx (12.41)

Here, x is the coordinate position where the calculation is being made,
and L is the x-coordinate of the edge of the shelf. Note that, consistent
with being a force per unit width, Fs has the dimensions N m−1.

Equation (12.41) says that Fs increases as the distance to the edge
of the shelf increases. Thus, from Equation (12.40), ε̇xx may change
from extending nearer the shelf edge to compressive farther inland. This
is the reverse of the normal situation in a grounded glacier, in which
compressive flow is the rule in the ablation area and extending flow
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hole

Figure 12.12. Effect of
longitudinal extension on an
inclined borehole.

in the accumulation area. The implications of this are fascinating. With
extending flow nearer the shelf edge, a positive emergence velocity would
occur only if the product of the velocity times the surface slope were
high enough to offset any downward vertical velocity resulting from the
extension. In the absence of such conditions, a steady state can exist only
if the mass balance is positive, as, in fact, is typically the case. This means
that ice shelves with ablation (= melt) zones near the shelf edge should
be uncommon. Furthermore, if the mass balance near the shelf edge is
positive, it must also be positive at higher elevations further inland. Thus,
if Fs ever became large enough to make ε̇xx compressive, the ice shelf
would increase in thickness unstably until it became grounded.

Analysis of borehole-deformation data
Our next example is drawn from the work of Shreve and Sharp (1970)
and deals with the analysis of inclinometry data collected in bore-
holes that are undergoing deformation. In the simplest case, we might
assume that at depth d, σzx = Sfρgdα, and that successive mea-
surements of the inclination of a borehole would give ∂u/∂z. Then
ε̇zx = 1/2(∂u/∂z + ∂w/∂x) and, if the deformation is entirely simple shear,
∂w/∂x = 0. Thus, measurements of the change in inclination at several
depths would permit a (double log) plot of σzx versus ε̇zx and, if other
stresses and strain rates were negligible, the slope and intercept of the
resulting line could be used to obtain n and B, respectively. Such an
approach would be valid if the borehole were in a slab of ice of uniform
thickness and infinite horizontal extent. In other cases, non-zero vertical
velocities and (or) longitudinal strain rates could result in errors.

Figure 12.12 illustrates the effect of the longitudinal strain rate on a
borehole. In a zone of longitudinal extension, the inclination of a hole that
is inclined with respect to the direction of extension will increase, even
if there is no shear strain. Nye (1957) realized this and made a correction
for this effect in his reanalysis of the Jungfraufirn borehole experiment.
However, it was Shreve (Shreve and Sharp, 1970) who undertook the
first complete study of the problem.

We start by looking at the difference in velocity between two points
in a borehole from the point of view of motion of the ice. This is what we
want to determine from the inclinometry measurements. The axes are as
shown in Figure 12.13. Direction cosines describing the orientation of
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(downglacier)

hole

            z 
(normal to surface)

y x
Figure 12.13. Coordinate
system for analysis of borehole
deformation.

the borehole are �i (i = x, y, z), and dλ is an increment of length along
the hole. Two points in the hole a distance dλ apart will be separated
from one another by distances �i dλ in the i-direction (Figure 12.14).
The difference in the u i velocity at depth (d + �z dλ) and that at depth
d is dui

λ. This is given by

duλ
i = �x

∂ui

∂x
dλ + �y

∂ui

∂y
dλ + �z

∂ui

∂z
dλ

The first term on the right is the change in ui as a result of moving

dl(t)

holed

�z dl

�x dl

Figure 12.14. Distance
between two points in a
borehole expressed in terms
of the direction cosines of
the hole.

a distance �xdλ in the x-direction, and so forth. Using the summation
convention, this can be written:

duλ
i = � j

∂ui

∂x j
dλ (12.42)

In terms of motion of the borehole casing (holes are often cased
to provide a smoother and more reliable path for the inclinometer), we
again consider the difference in velocity between points a distance dλ

apart (Figure 12.15). A point at depth d moves a distance �X, and a
point at depth (d + �zdλ) moves a distance �x, both in time �t. The
inclinometry measurements, when combined with an accurate survey of
the motion of the hole top, provide us with these distances. If �uλ is the
difference in velocity between the two points, we have:

�uλ�t = �X − �x = u(d)�t − [
u(d)�t + �x dλt=t1 − �x dλt=0

]
where u = u x, the x-component of the velocity, and u(d) is the value of u
at depth d. The quantity in brackets represents the length �x; that is, it
is the length �X plus the displacement, in the x-direction, of the upper
point with respect to the lower one at time t = t1 minus this displacement
at time t = 0. Including the changes in �xdλ in the y- and z-directions,
allowing for a change in �xdλ with time (unsteady flow), and expressing
the result in differential form yields

duλ�t = ∂�x dλ

∂x
u�t + ∂�x dλ

∂y
v�t + ∂�x dλ

∂z
w�t + ∂�x dλ

∂t
�t

Here, the derivative with respect to x in the first term on the right gives
the rate of change of �xdλ in the x-direction, and u�t gives the distance
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Figure 12.15. Deformation
of a borehole casing through
time.

moved in the x-direction, and so forth. Dividing by �t and using the
summation convention, we obtain

duλ
i = u j

∂�i dλ

∂x j
+ ∂�i dλ

∂t
= D

Dt
(�i dλ) (12.43)

where D/Dt is the substantial or Lagrangian derivative (see Equation
(6.12b)).

Equations (12.42) and (12.43) are both expressions for dui
λ, the

difference in velocity between two points a distance dλ apart along the
hole, so equating them yields

� j
∂ui

∂x j
dλ = D

Dt
(�i dλ) = �i

D

Dt
dλ + D�i

Dt
dλ (12.44)

We would like to divide by dλ to eliminate it from the first and last terms,
but first we need an expression for D(dλ)/Dt. To obtain this, multiply
both sides by �i:

�i� j
∂ui

∂x j
dλ = �i�i

D

Dt
dλ + �i

D�i

Dt
dλ

Because the sum of the squares of the direction cosines is unity,
�i�i = 1. Similarly,

2�i
D�i

Dt
= D

Dt
(�i�i ) = D

Dt
(1) = 0

Thus,

D

Dt
dλ = �i� j

∂ui

∂x j
dλ (12.45)

Equations (12.44) and (12.45) can be combined to yield the desired
expression. However, we need to be careful of the subscripts when doing
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this. Expanding Equation (12.44) for i = x and dividing by dλ yields

�x
∂u

∂x
+ �y

∂u

∂y
+ �z

∂u

∂z
= 1

dλ
�x

D

Dt
dλ + u

∂�x

∂x
+ ν

∂�x

∂y
+ w

∂�x

∂z
+ ∂�x

∂t

(12.46)

Because the inclination of the casing is a function of z alone, ∂�x/∂x = 0
and ∂�x/∂y = 0. Expanding the right-hand side of Equation (12.45), using
the result to replace the term involving D(dλ)/Dt in Equation (12.46),
and rearranging terms, we obtain:

�x
∂u

∂x
+ �y

∂u

∂y
+ �z

∂u

∂z
− �x�x�x

∂u

∂x
− �x�x�y

∂u

∂y
− �x�x�z

∂u

∂z

− �x�y�x
∂v

∂x
− �x�y�y

∂v

∂y
− �x�y�z

∂v

∂z

− �x�z�x
∂w

∂x
− �x�z�y

∂w

∂y
− �x�z�z

∂w

∂z
=w

∂�x

∂z
+ ∂�x

∂t
(12.47)

Using the summation convention, this can be written as

�k
∂ui

∂xk
− �i� j�k

∂u j

∂xk
= w

∂�i

∂z
+ ∂�i

∂t

or even more compactly as

(δi j − �i� j )�k
∂u j

∂xk
= w

∂�i

∂z
+ ∂�i

∂t
(12.48)

Because i is not repeated in any of the terms in Equation (12.48), this
equation represents three separate equations (for i = x,y,z). However,
only two of these equations are independent because only two of the
direction cosines are independent.

If the inclination of a borehole is known at two separate times, and
if seven of the nine velocity derivatives in Equation (12.47) can be mea-
sured or estimated, Equations (12.48) can be solved for the two remain-
ing velocity derivatives. Equations (12.48) are exact, but approximations
have to be made in calculating the �i, ∂�i/∂t, and ∂�i/∂z from observa-
tional data that are obtained at discrete points in time and space.

Two alternative approaches taken to this problem in two separate field
experiments on Barnes Ice Cap (Hooke, 1973b; Hooke and Hanson,
1986) are outlined in Table 12.2. Strain nets were placed around the
tops of the boreholes, so that some of the velocity derivatives could be
measured directly at the surface. Assumptions were then made about
how they varied with depth. In the first experiment, the boreholes were
closely spaced so ∂u/∂x could be determined, as a function of depth,
from the successive borehole profiles. As can be seen from Table 12.2,
the two velocity derivatives that were calculated were ∂u/∂z and ∂v/∂z.
One might expect that measurements of the rate of tilting of the borehole
would give these velocity derivatives directly, but this is not the case. Yet,
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Table 12.2. Calculation of velocity derivatives in borehole deformation studies of Hooke
(1973b) and Hooke and Hanson (1986)

Derivative 1973 1986

∂u/∂x Two boreholes We assumed that this

decreased with depth in

proportion to the decrease in

u with depth

∂u/∂y 0 (assumed) This was obtained from the

measured u at the surface

and the radius of curvature

of the flow line

∂v/∂x 0 (assumed) ε̇xy was measured at the

surface and assumed to

decrease with depth in

proportion to the decrease in

u with depth. Then, from

Equation (9.21):

∂v/∂x = 2ε̇xy – ∂u/∂y

∂v/∂y This was measured at the surface, and we assumed that it decreased with

depth in proportion to the decrease in ∂u/∂x

∂w/∂z = −∂u/∂x – ∂v/∂y by continuity Same as 1973

∂w/∂z was then integrated over depth to obtain w as a function of depth,

using either a no slip boundary condition at the bed where temperatures are

well below the melting point, or the measured w at the surface

∂w/∂x Two boreholes This was measured at the

surface; we assumed that it

decreased with depth in

proportion to the decrease in

w with depth

∂w/∂y We set ε̇yz = 1

2

(
∂ν

∂z
+ ∂w

∂y

)
at

the surface, and let ∂w/∂y

decrease linearly with depth.

∂v/∂z was calculated (see

below), so an iterative procedure

was required

Same as ∂w/∂x

∂u/∂z,

∂v/∂z

These derivatives were then

calculated from Equations

(12.48)

Same as 1973
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Figure 12.16. Effect of
vertical advection on borehole
inclination.

as one would expect and as implied by our opening discussion, ∂u/∂z is
one of the most important velocity derivatives.

Sensitivity studies suggest that the solutions obtained in these two
Barnes Ice Cap experiments do not depend strongly on the assumptions.
The most important term is ∂�i/∂t. In instances where the casing bends
abruptly, as at joints, w ∂�i/∂z also becomes important. In experiments on
other glaciers, the results might be more sensitive to some of the other
velocity derivatives, and hence to any assumptions made in obtaining
them.

Further insight into Equation (12.48) can be achieved by consider-
ing the situation in plane strain. Assuming incompressible flow and a
uniform longitudinal strain rate, r, we then have ∂u/∂x = −∂w/∂z = r,
∂w/∂x = 0, �x = sin θ , �z = cos θ , and �y = 0, where θ is the inclination
of the borehole from the vertical. Equation (12.48) then reduces to

∂u

∂z
= ∂

∂t
tan θ − 2r tan θ + w

∂

∂z
tan θ (12.49)

The first term on the right is the obvious one, involving a change in
inclination of the borehole with time. The second is the one illustrated
in Figure 12.12 and discussed earlier. The third is an advection effect.
In an area of non-zero vertical velocity, a section of a borehole at depth
z2, measured with respect to some constant datum, and with inclination
�i(z2) will, at the end of a time interval �t, be at, say, depth z1 (Figure
12.16). If the initial inclination of the borehole at depth z1 was different
from �i(z2), our measurements would show that the inclination at depth
z1 had changed, and this would be true even if ∂u/∂z were 0. This is why
w ∂�i/∂z becomes important near some joints, as just mentioned.

The results of the borehole deformation experiment reported by
Hooke and Hanson (1986) will be used to illustrate an application of
this analysis. Four boreholes, located approximately along a flowline on
Barnes Ice Cap (Figure 12.17), were drilled and cased and inclinom-
etry data were obtained from them over a period of up to four years.
Figure 12.18a shows the deformation profiles, and Figure 12.18b shows
values of ∂u/∂z calculated from Equations (12.48).

The deformation profiles in most of the holes end at the top of a zone
of white ice (Figure 12.18a). Oxygen isotope data demonstrate that this
ice is of Pleistocene age (Hooke and Clausen, 1982). The ice is white
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Pleistocene bubbly white glacier ice

Holocene deformed superimposed ice

Holocene glacier ice

Distance from divide, km
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0
0

5 10
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Figure 12.17. Longitudinal section along a flowline on Barnes Ice Cap showing
types of ice encountered in boreholes. The deformed superimposed ice near the
margin was overridden during an advance of the glacier (see Figure 5.17). (After
Hooke and Hanson, 1986, Figure 2. Reproduced with the kind permission of
Elsevier Science.)

because it contains a lot of air bubbles. As a result of these bubbles,
the density of this ice is only 870 kg m−3, compared with a density of
920 kg m−3 in the overlying blue ice. We presume that the high concen-
tration of air bubbles is a result of two processes.

1. When the climate warmed at the end of the Pleistocene, meltwater
percolation increased, and ice lenses formed. These lenses trapped air
in the underlying porous firn.

2. As basal meltwater escaped into the underlying permeable bedrock,
air may have been left behind in a sort of physical fractionation pro-
cess.

As noted in Chapter 11 (p. 311), it is commonly found that such
Pleistocene ice is softer than Holocene ice, apparently because impurities
lead to smaller grain sizes that then develop strong single-maximum
fabrics (Paterson, 1991). The high strain rates implied by the dotted
extrapolations of the deformation profiles for holes T061 and T081 in
Figure 12.18a are indicative of this weakening. The value of B obtained
for this ice from the deformation profile in hole T0975 is 0.1 MPa a1/3

(at −10.1 ◦C), which is much lower than those ranging from 0.23 to
0.30 MPa a1/3 in the overlying blue Holocene ice in holes T061 and
T020 (Table 12.3) and also much lower than other experimental values
at this temperature (Figure 12.5).

Also of interest are the values of the parameter �, defined by (see
Equation (9.29))

2� = 1

λ
= σ ′

zx

ε̇zx
= B

ε̇
n−1

n

(12.50)
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Science.)

ε̇zx is obtained from the velocity derivatives (Table 12.2) using Equation
(9.21), while σzx is estimated with the use of

σzx = −ρghα − ∂

∂x

z∫
0

B

ε̇
n−1

n

(2ε̇xx + ε̇yy)dz − T (12.51)

which is derived from Equation (12.26) in much the same way that
we derived Equation (12.29) except that we now retain the T term and
also assume that changes in the transverse direction are negligible in an
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Table 12.3. Values of B in MPa a−1/3 for different ice typesa

Borehole T0975 T081 T061 T020

Ice type

Weakly oriented — — 0.23 (−10.2) —

Broad single maximumb — 0.46 (−9.0)c 0.26 (−8.4) 0.30 (−7.4)

Two maxima — 0.44 (−8.6) 0.24 (−7.5) 0.26 (−6.5)

Three or four maxima — 0.50 (−8.3) 0.30 (−6.8) —

White ice (clean) 0.10 (−10.1) 0.18d(−7.8) 0.10d(−6.4) —

0.18e(−7.8)

White ice (dirty) 0.13 (−9.8)

a Values given are for zones in which fabric is well developed, and thus exclude transition regions.
b Equivalent fabric in T020 is small circle.
c Numbers in brackets are mean temperatures in ◦C.
d Velocity profile calculated by assuming no slip on the bed.
e Measured over two weeks, starting three weeks after completion of hole in 1977. No smoothing

used in calculation.

ice cap. Equation (12.27) was used to evaluate the T term. If B and n
are constant, as might be expected, � should vary inversely with ε̇. The
awkward fact is that near the surface where ε̇zx is low, this does not appear
to be the case. Figure 12.19a shows that � is effectively independent of
ε̇. Even the direction of change of � with depth is not consistent from
one hole to the next, as indicated by the arrows on the curves in Figure
12.19a. This problem is not unique to Barnes Ice Cap; Raymond (1973)
also found that � was independent of ε̇ near the surface of Athabasca
Glacier.

