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Preface

This text is an outgrowth or organized compilation of the notes the authors
have used to teach an introductory course on the viscoelasticity of poly-
mers for more than thirty years for the senior author and about fifteen
years for the junior author. Originally, the course was taught only to
graduate students but in recent years an effort has been made to teach a
modification of the course to senior level mechanical engineering students.
The authors have long held the view that the lack of knowledge of the fun-
damental aspects of the time and temperature behavior of polymer materi-
als is a serious shortcoming in undergraduate as well as graduate engineer-
ing education. This is especially important in our present society because
the use of polymeric materials pervades our experience both in our daily
lives and in our engineering profession. Still the basic thrust of under-
graduate education and even graduate education to some degree in the ar-
eas of mechanical and civil engineering is toward traditional materials of
metal, concrete, etc. Until about twenty-five years ago, elementary under-
graduate textbooks on materials contained little coverage of polymers. To-
day many elementary materials texts have several chapters on polymers
but, in general, the thrust of such courses is toward metals. Even the poly-
mer coverage that is now included treats stress analysis of polymers using
the same procedures as for metals and other materials and therefore often
misleads the young engineer on the proper design of engineering plastics.
Thus, it is not surprising that some structural products made from polymers
are often poorly designed and do not have the durability and reliability of
structures designed with metallic materials.

For the above reasons, the view of the authors is that specific courses on
polymer materials as well as associated stress analysis and engineering de-
sign need to be offered to every engineer. The present text has been devel-
oped with this in mind. The intent is to have sufficient coverage for a two
semester introductory sequence that would be available to upper class un-
dergraduates and first year graduate students. The level is such that only
basic knowledge of solid mechanics and materials science are needed as
prerequisites. The book is intended to be self sufficient even for those that
have little formal training in solid mechanics and therefore chemical engi-
neers, materials, forestry, chemistry, bio-engineering, etc. students as well
as mechanical and civil engineering students can use this text successfully.
Similarly, because chemistry background is often weak for non-chemical
engineers, introductory material is provided on the chemical basis of
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polymers, which is essential for proper appreciation of the thermome-
chanical response.

Another major objective is for the text to be readable by recent engi-
neering graduates who have not had the advantage of a formal course on
polymer science or viscoelasticity. The reason, of course, is that today’s
engineering curricula, both undergraduate and graduate, have few extra
hours such that new courses can be accommodated in degree plans. There-
fore, a book such as this one should be of great value to the young engineer
who finds him/herself in a position heavily involved with the engineering
design and use of polymer based materials. In addition a text such as this
should be invaluable to those cross-disciplinary scientists such as biologist,
bio-chemist, etc. that need to understand the basic background to rigorous
mechanics approaches to the design of structures made with polymer based
materials.

The first chapter gives insight to the historical aspects of the subject. A
review of basic mechanics of materials (strength of materials) and materi-
als science is given in Chapter 2. Chapter 3 gives an introduction to the
mechanical properties of polymers and how they are determined as well as
general information on optical, electrical and other properties. Chapter 4 is
an introduction to the general character of polymers from a molecular
viewpoint and is valuable in assessing the mechanisms associated with vis-
coelastic deformations. Chapters 5 and beyond speak to the formal mathe-
matics and experimental methods associated with the relationship between
stress and strain in viscoelastic solids, both linear and nonlinear, as well as
stress analysis and failure.
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1. Introduction

1.1. Historical Background

Development of synthetic polymers and growth of the polymer industry
during the last 70 years has been staggering. The commercial success of
polymer-based products has generated a demand such that the total pro-
duction of plastics (by volume) has exceeded the combined production of
all metals for more than 20 years. It has been suggested that Polymer Sci-
ence evolved from the following five separate technologies: 1. Plastics, 2.
Rubbers or Elastomers, 3. Fibers, 4. Surface Finishes, and 5. Protective
Coatings, each of which evolved separately to become major industries
(Rosen, (1993)). As a result much of the early development of polymers or
plastics was focused on these commercial products and other non-
structural uses. The need to develop synthetic rubber due to the interrup-
tion of trade routes during WW II served as a catalyst to large scale federal
funding for polymer research. This increased effort resulted in better un-
derstanding of the nature of polymers as well as improved analytical and
experimental approaches to their behavior. In more recent years, however,
polymers have become an engineering structural material of choice due to
low cost, ease of processing, weight savings, corrosion resistance and other
major advantages. In fact modern polymeric adhesives and polymer matrix
composites (PMC) or fiber-reinforced plastics (FRP) are today being used
in many severe structural environments of the aerospace, automotive and
other industries.

Not withstanding the recent developments of synthetic structural poly-
mers, naturally occurring polymers have been used for thousands of years
and early civilizations understood how to mix fibers (such as wheat flax)
with resins to obtain added strength. For example, pottery cemented with
natural resins have been found in burial sites that date back to 4000 BC. A
cedar chest with extensive glue construction was found in King Tutank-
hamen’s tomb and dates back to 1365 BC. Clegg and Collyer, (1993) re-
port that bitumen, a complex mix of heavier petroleum fractions, is men-
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tioned in the Bible and that amber, a gum-like or brittle fossilized resin
from pine trees, was known in ancient Rome. They further note that shel-
lac, a derivative of the lac insect, has been in use since 1,000 BC and was
used as late as 1950 for gramophone records.

Rodriguez (1996) notes that the natives of South America made use of
the latex derived from trees in the pre-Columbian era. Sometime after the
discovery of the Americas, rubber was introduced to Europe and was used
as a waterproofing material (McCrum, et al., (1997)). Most authors trace
the beginning of polymer science to the development of the vulcanization
process by Maclntosh and Hancock in England and Goodyear in the
United States in 1839. However, Rodriguez (1996) indicates others had
developed applications for rubber as early as the late 18th century. (An ex-
cellent time line of polymer science and technology is given by Rodriguez
(1996)).

One of the first man-made polymers was Parkesine, so named after its
inventor Alexander Parkes. It was introduced in about 1862 but was not a
commercial success (Fried, (1995)). However, this early effort led to the
development of celluloid (cellulose nitrate) by John Hyatt in 1870 which
was a commercial success. The first truly synthetic polymer was a phenol-
formaldehyde resin called Bakelite developed in 1907 by Leo Baekeland
but it would be two more decades before the nature of the polymerization
process would be understood sufficiently to develop polymers based upon
a rational process.

While natural polymers had found extensive early use, knowledge of
their molecular nature was generally unknown before the middle of the 19"
century, when the first speculations about the large molecular weights of
polymers were voiced. At that time, the chemical or molecular character of
a material’s composition was defined in terms of its stoichometric formula
and its properties were defined in terms of color, crystal habit, specific
gravity, refractive index, melting point, boiling point, solubility, etc.
(Tolbolsky and Mark, (1971)). It was only around the turn of the century
that concern turned to the chemical structure of materials, which together
with advances in measurement techniques led finally to understanding and
later acceptance of polymers as consisting of large covalently bonded
molecules.

In the late 19 century, materials we now define as molecular high
polymers were thought to be composed of large molecules or colloidal ag-
gregates. These colloidal aggregates were said to form from smaller mole-
cules through the action of intermolecular forces of “mysterious origin”
which were responsible for the unusual properties such as high viscosity,
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long-range elasticity, and high strength (Flory, (1953)). Flory attributes the
term colloid to Thomas Graham in 1861 and the concept of a colloidal
state to Wolfgang Ostwald in about 1907 who suggested that virtually any
substance could be in such a state just as in a gas, liquid or solid state.

Until Kekulé in 1877, all geometrical formulas referred to the structure
and behavior of small molecules. However, Kekulé in 1877 during a lec-
ture upon becoming the Rector of the U. of Bonn “advanced the hypothesis
that the natural organic substances associated with life (proteins, starch,
cellulose, etc.) may consist of very long chains and derive their special
properties from this peculiar structure” (Tolbolsky and Mark, (1971)).

The fundamental difficulty in evaluating the molecular nature of poly-
mers in the early 20" century was the lack of quantitative characterization
methods. Perhaps the greatest limitation resided in the limited means
available to accurately measure the high molecular weight of macromo-
lecular materials. The vapor density method which was widely used for
low molecular weight materials could not be employed. In 1881 attempts
were made to use diffusion rates to distinguish between the molecular
weights of starch and the dextrins (Flory, (1953)). Flory further reports that
the development of the cryoscopic method for determining molecular
weight by Raoult in 1882 and van Hoff's solution laws in 1886 were in-
strumental in proving the validity of the macromolecular concept. In 1889
Brown and Morris used a freezing point suppression of aqueous solutions
method to determine molecular weights as high as 30,000. Rodewald and
Kattein in 1900 used osmotic pressure measurements to determine molecu-
lar weights as high as 39,700. X-ray procedures were used in 1920 by Po-
lanyi to investigate the nature of cellulose fibers but it was not until Sved-
berg developed the ultracentrifuge in 1940 that accurate and reproducible
measurement of molecular weights from 40,000 to several million was
possible. (For an excellent review of ultracentrifugation techniques, see
Williams, (1972)).

Dr. Herman Staudinger who was awarded a Nobel Prize in 1953 for his
work (see below for other Nobel Prize winners in polymer science) pro-
posed the “macromolecular hypothesis” in the 1920s explaining the com-
mon molecular makeup of macromolecular materials. He contradicted the
prevalent view of his time that polymeric substances were held together by
partial valances and instead proposed the idea of long molecular chains.
He accurately gave the proper formulas for polystyrene, polyoxymethylene
(paraformaldehyde) and for rubber (Flory, (1953)).

In 1929 W. H. Carothers was the first to clearly define what we know
today as the basic parameters of polymers science. Clearly stating his ob-
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jectives beforehand, he prepared (or synthesized) molecules of definitive
structure (mostly condensation polymers such as the polyesters) through
established reactions in organic chemistry and proceeded to investigate
how the properties of these substances depended on their constitution
(Flory, (1953)). Shortly after Carothers definitive work, polymer scientists
began to introduce the concepts of statistical thermodynamics to describe
the characteristics of long chain polymers of high molecular weight.

More than thirty individuals have been awarded the Nobel prize for
Chemistry for their contributions either directly or indirectly to the devel-
opment of polymer science and associated technology. A few of these are
listed below. The interested reader can find more information on all Nobel
Laureates at the web address <http://www.nobel.se >.

1939: Ruzicka Leopold, Switzerland, Eidgenossische Technische
Hochschule, (Federal Institute of Technology), Zurich, (in Vuk-
ovar, then Austria-Hungary): "For his work on polymethylenes
and higher terpenes"

1953: Staudinger, Hermann, Germany, University of Freiburg im Bre-
isgau and Staatliches Institut fiir makromolekulare Chemie (State
Research Institute for Macromolecular Chemistry), Freiburg in
Br.: "For his discoveries in the field of macromolecular chemis-
try."

1963: Ziegler, Karl, Germany, Max-Planck-Institut fiir Kohlenfor-
schung (Max-Planck-Institute for Carbon Research Miil-
heim/Ruhr; and Natta, Giulio, Italy, Institute of Technology, Mi-
lan: "For their discoveries in the field of the chemistry and
technology of high polymers."

1968: Onsager, Lars, U.S.A., Yale University, New Haven, CT: "For
the discovery of the reciprocal relations bearing his name, which
are fundamental for the thermodynamics of irreversible proc-
esses."

1973: Fischer, Ernst Otto, Federal Republic of Germany, Technical
University of Munich, Munich; and Wilkinson, Sir Geoffrey,
Great Britain, Imperial College, London: "For their pioneering
work, performed independently, on the chemistry of the or-
ganometallic, so called sandwich compounds."
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1974: Flory, Paul J., U.S.A., Stanford University, Stanford, CA: "For
his fundamental achievements, both theoretical and experimental,
in the physical chemistry of the macromolecules."

1985: Hauptman, Herbert A., U.S.A., The Medical Foundation of Buf-
falo, Buffalo, NY,; and Karle, Jerome, U.S.A., US Naval Re-
search Laboratory, Washington, DC: "For their outstanding
achievements in the development of direct methods for the deter-
mination of crystal structures."

1990: Corey, Elias James, U.S.A., Harvard University, Cambridge,
MA: "For his development of the theory and methodology of or-
ganic synthesis"

1991: Ernst, Richard R., Switzerland, Eidgenossische Technische
Hochschule Zurich, b. 1933: "For his contributions to the devel-
opment of the methodology of high resolution nuclear magnetic
resonance (NMR) spectroscopy”

2000: Heeger, Alan J., University of California, Alan G. MacDiarmid,
University of Pennsylvania, Hideki Shirakawa, University of
Tsukuba: For the discovery and development of Conductive Poly-
mers.

The authors realize that many other Nobel Laureates in chemistry have
made notable contributions that have impacted the development and un-
derstanding of polymer science but those listed here seem to us to be of
particular importance. In addition, Nobel Prizes in physics also have en-
compassed the field of polymer science. Most recently for example, Pierre-
Gilles de Gennes received the 1991 Nobel Prize in Physics for his discov-
ery that mathematical methods to describe simple systems can be extended
to complex forms of matter including liquid crystals and polymers.

In this brief overview of the historical aspects of polymer science and
technology, it would be very inappropriate not to acknowledge the tremen-
dous contributions made by many polymer chemists, polymer physicists,
materials scientists and engineers in the last fifty years. The list is so large
that it would be impossible to acknowledge everyone. However, all will
agree that Paul Flory (Stanford University), Herman Mark (Brooklyn Poly-
technic), John Ferry (University of Wisconsin), Turner Alfred (Dow
Chemical), Nick Tschoegl (California Institute of Technology), Arthur
Tolbolsky (Princeton University), Herbert Leaderman (National Bureau of
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Standards, now NIST), Bob Landel (Jet Propulsion Laboratory) and many
others have provided the framework and scientific details such that poly-
mers can now be used with confidence as engineering structural materials.

1.1.1. Relation between Polymer Science and Mechanics

As discussed briefly in the next section, polymers have a unique response
to mechanical loads and are properly treated as materials which in some
instances behave as elastic solids and in some instances as viscous fluids.
As such their properties (mechanical, electrical, optical, etc.) are time de-
pendent and cannot be treated mathematically by the laws of either solids
or fluids. The study of such materials began long before the macromolecu-
lar nature of polymers was understood. Indeed, as will be evident in later
chapters on viscoelasticity, James Clerk Maxwell (1831-79), a Scottish
physicist and the first professor of experimental physics at Cambridge, de-
veloped one of the very first mathematical models to explain such peculiar
behavior. Lord Kelvin (Sir William Thomson, (1824-1907)), another Scot-
tish physicist, also developed a similar mathematical model. Undoubtedly,
each had observed the creep and/or relaxation behavior of natural materials
such as pitch, tar, bread dough, etc. and was intrigued to explain such be-
havior. Of course, these observations were only a minor portion of their
overall contributions to the physics of matter.

Ludwig Boltzmann (1844-1906), an Austrian physicist, correctly con-
ceived the hereditary nature of materials which we now describe as viscoe-
lastic in a series of publications throughout his career. Such ideas were
hotly debated at the time by Boltzmann, Ostwald and others but it is now
clear that Boltzmann’s view was the correct approach. For an excellent
discussion of Boltzmann’s contributions and their significance, see Mark-
ovitz (1975, 1977).

In 1812, even before Maxwell, Kelvin and Boltzman, the Scottish scien-
tist Sir David Brewster (1781-1868) discovered that certain transparent op-
tically isotropic solids (e.g., glass) when loaded developed optical charac-
teristics of natural crystals. That is, he found that such a solid when loaded
exhibited birefringence or double refraction and thus behaved as a tempo-
rary crystal. His discovery was the beginning of the well-known photoelas-
tic method by which it is possible to experimentally determine the state of
stress or strain on the interior of a loaded elastic body using polarized
light. Maxwell (as well as F. E. Neumann at an earlier date) also studied
the technique and deduced the relationship between stress and the optic ef-
fect now known as the Maxwell-Neumann stress-optic law. The impor-
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tance of these discoveries became apparent during the industrial revolution
in the early part of the 20" century when the safe design of precision me-
chanical parts such as wheels, gears, pushrods, etc. required a stress analy-
sis that was only possible using photoelasticity. As a result, engineers be-
came very interested in finding suitable model materials (polymers) that
had desirable characteristics such as good transparency, high stress-optic
coefficient, little creep, etc. For this reason, engineers began working with
chemists in an effort to create polymers with suitable properties.

Initially, natural crystals (such as mica and quartz) were used to obtain
polarized light and model materials were either glass or resins derived
from living organisms, e.g., isinglass, a gelatin prepared from the bladder
of a sturgeon. The photoelastic procedure was so successful that it led en-
gineers to widely seek more optically sensitive and stable materials. Coker
and Filon (1931) in their famous treatise used a number of materials in-
cluding glass and celluloid. Bakelite, developed at the beginning of the 20"
century by L. H. Baekeland, became a favorite photoelastic material for
many years. During the 30’s a particular form of Bakelite (BT-61-893)
was introduced which greatly aided the development of photoelasticity in
two and three dimensions. Hetenyi (1938), used this material to develop
and explain the so-called “stress-freezing” and slicing method to determine
the interior stresses in three-dimensional bodies. CR-39 or Columbia Resin
39 (allyl diglycol carbonate developed by the Columbia Chemical Com-
pany in 1945) was also used extensively in the 40’s and 50°s.

The details of cross-linking were not understood at the time and Bake-
lite was often termed by engineers as a “heat hardening” resin. Hetenyi
(1938) used Houwink’s (1937) interpretation of the “micelle” nature of
polymers to explain the frozen stresses (photoelastic fringe patterns) inside
a body after removable of loading. That is, if a load is applied after the
temperature of a birefringent material is raised to a suitable level and then
held constant as the temperature is slowly lowered to ambient, a residual
fringe (stress) pattern will remain when the load is removed at the lower
temperature. The residual pattern was believed to remain due to the net-
work nature of the material and an analogy of a solid network or skeletal
phase and a fluid phase in between the network sites was used to explain
the frozen stress phenomena. In early photoelastic literature, such poly-
mers were often referred to as di-phase or bi-phase, (i.e., part fluid and part
solid), in nature. The specific analogy likened network polymers to a
sponge filled with a highly viscous fluid. At low temperatures, the viscous
portion would solidify and the network polymer would become a brittle
glassy solid with high modulus and high strength. At high temperatures,
the viscosity of the fluid phase would decrease sufficiently such that the
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external load was supported only by the skeletal phase and thus the sample
would become a low modulus rubbery material. While this was a useful
analogy for the time, it is now more appropriate to explain the phenomena
in terms of primary and secondary bonds between molecular chains and, in
some sense, one might liken the secondary bonds between network sites as
the fluid phase and the primary bonds of the network skeleton as the solid
phase.

The engineering use of photoelasticity was greatly aided by the devel-
opment of polaroid films by E. H. Land (1909 - 1991). This film is a
polymer in which the molecular structure has been oriented to cause light
to be plane polarized. As plane polarization can also be achieved by reflec-
tion (at angles of approximately 57°), the film can be used as a filter to
minimize glare as in sunglasses made with polaroid plastics. By careful
orientation, the degree of double refraction can be controlled to obtain
films with a retardation of a quarter of a wavelength of a particular light.
Quarter wave plates used between two oppositely polarized films causes
light to be elliptically polarized. The “ellipsometer” often used by polymer
chemist is based on such a procedure and, of course, the polarizing micro-
scope uses polaroid films to control the light vector and allows the obser-
vation of crystallites in polymers and gives and estimate of their crystalline
nature.

