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Preface

This text presents the fundamental equations which govern most of the flow
problems studied by atmospheric scientists. The equations are derived in a
systematic way which is intended to encourage critical evaluation. This goal
is a result of widespread observations that very frequently the atmospheric
scientist uses “seat of the pants” approaches, often quite effectively, but
without deeper analysis. This is a result of the nature of the atmospheric
laboratory, where the potential set of significant physical factors is enor-
mous, the amount of hard observational data is sparse, and the mathematical
apparatus is often obtuse and evolving. The few pertinent analytical results
are often found inadequate to explain actual phenomena. Under such cir-
cumstances, the tendency is to seek simple correlations from whatever ob-
servations exist.

This situation is changing. Now, data are being produced at a much faster
rate than are being analyzed or absorbed. Fundamental equations are being
used in numerical analyses and many “results” are being shown without any
recognition of the underlying mechanisms which produce the response.

The goal of this text is twofold. First, to furnish the student with a back-
ground familiarity with the underlying physics behind the mathematics. Sec-
ond, to explore some systematic methods of relating these physics to at-
mospheric problems.

The greatest challenge in presenting this material is overcoming the syn-
drome known as “tacit knowledge oversight.” That is, ignoring procedures
or knowledge which is so absorbed in the subconscious of applied research-
ers, such as this author, that they assume it is universal. Such knowledge
is then implicitly assumed in the student. There is a conscious effort in this
text to identify and elucidate this knowledge. The goal is to move the level

ix
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at which concepts or equations are taken on faith to the most basic level of
knowledge practical. This is because the geophysical scientist will quickly
get in trouble if the so-called primitive equations are accepted on faith. One
or another of the underlying assumptions in the derivation of the equations
is often in question during applications to the immense variety of geophys-
ical applications. If the derivation is known from fundamental conservation
principles, a new corrected derivation can be made for particular situations.
This principal is vital in the application of eddy-viscosity approximations.
The departure point for the derivations includes certain tenets of physics
such as conservation of mass and energy, Newton’s laws, the continuum,
scaling, and the inertial frame of reference.

The organization of this material is a critical factor in whether the student
will learn it. The selection of order of presentation is complicated by the
choice between basic ideas in teaching plans. Unhappy with selecting be-
tween traditional “linear” versus global conceptualizing, I have opted for a
mixture. In order to make it easier to remember the many complex proce-
dures, a hierarchical procedure is adopted when possible. Sequences of steps
are grouped into units characterized by concepts. The similarities and gen-
eralization of the conservation principles applied to a fluid flow are emphasized.

Since very few students absorb this material the first time around, I have
attempted to provide more than one look within the text. Hence there is
Chapter 1, wherein the rudiments of the concepts are presented, and a first
tour through the material is made. It should be emphasized that the student
is not expected to be able to interpret these concepts after reading this chap-
ter, only to be exposed to them. The process of interpretation requires the
understanding of complex procedures and the manipulation capabilities which
are presented in subsequent chapters. It is felt that early awareness of the
concepts of the larger categories will help understanding by placing each
topic in the overall scheme of things. This will also aid in the hierarchical
organization of the large quantity of knowlege to follow. Such knowledge
will allow the student to “fast forward or reverse” through the line of in-
formation, from fundamental physics to practical use. A good organization
of knowledge plus an appreciation of the conceptual categories will assist
the application of this knowledge.

This is difficult material, particularly for those uninitiated into the realm
of fluid mechanics. Nevertheless, it is only a beginning. There are texts
which probe the mathematical difficulties of existence and uniqueness of the
equations. Other texts develop the equations to handle the concepts of in-
stability theory, bifurcating solutions, strange attractors, chaos, fractals, and
the myriad of other exotic frontiers of fluid dynamical mathematics. Most
students will be content to view the material in this text as an overall fun-
damental look at the underlying physics behind the equations. They will
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proceed to apply these equations in approximate forms, either analytical or
numerical. They should remember in their learning and applications, if it
were easy, it would have all been done.

Just as the world is divided into those who understand science and those
who don’t, atmospheric sciences and oceanography are divided into those
who understand fluid dynamics and those who don’t. One can get along
well without this understanding, but with it a world of awareness is discov-
ered. The full extent of atmospheric and oceanic dynamics’ vast domain is
opened to study only in direct proportion to the depth of understanding of
fluid dynamics. There are dues to be paid in terms of hard work. But the
rewards are great.

This material was developed as a first year course for graduate students
in atmospheric sciences. There is one chapter per week, the last chapter
being optional. In our department, Atmospheric Science, An Introductory
Survey, by Wallace and Hobbs, is used in the course taken simultaneously
to this fundamental fluid dynamics course. An Introduction to Atmospheric
Physics, by R. Fleagle and J. Businger, can also be used for a simultaneous
course. The student then proceeds to large-scale dynamics (e.g. Holton’s An
Introduction to Dynamic Meteorology), small-scale dynamics (i.e. boundary
layer meteorology), or/and numerical modeling courses. This text was de-
signed to fulfill a need for better understanding of the basic origins of the
equations used in these later applications.

I would like to thank Professors R. A. Fleagle, J. R. Holton, and J. M.
Wallace for reading the material during its evolution and their suggestions.
Tristin Brown contributed significantly to making the text understandable to
first year students. Thanks also to the many students who participated in the
development of the course and provided valuable feedback.

R. A. Brown, February, 1991
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Part 1 Fundamentals

We all have a basic understanding of what is a fluid. A fluid flows. It changes
shape to conform to its container. It deforms continuously under an applied
force. We know that the atmospheric air and the oceanic water are fluids.
Many might know that our bodies are 97% fluid. Few realize that the earth’s
mantle can behave like a fluid, or that even the flow of stars in a galaxy
can be described as fluid flow.

The term fluid includes both gases and liguids. Despite the very large
difference in density between air and water, we will find that the flow of
both fluids is described by the same basic equations. The essential difference
is in their compressibility. There are added complications in the equation
for a gas because of the gas’s higher compressibility.

Fluid dynamics is evidently the study of the flow of fluids. It is similar
to classical solid dynamics in that motion under the action of forces is stud-
ied. Thus we will apply the same principles—conservation of mass, mo-
mentum, and energy. But the dissimilarity is in the profound differences in
the consequences and applications of these basic principles when they are
applied to a fluid domain. Therefore, Part I, which includes Chapters 1-4,
introduces the new terminology and techniques required in the study of the
physics of fluids.

Both a liability and an asset of this body of knowledge is that it is bounded
by the gray areas that lie beyond current levels of comprehension. A com-
plete analysis of turbulent flow is beyond our comprehension. However, the
studies that have dealt with the whittling away of the vast unknown territory
of turbulence have produced much basic knowledge. The analysis of the
inherently nonlinear equations that govern the flow of fluid has led to the
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development of whole branches of mathematics. These include the study of
complex variables, potential flow, conformal mapping, and chaos theory.
Most recently, the concept of chaos as a degree of order in a turbulence
field arose from the study of atmospheric dynamics. Many of the exotic
terms such as strange attractors, bifurcating cascades, and coherent struc-
tures have their observational heritage in atmospheric dynamics. However,
this is tough stuff. Few if any understand it the first time around. All are
satisfied with a certain level of attainment short of complete. Thus there is
ample room for theoretical progress and for application of known principles
to the immense laboratory of atmospheric and oceanic fluid flow. Chapter
1 provides a first look and a relatively fast overall coverage of the material.
Chapter 2 introduces the important mathematical concepts.

The subject matter of this text may be especially difficult because it forms
the nuts and bolts and the tools of fluid dynamics. It is often removed from
the stimulation that can be provided by the study of an actual phenomenon
or a physical problem.

The equations we use are about 150 years old. The applications to at-
mospheric dynamics began about 100 years ago. Yet, only relatively re-
cently has there been progress in relating solutions of the equations to real
atmospheric phenomena. This is partly due to the peculiar difficulties found
in geophysical applications: the data are sparse, the basic coordinate system
is rotating (and therefore noninertial); and the flow is turbulent on many
scales.

As a result, atmospheric science has been essentially an empirical science
for most of its existence. The principal forces that cause the flow are divined
or inferred from theoretical knowledge and then related to each other with
a parameter that must be determined through observations. There are a lim-
ited amount of observations available to establish the empirical relations.
This state has made any theoretical progress in solving the governing equa-
tions quite valuable. Such results provide clues and guidelines for the pa-
rametrization of simple cause and effect. In fact, the relatively crude but
basic theoretical methods of scaling and dimensional analysis can provide
useful information even without knowledge of the governing equations. These
concepts are discussed in Chapter 3.

Currently, huge quantities of data from satellite-borne sensors, coupled
with computer data processing, are filling the empirical data gap. Ironically,
this achievement has only increased the emphasis on the need for more the-
oretical fluid dynamic solutions. These are vital to organize the new data
and to explain the new phenomena being observed.

Newton’s law relates forces and acceleration in an inertial frame. A ro-
tating frame of reference is a noninertial frame. The law must be modified
to account for the acceleration of the noninertial frame. A virtual force—
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the Coriolis force—can be added to allow us to use equations that were
derived for a noninertial frame of reference. There are some analytic solu-
tions to the equations that govern geophysical flows affected by the rotating
frame of reference. These often reveal new dynamics from that found in the
nonrotating system. In particular, the mathematical solutions that include
waves and vortices appear more often in rotating than in nonrotating frames
of reference. Observations of geophysical flows are strikingly full of waves
and vortices.

The mathematical solution for a flow field that includes random waves
and vortices, called turbulent flow, has not been found. However, new ap-
proaches toward successful parametrizations are often suggested by obser-
vations. Progress in understanding the unpredictable nature of turbulent at-
mospheric flow fields could lead to better comprehension of many problems
in all branches of geophysical fluid dynamics. Also, the ideas that apply to
the study of turbulence have a wide range of application beyond the field
of fluid dynamics.

The first step in the study of turbulent fields is to establish the scales.
There is always a choice of scales. One must choose the principal scales of
interest in the problem, the scales of turbulence that are important, and any
critical scales for the flow solutions. Therefore, scaling principles are dis-
cussed early, in Chapter 3.

The atmosphere circles the globe and is nominally 100 km deep. Fre-
quently, specific phenomena of interest occupy only a much smaller domain
of activity, such as a storm system, a cloud cluster, or a thin layer. However,
the dynamics of a particular local atmospheric problem cannot always be
completely separated from the evaluation of the larger-scale flow field in
which it is embedded. For instance, if one is interested in the study of clouds,
snow, rain, and hail, the local application of microphysics is inseparable
from the dynamics of the surrounding flow field. One must understand both
the cloud-scale flow dynamics and the nature of the large-scale flow that
produces the pertinent cloud dynamics—and how they fit together.

For those who study air pollution, small-scale environments, air—sea in-
teraction, or most wave-generation problems, the main dynamics takes place
within a thin boundary layer domain. Here, even the basic assumptions made
in deriving the governing equations and the proper approximations for this
domain are sometimes in question. Therefore, an understanding of the ideas
behind the derivation of the equations and the related limits on their range
of applicability is vital to such studies.

We seek a smooth solution for the entire domain—boundary layer plus
the large-scale free flow. Thus, the solutions for the boundary layer domain
must be properly fitted into the solution for the larger-scale flow. This must
be done such that the boundary conditions match at the seam between the
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two solutions. One result affects the other. Even though many problems that
are of special interest to some atmospheric scientists involve only very local
forces and effects, an understanding of the background flow field is never-
theless often essential. This flow field is generally determined by the fun-
damental equations of motion.

If the field of interest is large-scale weather and climate, these subjects
are studied in large part by numerical manipulation of the basic equations
for fluid flow. The fundamental nature of these equations is emphasized by
their description as the “primitive” equations. However, in the prediction
of regional weather, and even in the analysis of many climate problems, it
has been found that the details of the small-scale effects eventually become
important. In the concepts of chaos theory, the smallest perturbation con-
ceivable can change the nature of the large-scale solution. Computer ca-
pacities are growing quickly, but numerical models for the large-scale do-
mains that have grid sizes small enough to include the small-scale turbulence
are not in the foreseeable future. Since the economics and time restraints on
these computational solutions place a severe limit on the degree to which
the local dynamics can be included, parametrization of “subgrid” scale phe-
nomena is essential to these models. Thus the dynamics of the eddy fields,
the boundary layers, and the small-scale storms must be understood well
enough to achieve an effective parametrization of their influences on large-
scale weather and climate.

The goal of this text is to achieve an understanding of the fundamental
equations for fluid flow. A solid understanding of the assumptions made in
the derivation of the equations is especially important for those who will
use the results in geophysical applications. This is because the equations
were classically derived for laboratory flows and ideal conditions. When
used for geophysical flows the limits set by the assumptions are often reached.
These applications are made to scales from centimeters to thousands of kilo-
meters, from seconds to years. To assess the validity of the application of
the equations to these untested domains, one must be familiar with the nature
and origin of each mathematical term. In Part II, starting with Chapter 5,
each basic equation is derived from basic principles. These include the basic
equations of stability theory—the perturbation equations—and the equations
for the special domain of the boundary layer.

One major difficulty is met in our study when we attempt to write the
three-dimensional, viscous, rotational frame of reference version of the
equations in component form. There is a great proliferation of terms as
3-D vector forces are applied to 3-D vectors that represent velocities or areas.
This becomes a bookkeeping problem, and the equations become unwieldy
to write. However, the concept of fensors, and the methodology of index
notation help the analysis. They restore a compact and manageable cast to
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the equations. Therefore, we accept the notion that the final understanding
of the equations will be better for the effort made early to learn some very
specific rules of tensor analysis, and we introduce these techniques in Chap-
ter 4. They will allow efficient expressions for the governing equations and
greatly reduce the labor of deriving them.

Also, there is an emphasis in this text on the dynamics that produce waves,
vortices, and turbulence. While these dynamics occur at all scales, the spe-
cific description of any phenomena will depend on the particular scale of
the average flow. This dependence occurs because individual terms in the
equations may be of increased or diminished importance depending on the
different scales. For example, large-scale flows may ignore the effects of
small-scale turbulence, whereas small-scale flow may ignore the effects of
the rotating frame of reference. When these junctures occur, we will usually
pursue the small-scale applications, leaving the large-scale dynamics to the
many excellent texts on that domain. Still, the material developed here can
bridge the gap between the smallest-scale and the largest-scale dynamics.
To illustrate the methods and possibilities for the application of each con-
cept, we will introduce examples at the first chance.

Chapter 1 is a survey and general discussion of the topics in this book.
It introduces the concepts and attempts to fit them into an overall atmo-
spheric fluid dynamics picture. It is meant to provide a simple first look at
as many of these concepts as possible. After the details of each of the fol-
lowing chapters have been studied, or a section “mastered,” the first chapter
could be profitably read again to gain the strongest sense of the large picture.
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8 1 Fundamentals of Fluid Dynamics

1.1 Atmospheric Fluid Dynamics

This section introduces the topics in fluid dynamics that are of particular
interest to the atmospheric scientist. Most of the material holds for the
oceanographer, although with different coordinates and nomenclature. To
begin the discussion of fluid motions we will introduce several terms that
should be generally familiar to the student. However, these terms will not
be fully defined until later in the text.

The first terms needed to describe the flow are laminar (meaning orderly)
and turbulent (meaning random and chaotic). These words describe the two
basic contrasting flow regimes. They will be used throughout the text. Their
precise definition will evolve as we study the flow character. Other note-
worthy terms that occur often and will require much effort to define are

Inviscid: Lacking viscous forces

Internal stress: Forces per unit area on the fluid at any point due to the
adjacent fluid

Vorticity: A measure of the angular velocity or spin of the fluid at a point

These terms will be carefully defined later, and only a general feeling for
their meaning is needed in this chapter.

Geophysical flow and classical fluid dynamics have two basic differences
in emphasis. First, geophysicists are often concerned with a rotating frame
of reference, even when dealing with small-scale flows such as that which
takes place in the planetary boundary layer (PBL) domain. When compared
to the description in a fixed frame of reference, the rotating frame gives rise
to an acceleration at every point in the field. This acceleration is the price
paid to have a simpler motion with respect to the rotating coordinate system.
The easy example of a merry-go-round reminds us of this fact. A person
walking toward the center of rotation has a direct linear path in the coor-
dinate fixed on the rotating platform. This is much easier to describe than
the path in a frame of reference fixed in space. However, the person feels
the force of acceleration toward the outer rim. If we want to use the rotating
frame as a reference, we must somehow account for this acceleration.

Newton’s laws dealing with particle acceleration were derived for a non-
accelerating frame of reference, called an inertial frame. This frame works
fine for most physics problems. However, adjustments must be made when
we want to use these equations in the rotating system. We will face this
requirement when we make a force balance in an earth-based rotating frame
of reference.

The second factor in geophysical flow is turbulence. It is present at all
scales of geophysical study. The methods of dealing with this turbulence
are an essential part of geophysical fluid dynamics. Classical dynamicists
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can often ignore this facet as it is negligible for many physics and engi-
neering applications. In addition to the problem of a rotating frame of ref-
erence, other interesting features are pertinent to geophysical problems. Some

of them are

« Solutions of great practical importance are found by ignoring many of
the terms in the basic equations for fluid flow, which results in very
simplified approximate equations.

« Some large-scale flows can be studied by introducing analogies to lab-
oratory-scale results.

« The rotation of the planet has a great influence on the flow patterns
of geophysical flows (especially the large-scale motion of the ocean
and atmosphere). It also affects the processes of transformation from
smooth to turbulent flow.

+ Experimental results in the atmosphere, the ocean, and the marine in-
terface have been sparse and inaccurate. This is rapidly changing with
the introduction of satellite sensors and computer processing. The re-
sult of the abundant data and statistical and graphical methods of anal-
ysis is new points of view for many geophysical phenomena.

« The basic equations are nonlinear. Generally, this means that the gov-
erning equations for a problem can only be solved by numerical means.

The first task assigned to the first large computer was the integration of
the equations of motion for the atmosphere. However, the accuracy of such
numerical solutions is limited because very small-scale effects ultimately
influence the large-scale motion. When calculating the flow in the very large
domains required by atmospheric problems, there is a practical limit to the
small-scale processes that can be calculated. For instance, keeping track of
millimeter-scale turbulence elements across a kilometer-thick layer cannot
be done at present. The number of grid points and calculations required
would exceed the capacity of even the biggest computers available today,
or soon. Global circulation models currently have typical grid sizes of 400
km and not less than 100 km. There is a challenge to successfully account
for terms that depend on subgrid scale effects. These terms must be well
enough understood theoretically to enable the development of ways to ac-
count for them in the model. Furthermore, the general efficiency of the nu-
merical calculation will be greatly increased by a firm understanding of the
importance of each of the terms.

All of these factors help make atmospheric physics a particularly exciting
and challenging area. But before we can attempt to apply theory to practical
problems we must learn certain classical fundamentals taken from the wealth
of fluid dynamic information available. We start by introducing the basic
concept behind the equations of motion for the flow of a fluid.
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1.2 Newton’s Law in a Rotating Frame
of Reference

Newton’s law in classical mechanics concerns forces and motion. It is the
basis of the equations used to describe the flow in the atmospheric fluid,
air. Its elementary and familiar form, with boldface type symbolizing a vec-
tor, is

F = ma

For specialized use, the exact form of the equations will depend on the forces
that are important to the flow problem. We will investigate these forces in
detail. However, for a first look in this chapter we will be content to simply
name them. Usually, our significant forces will consist of at least a force
due to pressure differences, F,, the force of gravity, F,, and an internal
friction force, F,. These may be written into Newton’s law as

F=> F=F,+F, +F,=ma 1.1)

Newton’s laws are for a primary inertial, or astronomical frame of ref-
erence, which is a reference fixed with respect to the stars. For geophysical
flows, one might assume that the natural coordinate system would be a
spherical system centered in the earth. Yet this is a practical system only
for atmospheric problems that deal with spherical domains at a radius much
greater than that of the earth. For most atmospheric flow problems, the pre-
ferred coordinate system is one that is fixed with respect to the surface of
the earth. This is an (x, y, z) orthogonal coordinate system with the x-y plane
tangent to the earth’s surface and the z direction denoting the height above
this plane as shown in Fig. 1.1.

There always exists an acceleration on particles confined to the earth’s
atmosphere. If these particles were to move in a straight line, they would
soon depart the earth, When our reference is the surface of the earth, it is
always rotating with respect to a fixed axis in the center of the earth. To
keep the frame of reference at a point on the earth’s surface, the frame of
reference must constantly be accelerated. Our frame of reference is thus
noninertial. Frequently in atmospheric flow dynamics, the scale of the flow
is so large that the effects of the rotation of the earth becomes an important
factor. Otherwise, the acceleration can be assumed negligible and Eq. (1.1)
is valid.

Some feeling for the rotation of the coordinate system can be obtained
by considering the surface-based coordinates at the poles versus those at the
equator in Fig. 1.1. At the poles, the coordinates are rotating once each 24
hours around the z-axis, which approximately coincides with the earth’s axis
of rotation. At the equator, there is no rotation about the vertical coordinate,
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Figure 1.1 Description of point P in the rotating coordinate system r(x, y, z) and the
fixed coordiante system r,. The distance r is greatly exaggerated for clarity.

but there is a rotation about the earth’s north—south axis at a period of once
per 24 hours. These rotations of the coordinates fixed on the earth’s surface
require accelerations of the coordinate system. From Newton’s law, the ac-
celerations can be balanced by an equivalent force. The rotation at the equa-
tor gives rise to a centrifugal force. The rotation about the polar axis pro-
duces another force, named after the French mathematician G. G. de Coriolis.
There is a component of this rotation at all latitudes except the equator.
Thus, the farther you travel south from the north pole, the less the influence
of the Coriolis force. Eventually it reaches zero at the equator. As one pro-
ceeds south, it will increase with opposite sign until a maximum strength is
again felt at the south pole. The opposite progression exists for the centrif-
ugal force. It is zero at the poles and maximum at the equator. Both of these
forces can be added to the force balance written in the rotating coordinate
system. They are then called virtual forces.

We will use the coordinate system based on the surface of the earth. To
accommodate the accelerations in this system to allow the use of Newton’s
inertial reference framed laws, the concept of a virtual force will be used.
The addition of this “force,” F,, accounts for the effects of rotation in the
noninertial rotating frame of reference so that it appears as an inertial one.
Thus, to write Newton’s law in our noninertial earth-based coordinate sys-
tem, we will have a new force balance,

F=F,+F,+F +F,=ma=mdu/dt (1.2)
In Eq. (1.2), F, represents only the Coriolis force. The centrifugal force

has been absorbed into the F, term. This can be done since it is small com-
pared to F,., and is nearly aligned with F,.. In fact, it always points in a
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direction normal to the axis of rotation. But on most of the globe, partic-
ularly nearest the equator where it is maximum, the centrifugal force is nearly
coincident with the gravitational force. Consequently the centrifugal force
is absorbed as a small addition (with a negative sign) to the gravity force,

F,=F, +F,

where g’ indicates “pure” gravity force. This leaves F, = F,, the Coriolis
force.

Example 1.1

Consider the pendulum shown in Fig. 1.2. (a) Based on your intuitive feel-
ing for acceleration, draw in the acceleration vectors at each of the positions
of the ball on the end of a string in Fig. 1.2. (b) Then derive the direction
of the acceleration by considering the incremental change in velocity at éach
point. (¢) Finally, consider Eq. (1.2) as the definition of acceleration.

Figure 1.2 A pendulum consisting of a ball suspended on a (rigid, weightless) string.

Solution

(b) Intuitive ideas of acceleration generally are associated with velocity, al-
though the distinction between velocity and velocity increment sometimes
gets lost. From this standpoint, the acceleration at the high points of Fig.
1.2 is sometimes thought to be zero. However, when an incremental velocity
change is obtained by considering the velocity vector at the next instant, the
correct acceleration vectors quickly result (Fig. 1.3a).

(c) When the acceleration vector is seen as simply a vector in the opposite
direction of the net force, the vector sum of the gravity force plus the force
in the string yields the acceleration direction (Fig. 1.3b).

In one case the acceleration is determined as the incremental change in
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(b)
Figure 1.3 (a) The acceleration of the pendulum ball. (b) The forces and acceleration
on the pendulum ball.

velocity; in the other it is the force per unit mass. There are evidently several
ways of looking at the problem, and some produce easier solutions than
others. Formulation in terms of fundamental definitions is often the safest
and surest route to a solution. We will develop the fluid dynamic version
of equation 1.2 in Chapter 6. There, the balance will often be written in
terms of force per unit mass, so that the equation is a balance of accelerations.

Example 1.2

Consider a ball that was projected in the air somehow and is now flying
through the air. (a) Show the important forces on it. (b) If it is whirled on
a string at a constant speed such that F.. > F,, show the forces on the ball.
(c) If the coordinate system is now rotated so that the ball appears to stand
still, write the balance for Newton’s law.
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Solution

(a) The main forces on the ball will be the force of gravity and a friction
force due to air resistance. We know that the first force will assure the ball’s
return to earth. The second force slows objects up. We can assume that the
latter acts in the opposite direction to the velocity (Fig. 1.4).

F<— O =—/———> U

\
Fg

Figure 1.4 Forces (due to gravity and air friction) on a ball in free flight with
velocity U.

The forces do not balance, and according to Newton’s relation, £ F =
ma, there will be an acceleration in the same direction as 3 F.

Yo Fee

X

Figure 1.5 Forces (centrifugal, gravitational, and in the string) on a ball being swung
on a string at velocity u,.

(b) When there is rotation we expect a new force to be present, called
the centrifugal force (Fig. 1.5). This is a consequence of Newton’s relation,
since it states that if there is no force, there is no acceleration, and a body
will continue to move at constant velocity in a straight line. When the body
is moving in a circle, there must be a force providing an acceleration. For
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motion in the x—y plane at constant speed u; and radius r (length of the
string), there is a normal acceleration, a, = r(d0/ds)*. The speed is

w,=ds/dt = rdo/dt

Hence,
_ 2y
a, = ue/r = Fce

The forces balance and the ball is in equilibrium, as shown in Fig. 1.5.
We note that if the string were cut, the ball would accelerate outward due
to the centrifugal (outward) force. Checking our approximation, where we
have assumed horizontal motion, we note that actually, F, + F, must bal-
ance the force of the string, F,, so that the string direction must have a z-
component. When F, < F,,, the dominant force balance is in a horizontal
plane and 2-D motion in the z = O plane is a good approximation.

Z X

Figure 1.6 Forces on a ball swung on a string assuming the gravitational force is rela-
tively small. The coordinate system is rotating so that the ball appears fixed.

(c) When the coordinate system is rotated about the z-axis in Fig. 1.6,
to a person standing in the coordinate system the ball would appear station-
ary. However, the force on the string would still be required to keep the
ball from flying off. This is by definition not an inertial frame of reference
and Newton’s law does not apply. However, if a virtual, or pseudo force,
F.., called the centrifugal force, is added, then the equation will be balanced.
The sum of the forces can be equated to ma.
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Example 1.3

Consider a tank that is half full of liquid (Fig. 1.7). If the tank is sitting on
a rotating platform, discuss and sketch the forces on a small “box” of fluid
extracted from the center of the liquid. Discuss the forces and flow after the
rotation is stopped.

Wl T, I e £ “'_',—/';f' ‘"///,
"//__-_"__ T B e e ——————— __[ '.’.' |
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"—’ 1
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£ 4 At el H‘_-—T—h—-—.—){

Figure 1.7 An imaginary small box of fluid in a container of fluid rotating in a large
frame of reference.

Solution

A variation of pressure in the fluid along the axis of the box exists because
there is more weight of water at the deeper sections. We know that the fluid
is piled up at one end due to the rotation. We can assume the air pressure
on the top surface is constant since the difference in the weight of air above
the ends of the box would be insignificant. The pressure gradient produces
a force on the small box of fluid, F,, which is acting on the box in the
direction of lower pressure, toward the center of rotation. The box is rotat-
ing, therefore there is a centrifugal force directed away from the axis of
rotation. In a rotating frame of reference we must include a virtual centrif-
ugal force F.., which acts to move the liquid outward. These two forces,
F, and F,,, constitute the primary horizontal force balance on the fluid. Though
gravitational force pulls the liquid downward, this is balanced by an equal
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and opposite force exerted by the floor. Friction will act on the box of fluid
to retard the motion, but only when there is flow. In equilibrium then, F,
= —F,.

Thus, in the equilibrium state, the two horizontal forces balance, while
the vertical gravitational force is balanced by the floor support, Fg,,, (Fig.
1.8).

Figure 1.8 A close-up of the imaginary box of fluid in a rotating fluid.

If the rotation is stopped, there will now be a velocity difference between
the rotating fluid next to the floor surface and the static floor. A friction
force that is proportional to the velocity difference will propagate into the
ﬂuld slowing the fluid down. As the fluid slows, the centrifugal force
(zU) decreases, and the unbalanced pressure gradient force produces ac-
celeration toward the low pressure. The final state is reached when the flow
has reached uniform depth, U and Fp are zero, and there is static equilibrium.

This example illustrates the different equilibrium states for a rotating and
nonrotating system. The pressure gradient force is required to balance the
centrifugal force when the system is rotating.

We will see in later chapters that, for applications to global scale dynam-
ics, we must pay particular attention to the variation of the virtual forces
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with latitude. This is a consequence of the change in the horizontal com-
ponent of the earth’s spin as it varies from one revolution per 24 hours at
the poles to zero at the equator. For the time being, however, let us assume
that the virtual Coriolis force is a constant. This is a good approximation
for flow that does not move great distances latitudinally. The general math-
ematics of the Coriolis forces is given in Chapter 6.

The form of Newton’s law given as Eq. (1.2) is quite general. However,
this expression is deceptively simple, for each of the terms can be a com-
plicated function of the fluid velocity. Thus, we will spend much of our
time establishing simpler versions of Eq. (1.2) that are valid in special cir-
cumstances. These include the cases where

1. Horizontal components of velocity are much greater than vertical, so
that F, = 0, and

F, + F. + F, = m du/dt

2. The rotating frame of reference has negligible effect; consequently,
F, = 0, and

F,+ F. +F,=mdu/dt
3. There are no viscous effects—F, = 0
F, + F. + F, = mdu/dt
4. The acceleration is negligible (steady-state) and =F = 0, so
F,+F.+F,=0

Combinations of any of these assumptions will lead to even simpler equa-
tions to solve.

1.3 The Laminar Flow Regime and Potential Flow

The main goal in this text is to derive and understand the mathematical
equations that describe geophysical fluid flow. The equations must connect
measurable dynamic and thermodynamic variables to the complete flow pat-
tern in a specified domain. These known values form the boundary condi-
tions. The domains in atmospheric problems are very diverse. They can
include the realm of a cloud, a planetary boundary layer (PBL), a storm
with a diameter from tens of kilometers to 1000 km, or any region of the
globe up to an entire planetary atmosphere. The time scales must cover from
microseconds, for small-scale turbulence analysis, to billions of years for
studies in climatology. We need to make the task of describing these diverse
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flow fields more manageable. One way to do this is to define certain rela-
tively simple flows that have relatively easy mathematics yet important prac-
tical applications.

1.3.1 Laminar Flow

When the flow is orderly and predictable, the flow pattern is often amenable
to mathematical solutions. These flows are called laminar. In laminar flow,
the individual fluid particles move along their trajectories independent of the
particles in the adjacent layers. For instance, in two dimensions the flow is
made up of individual layers (laminae) sliding past one another to produce
velocity gradients normal to the flow. There are many types of laminar flow.
They include uniform flow, where the flow field is everywhere parallel and
constant; shear flow, where u changes with one or more coordinates; and
curving flow, such as circular motion or periodic motion, where u has a
constant or periodic change. Figure 1.16 is an example.

1.3.2 Inviscid Flow

An inviscid fluid is one where the internal friction force is negligible in
comparison to the other forces. All fluids have some internal friction that
provides a resistance to motion. When a force is applied to a fluid, it con-
tinuously deforms. The fluid nearest to the force accelerates the most, and
internal friction drags along adjacent fluid. However, the acceleration cannot
continue indefinitely, and eventually the drag of the liquid reaches a point
where it balances the applied force. Therefore, the degree to which a fluid
behaves without frictional effects depends on the speed of flow and the ef-
fectiveness of the fluid in transmitting the internal force to adjacent fluid.
Faster flows, and fluids with small internal stress, behave inviscidly. The
relative behavior of some common fluids is shown in Fig. 1.9.

The governing equations will be derived in this text in the most general
form for geophysical flows, That is, we will include all of the terms that
may occur in the most general applications. In particular, we will include

, — Decreasing internal resistance to flow —_— I
I Viscous inviscid]
Blood
Tar H Water
ne
oney Air
Toothpaste a Qil |

Figure 1.9 Chart showing values of internal resistance to flow of some specific fluids.
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the term due to internal friction. However, we will find that the complete
equations are quite complicated. They are high-order, nonlinear differential
equations. They do not yield analytic solutions. Luckily, in most applica-
tions not all terms are important, and the process of solving the equations
often begins by reducing the number of terms.

One of the greatest simplifications to the equations takes place when the
internal stress forces arising from the fluid flow are negligible compared to
the other forces in the problem. We will see that these internal stresses can
be characterized by a quantity called viscosity. When they are small, the
viscosity is small, and the flow is called inviscid. The governing equation
will be as stated in Section 1.2:

F, + F.+ F, = m du/d: (1.3)

Example 1.4

Horizontal geophysical flows above the surface (or below in the ocean) are
often well described by a simple balance between the horizontal pressure
gradient force and the inertial force arising from the rotating frame of ref-
erence—the Coriolis force, '

F,+F.=0 1.4
These simple flows are called geostrophic.
Discuss the approximations made in Eq. (1.2) to obtain Eq. (1.4).
Solution

Starting with a balance including all of the forces, apply the inviscid
approximation,

F,+F,+F . +F.=ma (Inviscid)

"
0

Now consider the flow as horizontal—two-dimensional in a plane normal
to the gravitational force,

F,+F,+F. =ma (horizontal flow)

v
0
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Finally, when the flow is steady,

F,+F.=ma (steady-state flow)

v
0

This leaves the geostrophic force balance, F, + F. = 0

Classical inviscid hydrodynamics has been around in close to complete
form for a long time (see Lamb, 1887). In fact, the inviscid equations of
Euler were published in 1755. In certain cases, one can employ elegant
complex variable mathematics to obtain good, usable solutions. This method
uses singularities in the flow field, which represent fluid sinks, sources, and
vortices to produce some very common flow fields. The flow fields can be
used as a first approximation for flow around a wide variety of objects in
what is called potential flow theory. In this theory the potential referred to
is a scalar field variable which, when differentiated, yields the velocity field.
Thus, when the scalar potential field is known, the velocity field is also
known. We will see that the potential flow for the uniform flow around a
sphere, as shown in Fig. 1.10, can be solved for analytically. The power
in this simple solution comes from the fact that this relatively simple po-
tential flow solution can be transformed into a solution for the flow around
complicated shapes, such as an airfoil. The flow pictures that result from
these solutions agree perfectly (within experimental accuracy) with obser-
vations such as those of Fig. 1.10 and 1.11.

1.3.3 The Potential Function

The field of one parameter can often be derived from that of another by
using differentiation or integration. For instance, if you know the velocity
V(x, y, z, ¢) you can calculate the acceleration, a = dV/dt(x, y, z, t). We
can say that one field serves as a potential for the other; that is, if the po-
tential field is known, the derived field can be found. Potentials used to
represent force fields are common in electrical, magnetic, and gravitational
fields. In the case of a fluid flow, any parameter field that yields a force on
the fluid can be a potential for the flow.

The earth’s gravitational field produces an important force on each ele-
ment of the atmosphere. The force is related to the separation distance—in
this case to the earth’s radius plus the height of the element above the sur-
face. It is convenient to define a gravitationa: potential that is related to the
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Figure 1.10 The dye pattern of the flow past a circle. Such a pattern requires a specific
flow environment (in this case a creeping flow of a high-viscosity fluid in a narrow gap to
approximate two-dimensional flow). (Photograph by D. H. Peregrine; from “An Album of
Fluid Motion,” assembled by M. Van Dyke and published in 1982 by Parabolic Press, Stan-
ford, California.)

height. The derivative of this potential with respect to height (z) will yield
the gravitational force g.

In the case of a fluid flow, we are dealing with the motion of a great
many molecules. Their myriad interactions must be averaged and related to
some mean flow parameter that is observable. The pressure is such a pa-
rameter. In the atmosphere, it has the virtue of being easily measured. The
difference in pressure, which is force per unit area, gives rise to a net force
across a small box of fluid. We will define this hypothetical box as a fluid
parcel in Section 1.8.

An example of pressure force in action is found wherever some outside
force has acted to set up a horizontal pressure gradient, This appears as a
variation in depth of the fluid. The outside force might be the centrifugal
force of a whirling body of fluid. Or it could be the gravitational pull of the
moon on the ocean. The gravitational force on the body of fluid acts to
establish a constant surface level. This state corresponds to a minimum po-
tential energy, equilibrium state in the fluid. When the static equilibrium
has been disturbed due to some external forcing, the degree of imbalance
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Figure 1.11  Symmetric plane flow past an airfoil. Streamlines are shown by colored
fluid introduced upstream in a water flow tunnel. [Photograph courtesy of ONERA from H.
Werké (1974). “Le Tunnel Hydrodynamique au Service de la Recherche Aérospatiale,” Publ.
No. 156, ONERA, France.]

can be related to the horizontal pressure gradient in the fluid. In this case
there exists a potential represented by the scalar pressure field such that the
velocity will be directed along the negative pressure gradient, from high to
low pressure. Flow will take place until there is a uniform pressure and a
static liquid state. The vigor of the flow is proportional to the difference in
pressure, or the pressure gradient.

The velocity of the flow can be proportional to the derivative of the pres-
sure field in any direction. Thus, in the absence of other forces, when a
scalar pressure field is differentiated with respect to time in three directions
(x, y, z) it yields a vector field u = (u, v, w). There can be a different scalar
variation in each direction. The velocity vector can be written as propor-
tional to the gradient of P. This is written as

grad P= VP

Here, V is an operator producing the vector gradient of the scalar field. It
is called “del” and in three-dimensional Cartesian coordinates it is written

V=(/lox, 8/dy, 8/0z)

There are other potential functions from which velocity can be deter-
mined. We will find that in the case of inviscid flow, where F, = 0, there
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exists a class of laminar flow solutions called Potential Flows. In these flows,
the velocity can be obtained from a scalar potential function, say ¢, so that

V=Vgp

The basic flows in this class include

Yvyy

(1) Parallel Flow

(2) Linear Flows

N

(4) Waves — periodic AN AN
motion 7 \_/ A

Observations have shown that these simple flows have many geophysical
counterparts. We will study these simple solutions as a special case of the
general equations in Chapter 9.

1.4 Waves, Vortices, and Instabilities

Waves and vortices are special flows that may fall within the laminar flow
group. These flows often serve as a transition step between laminar and
turbulent systems by presenting a departure from a parallel flow regime.
The point of departure from laminar flow is an instability point in the initial
mean flow regime. In some cases the instability leads to unchecked wave
growth, breaking waves, and chaotic or random turbulence. However, in
special cases the waves, or a combination of waves that form a vortex, come
to equilibrium and form important laminar flow regimes.
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Some laboratory examples of waves are shown in Figs. 1.12 and 1.13.
Atmospheric flows are shown in Figs. 1.14-1.17. These flows are char-
acterized by steady, periodic motion in the domain and time scales of in-
terest. An excellent example of similar flows on vastly different scales is
shown in Figs. 1.18 and 1.19.

The beautiful laminar flows in Figs. 1.12-1.17 exist only under special
conditions. If the flow conditions are altered due to increased velocity or
temperature, a new flow picture may result. The mathematical solutions to
the equations must also change accordingly. When there are observed waves
and vortices in a flow field, the equations must yield solutions that contain
these phenomena.

The process of change from laminar to wavy or turbulent flow can be
developed in the basic flow equations and is known as instability analysis
or instability theory. Instabilities develop for several reasons. One or two
of these reasons can be physically understood by relating the conditions for
the instability to take place to elementary physical axioms. These are basic
principles that define preferred states, such as the minimum energy or max-
imum entropy states. Thus it often happens that outside forces have acted
to establish certain distributions of density or velocity that are unstable.

Figure 1.12 A Karman vortex street behind a circular cylinder. Streaklines are shown
by electrolytic precipitation in water. (Photograph by Sadatoshi Taneda; from “An Album of
Fluid Motion,” assembled by M. Van Dyke and published in 1982 by Parabolic Press, Stan-
ford, California.)
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Figure 1,13 Buoyancy-driven convection rolls. These are side views of convective in-
stability patterns in silicone oil. At the top is the classical Rayleigh—Bénard flow pattern for
uniform heating leading to rolls parallel to the shorter side. In the middle, the temperature
difference and hence the amplitude of motion increase from right to left. At the bottom, the
box is rotating about a verical axis. [Photograph from H. Oertel Jr. and K. R. Kirchartz
(1979). “Recent Developments in Theoretical and Experimental Fluid Mechanics” M. Miiller,
K. G. Roesner, and B. Schmidt, eds.), pp. 355-366. Springer-Verlag, Berlin.]

Flow will then take place to rearrange the energy or entropy state. The ten-
dency of a fluid to seek a constant level in a gravitational field is one ex-
ample. The rearrangement process can take place in various ways, depend-
ing on the dynamic forces involved in the system. It can involve laminar or
turbulent flow. It will start as laminar, but under certain conditions, tran-
sition to turbulent flow takes place. In particular the transition can occur
explosively. That is, there may be a very short time constant for the growth
relative to pertinent observation times. Or the growth may take place in
stages, with a very slow or infinite time constant relative to other mean flow
times.

In laboratory flows, when the frame of reference is rotating, observations
indicate that a slow transition regime often prevails. The change from lam-
inar to turbulent can take place in steps, with each step existing in equi-
librium under certain conditions. Then, the waves and vortices become
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Figure 1.14 Satellite photograph (NOAA Nimbus 7) showing atmospheric flow with
organized parallel “streets” of cumulus clouds sitting atop the planetary boundary layer. The
flow is from over the oceanic pack ice (top) to over the sea, with cloud street separation about
2-3 km near the ice, 5-6 km at 100 km downstream.
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Figure 1.15 An example of von Karman vortices shown in the cloud patterns down-
stream of Guadalupe Island off the coast of Baja California. This skylab photograph shows a
cloudless area over the island, a cyclonic and an anticyclonic vortex immediately downstream,
followed by two cyclonic vortexs. (photograph courtesy of O. M. Griffin, NRL.)
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Figure 1.16. A laminated layer of clouds in the atmosphere.

Figure 1.17 A Voyager 1 photo of Jupiter showing the Great Red Spot and the turbulent
region surrounding it. The smallest details seen are about 100 km across.
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Figure 1.18 Laboratory flow of aluminum flakes suspended in water past an inclined
flat plate. The plate is several centimeters long and the Reynolds number is 4300. (Photograph
by B. Cantwell, reproduced with permission from the Annual Review of Fluid Mechanics 13;
copyright 1981 by Annual Reviews Inc.)

important to the basic mean flow description. If this occurs, there may be
important stages in the transition wherein waves and vortices form a quasi
steady-state mean flow solution. These states depend on the boundary con-
ditions. Since a rotational frame of reference is “built in” for most geo-
physical flows, we expect waves and vortices to be seen in the atmosphere.
Indeed such flows are very important in the atmosphere. They are seen in
domains from the kilometer scales of tornados and PBL helical vortices to
the 1000-km scales of cyclones and hurricanes.

The frequent presence of waves in the atmosphere and ocean has led to
the use of generic terms such as gravity waves or internal waves to describe
certain sets of often-observed waves. These generic terms say nothing about
the origin of the waves. The waves are generally in steady state with neg-
ligible growth or decay. Thus, they are often considered to be a part of the
background mean flow. In other words, their time scale of evolution is con-
sidered very short, and the time of decay very long, compared to the time
scale of the local phenomena under investigation. Their existence in a select
problem is often noted with the generic name. However, if something is
known about the waves, a better name can be used. The characteristic of
gravity waves is that their amplitude is opposite the force of gravity. The
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Figure 1.19 The tanker Argo Merchant aground on Nantucket shoals in 1976. The ship
is inclined about 45° to the mean current, and the leaking oil shows a wake pattern remarkably
similar to Fig. 1.18. Re = 10°. (A NASA photograph courtesy of O. M. Griffin, Naval
Research Laboratory.)

name internal waves is used simply as a distinction from surface waves,
which occur at the boundary of a fluid. Ocean surface waves are a familiar
example of the latter. A more descriptive term should be used if the cause
of the waves can be determined: buoyancy waves for those caused by con-
vective instabilities, topographic waves for those forced by flow over vari-
able terrain, or dyramic instability waves.

The instabilities and the waves depend critically on boundary conditions.
In fact, multiple solutions may exist for very small changes in boundary
conditions. If the measurement accuracy is not good enough to specify the
boundary condition well enough, the correct solution cannot be predicted.
Some systems with closely related multiple solutions may oscillate randomly
between the solutions. This is because the changing flow may alter the
boundary conditions. Thus the conditions for the initial wave growth
are changed by the instability perturbations themselves. This is a basic
characteristic of nonlinear systems. If a numerical integration is used to
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Figure 1.20 Turbulence being generated by a grid. Smoke shows laminar streamlines
passing through a grid (1-inch mesh size) and becoming turbulent downstream. (Photograph
by Thomas Corke and Hassan Nagib; from “An Album of Fluid Motion,” assembled by M.
Van Dyke and published in 1982 by Parabolic Press, Stanford, California.)

Figure 1.21 Homogeneous turbulence behind a grid (0.1-inch mesh size). At about the
middle of the photograph the merging unstable waves have formed an approximation of ideal
isotropic turbulence. (Photograph by Thomas Corke and Hassan Nagib; from “An Album of
Fluid Motion,” assembled by M. Van Dyke and published in 1982 by Parabolic Press, Stan-
ford, California.)
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Figure 1.22 A spinning baseball (at 630 rpm) in a laminar flow at 77 ft/sec. Smoke is
used to show the streamlines, separation, and asymmetric turbulent flow in the wake. (Pho-.
tograph taken by F. N. M. Brown, courtesy of the University of Notre Dame.)

determine the solution, the intrinsic round-off error may be enough to cause
this trend toward alternating solution regimes. This can lead to random os-
cillation between various attractor solutions. Such a regime, with random
oscillations between multiple solutions to the same equations and boundary
conditions has been called chaotic flow. The term turbulence is then reserved
for the completely random oscillations with no preferred solutions.

We must often investigate waves in geophysical flows by examining their
source in instability theory. One finds that the instability waves frequently
produce spinning, or vortical flows. Thus, vorticity dynamics becomes an
important topic for study. When the waves break and the vortex elements
are random and unpredictable, the field is turbulent.

1.5 Turbulence and Transition

In this text, the stated goal is to obtain the basic mathematics for describing
the flow phenomena that one is likely to encounter in the atmosphere. The
derivation of the equations should be as general as possible, so that the
resulting equations will encompass any new phenomena that arise. The sub-
ject of turbulent flow is particularly demanding of a good knowledge of
fundamentals. Although fluid dynamics has traditionally been a cutting edge
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for new mathematics, the problems of turbulence have dulled many math-
ematical tools (and mathematicians).

Turbulence is the term for fluid flow wherein the path of an individual
parcel of fluid is random, and thus unpredictable. Examples of “turbulent”
fields are shown in Fig. 1.20. It is sometimes stated that geophysical flows
are always turbulent. This is certainly true in that turbulence exists in a wide
range of scales. However, steady and organized average flows can often be
extracted from the turbulent field. These are the flow solutions we are seek-
ing. To recognize how to find them and separate them from the turbulence,
we require a good working knowledge of the turbulent field.

Turbulence is a very important factor in the flow near any boundary where
the air flow comes to rest. However, it also can be found in the free at-
mosphere on many scales. Sources of turbulence can be found at the edge
of a rapidly growing cloud, and at boundaries between adjacent, different
laminar flow regimes in clear air. There is also turbulence on larger scales
including the synoptic (thousands of kilometers), where the random, large-
scale eddies accomplish a net poleward heat transport.

One might ask, if everything is turbulent, then how can these flows ever
be predictable? The answer is that explicit turbulent motion is not predict-
able. On scales of flow where turbulence is the dominant motion, the flow
is unpredictable. Even on scales where the forces due to turbulence are small,
such as synoptic scales, predictability by numerical equations is generally
limited in time and space by the build-up of forces due to the neglected
turbulent effects. That is, the small turbulent fluxes through the boundary
layer eventually add up to influence the large synoptic-scale motion. In ad-
dition, certain kinds of “turbulence” are well behaved in the average. Al-
though the individual parcel motion is unpredictable, the aggregate mean
flow can be predicted. Often, the average flow behavior cannot be deter-
mined explicitly. In these cases, it can either be accounted for by statistical
mechanics applied to the turbulent field, or by relating the turbulent effects
to mean flow parameters. In this text we are concerned only with the latter
method, which will be discussed as eddy parametrization.

In the pictures shown, the point where laminar flow breaks down to tur-
bulence is obvious. The dramatic difference seen in flow character between
laminar and turbulent flow suggests that there must be corresponding dif-
ferences in the mathematics. However, the random, chaotic flow cannot be
described by our Newtonian mathematics. Today it is fair to say that a given
flow that is apparently turbulent is describable or predictable only to the
extent that laminar (orderly) characteristics can be extracted from the tur-
bulence. Often, for certain flows such as the boundary-condition-sensitive
chaotic flows, this can be done only in a statistical sense. However, the
laminar character can be as simple as a steady uniform mean flow existing
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when the higher-frequency variations are averaged to zero over a long time.
The nature of the flow in each problem faced must be resolved by scale
considerations and averaging. One person’s turbulence may be another’s
laminar flow.

Both wave and vortex flow regimes can be waystations between laminar
and turbulent flows. Based on the observations, a laminar flow changes to
a turbulent one under specific circumstances, as was shown in Figs. 1,20
and 1.21. These observations also show that the realization of a particular
flow solution, which may be pure laminar, wavy laminar, or turbulent, de-
pends on three characteristics of the flow. They are (1) the flow velocity,
(2) the characteristic length scale, and (3) a measure of the internal ability
of the fluid to “communicate” between layers via the net gravitational forces.
This communication between the flow in one layer and an adjacent layer
takes place on an intermolecular scale, or an eddy scale in the case of tur-
bulent flow. The details involve the random exchange of molecules or eddies
across the layers. The average effects are expressed in terms of mean flow
parameters. They are characterized respectively by parameters called vis-
cosity and eddy-viscosity. These parameters must be determined empirically.

A nondimensional combination of the three parameters representing the
three effects was found to completely characterize a flow. For instance, dou-
bling either the flow velocity or the length scale, or halving the viscosity,
all produce the same flow picture. If other parameters are kept the same,
the same flow pattern will result whenever the product of velocity and length
scale is a constant. We will find such behavior to be of fundamental value
in the flow analysis methods in Chapter 3.

It is clear from these observations that there must be a fundamental dif-
ference in the governing equations for laminar or turbulent flow regimes.
The laminar solution is often described well by the inviscid flow equations,
which were developed early by Euler. However, when turbulence is a factor,
the equations must include new terms. They must account for the turbulent
eddies in some fashion. If this can be done without destroying the basic
orderly flow, we may have a modified or quasi-laminar flow. The problem
of defining the flows into two categories, laminar and turbulent, is clearly
not an easy one.

Example 1.5

It is of interest to see how various sources have approached the definition
of turbulence. Here are some definitions of and comments about turbulence.
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Webster’s defines turbulence as “full of commotion or wild disorder; vi-
olently agitated; marked by wildly irregular motion.” Turbulent flow is de-
fined as the random motion of layers of a fluid, causing high resistance to
movement through the fluid.”

A mathematics book may give the following definition: “Turbulence—a
field of random or chaotic vorticity.”

Schlichting (1960)"' wrote:

It is not very likely that science will ever achieve a complete understanding of
the mechanism of turbulence because of its extremely complicated nature. . . .
the most essential feature of a turbulent flow is the fact that the pressure and
velocity are not constant in time, but exhibit very irregular, high-frequency fluc-
tuations. The velocity can only be considered constant on the average and over
a longer period of time.

Von Karman made the statement:

To my mind, there are two great unexplained mysteries in our understanding of
the universe. One is the nature of a unified generalized theory to explain both
gravitation and electromagnetism. The other is an understanding of the nature
of turbulence. After I die, I expect God to clarify general field theory for me.
I have no such hope for turbulence.

Saffman (1981) wrote:

During the past 45 years, much effort has been spent trying to determine the
statistical distribution and in particular the spectra of the vorticity distribution
in turbulence. However, the most exciting recent development is the growing
belief, suggested by modern experimental investigations, that the vorticity fluc-
tuations are not quite so random or disorganized or incoherent as was commonly
thought. The vorticity is perhaps collected into coherent structures or organized
eddies, and it is now proposed that turbulence should be modeled or described
as the creation, evolution, interaction and decay of these structures. Turbulence
is then thought of as the random superposition of organized, laminar, deter-
ministic vortices, whose life history and relationships constitutes the turbulent
flow.

In this text we will address turbulence right from the beginning of our
development of the equations. Often, the first quarter or semestet of a course
in fluid mechanics is concerned with laminar flow and the neat mathematics
of potential flow and stream functions. This is true in engineering and aero-
dynamics courses where these flows have great practical applications. They

! Schlichting, H. “Boundary Layer Theory,” McGraw—Hill, 1960.

2 Saffman, P. G. Vortex Interactions and Coherent Structures in Turbulence. In “Tran-
sition and Turbulence,” R. E. Meyer, Ed. Academic Press, 1981.



1.6 Boundary Layers 37

also have some usage in atmospheric science. However, in atmospheric flows,
turbulence is generally either present, nearby, or threatening. So instead of
proceeding from the simple to the complex, we will take the approach of
immediately deriving a fairly complete set of equations for fluid flow from
basic principles. The laminar and potential flows will emerge as special cases
for specific conditions. We will consider only the specific cases that have
areas of application in the atmosphere or ocean.

One of the most interesting aspects of turbulence is its onset. This can
often be predicted very precisely as a characteristic of the laminar flow, in
what is called the transition problem. This subject has received increased
interest as new aspects of turbulence have been discovered. One new per-
spective is due to the recognition of the existence of organized laminar struc-
tures buried within the mean flow, which exist independent of the smaller-
scale random turbulence. These structures, which are generally vortices, can
often be described as a characteristic feature of the transition process.

Transition and turbulence are dependent on the internal shears or stresses
of the fluid. The shears are greatest where the flow is adjacent to boundaries.
Thus, the study of boundary layers is inseparable from transition, turbu-
lence, and viscous effects.

1.6 Boundary Layers

In many situations, when the flow is assumed to be friction-less, the rela-
tively simple flow solutions of potential theory (developed in Chapter 9)
predict the flow quite well. The velocity potential-flow solution for the flow
around an object rather successfully predicts the flow pattern. This solution
shows that the flow upstream from the object is identical to that far down
stream, as though no disturbance was in the flow. It predicts zero drag on
the object. However, if there were no drag on a ball or an airplane in flight,
our playfields and commerce economics would be considerably changed.
Balls would travel farther and faster and planes would fly with far less en-
ergy requirements. Although zero drag on an object in a flow is a nice idea
in the spirit of perpetual motion, it is clearly in violation of observational
evidence. Even in observations where the flow pattern appears to match the
potential solution well, there is a measurable drag force on the object. This
was called D’Alembert’s paradox. However, it is no longer a paradox, as
the conflict was removed by the boundary layer concept.

The boundary layer is a region with at least one dimension that is very
small compared to that of the average flow field. Generally, the boundary
layer is found in the regions adjacent to a solid body. In this region, the
fluid experiences the layer-to-layer interaction that must ultimately bring it
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to a halt at a surface. If this region is sufficiently thin, then it can be ignored
when the large-scale flow around an object is calculated. This may allow
potential theory, which ignores viscous effects, to be used to determine the
general flow picture quite accurately. However, the potential solution will
provide no information on the surface frictional drag. To get the drag, a
separate solution for the thin layer must be found that includes viscous ef-
fects. The phenomenon of separate solutions for separate scales is a frequent
event in fluid dynamic analyses. In the atmosphere, the land or sea surface
forms the pre-eminent boundary. However, boundaries can exist between
any structures or regimes. These may be solid, like buildings, or nebulous,
like clouds. The boundary may be simply the line between different air masses.

One example was shown in Fig. 1.11. The flow over a wing of thickness
about 20—80 c¢m has a boundary layer that is a few centimeters thick. The
potential flow solution yields a good approximation for the flow field by
ignoring the boundary layer thickness compared to that of the wing. How-
ever, one can expect that the boundary layer thickness may become impor-
tant near the trailing edge, where the airfoil thickness approaches zero.

The development of the boundary layer concept dates from 1904. The
credit is generally given to L. Prandtl, as he presented the basic scaling ideas
in a Heidelberg lecture in 1904. It is interesting that Ekman’s mathematical
solution for the boundary layer flow in a rotating frame of reference was
also published that year. Although Ekman’s solution was for the PBL flow
in the ocean, it also applies directly to the atmospheric PBL.

Ekman’s equations for the PBL assume steady-state, horizontal flow, so
that

F,+F, +F =0 (1.5)

His boundary conditions require that there is a layer next to the surface
where the air velocity goes to zero. Ekman’s solution indicated that the ef-
fects of the surface decay exponentially with height; that is, the layer is thin.

However, the ocean and atmospheric flows were not very well known
from observations. The real progress and understanding (mathematics) of
boundary layer flow came from Prandtl’s laboratory experiments and the-
ories. These were created for two-dimensional flow over a flat plate. The
idea was simple: Next to a boundary there exists a thin layer wherein the
fluid comes to a halt due to viscous action. In this layer the effect of the
internal stress is important and Newton’s law for steady-state flow must
include the stress force. But the layer is so thin that the freestream flow is
unaffected by friction or the flow within the boundary layer.

There are many boundary layers. There are many definitions of boundary
layers. One fairly general definition of a boundary layer is: “The region
wherein the forces imposed by the adjustment of the flow to the presence
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of the boundary are comparable with other forces acting on the fluid in the
equations of motion.” This definition is broad enough to include the case
of boundaries contained in the freestream, where the adjustment from one
temperature or velocity regime to another can take place in a thin layer. The
common character of such layers is that they are thin compared to the overall
region of concern in the flow problem. The heat or momentum flux contri-
butions through the layer can be important for energy balances and forces
transmitted to the surface by the freestream.

In geophysical flows boundary layers are generally the regions where the
friction, turbulence, and stress are important. Thermal boundary layers are
associated with temperature gradients. Velocity boundary layers are related
to velocity shear. The latter is always the “boundary layer” in this text unless
specified otherwise. It is the region where the boundary significantly affects
the velocity (slows it up), and we call it the planetary boundary layer (PBL).
Other boundary layers can be defined for layers of pollution, moisture, or
any other passive quantity as the important parameter. These “boundary lay-
ers” (e.g., the “pollution layer”) may or may not coincide with the boundary
layers defined by the velocity characteristics. Furthermore, the velocity
boundary layer itself may be subdivided.

In general, the PBL has two fairly distinct regions. One is a strong shear
region near the actual boundary (the surface of the earth or ocean), called
the surface layer. In this region, the flow is in planes parallel to the surface.
The boundary surface is a source of turbulent eddies produced by mechan-
ical friction. In this layer there is not much room for vertical motion
fw(0) = 0]. Eddies must be small. They might be expected to grow in size
in proportion to distance from the solid surface.

The second region is a much thicker layer, and here the effect of the
earth’s rotation becomes important. It is called the Ekman, or mixed layer.
In this region, the eddies can be as large as the thickness of the layer. In
fact, vigorous vertical mixing by large eddies is a dominant characteristic
of this part of the layer. Each of the regions of the boundary layer can have
different temperature distributions, with different buoyant forces. The local
buoyancy influences the eddy size and distribution. Some sketches of the
PBL characteristics are shown in Figs. 1.25 and 1.26.

Example 1.6

Consider the flow in the PBL, from the top, z = H, where geostrophic flow
prevails, to the bottom surface, where U — 0. The Coriolis force is pro-
portional to the wind speed, F. = fU, where f is a constant. Sketch the
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force balance on particles at various heights in the PBL. The flow is hori-
zontal and the pressure gradient force Fp, is constant. See Fig. 1.23.

X

Figure 1.23 Velocity vectors at various levels in the PBL.

Solution

At geostrophic height (above the PBL) we can plot the force balance and
the velocity in the x—y plane in Fig. 1.24.

A
Fp
Height H: = U4
Fe
(a) v

Figure 1.24 (a) The geostrophic force balance between pressure gradient and Coriolis
forces. U, is the geostrophic wind.

In the upper PBL, the influence of the surface is felt, slowing the wind
slightly. The friction force F, is small and in the opposite direction of the
velocity. To have the vector sum of Fc and F, balance, the F¢ must turn
slightly counterclockwise. Since the Coriolis force must be perpendicular to
U, 90° to the right (northern hemisphere), it too must turn:

Height M:

]

F:=

I

I

(b !
Figure 1.24 (b) Forces at the mid-level of a PBL. These now include the force of friction.
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In the lower PBL, F. is increasing as the surface is approached. F¢ is de-
creasing as U is getting small. Since the angle of turning of U between U,
and the surface is about 0° to 30°, F, is no longer opposite the U direction:

Height L: l Fo

|

|

I

(c) v

Figure 1.24 (c) Forces near the surface of a PBL. The Coriolis force is quite small and
the friction force must nearly oppose the pressure gradient force. Note that the friction force

is the gradient of the stress force, which may be nearly aligned with U. These are discussed
in detail in Chapter 11.

Finally, friction brings the flow to a halt [U(0) — 0]. Since F, is now bal-
ancing Fp, it is nearly perpendicular to U when last seen. However, the
stress on the top and bottom sides of a slab of air are always approximately
in the U direction. The stress force F, is the gradient of this stress, just as
the pressure gradient force Fp, is the gradient of the pressure. The net result
is that the viscous stress force acts to turn the flow throughout the PBL with
height in the direction of Fp, or toward low pressure. We will examine these
forces on a parcel of fluid in Chapter 6.

The boundary layer can be quite large—we spend our lives in a PBL
except for occasional air travel and aquatic diving. (See Figs. 1.25 and 1.26)
One can experience the marine thermal boundary layer in a large body of
water. Due to radiational heating and limited mixing, the top few inches is
often much warmer than the lower layers. In the ocean, the PBL is usually
tens of meters thick. In the atmosphere it is on the order of a kilometer.

The atmosphere and the ocean frequently contain masses or layers of fluid
that have become differentiated due to variable forcing. The forcing is usu-
ally thermal, such as that due to different heating rates in adjacent regions.
This creates internal boundary layers. One example of this that is frequently
visible due to the associated clouds is the velocity gradient regions at the
edges of the jet streams. Quite often there are regions of high velocity shear
between different layers of fluid in the freestream ocean or atmosphere. Fronts
are another boundary between two air masses. For this reason, even if one
intends to study only large-scale flows in the freestream above the complex
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Figure 1.25 Sketch of various scale heights through the planetary boundary layer. Each
higher scale presents a new regime and a new balance of forces in the governing equations.
Some characteristic scale parameters are shown. They emerge from the mathematical solutions
for the layers. (Courtesy of Adam Hilger Ltd.)

boundary layer region, one cannot ignore the processes involved in thin lay-
ers. There are always these thin regions where flow adjustments are taking
place to accommodate strong gradients.

The principles that have been developed to study instability waves and
turbulence in the boundary layer also operate in thin layers on all scales.
Synoptic scale fronts and regions of cyclogenesis have thin layers, insta-
bilities, steady-state waves, and vortices on many scales. The processes that
create a cyclone, tornado, or mixing on a thin boundary layer inversion may
be quite similar.

Since the boundary layer involves transition between one state and an-
other, it is a complicated domain. This applies to both the observations and
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Figure 1.26 Sketch of the planetary boundary layer winds. The winds turn and increase
with height. Their projection on the surface plane is a hodograph. Typical heights are shown
in meters. (Courtesy of Adam Hilger Ltd.)
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the mathematics. Still, the equations we shall derive appear to be adequate
to describe most flow phenomena. Also, with the help of computers, the
fluid dynamicist is becoming adequate to the task of solving these equations.
For instance, the dynamics of the boundary layer can be used to explain
why a ball curves in flight or why, to reduce drag, one makes wings and
ship hulls as smooth as possible, but roughens golfballs.

We have noted that the PBL is characterized by turbulence and the im-
portance of the viscous term in this region. It is therefore extraordinary that
one of the first solutions for a special case of the general equations of motion
was that for the turbulent boundary layer in a rotating frame of reference.
However, to understand the approximations made in this solution, we must
first examine the concepts that allow the application of forces to an element
of fluid.

1.7 Historical Development

Problems that appear in the atmospheric sciences almost invariably involve
airflow to some degree, either as a principal component, as in the weather,
or passively, as in air pollution studies. To understand, explain, and predict
weather and climate, the problem is to solve for the basic atmospheric flow.
We may not need a complete understanding of the flow solution to predict
and even explain some phenomena. Nevertheless, it is always of benefit to
understand the related flow physics.

Much of meteorology was done by simply observing, systematically plot-
ting, and discovering trends or patterns that could be used to predict future
patterns. This process still goes on. However, it is fair to say that we do
not fully understand a phenomena until we have placed it into a mathemat-
ical framework based on the fundamental principles of the physics of fluids.
For instance, we might attack the problem of the flux of heat through a layer
by simply relating the flux to the mean flow parameters. The amount of heat
that flows is proportional to the mean temperature difference. But we will
better understand the phenomena if we know something about the molecular
motion or the turbulent eddies that are doing the fluxing. The challenge is
like that of the physician who seeks to understand the cause and the cure
rather than merely treating the symptoms. Furthermore, once we have de-
rived the appropriate mathematical model, new discoveries often follow.

1.7.1 Newton’s Law Applied to a Fluid

A few of the prominent individuals who worked on the early development
of the fluid dynamics equations include:
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Name Dates Topics

I. Newton 1700s Mathematics, viscosity concept;
Law of Motion for a particle

L. Euler 1750s (Law of Motion applied to fluids)

D. Bemoulli Equations for inviscid flow

L.M. Navier 1827 Equations for viscous fluid flow

G.G. Stokes 1845

Boussinesq 1877 Turbulent mixing; eddy viscosity

O. Reynolds 1880-1890 Transition to turbulence

Rayleigh 1887-1913 Instability theories

G.I. Taylor 1915-1970 Geophysical applications; rotating
flows

The application of Newton’s law to fluids without viscosity was fairly
complete by the mid-1700s due to the work of Euler and Bernoulli. How-
ever, the inviscid equations were inadequate to explain many phenomena.
Two big effects had to be added. The first was the viscous forces and the
second was turbulence.

Navier and Stokes developed the application of Newton’s law to the flow
of a viscous fluid. The acceleration, a = du/dt, was defined for a small
aggregate of fluid called the parcel, which we will carefully define in Sec-
tion 1.8. The forces include internal body forces acting on each element of
the fluid and external forces acting on the surface of the parcel.

1.7.2 The Experiment of Osborne Reynolds (1883)

Osborne Reynolds was the first to carefully observe and quantify the change
in flow behavior as it changed from laminar to turbulent regimes. He in-
jected dye into a laminar fluid flow in the laboratory, marked the transition
to turbulence by taking note of the dye motion, and correlated the change
with a combination of average flow parameters. In the experiment, shown
in Fig. 1.27, the channel height 4, the mean flow velocity U, and the density
of the fluid could be changed (e.g., by changing fluids).

In addition to different densities, different fluids can have varied resis-
tance to flow. This characteristic can be depicted by the constant viscosity
p. This quantity will be carefully defined in Section 1.11. Reynolds found
transition to be a function of the nondimensional combination pUh/. This
important parameter is called the Reynolds number. The procedure called
dynamic similarity exploits the power of dimensionless numbers to describe
flow phenomena. It is discussed in Chapter 3.

In addition to recognizing the important parameters and forces involved
in the transition from laminar to turbulent flow, Reynolds provided the basic
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Figure 1.27 Sketch of dye marking transition from laminar to turbulent flow in a Rey-
nolds’ type experiment.

equations for the analysis of turbulence. However, before we can obtain
these equations, it is necessary to carefully develop the concept of a parcel
of fluid.

1.8 The Fluid Parcel

When discussing the dynamics of a discrete body—a molecule, a billiard
ball, or a satellite—the initial conditions and the forces must be given. One
can then determine the body motion from Newton’s laws. However, when
describing a fluid motion we are faced with huge numbers of molecules. In
general, we are not interested in the individual molecular dynamics, so we
will ignore the details of the molecular motion and speak only of average,
macroscopic effects. These are the effects we can measure with a wind gauge,
barometer, thermometer, or other such instrument. However, we need to
define a fluid element such that these averages have a significant meaning.
For this purpose we introduce a theoretical model of the fluid called the
parcel. We will consider fluid properties—pressure, temperature, density,
etc., associated with the parcel of fluid. The parcel must satisfy the follow-
ing conditions:

1. Large enough to contain sufficient molecules for a well-defined av-
erage of the properties.

2. Small enough that the properties are uniform across the parcel; i.e.,
there are definite values of pressure, density, temperature, and velocity as-
sociated with the parcel.

3. Uniquely identifiable for short periods of time.

This concept of a parcel is basic to fluid dynamics. It will allow us to
apply the fundamental conservation laws to a fluid flow. For now, it allows
us to define pathlines, streaklines, and streamlines, which can be described
by the following processes.



1.8 The Fluid Parcel 47

1. Identify a parcel with a spot of dye. The trajectory of this parcel (e.g.,
in a time-lapse picture) is a pathline.

2. Continuously inject dye at a point. The dye will mark a series of par-
cels that have occupied that point. This line is a streakline.

3. Streamlines are defined as being tangent to the direction of the flow
at a given time. Thus there can be no flow perpendicular to the streamlines.
The streamline is a theoretical concept and cannot be marked by dye in the
general case. If the flow is unsteady, the streamline will vary from moment
to moment and will not coincide with pathlines or streaklines. The concept
is valuable mainly in steady flow where all three types of lines coincide.

Example 1.7

Consider the time-dependent flow of water from a leak in a water tank sit-
uated above the ground as shown in Fig. 1.28. An instantaneous picture of
the flow at several times is shown. Discuss and label the streamlines, path-
lines, and streaklines that could be distinguished in the flow of water from
the tank.

Solution

In this case, the streamline is indicated by the frozen picture. This is be-
cause, at the instant the picture is taken, each particle of fluid can be imag-
ined as having moved an increment of distance As in the time At, in the
direction of u = limit (As, Az — 0) of As/At. Thus each particle is displaced
an infinitesimal distance along, or tangent to, the velocity vector. In this
example the stream line is changing with time due to the decreasing pressure
in the tank. Four such lines are shown in Fig. 1.28.

Identification of a pathline requires concentration on a particular particle,
which we can assume was at point P at time f,. At any instant, the velocity
vector is tangent to the streamline. However, there is an acceleration com-
ponent in the negative z-direction due to the force of gravity. Thus the ve-
locity vector of a particular parcel is rotating with time. The position of the
parcel must be such that the velocity change in the interval Ar = 1, —
results in a new velocity tangent to the new streamline. At later times the
particle will occupy points in the sequence of streamlines as indicated in
Fig. 1.28 by a heavy dashed line.

A streakline is obtained by imagining dye injected at a particular point
for an interval of time. If dye were injected at the hole from the initial instant
fy to t; and then viewed at a later time, the streak would occupy a locus
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Figure 1.28 The flow “lines” with snapshots at times #,, t,, ,, and #; of the flow from
a leaking tank. A streamline, streakline, and pathline are shown.

across the instantaneous streamlines as shown in the figure by the dotted
line. It traces the history of a marked mass of fluid. Each subsequent dyed
particle occupies a position in a later streamline. At a given time, each is
at a different height according to the vertical distance that it has fallen under
the acceleration of gravity.

1.8.1 The Parcel at a Point in a Field

While aggregates of the elements in a particular parcel must experience nearly
the same forces, usually a parcel in a different region of the fluid will be
exposed to different forces and different initial conditions. This creates a
very difficult problem of keeping track of each of the separate parcels and
their individual histories. It therefore becomes practical to describe the fluid
flow as a field of variables.

In the field description, the dynamics and thermodynamics of each parcel
is given as it occupies a specific point in space-time. Thus a field of velocity
or temperature can be specified for each point in the fluid. Conveniently,
this is what we usually measure—the value of a parameter at the point of
our instrument. It is also what we are typically interested in—the wind,
temperature, or moisture at some location.

The large advantage of the field description is offset a bit by the fact that
we are no longer dealing with the time history of a single parcel. Instead,
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we must consider the state of any parcel as it passes through any point. This
requires us to give special consideration to the rate-of-change of the mac-
roscopic quantities in our parcel. The change in perspective from concemn
with a particular parcel moving through the field to the consideration of an
ensemble of parcels that occupy every point in a space—time continuum of
the flow domain can be confusing. This is especially true when we some-
times find it convenient to revert to a description of the changes in a specific
parcel as it passes through a particular point in the field. This switch in
perspective is necessary because we must write our force balance on a par-
ticular parcel, yet we must consider how the forces are changing at the mo-
ment that the parcel occupies any point in the field. We can choose an ar-
bitrary point and time; we then generalize the result to apply to all parcels
that successively occupy all points in the field. This yields a field description
of the parcel parameters. The velocity, density, pressure, and temperature
will be given as a function of space and time.

For instance, one aspect of the viewpoint of the parcel as a box at a point
can be seen by considering the changing shape of our fluid parcel as it moves
from one region to another. It is also moving from one force balance to
another. We can arbitrarily assume that the parcel is a cube at point P in
Fig. 1.29. But the shape of this same aggregate of fluid might be quite
distorted immediately before and after it occupies position P.

We will assume that the laws of dynamics and thermodynamics are ap-
plicable at all points in the flow field, or to any finite region or aggregate
of the fluid. In the case of steady, uniform flow fields, the domain can be
extended to complete volumes defined by the problem. This is called the
control volume approach, and it requires more boundary information than
is generally available in free flows. This approach averages over the entire
volume using an integral version of the basic equations. The method yields
approximate answers for the volume as a whole. It is convenient for use on

SN N ——
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Figure 1.29 The parcel in the neighborhood of point P in a flow of variable pressure
and velocity. The parcel is assumed to be a cube at point P.
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confined flows. Much effort is devoted to this concept in engineering fluid
dynamics. However, in geophysical fluid dynamics we are usually con-
cerned with unconfined flow fields and we require details of the flow field
inside the volume of study. This leads us to the differential approach to the
conservation equations, which we will develop in this text.

1.9 Continuum and Averaging

1.9.1 Scale of the Domain

One might imagine that Newton’s equation of motion could be written for
each molecule, and then kinetic theory could be employed to describe its
motion. The fluid motion could then be determined by averaging the motion
of all the molecules. However, this procedure requires much more initial
condition information than we usually have. In addition, it provides much
more information than we generally need. And finally, it is a lengthy, te-
dious process. Fortunately, we can establish the mean flow equations for a
fluid flow by applying Newton’s law to our finite aggregate of molecules,
the parcel. To do this, we need to define the conditions for the existence of
a parcel with the characteristics described in the last section. If these con-
ditions are not satisfied in our problem, then the extension of Newton’s law
for particles to an amorphous mass of fluid in a parcel may not be valid. In
this case the derivations and the equations found in the following chapters
may not be appropriate. It is prudent to check the conceptual requirements
for the parcel before applying the equations to a problem.

In our description of the fluid state, new properties defined as averages
over a specified volume are used instead of individual molecular mass and
kinetic energy. Density is the sum of the mass of the molecules in a des-
ignated volume, that is, mass per unit volume. Kinetic energy is half the
average molecular mass times velocity squared in this volume. This is fine
for well-defined volumes, but when we want to describe continuous space
and time changes (i.e., derivatives), we are interested in values for an el-
emental parcel that is incrementally small. For instance, in a field descrip-
tion, we are concerned with the density at a point. However, as the incre-
mental volume 3V, approaches 0, no averaging can be done, because there
are very few molecules in 8V. At some point either there is a molecule
occupying the point or there isn’t. Fortunately, there is usually a value of
SV where enough molecules are contained to make a meaningful average,
yet 8V can still be considered infinitesimal compared to the field dimensions.

There is a limit on the size of the parcel on the large side too. If the flow
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field under consideration is such that there is a gradient in number or type
of molecules, then as 8V is increased, the different-sized parcels will en-
compass variations in density. The parcel must be small enough so that we
can call 8V a point with respect to any such variations in the field.

Hopefully, there is a range of 8V between the two restrictions on its size,
a range where the parcel density does not vary significantly. We can imagine
that this process will fail at high enough altitudes where the air density is
very thin. We must carefully define the conditions on the fluid such that our
parcel definition is valid.

1.9.2 Continuum

The fluid continuum defines a domain of fluid where the parcel has uniform
properties. On the small side, this simply requires the parcel to be much
larger than molecular dimensions. However, the process of defining the de-
rivatives of the mean flow parameters involves taking the differences of the
independent variables (x, y, z, f) as they become infinitesimally small. Thus
the parcel is forced to be small enough to not experience any significant
mean flow variations. Figure 1.30 is a sketch of the expected variations in
the density as volume increases. Wide variations occur at the small-volume
end when the parcel is small enough to contain only a few molecules. At
the larger end, the parcel may experience gradients in density due to large-
scale variations. In this case, the density again would depend on the size of
V. We will call the region in between, where p does not depend on 3V,
the continuum. A similar sketch would apply for the average velocity of the
molecules in a parcel.

The continuum hypothesis can be stated as follows: A fluid continuum
exists in the range of scales wherein variations in the macroscopic fluid
characteristics are small with respect to the mean variations, yet are not

dm

. dm
lim 5V
<
continuum
=p
Sv volume

Figure 1.30 The average density (mass per unit volume) as the volume increases. Vari-
ation due to molecular spacing for small volumes, due to environmental changes for large
volumes.
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influenced by the microscopic variations. The macroscopic fluid character-
istics are usually density, pressure, temperature, and velocity. The micro-
scopic motions are due to molecular motion. This implies that the scale of
the parcel in the continuum is much smaller than characteristic dimensions
of the flow problem being studied, but large with respect to the scale of
microscopic variations. In other words, it excludes volumes so large that
variations in parcel properties show up due to the nonuniform behavior in
the flow domain. It bars volumes so small that characteristics are affected
by variations in the number of molecules contained in the parcel.

The parcel is an abstract physical entity. We can assume all physical
quantities are spread out uniformly over the volume of this continuum par-
cel, and any parcel can be a representative of a series of parcels with the
same properties. The series of parcels can then yield average states when
sampled by repeated measurements, such as those taken at

1. the same location in a steady-state field,
2. nearby locations of separation of the order of a parcel dimension, or
3. at any location in a direction in which the mean flow parameters do

not vary.

The molecules are in constant motion, entering and exiting our elemental
parcel. This motion is crucial in the processes of diffusion.and heat con-
duction. The diffusion of momentum leads to the idea of internal friction.
If the size of the elemental volume is very much greater than the mean free
path, then sufficient numbers of molecules are contained within the volume
that the 8V can be considered as in equilibrium with its surroundings. In
Chapter 4 we will rely on this equilibrium to treat the parcel as an “elastic”
entity in establishing the symmetry of the stress forces. Air at normal tem-
perature and pressure contains 2.7 - 10" molecules per cubic centimeter,
and the mean free path is about 10™® cm. Thus there is a secure range for
S8V where even the smallest laboratory measurement scale is large.

From a practical viewpoint, measurements are made with instruments that
have specific size (an opening diameter, length, or time). The instrument
samples a certain volume of fluid, depending on its size and length of mea-
surement, which generally produces an average over this region and time.
If the instrument is sampling within the continuum range, reducing the size
or time of the measurement (say, by 10-100%) will not affect the reading.
In this case, a representative average for the parcel can be obtained at each
position in the flow field and the field characteristics could be established
point by point. One can then see the mean variations which take place on
the large scales of the domain of the flow being investigated.

The mean variations will appear in the equations as derivatives. The fun-
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damental theorem of calculus defines the derivative as

.. ¢z +d2) —@(z) de
himit —mMmMmM8Mm8m™= —
8z — 0 oz dz

where ¢ is some continuous function of z.

The limits 8z and 8(¢) — O are important to this definition. Since we are
dealing with differential equations for the flow variations, we should be on
guard as to whether our derivatives exist. To approximate the limit, 8¢ and
dz must get very small in a volume that is infinitesimal with respect to any
mean flow variations to have the mean flow derivatives well defined. This
puts an upper bound on 3V. It cannot be so large that the derivative varies
due to the macroscopic changes, that is, due to variations in the flow field
we are studying. On the other hand, if the macroscopic variation we are
studying takes place on a scale small enough to force the parcel size to be
so small that fluctuations in the basic properties occur in the parcel, then
the continuum doesn’t exist.

An example of when the continuum can fail to exist for a particular scale
occurs when the dimensions of the flow problem approach the scale of mo-
lecular interaction. This length is the mean free path—the mean distance a
molecule travels before hitting another molecule. This scale may be ap-
proached in the study of rarefied gas dynamics. Air is rarefied at high al-
titudes. Thus in problems dealing with the flow in the boundary layer on
rockets, satellites, and other objects in thin gases, the continuum must be
checked. The critical parameter in this case is the Knudsen number (Kn)
which is defined as the ratio of the mean free path to the boundary layer
scale. When Kn — 1, the flow is called free molecule flow and calculations
are the rightful domain of kinetic theory. When Kn — 0, then we have a
continuum. In the first case, the flow must be determined with the law of
probability and the methods of statistics. In the latter case, we can deal with
Newton’s laws applied to matter in bulk. The methods should relate to one
another in some domain. Indeed the first and second order expansions in
the kinetic theory approach yield the same equations as does the bulk method.

Even in a rarefied gas flow, it may be possible to obtain uniform mac-
roscopic characteristics at a “parcel-size point” by extending the length of
time of the measurements. This requires the existence of conditions of uni-
formity on the mean flow such that the time and space averages can be
interchanged. If measurements are made over a long time period, sufficient
molecules might be encountered to form an average even though few were
contained within the required small spatial dimension for the parcel. For
geophysical flows, this is a simple and common practice in turbulence data
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analysis. Thus, there may exist parcel to parcel variations in flow properties
at a point, but if large enough numbers of parcels are sampled, well-behaved
averages can result, However, definite time or space intervals must always
be attached to the average.

In the eddy-continuum hypothesis, we assume that the continuum is de-
termined with respect to the small-scale turbulent eddies rather than the mol-
ecules. Since the turbulent eddies are many orders of magnitude larger than
the molecules, this will place a severe restriction on the definition of a
continuurn.

In a closer examination of turbulence characteristics, additional problems
for the definition of a continuum arise. One problem is that in a turbulent
flow field the motion at any point can influence the flow at a distant point
via the pressure field. Thus, there can be a variation in the nature of the
turbulence in various directions other than that of the main flow. Also, decay
and dissipation of the turbulence takes place at different rates for different
turbulence characteristics. The description of turbulence can get quite com-
plex. In this text we assume that these effects are small. However, in some
problems they must be addressed.

Example 1.8

In applying the eddy viscosity assumption to the boundary layer regions,
discuss the allowable size of the eddies in order to have a well-defined ver-
tical shear for both (a) the surface layer and (b) the entire PBL. For the
surface layer, consider a depth of # = 10* cm, whereas the PBL has a scale
of H = 10°-10° cm.

Solution

(a) To define the mean dU/dz within the surface layer, &z (the parcel di-
mension) might be assumed to be small enough at 10’ cm, an order of mag-
nitude smaller than the layer depth. However, this means that if we need
1000 turbulent eddies to determine a mean, then they must be no larger than
10% cm, so that 1000 will occupy a box with 10°-cm dimensions.

If the eddies are larger, then a mean might still be defined by measuring
at a point for a sufficient interval of time. If the wind velocity was 10
m/sec and maximum eddy size was S - 10? cm, 1000 eddies would be sam-
pled in about 10 min.

(b) In the PBL, similar reasoning leads to 8z < 10° cm, and the turbulent
elements should be no larger than about 10 m.
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Larger eddies are frequently encountered in the PBL. Since they can have
very different characteristics, each averaging scheme must be tailored to the
eddy spectrum.

These numbers show that the eddy-continuum hypothesis is a borderline
assumption in many cases. Each flow situation must be carefully evaluated
with respect to the definition of a continuum.

It is clear that careful definitions of the averaging process are necessary.
This involves a large number of definitions in statistics. However in the
applications to the atmosphere, we can restrict the statistical concepts to a
pertinent few. This allows us to avoid some subtleties required in general
statistics. However, some definitions are needed to warn the atmospheric
data analyzer that the conditions for the mean to exist are often open to
question.

1.9.3 Averaging

In our discussions on scaling and the continuum, we had to introduce a value
called the average or mean value of the flow parameters. We will put the
definition of the average on a formal basis in this section. The analysis of
turbulent flow is built on the definition of the mean. First, a mean must be
defined. Then turbulence can be considered as a departure from the mean.
To get a mean, a specific domain (e.g., a time interval) must be chosen.
Thus the mean is not unique. It is a function of the chosen domain. There
are many concepts for defining a domain for the mean. However, we will
not be concerned with all of the details of the averaging process in this text.
Only a brief definition of commonly used concepts will be given here.

Generally, records of the wind components, u, v, and w, temperature T,
and water vapor g are measured. Intrinsic averages are produced by these
measurements that depend on the geometry and sensitivity of the instru-
ments. These measurements typically can vary from 40 times per second for
aircraft turbulence measurements to once per hour for some synoptic re-
cording stations.

In atmospheric flows, we frequently find it necessary to sort out the or-
ganized waves or the random turbulence from the mean flow. This can be
done only with respect to averaging times or spaces. Thus we are concerned
with the value of a parameter over a specified volume and/or time interval.
A simple average is the sum of the number of measurement samples divided
by the number of samples. In this section we will denote space averages
with < > and time averages with an overbar.
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An average over a spatial volume V of any physical parameter M can be

written
<M> = (1/V) fijdV (1.6)

V space

This is a special case of the general definition that allows for M to be a
function of velocity u, and thereby vary over the space of the domain. The
average must depend on u. The variation can be handled with a probability
distribution function (PDF), F{u(x, 0}. The PDF is defined by looking at
the statistical average of a large number of flow samples. This is an exten-
sion of the definition of probability, as

The number of times an event occurs

Probability =
gl The total number of events observed

When the event is a continuous variable, like the wind speed, we define
the PDF as

The number of times that uy, = u =< u; + Au

PDF = -
The number of observations
The average may then be written with the PDF as a weight factor in the
averaging integral:

(M{u(x,0)}) = f f f PDF {u(x,H)}M{u(x,))} dV 1.7mn
v space

This is a statistical or probability average, called an ensemble.

In special cases the average is obtained from the simpler form, shown in
Eq. 1.6. These cases are obtained when the parameter being averaged is
uniformly distributed. When the flow parameter is distributed uniformly over
space, it is called homogeneous. When the distribiition is uniform with re-
spect to time, it is called szationary. The attributes of a statistically station-
ary flow over a homogeneous domain allow the simple mean value with
respect to time to be used in place of the more rigorous statistical average.

If one assumes that the characteristics of homogeneity and time depen-
dence are such that the time average is

L)
1
M= lim f M(x, 1) dt (1.8)
4

nh—t>01, — I )

then this average arises ffom the ergodic hypothesis.
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Sometimes the flow variables are stationary, random functions of one of
the coordinates. When the flow has such homogeneity with respect to a
particular spatial coordinate, then mean values that are independent of that
coordinate can be calculated. This can reduce three-dimensional problems
to two or one dimensions.

Once the mean has been determined the fluctuations M’ can be calculated
about this mean:

M=M+M where M' =0

These fluctuations can represent either the random turbulent motion or that
of an organized periodic disturbance.

Fluid dynamicists who work in the laboratory or with mechanical appli-
cations of fluid flow often automatically assume that a continuum exists.
This is because within a cube of dimension 107> c¢m, there are over 10"
molecules of air; and in a cube of dimension 107* cm, there are still 10’
molecules. These values are certainly sufficient to establish a good average
distribution and molecular composition. These numbers are huge enough to
allow us to ignore the microscopic particle variations when writing equations
for the mean properties. The continuum hypothesis is apt.

The mean properties are temperature, pressure, or velocity. These prop-
erties are the expressions for molecular kinetic energy, momentum ex-
change, and velocity averaged over a parcel volume. The equations are field
equations that describe the change in the variables across the domain.

The equations are expressions of laws derived from observations. They
include the conservation laws for mass, momentum, and energy. However,
they are not complete. There are more unknowns than equations. We must
also specify:

1. The character of the fluid, as an equation of state;
2. A relation for the internal stress forces; and
3. Boundary conditions.

Thus the assumption that a continuum exists with respect to molecular
fluctuations is generally secure for the study of atmospheric dynamics. How-
ever, in geophysics, turbulence is an important factor in many flow prob-
lems. Fortunately, geophysical scales are often so large that we can treat
turbulence as a random motion of small eddies buried in a mean flow. This
suggests that we can avoid worrying about the individual eddy by treating
it the way we did the molecule. We use the same averaging process to relate
the net eddy mixing effect to mean flow properties. The transport of mean
fluid properties due to the random migration of the eddies must be correlated
to the mean flow. In this case, the eddy-viscosity approximation is used.
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Figure 1.31 A sketch of a typical value of velocity obtained from a buoy that measures
at 10 times per second when it is averaged for the interval shown.

As with molecular viscosity, it relates the diffusive action of the small tur-
bulent eddies to the mean flow velocity gradients. A crucial factor in the
success of this analogy is the ability to define a mean flow that is indepen-
dent of the small-scale turbulence. That is, there must exist an eddy-continuum.

We can examine these new terms with respect to a geophysical parameter
by considering an ocean buoy measuring wind velocity at 10 m above the
sea surface. The record of U(r) might look like Fig. 1.31.