Somewhat deeper in the glacier the situation improves, and �

decreases steadily with increasing ε̇ (Figure 12.19b). Here, the slope
and intercept of the log � – log ε̇ line can be used to determine B and
n (Equation (12.50)). In the present case, however, Hooke and Hanson
(1986) chose, instead, to assume that n = 3; they then calculated B as
a function of depth, and related changes in B to changes in crystallo-
graphic fabric. The results are shown in Table 12.3. Although there was
quite a lot of noise in the record, it appears that B is slightly lower in
fabrics containing only two maxima, and increases in fabrics with three
or four maxima. This stiffening can be seen at the bottoms of the defor-
mation profiles in Figure 12.18a. It is consistent with expectation, as it is
the third and fourth maxima in these multiple-maximum fabrics that are
inclined to the direction of shear (Figure 4.14f). In other words, the basal
planes of crystals with these orientations dip either up- or downglacier,
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Figure 12.19. Octahedral shear strain rate, ε̇o, plotted against �. (a) The
upper 50 m of holes T061 and T081, and the upper 150 m of hole T020. Arrows
show direction of increasing depth. (b) The lower parts of the holes. Depth
increases from upper left, following lines of points. Reversals in trends reflect
hardening of ice in zones where fabric is changing. (After Hooke and Hanson,
1986, Figure 4. Reproduced with the kind permission of Elsevier Science.)
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whereas the basal planes in the first two maxima that form dip in the
transverse direction (Figure 4.14e).

Values of B in hole T081 are nearly double those in the other holes.
Hooke and Hanson assumed that this was because stresses at this location
on the glacier were overestimated. However, they were unable to isolate
the apparently erroneous assumption that led to this error, even though
they undertook calculations with a finite-element model.

Summary
In this chapter we have studied four classical problems in glacier mechan-
ics: closure of cylindrical holes, calculation of force balances, creep of
ice shelves, and deformation of boreholes. As examples of applications
of the theory presented, we discussed problems such as the flow of water
to, from, and in subglacial conduits, the mechanics of glacier accelera-
tions, the stability of ice shelves, and the extraction of flow-law param-
eters from borehole deformation data. From these examples, we gained
insights into the dynamic and kinematic behavior of glaciers. These,
however, were secondary objectives.

The primary objective of the chapter was to help students develop
facility with the mathematics of stress and deformation as applied to
problems in glacier mechanics. Such analyses are complicated because
multiple stresses, strains, and strain rates are involved, and even more
so because the strains in which we are interested are a consequence of
deviatoric, not total stresses. In many cases, once the physics of a prob-
lem have been formulated, prescribed mathematical procedures must
be followed before a result with clear physical significance reappears.
Students who have mastered the material in this chapter will be able to
understand many papers in the glaciological literature that would other-
wise be impenetrable.



Chapter 13

Finite strain and the origin of foliation

Suppose one were to drop a deformable sphere into the accumulation
area of a glacier. As the sphere became buried deeper and deeper in the
glacier, it would be deformed by the flow. Because the accumulation area
is normally an area of longitudinal extension and vertical compression,
it would become an ellipsoid, elongated in the direction of flow and com-
pressed vertically. If there were also significant transverse compression
it would become a prolate ellipsoid, whereas if there were transverse
extension, it would become oblate. Figure 13.1 illustrates schematically,
in two dimensions, how the shape of a cross section through the sphere
would change as the sphere passed through the glacier.

Our objective in this chapter is to discuss the cumulative deforma-
tion experienced by ice as it is advected through a glacier, and to show
the relation between this deformation and the banded structure, called
foliation, that is characteristic of glaciers.

The strain ellipse
The ellipsoid we have just discussed is called the strain ellipsoid or, in
two dimensions, the strain ellipse. Following normal convention, we will
denote the greatest, intermediate, and shortest principal semi-axes of the
ellipsoid by subscripts 1, 2, and 3, and the directions of these axes by X,
Y, and Z, respectively. These axes will rotate with respect to our fixed x,
y, z coordinate system as the strain ellipsoid rotates (Figure 13.2). The
lengths of the axes of the ellipsoid are a measure of the strain it has
experienced. As in Equation (9.16) we define the strain by:

e = � − �o

�o
= �

�o
− 1 (13.1)

349
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Equilibrium
line

Figure 13.1. Schematic illustration of the deformation that would be
experienced by an object that is initially spherical (or circular in two dimensions)
as it moves through a glacier from the accumulation zone to the ablation zone.
(From Hooke and Hudleston, 1978, Figure 3B. Reproduced with permission of
the International Glaciological Society.)

Figure 13.2. Sketch showing
parameters used to describe,
in two dimensions, the
cumulative strain experienced
by an initially circular object.
(Modified from Hooke and
Hudleston, 1980, Figure 8C.)

If �o, the radius of the initial sphere, is taken as 1, then �i = 1 + ei

is the length of the ith semi-axis of the ellipsoid (Figure 13.2). From
Equation (9.23) the logarithmic strain is then:

εi = ln
�i

�o
= ln(1 + ei ) (13.2)

Let us now take �i /�j (i, j = 1, 2, 3 and i �= j) as a measure of the
strain in the i, j plane. Then

εi − ε j = ln
�i

� j
(13.3)
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A useful measure of the magnitude of the total strain experienced by the
ellipsoid is then:

γ oc = 2

3
[(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2]1/2 (13.4)

γ o is called the natural octahedral unit shear (Nadai, 1950, p. 115) and the
additional subscript c denotes cumulative. (“Natural” in this context is a
reference to the appearance of the natural logarithm in the expressions for
εi, not to a contrast with some “artificial” counterpart.) The expression
on the right-hand side of Equation (13.4) is twice the root mean square of
the strains in the three mutually perpendicular planes of our coordinate
system.

In plane strain with ε2 = 0 and ε1 = −ε3, the intermediate or
Y-axis of the ellipsoid will be transverse to the flow and thus parallel
to the y-axis of the fixed coordinate system. Equation (13.4) can then be
simplified and combined with Equation (13.2) to yield:

γ oc = 2
√

6

3
ε1 = 2

√
6

3
ln

�1

�o
(13.5)

or using Equation (13.2) to eliminate �o:

γ oc =
√

6

3
ln

�1

�3
(13.6)

Simple and pure shear
As we have discussed previously (Figure 4.14), when a two-dimensional
object is deformed by a compressive stress parallel to the z-axis and
an extensional stress parallel to the x-axis, the deformation is known as
pure shear (Figure 13.3a), whereas if it is deformed by a shear stress,
σ zx, parallel to the x-axis, the deformation is known as simple shear
(Figure 13.3b). In Figure 13.3a the axis of maximum shortening is clearly
parallel to the z-axis and the axis of maximum extension is parallel to
the x-axis. This is also true of the instantaneous stretching axes, or axes
along which the maximum and minimum normal strain rates occur dur-
ing any infinitesimal strain. Material lines (lines of physical points in the
deforming material) that are initially parallel to the instantaneous stretch-
ing axes remain parallel to these axes. The strain is thus irrotational, and
the deformation is said to accumulate coaxially.

In contrast, in simple shear the instantaneous stretching axes are
always at ±45◦ to the direction of shear (θ in = 45◦, where the subscript
“in” refers to instantaneous or infinitesimal; see Figure 13.3b). How-
ever, the axis of maximum extension will be at 45o only after the first
infinitesimal increment of strain. In the next increment, the initial axis
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Figure 13.3. Sketches illustrating (a) pure and (b) simple shear.

of maximum extension will be rotated slightly. This axis is parallel to a
material line that started at an angle greater than 45◦ to the x-axis and
that has been rotated through the 45◦ position to an angle less than 45◦.
This is most easily visualized if one considers very large strains, as in the
lower right part of Figure 13.1. The material line that became the nearly
horizontal axis of maximum extension in this case started off nearly
vertical. Because material lines rotate through the axes of instantaneous
stretching (which are non-material lines) the deformation in simple shear
is rotational and non-coaxial.

In either simple or pure shear there are always two lines that are
initially perpendicular and that are still perpendicular after deforma-
tion. These lines coincide with the directions of maximum extension (or
elongation) and shortening in the deformed state. They are called the
principal axes of strain.

Parameters describing cumulative deformation
Although γ oc describes the deformation of the original sphere, it does
not describe either its rotation or its final orientation. For that we need
two additional parameters, θ and ϕ (Figure 13.2); ϕc is the angle through
which the material line that becomes a principal axis in the strained state
has rotated, and θ c is the angle that the greatest principal axis makes
with the x-axis. Again, the subscript c denotes cumulative.

In the pure shear of Figure 13.3a, the axis of maximum elongation,
the X-axis of the ellipsoid, is horizontal, both for infinitesimal strains
and for cumulative strain over a long period of time. Thus, θ c is 0, and
because the X-axis does not rotate, ϕc is also 0. In contrast, in simple
shear as in Figure 13.3b, the X-axis is at 45◦ to the shear direction for any
infinitesimal increment of strain. However, during any such increment,
the line that became the X-axis will have rotated slightly from its original
orientation, so ϕc is slightly greater than 0 and θ c slightly less than 45◦.
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Figure 13.4. Schematic illustration of the strain fields in an ice sheet. The fields
are for small increments of strain only. The horizontal component of the pure
shear field is extensional above the equilibrium line and compressive below.
(From Hooke and Hudleston, 1978, Figure 3A. Reproduced with permission of
the International Glaciological Society.)

As the strain accumulates, ϕc will increase toward 90◦ (but it will never
actually become 90◦) and θ c will approach 0◦. The reader may wonder
why ϕc → 90◦ when the X-axis after the first increment of strain was
inclined at 45◦. The answer lies in the phrase “. . . the rotation of the
line that becomes the principal axis . . .”. After very large shear strains,
the line that becomes the X-axis will be the one that started out nearly
vertical.

As one would expect from consideration of velocity profiles like
those in Figure 10.6, pure shear dominates near the glacier surface where
∂u/∂x and ∂w/∂z are large compared with ∂u/∂z, and conversely, simple
shear dominates near the bed where ∂u/∂z becomes large compared
with ∂u/∂x and ∂w/∂z (Figure 13.4). Immediately beneath the divide,
∂u/∂z = 0 at all depths, so the pure shear field extends all the way
to the bed. Near the equilibrium line, the vertical velocity decreases
and the flow gradually changes from extending to compressive so both
∂w/∂z and ∂u/∂x decrease. Thus the ratio of simple shear to pure shear
increases, so despite the small ∂u/∂z in the upper part of the glacier the
thickness of the pure shear field decreases.

Calculating cumulative strain
In order to calculate the cumulative strain in a glacier, one first must
know the velocity field. One then calculates the path that a particle of
ice would follow through the glacier and velocity derivatives at discrete
points along the path. To obtain the incremental strain as the ice moves
from one point to the next, strain rates are then calculated from the
velocity derivatives and multiplied by the time needed for this movement
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Figure 13.5. (a) Particle paths calculated from the velocity field described in
the text. Ages of isochrons are shown in years. (b) Orientation of maximum
cumulative extension direction shown by bars at 200 m intervals along the
particle paths in (a). (c) Contours of γ oc. (From Hudleston and Hooke, 1980,
Figures 6 and 7. Reproduced with permission of Elsevier Scientific Publishing.)

(Ramsay and Graham, 1970, Equations 7–10). Finally, these incremental
strains are added to get the cumulative strain.

Hudleston (Hooke and Hudleston, 1980; Hudleston and Hooke,
1980) made such a calculation using a comprehensive set of data on
velocities and mass balance along the flow line on Barnes Ice Cap illus-
trated in Figure 13.5a (see also Figure 12.17). To estimate horizontal
velocities at depth, he used measured surface velocities and adjusted
the value of B in Equation (5.7) to get zero velocity on the bed, where
the temperature is well below the melting point. Rather than use mea-
sured vertical velocities, he used the mass balance data to estimate the
long-term steady-state vertical velocity at the surface and assumed that
it decreased linearly with depth. Transverse strain rates are small, so he
assumed that they could be neglected.

The results of his calculations are shown in Figures 13.5 and 13.6.
By following particles starting at nine points in the accumulation area,
he first mapped nine flowlines (Figure 13.5a). He then calculated the
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Figure 13.6. Calculated variation of γ oc, yiθc, and ϕc with depth at locations of
Barnes Ice Cap boreholes (a) T020 and (b) T081. Locations of boreholes are
shown in Figure 13.5. (From Hooke and Hudleston, 1980, Figures 8a and 9a.
Reproduced with permission of the International Glaciological Society.)

orientations of the axes of maximum cumulative extension (X-axes:
Figure 13.5b). Noteworthy in this figure is the fact that these axes are
nearly parallel to the bed throughout most of the glacier. The increased
upglacier dip at the surface near and downglacier from borehole T061 is
a consequence of the increase in the ratio of simple shear to pure shear
as the equilibrium line is approached. As just noted, in simple shear the
axis of maximum elongation dips 45◦ initially; with increasing defor-
mation it is gradually rotated toward parallelism with the plane of the
shear.

The cumulative strain magnitude, γ oc, is shown in Figure 13.5c.
These numbers do not appear significant until one realizes that γ oc is
proportional to the natural logarithm of the axial ratio of the strain ellipse.
Thus, γ oc = 8, found in the most basal ice, corresponds to an elongation
of ∼18 000:1. A 1 m cube would be stretched into a 1-m wide ribbon
134 m long and 7.5 mm thick!

Figure 13.6 shows the variation of γ oc, θ c, and ϕc with depth in
boreholes T020 and T081 (Figure 13.5a). Because the dominant strain
pattern at T020, particularly in the upper part of the glacier, is nearly pure
shear with vertical compression and longitudinal extension, the axis of
maximum cumulative extension is nearly horizontal. Thus, θ c remains
close to 0. On the other hand, ϕc is 0 at the surface and initially increases
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gradually with depth as ∂u/∂z increases. However, with increasing depth
in the glacier, the ice arriving at T020 has passed through a larger and
larger region dominated by pure shear (Figure 13.4). Thus, ϕc reaches
a maximum (∼12◦) at a depth of ∼240 m and then decreases at greater
depth.

The pattern at the site of borehole T081 is different in several
respects. Because this hole is in the upper part of the ablation area, ice
at the surface accumulated some strain as it moved from higher in the
glacier. Thus, γ oc > 0 at the surface. With increasing depth, the ice has
traveled a greater distance and accumulated more strain so γ oc increases
to about 7, representing an axial ratio of over 5000. Because ice near
the surface has experienced a modest amount of mixed simple and pure
shear (Figure 13.4), θ c ≈ 10◦ and ϕc ≈ 25◦ here. With increasing depth,
ϕc first increases, reaching a maximum at a depth of ∼120 m and then
decreases, reflecting the early history of pure shear that this deeper ice
experienced.

To further quantify the influence of the early history of pure shear,
Hudleston calculatedϕc for a particle of ice that experienced a total strain,
γ oc, of 3.75 entirely by simple shear (Hooke and Hudleston, 1980). In
this case, ϕc is 80◦ and increases toward 90◦ as γ oc increases further. For
comparison, in holes T020 and T081 the actual rotations at this strain
magnitude are 9◦ and 57◦, respectively.

Let us now use our understanding of cumulative strain to study the
origin of foliation.

Components of foliation
The pronounced banded character of glaciers (see, for example, Figures
5.18 and 8.8) has led to considerable confusion. Banding is most promi-
nent in the ablation area once the winter snow has melted. However, band-
ing may also be seen in crevasse walls in the accumulation area, although
it has a very different appearance there and most people would, correctly,
refer to it as annual layering or sedimentary stratification. The banding
is normally subparallel to the nearest bounding surface, be it the bed, the
surface, or the valley walls. However, in the lower part of the ablation area
it typically dips gently to steeply upglacier (Figure 13.7b). The banding
is penetrative; that is, the bands are cross sections of layers in the ice.

On close inspection, one finds that the banded appearance most com-
monly results from variations in bubble or dirt content. The latter, cou-
pled with the suggestive upglacier dip of the bands near the margin, has
given rise to the mistaken impression that the banding is a reflection of
shear planes in the ice along which debris was (somehow) carried to the
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Figure 13.7. (a) Foliation attitudes in the margin of an idealized perfectly
plastic glacier with a parabolic surface profile. See text for explanation. (b) Cross
section of the margin of Barnes Ice Cap showing dips of foliation planes
measured on the ice surface and in a tunnel excavated in the margin. Dashed
lines show traces of foliation planes inferred from measured dips and core
stratigraphy.

surface. This is rarely the case. Elongate bubbles and, in some instances,
elongate crystals may contribute to the banded appearance.

