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Preface

In recent years, numerical simulation models have become indispensable in
hydro- and environmental sciences and engineering, mainly for making predic-
tions and improving process understanding. For many problems, a physically
correct and mathematically accurate simulation of the coupled complex pro-
cesses requires powerful numerical methods as well as high resolutions in space
and time. In information processing, many techniques have been developed
for setting up systems with complex geometries and parameter distributions,
and high-performance computer systems are available for fast computations.
Overall, there is an urgent need for the further development and application
of efficient numerical simulation models in environment water which consist
of efficient numerical methods associated with efficient information-processing
techniques.

After a general introduction to numerical simulation in environment water,
the basic equations for groundwater flow and transport processes, for mul-
tiphase / multicomponent flow and transport processes in the subsurface as
well as for flow and transport processes in surface waters are briefly deduced
from the general form of the balance equation. The state of the art of dis-
cretization and stabilization methods (e.g. Finite-Difference, Finite-Element
and Finite-Volume Methods), parallel methods and adaptive methods as well
as fast solvers (e.g. Conjugate Gradient, Multigrid Methods) is presented with
particular focus on explaining the interactions of the different methods. Par-
allel, adaptive and Conjugate Gradient or Multigrid Methods can collabo-
rate well and should be chosen to solve large-scale problems. An overview
of various information-processing techniques, which must work efficiently to-
gether is provided, briefly dealing with preprocessing (e.g. Computer Aided
Design, databases, mesh generation, geostatistical methods), processing (e.g.
High-Performance Computing, modeling system MUFTE-UG) and postpro-
cessing tools (e.g. advanced visualization) as well as Internet-based Collabora-
tive Engineering. Eventually, the interactions of the numerical methods with
the information-processing techniques in order to achieve efficient numerical
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simulations are demonstrated for a wide range of applications in environment
water. The work includes contributions to an improvement of process un-
derstanding, to further developments of numerical methods and information-
processing, as well as to new application fields for existing simulation models.
Finally, future perspectives are pointed out.

This book summarizes about a decade of my work in the field of numerical
simulation of flow and transport processes in hydro- and environmental sci-
ences and engineering carried out at three different institutes in Germany, the
Institute for Fluid Mechanics and Computer Applications in Civil Engineer-
ing, University of Hannover, the Institute for Computer Applications in Civil
Engineering, Technical University of Braunschweig, and the Department of
Hydromechanics and Modeling of Hydrosystems, Institute of Hydraulic Engi-
neering, University of Stuttgart. This book is based on the similarly entitled
habilitation which I made at the Faculty of Civil and Environmental Engi-
neering at the Universtiy of Stuttgart. As things change with time, I switched
to the Department of Water Resources Management and Hydroinformatics,
Institute of Civil Engineering, Technical University of Berlin.

I would like to thank most specially my former ’boss’ and friend, Prof. Rainer
Helmig, for numerous fruitful discussions, permanent support and great free-
dom in carrying out my work.
The discussions with the colleagues of the three aforementioned institutes con-
tributed a great deal to the progress of this work. Their helpfulness, qualifica-
tions and collaboration as well as the longstanding good working atmosphere
will always remain in my mind. I specially want to thank several colleagues
from Braunschweig and Stuttgart for their excellent help and support: An-
dreas Bielinski, Thomas Breiting, Dr. Holger Class, Dr. Ken Kobayashi, Dr.
Lina Neunhäuserer, Steffen Ochs, Ulrich Ölmann, Dr. Maren Paul, Dr. Hus-
sam Sheta and Björn Witte. Many, many thanks to Prudence Lawday for
correcting my English drafts and to Brigitte von der Ohe for designing many
figures, improving the layout etc.
Finally, I very specially thank my partner Christine Barlag and my children
Timon and Schirin Barlag for their understanding and support, and I apolo-
gize my frequent absence from home in the last years.

Berlin, Hannover
September 2004 Reinhard ’Phillip’ Hinkelmann
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PG Petrov-Galerkin
PV M Parallel Virtual Machine
RCB Recursive-Coordinate Bisection
RDBMS relational DBMS
REV representative elementary volume
RGB Recursive-Graph Bisection
RIB Recursive-Inertial Bisection
RSB Recursive-Spectral Bisection
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SPMD Single Program Multiple Data
SQL Structured Query Language
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V G Van Genuchten
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Introduction

Water is essential to life on earth. It is of paramount social and economical
value and its availability and use will considerably influence the development
of our societies. A sustainable management and protection of water in the
environment is one of the key problems of the 21st century, and numeri-
cal simulation models will contribute considerably to its solution. Numerical
models bridge the gap between systems or domains and processes. They can
simulate the processes concerning the flow and transport of water as well as
other fluids and substances in different hydro- and environmental systems,
and make predictions. To face these pressing problems, there is an urgent
need for the development and application of efficient simulation models which
consist of efficient numerical methods associated with efficient information-
processing techniques. This chapter introduces systems and scales, numerical
process simulation as well as model concepts and modeling systems in hydro-
and environmental sciences and engineering, and it describes the objectives
of this work.

1.1 Systems and scales

Hydro- and environmental systems cover the major part of the whole hydrolog-
ical cycle. Different kinds of systems occur, and a large bandwidth of space and
time scales must be considered. The systems can be divided into subsurface
and surface-water systems and the atmosphere (see fig. 1.1). Depending on the
geological structures, pore aquifers, fractured aquifers and karstic aquifers are
distinguished in the subsurface; this is discussed further in section 2.1.2. More-
over, the subsurface is subdivided into the saturated and unsaturated zones.
In the saturated zone, the pore space of the aquifers is mainly filled with wa-
ter, while it is mainly filled with soil gas in the unsaturated zone. Depending
on the dominant processes, surface-water systems can be subdivided into the
groups rivers / estuaries etc., coastal waters / seas etc. and lakes / reservoirs
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etc.; this is explained further in section 2.1.3. One can also distinguish be-
tween standing waters, such as lakes / reservoirs, and flowing waters, such as
the others mentioned. Alternatively, surface-water systems can be subdivided
into marine and coastal waters on the one hand and inland waters, which in-
clude the rivers / estuaries and lakes / reservoirs, on the other hand. Finally,
hydro- and environmental systems are in more or less strong interaction with
one another. Subsurface and surface waters are coupled by surface-water infil-
trations, also called leakage, or groundwater springs (see sec. 5.3). Subsurface
and surface waters interact with the atmosphere via rainfall, runoff and evap-
oration. The interaction processes are very important for integrated modeling.

The systems surface water and subsurface are multiscale systems. In surface-
water systems, the space scales range from one hundred kilometers and more
via meters to micrometers, while the time scales range from more than days
via minutes to milliseconds, depending on whether currents, waves or tur-
bulences are of major interest (see fig. 1.2, sec. 2.1.3). If, for example, the
morphodynamics of a coastal zone are being investigated, all space scales and
even larger time scales must be taken into account.

In principle, the situation is similar for subsurface systems. Space scales range
from more than kilometers to micrometers, i.e. from the catchment area of a
groundwater reservoir via the hydrogeological aquifer structure and local het-
erogeneities to the pore scale and the molecular scale (see fig. 1.3, sec. 2.1.2).
If, for example, a contamination infiltrates into the ground, its spreading may
be relevant on a regional scale, while the biodegradation processes of the con-
tamination take place on the microscale.

Finally, different time scales in the area of interaction between surface water
and groundwater are pointed out in figure 1.4 (see sec. 5.3). A typical flow
velocity is in the range of 1m/s in a river, 1m/d in groundwater and 1m/h
in a surface-water infiltration zone. As already mentioned before, interaction
processes must be taken into account for integrated investigations. First, nu-
merical process simulation is considered.
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Fig. 1.2. Scales in surface-water systems, bottom after JIRKA (1999 [134])
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Fig. 1.4. Time scales in the interaction area of surface-water and subsurface systems

1.2 Numerical process simulation

The processes which are considered in hydro- and environmental systems (see
figs. 1.1 - 1.4) deal with the flow of liquids and gases, taking the transport
of further substances and heat as well as the reaction of substances into ac-
count. Of all these, water is the most important. Other liquids treated are
hydrophobic contaminants such as mineral fuels or solvents. They are called
Non-Aqueous Phase Liquids (NAPLs) because they are not or only slightly
soluble in water. Of the gases, air plays an important role. It is the dominant
fluid in the soil or the unsaturated zone as well as in the atmosphere. Further
gases dealt with are, for example, the greenhouse gases methane and carbon
dioxide. Gases occur as a separated phase or dissolved in the liquids, espe-
cially in water. Among the substances transported are, for example, sediments
suspended in water or as bed load, nutrients such as nitrogen or phosphorus
as well as radioactive substances such as radon. Moreover, (micro)biological,
chemical and decay reaction processes, for example biodegradation or ad-
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sorption, are treated as well as mass-transfer processes between phases, for
example evaporation or dissolution.

Nowadays, numerical simulation methods or models are one very important
tool in a spectrum of approaches for predicting the consequences of changing
situations and conditions, including parameter studies and sensitivity analy-
ses, and for understanding new processes; other tools are, for example, labo-
ratory and field experiments. Models describe flow processes alone or together
with transport and reaction processes. They must always be considered criti-
cally in the range of their limitations which are discussed in the context of the
model concepts (see sec. 1.3.1). A prerequisite for a prediction is the previous
calibration and validation of the model (see sec. 1.3). In principle, it is pos-
sible to predict the consequences of an interference in a system, for example
the changes of the flow and water-level distributions caused by the deepening
of a waterway or the reduction of sediment erosion if groynes are constructed
along river beds. The effects of expected climate changes, such as the rise of
the mean sea level, storm-surge intensity and its frequency, on flood-protection
measures can be estimated. The spreading of a real or possible contamination
in the groundwater can be predicted as well as their effects, for example, for
waterworks. Moreover, numerical simulations enable or simplify the under-
standing of processes. For example, it is possible to consider single processes
in a strongly coupled multiphase subsurface system and to investigate their
effects on remediation measures. Furthermore, numerical models can be used
to determine parameters or state variables which cannot be measured directly.
For example, the pore velocity can be deduced from the measured pressure
data using a model.

Principally, a lot of processes can be simulated numerically today. However,
the reliability, the probability and the bandwidth of the results gained from
the model must be evaluated critically in the context of the assumptions and
abstractions made, the quality of the model’s calibration and validation as
well as the quality of the data used. When doing this, one should take into
account that the understanding of the processes, the spatial and temporal
resolution as well as available data are often limited; this is discussed in more
detail in the course of this chapter (see KOBUS, DE HAAR (1995 [149]),
HELMIG (1997 [98]), ZIELKE et al. (1999 [267])). In the next step, the treat-
ment of the processes in the different model concepts is explained, modeling
systems are introduced and the need for laboratory and field experiments is
emphasized.
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1.3 Model concepts and modeling systems

1.3.1 Model concepts

In the course of treating the different model concepts or models which are
explained in the following, a number of assumptions, abstractions and lin-
earizations are made and finally the numerical simulations are compared with
the measurements from nature or laboratory (see fig. 1.5). In the first step,
the conceptual model reduces the physical, chemical and biological processes
that occur to those which are of interest and importance for the problems and
questions to be investigated. If, for example, groynes are to be designed to
reduce the amount of sediment erosion in a river, the conceptual model con-
sists of (vertically-integrated) flow and sediment transport with high-quality
turbulence, for example the k − ε model. For such a problem, turbulence has
an important influence and must therefore be taken into account accurately
(see sec. 2.6, ZIELKE et al. (1999 [267])). If, for example, the infiltration of a
NAPL into the unsaturated zone is considered, the conceptual model of the
infiltration zone must take the three mobile phases NAPL, air and water into
account. If the NAPL is highly volatile and is to be removed with thermally
enhanced soil-vapor extraction, the NAPL also occurs to a larger extent as
a component in the gas phase and consequently, the conceptual model must
provide three phases with three components each under non-isothermal con-
ditions (see sec. 2.5, HELMIG (1997 [98])). If the NAPL pools on the water
table, dissolves slowly in the water phase and the large-scale consequences of
the NAPL infiltration are of interest, the conceptual model can be reduced to
groundwater flow and transport (see sec. 2.3).

The mathematical model transfers the conceptual model to a mathematical
formulation in a deterministic or stochastic way. Generally, the deterministic
mathematical model is based on a continuum-mechanical consideration (see
sec. 2.1.1), and it formulates the balance equations for mass, momentum and
energy (see sec. 2.2) as well as equations of state. Additionally, it accounts for
the initial and boundary conditions. A stochastic mathematical model takes
the statistical behavior of model parameters or state variables into account. It
is not treated further in this context, see DAGAN (1989 [68]). Mathematical
models can only be solved analytically for a limited number of simple cases,
for example simple domains and boundary conditions. More flexibility is given
by numerical models because they enable the treatment of general geometries,
parameter distributions as well as initial and boundary conditions. The nu-
merical model is transfered to a computer program and simulates the specified
processes.

The term verification means proving that the numerical result is correct. It
is done by comparisons with analytical solutions which are only available for
simple systems and single processes, by plausibility tests, for example, check-
ing the global mass conservation, and by ensuring that programming errors
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have been removed. During the calibration, the numerical results are com-
pared with experimental or field data. Calibration parameters are varied in
physically reasonable ranges to obtain a best approximation with the data.
Such parameters are, for example, the friction coefficient in a free-surface flow
simulation (see sec. 2.6) or the hydraulic conductivity in a groundwater-flow
simulation (see sec. 2.3). The calibration is often performed ‘by hand’ on the
basis of the engineer’s experience; however, automatic procedures also exist.
The calibration offers a first indication of the model’s quality. The validation
is a further proof of the calibration under similar conditions with, however,
an independent data set, i.e. the data set was not used for the verification or
the calibration. ‘Similar conditions’ means that a free-surface flow model is
calibrated for mean-water conditions in a river and validated for high water or
another river. The degree of a model’s validation and its reliability are again
determined by experimental or field data. Experiments usually concentrate on
a single phenomenon under controlled conditions and have to confirm the val-
idation of the model corresponding to this phenomenon. Field data reflect the
natural variability of the geometry and all the coupled processes. Therefore,
a validation of the model by field data is desirable. However, there is often a
lack of reliable field-data sets. As every new data set will give new insights
into the model as well as its parameters, a model is never finally validated. It
is recommended to determine the probability and the bandwidth of predicted
results depending on uncertainties in the processes, the model and the data,
for example, with sensitivity analyses or stochastic methods. The numerical
models are the major part of the processing units in modeling systems which
are introduced in the following.
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1.3.2 Modeling systems

Generally, a modeling system is divided into a preprocessing, processing and
postprocessing unit (see fig. 1.6). In the following, a number of requirements
for state-of-the-art modeling systems which result from current developments
in numerical modeling and information processing are listed. Many existing
modeling systems fulfill only some of these requirements.

During the preprocessing, the model is set up with all necessary data (see sec.
4.1). It should be possible to determine the geometry of the system, i.e. the
computational domain and the boundaries, with the help of CAD, GIS, remote
sensing, digital water-level measurements etc. Databases should be available
to store the spatially varying physical parameters, for example the properties
of the fluids (density, viscosity) or the porous medium (porosity, hydraulic
conductivity). It should be possible to take uncertainties in the parameters,
for example small-scale heterogeneities of a porous medium, into account by
geostatistical methods. Finally, powerful mesh generators should be available.
Then, all the data are passed onto the processing unit where the numerical
simulation and, possibly, an optimization are carried out. Beside different dis-
cretization methods, the numerical simulator should offer the opportunity to
use efficient solution methods, such as parallel, adaptive Multigrid Methods
(see chap. 3, sec. 4.2). Optimization can be included by loops over the numer-
ical simulator. Here, simulation results or a system answer can be optimized
by an automatic variation of, for example, boundary conditions or other con-
trol parameters. Visualization tools and statistical evalutation tools for the
numerical results should be available during the postprocessing. Furthermore,
the software quality of a modeling system should be ensured, for example by
a documentation of the functions as well as the limitations, verification and
validation examples and by a user- and maintenance-friendly application en-
vironment (see FORKEL (2001 [82])).

Numerical simulation can be seen as being supported by two sets of three pil-
lars, one set representing data, methods and models and the other representing
physics, mathematics and computer sciences (see fig. 1.7). The sets strongly
interact with one another.
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1.3.3 Need for laboratory and field experiments

Generally, single processes are considered under controlled conditions in labo-
ratory experiments ranging from the column to the technical scale, while field
experiments represent coupled processes in nature under much less controlled
conditions ranging from the technical to the field scale. Both laboratory and
field experiments are essential for the (further) improvement of the process
understanding as well as for the (further) development and application of
numerical models for all hydro- and environmental systems (see secs. 5.1 -
5.4), especially for multiphase systems in the subsurface. Together, numerical
models and experiments form the basis, for example, for the development and
application of subsurface-remediation technologies. Such experiments are, for
example, carried out up to the technical scale in the VEGAS facility (see
KOBUS et al. (1996 [148])) at the Institute of Hydraulic Engineering, Uni-
versity of Stuttgart, Germany. Figure 1.8, left, shows the large VEGAS tank
viewed from above, which can be filled with different subsurface materials,
and measurement devices.

In hydro- and environmental sciences and engineering, numerical models are
continuously gaining importance and, more and more, they supplement and
replace hydraulic models. In a hydraulic model, the area under investigation
is reproduced on a reduced scale in a laboratory. This is very time-consuming
and costly. In particular, several variants can be carried out comparatively eas-
ily with a numerical model, while a hydraulic model must be reconstructed.
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Fig. 1.8. Laboratory experiments: subsurface remediation, left, after KOBUS et
al. (1996 [148]); erosion-stability experiment, right, after WESTRICH et al. (2002
[260])

However, hydraulic models are necessary even today for processes and prob-
lems which cannot be simulated well numerically. This is the case, for ex-
ample, if the erosion stability and slope-protection of an overflowing dike
are investigated (see fig. 1.8, right, WESTRICH et al. (2002 [260])). The
flow processes which occur can be characterized as follows: three-dimensional,
non-hydrostatic, highly turbulent, sub- and supercritical, complex domain,
non-flooding areas; all together, this is beyond the capabilities of current nu-
merical process simulation based on the solution of the physical conservation
laws of mass and momentum as shown in this work. However, as large ex-
perimental data sets exist, data driven modeling techniques such as artificial
neural networks may be very suitable (see MASE et al. (1995 [174]), GENT,
BOOGAARD (1998 [91])).
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1.4 Deficits and objectives of the work

Deficits of the numerical simulation in hydro- and environmental sciences and
engineering are presented. They are the basis for the motivation of this work.

1.4.1 Deficits

process understanding
The extent to which processes are understood is different for different problem
classes and systems. While, for example, flow processes in a river are relatively
well understood, there are a number of gaps regarding multiphase / multicom-
ponent flow and transport in the subsurface. Sometimes, the complexity of a
process is known, but its simplification and transformation into a numerical
model is hardly possible or practicable, for example capillary-pressure hystere-
sis. Consequently, the corresponding numerical models have only been tested
within a limited range. While, for example, river-flow models are applied up
to the field scale, subsurface multiphase / multicomponent flow and transport
models are generally only used up to the technical scale.

scales, couplings
The model concepts are generally only valid and practicable in a specified sys-
tem on one or a limited number of space and time scales. Even in this range,
there are often strong computational limitations with respect to the spatial
and temporal resolution of the problem caused by complex and strongly cou-
pled processes. For many of today’s problems, the effects of small-scale pro-
cesses must be taken into account on the large scale. With the exception of
groundwater flow and transport processes, there are only very few upscaling
methods which couple processes over several scales. Furthermore, the coupling
of different systems must be improved by better consideration of the interac-
tion processes to achieve integrated modeling.

data, uncertainties
For many model developments and applications, data are lacking. As a model
prediction can only be as good as its data set, the probabilities as well as
the bandwidths of the results should be estimated, taking uncertainties of the
model as well as of the data into account, for example with stochastic methods.

information processing
From the point of view of information processing, the standardization of in-
terfaces between different tools and models must be improved. Modeling sys-
tems must be extended to decision-support systems, taking economic, social
and political aspects into account. In the context of the implementation of
the European Union’s Water Framework Directive, there is an urgent need
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for setting up information systems which form the umbrella for storing, man-
aging and analyzing large data sets, applying modeling and decision-support
systems and providing all further problem-related information to the actors
as well as the public.

Overall, there are enough deficits to motivate the objectives of the work.

1.4.2 Objectives of the work

The objectives of the work are manifold. First, the state of the art of efficient
numerical methods is described, an overview of information processing tech-
niques is given and their applications in a wide range of water-related and
environmental problems and systems are demonstrated. Moreover, the work
contains several innovations to which the author has contributed significantly.
These innovations deal with further developments of numerical methods, sev-
eral extensions to the modeling system MUFTE-UG, new application fields
for existing simulation methods as well as improvements in process under-
standing.

The work is divided into 6 chapters.

- Chapter 1 presents an introduction to numerical modeling of hydro- and
environmental systems.

- Chapter 2 deals with physical model concepts for the systems subsurface
and surface water as well as with mathematical model concepts based on
the general form of the balance equation. The basic equations for ground-
water flow and transport processes, two-phase flow and two-phase / mul-
ticomponent flow and transport processes in subsurface systems as well as
flow and transport processes in surface-water systems are explained briefly.

- In chapter 3, efficient numerical methods are discussed in detail. Discretiza-
tion and stabilization methods based on the Finite-Difference, Finite-
Element and Finite-Volume Methods are described and applied to the basic
equations of chapter 2. To treat large-scale problems, sophisticated solu-
tion methods, such as parallel and adaptive methods and fast solvers, are
required as well as their interaction. The development of High-Performance
Computing, parallelization strategies, the parallelization of basic tasks as
well as load-balancing methods are presented. Various methods of adapta-
tion, error estimators and indicators as well as refinement and coarsening
strategies are explained. Different single-grid solvers, such as Conjugate
Gradient Methods, and Multigrid solvers as well as preconditioners and
non-linear solvers are introduced.

- A number of different efficient information-processing techniques associ-
ated with the efficient numerical methods are described briefly in chapter
4. Among the preprocessing tools, CAD, database-management systems,
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GIS, tomography and scanning, mesh generators and geostatistical meth-
ods are dealt with. The processing part concentrates on High-Performance
Computers and the extension of the modeling system MUFTE-UG. Fi-
nally, aspects of postprocessing, i.e. visualization, and WWW-based Col-
laborative Engineering are discussed.

- Chapter 5 demonstrates the interaction of the efficient numerical meth-
ods from chapter 3 with the efficient information-processing techniques
from chapter 4. A wide range of applications in hydro- and environmen-
tal sciences and engineering is considered. A new, so-called equidimen-
sional modeling approach for groundwater flow and transport processes in
fracture-matrix systems is presented. The modeling system MUFTE-UG
is used and extended to the simulation of methane-migration processes in
coal mining areas, gas-water flow processes in dike systems and a multi-
step outflow experiment as well as to two-phase / three-component flow
and transport in a coastal aquifer in the interaction area to the sea. Finally,
free-surface flow and transport processes in two estuaries are investigated.

- In chapter 6, the contents is summarized and an outlook on future work
is presented.
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Physical and mathematical model concepts

This chapter starts with an introduction to physical model concepts to take
different types of complex geological structures into account. For the descrip-
tion of flow and transport processes in such structures, all balance equations
which are required in (environmental) fluid mechanics can be formulated in
a generalized way, the general form of the balance equation. This equation
is then applied to the mathematical modeling of different flow and transport
processes in hydro- and environmental systems, i.e. groundwater flow and
transport processes, two-phase flow and two-phase / multicomponent flow
and transport processes in subsurface systems as well as flow and transport
processes in surface-water systems.

2.1 Physical model concepts

2.1.1 Continuum-mechanical consideration

Usually, the model concepts for the hydrosystems subsurface and surface water
are based on a continuum-mechanical consideration. Therefore, the processes
occurring on the microscale must be averaged in space and / or time in order
to serve as physical quantities, i.e. effective parameters and processes, on the
mesoscale (see fig. 2.1).

It should be mentioned that microscale model concepts have been developed
in recent years, e.g. in the context of upscaling in porous media (see sec. 4.1.4)
or turbulence modeling (Direct Numerical Simulation, DNS, see sec. 2.6.1).
Up to now, the application range of these model concepts has been rather
limited. However, some of these microscale model concepts may open new
horizons in the future.
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2.1.2 Subsurface systems

In the subsurface, the processes occurring on the microscale between single
pores (see length scale d in fig. 2.2) are upscaled and averaged over certain
volumes which are called representative elementary volumes or REVs. The
length scale of a REV l (see fig. 2.2) is chosen so that it leads to a represen-
tative average of the property under consideration , e.g. the porosity φ (see
fig. 2.2 and sec. 2.3.1). On the one hand, the REV must be big enough to
avoid inadmissible fluctuations of the property. On the other hand, it must be
small enough for spatial variations of the property under consideration to be
detected (see length scale L in fig. 2.2). The REV idea is the most common
model concept for porous media, subsurface systems respectively. Detailed in-
formation is given in BEAR (1972 [25]), EHLERS (1996 [74]) or HELMIG
(1997 [98]).

Depending on the geological structures pore-water, karstic and fractured
aquifers are distinguished in the subsurface (see fig. 1.1, KOLDITZ (1997
[152])). Generally, two main model concepts with different model approaches
exist for such multiscale problems. First, these model concepts are explained
for fractured systems:
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Fig. 2.2. Definition of the REV, after BEAR (1972 [25]) and HELMIG (1997 [98])

• equivalent model concept:
single-continuum approach, double-continuum approach, multi-continua
approach

• discrete model concept:
single-fracture approach, fracture-network approach, combined approach

Equivalent model concepts are based on the REV idea and the assumption
that the inhomogeneous domain can be homogenized bit by bit by shifting the
observation scale. Single-continuum, double-continuum and multi-continua
approaches are distinguished (see fig. 2.3). The choice of the model concept
depends on the spatial scale of the problem and possibly on the data available.
Single-continuum approaches are suitable if the length scales of the occurring
fractures do not differ very much. A double-continuum approach is applied if
the difference in length scales of the fissures and coarse fractures is significant.
Then, the physical behavior is so different that this system must be described
by two interacting continua consisting of coarse fractures with high permeabil-
ities and low storage capacities and fissures with high storage capacities and
low permeabilities (see LANG (1995 [163])). Additionally, a double-continuum
approach should be chosen if ‘exact’ information of the coarse fractures is not
available. Multi-continua approaches are used, if, for example, the influence
of the rock matrix cannot be neglected and if this matrix cannot be reason-
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ably homogenized together with the fissures (see NARASIMHAN, PRUESS
(1987 [185]), BIRKHÖLZER (1994 [31])). The different continua are coupled
by sink and source terms. Generally, double-continuum and multi-continua
approaches are suitable for medium or regional scale simulations.

If the flow and transport processes in the computational domain are dom-
inated by fractures, they must be taken into account explicitly by discrete
model concepts which are subdivided into single-fracture, fracture network
and combined approaches (see fig. 2.3). In single-fracture and fracture-network
models, the rock matrix is considered impermeable. However, experimental
(see HIMMELSBACH (1993 [107]), MALOSZEWSKI, ZUBER (1993 [171]))
and numerical investigations (see PFINGSTEN (1990 [207]), KRÖHN (1991
[159])) have shown that the rock-matrix and the fracture-matrix interaction
cannot be neglected for transport simulations. Fracture-network models con-
sist of one or several possibly crossing-fracture groups without the rock matrix.
Often, the fracture network approach is applied to determine equivalent con-
tinuum parameters which are integrated into models on larger scales. When
the combined approach is applied, fractures or fracture networks as well as
the rock matrix are taken into account. The matrix can be an equivalent
continuum of a fracture system on a smaller scale. Up to now, the fractures
and the matrix have generally been modeled by elements of different dimen-
sions (see HELMIG (1993 [97]), BARLAG (1997 [13]), SONNENBERG et al.
(1997 [241])). The coupling of fracture and matrix is carried out by adding up
parts of the local system matrices in the Finite-Element Method or adding up
fluxes in the Finite-Volume Method. However, at the fracture-matrix inter-
face, the physical process is smoothed and the local flux conservation may be
not fulfilled. This circumstance has a major influence on the transport simula-
tion, as the flow field is its most important input parameter. New approaches
are based on equidimensional considerations of fracture and matrix and re-
quire special discretization methods and solvers (see ROSEN (2000 [224]),
NEUNHÄUSERER et al. (2001 [188]), OCHS et al. (2002 [193])), which are
addressed in section 5.1.

In the hybrid model concept, a discrete fracture-network is coupled with a
single-continuum, double-continuum or multi-continua approach (see fig. 2.3,
BIRKHÖLZER (1994 [31])). The equivalent continua are not located between
the fractures but are coupled with the fracture network by sink and source
terms. This model concept can be applied if the occurring processes, the ob-
served scales as well as the available data do not clearly indicate a discrete or
an equivalent model concept.

Generally, a single-continuum approach is applied for pore-water aquifers, as
the geological structures and the simulated processes can be homogenized bit
by bit in a very reasonable way. Karstic aquifers are characterized by a double-
porous structure which consists of coarse fractures like channels or tubes with
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Fig. 2.3. Model concepts for subsurface systems, after NEUNHÄUSERER et al.
(2000 [190])

high permeabilities and small fractures or fissures with high storage capaci-
ties. Due to this system behavior, one of two different model concepts can be
chosen, the combined or the double-continuum approach (see LANG (1995
[163])). The first approach is recommended if the location, dimensions and
physical properties of the coarse fractures can be estimated with reasonable
accuracy. Otherwise, the double-continuum approach should be preferred.
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In this work, fractured-porous aquifers are dealt with in sections 2.3, 2.4, 5.1,
5.2 using the combined approach, and pore-water aquifers are treated in sec-
tions 2.3 - 2.5, 5.2, 5.3 using the single-continuum approach.

2.1.3 Surface-water systems

In surface waters, different model concepts are chosen depending on the dom-
inant processes (see sec. 1.1). First, one can distinguish between model con-
cepts for near-field and far-field problems. The near-field is understood as the
close surroundings of buildings, e.g. a pillar in a river, or of inlets, e.g. a pipe
for waste water in a lake. The dominant processes are characterized by great
local details, a three-dimensional flow field, a strong influence of turbulence
and, often, erosion, for example around a pillar in a river or in a groyne field
on the coastline. For such problems, the model concepts must be based on in-
tegral methods, zonal methods or field methods. The last-mentioned solve the
three-dimensional continuity equation, the Navier-Stokes equations (see sec.
2.6) with a sophisticated turbulence model (see sec. 2.6.1) and, possibly, the
transport equations for contaminants, sediments or heat. This is not discussed
here (see JIRKA et al. (1999 [134])).

In far-field problems, the dominant processes occur on much larger spatial
scales. Here, model concepts for long and short waves are distinguished.
They are called flow models in the case of long waves (see fig. 2.4) and wave
models in the case of short waves (see fig. 2.5). A wave with a wave length
L 20 times greater than the water depth h is called a long wave, otherwise
it is called a short wave. If long waves are dealt with, the pressure is gen-
erally assumed to be hydrostatic and the horizontal flow velocities are much
greater than the vertical ones. Therefore, the vertical momentum equation
can be considerably simplified. Further, shallow and deep waters are distin-
guished, causing different simplifications in the corresponding model concepts.

Water systems which are dominated by long waves are, for example, inland
waters such as rivers and estuaries (see fig. 1.1, sec. 5.4). A typical long wave
in an estuary is a tidal wave which has a wave length L in the order of thou-
sand(s) of kilometers and a period T of about 12 hours (see figs. 2.4, 1.2). A
typical long wave in a river is a flood wave with a length scale in the order of
hundred(s) of kilometers and a time scale in the order of a few days (see fig.
1.2). As the horizontal dimensions are generally much larger than the vertical
one, these systems are classified as shallow. Here, long waves in shallow wa-
ters, i.e. flow models, are dealt with in section 2.6 and applied to rivers and
estuaries in section 5.4.

Short waves play an important role in coastal waters. They are generated by
wind, and when moving from the sea towards the coast, they are transformed
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Fig. 2.4. Typical wave length and period in a flow model

because of the decreasing water level; this can lead to breaking waves (see fig.
1.1). The pressure distribution is not hydrostatic and the vertical flow veloc-
ities are in the same order of magnitude as the horizontal ones. Wave lengths
are in the order of tens or hundreds of meters, and periods in the orders of
seconds and minutes (see figs. 2.5, 1.2). Again, the horizontal dimensions are
much larger than the vertical ones and, therefore, such systems are shallow.
Depending on the problems, a superposition of long and short waves must
be considered in coastal waters and marine waters. The waters mentioned
last are classified as deep. Further information about wave models is found in
ZIELKE, MAYERLE (1999 [268]).

t
x

L ~ 10 ... 100 m
T ~ 10 ... 100 s

h

z

Fig. 2.5. Typical wave length and period in a wave model

The surface waters treated up to now belong to the category of flowing wa-
ters, while lakes and reservoirs are standing inland waters (see fig. 1.1). In this
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context, standing means that the flow velocities are very small and in equal
orders of magnitude in the horizontal and vertical directions. For flowing wa-
ters, a typical flow velocity is 1m/s, while it is 1mm/s for a standing water.
Depending on the problems, long, short or internal waves or density-induced
flows are important. When the water depth is great compared to the hori-
zontal dimensions, a standing water can be considered deep. Although the
pressure distribution is nearly hydrostatic, the simplifications which are de-
duced from this assumption for long waves must be examined critically before
being used for standing waters. Further information about lake and reservoir
modeling is given in BERGEN, FORKEL (1999 [28]).



2.2 General form of the balance equation 27

2.2 General form of the balance equation

The balance equations for mass, momentum and energy which are required in
(environmental) fluid mechanics can be formulated in a generalized manner by
the so-called general form of the balance equation. A fixed Eulerian control
volume Ω is considered and an extensive state variable E(t) which is the
volume integral of a scalar or vector entity e[x(x, y, z), t]. x denotes a spatial
vector with the components x, y, z and t stands for the time:

E(t) =

∫
Ω

e(x, t)dV (2.1)

The general form of the balance equation states that the volume integral of
the temporal change of the entity e plus the fluxes F multiplied by the normal
vector n and integrated over the surface Γ = ∂Ω minus the volume integral
of sink or source terms r(x, t) equals zero (see fig. 2.6). The fluxes consist of
an advective part v(x, t)e(x, t) and a diffusive part w(x, t).

r

Γsurface / boundary

div F

DΓ

ΓN

ΓC

Ω

.

F
n

.

nF

t

e

Fig. 2.6. Control volume Ω, after HELMIG (1997 [98])



28 2 Physical and mathematical model concepts

In integral form, this leads to:∫
Ω

∂e

∂t
dV +

∫
Γ

(ve + w)ndO −
∫
Ω

rdV = 0 (2.2)

Applying the Green-Gauss Integral Theorem, the surface integral is transfered
into a volume integral:∫

Ω

[
∂e

∂t
+ div (ve + w) − r]dV = 0 (2.3)

As this equation can be applied to arbitrary control volumes, the integral form
can be replaced by a differential form assuming a continuous integrand:

∂e

∂t
+ div (ve + w) − r = 0 (2.4)

The continuity of functions ∂e/∂t, div (ve + w) and r can be violated in
so-called discontinuity areas, when jumps occur in the material properties,
e.g. hydraulic conductivity, or in the state variables, e.g. sharp concentration
fronts. In such cases, the control volume must be subdivided into subcontrol
volumes, where the continuity condition is fulfilled, and certain jump condi-
tions must be taken into account at the discontinuity.

For a unique solution of the initial boundary-value problem, initial conditions
must be specified in the entire domain Ω as well as boundary conditions along
the whole boundary Γ . The initial conditions describe the connection of the
solution with the previous time and the initial state of the solution. They are
given in a form:

e(x, y, z, t = 0) = e0(x, y, z) (2.5)

The boundary conditions, which may have different forms, represent the in-
teraction with the surrounding domain. If a Dirichlet-boundary condition eD

is chosen, the solution function is prescribed along this boundary ΓD. At
boundaries ΓN with Neumann-boundary conditions eN , the derivative of the
solution function in the direction of the exterior normal vector must be given.
A Cauchy-boundary condition eC is a linear combination of a Dirichlet- and
Neumann-boundary condition. For further reading, see GÄRTNER (1987 [87])
or HELMIG (1997 [98]):

e(x, y, z, t) = eD(x, y, z, t) on ΓD

∂e(x, y, z, t)

∂n
= eN (x, y, z, t) on ΓN (2.6)

∂e(x, y, z, t)

∂n
+ αe(x, y, z, t) = eC(x, y, z, t) on ΓC
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2.3 Mathematical model concept for groundwater flow
and transport processes

This section deals with flow processes of the (single) fluid phase water and
transport processes of a single or several components in porous media (see
figs. 2.7, 1.1, 1.3).

from microscale

to REV scale

flow transport

fluid

solid

− fluid, e.g. water
− solid, e.g. soil
phases:

− e.g. water, dissolved salt, 
components:

contaminant, ...

s
a

w
a
t
e
r t

l

Fig. 2.7. Model concept, definition for phases and components

2.3.1 Flow processes

Continuity equation

If the general form of the balance equation (eq. 2.4) is applied to the mass
balance, this means e = φρw, v = va, w = 0 and r = qw. As the mean flux
is much larger than its deviations, the diffusion/dispersion term is neglected.
Generally, φ denotes the porosity of the porous medium which is the ratio of
the void space to the whole volume. Here, φ stands for the effective porosity
which only takes mobile water into account. When compared to the porosity,
the effective porosity is always smaller, as it does not take water in dead-
end pores or bounded water at the grain surfaces into account. For small-
scale considerations, there are some empirical relationships for the effective
porosity; for larger scales, this parameter is unknown a priori and must be
estimated (see KINZELBACH (1992 [156])). ρw denotes the density of water
and qw a sink or source term of water. The pore velocity va in the void space
is related to the Darcy or filter velocity by:

va =
vf

φ
(2.7)
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Thus, the mass-balance equation is:

∂(φρw)

∂t
+ div (ρwvf ) = qw (2.8)

The density and porosity depend slightly on the pressure p. Therefore, the
first term in equation 2.8 is generally replaced by:

∂(φρw)

∂t
=

∂(φρw)

∂p

∂p

∂t
=

ρwS0

ρw0g

∂p

∂t
(2.9)

S0 stands for the specific storage coefficient (see LEGE et al. (1996 [164])),
ρw0 for a reference water density and g for gravity. Thus, equation 2.8 reads:

ρwS0

ρw0g

∂p

∂t
+ div (ρwvf ) = qw (2.10)

If storage effects can be neglected, the last equations results in:

div (ρwvf ) = qw (2.11)

If the density is a function of a tracer (see sec. 2.3.2) as salinity or temperature,
an equation of state must be given. As an example, OLDENBURG, PRUESS
(1995 [199]) determine the density of saline water ρw by the salinity S, the
freshwater density ρf and the density of a concentrated brine ρb:

1

ρw
=

1 − S

ρf
+

S

ρb
(2.12)

In such a case, density-induced flow can occur and flow and transport pro-
cesses (see sec. 2.3.2) are coupled in both directions.

If the density is constant, equation 2.9 is transformed as follows:

S0

gρw

∂p

∂t
+ div vf =

qw

ρw
(2.13)

Now, the piezometric head h is introduced together with the reference geodetic
head z which corresponds to the vertical spatial coordinate:

h =
p

ρwg
+ z (2.14)

Inserting equation 2.14 into equation 2.13 results in:

S0
∂h

∂t
+ div vf =

qw

ρw
(2.15)

If, in addition, stationary conditions are considered, equation 2.15 is simplified
to:

div vf =
qw

ρw
(2.16)
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Momentum equation

Generally, the momentum equation is replaced by the Darcy law in subsurface
systems:

vf = −K
f

grad h (2.17)

In this equation, K
f

is the tensor for the hydraulic conductivity, which is

symmetric:

K
f

=

⎡
⎣Kf,xx Kf,xy Kf,xz

Kf,yx Kf,yy Kf,yz

Kf,zx Kf,zy Kf,zz

⎤
⎦ (2.18)

The Darcy law has been determined experimentally. With some assumptions,
it can also be derived from the Navier-Stokes equations. The most important
simplification consists of neglecting inertia terms. Therefore, the Darcy law
is only valid for slow laminar flows limited to Reynolds numbers smaller than 1.

In this context, the Reynolds number is defined as the ratio of inertia to viscous
forces. It is given by:

Re =
vfd

νw
(2.19)

In this equation d denotes a characteristic length scale on the microscale, e.g.
a grain diameter, and νw the kinematic viscosity of water. For larger Reynolds
numbers, Forchheimer’s law, which represents a non-linear relationship of vf

and grad h, can be applied (see BEAR (1972 [25])).

For large-scale simulations, the groundwater systems are often inhomogeneous
and anisotropic. This is caused by different layers, geological deposition or by
the shape of the material. A material consisting of long flat grains has a higher
hydraulic conductivity in the longitudinal direction of the grains than in the
perpendicular directions. If the coordinate directions coincide with the main
directions of the hydraulic conductivity, the tensor simplifies to:

K
f

=

⎡
⎣Kf,x 0 0

0 Kf,y 0
0 0 Kf,z

⎤
⎦ (2.20)

If, additionally, the subsurface material is isotropic, this tensor reads as:

K
f

=

⎡
⎣Kf 0 0

0 Kf 0
0 0 Kf

⎤
⎦ (2.21)

The hydraulic conductivity tensor can be determined by experiments in the
laboratory or in the field. If the main flow directions do not coincide with the
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global coordinate directions, the experiments are carried out in the main flow
directions, and then the parameters are transformed into the global coordi-
nate system.

The hydraulic conductivity tensor can be written as follows:

K
f

= K
ρwg

µw
(2.22)

Here, K represents the intrinsic permeability tensor, which is only a charac-
teristic of the porous medium, and µw the dynamic viscosity of water.

For flow through fractures which are discretely taken into account (see sec.
2.1.2), a special law for the permeability can be chosen based on the Navier-
Stokes equations, a constant aperture b and smooth walls (see WOLLRATH
(1990 [264])):

K =
b2

12
(2.23)

Usually, the Darcy law 2.17 is put into the continuity equation 2.16. This leads
to one partial differential equation for the piezometric head:

div (−K
f

grad h) =
qw

ρw
(2.24)

For about two decades, there have been controversial and ongoing discussions
concerning the Darcy law for single and multiphase flow, its validity as well as
extensions of it; this is explained briefly in HELMIG (1997 [98]). Nevertheless,
there is still almost no practicable alternative.

2.3.2 Transport processes

The main mass-transport mechanisms in porous media are advection / con-
vection, diffusion and dispersion. Other processes such as reaction, adsorption
or decay are not considered here, see KINZELBACH (1992 [156]). Advection
or convection describes the movement of a tracer with the flow field in hori-
zontal or vertical direction without changing the shape of the concentration
isoareas (see fig. 2.8). Diffusion processes are a result of Brown’s molecular
movement which leads to a compensation of concentration differences, and
thus causes net transport processes in the direction of lower concentrations.
Diffusion is a purely physical process - in contrast to dispersion. Therefore,
a diffusive spreading of a substance is independent of the direction (see fig.
2.8). Dispersion represents all transport effects which are caused by inhomo-
geneities of the flow field below the REV scale.
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Fig. 2.8. Advection / convection, diffusion and dispersion processes, after BARLAG
(1997 [13])

On the microscale, dispersion is a result of the velocity profile within a pore,
the variable pore sizes as well as the flow processes around the grains (see
fig. 2.9, left). For bigger REVs, fluctuating velocities due to inhomogeneities
of the aquifer lead to macrodispersion (see fig. 2.9, middle and right). It is
obvious that dispersion is scale-dependent. Both diffusion and dispersion are
based on a Fickian law.

The transport equation for a tracer c is obtained from the general form of the
balance equation (eq. 2.4) if e = φρwc, v = va, w = −φD

hyd
grad (ρwc) and

r = qc. Here, D
hyd

denotes the hydrodynamical dispersion tensor and qc a

tracer sink or source term which can take tracer sinks or sources as well as
reaction, adsorption or decay processes into account. The transport equation
is determined as follows:

∂(φρwc)

∂t
+ div [vaφρwc − φD

hyd
grad (ρwc)] = qc (2.25)

The hydrodynamical dispersion tensor D
hyd

consists of the sum of the molec-

ular diffusion tensor D
mol

, which is the product of the molecular diffusion
coefficient Dmol and the unit tensor I, and the mechanical dispersion tensor
D

mech
:

D
hyd

= D
mol

+ D
mech

= DmolI + D
mech

=

⎡
⎣Dxx Dxy Dxz

Dyx Dyy 0
Dzx 0 Dzz

⎤
⎦ (2.26)
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Fig. 2.9. Reasons for the variability of the flow field on different spatial scales, after
KINZELBACH (1992 [156])

The hampering of the spreading by the grains for the molecular diffusion ten-
sor is taken into account here by the multiplication with the effective porosity.
Alternative approaches are given in BEAR, BACHMAT (1990 [26]) and LEGE
et al. (1996 [164]).

The dispersion tensor given in equation 2.26 is anisotropic, even in an isotropic
medium. It has a diagonal shape if one coordinate direction coincides with the
flow direction:

D
mech

=

⎡
⎣DL 0 0

0 DT 0
0 0 DT

⎤
⎦ (2.27)

Generally, the dispersion in flow direction expressed by the longitudinal dis-
persion coefficient DL is about one order of magnitude greater than the disper-
sion in the orthogonal directions expressed by the transversal dispersion coef-
ficient DT . The mechanical dispersion coefficients contain information about
the aquifer and the flow field:

DL = αL |va| , DT = αT |va| (2.28)
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In this equation, αL and αT stand for the longitudinal and transversal disper-
sion lengths. The most common description for the dispersion tensor is given
by Scheidegger:

Dxx = αL
v2

ax|va| + αT
v2

ay

|va| + αT
v2

az|va| + Dmol

Dxy = Dyx = (αL − αT )
vax vay

|va|

Dyy = αT
v2

ax|va| + αL
v2

ay

|va| + αT
v2

az|va| + Dmol

Dxz = Dzx = (αL − αT )vax vaz|va|

Dzz = αT
v2

ax|va| + αT
v2

ay

|va| + αL
v2

az|va| + Dmol

(2.29)

As already mentioned before, dispersion is highly scale-dependent. In the lab-
oratory, 0.0001 < αL < 0.01m was measured for homogeneous sands and
0.07 < αL < 0.7 was found for natural subsurface material, e.g. gravel. On
the field scale, the dispersion lengths are about 4 to 5 orders of magnitude
larger. This is a consequence of the macrodispersion which results from the
inhomogeneities of the aquifer and does not occur in the laboratory. Macrodis-
persion increases with the length of the transport way (see fig. 2.10). This is
caused by the influence of bigger inhomogeneities, but this effect is limited as
soon as the inhomogeneities are represented by the computation of the flow
field. On the field scale, the molecular diffusion is often negligible compared
to mechanical dispersion, i.e. Dmol << DL and Dmol << DT . For practical
applications on scales larger than in the laboratory, the dispersion lengths are
calibration parameters, and thus contain all other unknowns , i.e. missing in-
formation about the geological structures or effects not included in the model
concept. Further information is given in KINZELBACH (1992 [156]).

If the density and porosity are constant, equation 2.25 can be simplified by
applying the product rule and using the continuity equation 2.16:

∂c

∂t
+ vagrad c − div (D

hyd
grad c) =

qc − qwc

ρwφ
(2.30)

If the density is dependent on the tracer concentration, the flow and transport
processes are coupled in both directions. Then equation 2.10 or 2.11 is cou-
pled with 2.25 taking an equation of state, e.g. equation 2.12, and the Darcy
law (eq. 2.17) into account. If the density and the porosity are constant, the
flow field can be determined directly by equation 2.24 and the Darcy law
(eq. 2.17), independently of the tracer simulation. Afterwards, the transport
is determined with equation 2.30, i.e. flow and transport are coupled only
in one direction. It should be mentioned that the (REV) scales for the flow
and transport computations must match as well as the horizontal and vertical
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Fig. 2.10. Scale dependency of the dispersion, after KINZELBACH (1992 [156])

averaging length scales, and that the way which is passed by a tracer plume
must be large compared to the REV length scale.

The flow and transport equation are both linear, the flow equation is of elliptic
or parabolic type and the transport equation is of mixed parabolic / hyper-
bolic type. For further reading, see BEAR (1972 [25]), HÄFNER (1992 [95]),
LEGE et al. (1996 [164]), KOLDITZ (1997 [152]), or SCHOTTING (1998
[232]).
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2.4 Mathematical model concept for two-phase flow
processes in the subsurface

If two fluid phases are not or only slightly miscible into each other, a two-
phase flow model concept for a porous medium must be applied (see figs.
2.11, 1.1, 1.3). Generally, the phases water, gas (e.g. air, methane) and NAPL
(Non-Aqueous Phase Liquid) are treated. A NAPL lighter than water is called
LNAPL, one denser than water is called DNAPL.

from microscale

to REV scale

flow

fluid 1

fluid 2

− fluids, e.g. water, gas, NAPL, ..

− solid, e.g. soil
phases:

solid

Fig. 2.11. Model concept, definition for phases

2.4.1 Continuity equation

In a two-phase system, the continuity equation must be fulfilled for each phase.
For the general form of the balance equation (eq. 2.4), the following relations
are valid: e = φαρα, v = vfα and w = 0, r = qα. Here, α is a subscript for the
phases, the wetting phase w (e.g. water) and the non-wetting phase n (e.g.
NAPL, gas) respectively. As in section 2.3.1, the continuity equation for phase
α is obtained:

∂(φαρα)

∂t
+ div (ραvfα) = qα (2.31)

φα takes the fact into account that the void space is only partially filled with
phase α. The saturation Sα is introduced as the ratio of the pore space filled
with phase Sα to the whole pore space:

Sα =
φα

φ
⇔ φα = Sαφ (2.32)
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If equation 2.32 is inserted into equation 2.31, this leads to:

∂(Sαφρα)

∂t
+ div (ραvfα) = qα (2.33)

2.4.2 Momentum equation

First, equation 2.17 is rearranged with equations 2.22 and 2.14:

vf = −K
ρwg

µw
grad (

p

ρwg
+ z) = − 1

µw
K(grad p − ρwg) (2.34)

The vector of the gravitational acceleration is given as:

g =

⎡
⎣ 0

0
−g

⎤
⎦ (2.35)

A number of experiments have shown that a generalized form of the Darcy
law can describe the so-called Darcy velocity of each phase in a multiphase
system:

vfα = − 1

µα
K

α
(grad pα − ραg) (2.36)

The effective permeability K
α

is defined as the product of the relative per-
meability krα and the intrinsic permeability K (eq. 2.22):

K
α

= krαK (2.37)

The generalized Darcy law can be formulated as follows:

vfα = −krα

µα
K(grad pα − ραg) (2.38)

In the last equation, the term krα

µα
represents the mobility λα.

Although the relative permeability takes the mutual hampering of the two
phases in the pore space into account, the generalized Darcy law does not
account for a momentum exchange between the two phases via the interface.
This seems to be one of the major shortcomings of the generalized Darcy law.
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2.4.3 Constitutive relations

Capillary pressure-saturation relationship

In a two-phase system, there is a fundamental relationship between the wetting
and non-wetting phase saturations Sw, Sn and the capillary pressure pc. In the
following, the two most common models of BROOKS, COREY (1964 [46],
BC) and VAN GENUCHTEN (1980 [92], VG) which formulate the capillary
pressure as a function of the saturation are introduced:

BC : pc(Sw) = pdS
− 1

λ
e for pc ≥ pd (2.39)

V G : pc(Sw) =
1

α
(S

− 1
m

e − 1)
1
n for pc > 0 (2.40)

Se(pc) =
Sw − Swr

1 − Swr
(2.41)

In the BC model, pd stands for the entry pressure, which is the capillary pres-
sure required to displace the wetting phase from the largest pores. The BC
parameter λ characterizes the grain-size distribution. A small value describes
a single grain-size material, while a large value indicates highly non-uniform
material. Se denotes the effective (water) saturation and Swr the residual
water saturation. In the VG model, n, m = 1 − 1/n, α are form parameters
characterizing the pore-space geometry. Generally, the BC and VG parameters
are determined experimentally. However, it is also possible to estimate these
parameters from grain-sum curves (see ARYA, PARIS (1981 [6]), JONASSON
(1989 [138])). The BC parameters can be converted into the VG parameters
and vice versa (see SHETA (1999 [230])). In figure 2.12, the capillary pressure-
saturation relationship is shown for the BC and VG models on equal physical
conditions.