The value of the average will evidently depend on the averaging time. In
practice, eight minutes is used as a minimum time for averaging. The mea-
surement is considered repeatable, or steady-state with respect to a time
interval T, if U(#) = U(r + T). It is stationary if this holds true for 7 — o,
In the given record, the average will remain stationary for intervals up to
about one hour, where large-scale changes may appear. Thus we can use 8-
min averages taken as often as possible up to the 1-hr interval. This will
result in an ensemble of repeatable measurements taken under essentially
the same conditions. This provides a good basis for statistical averages.

1.10 The Equation of State for a Perfect Gas

1.10.1 Introduction

The state of the fluid can be fixed by the relationship between several vari-
ables. The variables are generally pressure, temperature, and another that
gives a measure of the composition of the fluid. The usual parameters for
characterizing composition is the density in the atmosphere and the salinity
in the ocean. Temperature stands in for thermal energy, the basic term in
energy conservation. The equation of state expresses the relation between
these variables for parcels that are in equilibrium.

We will accept a postulate for the relation between the properties of the
fluid. This relationship will define the state of the fluid. A complete treat-
ment of the state postulate must include an abstract axiomatic approach that
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begins with the second law of thermodynamics. This is a “conservation”
concept that is independent of the first law of thermodynamics. Since these
concepts do not play a major role in most atmospheric fluid dynamics prob-
lems, we will simply review some of the important points. The topic is
thoroughly covered in many texts.

Unique values for all of the thermodynamic variables are specified for
the fluid when its state is known. These properties may be altered by a
change in state called a process. If the process consists of a succession of
equilibrinm states, then it can be reversed. In general, the effects of viscous
forces and heat conduction are to make a process irreversible.

However, our ideal models deal with reversible processes only. For in-
stance, we assume that most atmospheric dynamic processes are too rapid
for heat transfer effects to take place. Therefore we can ignore the effects
of heat transfer on the dynamics. The result is a reversible process involving
state variables which is called adiabatic. This means that the state change
takes place without heat transfer. The processes of evaporation and con-
densation are notable exceptions to this assumption. These processes are
common in atmospheric flows. In these cases, the latent heat must be included.

1.10.2 Temperature, Pressure and the Perfect Gas Law

In atmospheric dynamics we are concerned most often with the macroscopic
(sometimes called bulk) properties of the fluid. In this case, vast numbers
of molecules contribute to the average. Common instruments inherently
measure a very large-scale average property by the nature of their size. The
molecular domain and concern over a continuum would seem to be left far
behind. However, laminar flow based on molecular theory is also left far
behind. We deal with turbulent flow and often try to model it in analogy to
molecular theory. Thus it is valuable to be aware of the kinetic theory of
gases when discussing the physical properties. This molecular model treats
the gases as large numbers of spheres that move independently and collide.
When in equilibrium, the velocity distribution has a mean value related to
the internal energy. The science of thermodynamics introduces two concepts
as axioms. The simplest involves the definition of temperature and the most
difficult one defines entropy (discussed in section 1.10.4).

Temperature is defined as a macroscopic parameter that is a measure of
the average kinetic energy of the molecules. It is a parameter that determines
the heat transfer characteristics of the fluid. From kinetic theory, the relation
can be expressed

3 mv? = 4/mkT (1.9)

where m is molecular mass (kg), v” is the mean square velocity of all the
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molecules, k is Boltzmann’s constant (1.3806- 102 J K™Y and T is the ab-
solute temperature.

The internal pressure in a perfect gas at rest is a normal force per unit
area on an imaginary surface in the fluid such as that shown in Fig. 1.32.

The pressure force on the plane AA’ results from the molecular activity.
It is related to the momentum flux across AA’ according to F = d(mv)/dt.
Each molecule carries momentum with it in its random migration. One can
now write the normal stress force equation. It is equal to the mean normal
component of momentum transferred by the sum of the molecules crossing
the plane. This is

p = nmv*/3 (1.10)

where n is the number of molecules/unit volume and nm is the mass per
unit volume, or density, p. This relation is derived from arguments based
on the average properties of the molecules and the symmetry of the velocity
distribution.

If a solid plate is placed in the flow, molecules will not pass through the
obstacle as they do through the imaginary plane in Fig. 1.32, instead they
will bounce or rebound off the surface. The reflection characteristics of the
molecules and the surface must be considered to obtain the momentum flux
from the fluid to the surface. However, to have equilibrium there must be
continuity of the pressure field. This dictates that the internal fluid pressure
is also the pressure on the solid surface, given by Eq. (1.10).

Combine Egs. (1.9) and (1.10) to eliminate velocity. This gives a basic
relation between pressure and temperature,

p = nkT (1.11)

The density can be introduced into this relation by substituting for n =
p/m,

p=pkim)T (1.12)

- o s o {1UIG

Figure 1.32 The pressure force on an imiginary plane AA’ in the static fluid is due to
the net molecular motion across AA'.
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This fundamental equation for the basic state variables can be written in
terms of the universal gas constant R, = 8.314 - 10~" kmol ', and the relative
molecular mass M, for the specific fluid,

P = p(Ry/M)T (1.13)

Finally, since we are generally dealing with one specific gas, air, it is
most convenient to write the equation in terms of the specific gas constant
for air, R = Ry/M,,

p = pRT (1.14)

This is the perfect gas law. It gives an accurate relationship between
pressure, density, and temperature for the gases that make up the atmo-
sphere. The composition of air is uniform at 75.5% N,, 23.2% O,, 1.3%
A, and 0.05% CO,. Dry air is described well by this relation. But air can
retain varying amounts of moisture, up to a saturation level that depends
mainly on its temperature. For dry air M, = 28.96, R = 2.87-10° cm®
sec 2 deg™'. The state is determined if two of the properties are specified.
Thus, for air at 15 degrees Centigrade and 5.3-10* g cm™' sec™ pressure,

the density must be 0.00123 g cm ™.

1.10.3 Other State Properties

Specific heat is a macroscopic parameter used for an ideal gas to relate the
internal energy to the temperature. It is defined as the quantity of heat needed
to raise the temperature of a unit mass of fluid one degree centigrade. For
compressible gases, the amount of heat will depend on the heat transfer
process. This is because some heat must go into the expansion of the fluid.
Two specific heats are used for air. One is that for a constant volume pro-
cess, ¢,. The other is that for a constant pressure process, c¢,. These cor-
respond to the respective changes in specific internal energy e, and specific
enthalpy 4 = e + p/p, given by

e—e=c(l,—T) (1.15)
hy—hy =c (T, —T)) (1.16)
The specific heats can also be defined in integral form,
3e/dT |y =cv; Oh/dT p=c,
or integral form,

T, T
ez_el=f CvdT and hz_hl:f deT

T, T
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Note that,
hy~h =e,— e, + (p/p)— (P/Ph
=c/(T,—T) +R(T,—T) (1.17)
Hence,
c,=c¢, +tR (1.18)
c, dT = ¢, dT + d(p/p) (1.19)

There are tables of the gas constants R, c,, ¢,, and k = ¢,/c, in texts on
thermodynamics of gases. These tables show that the last three vary only
slightly with temperature. In atmospheric problems, the values for the stan-
dard temperature and pressure are often used. In some cases, the departures
from standard values are most useful. The standards must be set for given
time domains. Such standards are the grit of climatology. However the tem-
poral variations are the most important aspect of some problems. One of the
main variations we must face in the atmosphere is the change in the state
parameters over vertical height ranges.

For the incompressible case, ¢, = ¢, = c, p is constant, and de = c dT.
In this case, the temperature changes due to purely thermal effects and pres-
sure can be determined from mechanical phenomena. This results in sig-
nificant simplification of the equations. In many cases air can be modeled
as an incompressible fluid.

1.10.4 Entropy and Isentropic Processes

The second law of thermodynamics can be used to define a state property
called entropy. The specific entropy may be written

2
Sy T 8§ = f d(qrev)/T (120)
1

Here, the heat transfer ¢ takes place in a reversible process between 1
and 2. When this process is run in reverse from state 2 to state 1 there is
no net change in entropy. However, when the process is not reversible, the
quantity d(q/T) is positive. Then the equality in Eq. (1.20) must be replaced
by >.

2
S;— 8§ = f dq!T > (53 = SDrev (r.2n
1
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Real processes always contain some irreversibility, therefore entropy will
always increase, even when the process is run in reverse. The amount of
increase of entropy compared to that of a reversible process is a measure of
the irreversibility of the process.

Entropy, for an ideal gas, is related to the other state variables by

53 — 51 = ¢ In(T,/Ty) — R In(p,/p,)
or (1.22)
8§ = 81 = ¢, In(T,/Ty) — R In(p,/py)

The most common atmospheric process is adiabatic, where dg = 0. It is
also reversible to a very good approximation. A process that is both adiabatic
and reversible is called isentropic. From Eq. (1.22) with s, = s,,

pa/pr = (L) T (1.23)
We can also express the exponent in terms of the specific heat ratio, %,
c,/R=k/k — 1) (Carnot’s law).
And,
pa/p1 = (L/T)¥*
p2/p1 = (To/T)) 4P (1.24)

p2/py = (Pz/Pl)k

These equations are the laws associated with the isentropic process.

When a fluid is brought to rest isentropically, readily measured property
values are obtained, called the total, or stagnation properties. This is a re-
versible process, with no heat transfer or work done. For a perfect fluid in
horizontal flow with constant entropy, the conservation of the sum of ther-
mal energy plus kinetic energy can be used to define stagnation values. For
example we have

hy+ud2="h,+uai2=h,

Ty + uil2 = T, + 1312 = T, (1.25)
or
To=T + v'/(2c,)
Also, using (1.24) and (1.25),

po = pll + u*/2c,D]**P (1.26)

po = pl1 + u?/(2¢, D]/
The stagnation values are properties of the fluid, representing the max-

imum possible values for each parameter. Therefore, they are very conve-
nient parameters for the nondimensionalization discussed in Chapter 3.
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1.10.5 Moist Air and Virtual Temperature

In the atmosphere the gas mixture often includes molecules of water. When
we include the mass of the water vapor, the state equation must include the
different densities and molecular masses of air and water. However, we can
define a temperature parameter that can be used to restore the basic form of
the equation of state. This temperature is defined in terms of a measurable
quantity that represents the amount of water vapor present, the humidity.

Water vapor also behaves like a perfect gas so that the equation of state
may be written

p = pR*/mT = p, R*/m,T + p, R*/m, T
= pRT{l + (m,/m, — 1) p,/(p. + pu)}
= pRT{1 + (m,/m,, — 1) g,} (1.27)

where ¢, = po/(p. + pw) = Specific humidity, and p = p, + p,,
If we let

Ty =T{1 + (m,/m, — 1) gy} (1.28)

be defined as the virtual temperature, we can return to the familiar equation
of state,

p = pRTy (1.29)

When the humidity is small, Ty = T, and in general this substitution
represents a slight correction.

In atmospheric flow, we have a significant built-in vertical variation in
p, p and T. A baseline for this variation is the adiabatic change with respect
to height. Density changes over short height differences are small. With no
heat addition and a constant density approximation, we can calculate the
vertical adiabatic temperature change as a function of the pressure change.
This temperature profile is called the adiabatic lapse rate. When an actual
vertical temperature profile is measured, departures from the lapse rate are
important indicators of the state of the atmosphere.

When the momentum equations are derived in Chapter 6, an important
relation between the pressure and the height will be found. In large-scale
atmospheric flow vertical velocities are typically much less than horizontal,
and the flow is often assumed to be two-dimensional horizontal. This is a
very good approximation for large-scale flow. Vertical velocities are very
much less than the horizontal. (Of course this is not true when there is very
strong convection in a weak horizontal flow.) We will find that, with this
approximation, there are only two important terms left in the vertical mo-
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mentum equation. These are the pressure gradient and the gravity forces, so
that

dp/oz = —pg (1.30)

This equation is exact when there is no motion and is called the kydrostatic
equation. Integrated, it yields p(z, p). Together with the state equation, it
provides information on the thermodynamic state of the atmosphere.

1.10.6 Potential Temperature

The importance of the adiabatic temperature lapse rate as a baseline tem-
perature has been noted. The stratification characteristics of the air are re-
lated to the difference between the actual observed temperature profile and
that of the adiabatic lapse rate. Along an adiabatic temperature change, dq
= 0. Therefore, from Eq. (1.22), the differences between observed and adi-
abatic temperature profiles are related to entropy change.

The potential temperature is designed to account for the thermodynamic
effects of decreasing density with height. It is defined as the temperature
that would result if the pressure were changed adiabatically to 1000 mbar.
This value was chosen as it is approximately sea level atmospheric pressure.
An equation for the adiabatic change in temperature with height can be ob-
tained from a statement of the first law of thermodynamics,

dq = c,dT + p d(1/p) = ¢, dT — (1/p) dp (1.31)

where ¢ is the rate of external heat addition.
In the adiabatic case, ¢ = 0, and

[dp/dnad = pcp
and from the hydrostatic Eq. (1.30),
[dT/dz).e = 1/(pcy) dp/dz = —g/c, = 'y (1.32)

where I'y, is called the adiabatic lapse rate.
From Eq. (1.31) with dg = 0,

¢, dT =dp/p (1.33)
This may be written
¢, dT/T = dp/(pT) = Rdp/p

and integrated in the vertical, from p = 1000 mbtopand T = O to T, to
yield the potential temperature equation,

0 = T[1000/p]*/ (1.34)
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We can replace the temperature in Eq. (1.31) with the potential temper-
ature, since

¢, d®/® = ¢, dT/T — Rdp/p

and
{dT/dz + T, = T/O dO®/dz (1.35)
This yields a compact statement of the first law for atmospheric dynamics,
dg = ¢, T/O dO (1.36)

From the definition of entropy as ds = dq/T, and Eqs. (1.31) and (1.36)
we can write

ds = ¢, dT/T — R dp/p,

ds =¢,d0/0.
Thus, lines of constant potential temperature are also lines of constant entropy.
For a thin layer the pressure will not change much and 7/0 is nearly
constant. In the PBL it is nearly unity. Thus in the boundary layer, use of

the potential temperature simply represents the departure of the real tem-
perature lapse rate from the adiabatic lapse rate.

(1.37)

1.11 Viscosity

1.11.1 [Introduction

Matter exists as either a solid or a fluid. The principal difference between
the two states appears in the behavior of matter under an applied force. A
solid will deform to a fixed point, and remain so deformed under the applied
force until the force is removed. It then returns to its original shape. The
applied force is referred to as the stress, the deformation as the strain; and
they are related with experimentally determined coefficients.

The distinguishing character of a fluid is that it continues to deform as
long as the force is applied, and it does not return to the original shape. In
fact, a simple definition for a fluid is “a substance that deforms continuously
under the action of an applied force.” The fluid concept includes both liquids
and gases.

When a force is applied to a parcel of fluid, the fluid elements in contact
with the force move the most. Adjacent layers slide in the direction of the
force at decreasing amounts in proportion to the distance from the location
of the application of the force. The proportionality factor is evidently much
greater in liquids than in gases. For the fluid, the applied force—the stress—
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is observed to be proportional to the rate of deformation, or rate of strain.
This quantity is simply the difference in velocity from layer to layer. When
one layer is moving at a velocity different from that of an adjacent layer,
there exists a strain between the layers. If the velocities are the same, then
there is no strain.

When a force is applied to a fluid it accelerates and flows according to
Newton’s law. As the fluid flows faster, the rate of strain increases, and
consequently the internal stress forces increase. The fluid can eventually
come to an equilibrium where the rate of strain force balances the applied
force. For example, a constant wind over the ocean surface can drag along
only a fixed amount of water. We can say that there is a dynamic equilibrium
where the fluid flows and creates internal stresses that resist the flow and
balance the applied stress. We can expect that a solution for the flow pattern
of a fluid domain requires knowledge of the stress distribution in the fluid.

1.11.2 Viscosity Fundamentals

Viscosity is an empirically determined measure of the internal forces that
oppose the deformation of the fluid. The basic momentum and energy ex-
changes are produced in collisions between the molecules. In addition, the
internal forces will include the intermolecular forces. These forces depend
on the separation distance between the molecules. They will have significant
value even when the molecules simply approach closely. The different phases
of matter—solid, liquid, or gas—are related to the molecular spacing and
intermolecular forces. In a solid, molecules are relatively close and expe-
rience large intermolecular forces. This is the factor that gives solids their
character. In a liquid, the intermolecular forces are sufficient to hold a given
volume of matter together, but inadequate to preserve shape. In a gas, mol-
ecules are far apart and intermolecular forces are too weak to hold a constant
volume. The atmosphere is composed of a mixture of gases called air, and
our laws must be addressed to this case. However, we will exploit the sim-
plifications available when air behaves like a liquid. The determining factor
will evidently be the degree to which air can change volume, or the measure
of its compressibility.

If the atomic forces are considered to act only when the molecular ap-
proach is close enough to be defined as a collision, the gas is called a perfect
gas. Empirical laws that give relations between pressure, temperature, and
density, such as Boyle’s and Charles’ laws, were obtained for such a gas.

Corrections for the contributions from the forces involved in approaches
that are near collisions can be obtained in relations such as the van der Waals
equation. However, the internal resistance, called stress, is not completely
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explained with kinetic theory even when it includes such forces. Concepts
such as adherence of groups of molecules seem necessary to explain the
observed stress. Although some feeling for the internal workings that result
in the stress can come from these considerations, a quantitative theory is not
yet available. In general we could be content to consider the integrated effect
of these forces as represented by the viscosity of the fluid derived from a
continuum flow parametrization. However, some discussion of the kinetic
theory viewpoint is instructive and it also provides valuable background for
the application of eddy diffusion parametrizations to atmospheric problems.

The differences in intermolecular physics of liquids and gases are illus-
trated in Fig. 1.33. Air density is such that most of the time a molecule is
in free flight, with a mean free path, A, about 3 - 107% m. Nevertheless, with
about 5- 10° collisions per m’/sec, there are ample exchanges to provide
excellent statistical averages of momentum exchange. The greater density
of molecules in a liquid allows many more collisions and a chance for in-
termolecular forces to have a measurable influence.

Consider a fluid that is flowing with a velocity shear, and examine a scale
where we see individual molecules on each side of a surface denoted by
AA' in Fig. 1.34. The mean velocity of the fluid is the average of the myriad
random motions of the individual molecules. Molecules above AA' have
mean velocity i, and those below have mean velocity u, in the x-direction.
Individual molecules will also have random motion in all directions. In par-
ticular, there will be molecules with a component of random motion in the
z-direction.

Now consider the effect if two molecules at positions 1 and 2 exchange
positions. (We consider two because on the average, as many pass upward
as downward through AA’.) There is a net change of momentum on each
side of AA’ equal to myu, — myu,. If we recall Newton’s law in the form
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Figure 1.33 Sketch of a liquid and a gas molecular transport at an imaginary plane marked
by AA’ in the fluid. Liquid: (1) Many collisions, (2) Intermolecular forces exist across AA’.
Gas: (1) Relatively few collisions, (2) No intermolecular forces exist across AA’.
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Figure 1.34  Sketch of the exchange of two molecules designated 1 and 2 across an
imaginary surface AA.

F = 3(mu) /3¢, (1.38)
we see that an exchange of momentum across AA’ is associated with a force.
Thus, the rate of momentum exchange, (mu, — m,u,)/dt, is equal to a

reaction force on AA’. When this force is averaged for all the molecules,
it results in a force per unit area in the fluid. This force can be related to
the internal stress 7. If the plane AA’ is assumed to be one of the permeable
faces of our model fluid parcel, then this force is the stress on that face of
the parcel.

On some plane in the fluid, a force must be exerted to maintain the shear
in the flow. The molecular momentum exchange is the process in a fluid
that produces the internal stress force. This force can balance the driving
force to result in flow equilibrium. If the outside force is removed, then the
momentum-flux /internal-stress will make the velocity uniform. If no forces
remain, a static fluid will eventually result.

The momentum exchange process requires a mean velocity shear to set
up a difference in momentum plus random molecular motion in the z-direc-
tion to move the momentum. The viscosity is simply a proportionality factor
that represents the effectiveness of the molecular exchange process. It em-
pirically relates stress to mean shear, as discussed in the next section.

1.11.2.a Viscosity from Molecular Theory

One of the successes of kinetic theory is to determine a relation for the
viscosity in terms of basic molecular properties that is substantiated by ob-
servations. Statistical averages yield expressions for mean free path A, mean
molecule speed v, the average molecule, and the net flux of molecules across
a plane in the fluid. Such a hypothetical plane AA’, lying parallel to a mean
shear flow, is shown in a close-up of two A dimensions in Fig. 1.34. On
this scale, the shear is always linear, and the parcel would define the density
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Figure 1.35 Sketch showing molecules of a fluid at a solid boundary, on the scale of a
mean free path. If there is a mean velocity U, then a mean sfress 7 exists.

with a variation of =20%. Despite these approximations, kinetic theory suc-
cessfully predicts:

« A=1/ [\/iwdzn], where d is molecular diameter and »n is molecule
number density.

* Molecular flux across AA’ = nv/4 per unit area.

o v = [8kT/ ("rrm)]l/ 2 where m is molecular mass,

» The average molecule crossing AA’ begins at %)\ away.

¢ The shear stress = net x-momentum flux across AA’,
= d(mu,)/dt
= (1/3) nvm\ du/dz = p du/dz.

« Hence, p = [2/Bd™)] [mkT /w2

Thus, viscosity depends on temperature and molecular characteristics of the
fluid.

In the early days of fluid dynamics, there was considerable speculation
about whether or not the fluid came to rest at a solid surface. The idea that
there was at least a “slip velocity” at the surface was reinforced by the
success of inviscid theory in describing the streamlines observed around var-
ious bodies. Some of these are shown in Fig. 1.10 and 1.11

Kinetic theory can be used to accommodate a prediction of slip velocity.
This accommodation leads to a change in the momentum transfer across AA'
and yields a momentum transfer at a solid surface, as shown in Fig. 1.35.

The momentum transfer at the boundary is assumed to be determined by
the process of diffuse reflection. In this case, the average u-momentum is
zero. One then obtains,

u, = I\ duldz

We can relate this velocity and \ to the continuum mean flow and the
characteristic length scale. This is done using the dimensional analysis tech-
niques explained in Chapter 3 to obtain,
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u, X\ [2 (u/U>] A

—=—|=d =~ — (1.39)

U L|3 \dz/L L
This ratio of scale lengths is known as the Knudsen number. When it is
small, the slip velocity is zero. It is about 107 in the atmospheric surface
layers. Therefore, slip velocities become important only in very high alti-
tudes, where the N becomes very large as the density drops.

Since molecular velocities increase with temperature, we might expect
the rate of momentum exchange to also increase with temperature. This would
result in a corresponding increase in viscosity. Such a relation exists for a
gas. However, it is not observed in a liquid. This is odd because the mol-
ecules are much closer together in a liquid and the momentum exchange is
much greater! However, the more dense molecular packing in this case makes
the intermolecular forces more important than the molecular momentum
transfer. For a liquid, the increased agitation of the individual molecules
apparently leads to a decreased propensity to form groups of molecules, and
in turn this leads to a decreased resistance to deformation. The net result is
that the viscosity goes down with temperature. The explanation of this result
is based more on empirical observations than on any rigorous theoreti-
cal understanding. Thus, although we have gained some insight into the
underlying mechanism of internal stress, the theory is incomplete and a
parametrization is clearly needed. We will deal with the parametrization
of the internal stress in detail as we derive the force balance on a parcel in
Chapter 4.

1.11.3 Parametrization

In general, parametrization is simply a method of establishing a correspon-
dence between the average effects of a process that appears in the mean
flow and some other measurable mean-flow parameter. For instance, the
procedure of relating the internal fluid stress to the mean-flow shear by means
of a coefficient, called viscosity in this case, is typical of the parametrization
technique. When a physical process takes place on scales that are outside
the scale of resolution for the problem concerned, only the averaged effects
of the process are used. This average is obtained by relating it to one of the
flow parameters on the observable scale.

In a numerical problem, the physical process in question often takes place
on a scale that is much smaller than the smallest grid size included in the
basic problem. The grid size is a crucial factor in numerical calculations,
since cost and time for runs go up as grid size goes down. The details of a
subgrid scale process will involve basic conservation principles applicable
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to the smaller scale. These details may or may not be known. In the case
of the internal stress caused by some unknown combination of the molecular
collisions and the intermolecular momentum exchanges, the basic process
is not yet understood. Fortunately, we can relate the net internal force be-
tween layers as proportional to the mean velocity gradient, viscosity as the
coefficient of proportionality. This relation is an example of parametriza-
tion, a general technique often resorted to in science and engineering. All
“laws” can probably be traced back to parametrization. The power of the
law depends on the sound statistical basis of the parametrization. Its status
as law is also enhanced by the degree of lack of understanding of the un-
derlying process.

Parametrization is a respected and widely used technique in geophysical
fluid dynamics. It can be employed to establish relations between a cause
and an effect when both have been measured in an experiment. There is no
requirement to have knowledge of the underlying physical processes that
form the basis of the relationship. However, any ideas about the physics
certainly would aid in finding the correct form of the parametrization. The
experiment needs to measure one parameter simultaneously with the other.
When a plot is made of one versus the other, a line or curve or more so-
phisticated statistical relation can be found to fit the data. This will involve
constants, which are the parameters relating the two variables. The success
of the relation will depend on the constancy of the parameters. If the pa-
rameters are the same for a wide range of the primary dependent variables,
then a valuable formula is the result. We will discuss a systematic approach
to parametrization in Chapter 3. For now, the definition of viscosity can be
seen as a parameter that relates forces and velocity gradients in a simple
experiment of continuum flow.

1.11.4 Viscosity as an Empirical Constant from Exper-
iment (Couette Flow)

One can obtain measurements relating an applied force to the rate of strain,
or flow shear, by considering fluid confined between two plates and apply-
ing a force to move one plate. (This can be done practically by confining a
thin layer of fluid between two concentric cylinders of large radii, one of
which is rotated.) The equilibrium flow pattern is shown in Fig. 1.36. There
exists a linear variation of the flow velocity from zero at the fixed wall to
the velocity of the moving plate. From another aspect, if U is a function of
z only, one can consider the definition for an imaginary thin layer of the
fluid with thickness dz and velocity change du. The results of the experiment
show that the force required on the top plate is proportional to U and in-
versely proportional to the depth of the fluid, A.
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Figure 1.36 The linear velocity shear in a 2-D parallel flow between plates separated by
h. The top plate is moved along by force F at velocity U.

When h is small enough, the observed linear-velocity profile indicates
that the internal frictional force per unit area is constant across the layer.
The shear across the layer is U/h = du/dz. Thus the experiment suggests
that the stress T (which is the measured force per unit area of the plate) is
proportional to du/dz. The proportionality factor w is defined as viscosity.
This is Newton’s law of friction:

T= wnduldz (1.40)

Since the viscosity occurs in the equations of motion in combination with
the density as p/p, we define this quantity as the kinematic viscosity, v.

Fluids that obey this stress-strain relationship are called Newtonian. Air,
water, and simple fluids are Newtonian fluids. Many fluids do not follow
this relationship: blood, catsup, toothpaste, some paints and plastics are ex-
amples. Viscosity may be a function of the strain rate in non-Newtonian
fluids. In Fig. 1.37, observations are plotted of several natural strain rates
to shear stress relations.

In atmospheric applications, when we attempt to parametrize turbulent
eddy effects in analogy to molecular interactions, we define an eddy-vis-
cosity coefficient. This is a bold assumption, which runs into a lot of crit-
icism. One aspect of the increased complexity faced by the eddy-viscosity
hypothesis can be seen in the type of fluid categorization. The eddy-viscosity

Plastic
T

Stress Newtonian

__— Polymers

dU/dz rate of strain

Figure 1.37  Plot of stress versus rate-of-strain relations for various categories of fluid.
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may be considered to be a measure of non-Newtonian fluid behavior. This
is because, unlike the uniform molecular behavior associated with Brownian
motion in the fluid, eddies may vary in size and distribution. Since the vari-
ation may be a function of the velocity shear, the linear stress to rate-of-
strain relation may not apply. With this caution kept in mind, the rest of
our development of the equations will deal with Newtonian fluids.

1.11.5 Eddy Diffusion

Because geophysical flows, particularly PBL flows, are generally turbulent,
we will discuss the eddy parametrization method in parallel with the mo-
lecular averaging process whenever it is appropriate. This is because the
eddy flux is often modeled in analogy to the molecular flux. However, the
turbulent eddies of aggregates of fluid parcels are clearly quite different from
molecules.

The molecular development results in relations for internal stress that are
strictly applicable only to laminar flows. However, the viscous forces as-
sociated with the molecular interaction are invariably negligible on atmo-
spheric scales. The important fluxes are carried by the turbulent eddies. One
result of this fact is that when turbulence is negligible, so is internal stress.
The inviscid flow equations have been used with great success on atmo-
spheric scales. However, the turbulence in many atmospheric flows is such
that the characteristic scale of the turbulence can be of the same order as
the dimensions of the atmospheric domain of the problem. Thus the tur-
bulence is not easily ignored. Nor is it easily parametrized.

In many flows, turbulent eddies provide flux mechanisms that are large
enough to modify larger scale atmospheric flow dynamics. The effective
stress and fluxes that are a result of turbulence are especially crucial to
boundary layer flows. They must be included in large-scale numerical models
as the models become more accurate. The success of the weather predictions
will depend at some point on the representation of the fluxes and dissipative
processes related to turbulence.

In 1877 Boussinesq introduced a mixing coefficient, or eddy viscosity,
K, in an analogy with the laminar flow relation between the stress 7 and the
velocity shear so that

7= pKduldz (the turbulent eddy based stress) (1.41)

This assumes that the transport of properties (heat, momentum, etc.) is done
by turbulent elements with scales much smaller than that of the basic mean
flow.

We will find that the scale of the turbulence is very important. In fact,
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turbulent eddies are often too large to make such a simple diffusive param-
etrization as Eq. (1.41). Ultimately on some scale all transport is advective.
A parcel carries along its momentum, heat, or pollution. However, advec-
tion by random motion can only be represented statistically. If the eddies
are small, then the local shear and temperature gradient may be used to
model the net transport as eddy diffusion. If the eddies are very large, then
their individual advective characteristics must be accounted for. These may
become organized, in which case they may be included in the mean laminar
flow. Or they may be random, in which case complex statistics related to
the turbulence spectrum must be employed. Again, the crucial factor in the
parametrization is the ratio of the scale of turbulent eddies to the scale of
the domain. One person’s advection is another’s diffusion.

In addition, several implicit assumptions are made on the nature of the
turbulent elements.

1. The turbulent elements have cylindrical or tubular characteristics. They
are vortex elements of variable size and strength that have characteristic
density, temperature and velocity.

2. The turbulent eddies transport the fluid properties in random motion
in analogy to the molecular transport. They exchange properties (momen-
tum, heat, etc.) by rapid mixing. -

K is expected to be much larger than p/p to account for the greatly in-
creased flux capabilities of turbulent flow. K is analogous to the kinematic
viscosity v. In a similar fashion, the Fourier law for heat conduction in
laminar flow,

Qun = —k, dT/dz (1.42)
has an analogous law and eddy coefficient,
Q= —cgK,dT/dz (1.43)

A sketch of small-scale turbulence within a shear layer is shown in Fig.
1.38. If the scale is that of the PBL, the height is about 1 km. A reasonable
continuum scale is about 10 m = A = 100 m. A parcel with 10-m sides
will contain enough 1-m scale eddies to allow the calculation of a reason-
able average, yet permit the mean flow variation to be defined on the
10-100-m scale.

However, in the PBL example, we are pushing the boundaries of the
continuum hypothesis. Eddies found in the PBL are frequently larger than
one meter and can be as large as the height of the PBL. To obtain the
average effect of such large eddies, one must resort to special averaging
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Figure 1.38  Sketch of a boundary layer containing turbulent eddies. In this case, assume
that the eddies are generated by the surface roughness.

techniques. If there is horizontal homogeneity to the large eddies, then a
very long sampling time may gather enough eddies to average. Another way
to obtain an average over many large eddies is with an airplane flight through
the PBL. The flight path must be at least 20 km long.

Boussinesq recognized that these eddy coefficients were a crude approx-
imation and cautioned that the turbulence must be uniform and of much
smaller scale than the basic (mean) flow being described. Additional prob-
lems in the application to the atmosphere arise because

1. Turbulence varies in size and intensity, hence K varies.

2. Turbulence is proportional to the mean velocity shear, hence K is a
property of the flow dynamics.

3. Turbulent eddies sometimes are of a size the same order as the mean
flow. Thus, the parcel cannot be large enough to contain enough eddies to
provide a good average.

4. Turbulent eddies are not solid entities and the momentum exchange
process must involve mixing of parcels instead of solid-body kinematics.
The mixing will require some finite time interval.

Eddy diffusivity modeling has met with much success, despite its severe
limitations. Various criteria have been developed that relate the diffusivity
coefficient to the distance the eddy travels before adjusting to its surrounding
dynamic and thermodynamic conditions. Other theories relate the diffusivity
to the associated characteristic times and velocities of both the mean and
the turbulent flow components. In practice, these nuances may be beyond
our knowledge or our ability to obtain measurements of atmospheric tur-
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bulence. Thus, we’re often forced to resort to the ad hoc assumption of an
eddy molecular analogy for the small-scale turbulence. Proof of the validity
of this assumption is then obtained only from an a posteriori observational
agreement with the theory.

1.12 Summary

This chapter is an introduction to some new concepts, a review, and a ref-
erence section for later chapters. The topics will emerge again in the de-
velopment of the equations, often as purely mathematical concepts. It is
hoped that this initial exposure will make the reader familiar with the terms,
if not yet comfortable with them. Generally, this takes many cycles through
the material. The following chart summarizes the topics of this chapter. Ele-
ments within the chart are delineated as motivations, concepts, and defini-
tions by various styles of type as shown in the title.
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MOTIVATIONS, Concepts, and Definitions

OBSERVATIONS THAT CHARACTERIZE THE FLUID
DYNAMICS OF THE ATMOSPHERE

FLUID FLOW
Newton’s Law Applied to a Fluid
The Parcel
Continuum
Averaging
Pressure Force
Internal Friction Force, Viscosity

WAVES AND VORTICES
Rotating Frame of Reference
Coriolis Force

LAMINAR AND TURBULENT FLOWS
Potential Flow
Transition and Turbulence
Boundary Layers

THERMODYNAMICS
The Equations of State
Perfect Gas
Temperature, Pressure,
Entropy, Enthalpy,
Virtual Potential
Temperature

TURBULENCE AND EDDIES
Eddy Viscosity

1.13 Glossary

Adiabatic A thermodynamic process without heat exchange.

Adiabatic lapse rate Temperature variation experienced by a parcel in
the atmosphere adiabatically moving vertically.

Body force Force acting through a distance on every element of a parcel.

Boundary layer Region near a boundary where viscous forces affect
velocity profile.
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Continuum Domain of validity of fluid parcel concept, large enough
to provide an average of small-scale variations, small enough to allow def-
inition of mean flow derivatives.

Coriolis force Virtual force added to earth-based frame of reference to
simulate inertial frame.

Eddy continuum A continuum defined with respect to turbulent eddy
scales.

Eddy viscosity Parameter relating turbulent eddy momentum flux to mean
shear.

Ergodic A homogeneous and time-independent flow.

Fluid Matter which continuously deforms when a force is applied; in-
cludes gases and liquids.

Fluid parcel Imaginary volume cube of fluid at an instant of time.

Geostrophic flow Flow due to balance between horizontal pressure gra-
dient and Coriolis force.

Homogeneous Uniformity in the flow velocities and thermodynamic
parameters.

Inviscid Not influenced by viscosity.

Isentropic process One without heat addition or loss.

Knudsen number \/H, ratio of molecular mean free path (or eddy do-
main equivalent) to boundary layer height. '

Laminar Flow with each layer independent of adjacent layers.

Newtonian fluid A fluid which obeys the stress-strain relation, T =
B duldz.

Parametrization The process of relating the change in one variable to
that of another. This is usually done by making simultaneous measurements
and using empirically determined parameters.

Pathline Trajectory of a particular parcel.

Perfect gas law p = pRT

Potential flow Flow wherein velocity is derivable from a prescribed
function. Specific mathematical conditions are in Chapter 9.

Potential temperature Temperature resulting if pressure is changed
adiabatically to 1000 mb.

Reynolds number pU#h/p, nondimensional parameter characterizing the
flow regime.

Shear Velocity gradient.

Specific heat Parameter relating internal energy to temperature.

Specific internal energy (etc.) e, internal energy per unit mass.

Stagnation values Properties of the fluid obtained at zero flow veloc-
ities. Also called total values.

Stationary Not varying with time; steady state for all time.

Steady-state flow The flow is not changing with time.
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Streakline Line denoting parcels that have passed through a particular
point.

Streamline Lines everywhere tangent to the velocity vector.

Surface layer Flow region with strong shear immediately adjacent to a
boundary.

Transition Process of flow changing from laminar to turbulent.

Turbulence Random, unpredictable fluid flow.

Uniform flow A flow with velocities everywhere parallel and constant.

Virtual force Fictitious force added to noninertial frame of reference
to simulate inertial frame.

Virtual temperature Temperature that accounts for water vapor in air.

Viscosity Parameter characterizing internal stress forces.

Vortex Flow around a point with basically circular symmetry and tan-
gential velocity.

1.14 Symbols

Acceleration, a vector

Specific heat at constant pressure (volume)
Specific internal energy

Force, a vector

Gravity

Specific enthalpy (= e + p/p)

Eddy viscosity coefficient

Ratio of specific heats (= ¢,/c,)
Kinematic viscosity, g/m sec

Mass

Dynamic viscosity, m*/sec

Density, g/cm’®

Pressure

Specific humidity

Specific gas constant for air

Universal gas constant

Viscous stress

Virtual temperature (adjusted for water vapor)
Velocity, a vector

ﬂﬁqggxs-’ubcgp Eall- I Y ujt\_s?u
]
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Problems

1. (a) What is the ratio of the density of water to that of air, p,/p,, at
10°C and absolute pressure of 103 kN /m”? (b) What is the ratio of dynamic
viscosities of air and water at standard pressure and temperature (20°C)?
Likewise, the kinematic viscosities p./p,-

2. The design of a keel of a boat requires fluid dynamics knowledge of
the air and the water. Discuss

(a) The main purpose of the keel of a typical sailboat
(b) The same for a wind surfer
(c) Another purpose of the keel in part (b)

3. A baseball is a smooth sphere with seams and threads forming a
pattern over the surface. A knuckleball is a type of baseball pitch that is
thrown such that there is no, or very little, spin. It exploits the fact that a
turbulent boundary layer has less drag than a laminar one. The ball then
moves in an unpredictable manner. Explain why, in 25 words or less. Es-
timate the best speed to throw a knuckleball on a calm evening, temperature
60°F.

Use v @ 60°F = 1.6-107* ft*/sec. Experimental results show transition
from laminar to turbulent flow on a sphere occurs at Re = 1.8 - 10°; ball
diameter = 3 inches.

4. If you are to design an experiment to evaluate a mountain-valley
wind, which has a strong diurnal cycle, discuss the points you must consider
to obtain a good ensemble of measurements.

5. Assume that you have a laminar flow of air in a wind tunnel. Are
you (more, less, or neither) likely to have transition to turbulence if (a) you
increase the height of the tunnel, keeping windspeed constant; (b) you inject
20% helium; (c¢) you double the speed of the wind; (d) you heat the air,
with the pressures kept constant.

6. The buoyancy of a parcel of fluid simply relates to the mass per unit
volume of the parcel relative to that of the surrounding fluid. A glass is full
of water and ice cubes so that the cubes extend above the rim of the glass.
When the ice melts, does the water spill? So, when the greenhouse effect
melts the pack ice over the Arctic ocean, will this help the oceans flood the
coastal cities?

7. A person is in a raft floating in a pool and throws overboard a heavy
anchor. Does the water level in the pool rise, lower, or stay the same ?

8. The vertical pressure variation in a static ideal gas may be written

dp/dz+ =0,  wherey=pg; p0)=p,
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Combine this with the ideal gas law to obtain an expression for the pres-

sure variation in an isothermal layer of the atmosphere.
9. From a kinetic theory (molecules) approach, what is the (a) fluid

stress, (b) pressure, (c) temperature?

10. What is fluid viscosity? Describe how it can be measured.

11. The cylindrical weight of 5 Ib falls at a constant velocity inside
a 6-in. diameter cylinder. The diameter of the weight is 5.995 in.. The oil
film has viscosity of 7 x 107> 1b sec/ft>. What is the velocity of the weight?

j«——©6" diameter——»y
oil film

I weight 2"

|<— 5.995" diga ——

12. Viscosity of a fluid is determined in an apparatus such as the vis-
cometer shown. Where () is the rotation rate (rev/sec), t < R.

Fixed outer cylinder

Fluid

f
t

The fluid is confined between concentric cylinders with dimensions shown.
The outer cylinder is fixed and the inner is rotated at a constant speed (2,
requiring a torque 7. Since ¢/R < 1 the tangential velocity can be assumed
to vary linearly across the gap. For a Newtonian fluid with viscosity p,
develop a formula for w(7",Q2, and viscometer geometry).

13. To use the eddy-viscosity parametrization, one must be certain that
the eddies fit the parcel requirements for the derivation of the equations.
Give three requirements on the eddies.

14. We often use the principle of a force being equal to a momentum
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exchange. Consider an hourglass on a scale. Discuss the scale reading from
the moment the sand starts to fall until the moment it has all fallen. Explain
or prove your contentions. Be cautious of the endpoints.

15. The boundary layer flow in a thin layer of fluid on an inclined plane
can be represented by:

u(z) = U[2z/H — (z/H)]

where U is constant and H is the layer thickness. Find the shear stress at
the surface H/2 and at the free surface z = H.

16. The formula in problem 15 can be used to approximate a thin layer
of water flowing under an airflow that drives the surface of the water along
at U,. H is the depth of influence. What is the shear stress in the water?
Comment on it compared to the air stress.

17. Consider a body in a fluid flow and look at an arbitrary segment of

its surface.
U /

Discuss three forces that act on this surface.
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Problems

In describing a fluid flow, we look at all variables from a field perspective.
The field description presents the best flow picture, simplifies the derivations
of the equations, and unfortunately adds more complexity to the derivatives
(there’s no free lunch).

The basic flow variable measured and used in atmospheric flow analysis
is the velocity, When the velocity is given at each point and at any time in
a given domain through a field description, the derivatives are known from
direct or numerical differentiation. Then, with the accelerations known, the
forces can be obtained from Newton’s momentum law. Thus, expressions
for the conservation laws can be written that apply at each point and result
in a set of differential equations that completely describe the flow. The most
difficult part of this process is expressing the acceleration in the Eulerian
frame of reference. In this chapter we will address the velocity derivative
and some of the parameters and operations involving it.

Once we have the velocity field, we find that certain combinations of the
derivatives with respect to the field variables form valuable parameters. These
are the divergence and the vorticity, each of which can be used effectively
in describing flow phenomena. This chapter discusses some of these char-
acteristics of the velocity field.

84
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The effect of the earth’s rotation on a frame of reference fixed on the
surface is seen to cause an effective acceleration when compared to an in-
ertial frame. When this acceleration is added to the velocity derivative as a
virtual force per unit mass, we find that the equations can be written as
though the rotating frame was an inertial one.

Finally, we discuss two theorems that relate values on the surface of a
domain to the derivatives over the volume of the domain. We will find these
to be particularly helpful in the later derivations of the equations which ex-
press the various conservation laws.

2.1 Local Time and Spatial Changes (Differentiation
at a Point)

A classical physics problem is to describe the time history of a particle as
it moves under the action of various forces. Newton’s laws were developed
to solve this problem. The solution is generally found in a Lagrangian frame
of reference, where a particular body is identified at a particular time and
its subsequent location and velocity are described as a function of time as
U(y). This works well for billiard balls and rockets. It might apply to fluids
if we describe the individual molecular motion and interaction. However,
this is impractical for most fluid problems as molecular scales are extraor-
dinarily small compared to typical atmospheric scales. Thus we will apply
the conservation principles to a conglomerate of particles that make up a
much larger scale parcel.

One atmospheric example where we might follow a particular parcel of
air in a Lagrangian manner is when it emerges from a smoke stack or other
source of pollution and we are interested in the pollution path line. Another
example is found in the analysis of time-dependent flow of a fluid in a
specified control volume using a finite differencing numerical model, where
tracking of a particular parcel is often feasible and informative.

However, most often in atmospheric dynamics we are likely to be inter-
ested in the time history of a geophysical parameter, such as the wind, at a
point. Often we are interested in plotting the wind at all points in a given
region, or field. This specification of the vector wind field is equivalent to
determining the streamlines, since they are defined as tangent everywhere
to the velocity vectors. We are less likely to be interested in identifying a
particular parcel of air and following its subsequent journey. Even in the
case of the point source of pollution, we are more likely to be interested in
the time history of the pollution at various points in the field of flow than
in the complex history of a particular parcel.

Generally our problem is to specify a flow field. That is, we write the
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velocity U(x, #) to denote the velocity at any point X at time ¢. This is the
Eulerian specification. In this perspective, there are no specific parcels of
interest; rather, a field of parameters characterize the flow at each point. In
the derivation of the equations for this field, we define a continuum of fluid
from which we extract a representative parcel at a given point in space and
time. We must consider this hypothetical particle-like parcel because we
wish to apply Newton’s laws for particle motion to the fluid parcel. These
laws are written in a Lagrangian perspective wherein the change in velocity
of a particular parcel is a function only of time, U(z). We will find that the
transformation to a Eulerian frame of reference is easily accomplished using
the definition of a total derivative. Note that the distinguishing feature be-
tween Lagrangian and Eulerian specifications is that the Eulerian expression
will contain location, x, and time as independent variables. In the Lagran-
gian expression, X is a dependent variable expressed as a function of time.

A liability of the Eulerian description is that the acceleration of the fluid
element is no longer simply the rate of velocity change divided by the in-
crement of time in the limit, as shown here:

du  u(t+ 8 — u@®)
_ = l].lTl _—
dt 8—0 ot

The change in definition of acceleration occurs because we are not following
the particular parcel throughout the field, but rather describing the rate of
change of velocity of the parcel at the instant it occupies any point in the
field. Since any dependent parameter may be varying in space independently
of its variation with time, the rate of change at a point will depend on the
value of the parameter immediately before and after it occupies a particular
point. The acceleration will be made up of the local time change plus an
advective component due to the velocity gradient,

ulx, t + 8 — ulx, 1) N ulx + dx, ) — ulx,

Dt 5, 5x—0 S dx

Here, the capital D/Dr is used to indicate a total derivative.

Example 2.1

Data taken in large-scale modeling is often gathered by ships traversing in
a selected domain. A typical experiment might involve a study of the North
Atlantic and a particular ship that begins a run at longitude 10°W and latitude
40°N in the fall. (See Fig. 2.1.)
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40

\k @ moving north I 0! e e
in

Figure 2.1 A sketch of a ship (A) cruising north past a fixed ship (B) with the daily
temperature readings of ship A.

As the ship proceeds due north, one of the parameters measured is the
air temperature at 1800 Z each day for a 6-week period. The cruise area
and the data record are shown. Comment on the data trend. Discuss the
temperature record measured at a ship anchored at P.

Solution

The temperature taken on the moving ship is steadily decreasing. Two pos-
sible causes are evident, associated with the fact that both time and the spa-
tial coordinates are changing. The concepts of the Eulerian versus the La-
grangian specification are at issue here. Going northward toward the pack
ice is moving into colder regions. In addition, the duration of the cruise is
sufficient to experience the cooling effect of approaching winter. The trend
measured on the moving ship is a temperature change due to its motion from
warm to cold regions plus the global temperature change. We could write

dT] B aT] N aT]
dt ot ot

ship A = global + motion
or
dT aT oT d
—|=— +-—V] whereV=—y
dt at dy dt

ship A .= global + motion

In contrast, the anchored ship will register only the global temporal tem-
perature change. This will be the local temperature change measured at P.
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Jr] 3 aT]
dt at

ship B = global

An observer at P could determine the time history of the temperature on the
moving ship only if the T(z) field and the ship speed V were known.

We should note that the temperature rate of change measured on the mov-
ing ship will be different than that measured on the anchored ship even when
the ships are side by side, essentially at the same point. This is caused by
an increment Az before or after the time of coincidence; the moving ship
temperatures differ slightly from those at the anchored ship due to the Ay
displacement.

Consider the flow out of a high-pressure tank into a narrowing channel,
as shown in Fig. 2.2,

Here the flow is rapidly varying in the x-direction and the overall picture
is changing with time because the pressure in the tank is steadily decreasing.
The fluid accelerates under the pressure differential force, which is con-
stantly dropping. Any parcel at P experiences an acceleration in flow ve-
locity due to the higher pressure immediately upstream and lower pressure
immediately downstream of this point. This force due to the pressure gra-
dient decreases as the pressure decreases (unless it is maintained by outside
means). Thus this component of acceleration is decreasing with time. How-
ever, a particular parcel is actually at P only instantaneously because it is
traveling with the veloeity at P. It is consequently experiencing a change in
velocity due to the spatial variation in u(x, #). This part of the velocity change

y —5 v
L ==L
% /"' u

Figure 2.2 The flow out of a tank at relatively high pressure into the environment. Each
parcel follows a different path.
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will be called the advective component of the acceleration, since it is due
to the advection of the parcel through the varying velocity field. Note that
this component of the change in velocity will be present even if the entire
flow field is steady. An example is the case where a constant pressure is
maintained in the tank (e.g., by a pumping system). In other words, if the
flow is steady state, each successive parcel that occupies any point P has
the same velocity, and the overall field is unchanging. If the pressure is
allowed to drop, then the overall velocity field will also drop with time,
eventually to zero.

A sketch of a parcel that we identify as a cube when it is at P at time ¢
= 0 is shown in Fig. 2.3 at small time increments before and after ¢+ = 0.
Although the entire velocity field might be changing with time, it is easiest
to address the advective part of the changing velocity if we consider a steady-
state flow. In this case, the flow field is not changing with time. That is,
the velocity, which may be different at every point in the field, is constant
with respect to time at every point in the field. In a steady-state field, we
could also view Fig. 2.3 as showing an instantaneous picture of a sequence
of parcels that pass through point P, each attaining a cubical shape at P.
Each parcel will have the same distorted shape immediately before and after
being at point P because each will experience identical velocities, acceler-
ations and forces as it moves in the steady-state field. However, a parcel
moving through the field will change velocity constantly to adjust to the
velocity at each new point. It is experiencing acceleration due to its advec-
tion through space. If we were moving with the parcel (in a Lagrangian
sense), then the velocity would be changing with time, and time only. The
spatial location would also be changing with time. However, in the Eulerian
perspective, the parcel is an imaginary infinitesimal cube confined to the
arbitrary point P at time ¢. In other words, in the limit Az — 0 if Au/Ar =
0, but the limit Ax — 0 of Au/Ax is not zero at the point P.

These two aspects of the derivative at P in an Eulerian sense can be re-
lated to the scalar change in temperature in Example 2.1 by considering the

14 ty t

Figure 2.3 The parcel at a point of convergence in a flow field. It is assumed to be a
cube at point P.
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moving ship replaced with a parcel of air and a steady-state global temper-
ature (e.g., at solstice). If we are describing the changing temperature of
the parcel of air at the instant it is at P, the rate of change will depend on
the parcel velocity through P and the temperature gradient. If there is a
global change in temperature with time, it must simply be added to the ad-
vective change.

We intend to write the equations for the fluid velocity and other mac-
roscopic parameters in an Eulerian coordinate system, determining the fluid
state at each point in the flow domain. However, confusion can enter when
the conservation laws are first written for a particular parcel as it moves
through a point P(x, y, z). Strictly speaking, this is a LaGrangian approach,
since the parcel is given and we seek the change with time. However, we
will consider this as the instantaneous force balance for this parcel as it
occupies an arbitrary point P of the field. As we take the limits &¢, dx —
0, the distinction is lost between this particular parcel and the succession of
parcels that occupy point P over a finite increment of time. Although we
have formulated the equation in a Lagrangian sense, it is transformed to
Eulerian coordinates. As long as the equations describe the field variables
as a function of position and time, we have an Eulerian description.

If, as in Fig. 2.3, the flow field is contracting, then the forces on a parcel
in the vicinity of P(x, y) are acting to compress the elemental parcel. If the
fluid is incompressible, when the forces push the fluid parcel inward on the
sides in one direction, it can bulge outward on the sides in another direction,
like a cube made of silly putty or jello. When the fluid is compressible, the
density in the field is increasing in the x-direction, and an aggregate of a
constant number of molecules will require less space as the parcel moves
along. In both cases the shape of the parcel is changing. However, when
constructing our hypothetical parcel in the Eulerian frame of reference we
can assume that it is a cube at P and the distortion in the distance 8x or time
&t is small, vanishing in the limits. Hence in the coming chapters we will
be writing force balances across a finite cubical parcel, and then determining
derivatives in the limit of an infinitesimal parcel at a point.

The forces in the field may be changing with time, so that a variable
acceleration exists, and the parcel velocity at any point is changing with
time. In addition, the velocity of the parcel is most likely changing with
distance, perhaps as the parcel moves from a high-pressure, low-speed re-
gion to a low-pressure, high-speed region. We begin to get an idea of the
complexity of this change when we realize that the velocity is a vector and
is often three-dimensional. Flow may be changing direction and magnitude.
Thus, it is easier to begin our formulation of the derivative in Eulerian space
with respect to a scalar parameter.

The temperature T(x, y, z, t) of a parcel can vary with respect to each of
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the independent variables. We separate the total temperature change expe-
rienced by the parcel into a time-dependent local change and a change due
to a spatial variation of temperature in the domain through which the parcel
is moving. For the special case of heat or temperature change, the part of
the derivative due to the parcel motion is sometimes referred to as the con-
vective part. Since convection is used to describe an important class of at-
mospheric flow due to lighter air rising, the term advective is preferred here.

We can express the dual aspect of the change with simple calculus. Con-
sider the temperature T, which varies in space and time.

T=T(x,1) 2.1)

Initially, let the spatial change be in the x-direction only. From the chain
rule of calculus, the total change in T can be written

dT(x, 1) = 9T /ot dr + 0T /dx dx

or
dT/dt = 9T /ot + 0T /dx dx/dt

Substituting, u = dx/dt and DT/Dt = dT/dt (indicating rotal, material, or
substantial, derivative)

DT/Dt = 3T /3t + u 8T /ox 2.2)

Thus the fotal temperature change experienced by the parcels that pass through
the point P is the sum of a local time variation in the temperature field plus
the temperature change due to the velocity field transporting the parcels through
the variable temperature field.

In the same way, let us consider the vertical density distribution in the
atmosphere. The overall mean density is observed to decrease with height,
p(z). If there exists a vertical flow in our field of interest, the air will con-
tinually adjust to the surrounding pressure and the density will decrease in
accordance with the vertical density gradient. Thus, although the density at
a given height is constant (even with the upward velocity flow), a particular
rising parcel of fluid is experiencing a continuous decrease in density in
proportion to the vertical velocity.

Now it is also possible that the overall density is changing, say due to
uneven solar heating effects. Mathematically, we can write, p(z, #) and ex-
press the change in p

dp = dp/otdt + dp/oz dz (2.3)

If we are concerned with the change in mass for specific particles in a
small region at height z, then we must consider the mass changes due to the
time change plus that due to higher-density fluid entering from below and



92 2 Flow Parameters

lower-density fluid leaving from above. Consider a parcel that momentarily
occupies the height z. The density change with respect to time equals the
local time rate of change of the field plus the change due to the parcel move-
ment through the variable density field.

Dp/Dt = dp/ot + dp/dz dz/dt = dp/dt + 3p/dz w 2.4)

Finally, for another derivation of the total derivative, consider a parcel
moving along with position s(z) = [x(f), y(¢), z(¥)], as shown in Fig. 2.4.

Now consider a fluid property f(x, y, z, #) and its variation from the chain
rule for differentiation, where (u, v, w) = (dx/dt, dy/dt, dz/dp):

Df/Dt = of /ot + of/ox dx/dr + of /oy dy/dr + 8f/0z dz/dt
= of /o1 + u of fox + v 9t /3y + w of /oz (2.5)

known as Euler’s relation.

This is the total derivative. It is also called the Eulerian derivative (be-
cause it is used in the Eulerian description and the right side expresses. the
change in Eulerian coordinates), the Lagrangian derivative (because it gives
the change of a parcel from the viewpoint of a particular parcel, the left side
expressing the change with time), the substantial derivative, or the material
derivative (it expresses the rate of change of a substance or material prop-
erty). We will call it the total derivative. When there is no change at a point
with respect to time (the Eulerian time derivative, of /9t = 0), there can still
be an advective part to the change, u of/dx, v 8f/dy, w 9f/dz. The advective
part depends upon the velocity of the parcel at the point (4, v, w), and the
gradients of f in the field.

X

Y

Figure 2.4 Parcels in the neighborhood of a point P on a streamline (or a given parcel
at different increments of time after it leaves P). The parcel is assumed to be a cube at the
initial point P located at s(f).
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2.2 The Advective Change and Index Notation

For a parcel in three-dimensional space, a small differential of the dependent
variable u(x, ) may be written:

ou=ux+0x,r+ &) —ux, 1

where 8x = u 8. This is a compact expression for the change in velocity
vector with respect to changes in space and time. However, in practice we
are often treating the individual components of the velocity. We will find
that when the above expression for the change in vector velocity is expanded
to component form in the Eulerian frame of reference, there is a large in-
crease in the number of terms. For instructive purposes, we will do this for
the velocity in Cartesian coordinates.

dx=udt, dy=vd, dz=wbdn

or
5xi=ui8t, l=1,2,3

The index i can take any of three values corresponding to the three-dimen-
sionality of space.

With the goal of writing this vector change with respect to the individual
component changes as indicated by the indices, we can rearrange the total
differential du. To save space, all terms are not always included here, just
a sufficient number to indicate the form of the rest, which are represented
by. . . .

u(z + 8¢ — u(s u + & -
= ( ) ()8r+ (x, + dx,) u(xl)8
ot dx,

X

u(x, + dx,) — u(x u(x; + dx;) — u(d
n (x 2) (x2) dx, + (x; X3) — u(dx3) X
ox, x4

O(uqi + uyj + usk) uy(xy + 8xy) — uy(x)) dx,
= or + — &t
or dx, ot

ot +
dx, ot dx5 St

uy(xy + dxy) — uy(x;) O, wy(xs + dx3) — 1y (x3)8x5 ]
+ — or|i

+ [uZ(xl + 3x,) _ uy(x5) % S + uy(xy + Bx5) — uylxy) % 8¢
dx, or dx, ot

+ 8x, - 5
4 el oy uZ(xa)—ngt]j +[..1k
t

Ox,
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du du, dx, du, dx, Buy Bx, . Su, dx,
=—d+|——d+——d+——d|i+ | ——d+..
ot dx, ot dx, ot dx; Bt x, Ot
where the bold § denotes a “total differential” similar to the use of capi-
tal D.
Anticipating that in the limit 8x,/8¢ = u;, substitute for the velocity com-
ponents u; = dx;/dt and divide by dz.

du du, Bu, du,y du .
—=|—+uy,—F+u,— +u;— | 8t}i
St 8[ le BXZ 8X3

ou, du, duy .
=4y, —Fuy—+ .. ) St|j+...
ot dx dx,

It is evident that this procedure is cumbersome due to the very large num-
ber of terms required. We can use the summation convention, where re-
peated indices in a single term imply a sum over the range of the index. In
this case, j = 1, 2, 3. This consolidates the terms, so that we can write

Su /0t = {du, /8 + u; du,/dx}
where
u;du,/dx; = u, du;/dx; + uy du,/dx, + u; Sui/8x3
When we take the limit,
i [Su,- _ du; N 81,4,]

—_— = u;—
Bu, dr, ot Bf Bx,»
ax—0 ’

= du,/dt + u; du,/dx; = Du,/Dt

where Du,/Dt is the parcel i-component of acceleration.

This can also be written in symbolic notation. (The details of the symbolic
versus indicial notation and the nine-component gradient of a vector du,/
dx; will not be discussed until Chapter 4.)

Du/Dt =ou/dr + u-V)u

Total derivative = local  + advective ( 2. 6)

The economy of space and time afforded by index notation is obvious.

Note that the direction of motion of a parcel at a point can vary depending
on the mix of advective and local accelerations. The lines parallel to the
vector U everywhere are streamlines. The local acceleration can impart a
different path to the particle at each point, making pathlines distinct from
streamlines. The two lines will coincide when flow is steady.
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Figure 2.5 Examples of two-dimensional converging flow (a) due to constant-speed vec-
tor convergence and (b) due to constant-direction speed changes.

2.3 Divergence/Convergence

Few velocity fields have constant magnitudes and directions. Most often,
the velocity changes in magnitude and/or direction from point to point. We
use the terminology divergent when velocities tend to separate parcels at a
point, convergent when they are coming together. The parcels of fluid in
Fig. 2.5a are evidently converging, a term used in automobile traffic control
to describe the situation of an onramp (a “source” of cars) feeding into a
freeway flow of traffic. Those familiar with freeway traffic might recognize
Fig. 2.5b as a convergent situation as well, wherein traffic is uniformly
slowing down (and becoming more dense).

We obtain the mathematical representation of the divergence when we let
del operate on a vector, F = F\i + F,j + Fk, in the dot product, to get

V-F=(d/ox+joa/dy +kofaz)-(Fii+ F,j+ Fik)
= 9F /ox + oF ,/dy + oF ;/0z
This may also be written
OF,/dx, + 0F,/0x, + 8F /dx, = oF ;/dx,

which is the divergence of the vector F. It is a scalar.

When the vector is the velocity vector u, then V- u is the divergence of
the fluid at a point. If the fluid is incompressible, then the divergence would
be zero unless there was a source of fluid at that point. If a source existed,
V-u would be the amount of fluid diverging from the point. (Our traffic
example above is essentially a compressible flow—up to the point of impact.)

Convergence is the negative of divergence. If there is a sink for the fluid
at a point, the convergence equals the flow converging into the sink.

Example 2.2

Verify that the divergence of the product of a scalar times a vector may be
written (for Cartesian coordinates)

V-(Pu)=®V-u + u-Vd
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Solution

The concept to be used is the chain rule of differential calculus. We are
familiar with the rule for simple variables, so we can use it on the com-
ponents of the vector u. The Cartesian unit vectors are constants. By direct
expansion,

Ve (du) = V- [Ou,i + uyj + usk)]
= 9(Pu,)/ox + a(Du,)/dy + o(Pus)/oz
=& ou,/dx + u, 0®/ox + @ ou,/ay
+u, d®/dy + ® ou,/3z + u; 00 /oz
=®dV-u+ u-VP

We should note that if the unit vectors changed directions, as they might
do in some coordinate systems, then we would have additional terms.

Since the dot product of two vectors is a scalar, the divergence field is
a scalar field. In general, when there is positive divergence at a point there
must exist a source of fluid at that point. Otherwise, we would quickly run
out of fluid, creating a void or a break in the continuum at the point in
question. In our three-dimensional space, matter would have to be created
at that point. However, in a two-dimensional incompressible flow, we are
simply approximating the three-dimensional flow using the fact that hori-
zontal velocities are much greater than vertical flow. Thus, there may be a
small vertical flow that gives the effect of a source or sink to the horizontal
flow without disturbing the approximation. There may also be a strong ver-
tical flow at a point, which then is a singular point in the otherwise hori-
zontal flow field. If we can isolate this point, the rest of the field may still
be described with two-dimensional dynamics. One of the great advantages
of using divergence fields in geophysics occurs when the flow is basically
two-dimensional (horizontal) and incompressible. Note that with such a flow
existing near the surface there can be nonzero divergence only if fluid enters
or leaves the flow at the point of divergence. This can be done from the
third dimension via vertical flow. An example of this is the horizontal flow
in a pan with a spigot or a drain at some point in the flow. This procedure
of approximating flow problems will be explored in Chapter 9. An obser-
vational example in the atmosphere is shown later in Fig. 2.13.

In the case of negative divergence (i.e., flow that is converging) in the
horizontal atmospheric flow next to the surface, there must be a positive
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vertical flow component as the fluid is squeezed upward. If the vertical flow
is relatively small, the two-dimensional, incompressible approximations may
still be valid. However, the small vertical flow may have important physical
effects, implying rainy or clear weather, or an up- or down-welling in the
ocean. The physical interpretation for this particular combination of deriv-
atives at a point will be further explored in connection with the conservation
of mass in Chapter 5.

2.4 Vorticity

Just about everything spins—from galaxies down to particles that do not
even have mass. Spin is an important characteristic of the motion. As we
learn the complexities of rotational motion, we might (plaintively) ask, why
is there so much spin? However, a better question might be, why not? Since
motion is caused by reaction to forces, straight-line motion of a finite body
requires great symmetry in the application of the force, which must pass
precisely through the center of mass. Although this symmetry may often
exist for body forces, it is unusual for most applied forces to be directed
through the center of mass. For instance, as molecules collide, any hit off
center imparts spin to both bodies. For a sliced tennis or golf ball, or a parcel
of air within the boundary layer, the difference in surface stress across the
body imparts spin. Any time that the net forces do not pass exactly through
the center of gravity, angular rotation will be imparted to the body.

Common experience reminds us that small perturbations in the forces ap-
plied to propel ourselves in walking through the woods, or swimming in a
lake, have a cumulative effect. Without guidelines to serve as constant feed-
back, our path will soon be a circle. We can consider linear motion as a
special simple case where the angular motion can be neglected.

On the other hand, spin has some wonderful properties that help us to
understand many phenomena. The fact that total angular momentum is con-
served is fundamental to many analyses in physics. From the ice skater, the
diver and the gymnast, we know one application of the conservation of an-
gular momentum to the rotational motion of the human body. When a per-
former pulls their legs or arms into their body, the mean distance to the
center of mass is shortened, and since angular momentum is conserved, spin
is increased.

In the atmosphere or ocean, if a specific body of fluid that is rotating is
compacted, the rate of rotation will similarly increase. In the case of a fluid
made up of parcels, as each parcel moves closer to the spin axis, its speed
must increase if its angular momentum is to remain constant. However, the
conservation of angular momentum has singular results as the distance from
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the rotating parcel to the center of mass goes to zero. The speed of the parcel
cannot increase infinitely, and new forces must enter the balance to slow
the parcel down. This phenomenon is commonly known to exist in the phys-
ical form of the eye of the hurricane or the calm in the center of any cyclone,
and it is expected to exist in the center of a tornado. (See Fig. 2.6.)

Spin enters our problems in two ways. One spin effect results in the ad-
dition of a virtual force to the basic equations. This force must be introduced

e~
bt
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Figure 2.6 (a) Cross-section of a hurricane. Horizontal extent is 1000—2000 km; vertical
extent is 10-15 km. Vertical wind vectors are 1-5 m/sec. (b) Two-dimensional windfield at
the surface of a hurricane. Wind vectors are 10-90 m/sec.
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to allow for the noninertial character of the rotating frame of reference used
in most atmospheric dynamics problems. This frame of reference is fixed
on the spinning earth and is used because of its overwhelming convenience.
However, Newton’s law of motion is for an inertial frame, and the virtual
force is needed to account for the noninertial effects. For example, one effect
of the earth’s rotation is to dramatically alter the observed flows from those
obtained in laboratory experiments that are generally done in a nonrotating
frame of reference. The other spin effect we consider in our problems is the
spin of the parcel itself, and this parameter will be a field variable.

There are other reasons why the study of geophysical flow in a rotating
frame of reference differs significantly from the fluid dynamics of laboratory
scale flows. One of the most startling effects of rotation is in the transition
from laminar to turbulent flow. In the laboratory, transition is most often
explosively sudden, as in the Reynolds’ experiment. However, when rota-
tion is applied to the laboratory system, the transition frequently proceeds
through stages slowly, so that a particular stage may dominate the observed
flow. The resulting flow pattern is dependent on the amount of rotation im-
posed. We might expect some of these transition stages to appear in the
rotating frame of geophysical flow, as indeed is the case.

Spin is a general term conveniently used to relate the angular velocity
created by something turning around an axis to the velocity field existing
around that same axis. For instance, the spin of the earth around its axis
once per day defines the angular velocity that a geostationary satellite must
have to remain above a certain point of the rotating earth. The balance be-
tween the centrifugal force and the gravitational force will define the height
at which this velocity must be achieved. In the coordinate system fixed on
the earth’s surface, all elements of the atmosphere have some spin associated
with the earth’s rotation in addition to any intrinsic spin that the elements
may have.

Vorticity is a concept associated with the spin of the parcel at a local
point. It is neatly defined by the mathematical description of the velocity
field. It is the vector, or cross product, of del and the velocity vector.

{=VXu (2.7a)
or in matrix form,
i j k
z=|0/ox afoy @&/oz (2.70)
u v w

= (@w/dy — dv/d2)i + (Bu/dz — dw/ax)j + (3v/dx — du/ay)k
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Example 2.3

What is the vorticity for flows given by
@u=@3x,1,0; (®u=(Cy 0,0

Solution

We begin by plotting a few points of the fields.

A

1 / —
1 S/ 7 —

(a) (b)

(a) The vorticity:
{=VXu=9dv/ox—dufoy=0-0=0

Thus, although the velocity field is turning, the net rotation of a parcel
is zero. Note that there is divergence.

D=V-u=9ufix+ ov/dy + dw/dz =3
(b) In this case,
{=VXxu=(0,0, -0

The shear in the v-direction produces a vorticity directed in the negative
z-direction.

In two-dimensional horizontal flows, w = 0 and 9/9z = 0, so that only
the single component of { is nonzero.

L= (ov/ax — ou/ay)k
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In this case the vorticity is simply a scalar.
{=dv/ax — du/dy

Many important geophysical flows are basically horizontal, and the vor-
ticity is a scalar field. This simplification makes it much easier to understand
and apply vorticity behavior.

Another application of rotation of the fluid as represented by the vorticity
will be found in the examination of the details of turbulence. The individual
eddies of fluid inevitably have spin, and their behavior is determined by it.
One mathematical definition of turbulence is “a chaotic field of vorticity.”
However, when certain large eddies in the turbulent field show persistence
of a well-defined structure, they may be removed from the “turbulent” field
and called “coherent” structures. These nonlinear solutions of the governing
equations often produce vortices. There are conservation characteristics as-
sociated with vorticity, as will be discussed in Chapter 8. The random oc-
currence of such organized structures in the solution of the nonlinear equa-
tions has been studied under the general term “chaos,” to distinguish these
quasi-steady phenomena from the truly random character of turbulence.

Vorticity can be considered as a characteristic of particular velocity fields.
It is a specific arrangement of velocity derivatives that form a scalar flow
characteristic at each point in the fluid flow. We will find that it is associated
with the rotation of a parcel and not with the rotation of the flow field. The
term is also applied to a finite region, called a control volume, which is
formed by a uniform aggregate of parcels with the same spin. Thus we can
speak of the “vorticity” of an air mass. Only when the vorticity is zero at
all points in a domain is the flow field called irrotational.

Vorticity characterizes the tendency of the parcel element to rotate about
its center. Thus, if a parcel-size wheel (like a water wheel) with paddles or
vanes is placed in the flow, it will rotate with the parcel in proportion to

> u

L _— T
Flow with shear ~ Nettorque on wheel 3-D perspective
Figure 2.7 If it is very small with respect to the flow domain dimensions, a paddle wheel

may approximate the spin of a parcel. Flow in two-dimensional shear gives rise to differential
velocity across the axis of the paddle wheel, causing rotation.
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the vorticity of the parcel. The little wheel is an effective “vorticity meter”
that travels with the parcel in a Lagrangian coordinate system.

One can see from Fig. 2.7 that if the “vorticity meter” is placed in a
parallel flow with velocity shear, it will move with the flow and rotate due
to the different velocities on opposite vanes. It is not so evident (but true)
that it is possible to have a curving flow with a velocity distribution such
that the wheel will move along the curved path, but will not rotate. This
indicates that the flow is irrotational (Example 2.4).

Example 2.4

Discuss the vorticity for the two two-dimensional flows shown in Fig. 2.8
and describe the motion of a vorticity meter placed in the flow. In the first,
the channel is narrow, so that the boundary layer effects slowing the flow
are significant. In the second, the boundary layers are negligibly thin. As-
sume for now that at a point P in the center of the curve the velocity can
be approximated with

ug/2 — Cix — Cyy

S
i

v=-Cux—Cyy

narrow
channel —
—
wide

channe} —

L]

Figure 2,8 Examples of parallel flow in a straight and a curved channel. The straight
channel is narrow so that side effects are felt. The curved channel is wide so that side effects
are negligible.
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Solution

We are concerned with the vorticity in specified velocity gradient fields.
There are different contributions from the two terms in the 2-D vorticity
expression. In the narrow channel flow, shear is present everywhere. Only
d/dy is nonzero and the vorticity is

i j k
{=VXu=|0 d/oy O0|=—-0du/oyk
u 0 0

Therefore, a vorticity meter will experience torque on the vanes extending
in the y-direction. (See Fig. 2.9.) It will rotate counterclockwise above the
centerline and clockwise below the centerline. Because of symmetry, du/
dy = 0 at the centerline. Thus if the meter is placed precisely at the cen-
terline, there will be no torque across the wheel. Hence there is no vorticity.

r—D
- ———— Vorticity meters
—>
—_—
>
_—
-
_

- +

Figure 2,9 Velocities on the vane of a wheel (a vorticity meter) in the parabolic flow
in a relatively narrow channel.

In the curving channel flow, both du/dy and du/dx are not zero.

i i Kk
{=VXxXu=\|d/dx 9/dy 0] = (0v/ox — du/dy)k
u v 0

Thus vorticity can be zero if the term in brackets is zero. If we consider

a point P in the middle of the curve,
——»  U+AlU

u

P
v U —> V+AvV

u

u decreases and v increases as x increases, y decreases.
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uy/2 — Cix — Cyy
u=Cx+ C,y,
v=Cyx+C,y, with C;, and C,>0
Hence,
v/ox — dufdy =0

We note that since vorticity involves a combination of velocity gradients,
it can be zero in unexpected conditions.

We will return to our discussion of vorticity only after developing the
basic equations. The concept of vorticity is intrinsically related to the math-
ematical description of the flow.

2.5 The Vortex

The term vortex is used to describe a flow field pattern. It is as distinct from
the term vorticity as the term cyclone is from velocity. Cyclone is a term
describing an atmospheric phenomenon that has a specific velocity field as-
sociated with it. Vortex is a term describing a vorticity concept that has a
specific vorticity field associated with it. The concept of a vortex involves
fluid rotating around a central spin axis. The vorticity is concentrated at the
spin axis and specified at every other point in the flow field (generally as a
constant, often zero). The vortex will have a specific velocity field asso-
ciated with it too. In fact, we will see that a cyclone can be approximated
as a certain type of simple vortex. Since there is rotation about a point, the
equations written in cylindrical coordinates will take advantage of symme-
tries in the problem. For instance, the field of velocity around a point is
frequently independent of the angle, 6. This is approximately the case in a
hurricane, where it depends primarily on the radius, .

Under special conditions, the equations of motion and vorticity reduce to
very simple forms. For instance, in the case of inviscid, irrotational, steady-
state motion, one can write a simple flow equation when the velocity de-
pends only on the distance from the center of rotation, r, in cylindrical co-
ordinates (i,, Uy, u,). Observations (as first noted by Leonardo da Vinci)
show that

Vr = Constant = C (2.8)

or,
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-
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Figure 2.10 The free vortex. Flow is tangential and inversely proportional to r.

7

ue=C/r

The flow field is illustrated in Fig. 2.10. The sign of u, is defined positive
for counterclockwise or negative for clockwise flow—according to the right
hand rule.

The flow field defined by Eq. (2.8) is called the free vortex. The expres-
sion for the velocity obviously has difficulties at » = 0, approaching infinity.
However, the vorticity, which is made up of a combination of the spatial
derivatives of u, need not be infinite at r = 0. In fact we will find that the
vorticity of a parcel in a free vortex is zero at all points except at the center
point, where it has a finite value (Example 2.5). The free vortex provides
a good approximation for the velocity around a bathtub drain, the swirling
flow produced by a canoe paddle, a tornado, or a hurricane.

Example 2.5

Show that the vorticity is zero everywhere in a free vortex except perhaps
at the origin.

Solution

Since a vortex geometry is essentially a cylindrically rotating column of
fluid, we expect the expression of vorticity will be simplest when written
in cylindrical coordinates. We then need only write out the concept of vor-
ticity from the definition [Eq. (2.7)] as the cross-product of del and velocity.

[1au, ug Ou, ou, l(arue 6u,>:|
Vxu= |- S M o D (T

rod 9z 8z ar. r\ or 98
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For the free vortex, we have
ug=C/r, u,=u,=0
Substituting these values into the terms for the cross product in polar
coordinates for r > 0 yields
V Xu=1[0,0, 1/r{d(+C/r)/or}]
or
t=1/roC/or=0/r=0

At r = 0, the vorticity is indeterminate, at 0/0. The origin has an infinite
velocity and must be excluded from any realistic flow. In the real vortex,
the velocity drops to zero in a small but finite core region where viscosity
is important and vorticity is nonzero.

For solid-body rotation, the flow dynamics are given by
V/r = Constant = d0/dt and V =d0/dtr (2.9)

where d0/dt is the angular rotation rate. This flow is shown in Fig. 2.11.
This flow is called a forced vortex. This case occurs in the steady flow
of a rotating cylinder or dishpan filled with fluid. The frictional force from
the rotating bottom is eventually transmitted throughout the depth of the
fluid so that it rotates as though it was a solid body sitting on a turntable.
Similarly, one component of the earth’s spin will produce an effective
rotation of the earth’s surface, which will in turn force a vortex flow from
the surface of the earth into the atmosphere. The rotation rate is one revo-

R
& =

Figure 2.11 The forced vortex. The flow is tangential and linearly proportional to r.
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Figure 2.12 The centripetal force/unit mass. The centripetal force is directed inward
toward the axis of rotation. The gravitational force would be directed along r to the center of
mass of the earth.

Iution every 24 hours at the poles and zero at the equator. This is the kernel
of the rotation of cyclones, hurricanes, and tornados. Since the component
of the earth’s spin changes sign at the equator, these phenomena will.rotate
counterclockwise in the northern and clockwise in the southern hemisphere.

Example 2.6

Calculate the vorticity field for the velocity field given by
u= (0, r(}, 0)

where () = d8/dt = constant.

Solution
The vorticity in cylindrical coordinates is

10u, odu, ou, ou, 1 (arue au,)
Vxu=|-—-—, —-2 (=2
r 00 dz 0z or r

For the given velocity field, 8/dr = 8/9z = 0, and there is a contribution
from only the third term (the z-component),

(1/r){or(rQd)/or} = (1 /r){8r*Q/ar} = 2rQ/r = 2Q
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Thus there is a constant vorticity, 2(}, in the r, 6 plane. The vorticity
vector has only this one component in the z-direction.

We see that the term “vortex” can be associated with quite different ve-
locity distributions. It is also clear that we need an explicit expression for
the rotational forcing by the earth’s spin in our coordinate system.

2.6 The Coriolis Term

In our expression of Newton’s law, F = ma, as it applies to a fluid parcel,
we are balancing the forces and the acceleration terms per unit mass. This
law was derived for an inertial frame of reference. However, we have noted
that this law can also be used in the earth-based frame of reference, which
is rotating and nominertial, provided that a virtual force is added. This is
needed to balance the acceleration terms that are effects of the rotation.
Since any acceleration can be expressed in terms of its corresponding force
per unit mass, this virtual force has the effect of simulating the noninertial
acceleration, leaving the remaining terms to balance as though in an inertial
frame. In geophysical flows the virtual forces are centrifugal and Coriolis
forces. A good detailed discussion of virtual forces, and vectors in general,
is found in Synge and Griffith (1959).

Initially, we consider the acceleration with respect to a nonrotating co-
ordinate system, fixed in the earth as was shown in Fig. 1.1. We must
calculate the velocity as the derivative of the position vector r and the ac-
celeration with respect to the velocity V. The derivative of a vector with
respect to the “absolute” coordinates is related to the derivative in the ro-
tating coordinate system by the operator:

(d/di), = (d/dt + Q X )

where Q = (0, Qg cos ¢, Qp sin &) = (0, f', f) is the vector along the
axis of rotation; ) is the rotation rate of the earth; and ¢ is the latitude.
Thus,

V.= (dr/d),=dr/dt+Q xr=V+ Vg (2.10)

where V is the relative velocity, Vg is the velocity due to the earth’s ro-
tation, and V , is the absolute velocity with respect to the fixed coordinates.

' Synge, 1., and Griffith, B. A. “Principles of Mechanics,” McGraw-Hill, 1959.
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Similarly,
dv/d, =(dfdt+ Q@ X))V + L X71)
=dV/dt + O X Q2 X1r)+ Q XV + Q Xdr/dt

@v/dn, = dV/jdi, + Q@ x@Qxr) + 20xV (2.11)
“absolute” relative centripetal Coriolis
= + +
acceleration acceleration acceleration force

We see that the absolute acceleration has three parts, a relative acceler-
ation at r plus two terms that depend on the rotation vector £}. Rotation is
defined by the right-hand rule—positive is clockwise when looking in the
direction of (2. Referring to the vector r in the rotating frame of reference
in Fig. 1.1, note that the Cartesian coordinate system centered on the earth’s
surface can have any orientation with respect to {2. Coordinate z can be
parallel at the poles to perpendicular at the equator.

Since Eq. (2.11) is the acceleration in an inertial frame of reference, the
motion of a parcel could be obtained by equating this acceleration per unit
mass to the forces on the parcel using Newton’s law.

dV/dt|s=> F

However, since we want to use the noninertial rotating frame of refer-
ence, we will have to rearrange Eq. (2.11) to write

dV/dt|,= > F- QX (@xr)—20xV

where —{) X (Q X r) is the virtual centrifugal force, and —2 X u is called
the Coriolis acceleration, or force per unit mass.

The centrifugal force term is aligned with the gravitational vector at the
equator. Although this vector has one component along the gravitational
vector and another component tangential to the earth’s surface, the magni-
tude of both components decreases from a relatively small value at the equa-
tor to zero at the poles. The virtual centrifugal force term (per unit mass)
is —Q X (0 X r). It is a vector directed away from the rotation axis, as
it represents the tendency of a parcel to fly outward d}le to the rotation. It
can be expressed as the gradient of a scalar potential, ;Q%°, shown in Fig.
2.12.

Gravity can be written as the gradient of a gravitational geopotential, ¢
= —g'z, noting that —g' = d¢'/dz. Since the centrifugal acceleration term
is small compared with gravitational acceleration g’, it can be combined with
the latter into an effective gravitational acceleration, —g = —g' — Q X (2
X r) in the equations of motion. Henceforth, the contribution of centrifugal
acceleration to the gravitational acceleration will be assumed when the force
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of gravity is given. On earth g = 9.8 m/sec’. A corresponding total geo-
potential can also be defined,

D=9 - %erz
so that V@ = g is the effective gravity.

2.6.1 Relative Vorticity

In atmospheric science the rotating frame of reference contributes a com-
ponent of planetary vorticity to the total vorticity, so that

L=4+, (2.12)

where total vorticity is made up of relative plus planetary vorticity. The
component of planetary vorticity perpendicular to the surface (in the z-
direction) is called the Coriolis parameter, defined by

{p = f = 2(Earth rotation rate) - sin(latitude)

or
f=20sin ¢ ' 2.13)

We can expect this term to occur as a virtual force in the earth based
equations of motion, where it is customary to drop the subscript “r” on the
relative vorticity,

L, =0+f (2.14)

2.6.2 An Example of a Vorticity Calculation

An example of atmospheric vorticity calculation is shown in Fig. 2.13. The
wind field for a region of the north Pacific is observed from satellite mi-
crowave data in (a). This field is then used to calculate the vorticity (b) in
the vicinity of a cyclonic storm with a frontal band between different air
masses. There are strong regions of convergence associated with the low-
pressure region and along the frontal band. We will learn to associate this
with areas of upward flow after studying conservation of mass in Chapter
5. The vorticity field is quite variable and provides basic information on the
character of the flow, as discussed in Chapter 8.

2.7 Integral Theorems

We will find two basic theorems of integral calculus of great use in the
derivation of the equations of motion. These theorems relate surface fluxes
to changes over the interior of the volume enclosed by the surface. The
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Figure 2.13 An example of windfields used to calculate streamline and vorticity fields.

The wind fields are obtained from satellite data over the ocean surface. The vorticities are
calculated for each grid point based on neighboring points.

connection between what is going on at the surface and the change integrated
over the volume of the parcel will be frequently needed in the derivations.
For instance, when we speak of the conservation of mass, momentum, or
energy for a parcel we must relate the overall change over the parcel volume
to the fluxes of each quantity through the surfaces. The total derivative has
one part that is a change over the volume and one part that depends on the
advective flow through the sides of the parcel. Also, our forces are a com-
bination of body forces acting on the volume of a parcel and surface forces
acting on each face of the parcel. The result is a mixture of volume and
surface integrals in the formulation of the momentum expression. As we
manipulate the equations to differential form, we will find these relations
repeatedly useful.

2.7.1 Leibnitz’s Theorem

As heat flows into or out of a specified domain of matter, the measure of
the heat content of that domain—the temperature—will change. Likewise,
the net mass, momentum, energy, CO,, Os;, H,S, or any pollutant contained



112 2 Flow Parameters

in a domain of fluid will change if there is a net flow of the conservative
quantity out through the boundaries. Our domain will initially be the parcel,
but later we can expand it to be a room, a cloud, an air mass, or even a
planetary atmosphere.

Thus, we are frequently interested in the time rate of change of a con-
servative function f, integrated over a volume that may be changing due to
its motion with velocity u. Leibnitz has given us a theorem that can be used
to cover these cases even in the general case where the boundary is ex-
panding or contracting with time (f may be any rank tensor):

D ([ [[[Lav [[rwman s
Dt B at (- m) (2.15)

This equation states that if the boundary of the volume is moving, then
the time rate of change of any function integrated over the volume must also
consider the surface integral of the flux through the surface. If the volume
is not moving, the area integral is zero and the time derivative may be taken
inside or outside the integral. This theorem is most familiar, and illustrative,
in its one-dimensional form,

o j "of  db da
— f(x, Ddx = —dx+—fx=b,0)——f(x=a,
Dt J, o . Ot dt dt -

1 2 3

The areas corresponding to each term on the right side can be shown in
Fig. 2.14. There is a net change in the area between the times ¢ and ¢ + 8¢
that is made up of three parts: (1) due to the change in f with time, (2) due

Figure 2.14 The parts of area under f(x, 7) represented in Leibnitz’s theorem. The func-
tion is shown at times ¢ and ¢ + dt. The total change in f includes areas 1, 2, and 3 as points
A, B, C and D move to A’, B’, C' and D'.
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to the change in the right-side boundary, and (3) due to the change in the
left boundary.

The net value of f within the volume can also be changed if there are
sources or sinks of f within V. One can write

gtffjde=ZQ (2.16)

where Q represents sinks or sources of f.

The local time change of f in the parcel plus the net f advected through
the surface area, plus contributions from any sources or sinks in the parcel
must add up to zero. Or,

Jffz—fdv+fff(u-n)dA=2Q 2.17)

In the next chapters we will substitute mass, momentum, and energy for
f. In fact, we could obtain the conservation laws immediately by direct sub-
stitution of these quantities. However, in these cases f and Q are made up
of many parts, and the underlying assumptions for the fluid flow equations
are best understood if the derivations are examined from a physical point of
view.

2.7.2 Divergence Theorem

The divergence theorem (or Gauss’s theorem) relates the volume integral to
the surface integral in the same way that the fundamental theorem of integral
calculus relatés the line integral to its endpoints. It can be written

[[[avtar= [ nan
(2.18)
Vol Area

where f is any rank tensor, (see Chapter 4) and n is a unit vector outward
from the volume at the surface area increment dA. This equation states that
the surface integral of the component of f directed normal to the surface
equals the volume integral of div f.

When f is a vector, for example u, as shown in Fig. 2.15 the divergence
of u integrated over the volume equals the integral of the u component di-
rected normally outward.

When f is replace with u in Eq. (2.18), we obtain the integral relation

for velocity,
ff divudV = u-ndA
2.19)
v A
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Figure 2.15 Elements of a volume and its surface that are related in the Divergence
Theorem.

We will use this relation many times in the derivation of the conservation
equations. It relates the advective effect of the flow in and out of the parcel
to the net change of the divergence within the volume.

Example 2.7

Consider the steady nondivergent flow of an incompressible fluid through a
constant area duct at a section where there is a spigot feeding 0.2-m>/sec
fluid into the flow (Fig. 2.16). The flow velocity in is ¥; = 4 m/sec. What
is the flow velocity out? Use the Leibnitz theorem with f = p (the constant
fluid density).

,Q=02m'/s

Figure 2.16 Fluid flow through a channel with inflow Q.

Solution

In the three terms of the equation for the change in p, there is no local
change, the only component of # normal to the control volume is that through
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the two faces along the channel, and there is a positive flow into the volume.
Thus, writing Leibnitz’s theorem out in component form,

fffi—f—dV+fff(u-n)dA=2Q

reduces to
0+ p(—uA + uyA) = 0.2m’/sec- p
or
(—4 m/sec + u,) S m®> = 0.2 m’/sec
and

uy; = 4.04 m/sec

This is a small increase in velocity to accommodate the increased amount
of mass to be moved through the same area of channel due to the influx Q.

2.8 Summary

This chapter has dealt with the concepts that make fluid dynamics different
from, and some would say much more difficult than, classical dynamics.
Each of the topics: total derivative, divergence, vorticity and the vortex, and
the Coriolis force will be treated in greater detail in later chapters. The in-
tegral theorems will be employed in the derivation of the equations.

The concepts and their close connections can be summarized as in the
following chart.
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FRAME OF REFERENCE

Lagrangian
A Specific Parcel f®
daf 4
Total Derivativve —f = —f
dt ot

Eulerian
A Field Description  f(u, 1)
D ) 0 d 9
Euler’s Relation —f= —f+ u ) + .—[+ w o
Dt ot ox dy 9z,

advcctiv\c' change
afi
Index Notation u; ——
ax;
ou;
DIVERGENCE Viu=—
0x;
VORTICITY {=VXu
The Vortex
Free
Forced
CORIOLIS ACCELERATION —20 X u

INTEGRAL THEOREMS
Leibnitz Theorem
Divergence Theorem

Problems

1. Write out in components i, j and k = 1, 2, 3.

(a) du;/ot + u; du,;/ox; = F,
(b) €,, 0s,/0x,

2. Is the field given by
u=6(xy+y», v=30>—-3y), w=0,
(a) divergent? (b) irrotational?

3. Consider the flow described by U = 10xi — 10yj. Is this flow irro-
tational? What is the divergence?



Problems 117

4. Given:
u=3x+2yz+tu, v=4xy+3t+tuvy,, w=0
where u,, v, are constants. Use (i, j, k).

{(a) Is this a Eulerian or a Lagrangian description?
(b) What is the “local” acceleration?