Foliation is the end product of subjecting inhomogeneities of any
origin to cumulative stretching and shearing by strains such as those
discussed in the first part of this chapter. After such treatment, the origin
of the initial inhomogeneity is not likely to be obvious. Suppose, for
example, that the 1 m cube we mentioned earlier were a Michelangelo
sculpture in a material with a rheology similar to that of ice. Would we
recognize it after it had become a ribbon 135 m long and 7.5 mm thick?
Perhaps we could identify the material, but certainly not the original
handsome shape.
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So what are the inhomogeneities that result in foliation? The most
obvious is the sedimentary stratification that one sees in crevasse walls
in the accumulation area. This stratification is defined by variations in
grain size, particularly near the base of an annual layer where depth
hoar forms. Wind-blown dust picked up from snow-free ground dur-
ing the melt season commonly discolors the surface of annual layers,
and percolating meltwater may spread out and refreeze along horizons
defined by variations in snow density, forming relatively bubble-free
lenses. Both contribute to the stratified appearance. Gland-shaped bod-
ies of ice may also form from refreezing of percolating meltwater (p. 20).
From the pattern of elongation directions shown in Figure 13.5b, it is
clear that these inhomogeneities will be stretched longitudinally and
compressed vertically. Thus, the deformation accentuates the original
layering. By the time the inhomogeneities reappear low in the abla-
tion area, they will bear little resemblance to the original sedimentary
stratification or glandular structures. Once such inhomogeneities have
been deformed beyond ready recognition, the structure is properly called
foliation.

Another major component of foliation is crevasse fillings. Snow
blows into crevasses during the winter and meltwater may saturate this
snow during the summer. When the crevasse gets moved into a location,
or rotated into an orientation, such that stresses across it are compres-
sional, it closes and this filling gets squashed. A band is thus formed that
cross cuts either sedimentary layering or foliation derived from such lay-
ering. Initially, this cross-cutting relation is obvious and the filling can be
properly identified as what it is, even if it cross cuts foliation the origin of
which cannot be identified. However, once the filling has been squashed
further, rotated to near parallelism with other foliation, and stretched, its
origin will be less obvious. Careful observers, however, may still be able
to detect the cross-cutting relation.

Another prominent component of foliation in basal ice is debris. As
we have discussed, there are various mechanisms by which debris may
become entrained in basal ice – the refreezing part of the regelation
cycle, freeze-on by the mechanisms discussed by Robin (Figure 7.6) or
in areas where temperature gradients in basal ice lead to local refreezing
(Figure 6.12), entrainment in frazil ice in overdeepenings (Figure 8.33),
and so forth. In all situations, the resulting layers are parallel to the bed
or valley walls and are in areas subject to high rates of simple shear. The
precise origin of the layers is hard to determine before they become
deformed, and after shearing the task is usually hopeless, although
chemical and isotopic signatures may help (Souchez and Lorrain,
1978).
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Foliation in the marginal zone

We noted above that foliation in glacier margins has often been mistaken
for so called “shear planes” that would presumably be parallel to planes
of maximum shear stress. Here, we demonstrate that the upglacier dip
of the foliation at a glacier surface bears little relation to directions of
maximum shear stress.

As in the case of Figures 13.5 and 13.6, the first task is to determine
the velocity field. Then we use that velocity field to see how foliation
that is nearly parallel to the bed some distance from the margin will be
deformed as it is passively advected to the margin.

We adopt a coordinate system in which the origin is at the margin,
the x-axis is horizontal and directed upglacier along the bed, and the
z-axis is vertical and positive upward (Figure 13.7a). We assume that:
(1) the profile of the ice surface in the marginal zone can be approximated
by h = √

cx , where h is the surface elevation, x is the distance from the
margin and c is a constant1; (2) the ablation rate, bn (a negative number),
is uniform over the area of interest; (3) the profile is a steady-state profile
with bn = −ws + us tan α (Equation (5.26)); (4) the horizontal velocity,
u, is independent of depth; (5) the strain is two dimensional (plane
strain); and (6) ice is incompressible. The amount of ice lost by ablation
downglacier from a position x is then bnx and this must equal the mass
flux past x, or uh. Thus,

u = bnx√
cx

= �x1/2 (13.7)

where�=bnc1/2. (As bn is negative,� is negative. This is consistent with
u being in the negative x-direction.) The assumption of incompressibility
may be represented by:

∂u

∂x
+ ∂w

∂z
= 0 (13.8)

Differentiating Equation (13.7) and using the result to integrate Equation
(13.8) yields:

w = −1

2
�x−1/2z (13.9)

We now determine the coordinates of an element of ice as a func-
tion of time. The element starts at position (xo, zo) at time t = 0. As
u = dx/dt, Equation (13.7) can be integrated to obtain:

x = (
x1/2

o + 1
2 �t

)2
(13.10)

1 This equation, first derived by Nye (1951), can be obtained by integrating Equation (5.2c)

with α = d h/d x. The reader will then find that c = √
2σzx/ρg.
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Then combining Equations (13.9) and (13.10) to eliminate x, noting that
w = dz/dt, and integrating we obtain:

z = zo

( xo

x

)1/2
(13.11)

where z is the height of the element of ice after it has traveled a distance
(xo – x) from (xo, zo). The position of the element at time t1 can be
determined by selecting a time t1 > 0 and solving Equation (13.10) for
x and then Equation (13.11) for z. A plot of x versus z defines the path
of the element. By setting z = √

cx in Equation (13.11) and solving
for x we can determine the x-coordinate of the point where the element
reaches the glacier surface.

Now consider a foliation plane in this element of ice. At (xo, zo) the
plane has an upglacier dip, βo, with respect to the particle path, and we
wish to compute its dip when the element reaches the glacier surface.
(Because θ c is always greater than 0 under steady-state conditions, the
foliation plane will dip more steeply than the particle path. The conse-
quences of a non-steady-state situation will be discussed further below.)
The element is subjected to longitudinal compression and vertical exten-
sion which will change the inclination of any line that is not parallel to
the direction of compression or extension (Figure 12.12). In addition,
at any given height above the bed, w increases toward the margin as h
decreases (Equation (13.9), noting that �x1/2 = bn/h). Therefore, the
shear strain ∂w/∂x will also increase the upglacier inclination of the
plane. The problem thus strongly resembles the deformation of a bore-
hole (Chapter 12) except that now the “hole” is nearly horizontal, not
vertical, and the primary shear to which it is subjected is ∂w/∂x, not
∂u/∂z. Consequently, Equation (12.49) is applicable in the form:

∂β

∂t
= ∂w

∂x
+ 2β

∂w

∂z
− u

∂β

∂x
(13.12)

To express β in terms of x alone, we obtain ∂w/∂x and ∂w/∂z from
Equation (13.9) and use the chain rule:

dβ

dt
= dβ

dx

dx

dt

to evaluate the term on the left. Noting that dx/dt = u and using Equation
(13.11), we end up with a first-order linear ordinary differential equation:

dβ

dx
+ β

2x
− zox1/2

o

8x5/2
= 0 (13.13)

which can be solved by setting β = a(x)b(x), where a and b are functions
of x to be determined (Sokolnikoff and Redheffer, 1958, pp. 23–24). The
result is:

β =
√

xo

x

[
βo + zo

8

(
1

xo
− 1

x

)]
(13.14)
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βo is negative in our coordinate system, indicating an upglacier dip. As
xo > x in this system, β is also negative.

Dips of foliation planes at different positions in the margin of such an
idealized perfectly plastic glacier, calculated with Equation (13.14), are
plotted in Figure 13.7a. In the calculation the surface profile was taken to
be h = (13.6x)1/2. This is equivalent to a uniform basal drag of 0.06 kPa,
a good approximation for Barnes Ice Cap. The initial positions of six
elements of ice were taken to be xo = 1250 m and zo = 0.5, 1, 2, 5, 10, and
20 m. Here βo was upglacier and 2.5◦ steeper than the flow paths. These
elements were assumed to follow paths defined by Equations (13.10) and
(13.11), and the dips of foliation planes contained in the elements were
determined at various points along the way. The balance rate, bn, was
taken to be −0.5 m a−1, but this only affects the speed of the element
and not the orientation of the foliation plane in it. A rapid increase in
dip of foliation near the surface is clearly shown. This is consistent with
foliation attitudes measured on the surface and in an ice tunnel in the
margin of Barnes Ice Cap (Figure 13.7b).

Foliation attitudes calculated from Equation (13.14) are sensitive
to the choice of βo as well as other parameters, so detailed compari-
son between the calculated and observed attitudes is not warranted. The
important point is that passive deformation of foliation that is nearly par-
allel to the bed some distance from the margin can account for observed
dips at the surface near the margin. Furthermore, because shear stresses
vanish on a free surface, the planes of maximum shear stress dip 45◦ up-
and downglacier relative to the surface (Figure 10.3). Observed foliation
attitudes (Figure 13.7; see Allen et al, 1960, and Hooke, 1970, among
others) bear no such consistent relation to planes of σ Smax.

Recumbent folds in basal ice

Foliation in basal ice is sometimes deformed into recumbent folds
(Figure 13.8). Hudleston (1976) studied some such folds in the marginal
zone of Barnes Ice Cap, and hypothesized that they might have formed
when foliation that had developed over a period of many years under
a stable flow regime was subjected to a new regime. Some distance
from the margin the initial foliation would be nearly parallel to the bed
(Figure 13.5b), and thus nearly parallel to particle paths in the ice
(Figure 13.5a). If there were a bump in the bed, Hudleston speculated, a
change in flow regime might alter the particle paths enough to generate
a fold.

To explore this possibility, he developed a numerical model of the
flow. As the flow is nearly two dimensional, he assumed that the varia-
tion in u with depth was adequately described by Equation (5.6) with the
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Figure 13.8. Recumbent fold in foliation in basal ice of Barnes Ice Cap.

surface slope averaged over a distance equal to the local ice thickness.
Because the thickness decreases downglacier, u at any specific height
above the bed also decreases. This compressive strain can then be used
to calculate the variation in the vertical velocity with depth. Reason-
ably satisfactory agreement with measured velocities was obtained with
B = 0.6 MPa a1/n and n = 1.6. These values are consistent with val-
ues determined from borehole deformation experiments in the marginal
zone of Barnes Ice Cap (Hooke, 1973b). Using this velocity field, he
then calculated particle paths and, as mentioned above, assumed that a
steady state had obtained for a long enough period of time that foliation
had become essentially parallel to those particle paths.

An advance or retreat of the glacier changes the velocity vector at
any given point because the ice thickness and surface slope change. If
the change in the velocity field is such that a velocity vector becomes
inclined upward with respect to the previous particle path, as shown in
Figure 13.9a, a point on a foliation plane will be moved upward with
respect to more distal points on that plane. As ∂u/∂z is high near the
base, the point will move to a level of higher u and will gradually overtake
the more distal parts of the foliation plane. If the distance to the margin is
sufficient, this will result in a fold (Figure 13.9c–e). Note that while the
folds are seeded over the bump in the bed, they do not become apparent
until the ice has moved some distance toward the margin. Folds developed
in higher foliation planes reach the margin first, and are somewhat more
open. After a sufficiently long time without further changes in regime,
all folds will melt out and this record of the regime change will vanish.

While Hudleston’s model ignores effects of longitudinal strain on
the velocity profile and uses surface slopes that are averaged over rela-
tively short distances, it is robust inasmuch as “. . . a more sophisticated
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Figure 13.9. Generation of recumbent folds as a result of an advance of a
glacier. (a) Sketch showing one of several possible changes in velocity vectors
that would result in a fold. (b) Initial steady-state geometry. Foliation is assumed
to have developed parallel to the three particle paths shown. Heavier parts
of paths, between dots, are followed downflow in panels (c) through (e).
(c) Situation after a ∼200 m advance lasting 30 model years followed by a new
steady state lasting 245 model years. (d) and (e) Situation 345 and 670 model
years after establishment of the new steady state. (Compiled from Hudleston,
1976, Figures 7 and 8. Reproduced with the permission of the author and the
Geological Society of America.)
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model would still predict the formation of folds in the manner described,
although details of the process would be somewhat different” (Hudleston,
1976, p. 1691).

Because glaciers advance and retreat, and because they rest on irreg-
ular beds, folding in basal ice is likely to be common. Indeed, oxygen
isotope profiles from the 3000 m GRIP and GISP 2 cores through the
Greenland Ice Sheet are quite similar to a depth of 2750 m, but below
that depth the correlation breaks down (Grootes et al., 1993). Simi-
lar discrepancies were found in the lowest 10 m of two 299 m cores,
taken 27 m apart, from Devon Ice Cap (Paterson et al., 1977), and in the
lowest 12 m of three cores, within 2 km of each other, from Agassiz Ice
Cap (Fisher, 1987). A likely explanation for the lack of correlation in
deeper ice in these cores is folding, although boudinage or shearing is
also possible.

Summary
In this chapter, we have reviewed the fundamentals of finite strain and
showed that three quantities are needed to describe the cumulative change
in shape and orientation of a hypothetical sphere of ice as it is squeezed
and stretched while being advected through a glacier or ice sheet. These
are a measure of the total strain, the natural octahedral unit shear, γ oc;
the orientation of the X-axis of the strain ellipse with respect to the x-axis
of the coordinate system, θ c; and the rotation of the line that eventually
becomes the X-axis in the strained state, ϕc. With increased deformation,
γ oc increases and θ c approaches 0 as the X-axis approaches parallelism
with particle paths or flow lines. However, ϕc may remain substantially
less than 90◦ if the ice experiences a long early history of nearly pure
shear.

Inhomogeneities in the ice such as sedimentary stratification,
crevasse fillings, meltwater glands and lenses, and debris-rich layers
become buried, stretched longitudinally, and squeezed vertically during
flow in the accumulation zone. By the time these features are re-exposed
in the ablation area, their origin is likely to be difficult or impossible to
determine. The result is then properly called foliation. Once a foliation
has developed, it may be enhanced with further strain and then deformed
as it is passively advected toward the margin. If the flow regime changes,
foliation may become folded.



Chapter 14

Response of glaciers to changes
in mass balance

As we discussed in Chapter 3, climatic change may involve changes
in precipitation, in temperature, in radiation balance, or most likely in
all three of these variables. From the perspective of a glacier, however,
the net effect is to change the amount and the spatial distribution of
accumulation and melt. This leads to discrepancies between the specific
net balance and the local emergence or submergence velocity, and hence
to changes in glacier geometry (see pp. 90–92).

Were the climate of a region to remain constant for a long time,
several decades or even centuries, the geometry of non-surging glaciers
in that region would adjust so that the specific net balance was everywhere
equal to the local emergence or submergence velocity, and in addition
(or as a consequence) the integral of the specific net balance over the
glacier, Bn = ∫

bndA, would be zero. The glacier would then be said to
be in a steady state, an ideal that may occasionally be approached but
rarely, if ever, reached.

The principal adjustment that takes place is, of course, a change in
length or size. A positive mass balance, maintained over a period of years,
will result in an advance. As the glacier expands to lower elevations or
more southerly latitudes, the summer balance becomes more negative
until it becomes equal (in magnitude) to the winter balance, and the net
balance returns to zero, and conversely.

The goal of this chapter is to study the details of the adjustment
process. In particular, we will see that changes in mass balance lead to
changes in thickness which influence the speed of the glacier, and hence
the rate at which ice is transferred from the accumulation area to the
ablation area. The changes in thickness propagate and diffuse down the

365
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glacier. Thus, the propagation and diffusion processes control the way in
which the profile adjusts to the new mass balance conditions. In addition,
the total time required for the adjustment depends on the volume of ice
that must be gained or lost in order to reach a new steady state. Thus,
years can elapse before the terminus gets the message that something has
happened higher on the glacier, and decades may pass before it adjusts
to the changes.

Positive feedback processes
Before proceeding, it is appropriate to mention some feedback processes
that can influence the way in which a polar glacier adjusts to climatic
change, but which we will not consider in detail. One process, discussed
by Lliboutry (1970), results from the fact that a change in temperature
has not only an immediate effect on the mass balance, but also a delayed
effect on the flow, owing to the temperature dependence of the flow law.
For example, an increase in temperature may increase ablation and thus
decrease the annual net balance. The decrease in net balance causes the
glacier to thin. Then, as the temperature change gradually penetrates
into the glacier, the flow rate increases. As this increases the mass flux to
the terminus relative to the input of ice upglacier, this results in further
thinning. The decrease in thickness, a combined effect of the changes in
mass balance and temperature, leads to further warming of the glacier
surface, the boundary condition, owing to the increase in temperature
with decreasing elevation.