As there is often a lack of experimental data, a scaling factor pc/
√

kφ was
developed by LEVERETT (1941 [167]) to transfer known parameters, for ex-
ample, to another medium with a different permeability or porosity or to
another two-phase system (from water-gas to water-NAPL) with a different
capillary pressure. The assumption is that the scaling factor equals the one in
the other porous medium or in another two-phase system.

In fractures which are discretely taken into account (see sec. 2.1.2), two dif-
ferent possibilities exist for the capillarity. On the one hand, the fracture can
be treated as a porous medium as already described. On the other hand, the
capillarity can be formulated as a function of the fracture-aperture distribu-
tion by a geostatistical model (see PRUESS, TSANG (1990 [211])).
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Fig. 2.12. pc − Sw relationship afer BC and VG, on equal physical conditions

Finally, it must be mentioned that the capillary pressure-saturation relation-
ship shows a hysteresis in transient cases. Whether this phenomenon is signif-
icant or not depends on a number of things which are not discussed here (see
SHETA (1999 [230])).

Relative permeability-saturation relationship

Based on pore-network models, the relative permeability-saturation relation-
ships are determined by integrating over the capillary pressure-saturation re-
lationship. The BROOKS, COREY (1964 [46], BC) model stems from the
pore-network model of BURDINE (1953 [52]) and is as follows:

BC : krw = S
2+3λ

λ
e (2.42)

BC : krn = (1 − Se)
2

(
1 − S

2+λ
λ

e

)
(2.43)

The VAN GENUCHTEN model (1980 [92], VG) is determined by the pore-
network model of MUALEM (1976 [182]) and has the form:

V G : krw = S1/2
e

[
1 −

(
1 − S

1
m
e

)m]2

(2.44)
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V G : krn = (1 − Se)
1/3

[
1 − S

1
m
e

]2m

(2.45)

The parameters are the same as in the context of the capillary pressure-
saturation relationship. In figure 2.13, the relative permeability-saturation
relationship is given for the BC and VG models on equal physical conditions.

Fig. 2.13. kr − Sw relationship afer BC and VG, on equal physical conditions

In discrete fractured systems, linear relative permeability-saturation relation-
ships can be used (see ROMM (1966 [223])) or other relations taking into
account the fracture roughness, fracture aperture and the fracture contact
area (see PRUESS, TSANG (1990 [211])).

Density, viscosity and porosity

Generally, the density of fluids depends on the pressure and temperature or
even other parameters, see equation 2.12. For liquids, pressure dependence is
often neglected and, consequently, liquids are assumed to be incompressible.
Gas density is highly pressure-dependent, while the influence of the tempera-
ture is minor. Gas density is determined by the real gas law:

ρ =
p

ZRT
(2.46)

In this equation, Z stands for the real gas factor, R for the universal gas con-
stant and T for the temperature. If Z = 1, the real gas law simplifies to the
ideal gas law.
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The dynamic viscosity of liquids and gases is primarily determined by the
temperature. It is important to note that the viscosity of gases is about two
orders of magnitude lower than that of fluids, i.e. the mobility λ of gases (see
sec. 2.4.2) is about two orders of magnitude higher.

Functional relationships for the density and viscosity of liquids and gases
are given in the INTERNATIONAL FORMULATION COMMITTEE (1967
[128]) and REID et al. (1987 [216]).

The constitutive relation for the porosity as a function of pressure and tem-
perature is given, for example, in HELMIG (1997 [98]). If effects like swelling
or shrinking are considered, special constitutive relationships must be deter-
mined.

2.4.4 Two-phase flow equations

If the generalized Darcy law 2.38 is inserted into the continuity equation 2.33,
the following system of two-phase flow differential equations is obtained:

∂(Sαφρα)

∂t
− div

[
ρα

krα

µα
K(grad pα − ραg)

]
− qα = 0 (2.47)

This system is completed by two further algebraic conditions. The pore volume
is completely filled with the wetting and non-wetting phases:

Sw + Sn = 1 (2.48)

At the interface between the two phases, a jump in the pressure which is given
by the capillary pressure (see sec. 2.4.3) occurs:

pn − pw = pc (2.49)

Thus, two of the four unknowns pw, pn, Sw and Sn can be eliminated. Due to
the non-linear dependencies of the capillary pressure and the relative perme-
ability, the completed system is highly non-linear. This can even be reinforced
if heterogeneous structures with strongly varying properties are investigated.
Alternative formulations or choices of the primary variables have been de-
veloped, mainly depending on the choice of boundary conditions. They are
briefly explained here; further reading is giving in HELMIG (1997 [98]).

If a pressure formulation is used, the pressures of the wetting and the non-
wetting phases pw and pn are the primary variables and the resulting system is
of mixed parabolic / hyperbolic type. This formulation is based on an inverse
function which describes the saturation depending on the capillary pressure.
The inverse function only exists if the capillary-pressure gradient is greater
than zero ( ∂pc

∂Sw
> 0). With such a function, the saturations can be eliminated.
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However, in many practical examples, for example, in the case of discrete frac-
tures or transitions between heterogeneities, the capillary pressure gradient is
very small or even zero, so that the pressure formulation cannot be chosen.
Consequently, the application range of the pressure formulation is rather lim-
ited.

By introducing the total velocity of the two-phase system vt = vw + vn and
several transformations, the saturation formulation is determined. The system
is reduced to one equation with the primary variables Sw or Sn. One major
problem results of the effect that the total velocity must be known in advance
and another of the hyperbolic character for small capillary pressure gradients.

For many cases, the pressure-saturation formulation is the most suitable, of-
fering the possibilities pw, Sn or pn, Sw or pw, Sw or pn, Sn as the primary
variables. With the relations

grad pn = grad (pc + pw) = grad pc + grad pw

∂Sw

∂t
=

∂(1 − Sn)

∂t
= −∂Sn

∂t
(2.50)

the differential equations of the wetting and non-wetting phase read as follows:

wetting phase:

−∂(Snφρw)

∂t
− div

[
ρw

krw

µw
K(grad pw − ρwg)

]
− qw = 0 (2.51)

non-wetting phase:

∂(Snφρn)

∂t
− div

[
ρn

krn

µn
K(grad pc + grad pw − ρng)

]
− qn = 0 (2.52)

These two equations are strongly coupled, highly non-linear and of mixed
parabolic / hyperbolic type. The major advantage lies in the fact that they are
not limited to small capillary-pressure gradients, i.e. the pressure-saturation
formulation can be applied to discrete fractured systems and heterogeneous
media.

For further reading on two-phase flow in porous media, see PRUESS (1991
[210]), HELMIG (1997 [98]) or WHITE, OOSTROM (2000 [261]).
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2.5 Mathematical model concept for two-phase /
multicomponent flow and transport processes in the
subsurface

If the solubility of components in fluid phases as well as the transition of
components into other phases is considered, a multiphase / multicomponent
flow and transport model concept for a porous medium must be chosen (see
figs. 1.1, 1.3). This is described here, using the example of the two phases
water (subscript w) and gas (subscript g). The water phase consists of the
(main) component water (superscript w), dissolved salt (superscript s) and
dissolved methane (CH4, superscript m). The gas phase contains methane
(superscript m) and water vapor (superscript w). Local thermal and chemical
equilibrium between the phases is assumed. However, mechanical equilibrium
in a porous medium is generally violated between the phase boundaries due
to the pressure jump which is caused by the capillary pressure (eq. 2.49).
Methane dissolved in water degasses if the solubility is exceeded which can
be caused, for example, by methane production or by decreasing pressure.
Evaporation and condensation are of minor importance if exchanges of ther-
mal energy are not considered, as is the case here. Generally, dissolution and
vaporization processes are determined with the Raoult law and the Henry law.
The salt component is restricted to the water phase. The phases, components
and transfer processes are shown in figure 2.14.
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Fig. 2.14. Model concept, definition for phases, components and transfer processes
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2.5.1 Continuity and momentum equation

In a two-phase / three-component model, the continuity equation is applied
to each component by summing over the phases. For the general form of
the balance equation (eq. 2.4) this means: e = φραSαxκ

α, v = vaα/Sα, w =
−φDκ

hydα
grad(ραxκ

α) and r = qκ
α. Here, α is a subscript for the phases and κ is

a superscript for the components. As in sections 2.3.1 and 2.4.1, the continuity
equation for component κ is obtained:

∂(φρα Sα xκ
α)

∂t
+ div

[
ρα vfα xκ

α − φDκ
hydαgrad (ρα xκ

α)
]

= qκ
α , α = w, g

(2.53)
In this equation, xκ

α denotes the mole fraction. The other variables are ex-
plained in sections 2.3 and 2.4.

The generalized Darcy law (eq. 2.38) serves as the momentum equation in the
same way as described in section 2.4.2.

2.5.2 Constitutive relationships

The same capillary pressure-saturation and relative permeability-saturation
relationships as those explained in section 2.4.3 are used here.

Functional relationships for the density and viscosity are explained in section
2.4.3. If, additionally, the density or viscosity is a function of the composition
of the water or gas phase, constitutive relations must be given, see INTERNA-
TIONAL FORMULATION COMMITTEE (1967 [128]) or REID et al. (1987
[216]).

The mole fraction of water vapor in the gas phase is obtained by:

xw
g =

pw
g

pg
(2.54)

Here, pw
g stands for the partial pressure of water vapor in the gas phase,

and pg represents the gas-phase pressure (total pressure). pw
g is equal to the

saturation pressure pw
sat, presuming that water is present as a liquid phase at

the same time. For both components in the gas phase, the validity of the ideal
gas law is assumed:

p =
n R T

V
(2.55)

In this equation, n represents the number of molecules (in mol), R the uni-
versal gas constant, T the temperature, and V the volume of the gas. The
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equation of state for an ideal gas is also valid for a mixture of ideal gases.
Then, the total gas pressure is related to the partial pressures of the compo-
nents by Dalton’s law:

pg = pw
g + pm

g (2.56)

For the computation of the mole fractions in the water phase, Henry’s law is
used for the methane component:

xm
w =

pm
g

Hm
w

(2.57)

Hm
w denotes the Henry coefficient.

2.5.3 Two-phase / three-component flow and transport equations

All together, there are 10 degrees of freedom consisting of 3 unknown mole
fractions per phase, 2 unknown saturations and 2 unknown pressures. On the
other hand, there is the same number of equations:

– 3 continuity equations (eq. 2.53) together with the generalized Darcy law
(eq. 2.38)

- 2 supplementary conditions for the mole fractions (eq. 2.58)
- 1 supplementary condition for the saturation (eq. 2.48)
- 1 supplementary condition for the capillary pressure (eq. 2.49)
- 3 chemical equilibria (Henry’s law (eq. 2.57), saturation-pressure condition

(eq. 2.54), salt only in the water phase)

The mole fractions xκ
α of components κ in phase α obey the constraint:

xw
α + xs

α + xm
α = 1 (2.58)

The additional unknown partial pressures are determined with Dalton’s law
(eq. 2.56).

If the aforementioned equations are put together, the system is reduced to
three primary variables. The choice of the primary variables depends on the
phase state and can vary in space and time as a result of the appearance
or disappearance of phases. Three different phase states which are listed in
table 2.1 are possible. For the numerical implementation, a special variable-
substitution algorithm has been developed by CLASS (2000 [62]).
The equations are highly non-linear due to the non-linear constitutive relation-
ships and of mixed parabolic / hyperbolic type. If heterogeneous structures
with strongly varying properties are investigated, the numerical complexity is
even reinforced.
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phase present primary appearance of phase
state phases variables water gas

1 w, g Sw, xs
w, pg - -

2 w xm
w , xs

w, pw - pw
sat + Hm

w xm
w > pg

3 g xw
g , xm

g , pg xw
g pg > pw

sat -

Table 2.1. Phase states, primary variables, and criteria for the appearance of a
phase

Further reading on multiphase / multicomponent flow and transport processes
in porous media can be found in PRUESS (1991 [210]), FALTA et al. (1995
[78]), HELMIG (1997 [98]), WHITE, OOSTROM (2000 [261]), or CLASS
(2000 [62]).
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2.6 Mathematical model concept for flow and transport
processes in surface water

In this section, flow processes of the (single) phase water and transport pro-
cesses of a single or several components in surface-water systems are dealt
with (see figs. 2.15, 1.1, 1.2). It is restricted here to long waves (see sec. 2.1.3)
and further to the shallow-water equations which are a special case of the
Navier-Stokes equations. Water is regarded to be incompressible and viscous.
A free water surface, a hydrostatic pressure distribution and small bottom
inclinations are assumed.
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Fig. 2.15. Model concept, definition for phase and components

2.6.1 Flow processes

Continuity equation

If the general form of the balance equation (eq. 2.4) is applied to the mass
balance, this originally means e = ρw, w = 0 and r = qw:

∂(ρw)

∂t
+ div (ρwv) = qw (2.59)

Here, ρw denotes the density of water, qw a sink or source term of water and
v the velocity vector of the free-surface flow with the components vx, vy, vz.

Due to incompressibility pressure-dependent density variations are negligible
when compared to density variations caused by salinity or temperature in-
fluences. Usually, the Boussinesq approximation is applied, i.e. that density
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variations only have to be taken into account in the gravity term of the mo-
mentum equation 2.62 or 2.65. Therefore, equation 2.59 is simplified:

div v = qw/ρw (2.60)

Momentum equation

In free-surface water systems, a hydrostatic pressure distribution may be as-
sumed, if the wave length is at least twenty times larger than the water depth,
because then the total vertical accelerations can be neglected. This is the case
here. It should be mentioned, that a hydrostatic pressure distribution may not
be given e.g. for short wave motions, deep water or flow around obstacles. In
the vertical momentum equation, viscous terms can be neglected. If the gen-
eral form of the momentum equation (eq. 2.4) is regarded, e is a vector entity
and the following holds: e = ρwhv, w = −ρwhν

w
gradv and r = h(f − gradp).

Thus, the so-called conservative form of the momentum equation is obtained:

∂(ρwhv)

∂t
+ div (ρwhvv − ρwhν

w
grad v) = h(f − gradp) (2.61)

In this equation, h stands for the water depth, ν
w

for the turbulent viscosity,
p for the pressure and f for a momentum source term, for example the Cori-
olis force (eqs. 2.72, 2.73). Some transformations, where among other things
the density of water is cancelled out of some terms because of the Boussinesq
approximation and the continuity equation is eliminated out of the momen-
tum equation, lead to the so-called non-conservative form of the momentum
equation:

∂v

∂t
+ vgrad v − div (ν

w
grad v) =

1

ρw
(f − grad p) (2.62)

To illustrate the shallow water equations a little more, especially for the ver-
tical direction, they are given for each direction:

x − dir. :
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z
− ∂

∂x
(νwh

∂vx

∂x
)

− ∂

∂y
(νwh

∂vx

∂y
) − ∂

∂z
(νwv

∂vx

∂z
) =

1

ρw0
(fx − ∂p

∂x
) (2.63)

y − dir. :
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z
− ∂

∂x
(νwh

∂vy

∂x
)

− ∂

∂y
(νwh

∂vy

∂y
) − ∂

∂z
(νwv

∂vy

∂z
) =

1

ρw0
(fy − ∂p

∂y
) (2.64)
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z − dir. :
1

ρw

∂p

∂z
+ g = 0 ⇔

p = ρw0g(zs − z) + ρw0g

∫
z

zs ∆ρw

ρw0
dz (2.65)

In these equations ρw, ρw0, ∆ρw denote the density, a reference density and a
density difference of water, νwh, νwv the horizontal and vertical viscosities of
water, and zs the vertical component of the water surface related to a reference
height (see fig. 2.16). The viscosity consists of a molecular and a turbulent
part. Generally, the turbulent part is some orders of magnitude higher when
compared to the molecular one. The turbulence modeling is briefly discussed
in the next section.

z   = z   + h

s

s

h

zb

z

z

x
b

Fig. 2.16. Definitions concerning the vertical direction, after HINKELMANN (1997
[108])

Turbulence modeling

For modeling of turbulence (see fig. 1.2) there exist three main categories:
statistical turbulence models, Large Eddy Simulation (LES) and Direct Nu-
merical Simulation (DNS).

The statistical turbulence models are based on the Reynolds equations or on
a temporal averaging and lead to the eddy viscosity principle. The simplest
possibility consists of giving a constant value. Algebraic eddy viscosity models
relate the eddy viscosity to a characteristic length scale for the problem con-
sidered and enable a spatial variation of the turbulence. For rivers and coastal
systems, the turbulence is often determined anisotropic. Constant values are
chosen for the horizontal, and a mixing length model for the vertical direction.
The mixing length model of LEHFELDT (1991 [165]) looks as follows:
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νwv = l2mg(Ri)

√
(
∂vx

∂z
)2 + (

∂vy

∂z
)2

νtv = l2mf(Ri)

√
(
∂vx

∂z
)2 + (

∂vy

∂z
)2 (2.66)

lm =

{
κz if z ≤ 0.2h

0.2κh if z > 0.2h
,

Ri =
g

ρw0

∂ρw/∂z

(∂vx/∂z)2 + (∂vy/∂z)2
(2.67)

f(Ri) = (1 + 3Ri)−3 , g(Ri) = (1 + 3Ri)−1 (2.68)

In these equations lm denotes the mixing length, κ = 0.4 the Karman con-
stant, h the water level, νtv the vertical turbulent diffusivity (see sec. 2.6.2)
and g, f damping functions which take into account layering effects and which
can be determined by measurements. The Richardson number Ri is a measure
for the stability of a layered water system. The layering is stable for Ri > 0
and unstable for Ri < 0. Further statistical models solve additional transport
equations, e.g. in the k − ε model one transport equation for the turbulent
kinetic energy and one transport equation for the turbulent kinetic dissipa-
tion (see RODI (1984 [222])). The computational effort and the accuracy are
comparatively low for statistical turbulence models, and they are widely used
today.

The Large Eddy Simulation (LES) is based on the assumption that eddies
larger than the grid size are directly resolved by the mesh. A turbulence
model is required for eddies smaller than the mesh size. Turbulence modeling
is carried out by a spatial and / or a temporal averaging procedure. The com-
putational effort and the accuracy are higher for LES when compared to the
statistical models. However, LES is little used today in practical applications.

In the Direct Numerical Simulation (DNS) the meshes are refined more and
more up to the size of the smallest eddies. Therefore, the computational effort
is huge and the accuracy very good. The applicational range of DNS is limited
to small Reynolds numbers.

Further information about turbulence is given in RODI (1984 [222]), LEHFELDT
(1991 [165]), JIRKA et al. (1999 [134]), MALCHEREK (2000 [170]), or
FORKEL (2001 [82]).
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Saint-Venant equations

If the three-dimensional continuity and momentum equations are integrated
over the water depth, the Saint-Venant equations are obtained. They are
shown here in the non-conservative form:

continuity eq. :
∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
+ h

∂vx

∂x
+ h

∂vy

∂y
= qw/ρw (2.69)

x − dir. :
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
− ∂

∂x
(νwh

∂vx

∂x
) − ∂

∂y
(νwh

∂vx

∂y
)

=
fx

ρw0
− g

∂(h + zb)

∂x
(2.70)

y − dir. :
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
− ∂

∂x
(νwh

∂vy

∂x
) − ∂

∂y
(νwh

∂vy

∂y
)

=
fy

ρw0
− g

∂(h + zb)

∂y
(2.71)

Here, zb stands for the vertical coordinate of the bottom related to a refer-
ence height (see fig. 2.16). The momentum source terms fx, fy contain the
influences of bottom friction, wind stress, air-pressure gradient and Coriolis
force:

fx = −λ

h
ρwvx

√
v2

x + v2
y +

cDρa

h
vax

√
v2

ax + v2
ay − ∂P

∂x
+ 2ρwω sinφ vy

(2.72)

fy = −λ

h
ρwvy

√
v2

x + v2
y︸ ︷︷ ︸

friction

+
cDρa

h
vay

√
v2

ax + v2
ay︸ ︷︷ ︸

wind

−∂P

∂y︸ ︷︷ ︸
air

−2ρwω sinφ vx︸ ︷︷ ︸
Coriolis

(2.73)
Here, λ stands for the Taylor-friction coefficient, cD for the wind-stress coef-
ficient, ρa for the density of air, vax, vay for the horizontal components of the
wind velocity, P for the air pressure, ω for the rotation of the earth and φ
for the geographical latitude. Concerning the bottom friction other laws can
be chosen, and concerning the wind-stress coefficient different empirical laws
depending on the wind velocity are used, see MALCHEREK (2000 [170]).
Which momentum source terms have to be taken into account, is a question
of the problems and the scales considered, see HINKELMANN (1997 [108]).
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2.6.2 Transport processes

The main transport mechanism in surface-water systems are advection / con-
vection and diffusion. Other processes, e.g. reaction, adsorption or decay, are
not considered here, see HUNZE (1996 [125]). Similar to the viscosity (see sec.
2.6.1), the diffusion consists of a molecular and a turbulent part and generally,
the turbulent part is some orders of magnitude higher when compared to the
molecular part. The size of the turbulent diffusivity is in the range of the tur-
bulent viscosity. The principle behavior of advection and diffusion was already
shown for a groundwater system in figure 2.8 and is valid for a free-surface
water system, too, with the exception that dispersion must be replaced by the
turbulent diffusivity.

The transport equation for a tracer c is obtained from the general form of the
balance equation (eq. 2.4), if e = ρwc, w = −ν

t
grad (ρwc), r = qc. Here, ν

t
denotes the turbulent diffusivity tensor and qc a tracer sink or source term
which can take tracer sinks or sources as well as reaction, adsorption or decay
processes into account. The transport equation is determined as follows:

∂(ρwc)

∂t
+ div [(vρwc − ν

t
grad (ρwc)] = qc (2.74)

If the density is constant or the concentrations are small (see MARKOFSKY
(1980 [173])), the last equation can be simplified applying the product rule
and the continuity equation 2.60:

∂c

∂t
+ vgrad c − div (ν

t
grad c) =

qc − qwc

ρw
(2.75)

If the density of water depends on the tracer concentration, flow and transport
is coupled in both directions. Consequently, an equation of state is required.
LEHFELDT (1991 [165]) determines the density of water as a function of the
salinity c = S by the following formula:

ρw(S) = ρw0(1 + 0.00075S) (2.76)

Other formulas considering the temperature or sediment concentration are
given by the UNESCO (1987 [251]) or MALCHEREK (2000 [170]). For flow-
ing surface-water systems like rivers or estuaries, the coupling between flow
and transport is often weak. An exception is given e.g., if cooling water of
a power plant is dumped into such a system. The coupling can be strong in
standing surface-water systems like lakes or reservoirs.
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The shallow-water equations are non-linear, the transport equation is linear,
and both have a mixed parabolic / hyperbolic type. For further reading about
the mathematical modeling of flow and transport processes in surface-water
systems see VAN RIJN (1990 [219]), JIRKA (1994 [134]), HINKELMANN
(1997 [108]), ZIELKE et al. (1999 [267]), or MALCHEREK (2000 [170]).
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Efficient numerical methods

In this chapter, an introduction to different efficient numerical methods for
water-related and environmental problems is given. Discretization and sta-
bilization methods, parallel methods, adaptive methods, and fast solvers are
discussed. The discretization and stabilization methods which are applied to
the partial differential equations of the sections 2.3 - 2.6 lead to algebraic
equations. As often, large-scale hydro- and environmental systems are con-
sidered for nowadays tasks in research as well as in practical applications,
sophisticated methods, such as parallel and adaptive ones, must be chosen to
obtain reliable solutions in acceptable time. As the major part of the numer-
ical schemes is implicit, fast solvers are urgently required. The fundamentals
of the most important methods are explained together with their interaction.
It is beyond the objectives of this work to give a complete description of all
existing methods.

3.1 Discretization and stabilization methods

3.1.1 General requirements

In most cases, the physical and mathematical model concepts dealt with in
chapter 2 lead to coupled, (non)-linear partial differential equations, apart
from some exceptions in section 2.3. As analytical solutions are rather lim-
ited for such problems and are subject to a number of constraints concerning
physical parameters and boundary conditions, numerical methods, i.e. here
discretization techniques, offer a more general approach. They transform the
partial differential equations to algebraic equations, and they approximate the
solution function or entity e at discrete points or nodes. In the mathematical
sense, the partial differential equations are of a mixed hyperbolic / parabolic
type which has a significant influence on the discretization methods.
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A discretization method must be consistent, i.e. the discretized equation W
turns into the partial differential equation W or the local discretization error
δ tends to zero for vanishing temporal and spatial discretization sizes:

δ = lim
∆t,∆x→0

= |W − W | = 0 (3.1)

The order of consistency is the minimal power of the space or time step occur-
ring in the discretization error, i.e. if the time step size is halved in a method
of second order, then the discretization error is quartered (see sec. 3.1.3).
Therefore, the order of consistency is a measure of accuracy. Generally, a high
order of consistency is desirable.

Apart from discretization errors, round-off errors r also occur; they are the
difference between the exact solution of the discretized equation gx and the
numerical solution of the discretized equation g:

r = |gx − g| (3.2)

Round-off errors are caused by iterative solvers (see sec. 3.4) (stopping crite-
ria) or by the fact that computers operate with a limited number of bytes for
representing numbers. Generally, round-off errors should be of minor impor-
tance if suitable stopping criteria are chosen. The total error E is the sum of
the discretization and round-off errors:

E = δ + r (3.3)

Additionally, stability is required for a discretization method; this means that
small pertubations are continuously damped in the course of the simulation
and do not lead to increasing oscillations. There are different methods for
the stability analysis (see sec. 3.1.3). Stability can be achieved by different
stabilization techniques, e.g. by adding artificial diffusion. However, the sta-
bilization measures lead to numerical diffusion / dispersion (smearing of the
front, see fig. 3.1), also not representing the exact solution. This highlights
one major dilemma of numerical methods for advection / diffusion problems.
Stabilization techniques are explained in sections 3.1.3 - 3.1.5.

Furthermore, a discretization method must be convergent, i.e. the numerical
solution of the discretized equation g converges toward the exact solution of
the partial differential equation g, or the total error E vanishes, for space and
time steps tending to zero:

E = lim
∆t,∆x→0

|g − g| = 0 (3.4)

As the exact solution is often not known, convergence or convergence speed
can be checked by observing the results at different discrete points for de-
creasing space and time steps. It should be mentioned that the convergence
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need not to be one-sided or asymptotical; the limes or the ‘exact’ solution can
also be obtained from both sides (see fig. 3.2). If a method is consistent and
stable, convergence is mathematically proven.

x

undershooting

analytical solution

overshootinge

numerical dispersion

Fig. 3.1. Principle behavior of oscillations and numerical dispersion, after HINKEL-
MANN, HELMIG (2002 [111])

e

asymptotical

‘exact’ solution

∆ ∆x, t 0
Fig. 3.2. Asymptotical and two-sided convergence behavior
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Beside the characteristics already mentioned, methods should fulfill further
requirements. If no sink or source terms occur in the balance equations, a
method should be monotonous, i.e., if three nodes with increasing x-coordinate
are considered, the nodal value of the middle node should vertically ly between
the values of its neighbors. If monotonicity is given, no over- or undershooting
occurs (see fig. 3.1). Additionally, a method should be conservative, i.e. the
temporal change of an entity considered in a domain should be in equilibrium
with the advective and diffusive fluxes across the boundaries plus source or
sink terms. Futhermore, a discretization method should reproduce typical flow
or transport phenomena, such as, for example, sharp fronts.

A good fulfillment of all criteria is often hardly possible. This depends on a
number of interacting things: the complexity of the geometry (inner structures
and boundaries), the geology (e.g. heterogeneities) and the physical problem
(e.g. high non-linearities), the chosen mesh structure (structured or unstruc-
tured meshes; refinements at transition zones of inhomogeneities) as well as the
possibility of choosing suitable boundary conditions, especially for multiphase
flow, etc. Overall, these circumstances require different problem-dependent
discretization methods. This is illustrated in the following. On structured
grids, methods of a high order of accuracy have been obtained. However, in
most cases a direct or reasonable transfer to unstructured meshes is not pos-
sible. On unstructured grids, a comparatively high accuracy can be achieved
with ‘simpler’ methods by mesh refinement. Further information can be found
in HELMIG (1997 [98]) or MALCHEREK (2000 [170]).

3.1.2 Time discretization

Generally, the time domain is subdivided into a number of constant or variable
time steps ∆tn where the solution functions are determined. For the time t0,
the initial conditions for all unknowns must be given:

tn = t0 + n∆tn (3.5)

In this equation, tn denotes the time of the nth time step and n the number
of time steps.

The time-dependent equations determined in chapter 2 are generalized in the
following way:

∂e

∂t
= Ae (3.6)

Here, e stands for a scalar or vector entity, and the operator A contains the
spatial derivatives as well as the other terms. As an illustration, A in equation
2.64, for example, stands for:
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A = −vx
∂

∂x
− vy

∂

∂y
− vz

∂

∂z
+

∂

∂x
(νwh

∂

∂x
)

+
∂

∂y
(νwh

∂

∂y
) +

∂

∂z
(νwv

∂

∂z
) +

1

ρw0
(fy − ∂p

∂y
) (3.7)

One-step methods

One-step methods determine the solution function on the new time level n+1
in just one step and take only the current time step n into account. The
temporal derivative is approximated by forward differencing (see sec. 3.1.3):

∂e

∂t
≈ en+1 − en

∆tn
(3.8)

In the following, it must be determined on which time level e is regarded in
equation 3.6. If it is considered on time level n, the explicit or Forward Euler
Method is obtained:

en+1 − en

∆tn
= Aen (3.9)

The unknowns on the new time level n + 1 can be completely computed by
means of known values from the current time level n (see fig. 3.3) with simple
mathematical operations, for example a matrix-vector product. Therefore, the
computational effort for one time step is low. However, there is a limit to the
time-step size for stability reasons (see sec. 3.1.3). The order of consistency is
only O(∆t) (see sec. 3.1.3).

If e is determined on the new time level n + 1, the fully implicit or Backward
Euler Method is obtained:

en+1 − en

∆tn
= Aen+1 (3.10)

The unknowns on the new time level n + 1 depend on each other, leading to
a system of equations (see fig. 3.3, sec. 3.4). Consequently, the computational
effort for one time step is high. However, for stability reasons, there is no limit
to the time step size. The order of consistency is only O(∆t) (see sec. 3.1.3).

If e is computed between the current time level n and the new time level n+1,
the Crank-Nicholson Method is obtained with the Crank-Nicholson factor θ
with 0 ≤ θ ≤ 1:

en+1 − en

∆tn
= θAen+1 + (1 − θ)Aen (3.11)
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Fig. 3.3. Explicit and (fully) implicit methods, after HELMIG (2000 [99])

As this method is also implicit, the computational effort per time step is high.
For 0.5 ≤ θ ≤ 1, stability is ensured; for 0 < θ < 0.5 this is not the case. If θ
equals 0.5, the order of consistency is O(∆t2), otherwise only O(∆t) (see sec.
3.1.3). For many practical applications, especially on unstructured grids, θ is
chosen between 0.55 and 0.65, because values for θ closer to 0.5 may lead to
stability problems.

If further terms of the Taylor series (see sec. 3.1.3) are taken into account, the
accuracy is increased. If the term with ∆t2 is introduced, the Lax-Wendroff
Method, which is explicit and has an order of consistency O(∆t2), is obtained:

en+1 = (1 + ∆tnA +
1

2
(∆tn)2A2)en ⇔ en+1 − en

∆tn
= Aen +

1

2
∆tnA2en

(3.12)
If the terms with up to ∆t4 are taken into account, an explicit Runge-Kutta
Method , which has an order of consistency O(∆t4), is determined:

en+1 = (1 + ∆tnA +
1

2
(∆tn)2A2 +

1

6
(∆tn)3A3 +

1

24
(∆tn)4A4)en (3.13)

This method can be easily coded (see BRONSTEIN, SEMENDJAJEW (1979
[45])).
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Multi-step methods

Multi-step methods determine the solution function on the new time level
n + 1 in more than one step and / or take more time levels into account than
only the current one n.

The Leap-Frog Method applies central differencing (see sec. 3.1.3) in time by
regarding the previous time level n − 1:

en+1 − en−1

2∆tn
= Aen (3.14)

It is an explicit method and has the order of consistency O(∆t2) (see sec.
3.1.3). Two time levels must be stored.

A further alternative is given by Operator-Splitting Methods. They split the
basic equations into different parts, e.g. into an advective and a diffusive part:

∂e

∂t
= A1e + A2e

eni − en

∆tn
= A1e (3.15)

en+1 − eni

∆tn
= A2e

In a first sub-step, for example, only the advective terms are dealt with and
an intermediate result eni is determined. This is the initial condition for the
second sub-step in which, for example, only the diffusive terms are treated.
Thus, special methods for advection and diffusion can be applied in each
sub-step which may lead to a combination of explicit and implicit methods.
Stability is guaranteed for the Operator-Splitting Method if it is fulfilled in
each sub-step. The order of consistency is limited by the lower order of a sub-
step. If for example both methods have an order of consistency O(∆t2) (see
sec. 3.1.3), it must be ensured that the sub-steps are commutative in order to
obtain the same order of consistency for the Operator-Splitting Methods. If
the sub-steps are not commutative, the Operator-Splitting Method has only
the order of consistency O(∆t).

For further reading on time discretization methods, see MALCHEREK (2000
[170]) or KOLDITZ (2000 [153]).
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3.1.3 Finite-Difference Methods

The Finite-Difference Method (FDM) is one of the oldest methods for solv-
ing partial differential equations. The computational domain is discretized by
rectangular or quadrilateral cells (see fig. 3.4). Often, the cell lengths ∆x and
∆z are constant or even ∆x = ∆z. The unknown variables are defined in
the nodes which are placed at the centers of the cells or at the intersection
points of cell boundaries (see fig. 3.4). From the geometrical point of view, it
is obvious that complex boundaries or complex inner structures can only be
reproduced in a very simplified way by step functions.

element

z,j

x, i

∆x

A

A

FDM

∆z

boundary of domain

boundary of element

B

B

Fig. 3.4. Space discretization for the FDM, after HINKELMANN, HELMIG (2002
[111])

The basic idea of the FDM is to substitute the differential quotients by differ-
ence quotients. The equations are then put together in an explicit or implicit
way (see secs. 3.1.2, 3.4). Taking into account initial and / or boundary con-
ditions (see sec. 2.2), the solutions are obtained.
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Derivatives of the unknown function e can be developed with the help of a
Taylor-series expansion, shown here for the x-direction. For simplicity’s sake,
constant ∆x and ∆z are assumed:

ei+1,j = ei,j +∆x
∂ei,j

∂x
+

(∆x)2

2

∂2ei,j

∂x2
+

(∆x)3

6

∂3ei,j

∂x3
+

(∆x)4

24

∂4ei,j

∂x4
+O(∆x5)

(3.16)
The unknown function ei−1 is determined in a similar way:

ei−1,j = ei,j−∆x
∂ei,j

∂x
+

(∆x)2

2

∂2ei,j

∂x2
− (∆x)3

6

∂3ei,j

∂x3
+

(∆x)4

24

∂4ei,j

∂x4
−O(∆x5)

(3.17)
The first derivative of a function e can be obtained in three different ways,
called forward differencing (FD, from eq. 3.16), backward differencing (BD,
from eq. 3.17) and central differencing (CD, eq. 3.16 minus 3.17):

FD :
∂ei,j

∂x
=

ei+1,j − ei,j

∆x
− ∆x

2

∂2ei,j

∂x2
− ∆x2

6

∂3ei,j

∂x3
− ∆x3

24

∂4ei,j

∂x4
− O(∆x5)

(3.18)

⇔ FD :
∂ei,j

∂x
=

ei+1,j − ei,j

∆x
+ O(∆x) (3.19)

BD :
∂ei,j

∂x
=

ei,j − ei−1,j

∆x
+ O(∆x) (3.20)

CD :
∂ei,j

∂x
=

ei+1,j − ei−1,j

2∆x
+ O(∆x2) (3.21)

The second derivative is determined by adding up equations 3.16 and 3.17:

∂2ei,j

∂x2
=

ei+1,j − 2ei,j + ei−1,j

∆x2
+ O(∆x2) (3.22)

The order of consistency is the minimal power of the space or time step occur-
ring in the discretization error. Therefore, forward and backward differencing
is of first order or O(∆x), while central differencing and the second derivative
is of second order or O(∆x2).

In the following, the principle use of Finite-Difference Methods is explained
using two examples, flow processes in groundwater and in surface water.
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Flow processes in groundwater

Equations 2.15 and 2.17 are recalled (see sec. 2.3.1). Furthermore, one-
dimensional problems are considered with a constant hydraulic conductivity
Kf and a constant storage term S0 and without sink or source terms. This
leads to the following equation for the piezometric head h:

S0
∂h

∂t
− div (Kfgrad h) = 0 ⇔ ∂h

∂t
− Kf

S0

∂2h

∂x2
= 0 (3.23)

The equation is a diffusion equation, and the type is parabolic.

If forward differencing (eqs. 3.9, 3.19) is applied to the time derivative and the
second derivative approximation (eq. 3.22) to the spatial derivative together
with the Crank-Nicholson Method (see 3.11), one obtains:

hn+1
i − hn

i

∆t
− θ

Kf

S0

hn+1
i+1 − 2hn+1

i + hn+1
i−1

∆x2
− (1 − θ)

Kf

S0

hn
i+1 − 2hn

i + hn
i−1

∆x2
= 0

(3.24)
In the explicit case (θ = 0), the unknown piezometric head on the new time
level can easily be determined and the order of consistency is O(∆t, ∆x2):

hn+1
i = hn

i +
Kf∆t

S0∆x2
(hn

i+1 − 2hn
i + hn

i−1) (3.25)

In the fully implicit case (θ = 1), the unknown piezometric head on the
new time level results from the solution of a linear and symmetric system of
equations and the order of consistency is again O(∆t, ∆x2):

−hn+1
i+1 + (

S0∆x2

Kf∆t
+ 2)hn+1

i − hn+1
i−1 =

S0∆x2

Kf∆t
hn

i (3.26)

If the spatial derivative is chosen between the new and the current time level,
an implicit scheme is again obtained. For θ = 0.5, the order of consistency is
O(∆t2, ∆x2), otherwise O(∆t, ∆x2):

−θhn+1
i+1 + (

S0∆x2

Kf∆t
+ 2θ)hn+1

i − θhn+1
i−1

= (1 − θ)hn
i+1 + (

S0∆x2

Kf∆t
+ 2θ − 2)hn

i + (1 − θ)hn
i−1 (3.27)

Generally, the flow velocities vf are determined by the Darcy law (eq. 2.17),
after the hydraulic heads have been computed in a ‘postprocessing’ step (see
3.1.6). As this is carried out by differentiation (grad h), the spatial accuracy
for the Darcy velocity is reduced by one order of magnitude.
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In the following, the stability behavior is investigated (see MALCHEREK
(2000 [170]), KOLDITZ (2000 [153])) for the one-dimensional problem given
in equation 3.27. When the Matrix Method is chosen, the discretization scheme
is transformed into:

hn+1 = Thn (3.28)

T is a square matrix with (N−2) x (N−2) entries, N is the number of nodes. It
is assumed that a Dirichlet-boundary condition is imposed at the first and the
last node. The vectors hn+1 and hn have (N − 2) entries. Stability is ensured
if T is linear and if the absolute values of all eigenvalues λm are smaller than
1:

|λm| ≤ 1 , m = 2, 3, ..., N − 1 (3.29)

First, equation 3.27 is rewritten in the form

Chn+1 = Dhn (3.30)

with the matrices C and D:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(S0∆x2

Kf ∆t + 2θ) −θ

−θ
. . .

. . .

. . .
. . .

. . .

. . .
. . . −θ

−θ (S0∆x2

Kf ∆t + 2θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.31)

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(S0∆x2

Kf ∆t + 2θ − 2) (1 − θ)

(1 − θ)
. . .

. . .

. . .
. . .

. . .

. . .
. . . (1 − θ)

(1 − θ) (S0∆x2

Kf ∆t + 2θ − 2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.32)

Second, equation 3.30 is transformed to

hn+1 = C−1Dhn (3.33)

and, with T = C−1D, has the shape of equation 3.28.

If the explicit case θ = 0 is considered, C becomes a diagonal matrix, and T
can be easily computed:
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T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − 2Kf ∆t
S0∆x2 )

Kf ∆t
S0∆x2

Kf ∆t
S0∆x2

. . .
. . .

. . .
. . .

. . .

. . .
. . . Kf ∆t

S0∆x2

Kf ∆t
S0∆x2 (1 − 2Kf ∆t

S0∆x2 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.34)

The eigenvalues are determined to:

λm = 1 − 4Kf∆t

S0∆x2
sin2(

mπ

2N
) , m = 2, 3, ..., N − 1 (3.35)

Stability condition 3.29 is fulfilled if the Neumann number is smaller than or
equal to 0.5:

Ne =
Kf∆t

S0∆x2
≤ 0.5 ⇔ ∆t ≤ S0∆x2

2Kf
(3.36)

If Neumann- or Cauchy-boundary conditions are considered, the stability is
slightly reduced.

In a similar way, it can be shown that conditionally stable discretization
schemes are obtained for 0 < θ < 0.5 if

∆t ≤ S0∆x2

2Kf(1 − 2θ)
(3.37)

is fulfilled, and unconditionally stability is found for 0.5 ≤ θ ≤ 1.

If the boundary of the cell coincides with a jump in a coefficient - in this
case the hydraulic conductivity (tensor), a harmonic averaging (see HELMIG
(2000 [99])) should be carried out. If such jumps are within a cell, the coeffi-
cients should be averaged arithmetically in each cell.

In the following, the explicit method is investigated for a simple example (see
SMITH (1970 [240]), HINKELMANN (2001 [110])). A one-dimensional aquifer
of the length 6.4m with a hydraulic conductivity Kf = 10−6m/s and a stor-
age term S0 = 10−41/m is considered (see fig. 3.5). The space is discretized
with 64 elements of ∆x = 0.1m, and a time step ∆t = 0.1s is chosen. The
Neumann-stability condition (eq. 3.36) allows a time step up to ∆t ≤ 0.5s.
The simulation time is 5000s = 1.4h. The boundary conditions for the piezo-
metric head are set to zero at the beginning and the end of the system for
the whole computational time, i.e. hj

0 = 0.0, hj
64 = 0.0, j = 0, 1, 2, ..., 50000.

As an initial condition, a bilinear distribution of the piezometric head with
h0

32 = 1m in the middle, h0
0 = 0 at the beginning and h0

64 = 0 at the end is
imposed (see fig. 3.5).
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Equation 3.25 becomes:

hn+1
i = 0.1hn

i−1 + 0.8hn
i + 0.1hn

i+1 (3.38)

In the course of the simulation (see fig. 3.5), the initial condition is continu-
ously reduced, until the piezometric head reaches zero in the whole domain.
The results are symmetric to the axis x = 3.2m. They are also shown for
several space and time steps in table 3.1. Here, equation 3.38 can easily be
checked.
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Fig. 3.5. Piezometric head distribution at different time steps, after HINKEL-
MANN (2000 [109])

x = 0.0m x = 0.8m x = 1.6m x = 2.4m x = 3.2m
i = 1 i = 8 i = 16 i = 24 i = 32

t = 0.0s; n = 0 0.000 0.250 0.500 0.750 1.000

t = 0.1s 0.000 0.250 0.500 0.750 0.994

t = 0.2s 0.000 0.250 0.500 0.750 0.989

.....

t = 500s 0.000 0.093 0.172 0.225 0.243

.....

t = 5000s 0.000 0.000 0.000 0.000 0.000

Table 3.1. Piezometric head at different time steps
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Flow processes in surface water

The Saint-Venant equations in the non-conservative form 2.69 - 2.71 are con-
sidered (see sec. 2.6.1). If one-dimensional problems without viscous or turbu-
lent terms, without sink or source terms, without friction and without bottom
slope are considered, this leads to:

∂h

∂t
+ v

∂h

∂x
+ h

∂v

∂x
= 0 (3.39)

∂v

∂t
+ v

∂v

∂x
= −g

∂h

∂x
(3.40)

In these equations h denotes the water level, v the flow velocity and g the grav-
ity. The equations are of hyperbolic type. If only equation 3.39 is regarded and
a constant v is assumed, this is a linear advection equation. If only equation
3.40 is considered and a constant h is assumed, this is a non-linear, inviscid
Burgers’ equation.

In the following, explicit schemes are investigated. If forward differencing is
chosen in time (eq. 3.9) and forward or backward differencing in space (eqs.
3.19, 3.20), the Upstream Difference Method is obtained. This method is stable
if a stability condition (eq. 3.45) is fulfilled; however, it is very diffusive, and it
has only the order of consistency O(∆t, ∆x). If forward differencing is chosen
in time and central differencing in space (eq. 3.21), the order of consistency is
O(∆t, ∆x2); however, this scheme is always unstable. A further improvement
concerning stability is given by the Diffusive Lax Method. It uses a modified
forward differencing in time by choosing an average of the neighboring nodes
i + 1, i − 1 for the considered node i on the current time level and a central
differencing in space:

hn+1
i − (hn

i+1 + hn
i−1)/2

∆t
+ vn

i

hn
i+1 − hn

i−1

2∆x
+ hn

i

vn
i+1 − vn

i−1

2∆x
= 0 (3.41)

vn+1
i − (vn

i+1 + vn
i−1)/2

∆t
+ vn

i

vn
i+1 − vn

i−1

2∆x
= −g

hn
i+1 − hn

i−1

2∆x
(3.42)

The unknowns are directly determined by:

hn+1
i =

hn
i+1 + hn

i−1

2
− ∆t

2∆x
[vn

i (hn
i+1 − hn

i−1) + hn
i (vn

i+1 − vn
i−1)] (3.43)

vn+1
i =

vn
i+1 + vn

i−1

2
− ∆t

2∆x
[g(hn

i+1 − hn
i−1) + vn

i (vn
i+1 − vn

i−1)] (3.44)

This method shows a more or less diffusive behavior.
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The order of consistency is increased to O(∆t2, ∆x2) if central differencing is
used in space and time. This yields the Leap-Frog Method. However, it has an
oscillatory tendency, and it should be mentioned that it requires more mem-
ory, as two previous time levels must be stored in the computer memory.

The Lax-Wendroff Method is a combination of the Diffusive Lax and the
Leap-Frog Methods. First, the Diffusive Lax Method computes intermediate
results at i − 0.5 and i + 0.5 with a time step 0.5∆t. Second, the Leap-Frog
Method uses these intermediate results and the result of the current time at i
to determine the results at i on the new time level (see HELMIG (2000 [99])).
The Lax-Wendroff Method and the Leap-Frog Method have the same order
of consistency O(∆t2, ∆x2) and the same memory requirement. The compu-
tational effort of the Lax-Wendroff Method is much higher. However, this is
often accepted because the numerical results of the Lax-Wendroff Method are
generally superior to those of the Leap-Frog Method. Therefore, of the ex-
plicit methods up to the order of consistency O(∆t2, ∆x2), the Lax-Wendroff
Method is recommended.

A stability analysis for all explicit methods mentioned in this section shows
that the Courant number Cr must be smaller than one or that there is a time
step limitation:

Cr =
(|v| + c)

∆x/∆t
≤ 1 ⇔ ∆t ≤=

∆x

|v| + c
(3.45)

In this equation c =
√

gh denotes the wave velocity. The Courant number is
space and time dependent. However, a maximum Cr or a minimum ∆t can
be estimated before a numerical simulation.

Concerning the stability behavior, it is often advantageous to choose a spatial
average for the considered node (eqs. 3.43, 3.44):

hn
i =

hn
i+1 + hn

i−1

2
, vn

i =
vn

i+1 + vn
i−1

2
(3.46)

If an implicit scheme is taken, non-linear and non-symmetric systems of equa-
tions occur (see sec. 3.4). If the Crank-Nicholson Method is chosen, the equa-
tions look as follows:

hn+1
i − hn

i

∆t
+ θvn+1

i

hn+1
i+1 − hn+1

i−1

2∆x
+ (1 − θ)vn

i

hn
i+1 − hn

i−1

2∆x

+θhn+1
i

vn+1
i+1 − vn+1

i−1

2∆x
+ (1 − θ)hn

i +
vn

i+1 − vn
i−1

2∆x
= 0 (3.47)



70 3 Efficient numerical methods

vn+1
i − vn

i

∆t
+ θvn+1

i

vn+1
i+1 − vn−1

i−1

2∆x
+ (1 − θ)vn

i

vn
i+1 − vn

i−1

2∆x
=

−θg
hn+1

i+1 − hn+1
i−1

2∆x
− (1 − θ)g

hn
i+1 − hn

i−1

2∆x
(3.48)

For θ = 0.5, the order of consistency is O(∆t2, ∆x2); for 0.5 < θ ≤ 1, it is
O(∆t, ∆x2). The method is unstable for 0 ≤ θ < 0.5 and unconditionally
stable for 0.5 ≤ θ ≤ 1 if a linearization has been carried out.

The Diffusive Lax (eqs. 3.43, 3.44) and the Lax-Wendroff Methods are com-
pared using a simple example (see BUSSE (2000 [54]), HINKELMANN et al.
(2001 [110])). A one-dimensional channel of 3000m length and 10m width
is considered (see fig. 3.6). The space is discretized with 240 elements of
∆x = 12.5m, and a time step of ∆t = 1s is chosen. The Courant stabil-
ity condition (eq. 3.46) max Cr ≈ 0.86 < 1 is fulfilled. The system is open
at x = 0 where a Dirichlet boundary is given for the water level. The sys-
tem is closed at the end with an imposed Dirichlet boundary for the flow
velocity v = 0. Constant initial conditions are prescribed for the water level
h0(x, t0) = 6.4m, and the flow velocity is set to v0(x, t0) = 0. A surge wave of
∆h = 1.5m is given at the inflow boundary.

x

z
3000 m 10 m

h

z

y

Fig. 3.6. System, after BUSSE (2000 [54])

In figure 3.7, the propagating wave is shown after 270s. The Diffusive Lax
Method is characterized by little numerical dispersion or smearing of the front,
while the Lax-Wendroff Method has a sharper front, but with ‘small’ oscilla-
tions.

Additional information

It must be mentioned that problems arise for certain kinds of boundary con-
ditions, e.g. when nodes which are outside the domain are required. If higher
accuracy is desired, in principle more terms of the Taylor series can be taken
into account. However, this is not very practicable, as higher derivatives which
lead to further problems, e.g. with boundary conditions, must be determined.



3.1 Discretization and stabilization methods 71

x [m]

v
[m

/s
]

h
[m

]

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

9

10

h (DL)
h (LW)
v (DL)
v (LW)

Fig. 3.7. Water level and flow-velocity distribution after 270s, after BUSSE (2000
[54])

The Finite-Difference Method is comparatively easy to understand and to
‘translate’ into computer programs. Rules can be mathematically proven in
several cases such as consistency and stability. Therefore, it is suitable to show
the principle effects and contexts. However, the Finite-Difference Method does
not necessarily guarantee mass or momentum conservation; this is one of the
greatest disadvantages of this method. The differential quotients in the ba-
sic equations are approximated by differencing, but this procedure does not
imply conservativity. Due to the structured meshes, complex boundaries and
inner structures can only be taken into account very roughly. Consequently,
the Finite-Difference Method is no longer gaining importance.