In recent years, epoxy resins have become the polymer of choice for
three-dimensional photoelastic investigations. Further, the phenomena of
birefringence has been used to study plasticity and viscoelasticity effects in
materials through the use of extensions to the photoelastic method called
photoplasticity and photoviscoelasticity (see Brill (1965) and Brinson
(1965, 1968), respectively). Brill used polycarbonate, a thermoplastic
polymer, as a model material for his work on photoplasticity and Brinson
used an epoxy, a thermosetting polymer, as a model material for his work
on photoviscoelasticity. Later, it will become clear why thermoplastic ma-
terials are used for photoplasticity while thermosetting materials are used
for photoviscoelasticity.

While it is beyond the scope of the discussion here, it can be shown that
the stress (strain) tensor, the dielectric tensor and the birefringence tensor
are related and, generally, the same types of governing equations apply to
each phenomenon. That is, a quadric surface similar to the stress quadric
of Cauchy applies to the birefringence tensor and to the dielectric tensor.
This knowledge led to the interest of early mechanicians to identify and
understand the nature of birefringent materials which, in fact, were natural
polymers. As polymer science began to develop, the same group was led to
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study, understand and use synthetic polymers. For more information on
these and other aspects of photoelasticity and experimental mechanics, see
Hetenyi (1950) and Kobayashi (1985).

In addition to the use of polymers to study fundamental concepts in me-
chanics, another driving force for the critical link between polymer science
and mechanics has been use of polymers in applications. As the under-
standing of the physical nature of polymers increased and synthesis tech-
niques matured, many polymers of widespread usage were developed. As
these materials were employed in devices and structures, it was essential to
analyze and understand from an engineering perspective the response of
polymers to load and other environmental variables, such as temperature
and moisture. As indicated earlier, today high performance polymer com-
posites are used for critical load bearing applications as diverse as alpine
skis and airframe parts, and thus the study of the mechanics of polymers as
a structural material is an active and important area of research. Later sec-
tions in this text will deal explicitly with the viscoelastic nature of polym-
eric response and mathematical methods to analyze this behavior.

The fundamental point of the above discussion is that persons interested
in theoretical and experimental mechanics of necessity have been aware of
and keenly interested in all developments associated with natural and syn-
thetic polymers throughout the history of both natural and synthetic poly-
mers. They have, in some cases, contributed to the general understanding
of the properties of polymers and to a high degree have been responsible
for their use as engineering materials.

As in the previous section, it would be very inappropriate not to ac-
knowledge the efforts of many who have made outstanding contributions
to the development of mathematical and experimental aspects of viscoelas-
ticity which allow the correct interpretation of the mechanical behavior of
polymers. The contributions of a few will be discussed in more detail in
subsequent chapters but again it should be noted that the number of con-
tributors is so large that it would be impossible to acknowledge everyone
However, all will agree that Marcus Reiner, (Technion), R.S. Rivlin (Le-
heigh University), C. Truesdall (Johns Hopkins University), E.H. Lee
(Stanford University), R.H. Schapery (University of Texas), Wolfgang
Knauss (California Institute of Technology), M. L. (Max) Williams (Uni-
versity of Pittsburg), Harry Hilton (University of Illinois), R.M. Christen-
sen (Lawrence Livermore Laboratories and Stanford University), J. G.
Williams (Imperial College) and many others have contributed to our abil-
ity to design safe engineering structures using polymer based materials.
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(See Reiner, M., Lectures on Theoretical Rheology, North-Holland, Am-
sterdam, 1960, for an excellent Bibliography of early contributors).

1.1.2. Perspective and Scope of this Text

Polymers possess many interesting and useful properties that are quite dif-
ferent from those of more traditional engineering materials and these prop-
erties cannot be explained or modeled in engineering design situations by
traditional approaches. As suggested by Rosen (1993), verification can be
observed with three simple experiments.

Silly Putty: This material (polydimethyl siloxane) bounces when
dropped but flows when laying stationary and, obviously, has
some characteristics of an elastic solid and some characteristics of
a viscous fluid.

Joule Effect: A rubber band will contract when heated while a
weight is suspended from it. Other materials will undergo the ex-
pected thermal expansion.

Weissenburg Effect: When a rod is rotated in a molten polymer or in
a concentrated polymer solution, the liquid will rise on rod. For other
fluids, the lowest point in fluid will be at rod.

The fundamental difference between polymers and other materials resides
in the inherent rheological or viscoelastic properties of polymers. Simply
stated, the mechanical (as well as optical, electrical, etc.) properties of
polymers such as modulus, strength and Poisson’s ratio vary with time.
While many materials have properties that vary with time due to creep at
high temperature, moisture intrusion, corrosion, and other factors, the time
dependent behavior of polymers is due to their unique molecular structure.
As will be discussed later, the long chain molecular structure of a polymer
gives rise to the phenomena of “fading” memory. It is this fading memory
which creates the need to characterize engineering properties in a manner
different than those used for traditional structural materials.

One manifestation of the time dependent character of polymers is that
they exhibit characteristics of both an elastic solid and that of a viscous
fluid as with the example of silly putty above. For this reason, materials
such as polymers that exhibit such properties are often said to be viscoelas-
tic. Sometimes the term viscoelastic is used primarily for solid polymers
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while the term rheologic is for liquid polymers. Fading memory provides
the explanation for the three examples mentioned above. To illustrate the
point, a demonstration of the Weissenberg effect is given in Fig. 1.1 which
is a schematic of a solid rod being rotated rapidly while being immersed in
a viscoelastic liquid. While in a Newtonian fluid, the liquid moves away
from the rod due to inertial effects, the liquid polymer will climb the rod
due to the combination of elastic and viscous forces in the entangled
polymer chains.

(a) Viscoelastic fluid (b) Standard viscous fluid

Fig. 1.1 Tllustration of the Weissenberg effect due to a rotating rod in a viscoelas-
tic fluid (a) compared to a rod rotating in a Newtonian fluid (b). (See
Fredrickson, (1964) for two viscoelastic fluids examples.)

To further illustrate the point of a liquid with both elastic and viscous be-
havior, the flow of a rheological liquid is shown in Fig. 1.2. Here a poly-
mer liquid is in a clear horizontal (to avoid gravity effects) tube and a dark
reference mark has been inserted that moves with the fluid. The liquid is
unpressurized in frame 1 but a constant pressure has been applied in
frames 2 through 5 where motion can be seen to have taken place as time
progresses. In frame 6 the pressure has been removed and in frames 7 and
8 the liquid can be seen to partially recover. No recovery would take place
if this were an ordinary viscous liquid. This is known as an “elastic after
effect” and a similar effect or creep recovery is observed in viscoelastic
solids and/or all polymers provided the correct temperature is chosen.
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Fig. 1.2 Illustration of recoil in a viscoelastic fluid. (The fluid is on the right in
each frame and pressure, indicated by the arrow, is applied from the
left.) (Drawn from photograph in Fredrickson, (1964). Original photo-
graph from N.N. Kapoor, MS thesis, U. of Minn.)

The Joule effect arises from thermodynamic (entropy) considerations and
will be discussed in sections related to the time and temperature dependent
behavior of polymers.

In this text, emphasis will be the on the phenomenological differences
between the mechanical behavior of polymers and other materials, rather
than their similarities. Emphasis will also be placed on proper procedures
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to experimentally determine time dependent mechanical properties as well
as analytical methods to represent these properties and to use them in the
stress analysis of engineering structures.

The classifications of materials used by Fredrickson and given in Fig.
1.3 is suggestive of the evolution of constitutive (stress-strain) relations
and the scientists responsible for their creation. Material rigidity increases
from left to right on the top row and the vertical development emphasizes
the generality of Boltzman’s contributions. The Bingham representation
was for a viscous material that displayed a yield point and was originally
developed for paint. It is important to understand the connotation of the
word “plastic” as used in Fig. 1.3 and when used to describe a polymer. In
fact, the use of the word “plastic” to describe a polymer is unfortunate.
This word is best used to denote a type of mechanical behavior associated
with unrecoverable deformation or flow, and is misleading when used in a
generic way to refer to polymers in general. Certain polymers under favor-
able conditions will not exhibit any unrecoverable deformation. Hopefully,
these distinctions will become clear upon further study of the following
chapters.

Inviscid fluid Viscous fluid Viscoelastic Elasto-viscous Elastic solid Rigid solid
(Pascalian) — (Stokesian) ——  fluid e solid —— (Hookean) — (Euclidean)
l (Maxwellian) (Kelvian) l
Boltzman Boltzman Boltzman Boltzman

flud —> viscoelastic —elasto-viscous —> solid

Plastics

(Boltzman)

t

Plastics
(Bingham)

Fig. 1.3 Rheological classification of materials. (After Fredrickson, (1964))

It is recognized that the terms “materials science” and “materials engineer-
ing” as applied to the study of materials are generally understood to imply
different facets of the same subject. In the same manner, the terms “poly-
mer science” and “polymer engineering” may be interpreted to mean dif-
ferent approaches to the study of polymers. Herein, care has been taken to
use the term “polymer engineering science” to imply the study of the na-
ture of polymers which gives rise to their unique engineering properties.
Our focus will be on the relation between the molecular structure of poly-
mers, their mechanical properties and the mathematical framework re-
quired for the proper stress analysis of polymeric structures. This will, of
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necessity, entail a general knowledge of polymerization processes, the re-
sulting molecular structure and the relation of each to the final engineering
properties. However, no effort will be made to learn how to “engineer” a
polymer or, in other words, to learn sufficient chemistry to synthesize a
polymer to have specific engineering properties.

Because polymers are, in general, viscoelastic and/or have mechanical
properties that are a function of time, the phenomenological and molecular
interpretations of viscoelasticity will be covered in detail. While there are
approximate methods to design load bearing polymer structures using ele-
mentary mechanics of materials principles (some of these will be pre-
sented), more precise and more correct procedures will also be discussed at
length.

1.2. Review Questions

1.1. Name four naturally occurring polymers.
1.2. Name the earliest polymer mentioned and where it came from.

1.3. Explain the distinction between a mixture, a solution, a suspension
and a colloid.

1.4. What was Staudinger’s hypothesis?

1.5. Who was the first person to clearly understand the nature of poly-
mers?

1.6. Name the five separate technologies from which Polymer Science is
said to have evolved.

1.7. Name four Noble Laureates.

1.8. Name two Scots who did early work on mathematical models for vis-
coelastic behavior.

1.9. Who correctly conceived the hereditary nature of polymers?

1.10.Who is credited with discovering the phenomena of double refrac-
tion?

1.11.Name three materials that have been used in photoelastic analysis.

1.12.Who developed polaroid films?

1.13.Describe the Joule effect.

1.14.Describe the Weissenberg effect.

1.15.Explain differences in the terms “polymer” and “plastic”.

1.16.What is a continuum.

1.17. Define viscoelasticity



2. Stress and Strain Analysis and Measurement

The engineering design of structures using polymers requires a thorough
knowledge of the basic principles of stress and strain analysis and meas-
urement. Readers of this book should have a fundamental knowledge of
stress and strain from a course in elementary solid mechanics and from an
introductory course in materials. Therefore, we do not rigorously derive
from first principles all the necessary concepts. However, in this chapter
we provide a review of the fundamentals and lay out consistent notation
used in the remainder of the text. It should be emphasized that the interpre-
tations of stress and strain distributions in polymers and the properties de-
rived from the standpoint of the traditional analysis given in this chapter
are approximate and not applicable to viscoelastic polymers under all cir-
cumstances. By comparing the procedures discussed in later chapters with
those of this chapter, it is therefore possible to contrast and evaluate the
differences.

2.1. Some Important and Useful Definitions

In elementary mechanics of materials (Strength of Materials or the first
undergraduate course in solid mechanics) as well as in an introductory
graduate elasticity course five fundamental assumptions are normally
made about the characteristics of the materials for which the analysis is
valid. These assumptions require the material to be,

¢ Linear

* Homogeneous
* Isotropic

* Elastic

* Continuum

Provided that a material has these characteristics, be it a metal or polymer,
the elementary stress analysis of bars, beams, frames, pressure vessels,
columns, etc. using these assumptions is quite accurate and useful. How-
ever, when these assumptions are violated serious errors can occur if the
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same analysis approaches are used. It is therefore incumbent upon engi-
neers to thoroughly understand these fundamental definitions as well as
how to determine if they are appropriate for a given situation. As a result,
the reader is encouraged to gain a thorough understanding of the following
terms:

Linearity: Two types of linearity are normally assumed: Material line-
arity (Hookean stress-strain behavior) or linear relation between stress
and strain; Geometric linearity or small strains and deformation.

Elastic: Deformations due to external loads are completely and instan-
taneously reversible upon load removal.

Continuum: Matter is continuously distributed for all size scales, i.e.
there are no holes or voids.

Homogeneous: Material properties are the same at every point or mate-
rial properties are invariant upon translation.

Inhomogeneous or Heterogeneous: Material properties are not the
same at every point or material properties vary upon translation.

Amorphous: Chaotic or having structure without order. An example
would be glass or most metals on a macroscopic scale.

Crystalline: Having order or a regular structural arrangement. An ex-
ample would be naturally occurring crystals such as salt or many metals
on the microscopic scale within grain boundaries.

Isotropic: Materials which have the same mechanical properties in all
directions at an arbitrary point or materials whose properties are invari-
ant upon rotation of axes at a point. Amorphous materials are isotropic.

Anisotropic: Materials which have mechanical properties which are
not the same in different directions at a point or materials whose prop-
erties vary with rotation at a point. Crystalline materials are anisotropic.

Plastic: The word comes from the Latin word plasticus, and from the
Greek words plastikos which in turn is derived from plastos (meaning
molded) and from plassein (meaning to mold). Unfortunately, this term
is often used as a generic name for a polymer (see definition below)
probably because many of the early polymers (cellulose, polyesters,
etc.) appear to yield and/or flow in a similar manner to metals and
could be easily molded. However, not all polymers are moldable, ex-
hibit plastic flow or a definitive yield point.
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Viscoelasticity or Rheology: The study of materials whose mechanical
properties have characteristics of both solid and fluid materials. Viscoe-
lasticity is a term often used by those whose primary interest is solid
mechanics while rheology is a term often used by those whose primary
interest is fluid mechanics. The term also implies that mechanical prop-
erties are a function of time due to the intrinsic nature of a material and
that the material possesses a memory (fading) of past events. The latter
separates such materials from those with time dependent properties due
primarily to changing environments or corrosion. All polymers (fluid or
solid) have time or temperature domains in which they are viscoelastic.

Polymer: The word Polymer originates from the Greek word "polym-
eros" which means many-membered, (Clegg and Collyer 1993). Often
the word polymer is thought of as being composed of the two words;
"poly" meaning many and "mer" meaning unit. Thus, the word polymer
means many units and is very descriptive of a polymer molecule.

Several of these terms will be reexamined in this chapter but the intent of
the remainder of this book is to principally consider aspects of the last
three.

2.2. Elementary Definitions of Stress, Strain and Material
Properties

This section will describe the most elementary definitions of stress and
strain typically found in undergraduate strength of materials texts. These
definitions will serve to describe some basic test methods used to deter-
mine elastic material properties. A later section will revisit stress and
strain, defining them in a more rigorous manner.

Often, stress and strain are defined on the basis of a simple uniaxial ten-
sion test. Typically, a “dogbone” specimen such as that shown in Fig.
2.1(a) is used and material properties such as Young’s modulus, Poisson’s
ratio, failure (yield) stress and strain are found therefrom. The specimen
may be cut from a thin flat plate of constant thickness or may be machined
from a cylindrical bar. The “dogbone” shape is to avoid stress concentra-
tions from loading machine connections and to insure a homogeneous state
of stress and strain within the measurement region. The term homogeneous
here indicates a uniform state of stress or strain over the measurement re-
gion, i.e. the throat or reduced central portion of the specimen. Fig. 2.1(b)
shows the uniform or constant stress that is present and that is calculated as
given below.
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Fig. 2.1 “Dogbone” tensile specimen.

The engineering (average) stress can be calculated by dividing the applied
tensile force, P, (normal to the cross section) by the area of the original
cross sectional area A, as follows,

P

O, =— @2.1)
A()

The engineering (average) strain in the direction of the tensile load can be
found by dividing the change in length, AL, of the inscribed rectangle by
the original length L,

av fd_L_&_L L (2.2)
L, LO LO LO
or
R Y 2.3)

0

The term A in the above equation is called the extension ratio and is some-
times used for large deformations such as those which may occur with low
modulus rubbery polymers.

True stress and strain are calculated using the instantaneous (deformed
at a particular load) values of the cross-sectional area, A, and the length of
the rectangle, L,

(2.4)

> |

and

g, = f——ln——ln(l+e) 2.5)
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Hooke’s law is valid provided the stress varies linearly with strain and
Young’s modulus, E, may be determined from the slope of the stress-strain
curve or by dividing stress by strain,

E=Ju (2.6)
8aV
or
E- /A0 @.7)
AL/L,

and the axial deformation over length L is,
0=AL= PL 2.8)

A.E

Poisson’s ratio, v, is defined as the absolute value of the ratio of strain
transverse, &y, to the load direction to the strain in the load direction, &,

o

v= s_y 2.9)

The transverse strain €, of course can be found from,

%=d—%
d()

(2.10)

and is negative for an applied tensile load.

Shear properties can be found from a right circular cylinder loaded in tor-
sion as shown in Fig. 2.2, where the shear stress, T, angle of twist, 8, and
shear strain, y, are given by,

(I gL

(2.11)

Fig. 2.2 Typical torsion test specimen to obtain shear properties.
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Herein, L is the length of the cylinder, T is the applied torque, r is the ra-
dial distance, J is the polar second moment of area and G is the shear
modulus. These equations are developed assuming a linear relation be-
tween shear stress and strain as well as homogeneity and isotropy. With
these assumptions, the shear stress and strain vary linearly with the radius
and a pure shear stress state exists on any circumferential plane as shown
on the surface at point A in Fig. 2.2. The shear modulus, G, is the slope of
the shear stress-strain curve and may be found from,

G=1 2.12)
Y

where the shear strain is easily found by measuring only the angular rota-

tion, 0, in a given length, L. The shear modulus is related to Young’s
modulus and can also be calculated from,

E

= 2.1
2(1+v) 213)

As Poisson’s ratio, v, varies between 0.3 and 0.5 for most materials, the
shear modulus is often approximated by, G ~ E/3.

While tensile and torsion bars are the usual methods to determine engi-
neering properties, other methods can be used to determine material prop-
erties such as prismatic beams under bending or flexure loads similar to
those shown in Fig. 2.3.