It is well to keep in mind, however, that if the climate is sufficiently
cold, increases in temperature may actually increase the winter balance,
as the atmosphere is then able to hold more moisture in the vapor state.
For example, studies of the volume of air in bubbles in a core from Byrd
Station on the West Antarctic Ice Sheet suggest that as the Pleistocene
gave way to the Holocene, the ice sheet there became ∼250 m thicker
(Raynaud and Whillans, 1982). This change is inferred to have been a
result of an increase in precipitation as the climate warmed. Eventually,
however, as the warm wave penetrated deeper and the flow rate increased,
the ice sheet began to thin (Alley and Whillans, 1991). Thus in this case,
the processes did not reinforce one another. Measurements of strain rate
and mass balance along a 160 km strain network upglacier from Byrd
Station suggest that the thinning is continuing today (Whillans, 1977).

Superimposed on these positive feedback loops in large ice masses
is yet another delayed response, that of the Earth’s crust to the additional
ice load. As the crust is depressed isostatically, the surface elevation of
the ice sheet is lowered resulting in warming and possibly initiating a
positive feedback as just discussed. In some areas the bed may become
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Figure 14.1. Sketch illustrating why adjustment toward a new steady state is:
(a) stable where flow is extending, and (b) unstable where flow is compressive.

depressed below sea level. Then any thinning of the ice sheet, or climatic
warming that results in a rise in sea level, is likely to lead to buoyant
forces at the bed that greatly increase flow speeds, potentially leading
to collapse of the ice sheet. Numerical models of ice sheets are used to
study the possibility that such collapses occurred in the past, and that
the West Antarctic Ice Sheet might collapse in the future in response
to greenhouse warming. MacAyeal (1993a, b), among others, has also
considered the possibility that several layers of ice-rafted sediment that
have been detected in cores across the North Atlantic Ocean, the Heinrich
layers, reflect repeated collapses of the Laurentide Ice Sheet.

Response of a temperate glacier
Let us now consider, qualitatively, how a temperate glacier should
respond to a change in mass balance. Suppose b increases, becoming
more positive in the accumulation area and less negative in the ablation
area. Initially, this leads to an increase in thickness. Suppose further
that the longitudinal strain rate is extending in the accumulation area,
as is normally the case. Over the course of a year, this extension, oper-
ating on a block of ice of thickness h, results in thinning by an amount
�h (Figure 14.1a). For a constant rate of extension, �h is proportional
to h. (For example, in the figure, conservation of mass requires that
�h x ∼= (h − �h) �x or, ignoring second-order terms, �h ∼= h(�x/x).)
Thus, as the glacier grows thicker, the amount of thinning, �h, resulting
from the stretching, increases each year. After many years, �h becomes
large enough to absorb most of the increased accumulation and the glacier
gradually approaches a new steady state. As we shall see, however, the
time required for full adjustment is theoretically infinite.

The situation is quite different if the longitudinal strain rate is com-
pressive, as is normally the case in ablation areas. �h is still proportional
to h, but now, because both the longitudinal strain rate and the change
in mass balance cause the glacier to become thicker (Figure 14.1b), �h
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increases each year, unstably. Thus, in the absence of some mitigat-
ing effect, a new steady state would never be reached. This contrast in
behavior between the accumulation and ablation areas, however, leads
to kinematic waves which restore stability.

As Nye (1960) emphasizes, kinematic waves are not dynamic waves
like waves on a water body, and indeed kinematic waves need not have a
wave form. Dynamic waves are a consequence of inertial forces. Because
velocities are low in glaciers, inertial forces are negligible in comparison
with gravitational and viscous forces. Kinematic waves, on the other
hand, are a consequence of a conservation law. On a glacier, it is mass (or
volume at constant density) that is conserved, and the type of kinematic
wave in which we are interested is a wave of constant ice flux. Kinematic
waves move through a medium at a speed that is different from the speed
of the medium itself.

Kinematic waves on glaciers arise from the fact that if the ice flux
into an element of a glacier of length dx is greater than the flux out of
it, the glacier becomes thicker there. Because both the ice velocity and
the ice flux in the thicker ice are greater than in the thinner ice on either
side of it, the resulting wave moves faster than the ice.

Numerical modeling experiments suggest that kinematic waves on
glaciers are likely to be long and low, and that the increases in velocity
and thickness associated with them should rarely exceed about 10% of
the unperturbed values (van de Wal and Oerlemans, 1995). Thus, they
will be difficult to detect in the field. Larger waves have been observed
in the field, but these are probably a consequence of changes in other
factors, such sliding speed. Of course, changes in sliding speed can be
induced by perturbations in mass balance.

(For comparison, waves of denser traffic on a highway are also a
form of kinematic wave. In this case, cars catching up to a wave from
behind are forced to slow down, while those finally making their way
through the wave can accelerate again. Thus, in this case, the wave speed
is less than the speed of the individual cars.)

Elementary kinematic wave theory
Let us now develop these ideas analytically. In this development, fol-
lowing an analysis by Nye (1960), we consider a slab of ice on a slope,
β(x), with thickness, h(x, t), and surface slope, α(x, t) (Figure 14.2). We
assume that ∂h/∂x is small and that the slab is of infinite extent in the
horizontal direction normal to the x-axis. The surface slope is related to
the bed slope by:

α = β − ∂h

∂x
(14.1)
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Note that if h decreases downglacier, ∂h/∂x is negative so α > β.
Consider conservation of mass in an element of a glacier of length dx

(Figure 14.3). For convenience, we will express mass fluxes in terms of
the equivalent volumes of ice, based on a standard density. Ice flows into
the element at a rate, q (x, h, α, t), and out of it at a rate, q + (∂q/∂x) dx.
Here, q is the flux per unit of glacier width, and thus has the dimensions
m3a−1m−1. In addition, there is accumulation at a rate bdx. If more ice
flows into, or accumulates in, the element than leaves it, the glacier
increases in thickness at a rate (∂h/∂t), so the increase in volume of ice
in the element is (∂h/∂t) dx. Thus:

q −
(

q + ∂q

∂x
dx

)
+ bdx = ∂h

∂t
dx

or, simplifying:

∂q

∂x
+ ∂h

∂t
= b (14.2)

Because q is a function of h and x, the functional dependence
expressed by Equation (14.2) leads to a general class of motions in flow
systems known as kinematic waves (Lighthill and Whitham, 1955). Our
objective next is to gain some appreciation for the nature of such waves
on glaciers.

Let us begin by considering the wave speed. Suppose we multiply
both sides of Equation (14.2) by (∂q/∂h)x = c, where c is the change in
flux resulting from a change in thickness at point x, thus:

c
∂q

∂x
+ ∂q

∂h

∂h

∂t
= bc or c

∂q

∂x
+ ∂q

∂t
= bc (14.3)
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Figure 14.4. Numerical
interpretation of the terms in
Equation (14.3).

Equation (14.3) is known as the kinematic wave equation; c has the
dimensions m3a−1m−1/m = m a−1. Thus, it is a speed. In fact, it is the
celerity (or speed) of the wave. (Because q = uh, where u is the mean
(depth-averaged) speed, ∂q/∂h = u + h(∂u/∂h).)

To gain some appreciation for the implications of Equation (14.3),
consider the situation in Figure 14.4. The ice flux into the element of
the glacier is 1050 m3a−1m−1, while that out is 1000 m3a−1m−1. The
element is in the ablation area and the ablation rate is −0.4 m a−1, or
−40 m3a−1m−1 over the length of the element. As a result of this positive
balance, with more ice entering the element than leaving it, the glacier is
increasing in thickness. With the use of Equation (14.3) we can calculate
the rate of increase in mass flux, ∂q/∂t, resulting from this increase
in thickness as follows. The flux gradient, ∂q/∂x, over the 100 m long
element is−50 m3a−1m−1/100 m or−0.5 m a−1. Suppose c=200 m a−1.
Then, ∂q/∂t is 20 m3a−1m−1. In other words, owing to the increase in
thickness and the resulting increase in speed, the mass flux increases by
20 m3a−1m−1.

The relationship among q, h, u, and c is illustrated in Figure 14.5, in
which q is plotted against h. Because of the nonlinearity of the flow law,
we expect q to increase nonlinearly with h as shown. The mean speed,
u, of a glacier with a thickness and ice flux given by the values of q and
h at point P in the figure is u = q/h. This is represented by the slope of
the dashed line connecting P with the origin. However, the speed, c, of a
kinematic wave is (∂q/∂h)P, which is the slope of a line drawn tangent to
the q–h curve at point P. In other words, as mentioned earlier, the speed
of the kinematic wave is appreciably larger than the mean speed of the
glacier.

To get a sense of how much faster the kinematic wave moves, con-
sider the case of a glacier moving entirely by internal deformation such
that (see Equation 5.19):

u = 2

n + 2

(
S f ρgα

B

)n

hn+1 (14.4)
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Noting that q = uh, we have:

q = 2

n + 2

(
S f ρgα

B

)n

hn+2

so:

c = ∂q

∂h
= 2

(
S f ρgα

B

)n

hn+1 = (n + 2)u (14.5)

or with n ∼= 3:

c ∼= 5u (14.6)

In other words, the kinematic wave moves with a speed that is roughly
five times the depth-averaged velocity of the glacier. If there is basal
sliding and the sliding speed varies as τ 2 (Equation (7.10)), the ratio is
likely to be slightly less than 5. This relation applies, rigorously, only to
infinitesimal waves. Waves of finite amplitude may have higher speeds.

Analysis of the effect of a small change in mass
balance using a perturbation approach
Let us now, following Nye (1960, pp. 561–562), use perturbation tech-
niques to study the change in thickness with time after a small change in
mass balance. Consider the situation in which the specific mass balance
is shown by the solid line in Figure 14.6. We will refer to the situation
represented by this solid line as the “0” or datum or equilibrium state,
and analyze the effect of small perturbations from this state such as those
represented by the dashed lines in the figure. For example, during a cold
or unusually snowy year the mass balance may be increased everywhere
by an amount b1 (x, t) so we have:

b(x, t) = b0(x) + b1(x, t)

Note that b0 is a function only of x; it does not vary with time because
the datum state is a steady state. Other properties of the datum state are
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Figure 14.6. Perturbations in
mass balance from an
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q0(x, h, α), h0(x), and α0(x). In the perturbed state these become
q = q0 + q1, h = h0 + h1, and α = α0 + α1. Substituting these into
the continuity equation (Equation (14.2)) yields:

∂

∂x
(q0 + q1) + ∂

∂t
(h0 + h1) = b0 + b1 (14.7)

We now write Equation (14.2) in terms of the datum state, thus:

∂q0

∂x
+ ∂h0

∂t
= b0

and subtract this from Equation (14.7) to obtain:

∂q1

∂x
+ ∂h1

∂t
= b1 (14.8)

In passing, it is again worth noting that ∂h0/∂t = 0 because h0 is a
property of the steady state.

At any position, x, q varies with h and α so we can write:

dq = ∂q

∂h
dh + ∂q

∂α
dα

or for small perturbations, dq = q1, dh = h1, and dα = α1 so:

q1 = ∂q

∂h
h1 + ∂q

∂α
α1 (14.9)

Previously we identified ∂q/∂h with the celerity of a kinematic wave,
c, or in the datum state: (∂q/∂h)0 = c0. Now we similarly define
D0 = (∂q/∂α)0, so in the datum state, Equation (14.9) becomes:

q1 = c0h1 + D0α1 (14.10)

This relation is valid only for small perturbations. Were we interested in
larger perturbations, terms involving h1

2, h1
3, . . . α1

2, α1
3, . . . would

have to be included. Thus, our approach is referred to as a linearized
theory.

Equations (14.8) and (14.10) are a pair of simultaneous differential
equations that can be solved for the change in ice flux and thickness
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resulting from a perturbation in net balance. Let us first eliminate q1

from the two equations, thus:

∂c0

∂x
h1 + c0

∂h1

∂x
+ ∂ D0

∂x
α1 + D0

∂α1

∂x
+ ∂h1

∂t
= b1 (14.11)

Returning to Equation (14.1) we see that in the datum and perturbed
states, respectively:

α0 = β − ∂h0

∂x
and α0 + α1 = β − ∂h0

∂x
− ∂h1

∂x
(14.12)

Thus, subtracting the first of these expressions from the second:
α1 = −∂h1/∂x. This result can be substituted into Equation (14.11)
to yield, after some rearranging:

∂h1

∂t
= b1 − ∂c0

∂x
h1 −

(
c0 − ∂ D0

∂x

)
∂h1

∂x
+ D0

∂2h1

∂x2
(14.13)

(i) (ii) (iii) (iv)

Equation (14.13) was first derived by Nye (1960, p. 562). As he noted,
the terms in it have the following meanings.

(i) h1 increases at a rate given by the perturbation in accumulation.
(ii) This term results in an exponential decrease or increase in the rate

of change of h1 as we shall show below.
(iii) This represents a kinematic wave of constant h1. The speed of

propagation of the wave is c0 − ∂D0/∂x in the +x direction. Note
that both c0 and ∂D0/∂x have dimensions � t−1.

(iv) This represents diffusive damping of the perturbation h1, in accord
with the diffusion equation, with diffusivity D0.

Our objective now is to solve Equation (14.13) for a simple case, neglect-
ing diffusion. Then we will investigate the role of diffusion.

Solution for a small part of a glacier with uniform
longitudinal strain rate and without diffusion

Consider a situation in which a glacier is initially in a steady state with
an accumulation rate b0 (Nye, 1960, p. 563). Then the accumulation rate
increases abruptly by an amount b1 to b = b0 + b1 and remains at this
increased level indefinitely. Suppose ∂c0/∂x is independent of x on this
glacier. From Equations (14.5) we see that:

∂c0

∂x
∼= (n + 2)

∂u0

∂x
(14.14)

where ∂u0/∂x is the longitudinal strain rate, r0. This, thus, corresponds
to a situation in which the longitudinal strain rate is uniform in the
x-direction. We seek a solution to Equation (14.13) such that h1 is
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independent of x so ∂h1/∂x = 0. Thus, the increase in thickness is uni-
form over the glacier. We will let γ 0 = ∂c0/∂x.

With these simplifications, Equation (14.13) becomes:

dh1

dt
= b1 − γ0h1 (14.15)

Separating variables we obtain:
h1∫

0

dh1

b1 − γ0h1
=

t∫
0

dt

Integration yields:

h1 = b1

γ0

(
1 − e−γ 0t

)
(14.16)

If γ 0 is positive, corresponding to a positive longitudinal strain rate
(Equation (14.14)) such as we expect in an accumulation area, h1 asymp-
totically approaches the value b1/γ 0 (Figure 14.7). In other words,
after a very long time, the glacier will have increased in thickness by
this amount. This is the situation described earlier and illustrated in
Figure 14.1a.

The quantity 1/γ 0, which has the dimensions of time, is known as
the time constant for this change. This is sometimes associated with the
“response time” of a glacier, or the length of time required for a glacier
to respond to a change in climate. When t = 1/γ 0, (1 − e−γ0t ) ∼= 2/3
so h1 is ∼2/3 of the way to the new equilibrium state. Mathematically
(Equation (14.16)), it is clear that the new equilibrium state is never
reached. Thus, it would be meaningless to try, instead, to define the
response time as the total time required to attain a new steady state.

From Equation (14.14) we see that 1/γ 0
∼= 1/5r0. In other words,

in this simple model the response time is inversely proportional to the
longitudinal strain rate. For example, typical longitudinal strain rates for
Storglaciären, Barnes Ice Cap, and the Antarctic Ice Sheet are 0.015 a−1,
0.005 a−1, and 0.000 05 a−1 respectively. Thus, the response time of
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Barnes Ice Cap might be expected to be three times as long as that of
Storglaciären, and that of the Antarctic Ice Sheet, 100 times as long as
Barnes Ice Cap. While these multiples are not unrealistic, it turns out
that 1/5r0 seriously underestimates the actual response time. As we will
see below, this is because diffusion has been neglected.

If γ 0 is negative, corresponding to longitudinal compression as
would be typical in an ablation zone, there is an obvious problem. Equa-
tion (14.16) then predicts that h1 will increase exponentially with time.
Thus, a new steady state is never even approached. This is the situation
which we discussed in connection with Figure 14.1b.

Clearly, it is not possible to have the upper part of a glacier increasing
in thickness slowly and stably while the lower part is increasing rapidly
and unstably. In the absence of diffusion, Nye (1960) suggests that the
initial response in the ablation area would, indeed, be unstable. At any
location, however, stability would be restored when a kinematic wave,
initiated in the vicinity of the equilibrium line and propagating down
glacier, reached that location. With diffusion, however, such an unstable
response may never develop.