In this section 3.1.3 only a few methods were mentioned. Further informa-
tion is given in SMITH (1970 [240]), FINLAYSON (1992 [81]), HELMIG
(2000 [99]), MALCHEREK (2000 [170]), KOLDITZ (2000 [153]), or HINKEL-
MANN, HELMIG (2002 [111]).
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3.1.4 Finite-Element Methods

The Finite-Element Method (FEM) has been widespread in hydro- and en-
vironmental engineering for several decades. The computational domain is
subdivided in many small finite elements with nodes; in 2D general triangles
or quadrilaterals are chosen. The unknown variables are generally defined at
the nodes, sometimes at the center of the element or the center of the edges
as well. The course of the unknowns over the elements is determined by in-
terpolation functions. For each element, the underlying differential equation
is treated by minimising an integral formulation. Then the single equations
are put together, in most cases resulting in a system of equations (see sec.
3.4). Finally, the solution for the whole system is determined, taking initial
and / or boundary conditions (see sec. 2.2) into account. Due to the possibly
unstructured meshes, it is very suitable for complex boundaries and complex
inner structures (see fig. 3.8).

FEM

z

x

boundary of element

boundary of domain

element

Fig. 3.8. Space discretization for the FEM, after HINKELMANN, HELMIG (2002
[111])

In the following, the principle use of the Finite-Element Method is explained
using two examples, transport processes in surface water and in the subsurface.
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Transport processes in surface water

The transport equation 2.75 is recalled and sink and source terms as well as
advection are neglected (see sec. 2.6.2):

∂c

∂t
− div (ν

t
grad c) = 0 (3.49)

In this equation, c stands for the tracer concentration and ν
t

for the diffusiv-
ity. As advection is not taken into account, only molecular diffusivity occurs.
The type of equation is parabolic, and it is also called diffusion equation. The
FEM is highly suitable for parabolic and elliptic problems.

First, the semidiscrete method which means here that the space is discretized
with the FEM and the time with the FDM is introduced. This is the most
common method for time-dependent problems which are treated with the
FEM. For the time derivative, forward differencing (eqs. 3.9, 3.19) is applied:

∂c

∂t
≈ cn+1 − cn

∆t
(3.50)

In space, the isoparametric concept is used. This means that the geometry
and the unknown variables are described by the same interpolation functions.
Here, linear functions which lead to a second order of consistency in space are
chosen. The unknown variables on the new time level cn+1 are approximated
by c̃n+1 or by summing up the products of the interpolation functions N and
the nodal values ĉn+1, e.g. for a quadrilateral:

cn+1 ≈ c̃n+1 =

4∑
i=1

Niĉ
n+1
i = N1ĉ

n+1
1 + N2ĉ

n+1
2 + N3ĉ

n+1
3 + N4ĉ

n+1
4 (3.51)

The interpolation functions Ni, which are also called shape functions, are
shown for a quadrilateral in figure 3.9. Ni equals 1 at node i and decreases to
0 at all other nodes of the element.

If approximation 3.51 is inserted in the diffusion equation 3.49, it no longer
equals 0 exactly, but an error or residual ε occurs:

∂c̃

∂t
− div(ν

t
grad c̃) = ε (3.52)

In the Method of Weighted Residuals, this residual is multiplied with a weight-
ing function W , the product is integrated over the computational domain Ω,
and the integral is forced to become 0:∫

Ω

Wj ε dV = 0 (3.53)
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Fig. 3.9. Linear shape functions for quadrilaterals, after HINKELMANN, HELMIG
(2002 [111])

Thus, the error vanishes in the average over the whole computational domain.
This is important for the conservativity characteristics. When the Standard-
Galerkin Method is applied, the weighting function equals the interpolation
function:

Wj = Nj (3.54)

Equations 3.52 and 3.54 are inserted into 3.53:

∫
Ω

Nj

[
∂c̃

∂t
− div(ν

t
grad c̃)

]
dV = 0 (3.55)

The Green-Gauss Integral Theorem is applied:

∫
Ω

Nj
∂c̃

∂t
dV −

∫
Γ

Nj ν
t
grad c̃ n dO +

∫
Ω

gradNj ν
t
grad c̃ dV = 0 (3.56)

Γ denotes the boundary or edge of the element and n the normal vector (see
fig. 2.6). The boundary integrals vanish along interior edges of the domain
because they occur twice with opposite signs and thus cancel each other out.
At the outer boundary of the domain, the boundary integrals are determined
by Neumann- or Cauchy-boundary conditions (eq. 2.6). As a gradient of the
concentration, which is often not known, must be given for this kind of bound-
ary, this integral is often set to zero.

The concentration is determined by the Crank-Nicholson Method (eq. 3.11).
For θ = 0.5, the order of consistency is O(∆t2, ∆x2), otherwise it is O(∆t, ∆x2).
It should be mentioned that an implicit scheme is obtaind even for θ = 0. The
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method is conditionally stable for θ < 0.5, and unconditionally stable for
0.5 ≤ θ ≤ 1 (see HUGHES (1987 [123])). As the index notation is used in the
following, the underlining for the tensors is omitted:

ĉn+1
i − ĉn

i

∆t

∫
Ω

Ni Nj dV

︸ ︷︷ ︸
mass matrix Mij

+

[
Θ ĉn+1

i + (1 − Θ)ĉn
i

] ∫
Ω

gradNi νt i,j gradNj dV

︸ ︷︷ ︸
diffusion matrix Dij

= 0 (3.57)

The derivatives of the interpolation functions with respect to the Cartesian
coordinates x, z must be computed. As they are functions of the natural coor-
dinates r, s, a transformation relation is required (see fig. 3.10) which is given
by the Jacobian matrix:

[
∂c/∂r
∂c/∂s

]
=

[
∂x/∂r ∂z/∂r
∂x/∂s ∂z/∂s

] [
∂c/∂x
∂c/∂z

]
⇔

[
∂c/∂x
∂c/∂z

]
= J−1

[
∂c/∂r
∂c/∂s

]
Jacobian matrix Jij

x =
4∑

i=1

Ni xi , z =
4∑

i=1

Ni zi , dV = dx dz = detJ dr ds

(3.58)
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Fig. 3.10. Transformation from Cartesian to natural coordinates, after HINKEL-
MANN, HELMIG (2002 [111])
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The Jacobian matrix is inserted in equation 3.58 to obtain:

∫
Ω

Ni Nj det J dr ds

︸ ︷︷ ︸
mass matrix Mij

ĉn+1
i − ĉn

i

∆t

+

∫
Ω

gradNi J−1
ik νt k,l J

−1
lj gradNj det J dr ds

︸ ︷︷ ︸
diffusion matrix Dij

[
Θ ĉn+1

i + (1 − Θ)ĉn
i

]
= 0

(3.59)
This yields the following symmetric system of equations for the unknown
concentration cn+1:

[
1

∆t
Mij + Θ Dij

]
ĉn+1
i =

[
1

∆t
Mij + (Θ − 1)Dij

]
ĉn
i (3.60)

It is mentioned that there is a similar meaning of the Jacobian matrix in the
context of non-linear solvers (see sec. 3.4.5, eq. 3.142). For linear triangles,
the mass and diffusion matrices can be analytically integrated. However, for
general quadrilaterals, the Jacobian matrix consists of quotients of rational
functions. Therefore, the integration is carried out numerically, generally with
the Gauss-Point integration, as follows:

∫
Ω

f(r, s)dV =

ngp∑
i=1

ngp∑
j=1

αiαjf(ri, sj) (3.61)

The integration of the function f(r, s) is substituted by a sum of values of
the function at given coordinates f(ri, sj) multiplied by weighting factors αi

and αj . For the Gauss-Point integration, the special coordinates as well as
weighting factors for different numbers of Gauss-Points ngp are given in the
literature (see HELMIG (2000 [99])). The Gauss-Point integration is superior
to other methods, because it exactly integrates a polynomial of (2nng − 1)
degree with ngp Gauss-Points. For linear quadrilaterals, 2 Gauss-Points per
direction r and s are generally sufficient.

The computation of the element matrices, e.g. Mij , Dij , requires more CPU-
time in the Finite-Element Method than in the Finite-Difference and the
Finite-Volume Methods. This is the case, even though several parts of the
computation must be carried out only once for all quadrilateral elements.
Only the parts which are affected by the Jacobian matrix must be determined
for every element and, of course, the numerical integration.

After the system matrices have been determined for each element, they are
assembled to the global system matrix and the global right-hand-side terms
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according to the neighborhood relationships. A linear symmetric system of
equations must be further treated.
If the boundary of an element coincides with a jump in a coefficient - in this
case the diffusivity (tensor), the FEM leads to an arithmetic averaging. If such
jumps are within an element, the coefficients should be averaged element-wise.

In the following, a simple quasi-one-dimensional example is investigated. A
PCG Method with a diagonal preconditioner (see sec. 3.4.1, 3.4.2) is chosen
as the solver. The space is discretized with 50 elements of ∆x = 0.1m with
51 nodes, and a time step of ∆t = 106s ≈ 11.6d is chosen. The molecular
diffusivity is set to νt = 10−9m2/s and Θ = 1. Although there is no stability
constraint, the Neumann number (eq. 3.36) is given , Ne = νt∆t

∆x2 = 0.1, for
the reader’s information. The boundary conditions for the concentration c are
set to zero at the beginning and the end of the system. As an initial condition,
the concentration c0 is set to 1 in the middle of the system at node 26; c0

drops to zero at the neighboring nodes and is zero in the remaining system
(see fig. 3.11). Equation 3.60 simplifies to:

[
1

∆t
Mij + Dij

]
ĉn+1
i = Mij ĉ

n
i (3.62)
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Fig. 3.11. Concentration distribution at different time steps

In the course of the simulation (see fig. 3.11), the initial peak is continuously
reduced. The solution function becomes very smooth.
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Transport processes in the subsurface

Now, the transport equation 2.30 is considered and only sink and source terms
are neglected (see sec. 2.3.2):

∂c

∂t
+ vagrad c − div (D

hyd
grad c) = 0 (3.63)

In this equation, c denotes the tracer concentration, va the pore velocity and
D

hyd
the hydrodynamic dispersion tensor. The transport equation is of mixed

parabolic / hyperbolic type. If advection is neglected, this is a diffusion equa-
tion, and the type is parabolic. If dispersion is not taken into account, one
obtains a linear advection equation and its type is hyperbolic.

The one-dimensional Peclet number Pe which is the ratio of the pore velocity
multiplied by the element length ∆x to the dispersion coefficient is introduced:

Pe =
|va| ∆x

Dhyd
(3.64)

The Peclet number is high if advection dominates. Therefore, it is an impor-
tant number for indicating the tendency to instabilities.

The one-dimensional Courant number in a subsurface system is defined in a
similar way to that shown in equation 3.45 as the ratio of the pore velocity
va to the ‘mesh velocity’ ∆x/∆t:

Cr =
|va|

∆x/∆t
≤ 1 ⇔ ∆t ≤=

∆x

|va| (3.65)

For rectangular meshes, the Peclet and Courant numbers can be computed for
each direction. For unstructured meshes, the element length ∆x is replaced by
the characteristic discretization length l. However, the determination of the
characteristic discretization length is not unique. The diameter of the inner
circle or the path line of a particle, which follows the velocity vector of the
center of the element through the element, can be chosen (see fig. 3.12).

Basically, the advective part can be modeled in the same way as shown above
for the Standard-Galerkin Method, i.e. the weighting function equals the in-
terpolation function Wj = Nj (eq. 3.54). As index notation is used in the next
equation, the underlining for the vectors and tensors is omitted. If element-
wise constant pore velocities are assumed, this yields:
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Fig. 3.12. Estimation of the characteristic element length

∫
Ω

Ni Nj det J dr ds

︸ ︷︷ ︸
mass matrix Mij

ĉn+1
i − ĉn

i

∆t

+

∫
Ω

vagradNi J−1
ik Nj det J dr ds

︸ ︷︷ ︸
advection matrix Aij

[
θ ĉn+1

i + (1 − θ)ĉn
i

]

+

∫
Ω

gradNi J−1
ik Dhyd k,l J−1

lj gradNj det J dr ds

︸ ︷︷ ︸
dispersion matrix Dij

[
θ ĉn+1

i + (1 − θ)ĉn
i

]
= 0

(3.66)

[
1

∆t
Mij + θ (Aij + Dij)

]
ĉn+1
i =

[
1

∆t
Mij + (θ − 1)(Aij + Dij)

]
ĉn
i (3.67)

The advection matrix is non-symmetric. The order of consistency in time
depends on θ, while second-order consistency in space is obtained. Thus, one
has O(∆t2, ∆x2) for θ = 0.5 and O(∆t, ∆x2) for 0 ≤ θ < 0.5, 0.5 < θ ≤ 1.
The practical use of the Standard-Galerkin Method is very limited, as the
following stability condition must be ensured (see PERROCHET, BEROD
(1993 [206])):

Cr Pe ≤ 2 (3.68)

An improvement is given by Petrov-Galerkin Methods. The idea is to take more
information from the upstream flow direction by choosing modified weighting
functions:



80 3 Efficient numerical methods

Wj = Nj + α Tj (3.69)

In the classical Petrov-Galerkin Method, a polynomial Tj of higher degree is
added, while the Streamline-Upwind Petrov-Galerkin Method (SUPG Method)
adds a polynomial Tj of lower degree (see fig. 3.13). For the SUPG Method
the weighting functions are:

Wj = Nj + α
va

|va| · gradNj (3.70)
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Fig. 3.13. Petrov-Galerkin (left) and Streamline-Upwind Petrov-Galerkin Methods
(right), after HINKELMANN, HELMIG (2002 [111])

The modified weighting functions behave like artificial diffusion in the flow
direction (not orthogonal to the flow direction, thus no cross diffusion). There-
fore, the oscillations disappear, but the front is damped, and a more or less
slight over- or undershooting (see fig 3.1) occurs. Generally, the SUPG Method
is - more or less - superior to the classical one.

The upwind parameter α is free a priori. For one-dimensional stationary prob-
lems, an optimal α was determined by CHRISTIE et al. (1976 [59]):

αHB = cot (Pe/2) − 2/Pe (3.71)

For multi-dimensional instationary problems, NOORISHAD et al. (1992 [192])
make some recommendations:

αNo =

{
0 for Cr Pe ≤ 2

Cr − 2/Pe for Cr Pe > 2
(3.72)
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Thus, no upwinding is required for Cr Pe ≤ 2.

As the upwinding behaves like an artificial diffusion / dispersion, it also can
be introduced into the dispersion tensor instead of choosing modified weight-
ing functions (see PERROCHET, BEROD (1993 ([206])). Equation 2.29 is
recalled

Dxx = αL
v2

ax

|va|
+ αT

v2
az

|va|
+ Dmol (3.73)

with the longitudinal and transversal dispersion lengths αL, αT , the molecular
diffusion Dmol and the component Dxx of the dispersion tensor. An additional
longitudinal dispersion length αL, which is added to αL, is defined as:

αL =

{ |va|∆t /2 − αL − Dmol /|va| if αL + Dmol /|va| < |va|∆t /2
0 else

(3.74)
The upstream techniques in the FDM (see sec. 3.1.3) resemble the upwind
techniques in the FEM.

For Petrov-Galerkin Methods described in this context, the order of con-
sistency in time is determined by the choice of θ in the Crank-Nicholson
Method. In space, the order of consistency depends on the Courant and Peclet
numbers. Second-order consistency is approached if dispersion dominates, i.e.
Cr Pe < 2. In the case of high advection, i.e. Cr Pe >> 2, only first-order
consistency is approached. Furthermore, there is no stability constraint, and
linear non-symmetric systems of equations must be dealt with further.

Higher orders of consistency are achieved if further terms of the Taylor series
are taken into account; this leads to Taylor-Galerkin Methods (see DONEA et
al. (1987 [72]), KRÖHN (1991 [159])). However, only a few Taylor-Galerkin
Methods have been developed for unstructured grids.

Flux-corrected transport is also a very promising stabilization technique as it
maintains the monotonicity of the solution (see FINLAYSON (1992 [81]), see
sec. 3.1.5).

A comparison of the Standard-Galerkin and the SUPG Method (eqs. 3.66,
3.69) is shown for a one-dimensional example (see BARLAG (1997 [13])). A
BiCGSTAB Method with a diagonal preconditioner (see sec. 3.4.1, 3.4.2) is
used as the solver. The system is 100m long with variable element lengths
∆x = 0.25m, 0.5m, 1.0m. A time step ∆t = 2.5 · 105s is chosen. The pore
velocity is constant va = 10−6m/s, and the molecular diffusivity is set to
Dmol = 6.25 · 10−10m2/s, while mechanical dispersion is neglected. The
Courant number in the smallest element equals 1 and the Peclet number in
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the latter element is 400. As an initial condition, c0(x, t0) = 0 is given in the
whole system. The Dirichlet-boundary condition c(x = 0, t) = 1.0 is imposed
on the left side of the system (see fig. 3.14).

Fig. 3.14. System, after BARLAG (1997 [13])

Figure 3.15 shows the results after t = 4 ·107s, when the front has propagated
approximately 40m. The results are compared with an analytical solution
of OGATA, BANKS (1961 [195]). The Standard-Galerkin Method oscillates,
while the SUPG Method is smooth; however, it smears the front somewhat.

Standard--Galerkin Method SUPG Method

c, c
^

c, c
^

c
^

c c
^

c

Fig. 3.15. Comparison of the Standard-Galerkin with the SUPG Method, after
BARLAG (1997 [13])

Additional information

As an alternative to the semidiscrete method, space-time Finite-Element
Methods were developed for which the time is discretized by the FEM (see
NITSCHE (1985 [191]), JOHNSON (1992 [137])). They have some advantages
concerning the error analysis (see sec. 3.3.2). However, implicit methods lead
to very large systems of unknowns with the dimension number of unknowns in
space multiplied by the number of time steps. Overall, such methods are not
widespread. In this context, Eulerian-Lagrangian Localized Adjoint Methods
or ELLAM Methods which are based on a space-time FEM formulation and
guarantee mass conservation (see CELIA et al. (1990 [55]), HERRERA et al.
(1993 [105])) are mentioned. The edges of the elements follow characteristics
in the space-time domain, and the weighting functions fulfill the adjoint basic
equation (see CIRPKA, HELMIG (1997 [61])). The computational effort is
comparable to classical instationary FEM.
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Apart from linear shape functions, quadratic and cubic functions also exist.
For the special case of the shallow-water equations, the so-called Babuska-
Brezzi condition is mathematically proven (see MALCHEREK (1990 [170])).
This condition states that stability is ensured if the velocity is approximated
by a higher polynomial than the water level. Therefore, often linear functions
are chosen for the water level and quadratic functions for the flow velocities
in the case of the shallow-water equations. Discontinuous-Galerkin Methods
use jump functions to better approximate sharp-front problems or problems
with large jumps in the coefficients (see JOHNSON (1992 [137]), RIVIERE
et al. (2000 [221]), RIVIERE, WHEELER (2000 [220])).

As an alternative to Galerkin Methods, others are also used, e.g. the Least-
Square or Subdomain-Collocation Methods (see HELMIG (1997 [98]), KOLDITZ
(2000 [152]), sec. 3.1.5).

FORSYTH (1991 [83]) developed the Control-Volume Finite-Element
Method (CVFEM) by combining the Standard-Galerkin Method for the spatial
discretization with a lumped mass matrix which is multiplied by the tempo-
ral derivative (eq. 3.59). A lumped mass matrix is a diagonal matrix where
the mass which is distributed over the whole domain is replaced by equiva-
lent point masses in the nodes. FORSYTH (1991 [83]) has proven that the
CVFEM guarantees local mass conservation which is a characteristic of the
Finite-Volume Method (see HELMIG (1997 [98]), sec. 3.1.5).

All methods discussed in section 3.1.4 require initial and boundary conditions
(see sec. 2.2) for the solution. If higher accuracy is desired, higher shape func-
tions can be chosen in the FEM; this increases the effort of computing the
system matrices and the number of unknowns. Often, it is more economical
to leave linear shape functions and increase the number of elements, e.g. with
the help of adaptive methods (see sec. 3.3).

The FEM guarantees global mass and momentum conservation which is a
consequence of the formulation, because the latter states that the residual
should vanish in the whole computational domain. Unstructured meshes en-
able an excellent approximation of complex boundaries and inner structures.
Compared to the FDM, these are two important advantages for the FEM.

In this section 3.1.4, only certain methods were discussed. Further informa-
tion is found in BATHE (1986 [23]), ZIENKIEWICZ, TAYLOR (1991 [269]),
JOHNSON (1992 [137]), CIRPKA, HELMIG (1997 [61]), HELMIG (1997
[98]), HELMIG (2000 [99]), MALCHEREK (2000 [170]), KOLDITZ (2000
[152]), or HINKELMANN, HELMIG (2002 [111]).
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3.1.5 Finite-Volume Methods

The Finite-Volume Method (FVM) has been established in engineering sci-
ences for several decades. Traditionally, it has its origin in the fields of the
Reynolds equations and technical flows, and it is often applied to structured
grids. If it is used for rectangular grids (see fig. 3.4), this method is also called
Integral-Finite-Difference Method (IFDM). Lately, the FVM has been used
for unstructured meshes; in this context, it is comparable to the FEM (see
fig. 3.8). A control volume is defined for every node. There are three different
ways for ‘constructing’ a control volume. In the cell-centered FVM, the con-
trol volume is the element or cell, and the unknowns are determined in the
center of the element (see fig. 3.16, left). If the node-centered FVM is chosen,
two different ways of defining a control volume in the node patch are distin-
guished. One way is to build the polygon of the verticals on the midpoints
of the element edges (see fig. 3.16, middle). However, it must be mentioned
that there is a contraint concerning the mesh geometry. The mesh must fulfill
the Voronoi property, i.e. the angles in all triangles are not allowed to dif-
fer much from 60o and in those quadrilaterals from 90o (see FUHRMANN,
LANGMACH (1998 [85])). The other way is to build the control volume by
the polygon of the centers of the elements and the centers of the edges (see
fig. 3.16, right). As there are theoretically no limitations to the last method,
it is recommended.
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Fig. 3.16. Control volumes for the FVM

The idea of the FVM consists of integrating the differential equations in their
conservative form (see sec. 2.6.1) over all control volumes. In this way, a local
conservation of the considered equation is guaranteed. The basic steps of the
FVM are explained for the general form of the balance equation (eq. 2.3):∫

Ω

∂e

∂t
dV +

∫
Ω

div FdV −
∫
Ω

rdV = 0 (3.75)
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In this equation, e denotes a scalar or vector entity, F a flux term consisting of
an advective and a diffusive / dispersive part F = ve + w, v the flow velocity,
r a sink / source term and Ω the domain of the control volume. If the Green-
Gauss Integral Theorem is applied, the volume integral is transformed into a
surface integral. Γ stands for the surface of the control volume and n for the
normal vector (see fig. 2.6):∫

Ω

∂e

∂t
dV +

∫
Γ

F ndO −
∫
Ω

rdV = 0 (3.76)

Each term in the last equation, i.e. the temporal derivative, the flux, and the
sink / source term, must be determined. Then the equations are combined,
often to a system of equations which must be solved (see sec. 3.4). Taking
initial and / or boundary conditions (see sec. 2.2) into account, a solution is
obtained. The unstructured meshes enable the FVM to approximate complex
boundaries and complex inner structures very well.

In the following, the principle use of the FVM is introduced using two ex-
amples, groundwater and two-phase flow in subsurface systems. For a better
understanding, the methods are explained for a quadratic control volume, and
some remarks are added concerning unstructured meshes.

Flow processes in groundwater

The stationary groundwater flow equation 2.24 is recalled and the sink /
source terms are neglected (see sec. 2.3.1):

div (−K
f

grad h) = 0 (3.77)

In this equation, K
f

denotes the hydraulic conductivity tensor and h the

piezometric head. The type of equation is elliptic, and it is also called a Laplace
equation.

If one compares the last equation with equation 3.75, one sees F = −K
f

gradh.

According to equation 3.76, the problem to be solved is:∫
Γ

(−K
f

grad h)ndO = 0 (3.78)

The gradients of h at the boundaries of the control volume must be deter-
mined:
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F = −K
f

grad h = −
[

Kf,xx Kf,xz

Kf,zx Kf,zz

] [
∂h/∂x
∂h/∂z

]

= −
[

Kf,xx
∂h
∂x + Kf,xz

∂h
∂z

Kf,zx
∂h
∂x + Kf,zz

∂h
∂z

]
(3.79)

This is illustrated for the x-direction in figure 3.17. The gradients in x-
direction are replaced by central differencing between i− 1, j ; i, j and i, j ; i+
1, j. The gradients in z-direction are determined by central differencing be-
tween j + 1 and j − 1, at i − 0.5 as an average of i − 1 and i, and at i + 0.5
as an average of i and i + 1. Inflow is positive and outflow negative. One thus
obtains:

z
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(i+1,j)(i,j)(i-1,j)

i-0.5,jFx Fx
i+0.5,j

(i-1,j-1)                      (i,j-1)                      (i+1,j-1)

(i-1,j+1)                       (i,j+1)                       (i+1,j+1)

xn xn

Fig. 3.17. Fluxes at the boundaries of the control volume in x-direction, after
HINKELMANN, HELMIG (2002 [111])

∫
Γ

F x nxdO =

∫
Γ

(F x
i−0.5,j + F x

i+0.5,j)nxdO

= −Kf,xx
hi,j − hi−1,j

∆x
∆z

−Kf,xz

(
hi,j+1 − hi,j−1

2 ∆z
+

hi−1,j+1 − hi−1,j−1

2 ∆z

)
∆z

2
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+Kf,xx
hi+1,j − hi,j

∆x
∆z

+Kf,xz

(
hi+1,j+1 − hi+1,j−1

2 ∆z
+

hi,j+1 − hi,j−1

2 ∆z

)
∆z

2
(3.80)

The hydraulic conductivities must be determined at the boundaries of the
control volume, e.g. Kf,xx at i − 0.5, j for the first term in equation 3.80
and Kf,xz at i + 0.5, j or the last term in equation 3.80. The fluxes for the z-
direction are obtained in the same way. Thus, a system of equations is built up.

If the coordinate directions coincide with the main directions of the hydraulic
tensor (see sec. 2.3.1), the boundary integral 3.78 becomes:

∫
Γ

(−K
f

grad h)ndO = −Kf,xx
∆z
∆x (hi+1,j − 2hi,j + hi−1,j)

−Kf,zz
∆x
∆z (hi,j+1 − 2hi,j + hi,j−1) = 0

(3.81)

If, additionally, the subsurface material is isotropic and ∆x = ∆z, the last
equation is further simplified:

∫
Γ

(−K
f

grad h)ndO = −Kf(hi+1,j + hi−1,j + hi,j+1 + hi,j−1 − 4hi,j) = 0

(3.82)
There is no stability constraint, and the order of consistency is O(∆x2) for
the piezometric head. Linear symmetric systems of equations must be treated
further. For the same reasons as those explained in section 3.1.3, the order of
consistency is only O(∆x) for the Darcy velocity (see sec. 3.1.6).

The similarity between the Finite-Volume and the Finite-Difference Method
(see sec. 3.1.3) is shown for an isotropic subsurface material and ∆x = ∆z.
If the Finite-Difference formula for the second derivative 3.22 is applied to
equation 3.77, this yields:

−Kf(
hi+1,j − 2hi,j + hi−1,j

∆x2
+

hi,j+1 − 2hi,j + hi,j−1

∆z2
) = 0 (3.83)

If the equations 3.82 and 3.83 are compared, it is obvious that both methods
lead to the same result in this specific case. Of course, this not the case in
general.

If the boundary of the control volume coincides with a jump in a coefficient
- in this case the permeability (tensor), a harmonic averaging (see HELMIG
(2000 [99])) should be carried out. If such jumps are within a control volume,
the coefficients should be averaged arithmetically in each control volume.

In the following, a quasi one-dimensional example based on equation 3.82
is investigated (see WITTE (2000 [262]), WITTE et al. (2001 [263])). A
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PCG Method with a diagonal preconditioner (see sec. 3.4.1, 3.4.2) is ap-
plied as the solver. The system has a length of 1000m, a width of 500m with
∆x = ∆z = 20m and a constant hydraulic conductivity of Kf = 10−4m/s. It
is closed along x = 0m and x = 500m. Along the open boundaries z = 0m
and z = 1000m, the piezometric head is imposed as h = 100m and h = 99m
respectively. Figure 3.18 shows the results, a linear course of the hydraulic
head and a constant parallel flow. The numerical results agree with the ana-
lytical solution; this can be proven easily.
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Fig. 3.18. Piezometric head and flow velocity, after WITTE et al. (2001 [263])

Two-phase flow processes in the subsurface

The two-phase flow equations in the pressure-saturation formulation 2.51 and
2.52 are considered (see sec. 2.4.4):

wetting phase:

−∂(Snφρw)

∂t
− div

[
ρwλwK(grad pw − ρwg)

] − qw = 0 (3.84)

non-wetting phase:

∂(Snφρn)

∂t
− div

[
ρnλnK(grad pc + grad pw − ρng)

] − qn = 0 (3.85)
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In these equations, the subscripts n, w stand for the non-wetting and wetting
phase, S for saturation, φ for porosity, ρ for density, λ for mobility, K for
the permeability tensor, p for pressure, pc for capillary pressure and g for the
vector of gravity. The equations are strongly coupled, highly non-linear and
of mixed parabolic / hyperbolic type.

As shown in the context of the FEM (see sec. 3.1.4), a semidiscrete method
is applied, i.e. here, that the space is discretized with the FVM and the time
with the FDM. A fully implicit Euler scheme (see sec. 3.1.2) is chosen for the
determination of the unknowns. The similarity of upwind or upstream meth-
ods in the FDM, FEM and FVM is mentioned (see secs. 3.1.3, 3.1.4). The
boundary and volume integrals are solved for the control volume i according
to equation 3.77 (see fig 3.16). This leads to the following non-linear non-
symmetric algebraic equations for each time step (see HELMIG (1997 [98])):

wetting phase:

− [
(Snρw)n+1

i − (Snρw)n
i

]
φBi/∆t

−ρn+1
w,ijλ

n+1
w,ij

∫
Γi

KgradNjndO (pn+1
w,j − ρn+1

w,j g − pn+1
w,i + ρn+1

w,i g)︸ ︷︷ ︸
discrete flow dfw

−qn+1
w,i Bi = 0

(3.86)

non-wetting phase:

− [
(Snρn)n+1

i − (Snρn)n
i

]
φBi/∆t

−ρn+1
n,ij λn+1

n,ij

∫
Γi

KgradNjndO (pn+1
w,j + pn+1

c,j − ρn+1
n,j g − pn+1

w,i − pn+1
c,i + ρn+1

n,i g)︸ ︷︷ ︸
discrete flow dfn

−qn+1
n,i Bi = 0 (3.87)

In these equations, Bi denotes the control volume. The surface integral over
the boundaries of the control volume can be determined according to the
FEM; this is explained later. The densities are averaged along the edges (see
fig. 3.16):

ρn+1
α,ij = 0.5(ρn+1

w,i + ρn+1
w,j ), α = w, n (3.88)

The mobility term can be determined with fully upwinding, i.e. the value at
the upstream node of the discrete flow direction is chosen:

λn+1
α,ij =

{
λn+1

α,i if dfα ≥ 0

λn+1
α,j if dfα < 0

, α = w, n (3.89)
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This method is also called Fully Upwind Box Method. The computation of the
mobilities in equation 3.89 corresponds to the positive transmissivity condi-
tion after FORSYTH (1991 [83]). In order to fulfill this condition, the mesh
geometry must be given in such a way that negative coefficients of the perme-
ability tensor caused by the element geometry are avoided. Other possibilities
for choosing the mobility term are discussed later.

As already addressed before, the similarity in method of the Finite-Element
and the Finite-Volume Methods is demonstrated. The Subdomain-Collocation
Method can be interpreted as a Galerkin Method (see sec. 3.1.4) with special
weighting functions (see fig. 3.19). The weighting function Wj equals 1 in a
certain area around the considered node and 0 outside:

Wj(x) =

{
1 if x ε area
0 otherwise

(3.90)

ii-1

xx∆ ∆

1

Nj

Wj

i+1

Fig. 3.19. Shape and weighting functions for Subdomain-Collocation Method, after
HELMIG (1997 [98])

If the area around the considered node (see fig. 3.19) and the control volume
(see fig. 3.16) coincide, the similarity between the FVM and CVFEM is given.
It can be shown that the FVM and the CVFEM (see sec. 3.1.4) lead to very
similar results (see FORSYTH (1991 [83]), HELMIG (1997 [98])). The major
difference results from the fact that the FVM determines the flux term F by
a five-point stencil on a rectangular grid and the CVFEM by a nine-point
stencil, i.e. the CVFEM also takes the diagonal nodes into account. More-
over, the advantages of the two discretization methods can be combined. If,
for example, the control volume is defined as shown in figure 3.16, right, it is
a problem in the FVM to determine the gradients of the unknowns along the
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control-volume boundaries. However, this is easy in the FEM, as the gradients
of unknowns are computed with the help of the gradients of the shape func-
tions. Thus, the fluxes perpendicular to the boundaries of the control volumes
in equations 3.86 and 3.87 are computed with a one-point integration, also
called the midpoint rule.

The Fully Upwind Box Method is only of first-order consistency in space and
time O(∆x, ∆t), and there is no stability constraint. In convection dominated
cases, the equations are self-sharpening with respect to the front profile caused
by the non-linearities in the flux terms (see HELMIG (1997 [98])).

As an alternative to the Fully Upwind Method, the mobility term can be
determined by a linear interpolation between the mobilities at node i and j
(see fig. 3.16) with an upwind parameter αij shown here for the wetting phase:

λn+1
w,ij = αijλ

n+1
w,i + (1 − αij)λ

n+1
w,j (3.91)

Again, the upwind parameter, which depends on the flow direction and the
ratio of convection to diffusion, must be determined heuristically. For different
reasons, which are partially given later, this method is not recommended.

A comparative study of different discretization methods regarding aspects of
monotonicity, mesh geometry, convection / diffusion and heterogeneities (see
HELMIG (1997 [98])) demonstrates that the Fully Upwind Box Method is
monotonous, applicable to unstructured grids, locally mass-conservative and
represents the correct physical behavior at the cost, however, of a certain nu-
merical diffusion.

Using a comparatively simple, quasi one-dimensional example, the displace-
ment of one immiscible fluid by another, for example oil by water, is simulated
(see HELMIG (1997 [98]), PAUL et al. (2000 [205])). A pw − Sn formulation
is chosen. The Fully Upwind Box Method is applied for spatial discretiza-
tion and a fully implicit Euler scheme for the temporal discretization. A
BiCGSTAB Method with a Multigrid preconditioner in combination with a
Newton-Raphson Method for the non-linearities (see sec. 3.4) is chosen as the
solver. The system is shown in figure 3.20. If gravitational and capillary effects
and sink / source terms are not taken into account, if the fluids are incom-
pressible (here ρw = ρn = 1000kg/m3) and have the same viscosity (here
µw = µn = 0.001kg/(ms)), and if the porosity is constant (here φ = 0.2),
equations 3.86 and 3.87 can be considerably simplified and solved analyti-
cally (see BUCKLEY, LEVERETT (1942 [50])). The permeability is set to
K = 10−7m2, and the relative permeability-saturation relationship is deter-
mined after BROOKS, COREY (1964 [46]) with the distribution index λ = 2.0
and the residual saturations Swr = Snr = 0.2; capillarity is neglected. The
system has a length of 300m, subdivided into 64 elements of ∆x = 4.6875m. A
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constant time step of ∆t = 5d is used. As initial conditions, the oil saturation
is set to Sn0 = 0.8 and the water pressure to pn0 = 2·105Pa. At the left bound-
ary, the oil saturation Sw = 0.2 and the water pressure pw = 2 · 105Pa are
imposed while, at the right boundary, the water flux is prevented (qw = 0.0),
and the flux of the oil phase qn = −3 · 10−4kg/(m2s) is given.

300 m 
x

q np w

front
S n wq    = 0

Fig. 3.20. System for the Buckley-Leverett problem, after HELMIG (1997 [98])

In figure 3.21, a comparison of the simulation results with the analytical solu-
tion for the water saturation after 500d is presented. The numerical solution
is monotonous and somewhat diffusive. The overall agreement between both
solutions is quite reasonable.

Additional information

For transport equations, the upwind parameters (eq. 3.91) can be computed
in a similar way to the FEM (see sec. 3.1.4). For multidimensional problems,
a streamline-orientated determination of the upwind parameters is advanta-
geous for the reduction of unwanted cross diffusion (see HELMIG (1997 [98]),
NEUNHÄUSERER et al. (2001 [188])). On rectangular grids, quadratic up-
winding, known as the Quick Method, can be used (see SCHÖNUNG (1990
[231]), MALCHEREK (2000 [170])).

Problems with more than one unknown per node, e.g. shallow-water equations,
can also be solved on so-called staggered grids, i.e. the different unknowns are
defined at different positions, e.g. the water level in the center of the element
and the flow velocity in the center of the edges. Then, two sets of control
volumes must be determined (see SCHÖNUNG (1990 [231]), MALCHEREK
(2000 [170])).

A very promising class of discretization methods comprises those which main-
tain the monotonicity of the solution, e.g. Slope-Limiter, Flux-Limiter Meth-
ods. The main idea of the Slope-Limiter approach is an extension of the Go-
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analytical sol.
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Fig. 3.21. Comparison of numerical and analytical results for the Buckley-Leverett
problem, after PAUL et al. (2000 [205])

dunov Method for hyperbolic conservation laws. The Godunov Methods assume
piecewise constant, cell-averaged functions in the control volume. The solu-
tions on the new time level are obtained by shifting each cell solution of the old
time level a certain distance (determined by multiplying the advective velocity
with the length of the control volume) in the flow direction and then averaging
the intermediate results over the control volumes. It should be mentioned that
the Fully Upwind Box Method corresponds to the Godunov scheme. Rather
than using such piecewise constant functions on the new time level, piecewise
linear functions are applied in the Slope-Limiter approach. There are different
ways of determining the linear functions (see FINLAYSON (1992 [81])). De-
pending on the slopes, the order of consistency in space lies between O(∆x)
and O(∆x2). For one-dimensional problems without sink or source terms,
the Slope-Limiter Methods are explicit; otherwise they are implicit and even
lead to non-linear algebraic equations. The Slope-Limiter approach can be
applied to linear, e.g. the advection equation, or to non-linear partial differen-
tial equations, e.g. the Burgers’ equation. If polynomials of higher order are
chosen for contructing the slopes, this leads to Essentially Non-Oscillatory
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(ENO) Methods (see FINLAYSON (1992 [81])). Flux-Limiter methods re-
semble Slope-Limiter Methods (see LE VEQUE (1992 [252])). It should be
mentioned that Slope-Limiter and Flux-Limiter Methods can only be applied
to the FVM, not to the FEM or FDM. The major drawback of the limiter
methods is that they are generally restricted to structured grids, because it is
unclear how to determine the slopes on 2D or 3D unstructured grids. Further
information about limiter methods is found in FINLAYSON (1992 [81]) and
LE VEQUE (1992 [252]).

Another monotonicity-preserving method, the Flux-Corrected Transport Method
(FCT), has been developed in the context of the transport equation (see FIN-
LAYSON (1992 [81])). FCT solves a time step twice, once using a monotonous
low-order scheme and once using an oscillatory high-order scheme. Antidiffu-
sive fluxes are introduced by substracting low- from high-order fluxes, and
they are added to obtain the solution on the new time level. However, the
antidiffusive fluxes are restricted so that no new maxima, compared to the
previous time step and the low order solution, occur. Although a time step
must be computed twice, the advantage compared to the limiter methods re-
sults from the fact that non-linearities are avoided. FCT can also be applied
to the FEM (see CIRPKA, HELMIG (1997 [61])).

The Finite-Volume Method guarantees local conservation of mass, momentum
and energy which is a consequence of the formulation, because the differential
equations are fulfilled in each control volume. In this case, the FVM is superior
to the FEM and the FDM. When compared to the FDM, the unstructured
meshes allow an excellent approximation of complex boundaries and inner
structures.

This section provides only an introduction to different methods. Further in-
formation is given in SCHÖNUNG (1990 [231]), FINLAYSON (1992 [81]),
CIRPKA, HELMIG (1997 [61]), HELMIG (1997 [98]), BASTIAN (1999 [18]),
HELMIG (2000 [99]), MALCHEREK (2000 [170]), KOLDITZ (2000 [153]),
FARTHING, MILLER (2001 [80]), TORO (2001 [249]), or HINKELMANN,
HELMIG (2002 [111]).

3.1.6 Some other methods

The Method of Characteristics can easily be applied to hyperbolic or ad-
vection equations, e.g. inviscous shallow-water equations (see MALCHEREK
(2000 [170])). The partial, space- and time-dependent, differential equations
are transformed into ordinary, time-dependent, differential equations which
can easily be solved along the characteristics by time-integration schemes,
e.g. the explicit Euler or Runge-Kutta Methods (see sec. 3.1.2)), to determine
the solution on the new time level. Although these methods are explicit, there
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is no stability constraint concerning the time step. However, they cannot be
used alone to solve mixed hyperbolic / parabolic problems.

Another important method of solving problems which are of mixed hyper-
bolic / parabolic type is the Operator-Splitting Method, also called Fractional-
Step Method (see GALLAND et al. (1991 [86]), EWING, WEEKES (1998
[76])). The terms in the differential equations are split up into hyperbolic and
parabolic ones. Then, for each part, a numerical method specially suitable for
the type of problem class is applied. The hyperbolic terms, for example, can be
treated very well with the Method of Characteristics using a Lagrangian point
of view, and the parabolic terms with the FEM or FVM using an Eulerian
point of view (see HINKELMANN (1997 [108]), HINKELMANN, ZIELKE
(2000 [119])). In the field of two-phase flow in porous media, the two basic
equations can be decoupled if two incompressible fluids, e.g. oil and water, are
considered; this is the standard case in petroleum engineering. The IMPES
concept (IMplicit Pressure Explicit Saturation) is used in such cases. First,
the pressure equation, which is formulated implicitly, is solved and second, the
saturation equation, which is formulated explicitly, is solved, both by suitable
methods (see AZIZ, SETTARI (1979 [9]), HUBER, HELMIG (1996 [122]),
HELMIG (1997 [98])).

Generally, the flow velocities in groundwater flow have a spatial consistency
one order lower than the hydraulic head, because they are calculated in a
postprocessing step by the Darcy law, i.e. by a derivative of the previously
determined hydraulic head (see sec. 3.1.3). Mixed and Mixed-Hybrid Methods
do not insert the Darcy law into the continuity equation, but formulate the hy-
draulic head and the flow velocities as unknowns. Thus, both can be computed
with the same order of spatial consistency, i.e. the order of spatial consistency
for the flow velocity is increased by one (see CHAVENT, ROBERTS (1991
[58])). This is a major advantage when modeling transport processes because
the flow field can strongly influence the transport simulation and the compu-
tation of an highly accurate flow field is desirable. In a similar way, Mixed and
Mixed-Hybrid Methods have been applied to two-phase flow in porous media
(see DURLOWSKY (1993 [73]), EWING, WEEKES (1998 [76]), HELMIG,
HUBER (1998 [103])).

The methods described in sections 3.1.3 - 3.1.5 are continuum methods and
are based on an Eulerian point of view. Particle Methods which are based on a
Lagrangian point of view can also be chosen for single or multiphase transport
modeling. Here, the ‘fate’ of each virtual particle carrying mass is followed in
space and time in the computational domain (see CORDES, KINZELBACH
(1992 [64]), KINZELBACH (1992 [156])). When the Random-Walk Method
is used, the advective movement is driven by the flow field and the disper-
sive movement is determined by a statistical approach (see LA BOLLE et al.
(1996 [33]), WOLLSCHLÄGER (1996 ([265])). After each time step, the con-
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centrations are calculated by summing up all the particles in each element or
control volume. Particle Methods have no problems with sharp fronts and no
negative concentrations occur. However, the redistribution of the particles to
the elements or control volumes leads to a certain numerical diffusion and, in
order to get reasonable results, a large number of particles must be simulated
which may cause a long calculating time.

Modeling flow and transport processes in the subsurface always involves un-
certainties. Three different ways of dealing with uncertainties in order to make
reliable predictions are briefly addressed here. One can use conservative as-
sumptions which have a high measure of security, but this may be not eco-
nomical. Uncertainties in certain parameters and their influences on the sim-
ulation results can be estimated by sensitivity analyses, i.e. by investigating
what happens if these parameters vary in reasonable limits. Finally, stochas-
tical modeling can be applied which leads to bandwidths of results with mean
values and standard deviations. As the flow field is the most important input
parameter for the transport equation, it is common to examine the influence of
different permeability distributions assuming the same mean value and vary-
ing the standard deviation and the correlation lenghts. Simulations can be
carried out applying the Monte-Carlo or Turning-Band Methods. Stochasti-
cal methods for subsurface modeling are an important research field which
is gaining importance. For further reading, see KINZELBACH (1992 [156]),
BARDOSSY (1992 [15]) or WACKERNAGEL (1998 [257]) and sec. 4.1.6.
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3.2 Parallel methods

The tremendous ongoing increase in computer technology in recent years has
led to a change in the methods applied in environmental and engineering
sciences. In addition to theory and experiment, so-called High-Performance
Computing (HPC), also called Scientific Computing, based on mathematical
models, computer simulation and optimization, has become the third pillar
of research. HPC offers new ways of broadening the knowledge of complex
coupled processes and phenomena in research as well as of addressing prob-
lems of large space and time scales in environmental and engineering practice,
and there is no doubt that a number of tomorrow’s fundamental problems
will be solved with its help. HPC is dominated by parallel computer systems
consisting of scalar processors or vector units. In order to obtain the maxi-
mum benefit from HPC architectures (see sec. 4.2), existing algorithms must
be adapted to the special hardware and new algorithms must be developed.
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In figure 3.22, the most important interactions between parallel methods and
other parts of the numerical simulation are shown, and they will be discussed
in this section.

3.2.1 Development of High-Performance Computing

For about two decades, vector and parallel computers have been used for mod-
eling hydro- and environmental systems. After a starting period, during which
the HPC systems were mainly employed in research, (single-unit) vector com-
puters were in a productional use from the late eighties. Parallel computers
have gained more and more importance since the early nineties, and they have
dominated HPC since the middle of the nineties. There is a small number of
parallel systems with more than 512 or 1024 processors, but a large number
with fewer than 128 or just a few hundred processors. Parallel processors can
all share the same memory, i.e. shared memory, or they can each have their
own memory, i.e. distributed memory, which is connected by a fast communi-
cation network. Often, smaller units of a parallel system, between 2 and about
32 processors, operate with shared memory, and several such units are con-
nected and operate with distributed memory. This memory concept is called
hybrid. Single-unit vector processors have disappeared from the market in re-
cent years. However, parallel vector computers, equipped with shared memory
for smaller numbers of units and with hybrid memory for large numbers, have
established themselves in the past few years. Further information concerning
architectures and information processing of HPC systems is given in sec. 4.2
and HINKELMANN (1997 [108], 2000 [109]). The USA has a leading posi-
tion in the hardware development and the use of HPC systems. The market
is developing very rapidly. The performance of the fastest systems worldwide
approximately doubles every year (see MEUER et al. (2001 [177])). Nowa-
days, the fastest supercomputers achieve several Teraflops, and experts pre-
dict Petaflops computers by the end of the first decade of the 21st century
(see BELL, GRAY (2001 [27])).

3.2.2 Parallelization strategies

Generally, parallel systems work with a programming model which is called
Single Program Multiple Data (SPMD). SPMD means that the same program
is stored on each processor and executed with the data available for the proces-
sor. The overall aim is to achieve scalable algorithms which obtain a speedup
close to the ideal one (see sec. 4.2). Below the SPMD model, two different
programming models which are called data parallel and message passing are
distinguished.
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In the data-parallel programming model, which is particularly suitable for
shared-memory machines, the parallelization and the exchange of data is car-
ried out to a large extent by a compiler, i.e. no work need to be done by hand.
A user or developer can further increase the performance by integrating di-
rectives into the code. Only one global data or addressing space exists. The
data-parallel model performs well for algorithms which are based on structured
grids and for problems which can be synchronized well. The major drawback
of the data-parallel programming model lies in fact that, generally, it is not
portable to distributed-memory systems. As the number of processors which
can reasonably scale with shared memory is limited up to about 100, data-
parallel models cannot be used for very large-scale problems. In this context,
High-Performance Fortran (HPF) (see KOELBEL et al. (1993), SCHÜLE
(1998 [233])) and OpenMP (see CHANDRA et al. (2000 [57])) are mentioned.
HPF has been continously vanishing from the market, however, since about a
few years a further variant, JaHPF, is under development, especially in Japan,
and winning certain importance. Nevertheless, OpenMP has more or less be-
come the standard tool for data parallelism.

The message-passing programming model has been developed for distributed-
memory parallel computers, and it is also applicable to shard-memory sys-
tems, generally without loss of performance. Here, communication routines
carry out the data exchange between the processors. On the one hand, these
routines can be implemented into the code by hand. On the other hand, much
of this ‘hand work’ can often be avoided, because a number of general-purpose
parallel tool-boxes have been developed in recent years, for example ScaLA-
PACK (see BLACKFORD et al. (1997 [32])) and UG (see BASTIAN (1996
[17]), BASTIAN et al. (1997 [19])). In this context, it should be mentioned
that BIRKEN (1998 [30]) has demonstrated with an advanced use of object-
oriented methods that the amount of work done by hand can be substantially
reduced, even for a complex software system like UG. The Message-Passing
Interface (MPI) (see WALKER, DONGARRA (1996 [258])) and Parallel
Virtual Machine (PVM) (see GEIST et al. (1994 [90])) have become standard
communication interfaces, and they enable portability among nearly all the ex-
isting parallel platforms. In recent years, MPI or MPI-2 has spread much more
than PVM. The message-passing programming model enables the treatment
of algorithms based on unstructured grids. When compared to data-parallel
models, message-passing models may scale over a much larger number of pro-
cessors.

Generally, explicit discretization methods can be parallelized faster and more
efficiently than implicit ones. For implicit schemes, there are two different par-
allelization strategies, called Domain-Decomposition Methods and algebraic
parallelization.
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Domain-Decomposition Methods are based on a division of the computational
domain into overlapping or non-overlapping subdomains. In general, each sub-
domain is assigned to one processor. The problem to be solved is split up into
a local problem in each subdomain and an interface problem which consists of
the interprocessor nodes, i.e. the nodes belonging to more than one subdomain
/ processor. The local problem can be parallelized easily and efficiently with-
out or with little communication. In most cases, the interface problem requires
little CPU time compared to the local problem. A coupling of the subprob-
lems is done by Schwarz or Schurcomplement Methods (see HACKBUSCH
(1991 [94])). The major disadvantage of Domain-Decomposition Methods lies
in the fact that the local problems may need very different CPU times for
their solutions. This is the case when, for example, a sharp front occurs only
in one or a few subdomains, and then a good load balancing (see sec. 3.2.4)
cannot be achieved. Additionally, the convergence of iterative solvers (see sec.
3.4) depends on the number of processors. Domain-Decomposition Methods
are used for elliptic or parabolic problems (see LÄMMER (1997 [161])). For
the reasons mentioned above, they are not suitable for mixed hyperbolic /
parabolic problems which are typical in hydro- and environmental engineer-
ing.