The elementary strength of materials equations for bending (flexural)
stress, Oy, shear stress, T,,, due to bending and vertical deflection, v, for a
beam loaded in bending are,

=Mzzy T =E dz_V=Mzz
7L, ™ T Lb’dx? EL,

77

o

2.149)

where y is the distance from the neutral plane to the point at which stress is
calculated, M,, is the applied moment, I, is the second moment of the
cross-sectional area about the neutral plane, b is the width of the beam at
the point of calculation of the shear stress, Q is the first moment of the
area about the neutral plane (see a strength of materials text for a more ex-
plicit definition of each of these terms), and other terms are as defined pre-
viously.

For a beam with a rectangular cross-section, the bending stress, o,, var-
ies linearly and shear stress, Ty, varies parabolically over the cross-section
as shown in Fig. 2.4.
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Fig. 2.4 Normal and shear stress variation in a rectangular beam in flexure.

Using Eq. 2.14, given the applied moment, M, geometry of the beam, and
deflection at a point, it is possible to calculate the modulus, E. Strictly
speaking, the equations for bending stress and beam deflections are only
valid for pure bending as depicted in Fig. 2.3(a-b) but give good approxi-
mations for other types of loading such as that shown in Fig. 2.3(c) as long



22 Polymer Engineering Science and Viscoelasticity: An Introduction

as the beam is not very short. Very short beams require a shear correction
factor for beam deflection.

As an example, a beam in three-point bending as shown in Fig. 2.5 is
often used to determine a “flex (or flexural) modulus” which is reported in
industry specification sheets describing a particular polymer.

L2 L2
L :I
Neutral axis P
before deformation
\

-
|
|
|
|
|

Neutral axis
after deformation

P/2 P/2

Fig. 2.5 Three-point bend specimen.

The maximum deflection can be shown to be,
_ P
" 48EI
from which the flexural (flex) modulus is found to be,
3
g Pl 1
481 0,,,,

(2.15)

(2.16)

Fundamentally, any structure under load can be used to determine proper-
ties provided the stress can be calculated and the strain can be measured at
the same location. However, it is important to note that no method is avail-
able to measure stress directly. Stresses can only be calculated through the
determination of forces using Newton’s laws. On the other hand, strain can
be determined directly from measured deformations. That is, displacement
or motion is the physically measured quantity and force (and hence stress)
is a defined, derived or calculated quantity. Some might argue that photoe-
lastic techniques may qualify for the direct measurement of stress but it
can also be argued that this effect is due to interaction of light on changes
in the atomic and molecular structure associated with a birefringent mate-
rial, usually a polymer, caused by load induced displacements or strain.
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It is clear that all the specimens used to determine properties such as the
tensile bar, torsion bar and a beam in pure bending are special solid me-
chanics boundary value problems (BVP) for which it is possible to deter-
mine a “closed form” solution of the stress distribution using only the
loading, the geometry, equilibrium equations and an assumption of a linear
relation between stress and strain. It is to be noted that the same solutions
of these BVP’s from a first course in solid mechanics can be obtained us-
ing a more rigorous approach based on the Theory of Elasticity.

While the basic definitions of stress and strain are unchanged regardless
of material, it should be noted that the elementary relations used above are
not applicable to polymers in the region of viscoelastic behavior. For ex-
ample, the rate of loading in a simple tension test will change the value
measured for E in a viscoelastic material since modulus is inherently a
function of time.

2.3. Typical Stress-Strain Properties

Properties of materials can be determined using the above elementary ap-
proaches. Often, for example, static tensile or compression tests are per-
formed with a modern computer driven servo-hydraulic testing system
such as the one shown in Fig. 2.6. The applied load is measured by a load
cell (shown in (a) just above the grips) and deformation is found by either
an extensometer (shown in (b) attached to the specimen) or an electrical
resistance strain gage shown in (c). The latter is glued to the specimen and
the change in resistance is measured as the specimen and the gage elon-
gate. (Many additional methods are available to measure strain, including
laser extensometers, moiré techniques, etc.) The cross-sectional area of the
specimen and the gage length are input into the computer and the stress
strain diagram is printed as the test is being run or can be stored for later
use. The reason for a homogeneous state of stress and strain is now obvi-
ous. If a homogeneous state of stress and strain do not exist, it is only pos-
sible to determine the average strain value over the gage length region with
this procedure and not the true properties of the material at a point.

Typical stress-strain diagrams for brittle and ductile materials are shown
in Fig. 2.7. For brittle materials such as cast iron, glass, some epoxy resins,
etc., the stress strain diagram is linear from initial loading (point 0) nearly
to rupture (point B) when average strains are measured. As will be dis-
cussed subsequently, stress and strain are “point” quantities if the correct
mathematical definition of each is used. As a result, if the strain were actu-
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ally measured at a single point, i.e., the point of final failure, the stress and
strain at failure even for a brittle material might be slightly higher than the
average values shown in Fig. 2.7.

Fig. 2.6 (a) Servo-hydraulic testing system:
(b) extensometer
(c) electrical resistance strain gage.

For ductile materials such as many aluminum alloys, copper, etc., the
stress-strain diagram may be nonlinear from initial loading until final rup-
ture. However, for small stresses and strains, a portion may be well ap-
proximated by a straight line and an approximate proportional limit (point
A) can be determined. For many metals and other materials, if the stress
exceeds the proportional limit a residual or permanent deformation may
remain when the specimen is unloaded and the material is said to have
“yielded”. The exact yield point may not be the same as the proportional
limit and if this is the case the location is difficult to determine. As a result,
an arbitrary “0.2% offset” procedure is often used to determine the yield
point in metals. That is, a line parallel to the initial tangent to the stress-
strain diagram is drawn to pass through a strain of 0.002 in./in. The yield
point is then defined as the point of intersection of this line and the stress-
strain diagram (point C in Fig. 2.7). This procedure can be used for poly-
mers but the offset must be much larger than 0.2% definition used for met-
als. Procedures to find the yield point in polymers will be discussed in
Chapter 3 and 11.
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Fig. 2.7 Stress-strain diagrams for brittle and ductile materials

An approximate sketch of the stress-strain diagram for mild steel is shown
in Fig. 2.8(a). The numbers given for proportional limit, upper and lower
yield points and maximum stress are taken from the literature, but are only
approximations. Notice that the stress is nearly linear with strain until it
reaches the upper yield point stress which is also known as the elastic-
plastic tensile instability point. At this point the load (or stress) decreases
as the deformation continues to increase. That is, less load is necessary to
sustain continued deformation. The region between the lower yield point
and the maximum stress is a region of strain hardening, a concept that is
discussed in the next section. Note that if true stress and strain are used,
the maximum or ultimate stress is at the rupture point.

The elastic-plastic tensile instability point in mild steel has received
much attention and many explanations. Some polymers, such as polycar-
bonate, exhibit a similar phenomenon. Both steel and polycarbonate not
only show an upper and lower yield point but visible striations of yielding,
plastic flow or slip lines (Luder’s bands) at an approximate angle of 54.7°
to the load axis also occur in each for stresses equivalent to the upper yield
point stress. (For a description and an example of Luder’s band formation
in polycarbonate, see Fig. 3.7(c)). It has been argued that this instability
point (and the appearance of an upper and lower yield point) in metals is a
result of the testing procedure and is related to the evolution of internal
damage. That this is the case for polycarbonate will be shown in Chapter 3.
For a discussion of these factors for metals, see Drucker (1962) and
Kachanov (1986).

If the strain scale of Fig. 2.8(a) is expanded as illustrated in Fig. 2.8(b),
the stress-strain diagram of mild steel is approximated by two straight
lines; one for the linear elastic portion and one which is horizontal at a
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stress level of the lower yield point. This characteristic of mild steel to
“flow”, “neck” or “draw” without rupture when the yield point has been
exceeded has led to the concepts of plastic, limit or ultimate design. That
is, just because the yield point has been exceeded does not mean that the
material cannot support load. In fact, it can be shown that economy of de-
sign and weight savings can be obtained using limit design concepts. Con-
cepts of plasticity and yielding date back to St. Venant in about 1870 but
the concepts of plastic or limit design have evolved primarily in the last 50
years or so (see Westergaard (1964) for a discussion of the history of solid
mechanics including comments on the evolution of plasticity). Computa-
tional plasticity has its origins associated with calculations of deformations
beyond the yield point for stress-strain diagrams similar to that of mild
steel and will be briefly discussed in Chapter 11 in the context of poly-
mers.

—_
53“ ——=-True o-¢ curve . b“
S| [ —— Conventional o-¢ curve T
© . L _e-mTTTTTT Rupture
415 Upper yl/eldp ot i Upper yield point, Gy,
- S R
777777 Lower yield point, oy,
; { NLower yield point Proportional limit, o,
Approximately 0.0012
P

0002 ) 002 e
(a) Stress-strain diagram for mild steel (b) Expanded scale up to 2%strain

Fig. 2.8 Typical tensile stress-strain diagrams (not to scale).

As will be discussed in Chapter 3, the same procedures discussed in the
present chapter are used to determine the stress-strain characteristics of
polymers. If only a single rate of loading is used, similar results will be ob-
tained. On the other hand, if polymers are loaded at various strain rates, the
behavior varies significantly from that of metals. Generally, metals do not
show rate effects at ambient temperatures. They do, however, show con-
siderable rate effects at elevated temperatures but the molecular mecha-
nisms responsible for such effects are very different in polymers and met-
als.

It is appropriate to note that industry specification sheets often give the
elastic modulus, yield strength, strain to yield, ultimate stress and strain to
failure as determined by these elementary techniques. One objective of this
text is to emphasize the need for approaches to obtain more appropriate
specifications for the engineering design of polymers.
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2.4. Idealized Stress-Strain Diagrams

The stress-strain diagrams discussed in the last section are often approxi-
mated by idealized diagrams. For example, a linear elastic perfectly brittle
material is assumed to have a stress-strain diagram similar to that given in
Fig. 2.9(a). On the other hand, the stress-strain curve for mild steel can be
approximated as a perfectly elastic-plastic material with the stress-strain
diagram given in Fig. 2.9(b). Metals (and polymers) often have nonlinear
stress-strain behavior as shown in Fig. 2.10(a). These are sometimes mod-
eled with a bilinear diagram as shown in Fig. 2.10(b) and are referred to as
a perfectly linear elastic strain hardening material.

A A
oy Oy
] ]
E E
=1 .
—
0 € 0 €
(a) o, is the rupture stress (b) Oy is the yield point stress
Fig. 2.9 Idealized uniaxial stress-strain diagrams:
(a) Linear elastic perfectly brittle.
(b) Linear elastic perfectly plastic.
SA
Oy /
B
Ay
-
0 €
(a) Nonlinear behavior (b) Bilinear approximation

Fig. 2.10 Nonlinear stress-strain diagram with linear elastic strain hardening ap-
proximation (o, is the yield point stress).
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2.5. Mathematical Definitions of Stress, Strain and
Material Characteristics

The previous sections give a brief review of some elementary concepts of
solid mechanics which are often used to determine basic properties of most
engineering materials. However, these approaches are sometimes not ade-
quate and more advanced concepts from the theory of elasticity or the the-
ory of plasticity are needed. Herein, a brief discussion is given of some of
the more exact modeling approaches for linear elastic materials. Even
these methods need to be modified for viscoelastic materials but this sec-
tion will only give some of the basic elasticity concepts.

Definition of a Continuum: A basic assumption of elementary solid me-
chanics is that a material can be approximated as a continuum. That is, the
material (of mass AM) is continuously distributed over an arbitrarily small
volume, AV, such that,

m——-= % =const.=p =(density at a point) 2.17)

Quite obviously such an assumption is at odds with our knowledge of the
atomic and molecular nature of materials but is an acceptable approxima-
tion for most engineering applications. The principles of linear elasticity,
though based upon the premise of a continuum, have been shown to be
useful in estimating the stress and strain fields associated with dislocations
and other non-continuum microstructural details.

Physical and Mathematical Definition of Normal Stress and Shear
Stress: Consider a body in equilibrium under the action of external forces
F; as shown in Fig. 2.11(a). If a cutting plane is passed through the body as
shown in Fig. 2.11(b), equilibrium is maintained on the remaining portion
by internal forces distributed over the surface S.
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Z z
Fig. 2.11 Physical definition of normal force and shear force.

At any arbitrary point p, the incremental resultant force, AF,, on the cut
surface can be broken up into a normal force in the direction of the normal,
n, to surface S and a tangential force parallel to surface S. The normal
stress and the shear stress at point p is mathematically defined as,

Y AF

—0 ¢t = lim —% (2.18)

o = lim i
I AA >0 AA S AA -0 AA

where AF, and AFare the normal and shearing forces on the area AA sur-
rounding point p.

Alternatively, the resultant force, AF,, at point p can be divided by the
area, AA, and the limit taken to obtain the stress resultant ¢, as shown in
Fig. 2.12. Normal and tangential components of this stress resultant will
then be the normal stress G, and shear stress T, at point p on the infinitesi-
mal area AA.
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Fig. 2.12 Stress resultant definition.
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Fig. 2.13 Cartesian components of internal stresses.

If a pair of cutting planes a differential distance apart are passed through
the body parallel to each of the three coordinate planes, a cube will be
identified. Each plane will have normal and tangential components of the
stress resultants. The tangential or shear stress resultant on each plane can
further be represented by two components in the coordinate directions. The
internal stress state is then represented by three stress components on each
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coordinate plane as shown in Fig. 2.13. (Note that equal and opposite
components will exist on the unexposed faces.) Therefore at any point in a
body there will be nine stress components. These are often identified in
matrix form such that,

XX Xy XZ
0;i = Tyx Oy Ty, (2.19)
tzx zy O'zz

Using equilibrium, it is easy to show that the stress matrix is symmetric or,

T,=T T, =T, T, =T (2.20)

Xy yX XZ zX yz zy

leaving only six independent stresses existing at a material point.

Physical and Mathematical Definition of Normal Strain and Shear
Strain: If a differential element is acted upon by stresses as shown in Fig.
2.14(a) both normal and shearing deformations will result. The resulting
deformation in the x-y plane is shown in Fig. 2.14(b), where u is the dis-
placement component in the x direction and v is the displacement compo-
nent in the y direction.

A
y l Tc’yy
—>TyX
Tyy
«— | |Ay —»0xx
90
] AX -
0 ——F X

l

Fig. 2.14 Definitions of displacements u and v and corresponding shear and nor-
mal strains.
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The unit change in the Ax dimension will be the strain €, and is given by,

(u+Aqu)—u
. Ax
g = lim {~—"— 7

XX (2.21)
Ax—0 AX

with similar definitions for the unit change in the y and z directions. (The
assumption of small strain and linear behavior is implicit here with the as-
sumption that 0 is small and thus its impact on Au is ignored.) Therefore
the normal strains in the three coordinate directions are defined as,

e = lim £=6_u € lim Av _ov
CaxmoM T g Soly Ty
e, = lim A% _9V .
i AZ->OAZ aZ

where u, v and w are the displacement-components in the three coordinate
directions at a point. Shear strains are defined as the distortion of the origi-
nal 90° angle at the origin or the sum of the angles 8, + 0,. That is, again
using the small deformation assumption,

( +—§V Ax) (u+iu)—u
. X
tan(0, +0,) =(0,+0,)= | tim L Az (2.23)

which leads to the three shear strains,

dv du ow  du ow | dv
=—+— -— 2.24
YX)’ (ax ay) YXZ (ax + az) ’ Y)’Z (ay +-— a ) ( )
Stresses and strains are often described using tensorial mathematics but in

order for strains to transform as tensors, the definition of shear strain must
be modified to include a factor of one half as follows,

1{dv  du 1({0w  du 1{ow  dv
LW V) (525
Cay = 2(6){ ay) Era = 2(6x+az)’ Cyz 2(6y+az) (2.25)

The difference between the latter two sets of equations can lead to very er-
roneous values of stress when attempting to use an electrical strain gage
rosette to determine the state of stress experimentally. In Eqgs. 2.25 the tra-
ditional symbol € with mixed indices has been used to identity tensorial
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shear strain. The symbol y with mixed indices will be used to describe
non-tensorial shear strain, also called engineering strain.

In general, as with stresses, nine components of strain exist at a point
and these can be represented in matrix form as,

XX Xy Xz
€ =|&yx &y &y (2.26)
€ax € zy €

Again, it is possible to show that the strain matrix is symmetric or that,

€., =¢ €,=¢€,_, €, =¢€ (2.27)

Xy yXx ° XZ zX
Hence there are only six independent strains.

Generalized Hooke’s Law: As noted previously, Hooke’s law for one
dimension or for the condition of uniaxial stress and strain for elastic mate-
rials is given by o = E €. Using the principle of superposition, the gener-
alized Hooke’s law for a three dimensional state of stress and strain in a
homogeneous and isotropic material can be shown to be,

1 X
8xx = E[Gxx —V(ny +Gzz)]’ ny = TGY
€y = %[ny _V(Gxx +Gzz)]’ sz = ’gz (2.28)
€ =_[Gzz_v<0xx +0yy>]’ sz _%

where E, G and v are Young’s modulus, the shear modulus and Poisson’s
ratio respectively. Only two are independent and as indicated earlier,

E

= 2.29
2(1+v) ( )

The proof for Eq. 2.29 may be found in many elementary books on solid
mechanics.

Other forms of the generalized Hooke’s law can be found in many texts.
The relation between various material constants for linear elastic materials
are shown below in Table 2.1 where E, G and v are previously defined
and where K is the bulk modulus and A is known as Lame’s constant.
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Table 2.1 Relation between various elastic constants. A and G are often termed
Lame’ constants and K is the bulk modulus.

t A= (E+7\)2+87\2

Lamé’s Shear Young’s Poisson’s Bulk
Modulus, A Modulus, G Modulus, E Ratio, v Modulus, K
G G(3h+2G) A 3h+2G
r+G 2(A+G) 3
ME AT +(E-30) AT—E+0N | AT+OA+E)
4 4N 6
AV 7»(1—2\/) 7\.(1+V)(1—2V) 7\,(1+V)
2v v 3v
ALK IK-2) 9K (K - 1) A
2 3K - A K-A
GE (2G-E)G E-2G GE
E-3G 2G 33G-E)
G,v 2Gv 2G( 1+ v) 2G(1 + v)
1-2v 3(1-2v)
GK 3K -2G 9KG 3K -2G
3 K +G 2(3K +G)
E,v vE E E
(1+v)(l—2v) 2(1+v) 3(1—2v)
EK 3K(3K -E) 3EK K-E
(9K -E) 9K -E 6K
v.K 3Kv 3K(1-2v) 3K(1-2v)
I+v 2(1 + v)

Hooke’s law is a mathematical statement of the linear relation between
stress and strain and usually implies both small strains (¢? << &) and small
deformations. It is also to be noted that in general elasticity solutions in
two and three dimensions, the displacement, stress and strain variables are
functions of spatial position, x;. This will be handled more explicitly in
Chapter 9.

Again, it is important to note that stress and strain are point quantities,
yet methods for strain measurement are not capable of measuring strain at
an infinitesimal point. Thus, average values are measured and moduli are
obtained using stresses calculated at a point. For this reason, strains are
best measured where no gradients exist or are so small that an average is a
good approximation. One approach when large gradients exist is to try to
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measure the gradient and extrapolate to a point. The development of meth-
ods to measure strains within very small regions has become a topic of
great importance due to the development of micro-devices and machines.
Further, such concerns as interface or interphase properties in multi-phase
materials also creates the need for new micro strain measurement tech-
niques.