(c) What is the advective acceleration?

(d) What is the Eulerian derivative?

5. An airplane flies along a warm front northward at a speed of 360 km/
hr. The temperature at a ship anchored in the vicinity shows an increase of
12°C/day. A satellite measures a horizontal temperature gradient in the weather
system of —0.06°C/km northward. What is the temperature gradient mea-
sured in the airplane?

6. A velocity field u = ui + vj + wk is given as

u=x+2y+3z+47
v=axyz+t
w=x+yzZ+2

Calculate (a) the local acceleration, (b) the advective acceleration, (c) the
total acceleration at the point (1, 1, 1, 2).

7. The temperature of a thermometer that drifts down a river at 10 km/
day shows an increase of 0.2°/day. A thermometer anchored at a spot in
the river shows a decrease of 0.6°/day. What is ‘the temperature gradient
along the river? :

8. Consider a nozzle design that has inside diameters of 9 cm at entry,
and 3 cm at exit, and linearly varying cross-sectional area in between over
a length of 36 cm. Flow is approximately one-dimensional incompressible
with constant flow rate of 0.02 m®/sec. What is the advective acceleration
at the midpoint along the nozzle?

TT—

T
9cm 3cm
A

I

< 36 cm >
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9. The velocity down the center of a narrowing valley can be approxi-
mated by

U=0.2t/[1 —0.5x/L)?

At L = 5 km and ¢ = 30 sec, what is the local acceleration half-way down
the valley? What is the advective acceleration. Assume the flow is approx-
imately one-dimensional. A reasonable U is 10 m/s.

10. What are the consequences of the fact that our usual frame of ref-
erence on earth (latitude, longitude, and height) rotates once every 24 hours?
How is it handled?
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3.1 Scaling
3.1.1 Parameters for Nondimensionalization
3.1.2 Spectral Analysis
3.1.2.a The Autocorrelation Function
3.1.3 An Example of Organization within Turbulence
3.2 Dimensional Analysis
3.2.1 Some General Rules
3.2.2 The w Theorem
3.2.3 Rules for Nondimensionalizing
3.3. Similarity
3.3.1 Geometric Similarity
3.3.2 Flow or Kinematic Similarity
3.3.3 Dynamic Similarity
3.3.3.a Characteristic Values
3.3.3.b Nondimensionalizing an Equation
3.3.4 Dynamic Similarity in the Equations of Fluid Dynamics
3.4 Some Similarity Concepts
3.5 Summary
Problems

The principles of scaling and dimensional analysis often fall into the cate-
gory of knowledge called “tacit,” meaning they are assumed to be known
by all. These simple principles, which may be known by most scientists,
are often taken for granted or accepted as intuitive. However, in more com-
plex applications, systematic methods are necessary to keep everything straight
and to attack problems where intuition has failed. Such problems arise fre-
quently when dealing with a nonlinear system, as we must do in atmospheric
science.

We will outline the process of “intuitive” reasoning used in the disciplines
of scaling, dimensional analysis, and dynamic similarity. Each of these con-
cepts is in universal use in fluid dynamics. They are of paramount impor-
tance in atmospheric dynamics because of the immense range of scales ad-
dressed. A flow regime can range from centimeter-scale roughness used in

119
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boundary layer studies to the 25,000-km zonal averaged domain. The time
scale can vary from the 40 measurements per second in high-frequency tur-
bulence measurements to millions of years in climate studies. Within these
huge ranges of the dependent variables, there are frequently certain scales
where some of the linear terms in the governing equations are much greater
than the nonlinear ones. In this case, an analytic solution to the approximate
linear equations may well be found. It is imperative that the range of validity
of the approximation be known and adhered to in applications. That this is
frequently not the case is testimony that the principles of scaling are worth
a close look.

3.1 Scaling

When a flow problem is first addressed, it is generally stated in terms of a
parameter, called the dependent variable, v. This variable is a function of
one or more other parameters called the independent variables,
Xy, X9y ..., X,. The geometry and boundary conditions are then specified.
The task is to find a relation, v = f(x,, x,, ..., x,). When the dependent
variable is fluid velocity and the independent variables are spatial coordi-
nates and time, the functional relation is that of a flow problem. The first
scaling method we discuss, dimensional analysis, yields such a functional
relation.

Initially, the first investigators tried the simplest of relations, a linear
correspondence between two variables, v and x; v = Cx. Leonardo da Vinci
used this formula to relate one variable to another in most of the physical
phenomena he observed. He is known to have discovered the law for the
velocity in a forced vortex, where velocity is directly proportional to the
radial distance from the center of rotation, # = Cr. (He also suggested other
physical applications where it didn’t apply, but these have been forgotten.)
Later, other investigators used more complicated functions such as log x and
sin x in trying to devise a functional relation that explained various phe-
nomena. With the advent of computers, polynomial fitting became popular,
v=Cy+ Cix+ Cxx* + C3x>+ ... . In each case, the constants have to
be evaluated with experimental observations.

When relating two variables with a constant coefficient, the constant may
be required to have specific dimensions. For instance, if u = Cr, to have
velocity in meters /second and r in meters, C must have dimension 1 /sec-
ond. If another observer then determined that the velocity also depended on
rotation rate, ) {1 /sec], the relation could be rewritten, u = C'Qr, where
C = C'Q) and C' is dimensionless. In a simple relationship such as this,
where we can say that u is parametrized with respect to r, there is no re-
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quirement that the coefficients be dimensionless. However, if there had been
some requirement that the constant be dimensionless initially, then this would
have suggested that another variable with dimensions in inverse seconds must
be involved in the relation. It may be evident to some at this point that “if
all of the important parameters on which ¥ depended were included in the
functional relation, then any constant must be dimensionless.” In other words,
when an equation includes a constant with “balancing dimensions” it is most
likely an equation with one or more missing parameters. (Of course it is
possible that the dependence on the missing parameters is so minute that the
constant is effectively a “universal” constant.) The motivation to have di-
mensionless constants, together with the requirement that the relation be
dimensionally homogeneous, are the basis of a systematic process of di-
mensional analysis. We will discuss such a process in this chapter.

Another category of scaling analysis occurs when the basic equations for
a general class of problems (e.g., fluid flow) are available. Then, every
important variable is present in the equations plus the boundary conditions.
Yet, this may be more than is necessary for a particular problem. The so-
lution for some particular circumstances might depend on only a few of the
many variables expressed in the equations. Then, a simpler version of the
basic equations may be applicable. For instance, the governing equations of
fluid flow represent the acceleration due to a sum of many forces focused
on the fluid parcel. Often, not all of the forces are significant, and the ac-
celeration can be accurately determined by considering only a few dominant
forces. Intuition is a venerable method in deciding which terms are important
in the balance of forces. However, a systematic method can be derived by
looking at the characteristic scales of the problem. Then, although experi-
ence and intuition will still be a factor, the method can serve to organize
the investigation based on dimensional analysis. This process is called dy-
namic similarity and is the subject of Section 3.3.

3.1.1 Parameters for Nondimensionalization

In a particular problem, each variable will generally extend over a specific
range of values with limits imposed by the problem. The geometry, domain
of interest, and other boundary conditions will set the scale limits on the
variables in the problem. Often a variable is divided by a typical value that
it assumes in a problem, a process sometimes called “normalizing.” If this
value is its maximum value, then the dimensionless ratio simply varies be-
tween zero and unity. If the value of the parameter used to form a ratio is
an average value, then the resulting nondimensional variable will typically
vary around unity. In many problems this value is never far from unity, and
we can use this quality to compare different terms by simply comparing their
nondimensional ratios.
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Generally, a significant value for each variable can be found in the state-
ment of the problem. In fact, if no representative value can be found for
any one of the independent variables, this is a strong suggestion that the
solution does not depend explicitly on the magnitude of this variable. When
a representative value of a variable is evident, this value can be chosen as
the number with which to divide and thus nondimensionalize the variable
in the problem.

Often, the important length scale of a problem is evident, such as the
diameter of a sphere, the thickness of a wing, the diameter of a jet, or the
depth of a fluid. However, characteristic scales may not be obvious. Some
may appear only as part of the solution to a problem. Others might be un-
expected combinations of two or more dimensional parameters. These com-
plications may limit, but do not eliminate, the usefulness of dimensional
analysis. Even though much dimensional analysis is done only after the an-
alytic solution to a problem is completed, it still provides an efficient process
for organization and presentation of results.

In variable flow fields, there may be more than one choice of scale. For
instance, d’Alembert, Euler, and their contemporaries solved equations for
the flow field around a body, such as those shown in Figs. 1.10, 1.11, and
1.22. But they were puzzled over the prediction by their solution of no drag
on the body. They had ignored the viscous term in the equations, as well
as the boundary condition that the velocity must go to zero at the surface.
Consequently, there was no surface stress, drag, or viscous force in the
equations. The solution to the resulting inviscid Euler equations produced a
flow that depended on the dimensions of the body only. This worked well
in predicting the large-scale flow around a body, but it missed the effects
taking place in a thin layer right next to the body. The very small scale of
the boundary layer emerges only through consideration of the properties of
the fluid.

When the viscous term and the boundary condition U(z = 0) = O are
included, a new vertical scale for the thin boundary layer next to the body
surface emerges. The new scale suggests that viscous forces become im-
portant in the force balance. This means there exists a separate solution to
the new equations that is needed for the layer immediately adjacent to the
body.

Example 3.1

You are interested in the flow, U(x, y) around an infinite cylinder in two-
dimensional uniform flow as shown in the sketch (Fig. 3.1).



Figure 3.1 Two-dimensional flow around a cylinder; diameter d, freestream velocity U,,.

(a) Write a functional relation for inviscid flow by scaling each of the
variables with U, and d.

(b) What are the complications when viscosity v[L? /1] (with dimen-
sions of length-squared over time) is added to the possible di-
mensions for scaling the distances?

Solution

(a) U will depend on Uy, d, and the location x, y. If we write
U/Uy=f(x/d,y/d),

we would still have the original problem, U’ = f(x', ¥"), only now the terms
are nondimensional as defined above. If we can solve for U(x, y) (analyti-
cally or with an experiment), then the solution would be good for all U, and

d.
(b) Now we have U = f(U,, d, v, x, y). We could write

U/Uo = flx/d,y/d, v/ (U]

This suggests that we could again find a solution of the form U’ = f[x', ', v/
(Uod)]. Now the solution will also depend on the value of v/(Uyd). This
dimensionless parameter frequently appears in fluid dynamics. We have al-
ready identified it as the Reynolds number. We will see why it is an im-
portant parameter in this chapter.

There is an additional problem to scaling the distances. A scale length
could be chosen based on the problem parameters as v/ U . For typical val-
ues of U = 10 m/sec and d = 1 m, v/U, is very small = 10™* cm. Thus,
a nondimensional x/(v/U,) would vary from O to 1 in a very short distance
of order 107 cm. This is a suggestion that the scale determined by viscosity
is very thin. The suggestion will be put on firm foundation with the concepts
in this chapter, providing the basis for deriving the boundary layer concept.

We see that even without a knowledge of scaling principles, simple ar-
guments based on scales bring about provocative questions.




124 3 Methods of Analysis

For an atmospheric problem, the domain being studied can determine
whether the flow is dominantly laminar or turbulent. For instance, as we
move up the spatial scale in a description of the wind at a point, we may
encounter a sequence of orderly (laminar) and chaotic (turbulent) flow regimes:

1. The wind buffeting you is turbulent on the meters scale.

2. There is a fairly steady average wind on the kilometer scale.

3. This average wind may be part of a large storm/cyclone, or even
hurricane, with large gustiness on the tens of kilometers scale.

4. There is a large-scale average flow in the cyclone vortex on the 100—
1000-km scale.

5. The storms themselves, and the high- and low-pressure systems cir-
cling the globe, move about randomly on the scale of thousands of kilo-
meters. In the region of mid-latitude westerlies, these may pass a given point
on an average of once every few days. However, the randomness of the
motion of an individual storm system is evident in the moderate success of
the three-day weather forecast.

6. And finally, there is a global-scale steady flow (the trades and the
westerlies) and a constant equator-to-pole flux of heat on the 10,000-km
scale.

There is a similar hierarchy of variability in the wind as we move up a
scale in time. The magnitude of the wind will be alternately random or pre-
dictable as time intervals change from microseconds to millenniums.

As a specific example of the wide variation in atmospheric scales we can
look at those scales that arise when our domain is one of the most complex,
the PBL.

Time scales: Small-scale turbulence is an important factor in the PBL.
Measurements of this turbulence are made at time intervals of 0.1 sec or
less. But the wind given in a weather report is a few minutes average. And
a climatologist may be interested only in a daily, monthly, or yearly average.

Length scales: These vary from millimeters to kilometers. The description
of surface roughness includes a wide range of scales. The variety in the
surface roughness on the earth includes the smooth pack ice, the variable
ocean surface, forests, cities, and mountains. Also, within the PBL, waves
and eddies range in scale from millimeters to kilometers.

Frequently in atmospheric flows a scale arises when waves or eddies are
present. These phenomena can be characterized by their wavelength A and
period 7. An important parameter is the ratio of A to the spatial scale of the
mean flow (or T to mean times). An extreme example of a large-scale eddy
is found in the red spot on Jupiter (shown in Fig. 1.17), which is several
thousands of kilometers across and has lasted hundreds of years. The Voy-
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ager pictures of Jupiter reveal many other smaller (1000 km) vortices embed-
ded in the large-scale mean flow bands. The latter circle the planet and are
yisible through telescopes from earth. The telescope views filtered out the
turbulence and revealed only the average effect of the bands. As huge as
the Jovian vortices are, their scale is considerably smaller than that of the
planet’s atmospheric mean flow. On certain scales they might be considered
as turbulent “spots” in the mean flow. For instance, one can imagine the
existence of some entity on Jupiter (with climatological interests) to which
a time span of 1000 years is a characteristic time, and the red spot is a brief
storm. On the other hand, to a human-scale (100 years, 100s km) creature
living within the domain of the red spot, the local flow of the red spot seems
permanent. Thus, local flow within a turbulent eddy might be uniform and
enduring with respect to relatively small scales, while the turbulent eddy
might be just a small perturbation on a much larger scale mean flow.

When addressing a large quantity of data—an increasing occurrence in
the age of satellite sensors—the first task is to establish an average, or mean
value. However, an averaging process must be taken over a specific space
or time scale. To discern a fluctuating variable with given wavelength or
period A or T, the chosen averaging scale should be less than 20% of the
interval. This will produce an adequate number of points to resolve the cycle.
On the other hand, if we wish to determine a mean, so that the average of
the fluctuation is zero, then the averaging scale must be greater than ten
times A or 7.

When addressing the problem of gathering statistics on turbulent eddies,
Taylor’s frozen-wave hypothesis provides a useful concept. The turbulent
eddies are assumed to yield the same statistical mean parameters regardless
of whether they are obtained at a point over a period of time, or over a
distance in a very short period of time. Thus, the turbulent eddy is consid-
ered “frozen” in the mean flow, traveling with the mean flow velocity. In
this case, A = TV, where V is the mean flow velocity. Although this as-
sumption is not always valid, it is a good approximation in many cases.

Since turbulence is omnipresent in atmospheric phenomena, it is impor-
tant to be able to separate out any aspects of the data that shows signs of
some regularity. This can be done by defining some simple flow characteristics:

1. If u(t) = u(t + T), then u(s) is repeatable.

2. If u(r) is repeatable for T — oo, then it is stationary.

3. A collection of repeatable measurements comprises an ensemble of
points.

An example of this type of flow might be the study of sea-breeze phe-
nomena. Measurements are made at the same time every day, with u(¢) =
u(t + 24 hr). About a hundred points are needed to get a good average. If
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several 10-minute averages were being measured at nearly the same time
each day, one could collect an ensemble of points by measuring on succes-
sive days. There must be uniform large-scale conditions—no storms arriving
during the study. This would mimic stationary conditions.

Many different problems are studied in the atmosphere with widely dif-
ferent scales. There is a matching amount of different definitions of the
meaning for “small” and “large” scales. Again, one person’s micro- or meso-
scale may be another’s macro-scale.

Example 3.2

Consider a typical PBL that is 2 km deep. An airplane flies through the
layer taking velocity measurements at a rate of 40 per second. With the plane
airspeed at 100 m/sec, the space interval is once per 2.5 m. The PBL is
full of turbulent eddies with scales from centimeters to kilometers. Random
motions about a mean should be plus as much as minus over a long record,
with a resulting average of zero. Typically, several thousand points are re-
quired to obtain a good null average. An average over the entire record
would yield the mean flow in the layer. .

Consider the data record shown in Fig. 3.2: Suppose there are well-or-
ganized eddies with a known wavelength X\ in the layer. How can they be
identified?

e e SN
~__~

Figure 3.2 Sketch of a data record containing organized eddies with wavelength . Seg-
ments of the record separated by \ are shown.

X

Solution

The averaging time must be much less than A/V, where \ is the eddy wave-
length and V is the aircraft speed. For A = 4 km, T < 40 sec, say 5 sec,
which yields 200 points.

This is not enough time to accumulate sufficient points to ensure that the
smaller-scale random turbulence average will be zero. That would require
at least 2000 points or 50 sec of data. One way to collect enough points is
to average over 5-sec intervals each separated by a time interval equal to
the period of the organized wave (in this case, 40 sec)—as emphasized in
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the sketch. If 10 waves are included, the equivalent of 2000 points are ob-
tained. This is known as compositing because many waves are collected and
averaged into one.

A basic problem in separating an organized wave motion from the tur-
bulent fluctuations is that the organized eddy scale is often unknown a priori.
A search must then be conducted over various lag times. The difficulties
illustrate the careful attention that must be paid to the choice of averaging
times. The choice depends on the characteristic time scales and periodicities
of the phenomena being investigated.

3.1.2  Spectral Analysis

To sort out the many different scales of phenomena that may appear in a
flow, we need methods that look at the spectrum of the scales appearing in
a fluctuating variable. For instance, in a typical atmospheric flow, dynamic,
convective, and hydrostatic instabilities can occur on all scales. The result
is that small perturbations to the mean flow find fertile conditions to rapidly
grow under certain flow environments. In some cases, these waves may
come to an equilibrium with the mean flow and remain as part of the mean
flow solution. In other cases, the waves may break, generating turbulence
in a cascade of energy to smaller and smaller waves. Finally, the flow re-
gime may be so sensitive to the boundary conditions that it randomly os-
cillates between different solutions. In any case, we need to identify the
different regimes. This requires data taken across the energy spectrum. High
frequency data must be taken over long periods or distances to also yield
low-frequency data.

A fast-response wind measurement will record a very large range of the
fluctuations, random and organized. The analysis problem is to separate out
the different phenomena, which we will do by analyzing the spectra of the
velocity field.

When measurements are made of the amplitudes of a parameter (e.g.,
velocity, temperature), there usually is a wide range (a spectrum) of vari-
ation. For any given time or space interval, there will be a readily deter-
mined mean value. The variation about this mean may contain an easily
identifiable periodic variation associated with an organized wave motion in
the flow. Or there may be several different wave motions superimposed
upon the mean. Separation of the different wavelengths by inspection may
become quite difficult. When the spectrum of wavelengths is continuous and
random, there is no characteristic periodicity and the flow is turbulent.
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The description of the spectrum of motion can get semantically compli-
cated in the case where an organized perturbation exists in a quasi-steady
state. The perturbation is steady with respect to an interval that is significant,
but that is also much smaller than the scale of the problem. Also, it may
be steady only for random intervals. The predisposition toward this insta-
bility in the mean flow can be determined, however the conditions on the
mean flow for its occurrence cannot be exactly specified. The flow that con-
tains these attractor solutions has been called chaotic. This is distinct from
a turbulent flow, where nothing about the flow perturbations is predictable.
In this text we will be concerned only with the mean flow, turbulence, and
an example of organized secondary flow.

To separate the flow variations from the mean in the equations of motion,
the parameter is written as a mean plus a perturbation component, & = ()
+ ¢'. Here, the perturbation includes all deviations from the mean and it
may be regular, as for a wave, or random as with turbulence.

We would like to be able to present the data in such a way that the im-
portant scales that make up the waves and turbulent eddies become evident.
Since turbulence is random, a statistical approach is needed. Excellent texts
on turbulent statistics include Lumley (1970) and Monin and Yaglom (1975).
Here we will simply present the results and a brief definition of the important
terminology. '

Turbulent flow has a high, random, variability in u. To describe the sta-
tistical nature of turbulent flow, we are interested in

1. The relative frequency of occurrence; for example, the percent time
that |«| is between 6 and 7 m/sec.

2. What wavelengths (or frequencies) occur; for example, how much en-
ergy is in wavelengths between 1 and 2 cm, or between 0.01 and 0.02 sec™".

To sort out the statistical characteristics of the perturbations we need some
basic definitions of probability to be extended to the flow parameters. The
probability of an event e¢; occurring is defined in the following way:

If there are n; occurrences of event ¢; in N, trials, the ratio, n,/N — P,,
a constant, as N — %, The probability of event ¢, is P,. The expected value,
E, of e, can be calculated using the probability of e; in,

N
E{e,-}=2e,-P,— 3.1

In the general case, we can calculate the expected value of any function

of e; as
N

E{fte)} = D, fle) P, (3.2)

i=1
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Example 3.3

Calculate the expected value of a coin flip, if we assign the value g = 0 to
heads and g = 1 to tails.

Solution

There are two possibilities, e, = heads, ¢, = tails. T?e probability of either
heads or tails in an infinite number of trials is P = 3. Thus,

N
E{g(ei)}=2g(e,-)P,.=%.0.1_%.1 =%

i=1

The expected value is an average that in this case would never be obtained.

Example 3.4
What is the expected value of a die throw?

Solution

There are six sides, with values 1 to 6. Thus g = 1, 2, 3, 4, 5, and 6. Each
g has a probability of 1/6 in an infinite number of trials. Hence,

E{gle)} = D, gle) P,

i=1
=1-1/6+2-1/6+3-1/6+4-1/6+5-1/6 +6-1/6
=(1+2+3+4+5+6)1/6=21/6=23.5

This is not the value one expects in any single throw of the dice. It is
the expected value per throw one can expect in a very large number of
throws.

When considering a coin flip, there are two possible results. In the case
of a die, there are six possible results. And in the case of a turbulent velocity
field, there are an infinite number of possible velocities. Thus, when we
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consider a continuous variable such as the flow velocity, there are no dis-
crete events to make up the e;. Instead, we must arbitrarily select an interval
of the continuous function to make up the event,

e;=occurrence of u;, — Au/2 < u, < u, + Au/2

In this case, n;/N will be a smooth function of Au, and the probability
is now a function of u,

.. /N
p(u;) = limit limit
N—x Au—0 U
This is called the probability density function.
One of the ways we examine the nature of the departure of u from the
mean, {u), where u = {u) + u', is by analyzing the spectra of u.

3.1.2.a The Autocorrelation Function

We can determine much about the nature of a variable by considering the
product of the variable times itself at a later time. For instance, we can
expect a peak in this value at any time that corresponds to a periodic max-
imum for the variable. For example, we expect the product of the noontime
temperature times itself at a lag interval of 24 hours to be quite high com-
pared to the value at an interval of 12 hours (in the lower latitudes). We
would expect a minimum in this product to occur when the initial point is
chosen to be the minimum temperature times the similar value obtained at
a 24-hour lag time. The correlation of a parameter times itself at a later time
can depend on the initial time and the lag time.

First, we look at the velocity autocorrelation, although any dependent
variable can be treated in a similar fashion. Let the ensemble of points be
stationary so that () is constant. We define the autocorrelation function in
terms of the expected value of the product of «' at time ¢, with »' at a later
time, ¢t + Az.

R(AD) = E{u'(t) u'(t + AD} (3.3)

This will depend only on the lag, Ar. When At = 0, then R(0) is simply
twice the kinetic energy of the velocity component.
The Fourier transform will express the autocorrelation function (and the
turbulent kinetic energy) in terms of the frequency w:
D) = 1/7 f R(AD) €% d(Ar) (3.4)

0

R(AD) =3 f D(w) e do (3.5)
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o

RO) =3 f d(w) do (3.6)

Here, w = 27 (period of sinusoidal oscillation) = 2m f, where f is the fre-
quency in cycles/sec or hertz.

When data is available in space, such as that taken from an airplane, x
and Ax can be substituted for ¢ and At in these equations, provided that the
data has spatial homogeneity. This corresponds to stationarity.

One idealized sketch of such a plot is shown in Fig. 3.3. This temperature
spectra suggests that the thermal energy has many peaks on vastly different
scales.

Actual data sets have finite length, and the longer waves, or low fre-
quencies, are often not well defined due to limited data at the longest period
or distance. For instance, in the temperature record of Fig. 3.3, there is little
global data for even the 1000-year cycle, although paleoclimate methods
(tree rings, isotope formation) can be used to infer global temperatures in
prehistoric times. The peaks that appear in the temperature record include
the daily warming of the diurnal cycle, the 3-5 day cycle of mid-latitude
storms in certain regions, and an annual cycle. The small increase of a de-
gree or two over the past 100 years may be due to the greenhouse effect.
This is suggested by the correlation with the increase in atmospheric CO,
over the same period. If sufficient data were available, we would naturally
expect energy peaks at several longer frequencies associated with interglacial
periods and ice ages. In fact, there is an implied peak in the temperature
spectra at the glacial-interglacial frequency. This peak has been found to
correspond to a peak at the same frequency in the spectra of earth’s orbital
perturbations. Such analyses are the grit of parametrization and prediction.

When the departure from the mean value of a variable is in the form of
a wave, it has a characteristic period, frequency, and magnitude. With given
boundary conditions, the wave motion is predictable. Using the wave char-
acteristics, it is possible to identify the perturbation component in the data

o(T)
100

10

1
———

0
0 1/20,000 years  1/year  1/day 1/sec
Figure 3.3 Idealized sketch of spectra of global temperature average versus time.
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due to the waves. As an example, consider the flow velocity. If we let u’
be the wave component and 1" be the turbulent component, then the velocity
may be written as the sum of the mean plus the periodic perturbation plus
the random turbulence. We can write # = {u) + u’' + u”. The principle that
organized predictable variation may emerge from the basically turbulent field
is well established. Therefore, we can explore data for organization in all
scales larger than that characterizing the turbulence. We can even separate
the turbulence from the organized eddies that have the same scale, using the
fact that one is random and the other is organized. The autocorrelation of
the organized wave will peak at its wavelength, whereas the random tur-
bulent motion will have zero autocorrelation. The inherently turbulent PBL
is a likely domain for this practice.

3.1.3 An Example of Organization within Turbulence

Observations of the spectral energy content of the PBL generally show a
peak in the turbulent energy content at wavelengths from 1 to 50 meters,
with a steady decay in energy at higher frequencies. Sometimes there is a
secondary peak at low frequencies corresponding to a one-half to two-hour
time interval. This is caused by large-scale organized waves with wave-
lengths from one to tens of kilometers. These longer wavelengths may be
particularly difficult to distinguish in observations since they are not always
advected past a fixed measuring station within the mean flow. For instance,
a standing large-scale wave would not be noticed at a point, since the suc-
cessive measurements taken at the point would always be at the same place
in the wave. To figure out the scales requires multiple point measurements
or a horizontal traverse such as that provided by an aircraft flight. Infor-
mation on the intermediate scales of flow in the PBL is a relatively recent
accomplishment, and available measurements still must be regarded as
incomplete.

It is clear that in most flow problems organized waves with wavelengths
of the order of the PBL height (1 km) and an order of magnitude larger are
typically present. They may take the form of organized cells or helical vor-
tices with horizontal axes, plumes with or without organization, or simply
waves. When they are organized, they are called rolls, large eddies, coherent
structures, or cells, depending on the origin and the characteristics of or-
ganization. In other words, there are currently several designations for sim-
ilar phenomena, depending on whether they are found analytically, numer-
ically, or observationally. The ambiguity in identifying the nature of a wave
can be resolved only by studying the physical mechanisms of the instabil-
ities. Then it is possible to provide a physically descriptive name (e.g.,
buoyancy wave) instead of a generic one (e.g., gravity wave).
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Figure 3.4 A sketch of the PBL flow including the embedded large-scale organized ed-
dies. The concentration in convergence regions of passive constituents is shown. The ensemble
of parcels measured by an airplane are indicated. The mean flow is parallel to the roll axes.

Figure 3.4 is a sketch of the helical roll phenomena in the PBL and the
path of an aircraft flight designed to measure the characteristics of the roll
waves, which will appear in flights perpendicular to the roll axis. Such rolls
appear in the PBL due to dynamic instability of the flow, or due to con-
vective instability. Figure 3.5 shows the spectra that would be produced by
a roll-containing PBL.

Our understanding of the small-scale patterns that occur in well-studied
average atmospheric flows is constantly being changed, as more and better
data become available. To establish the mean flow requires only a few points
and long time records, while the smaller-scale dynamics require more dense
and frequent measurements. Even when organized large eddies are present
in a flow the spectra derived from an observation set of that flow may not
reveal a low-wavenumber energy peak corresponding to the eddies. This is
often because the data set is too sparse—there are not a sufficient number
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Figure 3.5 Energy spectra example for a PBL. There is a peak at a long wave and a
steady decay in energy in shorter and shorter waves. There is a characteristic trailing off of
the high-frequency turbulence spectral energy.

of the low-frequency events present to emerge in the spectra. For instance,
in the PBL there is often a very limited number of points available to identify
the waves with wavelengths greater than a kilometer. To define these waves,
a long time or distance must be measured. In addition, data sets have rou-
tinely been averaged in a manner that eliminated organized long waves. This
is called “despiking” (throwing away marginally supported deviant points)
and “detrending” (smoothing the data). The assumption was made that the
low-frequency peaks were spurious. This was assumed because these or-
ganized long waves are not always recognizable as coherent. Consequently
they were often considered to be anomalous, irregular data points. When
more care is given and the observer has a better understanding of what an
organized long wave looks like, the consistent appearance of these waves
in the data is distinguishable. Also, the incentive to find these long waves
came only recently with the realization that the organization of the large
eddies may be important in defining the main flow. It is expected that in
the huge spectrum of atmospheric motion, other organized waveforms exist
awaiting adequate data sets to identify them.

To know what to look for, we must develop some understanding of the
origins, and thereby the expected scales, of the organized eddies that occur
in the mean flows. New sources of data are becoming available, such as
satellite-measured winds at 50-km intervals over the ocean. From these data,
new wave systems that occur in known mean flows are being discovered
simply by spectrally analyzing the data. The problem then is to identify the
source of the waves. We will investigate the equations to be used for this
in Chapter 10.
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3.2 Dimensional Analysis

The process of nondimensionalization involves dividing each variable that
occurs in a problem by its characteristic value. Correct scaling greatly helps
data presentation. It reveals generalizing methods for the analysis of the
equations in a process to be discussed later as “similarity.” Although the
characteristic scales may be lengths set by the boundary conditions for the
problem, they may also be a combination of other parameters. For instance,
a length scale may be formed from a combination of velocity and time scales,
Uy. When the scales get complicated there is some loss in the physical
connection of the variables (e.g., when time is nondimensionalized as tU?/
v). If the choice of scale is incorrectly done in the process of nondimen-
sionalizing the equations, subsequent approximations can lead to the wrong
equations. This occurs when the wrong terms of the equation are neglected
because they are expected to be relatively small based on incorrect scaling.
These pitfalls are best avoided by establishing a systematic procedure for
the nondimensionalization.

3.2.1 Some General Rules

Dimensional Analysis (DA) has some of the same attributes as turbulence
analysis. In addition to appearing to be a mysterious and incomplete topic,
one must begin the analysis by an intuitive process of selecting a proper
range of scales in which to define the problem. While DA is actually a
complete and organized discipline (see e.g., Sedov, 1951"), one or more
steps in the process still requires this jump of intuition. Also, a large part
of the reason why DA is surrounded by the mystic is that the discipline is
seldom presented rigorously. Unfortunately, this must be the case in this
text as well, due to the extensive and complex material. However, we will
look at the basic rules and several applications that are most pertinent for
atmospheric applications.

A basic problem addressed in science in general is the orderly arrange-
ment of various items or data. The goal is to extract identities or similarities
in groups so that they can be labeled or categorized. If two quantities are
to be equal, then they must have the same label. For instance, apples don’t
equal oranges. But if categorizing is by fruit, they may be treated as equals.
And if the basic label is atoms, then they may have equalities in composition
but not in structure.

By definition, if elements are to be related in an equation, there exist

! Sedov, L. I. “Similarity and Dimensional Methods in Mechanics,” Academic Press,
1959.
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restrictions on the labels to be used. DA states this requirement in a prin-
ciple: Equations must be dimensionally homogeneous. This simply says that
if the quantities are to be balanced or set equal, all terms must have the
same dimension. This procedure is routinely used by scientists who work
with equations, and should be by students who memorize equations for ex-
ams. For instance, when considering the famous equation for the distance
moved under constant acceleration, suppose you remembered

1
x=xot Vot +at

but you were not quite comfortable with that last term. Using a version of
scaling, or dimensional analysis, you reason as follows: since x is a distance,
or length, each term on the rlght must ble a length. x, certainly is, Vg is
L/t times ¢, leaving length, but 3 2 at is 3 (dimensionless) times an [L/t%]
times ¢[¢], leaving [L/¢]. This inconsistency in dimensions evidently would
be remedied if r were squared, and you arrive at the correct formula,

1
X =x¢+ Vot + zaf

If it is possible to deduce all of the significant parameters that affect the
behavior of a particular variable, a relation between all of the parameters in
a general equation can often be derived. This can be done with no knowl-
edge of any basic laws of physics, making it a very powérful tool.

Example 3.5

Derive a relation for the fall velocity of a body in a vacuum under the in-
fluence of gravity, g = 980 cm/sec’, as a function of how far it has fallen.
There are no other significant parameters or dimensional constants in the
relation.

Solution

Since the body is falling in a vacuum, there are no fluid molecules, no stress
or drag, and the force is constant. Since the body is constantly accelerating
under the influence of gravity, the speed will depend on how far it has fallen,
Az. If it was before Galileo’s time, one might also assume that it depended
on mass, m,

V=f(g, Az, m?)

We want dimensional consistency:
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Vlem/sec] = f(g, Az, m) [cm/sec]

= f(glem/sec?], Az [cm], m [g])

Since we have specified that there are no other pertinent parameters, m
cannot occur in the relation or we would have a mass (grams) dimension
with no way to cancel it. There is only one combination to get cm/sec
dimensions from g and Az,

V = C{g Az} [em?/sec?]

An experiment must be performed to determine the value of the constant,
which would yield

= {2g Az}"

This example illustrates the application of step-by-step logic that often
characterizes dimensional analysis. It also illustrates the benefits: only a sin-
gle V at a value of Az and g is needed to get C, whereas a series of exper-
iments might have been done without knowledge of the functional relationship.

Care must be taken in choosing the parameters for nondimensionalization.
For simple physical problems, the following rules work:

1. List all quantities (dimensional parameters) likely to influence the
variables in question. Consider parameters such as time, length, gravity,
pressure, velocity, density, viscosity, . . .

2. List the dimensions of these quantltles in a chosen set of basic units.
These are measurable quantities. They have arbitrary scales and a system
of units (e.g., length L, time t, temperature T, mass M).

3. Establish the restrictions that are imposed on a functional relation among
the parameters by the requirement that dimensional homogeneity must be
maintained.

The last step needs to be organized, and the & theorem does this.

3.2.2 The w Theorem

The process of nondimensionalization is formalized in the w theorem: A
nondimensional (ND) form of the dependent variable can always be ex-
pressed as a function of the other ND independent parameters. Furthermore,
the minimum number of unrelated ND parameters that can be found is equal
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to the number of original dimensional parameters minus the number of fun-
damental units of the dimensions. For instance, consider a velocity, with
dimensions of meters per second, which is a known function of only two
parameters, one with dimension meters and the other with dimension time.
There are three parameters, minus the number of dimensional units—meters
and seconds, that equal one ND parameter. The three variables can be com-
bined into a single ND variable. The 7 theorem states that we can reduce
a problem involving n parameters, which have m basic dimensions, to a
problem involving only n — m independent ND parameters. This reflects
the fact that the more basic dimensions that are involved, the fewer inde-
pendent ND combinations that can be formed. Although this is true, the
definition of what is a fundamental unit of dimension is arbitrary. Generally,
mass, length, time, and temperature are adequate for geophysical purposes.
However, there are cases in which combinations of these dimensions (such
as force, with [ML/t’] dimensions) are convenient to use.

An example of where the number of fundamental units of dimensions
must be changed can be found from the following argument. If we had n
parameters, all with the same dimension (m = 1), we could form n — m =
n — 1 independent ND parameters simply by dividing all parameters by any
one of the others. This is evident if all parameters had dimensions of a single
basic unit, say length. However, if all parameters had dimensions of veloc-
ity, L/t, one might expect n — m = n — 2 independent ND parameters.
This is one less than before, and incorrect, since we can obtain the same
number of independent ND parameters as in the previous example (with a
single dimension). This example suggests that whenever the chosen fun-
damental units always occur in the same combination in all of the chosen
parameters, then the combination should be viewed as one single basic
dimension. In our example, we would then consider L/t, the units of ve-
locity, as a fundamental dimension unit so that m = 1 and return ton — m
=n-—1.

The same arguments are valid if we direct our attention to the chosen
parameters for the problem. If two of them invariably occur only in a com-
bination, then this combination should be viewed as a single parameter, with
n reduced accordingly. These are unusual, but important, occurrences. For
instance, the kinematic viscosity p, with dimensions [M/(tL)] often occurs
only in combination with p as ./p. Consequently this combination is defined
as the kinematic viscosity v, with dimensions [L?/t].

We see that intuition and flexibility are needed to do a dimensional anal-
ysis. The next examples will illustrate this procedure in familiar problems.
Although the procedure can be (and will be) described formally, it is best
learned by doing examples, as befits any process that relies heavily on intuition.
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Example 3.6

The frequency T, of a pendulum (Fig. 3.6) is expected to be a function
of its length, gravity, and possibly its mass. Develop a ND functional rela-
tionship for 7.

i ISP VIS NN,

g
Figure 3.6 Pendulum swinging with frequency 7, with mass M and force g.

Solution

Using the 7 theorem, we note that the number of parameters is n = 4, with
basic dimensions mass, M; length, L; and time, t,

T[1/t], €[L], g[L/t’], and M[M]

so that m = 3. Thus, we expect a minimum number of ND to be 4 — 3
= 1.

Again, note that if we involve M, we cannot obtain a ND parameter since
there are no other parameters with units of mass to cancel it. Hence we drop
M. Our primary dependent variable T" has dimensions 1/t. We can get di-
mensions 1/t* from g/€, using € to cancel the length scale in g. Thus we
get the single ND parameter,

T/[g/€1"

We could also have obtained g/ [€T?1; however, this is clearly related to
T/[g/€]1" as an inverse square and hence not independent.

Since a single ND parameter is a function of no others, it is a constant,
and

T = Clg/€]"

Note that if we hadn’t included the possibility of M initially, we would
still have had n — m = 3 — 2 = 1 ND parameters to be found. However,
if we had included another parameter with dimensions including M, (e.g.,
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the weight of the earth) then we would have hadn — m =5 — 3 = 2. The
additional ND parameter would clearly be M /M .. If we took the pendulum
to another planet, this would be a significant parameter, affecting 7. We
would then have to note that g is defined with respect to the different masses,
the distance separating them, and a gravitational constant. This is the next
example.

Example 3.7

Assume that there is a force of attraction between two masses, m, and m,,
and that it depends on only m,, m,, and the separation distance d. (See Fig.
3.7.) (a) See if you can obtain a relation for the force using dimensional
analysis. (b) What if another parameter, G, with dimensions L?/M¢* is
involved? (c) What if acceleration [L/tz], or the newton, with dimensions
of force ML /t* are used as basic dimensions? (d) Finally, Newton was aware,
using arguments of symmetry, that F' depended on the product, m;m,, rather
than the individual masses. What effect has this?

m1 . O m2

d

Figure 3.7 Two masses, m, and m;, separated by distance d.

Solution
(a) There are four parameters with dimensions,
F[ML/?], m[M], my[M], and d[L]

Note that the dimensions of force are the same as Ma, which can be obtained
from Newton’s law using dimensional homogeneity.

Our rule suggests n — m = 4 — 3 = 1 ND parameter can be found. This
can only be m,/m,, since F alone has the time dimension and d cannot be
combined with the masses nondimensionally. m,;/m, = constant is not a
satisfactory solution, since we have specified that F(m,,m,,d). There are
evidently some missing parameters. This illustrates that the rule does not
work if one does not have a list of all pertinent parameters.

(b) If the gravitational constant, G[L’/Mt’] were known to be an impor-
tant parameter, then n — m = 5 — 3 = 2. We can obtain these two ND
parameters by considering:

F is our primary dependent variable. We must involve G to nondimen-
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sionalize F, since only these two parameters have dimensions of ¢. Thus we
divide F by G to eliminate the t-units, leaving dimensions

F/GIM?*/L?]

The mass units can be removed by dividing by either m; or m3; however,
since we need to involve both, we’ll use mm,,

F/(mmy,G) [1/L7]

Evidently, the length dimension is eliminated with d, and Fd*/(m,m,G) is
dimensionless. The ratio m;/m, is our other, independent, parameter. We
can write,

Fdz/(mlsz) = F(m;/m,)
or
F = Gmym,/d*F(m,/m,)

This is not a satisfactory Newton’s law. Experimental work would be needed
to establish that F(m,/m,) = 1.

(c) We might have noted that t occurs only in combination with L as L/
t*, the units of acceleration. Call this a single unit of dimension A. We then
have '

FIMA], m,[M], m,[M], d[L], and G[L*A/M]

with n — m = 5 — 3 = 2. There is no change, we have simply substituted
A for t as a dimensional unit,
For force as a fundamental unit,

FIN], m[M], mM],  d[L], and G[NL?/M’]

with the same results, n — m = 2.
(d) Now we have

FIN], mmIM?, d[L], and G[L’N/M’]

and n — m = 4 — 3 = 1, In a manner similar to above, first eliminate the
dimension N, then M?, then L?, to obtain

Fd*/(mym,G) = C, aconstant
The constant can be absorbed in the constant G to obtain
F = Gmlmz/dz

This is a correct expression of Newton’s gravitational law. It is interesting
that with dimensional analysis we can arrive at the inverse square law for
this gravitational force. Newton did not use this procedure. Instead, he needed
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the observations that the accelerations of the moon and the apple in his or-
chard were in proportion to the ratio of the square of their distance from the
earth’s center. Thus, he set up a proportionality between F and mm,/d".

It is evident that dimensional analysis provides valuable insights with
minimal knowledge. However, it is also evident that it involves much trial
and error.

We have determined that by simply considering the pertinent parameters
in a problem and their dimensions, a unique formula for a functional relation
between them can be obtained. The 7 theorem provides a basic rule for what
can be done (obtaining a minimum number of ND parameters), but we need
a systematic procedure to follow to obtain these parameters.

The procedure consists of three steps:

1. Determine parameters, independent and dependent, (/,,,D) that are im-
portant to the problem:

fl, 1, ... 1,4, D}, nparameters 3.7
or
D =D{115 121 mee In—l}

For instance, these parameters can include the basic variables: all dimen-
sional constants such as the gas constant R, the speed of sound c,, the
Coriolis parameter f, gravity g, etc.; and pure numbers such as 1, 1/, and
exponents.

2. Pick a fundamental ser of dimensions (e.g., mass M, length L, time
t, temperature T). Let m = the number of these fundamental units that occur
inl, (e.g., L and t only, m = 2).

3. Let m, be the nondimensional parameters, then

i, Ty vy Tyt =0

Tp = TrD{ﬂls T3y - s ’nn-—m—l} (3'8)

In other words, for n dimensional parameters with / units one can get a
minimum of n — m independent nondimensional parameters. (We nave noted
that in some rare instances, the number of fundamental dimensions may be
one less than the individual sum. This happens if two dimensions occur only
in a fixed combination—such as L/t. In this case the dimensions are treated
as one, m is one less, and n — m is one greater).



3.2 Dimensional Analysis 143

Example 3.8

Find an expression for the speed of sound ¢, in water (at a given temper-
ature). Assume it is a function of wavelength A and gravity g.

Solution

Parameters: ¢, = f{g, \}
Units: [L/t] [L/t*][L] (length and time)
The number of parameters (cg, g, A) n = 3; the number of units (L,t) is
m = 2; n — m = 1; and the minimum number of ND parameters is one.
The one parameter is then a function of nothing, hence a constant.

w(0) = Constant = C  (dimensionless)
and by inspection,
m=c@N)?=C; or c=C(EN

Note that this process yields only the form of the relationship. The constant
C must be determined by experiment.

Whereas the 7 theorem states the minimum number of independent non-
dimensional terms that can be involved in a relation, the total number of
possible dimensionless parameters is n!/[(m + 1)! (n — m - 1)!]. Thus, if
n—m = 6 — 3 = 3 is the minimum number of nondimensional parameters
that can be functionally related, the total number of possible nondimensional
parameters is 15. To select the important parameters from the larger number
of possibilities, experience suggests certain rules that can be used as guide-
lines for each nondimensional parameter.

3.2.3 Rules for Nondimensionalizing

When a large number of parameters are factors in a problem, there will
generally be a selection of possible parameters with the same dimensions.
Any of these are available for dividing out a particular dimension. Different
choices of combinations of variables will yield different dimensionless pa-
rameters, If chosen in a haphazard fashion, complicated and interdependenit
parameters easily result. Thus it is advantageous to obtain rules for orga-
nizing the choice of parameters for the nondimensionalization.
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In fluid dynamic problems, m is often three, and therefore three param-
eters can be chosen for nondimensionalizing the other parameters. To ensure
independence, these three selected parameters should each be a characteristic
of one of the following:

1. The flow
2. The flow geometry
3. A fluid characteristic

Typically, these would be (1) the flow velocity U, (2) a dimension scale
d, and (3) for fluid characteristic, the density p or viscosity p. Then each
ND parameter is likely to require additional parameters to complete its non-
dimensionalization. This step is the creative part of the process. When pa-
rameters are abundant, there are no unique choices, and the most we can
obtain are some useful guidelines.

Some general rules have been developed to obtain the most suitable set
of nondimensional parameters. For instance, one should involve the depen-
dent variable only once, since you would like this ND parameter to be a
function of the other parameters. Some guidelines for selecting the quantities
to be used in nondimensionalizing are:

1. Don’t select the quantity of most interest more than once (i.e., the
primary dependent variable).

2. Prefer the “most important” quantities based on your expectations of
dominant parameters. For example, form combinations first with p (or p),
then with V; then with L. If other variables are involved (g, f, Hy, ...),
combine in order of the most complex dimension first and the simplest last.

3. Prefer quantities with “pure fundamental units” first, (such as d[L)]
before a combination (v/U) [L].

4. Investigate all choices.

The 7 theorem will yield the minimum number of independent ND pa-
rameters. More convenient parameters can sometimes be obtained with sim-
ple modifications:

1. Multiply by a constant (e.g., pV* becomes %pyz).

1
2. Raise to any power (e.g., 2K/fL? replaces {2K/f}2/L).
3. Multiply any power of one parameter with any power of the others.

If the number of parameters is large, a systematic way of determining
nondimensional parameters P is to equate exponents, sometimes called the
method of indices. In this procedure, we can again select the primary de-
pendent quantities P, as the nonrepeated ones, with an exponent of unity.
The ith ND parameter can be written as a product of the repeated parameters
P,, P,,..., P, used to nondimensionalize it, raised to unknown powers,
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m =P, P-P5-P5 ... (3.9

We can use the principle of dimensional homogeneity for this equation.
Substitute the fundamental dimensions for each P; and equate exponents of
each dimension to zero to obtain the nondimensional parameter. That is, the
total power of each dimension on each side of Eq. (3.9) must be zero. Note
that the number of exponents can only equal the number of basic dimensions
in P,. The P; must be chosen to include the dimensions contained in P,,.

Once again, the procedure is best learned by following an example that
employs each of the steps described above.

Example 3.9

Assume a raindrop can be approximated as a sphere of diameter D falling
with velocity W (Fig. 3.8). Use dimensional analysis to obtain an expression
for the drag force Fp, as it falls through air of viscosity . and density p.

Figure 3.8 Raindrop falling with velocity W.

Solution

We first write the force as a function of the four parameters W, D, p, n.
Recall that force has dimensions the same as mass times acceleration and
that weight of the drop is not a factor.

Fsz{W’ Da ps l"}

7l - EHH EIE]

There are five variables and three dimensions—therefore two ND parameters,
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We nondimensionalize F; with three of the other parameters character-
izing the flow, the geometry, and the fluid. The flow parameter will be W,
the geometry is D, and the fluid can be either p or . Choose p to eliminate
the M-dimension from Fj. Since . is then left over, it must be involved in
the second ND parameter, and p is used to eliminate M from it, too.

Fp
" =f{w, D, n/p}

-G b E
Now use W to eliminate #.

F
_ﬂzzf{D, _}L_}
pw pw

Ly = (v IL}

Using D,

Fp = f [
pWD? pWD
We can invert the last parameter to pWD/p = Reynolds number. We can

expect that the drag force plotted versus Re will yield a single curve (Fig.
3.9).

Re

Figure 3.9 Drag force on a raindrop versus Reynolds number.

Example 3.10

Assume that you are interested in the stress force T at the surface of a pla-
netary boundary layer, If there were no equations to guide you, the value
of this force would have to be determined by experiment. You would relate
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the force to the many parameters characterizing the planetary boundary layer
flow. Assume these are the height H, the free stream velocity V, the fluid
density p, eddy viscosity X, the Coriolis force parameter f, and some mea-
sure of the surface roughness z,. Discuss the dimensional analysis to facil-
itate your experimentation and consider the benefits.

Solution

Without a dimensional analysis you would need to investigate the variation
of v with each parameter, holding all others constant. For example, see Fig.
3.10, where 10 experiments have been performed with H, p, K, z,, and f
held constant.

Figure 3.10 Variation of stress with velocity only.

One could then do this experiment for 10 different values for z, (Fig.
3.11), where 100 experiments have been performed with H, p, f, and K held
constant.

Figure 3.11 Variation of stress with velocity at various z,.

It is clear that 10° runs of the experiment with 10° plots and perhaps 10
different fluids will be needed to provide different p and K. Perhaps we
should give dimensional analysis a try.

Apply the 7 theorem. The variables are

stress density surface roughness
height eddy-viscosity Coriolis parameter
velocity

T (H, V., 0, K, Zgs 2
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with dimensional units,
M/(Lt), L, L/  M/L, L/, L, 1/t

Hence,n =7, m=3,n—m= 4.
We can reduce the number of independent parameters to four nondimen-
sional parameters. This will require 10 graphs, which are probably

manageable.
Following the general rules for nondimensionalization, we choose three

(m = 3) of the parameters with which to nondimensionalize the remainder.
These should not include the primary dependent variable t. They should
include all units and should include a representative of the flow, the ge-
ometry, and the fluid characteristics. Choose V for flow, H for geometry,
and p for fluid. Use the method of indices: 1, involves the dependent vari-
able 7 plus an unknown combination of H, V, and p to make it dimension-
less. Thus 7; may be written, with 7 the chosen variable to involve,

m = T H* Vv p°
ML = (M/(LOT L) L/ (ML

Hence, equating coefficients of

M:0=14+c—>c=-1

t0=-2—-b—>b=-2

L0=-1+a-2+3—>a=0

Thus,
m, = HV ! =1/(pVP)

We have involved 7, H, V, and p. We still must incorporate K, z,, and
f. These will form the other 7;’s to make up the expected minimum of four.
Let m, involve K:

m,= K H* V' o
ML = [L2/¢] L® [L/t]° [IM/L%]
From balancing coefficients,
M:0=c;
t0=-1—-b—>b=-1
L:0=24+a+b—-3c—>a=-1
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Thus,
w, = K/(LV)
It follows in a similar manner that n; = z,/H and 7, = fV/H.

{Note that often the nondimensionalization can be done by inspection:
The units of 7 are [M/(Lt%)]. Only p is available to balance M so we must
divide by p, leaving units of L*/t*. We can eliminate t with either V or K/
H*. V is simpler, and in fact also balances the L? dimension, yielding 7/
(pVH}. Thus, we may write

t/(pV?) = fIK/(LV), fV/H, z,/H]

and plot the ND 7 parameter versus any of the other three ND parameters,
holding the other two constant.

No physics has been used in these examples beyond the principle of di-
mensional homogeneity. Intuition or experience was used to divine the pri-
mary parameters, and there is no guarantee that all important ones have been
considered. The relation found in Example 3.10 will apply only for neutral
stratification. Otherwise temperature and gravity would have to enter as pri-
mary parameters.

In general, this process serves to reduce the number of parameters. In the
special case when the number of original parameters is one greater than the
number of basic units, the one ND dependent variable is then a function of
nothing—a constant. In all cases the end product is a functional relation
only. The explicit equation requires more knowledge, either from experi-
ment or theory. One powerful source of additional knowledge is available
when the governing equations are known. The application of dimensional
analysis then takes a structure called similarity.

3.3 Similarity

Similarity is a powerful tool for both experimenters and theoreticians. It
takes diverse forms, from flow around simple “look-alike” objects to the
mathematical correlation between disparate fluid, mechanical, and electrical
systems. Since the complete basic fluid-flow equations are generally too
difficult to solve, various forms of similarity have been extremely valuable.
As we have seen, experiments can be greatly simplified. Similarly, the equa-
tions that must be solved for a particular problem can be approximated in
a systematic way.
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3.3.1 Geometric Similarity

A geometrically similar model will have specified ratios of any length in
the model to that in the actual configuration, often called the prototype. For
perfect geometric similarity, all corresponding lengths will have the same
ratio, called the scale factor. The model is like a three-dimensional picture
of the object blown up or reduced by the scale factor.

In many cases, it is not possible to model all of the dimensions to the
same scale factor. In other cases, one dimension may be effectively infinite.
In these circumstances selected dimensions must be expanded or contracted,
and a very distorted model can result. The model may better illustrate one
aspect of its characteristics while losing its “actual” appearance. This is
somewhat like presenting data on a log-linear plot, where the distortion of
space on the log plot allows visualization of trends that could not be shown
on a dual linear plot.

3.3.2 Flow or Kinematic Similarity

The sciences of hydraulics and aerodynamics have been largely based on
the principles of similarity modeling. Generally, a geometrically similar model
is placed in a laboratory flow field to simulate the actual object within the
usually much larger flow regime. In this case it is necessary to have simi-
larity in the flow regimes in addition to the geometric similarity. Two flow
fields are said to be similar when the ratios between the velocities and the
accelerations are constant.

Flow similarity is obtained when U(x, #) and a(x, f) of the model flow
have constant ratios to the prototype values U'(x’, ') and a'(x’, ) at every
point and all time. The flow model around a building is shown in Fig. 3.12.

When the fluids used in the model flow are identical to the prototype
flow, then the flow streamlines around geometrically similar objects will
look identical. A picture of one flow could be geometrically expanded to

(a) {b)

Figure 3.12 The air flow around (a) a house model in a wind tunnel and (b) in the
atmosphere. The pressures and corresponding points are indicated in each (away from the
poorly modeled surfaces).
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identically overlay the other. In these cases, an actual large-scale flow field
can be modeled in a laboratory. However, in many problems the need is to
determine the forces on the objects. In this case, to model the inertial force
on the small-scale object, we may consider substituting another fluid in the
model flow. This generalization of the simple geometrically similar model
Jeads us to a requirement that the ratio of the various forces in the model
and prototype flow must have constant ratios. Since our basic equations of
motion may be seen as a balance of forces, the resulting similarity criteria
can be conveniently expressed in the equations. This leads to extremely
valuable analysis procedures.

3.3.3 Dynamic Similarity

When the equations that govern the dynamics of a problem are known, sub-
stantial information about the solution for the flow is known. This can be
extracted with the techniques of dimensional analysis without obtaining the
analytic solution to the equations. This is because, once the appropriate
equations have been derived, the intuitive step of the w theorem has been
done. All of the important forces and parameters appear in the equations
and the boundary conditions. In fact, availability of the equations plus the
boundary conditions put certain constraints on how the parameters occur.
For instance, only combinations of some parameters may appear, such as
1./p, or possibly only the gradients rather than the magnitudes of a parameter
may be important for the problem. An inspection of the equations and the
boundary conditions will reveal all pertinent parameters in the problem. These
include dependent and independent variables, their boundary values, coef-
ficients, and constants. The variables (dependent and independent) are the
significant parameters, and the remaining parameters are to be used to non-
dimensionalize them. When a choice of the parameters with which to do the
nondimensionalization are available, it is important to select one that is rep-
resentative of the typical magnitude of the variable.

3.3.3.a Characteristic Values

When nondimensionalizing the variables in an equation, the constants
chosen should have a characteristic value for each variable. This is a value,
such as the value at a boundary, that is characteristic of the magnitude of
the parameter in the domain. Then the nondimensional variables will have
values near unity. When this is done for all of the variables in the equation,
the nondimensional parameters that occur as coefficients in the equations
will denote the relative importance of each term. This means that the se-
lection of characteristic values must be done with care. For instance, in
fluid-flow equations, pressure differences are more appropriate characteristic
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values than the total or mean pressures. They involve much smaller mag-
nitudes. The smaller values are representative of the pressure gradients in-
volved in the flow. Also, horizontal and vertical characteristic scales may
be different. In the atmosphere, the variation of the characteristic scale in
the vertical direction is typically very much less than that in the horizontal
directions.

When we choose the nondimensionalizing parameters to be characteristic
values of each variable in the problem, then the ND parameters are a ratio
of each variable to its representative value and are each of order unity. When
the nondimensional variables are substituted for the dimensional ones in the
equations and boundary conditions, the characteristic scales will appear as
coefficients of each variable. For instance, with u = ' /U, substituting for
dimensional ', the contribution to the coefficient is U. Thus, each term will
have a coefficient containing all of the characteristic values used in nondi-
mensionalizing each variable in that term.

We can then divide through the equation by the coefficient of any selected
term, leaving that term with no coefficient. Therefore that term is of ‘order
magnitude unity. This has the effect that all coefficients are now ND ratios.
The magnitude of these ratios denote the importance of each term relative
to unity. In fact, each dimensionless parameter is the ratio between the char-
acteristic value of the term it multiplies and the one whose coefficient was
chosen to divide through the equation. If we divided through by the coef-
ficient of the pressure-gradient force term, the coefficient in front of the
viscous term would denote the ratio of viscous to pressure-gradient forces.
This is best illustrated in the following step-by-step development in an equation.

3.3.3.b Nondimensionalizing an Equation

We can nondimensionalize a “generic” equation and examine the pos-
sibilities of linearizing. Consider

d*¢' [d’* + A¢'de' /dz' + B¢’ + C =0 (3.10)

where the primes indicate dimensional parémeters.

First we select characteristic values so that all nondimensional parameters
are of order unity. Suppose that the problem involves investigating ¢’ in a
layer of depth H, where ¢’ = & at z’ = H. Using these boundary conditions

for the nondimensionalization, ¢ and z will have the value unity, at least at
and near the boundaries. Let

¢=¢' /O, z=12/H
and
[®/H*| d¢/ds* + [AD*/H]) 9 do/dz + [B®P] e+ C=0 (3.11)
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The terms d*¢/dz*, ¢ d¢/dz, and ¢ each are of order unity. The character-
istic values are in brackets and may have arbitrary magnitudes and dimen-
sions. When we divide through the equation by the coefficient of the first
term, we get

d*¢/dz* + [AH®] ¢ do/dz + [BH*] ¢ + [CH*/®] =0 (3.12)

Now, the variables are all dimensionless, and in particular, the first term is
dimensionless. Thus, the coefficients in brackets are dimensionless. The pa-
rameter AH® is a ratio of the typical magnitude of the second term to that
of the first term. The number BH? is the ratio of the size of ¢ to the first
term, and CH*/® evaluates the importance of the constant C. This equation
is completely equivalent to Eq. (3.10). The only difference is that we have
substituted three dimensionless parameters for A, B, and C. We will find
that these nondimensional parameters are convenient for evaluating dynamic
similarity. However, we can first look at their value in obtaining approxi-
mations of the complete equations.

If [AH®] in Eq. (3.12) is very small, the nonlinear term ¢ d¢/dz can be
dropped and the equation will be linearized.

d*¢/dz* + [BH* ¢ + [CH*/®] =0
If also [BH?] is small, then we have the simple equation
d*¢/dz* = —[CH?/®] =~ constant (3.13)

If we continue in this vein and assume that [CH>/®] is also very small, then
we have

dp/dz* =0 (3.14)

This may or may not be a good approximation of Eq. (3.11). We chose the
individual characteristic values to produce order unity for all of the nondi-
mensional quantities, so the term in Eq. (3.14) should be of order unity.
For it to equal zero seems to be a contradiction. Before using the solutions
to this equation, we would have to check the characteristic values used for
the nondimensionalization against those predicted in the solution. For in-
stance, we used ® to nondimensionalize ¢—does the solution of Eq. (3.14)
produce ¢ of order ¥? If they do not agree, then the process must be re-
peated using new characteristic values. In boundary layer problems, ¢ is
often zero at z = 0, so that ¢/® cannot be of order one at the surface. This
is a fundamental difficulty for boundary layer problems, and constant vig-
ilance is required to examine each solution.

Note that such careful attention to charactetistic values is necessary only
if we have dropped terms using scaling arguments, as in moving from Eq.
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(3.11) to (3.14). If we merely used the nondimensionalization as an orga-
nizing tool, and proceeded to solve the complete Eq. (3.11), the solution
would be valid regardless of characteristic values chosen. For instance, if
they were poorly chosen, we might be plotting over a range of ¢ from 0.001
to 0.01 instead of O to 1.

Another interesting case occurs when [AH®] is very large.

[1/(AHD)] dp/dZ + ¢ do/dz + [BH/(ADP) ¢ + C' =0  (3.15)

We may choose to neglect the first term; however, incorrect solutions may
be produced. This is because dropping this term produces a lower order
equation. Thus fewer integrations are required to solve it, and fewer con-
stants are produced. Therefore, the reduced equation cannot satisfy as many
boundary conditions as the original. Nevertheless, the term is small in the
domain characterized by H and ®. The problem in satisfying the boundary
conditions suggests that the chosen characteristic values of H and ® are not
valid in all regions. In particular they are poor values in the vicinity of the
boundary condition that is not satisfied.

This quality of the approximate equations has particular importance in the
boundary layer requirement to satisfy a zero velocity at a surface. If the
velocity decrease takes place rapidly, as in a thin boundary layer, the char-
acteristic height scale H must be small to satisfy this zero boundary con-
dition. In this case [1/(AH®)] cannot be small, and the highest order term
must be included in the governing equation. The neglect of the highest order
term is called a singular perturbation to the equation. It is encountered when
frictional forces are neglected. This is done in the derivation of the free-
streamn (inviscid) equations and in stability analyses of the governing equations.

We have seen that if a nondimensional coefficient multiplying a term in
the equation is known to be extremely small, then that particular dimensional
term is small with respect to the other terms. This term is a candidate to be
neglected. This could be formally done in an asymptotic expansion with
respect to the small parameter. In this way terms are dropped from the com-
plete equations and more easily solvable equations may result. There is a
danger in this process, however, that is associated with the characteristic
values chosen. Because if the characteristic value is chosen incorrectly, the
resulting equations may not be valid, as in a domain where the characteristic
value chosen wasn’t typical of the dependent variable.”

? See the theory of Kaplun, S. (1967). “Fluid Mechanics and Singular Perturbations,” a
collection of papers. Academic Press, New York; Van Dyke, M. (1964). “Perturbation Meth-
ods in Fluid Mechanics,” Applied Mathematics and Mechanics series, Vol. 8, Academic Press,
New York.)
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Example 3.11

Consider the equation for one-dimensional flow along a streamline in the x-
direction, which we can take at this point as given to be

p/p+ gz + 3t =C = Py/p (3.16)

where the pressure p = Py at z = 0 and u = 0. Incompressible flow is
assumed, with Py/p = 600 m?/sec’. The region of interest is

100=<z=110m and 10 =u = Up, =30m/sec

Nondimensionalize the equation and discuss it.

Solution

From the given equation and boundary conditions, choose Py, Az (= 10 m),
and U, (= 30 m/sec) for nondimensionalizing p, z, and u. We let p’ =
p/Py, z' = z/Az, and u' = u/U ,,, and substitute (in this case, the primed
variables are ND)

(Po/P)P' + gHZ' + 3Uns w” = C = Po/p (3.17)

We are interested in the flow situation and therefore definitely want to retain
the term involving the velocity. Divide through by the coefficient of the u'’
term,

[2Po/(pUL 1 p' + [2g Az/U) 2" + u”
= [2P o/ (pU%)] (3.18)

All nondimensional quantities are now of order unity. The relative magni-
tude of each term is contained in the bracketed term made up of character-
istic values. When we insert the characteristic values into the dimensionless
coefficients,

[2P,/(pUZ:)] = [2 - 600 m*/sec? /30" m*/sec?] = 1.33
and
[2gAz/U%,] = 2-9-8 m/sec’- 10 m/30% m?/sec® = 0.2

Remembering that we are simply working with order of magnitude esti-
mates, it appears that the second term is considerably smaller than the oth-
ers. Therefore we can approximate Eq. (3.16) with

p/o + 35Ut =Py/p (3.19)
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We will see later that Eq. (3.16) relates the pressure force energy, the
potential energy of height, and the kinetic energy of the flow. Our scaling
has indicated that for the conditions of this problem, the potential energy
derived from the given height change is insignificant compared to the other
energies.

When the dimensionless parameters for a given equation have been ob-
tained, they provide valuable information about the solutions to the equation
even without considering limits and approximations. For instance, all prob-
lems that have a combination of characteristic values that yield the same
nondimensional parameters in the equations must be governed by the same
equations. Then they have the same solutions. They are called dynamically
similar.

3.3.4 Dynamic Similarity in the Equations of Fluid
Dynamics

When the ND process is carried out in the equations for fluid flow, the
equations remain unchanged except that new coefficients of the terms ap-
pear. These are combinations of the characteristic parameters used in the
nondimensionalization. We nondimensionalize with V, L, p, p, and with
temperature T if thermodynamics is important. For instance, when « is non-
dimensionalized with its characteristic value V, then u,, = u/V. When sub-
stitution is made for u = Vu,, the equation then contains the nondimen-
sional velocity and the coefficient V. Some examples of the nondimensional
coefficients that will occur in the fluid dynamics equations are

Reynolds number, Re = pVL/pn
Richardson number, Ri = (g/T)[dT/dz/(dV /dz)*]
Rossby number, Ro = V/(fL)

Mach number, M V/cy (cy = speed of sound)
Drag coefficient, Cp, =1/(pVH

When these numbers appear in the force balance equations, each ND
coefficient is a ratio of force magnitudes. This is a consequence of the non-
dimensionalization with typical values followed by division by one coefficient.

3.4 Some Similarity Concepts

Similarity exists between two quantities when they can be related by a con-
stant. Dynamic similarity exists for two processes when they can be de-
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scribed by equations that can be cast into the same form by some transfor-
mation. The solutions to the equations then apply to both processes. The
process of stretching one coordinate by nondimensionalizing it with another
parametric scale in place of a characteristic value is called an affine
transformation.

The transformation from height to pressure coordinates is common in at-
mospheric problems. This is a simple geometrical transformation. In gen-
eral, one or all coordinates could be stretched, leading to a very distorted
model for the actual flow. In other cases, one can find a transformation that
takes a distorted real field and relates it to a simple flow in another frame
of reference that has a theoretical solution. The transformed solution will
then apply to the distorted field.

If an equation contains no coefficients, then self-similarity exists in the
solutions. This means that the solutions are not dependent on any scale (length,
velocity, temperature, etc.), and the one solution of the equations is valid
for all flows. The scale of the solution is simply expanded or contracted
depending on the characteristic parameters. For instance, if there doesn’t
exist a characteristic length in the problem, then there can be no dependence
of the flow on the length scale. A flow moving around a corner is an ex-
ample of such a flow. The picture in Fig. 3.13 would be the same regardless
of the scale, since there is no characteristic scale for r. [This concef)t is
generalized in the theory of fractals.] Since the flow can be broken into its
components, there are cases where the flow depends on only one or two
coordinates. It is then self-similar with respect to the rest.

There is dynamic similarity in two sets of equations if the nondimensional
coefficients of the same terms can be matched. That is, the individual char-
acteristic values of all parameters needn’t be the same, only the ratios that
occur in the dimensionless parameters must be the same. For instance, there
can be Reynolds number (pUL /) similarity for widely different values of
p, U, L, and p.. When the nondimensional ratios are the same, the governing

Figure 3.13 Flow around a corner with two looks at very different scales of radius. The
different scale pictures will be identical since there is no characteristic scale at the corner.
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equations are identical for the two problems and the solutions are geomet-
rically similar.

Dynamic similarity requires that the forces have the same ratio. For in-
stance, for the same Reynolds number, the ratio of the inertia to the viscous
force must be the same. This can be true even if the characteristic lengths,
densities, velocities and viscosities are quite different for each flow.

The result of a systematic nondimensionalization of the equations is that
the dimensionless parameters which govern the problem are grouped into a
smaller set called similarity parameters.

Example 3.12

Consider the equation
v iy (3.20)

where kinematic viscosity v is a constant, the prime denotes a dimensional
variable, and subscripts denote partial derivatives. Nondimensionalize this
equation with characteristic values L, V, and T, and discuss the results. Plot
u(z) at a given t = T,

Solution

Divide the dependent and independent variables in the equation by the char-
acteristic scales L, V, and time 7.

=u/)V, z=Z/L, t=¢/T
and
(V/Du, = WV/L) u,,
or
u,=WT/LY u, (3.21)

There is one nondimensional parameter in the brackets. It is a ratio of
the viscous force to the inertial force. The experimental results could then
be plotted versus the parameter [vT/L?*] at t = T,. (see Fig. 3.14).

If [vT/L?] is the same for two flow realizations, then the u(z, f) are the
same (similar).

Note that if we substitute { = z/(vT)" in Eq. (3.21) (i.e., select L =
(vT)™), we get a basic equation without parameters.

U=y
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7 [vT/ L2]1

[vT/L?,

t=T,

u

Figure 3.14 Data plots of velocity versus height for various parameters.

This solution is self-similar, and all solutions, for all scales, are given in
one plot (Fig. 3.15).

t=T,

u

Figure 3.15 Data plots for self-similar conditions.

The application of similarity concepts has reduced the number of inde-
pendent nondimensional variables from three (WI'/L?, z/L, t/T) to two (z/

wD)*™ t/T).

3.5 Summary

The concepts of scaling and similarity often seem nebulous and undisci-
plined when first encountered. However they provide great organization and
systemization to both data presentation and analytic procedures. The pre-
sentation of data becomes particularly effective. Guidance for experimental
planning can be optimized with dimensional analysis principles. Frustration
is sometimes produced when trying to interpret data presented as one ob-
scure ND variable versus another. But this liability is usually overcome by
the advantages.

Evidently, dynamic similarity does more than simply effectively organize
data presentation (although it does this very well). It provides a systematic
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way of evaluating the equations to help in obtaining valid approximate equa-
tions. And it allows us to investigate the possibilities of similarity solutions.
In many circumstances, desired results can be obtained without ever needing
the complete analytic solutions.

We have discussed only the concepts of scaling that are necessary to basic
fluid dynamics analysis. Dimensional analysis can be put on a very formal
level, as found in Ipsen (1960).> We will find the concepts essential to the
develop ment of the stability equations and the boundary layer equations in
later chapters.

METHODS OF ANALYSIS

Scaling
Spectral Analysis
Organized Waves
Turbulence
Dimensional Analysis
The m Theorem
Similarity
Geometric
Kinematic
Dynamic
Characteristic Values
Nondimensional Equations
Approximate Equations

Problems

1. Determine the dimensions of the following variables and combinations
in terms of the length, mass, and time system of units: (a) pU/2; (b) [t/
pl"”; () L (vorticity); (d) p (viscosity); and (e) torque.

2. For very low velocities it is known that the drag force F, of a small
sphere falling through the air is a function of the velocity W, the diameter
d, and the viscosity p. Determine the dimensionless relationship for these
parameters.

3. The velocity U of ripples on the ocean surface is a function of the

’ Ipsen, E. C. “Units, Dimensions, and Dimensionless Numbers,” McGraw-Hill, New
York (1960).
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wavelength A\, density p, and surface tension s. Derive an expression for U
using dimensional analysis.

4. You wish to determine the viscosity of fluids, given the apparatus of
a concentric cylinder viscometer, as shown in problem 12 in Chapter 1.
Assume that . (viscosity) = f{T(torque), R, (), and r/H}. Using dimensional
analysis, obtain an expression for .

5. A barrage balloon 5 m in diameter and 30 m long is being studied as
a possible suspension system for meteorology instruments in 20-m/sec winds.
If the drag characteristics are to be studied in a wind tunnel with a 1/10-
size model,

(a) what windspeed must be used in the tunnel?
(b) If the result in (a) is too high or too low, suggest alternatives.

6. The energy source driving the atmospheric and oceanic flows is ul-
timately the solar radiation. Approximately 30% of this radiation (including
reflection) is absorbed and dispersed in the lower 20-km air layer. The
remainder is incident on the surface and absorbed in the soil or water. This
energy is then transported vertically. Measurements of the temperature flux-
uations related to the diurnal forcing indicate active layers of temperature
variation occur in about 2 km of the atmosphere, 20 m of the ocean, and 5
mm of the soil.

(a) Use dimensional analysis to get an approximate value for the ther-
mal diffusivity K [m®/sec] for each medium.

(b) Compare these with molecular diffusivities for air and water.

(c) A similar analysis can be done for the planetary boundary layer
wind or water regions. Here the Coriolis parameter f enters, and
the observed characteristic heights are 500 m in the atmosphere
and 50 m in the ocean. Calculate the eddy viscosity K for water
and air.

7. A model of a high-rise building at 1:250 scale was tested in a wind
tunnel to estimate the pressures and forces on the full-scale structure. The
wind-tunnel airspeed was 20 m/sec at 20°C. The extreme values of the pres-
sure coefficient on the windward wall, the side wall, and the leeward wall
are measured at 1.0, —2.5 and —0.9, respectively. The full-scale structure
is exposed to 120-mph winds at 20°C. What are the corresponding full-scale
pressures? The lateral force (wind-induced force normal to the wind direc-
tion) was measured at 20 N in the model. The building can withstand a
maximum force of 5-10° N. Will it collapse? C, = Ap/Gp UD), Ap = p -
po where p, is gage pressure = 0.

8. Consider the pendulum problem. Use dimensional analysis to get the
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period. (Hint: Possible parameters are length L, density p, gravity g, dis-
tance to center of earth R.)

9. Consider the design of a small submarine for oceanographic research,
and use dimensional analysis to discover a relation for the drag D of the sub
(to determine how much power it would need, how long energy would last).
Discuss the size of a test model required and how much data is required to
evaluate the design.

10. Assume the wind stress on the surface of the ocean is a function of
the air density and the windspeed only. Use dimensional analysis to derive
a relation.

11. Nondimensionalize the following equation, obtaining a self-similar
equation.

fu+ Kdu/dZ =0

where K is kinematic eddy viscosity, f is the Coriolis parameter, u(0) = 0,
and u(») = Ug.

12. A design for a bridge across a river will be tested in a wind tunnel.
The size of the tunnel allows a 1/10 scale model. Since the last bridge blew
away in 100-mph winds, we must test for these.

(a) What will be the tunnel velocity for air at the same pressure and
temperature?

(b) What is a potential problem with this project (related to com-
pressibility)? Suggest ways to avoid this problem.

13. The vertical pressure gradient (8P /8z) in the atmosphere depends on
density and gravity. Use dimensional analysis procedures to obtain the relation.

14. Given that the phase velocity u = f{g, A, v}, use nondimensionali-
zation to get an expression relating u as a tunction of v (by inspection).
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4.1 Tensors

The use of tensors has greatly facilitated work in many fields. These include
the study of the space—time continuum, general physical concepts of proper
frame of reference, and operational calculus. It is a tool that is a little ab-
stract at first look (and at the last look in its most extensive form). However,
in the relatively simple applications that we use, the benefits in compactness
and elegance are sufficient to justify the work of learning some techniques.
Although tensors are a general concept with applications up to infinite di-
mensions, we will deal with only a specific small subset of tensor theory.
Our motivation for studying tensor notation is the need to express and
manipulate the array of velocity gradients across our parcel. First, we wish
to extend the one-dimensional Newton stress-rate-of-strain relation, 7 (a sca-
lar) = w du/dz, to a three-dimensional version. Here, T has many compo-
nents that are proportional to du/dx, du/dy, du/doz, dv/ox, dv/dy, dv/az,
dw/dx, dw/dy and dw/dz. Second, in our expression for the total derivative
we have the change in velocity, a vector, that varies with respect to the
change in position, also a vector. That is, each of the three components of
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u change in each of the three directions of x, which takes a string of nine
scalars to describe. When we group these nine components into an ordered
set it is often possible, and very convenient, to treat them as one entity.

Let us call the ordered set of numbers that describes some thing a tensor.
A tensor is a generalization of the familiar concepts of scalars and vectors.
It includes these as special classes of tensor. A zero order tensor is a sca-
lar—simply a number, such as temperature. A first order tensor is an n-D
ordered array of scalars. We consider only those describing 3-D space, the
Cartesian tensors. These three-dimensional arrays of three scalars are called
vectors and are frequently used in dynamics. They can denote displacement,
velocity, acceleration, forces, temperature gradient—anything that has a 3-
D perspective. Time is a separate independent variable that we will treat
individually.

In the spirit of proceeding from the simplest to the complex, consider the
two-dimensional city map. Time and the third dimension, height, are con-
stant. The map may change with time, but (in most cases) we can assume
this is very slow. Location is represented by P(i, j), where / is an index that
designates a number on the horizontal axis and j, on the vertical. We could
write this as P,;. P can be considered as a two-dimensional vector from some
origin where i and j = O to any spot on the map with specific values of i
and j. Sometimes, for clarity, i ranges over the numbers -‘while j uses the
alphabet, as in Fig. 4.1.

In our three-dimensional plus time world at any given time, the location,
velocity, and various forces can each be defined by three numbers. These
denote their respective component magnitudes in the three orthogonal spatial
directions. Any given point in space can be represented by several different
three-number combinations depending on the reference system used. The
common ones are Cartesian (x, y, z); cylindrical (r, 6, z); and spherical
(r, 9, ¢). (See Fig. 4.2.)

Finally, one can describe location in n-dimensional space, motion, and

c P(5,C)

0 1 2 3 4 5 6 7 8

Figure 4.1 A two-dimensional map with locating numbers and letters and vector r lo-
cating P with respect to the origin.
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/ P(r,6.2) Y
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! /

Figure 4.2 The point P with respect to origin O in (a) Cartesian, (b) cylindrical, and (¢)
spherical coordinates.

even color and texture, by using groups of numbers that perform together
under given rules. For instance, a number that gives the number of dots per
square centimeter in a picture will correspond to the resulting shade of gray.
If one set of numbers represents the density of red dots, another of blue,
and another yellow, then the distribution of the numbers and the relative
values will produce color pictures. The quantity of numbers that are required
depends on the complexity of the problem and the success one has in group-
ing the numbers. The use of number—picture relations is a very contem-
porary topic. It is important to numerical modeling techniques. It is used
widely in data transmission for satellite and other remote sensing
measurements.

The second order tensor will be used to represent the interaction between
two vectors. For instance, a vector force can act on a surface where both
the vector and the surface can have arbitrary orientations. Two examples
are shown in Fig. 4.3, where the orientation of the area dA is given by a
unit normal vector n.

The force on the surface dA needs to be expressed in terms of the normal
component and the two components parallel to the sides of dA, since the
effects on dA, compression and tangential stress, will depend on these com-
ponents. In turn, these components will depend on the three components of
F with respect to the three components of n. Since each of the three com-
ponents of F must be decomposed to each of the three directions of n, there
will be nine terms in all. The value of these nine terms for all possible
orientations of F and n can be expressed as a second-order tensor. The tensor
can be expressed in terms of the two vectors under an appropriate rule. One
of our tasks in this chapter is to establish these rules.

In this text we will confine our attention to the 3-D variation of the 3-D
vectors, involving “only” a nine-component second-order tensor. We will
also employ only the simplest third order tensor, an identity-type operator
(wherein 21 of the 27 terms are zero).
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n n

F,

Figure 4.3 Examples of a force F, of area dA with unit normal n.

4.1.1 Tensor Notation
4.1.1.a Symbolic Notation

Symbolic notation is the mathematical language represented in this text
by boldface notation. In this language, scalars, vectors, and tensors are dif-
ferent entities. New definitions of sums and products are introduced. For
instance, the sum of two scalars is just another number, a + b = ¢. How-
ever, we know that the vector sum, a + b, defines a specific ordered ad-
dition of the three components that make up each vector, a + b = (a, +
b., a, + by, a; + bj). Thus the plus sign has a different meaning for vectors
than it does in ordinary algebra. There are also different ways to define
products. -

Previously we introduced the symbol del (V), which behaves like a vector
in the multiplication rules. We use the descriptive terms gradient, diver-
gence, and curl, or grad, div, and curl, to describe alternate derivative
schemes. For instance, the gradient of a scalar is the sum of the partial
derivatives in the three coordinate directions. In Cartesian coordinates,

Vo = grad ¢ = 0¢/0x + d¢/3y + d¢/dz

Recall that the divergence of a vector, div a, is the dot product and pro-
duces a scalar,

diva = da,/ox + da,/dy + da,/0z
The curl of a vector is the cross product, which produces a vector,
curlb =V X b =[9b;/dy — db,/dz, db,/0z — 0b;/0x, db,/dx — db,/dy]

We will find that these operations have general definitions that apply to
tensors of all orders.

In addition to this descriptive nomenclature there is great economy and
mathematical purity in symbolic notation. The manipulation of large arrays
of numbers can be represented in short statements. However, the practical
application to geophysical problems inevitably requires calculation of the
sums and products of the individual components. In contrast, the rules of
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index notation are advantageous in keeping track of the components. This
method still gains much of the economy in notation of symbolic notation.
We must learn both methods, symbolic and index, as both are valuable and
in wide use in atmospheric science.

4.1.1.b Index Notation

Index notation has already been introduced as an alternative way of rep-
resenting vectors. In our 3-D space, x; exists. The index { = 1, 2, 3, and
x; represents the vector x = (x,, X5, x3) in a chosen reference coordinate
system. There will be occasions where we wish to refer to a specific com-
ponent, say the ith component of x. We will then have to use parentheses
around the index to indicate the scalar x;; to avoid confusion with the vector
x;. For instance, x;, names only one of the scalars, x,, x,, or x;, whereas
x; is the vector (xq, X5, Xx3).

A scalar such as temperature will have a given value at a point in space
regardiess of the coordinate system used. A vector (or a higher-order tensor)
will be made up of different components depending on the coordinate sys-
tem. In fact, the definitions and functions of vectors and tensors are closely
related to coordinate transformations. Let X (x;, x,, x3) = x;, where i =
1, 2, 3 for the 3-D Cartesian space in which we deal. Consider another frame
of reference with X’ = (x{, x3, x3) locating the same point. If the origin is
the same and the new system is simply rotated about the origin, the length
of the vector is unchanged.

X=X+ +E=xT+ %+ 3 4.1)
The new coordinates can be written in terms of the old according to the
following rules for rotation:
X{=Xx,entxenptxsen
Xy = X1 €y tXy€ptXsen
X3 =X1€3n t X et x3e53

where the e;; can be any orthogonal coordinate set. For a transformation of
coordinates, these conversion factors are the normalized direction cosines,
e;; = cos{x/, x;}. Since cos{x/, x;} = cos{x;, x}, we have e;; = e;;.

It is valuable to use Einstein’s summation convention: when an index is
repeated in a single term, the term represents a sum over the repeated index.
In other words, a short cut in notation is available by omitting the summation
sign whenever there is repetition of an index within a single term. Thus,

3
. —_— —
X = Z Xje; = Xe;; = X8y T X8 T X3ep
Jj=1
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When the index appears in each term, it is called a free index (in contrast
to a repeated index),

x = 6x; + 2x7 — C,
This represents three equations, one for each value of i,
x,=6x,+2%-C,
X, =6x, +2x; — C,
x5 =6x, + 23 — C,

Therefore, xe;; is a set of three equations denoted by the free index, i
= 1, 2, 3. The free index occurs only once in each term of an equation and
implies three equations as it takes on values 1, 2, and 3. Each of these
equations will have three terms summed, denoted by the repeated index j,
as it also takes on values 1, 2, and 3. The e, term represents nine scalars
and is thus a second-order tensor. So this rule is our first example of a tensor
vector product, x,e;;. We have also noted a dimensional homogeneity rule
applied to vector equations: all terms must be of the same order tensor.
When using index notation, this translates to the requirement that every term
have the same free indices.

Example 4.1

Write out the terms, or equation, represented by the following, where ¢,;
are the normalized direction cosines: (a) e;e,, for arbitrary j and &; (b) the
i =j=1casein (a); (c) the i = 1, j = 2 case of (a).
Solution
(a) We must sum over the i, whereas the j and k are free indices,
e ;e = cos(x;, x;) cos(xy, xy)
+ cos(xz, x;) cos(xy, X)
+ cos(xz, x;) cos(x3, xi)

We could obtain the nine individual equations by first setting i = 1, j = 1;
theni=1,j=2;i=1,j=3;i=2,j=1;i=2,j= 2, and so on to
obtain all possible combinations of i and j ranging over 1, 2, and 3.

(b) Since i and j are specified, this case is a single equation.
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eqeq = cos’(x{, x,) + cos’(x3, x,)
+ cos¥(xj, x,)
An inspection of the value of the cos(x;, x;) would reveal that this equation
has a value of 1. This is also true for the cases i = j = 2 and i = j = 3.
(©
€€ = Cos(x;, Xp) cos(xi, Xy)
+ cos(x3, x,) cos(xs, x,)
+ cos(xz, x,) cos(xs, x)
The value of this equation is zero. This is true also for the cases where { =
1,j=3i=2,j=1i=2,j=3;i=3,j=1;andi = 3,j = 2.
This example shows the property of the orthogonal Cartesian coordinate

normalized cosines that the product of e,e; is 1 whenever i = j, and 0
whenever i # j.

Index notation is in wide use in fluid dynamics. We will use it prefer-
entially in our derivations.

4.1.1.c The Tensor Definition

Since we will find it easiest to define the second-order tensor rules in
analogy to the first-order tensor rules, we must recall some basic definitions
for vectors. First, a general definition of our three-dimensional first-order
tensor (which is called a vector) is: a three-component object a under the
transportation (rotation) rule

a; = e;a; 4.2)

Thus, the same vector is defined as an array of three scalars, with index j
= 1, 2, 3, which transform to another array of three scalars, with index i
= 1, 2, 3, under the rule given in Eq. (4.2).

In a similar manner, we define the second-order, three-dimensional tensor
(the principal kind we deal with, henceforth simply called a tensor) as a
nine-component object under the transportation rule

Cx{j = Cree e 4.3)
The second-order tensor can be written in matrix form where
Chn Cpp Cp
C'row. column = C21 C22 C23 (44)

C31 C32 C33
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In the term on the right side of Eq. (4.3), a double sum on & and ¢ are
both repeated, leaving as “free” indices i and j. Thus, the right-hand side
of Eq. (4.3) is a second-order tensor, as is the left side. The tensor with
indices k and € is transformed into a tensor with indices i and j. Here, we
are summing over k and € such that for each k there isasumon € =1, 2, 3,
with an overall sum on k = 1, 2, 3, a total of nine terms. There are nine
equations as i/ and j range from 1 to 3 independently. Each equation yields
a component of the tensor. The components of the tensor are displayed as
a matrix, with { designating the row and j, the column.

Example 4.2

Write out the terms for A ,; in the expression
A= Bree e
Solution

There is a double sum on the right side, over j and €. Hence we simply
replace i and j with 1 and 3, then sum over j and €. '

A3 = Beyesy + Bpejesn t Biseyes;
T Bjienes t Bpepesn + Bye s
+ Bjepses T Bypepen + Byees

There are nine terms. This scalar is one of the nine terms making up the
tensor A ;, which occurs in the first row and the third column of the matrix
display.

Example 4.3

The equations
u=ax+by+cz
v=dx+ey+fz
w=gx+ hy+kz

represent a linear transformation from (x, y, z) space to (i, v, w) space. Write
the equations in matrix form.
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Solution

We can consider the three components u = (u, v, w) as a vector, which is
a function of another vector, x = (x, y, z). If we let u and x be column
vectors, we can arrange a matrix to pre-multiply x to get u.

u a b c\ [x
vi=\1ld e flly
w g h k z

This could be written u = AX or u; = A;x,.

Since each increase in the rank of a tensor increases the number of terms
by a factor of three, we see that an n order tensor has 3" components. A
vector can be written in either row or column matrix format. The three-
dimensional matrix of the tensor can be considered to be made up of three-
column or three-row vectors. This relationship between matrices and vectors
is important in the process of matrix multiplication. We are already familiar
with two vector products, the dot product,

a'b = albl + azbz + a3b3 = a,»b,~
and the cross product,
aXb=(ah; — asb,, asb, — abs, a\b, — ab,)

There is also a vector-vector = tensor product, which will be defined in
terms of index notation below.
The rule for multiplying two matrices, A and B to get a matrix C is

CijzAikBkj
where
i=1,2,...1,, j=1,2,...J,, and k=1,2,...K,

We can consider A as made up of i row vectors with k elements and B
made up of j column vectors with k elements. In general i and j can be
arbitrary, while k& must be the same for both matrices. Thus, the number of
elements in each row of A must equal the number of elements in each col-
umn of B. In a square matrix, I, = J, = K, = n, the number of elements
in each row or column. Note that each element of C;; is a scalar formed as
the scalar product of the ith row of A with the jth column of B. For instance,
in a square matrix of dimension three, the scalar denoted by C,; occurs in
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the second row and the third column of Eq. (4.8). If C = AB, then the
second row of A is a three-element vector that forms a dot product with the
vector occupying the third column of B to yield

Cyu=Anu'By

This illustrates that when one index of a tensor is specified, a three-element
unit remains, representing a vector part of the tensor.