Effect of diffusion
Diffusion occurs whenever fluxes are proportional to gradients. In the
present case, the flux, q, is proportional to the slope (or gradient), α.
Where α is largest, on the downslope side of a wave, q is highest. Con-
versely, q is lowest on the upslope side of the wave. Thus, the flux into the
wave is diminished and that out of it is enhanced. This tends to decrease
the amplitude and increase the wavelength of a wave.

As in the case of c (or c0) (Equation (14.5)), an analytical expression
for D0 can be obtained by differentiating q with respect to α, thus:

D0 =
(

∂q

∂α

)
0

= n

(
2

n + 2

) (
S f ρg

B

)n

hn+2αn−1 = nq

α

or with n ∼= 3:

D0
∼= 3uh

α
(14.17)

In other words, diffusion will be most significant where the glacier is
thick, the speed high, and the slope low.

Unfortunately, it is difficult to probe this dependence more thor-
oughly at the level of the treatment herein. However, Nye (1963a,
pp. 442–445) has shown that diffusion decreases the rate of thickening,
a result that is intuitively logical. As a result, the response time increases
quite markedly. In one example, the response time increases by more
than an order of magnitude (Nye, 1963a, Figure 4a). In addition, the
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increase in thickness of the glacier near the equilibrium line is substan-
tially greater when diffusion is taken into consideration.

The problem at the terminus
It is difficult to use Nye’s kinematic wave theory to study the details
of the advance and retreat of real glaciers. This is, in part, because the
mass flux, q, cannot go to zero at the terminus if the glacier is to respond
to an increase in accumulation by advancing. However, Equation (14.4)
suggests that u → 0 as h → 0. To avoid this, Nye (1963b, p. 92) assumes
that the glacier is sliding at the terminus so q = ub0(�0)h where ub0(�0)
is the sliding speed, ub, at the terminus, �0, in the datum state. Here
�0 is the length of the glacier, measured from the bergschrund. Then
c0 = ∂q/∂h = ub0(�0).

In addition, the amount of advance, ��, is sensitive to the assumed
geometry of the terminus. As shown in Figure 14.8:

�� = h1(�0)

tan θ0
(14.18)

where h1(�0) is the perturbation in ice thickness at the terminus. Thus
�� depends on θ0.

Further study of the response time
Jóhannesson et al. (1989) have studied the question of response times
and of conditions at the terminus in greater detail. They identify three
possible natural time scales that might be used in the analysis of glacier
responses:

tC = �0

c0

[
m

ma−1

]
(14.19a)

tD = �2
0

π2 D0

[
m2

m2a−1

]
(14.19b)

tV = V1

b1�0

[
m3m−1

ma−1m

]
(14.19c)
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Here, tC and tD are time constants for propagation or diffusion* of a
disturbance over the length of a glacier. In effect, they are measures of
the time required to establish the general shape of the new thickness
profile, h1(x, t). As the size of such a disturbance decreases with time,
the rate of propagation or diffusion also decreases. Therefore, as with
1/γ 0, tC and tD are measures of the time required for the processes to
proceed about 2/3 of the way to completion. Similarly, as we shall show
below, tV is the time required for accumulation (or loss) of about 2/3 of
the volume (per unit width), V1, required to re-establish an equilibrium
geometry after a perturbation in mass balance that adds a volume of ice
b1�0 to the glacier every year.

Jóhannesson et al. find that tV is usually appreciably longer than tC
or tD. This means that perturbations in ice thickness are spread out over
the glacier by propagation and diffusion rather quickly in comparison
with the time needed for accumulation of the additional mass. Clearly, a
glacier cannot be considered to have returned some specified fraction of
the way to a new equilibrium state until the necessary additional mass
has accumulated (or been lost).

In an extension of the Nye theory, tV would be viewed approximately
as follows: at any given time after a perturbation in mass balance, the
mean perturbation in thickness, averaged over the length of the glacier,
would equal the perturbation at the terminus, h1(�0,t), multiplied by some
function of the conditions in the datum state, of the magnitude of the
perturbation, b1, and of time, thus:

h1(x, t) = f (c0, D0, b1, t) · h1(�0, t) (14.20)

Remember that �0 is the position of the terminus in the datum state. Once
a new equilibrium geometry has been attained, at t = ∞, the increase in
volume of the glacier would be obtained by multiplying Equation (14.20)
by the length of the glacier, thus:

V1 = h1�0 = f (t = ∞) · h1(�0, ∞)�0 (14.21)

However, once a new steady state has been attained, the annual mass
gain resulting from the perturbation, b1�0, must equal the flux past the
old terminus position, ub0(�0)·h1, thus:

b1�0 = ub0(�0)h1(�0, ∞) (14.22)

Eliminating h1 from these two equations yields:

V1 = f (t = ∞)b1�
2
0

ub0(�0)
(14.23)

* The π2 term in Equation (14.19b) comes from the Fourier solution of the diffusion

equation (T. Jóhannesson, written communications dated November 7 and 14, 1996).
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Figure 14.9. Geometrical argument for evaluating tV. During an advance, ��,
the mass that must be added to a glacier is approximately ��·h0max.

Whence, from Equation (14.19c):

tV = f (t = ∞)�0

ub0(�0)
(14.24)

Thus, by this approach, tV turns out to be sensitive to the unknown sliding
speed at the terminus. In addition, the function, f, is highly sensitive to
the details of the variations in c0 and D0, especially near the terminus
(Jóhannesson et al., 1989, p. 364 and appendices).

Jóhannesson et al. have developed a much simpler geometrical argu-
ment to estimate tV. Consider the situation in Figure 14.9 in which an
advance of a glacier by an amount �� is illustrated graphically by cutting
the glacier at its point of maximum thickness and sliding the lower part
forward by ��. Then, the increase in volume of the glacier is approx-
imately ��·h0max. Detailed numerical modeling suggests that this is a
good approximation to the response of a real glacier when the dynamical
properties of the glacier are the same in the initial and final state, and
thus influence the initial and final profiles in the same way. Now, rather
than equate the annual mass gain resulting from the perturbation with
the flux past the old terminus position, as in Equation (14.22), we equate
it with the mass loss over the new part of the glacier, ��, thus:

b1�0 = |bt| �� (14.25)

where bt is the mean net balance rate over �� which may be approximated
by b(�0), the net balance rate at the terminus (a negative quantity) if ��

is small. Therefore:

V1 = ��h0 max = h0 maxb1�0

|b(�0)| (14.26)

Whence, from Equation (14.19c):

tV = h0 max

|b(�0)| (14.27)
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Thus, tV can be estimated, quite easily, from knowledge of the thickness
of the glacier and the net balance rate at the terminus.

We noted above that tV is a time constant in the same sense that 1/γ 0

is. Let us now demonstrate this. Immediately after a permanent change
in balance rate, b1, the rate at which additional mass, V1, is acquired
by the glacier, dV1/dt, is B1 = b1�0. However, as the glacier becomes
longer (by an amount ��(t)), some of the additional annual input is lost
through ablation in the new part of the terminus region. Thus:

dV1

dt
= B1 − |b0(�0)| ��

Now from Equation (14.26) or Figure 14.9, �� ∼= V1/h0max, so:

dV1

dt
= B1 − |b0(�0)|

h0 max
V1

Comparing this with Equation (14.15), it is clear that h0 max/|b(�0)| is
the analog of 1/γ 0.

When calculating tV in practice, the three-dimensional geometry
of the glacier must be taken into consideration. Thus, in the case
of a glacier like Storglaciären that has a number of overdeepened
basins in its longitudinal profile, h0max needs to be replaced by an
appropriate longitudinally averaged thickness. In addition, the termi-
nus of Storglaciären is constrained between bedrock and morainal highs
so that its width is about half the average width of the glacier (Figure
12.9). Accordingly, Equations (14.25) to (14.27) need to be generalized
to three dimensions. For example, if we write Equation (14.25) as:

b1 A0 = |b(�0)| W (�0)�� (14.28)

where A0 is the initial area of the glacier and W(�0) is the width of the
terminus, Equation (14.19c) becomes:

tV = V1

b1 A0

(14.29)

V1 must now be estimated based on the glacier geometry. For instance,
by analogy with Figure 14.9, one might consider that the new geometry
could be approximated by (mentally) sliding forward the central part of
the glacier of width W(�0). V1 is then h0max W(�0) ��, where h0max is a
mean thickness over this central part. Inserting this in Equation (14.29)
and using Equation (14.28) then yields:

tV = h0 max

|b(�0)| (14.30)

Harrison et al. (2001) have pointed out that the formulation of tV
in Equation (14.19c) ignores the normal increase in bn with elevation.
Owing to this increase, perturbations that result in thickening or thinning
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of a glacier are effectively amplified. This positive feedback, known
as the Böðvarsson effect (Böðvarsson, 1955), can lead to significant
underestimates of the response time. In extreme cases, it may lead to
unstable (or runaway) growth or shrinkage of a glacier.

To include this effect, Harrison et al. suggest adding a term to Equa-
tion (14.27), thus:

tVH = H

|be| − Ge H
(14.31)

H is now a thickness scale, not necessarily equal to h0 max, be is an effective
balance rate at or just below the terminus, and Ge is the effective budget
gradient. The subscript H is added to tV to distinguish this time scale from
that of Jóhannesson et al. (Readers should refer to Elsberg et al. (2001)
and Harrison et al. (2001) for a rigorous derivation of Equation (14.31)
and definitions of be, Ge, and H. Suffice it to say here that the theory is
grounded in the reference-surface approach to mass balance discussed
briefly in Chapter 3 (p. 25).) It will be readily seen that the added term
has the desired effect. Both Ge and H are positive, so subtracting GeH
from |be| in the denominator increases tVH and in extreme cases may
make tVH negative – the unstable response.

Unfortunately, be, Ge, and H are not easy to determine. To evaluate
be one needs detailed balance rate data from the terminus that can be
extrapolated into the area below the terminus and also a map showing
bed elevations in the terminus area. In an application of their theory to
South Cascade Glacier in the state of Washington (USA), Elsberg et al.
(2001) found that setting be ≈ 0.75 b(�0) yielded a good approximation
to the true value. Likewise, rigorously H = dV/dA and neither �V nor
�A are measured routinely. Finally, an average value of Ge may not be
appropriate; again Elsberg et al. (2001) found that setting Ge equal to 0.9
times the specific balance gradient half way between the terminus and the
equilibrium line worked well on South Cascade Glacier, but they caution
that these approximations may not be appropriate for other glaciers.

An important characteristic of Equation (14.31) appears if one notes
that since be is a balance rate near the terminus, and bn = 0 at the
equilibrium line, then be/�zt→e ≈ Ge, where �zt→e is the elevation
difference between the terminus and the equilibrium line. Then the ratio
of the two terms in the denominator of Equation (14.31) is:

Ge H

|be| ≈ H

�zt→e

Clearly, tVH becomes large as this ratio approaches unity, and the system
is unstable if it exceeds unity. �zt→e will be smaller on glaciers that are
relatively flat, and may approach H on such glaciers. Thus glaciers with
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low slopes may be expected to have longer response times, a character-
istic that does not appear in Jóhannesson et al.’s formulation.

For purposes of illustration, let us put some realistic numbers into
some of these equations. The ablation rate on the lower part of the
tongue of Storglaciären averages ∼1.3 m a−1 and the mean thickness
over the central region of the glacier is between 100 and 150 m, so tV is
∼100 years. Rigorous estimates of Ge and be probably could be obtained
for Storglaciären, but as the necessary calculations have not been done
let us use the approximations that Elsberg et al. found appropriate for
South Cascade Glacier. Then, be ≈ −0.98 m a−1 and Ge ≈ 0.003 a−1

(Schytt, 1968, and unpublished data), so tVH ranges from ∼150 to ∼300
years, depending on the value of H. For comparison, numerical model-
ing (Brugger, 1992) suggests a response time of ∼80 years, while field
measurements show that about 2/3 of Storglaciären’s retreat from its
Little Ice Age maximum position, which it reached in 1910, took place
in ∼45 years (Holmlund, 1987). The sizeable difference between tV and
tVH probably reflects, in part, the fact that the denominator in Equation
(14.31) is a small difference between two numbers that are large (com-
pared with their difference) and that have large uncertainties. However,
the result serves to emphasize the potential importance of the Böðvarsson
effect. The more rapid response observed is likely to be a consequence
of two factors: (1) b(�0) was probably higher (more negative) when the
glacier extended to lower elevations, and (2) the change from Little
Ice Age conditions was hardly a small perturbation. In any case, all of
these times are substantially longer than the 1/5r0 (≈13 years) time scale
mentioned above. This is in part because diffusion is neglected in the
latter, as noted, and in part because the 1/5r0 time scale does not allow
enough time to accumulate or lose the required mass, and thus violates
conservation of mass.

Numerical modeling of glacier responses
In the absence of analytical solutions to Equation (14.13), glaciologists
have resorted to numerical modeling. In such models one can, in addition,
retain nonlinear effects which are neglected in linearized theories. Thus,
the models are not restricted to infinitesimal perturbations. Furthermore,
one can use glacier shapes and mass balance patterns that are specific to
a particular glacier.

A good example is a model of Hintereisferner in the Austrian Alps
by van de Wal and Oerlemans (1995). First the authors calculated a
surface profile that would be in equilibrium with a certain mass bal-
ance rate, b0(x) (Figure 14.10a). Then they increased the mass balance
rate by 0.5 m a−1 for one year. This could represent the situation
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Figure 14.10. (a) Longitudinal profile of Hintereisferner in a stable state.
(b) Changes in thickness of Hintereisferner resulting from a 0.5 m perturbation
in mass balance, b1, at time t = 0. The increase in bn lasted 1 year. Times are in
years. Thickness changes are larger than 0.5 m because they include a
contribution from the unperturbed mass balance, b0. T = terminus. (c) Change
in thickness at the terminus of Hintereisferner as a function of time after the
perturbation. (Both (a) and (b) are reproduced from van de Wal and Oerlemans,
1995, Figures 7a and 9b, with permission of the authors and the International
Glaciological Society; (c) is calculated from data in Figures 9b and 9c of van de
Wal and Oerlemans, 1995.)
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during an unusually positive balance year (see the curve labeled “+” in
Figure 3.5a or that labeled “Cold year” in Figure 14.6). The following
year, the net budget was returned to its normal value. Figure 14.10b
shows the increase in thickness as a function of distance from the head
of the glacier at various times after the perturbation. After 2 years, a wave
has formed with its crest ∼3 km from the head, or about 1 km upglacier
from the equilibrium line. By the sixth year, the crest is a little more
than 4 km from the head, representing a wave speed of about 300 m a−1.
For comparison, the depth-averaged velocity over this part of the glacier
is a little under 50 m a−1. In addition, the wave has been dampened
and lengthened by diffusion. With time, diffusion continues to smooth
the wave, the surface in the accumulation area sinks back towards its
original level, and the surface in the ablation area, particularly at the
terminus, rises sharply. In Figure 14.10c it will be seen that the terminus
begins to collapse back to its original form after about 30 years, but that
a significant thickening remains after 100 years.

The Hintereisferner modeling experiment serves to emphasize that
kinematic waves on glaciers are likely to be long and low, as mentioned
earlier. Thus, sophisticated survey techniques are required to detect them
in the field. In addition, the modeling suggests that the wave speed is ≥ 6
times the depth-averaged velocity, u, rather than ≤5u as implied by
Equation (14.6) and the following discussion. Van de Wal and Oerlemans
think that this may be due to changes in the longitudinal strain rate which
appear in the numerical model but which are not taken into consideration
in the linear model. Such changes are likely to affect the q–h relation.
Finally, the response at the terminus is stable, as shown in Figure 14.10c.

Comparison with observation
Let us now discuss some actual examples of how glaciers have
responded to climatic perturbations. We have already mentioned Stor-
glaciären briefly, and noted that estimates of the response time based on
Equation (14.30), on a numerical model, and on observation are rea-
sonably consistent with each other, and suggest a time of decades to a
century. As expected, tVH is longer than tV, but the magnitude of the
difference between them is probably due, in part, to errors in estimating
the parameters. In contrast, 1/γ 0 is only ∼13 years. Nisqually and South
Cascade glaciers are two others that have been studied extensively.