Indicial notation and compact form of generalized Hooke’s Law: Be-
cause of the cumbersome form of the generalized Hooke’s Law for mate-
rial constitutive response in three dimensions (Eq. 2.28), a shorthand nota-
tion referred to as indicial or index notation is extensively used. Here we
provide a brief summary of indicial notation and further details may be
found in many books on continuum mechanics (e.g., Fliigge, 1972). In in-
dicial notation, the subscripts on tensors are used with very precise rules
and conventions and provide a compact way to relate and manipulate ten-
sorial expressions.

The conventions are as follows:

* Subscripts indicating coordinate direction (X, y, z) can be generally re-
presented by a roman letter variable that is understood to take on the va-
lues of 1, 2, or 3. For example, the stress tensor can be written as oj;
which then gives reference to the entire 3x3 matrix. That is the stress
and strain matrices given by Eqs. 2.19 and 2.26 become,

O O Oj3 €1 &2 &3
O;j=| 021 Onpn Op | &;=|8y €5 &3 (2.30)
O3 O3 O3z €31 €3 €33

¢ Summation convention: if the same index appears twice in any term,
summation is implied over that index (unless suspended by the phrase
“no sum”). For example,

0,,=0,,+0, +05; (2.31)

* Free index: non-repeated subscripts are called free subscripts since they
are free to take on any value in 3D space. The count of the free indices
on a variable indicates the order of the tensor. e.g. F; is a vector (first
order tensor), 0;; is a second order tensor.

* Dummy index: repeated subscripts are called dummy subscripts, since
they can be changed freely to another letter with no effect on the equati-
on.

* Rule 1: The same subscript cannot appear more than twice in any term.
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* Rule 2: Free indices in each term (both sides of the equation) must agree
(all terms in an equation must be of the same order).

Example of valid expression: v; =a;u;—Aeydy

* Rule 3: Both free and repeated indices may be replaced with others sub-
ject to the rules.

Example of valid expression: au;+d; =a;u, +d;

¢ Unlike in vector algebra, the order of the variables in a term is unimpor-
tant, as the bookkeeping is done by the subscripts. For example consider
the inner product of a second order tensor and a vector:

A =uA; (2.32)

¢ Differentiation with respect to spatial coordinates is represented by a
comma, for example

dv.
—l_v.. 2.33
dx i + ( )

* The identity matrix is also referred to as the Kronecker Delta function
and is represented by

Lifiz ]
oy=1 " 2.34)
0,ifi=j
The properties of d;; are thus
0,=3
Bijvj =V,
Bijéjk = 6ik

3,0 =0y

(2.35)

Although the conventions listed above may seem tedious at first, with a lit-
tle practice index notation provides many advantages including easier ma-
nipulations of matrix expressions. Additionally, it is a very compact nota-
tion and the rules listed above can often be used during manipulation to
reduce errors in derivations.

The generalized Hooke’s Law from Eq. 2.28 may be rewritten to relate
tensorial stress and strain in index notation as follows:

6, = “TVGU -2, (2:36)

ij

or



2 Stress and Strain Analysis and Measurement 37

0;;=2Ge; + hey, d;; (2.37)
Additionally, the strain-displacement relations, Eqs. 2.22 and 2.25, can be
written as

1

1
€. =5(ui,j +ujyi) (2.38)

where u; are the three displacement components, represented as u, v, and w
earlier (e.g., u,=v).

These expressions will be used extensively later in Chapter 9 when deal-
ing with viscoelasticity problems in two and three dimensions.

Consequences of Homogeneity and Isotropy Assumptions: It is interest-
ing to examine the consequences if a material is linearly elastic but not
homogeneous or isotropic. For such a material, the generalized Hooke’s
law is often expressed using index notation as,

Oy = EjjgEiqg (2.39)

For a material that is nonhomogeneous, the material properties are a func-
tion of spatial position and E;;, becomes E;,(X,y,2z). The nonhomogeneity
for a particular material determines exactly how the moduli vary across the
material. The geometry of the material on an atomic or even microscale
determines symmetry relationships that govern the degree of anisotropy of
the material. Without regard to symmetry constraints, Eq. 2.39 could have
81 independent proportionality properties relating stress components to

strain components.

The complete set of nine equations (one for each stress) each with nine
coefficients (one for each strain term) can be found from Eq. 2.39. This is
accomplished using the summation convention over repeated indices. That
is, Eq. 2.39 is understood to be a double summation as follows,

3

o= iz Eiiq (2.40)

k=1q=1
(The expansion is left as an exercise for the reader. See problem 2.4.)

If a material is nonlinear elastic as well as heterogeneous and anisot-
ropic, Eq. 2.39 becomes,

0y = By (X.y,2)e g + By (x,y,2)e 5 +- - (2.41)
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Again each term on the right hand side of Eq. 2.40 represents a double
summation and each coefficient of strain is an independent set of material
parameters. Thus, many more than 81 parameters may be required to rep-
resent a nonlinear heterogeneous and anisotropic material. Further, for vis-
coelastic materials, these material parameters are time dependent. The in-
troduction of the assumption of linearity reduces the number of parameters
to 81 while homogeneity removes their spatial variation (i.e., the Ey, pa-
rameters are now constants). Symmetry of the stress and strain tensors
(matrices) reduces the number of constants to 36. The existence of a strain
energy potential reduces the number of constants to 21. Material symmetry
reduces the number of constants further. For example, an orthotropic mate-
rial, one with three planes of material symmetry, has only 9 constants and
an isotropic material, one with a center of symmetry, has only two inde-
pendent constants (and Eq. 2.39 reduces to Eq. 2.28). Now it is easy to see
why the assumptions of linearity, homogeneity and isotropy are used for
most engineering analyses.

A plane of material symmetry exists within a material when the material
properties (elastic moduli) at mirror imaged points across the plane are
identical. For example, in the sketch given in Fig. 2.15, the yz plane is a
plane of symmetry and the elastic moduli would be the same at the mate-
rial points A and B. A

z

oo}

————————--e
N

Fig. 2.15 Definition of a plane of material symmetry.
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Experimentation is needed to determine if a material is homogeneous or
isotropic. One approach is to cut small tensile coupons from a three-
dimensional body and perform a uniaxial tensile or compressive test as
well as a torsion test for shear. Obviously, to obtain a statistical sample of
specimens at a single point would require exact replicas of the same mate-
rial or a large number of near replicas. Assuming that such could be ac-
complished for a body with points A and B as in Fig. 2.15, the following
relationships would hold for homogeneity,

E

XXXX

=E

A XXXX

E

B yyyy|A=E E

yyyy |B 7777

=E

A 7272717

(2.42)

B

That is, the modulus components are invariant (constant) for all directions
at a point. (See Problem 2.5.)

The above measurement approach illustrates the influence of heteroge-
neity and anisotropy on moduli but is not very practical. A sonic method of
measuring properties, though not as precise as tensile or torsion tests, is of-
ten used and is based upon the fact that the speed of sound, v, in a medium
is related to its modulus of elasticity, E, and density, p, such that (Kolsky,
1963),

V.=_|— (2.43)

The above is adequate for a thin long bar of material but for three-
dimensional bodies the velocity is related to both dilatational (volume
change - see subsequent section for definition) and shear effects as well as
geometry effects, etc.

It is to be noted that the condition of heterogeneity and anisotropy are
confronted when considering many materials used in engineering design.
For example, while many metals are isotropic on a macroscopic scale, they
are crystalline on a microscopic scale. Crystalline materials are at least
anisotropic and may be heterogeneous as well. Wood is both heterogene-
ous and anisotropic as are many ceramic materials. Modern polymer, ce-
ramic or metal matrix composites such as fiberglass, etc. are both hetero-
geneous and anisotropic. The mathematical analysis of such materials
often neglects the effect of heterogeneity but does include anisotropic ef-
fects. (See Lekhnitskii, (1963), Daniel, (1994)).
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2.6. Principal Stresses

In the study of viscoelasticity as in the study of elasticity, it is mandatory
to have a thorough understanding of methods to determine principal
stresses and strains. Principal stresses are defined as the normal stresses on
the planes oriented such that the shear stresses are zero - the maximum and
minimum normal stresses at a point are principal stresses. The determina-
tion of stresses and strains in two dimensions is well covered in elementary
solid mechanics both analytically and semi-graphically using Mohr’s cir-
cle. However, practical stress analysis problems frequently involve three
dimensions. The basic equations for transformation of stresses in three-
dimensions, including the determination of principal stresses, will be given
and the interested reader can find the complete development in many solid
mechanics texts.

Often in stress analysis it is necessary to determine the stresses (strains)
in a new coordinate system after calculating or measuring the stresses
(strains) in another coordinate system. In this connection, the use of index
notation is very helpful as it can be shown that the stress O;; in a new co-

ordinate system, X;, can be easily obtained from the o;; in the old coordi-
nate system, Xx;, by the equation,

0} =220y, (2.44)

where the quantities a;; are the direction cosines between the axes x; and x;
and may be given in matrix form as,

a;=|a, a, ay (2.45)

In Eq. 2.44, the repeated indices on the right again indicate summation
over the three coordinates, X,y,z or the indices 1,2,3. It is left as an exercise
for the reader to show that this process leads to the familiar two-
dimensional expressions found in the first course in solid mechanics (see
Problem 2.6.),

o\ =0, cos’ O+ o, sin® O + 27, sin¥cos O (2.46a)
or
o,+0, O,-0O
o, =— 5 Ly 5 £cos20 + 1, sin2O (2.46b)
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Ty = —(ox - Gy)sinﬁcos Y+, (cos2 9 —sin’ ﬁ) (2.47a)

X

or

o, -0
T, = —%sin%} +7,, cos 20 (2.47b)

Xy

Using Eq. 2.44 it is possible to show that the three principal stresses
(strains) can be calculated from the following cubic equation,

o -Iol+Lo,-1,=0 (2.48)

where the principal stresses, o;, are given by one of the three roots G;, G,
or o3 and,

I, =0y +0,, +0,,=0,+0,+0;

2

2 2
I,=0,0,+0,0,+0,0, -0, -0,,-0,,=0,0,+0,0;+050, 2.49)

2 2 2
I3 = 0-xxo-yyo-zz _Oxxcyz - 0yyo-xz _Ozzcxy +20xy0yz0zx = 010203

The quantities I;, I,, and I3 are the same for any arbitrary coordinate sys-
tem located at the same point and are therefore called invariants.

In two-dimensions when o, = 0 and a state of plane stress exists, Eq.
2.48 reduces to the familiar form,

2

oy = O, +0y, + (Oxx Oyy ) +(Txy )2 (2.50)
2 2

where the comma does not indicate differentiation in this case, but is here

used to emphasize the similarity in form of the two principle stresses by

writing them in one equation. The proof of Eq. 2.50 is left as an exercise

for the reader (see Problem 2.7).

The directions of principal stresses (strains) are also very important.
However, the development of the necessary equations will not be pre-
sented here but it might be noted that the procedure is an eigenvalue prob-
lem associated with the diagonalization of the stress (strain) matrix.
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2.7. Deviatoric and Dilatational Components of Stress and
Strain

A general state of stress at a point or the stress tensor at a point can be
separated into two components, one of which results in a change of shape
(deviatoric) and one which results in a change of volume (dilatational).
Shape changes due to a pure shear stress such as that of a bar in torsion
given in Fig. 2.2 are easy to visualize and are shown by the dashed lines in
Fig. 2.16(a) (assuming only a horizontal motion takes place).

7

I Oyy = O2
I
Tx !
—> y | GZZ
/. -y T ,ﬂ
/ ! :
/ 4_ | —
/ / Oxx | Oxx—=01
0/ / y —— == ——
I/ s 0z2z=03 X
/ / 4 dz
/.
— %
,’ dx oy
Z
(a) (b)

Fig. 2.16 (a) Shape changes due to pure shear.
(b) Normal stresses leading to a pure volume change.

Shear Modulus: Because only shear stresses and strains exist for the case
of pure shear, the shear modulus can easily be determined from a torsion
test by measuring the angle of twist over a prescribed length under a
known torque, i.e.,

JG
=0— 2.51
T=6T (2.51)

where all terms are as previously defined in Eq. 2.11.

Bulk Modulus: Volume changes are produced only by normal stresses.
For example, consider an element loaded with only normal stresses (prin-
cipal stresses) as shown in Fig. 2.16(b). The change in volume can be
shown to be (for small strains),

%=exx+eyy+eZZ (2.52)
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Substituting the values of strains from the generalized Hooke’s law, Eq.
2.28, gives,

AV 1-2v
v

If Poisson’s ratio is v = 0.5, the change in volume is zero or the material is
incompressible. Here it is important to note that Poisson’s ratio for metals
and many other materials in the linear elastic range is approximately 0.33
(i.e., v ~1/3). However, near and beyond the yield point, Poisson’s ratio
is approximately 0.5 (i.e., v ~ 1/2). That is, when materials yield, neck or
flow, they do so at constant volume.

(oxx +0,, + OZZ) (2.53)

In the case when all the stresses on the element in Fig. 2.16(b) are equal
(04 =0,y =0, =0), a spherical state of stress (hydrostatic stress) is said

to exist and,

AV _1-2v ( 30)
\Y% E
By equating Eqgs. 2.52 and 2.54 the Bulk Modulus can be defined as the ra-

tio of the hydrostatic stress, o, to volumetric strain or unit change in vol-
ume (AV/V),

(2.54)

E
K= 2.55
3(1-2v) (253)

Notice that the bulk modulus becomes infinite, K~, if the material is in-
compressible and Poisson’s ratio is, v ~ 1/2.

Obviously, one method for obtaining the bulk modulus of a material
would be to create a hydrostatic compression (or tension) state of stress
and measure the resulting volume change.

Dilatational and Deviatoric Stresses for a General State of Stress: For
a general stress state, the dilatational or volumetric component is defined
by the mean stress or the average of the three normal stress components
shown in Fig. 2.13,

~ 0 (2.56)

In Eq. 2.56 care has been taken to provide three different symbolic ways
of indicating the volumetric stress, 6, 6,,, or 6,4/3 to emphasize the many
notations found in the literature. Since the sum of the normal stresses is the
first Invariant, I,, the mean stress, G, will be the same for any axis orien-
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tation at a point including the principal axes as shown in Eq. 2.56. Thus,
independent of axis orientation the general stress state can be separated
into a volumetric component plus a shear component as shown in Fig.
2.17. That is, if the stresses responsible for volumetric changes are sub-
tracted from a general stress state, only stresses responsible for shape
changes remain. This statement can be expressed in matrix form as,

O Txy Tx o, 0 O Sxx Sxy  Sxz
T, O, Ty, = 0 o, + Sy Syy Sy, | (2.57)
T, T, O, 0 0 o, S Siy Sy
or in index notation as
1
0;i = go-kkéij +8j; (2.58)

where s;; are the deviator (shape change) components of stress and d;; is the
Kronecker Delta function as defined earlier (Eq. 2.34).

y* YA YA
! oy ' Sm U sy
1 1 1
1 , Oyx 1 1 ; Syx
1 1 1
: Oyz Cxy : : Syz Sxy
|(y 1 1 S,
“ Ou 1 — ~ Sz
d | o =4 ' o + 4 | s
Y| = - |- ) e — Y e e = Y| S e
P o 2 ) / 2 X Sox X
7z O,
7 dz A dz A dz
. . .
4 dx 4 dx 4 dx
. . .
4 Ve Ve

Fig. 2.17 Separation of a general stress state into dilatational and deviator stresses.
Since the trace of the first two matrices in Eq. 2.52 are the same, i.e.,
Oy =0, +0,, +0,, =30, (2.59)

the trace of the third matrix is zero, i.e.,
Sk =Sxx T8y +8,,=0 (2.60)

Using Eq. 2.60, the deviator matrix can be separated into five simple shear
stress systems,

Sye Sxy  Sxz 0 s, O 0o 0 0
Syx Sy Sy =Sy O O |+ 0 0 s,
S s 0 0 O 0 s 0
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s\ (s,, O O}y (O O O

0 0 XZ XX
40 0 0+ 0 -s, O[+/0 -s, © (2.61)
s, 0 0Jlo o o){o o s,

That the stress states given by the first three matrices on the right side of
Eq. 2.61 are pure shear states is obvious. The last two are also pure shear
states but at 45° to the indicated axis as shown in Fig. 2.18.

1

Fig. 2.18 Pure shear state.

Therefore each term in Eq. 2.61 represents a pure shear state and results in
only shape changes with no volume change.

Strains can also be separated into dilatational and deviatoric components
and the equation for strain analogous to Eq. 2.58 is,

gj=€;+e,0; or g;=ey +%ekk6 (2.62)

ij
where e; are the deviatoric strains and e, =%5kk is the dilatational com-

ponent. The trace of the strain tensor analogous to Eq. 2.59 can also
clearly be written.

The generalized Hooke’s law given by Eq. 2.28 or Eq. 2.36 can now be
written in terms of deviatoric and dilatational stresses and strains using the

equations above as well as Eqs. 2.52-2.55
i =206 (2.63)
O = 3Key,

The importance of the concept of a separating the stress (and strain) ten-
sors into dilatational and deviatoric components is due to the observation
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that viscoelastic and/or plastic (meaning yielding, not polymers) deforma-
tions in materials are predominately due to changes in shape. For this rea-
son, volumetric effects can often be neglected and, in fact, the assumption
of incompressibility is often invoked. If this assumption is used, the solu-
tion of complex boundary value problems (BVP) are often greatly simpli-
fied. Such an assumption is often made in analyses using the theory of
plasticity and theory of viscoelasticity and each will be discussed in later
chapters.

Further, the observation that deformations in viscoelastic materials such
as polymers is more related to changes of shape than changes of volume
suggest that shear and volumetric tests may be more valuable than the tra-
ditional uniaxial test.

It can be shown that additional invariants exist for both dilatational and
deviatoric stresses. For a derivation and description of these see Fung
(1965) and Shames, et al. (1992). The invariants for the deviator state will
be used briefly in Chapter 11 and are therefore given below.

J,=0,+0,+0;=0
J,=3c’ -1, (2.64)
Ji=L-J,0,-0)

All invariants have many different forms other than those given herein.

2.8. Failure (Rupture or Yield) Theories

Simply stated, failure theories are attempts to have a method by which the
failure of a material can be predicted and thereby prevented. Most often
the physical property to be limited is determined by experimental observa-
tions and then a mathematical theory is developed to accommodate obser-
vations. To date, no universal failure criteria have been determined which
is suitable for all materials. Because of the large interest in light weight but
strong materials such as polymer, metal and ceramic matrix composites
(PMC, MMC and CMC respectively) that will operate at high temperatures
or under other adverse conditions there has been much activity in develop-
ing special failure criteria appropriate for individual materials. As a result,
the number of failure theories now is in the hundreds. Here we will only
give the essential features of the classical theories, which were primarily
developed for metals. For this reason, it is suggested that the reader keep
an open mind and be extremely careful when investigating the behavior of
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polymers using these traditional methods. It is virtually certain that actual
behavior will not always be well represented using any of the following
theories due to the time dependent nature of polymer based materials. The
same statement is likely true for most of the current popular theories used
for composites.