When the algebraic parallelization strategy is chosen, most of the serial algo-
rithm remains the same, and every processor computes its part of the basic
algebraic tasks, such as matrix-vector products or vector operations, with its
assigned data (see sec. 3.3). Generally, the convergence of iterative solvers
(see sec. 3.4) does not depend on the number of processors, and a good load
balancing (see sec. 3.2.4) can be expected. However, algebraic parallelization
requires more communication than Domain-Decomposition Methods. Overall,
algebraic parallelization is superior for most environmental problems.

3.2.3 Parallelization of basic tasks

In this section, the parallelization of several problem-independent tasks is ex-
plained. These parallel tasks are later combined for some fluid mechanical
problems. In principle, they are also suitable for other problem classes which
need the same basic parallel tools. A detailed description is given in HINKEL-
MANN (1997 [108], 2000 [109]).

Communication

When the message-passing programming model is chosen, data exchange or
message passing between processors is required for certain mathematical oper-
ations, and it is performed by interprocessor communication. The time which
has to be invested for a communication tcom is determined by equation 3.92
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with the start-up time tst, the amount of data m and the rate of data trans-
mission rtr:

tcom = tst + m rtr (3.92)

The communication basically consists of the routines send data and receive
data. Sending and receiving can be synchronous or asynchronous. When syn-
chronous communication is chosen, the sender and receiver are blocked until
the sender has received a confirmation of receipt. In the asynchronous case,
program execution is continued directly after the send or receive command.
Thus, an overlapping of communication and program execution is possible.
Synchronous communication is very safe, asynchronous very economical. Com-
bining asynchronous sending with synchronous receiving is recommended.
Moreover, it should be mentioned that there are blocking and non-blocking
communications which are similar to synchronous and asynchronous commu-
nications; for details, see the handbooks of MPI and PVM. The standard send
function for exchanging data between two processors using MPI and the pro-
gram language C is shown in the following example:

MPI Ssend (buf, count, datatype, dest, tag, comm)
void *buf address of data to be sent
int count number of elements of the MPI datatype which buf

contains
MPI Datatype datatype MPI datatype
int dest destination process for the message
int tag marker to distinguish between different messages
MPI Comm comm communicator shared by the sending and receiving

processes

This is also called point-to-point communication whereby point means process
or processor. Other communication functions such as broadcast (send a mes-
sage to every processor), global sum (sum up the partial values of a variable
among all processors) and synchronization (stop at a predefined mark until ev-
ery processor has reached it) are derived from the basic sending and receiving
routines. The communication routines are available as optimized subroutines
in the MPI and PVM libraries (see WALKER, DONGARRA (1996 [258]),
GEIST et al. (1994 [90])).

One has to distinguish between local and global communication. For a local
communication, only a part of all the processors exchange data. Let us as-
sume that K2 in figure 3.23 is partially computed on the processors P0 and
P2, a local exchange between these processors is required for the determina-
tion of the full value of K2. It must be mentioned that the development of a
communication pattern is much more complex for unstructured grids than for
structured grids. Generally on unstructured grids, each processor has to ex-
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Fig. 3.23. Interprocessor nodes, local and global communication, after HINKEL-
MANN (2000 [109])

change a different amount of data with a different number of other processors
for a local communication, and this should be done in parallel with minimal
communication (see HINKELMANN (2000 [108])).

When a global communication, also called collective communication, is carried
out, a message is exchanged between all the processors. Let us assume that
K3 is partially computed on the processors P0, P1, P2 and P3, an exchange
between these processors is necessary for the determination of full value of
K3 (see fig. 3.23).
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Fig. 3.24. Tree structure for global sum, after HINKELMANN (2000 [109])

To improve the understanding of parallel programming or programming in
networks (see sec. 4.2), the determination of a global sum is explained. Imag-
ine, the variable l contains the processor number on each processor, and its
global sum is being looked for. It is possible, for example, that the processors
P0 to P6 send their values to P7 which computes the result, while all other
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processors are waiting the whole time they are not making their single com-
munication. Overall, P7 has to receive 7 messages, and the communication
effort Ocom increases linearly with the number of processors p, i.e. Ocom(p).
When a tree structure is applied, this communication is carried out over three
levels (see fig. 3.24). On the first level, 4 messages are exchanged in parallel,
on the second level 2 messages and on the third level 1 message. Thus, P7 only
receives 3 messages, and the communication effort only increases logarithmi-
cally, i.e. Ocom(log2p). This procedure is similar for numbers of processors
not equal to 2n with n = 1, 2, 3, ... . Finally, it is mentioned again that such
routines are available in the MPI and PVM libraries.

Data structures and algebraic operations for the message-passing
programming model

The numerical solution methods discussed in section 3.1 are generally charac-
terized by sparse matrices, and there are many techniques for storing these ma-
trices economically, depending on whether they are designed for serial or par-
allel computers and scalar or vector processors (see SCHWARZ (1991 [235]),
GEIST et al. (1994 [90]), HINKELMANN (1997 [108])). Overall, storage tech-
niques which only address non-zero terms are very efficient.

For the interprocessor nodes (see fig. 3.23), there are two different possibilities
for storing the values of the corresponding variables. When the inconsistent,
also called geometric, storage technique is applied, only partial values of the
full value are stored on each processor. This occurs, for example, when a sys-
tem matrix in the FEM (see sec. 3.1.4) is only locally assembled in its subdo-
main; this is done without communication. As shown later, the global system
matrix is not assembled for matrix-vector operations. However, this method
requires somewhat more storage space, because the interprocessor nodes are
multiply stored. The storage technique is called consistent or algebraic if the
full value is assigned to the variables on each processor (see fig. 3.25). Com-
munication is needed for computing the global system matrix in the FEM; for
further algebraic operations, a reorganisation of the data distribution among
the processors is necessary to obtain a good load balance (see sec. 3.2.4).

Adding or substracting vectors can be done fully in parallel without commu-
nication. For inconsistent storaging, a local communication must be carried
out if the full values are needed for a further operation, e.g. a division. Scalar
products or norms are first fully computed in parallel on each processor with
its assigned data without communication. If the inconsistent storage technique
is used, the interprocessor nodes must be multiplied by a factor depending on
the number of processors / subdomains to which they belong. Finally, a global
communication leads to the global sum (see fig. 3.25).
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Fig. 3.25. Parallel computation of the norm of a vector, after HINKELMANN
(2000 [109])

A parallel matrix-vector product for the consistent storage technique is shown
in figure 3.26. This is a typical situation for a globally assembled system matrix
in the FEM (see sec. 3.1.4). The non-zero data are assigned to the processors
row-wise; a column-wise assignment is also possible. For large matrices, a ma-
jor part of the matrix-vector product is fully computed in parallel without
communication. However, for a smaller part, communication is required, for
example P0 needs b3 from P1. Further information is given, for example, in
KLAAS (1996 [144]).

A parallel matrix-vector product for the inconsistent storage technique is
shown in figure 3.27. This is a typical situation for a locally assembled system
matrix in the FEM. Again, only the non-zero terms are assigned to the pro-
cessors. For the parallel matrix-vector product, just the interprocessor nodes
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Fig. 3.26. Parallel matrix-vector product for consistent storage technique, after
HINKELMANN (2000 [109])

of the vector perform a local communication to obtain their full values. If the
full right-hand term is needed for further operations, a local communication
must be carried out again.

As far as the efficiency of the parallel matrix-vector product is concerned,
the differences between inconsistent and consistent storaging are small (see
HINKELMANN (2000 [109])). The inconsistent storage techniques need less
communication, but more storage than the consistent variant. In parallel pro-
gramming, one often has to decide whether certain operations are performed
with additional communication or additional storage and computing effort.
Finally, it should be mentioned that the (parallel) matrix-vector products re-
quire the major part of CPU time of the solvers (see sec. 3.4), and also a
major part of the whole CPU time for many numerical simulations.

In the context of the message-passing programming model, parallel overhead
arises. It consists of communication time, load imbalance (e.g. wait times,
see sec. 3.2.4) and additional computing time as well as additional storage
requirements. The parallel overhead has to be taken into account when the
message-passing programming model is chosen. This is the reason, why no
ideal speedup (see sec. 4.2) is generally obtained. Of course, the parallel over-
head should be small in order to get an efficient parallel algorithm.

If a parallel unit consists of vector processors, a further run-time speedup
can be obtained. In a first step, an auto-vectorization is carried out by the
compiler. Generally, the compiler can only partially detect the vectorization
possibilities. Therefore, the developer has to enlarge the code by further com-
piler directives. Large loops can be well vectorized, as an efficient pipelining
(see sec. 4.2) is possible. In the pipelines, no data dependencies or redundancies
may occur. Generally, the aspects direct addressing, structured grid, explicit
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algorithm and dense matrix are very suitable for vectorization. If they are
not or only partially given, a vectorization may be reasonable depending on
the special problem. Several algorithms cannot be vectorized efficiently, for
example direct solvers, Multigrid solvers (see sec. 3.4) and different Particle
Methods (see sec. 3.2.5).

Further information about the topics discussed in this section is given in
HINKELMANN (2000 [109]).
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Data structures and algebraic operations for the data-parallel
programming model

As already mentioned before, the data-parallel programming model is suit-
able for parallel systems with shared memory. For synchronous problems and
algorithms operating on structured grids, a large part of the parallelization
including the load balancing (see sec. 3.2.4) for algebraic operations is carried
out by the compiler. Futher optimizations may be possible and must be added
to the source code by the developer. If the two mentioned prerequisites are
not fulfilled, the data-parallel programming model should not be chosen.

3.2.4 Load balancing

Problem description

The problem of load balancing is concerned with dividing the computational
load among the processors in such a way that they are all equally burdened
and, for the message-passing programming model, interprocessor communi-
cation is minimized. For the partial differential equations treated here, load
balancing is done by partitioning the computational domain into subdomains
and assigning each subdomain together with the corresponding data to one
processor (see fig. 3.28).

Fig. 3.28. Grid partitioning into four subdomains, after HINKELMANN (2000
[109])
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It should be mentioned that time-parallel approaches also exist (see BURMEIS-
TER, HACKBUSCH (1996 [53])). However, they have not gained acceptance
for different reasons.

On structured grids the domain is divided row-wise, column-wise or block-
wise. In the data-parallel programming model, this task is carried out by the
compiler which splits the corresponding vectors up. Grid partitioning is much
more complex for unstructured grids than for structured ones. In a general
formulation, the load balancing problem leads to an optimization task of NP-
complete complexity (see GAREY et al. (1976 [88])). As no suitable exact
solution methods exist for such problems today, suboptimal methods must be
chosen.

For many problems in which the CPU-time requirements in the subdomains
do not vary much a static grid partitioning is carried out in a preprocessing
stage, and it does not change during the numerical simulation. If, for example,
adaptive methods (see sec. 3.3) are used, the CPU time in the subdomains
may temporarily increase significantly caused by adaptive mesh refinement
and coarsening (see sec. 3.3). Then, a dynamic load balancing should be ap-
plied, and the CPU load must be redistributed among the processors during
the simulation.

Solution methods

A grid partitioning can be carried out in such a way that the number of nodes
in the subdomains is equal. However, the number of elements then differs
slightly. Within an implicit numerical simulator, the CPU time for the solvers
(see sec. 3.4) is generally dominated by loops running over the number of
nodes. When the number of elements is distributed equally, then a small im-
balance in the number of nodes occurs in the subdomains. In the latter case,
the load-balancing techniques should be applied to the dual mesh or the dual
graph. A dual mesh is generated when every element is replaced by its center
of gravity, and these nodes are connected according to the neighborhood con-
ditions (see fig. 3.29). In a numerical simulator, the CPU time for evaluating
the system matrices is used by loops running over the number of elements. It
is also possible to introduce a cost function which consists of a weighted sum
of the number of nodes and elements or even other parts, e.g. the number of
boundary nodes, and to partition the grid to achieve an equal distribution of
the costs.

Two widely used procedures for subdividing the grids are explained. In the
recursive bisection, a domain is split up into two subdomains, and this is
then repeated recursively in the subdomains in several steps up to the desired
number 2n, n = 1, 2, 3, ... . With a few extensions, a subdivision into a general
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number of subdomains is possible. When a clustering technique is chosen, the
grid partitioning into the desired number of subdomains is carried out in one
step. The recursive bisections have the advantage that a better load balancing
can be obtained. However, they need more CPU time.

Three different groups of load-balancing methods are distinguished: geomet-
rically orientated, graph-orientated and further heuristic methods. They can
be combined with the recursive bisection or the clustering technique; some of
the important ones are discussed in the following.
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Fig. 3.29. Mesh and dual mesh, after HINKELMANN (1997 [108])

Geometrically orientated methods use geometric information of the mesh. The
Recursive-Coordinate Bisection (RCB) determines the axis with the longest
extension and subdivides the mesh along this axis (see fig. 3.30). If the inves-
tigation concerns which coordinate axis leads to an interprocessor boundary
with the least nodes or edges, this variant is called modified RCB. As the
grid partitioning depends on the choice of the coordinate system, further im-
provement is offered by Recursive-Inertial Bisection (RIB), which divides the
mesh along the inertial axis. Geometrically orientated methods are simple and
require little CPU time. However, in complex meshes, subdomains which are
not connected with each other can occur. Such a situation can cause a break-
down of certain parts of an algorithm. Additionally, the communication is not
taken into account during the solution of the load-balance problem, and this
can cause large interprocessor boundaries with many nodes and edges or much
communication time.

Graph-orientated methods are based on the connectivity information of the
mesh or the graph / dual graph. The Recursive-Graph Bisection determines
the diameter of the graph or the maximal graph distance to partition the
mesh. One of the most promising techniques is the Recursive-Spectral Bisec-
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Fig. 3.30. Modified Recursive-Coordinate and Recursive-Spectral Bisection, after
HINKELMANN (1997 [108])

tion (RSB) which minimizes the number of common nodes or edges on the
interprocessor boundary - and thus the CPU time for local communication,
when a graph is subdivided into two subgraphs with the same number of nodes
or edges (see fig. 3.30). The RSB is based on computing the Fiedler vector
which is the eigenvector corresponding to the second smallest eigenvalue of
the graph-connectivity matrix. Graph-orientated methods are superior to ge-
ometrically orientated ones. If the initial mesh is connected, then it can be
mathematically proven that at least one subgraph is connected when RGB
or RSB are applied. However, graph-orientated methods require more CPU
time, for example, because an eigenvalue solver is required for RSB.

Heuristic methods use other information. The mesh partitioning for the dual
graph often results in evaluating the interprocessor boundaries in the form
of a ‘sawtooth pattern’ (see fig. 3.31). The Kernighan-Lin heuristic (KL) can
be used to obtain a further improvement of this solution. KL switches ele-
ments from one subdomain to the other if the number of common nodes can
be decreased. Thus, KL operates like a smoother. KL needs a good starting
subdivision, otherwise it requires too much CPU time. Further methods are
given in the literature at the end of section 3.2.4.

If the CPU time changes significantly in a subdomain during a simulation,
for example as a result of adaptive mesh refinement (see sec. 3.3) or Local
Multiplicative Multigrid (see sec. 3.4.4), a dynamic load balancing should be
applied. If (adaptive) Local Multigrid is applied, a load imbalance not only
occurs within a level in the horizontal direction, but also between the levels
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Fig. 3.31. Kernighan-Lin heuristic, after HINKELMANN (1997 [108])

in the vertical direction. In Multigrid Methods, the same nodes on different
grid levels (see sec. 3.4.4) can be assigned to different processors. In practice,
equally loaded clusters are built consisting of a few elements on a certain
grid level together with the corresponding refined elements up to a further
given grid level, and the partitioning is then carried out for these clusters (see
LANG (2001 [162])). In a dynamic case, the quality of the grid partitioning
is of only minor importance; what is important is the CPU time required
for the grid partitioning technique and that required for the data redistri-
bution and load migration. Therefore, the benefit of the CPU-time expensive
graph-orientated methods is very questionable. Often, simple grid-partitioning
techniques, e.g. RCB, and clustering techniques are chosen. A cost function
must be determined which indicates a load redistribution during the simula-
tion if a certain load imbalance is exceeded. The following data redistribution
and load migration is very complex. Using graph-based data structures and
object-orientated methods, it can be carried out very efficiently with methods
based on the concept of distributed objects. For example, with distributed ob-
jects, it is comparatively easy to move not only objects or elements between
processors, but whole element trees. For parallel adaptive Multigrid Methods,
the CPU time for the load migration is much higher than that for the grid
partitioning in general. Although dynamic load balancing may not seem to be
economical with regard to the CPU time, it has been demonstrated that it re-
quires only a small percentage of the CPU time for large-scale computations;
thus, dynamic load balancing is not a serious handicap for overall scalable
simulation methods.

After the mesh has been partitioned, the subdomains must be assigned to the
processors; this is called mapping. Adjacent subdomains should be assigned to
adjacent processors, because then the communication time is minimal. Often,
this is not or cannot be taken into account during the grid partitioning. How-
ever, it must be mentioned that on parallel systems nowadays the mapping is
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no longer of such importance because of the fast routing in the communication
networks (see sec. 4.2).

Additional information

Three-dimensional mesh partitioning can be significantly simplified if the mesh
is structured in one coordinate direction where the mesh resolution is com-
paratively coarse. This mesh structure is also called 2.5 mesh, and is often
chosen for the shallow-water equations (see sec. 2.6).

It should be mentioned that there are different public-domain tools for grid
partitioning which offer the most standard as well as dynamic load-balancing
techniques (see CHACO ([56]), ParMETIS ([202]), UG / DDD ([250]), EX-
DASY ([77])). Aspects of parallel input and output are given and discussed
in HINKELMANN (1997 [108]), UG / DDD ([250]) and COVISE ([65]).

Further reading on load-balancing methods can be found in HENDRICKSON,
LELAND (1993 [104]), FARHAT, LESOINNE (1993 [79]), SIMON et al. (1993
[239]) and HINKELMANN (1997 [108]), with special focus on dynamic load
balancing in BASTIAN (1996 [17]), BIRKEN (1998 [30]), or LANG (2001
[162]).

3.2.5 Particle Methods and series

Particle Methods may be very suitable for parallel computation, as they are
characterized by coarse granularity (see sec. 4.2). The basic idea of Particle
Methods is the following: a given number of particles is traced from time
step to time step through the computational domain controlled by a velocity
field; after each time step, the particles in each element or control volume
are counted to compute the concentration distribution. The particle methods
differ in the way how the advective and diffusive / dispersive paths as well as
the tracing are determined. This is not discussed here (see sec. 3.1.6).

For parallelization, the particles are distributed equally among the processors
and, in principle, a very efficient parallel algorithm can be obtained. This is
easy to handle on a shared-memory system. On a distributed-memory system,
two problems may occur (see fig. 3.32). One is when an algorithm based on a
particle-method follows path lines starting from nodes of the computational
domain, e.g. the Method of Characteristics (see sec. 3.2.6, HINKELMANN
(1997 [108])). If such nodes adjoin several subdomains (! in fig. 3.32) and are
stored on the corresponding processors, they are treated on each one, but, de-
pending on the flow conditions, this is done correctly only on one processor.
Therefore, the missing information must be given by a local communication.
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Second - even more severe - it is possible that path lines leave the subdomain
area (!! in fig. 3.32). For special algorithms and problem classes, techniques
can be developed to solve this efficiently (see HINKELMANN (1997 [108])).

interprocessor boundary

! !

!!

processor 1processor 0

Fig. 3.32. Parallel tracing of path lines on two subdomains / processors, after
HINKELMANN (1997 [108])

Generally, an efficient particle-tracking algorithm is only achieved on a distributed-
memory parallel computer if each processor has the complete mesh informa-
tion and velocity field. However, this contradicts the distributed-memory phi-
losophy according to which each processor has only the mesh information of
its subdomain, and this in turn may also contradict the distributed-memory-
based computation of the velocity field. If the CPU time of a flow and trans-
port simulation is clearly dominated by the particle-tracking algorithm, one
solution for parallelization is to compute the flow field on each processor.
Other possibilities exist; the choice depends on the different algorithms for
the flow and transport simulation.

If particle interactions must be taken into account, such an algorithm possi-
bly cannot be parallelized reasonably. Moreover, Particle Methods cannot be
vectorized.

For numerical simulations, huge data sets are often used to steer the model,
i.e. to serve as the boundary conditions. There are some advantages in devel-
oping these data sets in Fourier series, and the computation of such series
can easily be parallelized. Each processor is assigned only a part of the coeffi-
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cients, and eventually a global summation leads to the correct value. Further
information is found in HINKELMANN (1997 [108]).

3.2.6 Recommendations

Nowadays, if people want to develop parallel algorithms or extend existing
algorithms for the use on parallel computers, I personally recommend the
message-passing programming model - not only for the problem classes dis-
cussed in this context -, as it enables the portability to nearly all existing
kinds of parallel High-Performance Computing architectures and offers the
best prerequisites for obtaining scalable algorithms (see sec. 4.2). There are
many public- domain tools (see secs. 3.2.2, 3.2.4) which support this work
a lot and reduce the amount of individual effort to a minimum; compilers
exist for nearly all standard programming languages, e.g C/C++, F90/F95,
Java. The major part of parallel computers uses a UNIX or LINUX operating
system, a few parallel machines run under WINDOWS. Explicit algorithms
and those which operate on structured grids can be parallelized more easily
and efficiently than implicit algorithms and those which are based on unstruc-
tured grids. An algebraic parallelization strategy should be preferred to the
parallelization strategy based on Domain-Decomposition methods, especially
if hyperbolic parts in the problems have a dominant influence. Numerical
simulation tools based on parallel, adaptive Multigrid Methods including dy-
namic load balancing are state of the art today. Coupled explicit / implicit or
Eulerian / Lagrangian methods often can be parallelized efficiently. If Multi-
grid Methods or certain explict methods, e.g. particle tracking, are chosen,
one should take into account that they cannot reasonably be vectorized, if at
all. Therefore, the use of parallel vector computers cannot be recommended.
Finally, one can think about data parallelism, if the problems considered are
based on structured grids and if portation to other platforms is definitly not
envisaged.

3.2.7 Examples

In this section, two different parallel algorithms, one based on the FDM and
the other on the FVM, are considered for the simulation of groundwater flow
processes.

Parallel Finite-Difference Method for groundwater flow processes

The problem already investigated in section 3.1.3 is again chosen here (see
HINKELMANN (2001 [110])). The parallelization is very easy. First, the one-
dimensional computational domain is subdivided in such a way that the same
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number of connected elements and their data are assigned to each processor.
Then, each processor evaluates equation 3.38 with its data. Using MPI, a lo-
cal communication is required for the nodes on the interprocessor boundaries
after each time step to obtain the results.

In figure 3.33 and table 3.2, the parallel efficiency (see sec. 4.2) and par-
allel speedup (see sec. 4.2) which have been achieved on the T3E (see sec.
4.2) are shown for different spatial and temporal discretizations, 6400 ele-
ments of ∆x = 10−3m and ∆t = 10−5s, 64000 elements of ∆x = 10−4m and
∆t = 10−7s and 640000 elements of ∆x = 10−5m and ∆t = 10−9s. As this
FD algorithm is explicit, the Neumann-stability condition (eq. 3.36) must be
fulfilled. Here, the Neumann number is Ne = 0.1 in all three simulations. For
a given problem size, the parallel speedup and the parallel efficiency decrease
with an increasing number of processors. For a given number of processors,
the parallel speedup as well as the parallel efficiency increase.
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640000 elements
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Fig. 3.33. Parallel speedup and parallel efficiency for different problem sizes on the
T3E, after HINKELMANN (2000 [109])
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1P 2P 4P 8P 16P

speedup [–]
6400 elements 1.00 1.62 2.34 3.15 3.80
64000 elements 1.00 1.96 3.62 6.06 8.32
640000 elements 1.00 1.99 3.95 7.69 14.9

efficiency [%]
6400 elements 100.0 81.0 58.5 39.4 23.8
64000 elements 100.0 98.0 90.5 75.8 52.2
640000 elements 100.0 99.5 98.8 96.1 93.3

Table 3.2. Parallel speedup and parallel effiziency for different problem sizes on
the T3E, after HINKELMANN (2000 [109])

Parallel Finite-Volume Method for groundwater flow processes

The FV algorithm and the problem already discussed in section 3.1.5 are inves-
tigated here concerning parallel computing (see WITTE (2000 [262]), WITTE
et al. (2001 [263])). As this algorithm is implicit, more steps must be carried
out for parallelization than when using the explicit FDM. An algebraic par-
allelization strategy is applied together with a message-passing programming
model based on MPI. Due to the chosen structured mesh, its partitioning is
easy, and blocks with the same number of elements are assigned to the pro-
cessors. In the parallel FVM, two major steps must be carried out, here using
inconsistent storaging for the system matrix. First, this matrix must be set
up by evaluating equation 3.81, 3.82 or 3.83. This can be done fully in parallel
without communication. Second, a linear symmetric system of equations is
solved iteratively with the parallelized PCG Method (see sec. 3.4.2) and di-
agonal preconditioning (see sec. 3.4.3). These tasks are based on the parallel
algebraic tasks introduced in section 3.2.3.

The simulations are carried out on two different parallel hardware architec-
tures, a massively parallel T3E and a cluster of standard PCs (see sec. 4.2).
Two different problem sizes are analyzed, ∆x = 1m, ∆z = 2m → 251001
nodes (variants (1) in fig. 3.34) and ∆x = 2m, ∆z = 4m → 63001 nodes
(variants (2) in fig. 3.34). In figure 3.34, the results of the parallel efficiency
are presented. For more than 4 processors, the results are as expected. For a
constant problem size, the parallel efficiency decreases with an increasing num-
ber of processors. For a constant number of processors, the parallel efficiency
increases with increasing problem size. Due to the faster communication net-
work (see sec. 4.2), the efficiency is higher on the T3E then on the PC cluster.
Efficiencies higher than 1.0 which are obtained in variant (1) on the T3E are
caused by cache effects (see sec. 4.2.3). The increase of the parallel efficiency
on the cluster, variant (1), from 2 to 4 processors is probably also effected by
the cache.
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3.3 Adaptive methods

For many problems, for example moving sharp fronts, it is neither necessary
nor efficient to carry out a uniform mesh refinement in order to achieve a
high accuracy of the solution, as significant temporal and spatial changes of
the solution functions occur only in small areas of the computational domain.
Adaptive methods aim at numerical solutions with high accuracy, optimal com-
putational effort and storage requirement by automatically adjusting the mesh
or the solution method to the temporally and spatially variable solution func-
tion. Therefore, they contribute to the reliability of numerical modeling and
computation. Many of the methods and techniques described in this section
were first developed in structural mechanics and were then applied to fluid
mechanics. There are various methods and techniques for carrying out an
adaptation. The adaptation is steered by different error estimators or indica-
tors, and different rules for refinement and coarsement must be defined. These
topics are introduced in the following.

Attention is drawn to the fact that, for many aspects of adaptive methods, e.g.
error estimators and indicators (see sec. 3.3.2), refinement and coarsening (see
sec. 3.3.3) or data structures, public-domain toolboxes exist, e.g. Sumaa3D
(see JONES, PLASSMANN (1995 [139])), PadFEM (see DIEKMANN et al.
(1996 [71])) or UG (see BASTIAN (1997 [19])). Some of these toolboxes are
applicable to parallel methods (see sec. 3.2) and are equipped with fast solvers
(see sec. 3.4).

3.3.1 Different methods and techniques of adaptation

First, one can distinguish between a priori and a posteriori methods depend-
ing on whether they are applied before or after a computation. In areas where
it is generally known that the solution accuracy is poor or where sharp gra-
dients of the solution function can be expected, an a priori mesh refinement
can be carried out (see BARLAG (1997 [13])). Such areas are found around
sinks and sources, corners, discrete fractures and changes of layers with dif-
ferent physical coefficients, e.g. permeability. Figure 3.35 shows an a priori
mesh refinement which has been carried out with the mesh generator ART
(see FUCHS (1999 [84]), sec. 4.1.3) around a source and a fracture.

The methods discussed in the following are a posteriori. For time-dependent
problems, space and time adaptation must be considered. For space-time
FE discretizations, for example the Discontinous Galerkin Methods (see sec.
3.1.4), space and time adaptation is carried out by the same means (see JOHN-
SON (1990 [136], 1992 [137])) while, for the semidiscrete FEM and FVM (see
secs. 3.1.4, 3.1.5), spatial and temporal adaptation are treated separately. In
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Fig. 3.35. A priori mesh refinement

the following, adaptive methods for semidiscrete formulations are explained.

In recent years, h-adaptive methods in which the number of marked elements
is increased or decreased have established themselves in many numerical sim-
ulation fields, not only in civil and environmental engineering (see JOHNSON
(1990 [136]), BORNEMANN et al. (1993 [34]), BASTIAN (1996 [17]), KO-
RNHUBER (1997 [155]), BARLAG (1997 [13]), BARLAG et al. (1998 [14]),
THIELE (1999 [247]), KAISER (2001 [140]), LANG (2001 [162]), fig. 3.36,
hanging nodes are explained in sec. 3.3.3). H-adaptive methods are the most
frequently used adaptive methods.
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When p-adaptive methods are applied, the polynomial degree of the shape
functions (see sec. 3.1.4, fig. 3.9) is increased; for example, a quadratic shape
function is used instead of a linear one (see fig. 3.37). P-adaptive methods
are very suitable for problems which are characterized by a high regularity of
the solution. However, this is not the case for hyperbolic or mixed hyperbolic
/ parabolic problems. When simulating a moving sharp front, for example,
p-adaptive methods lead to over- and undershooting, so that the large addi-
tional effort in CPU time and storage for the higher polynomial degree only
causes a small increase in the solution’s accuracy. In such cases, h-adaptive
methods are more economical. Consequently, p-adaptive methods are hardly
used in hydro- and environmental engineering. P-adaptive methods or com-
binations of them with h-adaptive methods, so-called hp-adaptive methods,
are frequently found in structural mechanics (see RANK (1987 [212]), OHN-
IMUS (1996 [198]), AINSWORTH, SENIOR (1997 [3]), RANK, DÜSTER
(2001 [213])).
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In the r-adaptive method, also called moving-mesh adaptation, the nodes
of the computational domain are shifted on the streamlines (see fig. 3.38).
With such a method, the numerical dispersion of a simulation is reduced. As
the determination of the streamlines requires comparatively much CPU-time,
the r-adaptive method is often only economical for stationary problems (see
CIRPKA et al. (1999 [60]), PAPASTAVROU (1998 [201])). In a similar way,
nodes can be moved to sharp fronts, but this also has a number of disad-
vantages (see SCHÖNUNG (1990 [231])). Overall, it must be mentioned that
r-adaptive methods have lost importance in recent years.

When a d-adaptive method is chosen, the dimensionality of the problem is
adapted. Imagine a river which flows into the sea: upstream, the vertical flow
profil is constantly parabolic. However, downstream in the interaction area of
tides and varying inflow and outflow of saline water, the flow profile shows
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streamlinesstreamlines
Fig. 3.38. R-adaptive method

strong variations in the vertical direction (see 3.39). As the interaction area
changes depending on the tidal conditions, d-adaptive methods can be ap-
plied. It is easy to reduce a 3D-model to a 2D-model. However, it is difficult
for the lower-dimensional model to detect where its dimensionality must be
increased. D-adaptive methods are not widespread in hydro- and environmen-
tal engineering. They are found more frequently in structural mechanics (see
OHNIMUS (1996 [198])).
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The m-adaptive method is characterized by the fact that an adaptation of the
model concept or the process is carried out. The process adaptation can be
considered a subordinate part of a model adaptation. If, for example, an ad-
vective / dispersive transport problem is considered and advection occurs only
in small parts of the domain, the advection-related solution procedures can be
ignored there. However, it is difficult to activate advection again if, for exam-
ple, the processes vary over the time. The idea of m-adaptive methods is that
the model concept can be reduced; for example, a two-phase / two-component
(water-air) problem is reduced to single-phase / two-component one in areas
where only this phase occurs (see fig. 3.40). As already mentioned before, it
is very difficult to extend the model concept from the viewpoint of the lower
model concept. M-adaptive methods originate in structural mechanics (see
OHNIMUS (1996 [198])), and they are also used for modeling hydro- and en-
vironmental systems (see THORENZ (2001 [248])). The major drawback of
the m-adaptive methods for time-dependent problems is that they lead to free
moving boundary problems which cannot be solved without difficulties even
today.

two phase − two component
two component

one phase −
two component

two phase −

Fig. 3.40. M-adaptive method

CLASS (2000 [62]) has developed a method for non-isothermal multiphase /
multicomponent processes in porous media where all processes are treated by
the higher model concept and the primary variables are switched depending
on the local active processes on each node (see fig. 3.41). Thus, different model
concepts are treated in a similar way, and no free moving boundaries must
be traced. However, in combination with Multigrid Methods, special atten-
tion must be paid to the restriction and prolongation (see CLASS et al. ([63])).

Further adaptive methods are based on the solutions of local problems, hi-
erarchical approaches or overlaid grids. When the local problem technique
is chosen, the problem is solved again in small subdomains with higher-order
shape functions, for example quadratic instead of linear ones (see VERFÜRTH
(1996 [253]), PAPASTAVROU (1998 [201]), ELLSIEPEN (1999 [75])). Hier-
archical methods compare the solution with a more accurate solution which
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can be obtained with hierarchical bases, i.e. higher-order shape functions,
or mesh refinement (see VERFÜRTH (1996 [253]), PAPASTAVROU (1998
[201]), ELLSIEPEN (1999 [75]), see sec. 3.4.4). The solutions of local prob-
lems and hierarchical approaches are discussed further in the next subsection
in the context of error estimators and indicators. It is also possible to over-
lay an area of poor accuracy with any other refined grid where no nodes of
the original and the refined grids coincide (see BERGER, OLIGER (1994
[29])). Overall, it must be mentioned, that neither methods which are based
on the solution of local problems, nor hierarchical approaches, nor overlaid-
grid methods are frequently used.

Adaptive methods are also applied today to multiphysics problems. Imagine
a dike system where an interaction of free-surface and subsurface flow with
stresses and strains in the porous medium occurs (see fig. 5.29, sec. 5.2.3).
Deformation processes or crack propagations cause moving boundaries and
interaction interfaces for the ‘single-physics’ problems. Therefore, the differ-
ent computational subdomains must be adapted to the variable conditions,
e.g. the geometry.

For semidiscrete methods, a temporal adaptation is generally carried out by
a time-step adaptation, i.e. by varying the time step.

3.3.2 Error estimators and indicators

In adaptive methods, error estimators and error indicators play an important
role. Error estimators η give a measure of the magnitude of the error e in a
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certain norm, generally the energy norm or L2-norm, and they are mathe-
matically substantiated. Two positive error constants C1 and C2 must exist
so that the following holds:

C1η ≤ ||e|| ≤ C2η (3.93)

C1 and C2 should be close to one, as the error tends towards zero. Error indi-
cators give a measure of local errors by heuristic means. Therefore, they are
mathematically not substantiated.

Spatial discretization error estimators

First, the basic equation for groundwater flow eq. 2.24 and the Darcy law eq.
2.17 are recalled:

div (−K
f

grad h) = qw/ρw (3.94)

vf = −K
f

grad h (3.95)

with the piezometric head h, the hydraulic conductivity tensor K
f
, the water

source term qw, the density of water ρw and the filter velocity vf . For an

element i, the estimated error in the energy norm e2 based on BABUSKA,
RHEINBOLDT (1978 [10]) reads:

e2
i = C3 li

∫
Γi

J(vf )2dΓ + C4 l2i

∫
Ωi

div (K
f

grad h̃ − qw/ρw)dΩ (3.96)

In this equation, C3, C4 denote error constants, li the discretization length of
element i, J the jump in the Darcy velocity vj along the boundary Γ of the

domain Ω (see fig. 3.42) and h̃ the approximated piezometric head. The first
term in the last equation represents the jumps in the Darcy velocities inte-
grated along the edges of the element, while the second term stands for the
residual in the element, the inequilibrium of equation 3.94. For linear shape
functions and qw = 0, the second term vanishes (see RUST (1991 [227]));
otherwise this term can be neglected for smooth solutions (see AINSWORTH
et al. (1989 [4])).

For certain special cases, the error constants can be determined. However, they
generally depend on the problem, which means that these constants must be
computed again for every new problem.

A similar error estimation was developed by ZIENKIEWICZ, ZHU (1987
[270]) and was applied to groundwater flow by RANK, ZIENKIEWICZ (1987
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Fig. 3.42. Jumps in the FEM solution used for the error estimator of BABUSKA,
RHEINBOLDT (1978 [10])

[214]). The estimated error in the energy norm for an element i is given by
RANK, ZIENKIEWICZ (1987 [214]):

e2
i =

∫
Ωi

(vf − ṽf )tK−1

f
(vf − ṽf )dΩ (3.97)

Here, v stands for the exact velocity, ṽ for the approximated velocity and K−1

f

for the inverse hydraulic conductivity tensor. However, it must be mentioned
that e2

i in equation 3.97 does not have the unit of energy which is caused by
analogously applying the ZIENKIEWICZ, ZHU error estimator determined
from elasticity problems to groundwater flow.

The error in the L2-norm l is obtained from equation 3.96 if the inverse hy-
draulic conductivity tensor is omitted:

l2i =

∫
Ωi

(vf − ṽf )t(vf − ṽf )dΩ (3.98)

For the error estimator, the ‘exact’ velocity vf must be known or approxi-
mated. In ZIENKIEWICZ, ZHU (1987 [270]) different methods are explained.
The simplest one merely consists of computing an arithmetical average of the
values at the considered node (see fig. 3.43) which leads to a smoothed course
of the velocity v∗

f .
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Fig. 3.43. Numerical and smoothed velocity, after RANK, ZIENKIEWICZ (1987
[214])

The error estimator η2 in the energy norm for element i is determined by:

η2
i =

∫
Ωi

(v∗ − ṽ)tK−1

f
(v∗ − ṽ)dΩ (3.99)

The error estimator in the energy norm of the whole domain is computed by
summing up over the elements n:

η2 =

n∑
i=1

η2
i (3.100)

The error estimators based on the energy or L2-norm are widespread for ellip-
tic and parabolic problems because such problems are deduced by a minimis-
ing principle or a variational functional (see JOHNSON (1990 [136]), BORNE-
MANN et al. (1993 [34]), BASTIAN (1996 [17]), VERFÜRTH (1996 [253]),
KORNHUBER (1997 [155]), PAPASTAVROU (1998 [201]), ELLSIEPEN
(1999 [75])). However, such energy error estimators cannot in general be used
for hyperbolic or mixed hyperbolic / parabolic equations.

An exception is given by JOHNSON (1990 [136]), who developed an error es-
timator in the L2-norm for advection / diffusion problems which are treated
with the FEM. The basic idea for estimating the error consists of adding an ar-
tifical diffusion term to such an extend that it dominates advection. However,
this error estimator has some disadvantages. On the one hand, the determina-
tion of the error constants again depends on the example. On the other hand,
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the error estimator requires high computational and storage effort compared
to heuristic indicators which are introduced in the following (see BARLAG
(1997 [13])). Consequently, the Johnson estimator is not widely used in hydro-
and environmental engineering.

Recently, OHLBERGER (2001 [196], [197]) developed an a posteriori error es-
timator in the L1-norm for convection / diffusion / reaction equations which
are treated with the FVM. This error estimator is based on an entropy-weak
solution, i.e. a weak solution which fulfills different entropy inequalities. The
result and formulation of this error estimator are quite extensive; for this rea-
son, see the abovementioned literature. BÜRKLE, OHLBERGER (2001 [51])
extended this estimator to the equations of two-phase flow in porous media.
This estimator will possibly be applied frequently to advection / diffusion /
reaction problems in the near future.

If a mesh is refined within a time step, it is generally recommended not to
compute the same time step again with the refined mesh, but to proceed with
the next time step. The first way causes a lot of additional computing time
and storage for generally very small different results. However, a correction
scheme is then required for coarsened elements, e.g. a mass correction scheme
(see sec. 3.3.3, eq. 3.110).

Spatial discretization error indicators

Heuristic indicators are generally based on differences, gradients or curvatures
of the solution function. They are denoted in the same way as the estimators
with η. They are comparatively easy to compute and they are widely used
in structural engineering (see RUST (1991 [227]), OHNIMUS (1996 [198])) as
well as in hydro- and environmental engineering (see ELLSIEPEN (1999 [75]),
BARLAG (1997 [13]), BARLAG et al. (1998 [14]), KAISER (2001 [140])). Dif-
ference and gradient indicators are very suitable for locating sharp fronts. In
addition, curvature indicators detect the top and bottom region of a front.
Heuristic indicators are introduced here for the transport equation in ground-
water without sink and source terms (eq. 2.30):

∂c

∂t
+ vagrad c − div (D

hyd
grad c) = 0 (3.101)

Here, c stands for the exact concentration, va for the pore velocity and D
hyd

for the hydrodynamic dispersion tensor.

The difference indicator η is defined for element i as follows:

ηi = max
j �=k

| c̃j − c̃k | (j, k = 1, 2, ..., ne) (3.102)
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In this equation, c̃ denotes the approximated concentration and ne denotes
the number of nodes per element.

The gradient indicator is given by:

ηi = l | grad c̃i | (3.103)

Here, l stands for the characteristic length (see sec. 3.1.4, fig. 3.12). The gra-
dient should be computed in the center of gravity.

The curvature or jump indicator is determined by:

ηi = l2 max | ∂c̃

∂nτ

| (τ = 1, 2, ..., ee) (3.104)

In this equation, n denotes the normal vector perpendicular to the edge and
ee the number of edges per element.

BARLAG (1997 [13]) has compared these heuristic indicators with the John-
son estimator for a one-dimensional sharp concentration front problem. The
heuristic indicators require much less CPU time and storage then the Johnson
estimator. The curvature indicator achieves almost the same accuracy as the
Johnson indicator.

When the discrete model concept is applied to fracture-matrix systems (see
sec. 2.1.2), elements of different dimensions are coupled. In 3D, the fractures
are represented by 2D- or 1D-elements embedded in 3D-matrix elements; in
2D, the fractures are discretized by 1D-elements in the 2D-matrix. JOHN
(1994 [135]) has developed simple formulas for the heuristic gradient (eq.
3.105) and curvature indicators (eq. 3.106) to take elements of different di-
mensions into account:

ηi = C l(3−d)/2 | grad c̃i | (3.105)

ηi = C l(2−d)/2 max | ∂c̃

∂nτ

| (τ = 1, 2, ..., ee) (3.106)

Here, C stands for a problem dependent constant and d for the dimension of
the element.

BARLAG (1997 [13]), BARLAG et al. (1998 [14]) and KAISER (2001 [140])
have successfully applied these indicators to 1D/2D/3D coupled fracture-
matrix systems.
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Temporal discretization errors

One possibility of estimating the temporal discretization error is the Richard-
son extrapolation (see ELLSIEPEN (1999 [75])). The basic idea consists of
comparing the approximated solution c̃n+2·0.5 obtained with two sub-steps of
∆t/2 with a solution c̃n+1 obtained with one step of ∆t. The estimated error
is computed as follows:

e =
2p

2p − 1
(c̃n+2·0.5 − c̃n+1) (3.107)

In this equation, p denotes the order of consistency of the discretization
scheme. An improved solution c̃n+1

improved is obtained by:

c̃n+1
improved = c̃n+2·0.5 +

c̃n+2·0.5 − c̃n+1

2p − 1
(3.108)

However, it must be mentioned that the Richardson extrapolation requires
the CPU time and storage of about three time steps to determine the tem-
poral discretization error of one time step. As a result, it is not used very often.

In ELLSIEPEN (1999 [75]), further methods for computing temporal dis-
cretization errors are given for Runge-Kutta Methods (see sec. 3.1.2).

Often, a time-step adaptation is carried out with heuristic means. For explicit
methods, the time-step size can be chosen dynamically in such a way that it is
close to the stability condition, e.g. the Courant (eq. 3.45) or Neumann num-
ber (eq. 3.36). For some transport models in the subsurface, it is advantageous
to restrict the maximal Peclet number (eq. 3.64) to 2 or 10 in order to avoid
oscillatory solutions (see HINKELMANN, HELMIG (2002 [111])). BARLAG
(1997 [13]) adapts the time step for an implicit transport model in such a way
that the Courant criterion Cr = 1 (eq. 3.65) is fulfilled in the area of sharp
fronts. However, own simulations have shown that similar accuracies can be
obtained with larger time steps. HINKELMANN (1997 [108]) determines ‘op-
timal iteration numbers’ of a linear BiCGSTAB solver (see sec. 3.4.1) for an
Operator-Splitting Method applied to the shallow-water equations (see sec.
5.4). However, the optimal iteration numbers are problem-dependent. BAS-
TIAN, HELMIG (1999 [21]) restrict the time step of a two-phase flow model
in the subsurface by limiting the number of non-linear iterations (see KORN-
HUBER (1997 [155])).
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Spatial and temporal discretization errors

The most common procedure for treating spatial and temporal errors and
adaptations is to consider them separately, i.e. the methods described in this
section are carried out consecutively.

However, there are a few exceptions. With the error estimator in the L1-norm
of OHLBERGER (2001 [196], [197]), spatial and temporal errors are com-
puted. For the total error, the spatial and temporal parts are multiplied by
different constants which must be determined. This method is also applicable
to other time-dependent methods. If a space-time FEM is chosen instead of
the semi-discrete method (see sec. 3.1.4), a closed error analysis can be for-
mulated, and the spatial and temporal errors can be quantified with the same
measure (see JOHNSON (1990 [136], 1992 [137])), i.e. the space and time di-
mensions and adaptations are treated in the same way.

3.3.3 Refinement and coarsening

Generally, the best way of refining an element is to maintain the shape or
the length ratios of the edges. This is shown for a quadrilateral in figure 3.36
and for a hexahedron and tetrahedron in figure 3.44. In figure 3.44, just the
refinements on the visible surfaces of the hexahedron and tetrahedron are vi-
sualized, not the ones within the three-dimensional bodies.

Fig. 3.44. Refined hexahedron and tetrahedron

The transition to the surrounding elements can be carried out with hang-
ing nodes, also called irregular nodes, or transitional elements (see fig. 3.45).
Hanging nodes are eliminated or condensed from the system matrices (see
BARLAG (1997 [13])). RUST (1991 [227]), for example, has applied and devel-
oped transitional elements which are based on special shape functions. Finally,
it is also possible to construct transitional elements with regular nodes and
elements. This may lead to a combination of quadrilaterals and triangles in 2D
and to the fact that the length ratios of the edges are not maintained. Addi-
tionally more elements than marked by an estimator or indicator are refined,
and therefore, considerably more computational effort is required, especially
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in 3D. Nevertheless, this method is recommended, especially in the context of
Multigrid Methods (see sec. 3.4.4). Other refinement and transition possibili-
ties are discussed, for example in RUST (1991 [227]) and VERFÜHRT (1996
[253]), transitions between different dimensions in OHNIMUS (1996 [198]).

hanging node refined element

element
transitional

Fig. 3.45. Refined triangle and transitions

If systems are considered in which elements of different dimensions are cou-
pled, e.g. fracture-matrix systems, one should avoid irregular nodes at the cou-
pling interface. If, for example, a one-dimensional element has been marked
for refinement, the adjacent two-dimensional element should be refined as well
(see fig. 3.46)).

For certain questions, an anisotropic refinement is more suitable then an
isotropic one, i.e. a refinement in a 2D-problem is only carried out in one
direction and in a 3D-problem only in one or two directions (see fig. 3.47). An
anisotropic refinement can be required for discrete fractures and fault zones,
for example, in the equidimensional modeling approach (see sec. 5.1.6) or for
3D-problems in order to reduce the computational effort (see OHNIMUS (1996
[198]), SIEBERT (1996 [238]), KUNERT (2001 [160])). However, it should be
made sure that the shape of anisotropic elements does not degenerate too
much.

After the errors from the spatial discretization have been determined in each
element with an estimator or indicator, there are different ways of marking
elements for refinement or coarsening. Generally, tolerances are given for re-
finement tolrefine and coarsening tolcoarsen and are related to a decisive error
estimator or indicator η which is explained in the following. This procedure
leads to an equal distribution of the error over the elements:

η > tolrefine −→ refine
η < tolcoarsen −→ coarsen

(3.109)

The decisive error estimator or indicator can be the averaged error of all el-
ements ηaveraged; typical tolerances are approximately tolrefine = 2ηaveraged
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1 D element marked for refinement

2 D element marked for refinement

Fig. 3.46. Refinement of coupled elements of different dimensions

elements marked for refinement

Fig. 3.47. Anisotropic refinement

and tolcoarsen = 0.5ηaveraged. The decisive error estimator or indicator also
can be the maximum error of all elements ηmax; typical tolerances are ap-
proximately tolrefine = 0.9ηmax and tolcoarsen = 0.1ηmax. In both cases, the
tolerances are relative values and not absolute ones. Consequently, it is also
possible to formulate the decisive error estimator or indicator and the toler-
ances as absolute values. Further criteria are found in PAPASTAVROU (1998
[201]). Generally, the choices of the decisive error estimator or indicator and
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the tolerances depend on the error estimator or indicator as well as on the
examples. Therefore, one has to investigate the different possibilities for the
examples considered. A very strong refinement depth leads to large differences
between the sizes of the smallest and largest element and, along with this, to
bad condition numbers (see sec. 3.4.3) and bad convergence behavior of the
systems of equations to be solved as well as to excessive CPU time. If this
should be avoided, the number of refinement steps or levels must be limited.

Coarsening strategies generally cause a more or less small error in mass, mo-
mentum or energy. Therefore, a correction algorithm, here explained for mass,
is required in order to conserve the quantity considered (see fig. 3.48, BAR-
LAG (1997 [13]), BARLAG et al. (1998 [14]), LEYDAG et al. (2001 [169])).
If a patch - in 1D, two adjacent elements - is marked for coarsening, the mass
in the triangle on the left of figure 3.48 is lost. However, this amount of mass
can be redistributed over the coarsened element and its new neighbors, see
figure 3.48, right.

Ω Ωf c

cc

mass error

node to remove

redistributed mass

x x

coarsened elementpatch to coarsen

Fig. 3.48. Mass-correction algorithm, after BARLAG et al. (1998 [14])

The condition for the mass redistribution is given by:∫
Ωf

∆cfdΩf =

∫
Ωc

∆ccdΩc (3.110)

In this equation, ∆cf , ∆cc denote the concentration of the fine and coarsened
grid and Ωf , Ωc the subdomains of the fine and coarsened mesh (see fig. 3.48).
Generally, the coarsening of elements is limited to the initial grid.
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It should be mentioned that it is possible to carry out a grid smoothing after
an adaptation step, i.e. the topology of the refined mesh remains the same,
but nodes are shifted to ‘optimal positions’, e.g. the center of a patch. How-
ever, this is not recommended in the context of Multigrid Methods, because
it leads to problems concerning prolongation and restriction (see sec. 3.4.4).
Such a technique is very suitable in the preprocessing stage during a mesh
generation (see sec. 4.1.7).

It often occurs that the data set of some parameters, for example the
bathymetry, is much finer than the initial grid. Then the initial grid is deter-
mined by element-wise averaging (see fig. 3.49, left). If a refinement is carried
out in such a case, two possibilities exist. First, the refined elements can get
the inherited information of the coarse element (see dashed green line in fig:
3.49, right). However, in this case the finer data set is not used. Second, the
refined elements obtain the information of the finer data set which must be
computed (see dashed-dotted blue lines in fig: 3.49, right). It is obvious that
the second way is a better representation of the reality. However, one has to
take into account that the second way influences the convergence behavior, be-
cause the grid convergence is only proven for constant parameter distributions.

z
element−wise averaged data

data set of bottom
z

refinement

bottom with refined data
bottom with
inherited data

x x

Fig. 3.49. Data set and averaging

Different criteria for time-step adaptations are given in sec. 3.3.2 and sec. 3.3.2.