Nisqually Glacier

Nisqually Glacier on Mt Rainier in Washington retreated several hun-
dred meters during the first part of the twentieth century. A trimline
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Debris-covered
glacier tongue

Trimlines

Figure 14.11. Nisqually Glacier, Mt Rainier, Washington, in September, 1964,
showing distinct trimline. The glacier tongue is covered with debris.

on the valley side above and down glacier from the present terminus
(Figure 14.11) shows the shape of the glacier at its nineteenth-century
maximum position, a position that it occupied, more or less, from about
1840 to 1910 (Meier, 1965, p. 803). Thus, the difference in elevation
between the present (debris-covered) glacier surface and the trimline
represents the amount of thickening that would need to occur in order
for the glacier to readvance to that maximum position. The amount of
thickening increases rapidly toward and down-valley from the terminus.

The response of Nisqually Glacier to perturbations in mass balance
is illustrated in Figures 14.12 and 14.13. The upper part of Figure 14.12
shows that the net budget was generally positive between 1942 and 1951.
In fact, the retreat rate of many temperate alpine glaciers in the Northern
Hemisphere decreased during this time period, and some actually
advanced. Thus, this represents a major climatic event (Meier, 1965,
p. 803). However, in the middle part of Figure 14.12 it will be seen that
the terminus was still retreating during this time; it was responding to
negative mass budgets of the early 20th century. The total retreat between
1918 and 1960 was ∼1000 m.
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Figure 14.12. Recession of Nisqually Glacier between 1918 and 1961, together
with the advance of a wave of pronounced thickening and the approximate
net budget. (Reproduced from Meier, 1965, Figure 8, with permission of the
author.)

In the mid 1940s, a wave of thickening was detected ∼1500 m
upglacier from the terminus, and this wave was tracked downglacier
until it reached the terminus in about 1960 (lower part of Figure 14.12).
This wave was presumably a response to the positive mass budgets of
the 1940s. The progress of the wave is documented in Figure 14.13a,
which is based on surveys, conducted almost every year, of the elevation
of the glacier surface along three profiles across the glacier. The aver-
age elevation of the ice surface on each profile is shown as a function
of time. At Profile 3, which is 2.7 km from the mid-twentieth-century
terminus, thickening began in about 1945. Profile 2 is 1.6 km from the
terminus; thickening began there in 1949. The wave reached Profile 1,
0.8 km from the terminus, in 1955. In Figure 14.13b the ice surface
slope, surface elevation, and velocity are shown as functions of time at
Profile 2. As noted earlier, this is probably not a pure kinematic wave
as the changes in thickness and velocity are rather large. Thus, some
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Figure 14.13. (a) Variation in ice surface elevation on three transverse profiles
on Nisqually Glacier, 1931–1960. (b) Variations in ice surface elevation, velocity,
and surface slope at Profile 2, 1943–1960. ((a) is from Johnson, 1960, Figure 2;
(b) is from Meier, 1965, Figure 4; reproduced with permission of the authors.)

other mechanisms, such as an increase in sliding speed, were probably
involved.

The reader may find it of interest to compare the change in velocity
in Figure 14.13b with that predicted by Equation (5.7) with ub = 0:

us = 2

n + 1

(ρgα

B

)n
hn+1 (14.32)
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To do this, take the differential of Equation (14.32) and divide the result
by Equation (14.32) to yield:

dus

us
= n

dα

α
+ (n + 1)

dh

h
(14.33)

To make this calculation you need the ice thickness, which is about
80 m at Profile 2. Despite the approximations inherent in Equations
(14.32) and (14.33) and in estimating the values of the parameters in
Equation (14.33) from the field data, the calculated dus is surprisingly
close to that observed. (The numerical computations are left as an exer-
cise for the reader; see Problem 14.2.)

South Cascade Glacier

Owing to the availability of an impressive data base, South Cascade
Glacier is another that has been analyzed in some detail. We have already
mentioned Harrison et al.’s use of these data. In addition, Nye (1963b)
used them to test the kinematic wave theory. To do this, he had to take
into consideration the three-dimensional character of the glacier. Thus
our Equations (14.8) and (14.10) become:

∂ Q1

∂x
+ w0

∂h1

∂t
= w0b1 (14.34)

Q1 = c0h1 + D0α1

where Q(x) is the ice flux through a cross section of the glacier at position
x, and w0(x) is the width of the glacier as a function of x. In addition, c0

and D0 have to be redefined as:

c0 = 1

w0

(
∂ Q

∂h

)
0

and D0 = 1

w0

(
∂ Q

∂α

)
0

As was the case with Equations (14.8) and (14.10), Equations (14.34)
are a pair of simultaneous differential equations that can be solved for
the changes in ice flux, Q1(x, t), and thickness, h1(x, t), resulting from a
perturbation in mass balance, b1(x, t).

Previously (Equations (14.6) and (14.17)) we found that, in the
absence of sliding, c0 and D0 could be related to certain measures of the
speed and ice flux. Thus, if the geometry and velocity field of a glacier
are known, reasonable estimates of c0(x) and D0(x) can be made. Nye cal-
culated these parameters for South Cascade Glacier (Figure 14.14) and
used the results to solve Equations (14.34) for the situation in which per-
turbations in b1 varied sinusoidally with period, T, in years, or frequency,
ω = 2�/T. The solution is expressed in terms of series approximations,
and detailed study of it is beyond the scope of this book. Numerical
results are shown in Figure 14.15.
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The curve of ϕ in Figure 14.15 is the phase lag between the vari-
ation in budget and the response of the terminus. For example, for an
oscillation in mass balance that has a period of 100 years, the phase lag
is approximately 110◦. This means that the maximum thickness of the
glacier at the terminus (and hence the maximum extent of the glacier)
would occur (110/360) · 100 ∼= 31 years after the maximum in the mass
balance. This latter number can be read from the curve of ϕ/ω, using
the inner scale on the left side of the figure. Thus ϕ/ω is the time lag
between the maximum accumulation rate and the maximum thickness.
For variations in budget with very long periods, the phase lag decreases,
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but the time lag does not change appreciably. For example, for an oscil-
lation with a period of 1000 years, the time lag is ∼43 years. Conversely,
for oscillations with a period of only 1 year, which would represent the
seasonal cycle from winter accumulation to summer melt, ϕ = 90◦ so
the time lag is 1/4 year. In other words, the maximum thickness does not
occur when the rate of snow fall is a maximum, but rather at the end of
the accumulation season when accumulation gives way to melt.

The curve of |H|/b1 shows the change in thickness of the glacier
at the terminus, expressed in terms of the perturbation in accumulation.
For a perturbation with a period of 100 years, the increase in thickness
here would be about 100 times the amplitude of the perturbation. Thus,
a perturbation with an amplitude of 0.1 m would produce a change in
thickness of ∼10 m.

The ultimate objective of an analysis such as this might well be
to solve the inverse problem, namely, given a history of advance and
retreat of a glacier, to deduce the mass balance history and thus to learn
something about the climatic changes that produced the fluctuations.
Nye (1965b) did this for South Cascade Glacier and for Storglaciären
with mixed results. He concluded that the records of terminus position of
the two glaciers were not sufficiently well known to accurately deduce
annual changes in net budget, but that coarser features of the records
yield net balance figures that are in agreement with decadal means of
recent observations.

It is of interest to use the data in Figure 14.14 to estimate the respec-
tive time scales from Equations (14.19). As South Cascade Glacier
averages about 800 m in width, tC ∼= 47 years and tD ∼= 33 years.
T. Jóhannesson (written communications dated November 7 and 14,
1996) suggests that time scales calculated in this way, however, are likely
to be maximum estimates because many perturbations do not cover the
entire glacier and thus are advected and diffused over the glacier more
rapidly. Nevertheless, the relative magnitudes should be correct. Because
tD < tC, disturbances should be damped by diffusion before a significant
unstable response is generated. T. Jóhannesson (written communication
dated December 23, 1995) finds that this is generally the case, and thus
argues that diffusion cannot be neglected.

As with Storglaciären, it is difficult to estimate tV for South Cascade
Glacier because, again, there is a riegel beneath the middle of the ablation
area. However, it appears that 100 < h0max < 200 m and b(�0) ∼= 5 m a−1,
so 20 < tV < 40 years. Using detailed field data to evaluate be, Ge, and H,
Harrison et al. (2001) obtained a value of tVH of ∼36 years. These values
are reasonably consistent with those for tC and tD obtained above, partic-
ularly considering that the latter are likely to be maximum values. This
is somewhat unusual, however, as Jóhannesson et al. (1989) find that tV
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is usually significantly longer than tC or tD, as noted earlier. The value of
tVH is also consistent with Nye’s estimate of 43 years. For comparison,
the 1/r0 time scale for South Cascade Glacier is about 15 years.

Summary
In this chapter, we have reviewed Nye’s kinematic wave theory for pre-
dicting the response of a glacier to changes in mass balance, and have
solved the resulting linearized equation (Equation (14.13)) for a simpli-
fied situation neglecting diffusion. Largely because it neglects diffusion,
this solution predicts response times that are, in general, too short. The
more complete approaches that Nye (1963a, b) used in his later papers,
however, are sensitive to conditions at the terminus of the glacier, so
although the linearized theory can yield reasonable estimates of the
response time if these terminus conditions are well known, attempts
to generalize from it have often led to times that are too long. Never-
theless, evidence from real glaciers is consistent with at least two of the
conclusions from Nye’s theory: that the most visible response is at the
terminus, and that this response lags the perturbation by years, decades,
or even centuries.

Jóhannesson et al. (1989) have suggested three alternative time
scales for adjustment. Their time scales for propagation and diffusion
of a disturbance over a glacier, tC and tD, provide measures of the time
required for the glacier to adjust its shape (but not size) to changed con-
ditions. Their volume time scale, tV, on the other hand, utilizes a con-
servation of mass argument. That is, after a change in climate a glacier
will be either too large or too small, and thus will not be in equilib-
rium with the changed conditions. It takes time for the surplus or deficit
in mass balance to bring about the necessary change in volume. Thus,
the volume time scale is more consistent with “response times” based
on observation, and indeed with those based on numerical modeling.
Harrison et al. (2001) have refined Jóhannesson et al.’s approach to
include the Böðvarsson effect, an effect that lengthens the predicted
response time, especially on relatively flat glaciers, and that can lead to
an unstable response.

Numerical modeling suggests that kinematic waves such as those
which Nye envisioned should form on glaciers, but they are likely to be
long and low, and the increase in speed within them, small. Thus, they
will be difficult to detect. Additional factors, such as major changes in
conditions at the bed, are probably responsible for the impressive waves
that have been documented by field observations. Because diffusive pro-
cesses dampen kinematic waves relatively rapidly, unstable responses
(Figure 12.1b) in areas of compressive flow are unlikely.



Appendix
Problems

Chapter 3

3.1. Determine the changes in bw, R, and Ta that would, if they occurred alone,

result in a 100 m increase in equilibrium line altitude. Assume a 120 d melt

season and a lapse rate of −0.007 ◦C m−1.

Chapter 4
4.1. Determine the activation energy for creep for the following two sets of data.

Data set 1 Data set 2

ε̇, a−1 T, ◦C ε̇, a−1 T, ◦C

18.65 −5.5 1.33 −30.4

9.06 −9.9 0.0047 −61.0

All experiments were run at the same stress. Express the activation energy in

kJ mol−1.

4.2. (a) The temperature dependence of ice creep can be represented by an

Arrhenius-type relation:

ε̇e =
(

σe

Bo

)n

e− Q
RθK

By differentiating this with respect to θK and expressing the result in terms

of differentials, determine the fractional change in ε̇, d ε̇/ε̇, due to a

change, dθK, in θK.

(b) In a laboratory experiment run at a temperature of −15 ◦C, what would be

the approximate percentage variation in ε̇ if the temperature were allowed

to vary by 0.5 ◦C? Use Q = 79 kJ mol−1.

4.3. Demonstrate analytically that the temperature dependence of ice creep can be

reasonably approximated by:

ε̇ = ε̇oekθ

where θ is the temperature in degrees Celsius and ε̇o is the strain rate at 0 ◦C.
What are reasonable values of k for different temperatures?

4.4. Calculate and plot the variation of crevasse depth with tensile stress up to a

tensile stress of 0.2 MPa.

391
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Chapter 5
5.1. Calculate the difference between the surface velocity and the bed velocity

in a glacier 300 m thick with a surface slope of 0.046. Use n = 3

and B = 0.141 MPa a1/n. Use:

� the infinitely wide approximation,
� an approximation based on Raymond’s estimate of the appropriate shape

factor for Athabasca Glacier (0.58), and
� the semicircular approximation.

Which result comes closest to the values measured by Raymond on Athabasca

Glacier, and why?

5.2. At the equilibrium line on the Barnes Ice Cap Trilateration Net, the surface

velocity is 6.7 m a−1, the ice is 185 m thick, and the surface slope is 0.07.

Using B = 0.317 MPa a1/n (appropriate for ice at about −5 ◦C) and n = 3,

calculate and plot a velocity profile through the ice cap. What is the basal

velocity. Is your result consistent with the above ice temperature?

5.3. An infinitely wide glacier has a velocity of 1 m a−1 at the surface and

0.7 m a−1 at a depth of 16 m. Determine the thickness of the glacier. Assume

ub = 0 and n = 3.

5.4. (a) An ice sheet has a surface profile given by h = √
cx , where h is the height

in meters and x is the distance from the margin, also in meters.

Differentiate this to obtain an expression for the surface slope, S. By

inserting this in the expression for the basal drag, τ = ρghS, show that τ is

independent of x. Obtain a numerical value for τ if c = 16 m.

(b) Let the ablation rate be bn m a−1. By equating the discharge through any

cross section to the volume of ice lost by melting downglacier from that

cross section, show that the average horizontal velocity in the ablation zone

is: u = �
√

x where � = bn/
√

c. (Note that � is negative because bn is

negative. Thus, u is negative, consistent with the fact that it is in the

−x-direction.)

(c) At x = 1500 m the glacier flows over a bump in the bed, 0.5 m high, and

quarries a cobble from the lee slope of the bump. The ice closes under the

cobble, so at the start of its journey to the margin it is 0.5 m above the bed.

Determine the x and z coordinates (z vertical) of the point where the cobble

will melt out, and its time en route. Plot its path. Assume plug flow and

incompressibility. Use bn = 0.6 m a−1 and c = 16 m, and assume the

ablation zone is 2 km wide. Hint: use the incompressibility condition,

du/dx = −dw/dz, and the result from Problem 5.4b to get w(x).

Then use the definition of velocity, u = dx/d t, and the initial condition,

x(t = 0) = xo, to integrate the expression for u to get

x(t) = (xo
1/2 + 1/2�t)2. Then use w = dz/d t, and the initial condition,

z(0) = zo to obtain z(t) = zo(xo/x)1/2.

(d) The accumulation zone in the above problem is 10 km wide (Figure P1). At

the end of the Pleistocene a mammoth dies 500 m from the divide.

Determine the x and z coordinates of the point where he melts out, and his
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Figure P1.

time en route. Assume the glacier has had a balanced budget for the last

10 000 a, and that the ablation rate is 0.6 m a−1 over the 2 km wide ablation

zone, as before. Plot the path. Hint: do as in Problems 5.4b and 5.4c,

remembering that the horizontal velocity is now u = −bn(L − x)/
√

cx ,

where L is the distance from the margin to the divide. You will encounter

an integral
∫ √

x/(L − x) dx which may be transformed using r = L − x

and then evaluated using the tabulated integral:

∫ √
L − r

r
dr = 2

√
(L − r ) + L

(
1√
L

ln

√
(L − r ) − √

L√
(L − r ) + √

L

)

(e) If the mammoth was 3 m long and, when he died, he was lying down with

his tail 3 m closer to the divide than his head, determine the time required

for his body to pass completely beneath the equilibrium line, and his

approximate length when he is at this point in his journey.

Chapter 6
6.1. Calculate and plot a temperature profile for an ice sheet that is 1368 m thick,

assuming that θ s = −24 ◦C, bn = 0.35 m a−1, κ = 37.2 m2a−1, u = 0, and

βo = −0.0228 ◦C m−1. Obtain temperatures at least at 0, 200, 500, and

900 m above the bed.

6.2. (a) Determine the influence of strain heating on a temperature profile by

integrating the energy balance equation, simplified with the use of the

following assumptions:

• horizontal temperature gradients are negligible,

• κ = constant,

• steady state,

• zero accumulation (or ws = 0), and

• ε̇ = (σ/B)n.

Note: this is easier if the z-axis points downward. If you retain a z-axis

pointing upward, the sign of βo below must be changed.