Example 4.4

Calculate the tensor product.

Solution

We will create a tensor, Cj;.

Cy Cpn Cyps 2 4 1\[7 4 2
Cy Cp» Cul=13 5 2]l3 1 5
Cy Ci Ca 6 1 4/\2 6 9

The first element, C;, is the scalar product of the first row vector of A with
the first column vector of B,

Cn=02,4,1):-(7,3,2)=14+12+2=28
In similar calculations,
Cp=02,4,1)-4,1,6)=18
Ci=2,4,1):(2,5,9 =33
Cu=@3,52)(7,3,2)=39
Cn=03,572)-4,1,6)=29
Cx=(3,52-2,59=47
C;=(6,1,4)-(7,3,2)=53
Cyp=(6,1,4)-(4, 1, 6)=49
Cyu=1(6,1,4)-(2,5,9) =53
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It is evident here that the number of elements in the rows of A must equal
the number of elements in the columns of B, or the dot products would not
be defined.

Example 4.5

Consider the specific cases of the general rule for multiplying two matrices,
where (a)I,=1,J,=K,=3; b J,=1,1,=K,=3©K,=1,1,
= J, = 3. Give specific examples with arbitrary numbers for the components
in (a) and (b).

Solution
(a) In this case, i = 1 and jand &k = 1, 2, or 3.
Clj = AlkBkj

Since C; has only three elements, Cq;, Cy, and C 3, it is a vector. Another
clue indicating that it is a vector is that C; also contains only one free index.
Likewise for A . However, B,;, which has two free indices, is a tensor.
Thus, we have a vector that is a product of a vector-tensor. For instance,

7 4 2
CiCiC) =353 1 5
2 6 9
=3-7+5-3+2-2,3-4+5-1+2:6,3-2+5-5+2-9)
= (40, 29, 49).
(b) Here, C,; = A, B,,. For instance,
Cy 2 41 2 2:24+4-3+1-6 22
Cul=1|3 5 2 3)]=[3:2+534+2-6]=1{33
C; 6 1 4/ \6 6:-2+1-3+4-6 39

(c) In this case, C;; = A;B,;. We have a tensor which is a product of two
vectors.

Ci Cp Cgs Ay
Cy Cyp Cul=1An | @By, By, Bry)
Ciy C; Cy Aszy

AyBy AnBp AuBis
=|AuBy AuBy AuBigs
AyBy AuBy,, AsBis
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In all of these cases, it is clear that the index notation serves as a guide
to the form of the vector or matrix. Each of the operations illustrated will
appear in our derivations.

A few specialized tensors are convenient to use. One second-order unit
tensor is called the Kronecker delta, defined as

5. = 1 if i=j
T o it it

This can be written in matrix form.

1 0 0
0 1 0 0
5,=| 0 10

0 o0 0 o 1
We have seen in Example 4.1 that ;64 = ;.
We also use one third-order tensor. This is the alternating unit tensor and
contains 27 terms, of which only six are nonzero. It is used in index notation
to indicate cross-multiplication. The terms are

1 if §jk= 123, 231, 312 (even permutation)
exy=—1 if ijk=2321,213, 132 (odd permutation)
= 0 if ijk has any two indices the same.

When the tensor €;; multiplies two vectors, it is equivalent to that of the
cross product of those two vectors in symbolic notation. Thus,

e,-jkajbk =aXb
Note that the free index i denotes the product vector, the second index j,
sums on the first vector, and the third index k, sums on the second vector.

Reversing the order of j and & in either a;b, or €;, would change the sign
of the product, just as does

bxa=—-axbhb

Example 4.6

Write the following components, A |; and A;;, in the expression:

A= uBuy + wie + ady;
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Solution

Ap=u(Bpv, + By + Byvs) + wil€r) +ad g,
=u(Bpvy + Byv,y + Byvs) + ws

Az = u3(B 30y + BpUy + BisUs) + wilesy) + ads;
= u3(B 30, + By, + Byyvs) +a

Note that there are two summed terms on the right side, although most
of the terms involving the alternating unit tensor are zero.

Our final vector product, which we encounter in deriving the equations,
is called the dyadic product, written in symbolic and index notation as

A=a;b, and A,;=apb,;

The primary motivation toward adopting index notation in atmospheric
dynamics is the need to express the variable force (a vector) on a variable
unit area (a vector). However, it is also very handy for manipulating vectors
in general. )

4.1.1.d Some Basic Definitions

A tensor A may be written in matrix form.

Ay A A
A=Aij= Ay Ap Ap
Ay Axp As

The transpose of A is A*, where A* = A,

Ay Ayn Ay
A=Aji= Ay, Ay Ay
A Ayp Aj

A is symmetric if A;; = A}, in a square matrix; and antisymmetric (or skew
symmetric) if A;; = —A;;.

This distinction becomes significant due to the special characteristics of
these tensors. For a symmetric tensor three of the elements are repeated: A |,
= A,, A3 = A;, and A,; = Aj,. Therefore, in our 3 X 3 matrix there are
only six independent scalars: A ;, A3, Ay, Ay, Ay, and Ajs.

The antisymmetric tensor has A;; = Ay = A3 = 0, and the three in-
dependent scalars A,, A3, and A,; occur with both plus and minus signs.
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These three independent scalars can constitute a unique vector called the
dual vector. This dual vector is defined by an inner product. It is the product
of a second- and a third-order tensor, which are doubly summed over two
of their indices (leaving the third index on the third-order tensor as a free
index).
d;= €A

These particular tensors are important because of their symmetry prop-
erties, which give them a smaller number of unknowns. In the case of an
antisymmetric tensor, we can deal with the associated vector instead of the

tensor. In addition, there is the important fact that any tensor can be sep-
arated into a symmetric plus an antisymmetric tensor according to

1 i
Ciy=3C;+ Cji) +6Cy;—Cj) =Sk t+ A

Other symbolic terms we will use include an expansion process (here, ¢ is
a scalar):

grad ¢ = Vo = ¢ /dx; a vector

grad u = Vu = du,/dx; a tensor (second order)
grad A = VA = 0A ;/ax, a third order tensor
The contraction process (a dot product) is
divu=V-u=9u;/ox; a scalar
divA=V-A=09A,/ox; a vector'
A selection process (a cross product) is defined by

curlu =V X u = ¢;;,0u,/0dx; a vector

It is clear that when second-order tensors are considered, many new pos-
sibilities arise for product definitions. Fortunately, we need only a select
few in fluid dynamics. In the derivation of the equations of fluid dynamics,
we will encounter the following tensor and vector products.

1. The vector—vector or tensor product: a;b; = A,;. This is also called
the dyadic product, a ; b. The order of the terms is important in the symbolic
notation, since reversing results in the transpose tensor.

2. The tensor—tensor inner (scalar) product: AB or A,;B ;. Another scalar

! The term contraction is also used elsewhere to describe the sum of the diagonal terms
A,
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product is A;;B; = AB*, Note that since both indices are summed, there
are no free indices, indicating a scalar product.

3. The vector—tensor product: a;A;; = A;a; or aA. There is a sum on
one index and the other is a free index, indicating the product is a vector.
We can say that the tensor operates on a vector to beget another vector,

The order of the terms is not important in index notation, as long as the
indices are kept the same. However, the order is important in symbolic no-
tation, and A - a is a different vector from a - A. For instance, A;;a; = a;A;;
represents a different array of components to A,;a;.

We will introduce two other operators, the rotation tensor, rot u, and the
deformation tensor, def u, when they occur. However, they are simply com-
binations of the above operations. We will use both the index and the sym-
bolic methods of manipulating many numbers with symbols. The conven-
tional 3-D vector symbols and the index notation are interchangeable. Our
emphasis is on the components, and we will resort to component verification
of the small number of symbolic identities used in our derivations.

Example 4.7

Show that when one tensor is symmetric and one antisymmetric, AB = 0.

Solution

We are to calculate A;;B;;, where A;; = A;; and B;; = —B,,.
The antisymmetric tensor B;; has B ; = 0, so that we can exclude all terms
where { = j. Then,

A;B;;=A;By +ApBs +ApBs,
+A;Bi, + Ay B3+ ApBas.
Replacing B;; with —Bj; and A;; with A; in the last three terms,
AB;=AB, +AjBy,) + AypBy
—ApBy; —ApBi3—AypByip=0

Example 4.8

Show that curl grad ¢ = 0.
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Solution

We note that grad ¢ is a vector, equal to Vo = (0¢/dx, o¢/dy, d¢/dz). Curl
indicates we are taking the cross product, V X (), of this vector, which can
be written in matrix form,

i j k
VXxVo=| a3/ox a/fdy d/0z
dp/dx do/dy d¢/oz

= i[8%/dy 9z — 8*@/dz dy]
+ j[8%p/ox 9z — d*¢@/dz dx]
+ k [9%¢/dy ax — 8%¢/ox dy] =0

A general summary of tensor relations can be found in the summary chart
near the end of this chapter.

4.1.2 Applications to Atmospheric Variables

The main variables in atmospheric dynamics can be separated into several
categories—fluid properties, body forces, and surface forces.

Fluid properties are scalar or vector fields, such as pressure—P(x, y, z, f)
= P(x,, x4, X3, 1) = P(X, 1), density p, and temperature 7. The flow prop-
erty is usually velocity V, although divergence and vorticity can also serve
this purpose.

Body forces operate on each element of matter but may be represented
as a force acting at the center of mass of the uniform parcel. This force may
continuously vary in space and time but still have a specific value at a “point.”
In special areas of study forces such as the electromagnetic force are sig-
nificant, but gravity is the main atmospheric body force.

Surface forces include the stress and pressure acting on the surface of our
parcel. The expression of these forces generates the most difficult calcula-
tions in our derivation of the force balance on the parcel. However, we are
now prepared to discuss the three-dimensional variation of this force vector.

We denote the force per unit area at a point as the stress at that point, T,
SF

7 = limit —
3A—0
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Consider the parcel at + = 0. It is a cube, but immediately before and
after, its shape is different, varying with time as shown in Fig. 4.4. Let 3A
represent the normal to the incremental area on the surface of the parcel and
8F, the force on this area.

The stress is the ratio of two vectors representing the incremental force
and area. They are shown on the face of the y-z plane in Fig. 4.5. Each
component of both 8F and A can vary independently (there is a component
of dA in the direction of each coordinate, and three components of force in
each of these directions). Thus, there are 3 or 9 scalar values to describe
the total force field. This can be organized in a second-order tensor.

Each component of 8F; acts on each 84 ;. For example, the forces on 84 ;
= 3A, are shown in Fig. 4.6.

We can relate the vectors directly and compactly using tensor analysis in
an efficient bookkeeping procedure. The indices i, j, k, etc., represent the
entire array of a tensor, (e.g., 7;;). When specific coordinates are used, such

Figure 4.6 The three force components on d4,.
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as x,y, z, 1, 2, or 3, then a specific scalar component is indicated (e.g.,
Tay)e

Thus, 7,, (a scalar) is the component of stress on the face normal to the
x-axis and parallel to the y-axis, whereas 7;; (a tensor) represents all possible
components.

T,\:x Txy sz
— Jimi OF;
T = mt — = Ty Ty Ty
84,—0 OA;
T T
zx zy zz

This is a nine-component array of the three stress components that act on
the three faces of the parcel.

4.2 Relative Motion near a Point

We are interested in obtaining the Eulerian equations for the flow parameters
at each point in a field. To write the force balance at a point in the field,
we need to investigate the incremental velocity change at the point, or across
our parcel. We can then relate the stress forces to the local velocity gra-
dients, which will be the rate of strain. There are several ways to decompose
the incremental velocity change into components, and the one presented be-
low is simply the most useful. This section will only define and describe
the relative motion in preparation for the later mathematical derivation.

Near a point where the velocity is u(x) and the nearby velocity is u(x +
8x) or u(x) + du we can manipulate the vector incremental velocity change
so that it is expressed in terms of an operator acting on the displacement
vector. In a Lagrangian description the individual parcel position would be
given by the vector x(¢), and the operator that gives the velocity of the parcel
(at position x) is the derivative with respect to time. However, in our Eu-
lerian frame of reference we know that the velocity change experienced by
the parcel passing through any point is made up of the time-dependent ve-
locity changes in the field plus a change due to the velocity variation in
space. We must employ the total derivative as discussed in Chapter 2.

In the Eulerian description the combinations of the spatial derivatives that
form the divergence and the curl yield important depictions of the nature of
the field. We later consider cases where either or both of these parameters
(divergence and curl of u) vanish to allow special flow solutions. Thus the
capability to separate the velocity derivatives into the descriptive arrange-
ments of derivatives called the curl and divergence can give a different per-
spective on the flow field and is useful in arriving at simplified equations
and solutions.
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Since we will frequently find it convenient to use indicial notation and
the summation convention in this section, we will replace (x, y, z) with
(X1, X2, x3) and (u, v, w) with (u,, u,, us).

w(x) = ulx;, x5, x3), i=1,2,3
or
u=u(xy, x5, X3) 1+ uyxy, x5, x3) j + uslxy, x5, x3) k
One can think of du in two different ways:
1. As we move successively in &x,, 8x,, dx; directions,
Su = (du,/0x, i+ duy/ox,j+ du;/dx; K) dx,
+ (Qu,/ox,1 + du,/ox, § + dus/dx, K) dx,
+ (Bu,/dx31 + du,/0x;§ + 0us/0x; K) dx,4
or
2. As the successive change in velocity components,
du, = du,/ox, dx, + ou,/0x, 8x, + du,/dx; dx,
Suy = Au,/0x, dxy + Ou,/dx, 8x, + du,/0x; dx;
dus = us/dx, dx; + dus/0x, dx, + Ous/dx; x4

These three components can also be written as a vector that is the product
of a tensor operating on the displacement vector. Shown here in matrix and
indicial form:

du,/dx, Odu,/dx, du,/ox;\ [dx,

duy/ox, du,/dx, ou,/ox; || dx,

dus/ox, Ous/dx, dus/dx;) \dx,

(aul ’ 8”25 8”3)

or
du; = du,/ox; dx; 4.5)

Here, du,/dx; represents all of the possible rate-of-strain components and is
called the basic deformation tensor. Now some of these components distort,
some stretch, and some rotate the parcel. We can use the principal that all
tensors can be split into a symmetric plus an antisymmetric tensor to sep-
arate the actions of the shearing forces on the parcel. The shears represented
in the symmetrical tensor cause pure straining motion on the flow parcel,
while those in the antisymmetrical tensor result in pure rotation.
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Hence the elements of the total shearing action du,;/dx; can be arbitrarily
separated into two parts related to the relative velocities.

du, =[5{0u,/ox; + du,/dx} +3{ou,/ox; — du,/ox} 1 bx,

— h) a
=[ b + dut 1 8x;
or
ou; =[ €ij t Ny ]
5 (4.6)
symmetrical tensor; + antisymmetrical tensor;
pure straining motion; pure rigid body;
deformation tensor; rotation tensor;
Def o Rot o
where
1
e;; = 3[0u,/dx; + ou;/ox;)
and

N = %[au,./ax,- — ou;/ax,].

The basic deformation tensor du;/dx; can be looked upon as a nine-com-
ponent second order tensor that operates on the displacement 8x; to produce
the vector velocity 8u;. It is also known as the velocity gradient tensor. The
Suy, are the three components of the velocity change across the parcel due
to its advection through the velocity field u;.

Above, we have separated the basic deformation tensor into two. One
has properties of being symmetric (e;; = e;) and is called the deformation
tensor, and one is antisymmetric (N,;; = —N ) and is called the rotation
tensor. These may be written in matrix form.

26ul/6x1 6u1/6x2+3u2/8x1 au1/3x3+6u3/6x1
e,j = % auz/axl + 8u1/6x2 2 8u2/6x2 6u2/3x3 + au3/a.X2
au:;/axl + 8u1/8x3 6”3/6X2 + 6u2/3x3 2 8u3/6x3
and
0 du /ox, — du,/dx; du,/ox; — du;/dx,
Ny =% du,/ox, — du,/dx, 0 uy/dxy ~ dus/ox,

uafox, — du,/ox; Ousfox, — du,/dx, 0

4.2.1 Deformation Tensor

The deformation tensor e;; represents straining motion of the parcel, without
rotation, and is therefore also called the rate-of-strain tensor. The scalar
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terms du,/dx, represent the extension of two adjacent points along the axis
xg- The sum of the diagonal terms of e; is du,/dx,, the divergence.

The principal axes theorem states that there is always a rotation of the
axes possible such that the new e,; has nondiagonal terms all equal zero.
Thus there always exists some orientation of axes such that the strain is
represented as pure extension or contraction of the parcel. The principal axes
are not used for our general derivation of the field equations. This is because
our coordinate system is most often set by the geometry of the problem, and
the principal axes may be different at every point in the fluid. However,
they come in handy when a local flow character is being discussed, and the
coordinate system can be arbitrarily oriented with respect to that of the mean
flow. One practical example of this is discussed in Example 4.9, where the
development of atmospheric fronts is a local phenomenon embedded in the
large-scale mean flow.

There will generally be six independent components to the deformation
tensor. The three diagonal terms equal the divergence of u, which is a mea-
sure of the elongation (or compression) of lines along the axes at a point.

du;/ox;=V-u

The other three independent terms represent shearing strain. This measures
the angular change between perpendicular lines that coincide with the axes.

Example 4.9

A condition that characterizes a developing atmospheric front within an air
mass is that the temperature gradient increases across the front. (See Fig.
4.7.) By looking at the effect of the local velocity gradients on the total
change in the temperature gradient, derive a condition for frontogenesis.

Solution

Our parameter that determines whether a front is developing or decaying
will be

F = D/DiVT| > 0 is frontogenetic
< 0 is frontolytic (decaying)
Temperature is a conservative property, so its total change is zero.
DT /Dt = 0T/t + u-VT =0
Hence, if we take the gradient of this equation,
VDT/Dt =3 VT/ot + u-VVT + Vu-VT =0



184 4 Tensors and Relative Motion

VT = IVTI(icos 0+ ] sin 8)

Figure 4.7 A surface air mass front and isotherms (constant T, T',, etc.) and temperature
gradient in the region.
or, combining the first two terms,
DVT/Dt+ Vu-VT=0
Since we can write D(VT)*/Dt = 2|VT| D|VT|/Dt
F = 1/[2|VT]] D(VT)*/Dt
Substituting for VT = |VT|(i cos 6 + j sin 6),
F = —|VT|[ cos® 6 du/ax + sin® 6 dv/dy + sin 6 cos 0(du/dy + dv/ax)]
When the flow is viewed in principal axes, the off-diagonal terms of the
deformation tensor are zero.
dufoy + dv/ix =0
This leaves
F = —|VT|[(du/dx — dv/dy) cos 26 + (du/dx + dv/dy)]

Generally, in atmospheric flow, the terms in the last parentheses, the
divergence terms, are much less than the first term in this equation. Thus,

F = —|VT|(du/ax — dv/dy) cos 26

Hence the criteria for whether the velocity field increases or decreases the
strength of the front depends on the sign of the velocity gradients and the
angle 9.

4.2.2 Rotation Tensor

The rotation tensor M, is antisymmetric. Thus it has only three independent
components, which can be used to define an associated vector. This vector
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has fundamental conservation properties that make it important in the de-
scription of the flow field dynamics. It is called the vorticity vector, and it
is a measure of the parcel rotation. Vorticity will be the subject of Chapter
8. The vorticity vector may be written:

nij = _%Eijkgk 4.7

where { = local vorticity, { = V X w, or {; = €, du,/dx;.

Consider the contribution to the relative velocity du at a distance 8x due
to du”. This is the velocity that would be produced by a rigid-body rotation
with angular velocity d6/dt = {/2 about the point x. Note that in general
the fluid is not rotating about x as a rigid body. This rotation concept is
strictly applicable only at the point represented by the parcel.

4.2.3 Representation in Cylindrical Coordinates

When the flow is basically in a plane, rotation is often expressed more easily
in circular or cylindrical coordinates. We can examine the definitions and
description of the three-part effect of the local velocity gradient on our parcel
by looking at the relative velocity at a point P’ separated from a point P by
dr. There is a velocity u at P that is changing in the direction of &r. (See
Fig. 4.8.) .

The relative motion can now be decomposed into the component along
dr and that perpendicular to dr.

1. The component du, will stretch or compress dr (a strain);
2. The component duy has two contributions;

(@) One part will cause solid-body rotation around P with a value equal
to dr d0/dr (no-strain turning);

(b) The remaining part of &u, will bring about angular deformation
of any parcel at P (a strain).

u+3u

P

Figure 4.8 The vector velocity change along and normal to a curving path. The parcel
moves from point P to P’, experiencing velocity change 8u over the distance dr. The velocity
change can be separated into a part along r and a part normal to r.
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The complete effect on a parcel passing through P to P’ can be imagined
as a superposition of four effects, illustrated in Fig. 4.9.

1. A translation, [:] — l:l

2. plus an elongation without El , C——
a change in volume,

3. plus a rotation without

distortion, D Q

4. plus an angular shearing

without change in volume. D v

(The principal axis theorem
states that dr can be chosen
such that this term is zero.)

Figure 4.9 The total change in a flowing parcel broken into four parts.

In relating stress (forces acting on the parcel) to rate of strains (distortion
caused by forces), we will group the components 1 and 2b together. The
action of 2a does not involve strain or internal resistance. However, it is
related to an important characteristic of the flow field called the vorticity.

Example 4.10

Consider pure shear in one direction, with u,(x,) such that du,/dx, = C,
as shown in Fig. 4.10.
(a) Discuss the decomposition of this shear into strains and rotation.
(b) Do the same for the case where u,(x,) has simple shear.
(c) Discuss the = combinations of (a) and (b).

X3

Figure 4.10 Example of pure shear in the x, direction.
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Solution

(a) Substituting in Eq. (4.6), there is only one nonzero shear, which is split
into contributions to strain and rotation. The deformation tensor reduces to

ou  du; 1ou 1 du,

&x, &x, 2dx, 2 9x,
shear strain + rotation

The shear can be separated into two equal parts, one contributing to strain
and one to rotation.

(b) Similarly, if the u, component is uniformly varying in the x, direction
(see Fig. 4.11.):

Xp

-/

Figure 4.11 Example of pure shear in the x, direction.

uy(xy) = Coxy
then
du  du, 1du, 10du, 1 1
—:—:——+——=—C2+—C2
ox; ox;, 20dx; 2dx, 2 2

(c) Consider the sum and difference of these shear conditions.
In this case, du;/dx; has two nonzero components:

du,/0x, = 5(0u, /0%, + duy/ox)) + 30U, /dx, — duy/ox,)
and
ou,/ox, = %(auz/ax1 + 0u/dx,) + %(auz/axl — 0u,y/dx,)
The decomposition into symmetric and antisymmetric tensors becomes

l 0 aul/axZ + auz/axl 0
e,-j=£ du,/ox, + dufox, 0 0
0 0 0
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and
1 0 Gul/axz— auz/axl 0
n,]=5 auz/axl_au]/axZ 0 0
0 0 0

Consider the special case where du,/0x, = du,/dx,, as shown in Fig. 4,12,

Xp

Figure 4.12 Example of two shears opposing each other in the X; = X, plane,

Then e, = e, = 0u,;/0x, and N;; = N, = 0. There is shear distortion
only with no rotation.
Finally, in the case where du,/0x, = —du,/dx, as shown in Fig. 4.13.

Figure 4.13 Example of two shears in the same direction.

Then e;; = 0 for all i, j; while
Ny, = du/dx,, and N, = —du,/dx, = du,/ox,
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This case has pure rotation with no distortion. Although these cases con-
sider the simplest of shear, they can be used as a first approximation to many
atmospheric flows. We will explore some of these approximations in Chap-
ter 9.

4.3 An Arbitrary Division of the Velocity

It is always possible 'to superimpose a constant velocity field on the flow
without changing the terms involving velocity derivatives. Thus, including
the mean flow, the velocity near a point may be separated into three compo~
nents. These correspond to a uniform translation u = V plus the pure strain
associated with e;; plus the pure rotation associated with N;;. Using the
definition of vorticity given in Eq. (4.7) the incremental velocity changes
may be written

Bu, = BV, + 1 dxjey; + 3 €l B%,

The divergence and curl (V-¢) and (V X ¢) of a vector function of
position are basic operations yielding quantities that are independent of the
choice of coordinate system. Thus, we can always write a general velocity
field as (D is the divergence; {, the vorticity)

u=V+u+u (4.8)
with
Veu=D, Vxu={¢{
and
V-u'=D and Vxu' =0
(divergent) (irratational)
V-u'=0 and V X u® =¢{
(incompressible) (rotational)
V-Vv=0 and VXV=0
(V constant) (V constant)

When there is divergence (or convergence) at any point in a field as de-
noted by the value of D at that point, there will be an associated velocity
u’® directed away or toward the source of divergence. Similarly, if there is
vorticity at a point given by the value of {(x), then there is an associated
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velocity at each point x’ of the field tangential to the circle with radius x’
~— X. Specific atmospheric phenomena can be related directly to the local
divergence or vorticity. Consequently, these properties of the flow field have
practical value. This decomposition of the velocity field will be employed
again in connection with the vorticity discussion in Chapter 8.

Summary

TENSORS

Order
Notation

Symbolic grad(V), div(V ), curl(Vx)

Index da;fox; ...

Repeated Index ab,=a,b, + ab, + ...

Matrix

_J1lifi=j

Kronecker Delta 3, = {0 i
Alternating Unit Tensor €ijk
Dyadic Product A=aqab
Symmetric Tensors A=Ay
Antisymmetric Tensors A= —Ay

du
RELATIVE MOTION NEAR A POINT —8—’ = [e,; + N,
X

J

Rotation Tensor e
Deformation Tensor Ny
Principal Axes

ARBITRARY DIVISION OF A VELOCITY u=V+uo+u
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Problems

1. Write grad a in vector, indicial, and matrix forms.
2. Show the following identities by writing out terms in component form
and rearranging.
(@ div (fv) = fV-v + Vf Vv
(b) div grad f = V*f
() curl (fu) = fVXxu+ VfXu
(d) a X b =¢€;a,bje, (eis a unit vector in k-direction)
(e) (An)-w = (A*w)-u
(f) (grad a) a = grad 4°/2 + [grad a — (grad a)*] a
= grad a*/2 + (curl a) X a
3. Find, by expanding into coordinates,

(a) curl (grad f) = ?
(b) divcurlu = ?
(©) curl curlu =V X V X u = grad divu — V> u

4. State whether the following tensors are examples of a symmetric or
an antisymmetric matrix.

(a) (b) (©
1 2 3\/0 -2 =3 0 2 3
2 5 412 0 —-4)j-2 0 4
3 4 6/\3 4 0/\-3 -4 0
5. Show by expanding:
(a) Does the vector product of a vector and a tensor satisfy
u-A=A-u?

(b) Does u;A;; = Aju; ?
(c) Does the dyadic (tensor) product of two vectors satisfy

uv =vu ?
(d) Does uv; = up; ?

6. Consider the following equation and discuss whether the terms are
consistent dimensionally and with respect to tensor order:
ufot + udufox + voufdy + wdu/az
= —(@p/ox)/p + fo + v[0°u/(dx; 9x))]
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7. How many elements are there in each of the following:

(a) Zero-order tensor
(b) First-order tensor
(c) Second-order tensor
(d) Third-order tensor
(¢) Fourth-order tensor

8. In our decomposition of the velocity gradient tensor, consider one-
dimensional shear, U = Cz. What is the strain (extension and deformation)?
What is the vorticity?

9. Write the deformation tensor in matrix form for (a) Couette flow, (b)
flow in the x-direction with shear in the y- and z-directions, (c) vortex flow.



Part 11 The Governing Equations
for Fluid Flow

In this part we obtain the basic equations governing the flow of fluids. The
concepts and techniques learned in the first four chapters will all come into
play in the derivations. Part I was intended to provide a first introdiiction
to the new and complex concepts and techniques of fluid dynamics. This
part will provide a second, in-depth exposure. We will apply the methods
towards deriving the basic equations and also applying them to geophysical
phenomena. Experience has shown that this material really begins to get
assimilated by the student at about the third exposure, which can be obtained
from working the examples and problems.

In geophysical flows we need to describe the flow fields so that, when
given certain boundary value measurements of field variables, we can de-
scribe the variation of any parameter in the entire domain. The unknown
parameter might be velocity, density, moisture, temperature, or a pollutant.
In general, the distribution of any parameter will be determined by the ve-
locity field. Thus our first goal is to solve the equations for the velocity
field. When another parameter is of interest, such as precipitation or pol-
lution, the task is to find some relation between the velocity and this pa-
rameter at each point.

We start with statements that relate a parameter value at one point to its
value elsewhere. They are generally derived from some principle of con-
servation for that parameter. These principles provide us with the basic phys-
ical laws. The fluid motion equations are obtained from the statements of
conservation in physics. In these classical axioms, the principle is stated for
a specific solid body. We have seen that in the dynamics of fluid flow, there
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is no solid body of fluid. We designate a proxy for this body, the parcel.
To establish guidelines for the parcel, the concept of a continuum was elu-
cidated. Also, since we are not generally concerned with a specific parcel,
the field description and the concept of a total derivative at any point in the
field was introduced.

The principles of conservation of mass, momentum, and energy evolved
in connection with solid-body mechanics. Using the concepts of the parcel
and the total derivative, we can apply these principles to a fluid flow to
obtain field equations for the flow. Conservation of mass and energy of the
parcel deal with scalars—the density and the temperature. The methods of
tensor analysis are handy for providing compact derivations and expressions
for these two equations in most applications, but they are not essential. They
are essential for a general derivation of the momentum equation.

The other basic principle we employ is that defined by Newton’s second
law, which we can call the conservation of momentum. There are some
fundamental differences between the conservation of momentum applied to
a particle and that applied to a fluid parcel. Some authors prefer to refer to
it simply as the momentum principle for fluid flow. Regardless of termi-
nology (we will use “conservation of momentum™), the result is the basic
equation for the velocity field in an Eulerian frame of reference. .

The velocity is a vector. Consequently the interactions expressed in the
total derivative become quite complicated. The methods of tensors, and sym-
bolic and/or index notations come in handy in writing this equation. These
techniques of tensor analysis and compact notation are essential, however,
in expressing the forces that depend on the internal stresses. We “remove”
the parcel from the surrounding fluid in order to apply the conservation prin-
ciples to it. Thus, we must replace the effects of the surrounding fluid on
the sides of the parcel with “viscous” forces. The description of these forces
is the “tour de force” in deriving the equations, to the extent that the mo-
mentum equation is sometimes called the equation of motion. We will see,
using our skills in fensor notation, that this vector equation fits in the same
format as the other scalar conservation equations.

The conservation equations can be derived as integral equations for a
specific volume, called a control volume. The integral form is most useful
when the problem involves a confined flow volume. But when the equations
are derived for a general field point, they are differential equations. Geo-
physical flows typically are unconfined, and the differential form of the
equations is most valuable in their description. All of the conservation equa-
tions are of similar form, and we note the general form for these equations
at the end of the study of conservation of mass in Chapter 5. This similarity
of structure is an interesting generalization of the conservation equations. It
could be used to provide a brief, concise, mathematical derivation of all of
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the equations. However, we will separately derive each of the equations to
illustrate the individual terms and the underlying physics.

In the governing set of equations for each problem there must be as many
relations as there are parameters. When considering geophysical flows we
are generally interested in the velocity, pressure, density, and temperature—
four variables. Thus we need to find four relations between these variables.
Three of the relations are single equations for the scalars; density, pressure,
and temperature. Only one of the relations will be a vector equation—for
the velocity. Although the energy equation is simply a scalar relation, it does
involve some complicated sources and sinks of energy.

In addition to these basic equations, several others are obtained. These
equations are needed for specific classes of flows. The first supplemental
equation, the vorticity equation, is valuable because of the special properties
of vorticity and vortices. Also, vortices are frequently present in geophysical
flows. The development of the vorticity equation uses concepts introduced
in Chapters 2 and 4. Many phenomena in the atmosphere can be directly
related to the vorticity field. Vorticity involves a specific combination of
the velocity derivatives. It is closely related to the velocity equations (that
is, the momentum equations), and we will derive it directly from them.

The second set of special equations are called the potential flow equa-
tions. They are special cases for the flow of inviscid fluids. They are related
to the basic equations using the concepts of inviscid and irrotational flow.
These assumptions reduce the basic equations to a particularly simple form,
with important analytic solutions.

The third set of equations are the perturbation equations. They provide
the governing equations for problems involving waves, instabilities, and tur-
bulence. The nonlinear terms in the equations of motion are important when
spacial gradients of the velocity are significant. Therefore dynamically ac-
tive regions such as frontal zones, thin layers, and in general smaller than
synoptic-scale dynamics require solution of the nonlinear equations. The
starting point for such analyses, and for stability analyses in general, is the
perturbation equations. They describe the linear and finite nonlinear pertur-
bations. A wave in the flow can be considered as a perturbation on some
basic mean flow. The equations determining the behavior of this perturba-
tion can be obtained directly from the basic set of equations. The stability
of a particular mean flow can be checked by examining whether an infini-
tesimal perturbation tends to grow explosively or to decay. Finite pertur-
bation waves can be examined by letting the perturbation grow to the point
that the nonlinear terms interact with the mean flow, perhaps to establish
an equilibrium. Finally, these equations also provide insight into a basic
geophysical tool for handling turbulence—the eddy viscosity concept.

In the last chapter, we derive the boundary layer equations. They provide
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an example of specialized equations obtained from the basic set of equations
using the rules of dimensional analysis and similarity. The study of these
equations is particularly revealing. There has been found an analytic solution
to this version of the Navier—Stokes equations (momentum equations) that
retains the highest-order terms, the viscous terms. In addition, this solution
is unstable to infinitesimal perturbations, yet stable to nonlinear finite per-
turbations. All of the concepts developed in the first 10 chapters are brought
to bear on this solution. And the solutions suggest ideas about the concepts
of attractor solutions, coherent structures, and turbulence analysis by ran-
domly occurring organized structures—chaos.

The following flow chart for the next seven chapters provides an overall
picture of the equations and concepts.

GOVERNING EQUATIONS OF ATMOSPHERIC FLOW
EQUATION OF STATE—CHAPTER 1
CONTINUITY—CHAPTER 5

MOMENTUM EQUATION—CHAPTER 6
Coriolis Term
Stress Term

ENERGY EQUATIONS—CHAPTER 7
First Law of Thermodynamics
Thermal Energy Equation
Mechanical Energy Equation

Bernoulli Equation

VORTICITY TRANSPORT EQUATION-——CHAPTER 8
Line Vortex

POTENTIAL FLOW EQUATIONS—CHAPTER 9
Ideal Vortex
Velocity Potential
Stream Function

PERTURBATION EQUATIONS—CHAPTER 10
Reynolds Stress
Eddy Viscosity

BOUNDARY LAYER EQUATIONS—CHAPTER 11




Chapter 5 Conservation of Mass—Ceontinuity

5.1 The Parcel Derivation

5.2 A Lagrangian Perspective
5.2.1 An Alternate Derivation of Continuity
5.2.2 The Parcel Material Expansion

5.3 Two-Dimensional Version of Continuity

5.4 The Integral Form of Continuity

5.5 Compressibility

5.6 Conservation Statement for the Quantity f
5.6.1 Conservation of an Arbitrary Quantity
Summary
Problems

5.1 The Parcel Derivation

We are all familiar with the concept that mass cannot be created or destroyed
(except under exceptional circumstances which do not apply in our domain
of interest). However, in flow problems where we are approximating the
flow as two-dimensional with a concentrated vertical flow, we might try to
model this small area of flow as a point sink or source. An example of a
point sink might be a drain hole, or the vertical flow in the eye of a storm.
When the region of vertical flow is very small, it can be considered an
exceptional (called singular) point of the flow. But in general, the idea that
the mass of the fluid is conserved in the flow domain is a valid and intu-
itively comfortable assumption.

We begin the derivation of the conservation statement as it applies for
every point in a field by considering the hypothetical cubical parcel with
volume 8V at a point x, time ¢ (Fig. 5.1).

The mass of the parcel is simply the density times the volume. Density
is the field variable, which may be changing. The parcel may be in a region
of variable flow, so that more flux of mass is coming in from one direction
than is leaving from another. For instance, along a streamidine we might
expect density to be increasing in a region that has converging flow and
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Figure 5.1 The parcel at (x, y, z) in a flow field U.

decreasing volume, and decreasing in a region that has diverging flow and
increasing volume. This result would depend on the compressibility of the
fluid. At any instant, the net change in density at a point will depend on
the total change in mass due to flow in and out of the parcel. Thus the parcel
changes density due to the characteristics of the flow. If the flow field is
changing with time, then so will the density at each point.

We can also allow for the fact that the density may be changing with
time at all points in the field, independent of any flow characteristics. This
fluctuation or continuous change might require some distribution of sinks
or sources of fluid. An example might be in a cloud domain where the
condensation or evaporation of water affects the density. For instance, con-
densation of water takes place throughout the air mass due to the ascending
and cooling of air that flows over a mountain range. Also, there is evapo-
ration due to heating of a descending air flow. Thus, the parcel that is mo-
mentarily at point X may be changing density due to a “global” change with
time in addition to the change due to its advection through a variable density
field. When we express the total change in density as a field variable, there
will be two parts—the local rate of change with time at each point, and the
advective change due to the flow through the point.

The total change in the field variable density at a point—the time rate of
change plus the advective change—can be recognized as the total derivative
introduced in Chapter 2. In the absence of sinks or sources within the parcel,
the time rate of change of mass of a parcel must equal the net mass flow
through the surfaces of the parcel. Since there are usually no sinks/sources
of mass in the atmospheric flow, this is a useful assumption.

We can express the advective change of mass with respect to the net
velocity directed normal to the surface at every point on the surface of the
parcel. Consider a unit vector normal to the surface as n so that the outward-
directed component of flow is u-n. The mass change will be positive if the
flow rate is directed inward. Integrating over the volume to obtain the net
volumetric change with respect to time, and the surface of the parcel to
obtain the net inflow/outflow, we can set them equal,
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We are interested in the changes at a point in the field. This means we
would like an expression for the conservation over the volume of the parcel
at the instant it occupies the point. We can then let the parcel shrink to a
point within our continuum concept developed in Section 1.9. (We recall
that this means that the parcel is small enough to allow the derivatives of
the flow parameters to be defined across it, yet large enough to have uniform
properties.) To get the expression (5.1) completely in terms of the volume,
we can use the divergence theorem to relate the flow through the surface of
a region to the corresponding changes within the volume,

) ”fap/atdv:_”fdiv"“d““J”a(puj)/ax,.dv

fff{ap/at + a(puy)/dx}dv =20

Now, in the limit as 8V — 0 at the point x, we get
ap/ot + a(puy)/dx; =0 (5.2)

This describes the change in density at a point in the Eulerian sense. It
states that the rate of accumulation of mass per unit volume at x equals the
net flow rate of mass per unit volume into that point.

Equation (5.2) may also be written

ap/ot + u;dp/ox; + p du;/ox; =0 (5.3)
or
Dp/Dt + pV:u=20 5.4
rate of change of + mass/unit volume times
density of a parcel volume expansion
fluid parce! rate

Equation (5.4) describes the change in density of a parcel as it moves
through a velocity field in a Lagrangian perspective. The rate of change of
density of the parcel with time depends only on the divergence field through
which it moves. From an Eulerian view as stated in Eq. (5.3), the local
change in density with respect to time depends on the divergence at a point,
and also on the density gradient at the point.

If the divergence of u, V-u = 0, we have a nondivergent flow (also
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called a solenoidal vector field) and conservation of mass is simply, from
Eq. (5.4),
Dp/Dt =0 (5.5)

In the ocean, and often in the atmosphere, the density in the domain of
concern (e.g., the PBL, or a thin horizontal region) can be considered ap-
proximately constant in both time and space. Then the conservation of mass
equation is simply the expression of nondivergence.

V-u=0 (5.6)

The condition of nondivergence is often called incompressible flow.
However we should note that this is not necessarily the same as constant-
density flow. The divergence in Eq. (5.3) might be zero while the temporal
and advective changes in density balanced. We will examine the conditions
of incompressibility more closely in Section 5.4.

These equations (5.2—5.6) which are expressions of the principle of con-
servation of mass applied to a fluid parcel, are also called continuity equations.

Example 5.1

Consider a constant-density fluid flow in a converging channel (Fig. 5.2).
Find v(x, y) when there is two-dimensional, steady-state flow and the chan-
nel width and along-stream velocity are given by

Y =Y,/(1 +x/0)
and
uCx, y) = uo(l + x/O[1 — (y/Y)]

| L |
Figure 5.2 Flow through a converging nozzle.
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Solution

We are given u(x, y). Since the flow is steady state and continuous, con-
servation of mass will relate # and v. We start with the complete continuity
equation (5.3).

ap/ot + p(du/dx + dv/dy) + uop/ox +vapfdy =0

The condition of constant density simplifies this equation considerably, since
the time and spatial derivatives of p are zero, leaving

dufdx + ov/ov =0

We use the given u(x, y) to get du/ox and then integrate with respect to
y to get v.

u=uyl +x/OI1 — O*/Y) (1 + x/¢)]
dufdx = (uo/O{1 — 3(y*/Y) (1 + x/€)"} = —ov/dy

Hence, on integration,
v=—u/t f [1 = 30%/Y5)1 + x/€)°] dy

= —(uo/8) y + [uo/YQNL + x/€)* ¥’ + C(x)

We can use the no-slip boundary condition at the boundary, v(Y) = 0, to
evaluate C(x).

=(uo/ONYo/(1 + x/O1 + uo/(CY)(1 + x/€)* [Y5/(1 + x/)'] + C(x) =0

and therefore C(x) = 0.
Consequently,

v(x, ¥) = —(uo/O)y + [uo/(CYDI1 + x/€)* y’

5.2 A Lagrangian Perspective

5.2.1 An Alternate Derivation of Continuity

We can derive the continuity equation in a slightly different manner, by
considering a specific infinitesimal parcel in a Lagrangian sense. The de-
rivation will illustrate the close connection between Lagrangian and Eulerian
perspectives and we will end up with the familiar Eulerian expressions.
Starting with the Lagrangian perspective we consider a very small parcel
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such that 8V — 0, with no sinks or sources. We then follow the particular
parcel that experiences volume and density changes with respect to time
only. The field variables will vary infinitesimally across the small dimen-
sions of the parcel. Then, the statement for the constant mass of this parcel,
p 8V, is completely expressed in the time derivative, D(p 8V)/Dt = 0. How-
ever, when the parcel moves through the fluid, its volume must distort and
change due to the changing forces in the flow field. The derivative is sep-
arated into density and volume changes by using the chain rule for differ-
entiation. In the end, the derivative can then be converted to the Eulerian
expression.

We start with the mass of the moving parcel expressed in terms of the
density,

{mass} = p 3V 5.1
The change in mass of the parcel as it moves through the field is
D{mass}/Dt =0 = D(pdV)/Dt = pD 8V/Dt + 8V Dp/Dt  (5.8)

We can expand the last term of this equation using the definition of the total
derivative of the density.

Dp/Dt = dp/ot + u-grad p 5.9)

We can express the total rate of change in 8V as the expansion or con-
traction due to the variable velocity field. This can be related to the diver-
gence of the velocity over the volume using the divergence theorem. We
then consider the value at any instant, where the change in 8V equals the
net outward/inward flow through the surface area:

DBV/Dt=ffu°ndA (5.10)

This equals the divergence over the volume using the divergence theorem.

DSV/Dt=jffV-udV (5.11)

To obtain the equation for an infinitesimally small parcel, let 8V — 0,
to get

DdV/Dt=V-udVv (5.12)

Equations (5.9) and (5.12) express the time rate of change of mass of the
parcel in terms of the spatial distribution of velocity and density. Substi-
tuting these expressions into Eq. (5.8) gives density as a function of time
and space.



5.2 A Lagrangian Perspective 203
D(pdV)/Dt = pdivu dV + (dp/dt + u- gradp) dV =0
or
3p/dt + pdivu + u-gradp =0 (5.13)

Once again, this equation may be written in many ways, all of them called
the continuity equation.

Dp/Dt + pdiva =0
dp/ot+ V-pu=0
p/ot+ Vpru+ pV-u=20
dp/ot + p du;/ox; + u; ap/ox; =0
and
ap/ar + d(puy)fox; =0 (5.14)

The form of the equation used in a specific application will depend on
the convenience of notation. The equations are all equivalent. The expres-
sions are in a Eulerian sense since density is a function of time and position.
Note that this is a single scalar equation with up to four unknowns (4, v, w, p).
Three more equations are needed, and will be derived in the next chapter.

5.2.2 The Parcel Material Expansion
In the first of Eqgs. (5.14) we have written
Dp/Dt = —p du,/ox;

This states that the rate of change of the density of a fluid parcel equals the
mass per unit volume times the divergence. We can further explore the phys-
ics of this relation by inverting the process followed in Section 5.2.1. Writ-
ing the volume of the parcel in a Lagrangian sense, we have

v [

Take the derivative with respect to time, applying Leibnitz’s theorem.

ol [ [ -
= f f u-ndA
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Then, in applying the divergence theorem, we get

DBV/Dt=ijV~udV (5.15)

Now, to obtain our field relations we must consider the parcel volume at a
point as 8V — 0.
. DdV  du
Lim——=—3%V (5.16)
sv—0 Dt ox §
{Note: we could use the mean-value theorem for integrals on Eq. (5.15),
which states that

D 3V/Dt = du;/ox | BV

for du;/dx; at some point P’ in 3V. In the limit 3V — 0, this must be at the
point P’ — P.}
Thus, rewriting Eq. (5.16),
1/8V D 8V/Dt = ou,/ox; (5.17)

The rate of expansion of a material parcel at a point equals the divergence
at that point. This is also called the dilation rate at the point.
Finally, from (5.4) and (5.17) we can write

(1/p)Dp/Dt) = —(1/3V) D 8V/Dt (5.18)
fractional rate change of — fractional rate change of the
the density of the parcel volume of the parcel

This states that, for no sources or sinks in the volume, the changes in density
of a volume are due entirely to changes in its volume.
The change in mass may be written

8V Dp/Dt + p D 8V/Dt = D(p 8V)/Dt = 0

and we have merely worked back to the statement that the mass of the par-
cel, p &V, is constant,

Example 5.2

Develop the equation for the dilation rate of a volume with sides dx; in a
flow field du; by considering the one-dimensional expansion rate of an in-
dividual side of the small volume (e.g., a parcel).
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Solution

First, consider the side dx, at time 7, and write the incremental velocity
change across this distance.
At ¢,

dx,

— - .
U, u, +(du, /ox;)x, + higher-order terms

Then, we consider how this line stretches (or contracts) due to the difference
in velocities at each end, at ¢ + At.

dx 4
At |y + duy/3x, 8x,) A
and the change in 8x, is

ABx)) = (u, + du,/dx, dx )Ar — u, At

This may be written

At ax,

ABx,)  du,
and in the limit Ar— 0,
D(®x,) /Dt = (du,,/dx;) dx,

Similar expressions are obtained in the other directions x, and x5, yielding

three equations.
D Sx,- ou i
_Q =8 (le) (5.19)

Now we can write the volume and its change,
8V = 8x,8x,0x;

D3dV Dbx, D 8x, D dx,
—_— = SxZSX3+8.x1 5x3+8x1 BXZ
Dt Dx, Dx, Dx;

Substituting from Eq. (5.19) and dividing through by the volume,
1 D@®V) 4 du, 4
1. DOV) _duy  Ouy O,
8V Dt 6.xl axZ 3x3

=V-u (5.20)

This is the dilation rate = the rate of expansion = the volumetric strain.
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It will be used in the energy derivations since it is associated with the work
done on a parcel.

5.3 Two-Dimensional Version of Continuity

A more detailed view of the fluxes across the parcel can be obtained within
a reasonable space of text if we restrict our attention to two dimensions. We
can then write the equations for each component and look closely at the
changes in these components.

Consider the planar view of a parcel with unit depth. Assume p is constant
across the parcel, so we can write for the mass of the parcel,

OM = p dV = p dx dy &z (5.21)

In the two-dimensional flow, each component of velocity can vary in both
the x and the y directions. We can approximate these velocity changes across
our incremental parcel by a Taylor expansion. In this case we will consider
the base values of quantities such as pressure and velocity to be the values
at the center of the parcel and expand around these values. (Note that values
at the corner, x = y = z = 0, could also be assumed as base values. Since
the parcel is infinitesimal with respect to mean flow scales, the magnitudes
of these base values are uniform across the parcel in the limit 8V — 0. We
are writing the incremental changes in these quantities across the finite par-
cel, since we are calculating their rate of change at a point, which need not
be zero.)

In Fig. 5.3, the higher-order terms in the change of the u-component in
the +x-direction have been carried in this one term. This is to show that in
the limit 8V = &x 3y 8z — 0, these terms vanish (since they retain terms in
8x after division by dx).

Conservation of mass in this parcel is

D 3M /Dt = (D/Dn)(pdxdydz) =0
or
dx 8y 8z Dp/Dt + p(dy 8z D dx/Dt + dx 8z D 8y /Dt
+3x8yDd/Dry=0 (5.22)

Once again we look at the total change in the density and the shape of
the parcel as it instantaneously occupies the point (x, y). To evaluate the
total derivative in Eq. (5.22) in a Eulerian frame of reference, we must
express the density as a function of time and position.
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Vv + 8v/dy 8y/2

u + du/ay dy/2

v - av/ax dx/2 V 4 av/ox 8x/2
) v
T———v > LD
{(x.y) U + 9u/ax 8x/2
U - du/ex dx/2 u

+ ¥ (0Pufox)(sx/2)2
T

8x >

v - dv/dy 8y/2 i
' u - 3v/dy 8y/2

+ higher order terms that
vanish in the limit

A

Figure 5.3 2-D parcel of unit height with incremental velocities from the origin at the
center of the parcel.

Dp/Dt = D/Dtpfx, y, z, t}]
= gp/ot + dp/ax dx/dt + dp/dy dy/dt + dp/dz dz/dt
= dp/ot + udp/ox + v dp/dy + w op/az (5.23)

Now dx is the distance between faces and it is changing as the parcel distorts,
one point moving faster than a nearby point due to the changing velocity.

D 8x/Dt = Upign face = Uiett face
=u+ du/dxdx/2 — (u — du/dx dx/2) + %(")z/axz(ﬁx/Z)2 + ...
= u/ax dx + 9’u/ox*(®x/2)* + ...
Similarly,
D dy/Dt = dv /3y dy; D 3z/Dt = dw/3z8z (=0in2-D)
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When these expressions are substituted in (5.20),
dx By 8z(dp/at + u dp/ox + vap/dy) + p dx By dz(du/ox + dv/dy)
+3020y 8z u/ad+...=0
Divide by 3V to get
ap/ot + udp/ax + v ap/dy + p(du/dx + dv/ay)
+i0u/ol o+ ...=0

and for 8x — 0, we have the field equation for the density variation as a
function of time and position.

op/ot + udp/ax + v op/dy + p(dufax + dv/ay) =0
or
dp/ot + a(pu)/ox + d(pv)/ay =0 (5:24)

The extension of this derivation to 3-D is straightforward, but with an
attendant proliferation of terms. The economy of the five-line derivation in
vector notation is now easily appreciated.

The Eulerian description of density depends on the location (x, y, z) and
the time ¢. For example, in the atmosphere, p(z) decreases with height but
it is constant over relatively large changes in horizontal distances x or y. In
addition, there may be a significant change in p with time—for example,
due to diurnal heating near the ground (z — 0) or heat absorption at different
levels in the atmosphere. However, we find that in many flow problems,
the density does not change significantly, and air can be treated as an in-
compressible gas. The continuity equation will be used to investigate when
this approximation is valid in Section 5.5.

5.4 The Integral Form of Continuity

If a problem involves flow in an enclosed region, such as a tank with several
inlets and outlets, it is often simpler to apply the conservation of mass law
in the integral form compared to the derivative form. For these cases, we
will obtain the same two-part (the time rate-of-change over the volume plus
the advection through the sides) integral for the total change in density as
in the previous sections. However, instead of shrinking the volume to a
point, we will expand it to a large domain called the control volume.

We can even allow for the possibility of an arbitrary motion of the se-
lected region of material by using Leibnitz’s rule, which we learned in Sec-
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tion 2.7.1 is associated with changing boundaries. We assume the velocity
of the surface of the region is given by w;. The rate of change of mass
within the region is obtained by substituting density into Leibnitz’s equation
to get

d/dtjpdV=f&p/&th+fpw,-n,~dA (5.25)

We then use continuity to change the second term,
d/dtf pdV = —f Ipuy)/ox; dvV + f pwn;dA (5.26)

Finally, we obtain a relation between the total change of mass within the
volume [the left side of (5.26)] and the mass flux through the surface. This
is done by converting the second term to a surface integral using the di-
vergence theorem and then combining the surface integrals to get

d/dtf pdV = —f p(u; — wn, dA (5.27)

In Eq. (5.27), the mass flux through the boundary is equal to the density
times the normal component of the flow relative to the boundary motion. If
the control volume is a fixed region in space, then w; = 0. If we consider
a specific material volume as it moves along with the flow, then w; = u;;
in other words, no material moves through the boundary.

Example 5.3

Use continuity on the steady flow in Fig. 5.4 to relate the velocity at one
station to the velocity at another. Use a control volume approach.

e
Up
A1

Figure 5.4 Flow in a converging channel from area A, to A, with increase in velocity
from u, to u,.
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Solution

We can consider the fixed volume between A and A, as our finite control
volume. In the case of steady-state flow, there is no change with respect to
time, and w; = 0. Equation (5.27) becomes simply

- f f pu;n;dA = 0 (Integral continuity equation)

where the integral is over the surface of the control volume. The sides of
the channel can be treated as streamlines, for there is no flow across them.
One can integrate around the surface of the control volume, which is com-
prised of the sides, end areas, and unit depth, to get

—pi A+ paus Ay, =0
or
puA = constant (5.28)
If p is constant,
u, = u,A fA, (5.29)

Such a flow is called channel flow. It can provide rough estimates of
wind variation in mountain passes, city streets and other corridors.

Example 5.4

Consider a piston moving in a chamber to eject fluid from a small hole, as
shown in Fig. 5.5. Derive a relation for the exit velocity of an incompres-
sible fluid.

ANLARARRINRNR
Mﬂg i‘: " v —Q_A:_D M=oV
AN

Figure 5.5 A piston moving fluid out of a small orifice.
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Solution

In this example we choose the control volume V as that area with unit depth
inside the chamber, and it is continually decreasing due to the action of the
piston. From Eq. (5.27), the change in mass dM/dt within the chamber is
equal to the relative velocity of the boundary and flow velocities. In this
case, the left boundary is moving, so we must include the relative motion
terms.

dM /dt = —f p(u; — w) n; dA

The volume is decreasing as the surface at the piston moves inward with
velocity w, = u,. The flow at the piston face also moves at u,, so there is
no relative flow through this surface. Thus the only flow across the bounding
surface of the control volume is at the hole. At this point the velocity is u,
and the mass flux is pu.A., so that

dM/dt = —pu A,
We can substitute M = pV and, for constant density flow,
dv/dt = —u A,

If x is the distance from the piston to the end of the cylinder, the volume
V = A,x, changes according to

dv/dt = A, dx/dt = —A,u,
Thus,
u,=—1/A,dv/dt = (A./Ap) u,

This can be seen as an example of continuity written as pUA = constant for
constant density flow. The piston face merely establishes the flow velocity
in the chamber. (In other words, we could discard the piston and imagine
the flow as given at A, having been established by an upstream pressure
head instead of the piston force.)

Example 5.5

Consider a steady-state convective plume of air—a vertically moving burst
of air with a well defined expanding circular area—measured at height z,.
Given the parameters in Fig. 5.6, find a relation for velocity as a function
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V(z),area A

Vo s Ag =T1,2, 2,

Figure 5.6 Cross sections of a convective plume of air. As the plume ascends, the cross-
sectional area changes and the vertical speed of the parcels changes.

of area, V(A). (a) Assume no entrainment (i.e., no lateral mixing). (b) As-
sume lateral entrainment, —u., and linearly varying r(z) = rq + C(z — zy).
Solution
(a) From conservation of mass, we write
mass flow in = mass flow out
Qi = Qou
po [kg/m KV, [m/sec] - A, [m’]} = pVA

Assuming the vertical rise is not sufficient to cause significant changes
in density, we have a simple relation between the velocity and the area.

V = VyAo/A)

(b) We can allow for flow in through the sides of the control volume as
u.A., so that the integral over the sides of the control volume yields flow
in from the bottom and sides and flow out the top.

pVA = pVoAo — pctt.A. =0
where

Ac=21TJ rdz=21'rJ’ [ro+C1(Z_Zo)]dZ

= 2mro(z — zo) + 3C1(z — z0)’]

We now have the velocity as a function of the given parameters and the
area.

VIA) = VoAo/A — 2mu JA Tre(z — o) + 5C\(z — zo)]

This example illustrates some of the very severe assumptions that must
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be made in approximating real geophysical flow events. In an actual cloud-
forming plume one might have to consider entrainment of moist air at one
Jevel, detrainment of dry air at another level, and precipitation out the bottom.

5.5 Compressibility

Through common experience, we know that air is evidently quite compress-
ible. This characteristic is an important feature in laboratory experiments
that involve familiar uses of air in compressors and pistons. It is the essential
characteristic in the transmission of sound. However, in the study of at-
mospheric flow, we are frequently able to treat the air as though it is in-
compressible. The actual approximation is that the effects due to the vari-
ation in air density are negligible compared to those of pressure and velocity
variations. We can explore this approximation with the continuity equation.
It is evident that when p in Eq. (5.4) is constant, V-u = 0, so that we
associate incompressibility with nondivergence. However, we can obtain more
information if we first obtain the conservation of mass equation in terms of
the specific volume, V, = 1/p, the volume of a unit mass.

The expression for the fractional rate of change of specific volume, 8V/
unit mass = 8x &y 8z, can be written

D(dx 8y 82)/Dt 1

1 1
D dx/Dt + — D dy/Dt + — D 8z/Dt
dx By &z dx 8y dz

or (with D(®x,)/Dt = du;/dx))

1
-V—DVS/Dt = Qu/dx + dv/dy + ow/dz =V -u (5.30)

S

This is continuity in terms of V. In this equation we see that nondivergence
corresponds to negligible fractional rate of expansion, as introduced in Sec-
tion 5.3. For large volumes, such as we see in the free atmosphere, we might
expect the fractional rate of expansion to be small. However, for very small
volumes such as those associated with sound waves, this term can be com-
parable to the divergence. (The scale of audible wavelengths is less than 30
cm; however, the displacement amplitudes are even smaller, =~107> cm.)

Equation (5.30) can be changed to the familiar term with respect to den-
sity using

DVs= —1/p’Dp
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Thus, Eq. (5.30) may be written
—1/pDp/Dt=V-u
or
Dp/Dt + p(V-u)=0 (5.31)

We can also write the continuity equation in terms of pressure. To use
the thermodynamic relation between density and pressure, we must assume
negligible molecular transport effects—that is, set viscosity and thermal dif-
fusivity equal to zero, so that we have isentropic flow with constant potential
temperature. Then the perfect gas law applies and p = pRT allows us to
write

1 1
Dp/Dt = — Dp /Dt =—Dp/Dt
p/ RT p/ ] 2 p/ ]

0.8 .5

where
cs = [3p/dple's
= gpeed of sound
= (RT)'* for a perfect gas

Since the speed of sound depends on compressibility, any flow velocities
that approach this speed will also be affected by compressibility. The ratio
of the flow speed to the speed of sound will yield some measure of the
importance of compressibility. When we replace density with pressure in
the continuity equation, cg enters as a factor.

Continuity can be written in terms of pressure changes,

1
—Dp/Dt+V-u=0 (5.32)
PCs

When the first term is negligible in Eq. (5.32), the flow can be approx-
imated as nondivergent and incompressible. This is likely to be true if ¢y is
very large compared to other velocities involved in a problem.

The general conditions necessary for V-u = 0 can be obtained from Eq.
(5.32), a consideration of the perturbation equations (to be discussed in Chapter
10) and conditions that the vertical advection term w dp/dz is negligible.
They may be stated as

1. ufcs <1
2. Phase speed of perturbation waves/cg < 1
3. Vertical scale of motion <€ characteristic scale height of problem
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The first condition is often violated in aerodynamics, the second in acous-
tic phenomena, and the third in dynamic meteorology. In the last case, me-
teorology, the characteristic atmospheric scale height is associated with the
median of p dp/dz. In the atmosphere, this is obtained at a height of about
8 km, which is comfortably larger than planetary boundary-layer scales (about
1-2 km) but significantly less than tropospheric heights (about 12—-20 km).
Thus we can neglect density variations in isentropic PBL flows but must
consider them in flows of depth greater than a few kilometers. This assumes
that the vertical scale of the fluid motion can equal the height of the problem
domain, but it may be considerably less. In the ocean, the characteristic
scale height is an order of magnitude greater than the typical height scale
of motion, making the incompressible assumption secure.

Example 5.6

We can obtain a dimensionless parameter for compressibility by nondimen-
sionalizing the continuity equation written as Eq. (5.32). By replacing
Dp /Dt with p/p Dp/Drt in Eq. (5.32), we get
D
[%]—9+V-u=o (5.33)
pc; | Dt

Then, by nondimensionalizing the terms in this equation with P, p,, and
U,, L and t,, where Uy = L/t, and P, = pUj;, we get the dimensionless
equation and use it to evaluate conditions where the dynamic effects on
density are negligible.

Solution

Following the rules described in Chapter 3, substitute the nondimensional

parameters.
With u’' = u/Uy, x' = x/L, ' = t/t,, etc., and

d/0x; = 8/0x] dx/fox; = 1/L 9/dx]
so that
Veu=Uy/LV -u’

we get

P " Dp’
[ 20]1712 p,+U0/LV"“l=0
pcsto] p'° Dt
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If we divide through by U,/L, we get a single coefficient in front of the
density change term, which represents the ratio of the magnitude of the first
term to that of the divergence term (recall that the dimensionless terms were
dimensionalized to be of order unity). Thus,

P, L " Dp’
[2o L |22 g
pc; Uotol p'” DY
Since Py, = pUz and L/(Uyto) = 1, we have
U p' Dp’

Zpr Dpl
@pipr TN TM Gy TVIW SO 630
c; p'” Dt p'” DY

where M = U,/c, is the Mach number. We see that the condition of non-
divergence is associated with low Mach number flow—when the Mach number
is negligible, the flow is incompressible. The second factor, p’/p’?, is sig-
nificant only for large vertical motions.

The speed of sound in air is 341 m/sec, and in water, 1470 m/sec. Thus,
for horizontal air speeds less than 50 m/sec (M = 0.14) the density-change
term is negligible. In water, it is negligible for U < 150 m/sec. Atmospheric
flows have M < 0.2. Thus the density term is important in the atmosphere
only in association with large p’/ p’%. This criteria will be examined in the
next example.

Example 5.7

Use the techniques of Section 3.3 to nondimensionalize the steady-state ver-
sion of continuity

Vipu) =u-Vp +pV:-u=0 (5.35)

to study the criteria for the incompressible approximation. We are interested
in obtaining nondimensional parameters with magnitudes near unity. Thus,
we must give consideration to the fact that characteristic scales for density
changes in the horizontal are different (considerably greater) than those in
the vertical. Also, velocity characteristic scales are considerably greater for
horizontal winds compared to vertical winds. Thus, choose different char-
acteristic scales for horizontal and vertical distances and velocities, L > H,
U, V> W. Also, density changes a significant amount, with characteristic
value Apy over the vertical scale H but only a small amount in the horizontal
Apy. When density appears alone, it is nondimensionalized with a base value

Po-
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Solution

Weletu =u'/U,v=0v/Uw=w/W,x=x"/L,y=y /L, z=z/H,
and p = p'/Apy for vertical changes, p’/Apy for horizontal.

Apy

[UAL‘)“] (u 3p/dx + v dp/dy) + [W ] (w 3p/dz)

U
+ [p%] p(du/dx + av/dy) + [poW/H] p dw/dz = 0

When we divide by the coefficient [poU/L] of the third term, the horizontal
divergence, we get, together with order of magnitude estimates,

Apﬂ] <u ap LY ap) . [WL Apv] w adp
Po ax ay UH p, dz

[0.01] [1} + [0.1-0.7] (13

du du WL { p dw
tpl—+—)+|— =0
ax oy UH| oz

[1] [t] +  Is1 [

These coefficients permit us to determine which terms must be included in
the continuity equation in addition to the horizontal divergence term.

The horizontal density advection term is negligible. If WL/(UH) = 1,
then w dp/dz and p dw/dz must be considered. The magnitude of the first
term also depends on Ap./p,, which ranges from 0.1 for H = 1 km to 0.7
for H = 10 km. Thus there are cases in thin layers such as the PBL where
only the p dw/dz term must be included in addition to the horizontal di-
vergence term. However, in many cases, W is assumed to be =0, so that
WL/UH = 0, and the incompressible approximation is valid.

V-u=0 (5.36)

This example illustrates (1) the complexities of nondimensionalizing with
different characteristic scales, but also (2) the benefits of this process in
determining whether or not certain approximations are valid.

5.6 Conservation Statement for the Quantity f

We have established a field equation for the mass parameter, density, in
terms of flow velocity and the independent variables—the coordinate pa-
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rameters and time. We can generalize the procedure we followed in order
to apply it to the conservation of something other than mass. That is, for
any conserved quantity, the temporal change integrated over the incremental
volume equals the integrated net flux in and out through the surfaces of the
volume. If we can then convert the surface integrals to volume integrals,
the equation will be simply a volume integral of the differential rate of change
of the quantity for the parcel. When we are seeking a field equation we
would next consider the limit §V—0 to obtain an equation that governs the
variable characteristics at all points in the flow field. To handle a wide range
of variables, we can allow for possible sinks or sources of the quantity.

We will then have a very general statement of conservation for any pa-
rameter that describes some thermodynamic, state, or dynamic characteristic
of the parcel (e.g., latent heat, moisture, NO;, momentum, etc.). In each
case, the parcel will experience changes in the chosen quantity due to the
temporal change of the field plus the advective change as it moves through
the flow field. At any particular point, the parcel may also encounter sources
or sinks that produce or absorb the quantity. For instance, in the conser-
vation of mass, these might be springs or drains of the fluid. And, in the
case of momentum, we will find that forces provide the sinks and sources.

In each case we will write the equations as time-dependent integrals over
the volume of the parcel plus an integral over the parcel surface. Following
the procedure developed in this chapter, we will then proceed to use the
divergence theorem on the area integrals. In this way we obtain a single
integral over 8V. We can then consider the limit for small volumes within
the continuum to obtain the differential equation for the change in the con-
sidered quantity for our parcel at the point x at time . Since the point is
arbitrary and the source/sink field is assumed known, the field equation for
the quantity is determined. This equation describes the variation of the quan-
tity as a function of the flow field, the sink/source field, and the independent
variables.

5.6.1 Conservation of an Arbitrary Quantity

Consider the conservation of f, a quantity associated with our parcel, which
may be a scalar, vector, or tensor. We know that the total change in f at a
point in the field consists of a local time change plus a change due to the
advection of f through the point. In addition, f may change if there is any-
thing producing or eliminating it at the point. Thus we could write

DE/Dt=> Q (5.37)

where Q represents the sinks and sources of f.
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The total derivative of the quantity f in our parcel can be written in two
parts. This is accomplished through an application of Leibnitz’s theorem for
the time rate of change of a function f integrated over a volume that may
be changing due to its motion with velocity u.

(o[t [froma o

The total change in the quantity f as expressed in Eq. (5.38) will be zero
unless there are sources or sinks in the volume of the parcel. In other words,
the local time change of f in the parcel plus the net f advected through the
surface area [the right side of Eq. (5.38)], plus contributions from any sources
or sinks in the parcel must add up to zero. Or

fffg-fdv+fff(u-n)dA=2Q (5.39)

For this derivation we also need the divergence theorem,

[[fovsa=[[wnas
o= e

We can use the divergence theorem to convert the surface integral in
(5.39) to a volume integral. First use an identity from the summary chart at
the end of Chapter 4 to change f(u - n) to (f ; u) n, then apply the divergence

theorem.
fff(u-n)dA=jf(f;u)ndA
=fffdiv(f;u)dV

This states that the quantity f that is being transported through the surface
area of the parcel by the velocity u can be related to the integral over the
volume of div(f ; u). Since the divergence reduces the rank of the tensor
on which it operates, the rank of the tensor (f ; u) must be one greater than
is f. It must equal the order of the first term in Eq. (5.39).

Equation (5.39) becomes

applied to a tensor A
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ffj 6f/atdv+fffdiv(f;u)dV=ZQ (5.40)

The term representing the sum of the sinks and sources, £Q, can also be
separated into a distributed part operating over the volume plus a part that
operates on the surface of the parcel.

Qb+Qs=Jfo{,dV+ffogdA (5.41)

where Q,, is the body contribution, Q, is the surface contribution, and o
is defined as the operator that acts on the surface area to yield Q.. Note
that if o were the velocity vector, the dot product with 3A would give only
the outward-directed flow. The product o, dA must be a vector with com-
ponents in the direction of the coordinate axes. Thus oo must be a second-
order tensor operating on dA to create the vector components of Q. The
o, dA term can be expressed as a vector operating on each face of the
parcel, as discussed in Section 4.1. Both dA = n dA and the surface force
acting on dA can have arbitrary orientations. There are nine terms involved
in the complete description of the three components of force acting in each
of the three coordinate directions of dA. The tensor operator can account
for these terms. ‘

The divergence theorem shows that the divergence operating on the tensor
o o produces the vector Q. Therefore, we can express a surface sink/source
of term Q, in terms of a volume distribution.

J’f(rondA=Jdeivo-QdVEQs (5.42)

In other words, o is an operator that operates on (vector-multiplies) the
unit normal vector to beget the components of Qg that are acting on the
incremental area. There will be three components of Qg acting on each of
three components of n dA = dA, equaling nine terms.

We can now write

fff{af/at+div(f;U)—Q{,—diVO'Q}dV=0

or, in the limit as the incremental parcel shrinks to a point value,
af .
6_ +div(f; U) = Q, + divog (5.43)
t

The simplest expression will be obtained when f is a scalar, as in the
conservation of mass in this chapter. In this case, there are generally no
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sinks or sources, so that the equation has only the terms of temporal and
advective rate of change. We will find that in the case of energy, although
the dependent variable is a scalar—either internal energy or temperature—
there are frequently sinks and sources of energy located in the fluid flow
domain. In the conservation of momentum discussed next, f = pu, so that
we have a vector equation. In addition, there are sinks and sources of mo-
mentum arising from the various forces acting on the fluid and from those
forces internal to the fluid flow. The latter requires the introduction of a
tensor source/sink and oo = ¢, the stress tensor.

We will employ the basic procedures of this chapter, together with every-
thing else we have learned, in developing the equations for the conservation
of momentum.

Summary

CONSERVATION OF MASS—CONTINUITY

9
Integral Format Jffa—pw=—ffpu-ndA
: t

Differential Format Dp/Dt + pV-U = 0
Incompressible Dp/Dt = 0
Constant Density V-u = 0
Two-Dimensional
ap N o(pu) N Ipv) _ 0
ot dx dy
Control Volume
Compressibility

GENERAL STATEMENT OF CONSERVATION OF f
af/ot + div(f; U) = Q, + div o

where f, U, and Q are vectors and o is a 2nd-order tensor.

Problems

1. Use continuity to simplify a(pu,)/or + d(puu;)/ox;.
2. The wind is blowing down the main street with flow off of a side
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street, as shown in the figure. What is an estimate of the velocity in the side
street shown? Assume 2-D flow, constant density.

¥

== V,=20m/sec == V,=19m/sec

!

Wa=25m S=8m

Vg=?

3. A cylindrical plunger moves downward into a conical receptacle, filled
with liquid. At what height z in terms of d will the mean upward velocity
of the liquid between the plunger and the wall equal the same magnitude as
the downward plunger speed?

r4

4

24d

4. A tornado has velocity components,
(ura ue) = (—Cr/r’ _CO/r)

Find an equation for the streamlines. If this velocity is valid for 30 m <
r < 100 m and there is a constant upward velocity in the center, what is
this velocity if C, = 300 m*/sec, Cy = 800 m*/sec?
5. The formula for an incompressible flow is given as
u=UR+x%, v=UY +y?), w=0

Is such a flow possible? What if w = —4Urz (¥ = £ + y)?
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6. A plume of wood smoke carcinogens moves from its source past you
with the entrainment characteristics shown. Get a formula for the pollutant
concentration (p,/unit volume) as a function of distance. Assume incom-
pressible, and a cylindrical plume with diameter D = D, + 0.02 X xm.

= 3 m/sec

Pa+ pp (X)

=> V,

s A A~ (TVa)

D, =20m, V, =0.01 m/sec, p,

7. Use a version of conservation of mass to obtain V, for flow in and
out of a chamber with characteristics as given in the sketch.

A, =4cm?

—_t

V, = 8 cm/sec

N

N
0 = 45°

A, =2cm? V, = 4 cm/sec

8. Consider a two-dimensional box with flow in and out as shown in the

sketch.

For constant density p, what is V3?

===
V,=10m/sec —

A=4m2

A=4m?

A=1m?

I

J

==>
— V,=5m/sec

‘—JV

3="?
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9. For problem 8, what are the forces on the box (with respect to p)?

10. Using d(dx;)/dt = dug,/0x 8x [(i) is not summed], get an expres-
sion for the rate of volumetric strain. What is its value in incompressible
flow?

11. Water is flowing at a constant flow rate through a large pipe of di-
ameter D; = 600 mm that branches into two smaller pipes of diameter D,
= 400 mm and D; = 250 mm. A discharge of 5 m®/sec is maintained in
the 600-mm diameter pipe. An average velocity of V, = 24 m/sec was
measured in the 400-mm diameter pipe. Determine the discharge and the
average velocity in the 250-mm diameter pipe.

12. Water enters a circular chamber of radius R through a circular pipe,
radius r. It effluxes out the periphery of the chamber. The chamber height
is h, the flow rate in is Q. What is the efflux velocity?

13. Write a general equation for the conservation of lawyers in Bellevue,
WA .—that is, the conservation of Y in domain B.

14. In an atmospheric experiment, radiosonde measurements of the wind
are taken vertically through the PBL to a height of 2 km at four corners of
a rectangle. Average values are as shown. Use these values to determine
the vertical velocities at the top of the box. Assume compressibility is neg-
ligible in the PBL.

3 m/sec 2 m/sec
L.
4} 11 m/sec 15 m/sec
60 km
3 m/sec 2 m/sec
v L.
12 m/sec 16 m/sec

| ¢————— 100km ———p]



Chapter 6 Momentum Dynamics

6.1 Conservation of Momentum—Newton’s Law
6.2 Derivation with Respect to the Infinitesimal Elementary Parcel-—Lagrangian Perspective
6.3 The Stress Term—Liquids and Gases
6.3.1 The General Three-Dimensional Stress Tensor
6.3.1.a Pressure
6.3.1.b Hooke's Law for Elastic Solids
6.3.2 Stokes’s Law of Friction
6.3.3 An Alternate Derivation
6.3.4 Eddy Viscosity
6.4 The Coriolis Term
6.5 The Dimensionless Navier—Stokes Equations
6.6 Summary
Problems

In the study of fluid flow, the velocity is our most important dependent
variable. The product of velocity and mass, the momentum, has a funda-
mental statement of conservation. The principle of the conservation of mo-
mentum results in the basic equations for determining the velocity fields.
These are the equations of motion.

Newton formulated the principle that the momentum is conserved unless
acted upon by a force. Although he was concerned with a point mass, we
can apply an analogous principle to the continuum parcel. Forces are the
sources and sinks of momentum. In Chapter 5 we left the source and sink
terms out of the conservation of mass equation since creation or destruction
of mass does not generally arise in atmospheric problems. However, the
forces that create and destroy momentum are very important to the flow
dynamics. In fact we will find that often in our problems the acceleration
is zero. Then the momentum equation reduces to a statement that the sum
of the forces equals zero.

Atmospheric problems frequently involve rotation of domains from par-
cels to air masses. Thus, we might expect angular momentum to be an im-
portant factor, at least in some situations. However, in a great many flow

225
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problems, linear momentum dominates. We simply note that this section
deals with a special case of momentum conservation, the conservation of
linear momentum. We will return to examine rotation and angular momen-
tum in Chapters 8 and 9.

6.1 Conservation of Momentum—Newton’s Law

Newton’s law applied to the continuum parcel states that the rate of change
of momentum equals the sum of forces acting on the parcel, 2 F.

D(mu)/Dt = > F (6.1)

However, the fluid parcel is not a constant aggregate of mass particles.
To express this balance for a finite fluid volume, both sides of this equation
need special attention. First consider the left side, expressing the rate of
change of momentum as the total derivative of mu. For the elemental parcel
of fluid with uniform density we can write the mass as the mass per unit
volume, hence density, and the total derivative can be written

D(mu)/Dt = D(pu)/Dt = 3(pu)/dt + (u - grad)(pu) 6.2)

The local time change plus the advective change of the aggregate mass
of fluid can be written in terms of the integral over a specific volume of
fluid called the control volume. Since the control volume is at a specific
point in space, there is continuous flow through the volume. However, at
any instant, there is a specific mass of fluid in the control volume, to which
we will apply the conservation of momentum principle. We must keep in
mind that there is a rate change contribution from the net flow in and out
of the control volume. This doesn’t go to zero at & — 0 (or 6x — 0). Thus
the total rate of change of the momentum of any small material volume of
fluid must be written in two parts. One is the time-dependent change of
momentum integrated over the volume. The other is the change due to flux
of momentum through the surface.

fff d(pu)/ot dV + ff pu(u-n)dA = » F (6.3)

Here, we have a vector integral equation for the conservation of mo-
mentum. This equation results when pu replaces f in the general conser-
vation statement, Eq. (5.39). These terms can be illustrated by examining
the components with index notation, where (4, v, w) = (u,, u,, us3). (See
Fig. 6.1).

The quantity being transported across the incremental area 5A [the third
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a

X3

n

Y

Figure 6.1 The incremental area 84 with unit normal n and velocity u.

term in Eq. (5.38)] is the momentum, pu, and it may be written in several
ways using indicial, matrix, and symbolic notation.

Indicial:

puum;) = pu(uny + un, + usnz) = p(uuy) n;

Matrix:
ululnl + U \Un, + [ZBUEUEY
=pl uguny, + uzun, + ujuzn,
usuny  t ususn, Tt ousians
Wiy Ugly Ugus\ [ 1
=Py Usthy Usly Unls f| Ny | =
Uil Url,y Usllz ni
Symbolic:

=pu(u-n) =pu;uw)n

Thus, the left side of (6.1) may be written per unit mass:

fff 6(pu)/6th+ff (pu)(u-n) dA
=ffja(pu)/atw+ff(pu;u)-ndA
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Note that the last term consists of a tensor, p(u ; u), operating on a vector
n, to produce a vector. Employ the divergence theorem on this term to get

fJf a(pu)/ot dV + IJJ div(pu ; u) dV
Jff dpu;)/ot dV + JJ’f a/ox(puu;) dV

fff [u; 9p/ot + p ou,/dt + pu; du;/dx; + u; d(pu;)/dx;] dV

or
or

From continuity, [Eq. (5.8)], d(pu;)/dx; + dp/dt = 0; and the u; d(pu;)/dx;
terms cancel, leaving

fff plou;/dt + u; du;/dx;] dV = D(pu)/Dt (6.4)

We have now obtained the left-hand side of the momentum equation. The
total derivative of momentum has been expressed as an integral over a spe-
cific volume of material in an inertial frame of reference. We will discuss
the ramifications of the geophysical rotating frame of reference later. Now
we need the forces.

When we speak of the imaginary parcel isolated from the surrounding
fluid, we must account for the action of the surroundings on the parcel by
using the concept of internal forces on the parcel surface. The fluid actions
on the surface of the parcel are pressure and friction forces, represented by
Fs. The total fluid forces will consist of two parts, forces that act en the
mass bulk of the material in the parcel, called body forces, and the Fg, called
surface forces.

F = pF, + Fy (6.5)

The body forces act equally on each element of the parcel because the
parcel characteristics are uniform. Thus, the net body force can be repre-
sented by a resultant force per unit volume acting at the center of the parcel
in the direction of the vector F,. (Formally, we would have to invoke the
mean-value theorem to state that the integral of the body forces over the
parcel volume is equal to the force acting on a mean value of the integral,
somewhere within the volume.) The density is included with F,, because our
body force is gravity, g, which is the weight force per unit mass. In the
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limit for an infinitesimal parcel at field point x, this resultant force acts at

the point.
oo [[] i

where Fy, are the body forces acting on each element of the parcel.

Example 6.1

For an arbitrary control volume, the momentum balance from Eq. (6.1) is
simply (Section 5.6)

D(pV)/Dt = a/aszf (V) dV + ff (pV) V-dA

= ff (pV) V-dA = 2 F; (for steady state). (6.6)

Apply this to a streamtube bending in space to get the net forces on the
streamtube. Apply the result to get the forces on an elbow in a pipe with
the configuration as shown in Fig. 6.2. Letd, = 20 cm; d, = 10 cm; Q =
0.25 m*/s; and p = 1000 kg/m’.

F
2 ‘ F,
F2x

Figure 6.2 The flow through a reduced elbow.
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Solution

Consider the control volume shown in Fig. 6.2 as representative of an ar-
bitrary streamtube in space. Since there is no flow through the sides, Eq.
(6.6) applies. At the inlet,

ff PV)V-dA = —p,V\V A, = —pQ,V,= —DM,/Dt
Similarly, at the outlet,
ff (pV) V-dA = p,V,V,A, = pQ,V, = DM, /Dt
Hence, in general,
> F=AM/Ar (6.7)

where M is the mass flow rate across the streamtube.
When this formula is applied to the flow through the elbow, with @ =
0.25 m3/sec; d, =20 cm; d, = 10 cm and p = 1000 kg/m3,

A, = mw(20)*/4 = 0.0314 m*; A, = 0.00785
F,=p A, =160 - 0.0314 = 5kN
F,=p,A;, =140 - 0.00785 = 1.1 kN
and
V., =0.25/0.0314 = 7.96 m/sec
V, =0.25/0.00785 = 31.85 m/sec
The balance in the x-direction yields
Fi= Fy = 8= pQVan — POV,
In the y-direction,
—Fapy 8, = pQVa) — Vi)
Hence,
5,000 — 1,100 cos 45° — S, = 1,000- 0.25(31.85 sin 45° — 7.96)
or
S, =5622N

and
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= 1,100 sin 45° + 1,000-0.25 - 31.85 cos 45°
= 6407 N
The force on the elbow to hold it in place must have magnitude and direction:
S = (5622* + 6407%)"/* = 8524 N

at
0 = tan~' [5622/6407] = 41°

However, the internal fluid forces that act on the surface of the parcel
may vary in space. Thus, there is a rate-of-change of the forces at any point
in the fluid. We can obtain the net surface force on the parcel by considering
the finite change in F across the infinitesimal width of the parcel. The net
force on the parcel as it shrinks to a point will depend on the gradients of
the force at the point. The surface force concept assumes instantaneous ac-
tion. It applies to the material Lagrangian parcel moving with the fluid at
any point in the fluid. Or it applies to the imaginary Eulerian parcel fixed
at a point. In the limit r — O, the parcel moving through a point and the
parcel fixed at the point coincide and the forces at that point are identical,
regardless of the frame of reference used.

As discussed in Chapter 4, resolving the components of the vector force
on the surface of the parcel into the component directions of dA = n dA
requires a nine-component array of numbers. The force has components along
and normal to n. The area vector is aligned with the coordinate axes.

Let us now define the fensor o, such that when it operates on the unit
vector normal to a surface it produces the stress vector force on the surface.
Thus, it is a nine-component set of numbers that will produce the stress force
components on each of the surfaces of the parcel. Since the stress forces
are proportional to rate of strain, o will be made up of the various com-
ponents of velocity shear.

The total force on the parcel due to the surface forces is the surface in-

tegral of the vector forces,
F,= f J on dA

Using the divergence theorem, we get

Fs=jjjdiv0dV (6.8)



232 6 Momentum Dynamics

Now we are ready to combine the expressions for the change of mo-
mentum and the forces. Both expressions are in terms of integrals over the
incremental volume and are placed together into the basic conservation-of-
momentum equation [substitute (6.2) and (6.8) into Eq. (6.1)] to get

J‘ff {o(pu)/dt + 8/dx (puu;) — pFy; — 00;;/0x;} dV = 0

In the limit 8V — O for a parcel at x,
dpu,)/ot + d/dx(puu;) — pFy — 80 ;;/9x; =0 6.9)
or
p Ou/dr + pu; du;/ax; + u; 9p/ar + u; d(pu;)/dx;
— pFy; — 80;/0x; =0

As before, we combine the first two terms in this equation into pDu;/Dt,
and the second two into u,[dp/dt + d(pu;)/dx;], which is equal to zero from
the conservation of mass. This results in

pDu/Dt = pF, + div o (6.10)

The total derivative is merely a shorthand for the time plus advective
derivatives in the Eulerian frame of reference. This is a compact form of
the statement of conservation of linear momentum. However, it leaves the
form of the stress tensor, @, still to be determined.

Example 6.2

Consider a simple steady-state, one-direction, constant-density flow where
only gravity, normal forces (pressure), and tangential surface stress forces
exist. Use the method for an infinitesimal parcel to get the governing equa-
tion for the z-direction variation in velocity u along the channel shown in
Fig. 6.3. Note that the vertical is denoted by Z here.

Gravity provides a body force. In this case it has a component along the
flow and normal to the flow. The surface forces include pressures normal
to the surfaces F,, and stress parallel to the surfaces F..

Solution
We can start out by writing the basic law,

dma = dF, + 8F, + 8F,
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Figure 6.3 The downslope flow in a channel. Coordinates x, y, z are with respect to the
channel. Z designates the vertical direction (aligned with gravity).

Then, we picture the parcel with the forces (Fig. 6.4). These consist of body
forces acting at the center and surface forces.
The x-component force is

dma, = p dx 8z(1)(du /3t + u du/ox + w ou/dz)
= [—dp/ax &x dz(1)] + g,p dx 8z(1)
+ [t + 97/0z 8z/2 — (v — 97/9z Bz/2)] dx

where 6W = dmg.
Divide this equation by the mass, p 8x 8z(1), so that, for a unit mass at
the point (x, y, z, £) as 8V — 0 the equation is

dufot + u du/ox + waufoz = —1/pop/ox + g, + 1/p dr/oz

The forces across the parcel can be expressed with respect to either the
center of the parcel (Fig. 6.4) or the lower left corner (Fig. 6.5). They will
yield the same force at the point in the limit of 8V — 0. In the future, we
employ the latter choice because there are less terms to write.

If the flow is steady, du;/dt = 0, with parallel channel flow, and p can
be considered constant, then v = w = 0, u # 0, and dv/dy = dw/dz = 0.
Thus, du/dx = 0 from continuity, and
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Sma=8Fg+3Fp+3F;

p+ oploz  dz/2

\ 1T + dtodz 8z/2

p — op/ox dx/2

N

T —~ dtdx &x/2
T + dt/dx &x/2

Y4 T - 0oz 8z/2 / \p + oplox 8x/2
Sz \

0 p- oploz  6z/2

-7 o Bx

Figure 6.4 Forces on a two-dimensional parcel (unit depth) located at (x, y, z) in an
inclined channel. The components of gravitation force must be considered.

\’c: dudz dz

p + dpiox dx

The force balance at the point as §V — 0:

ar/az\
POx L

- dp/ox
Figure 6.5 Forces in x-direction on a parcel of unit depth with lower left corner located
at (x, y, z).
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plou/at + u du/dx + wou/dz] = —dp/ox + pg, + o7/9z=0
Similarly,
Dw/Dt= —93p/dz + pg, + 37/3x =0

Since d1/3x depends on velocity gradients in the x-direction and these are
zero, 97/ox = 0.
We can write

g, = —gcosh, g,=gsind
cos 0 = 9Z/dz, sin0® = —93Z/dx
Hence,
pg. = —pg IZ/oz
pg. = —pg dZ/ax
And
—dp/ox — pg 0Z/dx + 31/3z = 0
—dp/dz — pg 0Z/3z = 0 = d[p + pgZl/az
{Or, 8p/3z = —pg dZ/3z = ap/dZ 8Z/dz; Op/dZ = ~pg.}
This states that p + pgZ is a function of x only, and
dlp + pgZl/dx — d7/9z =0
or, using the one-dimensional viscosity relation,
dlp + pgZl/dx ~ w d*u/dz* = 0

This is the desired equation for u(z). It is a balance between the pressure,
viscous, and gravity forces on the parcel. This problem illustrates the de-
rivation of the equation of motion for a specific arrangement where the body
force contributes to both components of the momentum equation.

6.2 Derivation with Respect to the Infinitesimal
Elementary Parcel—Lagrangian Perspective

We now consider the changing momentum of a particular parcel as it moves
through an arbitrary point in the field. If we express the rate of change with
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respect to time only, we have a Lagrangian point of view. Thus, imagine
moving with the parcel. We can write Newton’s law balancing the force on
the parcel with the rate of change of the momentum, pu 8V, where 8V is
the volume, as

F = D(pu 8V)/Dt = F, + Fy (6.11)

where all of the terms are to be expressed at time ¢ and at a point x in the
flow. For example, the surface forces can be written

Fs = lim 1/8fofdivo-dV=divo'atapoint

V-0
For a small finite volume 8V, Eq. (6.11) may be written
pu D 8V/Dt + 8V Dpu/Dt = pF, 3V + div o 8V (6.12)
Now recall that the volumetric change may be written [Eq. (5.36)]
D 3V /Dt = divu 3V
and by canceling the 3V,
pu divu + Dpu/Dt = pF, + div o (6.13)

The conservation-of-mass equation is employed to write the left side of Eq.
(6.13) in a much simpler form,

p Du/Dt = div o + pF, (6.14)

These equations are the same as those obtained in Section 6.1, giving a
field description of u(x, y, z, ). The derivation is much briefer, because we
employed the definitions of ¢ and the volumetric rate of change. However,
the elucidation of the forces is less clear in this procedure.