Ductile materials often have a stress-strain diagram similar to that of
mild steel shown in Fig. 2.8 and can be approximated by a linear elastic-
perfectly plastic material with a stress-strain diagram such as that given in
Fig. 2.9(b). Failure for ductile materials is assumed to occur when stresses
or strains exceed those at the yield point. Materials such as cast iron, glass,
concrete and epoxy are very brittle and can often be approximated as per-
fectly linear elastic-perfectly brittle materials similar to that given in Fig.
2.9(a). Failure for brittle materials is assumed to occur when stresses or
strains reach a value for which rupture (separation) will occur.

The following are the simple statements and expressions for three well
known and often used failure theories. They are described in terms of prin-
cipal stresses, where G; > G, > O3, and a failure stress in a uniaxial tensile
test, o¢| ., which is either the rupture stress or the yield stress as appro-

priate for the material. Typically, tensile and compression properties as
found in a uniaxial test are assumed to be the same.

Maximum normal stress theory (Lame-Navier): Failure occurs when the
largest principal stress (either tension or compression) is equal to the
maximum tensile stress at failure (rupture or yield) in a uniaxial tensile
test.

O} =0y

(2.65)

tensile

Maximum shear stress theory (Tresca): Failure occurs when the maxi-
mum shear stress at-an arbitrary point in a stressed body is equal to the
maximum shear stress at failure (rupture or yield) in a uniaxial tensile test.

ol
— f | ensile

tensile 2 (2.66)

O, -0
T =—1 "3_1g

max ~ Ymax
2

0,-0,=0;

tensile

Maximum distortion energy (or maximum octahedral shear stress)
theory (von Mises): Failure occurs when the maximum distortion energy
(or maximum octahedral shear stress) at an arbitrary point in a stressed
medium reaches the value equivalent to the maximum distortion energy (or
maximum octahedral shear stress) at failure (yield) in simple tension
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2 2 2 2
O, +05+05 — (0102 +0,0, +0301) =20;

(2.67)

tensile

Development of the octahedral shear stress can be found in many texts and
will not be given here. However, it is appropriate to note the geometry of
the octahedral plane. That is, if a diagonal plane is identified for stressed
element as shown in Fig. 2.19(a) such that the normal to the diagonal
plane makes an angle of 54.7°, the stress state will be as shown in Fig.
2.19(b). The resultant shear stress on this octahedral plane, so named be-
cause there are eight such planes at a point, is the octahedral shear stress.

(a) (b)

Fig. 2.19 Definition of the octahedral shear stress.

Comparison Between Theory and Experiment: Comparisons between
theory and experiment have been made for many materials. Shown in Fig.
2.20 are the graphs in stress space for the equations for the three theories
given above. Also shown is experimental data on five different metals as
well as four different polymers. It will be noted that cast iron, a very brittle
material agrees well with the maximum normal stress theory while the
ductile materials of steel and aluminum tend to agree best with the von
Mises criteria. Polymers tend to be better represented by von Mises than
the other theories.
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Fig. 2.20 Comparison between failure theories and experiment. (Data from Dowl-
ing, (1993): metal p. 252, polymer p. 254)

2.9. Atomic Bonding Model for Theoretical Mechanical
Properties

Materials scientists and engineers have long sought methods to determine
the mechanical properties of materials from knowledge of the bonding
properties of individual atoms, which, of course, hold materials together.
Observation of elastic behavior suggests the existence of both attractive
and repulsive forces between individual atoms. Stretching an elastic bar in
tension, stretches the atomic bonds and release of the load allows the
bonds to return to their original equilibrium positions. Likewise, compres-
sion causes atoms to move closer together and release of the load allows
the atoms to return to their equilibrium position. A hypothetical tensile (or
compressive) bar composed of perfectly packed atoms is shown in Fig.
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2.21. The distances between the centers of four neighboring atoms, mnpq,
form a rhombus. When stretched, the strains in the vertical and horizontal
directions, €, and &,, can be calculated from geometrical changes in the
position of the spheres and the ratio can be shown to give a Poisson’s ratio
of v = 1/3, which is close to the measured value for metals and many ma-
terials. The proof is left as an exercise for the reader (see Problem 2.9).
This simple calculation tends to give some confidence in the use of an
atomic model to represent mechanical behavior.

Now consider just two atoms in equilibrium with each other as shown in
Fig. 2.22. Application of a tensile force, Fy, will induce an attractive force,
F,, between the two atoms in order to maintain equilibrium. Application of
a compressive force will induce a repulsive force, Fg, between the two at-
oms to maintain equilibrium. These attractive and repulsive forces will
vary depending upon the separation distance. It is to be noted that the at-
tractive forces in interatomic bonds are largely electrostatic in nature. For
example, Coulomb’s law for electrostatic charges indicates that the force is
inversely proportional to the square of the spacing. The repulsive forces
are caused by the interactions of the electron shells of the atoms and is
somewhat difficult to estimate directly.

The variation of attractive and repulsive forces and energies with sepa-
ration distance are given in Figs. 2.22(d-e), where r, is the equilibrium
spacing. The forms of the equations agree with physical observations but
the values of the constants a, f, m and n vary for different materials. Ob-
viously, the effect of dislocations, vacancies, grain boundaries, etc. com-
plicates the picture in metals and the long molecular chains, entanglements
and other defects complicate the picture in polymers. The energy equations
and diagrams given in Fig. 2.22 can be simply calculated from the force
diagram using the basic definitions of work an energy given in elementary
mechanics. This proof is left as an exercise for the reader.

Obviously, if the tensile forces are large enough, the distance between
atoms can become so great that the attractive force will tend to zero and no
force would be required for the atom to be in equilibrium. On the other
hand, the application of a compressive forces can not force the two atoms
to merge and the repulsive force will increase without bound. For this rea-
son, it should be possible to calculate the theoretical strength of a material
if sufficient information is known about the bonding forces in atoms of a
particular material. This interpretation has been used by many (see for ex-
ample, (Courtney, (1990), McClintock and Argon, (1966), Richards,
(1961), Shames and Cozzarelli, (1992)) to formulate nonlinear stress-strain
relations, laws for creep, plasticity effects, etc. However, as far as is
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known by the authors, no direct experimental verification has ever been
made and, at best, such deduction must be termed empirical.

R
e

(a) (b)
Close packed crystal structure in Elongation and contraction of
a material subject to tensile stress. centers due to tensile loading.

Fig. 2.21 Atomic deformations in a material composed of perfectly packed atoms.

Not withstanding the empirical nature of the force and energy variations in
Fig. 2.22, this approach does give insight to the strength limitations of ma-
terials. For example, by examination of Fig. 2.22(d) it can be shown that
for a perfect crystalline arrangement of atoms as in Fig. 2.21 that the
strength of a material should be the same order of magnitude as its elastic
modulus (see (Richards, 1961)). The fact that no material has such high
strength properties is an indication of weaknesses caused by imperfections
in their molecular structure (e.g. imperfections such as dislocations, vacan-
cies, etc.). Even near perfect crystalline materials do not have such high
strength properties. On the other hand, it has been recognized that it is pos-
sible to increase strength properties drastically by developing processing
approaches to create more nearly perfect crystalline structure and to mini-
mize imperfections in molecular structure. Most of these processing im-
provements (directional solidification, powder metallurgy, etc.) are used
for metals and ceramic type materials. Indeed, it is recognized that the
large number of secondary bonds as opposed to primary bonds in polymers
gives rise to their relatively modest properties when compared with most
metals. Never-the-less, as will be noted in the following chapters, the
properties of polymers can also be improved greatly by increasing crystal-
linity, using additives and developing improved processing techniques.
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Fig. 2.22 Attractive and repulsive forces and energies between atoms.

2.10. Review Questions

2.1. Name five assumption that are normally made to solve problems in
elementary solid mechanics.

2.2. Name two types of nonlinearities encountered in solid mechanics.

2.3. Describe a heterogeneous or an inhomogeneous material. Name sev-
eral materials that are inhomogeneous

2.4. Describe an anisotropic material. Name several materials that are ani-
sotropic.

2.5. Give a mathematical definition for a continuum.

2.6. Define crystallinity, amorphous, anisotropic and material symmetry.

2.7. Define true stress and true strain and write an appropriate equation for
each.

2.8. Discuss the characteristics one would seek in developing a test
specimen to determine material properties.
2.9. What is a Luder’s band? At what angle do they occur? Name two
materials in which they are known to occur.
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2.10.

2.11.

2.12.

2.13.

2.14.
2.15.

2.16.

2.17.
2.18.
2.19.

2.20.

2.21.

222

2.11.

2.1.

2.2.
2.3.

Explain the difference between engineering shear strain and the ten-
sorial alternative.

How many material constants are needed to characterize a linear
elastic homogeneous isotropic material? How many material con-
stants are needed to characterize a linear elastic homogeneous ani-
sotropic material?

Describe a plane of material symmetry. What type of symmetry does
an isotropic material possess?

Define a stress invariant and give the proper expression for the first
invariant of stress.

Define deviatoric and dilatational stresses.

Give a definition for the classical failure theories of Tresca and von
Mises.

A brittle material is likely to follow which failure theory? On what
plane would a brittle material tested in uniaxial tension fail?

A ductile material is likely to follow which failure theory?
What is the octahedral shear stress.

At what angle does a slip band form for a Tresca material tested in
uniaxial tension.

At what angle does a slip band form for a von Mises material tested
in uniaxial tension.

The strength of a material for a perfect arrangement of atoms might
be expected to be on the order of what other material parameter?

Poisson’s ratio can be shown to be equal to what value for a perfect
arrangement of atoms?

Problems

If the engineering strain in a tensile bar is 0.0025 and Poisson’s ratio
is 0.33, find the original length and the original diameter if the
length and diameter under load are 2.333 ft. and 1.005 in. respec-
tively.

Find the true strain for the circumstances described in problem 2.1.

A circular tensile bar a ductile material with an original cross-
sectional area of 0.5 in.? is stressed beyond the yield point until a
neck is formed. The area of the neck is 0.25 in.> Find the average
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24.

2.5.

2.6.

2.7.

2.8.

engineering strain in the necked region. The true strain. (Hint: As-
sume yielding occurs with no volume change.)

The generalized Hooke’s law in tensor (matrix) notation is given as
0;; = Ejjq €xq- Expand and find the algebraic expansion for oy,.

From a thin plate of material small tensile coupons are cut at points
A, B and C as shown and the following moduli properties are deter-
mined

Ex A’Ex B’Ex C’Ey|A’E)’|B’E)’|C’E9|A’E9|B’EB|C

Give a correct relationship among the moduli for a homogeneous
material. Give a correct relationship among the moduli for n anisot-
ropic material.

/A

Show that the tensorial transformation relation given by

!
0 =20y, reduces to the form

o, =0, coszﬂ+0y sin26+21Xy sin0 cos0

Expand Eq. 2.58 and show that the matrix given below is recovered.

OXX - Om Oxy OXZ
Si=| Ow Oyy “Om Oy,
O x O-zy 0,-0On

Using the geometry given in Fig. 2.21 show that the ratio of lateral
to longitudinal strain is 1/3. (Hint: spheres at m and n that are ini-
tially in contact stretch vertically when a stress is applied resulting in
a separation of the spheres at m and n. Also, spheres at p and q will
move inward to maintain contact with spheres at m and n.)



3. Characteristics, Applications and Properties of
Polymers

Many materials found in nature are polymers. In fact, the basic molecular
structure of all plant and animal life is similar to that of a synthetic poly-
mer. Natural polymers include such materials as silk, shellac, bitumen,
rubber, and cellulose. However, the majority of polymers or plastics used
for engineering design are synthetic and often they are specifically formu-
lated or “designed” by chemists or chemical engineers to serve a specific
purpose. Other engineers (mechanical, civil, electrical, etc.) typically de-
sign engineering components from the available materials or, sometimes,
work directly with chemists or chemical engineers to synthesize a polymer
with particular characteristics. Some of the useful properties of various en-
gineering polymers are high strength or modulus to weight ratios (light
weight but comparatively stiff and strong), toughness, resilience, resistance
to corrosion, lack of conductivity (heat and electrical), color, transparency,
processing, and low cost. Many of the useful properties of polymers are in
fact unique to polymers and are due to their long chain molecular structure.
These issues will be discussed at length in the next chapter. In this chapter,
focus will be on general characteristics, applications and an introduction to
the mechanical behavior including elementary concepts of their inherent
time dependent or viscoelastic nature.

3.1. General Classification and Types of Polymers

There are a variety of ways to classify polymers according to their molecu-
lar structure and these will be covered in more detail later in Chapter 4.
However, there are two general types that should be mentioned here. Most
polymers can be broadly classified as either thermoplastics or thermosets.
The fundamental physical difference between the two has to do with the
bonding between molecular chains - thermoplastics have only secondary
bonds between chains, while thermosets also have primary bonds between
chains. The names are not only associated with the chemical structure of
each but their general thermal and processing characteristics as well since
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this basic structural difference greatly impacts material properties. Ther-
moplastic polymers can be melted or molded while thermosetting poly-
mers cannot be melted or molded in the general sense of the term. Ther-
moplastic or thermosetting polymers are sometimes identified by other
names such as “linear” and “cross-linked” respectively. It should be noted
that the term linear here applies to molecular structure and not to mechani-
cal (stress-strain) characteristics.

As will be discussed later, a polymer can be a hard and stiff glass-like
solid, a soft and flexible elastomeric rubber, or a viscous liquid depending
only on the use temperature as compared to two reference temperatures
identified as the glass-transition temperature, T,, and the melt temperature,
T,. All thermoplastic materials may exist in one of these three phases
upon changes in the use temperature, while thermosetting polymers gener-
ally exist only in the first two phases. The glass-transition and melt tem-
peratures for different polymers range from well below to well above am-
bient and therefore a particular polymer may be either glassy, elastomeric
or liquid at room temperature depending only on its chemical composition.
These reference or transition temperatures as well as thermal effects will
be thoroughly discussed in later chapters.

Thermoplastic Polymers: Thermoplastic polymers may be either amor-
phous or crystalline. Crystallinity (or morphology) will be discussed in
more detail in the next chapter but it is important to point out here that the
degree of crystallinity is low by standards for crystalline metals, ceramics
and other materials. That is, polymers are rarely over 50 % crystalline.
Crystalline polymers are often more dense than amorphous polymers due
to closer packing of their long chain molecules and, in general, the follow-
ing properties are enhanced.

Hardness

Friction and wear

Less creep or time dependent behavior

Corrosion resistance and/or resistance to environmental stress
cracking

An example of a much-used crystalline thermoplastic polymer is polyeth-
ylene. LDPE (low density polyethylene) is considered to be semi-
crystalline while HDPE (high density polyethylene) or UHDPE (ultra high
density polyethylene) are considered to be highly crystalline. LDPE is one
of the most widely used plastics accounting for more than 20% of the total
polymer market and is used extensively for milk containers and other
packaging operations. HDPE and UHDPE are used extensively in water
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and gas (natural) pipelines. Other typical crystalline thermoplastics used in
engineering design include LLDPE (linear low density polyethylene) and
the following;

Polypropylene Polyamides (nylon)
Acetals Polytetrafluoroethylene (PTFE)
Polyesters Polyetheretherketone (PEEK)

Amorphous thermoplastics (those with no regular molecular structure) are;

Polyvinyl Chloride (PVC) Polymethyl Methacrylate (PMMA)
Polystyrene (PS) Acrylonitrile-butadiene-styrene (ABS)
Polycarbonate Polyethersulphone

In general thermoplastic polymers are easier to produce and cost less than
thermosets. Information on the volume of sales in the US and basic costs
of a few thermoplastics is given in Table 3.1.

Thermosetting Polymers: In general thermosetting polymers are used
where high thermal and dimensional stability are required. Applications
include use as electrical and thermal insulation materials, adhesives, high
performance composites and especially where high strength and modulus
are required. Some examples of thermosetting polymers are:

Aminos Phenolics (Bakelite)
Polyurethanes Polyesters
Epoxides

Information on the volume of sales in the US and basic costs of the major
thermosetting and thermoplastic polymers is given in Table 3.1 and the
volume distribution by products in Fig. 3.1.
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Table 3.1 US polymer production.

Production volume data from American Plastics Council for 2001: Canadian
and Mexican production data included in some categories; dry-weight basis except
phenolic resins. Pricing data from Plastics News for Feb. 2003. See current data

on respective websites.

US Production | US Production % Total Price
Resin (x10° Ibs) (x10° kg) production | (US$/Ib)
Epoxy 601 273 0.59% | $1.12
Urea and Melamine 3,040 1382 3.01%| $0.82
Phenolic 4,362 1983 431%| $0.80
Total Thermosets 8003 3638 7.92%
LDPE 7,697 3499 7.61%| $0.59
LLDPE 10,272 4669 10.16% | $0.53
HDPE 15,284 6947 15.12% | $0.54
PP 15,934 7243 15.76% | $0.47
ABS 1,217 553 1.20%| $0.77
SAN 127 58 0.13%| $1.04
Other Styrenics 1,517 690 1.50%
PS 6,114 2779 6.05% | $0.73
Nylon 1,139 518 1.13%| $1.14
PVC 14,257 6480 14.10% | $0.45
Thermoplastic Polyester 6,898 3135 6.82%| $1.04
Total Thermoplastics 80,456 36571 79.57%
Engineering Resins 2,542 1155 2.51%
All Other” 10,108 4595 10.00%
Total Other 12,650 5750 12.51%
Grand Total 101,109 45959 100%

“includes acetal, granular fluoropolymers, polyamide-imide, polycarbonate, thermoplastic
polyester, polyimide, modified polyphenylene oxide, polyphenylene sulfide, polysulfone,
polyetherimide and liquid crystal polymers; “includes polyurethanes (TDI, MDI and poly-
ols), unsaturated (thermoset) polyester, and other resins.
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Total Sales & Captive Use of Selected Thermoplastic Resins by Major
Market, 2001
Transportation
5%

Exports
12%

Adhesives/Inks/
Coatings

Building & Construction

17%

All other

1
e Electrical/

Electronic

Industrial/
Machinery

Consumer & Institutional

Packaging
28%
Furniture & Furnishings

Fig. 3.1 Major markets for thermoplastic resins. Data compiled by VERIS Con-
sulting, LL.C and reported on the web by APC’s Plastics Industry Pro-
ducers’ Statistics Group.

Additives: A “pure” synthetic polymer may not have the desirable charac-
teristics for a particular application. However, through the use of additives
(or fillers) various properties can often be modified to fill a particular need.
For example, many “structural plastics” often contain additives to enhance
their properties for a special application. As a result, commercial plastics
may be very different from those of the base polymer even though they
may have the same basic chemistry. Some typical additives are (See Craw-
ford (1992) for a discussion of each):

Antistatic Agents Coupling Agents

Lubricants Flame Retardants

Plasticizers Pigments

Stabilizers Reinforcements (alumina, fibers, etc.)