(b) Plot the profile for a glacier that is 1000 m thick with:

θ s = −35 ◦C ρ = 900 kg m−3 α = 0.01

βo = 0.0228 ◦C m−1 K = 7.1 × 107 J m−1a−1 ◦C−1 n = 3

B = 0.397 MPa a1/3
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To see the effect, you will need to make calculations at about 25 m

intervals between 900 and 1000 m depth, and you will need to use a long

temperature axis.

6.3. Solve Problem 6.2 but with the additional assumption that strain heating is

negligible, and calculate the temperature at the base of this same 1000 m thick

glacier. How much does strain heating increase the basal temperature?

6.4. (a) To get a sense of the influence of longitudinal advection, calculate

and plot a temperature profile for the glacier in Problem 6.1, assuming

u = 15 m a−1. Use the Column model with the values of θ s, bn, κ, H, and

βo given in Problem 6.1, the value of K in Problem 6.2, α = −0.01,

λ = −0.01 ◦C m−1, and wb = 0 m a−1.

(b) Compare the result with that from Problem 6.1 in detail.

6.5. (a) Obtain an expression for the temperature gradient and the temperature

distribution in a stagnant sheet of ice of infinite horizontal extent, and

thickness H. Assume that the climate has been warming at a rate of θ̇ , and

that the interior of the glacier is warming at the same rate.

(b) By examining the original differential equation after simplification, explain

how the uniform warming rate is accomplished.

Chapter 8
8.1. Water flowing along a glacier bed must warm up as the ice thins and the

pressure melting point increases. Water flowing up an adverse bed slope must

warm up more rapidly, as the ice is thinning more rapidly. The energy needed

to warm the water comes from viscous dissipation. Determine how steep the

bed slope can get, relative to the surface slope, without exceeding the amount

of viscous energy available. Obtain a numerical value for the constant of

proportionality between the two slopes.

8.2. The discharge in a horizontal subglacial conduit with a circular cross section is

0.025 m3 s−1. The water pressure in the conduit is 1.5 MPa and the hydrostatic

pressure in the adjacent ice is 2.0 MPa. The Manning roughness of the conduit

is 0.1 m−1/3s and the viscosity parameter, B, is 0.16 MPa a1/3. Determine the

pressure gradient in the conduit, the radius of the conduit, the water velocity in

the conduit, and the melt rate on the conduit walls (or closure rate).

8.3. An esker splits as shown in Figure P2. Stratigraphic relations suggest that the

branch around the end of the ridge is younger. Explain why the esker changed

course, and estimate the basal shear stress at the time of the change in course.

Assume that the glacier had a parabolic profile, h = √
cx . Assume further that

water flow down the potential gradient could be maintained even though some

water might be forced to refreeze to keep the temperature at the pressure

melting point.

8.4. Consider a glacier with a parabolic profile, h = √
16x , where x is the

horizontal coordinate in meters and h is the surface elevation. Assume that the

glacier is 2 km long and is on a horizontal bed. It is drained by a circular

conduit at the bed. Calculate and plot the height of the hydraulic grade line as a

function of distance from the terminus for discharges of 0.015 m3s−1, a winter
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discharge, and 1.0 m3s−1, a summer discharge. Use a channel Manning

roughness of 0.1 m−1/3s and ice viscosity parameter, B = 0.06 MPa a1/3.

Assume that the conduit is at atmospheric pressure within 50 m of the margin.

(As the integration has to be carried out numerically, you might want to write a

short program to do the calculations.)

Chapter 9
9.1. Use Equation (9.2.) for σS in terms of σxx, σyy, and θ to do the following.

(a) Determine the angle θ of the planes on which σS is a maximum.

(b) Determine the orientation of these planes relative to those on which σN is a

maximum.

(c) Determine the normal stress, σN, on the plane on which σS is a maximum.

(d) Determine the magnitude of σSmax.

Express all answers in terms of σxx, σyy, and σxy.

9.2. Show that J1 and J2 in three dimensions (Equations 9.8a) reduce to

Equations (9.5) in two dimensions.

9.3. We have shown (Chapter 6) that 1
2 ε̇xzσxz + 1

2 ε̇zxσzx is the total work done per

unit time in a unit volume of ice subjected to simple shear. It is also true that
1
2 ε̇xxσ

′
xx is the work done by a normal stress. Thus the total work done is

W = 1
2 ε̇i j σ

′
i j . Show that because ε̇i j = λσ ′

i j , W = ε̇eσ
′
e.

9.4. A laboratory ice deformation experiment is run using biaxial compression with

applied stresses σ 1 and σ 2 on the faces of a cube. Stresses in the third direction

are atmospheric. Strain rates are ε̇1 and ε̇2 in the σ 1 and σ 2 directions.

Determine the effective stress and the effective strain rate.
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9.5. An experimental system is designed to run tests in combined uniaxial

compression and simple shear (Figure P3). Determine the effective stress and

effective strain rate for this stress configuration.szx

sxx

Figure P3.

9.6. The third invariant of the stress tensor, J3, can be interpreted in terms of the

stress configuration. To do this, we define a stress configuration parameter, ξ ,

by ξ = J3
∗. Here, J3

∗ is a normalized value of J3 obtained by dividing all of the

stresses by a constant factor, c, which you will derive below. The motivation

for doing this is that it simplifies the expression for ξ . We proceed as follows.

The octahedral shear stress is defined by: σ 2
o = 1

3 σ ′
i j σ

′
i j . Let us normalize σo

by dividing all stresses by a constant factor, c, thus: σ 2∗
o = (1/3c2)(σ ′

i j σ
′
i j ).

(Here, the ∗ is used to indicate the normalized value.) Let us further select c

such that σo
∗ = 21/6. Obtain an expression for c in terms of the second

invariant of the stress tensor, J2. Because the normalized stresses must retain

the sign of the original stresses, use |c| where necessary.

Show the following.

(a) The deviatoric stresses in uniaxial compression under a compressive stress,

σ3, are: (−σ3/3, −σ3/3, 2σ3/3), and (remembering that σ3 is negative) that

ξ = −1 for this case.

(b) The deviatoric stresses in pure shear under stresses −σ1, σ3, are: (−σ1, 0,

σ3), and that ξ = 0 for this case.

(c) For the stress configuration in Problem 9.5 above, obtain an expression for

ξ in terms of σxx and σxz, and evaluate this for:

σxx = −0.1 MPa, σxz = 0.1 MPa, and

σxx = −0.1 MPa, σxz = 0 MPa.

Chapter 10
10.1. Calculate and plot velocity profiles for an infinitely wide glacier that is 300 m

thick with a surface slope of 0.046. Use n = 3 and B = 0.141 MPa a1/n.

Calculate one profile for ε̇xx = 0.0 and one for ε̇xx = 0.1 a−1. Assume

a sliding velocity, ub, of 20 m a−1. Explain the difference between the

profiles.

Chapter 11
11.1. Calculate a temperature profile in the ablation area of a glacier in a place

where the ice is 500 m thick, the vertical velocity at the surface, w, is

0.25 m a−1 (upward), βo is −0.017 ◦C m−1, and the temperature at the surface

is −20 ◦C. Assume that w decreases linearly with depth.

11.2. Using Equation (11.9b) and an initial condition in which θ = −20 ◦C at the

surface, varies linearly to −10 ◦C at a depth of 4 m, and is then independent

of depth to a depth of 15 m, calculate a temperature profile for the end of June

(t = 1/2 year). Use κ = 16 m2a−1 and a sinusoidal variation in temperature
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with time at the surface, with θ r = 18 ◦C. The initial condition applies on

January 1 (t = 0). Compare your solution to the analytical solution given by

Equation (6.31).

Chapter 12
12.1. For comparison of borehole deformation rates, with shear stress σzx and shear

strain rate ε̇zx, with deformation rates in uniaxial compression, the stress in

uniaxial compression must be multiplied by 1/
√

3 and the strain rate by√
3/2 (Nye, 1953). Show that this is true by calculating σe and ε̇e for the two

stress configurations.

12.2. Starting with Equation (12.48), verify Equation (12.49). To do this it is

necessary to use only one of Equations (12.48) (i.e. for i = 1).

12.3. Starting with ε̇ = (σ/B)n and ε̇i j = λσ ′
i j , show that the constants n and B in

Glen’s flow law can be evaluated if one can determine only one component of

the stress tensor, the corresponding component of the strain rate tensor, and ε̇

at two or more places. Here n and B are determined either algebraically when

there are only two points, or by plotting 1/λ against ε̇ and drawing a straight

line through the points. Explain.

12.4. Determine n and B in MPa a1/n for the following two sets of velocity

derivatives.

Depth Velocity x y z

9.4 m u −0.004 45 0.000 00 −0.014 17

v 0.000 00 0.000 13 0.003 61
w 0.000 99 −0.000 40 0.004 32

12.5 m u −0.004 14 0.000 00 −0.022 96

v 0.000 00 0.000 12 0.003 93
w 0.000 99 −0.004 68 0.004 02

The surface slope is 0.152. Depths are in meters and velocities in m a−1. The

y-axis is transverse and the z-axis is normal to the surface and directed

downward. Data are from the Barnes Ice Cap boreholes.

12.5. Verify that the vertically downward forces on the top of the semi-cylinder of

ice in Figure 12.6 balance the vertically upward forces on the bed when the

pressure in the ice is P and the pressure in the conduit is �P.

Chapter 13
13.1. Verify Equation (13.5).

13.2. Calculate γ oc for the mammoth in Problem 5.4e.

13.3. Verify that Equation (13.13) follows from Equation (13.12) and that

Equation (13.14) is a solution to Equation (13.13).
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Chapter 14
14.1. We found (Equation (5.7)) that one could obtain a first-order estimate of the

surface velocity (assuming no sliding) from:

us = 2

n + 1

(
ρg sin α

B

)n

H n+1

where H is the ice thickness and α is the surface slope. By expressing this in

differential form and using the approximation α ∼= sin α (∼= tan α), show that:

dus

us
= n

dα

α
+ (n + 1)

dh

h (P14.1)

14.2. Use Figure 14.13 to do the following.

(a) Compare the observed change in velocity of Nisqually Glacier from 1949

to 1951 with that calculated from Equation (P14.1) above. Use h ≈ 80 m.

(b) Estimate the change in flux, �q, and use Equation (P14.1) to estimate the

fraction of the change that is due to the change in thickness and that due

to the change in surface slope, respectively. Then calculate c0 and D0

from their definitions, expressed in finite difference form. (Note that q, c0,

and D0 are defined in terms of a unit width.)

14.3 Consider a perturbation, b1 = 0.1 m a−1 on Storglaciären, which is 2.8 km

long and has a maximum velocity, u0max ≈ 35 m a−1. Calculate �� and the

response time based only on the time needed to accumulate the additional

mass. Use the Jóhannesson et al.’s model generalized to three dimensions. For

this you will need to know the geometry of the glacier (Figures 8.13 and

12.9), and you will need:

glacier area = 3.03 × 106 m2

width at terminus, W (�o) = 400 m

ablation rate at terminus = 1.3 m a−1.

(W(�o) is larger than shown in Figure 12.9 because the topography is such that

the width would expand significantly as the glacier thickened here.) Assume

that the average ice thickness over a cross section is ∼1/2 the thickness shown

on the profile. (Remember that �V �= h W�� because W > W (�o).)
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area of Storglaciären, Sweden, as revealed by dye-trace studies. Journal of

Glaciology, 34(117), 217–227.



References 417

Segall, P. (1984). Rate-dependent extensional deformation resulting from crack

growth in rock. Journal of Geophysical Research, 89(B6), 4185–4195.

Shabtaie, S. and Bentley, C. R. (1988). Ice-thickness map of the West Antarctic ice

streams by radar sounding. Annals of Glaciology, 11, 126–136.

Sharp, M. (1982). Modification of clasts in lodgement tills by glacial erosion.

Journal of Glaciology, 28(100), 475–481.

Shreve, R. L. (1972). Movement of water in glaciers. Journal of Glaciology, 11(62),

205–214.

(1984). Glacier sliding at subfreezing temperatures. Journal of Glaciology,

30(106), 341–347.

(1985a). Esker characteristics in terms of glacier physics, Katahdin esker system,

Maine. Geological Society of America Bulletin, 96(5), 639–646.

(1985b). Late Wisconsin ice-surface profile calculated from esker paths and

types, Katahdin esker system, Maine. Quaternary Research, 23(1), 27–37.

Shreve, R. L. and Sharp, R. P. (1970). Internal deformation and thermal anomalies

in lower Blue Glacier, Mount Olympus, Washington, USA. Journal of

Glaciology, 9(55), 65–86.

Shumskii, P. A. (1964). Principles of Structural Glaciology. New York: Dover.

Sih, G. C. (1973). Handbook of Stress-Intensity Factors; Stress-Intensity Factor

Solutions and Formulas for Reference. Bethlehem, PA: Institute of Fracture and

Solid Mechanics, Leigh University.

Skempton, A. W. (1985). Residual strength of clays in landslides, folded strata, and
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Index