Finally, it is mentioned that adaptive methods can be combined very well with
Multigrid Methods (see sec. 3.4.4), because both require the same data struc-
tures. As far as the parallelization is concerned, adaptive methods impose
additional difficulties which can be overcome by dynamic load-distribution
techniques (see sec. 3.2.4). However, adaptive methods, which are generally
implemented with dynamic data structures, are not very suitable for vector-
ization, because the vector pipelines must be computed again and the data
independencies must be checked again after each adaptation step.
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3.3.4 Examples

In this section, two different adaptive algorithms based on the FVM are in-
vestigated for surface-water and subsurface two-phase flow processes.

Adaptive Finite-Volume Method for flow processes in surface
water

Here, a one-dimensional FVM, which can also be called IFDM (see sec. 3.1.5),
is considered in combination with adaptive methods for the conservative form
(see sec. 2.6.1) of the Saint-Venant equations (see sec. 2.6.1, LEYDAG (2001
[168]), LEYDAG et al. (2001 [169])). This algorithm is similar to the one
described in section 3.1.3. The space is discretized with the FVM (see sec.
3.1.5); for the temporal derivative, the Diffusive Lax Method (see sec. 3.1.3),
which is explicit, is chosen. A difference indicator (see sec. 3.3.2) related to an
averaged element error (see sec. 3.3.3) is applied to refinement and coarsening
in space, and a time-step adaptation for the explicit algorithm is carried out
in such a way that the Courant condition Cr ≤ 1 is fulfilled. One should take
into account that halving an element causes an approximate halving of the
time step for an explicit algorithm. Further, a mass and momentum correction
algorithm (see sec. 3.3.3) was implemented for the adaptive FVM.

The same example as discussed in section 3.1.3 is chosen here for the in-
vestigation of the performance of the adaptive algorithm. In figure 3.50, the
propagating wave is shown on different meshes. On the coarse initial mesh
with ∆x = 25m, ∆t = 2s, the front of the water level is smeared a lot (see fig.
3.50, top). The mesh uniformly refined to level 3 (∆x = 3.125m, ∆t = 0.25s)
shows a very steep front which is a better approximation of the exact sharp
front solution (see fig. 3.50, center). A solution accuracy comparable to that
achieved with the uniformly refined mesh is determined with the adaptive
refined (maximum level 3) and coarsened mesh (see fig. 3.50 bottom). The
nodes are set at the centers of gravity. A high-grid resolution is only seen
around the sharp front; the mesh has already been coarsened to the initial
stage in the left part of the mesh.

In figure 3.51, the propagating front is shown after 270s for various maximum
refinement levels. It is obvious that the steepness of the front increases with
increasing refinement levels.

In table 3.3, a comparison of run times and numbers of computed state vari-
ables, which are an indicator for the required storage, is presented for adap-
tively and uniformly refined grids, i.e. for comparable solution accuracies,
obtained on different grid levels. As the algorithm is explicit, the CPU time
and computed state variables related to uniformly refined meshes are nearly
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Fig. 3.50. Propagating wave after 40s on different meshes, after LEYDAG et al.
(2001 [169])

the same. For refinement level 4, only about 10% of the CPU time and stor-
age compared to a uniformly refined solution are required. The superiority of
adaptive methods is clearly demonstrated.
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Fig. 3.51. Propagating wave after 270s for different refinement levels, after
LEYDAG et al. (2001 [169])

refinement CPU time related to number of computed related to
[s] uniform [%] state variables [-] uniform [%]

initial mesh 0.433 - 18000 -

adaptive max. lev. = 2 1.610 29.5 89183 31.0

uniform lev.= 2 5.463 - 288000 -

adaptive max. lev. = 3 3.620 16.9 197373 17.1

uniform lev.= 3 21.483 - 1152000 -

adaptive max. lev. = 4 8.653 10.4 481892 10.5

uniform lev.= 4 83.035 - 4608000 -

Table 3.3. Comparison of run times and computed state variables, after LEYDAG
et al (2001 [169])

Adaptive Finite-Volume Method for two-phase flow processes in
the subsurface

The FV algorithm and the Buckley-Leverett problem which have already been
discussed in section 3.1.5 are investigated here in the context of adaptive meth-
ods. A gradient indicator (see sec. 3.3.2) is applied to the water saturation
and related to a maximum error (see sec. 3.3.3). It is used for the refinement
and coarsening in space. A time-step adaptation (see sec. 3.3.2) is carried
out depending on the number of non-linear iterations of the Newton-Raphson
Method (see sec. 3.4.5).

In figure 3.52, a comparison of the analytical, the uniformly and the adap-
tively refined solution of the water saturation is given for the same time step.
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The initial grid has 256 elements of ∆x = 1.172m. The uniform refinement is
carried out up to level 6, i.e. to 16384 elements. The adaptive refinement is
restricted up to level 6 as well. Both the uniform and the adaptive refinement
and coarsening show the same steepness of the front. However, the adaptively
refined solution proceeds a little bit faster; this is caused by the interpolation
of the initial condition, i.e. by numerical dispersion, in the first time step. The
adaptive solution requires about 10% of the number of elements and about
20% of the CPU time needed to obtain the uniformly refined solution. Again,
the excellent performance of adaptive methods is proven.

analytical sol.
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Fig. 3.52. Comparison of the analytical, uniformly and adaptively refined results
of the water saturation for the Buckley-Leverett problem, after PAUL (2003 [203])
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3.4 Fast solvers

3.4.1 Introduction

Most of the discretization methods described in section 3.1 are implicit and
lead to the solution of systems of algebraic equations which very often have
a large number of unknowns. As the computational effort for the solution is
quite high and requires a major part of the whole CPU time of the numerical
simulation, fast solvers are of particular importance and have to be considered
in the context of parallel and adaptive methods (see secs. 3.2, 3.3, HINKEL-
MANN (1997 [108]), HINKELMANN (2000 [109])).

The system of equations to be solved with the coefficient matrix A, the vector
of the unknowns X and the vector of the right-hand side B is given in the
form:

AX = B (3.111)

In index notation, the equation i is determined as follows with the number of
unknowns n:

n∑
j=1

aijxj = bi (3.112)

If the coefficient matrix A in equation 3.111 or the coefficients in equation
3.112 are independent of the vector of the unknowns X , the system of equa-
tions is linear and discussed in sections 3.4.1 - 3.4.4; otherwise it is non-linear
and treated in section 3.4.5.

For linear systems, direct and iterative methods are distinguished. Direct
methods are generally based on a successive elimination of the unknowns with
the Cholesky algorithm for symmetric, positive definite matrices and with the
Gauss algorithm for regular matrices (see SCHWARZ (1991 [235]), MEISTER
(1999 [176])), and thus directly determine the solution. Iterative methods op-
erate with an iteration scheme: after an initial vector has been chosen, the
solution is the limit of a series of approximations which is terminated if a
stopping criterium which considers the approximation to be sufficient good is
fulfilled. Iterative methods are dealt with in sections 3.4.2 and 3.4.4.

The effort for solving a system of equations directly with a dense coefficient
matrix, i.e. the major part of the entries are non-zero terms, and n unknowns
is in the order O(n3). The discretization methods which are introduced in
section 3.1 generally lead to sparse coefficient matrices, i.e. only a small part
of the entries are non-zero terms. Therefore, only sparse matrices are treated
in the following. There are different methods for storing such matrices ef-
ficiently, e.g. by renumbering the mesh and just storing the entries in thin
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bandwidths (see CUTHILL, MCKEE (1969 [66]), GIBBS et al. (1976 [93]))
or by only addressing and storing the non-zero terms (see BARRETT et
al. (1994)). In two-dimensional problems, the computational effort is in the
order O(n2), and in three-dimensional problems O(n2.33) (see AXELSSON,
BARKER (1984 [8])). As the computational effort of direct solvers is compar-
atively high, they are only suitable for small-scale problems with up to only
about one or a few thousand unknowns. Therefore, direct solvers as the only
solution procedure are generally not suitable for high performance computing.
Additionally, direct solvers cannot be parallelized or vectorized well, because
the operations to be carried out are characterized by high data locality which
results in large communication times for parallel computers and small vector
pipelines for vector computers (see sec. 4.2). However, direct solvers are inter-
esting for composed iterative solvers, e.g. as a coarse-grid solver in a Multigrid
Method (see sec. 3.4.4) or as a solver for the interface problem in a Domain-
Decomposition Method (see sec. 3.2.2). Special measures must be taken with
the direct solvers for parallel computing (see sec.3.4.4).

Iterative methods use a single or multiple grids to determine the solution.
Single-grid methods only require the grid of the computational domain for
the solution (see sec. 3.4.2), while Multigrid Methods additionally need several
grids for the iteration process (see sec. 3.4.4) in general. For sparse matrices,
the computational effort of single-grid solvers can be reduced up to the or-
der O(n1.5), sometimes even more (see BASTIAN (1999 [18])) and that of
Multigrid solvers to O(n1) (see secs. 3.4.2 and 3.4.4). Furthermore, iterative
solvers have the advantage compared to direct ones that rounding errors do
not accumulate.

Domain-Decomposition Methods, which are explained in section 3.2.2 and
which have gained importance in the field of parallel computing in recent
years, can also be applied as solvers on serial computers. However, there are
no obvious advantages when compared to other methods, e.g. Multigrid (see
sec. 3.2.2). Domain-Decomposition Methods are discussed again in the con-
text of preconditioners in section 3.4.3.

Finally, it is mentioned that many of the solvers introduced in section 3.4
are available via different public-domain toolboxes, e.g. TEMPLATES (see
BARRETT et al. (1994 [16])), ScaLAPACK (see BLACKFORD et al. (1997
[32])) or UG (see BASTIAN et al. (1997 [19])). Some of these toolboxes are
also applicable to parallel (see sec. 3.2) and adaptive methods (see sec. 3.3).

3.4.2 Single-grid solvers

As mentioned before, iterative methods are based on an iteration scheme.
They start with an initial guess of the solution vector, which is often the zero-
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vector or the result of the old time level for time-dependent problems. The
solution is then computed by a series of iteration steps which terminates if
a stopping criterion is fulfilled. A stopping criterium should be much greater
than the machine precision. It can be an absolute value, e.g. 10−10, or a rel-
ative value, e.g. determined from the Euclidian norm of the right-hand-side
vector. In the context of parallel computing, it should be mentioned that
rounding errors can accumulate in such a way that the numbers of iterations
vary for different numbers of subdomains or processors, although this should
theoretically not be the case. Generally, such effects are of minor importance.
However, if algorithms operate close to the machine precision and a large
number of processors is involved, one should keep this in mind. If the machine
precision is not sufficient, further means can be applied, such as long number
or interval arithmetic (see HANSEN (1992 [96])). As such methods require a
lot of CPU time, their use must be considered very carefully.

Iterative single-grid solvers are faster than direct solvers for systems of equa-
tions with more than a medium number of unknowns, i.e. a few thousand.
BRUSSINO, SONNAD (1989 [48]) have shown that for sparse non-symmetric
systems of equations solved on serial computers and KREIENMEYER (1996
[158]) on parallel computers. An overview is given in SCHWARZ (1991 [235]),
HACKBUSCH (1991 [94]) or BARRETT et al. (1994 [16]). The classical meth-
ods of Jacobi and Gauss-Seidel are introduced including their overrelaxation
variants. Other methods are superior, e.g. the Conjugate Gradient Methods
described later. However, the Jacobi and Gauss-Seidel Methods are used nowa-
days in composed iterative solvers as the Multigrid solvers.

Jacobi Method and Gauss-Seidel Method

The Jacobi Method is derived by the following formula with the iteration index
k:

x
(k)
i = (bi −

n∑
j=1,j �=i

aijx
(k−1)
j )/aii (3.113)

In matrix and vector notation, the Jacobi Method looks as follows with the
diagonal matrix D, the strictly lower triangular matrix −L, the strictly upper
triangular matrix −U and the relation A = D − L − U :

X
(k)
i = D−1[B + (L + U)X(k−1)] (3.114)

As the diagonal terms appear in the denominator, they must differ from zero,
aii �= 0, otherwise columns or rows must be exchanged. Generally, the con-
vergence speed is poor. With the following overrelaxation Jacobian technique
(JOR), the convergence speed is accelerated:
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x
(k)
i = (1 − ω)x

(k−1)
i + ω (bi −

n∑
j=1,j �=i

aijx
(k−1)
j )/aii (3.115)

The factor ω is in the range of 0 < ω ≤ 2. This factor should be taken from
the literature or estimated.

The Gauss-Seidel Method is similar to the Jacobi Method. It differs in that
the results previously computed in the iteration step k are used for the deter-
mination of the further unknowns in the same iteration step k:

x
(k)
i = (bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j )/aii (3.116)

X(k) = D−1(B + LX(k) + RX(k−1)) (3.117)

Therefore, the convergence behavior of the Gauss-Seidel Method is better than
that of the Jacobi Method. Again, the convergence speed can be improved,
here with a successive overrelaxation technique (SOR):

x
(k)
i = (1 − ω)x

(k−1)
i + ω (bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j )/aii (3.118)

If the matrix A is symmetric, a symmetric successive overrelaxation technique
(SSOR) is carried out (see BARRETT et al. (1994 [16])).

The methods just described are also called the Point-Jacobi and Point-Gauss-
Seidel Methods. Additionally, the Block-Jacobi and the Block-Gauss-Seidel
Methods exist. If the matrix A is subdivided into a number of blocks, the
iteration schemes in equations 3.114 and 3.117 are also valid for the block
variants. For the inversion of a block, a small system of equations, in which
the number of unknowns equals the number of equations in the block, must
be solved (see HACKBUSCH (1991 [94])).

The convergence behavior of the Gauss-Seidel Method depends on the or-
dering of the equations and blocks as well as on the numbering of the com-
putational domain. In the field of parallel computing, this means that the
convergence depends on the number of subdomains or processors and that
the convergence speed decreases with an increasing number of subdomains or
processors. Because of the successive integration of results within an iteration
step, the Gauss-Seidel Method cannot reasonably be vectorized.
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Conjugate Gradient Methods

Conjugate Gradient Methods are very fast solvers for medium-scale problems
with a number of unknowns of about a few thousand up to tens of thousands.
The effort for solving sparse matrix systems with n unknowns can be kept in
the order of O(n1.5) or even better with optimal preconditioning (see BAS-
TIAN (1999 [18]), sec. 3.4.3)). The convergence is generally only proven for
symmetric positive definite matrices; in other cases, e.g. non-symmetric matri-
ces, the solver is more expensive. For medium-scale problems, even Multigrid
Methods (see sec. 3.4.4) are generally not superior.

The CG Method (Conjugate Gradient Method), which is called PCG Method
(Preconditioned Conjugate Gradient Method) in a preconditioned form (see
sec. 3.4.3), is a very efficient solver for symmetric positive definite matri-
ces. In recent years, it has established itself as the standard solver for this
kind of matrix. Originally, it was developed by HESTENES, STIEFEL (1952
[106]). The problem of solving AX = B is transformed into the equiv-
alent problem of searching for the minimum of the quadratic functional
F (X) = 1

2XT AX−BT X (see fig. 3.53). The system AX = B ↔ AX − B = 0
is a necessary condition for minimising F (X). The positive definiteness of A
leads to a positive definite Hesse matrix of F (X) and thus to a sufficient
condition for a minimum:

F (X) =
1

2
XT AX − BT X

gradF (X) = AX − B = 0 −→ extremum (3.119)

grad[gradF (X)] = A → positive definite −→ minimum
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Fig. 3.53. Idea of the CG Method
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After an initial guess of the solution, optimal search directions are determined
in such a way that the minimum is reached with a minimum number of steps.
A sequence of vectors which are orthogonal or conjugate to the matrix A is
generated. These vectors form a Krylov subspace; for this reason, the name
Krylov Methods is also used in the context of Conjugate Gradient Methods.
The convergence is mathematically proven, i.e. the minimum is reached after
n steps at the latest (see REID (1971 [215])). Therefore, the CG Method also
belongs to the group of direct solvers. Generally, convergence, i.e. a sufficiently
accurate approximation, is achieved with much fewer than n steps.

A pseudocode of the parallel PCG Method is given in figure 3.54. (see LEP-
EINTRE (1992 [166]), BARRETT et al. (1994 [16]), MEISTER (1999 [176])).
From the computational point of view, it is interesting that only recursions,
which need little storage, occur within the iteration loop of the solver. For the
storage, the matrix A, the vectors X, B and additional 4 vectors and a pre-
conditioner matrix C (see sec. 3.4.3) are required. If the solver is parallelized
or / and vectorized, the measures introduced in section 3.2.2 must be taken.
For the parallelization, communication is required for 1 matrix-vector product
(mvp), 3 scalar products (sp) and possibly for 1 preconditioner matrix (preco).

If the system matrix is symmetric, but possibly indefinite, the Conjugate Gra-
dient Methods MINRES or SYMMLQ should be applied (see BARRETT et
al. (1994 [16])).

Among a number of different Krylov Methods for non-symmetric matrices, the
BiConjugate Gradient Stabilized or BiCGSTAB Method and the Generalized
Minimal Residual or GMRES Method have become accepted as the standard
solvers. For regular non-symmetric matrices, the problem that the vectors of
the residuals cannot be orthogonalized by short recursions occurs.

The BiCGSTAB Method is a further development of some other methods.
The sequence of vectors which are orthogonal or conjugate to the matrix A is
generated by a product of two polynomials (→ Bi in BiCGSTAB), of which
one locally minimizes the vector of the residuals and points in the direction
of the steepest descent. The acronym STAB indicates that it is a stabilized
variant which improves the convergence behavior. Theoretically, there are two
possibilities for the BiCGSTAB Method to fail. However, this happens very
rarely in modeling hydro- and environmental systems.

A pseudocode of the parallel BiCGSTAB Method is shown in figure 3.55 (see
LEPEINTRE (1992 [166]), BARRETT et al. (1994 [16]), MEISTER (1999
[176])). In the iteration loop, again only recursions occur. Storage for 2 ma-
trices and 10 vectors must be provided. For parallelization and vectorization,
the same measures as for the PCG Method must be taken (see sec. 3.2.2).
For the parallelization, communication is needed for 2 matrix-vector products
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pseudocode PCG Method

initial phase

r(0) = A X(0) − B for an initial guess X(0) mvp

solve: C g(0) = r(0) preco

d(0) = g(0)

t(0) = A d(0) mvp

λ0 = 〈r(0)g(0)〉 sp

�0 = λ0/〈t(0)d(0)〉 sp

X(1) = X(0) − �0 d(0)

iteration loop: k = 1, 2, ...

t(k) = A d(k−1) mvp

r(k) = r(k−1) − �k−1 t(k)

ε = 〈r(k)r(k)〉; check convergence, sp
continue if necessary

solve: C g(k) = r(k) preco

λk = 〈r(k)g(k)〉 sp

d(k) = g(k) + λk/λk−1 d(k−1)

�k = λk/〈d(k)t(k)〉 sp

X(k+1) = X(k) − �k d(k)

storage: 2 matrices: A, C
6 vectors: X, B, r, g, d, t

communication in iteration loop: 1 mvp, 3 sp, if necessary 1 preco

Fig. 3.54. Pseudocode of the parallel PCG Method, after LEPEINTRE (1992 [166])

(mvp), 5 scalar products (sp) as well as possibly for 2 preconditioning steps
(preco).

The GMRES Method is an alternative to the BiCGSTAB Method with the
advantage that (possibly) indefinite matrices can be treated as well. Unfor-
tunately, the generation of the sequence of vectors which are orthogonal to
the matrix A cannot be carried out in a recursion, i.e. in each iteration step,
all vectors previously computed have to be taken into account. Intermediate
values are stored in a Hessenberg matrix. The convergence is mathematically
proven, i.e. the minimum is reached after n steps at the latest (see SAAD,
SCHULZ (1985 [228])). Therefore, the GMRES Method also belongs to the



146 3 Efficient numerical methods

pseudocode BiCGSTAB Method

initial phase

r(0) = B − A X(0) for an initial guess X(0) mvp

chose r̄ (e.g. r̄ = r(0))

iteration loop: k = 1, 2, ...

λk−1 = 〈r̄ r(k−1)〉 sp
if λi = 0 : stop

if k = 1 : p(k) = r(k−1)

if k > 1 : βk−1 = (λk−1/λk−2)(δk−1/Ωk−1)

p(k) = r(k−1) + βk−1(p
(k−1) − Ωk−1 v(k−1))

solve: C p̄ = p(i) preco

v(k) = A p̄ mvp

δk = λk−1/〈r̄ v(i)〉 sp

= r(i−1) − δk v(k)

solve: C s̄ = s preco
t = A s̄ mvp

Ωk = 〈t s〉/〈t t〉 2sp

X(k) = X(k−1) + δkp̄ + Ωk s̄

r(k) = s − Ωk t

ε = 〈r(k)r(k)〉; if necessary continue sp
necessay for continuation: Ωk �= 0

storage: 2 matrices: A, C
10 vectors: X, B, r, r̄, p, p̄, s, s̄, v, t

communication in iteration loop: 2 mvp, 5 sp, if necessary 2 preco

Fig. 3.55. Pseudocode of the BiCGSTAB Method, after LEPEINTRE (1992 [166])

group of direct solvers. Generally, convergence, i.e. a sufficiently accurate ap-
proximation is achieved for fewer than n steps.

A pseudocode of the parallel GMRES Method is found in BARRETT et al.
(1994 [16]) or MEISTER (1999 [176]). From the computational point of view,
it is advantageous that only 1 matrix-vector product must be computed in
the iteration loop. The major disadvantage lies in the fact that the computa-
tional and storage efforts which are caused by taking the vectors determined
previously into account increases linearly with the number of iterations.
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Further improvement is given by restarted GMRES variants. If a solution is
not obtained after m iteration steps, the storage is set free and the last solu-
tion is taken as the initial solution for a new computation. This is also called
the GMRES(m) Method. Theoretically, convergence is not guaranteed. The
determination of a suitable m is difficult and depends to a great extent on
the problem. One- or two-digit numbers are found in the literature. For the
parallelization and vectorization, the same measures must be taken as for the
PCG and BiCGSTAB Methods (see sec. 3.2.2); additionally, a further problem
results from the Hessenberg matrix, which is a dense upper triangular matrix
with a few unknowns. KREIENMEYER (1996 [158]), for example, stores the
Hessenberg matrix and solves it directly on every processor.

Finally, the author recommends using GMRES instead of BiCGSTAB in the
field of modeling hydro- and environmental systems only if the system matrix
is (possibly) indefinite or if the advantages concerning CPU time and storage
are obvious.

3.4.3 Preconditioners

The convergence behavior of iterative solvers greatly depends on the spec-
tral properties or the condition of the matrix. The condition number κ is
defined as the ratio of the largest to the smallest eigenvalue of matrix A,
κ(A) = λmax/λmin; the ideal condition number is κ = 1. During the pre-
conditioning, the system is pretreated to improve the convergence behavior.
The overall aim consists of reducing the number of iterations and the CPU
time which is required for the solution including the CPU time spent during
preconditioning. Therefore, a preconditioner must be ‘cheap’ with regard to
the CPU time or - if this is not the case - the number of iterations must be
reduced considerably.

The preconditioning can be carried out in two different ways:

AX = B −→ C−1AX = C−1B (3.120)

AX = B −→ C−1
1 AC−1

2 (C2X) = C−1
1 B (3.121)

The second possibility (eq. 3.121) should be preferred because here, certain
properties of the system matrix are maintained, e.g. the symmetry. Further-
more, the transferred system should have the same structure as the initial
system, i.e. a sparse matrix structure should be obtained. The inverse of A is
the ideal preconditioner; however, the computation of the inverse requires at
least the same amount of CPU time as the solver. Consequently, a precondi-
tioner approximates the inverse of A with simpler means.
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Generally, the convergence behavior of iterative methods cannot be predicted
exactly. Sometimes, limits can be given, e.g. for the CG Method. The difference
between the solution in the kth iteration step X (k) and the exact solution X
can be estimated from the difference between the initial solution X (0) and the
exact solution in the A norm (eq. 3.123) as (see MEISTER (1999 [176])):

‖X(k) − X‖A ≤ 2

[
κ − 1

κ + 1

](k)

‖X(0) − X‖A (3.122)

‖Y ‖A = (Y tAY )1/2 (3.123)

Equation 3.122 indicates an asymptotic convergence behavior as well as the
dependence on the condition number and the initial solution.

In the following, important preconditioners are introduced. In parallel com-
putations, different values may occur on the interprocessor boundaries (see
3.2.2); arithmetically averaging these values often improves the convergence.
Further preconditioners are given e.g. in BARRETT et al. (1994 [16]) or
MEISTER (1999 [176]).

Jacobi preconditioners

The simplest preconditioner according to equation 3.121 consists of just the
diagonal of the matrix:

c1ij = c2ij =

{√
aii if i = j
0 otherwise

(3.124)

This method is also called diagonal or Point-Jacobi preconditioner (see sec.
3.4.2) or scaling. Attention is drawn to the different meaning of scaling in
the context of parallel computing (‘scalable algorithm’, see sec. 4.2.3). For
a positive definite matrix, it is proven that the condition number at least
equals the quotient of the largest and smallest diagonal term (see SCHWARZ
(1991 [235])). With a diagonal preconditioner, this lower limit is set to 1. In-
stead of the diagonal matrix of A, a lumped diagonal matrix which consists
of row- or column-wise sums of entries can be chosen. The improvement of
the convergence achieved by the two methods is equivalent. They are com-
putationally easy, but do not reduce the number of iterations in the ranges
of orders of magnitude as other more sophisticated preconditioners. For par-
allelization with the inconsistent storage technique (see sec. 3.2.3), a local
communication to obtain the full values should be carried out for values of
the interprocessor-boundary nodes, because this leads to a convergence be-
havior which is independent of the number of processors. The use of at least a
diagonal preconditioning is recommended. More sophisticated preconditioners
often start with a scaling.
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A Block-Jacobi preconditioner (see sec. 3.4.2) is derived if the number of vari-
ables is subdivided into non-overlapping subsets and an estimation or com-
putation of an inverse is done for each subset (see Cg = r in fig. 3.54). For
parallel computations, the subsets can coincide with the subdomains and the
computations of the inverses are done fully in parallel with the local avail-
able data of the subdomain or processor Ap (see fig. 3.54, here Cp = Ap). If
the subsets are small, a direct solver can be chosen to compute the inverse.
If the subsets are large, iterative solvers should be used. As the problems in
the subsets are independent of each other, they require different numbers of
iterations, and thus a load imbalance occurs (see sec. 3.2.4) during precon-
ditioning. A further consequence of the independence of the problems in the
subsets is the fact, that the convergence of the solver depends on the number
of subdomains or processors (see sec. 3.2.2). The subsets of variables can also
be smaller than the subdomains, e.g. groups of elements or just one element
called Element-By-Element (EBE) preconditioner (see HUGHES et al. (1987
[124])). If problems with multiple variables per node are treated, subsets can
be formed by grouping the equations. Block-Jacobi preconditioners are gen-
erally easy to parallelize; vectorization depends on the solution technique for
the inverse. A moderate reduction of the number of iterations and CPU time
can be expected.

Domain-Decomposition preconditioners

Domain-Decomposition preconditioners resemble Block-Jacobi precondition-
ers. They are based on overlapping or non-overlapping subdomains and are
further treated with Schwarz or Schur Complement Methods.

The Additive Schwarz preconditioner is given in the form of 3.120 as follows:

C−1
AS = Rt

cA
−1
c Rc +

p∑
i

Rt
iA

−1
i Ri (3.125)

In this equation, Ac denotes a coarse mesh with the nodes of the interpro-
cessor boundaries (called ‘interface problem’ in sec. 3.2.2) and Ai a fine mesh
with the inner nodes of a subdomain plus nodes from an overlap (called ‘local
problem’ in sec. 3.2.2). Rc is a restriction operator which maps a function on
the coarse mesh onto the fine mesh by interpolation, and Ri is a restriction
operator which maps a function on the fine mesh to the coarse mesh by exten-
sion. p is the number of processors. The second term on the right-hand side
can be computed fully in parallel with the three steps restriction, inversion
and interpolation. Due to the independence of the local problem, an iterative
computation will cause a load imbalance (see sec. 3.2.4). Special measures are
required for the first term on the right-hand side; this is treated in a similar
way to the coarse-grid solver in the multigrid method (see sec. 3.4.4). The
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simplest one is just to skip it out, further are discussed in BARRETT et al.
(1994 [16])). The Additive Schwarz preconditioner can considerably reduce the
number of iterations and the CPU time depending on the local solver and the
abovementioned special considerations.

For non-overlapping subdomains, the Additive Schwarz Method coincides with
the Block-Jacobi Method and the Multiplicative Schwarz Method with the
Block Gauss-Seidel Method (see sec. 3.4.2), HACKBUSCH (1991 [94])).

Schur-Complement Methods are based on a decomposition of the mesh into
a coarse and a fine mesh as mentioned before, without, however, taking over-
lapping into account. The Schur Complement S is determined by a blockwise
Gauss elemination:

AX = B ⇔
[

Ai Aic

At
ic Ac

] [
Xi

Xc

]
=

[
Bi

Bc

]
(3.126)

⇔
[

Ai Aic

0 S

] [
Xi

Xc

]
=

[
Bi

Bc − At
icA

−1
i Bi

]
(3.127)

S = Ac − At
icA

−1
i Aic (3.128)

For preconditioning, the Schur Complement is not computed exactly, but
with some approximations. In this context, the BPS preconditioner is men-
tioned (see BRAMBLE et al. (1989 [38]), BARRETT et al. (1994 [16])). Schur
Complement preconditioners improve the convergence in a similar measure to
Schwarz preconditioners.

Incomplete factorization preconditioners

The system matrix A can be factorized by a lower matrix L and upper matrix
U :

A = LU (3.129)

Such a factorization occurs in the context of direct solvers (see sec. 3.4.1,
SCHWARZ (1991 [235])). An exact factorizations leads to the direct solution
of the equation and requires much CPU time (see sec. 3.4.1) and storage be-
cause, even for a sparse matrix, L and U are dense. Incomplete factorizations
obtain the structure of the matrix, i.e. for a sparse matrix, only entries of
the original structure are taken into account for the preconditioner. The ILU
(Incomplete LU factorization) and the MILU (Modified ILU) preconditioners
belong to this group (see BRUSSINO, SONNAD (1989 [48]), BARRETT et
al. (1994 [16])). Generally, a significant improvement of the convergence and
CPU time is achieved. However, they are not very suitable for parallelization
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and vectorization, because many non-locally available data are required for
the factorization. Further, it is possible to carry out block factorizations, i.e.
not the whole matrix is factorized. For parallel computations, the blocks can
coincide with the subdomains. This improves the parallelization, but at the
price of worse convergence which then additionally depends on the number of
processors.

Multigrid preconditioners

Multigrid preconditioners improve the convergence behavior very efficiently.
They can be combined very well with CG Methods (see BRAESS (1986 [36]),
RUST (1991 [227]), KREIENMEYER (1996 [158]), KLAAS (1996 [144])). The
Additive Multigrid Method of the hierarchical bases (see YSERENTANT (1986
[266])) and BPX (see BRAMBLE et al. (1991 [39])), which are explained in
the next section 3.4.4, are often used as preconditioners in a CG Method (see
sec. 3.4.2). The Multiplicative Multigrid Methods hierarchical bases Multigrid
(see BANK et al. (1988 [11])) and Local Multigrid (see BASTIAN (1996 [17])),
which are also explained in the next section 3.4.4, are used as preconditioners
as well. Often, there is only a slight advantage for the Multigrid solver com-
pared to a solver with Multigrid preconditioner. Further aspects are discussed
in the next section 3.4.4.

3.4.4 Multigrid solvers

Multigrid Methods (MG) are very fast solvers for large-scale problems with
more than about ten thousands of unknowns. The computational effort for
the solution of sparse matrix systems can be reduced up to the order O(n1),
with the number of unknowns n. This is proven for symmetric elliptic problems
(see HACKBUSCH (1991 [94])); in other cases, e.g. non-symmetric matrices,
the MG solver is more expensive. The error between the iterative and the ex-
act solution can be decomposed into a high-frequency and low-frequency part.
It can be shown that the low-frequency error can be diminished much better
on a coarser mesh than the initial one. In figure 3.56, it0, it1, it2 denote the
error after the 0th, 1st and 2nd iteration step on the fine grid and it2mg the
error after two iteration steps on the fine grid and one switch to the coarse grid.

Therefore, two grids are required for a two-grid solver and multiple grids for a
Multigrid solver. The grids should be determined by uniform refinement (see
figs. 3.57, 3.44)), and the subspaces Ωm, 0 ≤ m ≤ l of the shape functions
should be nested into each other:

Ω0 ⊂ Ω1 ⊂ Ω2... Ωl−1 ⊂ Ωl = Ω (3.130)
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it0

it1

it2

it2

er
ro

r

x

mg

Fig. 3.56. Principle error reduction for single- and two-grid solver, after MEISTER
(1999 [176])

Transfer operators which are called restriction Rm−1
m for the transfer between

fine and coarse grids and prolongation P m
m−1 for the transfer between the

coarse and fine grids are needed:

Xm−1 = Rm−1
m Xm (3.131)

Xm = P m
m−1Xm−1 (3.132)

Generally, the grids are derived by uniform refinement. Therefore, it is possible
to compute the coarse-grid matrices with the existing coarse-grid information.
If the coarse-grid information is not available, the coarse-grid matrix can be
computed as shown in equation 3.133. This is further explained in the context
of algebraic Multigrid Methods:

Am−1 = P m
m−1 Am Pm

m−1 (3.133)

A linear restriction is shown for a one-dimensional example in figure 3.58 and
a linear prolongation for the same example in figure 3.59 (see RUST (1991
[227]), MEISTER (1999 [176])).
Finally, a solver on the fine grid(s) (1 ≤ m ≤ l in eq. 3.131), which is called
smoother (smo), and a solver on the coarse grid (m = 0 in eq. 3.134), which
is called coarse-grid solver (cgs), are required:

AmXm = Bm (3.134)
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Ω1

Ω0

(coarse grid)

Ω2

(fine grid)

Fig. 3.57. Multigrids for three levels

The methods introduced in section 3.4.2 or other methods, especially Jacobi,
Gauss-Seidel and ILU Methods, are frequently chosen as smoothers. An appro-
priate smoother should damp out the high-frequency errors. Classically, the
coarse-grid solver is a direct solver, i.e. a Cholesky or Gauss algorithm (see sec.
3.4.1). However, an iterative solver or an algebraic Multigrid Method, which is
explained later, can also be chosen. Before restriction and after prolongation,
so-called pre- and postsmoothing steps can be carried out, i.e. iteration steps
with the smoother are computed. To obtain a good convergence, the number
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Fig. 3.58. Linear restriction, after MEISTER (1999 [176])
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Fig. 3.59. Linear prolongation, after MEISTER (1999 [176])

of pre- and postsmoothing steps should be larger than one each (see BAS-
TIAN et al. (1998 [20])). A pseudocode and a course for a two-grid method
are given in figures 3.60 and 3.61.

For large systems of equations, the coarse-grid solver also has many unknowns
and requires much CPU time. In such cases, it can be shown that the error can
be reduced in a more efficient way if the equation is not solved directly on the
coarse grid, but iteratively with another two-grid cycle (see HACKBUSCH
(1991 [94]), KORNHUBER (1997 [155]), MEISTER (1999 [176]), BRIGGS et
al. (1999 [44])). Depending on the size of the problem, this procedure can then
be repeated recursively. The sequence of passing the grid levels can be carried
out in a V − or W − cycle, as shown in figure 3.62.
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solver: 2GS(α,β)(X1, B1)

system: A1 X1 = B1

initial solution: X
(0)
1

iteration loop: k = 1, 2, 3, ...

α presmoothing steps: X
(k)
1 = smo1(X

(k−1)
1 , B1)

restriction: r0 = R0
1 (A1X

(k)
1 − B1)

coarse-grid solver: e0 = A−1
0 r0

prolongation: X
(k)
1 = X

(k)
1 − P 1

0 e0

β postsmoothing steps: X
(k)
1 = smo1(X

(k)
1 , B1)

Fig. 3.60. Pseudocode for a two-grid solver 2GS(α,β)(X1, B1), after MEISTER
(1999 [176])

smoα smoβ

0
1P0

1R

cgs

Ω

Ω

1

0

Fig. 3.61. Course for a two-grid solver 2GS(α,β)(X1, B1), after MEISTER (1999
[176])

A pseudocode for a Multigrid solver is given in figure 3.63. The pre- and
postsmoothing can be carried out on each level except the coarse one.

The Full Multigrid Method (FMG), which is also called nested iteration, im-
proves the initial solution on the fine grid by starting on the coarse mesh with
a direct solution and then using prolongation to obtain the results on the fine
mesh. From here, a V − or W−cycle proceeds (see MEISTER (1999 [176]),
BRIGGS et al. (1999 [44])). The FMG is shown with a cycle and three levels
in figure 3.64.
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Fig. 3.62. V − and W−Multigrid cylce, after MEISTER (1999 [176])

solver: MGS
(α,β,γ)
l (Xl,Bl)

system: Al Xl = Bl

initial solution: X
(0)
l

outer iteration loop: k = 1, 2, 3, ...

α presmoothing steps: X
(k)
l := smol(X

(k−1)
l , Bl)

restriction: rl−1 := Rl−1
l (AlX

(k)
l − Bl)

e0
l−1 = 0

inner iteration loop: i = 1, 2, 3, ..., γ

ei
l−1 := MGS

(α,β)
l−1 (ei−1

l−1 , rl−1)

prolongation: X
(k)
l := X

(k)
l − P l

l−1 eγ
l−1

β postsmoothing steps: X
(k)
l := smol(X

(k)
l , Bl)

Fig. 3.63. Pseudocode for a Multigrid solver MGS
(α,β,γ)
l (Xl, Bl), after MEISTER

(1999 [176])

A linear iteration scheme is formulated in an abstract form with the approx-
imated inverse of A, i.e. C ≈ A−1:

X(k+1) = X(k) + C(B − AX(k)) (3.135)

The iteration procedure can be carried out in an additive and multiplicative
way (see BASTIAN (1996 [19])). In the additive variant, the approximated
inverse C is determined as the sum of Cm starting from the coarse grid m = 0
up to the maximal grid level l; Cm is computed in a similar way as Am−1

shown in equation 3.133:
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0
Fig. 3.64. Full Multigrid Method with a V −cycle, after MEISTER (1999 [176])

C =

l∑
m=0

Cm (3.136)

In the multiplicative variant, the following recursion holds (see BASTIAN
(1996 [19])):

X(k+1+ m+1
l+1 ) = X(k+ m

l+1 ) + Cl−m(B − AX(k+ m
l+1 )) (3.137)

The Multigrid Methods explained in figures 3.60 and 3.63 are multiplicative.

If Multigrid Methods are applied together with adaptive methods, this is
called Multigrid Methods with locally refined grids, and the smoothing pro-
cess is only carried out in the refined regions. On such adaptively refined grid
levels, only a small number of elements or nodes occurs (see fig. 3.65). The
minimum number of points to be smoothed consists just of all the new nodes
on a certain grid level. This leads to the method of hierarchical bases which
was analyzed for an Additive Multigrid Method by YSERENTANT (1986
[266]) and for a Multiplicative Multigrid Method by BANK et al. (1988 [11]).
The last is called hierarchical bases Multigrid Method . If the number of points
to be smoothed is slightly increased by some neighboring nodes, an optimal
complexity is achieved for an Additive Multigrid Method after BRAMBLE et
al. (1990 [40]), which is called BPX method, and for a multiplicative method
by BRAMBLE et al. (1991 [39]), see also BASTIAN (1996 [17]), which is
called Local Multigrid Method. For a uniform refinement, the Local Multi-
grid Method is identical to the Multiplicative Multigrid Methods explained in
the figures 3.60 and 3.63. Mostly, the convergence behavior of Multiplicative
Multigrid Methods is much better than that of Additive Multigrid Methods
(see BASTIAN et al. (1998 [20])).

The Multigrid Methods explained up to now are called geometric because they
use geometric information for refinement and coarsening. Algebraic Multigrid
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Methods (AMG) are used for a mesh coarsening. They do not need any geo-
metric information, but determine the coarse mesh and the transfer operations
with only the algebraic information of the system matrix and the connectivity
of the unknowns. AMG is applied if a fine mesh has not been generated by
the uniform refinement of coarser meshes or if the boundaries and the inner
structures of the coarse mesh are so complicated that they cannot be reason-
ably reproduced with only a few nodes (see RUGE, STÜBEN (1986 [226]),
BRAESS (1995 [36]), BANK, XU (1996 [12])).

In principle, Multigrid Methods are very suitable for structured grids and el-
liptic problems. Problems occur in the context of unstructured meshes and
complex geometries, advection (see RENTZ-REICHERT (1996 [217])), jumps
in coefficients (see BASTIAN (1996 [17])) and moving boundaries (see HOPPE
(1993 [121])).

In many cases, Multigrid Methods can be parallelized well. However, for
convection-dominated or anisotropic problems, robust smoothers which are
not so suitable for parallel computations, e.g. Gauss-Seidel (see sec. 3.4.2),
must be chosen. If the coarse-grid solver is a direct one, the coarse-grid data
should be given to each processor and the direct solution should be carried out
on each processor. Multigrid Methods, especially in combination with adap-
tive methods (see sec. 3.3), require a dynamic load balancing (see sec. 3.2.4).
A mesh partitioning is not only carried out in the horizonal, but also in the
vertical, e.g. by the cluster technique described in section 3.2.4. Although Ad-
ditive Multigrid Methods are more suitable for parallelization, multiplicative
ones should be preferred because of the better convergence behavior (see BAS-
TIAN et al. (1998 [20])). For the combination with adaptive methods, Local
Multiplicative Multigrid Methods are recommended. As already mentioned in
section 3.2.3, Multigrid Methods are not suitable for vectorization.

Finally, it is mentioned that Domain-Decomposition Methods (see secs. 3.4.3,
3.2.2) can also be interpreted as Multigrid Methods because they consist of a
hierarchy of grids. The interface problem corresponds to the coarse-grid solver
and the local problem to the fine grid solver.



3.4 Fast solvers 159

Ωm

Ω

Ωm−1

m−2

Fig. 3.65. Local Multigrid Method



160 3 Efficient numerical methods

3.4.5 Non-linear solvers

The coupled balance equations explained in sections 2.3 - 2.6 are characterized
by a number of possibly strong non-linearities which exemplarily result from
the coefficients in the equations, such as the constitutive relationships (eqs.
2.39, 2.43) or the equations of state (eqs. 2.12, 2.46). Non-linearities also
occur, for example, in advection terms in the shallow water equations (eq.
2.62) and in terms with products of unknowns in the continuity equation of
the multiphase / multicomponent model (eq. 2.53). These circumstances lead
to the following system to be solved where the system matrix A(X) depends
on the unknowns X :

A(X)X = B (3.138)

It is necessary to distinguish between weak and strong non-linearities. Non-
linearities are often weak, e.g. in the shallow water equations (see HINKEL-
MANN (1997 [108])) and in pressure- or temperature-dependent equations
of state in subsurface multiphase / multicomponent modeling (see HELMIG
(1997 [98])). In such cases, a linearization can be carried out at the discretiza-
tion stage (see sec. 3.1), e.g. by assuming a linear behavior of a function e
between the current and the new time level:

en+0.5 ≈ 1

2
(en+1 + en) (3.139)

Strong non-linearities are caused, for example, by the constitutive relation-
ships in subsurface multiphase / multicomponent modeling, i.e. the capillary
pressure-saturation and the relative permeability-saturation relationships (see
sec. 2.4.3). These functions vary strongly depending on the saturations and
geological structures.

For the linearization of the non-linear algebraic equations which result from
the discretization methods of section 3.1, there are two commonly used meth-
ods, the Picard and the Newton-Raphson linearization (see PRESS (1992
[208]), HELMIG (1997 [98])). In the Picard Method, the coefficients of the
matrix A are determined by the values from the previous iteration step (k) to
obtain the new iteration step (k + 1):

A(X(k))X(k+1) = B(k) (3.140)

The Picard linearization has a linear convergence behavior. As the Newton-
Raphson Method has a superior, quadratic convergence behavior, it is often
preferred. The system of equations 3.138 is written in a functional form:

F (X) = A(X)X − B = 0 (3.141)

The Newton-Raphson linearization is based on a Taylor-series expansion (eq.
3.12). The new iterate is determined by the following scheme:
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X(k+1) = X(k) − J−1(X(k))F (X(k)) (3.142)

In this equation, J denotes the Jacobian matrix or tangent-stiffness matrix.
It should be mentioned that the Jacobian matrix is used in a similar context
dealing with the transformation relations between natural and Cartesian co-
ordinates (see sec. 3.1.4, eq. 3.58). The Jacobian matrix here is computed as
follows:

J =
∂F

∂X
↔ jil =

∂fi

∂xl
(3.143)

If the matrix A(X) is sparse, the Jacobian matrix is sparse, too. As a con-
sistent linearization often causes very much effort, the differentiation for the
Jacobian matrix can also be carried out numerically (see BASTIAN (1999
[21])). Alternatively, the tangent matrix can be replaced by a secant matrix,
which can be computed much faster, or the tangent matrix is not updated
in each iteration step (see RUST (1991 [227])). If robustness problems occur,
methods with incremental steering may be advantageous (see RUST (1991
[227])).

For time-dependent problems, the time step must be chosen according to the
linearization method, i.e. it must be reduced if the number of non-linear iter-
ations increases too much (see BASTIAN (1999 [21])). In multiphase / mul-
ticomponent modeling, the Newton-Raphson Method can lead to robustness
problems, which can be overcome by the Picard linearization (see THORENZ
(2001 [248])).

If a Multigrid Method is to be applied to non-linear problems, two differ-
ent variants exist, the Newton-Multigrid and the non-linear Multigrid Method
(see RUST (1991 [227]), BRIGGS et al. (1999 [44])). In the Newton-Multigrid
Method, the outer iteration loop is determined by the Newton-Raphson
Method which leads to a linear system in each outer iteration step. These
linear systems can be solved with the Multigrid Methods described in sec-
tion 3.4.4 in an inner iteration loop. In the non-linear Multigrid Method, a
non-linear system is treated on each grid level, i.e. a non-linear smoother and
a non-linear coarse-grid solver are required. MOLENAAR (1995 [180]) and
BASTIAN (1999 [18]) show that the Newton-Multigrid Method is superior,
at least for subsurface multiphase flow modeling.
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3.4.6 Examples

In this section, the convergence and parallel run-time behavior of two different
fast solvers, the PCG and the Multigrid Method, are analyzed.

PCG Method: Parallel efficiency and different preconditioners

The parallel efficiency ep (see sec. 4.2.3) of the PCG Method (see sec. 3.4.2)
with a diagonal preconditioner (see sec. 3.4.3), which is applied to the dif-
fusion step of the 2D-transport equation (see sec. 5.4.1), is shown in figure
3.66 (see HINKELMANN (1997 [108])). For the coarse mesh with about 2200
nodes and one degree of freedom, 100 time steps of ∆t = 15s are investigated
and, for the fine mesh with about 8900 nodes, 100 time steps of ∆t = 6s. The
mesh was partioned with the Recursive-Spectral Bisection in combination
with Kernighan-Lin heuristic (see sec. 3.2.4). The simulations were under-
taken on a nCUBE2S parallel computer. The absolute hardware data are no
longer up-to-date. However, the ratio of the data transfer rate to the processor
performance, which is the most important criterion for a fine granular algo-
rithm (see sec. 4.2.2), is representative for modern parallel computers with
1.8MB/s/Mflops. Further information is given in section 5.4.1.

For a given problem size, the parallel efficiency ep decreases with an increas-
ing number of processors; for a constant number of processors, the parallel
efficiency increases with increasing problem size (see fig. 3.66). Further, the
scaling of the parallel algorithm is obvious: if the problem size is increased
by the factor 4 and the number of processors by the factor 2, the parallel
efficiency remains approximately the same; this is illustrated by the dashed
horizontal lines in figure 3.66.

In table 3.4, numbers of iterations of the PCG Method are given for differ-
ent preconditioners on 4 and 16 processors. A simple diagonal preconditioner
significantly reduces the numbers of iterations here which is caused by the
diagonal dominance of the system matrices. The Element-By-Element (EBE)
and the Block-Jacobi (BJ) preconditioners (see sec. 3.4.3) further reduce the
number of iterations. Both depend on the number of processors, but EBE only
weakly. For small numbers of processors, the BJ preconditioner requires fewer
iterations than the EBE Method, for large numbers of processors vice versa.
For increasing problem size, the dependence of the number of iterations on the
number of processors becomes weaker for the BJ preconditioner. Finally, it
must be mentioned that the CPU time for the BJ preconditioner could hardly
be reduced, and sometimes even increased compared to the CPU time for the
diagonal preconditioner.
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Fig. 3.66. Parallel efficiency of the PCG Method, after HINKELMANN (1997 [108])

without diagonal EBE (4p/16p) BJ (4p/16p)

coarse grid 3306 669 410/417 328/612

fine grid 6637 580 361/371 306/453

Table 3.4. Numbers of iterations of the PCG Method for different preconditioners
on 4 and 16 processors, after HINKELMANN (1997 [108])

Multigrid Method: Different Multigrid levels and parallel speedup

The Multigrid Method (see sec. 3.4.4) is investigated for the two-phase flow
equations (see sec. 5.2.4, ÖLMANN et al. (2002 [194])). It is a preconditioner
(see sec. 3.4.3) of the BiCGSTAB Method (see sec. 3.4.2) which is the inner
solver of an outer Newton-Raphson iteration (see sec. 3.4.5). A V −Multigrid
cycle (see sec. 3.4.4) is chosen with a direct solver (see sec. 3.4.5) for the coarse
grid and an ILU smoother with 2 pre- and postsmoothing steps. The simu-
lation period is 1h with an initial time step of 60s. A time step adaptation
depending on the number of non-linear iterations (see sec. 3.3.2) is carried
out. A static load distribution is determined with the Recursive-Inertial Bi-
section (see sec. 3.2.4, see fig. 5.35). The coarse-grid solution is computed on
each processor. The simulations are carried out on the Hitachi parallel vec-
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tor computer (see sec. 4.2.1). However the Multigrid Methods hardly use the
vectorization (see sec. 3.4.4).

In table 3.5, the CPU times computed on 32 processors of the Multigrid
Method explained above are listed for different grid levels. In this case, the
minimal CPU time is obtained with a four-grid solver, not with the five-grid
solver. This circumstance is caused by the parallel computations, because the
’sequential’ Multigrid theory proposes decreasing effort with increasing num-
bers of grid levels. For a direct coarse-grid solver, the number of grid levels
should be chosen in such a way that the number of unknowns on the coarse
grid is in the range of a few hundred. If the number of unknowns on the coarse
grid is much larger, the direct solver requires too much CPU time.

Multigrid levels 1 2 3 4 5

number of unknowns 263682 66306 16770 4290 1122
on the coarse grid

CPU time [s] 1749 1251 657 365 574

Table 3.5. CPU time for a Multigrid Method with different grid levels, after
ÖLMANN et al. (2002 [194])

In figure 3.67, the parallel speedup sp (see sec. 4.2.3) is investigated for the
four-grid solver. It has an overlinear course for 2 and 4 processors probably
caused by cache effects (see sec. 4.2.3). For more than 8 processors, the in-
clination of the speedup decreases with increasing number of processors. It
must be taken into account that the convergence of the smoother depends
on the number of processors, i.e. the number of iterations increases with an
increasing number of processors and, the speedup is thus worsened.
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Efficient information-processing techniques

This chapter deals with efficient information-processing techniques which are
applied in the context of modeling hydro- and environmental systems and
which belong to modeling systems. Numerous techniques are explained, most
of them, however, only very briefly. Several preprocessing tools which are used
for the model set-up, such as CAD, databases and GIS, are explained. The
processing part concentrates on High-Performance Computers and the mod-
eling system MUFTE-UG. Aspects of postprocessing and visualization are
introduced. Finally, methods and techniques of WWW-based Collaborative
Engineering are discussed.