Another option for a very quick yield of the momentum principle equation
would have been to use the general conservation equation (5.43). In this
case, simply substitute momentum for f and the force terms for the sinks
and sources.

6.3 The Stress Term—Liquids and Gases

Three equations [three component equations, or one vector equation (6.14)]
are now added to our one continuity equation for the description of the flow
field. We can generally assume that the body force F, is known (usually it
is the force of gravity, although sometimes it includes a geomagnetic force).
However, we have now replaced F with an unknown tensor &, which has
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nine new unknowns. This tensor hides the intricacies of the internal forces
in the fluid. Its definition constitutes the premier challenge for the derivation
of the general equations for fluid flow.

Although we have the conservation equation, it is in terms of the operator
o, which has no physical significance. If stress were as easy to measure as
velocity, then we might be done, since the components of o are stress terms.
However, good stress meters do not exist at present, and stress is most often
a term derived from velocity measurements. So, with the addition of o, we
have more unknowns than equations, and the set of equations cannot be
solved for all unknowns—it is not closed.

To have a closed set, we must have a like number of unknowns and
equations. Thus, we must relate the terms in o to known constants, func-
tions, or the other unknowns. We are going to employ the equation relating
stress to velocity shear with viscosity as the factor of proportionality. The
result will be a relation between the terms in o and those in the velocity
gradient tensor, du;/dx;. This relation, with its large number of unknowns,
presents a fundamental difficulty in solving the momentum equations. It is
known as the closure problem. The closure problem was solved in this man-
ner for classical laminar flow molecular stress by Stokes in 1845. He simply
replaced shear with rate-of-shear in the existing law for elastic solid bodies
(Hooke’s law). However, we do not expect molecular stresses to be an im-
portant factor in atmospheric motions.

The viscous forces due to air viscosity are many orders of magnitude
smaller than typical atmospheric flow forces. The viscous force term cannot
be ignored by atmospheric scientists, however. The small viscous forces
become important when an atmospheric problem depends on the micro-
physics. Examples are found in the calculation of precipitation growth rates
or the flux mechanisms at the molecular-scale interface between the air and
the sea. Another example arises in the modeling of turbulent flow.

In the atmosphere, the closure problem becomes the problem of account-
ing for the diffusive (flux) characteristics of the turbulent eddies. When scales
become large, Reynolds numbers, pUL/w., become large, and transition to
turbulence becomes inevitable. In geophysical flows, scales are very large,
and different regimes of turbulence appear. The methods of modeling tur-
bulence are inseparable from scaling analyses of the equations and the flow
domain. Since the usual first approximation is an ad hoc analogy to the
molecular law of friction, we must be familiar with the derivation in terms
of molecular friction.

We recall the discussion on viscosity in Section 1.11. A one-dimensional
scalar stress is related to the rate of strain (the velocity shear) in the equation

T=pwduldz (6.15)
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Since the internal stress force is given by &, we expect that the unknown
elements in this tensor will involve the various component shears and the
viscosity coefficient.

The one-dimensional parametrization of stress used in the definition of
viscosity (Section 1.11.3) can be extended to three-dimensions. The defi-
nition must include the array of possible stress components. These stress
components will be proportional to the array of the shears, represented in
the velocity gradient tensor—nine possible shears. We learned in Chapter
4 that this tensor can be separated into parts. One part contributes to de-
formation and another part simply rotates the parcel without distortion. The
first part can be further separated into two contributions:

1. Deformation

(a) Volume strain (contraction, expansion)
(b) Distortion (without volume change or rotation)

2. Rotation

The first component of the deformation (la) is the volumetric strain. The
rate of volumetric strain per unit volume is

1 ddv

6.16
3V dr ( )

It is valuable to recall that in solid mechanics an elastic solid has volu-
metric strain

(D dV)/8V =V 8 = 9(dx,)/ 0x;
where S is the elongation vector,
S = 8x,

In the case of a fluid parcel, the shape and volume change as the surface
bounding the volume is distorted. In Chapter 5 we found the expansion rate
of a parcel to be

1/8V D 8V/Dt = du;/ox;

This is the sum of the three diagonal elements of the velocity gradient ten-
sor. We see where the component velocities have replaced the incremental
lengths of the parcel in the strain expression.

The second component of the shear deformation is the distortion that de-
forms the parcel without changing its volume. This is often the most im-
portant kinematic property, as it is directly related to the shearing stress force
on the parcel. We can examine this distortion from a 2-D perspective, as
shown in Fig. 6.6. The deformation of &x, includes the effects from the
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at time
t+ At
8%, — 8x 5
bx 1 8x 9
¢ — - -DI A[8X2]1=au1/aX2 8X2 At
—
Aldx,],

A[6X1]2= aU2/ax1 8X1 At
46,

e Bxy ———w] €= A[X,]{=0U4/0x OX4 At

Figure 6.6 Distortion components with respect to A9,.

stretching produced by du,/dx, plus that produced by ou,/dx,. Similarly,
the change in 8x, is due to du,/dx, and du,/dx,. The net distortion can be
related to the change in the angle between &x; and 8x,, which is A8, + A6,
in Fig. 6.6.

From the figure, we can write

[ du,/0x, dx At :|
dx, + du, ox, dx; At

tan A9, =

~ Ju,/9x, At [= A(Bx,)/8xy)]
~A9,.

In the limit, as A8, Az — 0, A0,/Ar = dO,/dt = du,/dx,
Similarly,

A, ~ A(dx))/dx,,  and  dO,/dt = du,/dx, 6.17)

The average shear deformation is proportional to the average angular
change,
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Ty =30, + 02)

AT, /dt = 3d®, + 0,)/drt
and
dl' , /dt = %(au,/axz + du,/0x))
In the same way,
dT 5 /dt = 50u,/ox; + dusfox,);  dTg/dt = 5(0us/dx, + duy/oxs)

and

dr';/dt = dT';/dt (6.18)

This tensor consists of the off-diagonal elements of the 3-D deformation
tensor. We have defined them as def u.

Now we will write the relation between the stress force and the defor-
mations by drawing on the well-established stress-strain relationship from
solid mechanics. Note that in elastic solid mechanics, the shear deformation
is often simply one dimensional, with stress proportional to strain, as shown
in Fig. 6.7.

Ty =Gly
and in general,
Tij = GF,‘J' (619)

where G is the shear modulus, a constant.

In dealing with fluids we will substitute the viscosity for the shear mod-
ulus, and the rate of strain for the strain in Eq. (6.19). The result is an
expression for the stress-rate of strain of distortion:

;= wdl;/dt (6.20)

———
T21

Figure 6.7 An elastic solid shear.
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This is a tensor representing all of the internal distortion stresses on the
surface of a parcel. It is part of the general surface force tensor o.

6.3.1 The General Three-Dimensional Stress Tensor

In this section we will write out the details of the individual stress tensor
terms as a function of the velocity derivatives. To proceed with a manage-
able relationship between the individual elements of div ¢ and the various
possible velocity gradients, we must make assumptions about the basic na-
ture of the fluid. The following assumptions define a Newtonian fluid. They
are based on laboratory observations of fluid behavior.

1. In a static fluid, there are only forces normal to the parcel surface,
called the pressure forces.

2. oy is independent of the heat flux, depending only on local kinematic
and thermodynamic states.

3. There do not exist any characteristic (preferred) directions.

4. The stress is proportional to the velocity gradient.

These assumptions will allow us to write the stress tensor components in
terms of the pressure and the rate-of-strains discussed in the previous sec-
tion. We will write out the relations for the three-dimensional parcel.

In our sketch of the infinitesimal parcel (Fig. 6.8), we align the coor-
dinate axes x,, x,, x3 with the corner of the cubical parcel. The unit vectors
in the coordinate directions are denoted by i, j, k. The first subscript of the
stress tensor component will indicate the axis to which the face is normal;
the second will indicate the direction of the force on the face.

Figure 6.8 The parcel showing the forces on each face.
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Now we can write the forces on each face touching the origin, which is
located at the lower left corner of the parcel in Fig. 6.8 as

Fl = iO']l +j0'12 + k0'13
Fz = i0'21 + jUzz + k0'23 (621)
F3 = i0'31 + j0'32 + k0'33

The net shearing force on the x,x,; surface is 8F,/dx, dx,(dx, dx;) =
dF ,/dx, dV. Adding the components, the total surface force on the element
per unit volume is

Ftot = {GFl/axl + 6F2/3x2 + 6F3/6x3}

or
=i{do,;/0x, + 80, /0x, + 303,/dxs} ... X,-component
+ j{BO' lz/axl + 60'22/6x2 + 60'32/aX3} N Xz'component

+ k{00 ;3/08x, + 80 ,3/0x, + 8033/3x3} ... X ;-component

on face 23 on face 31 on face 12
4 teX) 1 toX, A-to X3

Thérefore, Newton’s law, ma = F, may be written
pDu/Dt = pF, + dive
or, in component form,
pDu,/Dt = pF| + 80 ,,/dx, + 00, /9x, + 805,/0x;
pDu,/Dt = pF, + 00 ,,/0x, + 00,,/0x, + 00 3,/0x, (6.22)
pDus/Dt = pF 3 + da,3/0x, + 80 ,3/0x, + 30 33/0x5

There are nine components of the stress force. If we assume that the
parcel is in equilibrium with the forces, there are no unbalanced forces at
the point represented by the parcel. Then by taking moments about any axis
one finds that o;; = o; (problem 6.1). This reduces the unknowns by three.
However, even if the body forces (F,) are known, there are still nine un-
knowns (u; + o), and only three equations. We need a relation between
o; and the other flow parameters (u;) to provide the other six equations.

6.3.1.a Pressure

We discussed pressure in Chapter 1 as a term in the equation of state
where it appears as a thermodynamic variable. We defined a Newtonian
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fluid such that in a static state the only surface force is the normal pressure
force,

0;=—Pdy;, O3=0;,=0,3=0 (6.23)

and only o,, = 0, = 03; are not zero.

In a moving fluid, the normal component of stress on an elemental face
depends on the orientation of the face with respect to the flow. The orien-
tation is denoted by the normal unit vector. The stress in any direction is
related to the velocity gradient in the same direction. The internal stress
creates the tangential shearing forces. In addition, there is an internal stress
contribution to the normal force. Thus, there is no longer a “pressure” acting
equally in all directions. However, we can obtain a scalar that acts like the
pressure for the moving fluid by defining the average,

o=fop+tontoyl/3=-p (6.24)

where ¢ is invariant under rotation of the axes. It will be defined as pressure
for a fluid, static or moving.

In the general case of a moving fluid, normal forces due to the shearing
action can come into play. It is convenient to separate the pressure and shearing
contributions to the stress by defining a new tensor, 7, which is obtained
from o by removing the pressure forces. In matrix notation: '

-p 0 O T Tz Tis
[4 0 —-p 0]+ Tt T To3 (625)
0 0 —-p Ty Tz T3

Here, 7 is referred to as the shearing stress tensor, often shortened to stress
tensor. Its elements are the shearing stress that arises due to the motion of
the fluid. It is called the deviatoric stress tensor by some authors. From the
definition of the pressure in Eq. (6.24),

7,=0

The problem now is to relate 7 to the velocity shear. As noted before,
when this fluid problem arose, there already existed a classical treatment of
stress in elastic solids. The law of friction for fluid flow borrows heavily
from that relation.

6.3.1.b Hooke’s Law for Elastic Solids

For elastic solids, a coefficient called the modulus of elasticity relates the
one-dimensional elongation to the normal stress. Poisson’s ratio gives the
relation between the effects of the elongation in one direction and the cor-
responding contraction strains in the other directions. These two constants
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can be related to the shear modulus, yielding the stress-strain relation in the
matrix equation, This is Hooke’s law. We realize that this brief synopsis of
the theory for the strain of an elastic solid body cannot be satisfying from
the standpoint of understanding the solid mechanism. However, this relation
has been applied to the stress-rate-of-strain relation for laminar flow of a
fluid. And we also extend it into the eddy-stress-rate-of-strain concept. Since
the last hypothesis is often tenuous, a knowledge of its historical roots may
be important toward evaluating the validity of its application in particular
circumstances. We can write Hooke's law by using Eqgs. (6.20-6.25) to
define the stress tensor for an elastic body,

O Oz O o 00
=)o,y 0m oxn]l=l0 o O
O3 O3 Oi 0 0 o

2¢; Iy, Ty 2y Ty Ty

+ G, 2, Ty |+G*| Ty, 2, I'y

[y Ty 2, Iy Ty 26

div S 0 0
-36| 0o dvs o (6.26)
0 0 div S

This is Hooke’s law for elastic solid bodies. It results from the assumption
that stress is proportional to magnitude of strain. It is a simple step from
here to a law for fluids and gases.

6.3.2 Stokes’ Law of Friction

We have noted that the only internal forces on the parcel in a static fluid
are the pressure forces. These forces are therefore conveniently separated
from the general stress tensor o, leaving the stress tensor . Now we use
the observation that a fluid can support strain only when in motion and that
the stress is proportional to the velocity gradient—hence the rate of strain.
Assuming that stress is proportional to rate of change of strain instead of
simply the strain, we will use an equation similar to Eq. (6.19) for fluids.
Thus, replace the displacement vector S with

dS/dt = u = iu, + ju, + Ku,

the proportionality constant G with viscosity p, and finally, ¢ with —p.
Stokes’s law is then written
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On Oz On3 -p 0 0 Uy, Uy, U,
g = 09 Toy T3 - 0 -p 0 + ) Uy, Uy v,
03 O3 O3 0 0 —-p Wy W, w,
U, U, w, divu 0 0
+plu, v, w,J]tal 0 divn O
U, U, w, 0 0 divu 6.27)
This may be written in symbolic form,
o = —pl + pi{grad u + grad* u} + ap div ul (6.28)
or
o= —-pl+ pdefu+adivul= —pl + 7 (6.29)

in close analogy to Eq. (6.26). | is the identity tensor, I;; = 1 if i = j, 0 if
i #j.
Here, o is sometimes called the “second viscosity.” Since t; = 0, and
0=(_2p+ 3a)divu
2
a = =3

However, in atmospheric work we can often assume that div u = 0 in
Eq. (6.29). This must be true compared to the deformation term. In this
case the second viscosity term is dropped and this parameter is not required.

The relation (6.29) provides nine equations for the nine unknown com-
ponents of a;; (only six of which are independent). The stress must be em-
pirically. related to the mean velocity gradients with a coefficient of viscos-
ity. When the viscosity (or eddy-viscosity) assumption is used to form these
relations, the set of equations is closed—there are an equal number of equa-
tions and unknowns.

p Du/Dt = pF, + div ¢ = pF, + div{—pl + 1}
= pF, — grad p + div{p. defu + a div ul} (6.30)
These equations expressing the conservation-of-momentum principle and
providing a parametrization relation for the stress terms are attributed to
Poisson (1831), St. Venant (1843), Navier (1827), and Stokes (1845).
6.3.3 An Alternate Derivation

The relation of stress tensor to rate of strain can be obtained directly from
vector calculus.’ To illustrate this technique, we can examine this derivation

! See Jeffereys, H. (1931). “Cartesian Tensors.” Cambridge Univ. Press, London.
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of our closure relation. We must accept a tensor identity or two as given,
since their derivation is beyond the requirements of this text. However, the
procedure is elegant, and it reveals a problem in the eddy-viscosity relation
that has yet to be resolved.

Under Stokes’s assumption that the stress is proportional to rate of strain
or velocity, one could expand the stress tensor in a Taylor series with respect
to the velocity gradient about a point. Here, the constants in the expansion
are tensors.

c=A+BgradU+C---
or
0;=A;+ B ouy/ox; + Cium Uy /0x, 0%, + - - -

zAij + {0‘ 8ij Bp+ By dy + 3y Bjk) + B804 — ailajk)} auj/axl

general form of isotropic tensor  zero, from symmetry
From the no-flow boundary condition, A; = —p 8,;, and
Gy =—pd;+ adu/ox,8; + wu;/ax; + du;/dx)
or, in symbolic notation,

o=—pl+adivul + 2pdefu

stress = pressure +  volume +  deformation (631)

dilation tensor
This can be used to define 7.
o=-pl+~ (6.32)
Substituting for a = —%p.,
7 =2ndefu— %udivul
Then the divergence of o is
diveo = —grad p + div[2p defu — %p div ul] (6.33)

For constant p. and the approximation div u = 0, use the identity 2 div
def u = div grad u + grad div u to obtain

dive = —gradp + pdiv grad u (6.34)

The stress term can also be written as
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07;:/9x; = 9/0x{w(du,/dx; + ou;/dx,)}
= d°u;/dx;0x;  for u constant
Placing Eq. (6.34) in the conservation of momentum equation yields
p Du/Dt = pF, — gradp + p V'u (6.35)

or, in index notation,

p(du;/ot + u; du,/ox;)) =p >, Fy — dp/ox; + w 0°u,/ox; dx;
J J J J
(6.36)

The change in velocity is a function of body forces, pressure gradient
forces, and the internal stress forces. We have assumed that . is a universal
constant. This is a good estimate for molecular viscosity. However, when
we are attempting to model turbulent diffusive fluxes we replace . with an
eddy viscosity K. Now K depends on the turbulence distribution, which de-
pends on the velocity shear, and this coefficient could be different for each
of the B ;,. If the eddy-viscosity was indeed a fourth-order tensor, it would
probably not be a practical model for the turbulent stress versus rate-of-strain
effect. Fortunately, simpler forms of K seem to suffice for many practical
applications.

6.3.4 Eddy Viscosity

The equations developed by Navier and Stokes are strictly for laminar flow
with a constant viscosity coefficient. Reynolds suggested that when the flow
is turbulent, the equations apply to the instantaneous velocities. However,
from a practical viewpoint, we must write the Navier—Stokes equations with
respect to the mean velocities, which are usually measured. To do this, we
must write the equations in terms of the turbulent velocities and then average
the velocities. This will be done in Chapter 10. For now, we can simply
assume that the random motion of the turbulent eddies transports momentum
in a manner analogous to that of the molecules. The stresses due to turbu-
lence are then expressed in a formula similar to the Newtonian friction law.

We have already remarked that in geophysical flows internal stress due
to molecular forces is much smaller than the other forces. And we have
noted that in atmospheric flows the huge scales mean very high Reynolds
numbers and, consequently, unavoidable turbulence. Still, we use Eq. (6.36)
in two ways.

1. In the inviscid approximation, where the viscous term is neglected
with respect to both molecular stress and eddy turbulent fluctuations.
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2. In highly turbulent regimes, where we assume that p can be replaced
by an eddy viscosity that accounts for the much larger mixing effects of the
turbulence.

When we make the eddy viscous approximation, the eddy viscosity K
simply replaces . in Eq. (6.36). This implies that the flow is eddy-laminar;
that is, laminar-like mean flows coexist with the small-scale turbulence.

A primary limitation in the K-theory approximation is that K represents
the mixing action of the small-scale turbulence, and in the atmosphere this
can vary in space. In general it is a fourth-order tensor; however, analytic
solutions can result by assuming that it is constant or varies only in one
direction, usually the vertical. These approximate equations have resulted
in successful models for many real flow situations. When the eddy-viscosity
assumption is made, the preceding development becomes

o = —pl + K, div ul + K {grad u + grad* u}
=—pl+1 _(6.37)

where K, and K, are scalar coefficients replacing o and p. The eddy coef-
ficients depend on the turbulence distribution, which may depend on the
local state of the fluid. The stress term is

div 7 = grad(K, div u) + div{K,(grad u + grad* u)} (6.38)

One simplification that frequently applies in geophysical flows is obtained
by assuming that the eddy viscosity varies only in the vertical. By means
of vector identities (see the summary chart at the end of Chapter 4), Eq.
(6.38) may be written (k is the unit vertical vector)

divr =K, +K)Vu} +K,VxVxu
+ k dK,/dz V +u + k dK,/dz(Vu + V*u) (6.39)

This expression is still complicated. However, since generally we are
dealing with cases where V:u = 0,

dive = KV + dK,/dz (W, + u,, w, + v,, 2w,) (6.40)
where K = K; + K,. When K, is constant, the stress term is merely
divt = K V’u (6.41)

The development of the general closure scheme is complicated by the
fact that the stress vector force varies in each of the three directions. We
will find that in most applications, this generality is unnecessary and simple
stress forms such as Eq. (6.41) will be sufficient.
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6.4 The Coriolis Term

In Section 2.5 we found that since we are using a noninertial frame of ref-
erence it is necessary to add a virtual term, —2€ X wu, the Coriolis accel-
eration (or force per unit mass), to our equation of motion. The vector {}
can be associated with a skew-symmetric tensor {}. Therefore, the Coriolis
acceleration can be expressed in the following ways:

20 Xu= l.lQ - uJQJ, = E,-jkkj’uk

and
k’ = (O’f”f)a
o f —f
Q=|-f 0 0 (6.42)
f 0 0
and
f=20sin0, ff=20cos (6.43)

For our description in Cartesian coordinates, note that
uQd =K' X u=(fus— fuy, fu;, =f'u,)
In the atmosphere generally,

flus < fuy, (e.g., horizontal motion);
F'u, < other terms in the vertical momentum equation;

and
ZQ xXu= UQ = Gijkk]’»ukf= k, xu= (_fuz,ful, 0)

neglecting f'u; and f'u,.

In this case we can write k' X u = fk X u.

When we include the one-body force due to gravity, pgd;, the momentum
equation may be written

a/ot(pu;) + u;8(pu;)/ox; = —adp/ox;
+ 3/3x{w(0u;/9x; + du;/0x;) + o Ouy/dx, 8,5k — pgdis — pfesnk;uy
Using continuity to simplify this equation,
Ou; /ot + u;ou,/ox; = —1/pdp/ax; + 1/p d/ox;
{@Au,;/ox; + ou,;/ox )+ o du,/0x, 8} — 8.3 — fe,uk,u,
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For div u = 0 and . constant = pv, we get
Du,/Dt = —1/p dp/dx; + v 8’u,/dx;9x,
— 80, — fesjnkuy (6.45)
Writing this equation out in component form,
ou/of + u du/ox + vou/dy + woufdz = —1/pdp/ox + fuv
+ v(9%u/ox* + 2*u/ oy’ + 0*u/9z%),
/ot + udv/ox +vav/dy + wov/ez = —1/p dp/dy — fu
+ w(d’v/ox* + d*v/3y* + 9°v/d7Y),
ow/ot +uow/ox +vdw/dy +waw/iz = —1/padp/oz — g
+ v(@*w/ox> + a*w/ay* + 8w /az%) (6.46)

These equations provide excellent approximations for many atmospheric
applications. Yet one must remember the assumptions: constant viscosity;
replacing div [w 2def u} with p V?u (exact for constant density, yielding
div u = 0); and a constant Coriolis parameter.

Example 6.3

Viscosity is often measured in an apparatus that consists of two rotating
concentric cylinders. (See Fig. 6.9). Use the Navier—Stokes equations to
determine the velocity between the cylinders. Show that this yields an ap-
proximate Couette flow across the short distance between the cylinders. The
Navier—Stokes equations in cylindrical coordinates for incompressible flow
are

Du,/Dt= —1/p dp/or + v[V?u, — u,/r* — (2/r")du,/00]
Du®/Dt = —(1/pr)op/90 + v[Vuy + (2/r)0u,/00 — uy/r’]
Dw/Dt= —1/pap/oz + g+ v Vw

Here,

V2= (1/na/orlr 8/or] + (1/7%) 8*/80* + 8%/ (6.47)
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Figure 6.9 Coaxial cylinders with tangential laminar flow between them. The inner cyl-
inder rotates at w.

Neglect gravitational forces and assume separation between cylinders, d <
R,.
Solution
For this case, the terms remaining in the Navier—Stokes equations are
—us/r=—1/pdp/dr (6.48)
0 = v[d®u,/dr* + d/dr(us/r)]
The second of these equations integrates to
dug/dr + uy/r = C,
A trial solution, ug = ar + b/r, yields
ug = (C/2)r + Cy/r (6.49)
The boundary conditions at R, and R, give
R, =CR,/2 +C,/R,
0=CR,/2+ C,/R,
Hence,
C, = —2R3w/([R; — R)
C; = RiRo/ (R — R)
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Substitution into Eq. (6.49) yields
ug = [Rio/(R] — RYIIRL/r — 1] (6.50)

The pressure distribution across the gap can be found by integrating the first
of Eqgs. (6.46).

The approximation for d = R, — R, < R, can be found by substituting
for d to get

ug = R,/Q2d)x — d)

where x = r — R,. Thus the velocity across a thin gap approximates Couette
flow.

Example 6.4

Write out the momentum equations in component form and discuss the ap-
proximations necessary to yield the following balance equations:

1. Geostrophic flow: Balance between Coriolis and pressure gradient forces
only. :

2. Gradient flow: Balance between Coriolis, pressure gradient and in-
ertial (the advective terms) forces. (These apply in highly curved flows where
the centrifugal forces are significant. They are most simply written in polar
coordinates.)

3. Isallobaric flow: Same as 1. with time dependency.

4. Planetary boundary layer flow: Same as 1. with viscosity terms.

Solution

In component form, with eddy viscosity K,

ou/ot + udufox + vou/dy + wou/dz = —dp/ax/p + fu + K(’u/dx, dx))
dv/at + u dv/dx + v dv/dy + wdv/az = —dp/dy/p — fu + K(3’v/ox; ox,)
aw/ot + udw/ox + v aw/dy+ waw/dz = —dp/dz/p — g + K(d*w/dx; dx,)

1. Assume steady state; w < u, v; horizontal homogeneity; and inviscid,
leaving

0= —dp/ax/p t fu,
0= —dp/dy/p — fu.

2. Assume steady state; w <€ u, v; and inviscid;

(6.51)
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udu/ox + voufdy = —ap/ax/p + fuv (6.52)
udv/dx +vaov/dy = —ap/oy/p — fu
3. Assume w < u, v; inviscid;

u/ot + udufox + vou/dy = —ap/ax/p + fu (6.53)
dv/dt + udv/ax + v av/dy = —ap/ay/p — fu

4. Assume steady state; w < u, v; horizontal homogeneity;
0= —ap/ox/p + fv + K(®’u/ox, dx,) (6.54)
0= —dp/dy/p — fu + K(8°v/dx; ax))
In these equations, one can also assume that
0'u/9z* > d*ufox*  or 0*u/9y
and
dv/o > d'v/ax* or 9°v/ay
leaving
0= —ap/ox/p + fv + K 9u/o7 (6.55)
0= —9p/dy/p — fu + K 8*v/oz*

These equations also require the incompressible assumptions V-u = 0.
This may not be valid when problems involving significant vertical motion
or large vertical extent are being considered. In these cases, the relative
magnitude of each term can be checked using dynamic similarity.

6.5 The Dimensionless Navier—-Stokes Equations

The equations derived in Section 6.3 can be made dimensionless using the
methods of Chapter 3. This is most helpful in atmospheric dynamics, since
we deal with a wide variety of scales.

We begin by selecting arbitrary characteristic values for each parameter.
This will allow choices for particular problems to be inserted in the resulting
nondimensional parameters. Select L and V for characteristic length and ve-
locity. Assume density and viscosity are nearly constant. Thus, consider the
dimensional parameters in Eqs. (6.46) as all primed, so that the nondimen-
sional parameters are plain. Then,

u; = ul/V;x; = xj/L;t = (V/L)'; and p = p' /(pV?)
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When these are placed in Eqs. (6.46),
V2/L[0u/dt + u du/ox + v du/dy + w du/dz] =
—V?/L dp/ox + fVu + vW/L* (3*u/ax® + 8°u/dy* + 8%u/d 2,
V2/L[8v/ot + u dv/ox + v dv/dy + w dv/dz] =
=V2/L ap/dy — fV u + vW/L* (8*v/ ax> + 3 v/ay* + 9*v/82%),
V2/L{aw/dt + u dw/ox + v aw/dy + w dw/az] =

~V?/L op/oz — g + vW/L* (3°w/ax* + 9*w/dy* + 9°w/0z%).
(6.56)

Muitiplying these equations through by L/V? will leave two coefficients
only.

dufot + udufox + vou/dy + wou/dz =
—dp/dx + 1/Ro v + 1/Re(d8*u/ox* + 8*u/dy” + d°u/az>),
dv/ot + udv/ox + vav/oy + wov/foz =
—dp/dy — 1/Ro u + 1/Re(3%v/ox* + d%v/9y* + 8°v/8z%), (6.57)
ow/ot+ uow/ox + vow/oy + wow/az =
—dp/oz — L/V’g + 1/Re(@*w/ox* + 3°w/dy* + o°w/d 2°).

The Rossby number Ro = V/(fL), the Reynolds number Re = pVL/p., and
a modified gravitational force are the parameters in these equations. Their
values relative to unity will determine the importance of Coriolis, viscous,
and gravitational forces. When Re, = pVL/K, then the turbulent viscous
forces are considered.

From Eqgs. (6.57) we see that when the distance scale is large, Ro is small
and the Coriolis term is relatively large. For large scales the Coriolis term
must be included in the equations. For these large scales the Re is large and
hence the viscous term is small. However, for atmospheric scales, this also
means that the critical Re for turbulence transition is passed. Then, Re, must
be used. However, it is also large, and for synoptic scales the turbulent
viscous term is often negligible. However, K is large enough in some do-
mains that viscous terms must be retained. One such region is the PBL,
where the vertical scale is about 1 km.



6.6 Summary 255

Example 6.5

A synoptic scale can be defined as that horizontal scale where Coriolis forces
are significant and viscous forces are negligible. For air at mean density of
1.23 kg/m3 and velocity 10 m/sec, what scale length will this include?
Approximate eddy viscosity as K < 20 m*/sec.

Solution

We need the Ro = O[1] and Re > 1. At mid-latitudes, the Coriolis parameter
is f = 107*/sec. Hence,

Ro = V/(fL) = 10 (m/sec)/[10™* (1/sec) - L(m)] < 1
Hence,
L =10’ m = 100 km

Note that Ro will still be near unity at smaller scales for lower velocities
(50 km for 5 m/sec). As the equator is approached, f — 0, Ro — «, and
the Coriolis force is nonexistent. ,

When there is ample source of perturbation to a laminar flow, as there
is in the lower layers of the atmosphere, transition takes place at Re, =
2000. The scale at which this takes place is

L = 2000 K/V = 2000(20)/10 = 4 km

This is a very short distance, and turbulence is assured.
On the 100-km scale,

Re < 10 (m/sec) 10° (m)/20 (m’/sec) = 50,000

Thus, in Eqs. 6.53, the eddy-viscous terms are about four orders of mag-
nitude smaller than the other terms. In fact, only when the scale is on the
order of kilometers and there is significant turbulence will the viscous terms
be important. This happens with respect to the vertical scale in the PBL.

6.6 Summary

The Navier—Stokes equations is a phrase used principally to describe the
momentum equations, which Navier and Stokes independently derived. But
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the phrase is often used to include the continuity equation and the equation
of state. Even the energy equation may be included.

There are two aspects of these equations which make them extremely
difficult to solve. First, they are nonlinear. The advective terms have the
product of the velocity and the velocity derivatives. This has far-reaching
consequences in terms of the uniqueness of the solutions. In uniform flows
with the velocity spatial derivatives equal to zero, the number of terms is
greatly reduced. These assumptions result in linear versions of the equations
that have simple solutions. They provide quite successful approximations
for many flow situations. However, in atmospheric flows, waves frequently
are present, with resulting horizontal velocity gradients. The nonlinear terms
must be addressed. The consequences of the nonlinear effects are large.
These problems are dealt with under such topics as stability theory, turbu-
lence, chaos, strange attractors, and coherent structures. These topics are at
the cutting edge of applied mathematics, and the Navier—Stokes equations
provide a paramount challenge for them.

The second great difficulty in solving the general Navier-Stokes equa-
tions arises in dealing with the viscous terms. These contribute by far the
most termis when the equations are written out in component form. The equa-
tions are much easier to solve when the viscous terms can be neglected.
Consequently, the study of inviscid flow is a popular separate field of study.
It has proven very fruitful, resulting in excellent approximations for general
atmospheric flow above the boundary layer regions.

Viscous forces are essential to the flow near a boundary, where the flow
must come to a halt at the boundary. The viscous terms are the highest order
terms. Thus, they require more constants of integration in their solutions
and permit these solutions to satisfy more boundary conditions. In particular,
the no-slip conditions at the boundary surface can be satisfied.

Furthermore, viscous effects must be included in many flows even though
they are not dominant terms. The inviscid equations applied to weather fore-
casting are limited in the extent of their forward integration with time. The
contribution of the viscous terms eventually becomes important. Also,
in numerical integrations of the basic inviscid equations for some simple
freestream flows, numerical instabilities may develop. These can grow
to invalidate the solution unless one adds a small viscous term that has
the effect of damping these waves. However, one must take care that the
viscous terms are realistic, and that important real physical waves are not
also eliminated.

Even when viscous effects are included, the complete stress term is gen-
erally not calculated, and various approximations are made. With an un-
derstanding of the complete equations, we are now in a good position to
spell out the conditions under which the various approximations to the com-
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plete equations are valid. However, first we must investigate temperature
variations and the energy equation.

The NAVIER-STOKES EQUATIONS

The Momentum Equation:

Accel- = Body + Coriolis + Static pressure + Strain rate
eration force force and normal forces tensor, def u
off-diagonal
terms

pDu/Dt = F, + pfV — ap/ox + o/ax[p(2 oufox — 2/3 ou,/ox,)]
+ 3/ay[i(Bu/dy + dv/ox)] + 3/0z[p(dw/dx + du/dz)]
pDv/Dt=F,— pfU — ap/dy + 3/3ay[m(2 du/dy — 2/3 du,/dx})]
+ 8/9z[u(dv/dz + ow/ay)]l + a/ax[p(du/dy + dv/ax)]
pDw/Dt =F_,— ap/dz + 8/3z[p(2 aw/dz — 2/3 du,/dx,)]
+ 8/ax[(dw/ox + du/9z)] + 8/oy[wm(dv/oz + aw/ay)]
Continuity: ’
ap/ot + a(pus)/dx, = 0
State:

p = pRT
(5 equations in u, p, and p)

The Constant Density or Nondivergent Approximation:
V-.u = 0, can be written, with k = (0, 0, 1),
pl(0u,/dt + u;ou;/ox))] = F; — pfe,k;uy — dp/ox;
+ w 8%u;/0x; ax;
or
pDu/Dt=pF, + Fc — gradp + n V’'u (4 equations in u and p)

where F = Coriolis “force”; F, = body force.
The Inviscid Approximation:

pl(@u;fot + u; (Ju;/0x;)] = pFy; — pfe;;rk;u, — dp/ox;
ap/ot + d(puy)/ox, =0
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Problems

1. Show that the stress tensor is symmetric by taking moments about an
axis.

2. Consider the momentum equation for one-dimensional flow along a
horizontal streamline, inviscid, and constant density. Obtain the relation
governing this flow and apply it to the flow in a converging circular region
with radius r. Plot p, u, and r versus x for (a) a linearly decreasing r(x);
and (b) for a linearly varying u(x). ‘

3. Derive an expression for the vertical pressure variation in the atmo-
sphere as a function of temperature from the momentum equation for a static
fluid plus the ideal gas law. Let T = T, — vz, where the lapse rate vy is

¥ CK/km) z range (km)
6.5 0-12
0 12-22
-1 22-32

Plot T(z) and P(z).

4. The flow between infinite parallel plates is said to be parabolic. De-
termine the velocity distribution from fundamental principles of viscous flow.
(Hint: One boundary condition is the maximum flow speed, U,). Assume
incompressibility and steady state. Discuss no-slip, flow rate, shear stress
at the plates, rotationality, and vorticity.

5. The flow in a circular pipe with steady viscous flow parallel to the
axis is called Poiseuille flow. Use the equations in Example 6.2 with uy =
u, = 0, and w = the flow along the pipe, to determine the velocity distri-
bution across the radius.

6. A special case for the Navier—Stokes equations that can be solved
(reduced to two terms) is the flow near a surface that has small oscillations,
a sin wz. Consider the flow as a function of height to be u = f(z) ¢ 7, p is
constant. Obtain an expression for f(z). Hint: Show that the motion is de-
scribed by the diffusion equation.

7. Use assumptions of the Navier—Stokes equations (momentum) to ex-
plain why an object falling from a great height reaches a steady terminal
speed. (Given that Fg,, is proportional to U?).

8. A horizontal blast of air hits the side of a ship and is deflected 90°
upward. The effective area of the ship normal to the wind is 5 m by 20 m.
Determine the force experienced by the ship if the wind velocity is 30
m/sec.

9. Very slow flow over a sphere is called Stokes flow. The velocity com-
ponents are
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u, = Ucos O[1 + 3(R/r)* — 3R/P)]
s = Usin 8[—1 + 3R/r + 2R/P]

Calculate the viscous stress tensor in cylindrical coordinates.
10. Show that a Newtonian fluid that is incompressible and with constant
viscosity obeys the relation

Ver=pVa
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7.1 The First Law of Thermodynamics
7.1.1 Total Energy
7.1.2 Rate of Work Done on System
7.1.3 Rate of Heat Transfer
7.2 The Energy Equation
7.3 The Mechanical Energy Equation
7.4 The Internal Energy Equation
7.5 The Enthalpy equation
7.6 The Moist Atmosphere Energy Equation
7.7 An Alternative Derivation
7.8 Flow along a Streamline
7.8.1 Bernoulli’s Equation in Natural Coordinates
7.8.2 Compressibility Effects in Bernoulli’s Equation

7.9 Summary
Problems

The conservation of energy is the third great principle of basic physics to
be invoked in the development of the equations for fluid flow. Yet, when
we consider energy there is not a unique quantity we can substitute into the
general conservation equations as we have done in previous chapters with
the density and momentum. In many cases in atomic physics it is necessary
to combine the energy principle with the first principle invoked, conserva-
tion of mass, to create a useful set of equations. But in the study of geo-
physical fluid dynamics the conservation of energy generally remains in-
dependent. Thus, from this perspective, the first task is to identify the
categories of energy that are important to atmospheric dynamics.

Energy exists in many forms. Some of the basic torms we may encounter
in atmospheric physics are:

. Kinetic (mass in motion)

. Potential (position in a force field)

. Work (motion in a force field)

. Internal (molecular motion and structure)

. Radiant (involving molecular absorption and radiation)

260
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6. Chemical (molecular chemical reactions)
7. Electromagnetic (motion in a magnetic field, electrification of particles)

To complement our field equations, the basic energies listed need to be
related to the flow properties of mass, density, pressure, and temperature.
First we know that kinetic and potential enf:rgies are forms of mechanical
energy and are intimately related to mass (;mv® and mg Az, respectively).
Another manifestation of energy, work, is usually involved in a situation
where a mechanical effort is applied. Work can also be expressed in terms
of forces and motion. Next, internal energy is affected by a change in any
local flow or thermodynamic parameter. In addition, changes in internal en-
ergy occur throughout a volume from radiant energy when gases in the at-
mosphere absorb radiation. The radiant or hear energy absorbed at the sur-
face is a fundamental source of energy for atmospheric and oceanic motion.

In the nineteenth century, Hermann von Helmbholtz expressed the energy
principle simply as: the sum of the kinetic and potential energies is equal
to a constant. However, when heat is absorbed or dissipated, the conser-
vation of energy balance must also include thermal energies. Examples of
thermal energies are frictional heating, heat conduction, and radiation ab-
sorption. Each of these involves the transfer of heat, which affects the in-
ternal energy. This transfer is usually quantified with respect to temperature.
Since temperature is the most basic measurable energy parameter, this chap-
ter relates the internal energy to the fluid temperature. In addition, an in-
ternal energy parameter, enthalpy, is introduced. It combines the thermo-
dynamic and potential energies.

The last two energy categories mentioned, chemical and electromagnetic,
become important in pollution studies and magnetosphere studies, respec-
tively. They require additional terms to be added to the equations developed
in this chapter.

The science of thermodynamics is a huge logical discipline built on fun-
damental postulates. The basic conservation of energy statement is the first
law of thermodynamics. The second law discusses the nature of heat transfer
processes. These processes are the thermodynamic means of converting en-
ergy from one form to another. And finally, because this subject is centered
around energy dealing with heat, an additional postulate is invoked to es-
tablish the definition of temperature. This parameter indicates the internal
energy of a substance.

The fluid dynamics of meteorology requires only a small sample of the
rich storehouse of scientific inquiry available in thermodynamics. Still, we
need a fairly broad introduction to the terminology and fundamentals of ther-
modynamics in order to extract the limited, but essential, information that
we require.
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run backward in time, providing a great simplification in the equations. In
fact, the most important process in atmospheric dynamics is the reversible
adiabatic (with no heat exchange). In this case temperature changes with
density and pressure according to the perfect gas law. The most important
diabatic effect is probably that of vapor condensation with consequent re-
lease of heat within a volume. But fortunately, in most geophysical flow
problems, the thermodynamic work has been done before the problem is
addressed—in the production of the pressure gradient—and dissipation and
heat conduction are small quantities. They can generally be accounted for
by adding small corrections to the adiabatic processes.

The integration of the energy equation between two state points along a
streamline produced the Bernoulli equation. This is a convenient formula
relating conditions at specific points on a control volume. However, the
conservation of energy across a streamline is apparently different. We will
find that a discussion of vorticity will shed light on this difference.
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domain of a single problem, we may observe energy to have several forms,
which may or may not be able to convert from one to another.

In general, it is fairly easy to convert mechanical energies into thermal
energy. Many common examples exist. Simply rubbing hands together, ap-
plying brakes, or pumping up a tire all convert mechanical to thermal en-
ergy. The conversion is reflected by the temperature increase of the system.
These common processes involve friction and cannot be reversed. On the
other hand, the conversion of thermal energy to mechanical energy is not
as common. This process can be accomplished only through the action of
changing pressures and requires compressibility of the fluid. Such a process
can generally be run either way and is called reversible. The storage of the
latent heat of evaporation due to the phase change of liquid water to vapor
in the atmosphere is an important process of thermal energy conversion. This
sink of energy (or source, during the process of condensation) is a significant
reversible energy transport mechanism. It must be addressed in the study of
cloud physics. It is also a significant contributor to the energetics of many
storm systems.

7.1 The First Law of Thermodynamics

The first law of thermodynamics states that in a system of constant mass,
energy cannot be created or destroyed. Thus any change in energy stored
in a material region equals the net ecnergy transfer across the boundaries of
that region. Atmospheric fluid flow problems include energy in several forms,
and in each problem there may exist sources and sinks of energy. The im-
portant forms of possible energy are the kinetic energy of the flow; internal
energy related to temperature; and work energy done by pressure forces,
internal stress forces and/or body forces. In a material region, net energy
change can take place as heat or as work. In an expression of the first law
of thermodynamics, we can conveniently separate the energy balance terms
into:

change in internal = Work energy + Total heat
energy transfer rate

3E/&t = d3W/br + dQ/dt 7.0

In the context of our general conservation statement in Section 5.6, Eq.
(7.1) gives the change in internal energy E of the material in a given volume
as the sum of the work done on the system and the heat added to the system.
We will examine each of the three terms in Eq. (7.1) with respect to volume
and/or area integrals over a parcel domain.
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7.1.1 Total Energy

We define the total energy of a ﬂowmg parcel to consist of the specific
kinetic energy dmluP/2/8m = 3|uf* = 3¢, and the specific internal energy
e. The rate of increase of total energy can be separated into the sum of the
changes in kinetic and potential energies. Once we have a quantity to be
conserved, we can balance its change over the volume by the flux through
the surfaces. .

The conservation of E = p(e + 3¢°) may be written

Jff2lerte)) o)

local time rate of change inflow/cutflow

where %qz is kinetic energy and e is the internal energy per unit mass. The
kinetic energy is associated with the mean macroscopic motion of the ag-
gregate of fluid. The internal energy represents the kinetic energy of the
microscopic motions (e.g., molecular vibration and rotation).

7.1.2 Rate of Work Done on a System

When we have a parcel experiencing distortion within a flow field we want
to know the work done on that system. Work equals the force times the
distance, and the rate of work is the force times velocity (constant force).
Thus we need to collect all the forces affecting the parcel. In Chapter 4 we
distinguished the forces as either body forces or surface forces. In addition,
the surface forces have been further separated into the normal pressure forces
and the internal stress forces. With this in mind, recall that on yields the
forces on the parcel surface, so that the work rate of these internal stress
forces may be written

u-(on)=-—pu-n+u-T

Hence, we can write an expression for the total work rate on the parcel as

W
— f[JFbudV ffpundA +jjurrndA

work rate - body forces - pressure forces stress forces
due to:

Note here that in the atmosphere, F, is generally the gravitational force per
unit volume. The change in potential energy will emerge from this term.
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It is important to notice that in Eq. (7.1) the work done by the parcel
equals a loss of energy from the parcel. Flow work is negative in the flow
equations. Thus, if we were to consider a finite volume that contained a
windmill that was extracting wind energy from the flow, the work done on
the windmill would be a sink term in the total energy budget of the flow.

Example 7.1

Consider a volume of air consisting of a box that surrounds a windmill. The
windmill extracts work energy to pump water. Sketch in the various work
terms that act on this volume of air.

Solution

We must consider the terms in Eq. (7.3), plus the work extracted by the
windmill. The gravitational force is normal to the horizontal flow near the
surface. Therefore it does no work. The other terms can be sketched as
shown in Fig. 7.1. :

The types of work included are

L. Shear work done by the shear stresses in the fluid acting on the bound-
aries of the control volume.

2. Pressure work done by the fluid pressure acting on the boundaries of
the control volume.

Flow T T T / Control volume
— R )
_’: Shear stress does work [
1
= ok —i *~— Wok —%
1 '
» done by ' — — . done
pressure : :' - against =%
' . pressure
— I i~ —
' —- — 1
—_— R I -
Work extracted by windmill

Figure 7.1 The work forces on a control volume. The arbitrary volume includes a wind-
mill in a segment of boundary layer with horizontal flow.
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3. Shaft work from a collector inside the control volume and transmitted
outside the volume.

7.1.3 Rate of Heat Transfer

The change in the internal energy due to heat transfer takes place in at-
mospheric flows mainly through two mechanisms. The first is the heat change
from thermal heat release or absorption from sinks and sources distributed
within the volume of the system. These are represented in the single param-
eter R. The second is a heat change due to heat conduction K. This is a
vector that shows the direction, in or out, and the magnitude of the heat
conduction through the sides of the domain.

aQ/81=fjprdv—ffK-ndA (7.4)

Generally the heat conduction K is related to the temperature gradient ac-
cording to the Fourier law for heat conduction,

K =k, grad T (1.5)

where k, is the heat conduction coefficient. This coefficient can be estab-
lished by experiment in a fashion analogous to the viscosity coefficient (Sec-
tion 1.11).

Once again we have a term where the source or sink of energy is dis-
tributed throughout the volume. Atmospheric examples of this include ra-
diative heating and/or latent heat release within the volume. The last term
in Eq. (7.4) represents the heat transfer across the surface. It is proportional
to a vector component of K normal to the surface. In this case, from Eq.
(7.5), heat flux depends on the normal component of the temperature gra-
dient vector on the boundaries of the domain.

7.2 The Energy Equation

The first law of thermodynamics relates the change in total energy to sink
and source terms—work rate and heat transfer. This is similar to the mo-
mentum principle relating the change in momentum to sink and source terms—
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the forces. The forces also appear in the sink/source terms of the energy
equation as they do work. Our goal is to obtain the field equation that de-
scribes the energy state at every point in a field.-Our method is to write the
energy balance for a small volume that will be considered in the limit of an
infinitesimal parcel.

In Fig. 7.2, the surface forces are the pressure and the surface stresses:
The body force work is done with or against gravitational force. The stress
work requires a combination of the components of Tn and u. The heat flux
depends on the orientation of the temperature gradient relative to each of
the surfaces. Finally, there may be radiative-type energy absorption through-
out the volume.

With Fig. 7.2 in mind and the results of Section 7.1, we can now write
3E /3t = 3Q/dt — dW/dt in terms of volume and surface area integrals over
our domain, the parcel. We apply the divergence theorem to the conduction,
stress, and inflow /outflow surface area terms. Then all of the energy flux
terms can be written with respect to volume integrals,

I ol ze)jv e [ el ) of
[ [[renaee [ [ aviomare [[[sav- [[[ avrca

(7.6)

Now, we let the volume of the parcel approach zero (staying within the
continuum of course). We obtain the differential form of the conservation
of energy for any point in the field.

In the limit 8V — 0 of Eq. (7.6),

a/atlpe + 3¢9} + divip(e + 3¢)u} = Fy-u + div(ou) + pR —div K

temporal internal + advective = work + work of + source — beat
energy + kinetic change of body surface and flow
energy change farce forces sinks

The left side of this equation may be written
pld/3t(e + 3¢7) + u- grad(e + 3¢9} + (e + 3¢®{dp/0t + div pu}

The second term in { } is identically zero from continuity, leaving
p{3/at(e+ 2¢") + u- grad(e + 340} = p{3/3t + u- gradi(e + 39°)

The full equation then becomes
p{d/0t + u- gradi(e + 3¢°) = Fy-u + div(ou) + pR — divK  (7.7)
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Figure 7.2 A small parcel of fluid with energy change terms. There are forces which
must be multiplied by u to yield work rates: gravitational g, pressure p, and stress vn (shown
on one face). There are also radiative transfer energy R and the heat transfer vector k,, VT.

Noting that the left side involves the total derivative, we can write
pD /Dt(e + %qz) = Fy-u + div(ou) + pR — divK (7.8)
In addition, a tensor relation can be employed here,
div(ou) =u-(dive) + o gradu
to express the stress work in two parts,
pD/Dt(e + 3¢°) =F,-u+u-dive + o gradu + pR —divK (7.9

This is the complete energy equation. The problem of the existence of
two terms involving the general stress tensor is still present. However, these
terms can be investigated by separating the pressure and stress forces. In
the process, we will find that the energy equation involves changes in the
mechanical energy (the velocity) and/or thermal energy (the temperature).
We will find that the work done on the surface contributes something to
both energy equations, part changing the velocity and part changing the in-
ternal energy.

7.3 The Mechanical Energy Equation

In the complete energy equation, Eq. (7.9), work energy can go into two
places. These are kinetic energy and internal energy. To simplify the anal-
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ysis of the work done we can construct an equation that involves the change
in kinetic energy alone. (Equally, we will isolate the internal energy in the
next section.) ,

Note that in Eq. (7.7) the work effect of the internal surface forces in
changing the energy is represented by div(ou). When this term is expanded,
there are many elements involving pressure, velocity, and surface stress. To
make this term more manageable (susceptible to approximation) we separate
the pressure and stress work terms.

For the mechanical energy part of Eq. (7.9) we want to concentrate on
the kinetic energy. To begin we can obtain an expression for kinetic energy
if we multiply the momentum equation by u,

u{pDu/Dt = pF, — grad p + div 1 = pF, + div ¢}
to get
pD(%qz)/Dt= pF,cu+u-dive
=pFy-u—u-gradp + u-divr (7.10)

This expression involves mechanical energies only (kinetic and work). The
first term in Eq. (7.10) indicates that the effect of the body forces work is
to cause changes in kinetic energy. The second term on the right is the work
done on the parcel by the pressure gradient. When the Vp < 0 the kinetic
energy increases, for there is positive work done. The last term represents
the work that must be done against stress gradients as the parcel is advected
through a variable stress field. Since atmospheric flows are dominantly hor-
izontal and stress gradients are mainly vertical, this term is generally much
less than u-Vp.

If we subtract the mechanical energy terms from the complete energy
equation, only terms that contribute to thermal energy will be left. We note
that there are two contributions from the internal fluid forces to the me-
chanical energy equation. However, these are not identical to the two terms
occurring in the complete energy equation (7.9). The difference is the part
of the internal work that goes to change the internal energy.

7.4 The Internal Energy Equation

The internal energy of the fluid gives a measure of the work done on, or
by, the fluid. In atmospheric physics, it is generally associated with the
temperature. It is of intrinsic interest as one of the “weather” parameters.
It also is important in relation to how much moisture, and hence latent heat,
can be stored in the air.
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The internal energy equation is obtained by subtracting the mechanical
energy terms in Eq. (7.10) from the total energy equation (7.9). This leaves

pDe/Dt = o gradu + pR — divK
or (7.11)
pDe/Dt = —pdivu+ 7 gradu + pR — divK

In this expression, the internal energy e is a scalar—as indeed are all of
the terms of this equation. Of special interest is the second term on the right
side; this must be a scalar product of two tensors. As such, this term is
difficult to evaluate (or even to write out). However, it can be important
when the high-frequency turbulent velocity fluctuations acting on the surface
stress forces are significant. Since we usually must address turbulence ef-
fects by parametrization with respect to the mean, we call this term the mean
dissipation.

Dissipation, ® = 7 grad u

We note that this term is in the tradition inspired by the generality of the
terms in the first law of thermodynamics—that when the energy terms do
not balance, one adds a new energy (from a wry comment by Henri Poin-
care). The dissipation is often “measured” as the quantity left over after all
of the other terms have been evaluated. ‘

The other contribution to the internal energy from the internal forces, —p
div u, is simply the work of expansion or contraction of the parcel against
the normal pressure force. The “direct” thermal energy fluxes are the vol-
umetric sink/source energy term, which is absorbed directly as a change in
internal energy, and the heat conduction, which also goes directly to change
the internal energy.

When V-u = 0, the internal energy equation involves only three small
terms—the dissipation, the sink/source term, and thermal conductivity. Fre-
quently in atmospheric dynamics, all three are very small and the energy
equation plays a surprisingly small role. In this case, temperature or ther-
modynamics does not enter the problem.

7.5 The Enthalpy Equation

The internal energy term e contains effects of the structure and motion of
the atoms and molecules. We will consider e to be the specific internal en-
ergy for a liquid or gas (single phase). It is primarily a function of temper-
ature. The change in internal energy is parametrized with respect to the quantity
of heat per unit mass required to raise the temperature a fixed amount, as
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discussed in Section 1.10. The pressure work involved when a compressible
fluid is considered is accommodated neatly by using the energy term en-
thalpy. For the basic case of dry air the temperature can be related to the
internal energy and the pressure under the definition of specific enthalpy,

h=e+p/p (7.12)

The enthalpy provides a relation involving the internal energy and the
mechanical properties. The transfer of energy between these two terms is
important only for a compressible fluid. When we treat the air as incom-
pressible, we can write

e=c,T=cT (7.13)
For a truly incompressible fluid,
c,=0e/dT], = c, = 0h/oT], (7.14)

However, air is compressible, and we only approximate it as incompres-
sible for low velocity and small changes in density. When there exist sig-
nificant thermal changes, new criteria for the incompressible assumptions
must be derived. In this text, we treat air as a perfect gas with constant
specific heats, so that .

h=e+p/p=e+RT=fcpdecpT (7.15)
We can express the rate-of-change equations with respect to the enthalpy
by writing
Dh/Dt = De/Dt + D(p/p)/Dt (7.16)
The last term in this equation may be written
D(p/p)/Dt = (1/p) Dp/Dt + p D(1/p)/Dt
= (1/p) Dp/Dt — (p/p”) Dp/Dt
Then, by using continuity, the last term can be rewritten to get
D(p/p)/DT = (1/p) Dp/Dt + (p/p) div u (7.17)
At this point we can substitute Eq. (7.17) into (7.16) to get
Dh/Dt = De/Dt + (1/p) Dp/Dt + (p/p) div u

or

pDh/Dt = pDe/Dt + Dp/Dt + pdivu (7.18)
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Then, using the expression for the total change of internal energy, Eq. (7.11),
this may be written

pDh/Dt = Dp/Dt + pdivu + o gradu + pR — divK
=Dp/Dt+ 1 gradu + pR — divK (7.19)
Or, by employing the definition of dissipation, we have
pDh/Dt =Dp/Dt + ® + pR — divK (7.20)

This expression can be combined with the mechanical energy equation (7.10)
to form a conservation of enthalpy plus kinetic energy,

p D(h + 3¢°)/Dt = Dp/Dt — u-gradp + 7 grad u + u-div 7 + pR
—divK + pF,-u
or,
p D(h + ¢*/2)/Dt = dp/dt + div(zu) + pR — divK + pFy-u  (7.21)

This equation differs from Eq. (7.9) in the form of the pressure terms on
the right side. This difference arises as a consequence of the p/p term in
the definition of enthalpy, Eq. (7.15). It is inconsequential for incompres-
sible flow, where (7.21) and (7.9) are the same. Thus the enthalpy equation
is of use only when the compressibility of the fluid is significant.

7.6 The Moist Atmosphere Energy Equation

One of the important features of the atmospheric flow is the moisture cycle.
Precipitation is one of the important “weather” parameters, and the latent
heat stored in the moisture is an important factor in weather systems. The
evaporation of water requires energy, generally in the form of radiant en-
ergy. The process of condensation releases this same energy. In between
these two events the dynamics of the atmosphere can shift the latent heat
around, dispersing it, concentrating it, or simply transporting it. This takes
place on many scales. They range from that of simple convective cumulus
production to the dramatic effects in hurricane energetics (where it is a prin-
cipal factor). It is a factor in the large-scale climatic studies of global heat
transport. Thus, it is clearly important to include the latent energy in many
calculations. An expedient but effective method is to relate this energy to
our basic observable parameter, the temperature.

The latent heat stored in the air will depend directly on how much mois-
ture is in the air. The energy equivalent of the moisture in the air can be
related to the mixing ratio,
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m, = mass of vapor/mass of dry air (1.22)
= pv/Pa

The amount of heat required to evaporate a fixed amount of liquid is the
latent heat of vaporization, L. The amount of heat released due to a phase
change from vapor to liquid may be written

~L Dm /Dt

This heat is generally released within the volume and can be considered part
of pR, leaving only the radiative body heating rate pR,. Inserting these terms
into Eq. (7.16) allows it to be written

pD(h + ¢*/2 + Lm,)/Dt = dp/dr + div(ru) + pR, — divK + pF,-u
(1.23)

Note that we have neglected transport of vapor through the surfaces. If
this is important, it must be included as a surface area source term on the
right side of Eq. (7.23). Finally, we introduce the geopotential for the grav-
itational body force,

pF, = pg = —p V¢ = —pde/dx (7.24)
Since ¢ is not a function of time, and has only the term gz, we can write
Do/dx = 0¢/dt + u d¢/ox + v dg/dy + wdp/dz = wde/dz = Fy-u
Hence, Eq. (7.23) may be written
pD(h+ ¢ + Lm, + ¢*/2)/Dt = 9p/dt + div(vu) + pR, — divK (7.25)

Note that in this equation the geopotential is included in the total deriv-
ative on the left side as was shown in Eq. (7.21). The energy quantities in
the total derivative occur frequently in atmospheric dynamics and are given
names. In this case, with no moisture considerations, the conserved energy
term is defined as

dry staticenergy=e+p/p+o=h+g¢ (7.26)

When moisture is added, we get the additional term in Eq. 7.25, defining
a new conserved quantity,

moist staticenesgy=h + ¢ + Lom,=C T+ gz+ L.m, (7.27)
When these terms are substituted in (7.25), we get

pD(cpT + gz + Lm, + ¢°/2)/Dt
= gp/dt + div(Tu) + pR, — divK  (7.28)
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Equation (7.28) provides another relation involving temperature, density,
pressure, and velocity in terms of empirical constants. Together with con-
tinuity, the momentum equation, and the equation of state, there is a closed
set of six equations for six unknowns.

7.7 An Alternative Derivation

As we have done for the conservation of mass and momentum, we can dis-
cuss the derivation of the energy equation in terms of a specific small parcel
of mass p 8V in a Lagrangian frame of reference. We can write the total
energy change as we move with the parcel.

The time rate increase = energy supplied + work done
of the total energy to the parcel  on the parcel

The total energy change (i.e., positive kinetic energy) may be writt/c/n:
D/Di{p V(e + 3q7)} = p 8V D/Di(e + 3¢°) + (e + 3¢°) D(p 3V)/Dt
iz
0 by continuity

The total energy supply is the sum of the mass times the source of sink
energy per unit mass, p 8VR, plus the heat flux vector. The latter may be
written, with the aid of the divergence theorem, as

v fforco

The work done on the parcel includes the body force work plus that done
by the internal surface forces. The rate of work done by the external force
field is p 8V Fy,-u

The work done by the stress can be integrated over the volume using the
fact that o is symmetric, so that we can employ the identity

u-(on)dA = (ou)-ndA

to write the work rate at the surface in a form to which the divergence
theorem can be applied,

[fovact [

We then put the above equations together, divide by 8V, and consider
the limit, 8V — 0. The resulting differential equation for a field point is

ple + 3¢°) = pR — div K + pF, +u + div(ou) (7.29)
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Once again, this is the complete energy equation. We can examine the
terms in this equation by splitting it into two parts. As in Section 7.3, we
get the mechanical energy equation by multiplying the momentum equation
by u,

p D(3¢°)/Dt = pF,-u + pu div & (7.30)

We then subtract the mechanical part of the energy, Eq. (7.30), from (7.29)
to get the internal energy equation:

pDe/Dt = —divK + pR + o grad u (7.31)

From this we can see that the body forces are converted into kinetic en-
ergy, and the surface forces work has two contributions:

1. Pressure work [d(pu;)/dx;]:

(a) This is the work that goes into compressing the parcel. The force
times the deformation changes internal energy through the pres-
sure part of o grad u, [p du;/dx;].

(b) The pressure part of the stress tensor in pu div ¢ = pu grad p is
velocity times force gradient. This changes the kinetic energy [the
u; op/dx; term]. This is the energy extracted from the flow. It is
equal to the work done on the parcel as it proceeds along the
pressure gradient.

2. Viscous work:

(a) The stress force times deformation changes internal energy through
the term

[7,; 0u;/ox;]
(b). The velocity times the force gradient changes kinetic energy through
lu; 97;/9x,]
The enthalpy equation corresponding to (7.31) is
pDh/Dt =Dp/Dt + pdiva + o gradu + pR — divK
or
pDh/Dt = Dp/Dt + ® + pR — divK (7.32)

We see that mechanical energy changes are due to the rate of work done
by body forces F, - u and stress forces in u div . The intemal energy changes
are related to the stress term through the tensor scalar product, o grad u.
This is the dissipation, which produces frictional heating. In addition there
are changes directly due to heat flux and sinks and sources, R.
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By now, we have obtained quite an array of possible energy equations.
This reflects the fact that energy has many sources, sinks, and forms. When
we are primarily concerned with the dynamics of the flow, the incompres-
sibility assumption decouples the energy equation from the other flow
equations.

7.8 Flow along a Streamline

Probably the most productive use of the energy equation for atmospheric
flow results from the relation for the change in energy propertics along a
streamline. When steady-state, inviscid approximations can be made, an
integration along a streamline relates the energy at any two points. This can
be a great advantage when the flow properties are considered at two sections
of a flow with the intervening region bound by streamlines. Then the prop-
erties at boundary points, which may be entrance and exits with uniform
properties, can be related. The flow in between can be quite complicated.

From the differential form of the general energy equation (7.9), we have
an expression for the total change in the internal plus kinetic energy of a
parcel as it flows along a streamline,

" pD(e + ¢*/2)/Dt = pu-F, + div (cu) + pR — divK  (7.33)

In the usual atmospheric flow problem, kinetic energy and pressure work
are the most significant terms, followed in importance by the gravitational
potential energy, the friction work and dissipation (particularly in the bound-
ary layers), and the heat flux terms. (Coriolis force, being a virtual force,
does no work. This is also evident from the fact that it is always directed
normal to the flow vector.) We will initially consider very simple flows that
require many assumptions to obtain the simple equations. However, there
are practical applications for even these simple flow situations.

A common way to simplify the problem is to consider cases where vari-
ation takes place in one direction only, a one-dimensional problem. The
variables are assumed to be uniform in the other directions. An example is
a streamline flow, viewed as one-dimensional with speed « in the x-direc-
tion, which is arbitrarily aligned with the velocity. (Alternatively, we could
consider natural coordinates, where x is the streamwise direction s and n is
the normal to the streamline (see Section 7.7.1). Consider a flow that is
steady-state, inviscid, with density constant, and K and R = 0. The parcel
energy changes are due only to body forces and pressure work,

pu d(e + u*/2)/dx = pFy-u — udp/dx (7.34)

These assumptions bring about a great simplification in the term con-
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taining the stress tensor. The result is that only the pressure term remains.
We can make several observations about the pressure gradient, pressure force,
and pressure work in order to understand the last term in Eq. (7.34):

—dp/dx is the pressure force/unit-volume;

—1/p dp/ax is the pressure force/unit-mass;

~1/p dp/ox dx = —dp/p is the work/unit-mass in moving dx;
~1/p dp/dx dx/dr = —u/p dp/dx is the rate of work/unit-mass.

We can also write the last term in Eq. (7.34) as
udp/dx = pu (1/p) dp/dx = pu d(p/p)/dx
Note that when density variation is significant,
d(p/p)/dx = (1/p) dp/dx — (p/p’) dp/dx

and the second part of this term is the work done in compressing the parcel.
From Section 5.4, this may be written

pdv/dx

which is the only term left in the elongation deformation term, div u, along

the streamline.
We can now write the conservation of energy equation, with ¢ as a gen-
eral potential for F,,

pu d(e + u/2)/dx = —pu de/dx — u dp/dx (7.35)
This equation may then be written as
pu (d/dx)[e + u*/2 + ¢ + p/p] =0 (7.36)

Thus, along a streamline (with assumptions of no heat transfer or tem-
perature variations, inviscid, steady-state and nondivergent flow) we have

et q/2+o+p/p=h+o¢+ %qz = constant (7.37)

This equation is often called Bemnoulli’s equation. It has a wide range of
applications and is a version of the conservation of energy equation. When
the temperature is constant (hence e is a constant) and density is constant,
Bernoulli’s equation yields quick solutions for the variation of velocity, pres-
sure, and height along a flow stream. It is also called Bernoulli’s Law.

Example 7.2

For the leaking tank of Fig. 7.3, calculate the exit velocity of the water as
a function of the water depth.
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1

Figure 7.3 Sketch of the flow of fluid through a small exit in a tank.

Solution

Energy losses due to friction are neglected. Bernoulli’s equation can be writ-
ten between two points in the tank. One can be chosen as near the surface
at height z. The other is at the exit at height 0. Then,

pi/p+Vi/2+z,=p,/p+V3/2 + 2,

We can assume that V, < V,. The pressure difference (atmospheric) at 1
and 2 is negligible compared to the other energy terms. Thus,

V, = (2g2)'"

Thus, the exit velocity decreases as the square root of the height of the
surface above the leak.

Example 7.3

Consider the airflow off a bay and into the deep canyons of a city with tall
buildings. Using a static pressure measurement at street level of 999 mb,
estimate the windspeed on a street at point B in Fig. 7.4. Assume two-
dimensional flow at street level; neglect friction. The street width is 20 m.
The street is 3 m higher than the bay.

Solution

Assume the change in internal energy is negligible. Then we can write Ber-
noulli’s equation between the Bay and the city street.

po/p + V(2)/2+20=pB/p+V2B/2+ZB
Ve = [24po — pa}/p + 20 — zg) + Vi]'?
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" Bayarea

999 mMh B mm——

Figure 7.4 Sketch of tall buildings, narrow streets by a bay.

Then,
Ve = [21000 — 999}) - 107! /0.00123 + 3) + 5%/
= [2(81 + 3) + 2512 = 14 m/sec

The funneling, or Venturi effect, of the narrow streets acts like a con-
verging nozzle to accelerate the flow.

For a particular parcel in a gravitational field with energy transfer, we
can write for any two stations that

Ae + A(¢%/2) + Agz + A(p/p) = the gain of energy

Ap/p is the flow work, on the parcel (at the entrance) and by the parcel (at
the exit). (Note that p/p is not an intrinsic energy—rather it is a transferred
energy.)

Equation (7.37) states that the sum of the internal plus kinetic plus po-
tential (gravitational) plus flow work energy is constant along a streamline.
We can also include terms for the heat transfer and rate of work per unit
mass by adding terms for their net energy transfer, (Q — W). Then Eq.
(7.37) becomes

e, +pi/p+ ‘I%/2+821 +(Q - Wy=e, + py/p, + q§/2+g22

initial energy of + net energy transferred = final energy (7 38)
the fluid parcel to the parcel of the parcel
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Figure 7.5 A bundle of streamlines, called a streamtube. Along the streamtube there is
a change in pressure, temperature, velocity, and height from station 1 to station 2.

This is a practical expression of the general energy equation for the par-
ticular flow conditions assumed. _

A finite volume can be defined by streamlines as the side walls, with the
flow in one end and out the other. A sketch is shown in Fig. 7.5.

Since streamlines have no flow normal to them, a solid surface could be
substituted for any surface made up of streamlines. In this case, the energy
terms must be multiplied by the mass flow rate to produce the total energy
change. However, since the mass flow rate is constant according to conti-
nuity, we see that a version of Bernoulli’s equation holds for the flow in
and out of arbitrary volumes. We will see this expression again for the con-
stant value of I.LE. + K.E. + P.E. + work. It has practical value when the
“tube” is expanded to be any container with an entry and an outlet. The
walls of the container are streamlines. When Eq. (7.38) is multiplied by the
mass flow rate and integrated over the flow area, the fluxes can be calculated.

Example 7.4

Energy flux
Consider the energy that is advected past an area enclosed in a streamtube.
(See Fig. 7.6) Discuss the energy flux across dA for p. = k, = R = 0.
Solution
The energy per unit mass advected past dA is

3¢ + e+ ¢lqg pdA

{K.E. + LE. + P.E.]} speed - mass
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Figure 7.6 Cross section of a streamtube.

Add to this the rate at which normal forces on the surface do work, pq dA,
1
[z4° + e+ ¢+ p/pl gp dA

In a steady flow field, the energy in the tube is constant and, since the
incompressible mass flux pg dA is also constant, Bernoulli’s theorem follows.

3¢ + e+ @+ p/p = constant, W=k, =0
A common special case occurs when there is no change in e or ¢.
%qz + p/p = constant = P,/p (7.39)

This defines the “total” pressure P, obtained when g = 0. It is a constant
along a streamline and represents the maximum attainable pressure when the
kinetic energy is completely converted to pressure. To keep the description
in terms of energies, the p/p term is sometimes referred to as a potential
energy. This can be based on the pressure gradient potential for driving the
velocity.

Since Bernoulli’s equation is of significant practical value, it is worth
looking at from other standpoints. For instance, one version can be obtained
from the momentum equation, where the streamline is aligned in the x-di-
rection. Only the mechanical energies will appear.

udu/dx + (1/p)dp/dx + ¢ =0

These terms are accelerations/unit mass or, equally, forces. By inte-
grating the force times distance along the streamline, we have
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f Force /unit mass - ds = work /unit mass

Au*/2 + Ap/p + g AZ = constant

8K.E.) + pressure + 3P.E.)
work (work done by gravity)

where AZ is the vertical change as the fluid moves along the arbitrary
s-direction. In terms of the total pressure,

1
g’ +p +pgz =P, (7.40)

dynamic + static + hydrostatic = total (pressures)

Example 7.5

The arrangement shown in Fig. 7.7 is called a Pitot tube. This instrument
for measuring windspeed consists of a slender tube oriented into the wind
with ports drilled around the circumference to admit the static pressure to
the tube. Another smaller tube is contained within the outer shell. It has an
opening facing the wind at the leading edge of the larger tube, thereby mea-
suring the total pressure. Both tubes conduct their pressures to gauges that
measure the difference in the two pressures.

Obtain an expression for the freestream velocity in terms of p,, and P,.
Assume the flow is in parallel straight streamlines and the disturbance caused
by the tube is small. Also assume that the distance from the freestream flow

_>1'
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Figure 7.7 Sketch of a Pitot tube. This device measures the total pressure at a stagnation
point 2, the static pressure in ports parallel to the stream flow at 3, and can register the Ap
on a pressure gauge, Po — Pum-
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at point 3 to the wall is small. Then the static pressure at point 3 is measured
at the wall intake holes of the tube. The density is given.

Solution

Bernoulli’s equation can be written along the streamlines. The center stream-
line impacts the tube at the center port, 2. Since the tube is slender, the
streamline 1’3 slightly above the tube is very nearly undisturbed. We will
include the height differential, centerline to freestream stream line, at first.

p+ pu’/2 + pgz =P, (constant)
static + dynamic + hydrostatic = total
pressures pressure
On streamline 1-2, the flow will come to rest at 2 by symmetry (the stag-
nation point), and

(i
o

pitpUi/2=p,=P, :
On streamline 1'-3,
P+ pUV /2 + pg Az = p; + pU5/2 + pg Az
We assume that
Uu,=U,=U,
and
P/ =ps;=pi—pgAz
pa=pit+pglz

Assume the pressure at points 3 and 4 are the same at the wall—the static
pressure does not change across the thin boundary layer. This does not vi-
olate Bernoulli’s law since it is across the streamlines. We will check this
in the next section, 7.8.1.

For the n (many) holes around the tube, there will be a mean pressure
measured in the tube,

Pm=pPistp.+.../n=p, (the static pressure
at the mean height)

We can write Bernoulli’s equation for U in terms of the pressure difference
measured by the Pitot tube and the density,

U, =[2/pPo— p)]"?

Thus, a small tube in a flow measures the total pressure at the impact
point and the static pressure at ports parallel to the flow. The difference in



284 7 Conservation of Energy

these pressures is directly proportional to the freestream velocity. This is a
very practical flow speed measurement device, and can be found in labo-
ratories and commercial jets.

Example 7.6

A Pitot tube is connected to a wind tunnel as shown in Fig. 7.8. The dif-
ference in height of the water manometer is 5 cm. Calculate the wind tunne]
air speed.

Solution

We can apply Bernoulli’s equation at a point upstream of the Pitot tube and
along a streamline that impacts the stagnation point of the tube,

Po/p + gzo + U2/2=p/p + gz

The static pressure is measured at the wall. As discussed in Example 7.4,
Ps =po. Thus,

/2= (p,—po)/p=(p.—p)/p
or
u=[2(p.—p)/pl"’

Substituting for (p, — py) = p.gd: p (air) = 1.23 kg/m’, and p (water) =
10° kg/m’,

u=1[2-1000-9.8-0.05/1.23]"/> = 28.2 m/sec

ko

i /P static A //A

—— P total
Y/

Figure 7.8 Pitot tube connected to a wind tunnel passage where wind flows with velocity
U. The difference between total and static pressure results in the fluid-height difference d.




7.8 Flow along a Streamline 285

We have assumed the height difference between the stagnation point and
the wall was negligible. This difference could easily be calculated in the
equation.

7.8.1 Bernoulli’s Equation in Natural Coordinates

The specialized coordinate system defined by the stream lines is called the
natural coordinate system. Here the two coordinates are along the flow path
and perpendicular to the flow path. Although it is not widely used, it has
sufficient advantages in certain flow situations that an example of its use
with the Bernoulli relation is informative. One of its liabilities is that the
expression for the acceleration, a, must include the effects of curvature of
the stream lines. The normal lines () are perpendicular to the streamlines
(s) and point toward the center of curvature of the streamline. The n-lines
and s-lines must change direction with the streamlines. At any point, the
(s, n) coordinate system defines a plane and the flow is locally two-
dimensional.

a=(a,a,)=Q0V,/ot+V,8V,/os, aV,/at+Vi/r) (7.41)

where r is the radius of curvature of the streamline. Note that although |V/,|
= 0 at all points, if the flow is unsteady, the streamline pattern may be
changing with time and we must include 9V ,/or.

The simplifying aspect of these coordinates is in the expression for the
velocity, where only one component is not zero,

V,=V, V,=0

However, as usual, this simplification is at the expense of another compli-
cation—and that is 9V ,/dx # 0. Since the direction of the coordinates is
changing continually, the vector direction of V, must change, although its
magnitude is zero. From Fig. 7.9, we see that 8V, =~ V, 80 = V_ &s/r.
Hence, aV,/os = V,/r.

Let us check to see what form the energy conservation takes in flow along
and across the streamlines. To do this we need the inviscid momentum equa-
tion in the n-direction. In this case the acceleration equals the sum of the
pressure forces plus a component of the gravity force.

pdA — (p + dp/dn dn) dA — (g cos 0)(p dA dn)
= (p dA dn)a, = (p dA dn)(V*/r + 9V ,/d1)

Thus, the n-momentum equation may be written
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Figure 7.9 A parcel in natural coordinates. The coordinate s is along the streamline and
n is directed toward the center of curvature, normal to s. In an increment of time, r moves
through an angle 88. The speed V, may change, and the vector direction of the (zero-length)
V, can change.

—dp/on dn dA — pg dz/dn dA dn = p(V*/r + 9V ,/dt) dA dn

since cos 6 = dz/dn, where the z-direction is the vertical—the direction
of g.
Or, for steady-state flow,

V:/r+ 1/pop/on + g dz/on =0 (7.42)

Similarly, the momentum equation along the steady-state streamline is
found to be

Vov/as+ 1/pdp/os + gdz/ds =0 (7.43)
When we integrate (7.43) along the streamline,

VZ/2 + Jdp/p + fg dz = constant

For constant g and constant p,
V2/2+p/p+gz=C (7.44)

This is Bernoulli’s equation. This form is consistent with the previous section.
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The natural coordinate system allows us to investigate the energy equation
when we integrate across the streamline.
In the special case of a straight streamline (r — ), Eq. (7.42) becomes

op/on+ pgoz/on=0 (7.45)
Then, integrating along the n-direction, we have
p + pgz = constant for p constant (7.46)

In this perspective, Bernoulli’s equation results with no kinetic energy
(no flow). The pressure (static plus hydrostatic) is constant perpendicular to
the streamlines.

In the general case with curved streamlines, assume steady flow so that
aV,/ot = 0, and Eq. (7.45) is

Vi/r+ 1/pdp/on + g oz/on =0 (7.47)

If we then integrate in the n-direction, we obtain
f (V*/P)dn + f (1/p) dp/ondn + g J’ (9z/dn) dn = constant
or
f (V¥/r)dn + f (1/p)dp/ondn + gz=C
For constant p flow, this becomes
f (V*/rydn +pfp+gz=C (7.48)

However, this is not quite Bernoulli’s equation. Apparently we cannot
apply Bernoulli’s equation normal to any streamline without additional con-
ditions. Since Bernoulli’s equation is a powerful integrated form of the en-
ergy equation, it is important to learn the conditions required for it to be
applicable. We will return to the Bernoulli relation and the circumstances
under which it can be used after we have discussed the vorticity.

7.8.2 Compressibility Effects in Bernoulli’s Equation

Most of the time we are able to successfully use the incompressible ap-
proximation for atmospheric flow. In addition to the simplification in the
equations from treating density as a constant, this assumption eliminates the
coupling between mechanical and thermal forms of energy. The Bernoulli
equation is then simply a mechanical energy equation. However, when the
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compressibility of the fluid is significant, the pressure variation must remain
an integral.

1
qu + gz + fdp/p = constant (7.49)

The integral of this equation along the streamlines in the case where the

density is allowed to continuously vary is
2

62_61+(u§_u%)/2+g(22“21)+j dp/p=0

1

We can get a nice expression that shows the contribution of compressi-
bility to Bernoulli’s equation. If we substitute in Eq. (7.36) the identity
relating dp to dv,, where specific volume v, = 1/p, we get

d(p/p) = (1/pydp ~ (p/p*) dp = (1/p) dp + p dv,
Then Eq. (7.36) may be written
d(e + u*/2 + gz) = d(p/p) — p dv, (7.50)

When this equation is integrated along the streamline, we obtain Bernoulli’s
equation for compressible flow,

e+ u’/2+gz+p/p— jp dv, = constant (7.51)

The pressure work consists of two parts. The p/p term reflects the energy
gained from flow along the pressure gradient, and the p dv, term subtracts
the work done on the parcel of fluid in the process of compressing it. The
last term can be neglected when the V-u = 0 approximation is valid (Sec-
tion 5.4).

Example 7.7

One way to state that the incompressible version of the energy equation can
be used is to examine the ratio,

characteristic mechanical energy

characteristic thermal energy

Consider air flowing at 40 m/sec, at 20°C, with internal energy about 200,000
m?/sec?. Is this flow incompressible?
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Solution

40% (m?/sec®) /2
('/sec)/2 1o

The ratio is 3 =
200,000 (m“/sec?)

When this ratio is very small, the flow may be treated as incompressible
in the energy equation. Thus, even this very strong wind is safely assumed
to be incompressible for the purposes of using the energy equation.

7.9 Summary

Since our focus is on fluid dynamics, the treatment of thermodynamics has
been relatively brief. However, in view of the importance of the energetics
approach to all of atmospheric physics, we have introduced some of the
phenomenological aspects of energy.

We have derived a conservation of energy relation for the case when heat
energy is a factor in our flow. The consequences are that a new variable
must be accounted for—either internal energy, enthalpy, or temperature—
and a new equation must be invoked. When temperature is to be the new
variable, empirical relations relating temperature to internal heat must be
defined. This is done with the experimentally determined specific heat con-
stants. The new equation is an expression of the first law of thermody-
namics. In it there occur energy terms due to the flow—the pressure work
and the internal forces work. Each of these has two contributions, one each
to kinetic energy and to internal energy.

We have covered the concept of the first law of thermodynamics that
allowed the derivation of a general conservation statement for the energy in
a parcel. The general format can be extended to include various energy sinks
and sources. Some of these are latent heat release, radiation heating, and
frictional dissipation.

The first law deals with the balance of energy terms between two equi-
librium states. However, the second law of thermodynamics, dealing with
processes and reversibility, has barely been mentioned. This law—that it is
impossible to completely convert a given amount of heat into useful me-
chanical energy—is implied in the concept of reversibility. Only when heat
conduction or dissipation is involved is the process generally irreversible.
For instance, when two fluids mix to a uniform temperature, energy would
be required to restore the fluids to their original conditions. Also, the fric-
tional dissipation is manifest in a temperature rise, which is irreversible.

Our laws of mechanics are generally reversible; that is, the action can be
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run backward in time, providing a great simplification in the equations. In
fact, the most important process in atmospheric dynamics is the reversible
adiabatic (with no heat exchange). In this case temperature changes with
density and pressure according to the perfect gas law. The most important
diabatic effect is probably that of vapor condensation with consequent re-
lease of heat within a volume. But fortunately, in most geophysical flow
problems, the thermodynamic work has been done before the problem is
addressed—in the production of the pressure gradient—and dissipation and
heat conduction are small quantities. They can generally be accounted for
by adding small corrections to the adiabatic processes.

The integration of the energy equation between two state points along a
streamline produced the Bernoulli equation. This is a convenient formula
relating conditions at specific points on a control volume. However, the
conservation of energy across a streamline is apparently different. We will
find that a discussion of vorticity will shed light on this difference.
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TYPES OF ENERGY-—THERMODYNAMICS
First Law of Thermodynamics
SE /bt = dW /dt + 8Q/dt

Kinetic Energy
Internal Energy
Rate of Heat Transfer

Energy Equation
pD/Dit(e + 3¢°) = pFy-u + u-div o + o grad u + pR — div K
Mechanical Energy Equation
p DGG)/Dt = pF,-u — u-grad p + u-div 7
Thermal Energy Equation
pDe/Dt = —p divu + 7 grad u + pR — divK
Enthalpy Equation
pDh/Dt = Dp/Dr + ® + pR — divK
Moisture Effects
Bernoulli’s Equation
e+q2/2+cp+p/p=h+(.p+%q2=C0nStant
Bernoulli’s Equation along a Streamline
Au’/2 + Ap/p + g AZ = constant

Pitor Tube
Natural Coordinates
Compressibility
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Problems
I. Do a force balance on a parcel in a rotating tank of fluid (see the sketch-

below). Assume pressure and gravity forces only. Substitute iy = ro, a, =
—pus/r, to get a formula for p(r).

AA = nonrotating depth

A' A' = rotating surface

2. A Pitot tube for measuring air velocity is connected to a differential
pressure gauge. If the air temperature is 20°C at standard sea level pressure
and the gauge reads a pressure difference of 2 kPa, what is the air velocity?

3. (a) Two conditions of air flow exist at a site with a pressure gauge as
shown. There is no flow over A. Over B, horizontal flow velocity is 10
m/sec. Is gauge A reading greater or less than gauge B?

V=0 V=10M/s e

L 1 Ig

(b) A spherical probe is used for finding air velocity by measuring the
pressure difference between the upstream and downstream points A and B.
The pressure coefficients at points A and B are 1.0 and —0.4. The pressure
difference p, — py is 5 kPa, and the air density is 1.5 kg/m’. What is the
air velocity?

4. You are designing a wind tunnel with a test section cross-sectional
area of 15 m? with windspeed of 10 m/sec. Calculate the power needed to
operate the wind tunnel. Assume p = 1.2 kg/m?; exit area is 30 m?; a loss
of energy is given as a head loss = (0.02)(U%/2g); negligible energy loss
in the entrance and atmospheric pressure at the exit.

5. The cooling system from a power plant discharges heated water into
a river. The river is 100 m wide and averages 6 m deep. It flows at an
average speed of 1.5 m/sec. If the net amount of heat is 10* kW, what is
the temperature rise produced in the river?

6. What happens to the energy equation when temperature can be con-
sidered constant in a problem?

7. A wind tunnel is constructed with a blower in a rectangular inlet sec-
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tion, a converging nozzle, and a test section at the open throat of the nozzle.
(See sketch.) Air enters at left and exits through test section at right. The
opening is 1 m X 30 cm, and the nozzle exit is 30 cm X 20 cm. The test
section velocity is to be 30 m/sec maximum. Assume adiabatic, incom-
pressible flow. What is the minimum power required to drive the tunnel
flow?

v =30 mis

Test Section

BEEE N
~os0—m

A\

8. Assume natural coordinates (s, n) with (V, V,). (a) What is the gen-
eral steady-state inviscid energy equation in the s-direction? (b) What is the
general relation in the n-direction? (c) What is (b) when V X V = 0? (d)
What is (a) when the fluid is significantly compressible?

9. Why didn’t the Coriolis force appear in Bernoulli’s equation?

10. Consider the fluid flow above an open drain. Approximate it as a free
vortex located at the origin (see sketch). For U; = 0.7 m/sec, U, = 0.1
m/sec, r| = 0.1 m, and r, = 1.0 m, use Bernoulli’s equation to find the
difference in height of the surface at 1 and 2.

11. Discuss the dynamics of a baseball curve ball in terms of Bernoulli’s
equations.
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8.1 Vorticity Characteristics
8.1.1 One-Dimensional Shear Flow
8.1.2 Two-Dimensional Shear Flow
8.1.3 Vorticity of the Parcel
8.2 Arbitrary Separation of the Velocity Field
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Summary
Problems

8.1 Vorticity Characteristics

So far vorticity has entered our discussions only peripherally. However, in-
dications of its importance have persistently arisen throughout the text. In
Chapter 1 it was associated with turbulence, even to the point of describing
turbulence as “distributed vorticity.” In Chapter 2 we introduced the math-
ematical definition of vorticity, V X u, and related it to the spin of a parcel
at a point. The vorticity is thus related to the velocity field through the

294
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character of the velocity shear at a point. The distinctly different term, vor-
tex, was also introduced in that chapter. It was used to describe the various
rotating fields that we encounter in atmospheric dynamics. There can be
confusion between these two terms in atmospheric dynamics because they
both play prominent roles. Once again, vorticity is still a point function (just
like temperature or pressure) even when the point is a grid point representing
a 100-km square of atmosphere or ocean. A vortex is a particular velocity
field with fluid rotating around a central point. A sketch of a vortex with
several arbitrary points extracted is shown in Fig. 8.1.

In Chapter 4 we found that the velocity gradient field could be conve-
niently split into two parts. One part, the symmetric tensor is represented
by the shearing gradient at a point. It was used extensively in explaining
the internal forces in the momentum equation. The second part is charac-
terized by the vorticity vector, which uniquely represents the antisymmetric
tensor. Finally, in Chapter 6 we saw that the rules necessary for determining
when the Bernoulli equation is applicable would depend on vorticity. Such
a basic parameter merits investigation.

The importance of vorticity arises from the fact that it has a governing
conservation principle. For inviscid flow, vorticity cannot be created or de-
stroyed. The vorticity equation will follow the format of our other field
equations: total change in vorticity equals the sum of sinks and sources. It
will involve the peculiar arrangement of velocity derivatives that form the
definition of vorticity. The vorticity equation will be derived by manipu-
lating the momentum equation. Since we already have obtained a closed set
of equations and the new equation is redundant to the momentum equation,
the vorticity laws would not appear to be necessary. However, certain phe-
nomena can be more easily understood in terms of vorticity dynamics. The
interaction of turbulent elements and cyclone dynamics are two examples of
processes which can be better understood by using vorticity concepts. In any
event, vorticity provides a different way of looking at the velocity field, one
which is particularly important in atmospheric dynamics.

The concept of vorticity is related to the spin of the infinitesimal parcel.
In fact, vorticity is a measure of the rotation rate of the principal axes cen-
tered at any point in the flow. However, the spin of a fluid parcel is not as
simple a definition as that of the solid body, where everything is rigid and
all lines rotate together. We can get some insight into the physical linkage
between vorticity and rotation (and the velocity gradients) by first examining
the two-dimensional flow in two basic flow patterns shown in Fig. 8.2.