A good example for additives is the inclusion of rubber particles to in-
crease the toughness of otherwise brittle polymers. In the case of epoxy
adhesives, the fracture toughness can be significantly improved by the ad-
dition of microscopic rubber particles. These particles form a second phase
and normally are not covalently bonded to the matrix phase. A photomi-
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crograph of a rubber-toughened polymer, high impact polystyrene (HIPS),
is given Fig. 3.2. Under sufficient external loading the rubber inclusions
become highly stressed and cavitation of these particles occur (rupture) ab-
sorbing energy and enhancing toughness.

3pum

Fig. 3.2 Example of a rubber toughened polymers: HIPS (left, Serpooshan et al.
(2007)) and ABS (right, Bucknall et al. (2000)). Reprinted with permis-
sion of John Wiley and Sons, Inc and Elsevier.

Blends or Alloys: Sometimes two or more plastics are mixed or “alloyed”
to achieve special properties and are known as polyblends. ABS (acryloni-
trile, butadiene and styrene) and PBT (polybutylene terephthalate) are of-
ten used in engineering applications with polycarbonate, polysulphone, etc.
Several combinations and their improved features are given below (see
Crawford (1992) for a more complete discussion of alloys).

Alloy Characteristics
Polycarbonate/ ABS Good heat and impact resistance.
Polycarbonate/ PBT High toughness.

PVC/acrylic Good chemical and flame resistance.
PVC/ABS Good processability, flame

resistance and impact strength.

The fundamental point is that many structural plastics are, in fact, compos-
ites composed of combinations of several materials. As a result, mechani-
cal and other properties are influenced by each component and it is most
appropriate for design engineers to have a familiarity with the effect of
various additives. Often, manufacturers change additives or blend ratios
from time to time to enhance certain properties for a large volume cus-
tomer or for enhanced and more economical processing, etc. Changing ad-
ditives or the introduction of new additives may change one or more engi-
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neering properties and creates the need for continual testing to evaluate
commercial polymers.

While additives, fillers and blends do alter a polymer and, in effect, may
cause a polymer to be both heterogeneous and anisotropic most testing
programs to determine mechanical properties are performed under the as-
sumption of homogeneity and isotropy. As a result, industrial test pro-
grams to measure stress, strain, modulus and strength and other properties
given in “specification” sheets are very similar to those described in Chap-
ter 2 for metals or other time independent materials. Such information may
not be adequate to evaluate the long-term structural performance of a
polymer used in engineering design.

3.2. Typical Applications

Polymers are widely used in the automotive industry, aerospace industry,
computer industry, building trades and many other applications. For exam-
ple, automobile bumpers are now made with a polymer blend that has suf-
ficient toughness to meet state and federal standards. This has resulted in a
significant weight saving and the conversion from metal has also been cost
effective due to decreased energy costs and the ability to easily recycle the
polymer blend from older cars to manufacture bumpers for new vehicles.

The above illustrates, interestingly, that the cost to produce polymers is
sometimes less than the cost to produce certain metals. Crawford, 1992,
gives data on the relative energy required to manufacture thin sheets of
various polymers and metals including the proportion of energy related to
the feedstock, fuel and processing. Since this data is not for the a uniform
sheet thickness the data has been divided by the sheet thickness and nor-
malized with respect to the energy required to produce mild steel. The re-
sult is given in Table 3.2 and indicates that aluminum requires approxi-
mately 11% more total energy to manufacture than steel while the
polymers cited require at least 50% less energy to manufacture than similar
thin sheets of metal. This gives a good indication why polymer products
are replacing such items as aluminum foil food wraps, soft drink contain-
ers, computer housings, etc. Of course this substitution of polymer for
metal occurs mostly for non-structural products. Because the modulus and
strength of structural metals such as aluminum and steel are much greater
than the modulus and strength of polymers, the latter cannot perform as
well in structural circumstances. The exception is for fiber reinforced
polymers but then the production cost is often much higher.
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Table 3.2 Relative energy required to manufacture various sheet materials nor-
malized relative to steel.

Aluminum 1.11
Steel 1.00
PC 0.49
Acrylic 0.47
Nylon 0.52
LDPE 0.26
HDPE 0.29
Polystyrene 0.34
Polypropylene 0.24
PVC 0.26

Fiber Reinforced Plastics: Fiber reinforced plastics (FRP) or polymer
matrix composites (PMC) are now frequently used in automotive, aero-
space, boating, sporting goods, construction and other applications. Unfor-
tunately, these products go by many different names. For example the FRP
materials made with glass fibers often are call glass reinforced polymers
(GRP) or simply fiberglass.

FRP or PMC materials are made by a number of processes. For exam-
ple, the materials used in many applications (bathtubs, boats, auto hoods,
etc.) are formed by compression molding a polymer containing chopped
glass fibers (usually about 1 in. long) in a polyester matrix to form what is
known as a sheet-molding compound (e.g. SMC-25, sheet molding com-
pound with 25% fiber). FRP or PMC composites used for water, oil or gas
pipelines are formed by a filament winding process using continuous glass
fibers which are first passed through a polymer (e.g., polyester, epoxy,
etc.) bath to coat the fiber prior to winding.

Advanced composites (so called due to the extremely high mechanical
properties of the fibers) used in the aerospace industry and for certain
sports equipment (e.g. skis, tennis rackets, golf clubs, etc.) are made with
continuous carbon fibers in a polymer matrix (e.g., epoxy, PEEK, etc.) and
are most often laminated, vacuum bagged and cured under high heat and
pressure.

All composites are in general inhomogeneous, anisotropic and cannot be
considered a continuum at a local or microscopic level. Therefore special
testing programs are normally required to determine mechanical proper-
ties. The assumptions of a continuum, homogeneity and isotropy are often
made and may give estimates of behavior that can be used in engineering
design though this should only be done with extreme care.
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Adhesives: Nearly all adhesives are polymers and are used extensively to
connect structural components made of wood, composites, metals, poly-
mers, and other materials. Though the amount of adhesive needed for a
particular application is small, the cost of a polymer adhesive is high com-
pared to other applications. For example, it is not unusual for an adhesive
to cost on the order of $1.00 or more per ounce while general use polymers
of the same type might cost less than $1.00 per pound (see Table 3.1). For
this and other reasons, the world market for adhesives is in excess of five
billion dollars per year. As mentioned earlier, adhesives often contain elas-
tomeric particles to enhance their fracture toughness. In addition, many
adhesives contain alumina or other metallic particles for increased tensile
and shear strength and in such cases are in reality particulate composites.

Insulation Applications: One of the earliest uses for polymeric materials
was for the insulation of electrical cables for power lines, etc. due to their
low conductivity. In addition, polymers are now being used as thermal in-
sulation in buildings, automobiles, etc. A few polymers (e.g., polyben-
zimidazole) have such high thermal resistance that they are used as fabrics
for clothing of firefighters who must deal with very intense heat such as
that in fires in buildings and oil wells.

The relative insulation characteristics of polyurethane foam and polysty-
rene foam as compared to brick and wood is given in Fig. 3.3. Thermal
conductivity coefficients, thermal expansion coefficients and dielectric
constants for various polymers and other materials are given in Table 3.3.
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Fig. 3.3 Comparsion of relative thermal insulation characteristics of various ma-
terials.
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Optical Applications: Typically, amorphous polymers are transparent un-
less fillers or other additives are used that cause them to be opaque, while
crystalline polymers are translucent or opaque. For this reason, amorphous
thermoplastic polymers are often used in optical applications, the most
prominent of which is lenses to enhance vision. Polymer lenses are lighter,
tougher and have better fracture resistance than regular glass or silicon ox-
ide based lens. Further they have a higher refractive index and hence
transmit more light than ordinary glass. The refractive index, light trans-
mission and dispersive properties of several polymers are given in Table
34.

Amorphous polymers, notably, polycarbonate, are often used as win-
dows where enhanced fracture resistance is needed. (Parenthetically, those
familiar with baseball in the 60’s may recall a TV commercial of Sandy
Kofax attempting unsuccessfully to break a substitute school window
made of polycarbonate with a baseball.) Polycarbonate and PET are often
used as a glazing material for high performance windows in automobiles,
airplanes and elsewhere.

Table 3.3 Thermal and electrical properties of polymers

Material Conductivity Coefficient of Dielectric
Thermal Expansion Constant
(W/m-K) (10%/K av. @RT) (Average)
ABS 0.33 - 2.8
Epoxy 0.20 - 35
Phenolic 0.20 - -
Polypropylene 0.22 160 23
Polyethylene 0.33 150 23
Polycarbonate 0.20 - 3.0
Polystyrene 0.19 130
Teflon 0.20 170 2.1
Polyurethane foam 0.020 - -
Polystyrene foam 0.037 - -
Aluminium 216 24 -
Copper 394 - -
Steel 67 12 -
Brick 0.70 - -
Concrete 1.1 10 -
Oak 0.19 - -
Pine 0.16 - -
Glass 0.80 8 9.0
Air 0.03 - 1.0
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Table 3.4 Typical optical properties

Material Refractive Index Light Transmission
Acrylic 1.49 92
Polycarbonate 1.59 &9
Polystyrene 1.57 88
PMMA 1.49 -

Glass 1.5 -

Fibers

One of the major applications of polymers is for use as fibers in clothing,
ropes, rugs or tapestries and many other household or commercial pur-
poses. Natural fibers such as flax for garments date back to prehistoric
times. Plant derived natural fibers such as cotton, flax, and rayon are based
on the polymer cellulose, while animal based fibers such as wool and silk
are polyamides. Synthetic fibers such as polyesters and polyamides (in-
cluding nylon and Kevlar) account for the majority of the fiber market to-
day and are used in textiles and in high performance applications (e.g.,
space suits and reinforcements in polymer matrix composites). Both natu-
ral and synthetic polymeric fibers are semi-crystalline, with significant
molecular orientation in both the crystalline and noncrystalline domains. In
typical manufacturing processes for fibers, this molecular orientation is
achieved through spinning and drawing steps. Increasing the degree of mo-
lecular orientation in polymeric fibers leads to superior strength and stiff-
ness characteristics.

A very important fiber used in high performance polymer matrix com-
posites is the carbon or graphite fiber. Carbon fibers were first made by a
complicated heat (or pyrolysis) treatment of rayon fibers but are now pri-
marily made by pyrolyzing either a PAN (polyacrlonitrile) or pitch based
fiber. The resulting fiber consists of layers of graphene sheets oriented
predominantly along the fiber axis and provides extremely high strength to
weight ratios. Polymer composites incorporating carbon fibers have excel-
lent mechanical properties and are used in aircraft/spacecraft structural
components, sporting equipment and now even as handles in builder’s
tools. See Hyer (1998) for an excellent description of various fiber types
used in composites as well as their microstructure.

The tensile modulus of a few fibers is given in Table 3.5.
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Table 3.5 Tensile modulus of select fibers (Warner (1995))

Material Tensile Modulus
Cotton 8.1 GPa
Rayon 8.2 GPa
Nylon66 2.3 GPa
Kevlar49 125 GPa
Carbon (IM) 250 GPa

3.3. Mechanical Properties of Polymers

The mechanical properties of polymers are most often obtained using a
uniaxial tensile test at a constant rate of strain or head motion similar to
those used for metals and other materials. Schematic stress-strain diagrams
characteristic of those found for the indicated types of solid polymers is
shown in Fig. 3.4. Curve 1 represents a linear elastic and brittle material
like an epoxy, polystyrene, etc. Curve 2 is similar to that of a semi-ductile
material like PMMA. Curve 3 is similar to that of a ductile material like
PET or polycarbonate. Curve 4 is similar to that of a typical elastomer
such as a flexible urethane. Elastic modulus, Poisson’s ratio, failure stress
and strain are defined as given in Chapter 2 but the 0.2% offset method to
determine yield stress cannot be used as strains in polymers are quite large
compared to structural metals such as steel and aluminum. The yield stress
of a ductile material is often assumed to be equal to the proportional limit
stress or the first peak in the stress strain diagram (termed the intrinsic
yield point) as indicated in Fig. 3.5. It is to be noted that many approaches
to determining the yield point are used, although the intrinsic yield point is
the most common. One method due to Considere is shown in Fig. 3.5 (see
Ward and Hadley, (1993) for reference). With this method, the extrinsic
yield point is the point of tangency of a line drawn from a point on the
strain axis of -1.0 to the stress-strain diagram. Both true stress and true
strain are normally used but in Fig. 3.5 true stress and nominal or average
strain is used. A comparison of tensile modulus, strength and strain at
break (yield), and impact strength of a number of polymers developed us-
ing elementary test procedures is given in Table 3.6.
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(load-elongation) diagrams yielding for polymers. (After
of various polymer types Kinloch and Young (1983), p. 108)

If tests are performed at different constant strain rates or temperatures,
stress-strain response similar to that shown in Fig. 3.6 is obtained for many
polymers. Notice that modulus and intrinsic yield point vary with both rate
and temperature. Also, the stress-strain response appears to be nonlinear
even at low stress levels. However, caution on the interpretation of the in-
formation obtained from such elementary tests is suggested, as it will be
shown in a later section that linearity as well as other essential mechanical
properties should be deduced from isochronous stress-strain diagrams.
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Fig. 3.6 Typical temperature and rate dependent stress-strain response.
Instrinsic yield points indicated by circles.
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Table 3.6 Comparsion of mechanical properties of selected polymers
(Except as noted, data are average values taken form Billmeyer (1984), p. 470-480)

Tensile Tensile Impact

Polymer* Modulus Strength Elongation Strength
GPa(ksij  MPa (ksi) % v (mm(tle:i’g)“ )
Cellulose Acetate 1.59 (230) 37.6 (5.45) 38 150 2.8)
Nylon 66 2.07 (300) 72.4  (10.5) 180 80 (1.5)
Polycarbonate 2.41 (350) 60.7 (8.8) 115 790 (14.8)
Polyethylene (LD) 0.39 (57) 20.1 (3.0) 570 260 (5.0)
Poly(ethylene terephthalate) | 3.55 (500) 65.5 9.5) 175 24 (0.45)
Poly(methylmethacrylate) 3.10 (450) 62.1 9.0) 6.0 320 0.4)
Polypropylene 1.38 (200) 33.8 4.9) 450 70 (1.3)
Polysulfone 2.48 (360) 70.3  (10.2) 75 64 (1.2%
Polyimide 3.10 (450) 724 (10.5) 6.0 59 (1.1)
Poly(vinylchloride) (rigid) 3.31 (480) 48.2 (7.0) 21 545 (10.2)
Polyurethane (rigid) 3.55 (500°) 72.4  (10.5) 4.5 320 0.4)
Epoxy (cast) 2.41 (350) 58.6 8.5) 4.5 32 (0.6)

*From Rodriguez (1996), p. 701  °from plasticssusa.com

“Note: Property values such as those listed in this table vary widely and should not be used
for design purposes without validating by testing the exact polymer to be used. ASTM
Standard testing procedures offer reliable experimental protocols for such experiments.
Mechanical properties of polymers can also be found in reference handbooks such as The
Polymer Handbook (2006) and other textbooks such as Rodriguez, 1996 (p. 696-710) as
well as various online databases such as plasticsusa.com. Variability of polymer properties
can be seen for example in Fig. 3.7, where the true stress and strain at rupture for polycar-
bonate differ from the values tabulated here.

3.3.1. Examples of Stress-Strain Behavior of Various Polymers

From an engineering design standpoint, a fundamental question to ask
about the stress-strain diagrams found in the literature and from industry
specification sheets is: how was the strain measured? Was it measured by,

* Machine head motion divided by the length of the specimen
* An extensometer
* An electrical strain gage

or some other method? The reason for asking such a question is to know
whether the strain truly represents the behavior occurring at a material
point and, therefore, if stress-strain equations developed therefrom are ac-
curate and justified. If not, the stress analysis used for design may only be
approximate and not a good predictor of actual service performance. In the
following discussion, details of strain measurement for polycarbonate will
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serve as an example of possible differences using different strain meas-
urement methods. In addition, experimental data for stress-strain response
of polycarbonate, polypropylene, and epoxy will serve to illustrate the dif-
ferences in ductile and brittle polymers, as well as to point out important
factors affecting stress-strain results for polymers (e.g., strain measure,
strain rate, loading mode, temperature.)

Stress-Strain Behavior of Polycarbonate: Specimens of polycarbonate
are shown in Fig. 3.7 together with the stress-strain properties obtained by
three different methods: 1) electrical strain gages, 2) use of an effective
gage length, and 3) thickness changes measured in the necked region. In
the first method, strain was measured with electrical resistance strain gages
attached to the specimen with an adhesive and the change in resistance
monitored with deformation under load. The axial and transverse strains
are directly related to the changes in resistance resulting from deforma-
tions in the respective directions. The second approach determined an av-
erage strain by dividing the machine head motion by the total length of
specimen between the grips. Due to the dogbone shape of the specimen
and because of stress concentration factors at the grips, the average strain
determined in this manner is not accurate. However, the average strain ob-
tained using the total length between grips can be corrected through the
use of a proportionality factor found by comparing the electrical resistance
strain gage measurements for very small strain levels to that obtained by
using machine head motion. In this manner, reasonably accurate strains
can be determined from the machine head motion prior to neck formation.
The third technique was used to determine strains after formation of the
neck and involved micrometer measurements of the thickness in the neck
area as the neck propagated and conversion to axial strain via assuming a
Poisson’s ratio of 0.4.

It is appropriate to note that electrical resistance gages must be used
with care as polymers, in general, are poor conductors of heat. As a result,
the electrical current in the strain gage can cause local heating of the mate-
rial under the gage and thereby appreciably soften the material giving rise
to erroneous measures of strain. Further, as the strain gage (a metal) is
much stiffer than the polymer, appreciable reinforcement can occur for
thin polymers. These effects can be minimized using sufficiently thick
specimens and by pulsing the current to minimize local heating. Errors due
to these sources were negligible for the data shown.

As the electrical strain gage is located outside of the neck, the strain
measurement given by curve 1 in Fig. 3.7(d) does not provide a useful
measure of strain beyond the point of Luder’s band formation. The average
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strain (effective gage length) technique, curve 2, does account for the neck
in the material, but is inaccurate after neck formation since the proportion-
ality factor used is strictly applicable only in the small/linear deformation
region. Only the third method, curve 3, of directly measuring thickness
changes in the specimen in the neck area properly represents the local
strain in the material after yielding. Note that the first two methods should
provide essentially equivalent strain measures prior to yielding, and that ei-
ther of them can be combined with the results of the third method to pro-
vide an accurate picture of material response up to failure.
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Fig. 3.7 Example of stress-strain response of polycarbonate.
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Both engineering and true stresses are given in Fig. 3.7(d) with engineer-
ing (conventional) strain measurements. Curve 1 shows the results of the
electrical strain gage measurement from zero load to Luder’s band forma-
tion or the initiation of yielding. The strain reaches only a maximum of
about 5% and both strain and stress appear to decrease after this point.
Curve 2 represents the strain determined by the effective gage length
method as described above and the maximum strain reaches about 10%.
The strain does not reach a larger value because the length of the neck is
only a small portion of the total specimen length between grips. The engi-
neering stress decreases after the neck forms in both 1 and 2, and this de-
crease is not seen when true stress is used. Curve 3 is based on true stress
(using the cross sectional area of the necked region) and using electrical
resistance strain gage measurements up to ~5% strain with thickness
measurements above this level. Note again that curves 1 and 2 provide
misleading information on the stress-strain response of the material after
yield and only curve 3 is representative of local material response through
the necking stage.