4.1 Preprocessing

4.1.1 Introduction

Preprocessing is concerned with all the tasks which must be carried out before
a numerical simulation, i.e. all available data must be processed to determine
the model set-up. The necessary steps consist of the geometry approximation,
the assignment of physical parameters to geometric units, the mesh generation
and the determination of the initial and boundary conditions. For problems
with a simple structure with regard to the geometry, parameter distributions
and boundary conditions, the model set-up is determined at the input stage of
the numerical simulator. However, most problems in hydro- and environmen-
tal engineering are characterized by complex structures. Therefore, special
preprocessing tools as well as the corresponding interfaces are required; these
are explained in the following (see fig. 4.1).

The data are space- and / or time-dependent. In many cases, the geological
structures of an aquifer or the bathymetry of a river are only space-dependent.
However, if effects like land subsidence or morphological changes are taken into
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Fig. 4.1. Steps during preprocessing

account, they are also time-dependent. Classical examples of time-dependent
data are contamination distributions in the subsurface or measured gauge
levels in a surface-water system. The data can be based on a raster or vector
model (see fig. 4.2). In a raster model, the basic element is a pixel or a grid cell.
Raster models are rather simple. Generally, they require more storage than
vector models, and logical connections between the basic elements can hardly
be established. In a vector model, the basic elements are points, lines and areas
together with their topological connections which enable logical connections
such as a neighborhood relationship. In both, the raster and vector models,
the information under consideration is mapped onto the basic elements, and
the data must be checked for plausibility and measurement or regionalization
errors before they are treated further.

For the geometry approximation, the possibly very complex geological struc-
tures of a subsurface system, e.g. spatially intersecting discrete fracture planes
or fault zones, or the possibly complex structures of water bodies in a surface-
water system, e.g. taking into account waterways and shallow areas as well as
flooding areas, must be determined. At one time, the geometry was determined
by hand or, for example, by digitizing maps. Nowadays, there are a number of
tools which support this work, such as CAD systems (see sec. 4.1.2), Roentgen
tomography (see sec. 4.1.4) and GIS systems (see sec. 4.1.5), remote sensing
(see BAUMGARTNER et al. (1997 [24]), SCHULTZ, ENGMAN (2000 [234]))
and geophysical methods (see KNÖDEL et al. (1997 [145])). Remote sensing
in this context is mainly applied to detecting structures on the surface of the
earth, e.g. shore lines, river banks, precipitation or vegetation distributions.
However, the bathymetry of a surface-water system, for example, cannot be
recognized. This is carried out cross-section-wise or continuously with digital
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depth measurements from a special boat. With geophysical methods, the wa-
ter table in the subsurface, for example, or the transitions between layers can
be measured. However, these methods cannot be used for the direct determi-
nation of, for example, permeabilities.

The assignment of physical data, such as the distribution of the bottom fric-
tion in a surface-water system or the distribution of the permeabilty in the
subsurface, to the geometric units can be handled with the aid of a database
(see sec. 4.1.3) which is linked to a CAD system or within a GIS (see sec.
4.1.5). Often, only point information which must be inter- or extrapolated
onto the domain is available, e.g. borehole data or local field measurements.
The influence of small-scale heterogeneities can be estimated with geostatis-
tical methods (see sec. 4.1.6).

Finally, a mesh must be generated for the computational domain (see sec.
4.1.7), and the initial and boundary conditions must be prescribed. It should
be mentioned that the temporal effort for pre- and postprocessing is continu-
ously increasing compared to the processing or simulation time and will take
up the major part of the whole modeling procedure within the next years.
Further reading can be found in ZIELKE et al. (1999 [267]), HELMIG et al.
(1999 [102]) and ROTHER (2001 [225]).
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4.1.2 CAD systems

Computer Aided Design or CAD systems enable an interactive geometric con-
struction in two and three dimensions based on the vector model. There
are many ways of developing, changing and visualizing geometric structures
using layering techniques, self-definable macros etc. Additionally, they can
be connected over interfaces with different other tools, for example with
databases, statics or cost-calculation programs. CAD systems are widely
used in civil and building engineering. In building engineering, the Auto-
CAD system (see AUTOCAD (2001 [2])) is quasi-standard; in civil engi-
neering, the PRO/ENGINEER system (see VOGEL, BUNTE (2001 [255]),
PRO/ENGINEER ([209])) is in widespread use.

For modeling hydro- and environmental systems, the market leaders men-
tioned above are only used in a few cases. Very often, special CAD tools for
different systems in environment water were developed in the context of the
development of the corresponding modeling systems. For surface-water mod-
eling, TICAD (HOLZ et al. (1990 [120])), MATISSE as the preprocessor of
the TELEMAC system (see GALLAND et al. (1991 [86]), TELEMAC ([246]),
sec. 5.4) and JANET (see SELLERHOFF (2002 [236]), JANET ([130])) can
be mentioned and, for subsurface modeling, the preprocessors of the SPRING
system (see KÖNIG (1991 [154]), SPRING (2000 [242])) and the MODFLOW
system (see MCDONALD, HARBAUGH (1984 [175]), MODFLOW ([179])).
There are a number of useful features and automatisms; one very important
function consists of adding, deleting and moving nodes due to the engineer’s
modeling experience. Such actions are often required in critical zones, e.g.
where there are steep bottom gradients in a surface-water system or narrow
flow passages in multilayered aquifers. A large number of modeling systems
for water-related and environmental problems has been developed in recent
years, and many of them have their own CAD or preprocessing tools. Unfor-
tunately, only a few of these CAD systems use standard interface, such as
DXF, and are compatible to other systems.

Figure 4.3 presents an AutoCAD plan of a vertical section through a subsur-
face system located in the Ruhr area in the western part of Germany, showing
different layers as well as the course of the surface of the earth (see sec. 5.2.2).

In figure 4.4, the bathymetry of the Hüttenbühl reservoir which is located
about 80 km north-east of Stuttgart, Germany, is visualized. This CAD plan
was made with MATISSE, the preprocessor of the TELEMAC system. The
different colours indicate the different mean water levels. The inflow region in
the front, the lateral boundaries and the reservoir wall at the right end are
shown.
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Fig. 4.3. AutoCAD plan of a vertical section through a subsurface system

Fig. 4.4. Bathymetry of the Hüttenbühl reservoir generated with the TELEMAC
system, after JACOUB et al. (2002 [129])
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4.1.3 Database-management systems

Database-management systems (DBMS) are a means of processing informa-
tion which has continuously gained importance in recent years. They consist of
one or more databases and a management system. The database contains struc-
tured and interlinked data which are often stored in tables, while the manage-
ment system offers the tools for adding to, changing, linking and controling
the data. DBMS enable the storage and administration as well as the han-
dling and analysis of data embedded in a user-friendly and windows-steered
software environment. Very often, the data are organized with the Entity-
Relationship (ER) Model. Entities are objects or abstractions, and they are
linked by relations which are represented by tables; this is called a relational
DBMS (RDBMS).

The data must be stored consistently and independently of the application
programs. For multi-user purposes, an access control, i.e. the permission and
the sequence, must be specified. As far as the system architecture is con-
cerned, a 3-level architecture has become standard for DBMS. The internal
level contains the physical data organization, i.e. the location of the stored
data and the manner of data access. On the conceptual level, the data model
is described, i.e. the user data and data-access regularization. The external
level is concerned with the specific requirements of the users. All architectural
levels are independent of each other and describe a different point of view
on the DBMS. Working with the data, such as selecting, grouping, delet-
ing, updating etc., is handled by a database language, generally the standard
Structured Query Language (SQL), in combination with a product-specific
development environment. Overall, a database implementation should be effi-
cient that queries and changes should be carried out fast. There are a number
of RDBMS, e.g. ORACLE ([200]) or the open-source MySQL ([184]) database.

In recent years, distributed DBMS have been developed. The data are stored
on different computers connected by a network. For the user, this is not visi-
ble; however, the coordination tasks are much more complicated. For simply-
structured data, RDBMS are very suitable. For non-standard applications
with complex data structures, such as CAD (see sec. 4.1.2), CASE (Computer-
Aided Software Engineering) or Multimedia (see sec. 4.4), object-orientated
DBMS (OODBMS) are superior, because they enable the usage of object-
orientated methods. OODBMS should also be preferred for multidimensional
databases, i.e. if data are investigated from several points of view. When deal-
ing with huge data volumes, they are called data warehouses in the context
of storing data and data mining in the context of analyzing data. Further
information is given, for example, in ABTS, MÜLDER (2000 [1]).

In figure 4.5, the database-management system MySQL which has been con-
nected with the modeling system MUFTE-UG (see sec. 4.2.4) is shown. The
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soil-dependent parameters as well as the parameters for the constitutive rela-
tionships are given for different layers (see sec. 5.2.2).

Fig. 4.5. Database-management system MySQL connected with the MUFTE-UG
modeling system

4.1.4 Tomography and scanning

In recent years, techniques based on information-processing have been newly
developed or applied to problems in hydro- and environmental engineering to
detect geometric structures of the computational domains in a high resolution.
In this context, tomography and scanning are explained, another technique is
remote sensing.

With a tomograph, the pore structure of a porous medium can be reproduced
at a high resolution. This is done by measuring the density distribution of the
porous medium which can be visualized in form of different gray scales. Such
a procedure is similar to the usage of tomographs in medicine. For a sample
of 1cm3, 103 pixels are needed for a resolution of 1mm and 109 pixels for
a resolution of 10µm. In figure 4.6, a cross-section through a cylindrical soil
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sample with different shades of gray is shown (see VOGEL (1998 [254])). Such
geometric information can be chosen to model flow and transport processes on
the pore scale based on the solution of the Reynolds and transport equations
(see sec. 2.6), for example, with Lattice-Boltzmann Methods (see KRAFCZYK
et al. (2000 [157])). An analysis of the pore-scale processes with e.g. Lattice-
Boltzmann Methods, pore-network models or inverse parameter estimation
leads to spatially variable hydraulic parameter fields on the continuum scale
(see fig. 2.1, VOGEL, ROTH (1998 [256])), e.g. the capillary pressure- and the
relative permeability-saturation relationships (see sec. 2.4.3). On this scale,
gas-water flow processes can be simulated with the Darcy law. Bringing to-
gether high-resolution geometry with pore- and continuum-scale simulations
is intended to lead to the development of new upscaling methods (see MILLER
et al. (1998 [178]), MANTHEY et al. (2003 [172])).

Fig. 4.6. Section through a soil sample of 15x15mm, after VOGEL (1998 [254])
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In figure 4.7, a scanned surface of a fracture is visualized (see SILBERHORN-
HEMMINGER (2002 [237])). The roughness of the surface is clearly recog-
nizable. The information obtained from this scan is further used to determine
the aperture distribution of the fracture.

Z

Fig. 4.7. Section through a soil sample, after SILBERHORN-HEMMINGER (2002
[237])

4.1.5 Geographical Information Systems

Geographical Information Systems or GIS are software systems which are capa-
ble of assembling, storing, manipulating, displaying and analyzing geograph-
ically referenced information, i.e. data identified according to their locations.
The data can contain geometric information or attributes which are stored, for
example, in different layers or themes (see fig. 4.8). Generally, a GIS projects
the information onto a surface map, and is thus restricted to two dimensions
as well as to time-independent data. However, there are some extensions to
three dimensions and time-dependent data. The quasi-standard GIS tools are
ArcVIEW as an introduction and ArcGIS for advanced use (see ArcVIEW,
ArcGIS ([5])). GIS has become widespread in recent years, and its use is
strongly recommended, especially for multidisciplinary work, because the in-
formation exchange is relatively simple. In the following, some basics about
GIS are explained. Further information is given in, for example DAVIS (2001
[69]).

In GIS, different kinds of data are processed, such as ASCII, digitized, vector,
raster, graphic, multimedia data etc. Interfaces and functions are available for
overlaying and linking these data, including, for example, merging and inter-
section maps and data, extracting features, analyzing proximity relations etc.
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If a digital terrain model (DTM) which contains the vertical coordinates of the
surface of the earth is set up, this is based on raster data (see sec. 4.1.1). For
complex structures, a triangular irregular network (TIN), which is determined
with a vector model (see sec. 4.1.1), is often more suitable. Before the data
are mapped onto the DTM or TIN, they must be checked for plausibility and
should be thinned out and generalized, i.e. simplified data sets which repre-
sent the essential properties must be generated. A further important feature
within GIS is geo-referencing, i.e. the linking of models which are based on
different spatial reference systems.

Fig. 4.9. GIS application for recharge determination, after RIEGGER (2001 [218])

For surface-water modeling, GIS can be applied to determine the boundaries
of the computational domain at mean water level or to predict flood areas at
extreme water levels. For subsurface modeling, GIS can be used, for example
to describe the course of the system boundary with the atmosphere and to
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evaluate the surface-runoff and the recharge which depend on a number of
parameters.

In figure 4.9, an application of ArcVIEW is shown for a recharge determina-
tion which is computed from the parameters open area, relief, surface runoff,
soil, vegetation, precipitation and evapotranspiration (see RIEGGER (2001
[218])).

4.1.6 Geostatistical methods

Numerical simulation in the subsurface is always associated with uncertainties
(see sec. 3.1.6). Small-scale heterogeneities whose spatial distribution is gen-
erally unknown can influence the flow and transport processes significantly,
especially in two- and multiphase systems (see secs. 5.2.2, 5.3.2). With geo-
statistical methods, such influences can be estimated. Geostatistical methods
provide information about the spatial variability of a considered property for
given mean value, variance and correlation length. For subsurface simulations,
the most important property in this context is the permeability field. Various
methods exist for determining geostatistical permeability distributions (see
BARDOSSY (1992 [15]), WACKERNAGEL (1998 [257]), SILBERHORN-
HEMMINGER (2002 [237])). Here, exponential variogram models which are a
measure of differences between spatial data are briefly introduced.

Variogram functions var(x) are characterized by the variance v, the corre-
lation length c and the nugget effect ne (see fig. 4.10). The variance for a
permeability field considered at i locations is computed with the arithmetic
average Km as follows:

v =
1

n

n∑
i=1

(Ki − Km)2 (4.1)

Km =
1

n

n∑
i=1

Ki (4.2)

The correlation length is a measure for the area of influence. If the distance be-
tween two points is larger than the correlation length, they are not correlated.
To take layering effects into account, the correlation length in the horizontal
direction can be chosen to be greater than that in the vertical direction. Of-
ten, the horizontal correlation is 5 or 10 times larger than the vertical one.
The nugget effect is often neglected in hydro- and environmental engineering.

The variogram function in figure 4.10 is determined by the following formula:

var(x) = v(1 − e
−|x|

a ) + ne (4.3)
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If the correlation length is assumed to be the distance where 95% of v is
reached, a = −c /ln 0.05 = c/3.00.

For two- and multiphase systems, it is mentioned that the entry pressure
distribution pd (eq. 2.39) in a geostatistically varied field can be determined
according to the Leverett function J = pd

√
K/φ which is given here in a

simplified form (see HELMIG (1997 [98]), SHETA (1999 [230])). If the per-
meability Km, the porosity φm (see sec. 2.4) and the entry pressure pd for the
averaged or homogeneous system are known, the entry pressure at location i
in the geostatistically varied field can be computed as:

pdi = pd

√
Kmφi/(Kiφm) (4.4)

In figure 4.11, geostatistical permeability fields with different variances (v =
0.25, left and v = 1.0, right) are shown (see KOBAYASHI et al. (2002 [146])).
They were generated with the SIMSET model (see BARDOSSY (1992 [15])).
The nugget effect is set to zero ne = 0. The correlation length in the hor-
izontal direction is ch = 20m, and is five times larger than in the vertical
direction, cv = 4.0m. Therefore, layering effects are observed in both graph-
ics. A comparison of the left and right permeability field clearly shows the
larger variance on the right, caused by the larger inhomogeneities.

Geostatistical methods can also be applied to generated discrete fracture sys-
tems (see Geostatistical Software Library (GSLIB) of DEUTSCH, JOURNEL
(1992 [70]), SILBERHORN-HEMMINGER (2002 [237])). Further information
about geostatistical methods can be found, for example, in BARDOSSY (1992
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[15]), WACKERNAGEL (1998 [257]), or SILBERHORN-HEMMINGER (2002
[237]).
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Fig. 4.11. Geostatistical permeability fields with different variances; left: v = 0.25,
right: v = 1.0

4.1.7 Mesh generation

After the geometric and physical information has been prepared, a mesh of
the computational domain must be generated. If the domain and the bound-
aries as well as the spatial distribution of the physical parameters are ‘simple’,
a structured mesh can be chosen, i.e. rectangular elements in 2D and bricks
(rectangular parallelepipeds) in 3D. Here, structured means that, in 2D, each
inner node has a connection to 4 neighboring nodes and to 4 rectangular el-
ements and, in 3D, each inner node has a connection to 6 neighboring nodes
and to 8 brick elements. Such a mesh generation is rather simple, and in
combination with, for example, GIS (see sec. 4.1.5), can be easily determined
from a raster model (see sec. 4.1.1). Structured meshes are specially designed
for Finite-Difference Methods and are also applicable for Finite-Element and
Finite-Volume Methods (see fig. 5.23).

For complex domains and boundaries as well as spatial parameter distribu-
tions, unstructured meshes are recommended, i.e. triangles or quadrilaterals in
2D, and tetrahedra and hexahedra in 3D. For rather complex cases, triangles
and tetrahedra should be preferred. ‘Unstructured’ means that any degree
of connectivity to neighboring nodes or elements is possible. Unstructured
meshes are related to the vector model (see sec. 4.1.1), CAD systems (see sec.
4.1.2) and TIN in GIS (see sec. 4.1.5). For 3D-simulations, the mesh is often
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unstructured on the horizontal plane and, mapping it several times over the
vertical, it is structured on the vertical plane. Such a mesh generation is called
2.5D (see fig. 5.55). The generation of unstructured meshes requires special
methods and is much more time-consuming than that of structured grids. The
most popular mesh-generation methods are based on the Delaunay triangula-
tion, the Advancing Front Method or block-structured methods (see KASPER
(1999 [143]), FUCHS (1999 [84])). Unstructured meshes are especially suitable
for the Finite-Element and Finite-Volume Method (see figs. 5.53, 5.15).

In many practical water-related and environmental problems, geometrically
complex systems must be treated and, therefore, unstructured meshes are
used. In subsurface systems, the geological structures may be very complex,
if spatially intersecting discrete fractures and fault zones (see fig. 4.20), dif-
ferent layers or sink / source areas are dealt with. In surface-water systems,
the transitional zones between shipping lanes and shallow areas, regions with
steep bottom gradients as well as flooding or drying areas require special
attention (see fig. 5.47). In such critical regions, a higher mesh resolution
should be chosen depending, for example, on the jump in the permeability
(see fig. 4.12) or the steepness of the bottom gradient. This is called an a
priori adaptive method and has already been discussed in sec. 3.1.1 (see fig.
3.35). Furthermore, the preprocessing tool should enable adding to, moving
or deleting nodes ‘by hand’, e.g. with a CAD system (see sec. 4.1.2).

A good or high quality of the mesh or the generated elements is desirable,
as the quality of numerical results may strongly depend on it. Therefore, ele-
ments are to be equilateral, and the angles close to 60o for triangles and 90o

for quadrilaterals. In this context, the mesh generator ART (Almost Regular
Triangulation, see FUCHS (1999 [84])) is mentioned. ART is based on the
Delaunay triangulation which is shape-optimized with the Laplace Method.
It generates high-quality triangles or tetrahedra with a regular mesh struc-
ture and enables area-wise higher mesh resolutions according to user-defined
density functions. ART has been extended to discrete fractured systems; for
fractures as elements of lower dimensions (e.g. 1D-fractures in a 2D-matrix),
see NEUNHÄUSERER et al. (1998 [187]), for fractures as elements of equal
dimension (e.g. 2D-fractures in a 2D-matrix), see NEUNHÄUSERER et al.
(2001 [188]) and section 5.1 for further information. Moreover, TANIGUCHI et
al. (1996 [245]) have developed a mesh generator for fracture-matrix systems.
In figure 4.12, a triangular mesh for a fracture-matrix system generated with
ART is shown. The density functions are chosen higher along the fracture-
matrix interaction space (see NEUNHÄUSERER et al. (2000 [190])).

The ratio between the smallest and largest element edge should not differ by
too many orders of magnitude. However, the systems to be modeled often do
not fulfill this requirement. In surface-water as well as in subsurface systems,
the length scales on the horizontal plane (kilometers) are much larger than
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Fig. 4.12. Fracture-matrix system generated with ART, after NEUNHÄUSERER
et al. (2000 [190])

in the vertical direction (meters). Therefore, certain compromises have to be
made. It is further mentioned that certain numerical schemes require special
geometric conditions which must be guaranteed by the mesh generator, e.g.
the Voronoi property for the node-centered FVM (see FUHRMANN, LANG-
MACH (1998 [85])).

In the context of parallel computations, the mesh generation can be carried
out in two different ways. On the one hand, the mesh is generated sequen-
tially and divided into a number of subdomains afterwards (see secs. 3.2.4,
5.4, HINKELMANN (1997 [108])). On the other hand, the mesh can be subdi-
vided into macro-elements; then a mesh is generated in each macro-element in
parallel (see LANG (2001 [162])). The mesh generation in the macro-elements
can be carried out with certain constraints at the interprocessor boundaries,
e.g. no hanging nodes (see fig. 3.36). Such a mesh was been generated with
tetrahedra for an abandoned coal mine (see fig. 4.13, sec. 5.2.2). The different
layers are shown with different colors. In the upper graph, a view into the
domain is given and some macro-elements have therefore been removed. For



4.1 Preprocessing 183

a better visualization, the layers with the generated tetrahedra are presented
separately in the lower graph.

Fig. 4.13. 3D-mesh of a coal mine

Further information is given in, for example, KASPER (1999 [143]), FUCHS
(1999 [84]), SELLERHOFF (2002 [236]) and ROTHER (2001 [225]).
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4.2 Processing

4.2.1 High-Performance Computational Architectures

Many large-scale computational problems cannot be solved in a reasonable
time or at all on a single PC or workstation. High-Performance Computers,
such as parallel and vector computers, are required; they are introduced in
this section. Different computer architectures can be distinguished according
to the classification of Flynn: the von Neumann computer is based on the Sin-
gle Instruction Single Data principle (SISD), i.e. one processor is connected
to one memory (see fig. 4.14), and the commands are carried out sequentially
with one datum. This is the way a classical PC or workstation operates. On
parallel computers, several processors work at the same time in parallel for a
task. If the Single Instruction Multiple Data principle (SIMD) is chosen, every
processor carries out the same command, each with different data, however;
this is called data parallelism, and the data-parallel programming model can
be applied (see secs. 3.2.2, 3.2.3). If the Multiple Instruction Multiple Data
principle (MIMD) is used, different ‘autonomous’ processors work on different
commands with different data at the same time. The processors can operate
fully independently of each other; this is called functional parallelism, and the
message-passing programming model (see secs. 3.2.2, 3.2.3) must be chosen.

If parallel processors all share the same memory, this is called a shared-memory
(SM) system. Each processor has direct access to the whole memory (see fig.
4.14). However, the independence of the data and the sequence of the accesses
must be ensured. Usually, shared-memory systems operate on the data-parallel
programming model (see sec. 3.2.2), sometimes also on the message-passing
programming model (see sec. 3.2.2). In a distributed-memory (DM) system,
each processor has its own memory (see fig. 4.14), and these units are con-
nected by a communication network (see sec. 4.2.2). If data from another
processor are required, they must be sent over the communication network
(see sec. 3.2.3). Distributed-memory systems work on the message-passing
programming model, the data-parallel programming model is not possible.
Moreover, it is possible that small units of a parallel system operate with
shared memory, and several such units are connected and work with dis-
tributed memory; this is a hybrid-memory system (see fig. 4.14).

Vector computers consist of a scalar and a vector unit. The scalar unit is made
of one or a few usual processors. The performance of vector computers results
from one or a few highly developed vector processors within the vector unit.
Vector processors carry out the same operations for special data structures in
an extremely fast way based on the SIMD principle. This is called pipelining,
and the operations are done in so-called clock cycles which are much faster
than operations in scalar processors (see fig. 4.15). The performance of vector
computers cannot be increased very much further for physical reasons, and
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Fig. 4.14. Computer architectures, after HINKELMANN (2000 [109])

the fast data access for the vector pipelines becomes a bottleneck and is very
expensive. The use of vector computers is interesting for those algorithms (see
sec. 3.2.3) where the major part of the computations can be carried out in
the vector unit. Moreover, it is advantageous to have large vector lengths.

In the following, the development of high-performance computational architec-
tures in recent years is shown and the current situation discussed (see fig. 4.16).
This is based on the TOP500 Supercomputing Sites which is a list of sites with
the 500 most powerful computer systems installed worldwide and is updated
twice a year (see MEUER et al. (2001 [177])). Massively Parallel-Processing
(MPP) systems consisting of several hundred single processors clearly dom-
inate the TOP500 list with about 50% of the entries. Constellations, which
are clusters with large SMP (explained later) as building blocks, i.e. more
than 16 processors per SMP, make up about 25% of the entries. The rest of
the TOP500 list is taken up by Symmetric Multi-Processing (SMP) systems,
which are computer nodes with shared memory that are part of a larger sys-
tem, and Clusters, which consist of SMP nodes with up to 4 processors. About
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Fig. 4.15. Sequence of operations in a scalar and a vector processor, after HINKEL-
MANN (2000 [109])

50% of the entries in the TOP500 list operate with hybrid memory. Since the
TOP500 list came into existence, the performance of the fastest systems has
nearly doubled each year (see MEUER et al. (2001 [177])). The fastest parallel
system achieves several Teraflops (1012 floating point operations per second)
in the TOP500 list of November 2001 (see MEUER et al. (2001 [177])).

Most of the HPC systems use UNIX or LINUX as the operating system, a
few use WINDOWS NT. In most cases, the pre- and postprocessing (see secs.
4.1, 4.3) is not carried out on the HPC systems. Exceptions are, for example,
parallel mesh generation (see sec. 4.1.7) or High-Performance Visualization
(see sec. 4.3).

To gain an idea of current computer-performance numbers, some are given
for the parallel vector computer Hitachi SR8000 and the MPP system CRAY
T3E, where numerical simulations have been carried out. The SR8000 at the
High-Performance Computing Center of the University of Stuttgart, Germany,
consists of 16 SMP units, also called nodes, with 8 processors and 8 Giga-
Byte RAM each; overall, 128 processors with 128 GigaByte RAM achieve
128 Gigaflops. The T3E at the High-Performance Computing Center of the
University of Stuttgart, Germany, consists of 512 nodes with 64 GigaByte
RAM and achieves 461 Gigaflops. Again, it must be mentioned that the given
performances are peak performances which cannot be reached for many appli-
cations. Number 1 in the TOP500 list of November 2001 aims at 7.2 Teraflops,
number 500 at 95 Gigaflops. The LINUX PC-Cluster at the Institute of Hy-
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Fig. 4.16. Development of computer architectures over time, after MEUER et al.
(2001 [177])

draulic Engineering, University of Stuttgart, Germany, has 56 processors with
1 GigaByte RAM each, and achieved about 56 Gigaflops.

4.2.2 Networks and communication in HPC

In distributed- and hybrid-memory systems, the parallel processors or units
must be connected by a communication network. If the number of processors
is small, each processor is connected to every other processor; this is called
crossbar (see fig. 4.17). For large numbers of processors, different network
topologies are used, and information must be routed over other processors for
non-neighboring processors. The topologies are designed in such a way that,
on the one hand, the maximal distance between processors in the network is
small and, on the other hand, the maximal number of connections per node
is small, too. In figure 4.17 different often-used network topologies are shown.
Generally, users and developers of parallel models do not have to take the
different network topologies into account.

Nowadays, Fast Ethernet or Myrinet ([183]) are generally chosen as the com-
munication hardware depending on the granularity of the parallel model. If
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Fig. 4.17. Network topologies, after HINKELMANN (2000 [109])

the communication effort is high / low with respect to the computational ef-
fort, this is called fine / coarse granularity. The communication speeds are
up to 2 Gbit/s for Myrinet and 100 Mbit/s for Fast Ethernet. However, these
are peak performances and achievable performances are, in most cases, much
lower. Myrinet is much faster than Fast Ethernet, but also much more expen-
sive. Fast Ethernet is sufficient for coarse granular problems. For fine granular
problems, one should investigate very carefully whether Myrinet should be
preferred to Fast Ethernet. Both enable the usage of the standard communi-
cation interfaces MPI and PVM (see sec. 3.2.2).

To assess which communication hardware should be chosen, equation 3.92 is
recalled, including the units of the variables with the communication time
tcom [s], the start-up time tst [s], the amount of data to be sent m [Mbit], and
the data-transmission rate rtr [s/Mbit]:

tcom = tst + m rtr (4.5)

In typical communications, such as arise in the majority of parallel applica-
tions in modeling hydro- and environmental systems, many ‘long’ vectors are
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sent and, consequently, the communication time is dominated by the data-
transmission rate, while the start-up time can be neglected. For fine granular
problems, such as parallel fast solvers (see sec. 3.4), the product of the proces-
sor performance L [Mflops] and the data-transmission rate rtr [s/Mbit] should
be comparatively small. The author recommends this ratio to be smaller than
0.1 [Mflops s/Mbit] at least. This can be chosen as an estimation for single-
processor parallel systems. For hybrid systems, one has to think further, and
it is difficult to make recommendations. Generally, the best way is to check
the parallel run-time behavior of the applications on the different processors
and communication hardwares.

4.2.3 Performance numbers

There are a few definitions for the performance quality of parallel and vector
algorithms which are introduced in the following. The parallel speedup sp is
defined as the ratio of the run time on 1 processor to the run time on p
processors:

parallel speedup sp =
CPU time on 1 processor

CPU time on p processors
(4.6)

The principle course of the parallel speedup is shown in figure 4.18, left, in
double-logarithmic scale (see figs. 3.33, 3.67). Generally, the parallel speedup
increases with an increasing number of processors, its course is on the right
side of the theoretical limes, and the value of the parallel speedup is smaller
than the number of processors, i.e. sp(p) < p. Due to the parallel overhead
(see sec. 3.2.3), the inclination of the parallel speedup becomes flatter with
an increasing numbers of processors. In a few exceptions, sp > p is possible;
this is caused by a different intensive usage of a cache on different numbers of
processors. A cache is a special unit in a processor with little memory where
a limited number of operations is carried out much faster than in the other
processor units.

The parallel efficiency is the ratio of the run time on 1 processor to the product
of the run time on p processors and p:

parallel efficiency ep =
run time on 1 processor

p x run time on p processors
=

sp

p
(4.7)

The course of the parallel efficiency is shown in figure 4.18, middle, in a double-
logarithmic scale (see figs. 3.33, 3.34, 3.66). The parallel efficiency decreases
with an increasing number of processors. It can be considered a scaling of the
parallel speedup. Therefore, generally ep < 1 or 100%, and the explanations
of the parallel speedup apply as above.
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A parallel algorithm is called scalable if a simultaneous increase of the problem
size and the number of processors in a certain ratio causes the same parallel
efficiency. Scalability is a prerequisite for parallelization.

A vectorized algorithm consists of a serial (non-vectorizable) part ser and
a vectorizable part (1 − ser). The vectorization rate vr is a measure of the
acceleration of the algorithm in the vector unit. The vector speedup sv is
defined as follows:

vector speedup sv =
1

ser + 1−ser
vr

−→ lim
vr→∞ sv =

1

ser
(4.8)

In figure 4.18, right, the course of the vector speedup is given for two different
serial parts. The vector speedup increases with an increasing vectorization
rate. However, the vector speedup is limited to a value of 1/ser, indepen-
dent of the vectorization rate. If ser = 0.1, the maximum vector speedup is
10. This is a very severe restriction and clearly indicates the advantage of
parallelization over vectorization. In a parallel code, non-parallelizable parts
can generally be neglected. Of course, there are parts in a parallel algorithm
which cannot be parallelized very well; however, they do not lead to such a
bottleneck.
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Fig. 4.18. Parallel speedup, left, parallel efficiency, middle, and vector speedup,
right; after HINKELMANN (2000 [109])

Further reading is given in, for example, KREIENMEYER (1996 [158]) or
HINKELMANN (2000 [109]).
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4.2.4 MUFTE-UG

In this section, the modeling system MUFTE-UG, especially the processing
part, is introduced as an example of a numerical simulator in hydro- and en-
vironmental engineering. MUFTE-UG is a combination of MUFTE and UG.
MUFTE stands for MUltiphase Flow, Transport and Energy model, and this
software toolbox mainly contains the physical model concepts and discretiza-
tion methods for isothermal and non-isothermal multiphase / multicomponent
flow and transport processes in porous and fractured-porous media (see secs.
2.3 - 2.5, 3.1; see HELMIG (1997 [98]), HELMIG et al. (1998 [100]), BREIT-
ING et al. (2000 [42])). UG is the abbreviation for Unstructured Grid, and
this toolbox provides the data structures and fast solvers for the discretization
of partial differential equations based on parallel, adaptive Multigrid Methods
(see secs. 3.2 - 3.4; see UG ([250]), BASTIAN (1996 [17]), BASTIAN et al.
(1997 [19]), LANG (2001 [162])). MUFTE uses UG as its fast solver. Figures
4.20 and 4.19 present an overview of the modeling system with its pre- and
postprocessors as well as interfaces (see sec. 5.2.2). Further information about
the pre- and postprocessing tools can be found in sections 4.1 and 4.3.

− problem description

− constitutive relationships

− discretization methods

− numerical schemes

− refinement criteria

− physical interpretation

MUFTE

− multigrid data structures

− local mesh refinement

− solvers (multigrid, ...)

− h,p,r − adaptive methods

− parallelization

− user interfaces

− graphics, visualization

UG

− physical and mathematical models

Department of Hydromechanics and
Modeling of Hydrosystems,
University of Stuttgart

Interdisciplinary Center of
Scientific Computing,
University of Heidelberg

Fig. 4.19. Numerical simulator MUFTE-UG
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Software toolbox MUFTE

MUFTE provides several modules for the numerical simulation of isothermal
and non-isothermal multiphase / multicomponent flow and transport pro-
cesses in porous and fractured-porous media:

• single-phase systems
– single-phase flow: liquids, e.g. water, NAPLs, ...; gases , e.g. air,

methane,...;
incompressible, compressible

– single- and multicomponent transport: e.g. contaminants, salt, dis-
solved gases, ...

– fractures
– 2D, 3D

• two-phase systems
– two-phase flow: liquid / liquid, e.g. water / NAPL, water / oil, ...; liquid

/ gas, e.g. water / air, water / methane, ...;
incompressible, compressible

– two- and multicomponent transport: e.g. salt, dissolved gases, contam-
inants, ...

– isothermal and non-isothermal (including phase transitions)
– fractures
– 2D, 3D

• three-phase systems
– three-phase flow: liquid / liquid / gas, e.g. water / NAPL / air, ...;

incompressible, compressible
– three- and multicomponent transport: e.g. contaminants, wator vapor,

dissolved gases, ...
– isothermal and non-isothermal (including phase transitions)
– 2D

The model concepts include the extended Darcy law for the movement of mul-
tiple phases in isotropic or anisotropic, homogeneous or heterogeneous porous
media. For the flow through fault zones and fractures, different flow laws and
modeling techniques are available. Moreover, a large set of constitutive rela-
tionships for the relative permeability and the capillary pressure as well as
state equations for densities, viscosities etc. are provided.

The two most common discretization techniques are the Fully Upwind Box
Method, which is a Finite-Volume formulation with piecewise linear shape
functions including fully upwinding of the upstream mobilities, and a Control-
Volume Finite-Element Method, which is a mass-conservative formulation on
a discrete patch including a first-order upwinding scheme. The time integra-
tion employs the Finite Difference method, and the temporal discretization
is carried out fully implicitly. The development of optimization methods is
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underway (see KOBAYASHI et al. (2002 [147])) to extend MUFTE-UG to a
decision-support system.

A software engineering tool is strongly recommended for the development of
large, complex software systems where different groups with a large number
of scientists are involved. The Concurrent Version System (CVS) is used for
the development of MUFTE-UG.

Software toolbox UG

UG is a toolbox for the solution of partial differential equations. Its special
advantages are the data structures for unstructured grids, i.e. the ability to
deal with complex geometries and boundaries in two and three dimensions,
functional parallelization, i.e. especially suitable for MIMD parallel comput-
ers, adaptive local-grid refinement in order to minimize the degrees of freedom
for a desired accuracy and robust Multigrid solvers for linear and non-linear
problems. On the one hand, a large collection of state-of-the-art numerical
methods which can be applied to users’ purposes are available, i.e. by adding
a few lines of code parallel computations can be carried out. On the other
hand, UG offers the opportunity for the user’s own developments. Moreover,
UG has several pre- and postprocessing tools which are also suitable for par-
allel computers, e.g. online graphics. UG is currently used by a number of
different groups in engineering research and application.

user interface

graphics numerics

grid manager

CHACO

PPIF

UG library

DDD domain manager

low−level functions

device manager

discretization of pde’s,

error estimator etc.

applications

boundary problems,

coefficient functions etc.

problem−class libraries

Fig. 4.21. Structure of the UG toolbox, after BASTIAN (1996 [17])
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As shown in figure 4.21, UG is divided into three major parts: the UG library,
problem-class libraries and applications. The UG library is independent of
the partial differential equation, and it contains geometric and algebraic data
structures, refinement and coarsening techniques, numerical algorithms, visu-
alization techniques as well as a user interface. The problem class libraries
provide discretization methods as well as error estimators and indicators. Fi-
nally, the applications describe the system set-up, i.e. the geometry, physical
parameters and their functional relationships as well as the initial and bound-
ary conditions. A simulation run is steered by a script file. More detailed
information can be found in the literature mentioned above and in several
manuals which can be downloaded from the the UG homepage ([250]).



196 4 Efficient information-processing techniques

4.3 Postprocessing

After the numerical simulation or processing, the computed data are analyzed,
interpreted and presented in the postprocessing. Generally, scalars and vectors
are visualized in the one, two or three space dimensions and time in form of
time series, isolines, isoareas, vector fields, path lines, tables or diagrams. The
geometric model of the visualization tool must not coincide with the compu-
tational grid, i.e. an unstructured grid computation can be visualized with a
tool which works with a square grid. Such circumstances must be taken into
account when the results are analyzed.

In 1D, the course of the computed results is plotted along the coordinate axis,
for time-dependent problems at a certain time, at different time steps (see figs.
3.5, 3.7) or in an animation or video. The temporal development of a variable
at a certain location is shown in a time series (see figs. 5.36, 5.48). In 2D,
the results of scalars, such as the water level, concentrations or saturations,
are presented with isoline or isoarea plots (see figs. 5.5, 5.18), the results of
vectors, such as the flow vector, in vector plots (see figs. 5.40, right, 5.50).
For time-dependent problems, time series, animations and videos are chosen
to analyze the results (see fig. 5.19). For particle models, the path lines of cer-
tain particles give insight into the numerical results. Sometimes, it is helpful
to combine maps of the computational area (see figs. 4.9, 5.47). For forecast-
ing purposes, it is often advantageous to plot the differences between results,
e.g. differences between an original situation and the one after an interaction
with the system.

The visualization of time-dependent 3D-simulations can become very com-
plex. A first impression can be obtained by looking at the results in certain
cuts or cross sections, and all the techniques described in the 2D-context are
applicable. For a detailed view of the 3D-results, advanced visualization tools
are required, e.g. AVS ([7]), the IBM Data Explorer ([127]) or COVISE ([65]).
These tools need special interfaces and they enable the creation of user-defined
visualization by setting up a visualization network where the user defines the
data flow and the methods and techniques which are applied to the data. One
has to define, for example, the point of view, the light intensity, the shading,
transparent or hidden lines or surfaces etc. of the results and the domain.

In figure 4.22, an infiltration process of a dense non-aqueous phase (DNAPL)
into a fully water-saturated porous medium with two low-permeability lenses
is shown in the form of DNAPL isoareas of the DNAPL saturation Sn = 0.1
after 750s and Sn = 0.38 after 1000s (see BASTIAN, HELMIG (1999 [21]),
HELMIG et al. (1999 [102])). The visualization was carried out with AVS, and
the simulation with MUFTE-UG (see sec. 4.2.4) on a parallel computer. Due
to the higher density, the DNAPL displaces the water. However, the DNAPL
does not penetrate into the lenses which are a capillary barrier. Of the porous
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medium, only the lenses, i.e. the domain with a low permeability, are visual-
ized. The edges of the computational grid are transparent in the parts of the
domain and the lenses. However, they are hidden in the areas of the DNAPL
saturation isoarea. Due to the different saturation isoareas (Sn = 0.1 left;
Sn = 0.38 right) associated with different grey shades, the lenses are shown in
different grey shades as well to distinguish them from the DNAPL. Moreover,
the point of view between the left and right figure has changed.

Fig. 4.22. Infiltration of a DNAPL into a system with low permeability lenses after
750s, left, and 1000s, right, visualized with AVS ([7]), after BASTIAN, HELMIG
(1999 [21])

The visualization can be carried out online or offline. The online graphics is
carried out during a simulation after a defined number of time steps, and it
tends to be simpler. It is useful to observe the simulation and interrupt it,
for example, in case of oscillatory results. In the offline variant, the results
are analyzed after a numerical simulation; this is recommended if advanced
visualization tools are used.

There are two ways of visualizing parallel computations. On the one hand, the
results can be presented on the distributed meshes. The grids in the subdo-
mains should be shrunk (see fig. 5.35) or the interface lines should be omitted
(see fig. 5.53) if the different subdomains are to be recognized. On the other
hand, the results can be collected on one processor and visualized in the usual
way. However, one has to take into account that the gathering of the data
cannot be parallelized well.

The amounts of data which are to be visualized can be huge, especially when
complex, 3D, large-scale and time-dependent processes are investigated. To get
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a better insight into the results, Virtual Reality (VR) based methods and tech-
niques have been developed in recent years. With Virtual Reality, the user can
immerge into the visual representation of the results and can interact with the
simulation model. For such visualization purposes, special visualization rooms
and special technical equipment are required, e.g. an all-round projection in a
CAVE (Cave Automatic Virtual Environment). Moreover, High-Performance
Computers are urgently needed to visualize the data in a reasonable time.
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4.4 WWW-based Collaborative Engineering

4.4.1 Introduction

The engineering work of today and tomorrow is characterized more and more
by aspects of interdisciplinarity and globalization. For example, the growing
complexity of single research and application fields shows an increased need for
collaboration with national and international partners in order to solve com-
plex global problems. Such collaboration has become much more practicable
as a result of recent advances in information and communication technologies
using the World Wide Web (WWW). The teamwork can be carried out at
the same location or at different locations; this is called central or distributed
collaboration. It can be carried out at the same time or at different times;
this is called synchronous or asynchronous collaboration. Working in such a
way requires a well-organized structuring of the subtasks, a clear definition
of the contents, milestones and the time schedule, especially for distributed
and asynchronous collaboration. The advantages are, on the one hand, that
collaboration is made possible or simplified - for example, less travelling is
involved - and / or, on the other hand, that individual flexibility is improved.
Further information is given in MOLKENTHIN (2000 [181]).

As an example, the collaboration of different expert groups for the modeling
and analysis of a complex hydrosystem is explained in figure 4.23. Exper-
iments for the simulation of the free surface in a porous dike system were
carried out at ETH Zürich, Switzerland. A mesh was generated with a special
generator of UG (see sec. 4.2.4, UG ([250])) at the University of Heidelberg,
Germany. The numerical simulation was undertaken with the two-phase flow
module of MUFTE-UG (see sec. 4.2.4) at the University of Stuttgart, Ger-
many. Finally, the numerical results were evaluated in a further education
course of the IAHR-EGW (International Association of Hydraulic Engineer-
ing and Research - Engineering Graduate School of Environment Water, [126])
at the University of Calabria, Italy, and compared with the experiments. Fur-
ther information is given in PAUL et al. (2000 [205]) and section 5.2.2.

The methods and techniques of Collaborative Engineering can also be consid-
ered in the context of New Media in education and further education in the
forms of Teleteaching, Telelearning and Open Distant Learning. With the use
of New Media, several improvements can be achieved, e.g. a better learning
of network thinking and acting, a better understanding of complex coupled
processes and more self-defined and flexible learning.
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Fig. 4.23. Collaborative Engineering for modeling and analysis of a complex hy-
drosystem

4.4.2 Software tools and hardware requirements

WWW-based Collaborative Engineering is generally understood as a cooper-
ation with more tools than just email and ftp (file transfer protocol). Special
tools for coordination, documentation and communication are required. Using
one central server and a groupware tool, e.g. the Basic Support for Coopera-
tive Work (BSCW) ([49]), is recommended. BSCW offers a shared workplace
for document, group and event management. Moreover, all users should work
with the same tools in order to simplify the information exchange.

If the users collaborate to solve an engineering task using a modeling system,
two different possibilities exist. On the one hand, the modeling system is in-
stalled on the central server, and a multi-user license may be required. The
whole modeling procedure - preprocessing, processing and postprocessing -
is then carried out on the server; the user’s PC is just a terminal and the
user or client is in contact with the server via a platform-independent applet.
Such a procedure can cause several problems, e.g. working over the Internet
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may be very time-consuming, and the turn-around times can be high if many
users are working at the same time. If the modeling system is available on
each user’s PC, this has the advantages of direct access, small turn-around
times and the fact that no applets are required. However, the system must be
installed, maintained and possibly paid for by each user.

Over the Internet, direct communications are possible via chats, i.e. written
text, audio connections which are similar to a telephone call, and videoconfer-
encing systems, which generally includes audio. For a videoconference between
two PCs, only a webcam, a headset, a microphone, a sound card, as well as
Internet access or a telephone (with a modem or ISDN) are needed; the costs
are low and in the range of 10% of the PC. For a videoconference between two
or several groups, special videoconferencing systems and rooms are required.
The video conference system consists of a video projector (beamer), a smart
board, and an audio system with loudspeakers. Additionally, such a room can
be equipped with a number of PCs and possibly a steering and control system
for the PCs, especially when it is used for educational purposes. The media
technology and the other equipment is expensive, up to a few hundred thou-
sand Euros. Collaboration via videoconferencing is supported by tools like
Microsoft NetMeeting, which is a freeware product used in the WINDOWS
world and quasi-standard. NetMeeting offers the opportunity of making chats,
using the white or smart board and sharing applications. NetMeeting enables
that people at different locations in the world can communicate and work on
the same document and application at the same time. Moreover, an applica-
tion, e.g. a presentation or camera movement, can be steered from another
location. If videoconferences are transmitted over large distances, ISDN tele-
phone connections should be preferred to Internet connections. They enable a
constant transmission quality of audio and video and are independent of the
Internet-communication trafic.

In figure 4.24, the Multimedia Lab at the Department of Hydromechanics and
Modeling of Hydrosystems, Institute of Hydraulic Engineering, University of
Stuttgart, Germany, is shown during the IAHR-EGW short course Multi-
phase Flow, Transport and Bioremediation in the Subsurface (see HELMIG,
CUNNINGHAM (2002 [101])). The Multimedia Lab is equipped with a video-
conferencing system and 13 PCs including a teacher-student steering unit.
Education and continuing education in modeling of hydrosystems is carried
out here in the form of a combination of lectures, computer exercises and
videoconferences which enable an integration of expert lectures from other
locations and post-course meetings over the Internet.
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Fig. 4.24. Continuing education in the Multimdia Lab

4.4.3 HydroWeb

The HydroWeb serves as an educational platform for WWW-based Collabo-
rative Engineering in Hydroscience (see MOLKENTHIN (2000 [181])). It is
given as a course within the IAHR-EGW and is also involved in other in-
ternational education and continuing education activities. The overall aim of
the HydroWeb consists of teaching methods and techniques for collaborating
over the Internet to solve hydro-engineering tasks in distributed teams. The
HydroWeb aims at students as well as at professionals who want to learn ways
of cooperation which are required for working in international and interdisci-
plinary projects.

In the following, the course concept is briefly explained. The course is given
at different locations at the same time (see fig. 4.25); at each location, a group
with several participants is involved. The course covers lectures on communi-
cation and documentation in the WWW, project management and teamwork
as well as modeling of hydrosystems for engineering or management purposes.
A few introductory lectures are given by a local advisor or by videoconference
to ensure the same educational level. The participants only require a nor-
mal PC with Internet access and standard tools belonging to the WINDOWS
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or UNIX / LINUX operating system. One central WWW server is installed,
providing file and document services. A modeling system is available for the
solution of a defined hydro-engineering task; up to now, a river-engineering
modeling system, which uses an Internet-based license service, has been ap-
plied to design a flood-protection system. The course participants are divided
into distributed groups, i.e. participants from different locations are in each
group which has to organize itself, i.e. subdivision of the task, coordination,
communication and documentation. The supervision is carried out partially
by local advisors and partially via the Internet.

Fig. 4.25. HydroWeb: WWW-based Collaborative Engineering in Hydroscience,
after MOLKENTHIN (2000 [181])

Overall, the course concept is considered very successful. In the future, a few
extensions are conceivable. The HydroWeb can serve as a platform for ad-
vanced courses in the modeling of hydrosystems. A few common lectures and
events (same location, same time) could improve the social interaction be-
tween the participants and lecturers. Finally, the HydroWeb can serve as a
professional platform for WWW-based Collaborative Engineering.



5

Applications

In this chapter, several applications from hydro- and environmental engineer-
ing are discussed. Groundwater flow and transport processes, two-phase flow
processes, two-phase / multicomponent flow and transport processes as well
as free-surface flow and transport processes are dealt with. Special emphasis
is laid on the interaction of the efficient numerical methods (see chap. 3) with
the efficient information-processing techniques (see chap. 4) for the numerical
simulations of different complex processes occurring in hydro- and environ-
mental systems.