In the first case we have a rotating tank where the velocity has come to
equilibrium and the fluid rotates as a solid body. In solid-body rotation this
can be seen by marking perpendicular axes on a parcel at z = O on the x-
axis some distance from the center of rotation. Then, at later times, both
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(=0 £=0

Figure 8.1 A vortex field (a satellite picture of a hurricane) with points A, B, and C
selected to illustrate the individual velocity u, and vorticity £.

axes—in fact all lines in a parcel—will have rotated an angle equal to the
rotation angle about the center of rotation. At the y-axis crossing, the axes
are rotated 90° in the same sense as the rotation of the entire fluid. In this
particular case, the point rotation of the parcel equals the rotation rate of
the domain about the center axis. There is no distortion of the cubical parcel.
Solid-body rotation is an exceptional case where the rotation of the parcel
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Figure 8.2 (a) Fluid in solid-body rotation in a rotating tank. A vorticity meter is shown
at three incremental times. (b) Parallel flow between two plates. Parcel axes are shown at
times 7 and ¢ + 8¢.

is the same as the rigid rotation. In general, the fluid parcel is expected to
deform under the internal shearing forces present in the flow, as in 8.2b.

8.1.1 One-Dimensional Shear Flow

In the second example, plane parallel shear flow near a boundary, the mean
flow of the fluid is moving in straight lines parallel to the surface. However,
the flow is decelerating as it approaches the boundary. When considering
finite dimensions of the parcel, the y-axis tends to turn due to the incre-
mental velocity in the y-direction, while the x-axis is simply advected along
the streamline without turning. So there is rotation at every point (x, y).
However, it is not clear what its value should be. One way of defining the
rotation of the parcel is to call it the average rotation of any two initially
perpendicular lines. Typically, these would be any two axes located in the
parcel, either at its center or at a corner. In this case, the vorticity of the
parcel is not zero, and the parallel boundary layer flow is rotational. The
rotation rate, defined as half the sum of the x and y axes rotation rate, is
simply equal to half the y-axis rotation rate. There is distortion of the parcel.
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8.1.2 Two-Dimensional Shear Flow

We can envision a shear flow case where the x-axis in the parcel rotates
counterclockwise at the same rate that the y-axis rotates clockwise. This will
result in a zero mean rotation rate. For this to happen, it is necessary to
have a v-component of shear that increases in the x-direction. When this
combination of shears exists, there is no rotation by our definition, but con-
siderable distortion does occur.

On the other hand, in example (b) a freestream, uniform, parallel flow
beyond the boundary influence will have no distortion, no vorticity, and
hence is irrotational. Thus, a rotational region can smoothly adjoin an ir-
rotational one.

In the example of steady flow near a boundary, the no-slip boundary
condition is satisfied by the action of the internal stresses. These produce a
velocity gradient in the fluid. As the velocity goes from a freestream value
to zero at the boundary, the internal stress goes from zero to a maximum
value at the boundary. If the fluid flow accelerates as it moves downstream,
the velocity and stress gradients will increase. Therefore, the rotation and
vorticity will increase. Such a layer is apparently a source of vorticity.

In the case of a rotating tank of fluid that is in solid-body rotation, there
are no vertical velocity gradients or viscous terms of evident importance.
The freestream flow apparently exists to the boundary. However, to estab-
lish such a flow, the action of internal stresses imparting the torque from
the rotating bottom of the tank to the fluid would be necessary.

To determine the dynamics of the parcel at a point it is necessary to
consider the specific arrangement of shear at each point. We must look at
the individual velocity derivatives in each direction. This is the role of the
scalar divergence, vector vorticity, and tensor deformation. Previously, we
have related the deformation to the strain rate using Stokes’ viscosity law
in Chapter 6. By this relation we found that the divergence represents a
strain-rate component. The nondivergent approximation, lacking this com-
ponent, permitted great simplifications in the basic equations. In this chapter
we will find that the vorticity also represents an important characteristic of
fluid flow. Significant simplifications in the equations result when it is zero,
particularly in conjunction with zero divergence.

8.1.3 Vorticity of the Parcel

Now we can look at the detailed deformation of the parcel for the case of
a parcel with unit depth in a two-dimensional flow. First, we consider the
parcel to be a rigid body and look at its reaction to a force F.

The parcel shown in Fig. 8.3 will move without deforming. Body forces
like gravity can be assumed to act at the center of mass, but surface forces
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Figure 8.3 The rigid parcel under a force F.

and other applied forces are not likely to pass directly through this center.
In fact, except for the unusual case of the forces applied exactly at the center
of mass, spin is to be expected of all bodies under the action of a force.
Thus the parcel will spin with respect to the original coordinate system at
a rate df/dr. All lines in the parcel will rotate with the same rate.

For a fluid parcel subject to a force, the parcel will deform as shown in
Fig. 8.4. Since the fluid parcel is deforming, different lines in a rotating
parcel will rotate with different rates. Thus, if we want to assign a unique
value to the rotation of the parcel we must consider more than one particu-
lar line. We will define the rotation of a fluid parcel about any axis as
the average rotation of two perpendicular lines in a plane that is perpen-
dicular to the axis. The vorticity can then be defined at a point as equal
to twice this fluid rotation rate. The factor of 2 simply eliminates the ; coef-
ficient that arises in the definition of the mean rotation. We will then be
able to show that the vorticity is equal to the curl of the velocity, or V X
u (del cross u) at that point. Vorticity, (unbold zeta), is always a vector.

B . 80

F—>

1
1
s
1
1
.

time t timet+ Ot

Figure 8.4 The fluid parcel under a force F.
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On the other hand, if one is approaching vorticity from a strict mathe-
matical direction, sometimes the cross product of u is taken as the definition
of vorticity. In this case, the equivalence of vorticity to twice the rotation
rate will follow. We will find that the vorticity is a naturally occurring pa-
rameter in our study of the general deformation of the fluid parcel.

In summary, some of the alternate ways of considering vorticity are

. Mathematically, { = V X u; the vector part of rot u.

. Physically, { = 2 d0/d:.

. Vorticity is related to the solid-body-like rotation of the parcel.
. Vorticity is related to the rotation of the principal axes.

AW N =

Example 8.1

A good feel for vorticity as fluid rotation at a point can be obtained from a
discussion of the two-dimensional case. Flow is in the x-y plane and vorticity
is in the z-direction only. Consider the parcel at a point shown in Fig. 8.5.
Find the vorticity at the point (x, y) in the fluid as the average rotation of
the line segments, 3x and dy.

u+ du/dy dy/2

B —

V- ov/ox 8x/2r [v+ av/ax 8x/2

A A’

B'————s

u-au/ady dy/2

Figure 8.5 The fluid parcel with unit depth in the z-direction centered at (x, y) = (0, 0)
in 2-D flow (u, v, 0).
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Figure 8.6 Motion of element 3x in time 3t. The line segment is stretched (or com-
pressed) and turned.

Solution

The rotation rate of a line segment is the angular rate of change, d0/dr. This
rate will depend on the difference between the velocity normal to the line
segment at each end of the segment, as shown in Fig. 8.6, Here, the line
segment is the incremental side dx, shown at an increment of time after it
has been turned by the increment of lateral velocity.

For the small 80, = sin 80, =

[(v + ov/ox dx/2) —(v — dv/dx dx/2)] bt/dx
= gu/dx dx/dx &t = dv/ax dt.
Hence,
80,/8¢t = dv/ox

Similarly, the rotation of the 3y side is 80,/5: = —du/dy.
The average rotation of these two orthogonal lines is defined as the an-
gular rotation rate of the parcel.

80/3t = 3(8v/dx — du/ay)

This is half the vorticity, { = dv/dx — du/dy at point (x, y). In this case,
86/8¢ is half the scalar value of the single component of the vorticity vector
in the z-direction, perpendicular to the x-y plane of the velocity shear.

8.2 Arbitrary Separation of the Velocity Field

The local rate of expansion associated with the divergence of a velocity
field, and the local vorticity associated with the curl of the velocity field
are both independent of the coordinate system. In Section 4.2 we determined
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that the relative motion of a fluid at a point can be viewed as a combination
of a pure strain with zero rotation and pure rotation with angular velocity,
d0/dt. The pure strain part was further separated into an isotropic expansion
or contraction associated with the divergence at a point, plus a straining
distortion without volume change. The strain portion of the relative motion
at a point was used in the stress to rate-of-strain formulation of Section 6.3.
We are now ready to investigate the second part of the deformation tensor,
the antisymmetric part, rot u. We know that this tensor has only three in-
dependent components and an associated vector, which is the vorticity { =
V X u.
Consider a general velocity field u with

V-u=D and VXu=¢(

where D equals the local rate of expansion per unit volume and { is the local
vorticity. The u can be separated into three parts: a divergent, irrotational
u®; a nondivergent, rotational part u®; plus any uniform translation V. [from

Eq. (4.7)]
u=v’ + u’ + Y

where (8.1
V-v*=D V- w"=0 V.- V=0-
Vxu' =0 VXxu={ VXV=0

8.2.1 Velocity Potential and Stream Function

We will now use mathematical characteristics of the curl and the divergence
to define two potential fields from which the velocity field can be deter-
mined. First, since curl grad(any scalar) = 0, the condition of irrotationality,
V X ug = 0, implies that the vector u® can be written as the gradient of
a scalar. We define this scalar to be ¢, the velocity potential, with ug =
grad o.

In a similar fashion, the incompressibility condition on w*, V-u® = 0,
implies that this velocity component can be written as the curl of some vec-
tor, since div curl(any vector) = 0. We define this vector to be the vector
velocity potential B, with u® = V X B. The three-dimensional vector po-
tential B is seldom used. However, it is of great value for two-dimensional
flow, where it has one component, B = (0, 0, ¥). The scalar ¥ is defined
as the stream function. This term is used because ¢ = constant lines are
streamlines. The stream function serves as a scalar potential for the velocity.

This partly physical description of the separation of the velocity field has
its counterpart in the general principle of vector analysis. Any general vector
function of position can be written as the sum of two vectors of form V¢
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and V X B, where only V¢ has nonzero divergence (hence, V-V X B =
0) with curl V¢ = 0; and only V X B has nonzero curl (curl grad ¢ = 0)
with V- B = 0. :

8.2.2 Relation between Velocity, Divergence,
and Vorticity

We can get information on how a parcel in a flow field interacts with other
parcels by considering how the velocity at a given point affects the velocity
at any other point in the field. This is best done by considering the separate
contributions of the two parts of the velocity, u® and u®.

First, we will consider the symmetric part of the relative velocity field.
From the definitions of u®,

e=V¢% V=V-u®=D 8.2)

This Poisson-type equation has solutions:

P3(x) = —1/(4m) f f f D' [rdV(x") 8.3)

where r is the distance from x to x’. The primed divergence D’ is evaluated
at x' for each point of the domain, and V is the volume of fluid, sketched
in Fig. 8.7. At any point in the volume we can calculate the velocity, which
is a result of the incremental divergence at every other point in the volume,
using the potential

VoS = uv’(x) = 1/(4m) J f f (r/r) D' dV(x') (8.4)

The velocity u® at any point x in the domain is the sum of contributions
from ail of the volume elements 8V(x'). The incremental velocity from each
8V is shown in Fig. 8.7.

du’(x) = (r/r) D' SV(x")/(@4xnr?) 8.95)

Equation 8.5 gives the increment of irrotational velocity distribution cor-
responding to a volume flux D’ 3V(x') at X’ through a surface of radius r
from point x’. (In other words, each volume element 3V acts like a source
in an otherwise expansion-free fluid.) The local elemental source strength
at point P' is D'(x") 8V'(x’). D’ is equal to the rate of expansion of this
volume element according to

d@dV)/dr
N

V-u=D'



304 8 Vorticity

Figure 8.7 An arbitrary volume V and element 3V at point P. The axes origin is 0, and
the point P’ ranges over the volume at distance r from P.

In a way similar to the above derivation of the incremental effects of the
local expansion rates integrated to give the irrotational component of ve-
locity at point P, we can express the antisymmetric component of relative
velocity u®, in terms of the incremental vorticity at all other points in the
domain. We can write u* as the curl of a vector potential B.

u® = V X B (vector potential) (8.6)
We can write the vorticity, { = V X u*, as
{=VX(VXB)=V(V-B)— VB (8.7)

employing a vector identity.
Since V-B = 0 (which requires that {:n = 0 at the boundaries), we are
left with

{=-VB
Once again, this is a Poisson-type equation with solutions

B(x) = (1/4m) fJJ’ {'/rdvxh (8.8)

and the total rotational (or solenoidal) contribution to the velocity field is

u'(x) = —(1/4m) Jffrx &' /r)) dv(x) (8.9)
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We can consider u’(x) as the sum of the contributions from each of the
3V'(x’) making up the volume V,

du' = —[(r X {')/(4mr’)] BV'(x") (8.10)

In this case, du® must be perpendicular to the vector r between x and x'.

Thus, at any point P(x) in the volume, there is an incremental velocity
consisting of 3u® + Su® due to the divergence and vorticity at every other
point in the volume, P’(x’). The total velocity at P due to the distributed
divergence and vorticity over the volume is given by the integrals in Eqgs.
(8.4) and (8.9).

Example 8.2

Consider a two-dimensional volume with unit depth. There is a singularity
at point P’ with source strength D’ 8V’ = 1000 cm’/sec and vorticity strength
{' 8V’ = 2000 cm’/sec. Sketch the velocity increments at a point P(x, y)
due to the source and vorticity at point P’ at distance r. Calculate the speed
at 7 = 5 cm and 20 cm.

Solution

We place our coordinates centered at P. (See Fig. 8.8) The singularities are
at some point r away. Hence we know there will be an induced velocity
along r due to the source (or sink) and an induced velocity perpendicular
to r due to the vorticity.

By

suS
5y8

P, ¢, D

Figure 8.8 The components of du at P due to D' and {’ at P’.
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If the flow is nondivergent and irrotational with the exception of the sin-
gularities at point P’, then the flow at P(x, y) will be

du = su’ + du*
= (D" i, + U'iy) V' /(41r?)
Hence at r = 5 cm,
du(5 cm) = (1000i, + 2000iy) /47 - 25
= (3.2i, + 6.4i,) cm/sec

and
|du| = 7.16 cm/sec
Atr =20 cm,
du(20 cm) = (1000i, + 2000i,)/4 - 400
= (0.2i, + 0.4i,) cm/sec
and

|d%| = 0.45 cm/sec

In both cases, the velocity drops off in accordance with the inverse square
law.

The parallel development of the two components of the velocity can be
seen in the recapitulation of the equations,’

o u
o = V¢* =VxB
V-u® = Vipg =D Vxu=-VB={ V-B=0
¢° = —1/4w [[{ D'/r dV(x') B = (1/4=) [Jf {'/r dV(x')
0w =Ve*=1/4n [[fr/rD dV(x)|u* =V X B =

—1/4xm [ffr X {/r dV(x")
du(x) = 1/4w r/r D' V(x') du® = —(r X U')/(dnr’) dV(x)

! Note that there is an analogy between the development in this section and that for elec-
tromagnetic theory. In that case a relation between electrical current and magnetic field is
obtained. Called the Biot—Savart law, it results when current replaces { and magnetic field
replaces u.
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8.3 Kinematics of Vorticity

We have determined that the mathematical definition of vorticity, V X u,
is related to the turning rate of our parcel of fluid. It is twice the angular
velocity. This is why a very small paddle wheel placed in a flow can be a
measure of the vorticity at that point. The vorticity is twice the rotation rate
of the wheel. We assume that it is measuring twice the rotation rate of the
small parcel at this location (i.e., it is a point measurement). While vorticity
is associated with the skew-symmetric portion of the deformation, it can
also be obtained from the complete deformation rate tensor by multiplying
by €, Since this tensor is skew-symmetric, its effect is to select out the
three independent terms of the rotation tensor.

€,k auk/axj = Eijk(ekj + mkj) = eijknkj =, (8.11)
Since
divecurlu=V-{=0 (8.12)

vorticity is a solenoidal vector. Thus, we can apply many of the ideas de-
veloped for a nondivergent velocity field to a vorticity field.

Example 8.3

Assume a flow field is observed to satisfy u = Axi + Byj.
(a) What are the restrictions on A and B for continuity?
(b) Is the flow irrotational?

Solution

(a) To satisfy continuity du/dx + dv/dy = 0, du/dx = A and dv/dy = B.
Thus, A + B =0and A = —B.
(b) Check to see if V X u = 0.

du/dy = 0; ov/dx = 0. Thus, dv/dx — du/dy = 0

and the flow is irrotational.

8.3.1 The Vorticity Filament

In analogy to the definition of a streamline, consider a line such that its
tangent is parallel to the local vorticity for all points. This line is defined



308 8 Vorticity

as a vorticity filament. (It is often called a vortex line, but this is likely to
cause confusion with the line vortex, to be defined in Section 8.4.4.)

In the case shown in Fig. 8.9, only {, is not zero and the vorticity fil-
ament is parallel to x,.

8.4 The Vorticity Tube

The vorticity filament hasn’t the great practical usage of its counterpart, the
streamline. However, if we pursue the analogous definition to a bundle of
streamlines forming a streamtube, we obtain the vorticity tube, which does
have practical application. Thus, we consider a reducible closed curve C as
a singly connected region (e.g., no cylinder inside). From the surface con-
fined by C we can construct a three-dimensional volume called the vorticity
tube. We define the sides of the tube as made up of all vorticity filaments
that pass through C, and terminate at another closed curve, C,. This is de-
fined as a vorticity tube, shown in Fig. 8.10. (Although the term vortex tube
is in general use, we are reserving the term vortex for the fixed and free
vortex fields).

Closed curves such as the C in Fig. 8.10 define a set of vorticity filaments
that pass_through them at some specific time. They can be thought of as
marking a collection of the fluid material. Such lines are sometimes called
material lines. They always pass through the same fluid parcels. The history
of the material lines is of specific interest in atmospheric dynamics. The
lines contain the same fluid for all time as they move and distort with the
flow.

Just as V- u = 0 requires that streamtubes cannot end in the fluid, V- {
= 0 requires vorticity tubes to not end in the fluid. They may form closed
loops, extend to infinity, or terminate at a surface where { — 0.

X
x/ ‘

Figure 8.9 A vorticity filament for the case { = {, at point (x, 0, 0).
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Figure 8.10 The vorticity tube.

According to the divergence theorem, the vorticity flux across the surface
area of the tube, S, equals the divergence of the vorticity within the bounded
volume. In the case of our vorticity tube with caps A and A’ on the ends,
we can write the integral over the entire surface of the vorticity tube as

Jjg'ndA=fJ§'n2dA2_ff§'ﬂ1 dA1+ff§-n3dA3
end end

sides

Now, this integral can be related to the volume integral of div { using
the divergence theorem,

ffg-nm=fjjdivcw=0 (since div curl u = 0)

and { is normal to n;; hence {-n; = 0, and

ng-nl dA1=Jf§-n2dA2=constant (8.13)

Thus, the scalar quantity,
J' f {-ndA

is constant along the tube, even though the cross-sectional shape and area
may change. It is defined as the strength of the vorticity rube. We expect
this quantity to be useful, as it is a conserved property. However, the vor-
ticity flux is not a physically tangible property to most of us. Fortunately,
it can be related to a more palatable parameter, circulation.
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8.4.1 Circulation

The circulation associated with a closed curve S is defined as

I‘E%u-ds (8.14)

I is positive for counterclockwise circulation (the right-hand rule is applied).
Consider the circulation in the x-y plane of the small element of Fig. 8.11.
We can write the circulation around the element as,

' = [v + (dv/0x) dx — v] By + [u — (u + (Ju/3y) dy)] 8x
= (du/dx — du/dy) dx By
or
3’ /BA = dv/dx — dufoy = [

The vorticity is equal to the circulation per unit area.

U +al ay QY

Figure 8.11 A small element with 8I" = u- 8s.

Example 8.4

By examining the circulation of a small circular parcel, show that the strength
of a small circular vorticity tube is equal to the circulation around the vor-
ticity tube. Relate it to the vorticity of the parcel viewed as a point in the
field.
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Solution

Consider the small element 3A shown in Fig. 8.12, with incremental cir-
culation 8" = u - 8s. From the definition of the circulation (ug is constant),

o' = Lim Qu-dS = fﬁ Uy dS = ue(2m or)
3r—0
Hence, we can write for the incremental area of the parcel,
uy = 3I'/(27w dr) or &' =21 &ru, (8.15)

We know that in the limit of a very small parcel, the rotation can be
viewed as solid-body rotation. It is associated with the vorticity at the point
of the parcel. From solid body rotational velocity, uy, = dr d6/dt, we get

Uy 8S = (dr do/dr)(2w &r) = 2 (d9/df) © &
=2 (d0/dt) 5A = [3A
or
8A = ug 2w or/L (8.16)

Therefore, from Eqs. (8.15) and (8.16), in the limit for a small parcel we
obtain '

_or 27 8r ug
lim —=—————=1 (8.17)
8a—-00A  2m dr /L

or vorticity equals the circulation per unit area at a point.

ug
5r ds

-
N

Figure 8.12 A cross section of a small circular vorticity tube.
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Of course this is identical to the result for a square. In the limit of 84 —
0, the shape of the parcel does not matter.

The circulation around an element can be used to relate the circulation
around a finite curve to the enclosed vorticity. Consider the fluid divided
into a mesh as shown in Fig. 8.13.

The total circulation around S can be approximated as the sum of the
circulation around all contained mesh units with incremental circulation 3T';.

r'=> 8,

The adjacent sides of individual mesh units have equal and opposite du - ds
contributions to the total circulation at all interior points. There is a non-
canceled contribution only from the sides of units that adjoin the bounding
surface. Therefore the sum of all mesh circulations in A will be equal to the
sum of the boundary contributions.

8.4.1.a Stokes’ Theorem Relating Circulation to
Vorticity

We can place the relationship between the vorticity and the circulation
on a formal level by using Stokes’s theorem. This theorem relates the line

Figure 8.13 A curve S enclosing an area A with circulation.
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integral of a vector around a finite curve to the areal integral of the curl of
the vector over the area contained within the curve. We have seen that the
vorticity is the circulation per unit area. Since the circulation is the line
integral of the velocity around the curve, and the vorticity is the curl of the
velocity at a point, Stokes’s theorem will relate these two quantities for a
finite region. Note that translational velocities give no net contribution to
the circulation.

Stokes’s theorem states that the line integral of u - ds around the perimeter
is equal to the integral of the curl w over the enclosed area,

§u-dS=ffcurlu-ndAEff§-ndA=F (8.18)

Therefore, in addition to the definition of I as a line integral of the tangential
velocity around a closed curve, we can think of circulationi as the flux of
vorticity across the surface enclosed by the curve. We can also consider I'
as the strength of the vorticity tube defined by the curve S. The circulation
is an important concept because it can be determined from a measured ve-
locity field, and it is conserved for the vorticity tube.

8.4.1.b Vorticity of a Vorticity Tube Segment

In atmospheric dynamics we frequently deal with a thin two-dimensional
fluid layer with a finite vorticity tube extending from top to bottom. We can
combine the conservation of circulation with that of mass to derive a prac-
tical rule for the behavior of such a vorticity tube segment.

First, consider part of a vorticity tube where

oI' = { A = constant (8.19)

Vorticity tubes are buried in the fluid and move with the fluid, enclosing
the same material at all times. Hence, a segment of a vorticity tube with
length dL (Fig. 8.10) defines a material portion of the fluid. In homogeneous
flow the contained mass is preserved, so that

&M = p dA 8L = constant
Then, since the circulation 8" = [ 3A is also constant,
dM /3T = (p/¥) 3L = constant (8.20)

Thus, in constant-density flow { varies inversely with 3L, the length of
a vorticity tube segment, as pointed out by Helmholz in 1868. With constant
density, if we stretch the tube (increase 8L), then { must increase. This is
an increase in circulation per unit area, and therefore the u, will increase.
This characteristic behavior will appear when we consider the variation of
vorticity in the fluid as it is described by the vorticity transport equation.
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In atmospheric applications, the flow is often treated as two-dimensional
horizontal. The absolute or total vorticity, {; = { + f, can be expressed for
constant density by Helmholz’s law as

% = constant = potential vorticity (8.21)

The scale length L is taken as the effective height of the “parcel” of air,
For a uniform region, Stokes’s theorem allows us to apply Eq. (8.21) to a
large uniform mass of air. The fact that {; has two independent parts, where
f is the vertical component of the earth’s vorticity, means that Eq. 8.21 can
be satisfied in a variety of ways.

Example 8.5

Consider the flow of a vortex in water flowing through a channel with a
hump in the bottom as shown in Fig. 8.14. What is the behavior of the
vorticity tube segment shown?

Solution

We have

0/Ly = GfL, = U3/Ly = LfLy = Us/Ls

5

Figure 8.14 A sketch of a vertical vortex tube segment experiencing shortening due to
bottom topography.
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Also,
I'=0A; = 5A; = A; = LA, = A
Since
L>L,>L, <L, <Ls=1L,
L>6L>06<6L<=1

The vorticity decreases over the bump, then increases as it returns to the
low part of the channel. Similarly, the area must increase over the bump
and then decrease when the length grows to L,.

Example 8.6

Consider the effects of an atmospheric flow of a uniform, steady passage
of an airmass over a mountain range under the constraint {y/L = constant
for (a) westerly flow; (b) easterly flow. In each case, briefly describe what
is happening to L and vorticity at the stations shown in Fig. 8.15 and 8.16.

Figure 8.15 Westerly flow over a mountain range showing a finite mass of air with
vorticity, { + f.
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Figure 8.16 Easterly flow over a mountain range of air mass with vorticity { + f.

Solution

We have two contributions to the vorticity of the air parcel. One is from
the planetary vorticity and one from the relative vorticity. Thus, a change
in L can be balanced by changing either or both of the local vorticity or the
Coriolis component (the latter by changing the latitude).
(a) For a uniform westerly flow, the flow must move as shown in the
cross-sections at the top of each figure for the reasons given at each station.
Station descriptions for Fig. 8.15 are as follows.

1. Assume {jo.q = O so that { = f. Then f/L, = potential vorticity.

2. L is decreasing; according to Eq. (8.21), {, + f, must decrease, ap-
proaching either anticyclonic curvature or southward movement. The local
vorticity is increased by turning south so that both mechanisms act in consort.

3. L is maximum and ({; + f5)/L;. However, there is continued south-
ward movement. A new equiibrium ({, + f,)/L; is sought, but { must re-
verse curvature to cyclonic, at f,. At 3, fis still decreasing, and an overshoot
occurs northwards.

4. ¢ now has a positive cyclonic contribution, f is minimum, and (¢, +
f4)/L,;. Now L begins to increase.
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5. With both northward movement and anticyclonic tendency increasing
total vorticity, an equilibrium is easily maintained. { will decrease to zero
at some point where f;/Ls is the equilibrium state again. However, f is
increasing.

6. An overshoot, an anticyclonic ridge to balance the increased planetary
vorticity, occurs here, and so on.

Because equilibrium is not reached until trajectories with excess f con-
tributions are attained, a series of waves exists downstream.

(b) For a uniform easterly flow, the flow pattern will be different because
the two contributions do not have the same sign in the initial turn.

Station descriptions for Fig. 8.16 are as follows.

1. Uniform flow with {/L = f,/L.

2. As L decreases, if the { + f decrease is taken care of by a { change
to anticyclonic, there is a turn northward, which implies an f increase and
a more negative {. This eventually would act to turn the flow around—not
a solution for uniform flow over a mountain range.

A possible solution which is always in equilibrium occurs if f decreases
initially. Then a cyclonic turning lets a { increase balance the f decrease,
and flow can turn in equilibrium even before experiencing a change in L.
As L decreases and f decreases, less positive contribution from { is needed
to balance ({ + f)/L,.

3. Equilibrium is obtained at f;/L; with no contribution from {; however,
[ is still decreasing.

4. There is an anticyclonic maximum at an f; minimum: ({; + f3)/L,.

5. Both { and f increase through a point where f5/Ls = f,/L,.

6. { will reach a small anticyclonic maximum while f; < f;, = f.

7. With no other gains or losses, f;/L; = fi/L,.

Here, the early start in adjustment of {; with change in fleads to a symmetric
solution.

Notice the important difference at each station 5. In both cases, L is in-
creasing; hence { + f must increase and f is increasing. However, in (a) {
is decreasing and in (b) { is increasing. The net effect is to restore uniform
flow quickly in case (b), but to allow waves in case (a).

8.4.2 The Line Vortex

A concentrated line vortex is a mathematical concept with significant prac-
tical applications. It is defined as the limit of a vorticity tube for a small
area while the circulation is kept constant.
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lim vorticity tube = line vortex; I" constant
8A—0

The line vortex is thus a line singularity—or, in two dimensions, a point
singularity—with circulation I". The circulation is the characteristic feature
of the line vortex and is called its strength. From Eq. (8.16), we can de-
termine the flow around an infinite straight-line vortex in a field with no
other sources of vorticity. The flow will have tangential velocity inversely
proportional to the radial distance from the point of vorticity,

uy = rdd/dt = T/(Q2mr) (8.22)

This can be seen from the definition of circulation as the line integral around
a circle of radius r, since the total contained circulation is that of the line
vortex. The vorticity is the circulation per unit area, I'/(wr?).

The line vortex can be viewed as a bundle of vorticity filaments as shown
in Fig. 8.17. It has a vorticity distribution that produces a circulation I’ and
associated velocity

ug = r do(r)/dt = r{(r)/2 = (r/2) [T/nr’] = T/Qxr) (8.23)

Since the velocity is of form u, o C/r, this is a free vortex. The velocity
field around the line vortex is the irrotational free-vortex field.

The distinction between the vorticity filament and the line vortex is sig-
nificant-—they are two different things. The vorticity filament is a line of
fixed vorticity with a point concept of the velocity field in the immediate
vicinity as solid-body-like rotation. Thus, ds = r d6 and u, = ds/dt, or

ug =rdd/dt=r{/2 =Cr

The local vorticity at a point (of a parcel) assoc1ated with vorticity { is a
Sforced vortex velocity field.

Lim
5A~—0
T constant
o, 5\,’_“.2"- .
88500880 '
560 r\ov:%g

Figure 8.17 The line vortex with associated velocity u,.
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The line vortex is a useful concept when the flow field of interest is large
compared to the concentrated area of rotation. This model provides us with
a good approximation even if the line vortex is curved in space, provided
that its radius of curvature R satisfies r/R < 1. It yields a good first ap-
proximation for the winds in the vicinity of tornados, whirlwinds, whirl-
pools, contrails, coherent vortices, cyclones, and hurricanes. This singular-
ity in an otherwise irrotational field supplies a crucial ingredient to the potential
flow theory discussed in Chapter 9.

8.5 Vorticity Transport Equation

One of the reasons that vorticity is such an important parameter in atmo-
spheric flows is its quality of persistence. When a fluid mass acquires vor-
ticity, this “arrangement” of the velocity field is quite stable and tends to
last a relatively long time compared to other flow patterns on the same scale.
In the atmosphere, cyclones and hurricanes last for days, containing the most
important aspects of the daily weather pattern. There are also vortex motions
on scales of PBL-size vortices embedded in a typical PBL, or tornados spawned
on the thunderstorm scale; and on down to the three-dimensional vorticity
characterizing the boundary-layer turbulence. Also, in the ocean there are
vortex eddies with scales in 10-100 km and lifetimes from days to years.
To investigate the role of vorticity, we start with the definition of vorticity
as a characteristic of the relative motion at a point of the velocity field. We
then construct an equation for vorticity from our equation of motion.

Recall that for an antisymmetric tensor there is an associated vector with
clements equal to the three independent elements of the tensor. For the ro-
tational part of the velocity deformation tensor, rot u, that vector is the
vorticity vector. Thus the action of the rotation tensor on any vector v can
also be obtained by the cross product of { with that vector,

rotw)v = X v with {=V Xu (8.24)

Since our basic equation of motion, the momentum equation, involves the
velocity as the dependent variable, by taking the cross product of all terms
we will obtain an equation involving vorticity. We will develop this equation
using symbolic notation and vector identities, starting with the momentum
equation.

p Du/Dt = p {3u/ar + (u- grad)u}
= —gradp + pdivgradu — pfk X u

where we have used the alternate expressions,
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(grad uw)u = (u- grad)u
F, = fe,jik;u, = fk X u, k=(0,0,1)

Recall that div grad u = V?u in rectangular coordinates only.

Divide through by p to minimize the occurrence of p. The advective term
and the viscous term can be broken into parts. This is advantageous since
curl u = { occurs and gradients of scalars result. The latter will vanish when
the curl of the equation is taken. We will need several of the tensor relations
from Chapter 4, starting with

(a- grad)a = grad a’/2 + (curl a) X a
and
div grad a = grad diva — curl curl a (8.25)

Thus, the momentum equation may be written
du/dt + grad /2 + (curlu) X u = —1/p grad p
+ v grad(divu) — vcurlcurlu — fk X u
Substituting vorticity for curl u,
ou/dt + grad u’/2 + { xu+ 1/p gradp
—vgrad(divu) + veurl{ + fk Xu =0 (8.26)
Take the curl of this equation,
curl du/dr + curl(grad ©*/2) + curl({ X u) + curl(1/p grad p)
— curlfv grad(div w)] + curl(v curl {) + curl(fk X u) =0 (8.27)
Now use the identities:
curl grad ¢ = 0
(to eliminate the second and fifth terms);
curl(a X b) = div{(a; b) — (b; a)}
and
div(a; b) = (b V)a + (div b)a
[noting that (b-V)a = (Va)b]; to get
VX (@Xxw=w-V)+V-wl— & Vu-(V-Du
and
VX(fkXuw)=@-V)fk+ (V-u)fk — (fk-V)u — (V- fKku
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The last terms in each of these expansions equals zero (div curl u and
af/9z = 0). Substituting these two identities into Eq. (8.27),

ag/ot + (m-V){ + (V-w){ — (- Vyu + V X (1/p grad p)
+WWXVXE+ - Vfk+ V-u)fk — (fk-V)u=0 (8.28)
Use Eq. (8.25) to change the viscous term,
veurl curl { = —v div grad ¢

Several terms can be combined to form the total vorticiry term,
aL/ot + (w- VYL + fK) + (V-w)(C + fk) — [(L + fk) - V]u
— vV +VX(/p)gradp =0 (8.29)

When density variations can be neglected, the last term can be dropped.
This is a good approximation in the atmosphere if p is a function of pressure
only. In most cases, we can assume w << u, U and negligible horizontal
change in density.

Thus, with V X (1/p) = 0 and substituting

[(€ +fk)-VIu= (Vu)( + fk), (8.30)

‘;_f + (VI + fK) + @iv ) + /K) — (V)E + k) — v VL =0

This is the basic vorticity equation for many practical applications. It is an
equation for the rate of change of angular momentum of a parcel, accounting
for the rotating frame of reference. Note that we have picked up three terms
from the advective portion of the total velocity derivative. This is a con-
sequence of a vector { (which depends on u gradients) being advected by
u. In addition to the local plus advective change making up the total deriv-
ative, there are three terms that change the vorticity. These are (1) an area
change preserving circulation and thereby changing vorticity due to the di-
vergence of u; (2) distortion effects due to the velocity gradient tensor op-
erating on the vorticity vector; and (3) the tangential viscous stress forces
imparting rotation by diffusion, or generating vorticity at a boundary.

In atmospheric synoptic scale problems, the domain extends over a large
enough scale (500—1000s km) that the change in Coriolis parameter must
be included. The significant vorticity term is { + fk = {, defined as the
total vorticity. Since dfk/dt = 0, Eq. (8.30) may be written

o + fk)/ot + (u- grad)[{ + fK]
= [({ + fKk) - grad]u — ({ + fk)(divu) + v V¥ (8.31)
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This form of the vorticity equation has widespread use in synoptic meteo-
rology and oceanography.
We can write the vorticity equation compactly.

D{1/Dt = —{rdivu+ (rV)u + vV

Rate of = Diverge: + Di ion of parcel, +  Diffusion
change of area change change radius gyration, between (8 . 32)
vorticity (horizontal) twisting, tilting parcels.

The vorticity equation is somewhat similar to the momentum equation.
The total change in vorticity depends on several sink/source terms, and the
viscous term is identical. The complete equation is difficult to solve—it is
a nonlinear vector equation with a tensor operating on the velocity vector
in the distortion term. Consequently, approximations are generally made to
simplify the terms.

8.5.1 The Advection Term

Since many atmospheric flows are approximately horizontal and two-di-
mensional, the vertical component is the only significant component of vor-
ticity in these cases. Also, the Coriolis force varies with y (latitude) only.
Then, the vorticity advection term (u - grad) { is greatly simplified. Thus,

- Vir=w@d/ax+vad/dy+ wa/oz)O0, 0, { + v affdy
=wad/ox+ va/dy +wa/az)*+ vaffdy (8.33)

Equation (8.32) becomes a scalar equation, with { = {, {y = {3 = {
+ £,
arfat+ VYL + vaffdy = Lz ow/dz — L V- u + v 91/

In addition, the viscous diffusion can generally be neglected for large-scale
flow. We then get

afar+ - VY{+vaffoy=L(r0w/oz— [t Vy-u (8.34)

Equation (8.32) has a different approximate version for mesoscale or pla-
netary boundary layer scales, where the variation in Coriolis parameter is
negligible (f <€ {), and frequently div u = 0, but the viscous term is im-
portant, so that

D{/Dt = (¢~ grad) u + v V¥ (8.35)

Vorticity change = Distortion + Diffusion
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Example 8.7

Derive Eq. (8.32) from the component momentum equations. To simplify
this illustration of the large number of terms that arise when dealing with
the individual components, leave out most of the terms in the first few equa-
tions, carrying only sufficient terms to illustrate the procedure.

Solution

Subscripts denote differentiation, superscripts denote components.
Continuity:

u,tv,+w,=0

We can generate vorticity component terms like {* = v, — u, by forming
these terms out of the component momentum equations.

u,+ oot wu, = v tuy, tu)=0
v+ ... twe,+ L v, o, tu,)=0

Then, cross differentiate the u-momentum equation with respect to y and
the v-momentum equation with respect to x.

Uyt oo wa, Fwu, VU, Fouy,, ) =0
Vet .. twu, twu, + . = V(U T U, T 0,0 =0
Subtract the second equation from the first (to form vorticity terms):
(Wy—u)+ ... +w,—u), +wu, —wu, —w, (U, —u,) + ...
=v(.. + v~ (8.36)
Here, continuity has been used to write
uu, — UL, +uy, —uv, = —(u, + U, )v, —u,) = —w, (v, —u,)

Now, collecting all of the terms for v, — u,, the z-component of [ in Eq.
(8.36), we get

Grultvl+wh=-wu, +wu, +wl+. ...+l +§,+5)
The rest of the terms can be combined to form components of { to get
GHul+vl+wl=wl+wl+wl +vV{

or
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DU /Dt = (L grad) w + v V?(° (8.37)

This is the z-component equation for {. If next we calculate 9/9y (w:
momentum equation) — 9/dz (v-momentum equation) we would get the
x-component of the { equation. Another similar calculation would yield the
y-component equation.

Adding all three components gives

D{/Dt = (L~ grad)u + v V¥
or
D{,/Dt = {; du,/dx; + v 8,/ 9x; x; (8.38)

These are the vorticity transport equations. We have written the first term
on the right side in the symbolic form as a scalar ({-V) times a vector u.
Note this may also be written as the vector { times the velocity gradient
tensor,

u
(gadwy{=\| v, v, v; |0, 0

w, w, W,
=l o, w S+ w0+ w,l]

The z-component of this term is
WwAw, = v) + w (e, = w,) + w. v, — u)
=SwWw, —U W, T Wi, - ww, + Wb, — W,

=—wu,+ wyu, +wu, —wu,

as found above.
The order of writing the advective term is clearly important, since

(£-Vyu = (Vu)l # [(Vu)

Example 8.8

In the large-scale mean atmospheric flow at mid-latitudes, there are long
(3000-10000 km) waves embedded in the flow, called Rossby waves. As
the flow proceeds along the wavy path, it experiences alternating curvature.
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(See Fig. 8.18.) This results in alternating relative vorticity. The waves need
not be stationary and can move laterally along a zonal line. Use Eq. (8.34)
to discuss their movement.

Solution

We look at the terms in Eq. (8.34),
aL/or + u dl/ox + v(dL/dy + af/dy) + wol/oz = {rdw/dz — [ VK- u

and neglect the underlined terms to get
al/ar+uadl/ox +voffoay=—(rVy-u (8.39)

Now, apply this equation in the mid-troposphere where V,;-u = 0, (called
the level of non-divergence, roughly 8 km for Rossby waves). This leaves

/ot + udl/ox + vaffdy=20 (8.40)

We can use this equation to analyze the flow in Fig. 8.18. First, consider
f as constant, )

At point A, u and 9¢/dx are positive; hence u 9(/dx > 0. The only way
to keep D{/Dr = 0 is to have 3{/dt < Q. This can be done by the whole
wave system moving to the east, bringing a local decrease of relative vor-
ticity to A,

At point B, # > 0 but 9{/dx < 0, and u a{/dx < 0. With constant f this
would also require eastward movement of the wave system to keep vorticity
conserved at B.

.

anticyclonic
ridge

1+

A high
vorticity
low
vorticity B
f4(L)

+

cyclonic
trough

Figure 8.18 Rossby waves in a mean westerly flow.
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When the advection of relative vorticity is dominant, the wave system
tends to move eastward. The greater the value of u, the faster the waves
must move.

Next we consider the effect when the planetary vorticity is not constant
and look at v df/dy.

At point A, v is negative, and v 3f/dy < 0. This requires an increase in
local vorticity, which can be accomplished with westward movement of the
wave system. At point B, v df/dy > 0, and the balancing decrease in local
vorticity also requires westward movement of the wave.

Since the relative vorticity effect and the planetary vorticity effect are
opposite, there is likely an equilibrium at some point, depending on wave
characteristics (4, v, 9(/dx) and latitude (3/dy). Based on the requirement
that D{ /Dt = 0, we can state:

1. At a given mid-latitude, a certain wavelength of a Rossby wave will
remain stationary.

2. Shorter waves and larger u velocities will move eastward (A = 3000
km).

3. Longer waves can move westward (A = 10,000 km).

Finally, add the divergence effect, —({ + f) Vy-u, using Eq. (8.39).

fis positive and generally greater than {, so that {; is increased by con-
vergence and decreased by divergence. The more vorticity present initially,
the greater is this effect. The convergence in cyclones generates more in-
tense cyclones, whereas divergence in anticyclones generally weakens the
anti-cyclone (provided f > [{]).

The vorticity transport equation is not a convenient expression to be used
for determining velocity—it would be very difficult to integrate to get ve-
locities. Still, vorticity is an important entity in its own right, and many
phenomena can be qualitatively understood in terms of vorticity. It is im-
portant to atmospheric and oceanic flow in the study of turbulence and in
large-scale motion. In fact, Eq. (8.34), together with a thermodynamic equa-
tion, are said to form the basic equations of dynamic meteorology.

The pressure gradient and gravity forces do not appear in the vorticity
equation. Under our assumptions, they do not change the vorticity of a par-
cel. This is because vorticity is associated with the solid-body-like rotation



8.5 Vorticity Transport Equation 327

of the parcel, and requires a torque to impart spin. Surface forces can cause
rotation, but body forces pass through the center of mass and do not create
angular momentum. However, when density gradients are included, the cen-
ter of mass will not coincide with the geometric center, and rotation can
result. This condition is important in certain atmospheric and oceanic flows
where density variations can create vorticity in stratified conditions. The V
X Vp/p term will then add vorticity due to density-pressure gradient inter-
actions whenever there is significant horizontal density gradient.

8.5.2 The Distortion Terms

The (L - grad) u term in Eq. (8.35), which is called the distortion term, rep-
resents generation (or destruction) of { by a stretching or turning of the
vorticity filaments. This term can be illustrated for an element 8s on a vor-
ticity filament (Fig. 8.19), where

s=(s,n);  u=(us, u,)
The inviscid, nondivergent, vorticity equations in these coordinates are:
D{,/Dt = [, du,/ds + {, du,/on = [, du,/ds
and

D{,/Dt = [, du,/ds + {, du,/on = [, du,/ds (8.41)

The du component parallel to ds, dug, causes stretching (or contraction)
of the vorticity filament segment ds. The du component perpendicular to
ds, duy, causes twisting of ds (although |{,| = O at a point, the vector { is
changing along the vorticity filament, since it is turning in space). This be-
havior of the vorticity segment is similar to that of a material line in the
velocity field. There is a stretching component and a rigid turning of the
line segment.

4
ds (t+ 8t) ¢ (t+ 51
Sus dup

ds (1)
- du

Figure 8.19 An element of a vorticity filament.
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8.5.2.a Two-Dimensional Vorticity Transport Equation

Equation (8.32) is related to the conservation of angular momentum. It does
not show conservation of vorticity. Vorticity can be changed (created) by
the stretching and turning terms.

However, in two-dimensional flow, { is perpendicular to u and the plane
of flow. Thus there is no variation in the { direction, and therefore no turning
or stretching. This can also be seen by looking at Eq. (8.32) in index no-
tation, with V-u = 0, and writing { as V X u,

DC,/DI = [aui/ax]‘][ej',m aum/axl] + v azgi/ax‘i BXj (842)

In two-dimensional flow, in the second term above, i, j, I, and m, can be
1 or 2 only, so that €;,,, must always equal zero, leaving

D(,;/Dt = v V¥, (8.43)

Thus, there is no change in the vorticity due to distortion caused by ve-
locity gradients. In two-dimensional inviscid flow, vorticity is conserved.

8.5.3 The Viscous Term

The viscous term in Eq. (8.32) is a diffusion of vorticity term. It takes the
same form as the incompressible diffusion of momentum term, where the
total change in momentum, Du/Dt, is proportional to v V’u. Also, in two-
dimensional flow the vorticity transport equation is the same as the tem-
perature diffusion equation,

DT/Dt = K/p c, V'T (8.44)

In two-dimensional flow, viscosity is the only way to impart or eliminate
vorticity, since the other terms are zero, as shown in the previous section
[Eq. (8.43)]. Just as in the momentum equation, this term is important in
the region of a boundary layer. At the wall, vorticity can be generated through
this viscous term, and then diffused into the flow.

When turbulence is thought of as a distribution of vorticity elements, the
time history of the turbulent vorticity elements is related to the diffusion by
viscosity according to Eq. (8.32). The vorticity elements will interact,
stretching and twisting, becoming smaller until the dissipation term takes
over. We will discuss this process after developing the perturbation equations.
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8.6 Vorticity Characteristics

Vorticity is a vector field associated with the dynamics of the flow field.
Specifically, it concerns the velocity derivatives rather than the velocity.
When the flow is incompressible with uniform density, there are similarities
between the vorticity and velocity descriptions. Note that if grad p is not
zero, gravity can change D{/Dzt.

Vorticity Velocity
V-{=0 Viu=0
Vorticity filaments are tangent to z. Streamlines are tangent to u.
Vorticity filaments cannot end in fluid or Streamlines cannot end in fluid or at a
at a boundary. boundary.
Vorticity flux = strength of the vorticity Mass flux = mass flow rate.
tube, and is conserved along tube. Mass is conserved along tube.
Behavior of a vorticity filament is Behavior of a material element is
described by described by
D{,/Dt = (du,/ox); D 8x;/Dt = (du;/ox;) &x; = du;
Vorticity is conserved in Mass is conserved.
2-D, inviscid flow, V-u = 0.
Vorticity equation, V-u = 0: Velocity (momentum/u.mass):
DU/Dt = (L-V)u + v V¥ Du/Dt =F,— Vp/p + v Vu

The equations in vorticity or velocity can each have advantages in dif-
ferent circumstances. Both quantities have viscous dissipation . . . they de-
crease by molecular diffusion in proportion to u. Since u is transported by
molecules, so too is V X u and, therefore, (.

The sources of momentum, or velocity change, are Fy, and Vp/p. These
forces are independent of the magnitude of velocity. In contrast, the vorticity
transport equation (for smaller scales) has no Vp terms. p has been elimi-
nated in the derivation of the vorticity equation by cross-differentiation.
However, there is a new term ({ - V) u, which provides rules for vorticity
distribution. Since vorticity is a factor in this term, it states that vorticity
will increase or decrease in relation to how much vorticity is already present.
When we write out the parts of the total derivative, we sce that the vorticity
is a factor in all of the terms. The action of each of these terms is:

afot=—-- N+ Vu+v VY (8.45)
local = advective + twisting + molecular
change term for stretching diffusion

nonuniform { terms (3-D) of {
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8.6.1 Helmholtz’s Laws

Although the concept of vorticity was first introduced in the 1750s (as V x
u), it was not used productively until Helmholtz stated the following laws
in 1858 for inviscid fluid flow.

1. A fluid element without rotation originally cannot gain rotation.
2. Fluid parcels remain part of the same vorticity tube for all time.
3. Vorticity tubes must be closed or end on boundaries.

Helmbholtz’s law can be stated in an expression more pertinent to atmo-
spheric applications: In inviscid flow, a vorticity tube moves with the fluid,
and its strength remains constant when there is uniform density or when
density varies with pressure only.

A related law in terms of the circulation was derived by Kelvin, starting
with the identity,

Du
— Qu-ds=Q —-ds. (8.46)
D¢ D¢
This equation is most useful when Du/Dt is the gradient of a scalar, in
which case the right side is zero. This is true of inviscid homogeneous flow
where :

Du/Dt =F, + V(p/p) = —V[® + p/pl. (8.47)
The result,
Dr b
—=—0Qu-ds =0, (8.48)
Dt Dt

is Kelvin's circulation theorem: the I associated with the line integral around
a material curve is constant. This is an expression of the persistence of vor-
ticity in an inviscid fluid once it has been created. Or, if the initial vorticity
is zero, it remains zero.

There is an important atmospheric application of the relation (Eq. 8.46)
between the circulation and the circular integral of the total velocity deriv-
ative. In the atmosphere, the Coriolis component of the circulation, 2() - dA,
is added to the local circulation I". Here, dA is the area enclosed by the line
integral around s when s is in a vertical plane. In addition, consideration of
the general case when density is not necessarily a function of pressure alone
leaves a nonzero line integral on the right side of Eq. 8.46. Hence,

D + 2Q-dA) _ dp
Dt p

(8.49)
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This is called the Bjerknes circulation theorem. It differs from Kelvin’s
theorem by the addition of the planetary circulation term and by allowing
for the horizontal variation of density.

Example 8.9

There are many cases where the differential heating of the surface resulting
from different heat absorption characteristics of the surface leads to a local
atmospheric circulation. This flow can be investigated by applying Eq. (8.49)
to the region of a vertical slice of area that spans a land-sea boundary and
has a limited height. There are constant pressure and density lines, as shown
in Fig. 8.20. Assume pressure lines are essentially horizontal. Constant den-
sity lines will tilt when daytime heating decreases p over land, and vice versa
for nighttime cooling. Use an average p and a constant AP for approxi-
mations of the line integral.

Solution

Since “total circulation” I + f- A is calculated around S by the line integral
of dp/p, we can write

Al = —é dp/p = Ap[1/pe— 1/psl (8.50)

Figure 8.20 The land—sea breeze vertical profile (ps = density over the sea; p, = density
over land). Constant-pressure lines are horizontal. Constant-density lines curve upward over
land. p, > ps at the same height. The perimeter curve S encloses area A.
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The constant-pressure lines are nearly horizontal. During daytime, faster
heating of the land means py < ps. This means the circulation from Eq.
(8.50) is positive—counterclockwise. Hence the flow is from sea to land at
the surface. The situation is reversed at night.

8.7 Application of Momentum, Energy, and
Vorticity Equations to Bernoulli’s Law

In Section 7.8 we introduced Bernoulli’s law as a special case of the energy
equation along a streamtube. We can now elaborate on this useful law and
the conditions when it can be applied.

First, we look at the dynamic version of Bemoulli’s equation. This is
obtained from the momentum equation for constant-temperature, nondi-
vergent flow,

ou/ot + (u-gradyu = F — Vp/p + v VZu

As was done in the derivation of the vorticity equation, we use the vector
identity,

uXqu=%V(u-u)—(u-V)u= —(VXu)Xu
Placing this in the momentum equation, we have
au/dt + curl u X u + grad 3¢* = —grad ® — grad(p/p) + v V’u
or
qujot+ {xu=—V(@+p/p+3g°) + vV’u (8.51)

The first term on the right side is the sum of the kinetic energy, gravi-
tational potential energy, and the flow work. We have defined this term as
H=® + p/p + 3q°, where q is the speed and @ is the gravitational
geopotential.

For steady state, inviscid flow,.Eq. (8.51) becomes

VH=-{Xu (8.52)

Since the gradient of H is normal to u and {, H is constant along any
streamline or vorticity filament. In addition, it is zero everywhere if { = V
X u = 0, which is the condition of irrotationality.
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Thus, for steady-state, inviscid, irrotational flow, Bernoulli’s law holds
for the entire flow, along or across streamlines. When the flow is inviscid,
and initially irrotational, it will always remain irrotational according to the
vorticity transport equation. Bernoulli’s law can be used at any two points
of the flow.

Equation (8.52) is simply the mechanical energy equation. If temperature
variation is a factor, the complete energy equation can be used to define a
general H, (which includes internal energy, Hy, = ¢ + ® + p/p + 4*/2).
In this instance, Eq. (8.52) is obtained only as a special case when the flow
is steady, nonconducting, inviscid, and isentropic.

8.7.1 Bernoulli’s Equation in Streamline Coordinates

We can now continue the investigation of Bernoulli’s law in streamline co-
ordinates that was begun in section 7.8.1. There, we were left with an extra
term, [ V?/r dn, in our integration across the streamlines. An expression
for this term can be obtained by considering the circulation around a parcel.
The two-dimensional projection of the parcel is shown in natural coordinates
in Fig. 8.21.

In the natural coordinate system, subscript n designates the normal com-
ponent to the streamline and is not an index. The velocity V is directed along
the streamline 5. Note that although V, is indicated in Fig. 8.21, its mag-
nitude is zero at each point. However, because the nature of the natural
coordinate system is to constantly change direction, we must keep track of
the rate of change of the vector V,. At an incremental distance away from
a point (e.g., from the left corner of the parcel), the new direction of the

{to the
J. 5 'J» center of the curvature)

r

_V+avn an /%a/vnfas (3s3t)
$

| Ss
n Vi + Vs ds

—_—

—

Figure 8.21 A parcel in streamline coordinates.
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velocity on a curved streamline has an incremental component of velocity
in the n-direction. This component is changing at the rate V,/ds ds.
We obtain the Bernoulli equation for each direction. Using

tan 86 = 80 = [(0V,/ds) ds 3¢]/8s = (3V,/ds) ¢
and
tan 30 = 30 = 3s/r
Hence,
aV,/as=(1/r)ds/dt = V/r
and the circulation around the parcel is
o' = V &s + (aV,/ds ds5)dn — (V + 9V /0n dn) 8s
= (0V,/ds — aV/dn) &s dn
=2 (30,/31) 3A
Or, in the limit 8s — O,
3’ = £ %A
Now, if the flow is irrotational,
{=0aV,/ds — dV/dn =0
and
aV/on = oV, /os = V/r (8.53)
hence,
Vav/on=V/r (8.54)
Returning to the n-component of the momentum equation,
ov,/ot + V. oV,/as + (1/p)op/on+ g, =0 (8.55)
where, from the geometry shown in Fig. 8.22,
g, = —gcosdd =—gdz/dn
gs= —gsind0 = —g dz/ds
For steady irrotational flow we can substitute
aV,/ds = aV/an and V*/r=VaV/on
to get
Vav/an + (1/p)ap/on + g dzfon =0 (8.56)
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dn
5 o5z

/)
gDz:

Figure 8.22 The gravity force in streamline coordinates.

We can now integrate in the n-direction to get Bernoulli’s equation.
3V2 + p/p + gz = constant (8.57)

In summary, to have Bernoulli’s equation be valid across a streamline
we have assumed the flow is

. Inviscid

. Steady-state
. Constant p
. Irrotational

BN -

Example 8.10

Use natural coordinates to discuss the nature of the vortex flow velocity
fields and Bernoulli’s equation for (a) irrotational flow; (b) rotational flow.
Solution
(a) Irrotationality implies that

aV,/as = aV/on = —aV/or = V/r

thus,
dv/V = —dr/r
and
InV=-=lnr+InC
or

In(Vr)=InC
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hence,
Vr=C

We have seen that V = C/r is the velocity distribution of the free vortex.
Thus a free vortex is irrotational (except at r = 0).
Bernoulli’s equation along the streamline is obtained from

avV/at + Vav/es = —(1/p) ap/ds — g (8.58)
For steady state and g5 = g 9z/0s,
8/3s[V?/2 +p/p + gz] =0

Hence, H = V*/2 + p/p + gz is constant along a streamline.

For the n-component of 8V we found that Eq. (8.57) yielded Bernoulli's
relation for any two points in the domain of irrotational flow.

(b) In the case of a rotational field,

V=1(d8/dr or do/dt=V/r
and
oV, /jos =V/r
The vorticity is
{=2d0/dt=2V/r=0V,/os —dV/dn=V/r—aV/on
Therefore,
—3V/dn=V/r=9V,/ds
Substitute this derivation of the first term in the steady-state version of
Eq. (8.40),
Vav,/os+ (1/p)dp/on + gdz/on =0
to get
—-Vav/on + (1/p) dp/on + g dz/dn =0
When this is integrated for constant p,
—V*/2 + p/p + gz = constant (8.59)

Thus when considering a direction across streamlines in rotational flow,
there is an important difference between this relation and the Bernoulli law
along a streamline—the sign of the first term. This result can be used in
cases of a forced vortex. For instance, the surface contour in a rotating tank
full of liquid can now be found using Eq. (8.59). However, the main point
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here is to illustrate that incorrect answers result when Bernoulli’s equation
is used under the wrong conditions.

Example 8.11

In the atmosphere, an air mass frequently follows a curved path. Use Eq.
(8.55) to obtain a relation for V(r, f). Consider irrotational flow, uniform
flow, and curved flow.
Solution
From Eq. (8.55),
ov,/or+V,aV,/as + (1/p)dp/on+ g, =0
From geometry, V,/ds = V/r,
av,/ot + V*/r + (1/p) dp/on + g dz/on + fV =0
Under the irrotational condition, 3V ,/ds = aV/on = V/r,
V?/r=VaV/on
Thus,
V2/r+ (1/p) dp/on + g dz/dn + fV =0
and
VaVv/os + (1/p) dp/as + g 8z/ds =0
For uniform, straight-line flow, R — x,

(1/p) dp/on = —fV
dp/as = pV aV/as
and for steady-state, dp/an only,
Vg = —1/(pf) aP/an

the geostrophic wind.
For a finite R,

(1/p)op/on= —fV —V*/r,  dp/ds =0

and isobars are parallel to streamlines.
Finally, the equation for this case is

f=V)=~V/r
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or
VIr+fV—fv,=0
Hence, solving for V,
V=[=fx(f1+4fVe/r)1/2/r)
= (fr/DI-1 = (1 + 4V, /N

Only certain combinations of the sign of r and Vg correspond to physi-
cally realizable flows with V positive and real. This is the gradient wind,
which depends on the pressure gradient, Coriolis force, and radius of cur-
vature (centrifugal force).
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Summary

DEFINITIONS

. {=VXu

. Solid-body-like rotation, { = 2 d0/dt
Circulation: I = § u-dS

Vorticity filament

Vorticity tube

Line vortex

ASSOCIATED VELOCITY
u=o+u*+V
vud=D Ve =0
Vxu® =0 Vxu={
w’ = Ve W =VXB

N

VORTICITY TRANSPORT EQUATION
"V X (momentum equation) + (V - u = 0 and identities)

yields

or
DU/Dt= (- V) u+vVY

Total change in vorticity is from:

Stretching (increase dL)

Turning (changes components; zero in two-dimensions)

Diffusion by viscosity

Notes (for homogeneous or p a function of p only)

1. Viscosity is necessary to create or destroy vorticity.

2. Vorticity is present at boundaries where no-slip requires viscosity.

3. Vorticity persists in inviscid flow.
4. Vorticity is a characteristic of turbulent flow.
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Problems

1. Consider the flow given by the velocity potential.
¢=x"—2xy

Is this flow irrotational? (u; = 8¢ /8x)
2. Given: u = (2xy + z, X’y + z, x + y + 2), is this flow irrotational?
3. Consider the flow given by

u=(3x+y + 220,
v = (2xy — 2zy),
w=—y +2y— 22~ 2

Is the flow rotational?

4. Consider a tornado with concentrated vorticity at the center. If ybu
measure the wind velocity tangential to the circular flow (u,) at 2 km to be
20 m/sec, what is the circulation? what is the vortex strength? What is the
wind speed at 500 m from the center with this approximation?

5. A uniform synoptic scale flow of westerlies encounters a mountainous
region, and the flow appears to turn to the south. What equation would you
use to analyze this?

6. In an inviscid fluid flow, how can the vorticity change? What about
in an inviscid, two-dimensional flow?

7. Suppose a ship has a rotating cylinder of height H, radius R mounted
vertically midship. This gives rise to a lateral force and has been suggested
as a method of propulsion. You could calculate the force created by the flow
if you knew the pressure distribution; the pressures if you knew the velocities
near the surface (assuming potential flow). Given the ¥, calculate the force
for U = 10 m/sec, R = 3 m, H = 30 m (u = 8y/dy, v = —dY/dx).

U = Ursin 8 — R*U/r sin 8 — RU In(r/R)

which represents a free-stream flow + a source + a line vortex at r = 0.
This produces a rotating cylinder in the freestream.

8. If we think of turbulence: as an ensemble of vortex elements in a ho-
mogeneous fluid, and suppose that the trend is to smaller and smaller tur-
bulent elements, what is the overall trend in vorticity, neglecting viscosity?

9. Using a conservation statement for a vortex tube segment (Helmholz’s
law), say what happens to a cyclone as it moves from over the high Rocky
Mountain plateau to over the low plains.
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10. The Burgers’ vortex is described in cylindrical coordinates with
u, = —ar, u, = az,
ug = L/Qmr)[1 — exp(—ar’/2v)]

What is the vorticity field for this flow? What are each of the terms in
the vorticity equation?
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9.1 Introduction

The Navier—Stokes equations, when they include the continuity, energy, and
state equations, are a complete set. This set may total from four to six equa-
tions, depending on the importance of the temperature and density varia-
tions. However, in general, this set of equations is unsolvable by analytic
means. Fortunately, in many important problems with practical import, ther-
mal effects are negligible. In addition, we do not need to include all of the
forces we allowed for when we developed the momentum equations. Thus,
in specific circumstances, the flow equations become amenable to analytic
solutions. The circumstances occur under conditions of incompressibility and

342
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irrotationality. The elegant mathematical framework that is then applicable
yields solutions that apply in what is called ideal flow. Despite the restrictive
assumptions, these solutions have a surprisingly wide range of practical ap-
plications. However, they do fail in many circumstances where the required
conditions are not met.

By now, we have a good familiarity with the mathematical terms in the
equations involving divergence, viscosity, and rotationality. Yet, without
extensive practical experience, we cannot know whether actual flows behave
as though they were nondivergent, inviscid, or irrotational. One way to gain
an idea of the behavior of a particular flow problem is to obtain the equations
under these approximations. Then it is possible to solve for the predicted
flow and to test the solutions against observations. This has been done for
the potential flow solutions. The elegant mathematical solutions presented
in this chapter have been found to have far-reaching practical applications.

POTENTIAL FLOW ASSUMPTIONS
Incompressible Approximation
V.u=0
VXx(Vg)=0
—u = Vo
Irrotational Approximation and Inviscid Approximation
Vxu=0
V-(VXB)=0
—-u=VXB
Two-Dimensional Flow
dufax + dvfay =10
u=adap/oy, v=-—ay/ix
Ideal Flow Theory (also often called Potential Flow)
Vch =0 Vzd; =0

The following material outlines the potential flow approximation proce-
dure based on the work of previous chapters. First, we will summarize the
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assumptions and the resulting governing equations. Then we will spend the
remainder of the chapter exploring the solutions to these equations.

9.2 The Velocity Potential

We have discussed the existence of a potential function several times in this
text. The velocity potential will be a function specified at each point in the
field, from which the velocity field can be obtained by differentiation. The
existence of the velocity scalar potential function is implied purely by the
mathematical identity, curl grad = 0. From the definition of irrotational flow,
{ = curl u = 0. Therefore in irrotational flow there will exist a scalar ¢
such that

u = grad ¢ = (d¢/dx, d¢/dy, d¢/8z) .1

Here, ¢ is called the scalar velocity potential.

If the scalar potential field is known, then the velocity vector field is
obtained at all points by differentiation. This allows us to combine the com-
ponent velocity equations (in u, v, and w) into a single equation in the scalar
¢. Now, the velocity potential always exists when there is no vorticity. So,
due to the close connection between viscous effects and rotation in the fluid,
an assumption that the flow is inviscid is in general equal to assuming ir-
rotationality. When the flow is frictionless and irrotational, the velocity po-
tential is a very useful device. This is especially true when we can also
assume that the flow is incompressible, so that

divu=divgrade = V¢ =0 9.2)

The velocity potential then satisfies Laplace’s equation. Therefore, any
harmonic function is a possible velocity potential. This category of velocity
potentials encompasses a large body of mathematical solutions. The manip-
ulation of these solutions is called ideal flow theory, or sometimes simply
potential flow theory. Striclly, the distinction between potential flow and
ideal flow is compressibility. A potential flow exists for compressible flow,
even though the flow is not nondivergent. However, this category is not as
important as the case with nondivergence. Hence, ideal flow is often referred
to as potential flow.

Example 9.1

Calculate the velocity for the given ¢. Is this a valid incompressible flow?
Is it rotational?



9.3 The Stream Function for Two-Dimensional Flow 345

¢ = E(Xf — x3)

Solution

Given the velocity potential field ¢(x;, x,) we can calculate the velocity field
U(x,, x,). The velocity is grad ¢,

U = (3¢/0x,, d/dx;, d¢/0x;) = (C/2)(2x;, —2x, 0)
Check this velocity field for incompressibility by calculating V - u.
ouy/dx; + duy/dx, + du3/dx; = C—C =0

Thus, this ¢ distribution is a valid incompressible flow.

It is clear that V X u = 0, since u = Vg and V X Vo = 0. However,
it is instructive to check. Since this is a two-dimensional flow, there is only
one component of vorticity,

{3 = 0w, fox, — du,fox, =0—-0=20

Thus, V X { = 0 and this ¢(x, y) represents an irrotational flow.

9.3 The Stream Function for Two-Dimensional Flow

There exists another potential function for determining the velocity, called
the stream function. This is a function that also yields the velocity field
under differentiation and which exists independent of ¢. In Section 8.2, we
found a definition for the existence of a vector potential B in a way similar
to that of finding the velocity potential. The requirement for the existence
of this function comes from the definition of incompressible flow, div u =
0. Then, from the mathematical identity, div curl = 0, there exists a vector
B such that u = V x B. B is called the vector potential.

There is an advantage in being able to represent a velocity field in terms
of a scalar field. It is not evident how the vector potential denotes any ad-
vantage over the velocity vector in representing the velocity field. However,
when the flow is two-dimensional, the vector potential has only one com-
ponent, the scalar . This is the called the stream function. We have already
discussed the streamlines from a physical point of view, in Section 1.8. The



346 9 Potential Flow

specification of the stream function s is equivalent to specifying the stream-
lines in the field. Since streamlines are a powerful graphical representation
of the flow field, ¢ is an important field variable in two-dimensional fluid
mechanics. In two-dimensional flow we ignore the vector potential B and
specify the single nonzero scalar component of B = (0, 0, ) as the stream
function. It is common to reserve the term potential for ¢.

Frequently, with no knowledge of B, the stream function is simply de-
fined from the two-dimensional nondivergence condition (the incompress-
ible continuity equation),

divu = du/ox + dvfay =0
One can then define a function such that
a/ox = —v, and AY/dy = u 9.3)

This allows continuity to be identically satisfied,

“ljxy_lbyxEO

When, in addition, the flow is irrotational, we have
ov/ox — oufdy =0
and therefore
A/ox’ + /oy = Vi =0 9.4)

Equations (9.2) and (9.4) are forms of Laplace’s equation. Any function
that satisfies this equation can be used to define an incompressible, irrota-
tional velocity field. This function can be used to specify either the velocity
potential or the stream function. When either the velocity potential or the
stream function are given, there will always be another solution of Laplace’s
equation that defines the concurrent stream function or velocity potential.
In other words, if we have one set of ¥ and ¢ lines, which represent a
particular velocity field, we automatically have another velocity field by
exchanging the designations of s and ¢.

From the definition of ¥ in Eq. (9.3), the constant (s lines are everywhere
tangent to the velocity. This is the definition of a streamline; hence the term
stream function. From the definition of the scalar potential in Eq. (9.1), the
velocity is in the direction of maximum change of the velocity potential (the
gradient of ¢). Thus the velocity vector is normal to constant ¢ lines. Since
they are everywhere perpendicular to each other, constant ¢ and ¢ lines form
an orthogonal set. We can check this by looking at the slopes.
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1. On lines of constant s,
d = (8¢ /dx)dx + (0/dy) dy = 0
and
—adli/ox
b/ dy
2. On lines of constant s,

de = (3¢/dx) dx + (8¢ /dy) dy = O

dy/dx =

= —(—v/u)y=v/u (9.5)

and
dp/dx
d¢/dy

The slopes of constant { lines are negative reciprocals of constant ¢ lines,
defining their orthogonality.

Therefore, in two-dimensional irrotational flow, a reciprocal solution ex-
ists for all velocity potentials and stream functions. The network of lines of
constant ¢ and { form the basis of a wide range of flow solutions called
potential flows.

dy/dx = =

—u/v (9.6)

Example 9.2

Consider the velocity potential given by
C
¢ =k —x) 9.7)

Calculate the velocity and equation for the potential lines.

Solution
We can obtain the velocity directly from the potential function,
(U, u) = (3¢/0x;, 3¢/dx;) = (Cx;, —Cxy)

There are two independent equations in ¢ from the definition of the stream
function,

u=Cx, = /ox,
U= _sz = _alb/axl
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Thus, on integration,
L‘J = Cxl.xZ +fi(x1) + A

and also,
l’J = Cxlxz +f2(x7_) + A

Equating these two expressions for ¥ shows that fi(x,) = f;(x,) plus a con-
stant, and therefore both must equal zero. Thus,

4’: Cxle‘l'A

In this case, the streamlines and potential lines are orthogonal sets of
hyperbolas.

We can summarize this section in a few lines:
VXu=0 implies V X (grad ¢) =0
— u = grad ¢, 9.8)
and
V-u=0 implies V-(curlB)=0
—u=cuwlB 9.9)

where ¢ is a scalar potential for the velocity and B is a vector potential.
Now, when we retain for a moment the full vector potential, B = (0, s,, ¥3),
and use the fact that V+-B = 0, we have

u = (39/dx, d¢/dy, d¢/dz)
u = (3y3/3y — 9,/dz, 3 /dz — s3/3x, &, /dx - 3 /3y)  (9.10)

We will use only the two-dimensional case, where ¥, = &, = 0 and
= 4, so that

u= (641;/6)), — 93 /3x) 9.11)

9.3.1 Uniform Flow

When there is a purely translational flow V such that it is uniform and con-
stant, then this is a potential flow field since V-V = V X V = 0. The
stream functions are straight, parallel lines in the flow direction, while the
potential lines are perpendicular to the flow.
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Example 9.3

Get the stream function and potential function for the uniform flow in the
x; direction as shown in Fig. 9.1.

Yy vy

£

y¥vy

Figure 9.1 Uniform flow in the x, direction.

Solution
Start with the velocity,
(ur, 0) = (3p/0x,, —a/ox))
Integrate to get
Y= ux, + C,

The stream function lines are horizontal and parallel to the flow. The x, =
0 line can be designated as the & = O line.
The potential function can be obtained from its relation to u,,

d¢/dx; = uy
Hence,
¢ =ux + C;

The ¢ = 0 line can be chosen as the x; axis.
When the flow is at an angle 6 to the coordinates, it is often easier to
write these potentials in polar coordinates,

(9, ¥) = (U, sin 8, U, cos 0)

Since du,/dx, = du;/dx, = 0, the flow is nondivergent and irrotational.
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9.3.2 Ideal Fluid Flow Vorticity Equation

When we have irrotational flow we can write a single scalar equation in
replacing the vector momentum equations. Then, if the flow is also non-
divergent in two dimensions, we can use the definition of the stream function
to write the two-dimensional vorticity transport equation in terms of 4.

d VA/or + al/ay 0 VA /ox — a/ax a Vi /ay =v V' (9.12)

This is one equation in the scalar stream function {. It is fourth order,
with viscous terms as highest order. When it is solved for {5, the velocity
and vorticity fields follow immediately by differentiation.

Finally, we note that a flow can satisfy continuity but not irrotationality.
Thus, the stream function can exist for a rotational, viscous flow. Similarly,
a velocity potential can exist for compressible flow which is irrotational but
not nondivergent. However, these cases do not constitute ideal fluid flows.

9.4 Potential Motion with Circulation Compared to
Rotational Flow in a Free Vortex

We have discussed rotation from several different perspectives. In potential

flow the flow fields are irrotational; hence, the parcel at any point has no

solid-body-like rotation. However, the rotating velocity field—the free vor-

tex—is an important potential flow field. It is associated with a concentrated

“point” of vorticity—the line vortex. The parameter connecting the vorticity

to the finite flow field is the circulation. This section deals with these relations.
An irrotational flow can be defined in several equivalent ways:

1. With respect to vector analysis, where curl u = 0.
2. In engineering fluid dynamics, as zero rotation of the fluid parcel.
3. In synoptic meteorology, as zero circulation per unit area.

A simple rectilinear line vortex (Fig. 9.2) can be used to illustrate the
relation between these definitions. Consider the potential flow defined by
¢ = (0, a two-dimensional problem independent of z. The lines where 8 is
constant are rays from the origin of a constant angle. The stream function
lines, which must be orthogonal to the potential lines, are circles.

The symmetry of this circular flow suggests that the equations will be
simplest if written in cylindrical coordinates.

In cylindrical coordinates, we can obtain the velocity field from the given
potential,
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e~ <D

BN

Figure 9.2 The potential representation of a two-dimensional circular vortex.

u= Vo = (9¢/0r, 1/roe/00, d¢/dz)
=(,C/r,0)
= (u,, ug, u,) = (0, U, 0) (9.13)
This is the velocity field in a free vortex. First, we need to check for po-
tential flow validity.
Veu=1/roGu)/or + 1/r duy/00 + 0u,/dz = 0
= du,/or + u,/r + 1/r dus/00 + 0u,/0z =0
Then, substitute u = Vo to get
Vio = 1/ra/ar(r d¢/or) + 1/r* 8°¢/80” + 9’0/
= 9%p/or* + 1/rdg/or + 1/r* 3%¢/30” + d°¢/ 0z

Since d¢/dr = 0, d¢/dz = 0, and d¢/96 = C, 9°¢/38” = 0, this potential
(p = C0) satisfies the criterion for a potential function that V’¢ = 0. The
only exception is at the singular point r = 0, where u grows unbounded.
The origin must be excluded from our defined potential field.

This potential is a multivalued function as ¢(0) over-lies ¢(0 + 2m). We
can restrict ¢ to 0 =< 6 < 2, and as long as the velocity is continuous, we
do not need to worry about the discontinuity in ¢.

9.4.1 Singularities

Consider the areas in the domain where such a vortex exists at (0,0), shown
in Fig. 9.3. The flow field is irrotational everywhere (except at the singular
point at the origin, where r = 0, u and { = ).

The circulation around any area is related to the vorticity inside the circuit
by Stokes’s law (Section 8.4.1). Thus the value of the circulation for the
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Figure 9.3 Two domains around a vortex at (0,0).

closed curves of Fig. 9.3 depends on whether or not the origin is inside the
area. For circuit 1,

Fl = é u'dsl = ‘P(eo) - ('P(eo) =0
For any circuit containing the singularity at the origin,
r,= 35 n-ds, = (0, + 2m) — ¢(6,) = 2nwC 9.14)

For any region that includes the origin, the circulation is contributed en-
tirely by the point vorticity. The element of vorticity is constant, concen-
trated at r = 0.

Often, one treats a finite region of vorticity as a point compared to a
much larger domain. In this case, the circulation around this region will
depend on the contour integral and the area enclosed, so that

F=Jf§a’A (9.15)

When the vorticity is constant in the region, I' = {A. The flow associated
(or “produced”) by the concentration of vorticity at r = O is irrotational
everywhere except at r — 0.

There is some looseness about the connection between the singularity and
the velocity field surrounding it. Often, the velocity is said to have been
produced by the singularity. This is true when we look at the physical nature
of the singularities. In this case, the velocity is often forced by a concen-
trated source near the center of the free-vortex flow. Tornados and cyclones
are examples. Here, the singularity is a physical manifestation of the two-
dimensional flow approximation breaking down at the central point. The
vertical flow near the center serves as a sink or source of mass, where V-u
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# 0. For instance, in a laboratory rotating tank experiment, a drain at the
center furnishes the singularity.

For a cyclone, the vertical flow in the eye of the storm produces the
singular value of V- u = D at the central point. The vorticity is the inevitable
result of imperfect alinement of forces in the initial flow and the ensuing
balance between centrifugal and pressure gradient forces. In the atmosphere,
the planetary vorticity can furnish the small perturbation in the initial flow
that will establish the vorticity flow direction. However, from the perspec-
tive of the two-dimensional flow definitions, a perturbation in the mean ve-
locity field may be the initiator of the flow which then results in the sin-
gularity. We shall simply refer to the velocity field as that which is associated
with the point singularity.

9.4.2 Rotation and the Vortex

Rotation has been defined as the rotating portion of the complete defor-
mation of the fluid, given by du;/dx;. The rotation information is found to
be contained in the antisymmetric tensor, rot u, while the vorticity is the
vector associated with the three independent components of rot u. The gen-
eral mathematical relation between the area rotation (vorticity) and the line
integral of the velocity around the area (the circulation), was expressed through
Stokes’ theorem. This relates the line integral of a vector around a perimeter
S to the integral over the contained area of the normal component of the
curl of the vector. We can therefore write

fjrotudA=fJ’cur1u-ndA=J’f§-dA=§u-ds=I‘ 9.16)

The free vortex is associated with the flow around a line vortex. The
vorticity and rotation are zero for all elements that do not include the origin.
The circulation around any areas that do not contain any vorticity is also
zero. We will look closer at the meaning of irrotationality for the parcel that
is rotating around the vortex center, since the flow field around a line vortex
is a practical approximation to some real atmospheric flows.

Although we envision vorticity or rotation as the rigid-body rotation of
the fluid element, we must be aware that even at the continuum scale the
parcel has deformation. The fluid parcel cannot support shearing stress, hence
cannot be rigid. Our continuum approximation, “small enough that prop-
erties are uniform across the parcel,” will not apply to the angular rotation,
which depends on the orientation of each rotating line. We can check the
effect of rotation on a parcel in the flow by examining the distortion of
individual elements (e.g., the sides of the parcel) as they rotate around the
vortex center. The rotation depends on the component velocity gradients that
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will be the point values for the velocity field as the parcel size approaches
ZEro.

Consider elements marked by axes r, 8, as in Fig. 9.4,

In the rigid-body-like part of the rotation, both line elements rotate coun-
terclockwise. Since uy = C/r, and I' = 2wC for line element A of Fig. 9.4,
we have

30 = (up/r) &t = (C/r*) &t = T'/(2nwr?) &t 9.17)

However, the finite dimension of the B line element aligned along r means
that there exists an increment of velocity between the inner and outer ends.
This will turn the line element clockwise through an angle

80’ = tan 80’ = (du,/dr) dr dt/5r
—T/Q2wr?) 5t (9.18)

This equation gives the part of the rotation due to the relative motion dis-
cussed in connection with the parcel deformation in Section 4.2. It was also
discussed in relation to the definition of vorticity in Section 8.1. As long as
we define the rotation of a parcel withlsides A and B as the average of the
two orthogonal vector rotations, it is 5(66 + 86") = 0. The parcel is dis-
torting but has zero vorticity.

We have previously noted that there is always a coordinate system such
that the relative motion consists of pure distortion plus solid-body rotation.
We can sometimes locate the principal axes by considering two sets of per-
pendicular lines in the parcel moving in a line vortex field. The cross in
Fig. 9.5 is found to have zero net rotation as it rotates around the z axis.
The solid lines show distortion due to the different rotation of the lines,
which were arbitrarily oriented in the x and y directions. However, these
lines rotate an equal amount in opposite directions, so that by our definition
of rotation rate, the average rotation of two perpendicular lines, rotation =

Figure 9.4 Elements of a rotating parcel in a free vortex.
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Figure 9.5 Perpendicular line elements in a parcel rotating about the z-axis in free vortex
flow.

0. If we had chosen the axes which were at 45° from the solid lines origi-
nally, the two effects would be balanced for both axes. Thus, the cross-
hatched lines remain perpendicular and do not rotate. These are the principal
axes. This illustrates why we can say that the vorticity represents the rotation
rate of the principal axes, with no need for averaging.

9.5 Potential Flow (of an Ideal Fluid)

The assumptions of an incompressible, irrotational, inviscid flow reduce the
equations of motion to Laplace’s equation in the potential function. There-
fore, any harmonic function represents a possible potential flow. Some of
these mathematical solutions may have practical applications if their flow
fields approximate an actual flow. We will discuss an example to illustrate
this point.

Consider the velocity potential (discussed in Example 9.2),

c, 2
o =E(x - ) (9.19)

If we assume ideal flow, then all of the information necessary to construct
the flow field is contained in Eq. (9.19).
The constant ¢ lines are first plotted, as in Fig. 9.6. Then the velocity

can be calculated from

u=Vep =Ckx, -y (9.20)



356 9 Potential Flow

Figure 9.6 Velocity potential for ¢ = :C(* — y?),

and plotted as in Fig. 9.7. The velocity vectors are perpendicular to the
constant potential lines.

Now we should check to see if the flow field correspondlng to this po-
tential field represents an ideal flow.

The check for incompressible flow is

V:u=dufox+ovfoay=C—-C=0
The check for irrotationality is
VXu={=0dufdy—ov/ox=0—-0=0

(This is a formality, since u = Vo guarantees V X u = 0.)

///: \\\\
~_ . -
Nt S

Figure 9.7 Velocity field for ¢ = 3C(* — y?).
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We can also check to see that Laplace’s equation is satisfied.
Vo = d*¢/ox* + d%¢/dy*=C — C=0:  Harmonic ¢

(Again, a formality, since V-u and V x u = 0 guarantee V¢ = 0.)
We can now obtain equations for the stream function. Use the definition
of the stream function as

(u, ) = (B/dy, —ap/dx) = C(x, —=y); V=0

Thus, :
/3y = Cx
can be integrated to obtain
¥ =Cxy+ A+ fitx) (9.21)
and
p/ox = Cy

can be integrated to obtain
Y =Cxy+ A+ fiy) 9.22)
Subtracting Eq. (9.22) from Eq. (9.21), we get -
fi) = A(») +0=0;  hence, fi(x) = fo(y) =0
Note that the constants of integration are arbitrary and we can set
W0,00=A=A"=0

We therefore have ¥ = Cxy and dy/dx ( = constant) = —y/x.

It is apparent from the figures and discussion that the constant s lines
are normal to the constant ¢ lines. This could be shown formally by check-
ing that the slopes of each are negative reciprocals, as was done in Section
9.3. Also note that the values at x, y = 0,0 are #, v = 0, 0. This is a
stagnation point of the flow.

The stream functions of Fig. 9.8 are rectangular hyperbolas, as are the
constant-potential function lines of Fig. 9.6. Flow is parallel to the constant-
stream function lines and normal to constant-potential lines at all points.

We can visualize general real-flow situations that may be approximated
by the flow represented in Fig. 9.8. Since by definition, there is no flow
across a streamline—a constant s line—one can substitute a solid surface
for any constant { line.

Since the streamline value is arbitrary, A can be set such that ¢ = 0 is
a significant streamline. In other words, the coordinate axes x; and x, can
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Figure 9.8 Stream functions for ¢ = %C(x2 - ).

be represented by A = 0. Thus the flow in any quadrant models the flow
in a corner (see Fig. 9.9.) .

If a line such as ¢ = —1 is considered solid, the flow might be that
through a turning vane, or the cup of an anemometer. For { # O the flow
approximates that over a family of curves. It might model the flow in a
particular shape of valley or an upsiope wind, as in Fig. 9.10.

When the x, axis is taken as a solid surface, we have a model of a jet
impinging on a wall, as in Fig. 9.11.

Finally, the entire flow can model the flow of two opposing jets directed
together at the origin, as in Fig. 9.12.
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Figure 9.9 Model of flow in a corner.
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Figure 9.10 Model of flow in a curve.

_
=

Figure 9.11 Model of flow into a solid surface.
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Figure 9.12 Model of flow of two jets opposing.
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The procedure of developing flows from potential flow solutions is often
called the method of singularities.

9.6 The Method of Singularities

Frequently the entire domain of flow in a problem involves regions wherein
different forces govern the flow. The most frequent example is the flow
above a surface. Near the surface, we have stated that the viscous forces
must be accounted for in a region called the boundary layer. However, suf-
ficiently far from the surface, the viscous forces may be small compared to
the other forces determining the flow. Although the inside flow (in the
boundary layer) may be nondivergent, it is not likely to be irrotational, since
flows where viscosity plays an important role are also rotational. However,
the outside flow can quite possibly be irrotational in addition to nondiver-
gent. Thus we may have a potential-flow solution for the region outside the
influence of the boundary and a boundary-layer solution next to the surface.
The two solutions may touch, overlap, or require another solution for a re-
gion in between.

When the problem involves a complex domain wherein two or more gov-
erning sets of approximate equations are appropriate, the procedure for ob-
taining solutions is

1. Isolate the regions where the different regime flow is likely to exist
(hopefully, but not necessarily, inviscid, nondivergent, and irrotational).
Approximate the equations appropriate to each region.

2. Solve the simplified equations in each domain.

3. Attempt to match the solutions at the boundaries.

This is not always going to work. The separate regions may not be ev-
ident, the simplified equations may not be solvable, and step three can de-
pend critically on steps one and two. However, in the case of plane potential
flow, where the basic flow is uniform except for singular points, the steps
are very easy. The regions of step one are points where mass is either created
or destroyed, and/or the vorticity is infinite. The combinations of a very
few singularities provide a wide variety of solutions. These include source/
sinks and vortices. When we add these singularities to a uniform field po-
tential, all potential flow solutions with practical applications can be gen-
erated. The equations governing the flow are Laplace’s, V¢ = 0, V¥ =
0. They are linear, and superposition of solutions is allowed. The domain
of the singularity is simply a point, which is removed or hidden from the
applied domain of the flow solution.

Thus, besides the uniform flow (which is two-dimensional, parallel flow),
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there are only two basic singularities to learn. They can be thought of as
lines normal to the plane of flow.

9.6.1 The Line Source/Sink

Since our basic potential field is nondivergent, the only allowed occurrence
of a source or sink is as a singular point in the flow field. Let the singularity
be at (x, y) or (r,8) = (0, 0). The cylindrical symmetry of the flow about
point singularities in a two-dimensional field suggests the advantageous use
of cylindrical coordinates. The flow emerging from a source at the origin
is shown in Fig. 9.13.

The flow rate is given by

2w
0= § u,ds = f urdd =g (9.23)
0

where f is the source strength,
B = 27ru,, u, = B/Qmr), uy = 0 (9.24)
This velocity field can be checked for nondivergence,
Veu=(1/r)d0ru)/or + (1/r) dus/dy = (1/r) 3(B/2m)/or = 0.

except at r = 0, which is the location of the singularity. Checking this ve-
locity field for irrotationality, we find

VXxu=[=1/980u)/orl — (1/r) 0u,/30 =0

except perhaps when r = 0.

\
Top View o .

Figure 9.13 The line source. Velocity «, is radially outward. There is no change along
the z-direction.
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We can obtain the velocity potential and the stream function for the source
by integration of the equations for the velocity in terms of these functions:

u, = d¢/dr = (1/r) ab/96 = B/(27r) (9.25)
Thus
¢ = (B/27) In r + constant (9.26)
and
= (B/2m)0 + constant (9.27)

The constants can be set to zero. A source will have positive B, and the
case of a sink is obtained when the strength is negative. The sign of the
vortex is positive for right-hand-rule rotation.

9.6.2 The Line Vortex

The line vortex is a vorticity tube with radius approaching zero. The tube
is assumed to be normal to the plane of flow—in the z-direction of the (x, y)
or (r, 8) plane, as shown in Fig. 9.14.

We have the circulation from the line integral around any circle centered
at (r, 0) = (0, 0),

I'= § Ug ds = uy 27r (9.28)

where
uy =T/Q2mr)=(1/r) d¢/36 = —o/or
This can be integrated to yield ¢ and .

Ug
\

N
N

Top View

| T4

Figure 9.14 The line vortex. Velocity u, is tangential with no change in the z-direction.
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We could also obtain ¢ and ¢ from our results in Section 9.6.1. The
constant ¢ and ¥ lines in the solution for a source are a set of orthogonal
lines, made up of circles and rays emanating from (0, 0). One can inter-
change ¢ and i to get another set of orthogonal ¢ and ¥,

e==T/2m) 0
and
b=—-T/2m)Inr (9.29)

These expressions are the same as would be obtained from integration of
the field around a line vortex. In this case, the streamlines are circles at
constant r and the equipotential lines are rays. We can now check for ideal
flow by evaluating the divergence and curl of u.

Viu=0 and VXu=0, (except at r = 0)

It is also valuable to note that for any closed line segment including the

origin,
F=§u-ds=ffVXudA
B=%u-nds=Jj‘V-udA (9.30)

The circulation and source strength are not zero due to the vorticity and a
source at r = 0.

and

9.6.3 Superposition of Singularities

9.6.3.a Source and Vortex

We can create potentials representing different flows by adding singu-
larities and simple parallel flows (with corresponding simple potentials). For
the singularities, we will find that the source and the vortex are all that are
needed to create many practical flows (each may be plus or minus). These
singularities can each stand alone (in static fluid), have a simple parallel
flow field superimposed (a potential flow), or be used in superposition of
singularities. We will find that simple combinations of sinks/sources, vor-
tices, and a uniform flow yield many flow patterns that are suggestive of
actual geophysical flows. One case that immediately arises is the superpo-
sition of a sink and a vortex.