ablation area 17

accumulation area 17

accumulation area ratio 31

activation

energy xv, 49, 52, 67–68

enthalpy 68

volume 68

Admundsen Sea 39

Agassiz Ice Cap 311, 364

Aleutian low 37, 39

Antarctica

accumulation rate 35–36, 39

basal drag 138–139

basal temperature 138–142

basal temperature gradient 139

drifting (of snow) 99

ice shelves 333

ice streams in, see ice streams

mass balance 32

Pleistocene–Holocene transition 366

surface topography 138

Arolla ice tunnel 323

Athabasca Glacier 86–87, 95, 155

Atnedalen, Norway 241

axes

instantaneous stretching 351

principal, of strain 267, 352

principal, of strain rate 15

principal, of stress 254, 267

B 15, 66

effect of dirt on 160–161

effect of fabric on 69–70

effect of water content on 70

variation with temperature 67–68

backward difference 296

balance

net 23

specific 23

summer 23

winter 23

velocity 78–79

Barnes Ice Cap

borehole deformation in 341–348

cumulative strain in 354–356

foliation in 361

ice fabrics in 62–63, 69–70

near surface temperature in 122

Pleistocene ice in 343–344

rheology of Pleistocene ice in 311

temperatures in 295–296

winter balance of 29

basal, see bed

basal ice, rheology of 159–160

basal plane 43, 53

bed

drag on 85–86, 163

freezing at 123–124, 136, 137

melting at 34, 123–124, 136

temperature at 135–137, 306

Bindschadler Ice Stream 188–189,

192

Bingham material 259

Bjerrum defects 44

Black Rapids Glacier 189

Blue Glacier 155, 177, 197, 199, 238

Böðvarsson effect 379–381

borehole

closure 321–323

deformation 338–341

problem near surface 346

use to determine n and B 346–348

Boudinage 364

Breidamerkurjokull 177, 189

budget 23

gradient 29–31

budget imbalance 24

bulk modulus xv

bullet boulders 247

Burgers vector xv, 49

421
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Byrd Station

debris in basal ice 137

ice fabrics at 62

thinning rate 131

Pleistocene–Holocene transition 366

c-axis 44

calving

as a mode of ice loss 31–32

numerical modeling of 304–305

of ice shelves 36

relation to water depth 33

submarine 32–33

Camp Century 137

cavities, subglacial 162–167

centered difference 296

cirques 248–250

Clausius Clapeyron slope 8

clay, in till 169, 171–172

climate

continental 29, 31, 200

maritime 29, 31, 200

climatic change

instabilities in response to 366–367

isostatic response to 366–367

modeling the response to 381–383

response of glaciers 365–390

analysis using perturbation theory 27–28,

371–373

effect of diffusion 375–376

effect of longitudinal strain rate 367–368

observations of 383–384

problem at terminus 376

with uniform longitudinal strain rate 373–375

response time–volume time scale 376–379

thermal response to 366

coaxial deformation 351

cohesion 168, 169

apparent 169

role of clay 169

cold patches 156–158

Columbia Glacier 3, 34, 177

compressive flow 276

conduits

englacial 197–201

subglacial

closure of 202, 324–326

equilibrium size 202

linked cavity 216–221

multibranched arborescent 221–223

Nye or N 216

on eskers 238–240

on till 223–230

Röthlisberger or R 216

shape of 213–215

tunnel 215–216, 220–221

conservation of mass 9–10, 78

consolidation

normal 170

overconsolidated 170

controlling obstacle size 152

Crank–Nicolson 295

creep

Coble 64

diffusional 63, 65–66

Nabarro Herring 64

power law 63

primary 51

secondary 51

steady state 52

tertiary 52

transient 52

crevasses

formation of 73–74

water flow in 200–201

critical state line 173

cross glide 47

cross slip 52

crystal size 65, 68–69

cumulative strain

calculating 353–354

in Barnes Ice Cap 354–356

parameters describing 346–348,

352

cylindrical hole

closure of 321–323

strain rates around 317–318

stresses around 316–321

Dansgaard–Oeschger cycles 129

Dawson’s integral 133

debris entrainment, see erosion

debris in basal ice 100, 137, 160

debris-bearing ice

rheology of 159–160, 161

deformation, see also strain 262–264

elastic 53, 54

mechanism maps 63–66

mechanisms 63–64

Del operator 116
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density

bubble-free ice xiv

water xiv

depth hoar 21

Devon Ice Cap 311, 364

Des Moines Lobe 174

diffusion

effect on response to climatic change

375–376

diffusional flow 63, 65–66

dihedral angle xv

dilation, of till 171

disintegration ridges 103–105

dislocation

climb 50–52, 63

cross slip 52

density 49, 50

edge 44

formation of 46–47

glide 63

healing 66

kinks in 47–48

movement of 47–48

recovery 50

screw 44

tangles 46, 50–52

dislocations 44–48

doughnuts 104

drag, basal, see bed

drainage systems, subglacial

conduit 215–216

linked cavity 216–220, 231

multi-branched arborescent 221–223

on till 223–230

drumlins 309–310

dry snow

line 20

zone 20

effective normal pressure 161

electrical conductivity 65

electromagnetic forces, on clays 169

EISMINT 302

energy, specific surface

of grain boundary xv

of liquid–solid interface xv, 7

energy balance 112–117

advection effect 112–114

conduction effect 114–115

strain heating effect 115–116

energy grade line 210

Engabreen 156

enhancement factor 69–70, 311

ENSO 39–40

equilibrium line 17

altitude 27–29

equipotential surfaces 201–204

erosion 142, 157–158

thrust features 142

error function 121–122

eskers 232–241

conduits on 238–240

Katahdin 236, 241

nets 240–241

on valley sides 235

over ridges 234–235

ramp structures 240–241

sediment supply to 236

Eulerian coordinate system 114, 117

extending flow 276

fabric 55

conical 59

development of 59

effect on B 69–70

measurement of 55–58

multiple maximum 61–62, 65

single maximum 61, 62

small circle 60, 62

variation with depth 62–63

facies 20

Findelengletscher 165–167, 203, 223

finite-difference modeling 291–298

alternating direction schemes 295–296

backward, forward and centered differences

296

higher-order solutions 298

implicit methods 294–295

non-dimensionalization 296–297

shallow ice approximation 297–298

finite-element modeling 298–299

firn 17

flow field 92–94

flow law 15–16, 66–70, 267–268

effect of fabric 69–70

effect of grain size 68–69

effect of pressure 68

effect of temperature 67–68

flowlines 92–93

flux, ice 87
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foliation

components of 356–358

folds in 361–364

in the marginal zone 359–361

force balance 326–330

forward difference 296

fracture

mechanics 70–74

toughness xvi, 72

Frank Reed sources 46

frazil ice 249

free energy 58, 59

freezing at bed 123–124, 136, 137

friction

angle of internal 168, 171–172

rock to rock 156, 171

gas constant 49

Gaukler Manning Strickler equation

206

geothermal heat flux 119–120, 190

glacier

cirque 6

classification 6–7

mining near 3

outlet 6

polar 6–7

polythermal 7

sources of water 3

subpolar 7

temperate 7–8

temperature of 6–8, 112–146

tidewater 6

valley 6

Glen’s flow law 15, 66

global warming 3

global positioning systems 77

Gornergletscher 223

grain boundary

melting 65

migration 52, 53, 58–59, 63,

65–66

mobility 64

grain bridges 174–175, 177, 178

grain nucleation 58–59

grain size (ice) 65, 68–69

Greek lead smelting 2

Greenland Ice Sheet

dating ice in 21–22

folds in 364

lead in 2

mass balance of 32, 41

numerical model of 311

hazards 2–3

heat

advection 112–114

conduction 114–115

sensible 26

heat capacity 8

air-free water xiv, 8

air-saturated water 8

ice xiv, 65

heat flow unit 119

heat of fusion xiv, 7, 124

Heinrich layers 36, 110, 367

Hill lake pair 142

Hintereisferner 24, 381–383

Hudson Bay 311

Hudson Strait 36, 109, 311

hydraulic grade line 210

hydraulic jacking 163–165

hydroelectric power 3, 156

ice

crystal structure of 43–44

dating 21–23

electrical conductivity of 22

forms of 43–44

Ic 43

Ih 43–44

as a metamorphic rock 2

microparticles in 23

Pleistocene 102, 311, 343–344

water content of 70, 160

volcanic ash in 23

ice cap 6

ice sheet 6

ice shelves

bottom melting of 36–37

calving of 36

creep of 333–338

Larsen 36, 37–39, 74

side drag on 337–338

Ross 36

ice streams 105–110

erosional capabilities of 168

in Pleistocene ice sheets 109–110

speed of 168

stability of 190–193
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temporal changes in

shear margins 108–109

speed 108

water pressure under 168

ice-walled lake plains 105

impurities

effect on ice rheology 65

effect on sliding 158–159

incompressibility condition 9–10

internal friction, angle of 168, 171–172

effect of granulometry on 171–172

frictional component of 171

invariant, stress 256, 260–261

irrotational deformation 264, 351

isotropic 267

Jokulhlaup 3, 206

Kangerlussuaq 102

Kamb Ice Stream 108, 192, 193

kettled outwash plain 241

kinematic waves

definition of 368

equation of 370

modeling 381–383

on Nisqually Glacier 386

speed of 369–370

theory 368–371

kink pairs 47–48

Kronecker delta 257

Lagrangian coordinate system 114,

117

Lake Vostok 99, 138

lapse rate 31, 129

Laurentide Ice Sheet

evidence of collapse 367

ice shelves 333

ice streams in 109

numerical models of 306–309, 310–313

temperature distribution in 135–137,

306

Late Glacial Maximum (LGM) 306

latent heat of fusion xiv, 7, 124

linked cavity drainage system

orifice 216–219

stability of 218–219

transition to tunnel 219

liquid–solid surface energy xv, 7

Little Ice Age 2–3, 33

longitudinal strain rate

depth variation 88–89

effect on transverse profiles 94–96

effect on longitudinal velocity profile 285

effect on glacier response to climatic change 367–368,

374–375

role in balancing bn 286

role in calving 304

role in borehole deformation 338

MacAyeal Ice Stream 192

Manning equation 206

Manning roughness 206

mass, conservation of 9–10, 78

Mass balance, see also balance

causes of fluctuations 26–29

cumulative 25–26

global 40–41

of Alaskan glaciers 41

of polar ice sheets 34–36

effect of atmospheric circulation patterns on 36, 37–39

measurement of 23–24

principles 23–26

material lines 351

melting

at bed 124, 136

of conduit walls 205–207

melting point depression xiv, 7–8

meltwater, percolating 20, 122

Mer de Glace 3

microcracks 247

Mohr’s circle 255–256

Mohr–Coulomb relation 168

momentum balance 261–262, 327, 333

monocrystals 53

moraines

ribbed 143, 194

stoss side moraines 143

Thule–Baffin 99

moulin 200–201

n 15, 49–54, 66

non-dimensionalization 296

North Atlantic Oscillation 40

normal consolidation line 173

Nisqually Glacier 383–387

numerical integration 289–291

numerical modeling 288–313

goals of 289

coupling 301, 303–304
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numerical modeling (cont.)

finite-difference, see finite-difference modeling

finite-element 298–299

forcing 300–301

initial conditions 299–300

intercomparison of 301–302

sensitivity testing 302–303

thermomechanical 303

three-dimensional 310

tuning 303

validation 301

numerical models of

Antarctica 138

basal drag 138–139

basal temperatures 139–142

Laurentide Ice Sheet 310–313

Nye channels 216

octahedral plane 15

orifice 216–219

overdeepenings 248–250

oxygen isotopes 22

Pacific Decadal Oscillation 39–40

paleoclimatology 2, 307

Penobscot River 236

percolation zone 20

permafrost, role in glacier flow 305–310

permeability of glacier ice 198–199, 201

perturbation techniques

applied to changes in ELA 27–28

applied to changes in profile 371–373

Peyto Glacier 38

piezometric head 210

plane strain

cylindrical hole 316–321

stresses in

nonlinear material 281, 284–285

perfectly plastic 273–277

velocities in

nonlinear material 281–285

perfectly plastic 278–281

plasticity, perfect 259, 268

Pleistocene ice, rheology of 343–344

ploughing 185–186

Poisson’s ratio xv

polygonization 58

pore close off 19

precipitates, subglacial 158

precipitation gradient 30

preconsolidation test 174

pressure

critical 165

effective 161

separation 163

principal

stresses 15

strain rates 15

prismatic plane 52

profiles, transverse surface 94–96

pure shear 59, 351

distribution of in an ice cap 353

pyramidal plane 52

quarrying 244–248

quadrature 290

Gaussian 290

radar stratigraphy 96–98

radiation 26, 28, 29

radioactive waste 3–4

ramp structures 240–241

rate limiting processes

in ice deformation 48–53

climb as 50–52

cross slip as 52

definition of 48

drag as 49–50

slip on pyramidal plane as 52, 53

in till deformation 178

Raymond bump 98

receiving area 231

recrystallization 54–59

dynamic 58, 64

by grain growth 58

by nucleation of new grains 58–59

by polygonization 58

regelation 148, 156

effect of impurities 158–159

into subglacial till 137

theory 149–150, 158

thickness of layer 154–155

unknown pressure field 158

relict surfaces 142–143

reservoir area 231

response time 374, 376–379

response to climatic change

volume time scale 376–379

rheology

of Holocene ice 343–344

of Pleistocene ice 343–344

Roman lead smelting 2
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Ross Ice Shelf 106, 108, 109

rotation 263

rotation rate 264

Röthlisberger channels 216

roughness of bed 149, 153–154

truncated white 154

white 152, 154

sea level 109

satellite interferometry 109

Sentinel Glacier 38

shallow ice approximation 297–298

shape factor 84, 86–87

shear

pure 59, 351

simple 61, 351–352

shear modulus xv, 49

shear stress

basal 85–86

calculation from force balance 326–330

SI units 5

simple shear 61, 351–352

distribution of in an ice cap 353

sintering 19

Siple Coast 106, 107

Siple Dome 97, 108

Site 2 131

sliding 148–159

at subfreezing temperatures 193–194

by plastic flow 148, 150

by regelation 148

effect of cavities 162, 163

effect of impurities 158–159

effect of rock–rock friction 156

effect of water pressure 162–167

over till 184–185

regelation theory 149–150, 158

role of normal pressure 161

speed 151–153, 154, 177

tests of theories 154–155

weaknesses of theory 156–159

slip line field 277

snow drifting

effect on budget gradient 30

effect on velocity field 98–105

snow

line 20

stratigraphy 20–21

transformation to ice 20

South Cascade Glacier 37, 387–390

steady state 78–79, 91–93, 365

Storglaciären

basal shear stress 330–333

conduit character 221–222, 228

conduit roughness 206

response time 381

sliding speed 166–167

till composition 170

till rheology 177, 180–182

water pressure in 249

strain 262–264

definition 12

elastic 53, 54

ellipse 349–351

general theory of 262–264

inhomogeneous 52–53

logarithmic 13, 265

notation 10–11

plane, see plane strain

principal axes of 267, 352

rate 12, 263–264

sign convention 10–11, 18

transformation of 265

strain heating 115–116

boundary condition 132

strain rate 12, 263–264

effective 14–15, 258

in monocrystals 53

longitudinal, see longitudinal strain rate

octahedral 14–15

principal 15

principal axes of 15

stratigraphy, radar 96–98

strength, crushing, of ice xvi, 32

strength, of granular medium

failure 172

residual 172

ultimate 172

yield 172

stress 252–261

basal shear 79–81, 326–330

comparison of theory with real glaciers 286–287

definition 10

deviatoric 13–14, 257, 276

effective shear 14–15, 258

equilibrium 261–262, 327, 333

general theory of 252–261

in a slab

nonlinear material 281

perfectly plastic material 273–277

in plane strain 260, 272–277, 281, 284–285

intensity factor 71, 72
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stress (cont.)

internal 53–54

invariants 256, 260–261

longitudinal, effect on conduits 214, 326

normal 10

notation 10–11

octahedral 14–15

preconsolidation 170

principal 15, 254–255

principal axes of 254, 267

shear 10, 255

shear, depth variation 79–81

sign convention 10–11, 18

transformation of 252–254

yield 13, 258–260

striations, formation of 156

structural geology 2

summation convention 257

superimposed ice 21

superimposed ice zone 21

surface, 500 mb 37

surface elevation

transverse profiles of 94–96

surges 230–232

Svartisen 156, 160

Taylor Dome 98

temperature

homologous 63

melting 7–8

near surface 122–123

mean annual 122–123, 127–129

pressure melting 7–8

temperature boundary conditions

bed 119–120, 123–124

surface 121–122

temperature distribution along a flowline 135–137,

306

temperature profile

ablation area 127, 291–292

accumulation area 133–134

at a divide 117–123, 124–126

column model 131–134, 139–142

effect of sinusoidal oscillations at surface on 127–129

error induced by assumed vertical velocity

distribution 126–127

near surface 127–131

using to estimate thickening rate 130–131

warming rate problem 137, 138

with only conduction and warming 134–135

tensor 11

first rank 11

invariants of 256, 260–261

rotation rate 264

second rank 11

strain 263

strain rate 263–264

symmetric 12

velocity derivative 264

texture 54

thermal conductivity

ice xiv, 114, 150

rock 150

temperature dependence of 117

thermal diffusivity xiv, 115

thermal expansion coefficient

ice xv

water xv

thrust features 142, 309–310

Thule, Greenland 100

Thule–Baffin moraines 99

thin section 55

tidewater glaciers 6

cyclic behavior of 33–34

till

consolidation of 170–171

decoupling of ice from 184–185

deformation measurements in 180–182, 188–189, 190

deformation of 168–184

depth variation of 187

rate controlling process in 178

deforming, thickness of 186–190

dilation of 171

dilatant hardening of 182

flow into subglacial conduits 223–224, 225

fractal size distribution of 175–177

grain bridges in 174–175, 177, 178

grain fracture 170, 174–177

granulometry of 174–177

in overdeepenings 249–250

ploughing of 185–186

residual strength 172, 178

rheology of 177–184

strain rates in 177

transport 186

yield strength 172

tiltmeters 181, 189

time constant (for change in profile) 374

Trapridge Glacier 177

trimline 86
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transverse till scarps 143, 194

trapezoidal integration 290

triple point

pressure xvi, 159

temperature xvi, 7, 8

tunnel closure 202, 321–323

tunnel valleys 241–244, 309–310

T term 328, 345

uniaxial compression 59

units 5

unloading–reloading line 173

Urumqi Glacier No. 1 193

Variegated Glacier

drainage system 216

surge of 231–232

veins, water flow through 197–199

velocity

balance 78–79

comparison of theory with field data 84, 86–87, 286–287

depth averaged 87–88

effect of drifting snow on 98–105

emergence 91–92, 365

flow field 92–94

in a slab of nonlinear material 282–284

in a slab of perfectly plastic material 278–280

in a valley glacier 83–87

in plane strain 278–285

measurement of 77–78

from satellite imagery 77–78

GPS 77

theodolite 77

submergence 91–92, 365

variation with depth

horizontal 81–82

vertical 88–90

vertical under divide 89–90

viscoplastic 259

viscous heating in

ice 115–116

water 199, 200, 202, 205–206

void ratio 173–174

water equivalent line 210

water content of ice 70

water flow

in englacial conduits 199–200

in subglacial conduits

on hard beds 208–223

on soft beds 223–230

in veins 197–199

up adverse bed slopes 213, 249

water pressure

during surges 231–232

effect of B on 210

effect of bed slope on 211–213

in conduits 208–213

in conduits in till 225, 228

in pore water 142, 174, 312

water table in glaciers 200

waves, kinematic, see kinematic waves

West Antarctic Ice Sheet

collapse of 367

ice streams in, see ice streams or ice stream

name

wet snow

line 20

zone 20

Whillans Ice Stream

changes in drainage under 193

geothermal heat under 192

nature of bed under 107, 168

pulsed movement of 193

shear margins 108

speed of 107, 108

till composition 170

till deformation 177, 186

till void ratio 187

Wolverine Glacier 37

work hardening 50

Worthington Glacier 94

yield criterion 258–260

yield strength 72

yield stress 13

Young’s modulus xv, 63
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