5.1 Groundwater flow and transport processes

This section contains numerical simulations of groundwater flow and trans-
port processes in fractured-porous media (see sec. 2.1.2). The development
of a so-called equidimensional modeling approach for fracture-matrix systems
(see sec. 2.1.2) is in the foreground. In the context of efficient numerical meth-
ods, adaptive (see sec. 3.3) and Multigrid Methods are treated. An extension of
a mesh generator (see sec. 4.1.7) for the equidimensional modeling approach
is explained with respect to efficient information processing techniques. The
modeling system MUFTE-UG (see sec. 4.2.4) served as the basis for the de-
velopments and applications. The content of this section is also published in
NEUNHÄUSERER et al. (2001 [188]), NEUNHÄUSERER et al. (2002 [189]),
GEBAUER et al. (2002 [89]), OCHS et al. (2002 [193]), or NEUNHÄUSERER
(2003 [186]).
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5.1.1 Motivation of the equidimensional modeling approach for
fracture-matrix systems

In recent years, the numerical simulation of flow and transport processes in
fractured-porous media has become important, for example, when investigat-
ing the long-term safety of subsurface waste-disposal sites (see fig. 5.1). Rock
is considered to be a geological barrier and to prevent the transport of contam-
inants. However, due to tectonic stresses, these formations can be pervaded
by fractures acting as major flow paths (see fig. 1.1). Transport processes in
fractured-porous systems are generally characterized by high advection in the
fractures and dominant diffusion and dispersion processes in the matrix (see
sec. 2.3.2). When rock, for example granite, is considered, mechanical disper-
sion in the matrix can be neglected. The length scales of fractures and the
matrix as well as the hydraulic properties differ vastly. Furthermore, the ge-
ometry can be very complex if several intersecting fractures or fracture plains
are dealt with. All these circumstances make great demands on the numerical
simulation.

saturated zone

advective mass flux

diffusive mass flux

flow

waste disposal

ro
ck

groundwater table

rock

Fig. 5.1. Leaking of subsurface waste into a fractured rock, after NEUN-
HÄUSERER (2003 [186])

In the combined approach of the discrete model concept (see sec. 2.1.2), frac-
tures or fault zones are generally modeled with elements which have a lower
dimension than the surrounding matrix, i.e. fractures are discretized as one-
dimensional elements in a two-dimensional porous medium and as one- or
two-dimensional elements in a three-dimensional porous medium (see figs.
5.2, left, 3.46). However, this low-dimensional modeling approach has some
disadvantages which are expected to be avoided by a so-called equidimen-
sional modeling approach. If a fracture is treated as an element of a lower
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dimension, the flow velocity at the fracture-matrix interface is discontinuous,
the flow within the fracture is forced to be parallel to the fracture axis and the
physical processes can be smoothed, if parts of the local stiffness matrix are
added up in the FEM (see sec. 3.1.4) or fluxes are added up in the FVM (see
sec. 3.1.5). When the fractures are discretized equidimensionally, a continu-
ous flow velocity at the fracture-matrix interface can be achieved by Mixed
or Mixed-Hybrid Methods (see sec. 3.1.6). This is highly desirable for trans-
port simulations as the flow velocity is its most important input parameter.
Moreover, two- or three-dimensional flows can be simulated in the fractures.
This is important for intersecting fractures and for better resolving sharp gra-
dients perpendicular to the fracture axis, for example sharp gradients of the
hydraulic head and of the concentration. The equidimensional modeling ap-
proach is also advantageous for Particle Methods (see sec. 3.1.6) because it
enables any inflow and outflow of particles over the fracture-matrix interface
as well as the determination of unique stream lines.
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Fig. 5.2. Comparison of low- and equidimensional modeling approaches, after
NEUNHÄUSERER et al. (2001 [188])

However, unfavorable aspect ratios of element lengths, i.e. degenerated ele-
ments, must be considered in the equidimensional approach; they require spe-
cial mesh generators and special solvers to obtain robustness. Furthermore,
it is advantageous to use different discretization methods in the fracture and
the matrix depending on the dominant physical proccesses. Finally, it is de-
sirable to apply and develop adaptive methods (see sec. 3.3), which adapt to
the physical processes, and parallel methods (see sec. 3.2) to obtain an over-
all efficient numerical algorithm for modeling flow and transport processes in
fracture-matrix systems. These points are discussed further in this section.
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5.1.2 The numerical algorithm

The governing equations for groundwater flow are explained in section 2.3.1.
Here, stationary flow problems are considered. The Standard-Galerkin FEM
(see sec. 3.1.4) is chosen for the discretization. A two-level Multigrid Method
based on a hierarchical decomposition into a matrix and a fracture space is
developed. It leads to a decoupled treatment of the matrix and the fracture
problem which are then combined in an iteration scheme. The matrix problem
covers the whole computational domain, i.e. the matrix and fracture space,
whereas the fracture problem is only defined on the fracture space. For the
matrix problem, a V −Multigrid cycle (see sec. 3.4.4) with different grid levels
is chosen with a direct solver (see sec. 3.4.5) for the coarse grid and a Gauss-
Seidel smoother (see sec. 3.4.2) with 1 presmoothing step (see sec. 3.4.4). In
order to achieve robustness for vanishing fracture width, an additional, geo-
metrically adapted coarse-grid correction at the fracture-matrix interface has
been introduced (see GEBAUER et al. (2002 [89])). As the fracture problem
is small, it is solved directly. The solver is robust with respect to vanishing
fracture width, strongly varying hydraulic conductivities and vanishing mesh
size. Further details are found in GEBAUER et al. (2002 [89]).

The governing equations for transport processes in groundwater are given in
section 2.3.2. Here, ideal tracers are treated. For the discretization in time,
the fully implicit Euler Method (see sec. 3.1.2) is used and, in space, two dif-
ferent upwind methods, the Fully Upwind Box Method (see sec. 3.1.5) and a
Streamline-Orientated Upwind Box Method. The latter method reduces un-
wanted cross diffusion by determining upwind coefficients according to the
streamline orientation (see NEUNHÄUSERER et al. (2002 [189]), sec. 3.1.4).
As a solver, the BiCGSTAB Method (see sec. 3.4.2) with Multigrid precon-
ditioning is used (see sec. 3.4.3). A V −Multigrid cycle (see sec. 3.4.4) with
different grid levels is chosen using a direct coarse-grid solver (see sec. 3.4.5),
an ILU smoother and 2 pre- and postsmoothing steps (see sec. 3.4.4). Further
details are given in NEUNHÄUSERER et al. (2002 [189]).

H-adaptive methods, which avoid hanging nodes, are applied to the transport
simulations in section 5.1.6 and steered by heuristic error indicators (see sec.
3.3). Adaptive and Multigrid Methods are treated together with Local Multi-
grid Methods (see sec. 3.4.4).

5.1.3 Extension of the mesh generator ART

The mesh generator ART (see sec. 4.1.7) is able to deal with fracture-matrix
systems according to the low-dimensional approach (see fig. 5.3, left). Its 2D-
version has been extended to generate meshes for the equidimensional ap-
proach (see fig. 5.3, middle). To do this, the fractures are cut off, and the



5.1 Groundwater flow and transport processes 209

fracture nodes are duplicated. The original and the copied fracture nodes are
shifted half a fracture width apart perpendicular to the fracture axis (see 5.3,
right). Thus, the fractures are discretized with quadrilaterals, while the ma-
trix is generated with triangles. As shown in figure 5.6, right, the fracture
width can be discretized with several elements, during the extension of the
mesh generator or during uniform or adaptive refinement within MUFTE-
UG (see sec. 4.2.4); very small elements occur in the intersection area of
the fractures. It must be mentioned that the fractures in figure 5.3 are rel-
atively wide with b = 1cm compared to element lengths of the matrix. In
many cases, this aspect ratio is considerably less favorable, and the fracture
elements degenerate. Therefore, the number of elements for discretizing the
fracture width should be rather limited. Further measures for improving the
mesh quality in the intersection areas of fractures and for dealig with fracture
ends within the domain are available. These and further details are explained
in NEUNHÄUSERER et al. (2001 [188]) and NEUNHÄUSERER (2003 [186]).
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Fig. 5.3. Mesh with fractures; 1D-fractures, left; 2D-fractures, middle; zoom at
the cross-over point of the 2D-fractures, right; after NEUNHÄUSERER et al. (2001
[188])

5.1.4 Comparison of the low- and equidimensional modeling
approaches

The low- and the equidimensional modeling approaches are compared using
the Streamline-Orientated Upwind Box Method and two similar systems, one
with a single fracture (see fig. 5.4, left) and the other with a fracture network
(see fig. 5.6, left). The systems have the same physical parameters as well as
initial and boundary conditions. They only differ in the fractures. The systems
have a length of 1m and a height of 0.6m. The hydraulic conductivities are
Kf = 6.3 ·10−4m/s for the matrix and Kf = 6.3 ·10−1m/s for the fracture(s).
The porosities are φ = 0.2 for the matrix and φ = 0.3 for the fracture. The
molecular diffusion is set to Dmol = 1.0 ·10−9m2/s, and the dispersion lengths
are αL = αT = 0.01m in the matrix and αL = 0.1m, αT = 0.001m in the frac-
ture. The coarse mesh (Multigrid level 0) in figure 5.4 has about 300 nodes
for both approaches, while the coarse mesh in figure 5.6 has 377 nodes for the
low-dimensional modeling approach and 511 nodes for the equidimensional
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one. The grids are refined up to Multigrid level 4. The time-step size varies
with the grid level. For level 3, a time step of ∆t = 30s is chosen for the mesh
with the single fracture (see fig. 5.4) and a time step of ∆t = 1s for the mesh
with the fracture network (see fig. 5.6).

The system is closed along the upper and lower boundaries and open along the
left and right boundaries. For the flow simulation, the pressure is prescribed to
p = 100000Pa on the left boundary and p = 99900Pa on the right boundary.
For the transport simulation, the concentration is initially zero in the whole
domain. Along the left boundary, the concentration is fixed at c = 1kg/m3

for the first 9960s and at c = 0 afterwards and, along the right boundary, the
concentration is set to zero.

In figure 5.4, left, the coarse mesh is shown with an almost vertical fracture
with a width of b = 0.005m. The pressure distribution is nearly linear from
the left to the right boundary, some deviations occur around the fracture (see
fig. 5.4, right). No visible differences between both modeling approaches are
observed. If the concentration distributions are considered after 24000s, see
figure 5.5, the center of gravity of the front is propagated about 60cm into
the system. The low-dimensional modeling approach shows smoother concen-
trations around the fracture.

x [m]

y
[m

]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

x [m]

y
[m

]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

100000

99990

99980

99970

99960

99950

99940

99930

99920

99910

99900

p[Pa]

Fig. 5.4. Coarse mesh of the system with one almost vertical fracture, left; pressure
distribution, right; after NEUNHÄUSERER et al. (2001 [188])

Figure 5.6, left, shows the system with the fracture network. The fracture
width is b = 0.005m. The fracture network causes a larger deviation from a
linear pressure distribution than the single fracture system (see 5.6, left). If the
velocity field in the upper fracture intersection is considered (see 5.6, right),
a two-dimensional flow field is observed. There are not only fluxes from the
lower left to the lower right fracture, but also into both upper fractures. Such
flow conditions cannot be simulated with one-dimensional fractures. Conse-
quently, the tracer distributions differ considerably for both approaches in the
intersection area (see fig. 5.7). The equidimensional modeling approach shows
a larger smearing of the concentration gradients.
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Fig. 5.5. Concentration distributions after 24000s; low-dimensional, left; equidi-
mensional, right; after NEUNHÄUSERER et al. (2001 [188])

Fig. 5.6. Pressure distribution and fracture network, left; velocity distribution in
the zoom into the upper fracture intersection, right; after NEUNHÄUSERER et al.
(2001 [188])

c[kg/m3]

Fig. 5.7. Tracer distribution after 10000s; low-dimensional, left; equidimensional,
right; after NEUNHÄUSERER et al. (2001 [188])

Similar results are obtained by OCHS et al. (2002 [193]). Finally, it is men-
tioned that the low- and equidimensional approaches lead to different results
in locally limited areas around the fractures. However, if integral simulation
results, such as breakthrough curves, are considered, differences are hardly
visible with the methods developed up to now.
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5.1.5 Comparison of upwind methods

The Fully Upwind Box Method and the Streamline-Orientated Upwind Box
Method are compared using the system with one fracture (see fig. 5.4, left),
the equidimensional modeling approach and different multigrid levels. In fig-
ure 5.8, the results for both methods, which are obtained on the grid of figure
5.4, left, refined twice, are shown. The fully upwinding leads to a stronger
smearing of the solution. In figure 5.9, tracer profiles and breakthrough curves
are presented. The steepness of the profile increases with increasing multigrid
levels. Moreover, the streamline orientation on level 2 leads to a steeper front
than the fully upwinding on level 4. Finally, it is assumed that the streamline-
orientated upwinding produces better results than the fully upwinding.

Fig. 5.8. Tracer distribution after 24000s; fully upwinding (fu), left; streamline-
orientated upwinding (so), right; after NEUNHÄUSERER et al. (2001 [188])

Fig. 5.9. Tracer profile at y = 0.3m, left; breakthrough curves, right; after
NEUNHÄUSERER et al. (2001 [188])

5.1.6 Adaptive methods

Test-case problem: System with a single horizontal fracture

The investigations are carried out with a system similar to that in figure 5.4
and with the parameters similar to those in section 5.1.4. The differences are
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mentioned in the following. The grid in figure 5.10, left, has 349 nodes and one
horizontal fracture of b = 0.005m width in the middle of the system. The frac-
ture porosity is set to φ = 1.0 to obtain a better comparison of the numerical
results with an analytical solution of TANG et al. (1981 [244]). Dispersion is
neglected. Along the left boundary, a stationary concentration boundary con-
dition is imposed with c = 1.0mg/l. The equidimensional modeling approach
with the Fully Upwind Box Method and a difference indicator (see sec. 3.3.2)
are chosen.

In figure 5.10, right, the adaptively refined grid up to level 3 is given. The
mesh is refined around the concentration front in the fracture as well as along
the concentration front in the matrix at the inflow boundary (see fig. 5.10,
left).
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Fig. 5.10. Mesh (level 2) left, and adaptively refined mesh (level 4) right, of the
system with one horizontal fracture; after OCHS et al. (2002 [193])

In figure 5.11, left, the concentration distribution after 800s is shown. The
front propagates about 50cm into the fracture, mainly driven by advection,
and about 1cm into the matrix, mainly driven by diffusion. In figure 5.11,
right, the concentration front along the fracture axis after 800s is presented for
different variants. For level 4, the adaptively and uniformly refined solutions
coincide well. However, they differ considerably from the analytical solution
because the Fully Upwind Box Method in space and the fully implicit Euler
Method in time lead to high numerical dispersion. The front becomes steeper
and propagates faster when the refinement level increases up to 6. However,
the adaptively refined solution up to level 6 does not agree very well with the
analytical solution of TANG et al. (1981 [244]). One the one hand, further
refinement in space and time further improve the results. On the other hand,
assumptions in the analytical solution do not fully agree with the model as-
sumptions (see OCHS et al. (2002 [193])).

In figure 5.12, different heuristic indicators are compared. If similar tolerances
are given, the numerical results as well as the adaptive meshes are very sim-
ilar. Differences only occur at the front in the fracture. The fracture width
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Fig. 5.11. Concentration distribution in the domain, left, and concentration dis-
tribution in the fracture for different variants, right, after 800s; after OCHS et al.
(2002 [193])

is initially discretized with 4 elements (see fig. 5.12). The difference indicator
refines the whole fracture width (see fig. 5.12, left), while the gradient indi-
cator does this only along the fracture-matrix interface (see fig. 5.12, right).
If many adaptive refinement levels are used, the error indicators should be
formulated anisotropically (see sec. 3.3.3), for example by restricting a refine-
ment perpendicular to the fracture axis.
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Fig. 5.12. Comparison of a difference indicator, left, with a gradient indicator,
right; after OCHS et al. (2002 [193])

In figure 5.13, the manner of the Local Multigrid Method (see sec. 3.4.4) is vi-
sualized. The mesh is uniformly refined once and adaptively refined twice. On
grid levels where adaptive refinement is carried out, only the refined elements
and some transitional elements are stored; not, however, further elements to
cover the whole domain.

Table 5.1 gives run times and averaged numbers of unknowns per time step
for the simulation up to 800s. The adaptively refined mesh up to level 4 only



5.1 Groundwater flow and transport processes 215

Fig. 5.13. Local Multigrid Method

requires about 22% of the CPU and 17% of the storage compared to the uni-
formly refined solution. On level 6, the advantages of the adaptive solution
will be even larger. Overall, the superiorities of adaptive methods are clearly
demonstrated.

refinement CPU time related to number of related to
[s] uniform [%] unknows [-] uniform [%]

Lev-2 12 - 349 -

adap-Lev-4 790 21.7 906 17.3

uni-Lev-4 3630 - 5223 -

adap-Lev-6 2440 7266

Table 5.1. Comparison of run times and unknowns

Real-case problem: System with several fractures

A real-case problem taken from SILBERHORN-HEMMINGER (2002 [237])
is chosen to investigate the adaptive methods on a complex geometry. The
system represents the cross section between the boreholes B31 and B21 of an
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sandstone outcrop (see fig. 5.14). An extensive survey has been undertaken
and is underway to obtain field data, especially on the complex fracture sys-
tems. The fractures have a width of b = 1cm. The hydraulic conductivity is
set to Kf = 3.69 ·10−7m/s for the matrix and to Kf = 1.36 ·10−2m/s for the
fractures. The porosities are φ = 0.3 for the matrix and φ = 1.0 for the frac-
tures. The molecular diffusion is set to Dm = 6.12 ·10−5m2/s in the matrix as
well as in the fracture. Dispersion lengths of αL = 0.001m and αT = 0.001m
in the matrix and in the fracture are chosen. The initial grid has 432 nodes.
The equidimensional modeling approach with the Fully Upwind Box Method
and a difference indicator (see sec. 3.3.2) are applied.

Initially, the concentrations are set to zero. The system is closed along the top
and bottom boundaries. On the left boundary, a pressure of p = 103410Pa is
imposed and, on the right boundary, a pressure of p = 102900Pa. Constant
concentration boundary conditions are given with c = 1.0mg/l along the left
boundary and c = 0.0mg/l along the right boundary.

Fig. 5.14. Sandstone outcrop, after SILBERHORN-HEMMINGER (2002 [237])

In figure 5.15, left, the adaptively refined grid up to level 3 is presented while
in figure 5.15, right, the concentration distribution after 40s is shown. The
tracer migrates comparatively fast within the fracture network and slowly in
the matrix. In areas of steep concentration gradients, a mesh refinement is
carried out. The performance of the adaptive methods depends slightly on
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the complexity of the mesh. Similar performance results can be expected as
shown in previous example because the initial meshes have approximately the
same number of nodes (see tab. 5.1).
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Fig. 5.15. Adaptively refined grid, left, and concentration distribution, right; after
OCHS et al. (2002 [193])

5.1.7 Evaluation and future work

In space, the flow simulation method is of second order consistency for the
piezometric head and of first order consistency for the flow velocity. It is
globally mass conservative. The transport simulation method represents the
correct physical solution, is monotonous and locally mass conservative. Due to
the implicit formulation, there is no stability constraint for the time step. The
disadvantages are given by, generally, only first order consistency in space and
time, i.e. possibly high numerical dispersion. The coupled flow and transport
solver is applicable to unstructured grids. Moreover, it uses adaptive Multigrid
Methods and can easily be extended for parallelization. However, vectoriza-
tion is hardly possible.

With the equidimensional approach, the basis for Mixed-Hybrid Methods
is provided yielding the possibility to obtain a continuous flow field at the
fracture-matrix interface and to increase the order of consistency of the flow
velocity. This is expected to lead to a considerable improvement of the trans-
port simulation and to have advantages for Particle Methods. If the hierar-
chical decomposition is extended to the transport simulation, it is possible
to chose different discretization methods in fracture and matrix depending
on the dominant physical processes and moreover, to couple different model
concepts, for example to couple the flow in a porous medium with the flow
in a pipe. Overall, such methods are very promising coupling methods which
can be used in the field of multiphysics.
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5.2 Two-phase flow processes in the subsurface

This section deals with the numerical modeling of two-phase flow processes
in the subsurface. Parallel and adaptive methods together with fast non-linear
Multigrid-based solvers are applied as efficient numerical methods (see secs.
3.2 - 3.4). Nearly all the methods described in secs. 4.1 - 4.3 are used in the
context of efficient information-processing techniques. MUFTE-UG (see sec.
4.2.4) serves as the modeling system. The model concept was developed by
HELMIG (1997 [98]).

5.2.1 Numerical algorithm

The governing equations as well as the chosen pressure-saturation formulation
are discussed in section 2.5. The discrete model concept (see sec. 2.1.2) is ap-
plied to fractures which are modeled as elements of one dimension lower than
that of the matrix. For the discretization, the Fully Upwind Box Method (see
sec. 3.1.5) is used in space and the fully implicit Euler Method in time (see
sec. 3.1.2). For heterogenous systems, the use of a special interface condition
is recommended (see BASTIAN et al. (2000 [22])). The non-linearities are
treated with the Newton-Raphson Method (see sec. 3.4.5), and the linearized
equations are solved with the BiCGSTAB Method (see sec. 3.4.2) and Multi-
grid preconditioning (see sec. 3.4.3). A V −Multigrid cycle (see sec. 3.4.4) with
different grid levels is chosen using a direct coarse-grid solver (see sec. 3.4.5),
an ILU smoother and 2 pre- and postsmoothing steps (see sec. 3.4.4).

The parallel methods used in section 5.2.4 are based on the message-passing
programming model and an algebraic parallelization (see secs. 3.2.2, 4.2.4). A
dynamic load balancing can be chosen, and the domain can be split up into
any number of subdomains (see secs. 3.2.4, 3.2.4). H-adaptive methods, which
avoid hanging nodes, are applied in section 5.2.3 and steered by heuristic er-
ror indicators (see sec. 3.3). Adaptive and Multigrid Methods are treated
together with Local Multigrid Methods (see sec. 3.4.4). The time-step adap-
tation is controlled by the number of non-linear iterations (see sec. 3.3.2).

In the following, the numerical algorithm is briefly evaluated. The advantages
are the representation of the correct physical solution, the applicability to
unstructured grids, the local mass conservation and the monotonicity. Due
to the implicit formulation, there is no stability constraint; the time-step size
is controlled by the number of non-linear iterations. Furthermore, the algo-
rithm uses parallel, adaptive Multigrid Methods and is thus computationally
highly efficient. The disadvantages are only first-order consistency in space
and time as well as possibly high numerical dispersion caused by the fully
upwinding and the fully implicit methods. Moreover, vectorization is hardly
possibly. Finally, it is mentioned that nowadays, no algorithm can fulfill all
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criteria satisfactorily. The philosophy of the numerical algorithm consists of
exploiting the advantages of ‘simple’ methods and compensating for their dis-
advantages with high mesh resolutions which can be efficiently solved with
parallel adaptive Multigrid Methods. Consequently, the whole numerical al-
gorithm, in spite of some drawbacks, can be evaluated as very good.

5.2.2 Example: Methane migration processes in coal mining areas

Problem description

For the past couple of decades, coal has been exploited as an energy re-
source from a decreasing number of mines at many locations across the world.
Methane gas adsorbed by a coal seam is released while mines are in operation,
although this release is generally carefully controlled by means of ventilation
(see fig. 5.16). In recent years, the closure of such mines has led to the ter-
mination of the gas ventilation and the rise of the water table after water
pumping ceased. However, the closed mines continue to produce methane gas
which may reach the surface of the earth via old mine workings, shafts, per-
meable strata, faults and mining-induced fractures. Methane-gas emission,
for example close to residential areas, is dangerous because methane gas is
toxic for humans, and is a fire and explosion risk; thus, the gas which accu-
mulates in buildings can jeopardize human life. However, it can be used to
supply energy if the flow is large enough and if a controlled suction is possible.

A number of simplified test cases have been carried out to determine the dom-
inant parameters and processes for simplified geological structures; some of
them are shown in the following. The test cases deal with different perme-
abilities (see ’Multi-layered systems’) and different fault zones (see ’System
with different fault zones’), as well as with the influence of small-scale hetero-
geneities (see sec. ’System with small-scale heterogeneities’). These features
have an important influence on the gas-water flow as well as on the amounts
and the locations of gas escaping to the atmosphere. A number of real case
data which stem from an abandoned coal mine (see ’Setting up a 3D-model
of an existing coal mine’) are available. For these test cases, dissolution pro-
cesses are neglected (see ’Future work’). The overall aim consists of building
up a three-dimensional model of an existing coal mine, calibrating a numerical
model in the range of available data and making predictions for possible re-
mediation measures. The numerical simulations can detect endangered areas
or be used for the optimal positioning of wells which draw off the gas in a
controlled way.
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Fig. 5.16. Sketch of a coal mine, after BREITING et al. (2000 [41])

Multi-layered systems

The content of this section is also discussed in BREITING et al. (2000 [43])
and BREITING et al. (2000 [41]). The two-layered system in figure 5.17 and
the four-layered system in figure 5.19 are chosen to investigate the influence
of different permeabilities on the gas-water flow processes. Both systems dif-
fer only in the permeability distribution. They have a length of 500m and
a height of 10m. The porosity is set to φ = 0.48, the density of water to
ρw = 103kg/m3 and the dynamic viscosity of water to µw = 1.1 · 10−3Pas.
The gas phase is assumed to be a mixture of 50% methane and 50% air, i.e.
the density of the gas is ρw = 0.9kg/m3 and the dynamic viscosity of the
gas µw = 1.4 · 10−5Pas; the pressure dependency of the gas is taken into
account. The constitutive relationships of BROOKS, COREY (1964 [46]) are
chosen with pd = 5000Pa, λ = 2.0, Swr = 0 and Snr = 0. The grid consists
of 2816 elements; in the central area of 100m length around the methane-
gas source, quadratic elements with a length of 0.625m are chosen and, in
the outer areas, rectangular elements with a length of 12.5m and a height
of 0.625m. To be independent of the boundary conditions, the system is en-
larged in the horizontal direction. The main interest focuses on the inner area.
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As initial conditions, the system is fully saturated with water, and a hydro-
static pressure distribution is given. The system is closed on the left, right
and lower boundaries. At the open upper boundary, a 50m water column, i.e.
pw = 5 ·105Pa, and no gas saturation, i.e. Sn = 0.0, are imposed as Dirichlet-
boundary conditions. A coal seam is idealized as a gas-source term with the
magnitude qn = 5 · 10−7kg/s.

In figure 5.17 and 5.18, the permeability and the simulation results after 100
days in a 26m long region around the gas source are shown for the two-layered
system. Due to the lower density, the gas migrates upwards to the layer with
the lower permeability. It spreads horizontally, and it penetrates into the top
layer in areas where the gas pressure exceeds the entry pressure of the lower
permeability layer. The methane source causes a pressure increase in the cen-
tral area of the system, whereas the pressure tends to be hydrostatic in the
other parts. The flow velocities of the gas phase are higher than the ones of
the water phase. The flow velocities of the gas phase are comparatively high
above the methane source and at the layer boundary.

5 
m

5 
m

500 m

permeability = 1 * 10

gas source

2m−13

permeability = 1 * 10 2m−15

Fig. 5.17. Permeability distribution of the two-layered system, after BREITING et
al. (2000 [41])

In figure 5.19, the distributions of the permeabilities and gas saturations are
given for different time steps. The permeability decreases from the bottom
to the top, four fault zones with the permeability of the bottom layer are
included, and there is an inclination between the lower two layers. Again, the
gas migrates upwards and spreads horizontally. However, it does not reach the
left fault zone because of the layer inclination. The gas migrates further up-
wards along the fault zones and the layer boundaries. In areas where the entry
pressure is exceeded, it also migrates through layers of lower permeability.
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Fig. 5.18. Simulation results after 100 days; left: gas phase, right: water phase; top:
saturations, middle: pressures, bottom: flow velocities, after BREITING et al. (2000
[41])

The simulations indicate the strong influence of permeability differences, fault
zones and layer inclinations. They help to explain observations in nature sug-
gesting that the locations where the gas reaches the surface of the earth need
not be directly above the coal seam.
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Fig. 5.19. Distributions of the permeabilities and gas saturations after 40, 120 and
420 days, after BREITING et al. (2000 [41])

System with different fault zones

The work described in the following is partially discussed in HINKELMANN
et al. (2002 [112]). The system shown in figure 5.20 is used to make a study
of how a shaft, a tunnel and fractures affect the gas-water flow processes. The
system is 400m long and wide and its set-up is shown in figure 5.20. The
permeability of the matrix is K = 10−16m2 and the porosity φ = 0.04. For
simplicity reasons, the permeabilities of the shaft, the tunnel and the frac-
tures are all set to K = 10−8m2, and the porosities to φ = 0.90. Shaft and
tunnel have a width of b = 5.0m, and the fracture is b = 0.3m wide. All the
fault zones are modeled as one-dimensional elements. In these simulations, the
flows in the tunnel and shaft are very slow and take place in the range of the
Darcy law; this can be crucical in other cases. Capillarity is neglected. The
other parameters are similar to those of the test case ’Multi-layered systems’.
The grid in figure 5.21, left, consists of 2572 triangular elements.

As initial conditions, the system is fully water-saturated, and the pressure is
atmospheric. The system is closed on the left, right and lower boundaries; at
the top, the water pressure is set to 1bar and the gas saturation to zero. In
the coalbed, a methane-gas source term is given with qn = 3 · 10−7kg/s.

In figure 5.21, right, the distribution of the water pressure is presented. The
pressure is hydrostatic in left part of the domain, and a pressure increase
caused by the methane source is observed in the right part. In figure 5.22,
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Fig. 5.20. Model set-up

the gas saturations are shown. The methane source leads to an increase of
the saturations around the coalbed. The gas moves upwards and passes the
different fault zones where it has low saturations. After 960 days, the gas
migrates out of the top end of the fractures into the matrix (see fig. 5.22, left).
After 8530 days, this process continues, and a further methane migration from
the tunnel into the matrix is observed (see fig. 5.22, right). In such a case,
methane gas reaches the surface of the earth via the shaft as well as via the
matrix. Finally, this simulation indicates the strong influence of the different
fault zones on the amount as well as on the location of gas escaping to the
atmosphere. //
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Fig. 5.22. Distribution of the gas saturation after 960 days, left, and 8530 days,
right

System with small-scale heterogeneities

The content of this section is also discussed in KOBAYASHI et al. (2002 [146]).
Small-scale heterogeneities have a significant influence on the gas-water flow
processes as well, depending on the scales considered. To analyze this, the
geostatistical model SIMSET (see BARDOSSY (1992 [15]), sec. 4.1.6) is ap-
plied. Its parameters are systematically varied for systems of different scales
focusing on the amount, the location and the distribution of gas escaping to
the surface of earth.

In the following, two similar systems which only differ in the length scale
are considered. The system of 10m width and 20m height is called the small
system (SS), and the one of 100m width and 200m height is called the large
system (see fig. 5.23). The average permeability is K = 10−13m2 and the
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porosity φ = 0.57. The other parameters are similar to the those of the test
case ’Multi-layered systems’. The domain is discretized by 800 quadratic ele-
ments of 0.5m for the small and 5m for the large system.

As initial conditions, atmospheric water pressure and complete gas saturation
are imposed in the upper part and hydrostatic pressure and zero gas satu-
ration in the lower part. The system is closed along the left, right and lower
boundaries. Along the top boundary, atmospheric pressure and (nearly) full
gas saturation are prescribed. A gas line source is given at Z = 1m in the
small system and at Z = 10m in the large one. The results are analyzed at
steady-state conditions.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

Pw =Patm

gas source 

Pw = Patm Sn = 0.999

100 m

100 m

100 m

Q
w

=Q
n

 = 0.0

Q
w

=Q
n

 = 0.0

Qw=Qn = 0.0

Pw = hydrostatic
         pressure

X[m]

Z
[m

]

0 25 50 75 100
0

25

50

75

100

125

150

175

200

Fig. 5.23. Model set-up, left; grid, right; after KOBAYASHI et al. (2002 [146])

The notation, for instance c2v1a0.2 as shown in table 5.2, means that the
variogram (see sec. 4.1.6) has a correlation length of 2m, a variance of 1 and
an anisotropy ratio of 0.2. The anisotropy reflects the ratio of the vertical to
the horizontal correlation length. Figure 5.24 shows the permeability fields,
left, the distributions of the gas saturation, middle, and the gas velocity, right,
with the variograms c20v0.25a0.2 in lower row and c20v1a0.2 in the upper row.

In order to quantify the influences due to the changes of the variance and the
correlation length, the variances of the distribution of the gas velocity at the
cross section Z = 18.5m for the small system and Z = 185m for the large
system are determined using the following formula:

vv =
1

n

n∑
i=1

(
vz,i − vz,ave

vz,ave
)2 (5.1)
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SS(10m × 20m) homogeneous c2v1a0.2 c2v0.25a0.2 c0.5v1a0.2 c0.5v0.25a0.2

vv [-] 0 2.94 0.863 2.79 0.681

LS(100m × 200m) homogeneous c20v1a0.2 c20v0.25a0.2 c5v1a0.2 c5v0.25a0.2

vv[-] 0 1.02 0.190 4.54 1.86

Table 5.2. Variances of the velocity distribution for different variograms and scales,
after KOBAYASHI et al. (2002 [146])

Fig. 5.24. Geostatistical permeability fields, left; gas saturations, middle; gas veloc-
ities, right; variogram c20v0.25a0.2, bottom, and c20v1a0.2, top; after KOBAYASHI
et al. (2002 [146])

In this equation, vz,i denotes the velocity of the gas phase at node i and vz,ave

the average gas velocity, both determined at the cross section.

Several tendencies are deduced from figures 5.24 and 5.25 and table 5.2. The
methane saturation and the velocity distribution become more heterogeneous
if the variance of the variogram increases, here from v = 0.25 to v = 1. It
can be quantitatively argued from table 5.2 that, if the variance of the vari-
ogram increases, the variance of the velocity distribution at the cross section
also increases in both systems. In the small system, the influences due to the
changes of the correlation length are not as high as the influences due to the
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Fig. 5.25. Vertical gas velocity at the cross section Z = 185m with the variograms
c20v0.25a0.2 and c20v1a0.2, after KOBAYASHI et al. (2002 [146])

changes of the variance. In the large system, the influences due to the changes
of the correlation length are relatively high compared to the small system.
Furthermore, the variance of the velocity distribution increases as the cor-
relation length decreases. However, since the ratio of the correlation length
to the system size is relatively large with regard to the small system, it is
questionable whether the simulation results obtained from one geostatistical
realisation of the permeability field can really be representative for the reali-
sations, especially when the system is relatively small.

Overall, the results can be summarized as follows: If the variance in the vari-
ogram increases, this leads to an increase of the variance of the velocity distri-
butions in the upper region of the systems. Other scale-dependent tendencies
cannot be clearly seen. Therefore, further investigations should deal with the
scaling of variogram parameters and the development of upscaling methods.
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Setting up a 3D-model of an existing coal mine

The work described in the following is also discussed in HINKELMANN et al.
(2002 [112]). A three-dimensional model of the abandoned coal mine West-
falen is set up (see fig. 5.26, bottom). It is located close to the town Ahlen
in the Ruhrgebiet in the western part of Germany (see fig. 5.26, top). Infor-
mation about the geometry of the geological structures is provided by several
exploration boreholes and cross sections which are processed with AutoCAD
(see sec. 4.1.2). One cross section is shown in figure 4.3. A particular dif-
ficulty for setting up the model and the numerical simulations consists of
integrating shafts, tunnels and coal seams (see fig. 5.27). A number of phys-
ical parameters are available. They are assigned to the geological structures
by the database-management system MySQL (see sec. 4.1.4) as shown in fig-
ure 4.5. The geometrical and physical data serve as the input for the mesh
generator ART (see sec. 4.1.7). A computational mesh is given in figure 4.13.
In this context, attention is drawn to the overview of the modeling system
MUFTE-UG in figures 4.20 and 4.19.

Future work

Firstly, the database of the 3D-domain will be extended to contain more in-
formation. Secondly, 3D numerical simulations will be carried out. As the
computational domain, consisting of multiple layers, fractures, void spaces
etc. (see fig. 5.28), is rather complex, 3D-subdomains which contain only 1 or
2 layers will be modeled first, starting in the lower regions at the coal seams
and then moving upwards. Moreover, investigations will consider whether dis-
solution processes must be taken into account in certain areas; this is the case
when such methane-migration processes contribute significantly to the overall
amount of methane escaping to the atmosphere. Furthermore, optimization
methods for gas-water flow and transport processes will be developed, for ex-
ample to optimize methane suction.
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Berlin

Hamburg

Ahlen

Munich

Fig. 5.26. Location of Ahlen, top, and of the Westfalen mine, shafts and cross
sections, bottom; after HINKELMANN et al. (2002 [112])
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Fig. 5.27. CAD plan of the tube system in the Westfalen mine, after HINKEL-
MANN et al. (2002 [112])
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Fig. 5.28. Sketch of a multi-layered system over coal seams
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5.2.3 Example: Gas-water flow processes in dike systems

Problem description

The content of this section is discussed in PAUL et al. (2000 [205]), PAUL
et al. (1999 [204]) and PAUL (2003 [203]). Dikes play an important role in
the protection of human life and goods, especially in the field of coastal engi-
neering (see fig. 5.29). Investigations of damaged dikes in the nature as well
as in the laboratory have shown that the failure often starts on the land side
in areas where air is pressed out of the system by overtopping and break-
ing waves. As the height and occurence of storm surge levels are expected to
increase in the near future, the loads on such coastal defense structures as
well as the probability of their overtopping will increase as well. These effects
underline the need for tools for simulating current and future loads in order
to understand the dominant processes and to improve such coastal defense
structures. The overall task requires a coupling of a fluid mechanics model,
which describes the surface waves and the flow in the porous medium, with a
structural mechanics model, which determines the stresses and the strains.

msl

h (t)

zone
unsaturated

saturated zone

couplingovertopping wave

surface water

Fig. 5.29. Sketch of an overtopping dike

The surface wave is coupled with the flow in the porous medium along the
common interface (see fig. 5.29) via the pressure. The pressure field coming
from the surface waves can be computed by a wave model or it can be taken
from experimental or field data. Problems with a ‘simple’ free-water surface
in the dike system can be treated with a groundwater flow model which de-
termines the free water surface iteratively. This is, for exemple, the case for
seepage problems when the water level is higher on the sea side than on the
land side. If overtopping waves occur, the shape of the free surface is complex,
as shown in figure 5.29; air can be trapped and processes of the pressed-out air
must be taken into account. In such cases, a two-phase flow model consisting
of a water and a gas phase must be applied. Naturally, this model concept
includes the determination of a free-water surface in a dike system.
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Simulation results using adaptive methods

The dike system shown in figure 5.30 is chosen for experimental and numerical
simulations. It consists of 4 different zones. Zone 1 and 3 are of the same soil;
the permeability of zone 2 is about 4 times lower than that of zones 1 and 3,
and zone 4 has a comparatively high permeability for experimental reasons.
The soil properties are given in table 5.3. The constitutive relationships after
VAN GENUCHTEN (1980 [92]) are used. In the numerical simulations, cap-
illarity is neglected. The other parameters are similar to those from section
5.2.2.
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Fig. 5.30. Geometry of the dike system, after PAUL et al. (2000 [205])

zone K [m2] φ [-] α [-] n [-] Swr [-] Sgr [-]

1 9.8 · 10−10 0.37 0.0037 4.70 0.05 0.00
2 3.6 · 10−11 0.35 0.0011 4.70 0.10 0.00
3 9.8 · 10−10 0.37 0.0037 4.70 0.05 0.00
4 3.6 · 10−8 0.20 0.1000 4.70 0.15 0.00

Table 5.3. Soil parameters, after PAUL et al. (2000 [205])

As initial conditions, zone 1 and 2 are fully water-saturated up to the height
of the left boundary condition, and the water pressure is hydrostatic. The
other areas of the domain have the residual saturations, and the pressure is
atmospheric. The system is closed along the lower boundary. On the left side,
a rising water table is given, i.e. the water pressure is prescribed and the gas
saturation is set to zero. Along the other boundaries, atmospheric pressure
and full gas saturation are imposed.
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In figure 5.31, the numerical results are shown for steady-state conditions. An
overhanging water front develops in zone 2 and a free-water surface in zone
3. The numerical results agree very well with the experimental results given
in figure 5.32.
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Fig. 5.31. Distribution of the water saturation for steady state, after PAUL et al.
(2000 [205])

Fig. 5.32. Experimental results for steady state, after PAUL et al. (2000 [205])

For the adaptive simulations, a gradient indicator (see sec. 3.3.2) applied to
the water saturation is used for the refinement and coarsening in space. An
adaptive refinement is restricted up to level 3. The initial grid on level 1 con-
sists of 3274 triangular elements (see fig. 5.33) and is uniformly refined once.
In figure 5.34, the adaptively refined and coarsened grid with 2528 elements is
shown for the steady state. In large areas, the grid is coarsened to level 0; in
the area along the sharp front, the grid is refined up to level 3. The adaptive
solution agrees with the uniformly refined solution. It requires about 5% of
the number of elements and about 10% of the CPU time needed to compute
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the uniformly refined solution. Again, the excellent performance of adaptive
methods is demonstrated.
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Fig. 5.33. Initial grid for the dike system, after PAUL et al. (2003 [203])
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Fig. 5.34. Adaptively refined and coarsened grid for the dike system, after PAUL
et al. (2003 [203])
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5.2.4 Example: Multi-step outflow experiment

The work described in the following is also discussed in ÖLMANN et al. (2002
[194]). The multi-step outflow experiment is a laboratory-scale experiment to
determine soil parameters. The system in figure 5.35, left, is 6cm long and
12cm high. It consists of a medium sand with an embedded coarse lense in
the upper part and an embedded fine lense in the lower part. The soil parame-
ters are given in table 5.4. The other parameters are similar to the those chosen
in section 5.2.2. The coarse grid consists of 1054 quadratic elements. A grid
partitioning for 7 processors is shown in figure 5.35, right. For a better visual-
ization, the subdomains are shrunk. The influence of different multigrid levels
as well as the parallel run-time behavior are already discussed in section 3.4.6.
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Fig. 5.35. Model set-up, left, and grid partitioning, right; after ÖLMANN et al.
(2002 [194])

The system is initially fully saturated with water. It is closed on the left and
right boundaries, and for the water flux on the upper boundary and for the gas
flux on the lower boundary. Along the upper boundary, gas can enter the sys-
tem; along the lower boundary, a time-dependent pressure, which is lowered
stepwise, is prescribed (see fig. 5.36). As a consequence, water flows out of the
system through the open bottom and air enters the system through the open
top. The cumulative outflow of the water phase reacts directly on the pres-
sure boundary condition. If the pressure gradient is large, so is the gradient of
the cumulative water outflow; if small, the gradient of the cumulative water
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parameter fine sand medium sand coarse sand

porosity φ [-] 0.5 0.4 0.35
permeability K [m2] 1.427 ·10−12 1.426 ·10−11 1.66 ·10−10

Brooks-Corey pd [Pa] 1668.3 606.0 166.8
Brooks-Corey λ [-] 1.29 1.29 1.29
residual saturation Snr [-] 0 0 0
residual saturation Swr [-] 0.5 0.1 0.05

Table 5.4. Soil parameters, after ÖLMANN et al. (2002 [194])

outflow is also small (see fig. 5.36). As the amount of water in the system is
limited, the course of the cumulative outflow of water asymptotically reaches
a limes. With the measured water outflow as a response of the system, soil
parameters can be deduced with, for example, inverse modeling. Moreover,
a comparison of computations and measurements can be used to check the
validity of certain model assumptions, such as the time-independence of the
capillary pressure-saturation relationship.
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5.3 Two-phase / multicomponent flow and transport
processes in the subsurface

This section contains numerical simulations of two-phase / three-component
flow and transport processes in the subsurface (see sec. 2.5). Here, complex
physical processes are in the foreground. Moreover, fast non-linear solvers
(see sec. 3.4.5) are applied with respect to efficient numerical methods, and
a geostatistical method (see sec. 4.1.6) as an efficient information-processing
technique. In order to ensure a relative independence of this section, a few rep-
etitions of parts of sections 5.1 and 5.2 occur. The modeling system MUFTE-
UG (see sec. 4.2.4) is applied to the numerical simulations. The development
of the model concept is based on the work of HELMIG (1997 [98]) and CLASS
(2000 [62]) and is described in HINKELMANN et al. (2002 [115]).

5.3.1 Numerical algorithm

The governing equations and the choice of the primary variables depending
on the phase state are described in section 2.5. For the discretization, the
Fully Upwind Box Method (see sec. 3.1.5) is applied in space and the fully
implicit Euler Method in time (see sec. 3.1.2). The non-linearities are handled
with the Newton-Raphson Method (see sec. 3.4.5), and the linearized equa-
tions are solved with the BiCGSTAB Method (see sec. 3.4.2). The time-step
adaptation depending on the number of non-linear iterations (see sec. 3.3.2) is
carried out. The evaluation of the numerical algorithm is comparable to that
in section 5.2.1.

5.3.2 Example: Two-phase / multicomponent flow and transport
processes in the interaction area groundwater - surface water

The content discussed in the following is also described in HINKELMANN et
al. (2002 [115]) and KALERIS et al. (2001 [141]).

Problem description

In recent years, the phenomenon of submarine groundwater springs (see figs.
1.1, 1.4), also called vents, which are groundwater fluxes into sea water, has
been detected by field measurements in several coastal zones all around the
world - e.g. the Baltic Sea, the North Sea, the Mediterranean Sea, the Gulf of
Mexico or the Chinese Sea. It has been assumed that the transport of contam-
inants or nutrients involved has a considerably larger influence on the water
quality in coastal areas than expected before. In order to improve the under-
standing of these complex processes, several field measurement and monitoring
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campaigns were carried out in methane-rich coastal sedimentary environments
of the Baltic Sea and numerical models have been developed. The numerical
simulation approach is twofold. On the regional scale, the large-scale water
balances and flow patterns taking into account (single-phase) groundwater
flow coupled with salinity transport were investigated in order to determine
the large-scale conditions for submarine groundwater fluxes. These processes
are not investigated here; see KALERIS et al. (2002 [142]), KALERIS et al.
(2001 [141]). Around locations where the submarine groundwater flows into
the sea water, methane gas bubbles which are formed by microorganisms oc-
cur. Therefore, small-scale considerations are concerned with the interaction
of the phases water and gas, also taking into account the component trans-
port of freshwater, salt water and methane. The numerical simulation of such
processes requires a two-phase / three-component model concept for a coastal
aquifer or a porous medium. Here, special emphasis is placed on the so-called
phase phase switch of methane, i.e. the transition of methane dissolved in
water to the gas phase which did not exist before. This effect is responsible
for the formation of the gas bubbles (see fig. 5.37).
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Fig. 5.37. Flow and transport processes in a coastal aquifer, after HINKELMANN,
HELMIG (2002 [111])
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Different flow and transport processes, which occur in a coastal aquifer, as well
as the corresponding model concepts are briefly discussed (see fig. 5.37). In or-
der to model groundwater flow coupled with salinity transport, a one-phase /
two-component model concept (phase: water; components: water, salt; see sec.
2.3) should be applied in most cases (see OLDENBURG & PRUESS (1995
[199]), HINKELMANN et al. (2000 [114])). If methane is integrated in the
simulations, low concentrations where methane is dissolved in water are first
considered. Then, no further phase occurs, but a third component. Such situ-
ations require a one-phase / three-component model approach (phase: water;
components: water, salt, methane; see sec. 2.3, HINKELMANN et al. (2000
[116])). The flow of the two phases water and gas (see sec. 2.4), assuming im-
miscibility of the phases, has been investigated intensively (see SHETA (2000
[230]), BASTIAN (1999 [18])). This model concept must be applied if disso-
lution processes are of minor importance and high methane concentrations
are considered, because then the maximum solubility of methane in water is
exceeded and a gas phase occurs. If dissolution processes must be taken into
account additionally, a two-phase / three-component model approach (phases:
water, gas; components: water, salt, methane, see sec. 2.5) is required.

Here, the major aim of the two-phase / three-component model is to simu-
late the methane switch numerically. A volume-averaged methane saturation
is determined with a continuum approach. It is not possible to simulate the
‘fate’ of single gas bubbles which are even smaller than the element or REV
(representative elementary volume, see sec. 2.1.2) length. As the bottom layer
of the submarine aquifer under investigation has a very high porosity, the pore
space can be disturbed by upward flowing gas bubbles, and thus preferential
flow paths are formed. This effect is taken into account qualitatively using
geostatistical distributions of the permeability field; this is explained later.

Model set-up

The system under investigation is located in the Eckernförde Bay, about
25km north-east of the town Kiel (see fig. 5.46). In figure 5.38, the measured
bathymetry of a typical vent location is shown. This figure also indicates sed-
iment flushed out by the vents (see zoom bottom left) as well as methane
gas measured in the sediment (see zoom bottom right). Special measurement
techniques were developed and a number of measurement campaigns were
carried out. One interesting result is the fact that the vertical flow velocities
from the groundwater into the sea water are comparatively high with up to
1cm/s, and thus are in the lower range of the horizontal flow velocities in the
sea water.



5.3 Two-phase / multicomponent processes in the subsurface 241

Eckernförde Bay

location

bathymetry

gas in the sedimentvent

Fig. 5.38. Location and bathymetry of a vent, after SAUTER (2001 [229])
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For the numerical simulations, an idealized two-dimensional system consisting
of a 1m-deep and 6m-wide mud layer (see fig. 5.39) is chosen to investigate
the influence of different submarine groundwater discharges which are called
vent, partial vent and non-vent in the following. The lower boundary of the
system is given by the aquifer layer where the inflow occurred. The upper
boundary is given by the sea bottom.
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Fig. 5.39. System, initial and boundary conditions, after HINKELMANN et al.
(2002 [115])

The porosity is set to φ = 0.9, the permeability to K = 10−9m2, the
molecular weights of water, salt and methane to Mw = 0.018kg/mol, M s =
0.058kg/mol, Mm = 0.016kg/mol respectively, the density of fresh water to
ρw = 1000kg/m3 and the dynamic viscosities of the water and the gas phases
to µw = 0.001Pas and µg = 1.24 · 10−5Pas, respectively. The dependence
of the water density on the salinity is taken into account, whereas the vis-
cosities are assumed to be constant. For the determination of the dispersion
tensors, the molecular diffusion coefficients are set to Ds

w = 1.0 · 10−9m2/s,
Dg

w = 9.0 ·10−10m2/s and Dw
g = 10−6m2/s, the tortuosity to τ = 1.0 and the

longitudinal and transversal dispersivities to αL = 0.05m and αT = 0.01m.
The capillary pressure and the relative permeability after BROOKS, COREY
(1964 [46]) are used with pd = 500Pa, λ = 2.0, Swr = 0.0 and Sgr = 0.0 .

As initial conditions, a hydrostatic pressure distribution of a 20m sea-water
column with a salinity of 23o/oo and complete water saturation without a
methane component are imposed. The left and the right boundaries are closed,
whereas the upper boundary is open. Along the upper boundary, the salt-water
pressure, the salinity of 23 o/oo, which corresponds to a chloride concentra-
tion of 390mmol/l (see figs. 5.41 - 5.44, right), and zero methane are used
to determine the boundary conditions. The lower boundary is also closed
with the exception of the 20cm wide vent. Freshwater discharges are given as
boundary conditions according to measurements of qf

w = 10.8l/(m2h) for the
vent, qf

w = 4.0l/(m2h) for the partial vent, and qf
w = 0.1l/(m2h) for the non-

vent location. In the mud layer, methane formation and oxidation caused by
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microorganisms occurr. However, no data for corresponding sink and source
terms are available. The distribution of the methane sink and source is lin-
early imposed with qm

w = 0.015mol/(m2h) at the lower boundary and with
qm
w = −0.005mol/(m2h) at the upper boundary, because these values lead to

the best agreement between computations and measurements, and they re-
main constant in the three simulations for the vent, the partial vent and the
non-vent location. The freshwater discharge is the only value that changes in
the following three simulations which are run until steady-state conditions.
The system is discretized with 55 elements in the horizontal direction and
13 elements in the vertical directions, i.e. 715 elements. Further information
can be found in HINKELMANN et al. (2002 [115]) and SAUTER (2001 [229]).