The left photograph, Fig. 3.7(a), is prior to neck formation, the center
photograph Fig. 3.7(b), is after the neck has formed and drawing begins
and the right photograph Fig. 3.7(c) is a close-up of a fully formed Luder’s
band from a different specimen. The Luder’s band begins to form near the
point of maximum stress and shortly thereafter a prominent slip band or
neck appears similar to that shown in Fig. 3.7(c) which is from a separate
test of a thinner specimen. Note the initial Luder’s band angle for a thin
specimen is about 57.3° with the vertical while the angle in Fig. 3.7(c) is
more than 60°. The reason, of course, is that the slip band angle gradually
increases to 90° when the full neck is formed. A more descriptive discus-
sion of these results may be found in Brinson (1972) and Brinson and Das
Gupta (1974). It is also to be noted that the stress-strain results agree with
the very careful optical strain measurements for polycarbonate by Brill
(1965) using a very fine inscribed grid.

Notice the similarity between the stress-strain behavior of polycarbonate
given by curve 2 and that for mild steel in Fig. 2.7. Both show an elastic-
plastic tensile instability point or a decrease of stress with increasing strain
after the first peak in the stress-strain diagram is reached. An upper and
lower yield point can be defined for polycarbonate as for mild steel provid-
ing the intrinsic yield point, engineering stress and the approximate meas-
ure of strain after neck formation are used. Although the similarity to mild
steel is perhaps useful, such a stress-strain diagram as given by curve 2 for
polycarbonate is not truly indicative of the local stress-strain response of
the material through necking and to failure.
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The stress-strain response of polycarbonate is a function of test rate as is
shown in Fig. 3.8. Little rate effect is observed for low stress levels but a
very significant effect is observed for higher levels. The intrinsic yield
stress is clearly rate dependent and should the tests have been carried to
rupture a drawing behavior similar to that shown in Fig. 3.7 would have
occurred for each rate. These results suggest the need to include rate and/or
time in developing yield criteria for polymers. This will be discussed more
fully in Chapter 10.
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Fig. 3.8 Constant strain-rate behavior of a thermoplastic polymer (polycarbon-
ate). (Data from Brinson (1973))

Stress-Strain Behavior of Polypropylene: Both tensile and compressive
stress-strain response of polypropylene is shown in Fig. 3.9. Quite obvi-
ously, the behavior in tension and compression are quite different for
stresses above about 2,000 psi. This indicates that care must be used in
analysis where the behavior in tension and compression are assumed to be
the same. (See Rybicky and Kanninen (1973) for an example of the differ-
ence on the analysis of a beam in 3-point bending.)
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Stress-Strain Response of Epoxy: The constant strain-rate stress-strain
response as a function of temperature of an unmodified epoxy is given in
Fig. 3.10. The initial portion of each curve is linear and for room tempera-
ture (not shown) the material was linear up to the fracture or rupture point.
The data presented suggests a brittle to ductile transition might be defined
but the transition is merely the transition from glassy to rubbery behavior
previously discussed.

The behavior of a modified or rubber toughened epoxy is shown in Fig.
3.11 as a function of strain rate at room temperature. Comparison with Fig.
3.10 indicates the significance of adding rubber tougheners to dramatically
alter the ductility of the material.

6000 T T T T 40x10°
5000 [ Lo
7 .
& R4 — 30
3 4000 — R
G l' &S
G S g
g 3000 [~ K 20 ;
g V/ s
&
i) /
_g 2000 — /
4 .
@ / = = Compression
£ / Tension 10
1000 [~/
’
4
4
0 | | | [

0.0 0.5 1.0 1.5 2.0
Absolute value of strain, mm./mm.

Fig. 3.9 Stress-strain behavior of polypropylene. (Data from E.F. Rybicky and
M.F. Kanninen, (1973).)
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3.4. An Introduction to Polymer Viscoelastic Properties
and Characterization

The fact that the response of polymer based materials is time dependent
and/or viscoelastic has been mentioned in previous sections. Further, it has
been indicated that this time dependence is inherent to polymeric materials
due to their unique molecular structure and is quite different from time de-
pendence induced in other materials such as metals by fatigue, moisture,
corrosion or other environmental factors. In fact, these same environmental
factors also affect polymers but manifest themselves differently than in
other materials due to the intrinsic viscoelastic nature of the molecular
structure.

For the above reason, unique tests and analysis approaches must be
adopted for polymer-based materials to determine the manner in which
properties vary with time. The following sections introduce the necessary
terms, definitions and general behavior which will be useful in the more
advanced approaches in later chapters.

3.4.1. Relaxation and Creep Tests

One of the fundamental methods used to characterize the viscoelastic time-
dependent behavior of a polymer is the relaxation test. In a relaxation test,
a constant strain is applied quasi-statically to a uniaxial tensile (or com-
pression or torsion) bar at zero time. That is, the bar is suddenly stretched
to a new position and rigidly fixed such that the strain remains constant for
the duration of the test. The sudden strain must not induce any dynamic or
inertia effects (which explains the term quasi-static, i.e., the loading mo-
tion is sufficiently slow that inertia effects can be ignored).

In a relaxation test, it is also normal to assume that the material has no
previous stress or strain history or if one did exist, the effect has been nul-
lified in some way. One method to accomplish this for polymers is to an-
neal the sample at a suitable temperature sufficient to remove any previous
history and then to cool very slowly. The nature of such a process will be-
come obvious in later sections.

If a polymer is loaded in the described manner, the stress needed to
maintain the constant strain will decrease with time. Eventually, the stress
will go to zero for an ideal thermoplastic polymer but will decrease to a
constant value for a crosslinked polymer. The strain input and the stress
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output for typical thermoset and thermoplastic materials in a relaxation test
is shown in Fig. 3.12.

Obviously, if the stress is a function of time and the strain is constant,
the modulus will also vary with time. The modulus so obtained is defined
as the relaxation modulus of the polymer and is given by,

E(t) = o = Relaxation Modulus 3.1)
€

or

o(t) = ,E(t) (3.2)

The latter equation is the uniaxial stress-strain relation for a polymer
analogous to Hooke’s law for a material that is time independent but is
valid only for the case of a constant input of strain. The relaxation test pro-
vides the defining equation for the material property identified as the re-
laxation modulus. More general differential and integral stress-strain rela-
tions for an arbitrary loading will be developed in later Chapters.
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Fig. 3.12 Relaxation test: strain input (left) and qualitative stress output (right).

The limiting moduli at t = 0 and at t = o for a crosslinked material are de-
fined as,

Et=0)=2=Y _E_ _ mnitial Modulus 3.3)
€
o(t =) ey
E(t=0)=———=E_ = Equilibrium Modulus 3.4)
€

In addition to the relaxation test, another fundamental characterization test
for viscoelastic materials is the creep test in which a uniaxial tensile (or
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compression or torsion) bar is loaded with a constant stress at zero time as
shown in Fig. 3.13. Again, the load is applied quasi-statically or in such a
manner as to avoid inertia effects and the material is assumed to have no
prior history. In this case, the strain under the constant load increases with
time and the test defines a new quantity called the creep compliance,

D(t) = ﬂ = Creep Compliance 3.5)

In this case,
e(t) =o,D(t) 3.6)

In a creep test, the strain will tend to a constant value after a long time for
a thermoset while the strain will increase without bound for a thermoplas-
tic. Initial and equilibrium compliances similar to initial and equilibrium
modulus can also be defined for thermosetting materials.
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Fig. 3.13 Creep and creep recovery tests: stress input (above) and qualitative ma-
terial strain response (below).

An equally important facet of a constant stress test is to understand the re-
sulting strain variation if the stress is removed. This is referred to as a
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creep-recovery test and is also shown in Fig. 3.13. For an ideal thermoset
material, the strain will decay to zero after a sufficient time interval which
may be quite long compared to the time of loading. For an ideal thermo-
plastic material, a residual deformation or permanent strain will remain
even after a very long (or infinite) time.

The deformation mechanisms associated with relaxation and creep are
related to the long chain molecular structure of the polymer. Continuous
loading gradually induces strain accumulation in creep as the polymer
molecules rotate and unwind to accommodate the load. Similarly, in re-
laxation at a constant strain, the initial sudden strain occurs more rapidly
than can be accommodated by the molecular structure. However, with time
the molecules will again rotate and unwind so that less stress is needed to
maintain the same strain level. It is also clear from these tests that poly-
mers have some characteristics of a solid and some characteristics of a
fluid. In a relaxation test, the ratio of the initial stress and strain is,

E(t=0)=20 3.7)
€
and in a creep test,
D(t=0) =0 3.8)
Oy

which is analogous to the behavior of an elastic solid. On the other hand in
a creep test the rate of change of strain (or slope) for a thermoplastic mate-
rial is,

de(t = 0)

= constant 3.9)
dt

after a sufficiently long period of time which is characteristic of a fluid.
The flow characteristics of a thermoplastic are due to the lack of primary
bonds between molecular chains and the solid characteristics of a thermo-
set are due to entanglements and the primary bonds between individual
chains. In both thermosets and thermoplastics, creep (which is also viscous
like), is related to the motion of molecules between entanglements, while
the mechanisms for creep are further limited to motion between crosslink-
ing sites for thermosets. The initial and equilibrium moduli of a thermoset
are solid like with the former being due to both entanglements and
crosslinks and the latter being principally due to crosslinks.
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3.4.2. Isochronous Modulus vs. Temperature Behavior

The variation of modulus with temperature can be determined from relaxa-
tion tests conducted at different temperatures. In a relaxation test (Fig.
3.14) conducted at a constant temperature, the ratio of stress to strain at a
given instant in time of 10 seconds, one minute, or another suitable time, is
identified as the ten second modulus, E(10), or one minute modulus, E(1),
etc.

o(t=10 sec. .
E,,=E(t=10 sec) = ot=10sec) _ 10 sec. Relaxation Modulus  (3.10)
€
A A
= 4|
g g
@ 7 o,
& ] o Thermoset .
| Thermoplastic
|
|
| S e e N
L - = : - -
10 sec. time, t 10 sec. time, t

Fig. 3.14 Definition of the 10 second relaxation modulus for an isothermal test.

The variation of the 10 second relaxation modulus with temperature for
amorphous, crystalline and crosslinked polystyrene is shown in Fig. 3.15
(after Tobolsky (1962)). Similar curves are shown for polyblends in Fig.
3.16. As may be observed, there are five regions of viscoelastic behavior.
These are the glassy, transition (“leathery”), rubbery plateau, rubbery flow
and liquid flow regions. In some texts, only four regions are identified with
the rubbery flow region not being identified separately from the liquid
flow region. Thermoset materials do not show a liquid flow region though
if the temperature is very high for a prolonged period, degradation can take
place and give the appearance of a flow region. Also, the color of the
polymer will darken and degradation will be obvious. An example will be
given later. The transition region is suppressed in crystalline materials as
shown in Fig. 3.15.

Two very important temperatures are indicated in Fig. 3.15 and are the
melt temperature (or first order transition temperature), T,,, and the glass
transition (or second order transition temperature) T,. The T, and T, can
only be determined approximately from isochronous modulus-temperature
data similar to that given in Fig. 3.15. Often, manufacturers specification
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sheets will define a softening temperature which is not clearly defined as
either the T, or the T, but is somewhere in between the two. The T, is
also frequently determined approximately from DMA (dynamic mechani-
cal analysis — see Chapter 5) but the most accurate procedure to determine
both T,, and T, is through specific or relative volume measurements as ob-
tained from a dilatometer. Typically the relative or specific volume of
amorphous or crystalline polymers varies with temperature as shown in
Fig. 3.17. The T,, is identified as the temperature at which a discontinuous
change in relative volume takes place while the T, is the temperature at
which a discontinuous change in the slope of the relative volume takes
place. These concepts are discussed in more detail in Chapter 4 for crystal-
line polymers and in Chapter 7 for concepts of polymer aging.
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Fig. 3.15 E(10 Sec.) for a crystalline polystyrene, A, a lightly cross-linked poly-
styrene, B, and amorphous polystyrene, C.
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Fig. 3.16 E(10 Sec.) for polyblends as the phase fraction of the two polymers
varies from 0 to 100%. (Data from Tobolsky (1962)).

Amorphous

Crystalline

Free volume

T, T,, Temp.

Fig. 3.17 Relative volume vs. temperature.

In Fig. 3.17, both occupied and free volume regions are indicated. The oc-
cupied volume is the portion of polymer containing molecular mass and
the free volume represents the region within the polymer that is not occu-
pied by molecular mass. As a rule of thumb, the free volume at the T, is
approximately 2.5% of the total volume. The variation of free volume
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gives an interpretation of the molecular mechanisms associated with the
five regions of viscoelastic behavior shown in Fig. 3.15. Below the T,, the
amount of free volume is small and there is little room for molecular mo-
tion. The vibratory motion of individual atoms is suppressed, bond angles
are frozen, and the rotation of the backbone bonds and relative motion be-
tween chains is inhibited when the polymer is stressed. At the T,, however,
the amount of free volume begins to increase dramatically as temperature
is increased affording extra room for change in mobility and hence viscoe-
lastic or time dependent behavior. At the T,, secondary bonds become in-
effective and chains are able to move relative to each other freely.

3.4.3. Isochronous Stress-Strain Behavior — Linearity

For many applications and analysis methods, it is very important to deter-
mine if the polymer mechanical response under specific conditions is lin-
ear or nonlinear. This can only be accomplished by rigorously determining
if the creep compliance (or relaxation modulus) is independent of stress (or
strain). One method to determine linearity is by conducting creep (or re-
laxation) tests at different stress levels (at least three levels as shown in
Fig. 3.18) and obtaining the creep compliance (or relaxation modulus) at
constant times as well as the “isochronous” stress-strain diagram. If this
isochronous variation of stress vs. strain at any given time is linear as
shown in the lower diagram Fig. 3.18, the material is linear. If the varia-
tion is nonlinear, the material is nonlinear. Linearity of the isochronous
stress-strain plot derives from the fact that the ratio of the strain to stress at
a given time, t;, from each stress level must be identical if the material is to
be linear. That is for time t; we have,
e (t=t,) g(t=t) eft=t)

D(t=t,)= . = = (3.11)
0

a

which means that the compliance D(t= t,) is independent of stress level.

Similarly,
D(i-t )=sa(t=t2) _ ey(t=t,) ) e(t=t,) 3.12)
’ Ooa 00|b OOC
and
D(i-t )=sa(t=t3) _ ey(t=ts) ) e(t=t;) 3.13)
’ Ooa 00|b OOC
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Note that the conditions above can be deduced from the requirement that
the creep compliance is only a function of time (D(t)), and not a function

of stress level (D(t,0)), for a linear material:
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Fig. 3.18 Linearity as indicated by isochronous stress-strain data at constant
times from independent creep tests.

eat) _ E(t) _ () (3.14)
c7o|a 00|b Go

D(t)=

C

Relaxation tests may be used in the same manner to determine linearity.
The above discussion focuses on stress linearity. For viscoelastic materials
there is another important linearity which will be discussed at length in

Chapter 6, that of translational linearity with time.
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Before discussing mechanical models or other mathematical representa-
tion of viscoelastic behavior, it is very important to note that the preceding
section deals only with observed behavior or the experimental response of
polymers under laboratory conditions. That is, the viscoelastic properties
are defined from observations of real behavior and need not be defined by
a particular mathematical model. Mathematical models are developed for
the simple purpose of understanding and describing observed behavior.
Also, as will be evident later, other loading modes such as constant strain
rate and steady state oscillation, etc. can be used to determine viscoelastic
properties.

3.5. Phenomenological Mechanical Models

In this section, elementary mechanical models that can describe some as-
pects of viscoelastic polymeric behavior are presented. Although these
simple models cannot represent the behavior of real polymers over their
complete history of use, they are very helpful to gain physical understand-
ing of the phenomena of creep, relaxation and other test procedures and to
better understand the relationship between stress and strain for a viscoelas-
tic material. Undoubtedly, the first models were developed on the basis of
observations and not just as a mathematical exercise. Generalized me-
chanical models are presented later in Chapter 5.

The simplest mechanical models for viscoelastic behavior consist of two
elements: a spring for elastic behavior and a damper for viscous behavior.
First it is convenient to introduce the model of a linear spring to represent
a Hookean bar under uniaxial tension where the spring constant is the
modulus of elasticity. As indicated in Fig. 3.19 the spring constant can be
replaced by Young’s modulus if the stress replaces P/A and strain replaces
o/L.

| e

P‘_‘ ’_>P
G«—‘ ’—»Gcs:%:E%:Ea

Fig. 3.19 Linear elastic spring analog for a Hookean elastic tensile bar.
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Consider a semi-infinite fluid as shown in Fig. 3.20. If a flat plate at the
top of the fluid is moved with a velocity, V = du/dt, and if the fluid is
Newtonian the shear deformation varies linearly from top to bottom as-
suming a no slip boundary condition between the fluid and the plate as
well as between the fluid and the container.

v >
|
_|d“'_
) (-
dx T perforated diaphragm

Fig. 3.20 Linear viscous damper analog for a Newtonian viscous fluid.

The strain on a differential element of the fluid is given by du/dy. The
Newtonian law of viscosity for the shear process shown in Fig. 3.20 may
thus be expressed as,

d(du dy .
T=U dt( dy) M =W (3.15)
where W is viscosity. A linear viscous damper (or dashpot) also shown in
Fig. 3.20 will be used to model a Newtonian fluid such that it can form a
uniaxial fluid analogue to a tensile bar. The housing of the damper con-
tains a fluid with a viscosity u. The diaphragm is perforated and when it is
pulled through the fluid by an applied force, motion occurs according to
the Newtonian law of viscosity given above.

Spring and damper elements can be combined in a variety of arrange-
ments to produce a simulated viscoelastic response. Early models due to
Maxwell and Kelvin combine a linear spring in series or in parallel with a
Newtonian damper as shown in Fig. 3.21. Other basic arrangements in-
clude the three-parameter solid and the four-parameter fluid as shown in
Fig. 3.22.

These models are very useful in understanding the physical relation be-
tween stress and strain that occurs in polymers and other viscoelastic mate-
rials. For example, if suddenly a constant stress is applied as in a creep
test, each model with a free spring will have a sudden increase in strain.
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The Kelvin will not have a sudden increase in strain as the damper will not
allow a sudden jump in strain. Under the condition of constant stress, each
model with a free damper (Maxwell and four parameter fluid) will have an
ever-increasing creep strain and will be similar to the response for a ther-
moplastic polymer described in Fig. 3.13. Those with a free spring (Kelvin
and three parameter solid) will creep to a limiting constant strain and will
be similar to the response of thermoset polymers described in Fig. 3.13. In
relaxation, the stress will decay to zero for those models with a free
damper (Maxwell and four parameter fluid) and the stress will decay to a
limiting value for those without a free damper (Kelvin and three parameter
solid) as shown in Fig. 3.12 for thermoplastic and thermosetting materials
respectively. Note that a simple stress relaxation test is not possible for a
Kelvin model as the damper will prohibit a sudden increase in strain.