We create the velocity potential field by simply adding the potentials for
a sink and a vortex,
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¢ = Pk T Pronex = —(B/2m) Inr + (I'/2m)8 (9.31)
=ds+Yy=—-B/2m6 — [T /2m) Inr 9.32)

The resulting flow pattern is shown in the stream function plot of Fig. 9.15.
The velocity making up the pattern shown in Fig. 9.15 is

u = [d¢/or, 0¢/(ra0)] = [~B/(@2mr), ' /2mr)] (9.33)

The converging vortex is a model of the inward spiraling flow within a
cyclone or a whirlpool. The singularity at the center, where fluid would be
piling up in two dimensions, is accounted for in the atmosphere by a small
region of upward flow. Here, the two-dimensional plane flow assumption
is no longer valid. This effect is clear from looking at the streamlines.

One can calculate the equation for a streamline from Eq. (9.33).

Vstreamline — exp{z’n’llj/r} exp{—Be/F} (934)

The singular nature of the origin is evident from the streamline pattern shown
in Fig. 9.15.

It is interesting that this simple combination of singularities gives such a
successful model for flows from spiral galaxies to the bathtub drain. One
might expect the sink alone to model the latter flow, for instance. However,
observations indicate that the sink plus vortex is the stablé flow pattern.
Evidently the smallest perturbation of the flow into a sink is sufficient to
produce the vortex component. This results in the strong attractor solution
for this flow situation. For the bathtub drain, this might be a plus or minus
rotation. For the atmosphere, the Coriolis force usually provides the deter-
mining direction.

Yo+ ¥y,

Figure 9.15 The stream functions for a sink ({5) plus a vortex ({,).
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Example 9.4

Consider modeling the flow outside the core of a tornado using a free vortex.
The velocity is determined to be tangential at 30 m/sec at a distance of 500
m from the center of the tornado. What is the circulation of the tornado?
What can you say about the velocity field?

Solution
For the free vortex,
uy=C/r
C = uy-r = 30500 = 15,000 m?/sec

and the circulation is

Ir= sg Uy~ dS = 302w - 500 = 94,250 m*/sec
We can write
uy = 15,000/r
for the velocity in the free vortex. However, as r — 0, this is not a good
model. In fact, we know that across the center of the tornado, the velocity

must switch directions. So we might expect ¥ = O at the center. This will
require some additional concept to complete the field.

The vortex provides an excellent model for many observed flows from
hurricanes to turbulent elements. It is therefore worthwhile to look further
at potential flows that involve the vortex, and at the simplest of interactions
between more than one vortex.

9.6.3.b A Source in a Uniform Flow

If we superimpose a source and a uniform flow we obtain streamlines as
sketched in Fig. 9.16. Note that one streamline, called the stagnation stream-
line, splits into two as it encounters the effects of the source.

The uniform flow can be represented by potential and stream functions
that can be written (with flow at an angle a to the x—y coordinates).
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@K

J

Figure 9.16 Stream functions for a source in a uniform flow. The ¥ = O line bifurcates
to form the outline of a blunt body. :

¢ =U.(xcosa+ ysina) = U,rcos0
U= U,(ycosa — xsina) = U,rsin 8 : (9.35)

In Fig. 9.16, a = 0 and the total stream function and potential function
are

llj = l"source + l!Juniform = (B/zﬂ-) e + Uocr Sil’l e
= (B/2m) tan”'(y/x) + Uy (9.36)

P = Psource + Quniform — (B/Zﬂ) Inr+ U;,J' cos 0
= (B/4m) In(x* + y°) + U,x (9.37)

By symmetry, there is a stagnation point at the point where the flow
divides to pass around the source. This is the point where the outward ve-
locity from the source equals the freestream velocity. The velocity is

u,= (1/ryab/o8 = B/2nr) + U, cos 8
uy = —U.sin 0 (9.38)
This velocity is zero on the 8 = = line at r = B/(2wU..). At this point the

stagnation point divides (it cannot end). Therefore, setting yi = {s, at the
stagnation point,

bo = B/2
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The s, streamline is given by

Y, =B/2 =B/2m6 + U,rsin 0 (9.39)
and
r = B(w — 0)/2wU., sin 0) 9.40)

9.6.3.c Flow over a Cliff

Since any streamline can be replaced by a solid body, the top half of the
flow over W, looks like the flow over a bluff body. It has been used as a
model for the sea-breeze flow encountering a cliff at the water’s edge.

The velocity at any point (r, 8) can be obtained from Eq. (9.25),

U= + 18 = (1/r /a0y + (a/orY’
= Uil + r2/r* + 2r,/r cos 6] @4

where r, = 8/2wU..).
It is possible to smooth the model of the cliff somewhat by adjusting the
parameter r,, which depends on the strength of the source.

9.6.3.d Source Plus Sink to Produce the Doublet

A useful new singularity called a doublet can be generated by placing a
source and a sink 'very close together, at x = *e, as shown in Fig. 9.17.
Here we can write the stream function as

P =Yg + gy
= (B/2m[tan” y/(x + €) — tan”' y/(x + €)] (9.42)

Figure 9.17 Stream functions for a closely spaced source plus sink at x = *e.
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A doublet is obtained by letting € — O while keeping Be constant = Q,,
the strength of the doublet. Hence this singularity is a superposition of an
infinite source and infinite sink. When the terms in Eq. (9.31) are expanded
about the origin and the limit is taken, e — O while Be = Q,, we get

U= —(Q./2mIy/(* + y)] = —(Q,/2m) sin 0 /r (9.43)
¢ = —(Q,/2m[x/( + y)] = ~(Q,/2) cos 0/r (9.44)

The valuable use of this singularity arises when it is placed in a uniform
flow, which results in the flow pattern around a cylinder, shown in Fig.
9.18.

The stream function here is

U = Uay = (Qo/2my/(* + ¥ (9.45)
The streamline ¢ = O is
0 = Uy — (Qo/2m[y/7"]
or
r=1Q,/QmUJI" =R,  aconstant

This is a circle. The flow inside the circle is from source to sink with
the singularity contained within. However, the flow outside accurately rep-
resents the flow past a cylinder. Note that wheny = 0, ¢ = O for —0 < r
= o, g0 that the zero streamline divides at the leading and trailing edge of
the cylinder. The flow solution also represents the flow over a half-circular
cylinder sitting on the ground (the airflow over a Quonset hut, for instance).

Figure 9.18 Flow of a uniform stream past a doublet. The ¢ = O streamline bifurcates
and rejoins to form a circle.
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Example 9.5

Calculate the pressure distribution around a cylinder in a freestream flow,
U..

Solution

From the stream function for a doublet plus a uniform flow [Egs. (9.34) and
9.42)1,

U = U,rsin 8 — (Q,/2wr) sin 0
and the velocity is
(uy,uq) = [(1/1) 3/36, —3W/or]
= [U.cos 8 — Q,/(2mr) cos 6,
—U.. sin 8 — Q,/(2wr) sin 0]
={U. cos 8[1 — Q,/Q2uU.r%),
~U,sin 0[1 + Q,/CwU.r)}
Since
Q./(2mU.) =R
the velocities on the surface of the cylinder are
[0, —2U.. sin 8]

There is a maximum velocity, clockwise, at 8§ = w/2 equal to —2U...
The pressure distribution is determined by Bemnoulli’s equation for this
inviscid, irrotational flow,

p+ pui/2 = p. + pU/2

If this were the flow over a building, we could assume that the p. was
approximately atmospheric, the U, was given, and the pressure depended
on 0.

If a vortex was superimposed at the cylinder center, the flow would be
similar except the stagnation point would be moved toward the top or bottom
(depending on the sign of the vortex). This would have the effect of causing
a net force in the lateral direction. This can be seen from Bernoulli’s law
and from the fact that the velocities are now decreased on the stagnation-
point side. Finally, in aerodynamics, the cylinder can be transformed into
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an airfoil shape, along with the streamlines, velocities, and pressure
distribution.

9.7 The Idealized Vortex

When measurements are taken through a cyclone or a hurricane, the ob-
served velocity field is as shown in Fig. 9.19.

This velocity distribution could be approximated with ideal flow theory
using the measured values of velocity at different points to calculate values
for the circulation and angular rotation. The velocity field at r > r, could
then be determined from Eq. (9.33). However, the core region is not insig-
nificant, and we would like to have a model that yields winds for r < r_.

The irrotationality of the flow in the field surrounding a vortex core sug-
gests the idea of separating the flow field into a potential flow and a local
idealized vortex singularity that produces the rotational effects in the rest of
the field. The processes that create divergence and/or rotation are swept

S

_,
(o]
[e]

] T
»)

U=C'/r U=rC »l U=C/r
™

Figure 9.19 Aircraft windspeed observations taken through a vortex.



9.7 The Idealized Vortex 371

into the singularity and simply parametrized with a “strength” of the sin-
gularity. Thus, one can replace a vortex with an approximation consisting
of an inner vortex core with constant rotation plus a potential flow outside
of the core associated with the vortex strength, I'. The value of I" can be
determined by the strength of the inner core rotation. It will be

é u-ds = 2mru, (9.46)

atr = r.., the radius of u; = U is maximum. Beyond that point, the velocity
will decrease in inverse proportion to the radius in the manner of a free
vortex.

Inside the core is the forced vortex. In the atmosphere this will be a region
where three-dimensional effects are important and the flow is not irrota-
tional. The velocity of a forced vortex is

ug=u=rdo/de (9.47)

Outside the core, there is a region that is two-dimensional, irrotational,
and nondivergent. This is a potential flow region where

u=I/Q2ur) (9.48)
At the radius of the core, r = r,, and we have '
I''=2nr U = 2nwr}d0/dt = 2A. d6/dt = [A,
Therefore, outside the core,
u=(r./NU = d8/dt (r}/r) = {r}/(2r) (9.49)

The rotation rate and the velocity are shown in Figure 9.20. The actual
rotation rate and velocity observed in a hurricane are also indicated.

Example 9.6

Calculate and plot the streamlines, circulation, velocity, vorticity, and pres-
sure variation for a tornado modeled as an ideal vortex. Assume the max-
imum winds are known to be 80 m/sec at 100 m from the center.

Solution

We have seen that the free vortex models the outer flow with

Ug = C/r
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Figure 9.20 Rotation and velocity in an ideal vortex ( ) and that generally observed

=-.

We now have another solution, the forced vortex for the flow inside the
core of the tornado.

uy = Cor = or

We use the forced vortex out to the point of maximum velocity. The free
vortex must then match velocity at the radius of the core, R.

C/R = oR
Hence,
C = wR?
The velocity inside the core is
Uy = wr = (80/100)r = 0.80 r m/sec
OQutside the core,
Uy = oR*/r = 0.8 - 100°/r = 8000/r m/sec

The circulation in the free vortex is

r= § uy-dS = 80- 27 - 100 = 50,265 m*/sec
The circulation in the forced vortex is then
I = 27u, = 2m0r*

It increases as r° to the maximum at 2wwR* and is constant for r = R.
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The free vortex is irrotational, and { = O for r = R. The vorticity inside
the core is

{ =0, = dug/or + (uy/r) = d(wr)/or + wr/r = 2w

This is the constant vorticity of the forced vortex.
The velocity potential for the free vortex is

¢=(T/2m 06

These are radial lines emanating from the origin in the core. However, they
do not apply in the forced vortex region, since this is a rotational domain
and no velocity potential is defined.

The flow can be approximately incompressible in both regions, and the
streamfunctions can be found from u,. Inside,

N /or = uy = wr
Integrating yields
U= %(DRZ + C,
Outside the core, we have found that
¥ = (I'/2w) In[r/R] + C,

If we set the r = R line as the zero stream function, then both constants are
zero. Hence,

%u)(r2 - RY), 0=r=R

Y=V C/2m nfr/Rl,  R=r=o

The pressure field can be calculated from Bernoulli’s relation in the ir-
rotational outer region.
p/p + u5/2 = p,/p = constant
Hence,
P =Dpo— pits/2 = p, — pu’R*/2r"
Inside the core, we must use the simplified equations of motion. Here,

the pressure-gradient force balances the centrifugal force for inviscid flow.
By symmetry, p does not depend on 6. Hence,

ap/or = pui/r = pw'r
can be integrated to get

p = pu’r* + C;
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The pressures must be continuous at » = R, and
0’ + C; = p, — 3pw’R*/r?
Hence,
Cy = p, — po'R’
We can write

—pwR[l —3*/R?, O0=r=<R

PP ™Y _oRriRY P, R=sr=o
These variables can be plotted, as in Fig. 9.21.

If we consider p, to be the ambient atmospheric pressure away from the
tornado where the velocity is small, then the pressure drops to a minimum
at the center. The velocity is also zero there, however it reaches maximum
not far away at the core boundary. These two effects produce the huge dam-
age associated with a tornado.

20

Cp = P-Po
pug?

——

0 . _
0 1 2 r/R

Figure 9.21 Streamlines, potential lines, velocity, circulation, vorticity, and pressure in
a tornado modeled as an ideal vortex.
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9.7.1 Vortex Pairs

Consider a pair of infinite parallel rectilinear idealized vortices of like signs
with strengths I'; and I',, separated by distance d, with rectangular coordi-
nates centered at 1. The corresponding velocity fields are shown in Fig. 9.22
as solid for I'; and dashed for I',. The sum of the implied velocities is shown
in the lower figure.

For these vortices to be in equilibrium, the velocity at 2 must be —I';/
(2wd), and at 1 it must be +I',/(2nd). The velocity at any point on the line
joining them is (excluding the vortex centers)

Ux) = —I'i/Q2ux) + I,/[2m(d — x)] (9.50)

From Fig. 9.22, we see that for x =< 0, U > O and forx = d, U < 0.
This, together with the velocity directions at 0 and d, suggests that a clock-
wise rotation is produced by (required for the existence of) this vortex con-
figuration. The “center of rotation,” which must lie on d, can be found from
U(x) = 0, which implies

d
o' ) \
W e D
L Ty/x+Tp/(d-x) 7

U= 2n

Figure 9.22 Vortex pair with same sign. Associated velocities from I’y (——) and I,
(———) and their sum (lower figure).
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I'/Q2mx) = I,/12m(d — x)]

X = [Fl/(r] + I'y)ld
IfI', =T, =T, then for x not 0 or d,

Ux) = —-T/Qux) + T/[2n(x — d))
= I/2nlx(d - x)/(d — 20} (9.51)

In this case, at x = d/2, U = 0. At the singular points, x = 0 or d,
U©) =T/2wd); Ud) = —T'/(2wd) (not infinite or zero)

The rotation about the center of the line (from € to d — €) could be ap-
proximated by a hypothetical solid body (rotational),

do/dt = U0)/(d/2) = T/(nd) 9.52)

However, this would not be a potential flow, and would indicate incorrect
velocities outside the vortices. There exists no solid-body rotation or vor-
ticity outside the two vortex cores where potential flow is valid. Since we
are dealing with potential flow, we could superimpose a uniform velocity
field on this flow. The pair of vortices would then move along with this
velocity and rotate about the center of rotation.

When T} and T, have opposite signs, the rotation center w111 lie outside
of d. In fact, when they are equal and opposite, the center is at infinity and
they do not rotate around each other. The total velocity field compatible
with the two vortices is shown in Fig. 9.23. It suggests that the pair want
to move together (upward in the figure).

9.7.2 Initial Motion

If the vortices were somehow suddenly created in a static fluid, the implied
velocity inside (nearest the other vortex) would always be higher than that
outside. This is due to the addition of associated velocity fields for the two
vortices. Bernoulli’s relation would then state that lower pressure existed
inside, and they would move toward each other—toward the low pressure.
This then is not a stable configuration. However, if a uniform flow field V
were imposed such that the velocities in the neighborhood of the two vortices
were equal, the pressure gradient would not exist. This velocity would be
determined by

V+T/Q2ue) —T/Q2nd)=T/Q2me) + I'/2wd) -V (9.53)
where

V=T/2nd), (d+e=d)
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sl
-r,/(zm')\ly/

o Ti/x+Tp/d-x
- 2n

Figure 9.23 Vortex pairs with opposite signs, velocities associated with I'; (——) and
I; (——-) and their sum (lower figure).

Thus, if the vortices move with velocity I'/(2wd) (or are stationary in a
uniform flow of this velocity), there is no attraction. This is precisely the
velocity associated with the centers of the coexisting vortices. The result
merely states that to be in an equilibrium flow situation, the velocities at all
points of the flow must conform to the superposed associated velocities of
the vortices present.
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Problems

1. Given the potential
¢ = ax’y + bxy’

Is it a valid potential flow?
2. Given the stream function for incompressible flow,

U = Cxy

Is the flow irrotational? Sketch the flow pattern. What flow might it be used
to model?
3. Given the potential function,

¢ = (U/r)cos b

Find the stream function. Assume U is constant.

4. Add the Coriolis forces to the development of Eq. (9.12) to arrive
at a sixth-order equation in .

5. Add a simple stratification effect (87/ax; # 0) to the result of prob-
lem (4) to get an eighth-order equation in .

6. Given the potential function ¢ = C In r.

Find the pressure, p(r,0) with respect to stagnation pressure.

7. A two-dimensional flow field is described by u = x and v = —y.
Investigate the flow with respect to continuity, rotationality, and realisticity.

8. Write the potential and streamfunction for a combination of a sink
and vortex. Find the velocity field. Plot the streamlines. What atmospheric
phenomena might this simulate?

9. Consider a tornado as a two-dimensional, idealized vortex with core
radius 30 m and a maximum wind velocity of 60 m/sec. Calculate and plot
the velocity, pressure, circulation, stream function, and velocity potential.

10. Suppose you’re given a potential ¢ = f{x, y} for flow about a two-
dimensional configuration. Explain the steps you take to get the flow field,
the stream lines, and the forces on the configuration.

11. Given that a tornado has velocity components in polar coordinates.

(Vr’ VB) = (_A/r9 _B/r)

Get the equation for the streamlines of the flow.

12. Consider the wind blowing perpendicular to a Quonset hut (a half-
cylinder, as in the sketch below). Use ideal potential flow to determine the
location of minimum pressure and p.. Calculate the net force on the hut.
P, = 1000 mb, d = 10 m, length of hut = 30 m.
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13. Calculate the lift and drag forces on the cylinder with circulation in
uniform flow. In Example 9.6, add circulation I' to the cylinder. This is the
Magnus effect and the result for the lift,

FszUF

is known as the Kutta—-Joukowski formula.
14. Consider the potential and stream functions,

¢ = Cr" cos(nf); U = Cr” sin(n)

Show the flow solutions depicted when n = 2, 3, %, and %
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10.1 The Mean Flow

Observations in the atmosphere and the ocean suggest that the flow is often
irregular, either wavy or turbulent. The mathematical description for these
motions is assumed to be contained in the continuum equations of motion.
Whether or not it is, depends on the validity of the closure assumption. This
depends on the characteristics and scale of the turbulence. A complete so-
lution may only be obtainable in numerical integrations with sufficiently
large computers. Still, this is difficult. From a practical standpoint, the entire
volume of the atmosphere cannot be represented numerically on small enough
grid scales to account for small-scale turbulence and dissipation Thus a
choice of a finite volume must be made for the domain of calculation.

In general, we do not have the ability to recognize the myriad of forces,
instabilities, and boundary conditions that determine the flow, let alone place
them in a computational program. Therefore the boundary conditions, both
spatial and temporal, are frequently unknown. On the scales at which we
most often deal, the flow may appear random. There are unpredictable vari-
ations on many scales. Sometimes the flow under observation may not be
truly random, yet it can be effectively random due to the finite time and
space scales of the calculation and the limited information available to the
observer. One practical result of this indefinite character of the flow con-
dition is the lack of a precise definition of turbulence. With the goal of

381
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defining turbulence, we begin by defining the mean flow. When this is done,
random turbulence and coherent waves will be what is left over.

There is evidence of both turbulence and a steady mean flow existing on
almost every scale. To visualize this, consider flying a kite. It responds
mainly to a mean wind. But there is usually evidence in its motion of the
random turbulence in the air. If the kite has a long tail, the turbulence is
often exaggerated in the motion of the tail. Or consider the wind surfer who
relies on an average component of the wind for balance. She may fall when
turbulent gusts hit the sail. An anemometer records the surface layer winds,
and its pointer may oscillate randomly. Still, there is generally a clear av-
erage velocity. When the mean is sufficient information, the turbulence is
often logged as noise in an experiment. However, some measure of the tur-
bulence might be given. An example is the “gust factor” of the wind.

The mean value is clearly a function of the averaging period. The average
may be taken over an arbitrary interval of time, Ar. This is shown by two
possible cases in Fig. 10.1. It is clear that the value of the mean depends
on the chosen At interval. '

As the forces acting on a fluid increase, the flow may pass through several
stages. These may be lumped into general categories:

1. Static fluid

2. Laminar flow

3. Unsteady and wavy flow
4. Chaotic and turbulent flow.

Each of the flow groups includes several flow regimes. Within the lam-
inar flow category, the slow and orderly regimes called creeping flows yield
particular solutions of forms of the Navier—Stokes equations. They are ob-

L
- - ; WA'!\\WMY/\V/\[/)WM\\] v
- At

Figure 10.1 Typical data record versus time. Dashed line shows mean values for various
At (zero for second segment).
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tained by taking the approximation of the equations for a very small Rey-
nolds number. These solutions provide accurate descriptions of the flows
shown in Figs. 1.1-1.4. The flow regimes of potential flow theory are also
laminar flows. An eddy viscosity concept is employed to extend this cate-
gory to include eddy-laminar. This is a steady layer-like flow with respect
to small-scale turbulent eddies. Then we may include the geostrophic, gra-
dient, and ideal vortex flows in the laminar category.

The last two of the four flow categories are best described by the per-
turbation equations. Here, the wave component, coherent or turbulent, is
separated from the average flow by considering it as a perturbation on the
mean.

Atmospheric flow is seldom steady or linearly varying for great distances
or periods. Still, there is often an average of the flow, as in the latitudinal
bands of easterlies or westerlies around the globe. However, as more sen-
sitive measurements are taken of virtually any phenomenon, a variation about
the mean flow is inevitably found. In the case of the westerlies, one variation
is the mid-latitude storm systems. They may appear regularly on an average
of once every few days in certain locations, such as Seattle, Washington.
Hurricanes are dramatic variations on the tropical easterlies. They do not
have a well-defined frequency. .

On the other hand, the local small-scale flow may also appear to be steady
for hours as a large-scale weather system passes by. Yet when a larger space
is considered or a longer time, there will be significant variations. For in-
stance, the moth that lives its life cycle in the summer months will have no
care or knowledge of the cold of winter. Similarly, Homo sapiens’ current
culture has bloomed in a warm interglacial period. Thus it gives little care
to the long-term periodic return to an ice age. It is even difficult to generate
regard for the possibility of anthropomorphic change of the climate, as in
the greenhouse effect.

There are many examples of distinctively separate regimes of flow oc-
curring as the flow responds to small variations in the boundary conditions.
They may occur with either regular or random frequencies. Each regime
may exist long enough to exhibit a quasi-steady character, and then quickly
convert to another quasi-steady field. These examples also suggest caution
toward applying a long-term average to a short-term phenomenon. For in-
stance, the mean temperature of an interval that spans both glacial and in-
terglacial periods is of little significance in describing either period.

The determination of a mean atmospheric flow is often difficult due to
the sparcity of the data. The limited data prevents one from obtaining a
repeatable average as defined in Chapter 1. To get some idea of the scope
of this problem in the atmosphere we can look at several common categories
of atmospheric flow:
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Table 10.1
Categories of Atmospheric Flow and Associated Phenomena.

Synoptic Global Global
Surface layer PBL weather weather climate
Space 100 m 5 km 10,000 km 25,000 km 25,000 km
vertical vertical horizontal horizontal horizontal
Time I br 24 hr 7 days 1yr 10-10° yr
Phenomena
Ocean waves Air Storms El Nifo Greenhouse
pollution effect;
ozone; in-
terglacial
ice ages
Eddy
scale
10 m 100 m 400 km 500 km 1000 km
30 min 30 min 6 hr 1 month 10" yr

The estimates for eddy scale in the various categories is determined from
the maximum turbulence scale that allows a mean derivative to be defined.
This will be the scale of the eddy continuum. For instance, in the PBL., the
vertical derivative of mean velocity, dU/dz, can only be defined when Az
is sufficiently smaller than the domain height that a limit Az — 0 can be
approximated. This Az must contain sufficient eddies to yield a uniform
average as discussed in Chapter 1.

Since there are frequently not enough observations to adequately deter-
mine the averages or the eddy domain, the next step is to determine the
assumptions needed to remedy the shortages in observations. This analysis
is greatly helped by examining the governing equations. With a systematic
scaling analysis, the possibilities of assuming horizontal homogeneity, pe-
riodicities, and appropriate mean values may be revealed.

Example 10.1

Consider the problem of instrumenting a 100-meter tower in the atmospheric
surface layer (see Fig. 10.2). Discuss the intervals for placing sensors and
measuring times for typical winds of 10m/sec. What assumptions on eddy
size must be made?
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Figure 10.2 Sketch of a 100-meter tower in the atmospheric PBL with wind and tem-
perature sensors.

Solution

We would like to have a sufficient number of sensors to define the mean
variation of the wind through the 100-m layer. Sensors placed at 10-m
intervals would allow the roughest approximation of dU/dz assuming that
Az/H = 10/100 and AU/U < 1.

To average over typical 10-m diameter eddies in a 10-m/sec wind re-
quires 1 sec for an eddy to pass. In 2 min one gets 120 eddies to average.
Thus a 2-min average at 10-m intervals over the 100-m depth should allow
a mean velocity profile with respect to an eddy continuum with 10-m max-
imum size eddies. Larger eddies will not allow an eddy continuum to be
defined. A smaller eddy spectrum would allow shorter averaging times.
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We can evaluate the significance of an average value only with respect
to the measurement interval and the number of points. However, there are
also restrictions placed on the existence of average flows by the governing
equations. When all of the terms in an equation are placed under the same
average, certain terms will dominate over the others; that is, the relative
value of the terms will be determined by the choice of characteristic values
(often average values) of the primary variables, as discussed in Section 3.3.
For instance, a turbulence phenomenon with a particular scale (say 1 m) can
be considered part of the mean flow to a much smaller scale domain (1 cm).
It is dominant at its own scale, and negligible on very large scales (kilometers).

When the scales are chosen as characteristic of the height above a surface
in the atmosphere, different equations and solutions emerge for different
heights. The thin molecular layer (millimeters) adjacent to the surface may
be described by equations with laminar solutions. A little farther out, the
boundary layer (meters to kilometers) equations can ignore molecular vis-
cous effects, but they will require direct inclusion of the turbulence. How-
ever, on the slightly larger scales of the PBL, the eddy-laminar equations
may be a good approximation. Finally, the equations for the troposphere (10
km) will ignore this scale (meters to kilometers) of turbulence. Even the
eddy-viscous terms can often be dropped for the mean equations of motion.

The solutions to each set of approximate equations will be valid only
when the assumed characteristic values hold. In this chapter we will use
perturbations on a mean flow to investigate limitations on the range of ap-
plication of a given mean flow solution.

10.2 Waves

Even in the smoothest of irrotational flows there are seeds of irregular flow.
Small disturbances are omnipresent. These disturbances, or perturbations,
are “constantly testing the flow field to see if it will allow them to grow.”
If conditions are conducive to growth, the small disturbance may grow to
a wave, a wave train, or a set of many different waves. Often the growth
continues until the waves break and small-scale turbulence results. However,
sometimes the wave will come to equilibrium at a finite amplitude, and
thereby become part of the larger-scale mean flow. For instance, the earliest
satellite photographs showed the frequent presence of orderly lines of clouds
known as cloud streets, shown in Fig. 10.3. These pictures suggested that
the flows contain waves that are regular and persistent. They are definitely
not random turbulence. The observations provoked a theory and solution for
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Figure 10.3 Atmospheric flow marked by sharply defined clouds. The clouds sit at the
top of the PBL at about 2 km height. The flow is parallel to the “cloud streets,” a “southerly”
from bottom to top—from over the ocean to over the east coast of the United States. The
wavelength (cloudband width plus. separation) is about 2 km.

these flows based on the scaling and perturbation techniques discussed in
this chapter.

However, as parameters change, the equilibrium conditions are altered
and the waves may simply die out, or they may change to another quasi-
steady equilibrium state. Or they may develop more growth and break. An
example of such a transition to the “cloud streets” is shown in Fig. 10.4,
Here, the stratification conditions change as the flow continues over a warm
surface. A new flow regime results—dictated in the equations by the in-
creased importance of terms involving density and temperature changes.
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Figure 10.4 Atmospheric flow marked by cloud waves. In this case the flow is northerly,
top to bottom, from over pack ice to over ocean. The wavelengths vary from about 4 km near
the ice to 40 km downstream, where the flow has slowed and entered a new flow regime.
Note the Karman vortices superimposed on the PBL flow in the wake of Bear Island.
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A familiar example of waves in geophysical flows is found on the inter-
face between the ocean and the atmosphere. The flow of wind over water
evidently has a solution that contains waves on many scales and regimes.
These waves, and the relation to the driving force, the wind, are very im-
portant in many contemporary problems of atmospheric and oceanic dynamics.

The sailor looks for the freshening (rising) wind by looking for the “cat’s
paws” on the water surface. What he or she sees is a darker area, marking
the reduced reflection off the surface of the water in regions where the wind
has generated capillary and short gravity waves. These are wavelets with
wavelength in the few-centimeter range. They are generated on the water
surface in direct correlation with the wind velocity. The theory behind the
generation is lengthy and laborious, and not yet definitive. (In fact, the gen-
eration is possibly proportional to the acceleration/deceleration of the winds
rather than to the steady wind.) However, the simple but sound correlation
between these waves and the wind is the basis for the sailor’s inference. It
has also been extended to the interpretation of satellite microwave radar
measurements as marine winds.

We can expect the solution for the flow of the atmosphere and the ocean
to emerge from the Navier—Stokes equations for the continuum fluid do-
main, which includes the air and water. Although there is a sharp discon-
tinuity in the density profile at the transition from air to water, the velocity
and stress can be assumed to be continuous at the surface.

The flow solution must include the development of the sea-surface waves.
When the mean flow is a strong wind at the surface, the velocity associated
with the waves can be considered as a small perturbation on the mean. The
flow description then becomes a stability problem. In this analysis, the equa-
tions are examined to see whether various perturbations will grow or decay.
When the waves grow exponentially, they may break and create turbulence.

10.3 Turbulence

The wind blowing across a corn field, or blowing snow, dust, or candy bar
wrappers, provides familiar visual observations of the variability of wind.
Similar observations are made on larger scales in the cloud motions by sen-
sors on satellites or airplanes. In addition to random plumes, organized cells
and/or linear features appear on many scales in these natural “flow visu-
alization experiments.”

When the mean is calculated by taking the average over an interval of
time or distance, the turbulent and periodic motions have been averaged out.
Some of these perturbations can be brought back into the equations by sep-
arating the velocity at any time or point into the mean plus variations about



390 10 Perturbation Equations

the mean. The perturbations include the organized periodic motions and the
apparently disorganized motions of turbulence. It will not always be evident
whether or not the variations are organized or not. If we cannot identify the
variations with predictable characteristics, we must call them turbulence.
Although this is not a very satisfactory definition, it is adequate for practi-
cal purposes. Turbulent flow can also be recognized by the following
characteristics:

Strongly nonlinear behavior
Rotational
Apparently random in time and space
Intermittent, three-dimensional, and chaotic
5. Associated with vortices, a continuous spectrum of eddies, and a mean
flow shear
6. Strong mixing, the primary instrument in atmospheric diffusion

B

From this behavior, it is evident that the process of turbulence analysis
is that of seeking universal characteristics of the turbulence. If we can then
describe this behavior, it may be possible to remove this aspect of the flow
from “turbulence.” From the last two characteristics, it is evident that tur-
bulence analysis and description is crucial to any regions involving flow
regime boundaries. Turbulence is a dominant consideration in boundary-
layer dynamics. It is essential to the descriptions of pollution dispersion,
agricultural microclimates, and forces on buildings, ships, and aircraft.

There are many levels of turbulence analysis. They range from the mo-
deler’s desire for a quick and simple parametrization of its diffusive action
to the mathematician’s description of the statistics of the phenomena. We
will concentrate on the former. This depiction follows closely the earlier
derivation of the molecular basis of diffusion. It can be assumed as an ad
hoc analogy of molecular diffusion. Considering the relative tenuous state
of the eddy-continuum compared to that of the molecular continuum, this
is an audacious assumption. However, Stokes’ viscosity assumptions were
no less bold analogs of the parametrizations of solid-state mechanics. The
big problem with the eddy-diffusion concept involves scales, and the basic
requirements of the continuum, to have the Navier—Stokes equations be valid.
In this concept, we think of turbulence as a small-scale momentum transport
mechanism and interpret it as exerting a viscous force.

10.3.1 The Eddy Continuum

The concept of a laminar flow, tied to its origins in molecular fluid dynam-
ics, can sometimes satisfactorily be extended to an eddy-laminar definition.
The averaging period chosen to establish the mean flow must sample a suf-
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ficient number of turbulent elements to be in the “continuum”™ domain of
these eddies. Yet it cannot be so long (in time or space) as to encounter
larger-scale trends. The goal is to parametrize the mixing effect of the small-
scale turbulent elements in a fashion similar to the molecular flux parame-
trization. There, we used molecular viscosity as a parameter to relate the
aggregate momentum flux by the molecules (the internal stress force) to the
mean flow velocity gradient. The fact that observations show that there exist
laminar-like flows on large scales lends support to the hypothesis of eddy-
laminar flow.

Just as in the molecular domain, to use the Navier—Stokes equations there
must exist an eddy-continuum such that a meaningful average of the rela-
tively small-scale eddies can be obtained. There are many observations of
orderly linear flow on large scales that also must include strong small-scale
turbulence. These observations occur in a wide diversity of domains throughout
the atmosphere. Thus, it is likely that an eddy-laminar approximation is an
adequate first approximation for many flow situations. An approximate so-
lution for geophysical flows is obtained by solving the Navier—Stokes equa-
tions with an eddy-viscosity representation for the turbulent fluxes.

More often than not, in large-scale atmospheric flow problems the viscous
term can be completely neglected. This is because the nondimensional coef-
ficient of the viscous term, 1/Re = K/(UL), is small in large-scale flows.
The smallness of this ratio between the viscous and inertial forces may be
due to the absence of small-scale turbulence (e.g., due to the damping ef-
fects of stable stratification). It could also be due simply to the large char-
acteristic scale L of the flow. The wave and turbulent features are then con-
sidered as perturbations embedded in these mean flows, with a zero average.

10.4 Reynolds Averaging—Flux

We will start by separating the flow parameters into a mean part plus another
component that oscillates about the mean. We are immediately confronted
with the problem of what exactly is the mean flow. It will be defined with
a scale that is large with respect to that of the perturbation phenomena we
are investigating.

The mean of a function' ® may be written

t+AT x+nk

O dt or [1/(n)\)]f D dx (10.1)

X

<I>=(1/AT)f

! Note that ¢ and @ in this chapter have no relation to the potential function of Chapter 9.
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where A is the wavelength associated with the oscillating part and n is a
number = 10. The period, AT, or the length, n\, must be long with respect
to the values associated with any perturbations. An overhead bar will be
used to denote the average.

We then have the following rules:

f=F f¥g=F+& TJs=fz
of/as = of /os; ffds=ffds (10.2)

When the flow parameter is separated into a mean plus a perturbation,

f+fl’

t+Ar 1+ At
f= /A f fdr=(1/An f (f+f)d

=(1/Ap) Uf dz+ff’dt]

=f+ (1/A) ff' dr=f

since

(1/A0 ff’ di=f"=0
In general, the dependent variables will be separated into a mean plus an
oscillating part, (¢ represents any variable)
w=u; + u p=p+p', etc.; where ¢’ = 0
W=+ u)Y =u*+2uu + v’
and when an average is taken,
o=+ u” (10.3)
Similarly,

0 0
T_ 1 (10.4)
w + u uj

/

The primed quantities can represent waves or small-scale random tur-
bulence. If both are present, we could separate the flow into three parts,

;= uu; + ouju + ou
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using ¢ for the mean, a ¢' for the waves, and ¢” for the small-scale tur-
bulence. Such a development involves a proliferation of terms. For simpli-
fication in learning the technique, we will restrict analysis to a single per-
turbation for either waves or turbulence. In practice, when the circumstances
are clear, often capitals are used for the mean flow, lower case for the
perturbation.

Example 10.2
Consider the triple correlation puw, and calculate the averaged perturbation.

Solution
Substitute p =p + p',u=U +u',andw =W + w’,
puw = (p + p YU + u" YW + w')
= pUW + pUw' + pu'W + pu'w’ + p’UW + p'Uw’ + p'u'W + p'u'w’
Taking the average,. )
puw = pUW + pu'w’ + Up'w + Wp't + pu'w’
When a substitution is made in the equations and the mean terms are sub-
tracted out, this leaves four perturbation terms,

pu'w' + Up'w' + Wp'u' + p’'u'w’

When one of these variables is constant, the perturbation terms are re-
duced to one only. It is clear that there is a quick proliferation in terms when
higher-order correlations are considered.

Consider the flow through a surface in the fluid with arbitrary orientation

(Fig. 10.5).
From Section 6.1 we recall that, similar to the mass flux/unit-time = pu
dA, the u-momentum flux /unit-time is

dJ, = puu dA
dJ, = puv dA
dJ, = puw dA
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z

dA

X

Figure 10.5 Flow through an arbitrary surface dA.

The time average is

di, = p(U" + u'") dA
dJ, = p(UV + u'v') dA
dJ, = p(UW + u'w') dA

To get flux per unit area, divide by dA to arrive at
di/dA | = p(U* + u?)
dJ/dA |, = p(UV + u'v")
di/dA |, = p(UW + u'w")

Now the momentum flux/unit area is associated with an equal and op-
posite force on the surroundings [d(mv)/dt = F = stress]. This force/unit
area is defined as the stress. Thus the flux of momentum/unit time through
an area produces a force on the area that is equal and opposite to the stress
force on an element surface. There is a contribution to the force from the
mean flow, «’, uv, and uw, and from the perturbation correlations,
u'?, u'v’, u'w'. For the surface shown above this may be written

{t11, Tz T3} = {—pU+uD), —p(UV + &'V'), —p(UW + u'w')}  (10.5)

We now have the internal stress terms expressed as partly due to mean
flow and partly due to the perturbation flow. The mean forces are the ones
that we have parametrized with Stokes’s law of friction and viscosities. The
new fluxes, or eddy-stresses, will have to be related to the mean flow pa-
rameters to obtain a closed set of equations.
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Example 10.3

Verify that the momentum flux due to the correlation between ' and w' can
be nonzero in the simple shear flow of Fig. 10.6 by considering the small
motions of the parcel.

4

1
(]
Ll

>/
-u ‘/ U (z)
J/

u

Figure 10.6 Parcel with random motion in a mean shear flow. Moving up or down with
+w', it exhibits a Fu’ velocity in its new environment.

Solution

Consider the signs of the perturbation velocities of the parcel as it moves
up and down, and the consequent sign of the correlation u'w’.

1. Movement up: w' = 0, ' =< 0; — u'w = 0.
2. Movement down: w' =0, 4’ = 0; = u'w’ = 0.
There is a correlation between the ¥’ and the w' such that if there is a

positive U(z) gradient, then the average product contributes a negative mo-
mentum flux. The stress is the reactive force on the parcel,

T, = —pu'w =0 (10.6)

There are many uses of the perturbation procedure in fluid dynamics.
Initially, the perturbation quantity was used by 0. Reynolds to evaluate the
effects of small-scale turbulence. In this way he was able to show that when
turbulence is considered as a random small perturbation it could be included
in the equations of motion as a stress force contribution. Later, to get the
PBL equations, we will investigate whether a flow is stable or unstable to
a small disturbance, and we would like to use this procedure with the per-
turbation as a time-dependent simple waveform. Finally, we would like to
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let the perturbation grow to the point where it is interacting with the mean
flow parameters sufficiently to change them. In this case, we will be con-
sidering a nonlinear problem. However, it is possible that not all of the
nonlinear terms will be important. This can be investigated using scaling
principles.

When we place the perturbation format into the equations of motion, we
get a lengthy equation with mean terms, perturbation terms and mixed terms
results. When the equations are averaged, the mixed terms frequently van-
ish, since averages of perturbations alone are zero. However, the mean flow
equations may now contain cross and autocorrelation terms, since the prod-
ucts of perturbations do not necessarily average to zero. If the mean flow
equation is subtracted out of the complete perturbed equation, equations in
the perturbation result. The terms with combined mean and perturbation
variables appear in these equations. A linearized perturbation equation can
be obtained by neglecting all products of perturbations.

Example 10.4

Find the various perturbation equations for the representative equation

du/ot+ udufox + bu* =0 (10.7)

Solution

The perturbed equation is obtained by substituting perturbation expressions
for u in Eq. 10.7.

AU+ u)/at+ U+ uw)dU+u)/ox+bU+u)=0
or
dufot + ou' /ot + UoU/ax + U du' fox + u' 0U/dx + v’ du'/ox
+ b[U? +2U% + u'? =0 (10.8)
The Mean Flow equation is obtained by averaging Eq. (10.8),
AU/t + U dU/Jax + u' ou' [ox + b(U> + u) = 0 (10.9)
The Perturbation equation is Eq. (10.8) — (10.9),
ou' /ot + U ou'fox + u' dU/dx + u' u'Jax — u' ou’ [ox (10.10)
+ 620 + u? - w1 =0
The linearized perturbation equation is obtained from (10.10) by neglect-
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ing perturbation products. [Note that it is not equal to the linearized per-
turbed equation, (10.8). The latter will have several mean flow terms cor-
responding to terms in the linearized mean flow equation.}

ou' /ot + u' OU/ax + U ou' fax + b2Uu’' =0 (10.11)

Note that the new mean flow equation (10.9) has picked up new terms
from each of the nonlinear terms. The perturbation equation (10.10) involves
differences between the mean values of the correlations and the point values
of the same products. Finally, the linearized equation (10.11) picks up three
new terms. These represent interactions between the mean and perturbation
velocities.

We are now prepared to write the equations in general forms appropriate
to investigations of perturbation phenomena. We will start with the Basic
(N-S) equations, which have been derived for laminar flow. We need only
to add the perturbations to get the Perturbed equations. The Mean Flow
equations are derived by taking the time average.

Then, subtract the Mean Flow equations from the Perturbed equations to
get the Perturbation equations. These are equations describing the dynamics
of the perturbation quantities. Finally, consider the perturbation to be small
with respect to mean values, neglect perturbation products and get the Lin-
earized Perturbation equations. They will describe the initial dynamics of
an infinitesimal perturbation.

10.5 The Set of Perturbed Navier—Stokes Equations

In this section we will obtain the four versions of the basic equations when
perturbations of each of the dependent variables are permitted. These are
the momentum, continuity, energy, and state equations. This is a straight-
forward but cumbersome procedure, resulting in a large number of terms.
These equations are quite general. However, in particular situations many
of the terms may be negligible compared to the rest,

To obtain the perturbed set of equations governing the flow we will
substitute

u;,=U,; + uj; p=P+p p=p+p; T=T+T

Here,
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so that
W=U+u)Y=U+20u +u"? (10.12)
and
WP=U+ u”? (10.13)
uy;=UV; + ul, (10.14)

The procedure we will follow for all of the equations is

1. First substitute the perturbations.

2. Then average.

3. Then subtract out the mean flow equations to obtain the perturbation
equations.

This process is relatively simple in the application to the basic equation of
state. We will use this equation as an example.

The Basic equation
p = pRT (10.15)
The Perturbed equations .
P+p =@+ p)RT+T)=pRT + pRT' + p'RT + p'RT’
Or, dividing by pRT,
P ' BRT PRT' p'RT p'RT
57f+5p7f=§7f+ paRf ’ F;Rf " pﬁRf

we get
—P/GRD) + p'/GRT) = 1 + T'/T + p'/p + p'T'/(pT)  (10.16)
Then take the average of all terms to derive the mean equations.
P/GRT) +p'/GRT) = 1+ T /T +9'/p + p'T /(o)
or
P/(BRT) = 1 + p'T' /(pT)
or
P=pRT +Rp'T (10.17)
The perturbation equations are obtained by taking (10.16) — (10.17).
p'/GRD) =T /T +¢'/p+ @'T' = p'T)/GT) (10.18)
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The equations can be linearized by neglecting all perturbation products.
In Eq. (10.18), this means dropping the last term and retaining the first
three. The linearized equation is often obtained directly by considering only
infinitesimal perturbations from the beginning (no perturbation products).
We then obtain from the basic equation,

P+p =@+ p)RT+T)=pRT + pRT + p'RT  (10.19)
and the averaged equation is
P = pRT (10.20)

Subtracting this averaged equation from Eq. (10.19), leaves the linearized
perturbation equation,

p'/P=p'/p+T)T (10.21)

We can now apply the same procedures to the momentum, continuity,
and energy equations.
The Basic Equations

ou, /ot + u; ou;/ox; + femu, + 1/p dp/ox;
+ 88,3 — v d'u;/ox;0x; = 0 (10.22)
ap/ot + u; ap/ax; + p du;/dx; =0
P = pRT; f=2Q5sin 6; n=1(0,0,1)
dT/dt + u; 0T /dx; — K, 8°T /dx; dx; — (RT/c,) du;/dx; = 0
The Perturbed Equations
oU /ot + duifor + (U; + uj) o(U; + u;)/dx; + fen(uy + Uy)
+1/(p+p)IP + p')/ox; + g8;3 — v (U, + u})/dx; 6x; = 0
ap + pH/ot+ (U;+uj)op + p)/ox;+ (p+p)oU; + uj)/ox; =0
T+ T/ or+ (U; + u) T + T')/x;
— P +p")/Ic,p + p)] U, + u)/ox; — K, 83T + T")/dx; 0x; = 0
(P +p)/GRD) = p'/p+ T'/T + p'T'/(6T) (10.23)
These equations are general so far, with no restrictions on the “pertur-
bation” terms. However, there is considerable simplification if we make an
exception in the case of p to retaining the possibility of finite magnitudes
for the perturbations. This can be done since p’/p < 1 is a very good ap-

proximation for nearly all atmospheric problems. Thus, we will substitute
from the approximation:
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Ye+e)=U/pIL—p/p+ 6 /p+...1=A/p)1—p'/p) (10.24)

The Mean Flow Equations

aU, /ot + U, 0U,/dx; + u] du}/dx; + 1/p dP/ox,

— p' /07 0p'[ox; + feun Uy + 8845 — v 8U,/ox;8x;,=0  (10.25)
ap/at + a(pU,)/dx; + 3(p"u)/dx; = 0
9T /ot + U, 8T/dx; + ul aT Jax, — [P 9U,/ox; + p” dulfox;} X
[1+p'/pl/c, — K, 8*T/ox; x; =0
RpT =P

The Perturbation Equations (with the primes dropped, and the bars kept
for the mean when capitals are not available)

du;/dt + u; du;/ox; — u; 0u,/ox; + u; 0U,/dx;

+ U; 8u,/ox; + fenu, + 1/p dp/dx; — p/p° 8P/dx; (10.26)
+ 1/p%p ap/ax, — p dp/dx) — v u,fox; 9x; = 0

ap/or + d(pU,)/ax; + a(pu,)/ox; + d(pu,)/dx; — d(pu,)/dx; = 0
aT/dt + U, 9T/dx; + u; 8T /dx; — u,; 0T /ox, + u, T /ox;
— R/c,IT du/ox; + T dU,/ox; + T du;/dx; — T ou,/ox;]
— K, 8T/ox;0x;= 0

b4

T
pPRT p T

T — pT
+ pr
pT
The Linearized Equations
ou;/ot + u; 0U,/ox; + U; ou,/dx; + fe nu,

+1/pdp/ax, — p/p* dP/ox, — v &u,/ox;0x;= 0 (10.27)
9% U, b,
ot ox; dx;

J J

9T /3t + U, 9T /dx; + u; 9T/ dx;

=0

— R/c,IT du;/dx; — T 8U,;/dx;] — K, 8*T/éx; ox; = 0

+

il
ol l©
~il~
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Example 10.5

Discuss the vertical transport of (a) momentum; (b) moisture, through an
area dA shown in Fig. 10.7. Relate the transport by perturbation velocity
w’ to the averaged flux. Consider the average U and W to be zero, density
to be constant.

Figure 10.7 Flux through an arbitrary horizontal area dA.

Solution
(a) The mass of fluid flowing vertically through dA in time At is
pdV =pw' dA At
This mass of fluid is carrying momentum,
u' dM = u'pw’ dA At
The average of this expression for the momentum transport is
pu'w dA At

Thus, there is

pu'w’

momentum transported vertically per unit time and area. We noted in Chap-
ter 6 that this is the stress component, T,.

(b) For the transport of moisture, simply substitute humidity for mo-
mentum. Let specific humidity be

g=q+4q
Then the volume of fluid passing through dA in time At is
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dV = w' dA At

The moisture of this fluid is pg dV. Hence, the vertical flux of moisture
through dA in the time A is

pgw’ dA At
We get the mean moisture flux Q by averaging this expression,
Q=pwq
It is clear that one can substitute any passive conservative quantity for

pu' or pq' in these expressions and arrive at the vertical flux of heat, pol-
lutant, insects, etc.

Example 10.6

Consider the perturbation equations for two-dimensional, incompressible,
inviscid flow. Let the perturbation be a wave propagating in the x-direction
with a magnitude that decays in the z-direction. Thus, perturbations are of
the general form

— ik(x—c
¢ = (I)‘P(Z) € i

where ®,(z) = C, ¢ and ¢ = ¢, + ic;. Here, ® represents u, w, or p. The
real part of ¢ is the wave velocity; the imaginary part indicates the wave
growth or decay with time.

At a fixed point in the flow, the perturbation oscillates with a frequency
wc, as waves with wave number k pass by. This format assumes that a
disturbance can be decomposed into normal modes of various wavelengths.
In this example c is real.

Obtain the equation for w in the layer of fluid adjacent to a solid bound-
ary, and the wave amplitude. For simplicity, assume that u(total), = U, +
u; and U, = 0. Assume that the scale is small enough that Coriolis force is
negligible. (See Fig. 10.8.)

Solution

In this case, Egs. (10.27) reduce to
oufot + (1/p) ap/ax =0
aw/ot+ (1/p)op/dz=10
dufox + ow/oz =0
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Figure 10.8 Horizontal wave motion in a fluid of depth A.

These equations are first order in the unknowns #, w, and p. To close them,
we need boundary conditions on u, w, and p plus initial conditions.

When we substitute the perturbations and cancel the exponential terms
that occur in each term,

—ickC, + ikC, =0
~ickC, +pC,=0
ikC, + pC, =0
Thus,
C.=Cple;  C,=(p/ickC,; and p= *k

Since we are dealing with the linearized equations, we can add the two
solutions for *k, to get

w=(C,.e"+ C,_e ™)
At the surface, w(0) = O is satisfied if C,,, = —=C,_ = C and
w = C(ekz + e-kz eik(x—ct) — C2 COSh kzeik(x—cr)

The boundary condition on the pressure is obtained by considering the
pressure at z = h + 7}, where m is the wave height. For instance, the pressure
on the top of ocean waves is the constant atmospheric pressure p,. Then the
pressure along the wave at the z is p(z) = p, plus the hydrostatic contri-
bution, —pg(z — ) = —pgn. Thus,

P(Z)=p+p=po— pgn+ pC »+ 2 cosh kze™
For small perturbations, n < k, and
m= 2Cp+/ g cosh khe®* ¢ = goiktr—an

where a is the height of the wave at the top.
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Finally, the second boundary condition on the velocity appears as
am/ot=w
Substitution of n yields
—ikcae™ ™~ — ga/(ic) tanh khe*™ = 0
or
¢* = (g/k) tanh kh
In terms of maximum wave height,
w = W(z) "™

where W(z) = —(iag/c) (sinh kz/cosh kh).
The speed of propagation of the wave depends on g, A, and wavelength
A = 2w /k. The wave travels with the same speed in either direction.

10.6 The Eddy Viscosity Assumption

The Mean Flow equations (10.25) are the same as the basic momentum
equations with the addition of the mean perturbation product terms. For the
incompressible case, there is only the additional u} du;/dx; term. Since the
perturbation continuity equation becomes du;/dx; = 0, the additional term
in the momentum equation can be written

duufax; = u; oui/dx; + u; duj/ox; (10.28)

This term represents the gradient of the momentum flux per unit mass by
the perturbation velocities. This is of similar form to the molecular viscous
term. We can move this term to the right side of the equation and consider
it in combination with the molecular viscous term.

(n/p) 8*U/dx; 0x; — quujfox; = (1/p) 8/dx; [ dU,/dx; — puiul]
(10.29)

The perturbation terms represent momentum fluxes by the small turbulent
eddies. Thus it is natural to consider representing them as the stresses on
the parcel produced as a reaction to the eddy momentum flux through the
surfaces of the parcel. In this case, to maintain the continuum concept, the
turbulent eddies must be much smaller than the parcel dimensions.

The eddy stress tensor is,
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u'w'
wv' v? u'w (10.30)

uw' uvw w

12

The assumption that the eddy stresses were related to the mean shear in
a manner similar to the molecular formula was first proposed by Boussinesq
in 1877. With this assumption one can then write the viscous terms as

pun; = —pK U, /ox; = 7’ (10.31)
and
8/ax;[(v + K) aU,/dx;] = 8/dx,;IK U ;/dx;}

The added stresses are called Reynolds stresses, or sometimes apparent
stresses. The equations with this modification for the viscous term are called
the Reynolds equations.

The analogy was pursued further by Prandtl when he introduced a length
scale—the mixing length—which is analogous to the mean free path of the
molecules. The mean free path is the distance that the molecule travels on
the average before it hits another molecule and exchanges momentum. How-
ever, an eddy of air is not a solid entity. Momentum transfer must be more
complicated. The mixing length is a scale representing the average distance
an eddy travels before giving up its momentum to the surroundings. This
concept has shed some light on the turbulent flow analysis and is employed
in boundary layer analysis. However, it gains little practical value over the
ad hoc employment of the eddy-viscosity in place of molecular viscosity.

Example 10.7

Discuss the exchange coefficient for the moisture flux in the previous ex-

ample. Use Prandtl’s mixing length £,, as the distance the mass of fluid

moves before giving up its moisture excess or deficit to the surroundings.

Write a general diffusion relation for moisture transport Q; in the i-direction.
The gradient of humidity at any point is shown in Fig. 10.9.

Solution

The excess moisture of a mass of fluid which has risen the distance €, is

q' = €,0q/3z
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>

q
Figure 10.9 A linearly decreasing humidity in the vertical direction.

Thus, the vertical flux of humidity may be written
Q= —pw'{, 0q/9z At

The negative sign is necessary because a negative moisture gradient implies
a positive moisture flux. The average value is

Q= —-pw't, 8q/0z

As with the momentum transport, we can relate the moisture flux to the
mean gradient with a diffusion coefficient,

Q=-K,0q/dz
From these two relations,
Ky=w't,

We can see that for a scalar like moisture there are three possible K's
associated with the three possible directions of turbulent flux. The mixing
length must also be allowed to vary in different directions.

Since the coefficient can also vary with the gradient, we must write

Q= —Kij(q) aq/ox;

The exchange coefficient for a scalar quantity is a second order tensor.
In isotropic turbulence, the moisture exchange coefficient is simply K;; =
K, = constant,

10.7 Summary

The equations in this chapter have been developed to allow calculation of
flows that consist of a mean plus a perturbation component. The perturbation
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Figure 10.10 Typical data record of ¢(f) in the atmosphere. In this record are evidence
of periodicity, bursts of turbulence, an aberrant point (spike), and an increasing trend.

can be random turbulent eddies or some organized periodic motion. The
separation of the basic flow into parts is summarized by looking at a typical
data record in Fig. 10.10. This might be a recording of velocity or tem-
perature taken at a point several times/minute for several hours. Or it might
be an airplane measurement, taken at very short time intervals over a dis-
tance of 100 km.

In the data analysis, obvious errors such as the spike shown in Fig. 10.10
are often removed as spurious. For instance, spikes may arise due to high-
frequency radio transmissions interfering with the data transmission. The
process is called de-spiking, and must be done with care and proper justi-
fication. There are examples where routine de-spiking has eliminated an im-
portant flow phenomenon. Then, this aspect of the flow remained to be
found by an experimenter with more stringent requirements before elimi-
nating such data.

Averaging can be done over intervals of a few points to the entire data
record. The interval must be chosen with respect to the phenomena being
investigated. If this is unknown, then a survey using a sequence of intervals
can be done. In the typical data record shown in Fig. 10.10, we can assume
that there is an overall mean for the entire record. As we choose shorter
averaging intervals, periodic motion will be revealed when the period is
significantly greater than the averaging interval. To be resolved, the record
must contain several complete periods. The averaging process will average
out the smaill-scale turbulence, producing “smoothing” of the record. This
will also show any long-term trends in the mean (which might be due to a
small portion of a much longer periodicity being measured). The waves are
revealed in the averaging interval shown in Fig. 10.11, where the interval
is 1/10 the entire data record interval.

Frequently the trend is removed, and the turbulence spectrum is examined
by taking intervals as short as possible. But the interval still must contain
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Figure 10.11 The de-spiked and simply smoothed data record.

sufficient data points to constitute a reasonable average, eliminating the small-
scale turbulent fluctuations. The periodic phenomena would then be best
resolved and the data record would look like Fig. 10.12.

Many other special circumstances arise in examining such a data record.
The perturbations may have periodicities that approach the record length and
are therefore poorly defined. The random turbulent perturbations may have
wavelengths of the same order as the organized perturbations. In this case,
special averaging techniques must be designed to resolve the random from
the periodic signals. This is much easier to accomplish if the period of an
organized perturbation is known, either from observations or theory. The
latter can frequently be derived from the perturbation equations using the
techniques of stability theory. The simplified PBL equations offer a fertile
field for these investigations.

Figure 10.12 The data record with random turbulence averaged out completely and the
trend removed.
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DEFINITION OF THE MEAN (AVERAGED) FLOW
- Waves
- Turbulence
> Eddy Continuum

REYNOLDS AVERAGING
- Flux
Perturbation Equations

PROCEDURE FOR OBTAINING PERTURBED FLOW EQUA-
TIONS FROM THE NAVIER-STOKES EQUATIONS
Add a perturbation — Perturbed Equations

® =+ ¢

Take Reynold’s average — Mean Equations

& =0, P #0
Neglect all perturbation products — Linearized Equations
¢lpf = 0

Subtract mean from perturbed —Perwurbation Equations

Problems

1. Perturb the three quantities a, b, and ¢. Perform Reynolds averaging.

(@) ab + &
(b) a*be
(©) (ab)’
(d) (ab)’

2. What is the Reynolds averaged version of pu®?
3. Consider the thermal energy equation written in terms of potential
temperature, 6.

80/8t + 90u;/dx; = K 9°0/dx; ox;

where K is thermal diffusivity and radiation is neglected. Obtain the per-
turbed equation (in u and 8). What is the equation for steady state and hor-
izontal homogeneity?

4. What is a singular perturbation of an equation? What problems does
it cause?
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5. Show that the perturbation continuity equation for incompressible
turbulent flow in polar coordinates is

ug/r + du,/or + (1/r) duy/00 + du,/0z =0

6. The average value of turbulence is zero and the rms is a measure of
intensity. Calculate these for the turbulent velocity data given in the sketch,
Here, u = U ey + #'. Measurements are taken once per second.

'

u
0.8 {e . .

0.6 . e
0.4 . . .

0.2 . .

5 10 15 20 e 25 30 35 e« 40 t (sec)

7. Consider the steady, two-dimensional turbulent flow between parallel
plates. Derive the Reynolds stress equations for this flow. Obtain an ap-
proximate analytic solution for the flow.

8. Derive the perturbed energy equation.

9. For large scales, the vertical component of pressure gradient ap-
proximately balances the gravitational acceleration. Perturb the pressure and
density from a base state, p = py(z) and p = py(z), such that dpy/dz =
—pog, to obtain a perturbed momentum equation. You should obtain a buoy-
ancy force balancing a perturbation pressure gradient.

10. Consider the u-momentum equation (10.22) only. Separate the per-
turbation into an organized part, u’, plus a random part, u’. Hence

u=u+u +u’

Derive the perturbed momentum equation.

11. The equation for the velocity covariances can be obtained from the
momentum equation in u; multiplied by u, plus the equation in u, times u;.
Thus, one gets an equation in duu,/3t. Obtain the equation for the averaged
covariance. List the seven terms and their functions. (e.g., buoyancy pro-
duction terms).



Chapter 11 Boundary Layers

11.1 Introduction
11.2 The Boundary Layer Concept
11.3 Boundary Layer Equations
11.4 Ekman’s Planetary Boundary Layer Solution
11.5 The Modified Ekman Solution

11.5.1 Organized Eddies (Rolls) in the PBL
11.6 The Surface Layer

11.6.1 Summary of Force Balance through the PBL
11.7 The Mixing Length
11.8 Summary

Problems

11.1 Introduction

We found that when the flow is inviscid and irrotational, the potential flow
solutions use elegant mathematics to obtain solutions to simplified equa-
tions. These results have important uses in many applied problems. They
provide flow solutions that fit well with the observations as long as the ob-
servations are done on the proper scale and in the proper domain. However,
the potential solutions are often severely limited in both time and spatial
domains. For instance, the simple potential flow solutions apply to large-
scale (synoptic) flows. But these equations develop instabilities. This results
in pockets of irrotationality and regions of strong divergence.

When large-scale numerical models are integrated over long periods, they
usually must include viscous effects. This helps prevent spurious wave growth
(viscosity has a damping effect) and accounts for dissipation in the system.

Finally, the conditions for potential flow are not valid when the flow
velocity is forced to undergo large changes in a relatively short distance. In
this case, the velocity shear must become large. Hence viscous terms like
v du/dx become large, and rotation is usually present.

Thus, one condition for potential flow to be a viable solution is that the
domain not contain a boundary between fluid regimes that have significantly
different flow parameters. In the atmosphere and ocean, stratification effects

411
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can result in adjacent horizontal layers with large differences in dynamic
and thermodynamic states. When stratification is stable in a layer, the in-
stabilities that lead to small-scale turbulence are suppressed. The flow be-
comes eddy-laminar, with little diffusive mixing. Two layers with very dif-
ferent properties can then flow side by side. The relatively thin layer between
them must have flow that depends on viscous forces to balance the large
shear in the layer. The dynamics of each of the adjacent layers can often
be treated as inviscid to obtain their large-scale flow. The boundary is then
viewed as a discontinuity where the two solutions are patched. However,
the boundary layer between the two flows is often the source of large-scale
waves, which may grow to produce the dominant flow character of the
boundary region. In this way, boundary-layer dynamics is often behind the
basic wave systems of the atmosphere.

One case of freestream boundary flow occurs at the edge between two
large-scale fluid masses. A vertical edge near the surface is called a frontal
region. Many important weather phenomena are mainly associated with the
properties of such boundaries. Since gradients are largest normal to such
fronts, we can expect the equations that govern the flow in these regions to
be susceptible to simplifications that emphasize the importance of the one-
dimensional gradients.

One place where the shear is inevitably large is in the region adjacent to
a solid surface. Here, the flow must feel the effects of the surface as fric-
tional forces must act to bring the flow to a halt. Such boundary layers
characterized by large velocity gradients are extremely important in many
disciplines. However, boundary layers can be associated with large gradients
in temperature, pollution, or any other parameter.

We live in a high-velocity shear layer that is hundreds of meters to kilo-
meters thick. The fluxes that drive the freestream flow must pass through
this layer and will depend on its characteristics. This atmospheric boundary
layer is often called the planetary boundary layer, or PBL. Most of the dis-
cussion in this chapter will involve the PBL. Still, the concepts of boundary
layer theory apply equally well in all relatively thin layers that contain large
gradients in fluid properties.

Since boundaries were always present in practical flows, there was a feel-
ing between the 1750s and 1900 that the potential flow solutions were simply
curiosities, with no practical importance. How valuable could a solution for
the flow over a wing be if it predicted no drag? Many felt that this serious
flaw indicated that the entire solution had no validity. The arrival of the
boundary layer concept in 1904 was a masterstroke that rescued the potential
flow solutions for use in calculating the general mean flow. This idea opened
up a new method of flow analysis for flows that include boundaries.
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The idea that results in a boundary layer can be seen as a logical extension
of concepts already developed in the previous chapters. Much basic work
was done by Ludwig Prandtl. He was concerned with laboratory flows of
water and air. At the same time, V. Walfrid Ekman found a derivation for
the ocean PBL. Ekman had to include the virtual force in his equations to
accommodate a rotating frame of reference. In both cases, the continuity
equation was assumed to be simply the condition of nondivergence. How-
ever, the assumption that the flow was irrotational, which yielded the in-
viscid Euler equations, was relaxed and the viscous term now appears in
these equations.

The Reynolds number (Re = pUL/p) is the ratio of inertial to viscous
forces. Inertial terms are of order pU?®. Viscous terms are of order pU/L).
Re is used as an inverse measure of the importance of the viscous term in
the momentum equations. It is very large in atmospheric problems. This is
often because L is very large, but it is also because p is small. The molecular
viscosity is very small, to the point that a Reynolds number based on . has
little or no meaning in atmospheric problems.

At the high Re of atmospheric flow, transition to turbulence is usually
assured. The Reynolds stress terms of Chapter 10 must be used. Even with
the ad hoc eddy-viscosity parametrizations, where the eddy viscosity is of
order 10%w, the Reynolds numbers are generally huge. This suggests that
the viscous forces should be negligible with respect to inertial terms. Indeed
the inviscid approximate equations have met with great success for appli-
cations in the atmosphere and ocean. These results include the geostrophic
flow solutions, which are a balance between pressure gradient and Coriolis
force. There are many inviscid modifications to these equations to include
various stratification and inertial terms. Thus the potential flow solutions
might be expected to be reasonable approximations if one were interested
in the flow around small objects (say a mountain) within the large-scale
flows.

However, the viscous force due to small-scale turbulence is related to the
vertical derivative, as discussed in Sections 1.11.5 and 10.6. When the flow
is near a surface, there is a source of mechanically generated turbulence,
hence eddy viscosity, at the surface. The large magnitude of the eddy-
viscosity coefficient K reflects the large transport capability of the eddy mo-
tion. The no-slip boundary condition, « — 0, is a good approximation for the
surface. The velocity shear is confined to a thin layer of depth H. Hence,
the vertical stress term, K du/dz, gets large near the surface. In this case,
the Reynolds number UH/K can get arbitrarily small as the boundary is
approached and H decreases. The result is that the viscous terms become
important in the equations. In fact, as one approaches very close to the sur-
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face (within a centimeter for the atmosphere), there is no room for turbu-
lence and a laminar sublayer exists where only molecular viscosity is
significant.

The potential flow solution is quite successful in describing the flow pat-
terns around and very close to objects in the laboratory, where molecular
viscosity sets the magnitude of the viscous term in a laminar flow. This
suggests that the domain where the viscous terms become important and
must be included in the equations is very thin. This is the essential hypoth-
esis of Prandtl in his boundary layer concept for the molecular boundary
layer.

The question of how thick is the geophysical turbulent boundary layer
would seem to involve the distribution of turbulence, hence the value of the
eddy viscosity. The inviscid equations may be assumed to apply in the geo-
physical freestream. We assume that K = 0 far away from where the tur-
bulence is being generated at the boundary. In a remarkable exact solution
of the N-S equations, Ekman showed that the departure of the PBL velocity
from the freestream velocity decayed exponentially with distance from the
surface. Hence the PBL is thin,

The implication that the PBL is thin is true independent of the details of
the assumptions for the eddy-viscosity distribution. Ekman’s solution applies
for horizontally homogeneous, steady-state, two-dimensional flows in a geo-
physical (rotating) frame of reference. The main viscous forces are those
associated with the vertical shear, = pK dU/dz. Since the vertical shear
becomes small in the freestream, the value of K becomes moot at the top
of the PBL. For this reason, a constant K assumption yields an adequate
first approximation for the PBL equations. The only requirement is that there
be an eddy continuum.

The two contemporary analyses by Prandtl and Ekman were, and still
are, essential to the development of fluid dynamic solutions in most practical
applications. Although many solutions may proceed without direct note of
the boundary effects, they all depend on the concept for justification of the
inviscid solutions. When the boundary-layer effects are ignored, the solu-
tions ultimately fail in some respect. Frequently the success or failure of a
large-scale numerical integration of the complete Navier—Stokes equations
will depend on how well the boundary layers are parametrized.

The importance of the boundary-layer effect can be seen in the obser-
vation that the fluid must ultimately come to rest at the surface. This is
nature’s no-slip condition, and it is also a not-so-evident idea. But if it is
true, it strongly implies that there is a thin layer with very large shear right
next to the surface. The boundary conditions at the surface must be changed
from the potential flow requirement that the normal component of velocity
is zero (the surface is a streamline). The new condition is that the velocity
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vector must be zero at the boundary. The added boundary condition on the
velocity can only be satisfied by the higher-order viscous equations. This is
related to the fact that a differential equation is solved for the dependent
variable by integrating. It must be integrated as many times as the highest-
order term in the equation. Each integration of the equation yields a constant
to be evaluated by a boundary condition. Thus, if we have approximated a
fourth-order equation with a third-order equation, we have lost the ability
to satisfy a boundary condition. This may, or may not, be important to the
solution.

In the case of the potential flow equations, the highest-order terms, the
viscous terms, have been dropped from the momentum equations. The no-
slip boundary condition cannot be satisfied, and no surface shear stress re-
sults. The mathematical term for this approximation to the full equations is
a singular perturbation (of the equations).

Once more, it should be stressed that this chapter deals with concepts that
apply to thin layers where rapid transition between different boundary con-
ditions takes place. Such boundaries abound in geophysical flows. The im-
portant ideas are those that lead to simplification of the basic equations.

There is an added reason for including this chapter in a text on funda-
mentals. Most of the concepts introduced in this text are employed in getting
the PBL equations and the solutions to these equations. Thus this chapter
provides a long exercise in the use of the material in this text.

Example 11.1

Viscosity is a measure of the fluid ability to transmit forces laterally to the
mean flow. In a boundary-layer flow, one generally assumes horizontal flow.
Sketch the expected velocity profile for a laminar and a turbulent boundary
layer. First, consider molecular viscosity. Then, discuss PBL turbulence with
different magnitudes. Comment on the stratification effect on K and the
surface stress variation. Assume that the freestream velocity is fixed at
10 m/sec.

Solution

The upper boundary condition is the constant freestream flow. Thus, there
is a fixed source of momentum. A laminar layer transmits momentum by
diffusion, layer to layer, following

T=pvdU/dz
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When small-scale turbulence is parametrized as diffusion,
T=pKdU/dz

We have seen that K > v, so the turbulent boundary layer is much more
efficient in transmitting momentum toward the surface. Figure 11.1. shows
the effect on the velocity profile. Note that the slope at the surface must be
much larger for the turbulent layer. Hence,

7 = pK dU/dz(0) > v dU /dz(0)

of

/

u U

laminar turbulent

Figure 11.1 Velocity profiles for laminar and turbulent boundary layers.

When we are dealing with PBLs, turbulence is inevitable and an eddy
viscosity is used.

T=pKdU/dz

The eddy viscosity can depend on time, as stratification conditions change.
Thus, when the layer is stably stratified, the small-scale turbulence is sup-
pressed, K is smaller, and profiles are more like the laminar in Fig. 11.1.
The expected profiles for the unstably stratified case will be more like the
turbulent profile in Fig. 11.1, and surface stress will be greater.

There is another factor affecting the value of K. The small-scale turbu-
lence is generated near the surface, either mechanically or by dynamic in-
stabilities. Thus, K « z. In stable stratification, K may decrease rapidly out-
ward, so that the PBL is thin. The retarding friction of the surface is not
felt as deep into the freestream. This effect tends to allow high-momentum
flow nearer to the surface and would seem to increase the velocity gradients
there. However, the net effect is reversed in the layer very near the sur-
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face—the surface layer. The result is that the PBL is thicker and the surface
stress is higher in unstable stratification.

11.2 The Boundary Layer Concept

In 1904, Prandtl presented his boundary layer hypothesis: The boundary layer
is thin, such that it does not significantly alter the shape of a body with
regard to the flow around it. Therefore the potential flow solution is valid
everywhere except within this thin region.

Although this concept may seem evident in view of the discussion in
Section 11.1, Prandtl went on to explain how to use this idea to get practical
solutions. Since the boundary layer is thin and the main action in the layer
is to bring the velocity to a halt, one should be able to simplify the equations
by keeping only vertical changes. This leaves us with a two-dimensional
(horizontally homogeneous), parallel flow. However, the acceleration (de-
celeration) terms must be important in addition to the viscous terms. The
density is generally assumed constant (and when we extend the theory to
the atmospheric boundary layer, we assume density has a small change across
the thin layer). The horizontal pressure distribution can be assumed to be
fixed by the large-scale flow dynamics and to be impressed on the boundary
layer. That is, pressure distribution doesn’t vary in the vertical. The static
pressure gradient of the freestream flow is equal to the static pressure gra-
dient at the surface. The process of approximating the complete Navier—
Stokes equations to obtain the boundary layer equations uses the techniques
of dimensional analysis, dynamic similarity, and asymptotic approximations.

Flow visualization techniques have substantiated many of these assump-
tions. Figures 11.2 and 11.3 clearly show the thinness of the boundary layer
and the strong velocity shear to zero slip at the surface. The sketch in Fig.
11.4 suggests that several boundary layer concepts may be needed to span
the huge scales involved in the atmosphere. A very thin layer is associated
with the roughness parameter Z,. This is a characteristic height scale arising
from the mathematics but which may be related to the roughness elements
of the surface. Many important phenomena in the boundary layer depend
significantly on the stratification of the layer. If this is negative, with colder
air overlying warm air, one might expect more turbulence to develop with
the help of positive buoyancy. Positive stratification would be expected to
suppress turbulent growth. Many parameters and phenomena are found to
change with stratification. These include the similarity-derived Obukhov
characteristic height L the secondary flow (large-eddy) effects, heat flux,
and convective towers. However, the concepts of the boundary layer ap-
proximation are easier to deal with in the neutrally stratified case.
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Figure 11.2 Boundary-layer flow over a wall. Lines of bubbles emitted from a cathode
wire mark the velocity profiles. (Photograph by H. Bippes, NASA TM-75243, 1978.)

Figure 11.3 Cone cylinder in supersonic free flight. The laminar boundary layer before
the vertex is too thin to see. The turbulent BL behind the vertex is evident (as is the wake).
(Photograph by A.C. Charters; from “An Album of Fluid Motion,” assembled by M. Van
Dyke and published in 1982 by Parabolic Press, Stanford, California.)
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Figure 11.4. Sketch of various vertical scales in the PBL.

11.3 Boundary Layer Equations

Now we assume that the flow outside a thin boundary layer is solvable with
potential theory, and we seck a separate solution for the thin layer adjacent
to a surface. We then hope to match this solution to the outer solution at a
small distance from the surface, equal to the height of the boundary layer.

For the thin boundary layer region, the viscous terms must be brought
back into the equations, and the inertial terms are retained. Later, we may
wish to approximate the equations for the case of steady-state flows.

Since we are concerned with a thin layer near the surface, all vertical
distances are relatively small, and we assume p is constant. The horizontal
extent of the problem is also usually small enough that one can assume the
Coriolis force is constant.

The most important feature from the scaling point of view is that there
are different characteristic scales for vertical and horizontal directions. We
name horizontal characteristic scales of length and velocity as X and U and
the vertical scales as H and W. Since we are considering a thin layer with
nearly horizontal flow, H/X and W/U are much less than one.

Now we can nondimensionalize the terms in the momentum equations
(Chapter 6) with the characteristic values of all variables. With hats denoting
dimensional variables, let
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u=4/U,v=0/Uw=w/W,x=3%/X,y=3/X,
z=3%/H,p=p/P, andt =1/T (11.1)

Generally in this section, all dependent variables are nondimensionat. The
cumbersome “hats” can be dropped except where the distinction between
dimensional and nondimensional must be made.

The equations in terms of the nondimensional variables are obtained by
substituting Eqs. 11.1 into the basic momentum equations. There arise coef-
ficients for each term that are combinations of the characteristic parameters.

[U/T] ot + [U*/X1(u du/dx + v du/dy) + [UW/H]w ou/dz
—[Uflv + [P/pX] dp/ax — [KU/X*1(0*u/dx* + 8°u/dy?)
—[KU/X* - (X/H)Y] °u/dz* =0 (11.2)

[U/T] dv/dt + [U*/X])(u dv/ox + v dv/dy) + [UW/H] w dv/dz
+ [Uflu + [P/pX] dp/dy — [KU/X*)(d*v/ox* + 8°v/dy")
—[KU/X*- (X/H)*] 8*v/3z* =0

[U/T] dw/dt + [U*/X1(u dw/dx + v ow/dy) + [W2/H] w dw/oz
+ [P/(pU% - U*/H) 3p/oz — [KW/X)@w/ax’ + 9w /dy)
—-g — [KW/X*+ (X/H)"] #*w/dz* = 0

For simplicity, we assume that T, the characteristic time scale, is large, and
assume steady-state, T — o,

These are the complete non-dimensionalized equations. Since each term
has been nondimensionalized with its characteristic value, we assume that
all of the independent and dependent variables are of order unity.

Our goal is to estimate the order of each term in Eqs. 11.2. This will be
made easy by dividing by the coefficient of one term. When this is done,
the term with no coefficient is of order unity, and the magnitude of the
coefficient of all other terms apportions their importance relative to unity.

The choice of reference term is arbitrary. For our example we pick the
inertial terms in the horizontal equations and the pressure gradient in the
vertical momentum equation. Thus, in the first case, multiply the equation
by X/U?, and in the second, multiply by H/U".

(u 0u/ox + v du/oy) + [X/HIW/Ulw du/dz — [fX/Ul
+ [P/(U")] dp/ox — [K/(UX)N(0°u/0x" + 8°u/ay")
— [K/(UX)- (X/H)*10°u/oz> = 0



11.3 Boundary Layer Equations 421
(udv/ox + v av/ay) + [X/H|[W/Ulw dv/az + [fX/U] u
+ [P/(pUP)] 3p/dy — [K/(UX)N(8°v/6x* + 8°v/9y")
—[K/(UX) " (X/H)* 3%v/dz* = 0
[H/X-W/U)(u dw/dx + v aw/ay) + [(W/U) Iw dw/dz
+ [D) ap/oz — [K/(UX)-W/U-H/X)(9*w/dx*+ 8*w/dy?)
— [gH/U? — [K/(UX)-W/U - (X/H)] @*w/az* = 0 (11.3)

We will now simplify these equations by employing the boundary layer
assumptions,

(1) H/X<1
2 WwW/iU<l1 (11.4)

We have already assumed that p is constant. Now use (1) and (2) to
neglect any terms with coefficients much less than 1. The pressure terms
must be retained as they can be arbitrarily large, depending on the imposed
pressure gradient. Note that in the viscous terms, the last term is very much
larger than the first, and only it needs to be retained. This can be seen from

Kk k [xT '
<« |2 =1 (11.5)
UK UX|H

For the boundary layer, the viscous term must be the same order (unity) as
the other terms,

Re = UX/K =~ (X/H)’ (11.6)

Therefore, this is known as the large Reynolds number approximation. The
equations can be written in terms of the conventional dimensionless parameters,

D = P/(pUY, Ro = U/Xf), and Re = UX/K
The steady-state, incompressible momentum equations are
(u du/dx + vou/dy) + [X/H][W/U]wdu/dz — [1/Ro] v
+ (D] dp/ax — [1/Re - (X/H) 8°u/az* =0
(u dv/dx + vov/ay) + [X/HIIW/U]wov/dz + [1/Ro] u
+ [D]dp/dy — [1/Re- (X/H)*] 8*v/8z* =0
op/dz — [pgH/P] — [1/Re-W/U - (X/H)"] 8*w/az2=0 (11.7)

Since most of our flows are pressure-gradient driven, we can always include
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the horizontal pressure-gradient term by assuming that D =~ 1. Hence P =~
pUZ, called the dynamic pressure.

We have made the assumption that the pressure is impressed on the layer.
In our equations, this is equivalent to assuming that pgHH <€ P. However,
for the PBL., we can relax this assumption and retain the hydrostatic relation
without coupling the z-momentum equation to the horizontal equations. This
is because the vertical momentum equation has the additional factor W/U
in the viscous term. This is generally very small, hence the vertical mo-
mentum equation is simply

—dp/dz = pg (or 0) (11.8)
Employing the same scaling procedure, the continuity equation is:
ou/fdx + dv/ay + [X/H-W/U] ow/3z = 0 (11.9)

The dimensional equations to be solved for the boundary layer are ob-
tained by substituting & = uU, etc., in Eqs. (11.7)—(11.9). In Egs. 11.10,
all variables are dimensional (hats have been dropped). '

udu/dx + vou/dy + wou/dz — fv + 1/pdp/ox — K 8°u/dz* = 0

udv/ax + vav/ay + wov/oz + fu + 1/pap/dy — K 8’v/9z* = 0
du/ox + dv/dy + aw/oz = 0 (11.10)
ap/az =0

Although many terms are gone, these are nonlinear equations and thus
not easily solved. The pressure gradient is usually given as a result of the
freestream flow solution. The Coriolis parameter is given. And the coeffi-
cient of the viscous term is assumed to be known. For laminar laboratory
flows, it is simply the molecular kinematic viscosity. For turbulent flow, it
is an eddy viscosity. The boundary conditions are u(0) = 0 and u(») = U.
The set of equations is closed and amenable to numerical solutions. Several
particular solutions to these equations have been found for special condi-
tions, but no general solutions exist. If we assume horizontally homogeneous
flow, 3/0x = 8/dy = 0, the nonlinear terms are negligible and we can obtain
the planetary boundary-layer equations of Ekman.

Example 11.2

Consider a PBL with the following conditions (see Fig. 11.5):
Height = 1 km; horizontal scale = 1000 km; geostrophic flow at the top
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= 10 m/sec; mean vertical flow = 1 cm/sec; eddy viscosity = 50 m?/sec;
and constant density = 1.23- 107 gm/cm’. Latitude is 45°.

Calculate the parameters that determine whether the boundary layer ap-
proximation is valid. Evaluate the magnitude of the terms that can be ne-
glected in the momentum equations.

H Ug=10m/s
H = 1km
z w=1cm/s 4

p =0.00123 g/cm3

> x ~ 1000 km

Figure 11.5 Sketch of a typical planetary boundary layer velocity profile.

Solution

The basic relations used in the boundary-layer approximation are:
f=2Q5in45° =27 /(24 hr) = 1.0+ 107* 1 /sec
H/X = 1km/1000 km = 0.001
W/U = 0.01 m/sec/10 m/sec = 0.001

In Egs. (11.3), the horizontal advection terms are of order unity. We can
substitute to get the relative value of each of the other terms. The u-mo-
mentum equation is (v-momentum is similar)

(u du/ox + v du/dy) + [1000][0.001] w du/dz—[1-10%-1.0- 10™*Jv
+ [D]} ap/ax — [50/(10 - 1000 - 10%)](8%u/ox> + 9°u/dy*)
— [50/(10- 10% - (1000/1)*] 8*u/9z* = 0
or
(u du/dx + v du/dy) + [1] w du/dz — [100]v
+ [D] 8p/dx — [3-10791(8°u/ox* + 8°u/ay)
—[5]18%u/9z =0

The value of D is equal to the coefficient of the Coriolis term at the top
of the layer, where the geostrophic balance prevails. Hence D = 100. The
other term that may become important is the vertical viscous term. Since
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this coefficient is [KX/(UH?)], it evidently becomes more important as the
layer becomes thinner. Hence there is a balance between Coriolis, pressure
gradient, and viscous forces.

The vertical momentum equation is

[1](u dw/dx + v aw/dy) + [107lw dw/oz
+ [D] dp/oz — [5- 107°1(0°w/ax* + 9°w/dy?)
— [10 m/sec?- 10 sec’/m] — [5-107%) 8*°w/02* = 0

For D = 100, the vertical pressure-gradient term must be balanced by the
gravitational force term. This leaves the hydrostatic balance.

These scaling arguments tell more than the basic balance. They show that
the hydrostatic balance terms are usually an order of magnitude greater than
any others, and that only the horizontal advection terms might have an ef-
fect. In the horizontal advection equations, the viscous term is only slightly
greater than advection terms. They quite likely may be important if hori-
zontal gradients are a little larger than indicated by the given assumptions.

11.4 Ekman’s Planetary Boundary Layer Solution

Around the time when Prandtl was presenting his boundary layer concepts
in Heidelburg, Ekman was publishing his specific solution for the PBL. This
particular approximation of the Navier—Stokes equations was suggested to
Ekman by Fjortoft Nansen, who had returned from his two-year voyage
across the Arctic with his ship frozen in the pack ice. Nansen provided the
information that the drift of the ice was always at a significant angle to the
right of the surface-wind direction. The deviation was evidently due to the
earth’s rotation. This observation was all Ekman needed to simplify the
N-S equations to the point that he was able to find an analytic solution.
Note that Ekman was working with the oceanic PBL; however, he recog-
nized that the equations were equally applicable to the atmospheric PBL.

Ekman did not pursue the formalized scaling arguments, as did Prandtl.
He simply postulated that the flow in the PBL was slowly varying (steady-
state), horizontally homogeneous (eliminating the inertia terms), and there
was negligible vertical motion relative to the horizontal. He was left with a
balance between the Coriolis, pressure gradient, and viscous terms. The uni-
form horizontal flow left him with essentially a one-dimensionally vertically
varying, two-dimensional flow problem. Ekman’s equations are
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~fu+ 1/pdp/ox — K d*u/oz* = 0

fu+ 1/pop/dy — Ko/ =0 (11.11)
du/dx + av/ay = 0

Example 11.3

Obtain Egs. (11.11) from Egs. (11.2) by formally using the methods of
nondimensionalization and scaling.

Solution

We need only to put Ekman’s assumptions into corresponding assumptions
on the characteristic scales. Since the pressure gradient term is going to be
retained as the driving force, we choose to multiply the horizontal equations
by the inverse of the coefficient of this term [pX/P]. Likewise, multiply the
vertical momentum equation by H/U?. This yields

[pXU/PT] du/ot + [pU*/P)(u du/dx + v du/dy) + [pXUW/HPlw du/dz
—[pXUf/P1v + dp/dx — [pKU/XP(8°u/ox* + 8°u/ay*)
— [pKU/XP - (X/H)*] 0*u/8z* = 0 (11.12)
[pXU/PT] dv/at + [pU*/PY(u dv/dx + v dv/dy) + [pXUW/HP]w dv/dz
+ [pXUf/Plu + dp/dy — [pKU/XP1(8’v/dx* + 8°v/0y?)
— [pKU/XP - (X/H)* 8*v/3z2> = 0
[H/X-W/UYudw/ox + v ow/dy) + [(W/U)*lw dw/dz
+ [D] dp/oz — [K/(UX)-W/U -H/X1(8*w/ax* + o°w/9y")
—[gH/U"] — [K/(UX) - W/U- (X/H)] w/dz’ = 0
Now examine each term as represented by the size of its coefficient:

1. The characteristic time T is assumed very long, so that steady state is
obtained, or [pUX/PT] = 0.

2. Now the coefficient of the inertial terms is pU?/P = 1/D, where D
is the ratio of the pressure to the dynamic pressure, pU?. When we wished
to retain the pressure gradient term as the same order of magnitude as the
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inertial terms, we set D =< 1. However,in the boundary layer we are assum-
ing that the inertial terms are small, and D > 1. Thus [pU?/P] =~ 0, and
also [pXUW/HP] = [pU*/P-W/U-X/H] = 0.

3. The flow is assumed horizontal, so that characteristic scale W =< 0,
and hence the only terms left in the vertical momentum equation are

dp/dz=[gH/UD]

Note that the largeness of D and the smallness of H both imply that pressure
variation across the boundary layer is small. (This also leaves only hori-
zontal gradients in the continuity equation.)

4. For a boundary layer solution, we must retain at least some of the
viscous terms. Note that the vertical curvatures (3°/dz°) differ from the hor-
izontal by a factor of (X/H)’. For a thin PBL, X/H > 1, which keeps only
the vertical stress gradient terms. (Thus Ekman’s assumption that vertical
turbulent fluxes are much greater than those in the horizontal was tantamount
to assuming a thin boundary layer.)

5. Since the Coriolis force is assumed to be important, the coefficient
[pU*/P-Xf/U] < 1. Since pU?/P = 1/D is very small, the quantity Xf/U
must be very large. This is known as the Rossby number and serves as a
criterion as to whether the Coriolis force is an important term in the ap-
proximate equations.

We are left with

— [pXUf/P] v + dp/dx — [(pKU/XP) - (X/H)*] ’u/dz> = 0
[(pXUf/P1u + dp/dy — [(pKU/XP) - (X/H)*] 3v/8z* = 0

When the nondimensional parameters are replaced with the dimensional ones,
Eqs. (11.11) result.

This systematic process appears to be quite cumbersome when compared
to Ekman’s direct assumption of the “important” terms. However, one of
the advantages of this process is that the critical aspects of the assumptions
are revealed. For instance, the smallness of H/X, pU’/P, and dp/dz, and
the relative size of some of the other terms are defined.

We can solve Egs. (11.11) with no-slip boundary conditions.
w0) =0v0)=0, v(®=0, u®=U

Here, U, is defined as the freestream—the geostrophic wind (or, if centrif-
ugal terms are included, the gradient wind). The coordinate axes can be
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aligned with the x-direction—along the U-direction-—so that V, = 0. There
are no specifications on the PBL thickness.

In addition, the equations look simpler if we note that the upper boundary
conditions will be the freestream flow. In this region, Eqs. (11.11) will hold
true without the viscous terms. Hence,

fUg=—(/p)dp/dy,  fVe=(/p)op/ax=0 (11.13)
Therefore we can substitute (U,, V,) for the impressed pressure-gradient terms

in Egs. (11.11).
Then, nondimensionalize u and v with G = |U,| and z with some char-
acteristic height H,

a=u/G, b=v/G, U,=U/G=1, and #=z/H

and drop hats, since all variables are henceforth nondimensional. Divide by
fG to make the Coriolis and pressure-gradient terms of order unity

[K/fHY 8°u/oz* + v =10 (11.14)
[K/fHY 9*v/dz* —[u—1]1=0

These equations can be made even simpler if the velocity is transformed to
i=u-U, (orda=d-1) '

Once again, coefficients are collected in one term, hats and tildes are
dropped.