Vent location

Figure 5.40, left, shows the pressure, which is nearly hydrostatic. In figure
5.40, right, the flow velocity of the water phase represents the equilibrium be-
tween advective fluxes caused by the upward-flowing freshwater and diffusive
fluxes caused by the different salinities.
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Fig. 5.40. Distribution of the pressure and flow velocity in the water phase at the
vent location

Figure 5.41, left, shows the equilibrium between advective and dispersive salt
fluxes. It is mentioned that the influence of the diffusion is much stronger than
that of the mechanical dispersion. In figure 5.41, right, a comparison between
simulations and measurements at the vent location is presented. Chloride cor-
responds to the salt component or mole fraction in the water phase; it falls to
about a third of the prescribed sea-water concentration due to the compara-
tively high freshwater inflow.
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Fig. 5.41. Vent location; left: distribution of the mole fraction of salt in the water
phase, right: simulated and measured chloride and methane profiles in section A-A,
right: after HINKELMANN et al. (2002 [115])

In figure 5.42, left, the distribution of the methane phase is given, indicating
the equilibrium between gas saturation, methane formation and oxidation. For
the isothermal conditions in these simulations, the gas phase consists of about
95% methane and 5% water vapor with minor variations. With the exception
of the inflow area, the methane production causes the maximum solubility of
methane in water to be exceeded. Consequently, a gas phase occurs. Methane
gas is held in the lower part of the mud layer due to capillary forces. At the
vent location, the methane dissolved in water is vertically advected in such
a strong way that the concentrations do not exceed the maximum solubility
and, consequently, no gas phase occurs. The profile of the methane compo-
nent in the water phase is nearly constant (see fig. 5.42, right). It moves as a
component in the water through the mud layer and leave the system through
the upper boundary. Overall, a reasonable agreement of computations and
measurements is obtained.
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Fig. 5.42. Vent location; left: distribution of the gas saturation, right: simulated
and measured chloride and methane profiles in section A-A, after HINKELMANN
et al. (2002 [115])

Partial vent location

As already mentioned, the only change in the simulations is a different fresh-
water discharge at the lower boundary. Figure 5.43, left, shows the distribution
of the gas saturation at the partial vent. When compared to figure 5.42, left,
the results strongly resemble one another. Again, a gas phase only occurs
outside the vent location. In section A-A, the methane concentration appears
to be zero in the upper part, caused by the methane sink, and it increases
towards the bottom boundary (see fig. 5.43, right). The chloride gradient in
figure 5.43, right, is much smaller when compared to the vent location (see
fig. 5.41, right) due to the smaller advection. Again, simulations and measure-
ments agreed well.

Non-vent location

As the magnitude of the freshwater discharge is negligible here, a gas phase
occurs in the entire bottom of the system (see fig. 5.44, left). In section A-A,
methane increases drastically from zero at the sea bottom to the maximum
solubility close to the bottom of the system (see fig. 5.44, right). The chloride
profile is more or less constant with the water concentration of the sea bottom
(see fig. 5.44, right). Overall, simulations and measurements agree reasonably.
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Fig. 5.43. Partial vent location; left: distribution of the gas saturation, right: sim-
ulated and measured chloride and methane profiles in section A-A, after HINKEL-
MANN et al. (2002 [115])
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Fig. 5.44. Non-vent location; left: distribution of the gas saturation, right: simulated
and measured chloride and methane profiles in section A-A, after HINKELMANN
et al. (2002 [115])

Release of gas bubbles

In the field, it was observed that methane is released as gas bubbles into the
sea water. The numerical simulations indicate that the gas is trapped in the
lower part of the mud layer. One reason could be that the methane produc-
tion, which is assumed to be constant in the horizontal direction, increases
locally. Another reason is given by the influence of small-scale heterogeneities
which can be taken into account by geostatistical methods (see sec. 4.1.6). It
is well known that there are different dominant forces affecting the movement
of gas. One of these forces is the buoyancy, which acts on the gas adue to the
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large difference between the densities of gas and water. The force acting in
the opposite direction is the capillary force or the entry pressure pd, which in-
hibits the upward movement of the gas. However, the gas can be released into
sea water at locations where the entry pressure is not high enough to prevent
its upward movement. The variation of the entry pressure can be determined
directly with the help of the geostatistical variation of the permeability K
using the Leverett function (see sec. 4.1.6).

Therefore, a geostatistical variation of the permeability field (Km = 10−9m2)
is determined with the SIMSET model (see BARDOSSY (1992 [15])), using
an exponential variogram with a horizontal correlation length of ch = 0.1m,
a vertical correlation length of cv = 0.5m and a variance of v = 0.05 (see fig.
5.45, left). Thus, the small-scale heterogeneities are of an order which can be
expected in the field. As the principle effect is to be investigated, just a 1m-
wide part of the mud layer for the non-vent case is analyzed. In figure 5.45,
right, the gas saturation is shown. Because the correlation length is higher
vertically than horizontally, a fingering is observed in the areas with higher
permeability. This effect together with the methane production are the most
important reasons for the occurrence of methane gas bubbles.
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Fig. 5.45. Non-vent location: Geostatistical permeability field and distribution of
the gas saturation, after HINKELMANN et al. (2002 [115])
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5.4 Flow and transport processes in surface water

In this section, numerical simulations of vertically-integrated and three-
dimensional flow and transport processes in shallow-water systems are pre-
sented (see sec. 2.6). Parallel Operator-Splitting (see secs. 3.1.2, 3.1.6) and
Conjugate Gradient Methods (see secs. 3.4.2) are chosen as efficient numerical
methods. Special emphasis is put on a grid partitioning tool (see sec. 4.1.7)
with respect to efficient information-processing techniques. In order to guar-
antee a relative independence of sections 5.4.1 and 5.4.2, some repetitions are
unavoidable.

The numerical models are applied to the Baltic Sea estuary Darß-Zingster
Boddenkette and the North Sea estuary Weser. The location of these estuar-
ies in the northern part of Germany is shown in figure 5.46.
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Fig. 5.46. Location of the estuaries Darß-Zingster Boddenkette and Weser, after
HINKELMANN (1997 [108])

5.4.1 Vertically-integrated flow and transport processes in shallow
water

The numerical simulations are carried out with the TELEMAC-2D modeling
system ([246]). The sequential algorithm was developed by GALLAND et al.
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(1991 [86]), and is further described, for example, in JANIN (1992 [131]). The
algorithm is parallelized by HINKELMANN (1997 [108]), and is further dis-
cussed in HINKELMANN, ZIELLE (1996 [118]), or HINKELMANN (2000
[109]).

Numerical algorithm

Discretization methods and solvers

The numerical algorithm is based on a parallel Operator-Splitting Method
consisting of an advection (adv) and a diffusion step (dif). For a clearer com-
prehension, the governing equations, which are the Saint-Venant (eqs. 2.69 -
2.71) and the transport equations (eq. 2.75), are recalled:

continuity equation:

∂h

∂t︸︷︷︸
adv/dif

+vx
∂h

∂x
+ vy

∂h

∂y︸ ︷︷ ︸
adv

+h
∂vx

∂x
+ h

∂vy

∂y
= qw/ρw︸ ︷︷ ︸

dif

(5.2)

momentum equation in x-direction:

∂vx

∂t︸︷︷︸
adv/dif

+vx
∂vx

∂x
+ vy

∂vx

∂y︸ ︷︷ ︸
adv

− ∂

∂x
(νwh

∂vx

∂x
) − ∂

∂y
(νwh

∂vx

∂y
) =

fx

ρw0
− g

∂(h + zb)

∂x︸ ︷︷ ︸
dif

(5.3)

momentum equation in y-direction:

∂vy

∂t︸︷︷︸
adv/dif

+vx
∂vy

∂x
+ vy

∂vy

∂y︸ ︷︷ ︸
adv

− ∂

∂x
(νwh

∂vy

∂x
) − ∂

∂y
(νwh

∂vy

∂y
) =

fy

ρw0
− g

∂(h + zb)

∂y︸ ︷︷ ︸
dif

(5.4)

salinity transport equation:

∂S

∂t︸︷︷︸
adv/dif

+vx
∂S

∂x
+ vy

∂S

∂y︸ ︷︷ ︸
adv

− ∂

∂x
(νth

∂S

∂x
) − ∂

∂y
(νth

∂S

∂y
) =

qS − qwS

ρw︸ ︷︷ ︸
dif

(5.5)
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The variables are denoted in section 2.6. The salinity S is chosen as the tracer
in the transport equation.

For the generation of a grid, triangular or quadrilateral elements can be cho-
sen. The hyperbolic and parabolic parts in the governing equations are split
up and treated separately with methods which are ‘optimal’ for the particular
problem class. First, the hyperbolic terms are dealt with in the advection step
(adv). Second, the parabolic and further remaining terms are treated in the
diffusion step (dif). The corresponding parts are marked by underbraces in
equations 5.2 - 5.5. The temporal derivative terms are split up as follows and
used in both steps:

∂f

∂t
=

fn+1 − fn

∆t
=

fn+1 − fadv

∆t
+

fadv − fn

∆t
(5.6)

f stands for the quantities water level h, flow velocity vx, vy , or salinity S;
the ‘exponent’ adv specifies the result of the advection step.

The advection step is solved with the Method of Characteristics (see sec.
3.1.6), based on a Lagrangian point of view. With a first-order Runge-Kutta
Method and the velocity field of the old time step, the pathline of each node
is traced back to the base point of the characteristic. In order to contribute
to the solution at the current time step, the base-point value is interpolated
to the nodal values of the element in which the base point is located. This
approach is explicit.

With the results of the advection step as initial conditions, the diffusion step is
carried out with a semidiscrete Finite-Element Method (see sec. 3.1.4) based
on an Eulerian point of view. Linear shape functions are applied. An im-
plicit formulation leads to a linear non-symmetric system of equations for the
shallow-water equations, which has three unknowns per node and which is
solved with the BiCGSTAB Method (see sec. 3.4.2), as well as a linear sym-
metric system of equations for the salinity transport, which has one unknown
per node equation and which is solved with the PCG Method (see sec. 3.4.2).
Both solvers can apply different preconditioners (see sec. 3.4.3).

Parallel methods

The Operator-Splitting Method is parallelized with the message-passing pro-
gramming model (see sec. 3.2.2). An algebraic parallelization with inconsistent
storing for the interprocessor nodes is used (see secs. 3.2.2, 3.2.3). The domain
is split up into 2n subdomains which are assigned to the processors. The data
and load distribution is static (see sec. 3.2.4), and it is the same for the advec-
tion and diffusion step. The parallelization of the Method of Characteristics is
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described in section 3.2.5. The tracking of the pathlines is initially done com-
pletely in parallel. An interprocessor node is treated on each processor / sub-
domain it belongs to. However, depending on the flow field, the corresponding
base point is found on one processor only. Therefore, a local communication
is performed for the interprocessor nodes after each advection step (see sec.
3.2.3). Since the base points are almost always located in the accompanying
node patch, the parallelization of the pathline tracking is also practicable for
distributed-memory systems (see sec. 4.2.1). However, additional steps, which
are described in HINKELMANN (1997 [108]), are necessary. The treatment
of the semidiscrete Finite-Element Method consists of two parts, assembling
the system matrices and solving the systems of equations. The first part is
performed as far as possible without communication. The parallelization of
the BiCGSTAB and PCG Methods for inconsistent storing is based on the
techniques described in sections 3.2.3 and 3.4.2.

Evaluation of the numerical algorithm

Even though the numerical algorithm contains an explicit part, it is not con-
strained by a stability criterion. Therefore, time steps which are several times
larger than the Courant number can be chosen (see HINKELMANN (1997
[108])). The advection step has to be performed only once for the shallow-
water equations and any number of transport equations. Unstructured tri-
angular or quadrilateral grids can be used. Although the algorithm is not
monotonous, it is rather well suited to the modeling of sharp-front problems,
even though the result can be somewhat damped due to the interpolation
during the advection step. Conservativity problems occur, e.g. of mass, which
result from the Method of Characteristics and which require additional cor-
rection algorithms. Furthermore, a first-order accuracy with respect to time
of the Operator-Splitting Method is disadvantageous. Second-order accuracy
with respect to space is given. The combined explicit and implicit method,
as presented above, can be parallelized well including the Conjugate Gradient
solvers and to a larger extent also vectorized. When adaptive and Multigrid
Methods are considered, the algorithm must be enlarged by dynamic data
structures. In conclusion, this numerical algorithm, even with some draw-
backs, can be evaluated as very good.

The presented parallel numerical algorithm is used at, for example, the Fed-
eral Waterways Engineering and Research Institute in Germany for large-scale
simulations (see KOPMANN, JANKOWSKI (2000 [151])).
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Example: Flow and salinity transport processes in the
Darß-Zingster Boddenkette

Model set-up and simulations

The performance of the implemented algorithms is examined using a practical
engineering example which deals with the numerical modeling of the Baltic-
Sea estuary Darß-Zingster Boddenkette (see fig. 5.46). This estuary consists of
four lakes which are connected by narrow passages and which are connected to
the Baltic Sea at the eastern end. It covers an area of about 200km2 and is very
shallow with an average water depth of about 2m. The goal of this modeling
work is to calibrate a numerical model in order to make predictions regard-
ing future interference with the system, e.g. an artificial connection with the
Baltic Sea (see HINKELMANN et al. [117]), STÜCKRAD, HINKELMANN
(1995 [243])). For the model calibration, a simulation period is chosen for
which a huge data set from a specially performed measurement program is
available. A map as well as a coarse grid are shown in figure 5.47, a sattelite
photo is given in figure 1.2.

Fig. 5.47. Map, coarse grid and position of measurement devices, after HINKEL-
MANN (1997 [108])
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The model is mainly calibrated with the Taylor-friction coefficient. A compar-
atively high friction coefficient λ = 0.03 leads to the best agreement between
computations and measurements; this is caused by very dense sea-bottom
vegetation and low water levels. The turbulent viscosity and diffusivity are
less sensitive during the model calibration; the turbulent viscosity is set to
νwh = 1m2/s, and the turbulent diffusivity to νth = 0.1m2/s to stabilize the
solutions. The Crank-Nicholson factor is θ = 0.6. A diagonal preconditioner
is applied. As initial conditions, the water level and the salinity distributions
are assumed to be linearly distributed over the domain, and they are con-
structed from measured data; the flow velocities are set to zero. Measured
water levels and salinity concentrations at the open boundary to the Baltic
Sea (gauge B19) as well as fresh-water inflows and wind velocities serve as
boundary conditions. Along the closed boundaries, the flow velocities are set
to zero. Further information can be found in HINKELMANN (1997 [108]).

The water levels in figure 5.48 show an incoming wave from the Baltic Sea
which is damped more and more with progressing propagation. The compar-
ison between measurements and computations here is very good. However, a
satisfactory numerical simulation of the complex flow patterns in the estuary
is not achieved (see fig. 5.49, left); this is discussed in detail in HINKEL-
MANN (1997 [108]). A comparison of the measured and computed salinity
concentration (see fig. 5.49, right) shows only small differences, in general less
than 1%. In figure 5.50, the distributions of the discharge per meter width and
the salinity concentrations are given. Large discharge vectors can be found at
the inflow area close to the Baltic Sea and at the Meiningen narrow, while
only small discharge vectors occur within the estuary. The salinity concentra-
tion increases from west to east. The mixing with incoming fresh water from
rivers and creeks can be seen in regions with very small salinity concentrations.
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Fig. 5.48. Time series of water levels, after HINKELMANN (1997 [108])
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Fig. 5.50. Discharge and salinity concentration distributions after 62h, after
HINKELMANN (1997 [108])

Partitioning of the domain and load balancing

Some of the load balancing methods described in section 3.2.4 are investigated
on two triangular grids which differ in the number of nodes and elements by
a factor of approximately 4. The coarse grid in figure 5.47 consists of about
2200 nodes and 3900 elements, while the fine grid in figure 5.53 is made up of
approximately 8900 nodes and 16300 elements. Further, a small creek in the
northern part of the Darß-Zinster Boddenkette is included in the fine grid.
This creek is important for some of the questions under investigation, e.g. the
artifical connection with the Baltic Sea (see STÜCKRAD, HINKELMANN
(1995 [243])).

Figures 5.51 and 5.52 show the partitioning of the domain on a coarse grid
for 8 and 32 processors. The interprocessor nodes and a small surrounding are
not displayed. For the variants with up to 8 processors, the domain is split up
in ‘stripes, i.e. interior subdomains adjoin 2 other subdomains and boundary
subdomains just 1. Further, the mapping described in section 3.2.4 is applied.
It can be seen in figure 5.51 that the modified Recursive-Coordinate Bisec-
tion combined with the Kernighan-Lin heuristic (RCB+KL) does not yield
a connected subdomain for processor P4, even though only 8 processors are
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used. This is not the case if the Recursive-Spectral Bisection combined with
the Kernighan-Lin heuristic (RSB+KL) is applied. The partitioning of the
domain for 32 processors (see fig. 5.52) looks like a chess board for RCB+KL,
but it is irregular for RSB+KL. For complex grids, it is barely recognizable
that RSB+KL is better than RCB+KL. Figure 5.53 contains a partitioning
of the fine grid for 128 processors using RSB+KL. For the area around the
Meiningen narrow, it has to be taken into account that, due to the extremely
complex topography, no connected subdomains occur for more than 16 pro-
cessors. Therefore, the numbers of elements in the subgrids in the zoom of
figure 5.53 are not the same.

Table 5.5 contains the parallel efficiencies (see sec. 4.2.3) for the simulation
on the coarse grid. They are achieved using the very simple - supposedly
worse - RCB and the high-quality - supposedly very good - RSK+KL on a
nCUBE2S parallel computer (see sec. 3.4.6). The interesting result is the very
small difference between the RCB and the RSB+KL. This is caused by the
grid partitioning for the dual graph (see sec. 3.2.4) and the comparatively
small parallel overhead for such a problem size; more detailed explanations
are given in HINKELMANN (1997 [108]). For increasing problem size, the
differences between the two load-balancing methods become even smaller. In
summary, it is stated that, on a parallel computer suitable for fine-granular
problems (see sec. 4.2.2), different static load balancing methods applied to
FDM, FEM or FEM differ only slightly.

processors 1 2 4 8 16 32

RSB + KL [%] 100.0 97.6 93.8 87.5 75.6 58.8

RCB [% 100.0 97.4 93.3 87.3 75.3 58.1

Table 5.5. Parallel efficiency for RSB+KL and RCB on 1 to 32 processors, after
HINKELMANN (1997 [108])
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Fig. 5.51. RCB+KL and RSB+KL for 8 processors on the coarse grid, after
HINKELMANN (1997 [108])
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grid partitioning
for 32 processors

Fig. 5.52. RCB+KL and RSB+KL for 32 processors on the coarse grid, after
HINKELMANN (1997 [108])
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Fig. 5.53. RSB+KL for 128 processors on the fine grid, after HINKELMANN (1997
[108])
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Parallel run-time behavior

For the evaluation of the parallel run time behavior, 100 time steps are inves-
tigated on the nCUBE2S parallel computer (see sec. 3.4.6); a time step of 15s
is chosen for the coarse grid (approximately 2200 nodes and 3900 elements),
and a time step of 6s for the fine grid (approximately 8900 nodes and 16300
elements). This corresponds to a Courant number of approximately 6 for both
grids.

Figure 5.54 shows the parallel efficiency and the speedup on 1 to 128 proces-
sors. As a consequence of the parallel overhead (see sec. 3.2.3), the parallel
efficiency and the inclination of the parallel speedup decrease with increasing
problem size, while the parallel speedup increases. Overall, an efficient par-
allelization of the entire numerical algorithm is achieved. On the coarse grid,
only a partitioning of the domain up to 32 processors is carried out since, with
32 processors, there are already fewer than 100 nodes per processor left, and
the parallel overhead for even fewer nodes per processor increases dramati-
cally. The following recommendation can be made for such two-dimensional
numericals simulations: for a given problem size, the number of processors
should be limited in such a way that at least 100 nodes or even better 100
elements are assigned to each processor. This rule of thumb limits the number
of processors to 32 and 128 for the coarse grid and the fine grid respectively. In
this range of application, the parallel efficiency and speedup are always larger
than 57% and 18 for the coarse grid and always larger than 49% and 63 for the
fine grid; these numbers are still reasonable lower limits for unstructured grids.
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Fig. 5.54. Parallel efficiency and speedup for the coarse and fine grid, after
HINKELMANN (1997 [108])
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The variation of the number of time steps, time-step sizes, simulation periods,
physical parameters (e.g. turbulent viscosity) as well as numerical parameters
(e.g. Crank-Nicholson factor) does not have a remarkable influence on the par-
allel run-time behavior. The use of different storage techniques for the system
matrices, different preconditioners (see sec. 3.4.3) as well as an automated
time-step control are discussed in HINKELMANN (1997 [108]).

Vector computer and parallel vector computer

The Operator-Splitting method described was vectorized based on an Element-
By-Element storage technique (see sec. 3.4.3) by LEPEINTRE (1992 [166]).
As a prerequisite for using the vectorized algorithm, a special element num-
bering must be generated in order to avoid recursions and data dependencies
(see HINKELMANN (1997 [108])). A 70% usage of the vectorization unit is
achieved on the vector computer S400/40 from Siemens-Nixdorf / Fujitsu; this
is a reasonable number for an algorithm based on an unstructured grid. The
S400/40 has a substantially higher processor performance than 32 nCUBE2S
processors. Therefore, the S400/40 is several orders of magnitude faster than
32 nCUBE2S processors.

The simulations on the coarse grid are also performed on the parallel vector
computer NEX SX-4. For this purpose, a special storage technique for the
system matrices is developed (see HINKELMANN (1997 [108])). The simula-
tions on 1 to 32 parallel vector computers demonstrated the collaboration of
parallelization and vectorization on principle. Far better computation times
are achieved than on other parallel and vector computers, but the results by
no means fulfilled the expectations based on the performance characteristics
of the NEX SX-4. The main reason for this is that the problem size is much
too small with approximately 2200 nodes and 3900 elements. An efficient us-
age of parallel vector computers, even with a moderate number of processors,
can be achieved only for large-scale-problem sizes, i.e. more than 106 nodes.
Further information can be found in HINKELMANN (1997 [108]).
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5.4.2 Three-dimensional flow and transport processes in shallow
water

The numerical simulations are undertaken with the TELEMAC-3D modeling
system ([246]). The sequential algorithm was developed by JANIN et al. (1992
[132]) and is further described in, for example, MALCHEREK (1995 [170]).
The algorithm is parallelized by HINKELMANN (1997 [108]) and is further
discussed in HINKELMANN et al. (1998 [113]), HINKELMANN, ZIELLE
(2000 [119]), or HINKELMANN (2000 [109]).

Numerical algorithm

Discretization methods and solvers

The numerical algorithm is based on a parallel Operator-Splitting Method
consisting of an advection (adv), a diffusion (dif) and a free-surface-continuity-
pressure step (fcp). For a better understanding, the governing equations, which
are the three-dimensional shallow-water (eqs. 2.60, 2.63 - 2.65) and the trans-
port equations (eq. 2.75) together with an equation of state for the density of
water (eq. 2.76), are recalled:

continuity equation:

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= qw/ρw︸ ︷︷ ︸

fcp

(5.7)

momentum equation in x-direction:

∂vx

∂t︸︷︷︸
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+vx
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∂vx

∂x
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∂y
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=
1

ρw0
fx︸ ︷︷ ︸
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− 1

ρw0
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fcp

(5.8)

momentum equation in y-direction:
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(5.9)
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momentum equation in z-direction:

1

∂ρw

∂p

∂z
+ g = 0︸ ︷︷ ︸

fcp

⇔ p = ρw0g(zs − z) + ρw0g

∫
z

zs ∆ρw

ρw0
dz︸ ︷︷ ︸

fcp

(5.10)

salinity transport equation:

∂S

∂t︸︷︷︸
adv/dif

+vx
∂S

∂x
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∂S

∂y
+ vz

∂S
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) − ∂

∂y
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∂S

∂y
) − ∂

∂z
(νtv

∂S

∂z
) =

qS − qwS

ρw︸ ︷︷ ︸
dif

(5.11)

equation of state:
ρw(S) = ρw0(1 + 0.00075S) (5.12)

The variables are denoted in section 2.6. The salinity S is chosen as the tracer
in the transport equation.

The computational domain is discretized with prismatic elements consisting of
triangles in the horizontal projection which are duplicated along the vertical
(see fig. 5.55). This special mesh topology causes simple node and element
addressing and is very advantageous for the grid partitioning (see fig. 5.56).
Due to the water-level elevation, the three-dimensional mesh moves with time.
By applying the so-called σ-transformation, the real mesh is projected onto a
stationary one, the so-called σ-mesh, with the unsteadiness being considered
in the transformation relationship. With z∗ = 0 representing the bottom zb

and z∗ = 1 the free water surface zs, the following holds:

z(x, y, t) = zb(x, y) + z∗[zs(x, y, t) − zb(x, y)],

0 ≤ z∗ ≤ 1 ⇔ z∗ =
z − zb

zs − zb
(5.13)

As in the two-dimensional model (see sec. 5.4.1), the hyperbolic and parabolic
terms in the basic equations are split up and treated separately with methods
which are ‘optimal’ for the particular problem class. First, the hyperbolic
terms are dealt with in the advection step (adv). Second, the parabolic and
some right-hand-side terms are treated in the diffusion step (dif). In the last
step, the free surface, continuity and pressure terms (fcp) are determined. The
corresponding parts are marked by underbraces in equations 5.7 - 5.11. The
temporal derivative terms are split up as follows and used in all three steps:
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Fig. 5.55. Space discretization with prisms, after HINKELMANN (1997 [108])

∂f

∂t
=

fn+1 − fn

∆t
=

fn+1 − fdif

∆t
+

fdif − fadv

∆t
+

fadv − fn

∆t
(5.14)

Here, f represents the quantities flow velocity components vx, vy , vz or salin-
ity concentration S; the ‘exponent’ adv specifies the result from the advection
step and dif the one from the diffusion step.

The advection step is solved with the Method of Characteristics (see sec.
3.1.6) in the σ-mesh based on a Lagrangian point of view. With a first-order
Runge-Kutta Method and the velocity field of the old time step, the pathline
of each node is traced back to the base point of the characteristic. In order
to contribute to the solution at the current time step, the base-point value
is interpolated to the nodal values of the element in which the base point is
located. This approach is explicit.

With the results of the advection step as initial condition, the diffusion step
is carried out with a semidiscrete Finite-Element Method (see sec. 3.1.4) in
the real mesh based on an Eulerian point of view. Linear shape functions are
applied. The horizontal flow velocities as well as the salt concentrations are
decoupled and calculated subsequently. An implicit formulation leads to three
linear symmetric systems of equations with one unknown per node, using a
PCG solver (see sec. 3.4.2) with different preconditioners (see sec. 3.4.3) for
their solutions. The integration of the system matrix is carried out analytically
with the help of a mathematical expert system (see JANIN et al. (1992 [132])).
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Here, it is advantageous that the analytical integration can be vectorized in
contrast to the Gauss-Point integration (see sec. 3.1.4). The calculation of the
salinity transport terminates after the diffusive step.

With the solution of the diffusive step as the initial conditions, the remaining
terms are treated in the free-surface-pressure-continuity step in the real mesh
based on an Eulerian point of view. For this purpose, the flow velocities are
averaged vertically. The equations to be treated represent the Saint-Venant
equations in a reduced form. They are solved as described in section 5.4.1. It
is mentioned that the influence of density-induced flows is considered in this
step.

Parallel methods

The Operator-Splitting Method is parallelized with the message-passing pro-
gramming model (see sec. 3.2.2). An algebraic parallelization with inconsistent
storing for the interprocessor nodes is used (see secs. 3.2.2), 3.2.3). The par-
titioning of the whole domain is carried out for the horizontal projection of
the grid in the same way as for the two-dimensional model (see 5.4.1). The
horizontally projected grid is split up into 2n subdomains which are assigned
to the processors with all prisms lying below. The data and load distribution
is static (see sec. 3.2.4), and it is the same for the advection, diffusion and free-
surface-continuity-pressure step. The parallelization of the Method of Charac-
teristics is described in section 3.2.5. The tracking of the pathlines is initially
carried out completely in parallel. An interprocessor node is treated on each
processor / subdomain where it belongs to. However, depending on the flow
field, the corresponding base point is found on one processor only. Therefore,
a local communication is performed for the interprocessor nodes after each
advective step (see sec. 3.2.3). Since the base points are almost always located
in the accompanying node patch, the parallelization of the pathline tracking
is also practicable for distributed-memory systems (see sec. 4.2.1). However,
additional steps are necessary; these are described in HINKELMANN (1997
[108]). The treatment of the semidiscrete Finite-Element Method in the dif-
fusion step consists of two parts: assembling system matrices and solving
the systems of equations. Assembling the system matrices is performed as
far as possible without communication. The parallelization of the PCG and
BiCGSTAB Methods for inconsistent storing is based on the techniques de-
scribed in sections 3.2.3 and 3.4.2. The free-surface-continuity-pressure step
is carried out as described in section 5.4.1.
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Evaluation of the numerical algorithm

Even though the numerical algorithm contains an explicit part, it is not con-
strained by a stability criterion. Therefore, time steps which are several times
larger than the Courant number can be chosen (see HINKELMANN (1997
[108])). The advection step has to be performed only once for the shallow-
water equations and any number of transport equations. The grid consisting
of prismatic elements is unstructured in the horizontal projection and struc-
tured in the vertical. It is well suited for ‘compact’ water bodies; however,
for complex vertical structures, such grids lead to an over-discretization in
shallow regions and an under-discretization in deep regions. Although the
algorithm is not monotonous, it is rather well suitable for the modeling of
sharp-front problems, even though a certain numerical damping can occur
due to the interpolation during the advection step. Above all, three points
are disadvantageous: the vertical grid structure with the same number of lay-
ers in the whole domain together with the σ-transformation; global (mass)
conservation problems which result from the Method of Characteristics and
which require additional correction algorithms; only first-order accuracy in
time. Second-order accuracy with respect to space is given. The combined
explicit and implicit method, as presented above, is very suitable for paral-
lelization including the Conjugate Gradient solvers and to a larger extent also
for vectorization. When adaptive and Multigrid Methods are considered, an
extension to dynamic data structures is required. In conclusion, this numerical
algorithm, even with some drawbacks, can be evaluated as rather good.

Example: Flow and salinity transport processes in the Weser

Model set-up and simulations

The performance of the implemented algorithms is demonstrated using a field
study of the North-Sea estuary Weser (see fig. 5.46). The investigated part
is located between Nordenham and the Hemelingen weir; it is about 60km
long, 400 − 2000m wide and 3 − 10m deep (see fig. 5.56). The model was
calibrated by MALCHEREK (1995 [170]) with the help of a very large and
coherent data set. The aim of this work consisted of developing a fundamental
process understanding of the dynamics of suspended sediments in the Weser
and its numerical simulation. For the investigations described in the following,
the suspended sediment transport is not taken into account, and some small
extensions are made in order to achieve a better calibration. A map and the
horizontal projection of the grid with approximately 1500 2D-nodes and 2300
2D-elements is shown in figure 5.56. For the model calibration, 12 planes
are distributed logarithmically in the vertical direction. With respect to the
vertical structure, the domain can be characterized as rather compact; this is
advantageous for the use of the σ-transformation.
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Fig. 5.56. Map, gauge locations, grid and partitioning for 16 processors with RSB,
after HINKELMANN (1997 [108])
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The model was calibrated with the friction coefficient and the turbulence
parameters. A Chezy friction coefficient of 28.9 was determined from mea-
surements (see MALCHEREK (1995 [170])). The horizontal turbulent vis-
cosity was set to νwh = 0.1m2/s and the horizontal turbulent diffusivity to
νth = 1.0m2/s. In the vertical direction, the turbulence parameters νwv, νtv

were computed with the mixing length model of LEHFELDT (1991 [165], see
sec. 2.6.1). The Crank-Nicholson factor was θ = 0.55. As initial conditions, a
constant water level distribution with the value of position Q4 was chosen for
the whole domain, the flow velocities were set to zero, and the salinity distri-
bution was assumed to be linearly distributed between position Q4 and the
Hemelingen weir. The measured water levels and salinity concentrations (dur-
ing inflow only) were specified as boundary conditions at the open boundary
to the sea at position Q4. At the upstream boundary at the Hemelingen weir,
the measured discharge and salinity concentration were prescribed as bound-
ary conditions. Along the closed boundaries, the flow velocity is set to zero.
Moreover, measured wind velocities were given. MALCHEREK (1995 [170])
developed the measured water levels and salinity concentrations at position
Q4 in Fourier series. They are parallized as described in section 3.2.5. Further
information can be found in MALCHEREK (1995 [170]) and HINKELMANN
(1997 [108]).

Figure 5.57 contains time series of calculated and measured flow velocities at
position Q2 and Q3 (see fig. 5.56) which show a very good agreement. The
typical influence of the tides can be observed in the periodic and sinus-like
course of the results. The variability of the vertical flow profile is clearly seen
at position Q2 by comparing the flow velocities close to the bottom (1 me-
ter above bottom, 1mab) and close to the surface (8mab). Figure 5.58 shows
simulated and measured salinity concentrations. At positions Q3 and Q4, the
agreement is rather good. However, larger deviations occur at position Q2

during the second half of the simulation. Reasons for this are discussed in
detail in HINKELMANN (1997 [108]). Figure 5.59 contains the distribution
of the vertically integrated salinity concentration and shows the maximum
penetration of the salt tongue into the estuary during the eighth tide period
after 90 hours simulation time.
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Partitioning of the domain and load balancing

The grid consists of about 1500 2D-nodes, 2300 2D-elements in the horizontal
projection and 12 planes, i.e. 18000 3D-nodes and 25000 3D-elements. The par-
titioning of the grid is performed with the load-balancing method Recursive-
Spectral Bisection as described in section 3.2.4. Here, the combination with
the Kernighan-Lin heuristic has no influence worth mentioning. Due to the
simple, line-like geometry of the horizontal grid, only very short interprocessor
boundaries with few nodes occur. In figures 5.56 and 5.60, the partitionings
for 16 and 64 processors are given; here, the interprocessor boundaries and
a small surrounding region are not displayed. The partitioning for 16 pro-
cessors leads to a ‘stripe decomposition’, i.e. each inner subdomain adjoins 2
other sudomains and the boundary subdomain just 1 other. Furthermore, the
mapping as described in section 3.2.4 can be recognized. Figure 5.60 shows a
zoomed part of the grid at the boundary to the North Sea. The partitioning
of the grid is carried out for up to 256 processors, and each subdomain has a
connected graph (see sec. 3.2.4).
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Parallel run-time behavior

For the evaluation of the parallel run-time behavior, 120 time steps of 30s are
investigated; this corresponds to a Courant number of approximately 10. The
simulations are carried out on the parallel computer CRAY T3D using PVM
for the communication (see sec. 3.2.2). The three-dimensional grid has about
18000 3D-nodes and 25000 3D-elements.

Figure 5.61 shows the parallel efficiency and the speedup on 1 to 256 proces-
sors. Values larger than 100% or 1 can be explained by cache effects (see sec.
4.2.3) which compensate for the parallel overhead up to 8 processors; on 16
processors, the speedup turns out to be extremely high (15). For more than 2
processors, the parallel overhead causes the parallel efficiency and the inclina-
tion of the parallel speedup to decrease with increasing problem size, while the
parallel speedup increases. With 64 processors, the parallel speedup becomes
38 and the efficiency 60%. The simulations with more than 100 processors
are above all supposed to demonstrate that the parallel algorithm works in
principle. Overall, an efficient parallelization of the entire numerical algorithm
is achieved. For the three-dimensional calculations, the number of processors
and the problem size should be adjusted in a such way that a minimum of 300
3D-nodes (or, even better, 3D-elements) are assigned to each processor. The
recommendation for the number of processors restricts the area of application
for the Weser example to 64 processors.
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The variation of the number of time steps, time-step sizes, simulation periods,
physical parameters (e.g. turbulent viscosity) as well as numerical parameters
(e.g. Crank-Nicholson factor) have no remarkable influence on the parallel
run-time behavior. The use of different preconditioners (see sec. 3.4.3) is dis-
cussed in HINKELMANN (1997 [108]).

In order to examine the influence of the problem size on the parallel run-
time behavior, the number of planes and thus the number of the 3D-degrees
of freedom is varied (see fig. 5.62). The calculations are performed on the
nCUBE2S parallel computer (see sec. 3.4.6) for 8 up to 128 processors. For
the simulations with 24 planes, at least 8 processors are required for storage,
i.e. RAM, reasons. Therefore, the simulations with 8 processors serve as refer-
ence value, i.e. exemplarily, the theoretical relative speedup on 128 processors
is sprel = 128/8 = 16. On 128 processors, the relative speedups for 3, 6, 12,
and 24 planes are 5.3, 6.9, 8.5, and 9.5. For an increasing problem size, the
relative parallel speedup as well as its inclination increase.

Fig. 5.62. Relative speedup for variable problem size on the nCUBE2S, after
HINKELMANN (1997 [108])

Different High-Performance Computional Architectures in comparison

The aforementioned calculations with 12 planes are also performed on the
workstation cluster ParaStation and the vector computer S400/40 from
Siemens-Nixdorf / Fujitsu. The ParaStation was one of the first clusters on
which fine-granular problems could be treated reasonably using a special com-
munication hardware and software (see WARSCHKO et al. (1996 [259])).
The Operator-Splitting Method already described was vectorized, based on
an Element-By-Element storage technique (see sec. 3.4.3) by LEPEINTRE
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(1992 [166]). As a prerequisite for using the vectorized algorithm, a special
element numbering must be generated in order to avoid recursions and data
dependencies (see HINKELMANN (1997 [108])). A 70% usage of the vector-
ization unit is achieved on the S400/40. This is a reasonable number for an
algorithm based on a (horizontally) unstructured grid.

Figure 5.63 compares the run times for different computer architectures. Note
the different scaling of the vertical axis. The fastest run times are achieved on
the parallel computer T3D. For this example, the vector computer S400/40 is
approximately as fast as 16 T3D processors. The workstation cluster ParaSta-
tion has not yet been able to compete with the High-Performance Computers.
Finally, it is mentioned that nowadays clusters perform much better, as dis-
cussed in secs. 3.2 and 4.2.
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Summary and conclusions

In recent years, numerical simulation models have become indispensable in
hydro- and environmental sciences and engineering, mainly for making predic-
tions and improving the process understanding. For many problems, a physi-
cally correct and mathematically accurate simulation of the coupled complex
processes requires powerfull numerical methods as well as high resolutions in
space and time. In information processing, many techniques have been devel-
oped to set up systems with complex geometries and parameter distributions,
and high-performance computer systems are available for fast computations.
Overall, there is an urgent need for the further development and application
of efficient numerical simulation models in hydro- and environmental sciences
engineering, consisting of efficient numerical methods which are associated
with efficient information-processing techniques. These topics are addressed
in this work.

Chapter 1

It starts with a classification of various hydro- and environmental systems,
especially in surface waters and the subsurface, and emphasizes the impor-
tance of interaction processes. After an illustration of the wide range of rel-
evant space and time scales, numerical process simulation is introduced. Dif-
ferent model concepts and fundamental components of modeling systems are
explained, and the need for laboratory and field measurements is demonstrated.
Deficits in numerical simulation are mentioned, dealing with process under-
standing, scales, couplings, data, uncertainties and information processing.
These deficits are the motivation behind this work:

• presentation of the state of the art of efficient numerical methods
• further development of numerical methods
• overview / state of the art of efficient information-processing techniques
• several extensions of the modeling system MUFTE-UG
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• applications to a wide range of problems in hydro- and environmental
systems

• new application fields for existing simulation models including improve-
ments of the process understanding

Chapter 2

Physical and mathematical models are topics of this chapter. Depending on the
geological structures, different physical model concepts for subsurface systems
are chosen and explained focusing on fracture-matrix systems. Depending on
the dominant processes, physical model concepts for surface-water systems
are distinguished. On the basis of the general form of the balance equation,
mathematical modeling of the following processes is briefly derived:

• groundwater flow and transport processes
• two-phase flow processes in the subsurface
• two-phase / multicomponent flow and transport processes in the subsur-

face
• flow and transport processes in surface water

In most cases, the resulting (systems of) partial differential equations are
(strongly) coupled, (highly) non-linear and of mixed parabolic / hyperbolic type;
this makes their further numerical treatment highly demanding.

Chapter 3

It is the most important chapter of this work and provides the state of the art
of numerous efficient numerical methods, especially discretization and stabi-
lization methods, parallel and adaptive methods as well as fast solvers.

• For the basic equations presented in chapter 2, different space and time
discretization and stabilization methods based on the Finite-Difference
(FDM), Finite-Element (FEM) and Finite-Volume Methods (FVM) are
discussed in detail. A method should reproduce the correct physical be-
havior, for example a sharp front. It should be stable and monotonous. A
high order of consistency in space and time is highly desirable, at least
a second order. The conservativity should be ensured; this is globally the
case for the FEM and locally for the FVM. Moreover, a method should be
applicable on unstructured grids to better deal with complex structures
and parameter distributions. As no algorithm can fulfill all criteria sat-
isfactorily, a good overall choice of a numerical algorithm can consist of
exploiting the advantages of simple methods, such as the Fully Upwind
Box Method, and compensating for their disadvantages with high space
and time resolutions using parallel and adaptive methods as well as fast
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solvers. Such sophisticated methods are required especially for large-scale
problems because they can speed up the solution effort in orders of mag-
nitude.

• In the context of parallel methods, the development of High-Performance
Computing, parallelization strategies, the parallelization of basic tasks as
well as load-balancing methods are presented. Parallel methods should use
the message-passing programming model and provide the Message-Passing
Interface (MPI) for the communication. Thus, maximum portability and
the best prerequisites for scalability are given.

• Different adaptive methods, error estimators and indicators as well as re-
finement and coarsening strategies are explained. The use of h-adaptive
and process adaptive methods controlled by heuristic error indicators is
recommended for most problems considered in the context of modeling
hydro- and environmental systems. If coarsement is used, the conserva-
tion, for example of mass, must be ensured, possibly by a mass-correction
algorithm.

• Furthermore, linear single-grid solvers, such as the Conjugate Gradient
Methods, and linear Multigrid Methods as well as preconditioners and non-
linear solvers are introduced. For medium-scale problems, the PCG Method
should be used for symmetric systems and the BiCGSTAB or the GMRES
Method for non-symmetric ones. For large-scale problems, the Multigrid
Method should be preferred, as a preconditioner of another method or
as the only solution method. In most cases, the Newton-Raphson Method
should be applied to non-linear systems.

Parallel, adaptive and Conjugate Gradient or Multigrid Methods can collab-
orate well and are available nowadays in several tool-boxes.

Chapter 4

An overview of various efficient information-processing techniques applied to
the modeling of hydro- and environmental systems is given in this chapter.
In a modeling system, preprocessors, numerical simulators and postprocessors
are distinguished.

• In the context of preprocessing tools, CAD systems, database-management
systems (DBMS), tomography and scanning and Geographical Information
Systems (GIS) as well as geostatistical methods and mesh generators are
briefly introduced. While there are only very few quasi-standard CAD sys-
tems in building and civil engineering, most of the large modeling systems
in hydro- and environmental engineering have their own CAD system and
standardized interfaces hardly exist. For simply structured data, relational
DBMS (RDBMS) are suitable, while for complex data structures, object-
orientated DBMS (OODBMS) should be preferred. The pore structure of a
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porous medium can be detected at a high resolution with tomography and
scanning. A GIS connects geometric and other data, generally from an area
on the surface of the earth. It is fast gaining importance and is applied to
an increasing number of (large-scale) numerical simulations. Geostatistical
methods are a means of integrating uncertainties, for example small-scale
heterogeneities, into the numerical modeling. Mesh generators should use
triangles in two-dimensional and tetraheda in three-dimensional simula-
tions to enable the highest flexibility for complex structures and param-
eter distributions. Mesh generators which can optimize the shape of the
elements are recommended.

• The processing section concentrates on High-Performance Computers and
the modeling system MUFTE-UG. Among different architectures, mas-
sively parallel systems are the fastest computer systems installed world-
wide. Hybrid-memory systems are becoming increasingly widespread for
small- or medium-size systems. MUFTE-UG is a modeling system for the
simulation of Multiphase Flow, Transport and Energy processes using par-
allel, adaptive Multigrid Methods as fast solvers.

• For the visualization of (complex) three-dimensional results, advanced vi-
sualization systems should be used.

• WWW-based Collaborative Engineering offers a new form of teamwork for
the solution of complex global engineering problems. The collaborative
work can be carried out at different locations and times and is collected
with WWW-based information and communication technologies.

Chapter 5

It demonstrates the interaction of the efficient numerical methods of chapter
3 with the efficient information-processing techniques of chapter 4. A wide
range of applications to problems in hydro- and environmental systems is
considered.

• A new, so-called equidimensional modeling approach for groundwater flow
and transport processes in discrete fracture-matrix systems is presented
and integrated in MUFTE-UG. Fractures and the matrix are discretized
with elements of the same dimension. A continuous velocity field at the
fracture-matrix interface can be obtained with a few extensions; this is ex-
pected to lead to a considerable improvement of transport simulations. In
this context, the high performance of h-adaptive methods is clearly demon-
strated. Moreover, a basis for coupling methods of domains and models and
for multiphysics is prepared.

• The two-phase flow module of the modeling system MUFTE-UG is used
for new application fields dealing with the simulation of methane-migration
processes in coal-mining areas, gas-water flow processes in dike systems,
and a multi-step outflow experiment. Within the methane migration sim-
ulations, many two-dimensional test cases are investigated to determine



6 Summary and conclusions 281

the dominant parameters and processes. A three-dimensional model of
an abandoned coal mine is set up and, for that purpose, MUFTE-UG is
extended by CAD and DBMS and the corresponding interfaces. A model
calibration is envisaged in the range of available data as well as its applica-
tion for several prognoses, for example dealing with optimum gas-suction
measures. The dike simulations reproduce laboratory and field observa-
tions that the failure of overtopped dikes starts from the land side in areas
where air is pressed out. Again, the superiority of h-adaptive methods is
shown, while the multi-step outflow experiment demonstrates the efficient
parallel run-time behavior.

• MUFTE-UG has been further developed to include the simulation of two-
phase / three-component flow and transport processes in the interaction
area groundwater - surface water. The occurrence of gas bubbles in the sur-
roundings of submarine groundwater springs could be explained qualita-
tively and quantitatively with a numerical simulation taking geostatistical
methods into account.

• Finally, the performance of a parallelized Operator-Splitting Method for
free-surface flow and transport processes, which is implemented in the
TELEMAC system, is illustrated. Two-dimensional simulations deal with
the calibration of a model of the Baltic-Sea estuary Darß-Zingster Bod-
denkette and three-dimensional simulations with the North-Sea estuary
Weser. An overall efficient parallelization is obtained and tested with up
to 256 processors.

Further conclusions

Efficient simulation methods which are a combination of efficient numerical
methods and efficient information-processing techniques should form the ba-
sis for a number of further developments. New problems of increasing size
will be considered in the future. On the one hand, these require the inte-
gration of many space and time scales and, as a consequence, the (further)
development of upscaling and downscaling methods as well as the treatment
of more and more complex coupled processes. On the other hand, integrated
modeling is needed to take the interaction of systems into account. For that
purpose, coupling methods of domains and models, for example groundwa-
ter and free-surface flow, must be developed. Such couplings must go beyond
merely (iteratively) exchanging simulation results via the common interfaces,
for example with special coupling methods such as Mortar Methods.

Nowadays, as well as in the future, there will probably often be a lack of
data for the numerical simulations. As the predictions of a model can only
be as good as its data set, stochastic methods will gain importance because
they enable the estimation of the probabilities as well as the bandwidths of the
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numerical simulation results. For that purpose, geostatistical parameter fields
or geostatistical fracture networks can, for example, be used.

Finally, efficient simulation methods are essential for the necessary extension
of modeling systems to management or decision-support systems, for exam-
ple by means of optimization methods. In order to be able to implement the
European Union’s Water Framework Directive, there is an urgent need for set-
ting up information systems which form the umbrella for storing, managing
and analyzing large data sets, applying modeling, management and decision-
support systems and providing all further problem-related information to the
actors as well as the public.
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127; see [267] in this bibliography

29. Berger,M.J. & Oliger,J. (1984): Adaptive Mesh Refinement for Hyperbolic Par-
tial Differential Equations, J. Computational Physics, Vol. 53, pp. 484-512

30. Birken,K. (1998): Ein Modell zur effizienten Parallelisierung von Algorith-
men auf komplexen, dynamischen Datenstrukturen, Dissertation, Universität
Stuttgart

31. Birkhölzer,J. (1994): Numerische Untersuchungen zur Mehrkontinuumsmodel-
lierung von Stofftransportvorgängen in Kluftgrundwasserleitern, Dissertation,
Mitteilungen des Instituts für Wasserbau und Wasserwirtschaft, Band 93,
Rheinisch-Westfälisch Technische Universität Aachen

32. Blackford,L.S., Choi,J., Cleary,A., D’Azevedo,E., Demmel,J., Dhillon,I.,
Dongarra,J., Hammarling,S., Henry,G., Petitet,A., Stanley,K., Walker,D.
& Whaley,R.C. (1997): ScaLAPACK User’s Guide, Report SE04, SIAM;
http://www.netlib.org/scalapack



References 285

33. La Bolle,E.M., Fogg,G.E. & Tompson,A.F.B. (1996): Random-Walk Simula-
tion of Transport in Heterogeneous Porous Media: Local Mass-Conservation
Problem and Implementation Method, Water Resources Research, Vol. 32, No.
3, pp. 583-593

34. Bornemann,F.A., Erdmann,B. & Kornhuber,R. (1993): Adaptive Multilevel
Methods in Three Space Dimensions, Int. J. Numer. Meth. Engrg., Vol. 36,
pp. 3187-3203

35. Braess,D. (1986): On the Combination of the Multigrid Method and Conjugate
Gradients, in Hackbusch,W. & Trottenberg,U. (eds.): Multigrid Methods II,
Lecture Notes in Mathematics 960, Springer, Berlin

36. Braess,D. (1992): Finite Elemente: Theorie, schnelle Löser und Anwendungen
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mungsmechanik, Text Book, Institut für ComputerAnwendungen im Bauinge-
nieurwesen, Technische Universität Braunschweig

100. Helmig,R., Class,H., Huber,R., Sheta,H., Ewing,J., Hinkelmann,R., Jakobs,H.
& Bastian,P. (1998): Architecture of the Modular Program System MUFTE-
UG for Simulating Multiphase Flow and Transport Processes in Heterogeneous
Porous Media, Mathematische Geologie, Vol. 2, pp. 123-131

101. Helmig,R. & Cunningham,A. (2002): Multiphase Flow, Transport and Biore-
mediation in the Subsurface, Course material of IAHR-EGW short course,
Lehrstuhl für Hydromechanik und Hydrosystemmodellierung, Institut für
Wasserbau, Universität Stuttgart in cooperation with the Center for Biofilm
Engineering, Montana State University, Bozeman



References 289

102. Helmig,R. Hinkelmann,R. & Menzel,K.: (1999) Hydroinformatik und Hydrosys-
temmodellierung, CAROLO-WILHELMINA Mitteilungen, Schwerpunktheft
Informatik, Forschungsmagazin der Technischen Universität Braunschweig, pp.
106-111

103. Helmig,R. & Huber,R. (1998): Comparison of Galerkin-Type Discretization
Techniques for Two-Phase Flow in Heterogeneous Porous Media, Adv. Water
Resour., 21 (8), pp. 697-711

104. Hendrickson,B. & Leland,R. (1993): The Chaco User’s Guide, Version 1.0,
Report SAND93-0074, Sandia National Laboratories, Albuquerque, USA

105. Herrera,I., Ewing,R.E., Celia,M.A. & Russell,T.F. (1993): Eulerian-Lagrangian
Localized Adjoint Method: The Theoretical Framework, Numer. Meth. for
P.D.E.’s. 9, pp. 431-457

106. Hestenes,M. & Stiefel,E. (1952): Methods of Conjugate Gradients for Solving
Linear Systems, J. Res. Nat. Bur. Standards 49

107. Himmelsbach,T. (1993): Untersuchungen zum Wasser- und Stofftransportver-
halten von Störungszonen im Grundgebirge (Albgranit, Südschwarzwald),
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Friedrich-Alexander-Universität Erlangen-Nürnberg

248. Thorenz,C. (2001): Model Adaptive Simulation of Multiphase and Density
Driven Flow in Fractured and Porous Media, Dissertation, Report No. 62/2001,
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