[K/(fH?) 10%u/0z* +v=0
[K/(fH) 18*v/02* —u=0 (11.15)
with
w(0) = —1 v(0) =0 u(®) = v(®) = 0

There is no actual characteristic height of the PBL in this problem state-
ment. We can obtain a characteristic height from a dimensional analysis of
the important parameters (determined as those that appear in the equations
and boundary conditions). This is H = VK/f = 8. Using H = 8, we get

ufo +v=0
0/ —u=10
or

Fufa*+u=0 (11.16)
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The equations now have no parameters. The solution will be a (nondi-
mensional) u(z), v(z), which is valid for all flows governed by a balance
between the three forces combined in Eq. (11.16). Since the height does not
enter except as a scaling parameter, solutions to these equations are called
self-similar (with respect to the height scale).

The solution to this fourth-order linear differential equation is readily
available with standard techniques (which includes looking up in mathe-
matical texts).

u(z) = expl—z](C, cos z — C, sin z) + exp|z](C; cos z — C, sin z)
v(z) = expl—zI(C, sin z + C, cos z) + exp[z](C; sin z + C,4 cos z)
The boundary conditions yield
C;=C,=0 C,=-1 C,=0
and the solution may be written
u(z) = —exp[—z] cos z
u(z) = —exp[—z] sin z
or dimensionally,
u(z) = G(1 — exp[—z/8] cos z/3)
v(z) = —G exp[—z/8] sin z/d (11.17)

This solution of the boundary-layer approximation of the Navier—Stokes
equations yields u(«) = G, v(®) = 0, with u rapidly (exponentially) ap-
proaching G away from the surface. A reasonable height of the PBL as
proposed by Ekman is the e-folding depth of the exponential, z/8 = r, or
H = w8 = wVK/f. The greater the eddy viscosity, the deeper the pene-
tration of the surface effects. When the Coriolis effect goes to zero at the
equator, the scaling depth becomes infinite, and the solution is no longer
valid.

The angle of turning (problem 1) can be determined to be 45°. The two
PBL solutions for the ocean and the atmosphere can be linked together in
one continuous flow, as shown in Fig. 11.6. To do this smoothly, the frame
of reference should be chosen to move with the surface current, as shown
in Fig. 11.7. Note that the identical self-similar equations expand differently
when the appropriate characteristic scales are used to make the solution di-
mensional. This is seen in Fig. 11.8, where both Ekman layers are shown
to the same scale. The differences in density and eddy viscosity translate to
atmospheric heights and velocities, which are about 30 times the oceanic
values.
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Figure 11.6 Sketch of velocity vectors in the adjacent atmospheric and oceanic PBLs.
Note the change in scales.

Thus, Ekman’s famous solution explained the problem posed by Nansen’s
observations in the Arctic. The 45° wind turning translates into a 45° angle
between the surface wind and the ocean current at the surface.

Typically, turning is observed in the atmospheric PBL, in qualitative
agreement with the theory. However, the height of the PBL is about 1 km,
and this prevents the collection of many observations. There are several
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Geostrophic wind
~ |Q m/sec

height
z/h

Ocean surface (ice)

Frame of reference
moves with surface

velocity ~ 30 cm/sec

Ocean velocities
scaled to ~ V34
atmosphere velocities

Figure 11.7 Sketch of atmospheric and oceanic PBL flow vectors when the frame of
reference is moved with the surface velocity. Note the change in the oceanic hodograph.
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Figure 11.8 Sketch of the hodographs for the atmosphere (A) and the ocean (B) to the
same scale. The dashed line is the atmospheric hodograph ignoring the surface velocity.

300-m towers that measure the lower portion of the PBL, and there have
been many airplane flights at various levels through the layer. Otherwise,
the main source of PBL data comes from balloon-borne sensors called ra-
diosondes. These fairly common observations seldom indicate a steady or
reproducible boundary-layer wind profile. Nevertheless, the Ekman solution
remains the touchstone of many analyses of the PBL. The solution connects
the surface boundary conditions to the large-scale flow. The exact analysis
of the detailed character of the PBL requires an investigation into the sta-
bility of the Ekman solution, and into the nature of the turbulence in the
PBL.

Example 11.4

Consider approximations to Eqs. (11.14) for H very large; of order (K/f)";
and very small.
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Solution

When H is very large, K/(fH?) is very small with respect to unity. Hence
we are left with

v=0; u—1=0
Dimensionally, this is
(UGa VG) = (—Py’ Px)/pf

Thus, for very thick layers, say 10 km (up to the tropopause), the geo-
strophic balance is applicable. We note that this is a singular perturbation
of the equations. The ability to satisfy no-slip boundary conditions is gone.
However, the approximation is still good.

When H is of order (K/f)", then K/(fH? is of order unity. Then,

ufoz +v=0
/92 — [u—11=0

The Ekman layer equations result.
When H is very small, K/(fH) is very large, and

*ulozr =0
d*v/o* =0

This integrates to u = Az + B, v = Cz + D. With boundary conditions u(0)
= v(0) = 0, and du/dz(0) = 1,/K, dv/dz(0) = 0, we get

u = (ro/K)z

We will see in Section 11.6 that this solution is inadequate.

Example 11.5

Obtain an expression for the volume transport in the Ekman layer by inte-
grating the Ekman layer equations with the viscous term written in terms of
stress. First separate out the geostrophic flow so that the volume flow is
relative to the pressure-driven flow. Assume constant density. Thus, Egs.
(11.11) may be written

oujor — fo+ (1/p) ap/ax — (1/p) d7°/8z =0
dv/0t + fu + (1/p) ap/dy — (1/p) 817/8z = 0 (11.18)
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Solution
Remove the geostrophic component by substituting
u=u®+u" v="0%+u"
Since
ou®/ar — fu° = (1/p) dp/ox
/ot + fu = (1/p) ap/dy
we have for the Ekman component,
ou/at — fuF — (1/p) 97°/3z =0
av®/ar + fuf — (1/p) 97°/9z =0 (11.19)
aut/ox + av/ay =0

Integrating these equations yields

a%qudz—fqudz= —(l/p)fd'r’ -1
d
a—JuEdz+fjuEdz= —(1/p)fd7"

The integrals over the Ekman height are the Ekman volume transport, or,
when multiplied by p, the mass transport.

Il

_T%’)

(UE,VE) = f(uE, vF) dz = f(u —ub v —1%dz (11.20)

The mass transport is extensively used in the oceanic Ekman layer. A
sketch of the flow in both the atmospheric and oceanic layers is shown in
Fig. 11.9.

11.5 The Modified Ekman Solution

Ekman’s solution is a unique analytic solution to an approximate version of
the Navier—Stokes equations that retains three terms. In general, boundary
layer problems must be addressed by numerical means. However, an ana-
lytic solution is much simpler and provides great insight into the behavior
of the flow. Unfortunately, Ekman’s solution doesn’t appear in the data for
atmospheric or oceanic flows. Observations, usually indicate turning and
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Figure 11.9 Sketch of the regions of Ekman transport in the atmospherlc and oceanic
PBLs in the case of a cyclone.

slowing of the wind, but seldom, if ever, show winds exactly as predicted
by Ekman’s solution. When the solution fails to be supported by observa-
tions, then the basic assumptions made in obtaining the solution must be
checked.

The first suspect for the invalid assumption would naturally be the eddy-
viscosity hypothesis. Ekman realized this, and found the solution for a sim-
ply variable eddy viscosity, dependent on the shear. Since then, there have
been many assumed K distributions, some resulting in Bessel function so-
lutions, some in simple numerical solutions. However, these empirical meth-
ods predict velocity profiles that agree only with mean flows averaged over
hours or tens of kilometers. The difficulty seems to be that there are very
large eddies in the PBL, with wavelengths as large or much larger than the
PBL height. From our discussions on the continuum, it is clear that these
eddies cannot be modeled by an eddy viscosity. The solution can be obtained
only if the large eddies are directly accounted for in the equations. Fortu-
nately, it appears that in many cases the large eddies are predictable, or-
ganized, and can be incorporated into the mean flow. The procedure in-
cludes application of most of the topics and techniques discussed in this text.
While it is a specialized procedure for boundary layer flow, the basic con-
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cepts have a potential for many applications. These include the idea of iso-
lating the large eddies for explicit description, the process of including the
nonlinear interaction between these perturbations and the basic mean flow,
and the parametrization of the small-scale turbulence with an eddy viscosity.
Thus, we will summarize the procedure while assigning most of the details
to the problems at the end of the chapter.

11.5.1 Organized Eddies (Rolls) in the PBL

1. Based on observations of persistent large-scale (2—-5 km) wavelength
features associated with the PBL, such as those in Fig. 11.10, it is assumed

€ \Mean Wind
Hodograph

Figure 11.10 Sketch of the PBL containing large eddies. Typical secondary flow (mod-
ified Ekman layer).
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that there exists a mean flow solution for the PBL that contains organized
large eddies.

2. Based on the success of the surface-layer log-layer solutions obtained
with an eddy-viscosity assumption (Section 11.6), and considering a con-
tinuum scale of centimeters to tens of meters (Sections 1.9 and 1.11), as-
sume a constant eddy viscosity to obtain the mean flow solution. Thus, a
parametrization of the small-scale turbulence with an eddy viscosity will
yield an Ekman solution that is a good approximation of the PBL when there
are no large eddies [Eq. (11.17)].

3. Since the Ekman velocity profile Ug is not observed, assume that it
is unstable to infinitesimal perturbations. One can then carry out an insta-
bility analysis on the Ekman velocity profile using the linearized Eqs. (10.27),
which have been modified by the boundary layer approximations (Section
11.3 and problem 3).

This reveals an inherent instability in the Ekman profile at very low wind-
speeds. The instability can be either entirely dynamically driven or due to
convection in the presence of shear. Either of these instabilities produce
large eddies that take the form of rapidly growing horizontal roll vortices
with wavelengths comparable to the PBL height.

4. Based on the observations of persistence in the longitudinal cloud bands,
assume that the linearized instabilities come to equilibrium at some finite
amplitude. To determine the amplitude requires two more steps.

First calculate the modification to the mean profile by the now signifi-
cantly large perturbations. Since observations indicate waves growing lateral
to the geostrophic, there is only one Reynolds stress that contributes to the
force balance. The modified Ekman equations can be written

—fv + (1/p) dp/ox — K d*ufaz* = 0

fu+ (1/p)op/oy — K 8v/az* = v'w’ (11.21)
duf/ox = dv/ay =0

Second, calculate the energetics of the nonlinear interaction by examining
the perturbed energy equation for the system (Section 7.2 and problem 10).
Assume that equilibrium is reached when the mean velocity profile has been
modified to a point where the energy flux from the mean to the perturbation
component of the flow becomes zero. This results in an equation of the form

DE __Dv
—=luvw —dz=0 (11.22)
Dt Dz
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By solving these equations simultaneously, a steady-state quasi-nonlinear
solution can be found. This solution has a modified Ekman mean flow with
finite perturbation helical-vortex eddies that occupy the entire PBL.

This solution showed that the perturbation rolls come to equilibrium at a
magnitude of about 7-10% of the mean flow velocity. The rolls are ap-
proximately aligned with the mean flow, and result in modified Ekman-type
mean wind profiles, shown in Fig. 11.11, and highly variable local profiles,
shown in Fig. 11.12. They also provide advective fluxes across the PBL,
leading to a much more rapidly mixed PBL layer than could be accounted
for by diffusion alone. The equilibrium structure is sensitive to the wind-
speed, the surface roughness, and the stratification of the layer.
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Figure 11.11 Wind profiles (hodographs) of predicted mean winds in an Ekman layer
modified with organized large eddies. The & values are nondimensional heights. The e are
turning angles between geostrophic and surface winds corresponding to neutral (20°) and un-
stably stratified (0°) PBLs.
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Neutral stratification; Re = 900 Roll wavelength A =%ES = 4nd =~ 4H

Figure 11.12 Hodographs showing the wind profile predicted at various stations in a
modified Ekman PBL containing organized roll eddies. The stations are at various y/H dis-
tances with a roll wavelength of about y/H = 4.1. Heights are given at various z/H. Velocities
are nondimensionalized with |U,| = G.

Example 11.6

The Ekman layer instability is sometimes called an inflection point or vor-
ticity maximum instability. Consider each level of the flow to be occupied
by parcels (which are sections of vorticity tubes) with vorticity produced by
the shear at that level. Then the net force on a displaced element can be
found to be

F=1/(o— D J w (3L/9z) dA (11.23)
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where w is the vertical velocity, F' is the vertical force, and A is the area of
vorticity perturbation. Sketch the velocity and vorticity, consider a displaced
vortex parcel and the distorted vorticity elements around it (see Section 9.7),
and discuss its motion based on Eq. (11.23).

Solution

A sketch of velocity and vorticity profiles with and without an inflection
point are shown in Fig. 11.13.

First consider a displaced vortex {, among the constantly decreasing vor-
ticity at level z,. According to the forces calculated in Section 9.7, the sur-
plus in {, will distort the vorticity nearby in a counterclockwise sense. This
results in more negative vorticity filling in to the left, and more positive
vorticity filling in to the right. Both of these changes lead to forces down-
ward, returning the perturbed parcel to its original level. Similar results are
obtained when the parcel is moved downward. When values are put in Eq.
(11.23), the same result is obtained.

Distortion and
Velocity Vorticity resultant force

Figure 11.13 Schematic of a displaced vorticity filament, {,, in two different mean ve-
locity, and corresponding vorticity, fields.
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In the case of a maximum in the vorticity field, the displaced vortex
element has a deficit of vorticity. Since the inflection point has reversed the
vorticity gradient, the distortion allows positive vorticity to move up to the
left, negative to move downward to the right. This produces an upward force
on the parcel. The resulting force is destabilizing and the parcel continues
to rise until it reaches the equilibrium vorticity level.

This explanation is qualitative only. The perturbation must be finite, to
move the parcel past the inflection point. It explains only limited growth.
The reason for large waves in the case of inflection points must lie in the
nonlinear equations, as the perturbation modifies the mean flow and the
vorticity gradients.

11.6 The Surface Layer

Most boundary layer study has been done within the lowest 10-20 m of the
atmosphere. Here is where the “surface” measurements of pressure, wind,
humidity are taken (the standard meteorological set of data). “Upper air” data
is routinely obtained from radiosonde releases. However, there is seldom
more than one point recorded in the PBL. Thus most of our modeling of
the atmospheric flow, numerical or otherwise, is done using conditions fur-
nished by the surface observations. The study of the linkage between the
abundant surface layer data and the geostrophic flow is an important aspect
of all large-scale modeling.

We can begin by examining the “classical” derivation of the surface layer
velocity profile. In fact, there are many different derivations of the surface
layer equations. Nearly all result in a log-layer profile for u(z) (see problem
16).

The earliest derivations simply assumed that as the surface is closely ap-
proached, there is a constant stress layer. Thus,

dr/dz = 0, with  7(0) = 7, = surface stress (11.24)

From the definition of eddy viscosity, 1 = pK dU/dz, Eq. (11.24) may be
written, with constant density,

d(1/p)/dz = d(K dU/dz)/dz = K d°U/dz* + dK/dz-dU/dz =0  (11.25)
This equation is of the general form,

d*u/dz* + A(z) du/dz = 0 (11.26)
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There are no general solutions to this equation for arbitrary A(z) [or K(z)].
Fortunately, specific cases of K(z) yield simple solutions. In particular, we
expect the eddies, and hence K, to grow in size with distance from the
boundary. For the simplest case, where we set K = Kz, Eq. (11.26) becomes

du/dz* + 1/z-du/dz =0 (11.27)

This is a common form of the equation called Euler’s equation. The sub-
stitutions of du/dz = V and In z = Z lead to the solution,

u=Blnz+C (11.28)

However, this solution cannot satisfy the boundary condition at z = O (or
z/H = 0 in the dimensional equation). This inability is a consequence of
assuming that K(z) becomes O at the surface, implying zero stress at the
surface. If we modify K(z) so that K = Kz + z,), we have

u=Bln(z+zy) +C
and (11.29)
u0)=0—BIn(zy) +C=0

We can assume that the characteristic scale for the surface layer is H = z,.
As a result, the nondimensional z, = Z,/H in Eq. (11.29) is 1 and hence
C=0. : ’

Our approximate Eq. (11.27) is second order, and the second boundary
condition can be obtained from the definition of surface stress (in dimen-
sional units). This may be written

[K oG /zol du/dz(0) = [1/G’Iro/p
or
(KoG/z0) B)/1 = 70/pG"
and thus,
B = (10/p) Gzo/(K,G) = u** Gzo/(KG)

The definition of the friction velocity, u** = 74/p, has been used in this
expression. Also, if we use u* to replace G as the characteristic velocity in
the surface layer,

B =u*zy/K, = Re,, a surface layer Reynolds number.

This dimensionless parameter is generally written as B = 1/k, where k is
called von Karman’s constant. The surface layer velocity is

u=(1/k)1In (z/z¢) (11.30)
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Example 11.7

(a) Derive the general form of the surface layer solution for u(z) using di-
mensional analysis and dynamic similarity. Obtain specific equations from
the definition of stress in a constant stress layer,

Kdu/dz = vy/p
and
du(0)/dz = 7o/pK,

Assume K(z) = (ku*z,) z.

(b) Discuss the lower boundary condition on u, u(zy) = 0. Do the same
when the boundary condition is u(0) = 0. Discuss the different K(z) that
will satisfy these boundary conditions. [Hint: Let K = (ku*zy)(z + 1) in u(0)
= 0 case].

Solution
(a) The only characteristic parameters for the nondimensionalization are
V= (ro/p)" = u* H = (pK5/70)" =z and K,

The m-theorem applied to variables 7o/p, K, u, z leads to four variables
less two characteristic dimensions (L and f) or two parameters in the non-
dimensional relation. They are

U z

V1o/p V K(Z)/(TO/P)

These may be written
ufu* = f(z/zy) 7o = Kofu*
Looking at dynamic similarity, the nondimensional equation is
(Ku*/z,) du/dz = u** or dujdz = u*zy/K
Substitute for K = ku*zz,,
dufdz = 1/(kz)
There are no parameters in this equation, and a self-similar solution is

u=(1/nz+C
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or dimensionally
ufu* = (1/k)In(z/zy) + C
(b) The boundary condition, u(z,) = 0, is satisfied with C = 0,
ufu* = (1/k)In (z/z) (11.31)

In this case, K = ku*zyz = ku*zj when u = 0 and K(0) = 0. K is finite
where u is zero and goes to zero at the surface.

To satisfy the lower boundary condition” #(0) = 0, we note from Eq.
(11.29) that du/dz — = at z = 0, an unrealistic result. However, if we
assume

K=ku*(z+ 1)z, (11.32)
then
dufdz = 1/[k(z + 1)]and u = (1/k) in(z + 1)
or dimensionally
u/u* = (1/k) Inf(z + z¢)/z,) u(0) =0 (11.33)

In this case, K(0) = ku*z,. This is contrary to the expectation that eddy
viscosity must go to zero at the surface. Typical values of u* = 30 cm/sec,
zo = 1 cm, k = 0.4 yield K(0) = 0.1 cm®/sec. This value of eddy viscosity
has decreased to a similar order, to v = 0.16 cm?®/sec. Perhaps the log layer
based on the eddy viscosity patches to the molecular layer at z,.

Since z, is the height where ¥ = 0, it is very small, and in general
z ® z,, so that there is little difference between the expressions for u(z).

When considering the steady-state, horizontally homogeneous layer, we
might try to obtain the log layer as a quick result from Eq. (11.15). For H
> 8, we obtained the geostrophic balance. When we assumed H = 3, the
Ekman layer characteristic height produced the equations appropriate to the
layer where Coriolis, pressure gradient, and viscous forces were all of the
same order. We can enquire as to what would a choice of different H pro-
duce? Consider H equals a very small height. This would be the character-
istic height of a very thin layer adjacent to the surface. In Eq. (11.15), the
coefficient of the viscous term would then be very large with respect to that
of the Coriolis (and the pressure gradient) terms. Alternatively, we could
say that the coefficient of the Coriolis term, [H*/KG] now is very small.
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Consequently only the viscous terms in the equations
*u/oz* =0
/3 =0

are left. As found in Example 11.3, the same equations resuit from the com-
plete steady-state equations (11.7) when we consider H <€ 1. However, there
is a problem here. The nondimensionalization with characteristic parameters
must result in individual dimensionless terms with order unity. Otherwise
the basic process of getting approximate equations by using magnitude ar-
guments based only on the nondimensional coefficients in the equations would
not be valid. Yet, if these terms are of order unity, how can they be set to
zero? Does this suggest the paradox that in a thin layer with shear, the vis-
cous terms are much larger than the other forces, so large that they are zero?
Evidently this is not a valid approximate equation, a fact that is apparent
from Newton’s second law—a single dominant force must cause accelera-
tion. One of our assumptions is breaking down in a very thin layer.

The basic equation for the surface layer is obtained only after considering
the scaling parameters much more carefully. In particular, the variation of
K must be considered. We should be able to obtain the log-layer solution
from the Navier—Stokes Eq. (11.7). We must first examine the characteristic
values used in the nondimensionalization.

At the surface, the velocity approaches zero. The magnitude of the ve-
locity deficit (#« — G) approaches G, so the velocity scaling with G seems
all right. However, the eddy viscosity coefficient depends on the turbulent
eddies, which have less room to exist as the surface is closely approached.
Very near the surface, there must be a laminar sublayer where there are no
turbulent eddies. Thus, K — v here. We can continue to pursue the surface
layer solution by including these arguments.

The expression for the stress must be the Reynolds stress equation (10.31),

pujuj = —pK du;/ox; = 7'

In the boundary layer this reduces to only the component involving the ver-
tical shear,

pKdu/dz=1,=1 (11.34)

Allowing for a variable K, the viscous force/unit mass term is obtained as
the vertical gradient of the stress,

d7/0z = d[pK du/dz]/0z (11.35)

The variable K can be nondimensionalized with a mean value to obtain
the eddy viscosity version of Eq. (11.7)
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[XW] v
Ju/ox +vou/oy) + ——wou/dz — —
(u du/0x + v du/dy) [HU]W u/oz [Rol

(X
ReH?

+ [D] dp/ox — [ d(K du/0z)/dz = 0 (11.36)

where
Re = UX/K K =K/K

As above, when H — 0, this formulation implies that the viscous force
term is very large. To have an equilibrium solution, another force must bal-
ance the viscous force. This could be the du/dr term, but we would like a
steady-state solution. The advection terms are candidates, but let us first
search for a horizontally homogeneous solution.

Very near the surface, the Coriolis force approaches zero along with the
velocity. Thus, to have an equilibrium solution very near the surface, the
pressure-gradient force must balance the viscous force. We assume that K
= (ku*)z, where the constant of proportionality ku* is based on hindsight.
This assumption, together with the assumptions that the horizontal pressure
gradient is impressed on the boundary layer and that p is constant, will allow
us to integrate the stress force term.

(K ou/dz)/dz = —(1/p) dp/ox =D (11.37)
(the stress force). Integrating this over z yields
Kouf/oz=Dz+ C
The constant C can be evaluated from the definition of surface stress,
Koufdzz=0)=ro/p=u**=C
Hence,

K ou/dz = Dz + u** (11.38)

(the stress variation).
If we now make the surface-layer assumption that K = ku*z, and note
that velocity is a function of z only,

du/dz = (D /ku*) + u*/(kz) (11.39)
Integrating Eq. (11.39), we have
u=D'z+ w*/k)Inz+ C'
D' = D fku*
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For the lower boundary condition, let u(zy) = 0, then
C'=—w*/k)Inzy — D'z,
and the surface-layer speed is given by
u=W*fyInz/zo + D'(z — zo) (11.40)

This derivation yields (once again) the log layer, plus an additional linear
term. We can examine relative magnitudes of these terms by considering
typical values for a 10-m/sec wind at 10 m. They are u* = 30 cm/sec,
k = 0.4, z = 10° cm. The pressure gradient term D is the same order as
the freestream Coriolis term,

fV =10"*[1/sec] 10° [cm/sec] = 107! [cm/sec?]
Thus,
D' = 107" em/sec?/(0.4 - 30 cm/sec) = 8- 107° 1 /sec
D'z = 0.008 - 10° cm = 8 cm/sec
This is compared to the first term,
u*/klnz/zo = 30 cm/sec/0.4 1n 10°/1 = 518 cm/sec

Thus, the linear term is often omitted, especially in unstably stratified or
neutrally stratified conditions. However, it is significant in stably stratified
conditions.

In summary, we have found that in the boundary layer very near the
surface, a constant pressure-gradient force is balanced by a constant viscous
force. The latter is the gradient of a very large internal stress. The predicted
logarithmic velocity profile has been well verified by observations.

11.6.1 Summary of Force Balance through the PBL

The change in the force balance as the parcel descends through the PBL can
be seen in the sketch of Fig. 11.14.

11.7 The Mixing Length

The concept of the mixing length was introduced to provide a physical an-
alog to the molecular mean free path. The latter is the distance a molecule
travels before hitting another molecule and exchanging momentum. It is as-
sumed that an eddy will travel an average distance called the mixing length
before it exchanges momentum with the surrounding eddies. For the fluid
parcel, the momentum will be exchanged in a complicated mixing and dif-
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Figure 11.14 The force balance in the entire PBL of height H. F, is the pressure gradient
force, F, is the viscous force dt/dz, and F ¢ is the Coriolis force.

fusion fashion. Consequently, this process is ill defined compared to the
relative simplicity of the molecular interaction. But both definitions rely on
statistical averaging.

Consider the velocity shear in the two-dimensional parallel flow in Fig.
11.15.

Prandtl visualized a thought experiment where the fluid parcel is an entity
that moves a distance ¢ keeping its original momentum. The velocities of
the parcels arriving at height z in Fig. 11.15 will be those of the neighboring
layers a distance € away. These velocities can be expressed in a Taylor series
about z = £ (the points +{ away from z) (note: u(z) means u at z here).

u@@), = u(z+ €) — (du/dz)(z + €) €], = u(z + €) + u’ (11.41)
u(z). = [u(z — €) + (du/d)z — D €] = u(z — £) + u’
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Figure 11.15 A parcel in a shear flow with movement from +¢, a mixing length scale.
The velocities of parcels arriving from above and below height z are given.

u

Thus the neighboring parcels arriving at height z contribute the turbulent
velocity components to level z. Assume that the distance € is the mean dis-
tance that the parcel travels before it transfers its momentum to the sur-
roundings. Then the velocity at z may be written as the average of the nearby
mean velocities plus a perturbation. The latter is an average of the pertur-
bations contributed from parcels arriving from above and below. Hence,
from Eq. (11.41),

_ u(z), + u(z)_

u(z
(2 5
or
uiz + €+ uz — € [|ul] + w2l
z) = +
2 2
or
u(z) = a(z) + u' (11.42)
We can also write u(z) in a Taylor expansion about z.
uiz) =u@)+€dufdz=a+ u (11.43)
where
uw = €du/dz (11.44)
For isotropic turbulence, u’' = v’ = w' and the Reynolds stress term is
t/p=u'w = €du/dz)’ = K du/dz (11.45)

This gives a relation between eddy viscosity and mixing length,

K= €du/dz (11.46)
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There is no advantage to using € over K unless there exists a fundamental
relation for € as a more “basic” parameter. Von Karman attempted to obtain
such a relation by dimensional arguments. In a free shear layer, the only
parameters available to influence the mixing length are the shear and deriv-
atives thereof. Thus, DA using the lowest order derivatives to form a scale
length yields

du/dz

€=k 11.47
d’u/dz ( )

as a functional equation for the mixing length. The constant of proportion-
ality is called the von Karman constant.
Using the definition of u* = V/7/p in Eq. (11.47),

w* = €dujdz (11.48)
this can be differentiated to obtain
d€/dz-du/dz + € du/dz* = du*/dz = 0

or
¢ =t dujdz (11.49)
dz du/d’z
Thus, comparing Eqgs. (11.47) and (11.49), the von Karman constant,
k=d{/dz (11.50)

is a measure of the change in mixing length with height.
The mixing length could be expected to be zero at the surface and grow
linearly with distance away from the surface.

=k (11.51)

In this case the solution for u(z) is the same logarithmic relation as obtained
in Section 11.5. In general, there is no better understanding or hypothesis
for the distribution of € in a fluid then there is for K. Its only claim toward
being a “fundamental” parameter is its analogy to the mean free path for
molecular interaction.

However the more severe restriction on the use of mixing lengths is that
they apply only to isotropic, small-scale turbulence. We have noted that
when large eddies are present, modeling with the diffusion equation is in-
correct. K-theory cannot correctly account for the advective transport by the
large eddies. The eddy continuum does not exist. Similarly, the mixing length
must depend on the eddy size. Large eddies will move fluid large distances
before there is mixing with the local fluid. The large eddies must be handled
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explicitly, as can be done with the organized eddies in Section 11.5. How-
ever, when the large eddies are random, there is no analytic solution for
them, and numerical parametrizations that include the eddy size-dependent
mixing length must be employed—or else the eddies must be explicitly
resolved.

11.8 Summary

The material in this chapter deals with flow in a thin layer with large gra-
dients. Although the concepts are very general, we have concentrated on
the thin layer next to a surface. We have obtained two different velocity-
shear boundary layers for the neutrally stratified, horizontally homogeneous,
steady-state atmospheric flow above a surface.

One is the modified Ekman solution, which contains Coriolis, pressure
gradient, and viscous forces. It includes the entire layer from the surface to
the freestream flow. In the atmosphere, this is typically a distance of 1-2
km. It is known as the planetary boundary layer (PBL), the atmospheric
boundary layer, the Ekman layer, or the mixed layer.

The second boundary layer we obtained was the surface layer solution,
or the log-layer. It is a venerable, often-measured, wind profile, existing in
the lower 10—100 m of the PBL. The assumptions used in the derivation
indicate that a logarithmic profile is a likely solution for any thin layer. In
relatively thin regimes the viscous forces are important by virtue of high-
velocity gradients. Thus a log layer applies to the boundary between two
separate flow domains. Since the atmosphere and ocean are prone to flow
in layers with different stratification regimes, this solution probably applies
in the thin regions seaming two adjacent flows.

The principal shortcoming for both of these solutions is the lack of strat-
ification effects. The stratification effect is added to the surface-layer so-
lution with an empirical modification of the log-layer profile. The effect in
the modified Ekman layer appears in the explicit consideration of the dy-
namic and convective eddy structure. The large eddies called rolls are more
vigorous and alined with the geostrophic flow when convective energy is
available. They become completely damped out in moderately stable strat-
ification. In strongly convective conditions, large eddies occur randomly,
and chaotic flow is likely.

We have seen that the solution for the flow near a boundary evoked many
of the principles and methodologies discussed in this text. The same needs
will appear in the derivation of complex interactions on many scales in the
atmosphere. Although the details of each application may become complex,
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the concepts are the same. They provide the framework for the method of
solution and evaluation of the basic validity of the governing equations for
a wide range of fluid dynamics problems.

Example 11.8

Consider the u-momentum equation. Cases are marked with x where the
terms must be considered. What are the special cases?

au u du vdu w du 1adp <62u Pu  u
at * ox * ay * 9z o p 0x+ K ox* * 3y’ * af)
1 x X X X X X
2 X X X X X
3 X X X X
4 X X
5 x X X X X X X X X
6 X X X
7 X X
8 x X X X X X

Solution

The terms apply for special cases that have been mentioned throughout Part
II. Cases 1 and 2 constitute the upper boundary conditions for the various
boundary layer equations of cases 3—6. Applicable flow situations (not ex-
clusive) and their names are

Atmospheric or oceanic flow outside of the PBL.

Same as 1 for steady flow (gradient).

Same as 2 with small pressure gradient (cyclostrophic).

Same as 1 for steady, horizontal homogeneous flow (geostrophic).
Flow in the PBL.

Ekman layer equations; steady, horizontal PBL.

Surface layer equations.

Boundary layer in laboratory, Prandtl’s equations.

R
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11 Boundary Layers

Working Equations

Assumptions
Decreasing Validity —

p Du/dr = pF + Vo
Dp/Dt+pV:u=0

p DE/DT = DQ/Dt — a-Vu
Navier—Stokes equations
pDu/Dt = —pg — Vp + n Vu
Dp/Dt+pV-u=0

pc, DT/Dt = K, V’T — pV-u
+0,+Q, +@

where
g=-pl+n~

, 2 .
T= 2}.Ldefu~§pd1vul
®=72V-u
Atmospheric Equations

p Du/Dr + p2Q) X u =
—pg — Vp + V(K def n)
+ V(X' divu) I

Dp/Dt+pV-u=0

pc, DT/Dt =V(K,VT) —p V-u
+0.+0,+@

where

7= Kdefu + XK' div ul

Eddy viscous Navier—Stokes
equations

Du/Dt + 20 X u =
—g— Vp/p + KVu

Conservation laws

Stokes’ assumptions:
continuum
linearly viscous fluid

static fluid has pressure only

stress « strain rate

Atmospheric assumptions:

turbulence

noninertial frame

eddy-continuum
eddy-viscous (vari-
able K replaces v)

Closure assumptions:

eddy-continuum
K = constant
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SUMMARY OF PBL THEORY—(Continued)

Working Equations Assumptions
Decreasing Validity —

Dp/Dt + pV-u=0 K diva =0

pc, DT/Dt = K, V’'T neglect radiation
—~(RT/c,) V-u and dissipation

Boundary layer equations Boundary layer

assumptions:

Uu+uu,+vl, —fv= WU,V z <X,y
—(1/p)px + KU,

V, + UV, + VV, + fU = Boussinesq assumption
“(I/P)Pv + KVz: (p Changes are

small)

U +V,=0 neutral stratification
—PE&E=P:

where

u="U

Ekman equations Ekman assumptions:

fV+KU,.=0 steady state

fU—-—KV,=0 small eddies

where

u="U- Ug horizontal homo-

geneity

UG = (_py7 px)(pf)

Modified Ekman equations Modified Ekman

assumptions:
fV+KU,=0 explicit large eddies
fU — KV, = A(2) steady state
where

A(z) from stability analysis and
energy equations
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Problems

1. Determine the angle of turning of the velocity through an Ekman layer.

2. What are the forces in the Ekman equations? Discuss the problems
for these equations and the solution as the equator is approached.

3. Ekman’s equations, and solution, are self-similar. What is the factor
that allowed this solution? (It is not available in the Prandtl or classic flat-
plate boundary layer equations or solutions.)

4. The method of “normal modes” is used to determine whether a given
mean flow is stable or unstable to infinitesimal perturbations. It involves
placing in the equations for the flow a perturbation of the form

u' = ¢ explier]

Do this for the Ekman layer equations to obtain an equation for the
perturbation.

5. Consider the laminar sublayer immediately adjacent to a surface. As-
sume the stress is constant in this thin layer and determined by v = pdu/
dz. Show that the velocity distribution follows

u/u* = z/(v/u*)

6. Show that when one assumes that K = K, or z, where K is a constant,
Ekman’s equations become Bessel’s equation. Show that Bessel’s equation
results when K = Cz” is assumed. Consider complex Q= u+iv, and u=u-ug.

7. According to Ekman’s solution, if you are standing with your back to
the wind, looking up at the clouds moving by with the wind at the top of
the PBL, what direction are they moving with respect to the direction that
you’re facing?

8. Consider an inversion in the freestream (e.g., the top of the PBL often
has a 10-50-m thick stably stratified layer; or a pycnocline in the ocean; or
the tropopause). Assume it is thin with respect to the vertical and horizontal
coordinates of your basic problem. Write a simplified version of the steady-
state u-momentum equation for this layer.

9. Integrate the boundary layer equations to obtain the momentum in-
tegral equation. Boundary conditions are U = V = 0,71 = tgatz = 0; U
=G,V =0,7=0atz=H. The u-momentum equation is

d # dUG H H To
— uUg — wydz + U —u)dz — fVdz=—
dx Jo dx Jo 0 P

x=0

where H is the height of the PBL, Uy is the geostrophic flow and 7, is the
surface stress.
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10. Derive the boundary-layer form of the energy equation.

11. In Ekman’s boundary-layer solution a constant geostrophic flow is
assumed. When the pressure gradient is not constant with height, the geo-
strophic flow will be a function of z. The variable pressure gradient is as-
sociated (via the equation of state) with a horizontal temperature gradient.
Hence the variation in the geostrophic wind is called the thermal wind. Show
that the vertical change in geostrophic flow is

dUg/dz = (Us/T) dT/dz — g/(fT) dT/dy
dVe/dz = (Vo/T) dT/dz + g/(fT) dT/dx

12. Use the results of problem 11 and the fact that the second terms on
the right side of these equations are much greater than the first to show that
the thermal wind can be linearly added to Ekman’s solution.

13. Show that the Ekman mass transport of the atmospheric plus the oceanic
PBLs is zero. Is this true of the volume transport? Why?

14. Show that in steady conditions, the Ekman mass transport is directed
at right angles to the surface stress. Discuss the directions with respect to
geostrophic for atmospheric and oceanic flow.

15. A measure of the vertical velocity needed to replace fluid transported
from or to regions with different stress can be found by integrating the con-
tinuity equation and using the results of Example 11.5. Show that the Ekman
pumping velocity, pwE, is approximately 1/(pf) times the curl of the sur-
face stress.

16. Show that the asymptotic limit of the Ekman solution for z— 0 yields
a logarithmic velocity profile.
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Chapter 1

The following texts are recommended as supplements to the material in this
book.

Gerhart, P.M. and Gross, R.J. Fundamentals of Fluid Mechanics, Addison—
Wesley, 1985. This is an excellent introduction to engineering fluid dy-
namics. An undergraduate focus for engineers, it lacks tensors, turbu-
lence and rotation.

Fox, R.W. and McDonald, A.T. Introduction to Fluid Mechanics, Wiley
& Sons, 1978. A very good introduction to engineering fluid dynamics
at the undergraduate level.

Batchelor, G.K. An Introduction to Fluid Dynamics, Cambridge University
Press, 1967. A classic mathematical treatment of fluid dynamics at the
graduate level, The best source for more details for the advanced student.
Extensive treatment of vorticity.

Wallace, J.M. and Hobbs, P.V. Atmospheric Science, an introductory sur-
vey Academic Press, 1977. An introduction to the dynamics and ther-
modynamics of the atmosphere largely from a phenomenological view-
point. Large-scale emphasis, with good clouds, radiation and
thermodynamics. Can be studied simultaneously with this text.

Fleagle, R.G. and Businger, J.A. An Introduction to Atmospheric Physics,
Academic Press, 1980. This text provides details of the atmospheric phe-
nomena which compliment the development of the equations in this text.

Haltiner, G.J. and Martin, F.L. Dynamical and Physical Meteorology,
McGraw Hill, 1957, 470 pp. Good thermodynamics.

Hess, S. Introduction to Theoretical Meteorology, Holt, 1959. A classic
basic text which provides an emphasis on atmospheric thermodynamics.

The following texts are recommended for additional study in specific areas.
This book is meant as a front-end preparation for these texts.

Holton, J. An Introduction to Dynamic Meteorology, Academic Press, 1972.
This text provides a natural following course for atmospheric scientists
interested in large-scale dynamic meteorology.

Pedlosky, J. Geophysical Fluid Dynamics, Springer—Verlag, 1979. An em-
phasis on large-scale dynamics. Specific aspects of the equations for large-
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scale dynamics, Rossby waves, inertial boundary currents, the beta plane,
wave interactions. A sequel to this text for those going into large-scale
dynamics.

Gill, A. Atmosphere-Ocean Dynamics, International Geophysics Series, 30,
Academic Press, 1982. A good advanced treatment of ocean (70%) and
atmospheric (30%) applied physics.

Palmén, E. and Newton, C.W. Atmospheric Circulation Systems, Interna-
tional Geophysics Series, 13, Academic Press, 1969. A classic presen-
tation of large-scale atmospheric phenomena.

Haltiner, G.J. Numerical Weather Prediction, Wiley, 1971. An excellent
graduate-level text showing the equations applied to numerical weather
analysis.

Thompson, P.D. Numerical Weather Analysis and Prediction, Macmillan,
1961. A comprehensive graduate level introduction to the application of
finite-differencing to the equations of motion.

Stull, R.B. An Introduction to Boundary Layer Meteorology, Kluwer, 1988,
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level analytic treatment of small to meso-scale meteorology.

Chapter 2

Feynman, R.P., R.B. Leighton and M. Sands, The Feynman Lectures on
Physics, 1, Calif. Inst. of Tech., Addison—Wesley, 1963. Deals with
gravitational forces and non-inertial frame of references.

Kittel, C., W.D. Knight and M.A. Ruderman, Berkeley Physics Course,
Mechanics Vol. 1 UC Berkeley, McGraw-Hill, 1965. Explanations of
physics, gravity and non-inertial frame of reference.

Chapter 3

Buckingham, E. in Transactions ASME, 37, 263-296, 1915.

Chapter 4

Panton, R.L. Incompressible Flow, Wiley, 1984, An excellent treatment of
classic flow topics; graduate level engineering fluid dynamics. A rigorous
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tensor approach, with comprehensive coverage of classical laboratory
experiments.

Chapter 9

Lamb, H. Hydrodynamics, Dover, 1945. Classical inviscid flow.

Milne—Thompson, L.M. Theoretical Hydrodynamics, Macmillan, 1938.
Another classic of potential flow theory. Uses vector notation to discuss
vortex motion in an ideal fluid.

Greenspan, H.P. The Theory of Rotating Fluids, Cambridge University Press,
1968. Advanced text on flow in rotating fluids.

Lumley, J.L. and Panofsky, H.A. The Structure of Atmospheric Turbulence,
Wiley, 1964. Particularly good observational material of the atmospheric
turbulence.

Chapter 10

Meyer, R.E. ed., Transition and Turbulence, Academic Press, 1981. The
latest concepts on transition to turbulence, including vortex interactions,
rotation effects, and large-scale eddies.

Swinney, H.L. and Gollub, 1.P., eds., Hydrodynamic Instabilities and the
Transition to Turbulence, Springer—Verlag, 1981. Modern approaches to
instabilities and turbulence, including strange attractors, bifurcation tech-
niques and chaos.

Chapter 11

Panofsky, H.A. and Dutton, J.A. Atmospheric Turbulence; Models and
Methods for Engineering Applications, Wiley, 1984. The application of
statistics to atmospheric turbulence modeling. Great observational details,
design criteria, state-of-the-art models.

Atmospheric Turbulence and Air Pollution Modeling, Nieuwstadt, F.T.M.
and van Dop, H., eds., Reidel, 1982. Applications in diffusion modeling.

Schlicting, H., Boundary Layer Theory, McGraw-Hill, 1959. A classic
treatment of laboratory boundary layers.

Sorbjan, Z. Structure of the Atmospheric Boundary Layer, Prentice~Hall,
1989. Details on the modeling of turbulence, diffusion; similarity, and
measurements in the surface layer and the PBL.
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Arya, P. Introduction to Micrometeorology, Academic Press, 1989. A sum-
mary of the classical approaches (primarily empirical modeling) to treat-
ing turbulence in the boundary layer. Good practical modeling.

Brown, R.A. Analytical Methods in Planetary Boundary Layer Modeling,
Adam Hilger, 1973. Application of the equations of motion to model the
coherent large-eddies of the PBL. The mathematical solution for PBL
flow follows directly from the equations developed in this text.



Answers to Selected Problems

Chapter 1

1. ps = p/RT = 103,000/[287(10 + 273)] = 1.268 kg/m’
Pwaer = 1000 kg/m’. The p,/p, = 1000/1.268 = 788
K> 20°C = 1.81-107° Ns/m?% v = 1.51- 107> m?/s
Poaer» 20°C = 1.0-1073 Ns/m?; v = 1.0- 107 m?/s
wo/ ey = 1.81-107% v, /v, = 0.066
2. The design of a boat’s keel is made to affect the following functions:

(a) To balance the air force on the sail and keep the boat from trav-
eling sideways.

(b) To provide a torque between the keel center of force and the sail
center of force such that the board can be turned.

(c) To lower the center of gravity.

3. The irregular motion of the ball is due to transition to turbulent boundary
layer flow taking place nonuniformly around the ball because of irregular
distribution of seams, which trip the laminar flow in the boundary layer.
Transition depends on Re. The lateral forces change in response to varying
drag and pressure distribution.

Action takes place when Re is critical.

Re = pUL/p = UL/v
1.8-10° = U-3/12[ft]/1.6- 107* f/s
U=1.8-10°-4-1.6-10"* = 115 ft/s
or
= 78 mph

4. The major difficulty is to obtain sufficient points. Since the cycle of
the mountain-valley wind is 24 hrs, an hourly average would provide 24
points. This is enough to define the cycle. However, to get an ensemble of
points, measurements must be made on successive days. In this case, the
large-scale weather must be nearly the same. This will require a criterion
for large-scale steady state and mean state. Then daily averages at each hourly
interval can be accumulated.

5. Transition takes place as the Reynolds number, UL/v, reaches a
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critical value. (a) Increasing the scale factor L increases Re—more likely
to have transition. (b) Helium has less density so Re decreases—transition
is less likely. (c) Doubling the wind doubles Re—transition is more likely.
(d) Increasing temperature at constant pressure must decrease density, from
the perfect gas law—-transition is less likely.

6. The floating ice displaces its equivalent weight of water. Thus when
it melts, it simply replaces this amount of water. There is no change in water
level. Thus, the melting pack ice will not raise the ocean level. However,
melting of the vast amounts of ice above sea level in Greenland and Ant-
arctica would raise the ocean level.

7. Pool level will be less because the boat rises by a volume of water
equal to the weight of the anchor, but the anchor displaces only its volume.
Since water is less dense than the anchor, the water volume lost is greater
than the volume of the anchor. The pool level will drop.

8. Ideal gas: p = pRT.

Hence,
dp/dz = —pg =y = —pg/(RT)
4 4
f dp/p =In(p/py) = — f g/(RT) dz
Po 0
T= TO - Yz
leads to

p/po =( - .YZ/TO)IE/(VR)]
If T = T, (constant)
and zg=z=z

= e[—g(Z‘m)/ RTN

p/po

9. (a) The momentum exchange with the surface.
(b) The momentum flux across an imaginary plane at the point.
(c) The kinetic energy of the molecules in the volume considered.
10. What is viscosity? A measure of the internal stickiness of a fluid; the
proportionality factor between stress and rate-of-strain; a constant coefficient
in a Taylor expansion; a fudge factor to accomplish closure . . .. It is mea-
sured by using the definition,

T = wdu/dz
and measuring 7 (force/unit area) and velocity shear.

11. This experiment is a way of producing a thin layer of uniform shear
across a layer. Use the formula
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7= wAU/Az, AU=1XAzX 1/
Ay = (6 — 5.995)/2 = 0.0025 in
T=F/A=51b/(2 X w6) = 0.1326 1b/in *
AU = 0.1326 X (0.0025)/(7-107%) x 144 in.2/ft
= 682 in /sec

This is the difference in the velocity of the oil adhering to the cylinder
wall and that adhering to the weight. Since the cylinder is stationary, the
AU is the velocity of the weight.

12. For 1 = w du/fdr, p. = v/(du/dr),

gy = R, ugy, =0, u=ug, + clockwise
For Ri <r< Ro, u = R,-[(r - R,)/(Ro - R,)]Q - R,Q
du/dr = R/(R, — R) Q = R, /d
Or, the shear across the gap is du/dr = [ug, — ugyl/d = R{1/d.

7 is the force on the wall at R, The total force required to drive the
apparatus is F = 2mR;H14,. The torque is T = FR,.

Hence, p = F/(2wR.H) d/(R) = Td/2wRHQ).

13. The eddies must be (a) large enough to be measured; (b) small enough
to allow a sufficient number in the parcel to guarantee a uniform average
(an eddy continuum); and (c) in a uniform, steady state.

14. W 3 (a) As sand starts to fall, part is in freefall and thus does

not appear in the weight; W, < W,
(b) As sand impacts, F = Amv/At is added to the weight:

1
Us = Uy + at; s=s0+5at2;

v = gt = QgH)'?, 1, = (2H/g)"?
M '
Q 0

M = (F/vptr = column weight

Hence

F/V;
=Mg=F/vigy=F
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Thus, A(mom force) = weight of sand in column, W, = W,,.

(¢) Near the end, a small amount of sand is left in the column,
M; < M,, but the momentum impact remains the same; there-
fore, briefly, W; > W,.

1. 2. 3. 4, 5.
initial sand starts falling last grains final
condition to fall steadily falling condition
)
[
| A AL
Wo W, Ws W, =W,

15. For a Newtonian fluid,
= wdu/dz = pU[2/H — 2z/H*] = 2uU/H[1 — z/H]|
7(0) = 2uU/H; T(H/2) = wU/H; TH) =0
16.
T =wdU/dz = WUA d/dz[2(z/h) — (z/h)’] = 2uUA/hQ1 — z/h)
T,—0 = 20UA/R; Toenpe = BUa/h; T,en = 0 = 1, = the B.C.

Thus, although the air stress on the water is sufficient to establish the ve-
locity U in the water over a long time period, at equilibrium, this stress is
much less than the internal water stress.
17. (1) There is a hydrostatic pressure force due to the weight of liquid
above the area, pgh, where h is the depth.
(2) There is a momentum flux normal to the surface due to the inertia
of the fluid being deflected or stopped. This is

1
Fivenia = Ap - (Area) = 2 pU’A = pUL?

(3) There is a drag force along the surface due to viscous effects.
These are also momentum flux of the molecules scattering in all
directions off the microscopic imperfections of the surface. We
parametrize these net forces with viscosity and call them viscous
forces within the continuum concept.

Fviscous = l-L(U/L) L2 = }LUL
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Chapter 2
1. (a)
ou/ot + udufox + v du/dy + w ou/dz = F,
dvfor+ udv/ox + vaov/dy + wav/oz = F,
aw/ot + uow/ox + vow/oy + wow/dz = F,
(b)
ds3/3x, + ds,/dx, + 8s,/0x5 — 95,/ 0x;
— 3s3/0x; — 95,/ 3x;
2. (a)
divu = oufox + ov/dy + aw/dz
=6y + (—6y) + 0=0; nondivergent
(b)

curl u = dw/dy — dv/dz), (du/dz — aw/dx), (dv/ox — du/ay)

=0-0, @y-0), (4y — 2z);  rotational

3. (@) curl u = (0, 0, 0); irrotational
(b) diva = 10 + (—=10) + 0 = 0; nondivergent

4. (a) Velocity is given as a function of (x, y, z, f); Eulerian.

(b) Local: du;/0t = (0, 3, 0)
(¢) Advective: u; ou,/dx; = 3u + 2vz, 4uy + 4vx,
(@ (b) + (©

0

5. The total derivative, 9T/dz + V aT/dy, is 12/24(°C/hr) + 360 (km/

hr)(—0.06°C/km) = —21.1°/hr or —0.0586°C/km.
6. (a)
Ay = U/t = du/oti + ov/orj + ow/ork
dufdt = a/otlx + 2y + 3z + 4%
=8=8-2=16
Likewise, dv/dt =1, ow/dtr = 2. Thus,
+j + 2K. @y = (16> + 12 + 2%) = 16.155.
(b)

Aagvective — U ° Vu

a,=udu/ox+ vou/dy + wou/dz

Aocal = 1 6i
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a,=udv/dx + vaov/dy + wav/dz
a,=uow/dx + vow/dy + wow/oz
The x-component of advective acceleration,
u=x+2y+3z+4°7=1+2+3+16=22
oufax=9/axx + 2y + 32+ 4 ]=1+0+0+0=1
woufox =22-1=22
Likewise,
v=23,0u/dy=2,vou/dy=6,w=6,0u/dz=3,wdu/oz =18
a, =22+ 6+ 18 = 46; a, = 31; a, =49
Ay, = (46" + 31> + 4912 = 74
(¢) Total acceleration,
a= a,,, t+ a, = 62i + 32j + 51k

a=[62°+ 32 +511'2=86

8. The advective acceleration, a = u du/dx; u=QJ/A

, 0.00566 m*
= 0.00636 m” — — = ——x = (0.00636 — 0.0157)x
. m

Apa = 0.00636 — 0.0157-0.18 = 0.00353 m®
A 0.02[m’/s]

Vi T 0.00353 (]
dujox = d(Q/A)/dx = 8/ax[Q/(0.00636 — 0.0157x)]
= 0.0157Q/[0.00636 — 0.0157x]*
ou/ox (x = 0.18 m) = 25.1 [1/s]

a = u du/dx = 142 [m/s?]

= 5.66 [m/s]

a, = oU/dt = 8/810.2¢/(1 — 0.5x/L)] = 0.2/(1 — 0.5x/L)*
=0.2/(1 — 0.5-0.5L/L)* = 0.267 [units] (constant)
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At 30 sec., U = 10.67 units. Assume this is m/s. Hence, 0.2 [m/s’] and
a; = 0.267 [m/s*]

a, = U@U/dx) = [0.2¢t/(1 — 0.5x/L)*] 8/8x[0.2¢/(1 — 0.5x/L)?]
= 0.0472/[(1 — 0.5x/LY’L] = 0.04-30°/[(1 — 0.5-0.5L/L)* 5.]
= 0.03 [m/s?]

Chapter 3

L. a) pIM/L’IUP[L/t1/2 = pU?/2 IM/(L*)].
b) t[ML/t*/L*/pIM/L*] = 7/p[L*/t’], hence [L/t].
¢) Velocity gradient over distance [L/t/L] or [1/f].
d) w defined as stress/(du/dz)[M/(Lt*)/(1/1)] or [M/(LD)].

o =f{ W, 4, T
[ML/e*) = [L/1], (L], IM/(LD)]

4 — 3 = 1 ND variable; Fp/w[L?/t] to get rid of M;
hence Fp/4(pWd) = constant.

p =f{ T, R, Q, t/H}
M/@L] = [ML*/:*, [L], [1/f], ND

5 — 3 = 2 ND variables.
w/T [t/L’] (cancels M); hence wQR’® = f{t/H}.

5. (a) The Reynolds numbers must be matched: Re,, = Re,;

_ Po Ubly, Py

- Ko Pl

Un = Po/Pm Lo/Lin P/ Us
=1-10-1-20=200m/s

Un

(b) This is a very high windspeed to obtain. One could use more
dense fluid, a bigger model, or a less viscous fluid (e.g., air at
a higher temperature).

6. (a) The thickness of the active layer H (m) depends on the thermal
diffusivity K (m*/s) and the period T (s). We have three parameters:
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H, K, and T, and two dimensions: length and time. There is
3 — 2 = 1 nondimensional parameter, which is thus a constant.
Therefore K/(H*/T) = constant.

Absorbing this constant into the constant K,

K, = H?/T = 2000%/(24 - 60 - 60) = 46 m*/s
K, = (20/2000)°46 = 0.0046 m*/s.
K, = (51072/2000)*- 46 = 2.88- 107" m?/s

(b) Molecular values are very much smaller:
v, = 16.3-107° m?/s; and v, =1-10"°m?/s

(c) The Coriolis parameter furnishes a time scale, 1/s, and together
with K, a height scale, (K/f)"~
With f=1-10"*s" and L = 500 m, K = 25 m’/s for the atmosphere,
0.25 m*/s for the ocean.
Eddy scale transport mechanisms are on the order of 10° more effective
in transporting momentum.
8.

T =fL, g R}
[1/t}=[ L], [M/L?), [L/t*, IL]

5 — 3 = 2 ND variables.

Since only p has M, evidently T does not depend on p. Hence, 4 — 2 = 2
variables.

The ratio L/R is evidently one possibility. Since this is extremely small,
we might reconsider including R. Then, 3 — 2 = | and T/(L/g)"* is con-
stant, or T = C(L/g)"%.

9. The drag must be a function of length, speed, diameter, density of
fluid, viscosity, perhaps roughness of the surface. Hence we can write

D =f[L,V,d,p, 1, (maybe z,)]
Say it is made as smooth as possible, z, = 0. Scales are
m/Lt* = f[L, L/t, L, m/L?, m/Lt]
n=206, =3, n—m=3

@, = D/(pV’LY; a, = n/(pVL); 7y =D/L
Or
D/ pV’L?) = fln/(pVL), D/L}

If design (D/L) is held constant, we must match Re numbers only.
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10.
= =f{p, U}
M/WLth)] = [M/L°], [L/1}

Hence, 7/(pU?) is evidently the one ND parameter.

11.
fu + Kd’u/dz* = 0.
Keep f[1/t] and K[L?*/t];1et U = u/U;, Z = z/H.
(fUg) U + (KUg/H? d*U/dZ* = 0.

Or

U+ [K/HH d*U/dZ* = 0.
This equation will be self-similar if there is no coefficient in the equation
and B.C. To get this, let H = (K/f)"~.
U+dU/dz* =0 (where Z = z/(K/f)'); U(*) =1, u(0) = 0.

12. (a) There exists DS if Re = pVL/u is the same for the bridge and
the model. p and p are the same for air at the same P and T.
Hence

pVL/k)y = [pVL/ )0 = Via/ Vs = Lo/Ly = 10 = V,, = 1000 mph.

(b) Since V,,/c, = 1000/770 = 1.3, flow is supersonic; shock waves
may appear around the structure. This problem can be avoided by

. Building a bigger model;

. Using more dense fluid;

. Using less viscous fluid;

. Using a combination of the above.

B N

14.
u =f{g’ A’ }‘L}
[L/7 = [L/t* IL), M /(L)

4 — 3 = 1 ND variable. However only p has M. We can either eliminate
1 to get

u = c (g - wavelength)'/?

or add p to get (u/p = v)
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u =flg. L, v}
[L/t] = [L/¢°], [L}, [L*/1]
4 — 2 = 2 ND variables, u/(gL)"?, and v*/(gL>).

Chapter 4

3. (a) curl (grad f) = e 8/3x;[0f/3x,] = € 3°f/3x; Ox,.
The i-component consists of j and k£ each 1 through 3, or nine
parts. However, all parts are zero except for 123 and 132, 23]
and 213, and 312 and 321. Since each of these pairs cancel
(€123 = —¢€;32), the sum is zero.
(b) div curl u = 3/dx,(e; ou,/0x; e;). Writing these out and using the
properties of €; shows that this expression is identically zero.
5. (a) Left side: [A; U, + Ay Uyt A5 Usli + [AU, + ApU,
+ AnUslj + [ApUs + ApU, + AyUslk.
Right side: [A,U, + AU, + ApUsli + [A, U, + AU,
+ AnUsli + [A3 Uy + ApU, + AjUs)k.
They are not equal.
(b) Ay = Aju; is not true. .
The physical positions of # and A matter in vector/matrix form,
but not in indicial notation, where the indices determine the
outcome.
(c) uv does not equal vu.
(d) uy; = wu;.
6.

du/ot + udu/dx + vou/dy + wou/dz = (—ap/ox)/p + fv  + v(d°u/ox; ox;
[L/P)+ [L/1*] + L/ +[L/1"]1 = [L/t"] +[L/1°) + [L/1]
The terms are all accelerations and scalars (the indices are summed).

7. 1, 3,9, 27, 81 (3.

Chapter 5

2. Only the flow at the entrances and exits needs to be considered.
VA, + VoA, + V34, =0
—20-25-H+19-25-H+V;-8-H=0
Vi = 25(20 — 19)/8 = 25/8 = 3.13 m/s
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3. Liquid displaced upward: Vup(D2 — d* w/4; displaced downward: V,,,,
wd*/4 = V,(D* — d*) w/4. Hence 2d> = D D = \/2d.

By symmetry, z/D = 24d/2d; D = z/12.

Eliminate D: z = 12 V2 d.

4. u= —C,/re, — Cy/reg;
The mass coming in through the perimeter/meter height is equal to that
going up the center.

2mruh = wriw
w = 2U, h/r = 2C, h/r* = 2(300/30% or 0.67 m/s per meter height.
u,(30) = =30 m/s; for a 100-m high tornado, w = 67 m/s.

5. du/ax; = UGx* + y») + UBy> + x») + 0 = 4U(* + y?).

This doesn’t satisfy continuity, hence it is not a legitimate flow.

Adding dw/dz = —4Ur® makes V-u = 0, and it is then a legitimate in-
compressible flow.

6. Use continuity; entrainment around the circumference,

(pa + Ppo) VOAO + paVaAa = (pa + pr)(VxAx)

A, =T JD dx = TrJ(DO + 0.02x) dx = w(Dox + 0.01x9)

Divide through by p,.
(1 + ppo/pP)(VoAg) + VoA, = (1 + po/p)(ViA) (1)

We have everything except V,; we could solve for p,./p,. However, if
we assume p,/p, << 1, we get

VoA, + VA, = VA,
Thus, Eq. (1) becomes
Ppe/Pa = (Ppo/ PIVoAo/(VLA))
= ppo/pa 1/[1 + V,A(VoA))]
= po/pf1/[1 + 0.00067(x + 0.005x%)]}

7. E UA = 0; density is constant here.

4-8 [em’/s] — 3-V, — 2-4 [cm’/s] = 0. (The angle does not enter.)
V;=1{32 — 8)/3} = 8m/s
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Chapter 6

2. Momentum equation in one-dimension (along x-axis):
dufot + u du/ox + v du/dy + wou/dz = —1/pdp/ox + fu + K 9°u/oz*

O+udu/ax+0+0=—-1/pdp/ox+0+0
Thus, along a streamline,

J’uau/axdx=f ~1/p dp/dx dx;

0 0

or
/2 = u3/2 = —(1/p)lp — Pyl
p =Py — pli’ — 15/2; u=QfA; A=mar?
plx) = Py — pQ*/2m*) - [1/r* = 1/r{]

(@) r=r,-cx (b) v=u,-ex
I3 r

T

3.p=pRT;  dp/dz= —pg = —pg/(RT)

P 2z
j dp/p =1n(p/po) = — f g/(RT) dz

Po (]

= g/R J' dz/(Ty — y2) = —=In(T, — y2)*’ T,
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or

p/po=11— 'YZ/TO]X/(VR)

When T = constant,

In (p/py) = —g/RT,) f dz = —g(z — z)/(RT,)

20

p/po= exp[—g(z — zp)/(RT,)]

20

10

4. The problem is much simpler than a solution of the momentum equa-
tion. Given, the flow is parabolic. Get u(z). Use B.C.s suggested in the
problem: u,, at centerline by symmetry, and u(x=d) = O for no-slip. Set up
a coordinate system with the centerline as the x-axis:

u=Az2+Bz + C;
u(0) = Up., du/dz(0) =0, wu(xd)=0 (assuming no-slip at the plates).
Upex = C; 2A(0)+l_3=0; B=0

A(Zd) + Uy =0 yields u = Ul — 2/d’]

Q= f udA = f u [1 — z*/d*] dz (flow rate Q)

=4/3 du, Upe = 2/3 Uy,
T = I du/dz(z = =d) du/dz = —Q2z/dHu,, 7= 2Q2n/d )t
vorticity: V X u = Qup,/d*) zj = 2(u,/d*)z
8. The force (e.g., from DA): F = pAV?
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F =[.00123 g/cm’/(1000 g/kg) - 10° cm®/m’} - 5 - 20 m? - 30° m?/s’
= 1.11 10° kg-m/s*

Chapter 7

1. It is important to note that there is a contribution to the radial pressure
variation from hydrostatic pressure. Thus the net force across the parcel at
depth z is F, = ap/dr + pg 9z/dr. This opposes the centrifugal force.

Or,

d(p + pgz)/dr = —a;
= —(pug/r) = pro’
Integrate with respect to r:
p+opgz=prie’/2+C

o = uy/r and p is constant; p/p + gz — us/2 = constant.
Note: This is similar to Bernoulli’s equation, but the minus sign is crucial.
This is not irrotational flow.

2. Use Bernoulli’s equation with only V = AV and Ap given.
V=Q2Ap/p)/?=(2-2,000/1.2)""*=57.7m/s

3. (a) Both gauges read the same, reading hydrostatic pressure.
(b) ACr = (ps — PB)/(P“(ZJ/z) = 1.4;

ug = 2(5,000)/[(1.5)- 1.4]; Uy = 69 m/s

4. Write the energy equation from upstream end to downstream end.
For discussing power and work, the energy equation is usually appropriate.
Head loss in meters is a potential energy loss of HL - g.

pi/p + ui/2 + gz, + Wk =p,/p + u3/2 + gz, + HL,
0+0 +0 +Wk=0 +u/2+0 +0.024/2

For discussing velocities through areas, the contfinuity equation is
appropriate.

WA, = A, u; = A A, = 0.5u, = 5m/s
/2 = 0.25 u?/2.
Wk = (0.27u?/2 = (0.27)(10°/2) = 13.5 m*/s’
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Power = QpWk = (10 m/s- 15 m?®) - 1.2 kg/m’ - 13.5 m?/s
= 2430 kg/m?%/s* = 2.43 kW

6. The energy equation is decoupled from the momentum equations.
Mechanical energy and thermal energy equations can then be written
separately.

8. @ v/2+p/p+gz=c

®) | v*/2+p/ptgz=c

(© v*/2+plp+tgz=c
d) v*/2+ | p/pds+gz=c¢

9. The Coriolis force is always perpendicular to the velocity. Hence, it
can do no work.
10. Bernoulli’s equation:

pi/py + W2 + gzy = p,/p; + ua/2 + gz, + ® (dissipation)
Neglect dissipation.
2=z ={pi/pi — P2/ + (W — u3)/2}/g

Get p(r) from problem 1.

11. The spin will cause the relative velocity difference between the free-
stream and the surface (in coordinates on the ball) on one side of the ball
to be greater than on the other side. The higher velocities have lower pres-
sures according to Bernoulli’s relation, giving a sidewards pressure push.
This depends on the friction building boundary layers on the ball. The boundary
layers depend on the relative velocity (and the seams), hence they are un-
symmetric on each side of the spinning ball. If one side of the ball is laminar
while the other is turbulent, the boundary layers will be quite different in
thickness and velocity profile.

Chapter 8

1. Check the curl u.
u = (dp/dx, dd/dy, 8d/dz) = (2x — 2y, —2x, 0)
curlu =10,0, -2 —-(-2)]=0

It is irrotational.
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3. Calculate curl u.
4. Use a tornado approximation using line vorticity:
T = uy 2mr = 20 27- 2000 = 87 - 10* m?*/s
= strength
U = T'/(2w 500) = uy 2000/500 = 80 m/s
5. The total vorticity equation.

6. Vorticity can change due to divergence, V X u, and by twisting, turn-
ing by Vu in an inviscid fluid. If it is inviscid two-dimensional, only the
divergence term can change vorticity.

7. Get the velocities by differentiation. At r = R, use Bernoulli’s equa-
tion to get the pressure—velocity relation over the surface. Integrate over 0
in the x (drag) and y (lift, or lateral force) to get F, and Fy. Note: Symmetry
conditions eliminate some integrals (e.g., odd powers of sine). Get

Fo=pUl'/w J' sin® § d8 = pUT

9. Think of the tube between the ground and a capping inversion at the
tropopause and use Helmholz’s law. {/L = constant. When L is increased
over the plains, { increases, cyclone intensifies.

Chapter 9

2. Plot the streamline flow for (4, v) = (3¢/dy, —o¢/dx) = (Cx, —Cy)

N
N
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The flow is 2-D, steady-state, constant, with V-u = 0. Check for
incompressibility.
dufox =C dv/dy = —C and V-u=0
Rotationality:

i j  k
Vxu=|9d/dx 9/dy 9d/oz
u v 0

= i(=0v/9z) — j(—adu/dz) + k(dv/dx — du/dy) =0

The flow is irrotational and satisfies continuity. It is a practical repre-
sentation of several flow situations. It could represent two jets coming to-
gether (or two rivers, or air mass flows). It does well in representing a single
jet impinging on a wall, since any streamline can be replaced by a solid
surface. Thus, it also represents the flow in a corner. It is used in a typical
prefrontal flow situation.

10. Differentiate the potential to get the velocity.

Integrate the velocity to get the streamfunction, hence the streamlines.

Use Bernoulli’s relation between velocity and pressure to calculate the
pressure distribution and hence the forces.

Chapter 10
1. (a)
(@+a)b+b)+(c+c)
=ab+ab+ab +ab +(+2'c+c?)
=ab+ab+ab +ab +(+2'c+cd)
=ab+ab ++c”
(b)

(@a+ a) b+ b)c+c)
= (a* + 2aa’ + a'®) (bc + bc' + b'c + b'c')
= a’bc + ab'c’ + 2aba'c’ + 2aca'b’ + 2aa'b'c +

+ bCaIZ + bc/aIZ + cb/aIZ + aerIC/

(c)
(@b’ =[(a + a' )b+ b)Y = (ab + ab’ + a'b + a'b’)?

(difficult expansion)
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Or

(a+a) b+ b)Y =@ +2ad +a>B +2bb+b%H=
@’ + 2aa'b™ + 2ba”’ + 4aba'b’ + b + Pa” + a”’b"”
d)
(@Y =[a+a)b+b)P=1[ab+ab +db+ab]
= &b + 2aba'b' + a’’b"”

(p+p)u+u)=pd+pu+pu?+pu?+ puu' +2puu;

averaged: p_u2 + W + W + 2W
3. Substitute © = O + ©’, u = U + u' to get
09/0t + 90" /ar + (8/0x;) (O+O" YU, + u))]
= K[6°0/ox; + 8*O’ /ox;]0x;
90/0t + 30’ /ar + (8/0x;) - [OU, + O'U; + Ou] + 0'u!]
= K[azé /ox; + 9°0' /dx;]ox;
Steady state and horizontal homogeneity (0/3z >> 3/dx, 3/9y)
3/32)[OU + O'U + Ou’ + O'u']= K %O + 0')/o7

4. A singular perturbation of an equation occurs when the complete gov-
erning equation appropriate to the general flow condition is approximated
by an equation that does not contain the highest order terms. The solution
of such a differential equation requires less integrations. It cannot satisfy as
many boundary conditions as a higher order equation. The validity of the
approximation will depend on the importance of the boundary conditions
that no longer can be satisfied.

10. First substitute into terms, then average: u-momentum equation:
du/or + uou/dx + vou/dy + wau/oz — fo + (1/p) dp/ox
— v(d*u/ax* + u/oy? + *uj9*z?) =0

Substitute 1 = u + u’ + u” (all three velocity components), ignore tur-
bulent (random) components of p and p. In this case u, p, and p are the
mean values without any marks on them; and primed values are due to or-
ganized perterbations.
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du+u +uyjot+ (w+u +u)o(w+u +u)/ox
+ @@+ v+ v)outu +u)/dy+(w+w +w)ou+u + u")/dz
~fl+ v +V)+[1/(p+ p)la(p + p')/ox
~v[o%u + u' + w0 + Pu+ u' + W) /y* + Pt u + )/ =0
or
ou+u +u")/ot+ uodu/dx +uou/ox +uoufox + u 0f/ox(u + u' + u")
+ u"3/ox(u + u' + u") + vou/dy + vaou'/dy + vau"/oy
W +U)ou+u +u")/ay +woufiz+ W +w)a/oziu+ u + u")
—fo—-f -+ 1fp+p)Hp+p)ax—vViutu +u)=0

average:

Qufot + udufox + w ou'Jax + u’ ou'/ox + u" du' /ox + u" du"/dx

+voufdy + v ou' /oy + v’ au"/dy + V" ou' /3y + V" du"/dy

+wou/dz +w' ou'foz + w' du"/oz + w" du' 3z + W' du"[oz — fu

+ 1/pap/ox - (p'/pH) ap'/ox — v (*u/ax’ + d*u/dy* + 8°u/oz*) = 0

Chapter 11

1. The flow turns 45° through the Ekman layer.

2. The pressure gradient force, the Coriolis force, and the viscous force
form a balance. At the equator, the Coriolis force is zero and the charac-
teristic scale height (and the Ekman solution) do not exist.

3. The self-similarity is with respect to the height when nondimension-
alized by the “Ekman depth of frictional resistance,” ¢ = [2K/f]"/%. The
new parameter in the PBL solution is the Coriolis parameter. It provides a
characteristic time scale and allows a characteristic length scale to be formed.

6. Consider writing the Ekman equations in complex form, @ =
u— Ug; + i(V— V) so that

d (K dQ) [ fo0=0
dz dz !
with
K= Koz,

Ko2(d’Q/d?) + Ky(dQ/dz) — if Q = 0
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or
Ad*Q/d") + dQ/dz — i(f/K)Q = 0
Let ) = 2(f/Ky)'" 2"
to get the zero-order Bessel equation
n°d*Q/dn’ + mdQ/dn — in’Q =0
This provides a good approximation near the surface. K grows too rapidly
at higher z, but dQ/dz gets small at these heights.
7. The clouds at the top of the PBL move with the freestream wind, at
an angle to the right (in the northern hemisphere). Low pressure would be

to the left in a direction perpendicular to the cloud motion.
8. From Eqn (11.2),

(u dujfox + a/a)+[XW] du/d [fx] +[P]a/a
uoujox vou — |woujo0z — |—| U I X
' HU U pU? P

K K X
— = | (B®u/fox® + d*ufoy®) — | —-—| d%u/az* =0
[XU](u/x /3y%) X H /
For H/X << 1 and W/U << 1,

(a/a+.a/a)+ ou/d 2
plid 7 — —
uoujox U oujoy w ou Ro

1 XZ 2 2 _
+Dadp/ox — Re 7 ufoz* =0

or dimensionally,
uou/ox + voujdy + wou/dz — fu + (1/p) dp/dx — K 9°u/9z* = 0
16. In a coordinate system aligned with geostrophic flow, U/G = cos
a — €' (cos { — sin {) sin «

where { = z/5.
Expand u in small {,

u/G =coso —sina(cos{ —sin{)(1 =L+ 3/2+...)
=cosa—sina(l —2¢L++..)
=cosa —sina + 2sinal — 3/2+ ...)
=cosa —sina + 2sina In({ + 1) + O[]
Similarly, v/G = 0 + O[{]
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Acceleration
absolute, 109
Coriolis, 108
Eulerian, 91
relative, 108
Adiabatic, 63-66, 79
Adiabatic lapse rate, 64, 65
Advection, 69, 90, 322
Affine transformation, 157
Air, 52, 57
Alternating unit tensor, 174
Antisymmetric tensor, 175-177
Atmospheric scale height, 220
Atmosphere, 3, 9, 18, 21, 34, 38, 41, 55,
62, 67, 381, 384, 391
boundary layer scale, 161, 419, 440, 450
closure, 237
density change in vertical 91, 200, 208,
321
inviscid, 413
K—theory requirements, 75, 248
layers, 391, 412
moisture, 64, 272
ocean interface, 389
perfect gas, 61
pressure change vertically, 65, 258
rotation, 109
scales, 152, 386
scale height, 215
spin, 99
transition, 255
vortices, 319, 371
vorticity, 330, 353
Attractor solution, 33
Auto-correlation, 130
Averaging, 55-58, 381-386, 407

Basic units of dimension, 137-138
Bernoulli’s equation, 276-288, 332, 335,
369, 376
Bernoulli’s equation in streamline
coordinates, 333
Bjerknes circulation theorem, 331
Body forces, 45, 78, 178, 228
Boundary layer, 37-44, 76, 411-451
Boussinesq, 45, 74, 76
Buoyancy, 39, 81, 132

Carnot’s law, 63
Centrifugal force, 11-12, 15, 109
Chaos, 3, 33, 101
Chaotic, 130
Characteristic value, 121, 127, 132, 1353,
144, 151-156
Circulation, 310-313, 334, 350-353
Closure, 237, 241-248
Coherent structures, 30, 36, 101, 134, 383
Compositing, 126-127
Compressibility, 1, 54, 62, 90, 198-200,
204, 213-216, 271, 287-289
Conservation of an arbitrary quantity, 217—
221
Conservation of energy, 260
energy equation, 268
enthalpy equation, 270
incompressible, 290
intergral equation, 264-267
internal energy, 269, 276
mechanical, 268, 276, 289
streamline, 276
moisture, 272
pressure work, 270, 275
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Index

sink and source terms, 266
streamline coordinates, 276284
summary, 292
viscous work, 275
Conservation of mass, 197, see also
Continuity
compressibility, 213-216
integral form, 208
Lagrangian perspective, 201
pressure, 214
specific volume, 213
steady-state, 217
summary, 221
two-dimensional, 206
Conservation of momentum, 225
closure, 244
internal equation, 226-232
Langrangian derivation, 235-236
summary, 257
total derivative, 226
Continuity, 204, 206, 215, see also
Conservation of mass
Continuum hypothesis, 50-55, 76, 79, 199,
353, 384-386,
eddy, 384, 390-391, 449
Contraction process, 176
Control volume, 101, 194, 208-213
Convection, 92
Convergent, 96
Coordinate systemn, see also Frame of
reference
cartesian, 164—165
cylindrical coordinates, 164—165, 187,
250, 352
fixed, 10-11
spherical, 164—165
Coriolis force, 3, 11, 18, 20, 40, 79, 108-
110
Coriolis parameter, 110
Coriolis term, 108, 249-253
Couette flow, 72
Curl, 166, 180, 189
Cyclone, 104, 326, 340, 352-353, 364,
370

Deformation tensor, 177, 181—-184, 187
Del, 23, 166

Density, 50, 58, 60

Derivative, 85, see also Total derivative

Dilation rate, 204—205

Dimensional analysis, 119, 121-122, 135-
149

Dimensional homogeneity, 137, 140, 145,
149

Direction cosines, 168

Displacement vector, 181, 244—245

Dissipation, 270, 272, 275, 289

Distortion, 238-241

Divergence theorem, 113-114

Divergence, 95-97, 167

Doublet, 367

Downslope flow, 232-233

Dry static energy, 273

Dual vector, 176

Dyadic product, 175

Dynamic similarity, 151

Eddy continuum, 54-55, 57, 390391,
414, 449

Eddy diffusivity, 74-77

Eddy flux, 74

Eddy stress tensor, 406

Eddy-laminar, 248, 382-386, 390-391

Eddy-viscosity, 35, 54, 57, 74-77, 246—
248, 390, 404-407, 413-414, 440

Ekman, 38, 424

Ekman’s equations, 32, 424—427, 432

modified, large-eddies, 436

Elastic solids, 243-244

Energy equation, see Conservation of
energy

Energy spectra, 131-132

Ensemble, 49, 56-57, 125, 130, 133

Enthalpy, 261, 270

Enthalpy equation, 270-272, 275, 291

Entropy, 59, 62-63, 66

Equation of state, 58—66

Ergodic, 56, 79

Eulerian, 86-94, 180, 194, 199-203

derivative, 91-94
Expected value, 128

Field description, 48—49, 84
First law of thermodynamics, 261, 263—
266, 289
Flow
cliff, 367
corner, 358



past a cylinder, 368-369
similarity, 150
Flow properties, 178
Fluid, 1, 63, 66—67, 73
Flux, 391-394
Force, 165, 178-179
Forced vortex, 106, 319, 337
Fourier law for heat conduction, 266
Frame of reference, 3, 8
Eulerian, 86, 180
Lagrangian, 85, 180
Free vortex, 105, 319, 336
Fundamental unit, 138
Frontogenetic, 183
Frontolytic, 183

General statement of conservation, 218-220

General stress tensor, 241-248

Geometric similarity, 150

Geostrophic flow, 20, 40, 79, 252, 383,
413, 423, 427, 432, 443

Gradient flow, 252, 426

Gradient, 23, 166

Gravitational potential, 21, 109

Gravity force, 11-12, 21, 109-110

Gravity waves, 30

Heat conduction, 266
Heat transfer rate, 266
Helmholz law, 314, 330
Homogeneous, 56, 76
Hooke’s Law, 244
Humidity, 64

Hurricane, 105, 319, 370
Hydrostatic equation, 65

Ideal flow theory, 343-344
vorticity equation, 350
Ideal vortex, 370-374
Index notation, 93-94, 168
free index, 174
Inertial, 2, 8
Instabilities, 24, 31, 42, 127, 132-134,
390, 412413, 431
stability equation, 395-396, 400
Instability, 24-33, 45
boundary layer, 436
inflection point, 438-440

483

Index

Internal energy, 269, 276
Internal energy equation, 268
Internal forces, 178, 228, 231, 238, 241—
248
rate of change, 231
Internal friction, 45, 244-248
Internal stress, 8, 244-248
Internal waves, 30
Inviscid, 8, 19-21, 74, 122, 247, 256-257
Irreversible process, 59
Irrotational flow, 101, 298, 302-303, 319,
334, 350-355
vortex associated, 335-337
Isallobaric Flow, 252
Isentropic process, 62-63, 66, 79

K-theory, 248, 449, 452
surface layer, 440-446
Kelvin’s circulation theorem, 330
Kinematic similarity, 150
Kinematic viscosity, 73
Kinetic energy, 50, 59, 260-261, 264, 269
change, 275
specific, 264
Kinetic theory, 50-54, 59, 69-70
Knudsen number, 53, 71
Kronecker delta, 174

Lag, 127, 130
Lagrangian derivative, 94
Lagrangian frame, 85, 180, 235, 274
Laminar, 8, 74
eddy-laminar, 382
sublayer, 413
Laminar flow, 18-19, 29, 382
boundary layer, 415-416
Land-sea breeze, 262, 331
Laplace’s equation, 347, 355-357
Lapse rate, 64
Large-eddies, 76, 133, 435-438, 449
Latent heat of vaporization, 272-273
Liebnitz’s theorem, 111-113
Linearized perturbation equations, 396, 400
Line vortex, 318-319, 350, 362

Mach number, 216
Magnus effect, 340, 380
Material derivative, 92



484

Index

Matrix, 169
Mean flow equations, 396
Mean free path, 52-53, 405
Mean value, 381-384
Mechanical energy equation, 268—-269
Mechanical energy, 261, 268
Method of indices, 144, 148
Method of singularities, 360-370
velocity field, 352
associated, vortex, 352
Mixing length, 446-450
Moist static energy, 273
Moisture, 64, 272
flux, 405
Momentum flux, 393-395
Momentum equation, 226, 257, see also
Conservation of momentum
Monsoon, 262

Natural coordinate system, 276—284, 333
Navier-Stokes equations, 45, 247, 255-256
cylindrical coordinates, 250
dimensionless, 253
perturbed, 397
Newton’s law,
friction, 73, 248
motion, 10, 38, 44—45, 69, 84, 108,
225-236, 242
parcel, 50
Newtonian fluid, 73, 79, 241
Nondimensionalization, 121, 135-149
equation, 152-156, 216-217, 253-255,
419-427
numbers, 254, 419
parameters, 139-140, 142-149
rules, 137-138, 142, 143-145
Normal modes, 402
No-slip boundary condition, 205
slip velocity, 70-71

Organized waves, 34, 36, 127, 132-134,
435-440

Parallel shear flow, 298

Parameterization, 2, 4, 71-72, 78

Parcel, 22, 46-55, 66, 85-86, 268,
forces, 178—180, 241-248
motion, 88-92

streamline coordinates, 333
vorticity, 298300

Pathline, 47-48, 85, 94

PBL, see Planetary boundary layer

Pendulum, 12

Perfect gas law, 59-61

Perturbation, 130, 389-396, 438-440
organized, 132-134, 390, 433-437
vorticity, 439

Perturbation equations, 396—406
boundary layer, 436
summary, 409

Perturbed equations, 397-402

Pi theorem, 137-143

Pitot tube, 282-285

Planetary boundary layer, 37-44, 254,

417-439

Planetary vorticity, 314-318, 322, 325-326

Poisson’s ratio, 243

Pollution, 3, 39, 85, 261, 412

Potential flow theory, 21, 344
around cylinder, 369
flow in a corner, 358
flow over a bluff body, 366
outline, 344 ’
potential, scalar, 343, 347
potential, vector, 345~-346
summary, 349, 378

Potential flows, 21-23, 344

Potential energy, 260-261, 281
gravitational, 273, 277

Potential function, 21

Potential temperature, 65, 79

Potential vorticity, 314

Prandtl, 32, 405, 447

Pressure force, 22, 178, 228, 243

Pressure gradient force, 18, 232, 247, 252

Pressure work, 270, 275, 277

Pressure, 60, 241, 242-243, 246
total, 281

Principal axes theorem, 183

Principal axes, 184, 355

Probability density function, 130

Probability distribution function, 56

Probability, 56, 128

Radiant energy, 260-261, 272
Radiative heating, 263
Rate of expansion, 207-208, 303



Rate of work, 264

Rate-of-strain, 73, 244-245

Relative acceleration,

Eulerian, 93-94
frame of reference, 108—-109

Relative motion, 182

Relative vorticity, 110, 325-326

Repeatable measurement, 125

Repeated index, 167-168

Reversible, 59, 62—63, 263

Reynolds averaging, 391-395

Reynolds number, 38, 75, 237, 254

Reynolds’ stresses, 393, 394, 404-405

Reynolds, 45, 395, 405

Rolls, (cloud streets) 27, 132-133, 433—
438

Rossby number, 156, 254

Rossby waves, 325

Rot u, 182-184, 302, 307, 353

Rotating tank, 295-297, 353

Rotating coordinate system, 1018, see
also Coordinate system

Rotating frame of reference, 8, 10-18

Rotation tensor, 177, 182-184, 307, see
also Rot u

Rotation, 295-297, 299, 300-302, 353—
354

Scalar velocity potential, 343, 347
Scale, 120-127, 133, 150-152, 157
Second viscosity, 245
Selection process, 176
Self-similarity, 59, 452
Shear

deformation, 244247

flow, 19, 73, 297-298

force, 243-248

vorticity related, 295, 297-299
Similarity, 149

dynamic, 121, 151-159

geometric, 150

kinematic, 150-151
Singular perturbation, 154
Singularities, 351, 360

line vortex, 362

reciprocal, 346

source or sink, 361-362

superposition, 363—-370
Skew symmetric tensor, 175

Index 485

Solenoidal, 200, 304, 307
Solid body rotation, 106, 295-300, 311
Specific heat ratio, 56
Specific
enthalpy, 61
gas constant, 61
heat, 61-62
internal energy, 61, 264
kinetic energy, 264
Specific volume, 213
Spectral analysis, 127--134
Spin, 8, 97-101, 107, 294-296, see also
Rotation
Stability, 24, 31-34, 128, 132, 389
theory, 256, 396, 408, see also
Perturbation equations
Stagnation point, 282-284, 368-369
Stagnation streamline, 369
Stagnation values, 63, 79
Stationary, 56, 58, 79, 125, 131
Steady-state flow, 21, 56, 58, 79, 89
Stokes’ law of friction, 244-245
Stokes’ theorem, 312-313
Streakline, 47-48
Stream function, 303, 345-348
Streamline, 47-48, 346, 364
Streamtube, 280-281
Stress tensor, 241-247
Stress, 8, 38, 40, 60, 66-68, 178—180,
231-234, 236-247, 413
force,
boundary layer, 39-41, 146-149,
413-424, 426
eddy, 247-248, 390-395, 404—-405,
413, 434
parcel, 180, 231
Substantial derivative, 92
Summation convention, 94, 167
Surface layer, 39, 54, 71, 80, 440-446
Surface forces, 178, 228, 447
Symbolic
notation, 166, 175-178
terms, 176
Symmetric tensor, 175

Taylor’s hypothesis, 125
Temperature, 59, 91, 261, 266, 271
Tensor, 163-192

alternating unit, 174
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Index

definition, 169
dyadic product, 175
matrix, 171-175
notation, 166—-169
order, 165, 171
product, 171-177
Thermal energy, 261-263, 266, 269, see
also Internal energy
Thermal wind, 453
Thermodynamics, 18, 49, 59, 62, 65, 263
Tornado, 30, 42, 98, 319, 340, 352, 365,
371-374
Total derivative, 85-97, 226
Total energy, 262, 264, 266, 268, 274, 280
Total pressure, 281
Total temperature change, 91
Total vorticity, 314, 321-322
Total properties, 63
Transformation of coordinates, 169
Transition, 3235, 99, 237, 254, 387, 402-
404, 413
Trend data, 407
Turbulence, 3, 4, 9, 25, 33-37, 42, 54,
57, 74-77, 381-386, 389-398, 404-
406, 413-417, 431, 435-436, 448
Two-dimensional incompressible flow, 96,
123, 197, 200, 206—-208
boundary layer, 417
continuity, 208, 221
line vortex, 318
shear flow, 298
stream function, 346
vector potential, 346
vortex, 352, 365
vorticity, 300, 322
vorticity transport equation, 328
vorticity tube, 313

Uniform flow, 19, 24, 80, 348-350

Vector potential, 345

Velocity gradient tensor, 182, 237-238
division, 193
strength, 313

Velocity
arbitrary separation, 180-182, 301-302
vorticity associated, 352
potential, 302

Vertical density distribution, 91

Vertical pressure variation, 81

Virtual force, 3, 11, 80, 109
centrifugal, 11, 15, 17, 109
Coriolis, 11, 85, 98, 109, 249
Virtual temperature, 64, 80
Viscometer, 82, 161, 250
Viscosity, 20, 35, 46, 66—-74, 123, 144,
161, 235, 237-240, 245-247, 250—
252
eddy, 54, 57, 74-77, 247-248, 383,
391, 404-406, see also Eddy
viscosity
dimensions, 138
kinematic, 73
vorticity effect, 329
Viscous force, 45, 88, 244-248
Viscous work, 275
Volumetric strain, 238, 302-303
Vortex, 80, 104—-108, 295-296, 314, 350—
354
idealized, 370-374
line, 318-319, 362, 364-365
natural coordinates, 335
pairs, 375-377
rotation, 353-355
Vorticity, 8, 33, 36, 84, 97-108, 185, 186,
189, 294, 300, 352-353
characteristics, 329
compared to vortex, 295, 353
dimensions, 160
equation, 350
filament, 307-308
summary, 339
Vorticity Tube, 308-309
Vorticity transport equation, 295, 319-329,
350
streamline coordinates, 328
total vorticity, 322
viscous term, 328
Vorticity meter, 101-103
Vorticity velocity sign, 105

Water vapor, 64, 273, 290
Waves, 3, 24-33, 125-128, 131-133, 256,
317, 382, 387-389, 392, 402, 407,
412
organized, 55, 124, 126-127, 132-134,
434-439
planetary Rossby, 325-326
sound, 213-216
Work, 260, 263-272, 274-277, 282, 288
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