E

B G_/\NV\I_G
-

u
Maxwell fluid model Kelvin solid model

L

Fig. 3.21 Spring and damper arrangements for Maxwell and Kelvin models.

Three parameter solid model Four parameter fluid model

Fig. 3.22 Spring and damper arrangements for three and four element models.

3.5.1. Differential Stress-Strain Relations and Solutions for a
Maxwell Fluid

The models described in the preceding section are useful in developing
mathematical relations between stress and strain in viscoelastic polymers
and in giving insight to their response to creep, relaxation and other types
of loading. Consider again the Maxwell fluid from Fig. 3.21,
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E H

(o

Maxwell fluid

An equation between stress and strain can be obtained for any mechanical
model by using equilibrium and kinematic equations for the system and
constitutive equations for the elements. For a Maxwell fluid, equilibrium
gives,

0=0,=0, 3.16)
where o is the applied stress, O is the stress in the spring and o4 is the
stress in the damper. The kinematic condition is,

E=g,+&y 3.17)

where € is the total strain in the Maxwell element, & is the strain in the
spring and & is the strain in the damper. The constitutive equations are,

o,=Ee =0 (3.18)
and
de .
O, =Wl——=U€e, =0 3.19
a=u at Ue ( )

Differentiating Eq. 3.17 and replacing the strain rates of the spring and
damper using Eqgs. 3.18 and 3.19 gives after rearrangement,

5+ LG oEé (3.20)
u

The result indicates that the relation between stress and strain for a mate-
rial that is Maxwellian in behavior is a differential equation which must be
solved for particular cases of applied stresses or strains. In viscoelastic lit-
erature, it is usual to write the differential equation in a standard form with
ascending derivatives from right to left on both sides of the equation.
Hence,

w . .
O+—0=UE 3.21
= u (3.21)

or

o+p0=q,é (3.22)
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Differential equations for all mechanical models can be found using the
same procedure. In this form the inverse of the coefficient of the stress rate
is defined as the relaxation time, i.e. T = wW/E.

To obtain the solution of Eq. 3.20 for the case of creep note the applied
stress is constant and can be written as,

o(t)=o,H(t) (3.23)
where H(t) is the Heavyside function and is defined as,
H(t)=1 for t>0

(3.24)
H(t)=0 for t<0

In other words the stress is constant for time greater than zero. With this
input the solution of Eq. 3.20 is,

e(t) = 00(%+i) (3.25)
or
e(t) = 5,D(1) (3.26)
where
1t
D) =|=+L 327
oofted) o

is the creep compliance.

The creep and creep recovery behavior for a Maxwell fluid is shown in
Fig. 3.23(a) and agrees with the description of a thermoplastic materials
given in Fig. 3.13.

The solution of Eq. 3.20 for relaxation is obtained using a step input in
strain,

e(t) =€, H(t) (3.28)
with the resulting stress output of,
o(t)=¢g,Ee™"'" (3.29)
where

E(t)=Ee™'" (3.30)
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is the relaxation modulus. The relaxation behavior for a Maxwell fluid is
shown in Fig. 3.23(b) and agrees with the description of thermoplastic ma-
terials given in Fig. 3.12.
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o Input € Input
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€ Output o Output
Go
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? 7777777 T —
to time, t T time, t°
(a) Creep and creep recovery (b) Relaxation

Fig. 3.23 Creep, creep recovery and relaxation response of a Maxwell fluid.

From Eq. 3.29, the stress at a time equal to the relaxation time is,
o(t=7)=0,/e (3.31)

This result provides a general definition of the relaxation time of a poly-
mer and allows the relaxation time to be found easily from experimental
data without recourse to a mechanical model. It can be used as a material
property to give an indication of the time scale associated with viscoelastic
response in a polymer and is indicative of the intrinsic viscosity of the
polymer. It should again be noted that the relaxation time for a Maxwell
model is related to the viscosity through the equation, T = u/E. In a sense,
the Maxwell model provides a defining relationship for the viscosity of a
material. It will be shown later that a polymer possesses a distribution of
relaxation times and that an individual chain can be thought of as having
various relaxation times.

It is instructive to consider the response to a Maxwell fluid under a con-
stant strain rate loading as shown in Fig. 3.23a. For a constant strain-rate,
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e =Rt and de/dt=R =constant (3.32)

The differential equation then becomes

o+2o-uR (3.33)
E
and the solution can be shown to be,
o(t) = ’EER(I - e-”f) (3.34)
or,sincet=¢ /R
o(e) = rER(l - e'“TR) (3.35)

For various constant strain rates, several results are plotted in Figs. 3.23(b)
and 3.23(c). Note that the time scale and the strain scale in these two fig-
ures are related by the constant rate of each test and obviously the abscissa
can be interpreted as only strain. While the stress versus time curves would
be linear for a single spring (a pure elastic material), the result for the
Maxwell element appears nonlinear since the damper continuously relaxes
some of the stress as time increases. The apparent stress-strain behavior (or
plot of Eq. 3.35) is therefore as shown in Figure 3.24(c). That is, the
stress-strain response might be mistakenly interpreted as nonlinear, even
though the Maxwell model is composed only of linear elements. The rea-
son, of course, is due to the simple relationship between strain and time. If
isochronous stress-strain curves were constructed for a Maxwell model us-
ing creep or relaxation data or the constant strain rate data of Fig. 3.24, a
linear stress-strain response would be obtained. Also the construction of
isochronous stress-strain curves from constant strain rate tests as given in
Fig. 3.23 would be linear (see problem 3.5).

A R, oA R, oA R,
R,
R, R,
1{l
/ ) / o
t= t:E/R; 8=
(a) Strain vs time (b) Stress vs time (c) Apparent stress-
R, >R, >R, strain response

Fig. 3.24 Stress response of a Maxwell model in a constant strain-rate test.
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The results shown in Fig. 3.23(c) are very similar to those for the polymers
illustrated in Fig. 3.6. From this example, it is now clear that the apparent
nonlinear stress-strain response displayed in Fig. 3.6 may, in fact, be linear
prior to yielding. The point being that it is not possible to determine if a
material is linear just by looking at the shape of an experimentally deter-
mined response to a constant strain rate test as generally conducted in the
laboratory. Linearity can only be assessed by carefully determining if the
material response is independent of stress regardless of loading type, e.g.,
by the isochronous stress-strain diagrams described earlier. The impor-
tance of this principle cannot be overstated.

Using Eq. 3.35 it is also possible to show that constant strain rate prop-
erties vary with temperature for a Maxwell model and would be similar to
the results described earlier in Fig. 3.6 (see problem 3.6).

A constant strain rate test may be used to determine the relaxation
modulus and a constant stress-rate test may be used to find the creep com-
pliance. Steady state oscillation tests may also be used to determine the
viscoelastic properties of polymers. These details and the interrelation be-
tween various test approaches are given in Chapter 5.

3.5.2. Differential Stress-Strain Relations and Solutions for a
Kelvin Solid

The Kelvin model is also frequently used to describe the phenomena of
creep. Recall the Kelvin solid from Fig. 3.21.

E
c VY VY c

] —
H
Kelvin solid
The equilibrium equation is,
0=0,+0, (3.36)

and the kinematic condition is,

E=g,=¢,4 3.37)
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The constitutive equations are,

o=Eeg,

. (3.38)
Ogq =UEy
and the differential equation becomes,
o=Ec+us (3.39)
or
0=q,e+q,¢
Under creep loading, the solution becomes,
o -t/t
e(t) = fo(l e ) (3.40)
and the creep compliance is,
1 -t
D(t) = E(1 —eV ) (3.41)

A schematic of the result is given in Fig. 3.25.
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Fig. 3.25 Creep of a Kelvin solid.

There is no initial elasticity as the damper only allows the spring to move

slowly with time. Also, the Kelvin model is not useful in understanding the

relaxation response of materials because the damper does not allow the
spring to move instantaneously.

Note, for a very large time, a constant strain state, €, is achieved
g(t=o)=¢, =0,/E=0,D, (3.42)

and 1/E is the corresponding equilibrium compliance.



3 Characteristics, Applications and Properties of Polymers 93

The retardation time, T, is defined as the time required for the strain to
come within 1/e of its asymptotic value. That is, Eq. 3.40 becomes,

€(t=r)=%(l—e‘l)=am(l—l) (3.43)

€

Again, the concept of a retardation time can be used as an indication of the
intrinsic viscosity of a polymer as the transient strain in a creep test occurs
due to viscosity of the assembly of molecular chains. The retardation time
of a polymer can be determined from a creep test by considering only the
experimental data according to the above definition.

3.5.3. Creep of a Three Parameter Solid and a Four Parameter
Fluid

A single Maxwell element is not realistic for characterizing a polymer as
no transient response is shown in a creep test, i.e., the creep response is
linear with time. A single Kelvin element is also not accurate as no instan-
taneous elastic response occurs in a creep test. A more realistic result for
creep is obtained if a Kevin solid is combined with a Maxwell fluid to ob-
tain the four-parameter fluid as in Fig. 3.22.

E,
E, Ko
t:. ( :
Ky

Four parameter fluid

The differential equation can be derived by following similar procedures
as previously given for the Maxwell and Kelvin elements (see problem
3.4). The resulting equation can then be solved for the case of creep. How-
ever, the creep response can also be obtained by superposition by adding
the creep response of Kelvin and Maxwell elements to obtain,
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e(t) =0, 1 + —(1 "”T) + t (3.44)
BEC )
elastic delayed elastic flow

The behavior shown here represents the most general type behavior possi-
ble for a viscoelastic material, instantaneous elasticity, delayed elasticity
and flow. Some texts do not include the flow term as a viscoelastic com-
ponent, preferring instead to define viscoelastic behavior only for models
with no free damper or flow term.

The response of a four parameter fluid in a creep and creep recovery test
is given in Fig. 3.26 and is recognized as the response of a thermoplastic
type polymer as given earlier in Fig. 3.13.

By eliminating various elements in the four-parameter model the re-
sponse of a Maxwell fluid, Kelvin solid, three-parameter solid (a Kelvin
and a spring in series) can be obtained and the model can be used to repre-
sent thermoplastic and/or thermoset response as illustrated in Fig. 3.13.
For example the creep response of a three-parameter solid is obtained by
eliminating the free damper in Eq. 3.44 and gives the creep and creep re-
covery response shown in Fig. 3.13 for a crosslinked polymer.

The four-parameter fluid can also be evaluated in relaxation but typi-
cally, Maxwell elements in parallel are used for relaxation and Kelvin
elements in series are used for creep.

(o]
c
~
°
c
-

Input

stress, o,
strain, &,

Q

t, time, t t, time, f

Fig. 3.26 Creep and creep recovery of a four-parameter fluid.



3 Characteristics, Applications and Properties of Polymers 95

3.6.

3.1.
3.2.

3.3.
34.
3.5.
3.6.
3.7.
3.8.

39

3.10.

3.11

3.12

3.13

3.14

3.15

Review Questions

What are some advantages of using polymers as structural materials?
What are some disadvantages of using polymers as structural mate-
rials?

What is a coupling agent?

What is a plasticizer?

What is the correct name for ABS?

Describe vulcanization.

Give the complete names for LDPE, LLDPE, HDPE.

Sketch creep and creep recovery curves for a VE solid and a VE
fluid. Label all significant points. Also identify which curve would
be expected to represent a linear polymer. Which would represent a
cross-linked polymer.

Sketch the response of a Maxwell fluid to a creep and a creep recov-
ery tests.

Sketch relaxation curves for a VE solid and a VE fluid. Label all
significant points. Also identify which curve would be expected to
represent a linear polymer. Which would represent a cross-linked
polymer.

Describe in detail how the “10 second” modulus is found. Give a
sketch of a typical “ten second” modulus curve for an amorphous
polymer as a function of temperature and label the five regions of
VE response. Show on your sketch curves for amorphous thermo-
plastic, crystalline thermoplastic and thermosetting polymers. Indi-
cated the location of the T, and the T,

Give a proper definition for T, and the T, and discuss methods for
determining these quantities.

Sketch the variation of the specific volume vs. temperature for an
amorphous polymer. Indicate regions of free volume, occupied vol-
ume, the T, and the T,,. Give the correct names for the T, and the
T

Give an accurate description of how you would determine the linear-
ity of a VE material.

m-*

Indicate on a sketch how stress strain properties of polymers typi-
cally depend on a). strain-rate, b). temperature. (Use separate
sketches).
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3.16 Recalling class discussion and/or class notes, give the proper equa-

3.7.

3.1
32
33

34

35

tion for the creep compliance of a four-parameter fluid. Indicate the
instantaneous elasticity term, the delayed elasticity term, and the
flow term.

Problems

Derive the differential equation for a three parameter solid.
Derive the differential equation for a four-parameter fluid.
The DE for a Maxwell model is, o + W/E do/dt = u de/dt. Determine

the stress output for a relaxation test by solving this DE and sketch
the resulting curve.

Given the relaxation data below. Determine the relaxation time. (The
stress remains constant after t = 35 minutes.)

7
i
b-()-
4T -
3__ (o]
2T o
(o]
1T o o o
o 10 " 20 ' 30 t(mmn)

A schematic of the constant strain-rate response of a Maxwell fluid
is shown below. Prove that the constant strain-rate behavior of a
Maxwell fluid is linear by constructing an isochronous stress-strain
curve. (Note: Use the known form of the analytical solution. Do not
attempt to use the schematic curves below as they are not to scale.)
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3.6

3.7

A A
R, c R,
R

2 R2

R,
R,
I —
t t=¢/R

Prove that the generic (general shape) constant strain rate and tem-
perature properties for a polymer can be phenomenologically ex-
plained using a Maxwell model. Hint: think of the parameters in the
Maxwell model. Which of these are affected by temperature?

Given the creep data shown below. Find the necessary parameters to
represent the data using a three-parameter solid. Plot your results on
the data given. (Clearly indicate your procedures.)

3.5 T T T T
0(=500psi
B0 -

2.5

2.0

Strain (x10™ %)

0.0 | | |
0 10 20 30 40

Time (min)




4. Polymerization and Classification

The discussion in previous chapters has provided a glimpse of the relation-
ship between the molecular structure of polymers and their mechanical be-
havior. In this chapter the intent is to provide more detailed information
about the molecular structure of polymers and the relation of such structure
to mechanical performance. Typically materials courses taken by engineer-
ing students prior to 1980 contained little, if any, information on the struc-
ture of polymers that might be useful in the engineering design of polymer
based structures. While now most elementary books on materials do in-
clude a chapter or two on polymers they are often omitted due to the pres-
sures of schedules and/or time constraints. As a result, engineering stu-
dents often do not obtain a knowledge base that allows the safe design of
polymeric structures. All too frequently, the engineering design of struc-
tural polymers is based upon principles that are best used for metals. The
purpose of the present chapter is to provide a framework for understanding
the structure of polymers and hence the structure-property relationships
that give rise to their unique mechanical behavior with time, temperature
and other environmental parameters as discussed in subsequent chapters.
Due to the prevalence of polymers in industrial uses, a general understand-
ing of the concepts outlined in this chapter are essential for an engineer to
be able to make informed design decisions on polymeric components and,
importantly, to be able to discuss on common ground with synthesis peo-
ple the type of polymer needed to be produced for a given application.

4.1. Polymer Bonding

Atomic and molecular bonding of materials are discussed in elementary
chemistry, physics and materials science courses. In general, the same
bonds are present in polymers but they need to be revisited with an empha-
sis on the prevalent types found in polymers.

In general there are two types of bonds: (1) primary or chemical bonds
and (2) secondary or van der Waals bonds. Primary bonds are metallic, co-
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valent, and ionic. Metallic bonds are unique because all the atoms of a
metal give up their valence electrons to share with all other atoms such that
the electrons move freely throughout the bulk of the material. Metallic
bonds were not generally important in polymers until the recent interest in
conducting polymers using metal oxides and the metallacenes. Covalent
bonds are when two or more atoms share electrons from their respective
valence shells and constitute most of the primary bonds found in polymers.
A coordinate bond is a type of covalent bond found in polymers in which
the shared electrons come from only one atom (Billmeyer (1984)). Ionic
bonds are those in which one atom donates an electron to another atom,
e.g. Na*Cl. These bonds are not frequently encountered in polymers but
they do occur.

Unlike the case for metals, secondary bonds are of great importance in
polymers. These bonds are much weaker than covalent bonds, but for even
moderate chain length polymers these bonds have a significant impact on
the molecular and bulk properties of these materials. These intermolecular
bonds are based on electrostatic interactions and are due to either attrac-
tions between permanent dipoles, quadrupoles, and other multipoles, or be-
tween a permanent multipole and an induced charge on a second molecule
(or moiety, in the case of a polymer), or between transient multipoles. All
such secondary bonds can be considered van der Waals forces, but many
texts use van der Waals to denote induced and/or transient multipole inter-
actions only. The induced interaction is sometimes referred to as polariza-
tion, or sometimes induction bonding. The transient interaction is very
weak and is known as dispersion or London dispersion forces, and arises
from electrostatic interactions between two molecules due to temporary
inhomogeneous electron density distributions in the outermost electron
shells of these molecules.

Secondary bonding of the first type, that is, forces between multipoles,
are the strongest. This occurs when there is a permanent separation of two
atoms with strongly differing electronegativity, such as is found in an oxy-
gen-hydrogen (-OH) bond. Electronegativity can be thought of as the at-
traction that an atom has for electrons in the outermost shell. Using the OH
example, oxygen is strongly electronegative (meaning it has a very strong
attraction for an additional electron), whereas hydrogen is very weakly
electronegative (meaning that has only a weak attraction for its single elec-
tron). This results in the oxygen side of the OH bond having a partial nega-
tive charge. Water, consisting of two OH bonds at an angle of 104.45 is
strongly polar. Intermolecular forces due to the electrostatic forces be-
tween these dipoles give water its special properties. Dipolar van der
Waals forces involving hydrogen are referred to as hydrogen bonds, and
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many of the important properties of polymers and polymer side chains are
due to hydrogen bonding given the prevalence of hydrogen atoms along
most polymer chains.

Using knowledge of the nature of attractive forces and energies between
atoms described in Chapter 2, bond lengths and energies of typical cova-
lent bonds found in polymers have been estimated and are shown in Table
4.1.

The disassociation energy (kJ/mole or k cal/mole) or cohesive energy
density (J/cm®) is the energy required to move a molecule far enough away
from another molecule so that the attractive force or energy between the
two is negligible. The cohesive energy densities to break the bond between
mer units of a number of linear polymers is shown in Table 4.2. In linear
or thermoplastic polymers, it is only the secondary bonding forces that
hold the polymer together if entanglements are neglected. Therefore the
energies in Table 4.2 give only an estimate of the breaking strength of a
highly oriented samples of the various polymers listed.

Table 4.1 Typical covalent bond lengths and energies found in polymers. (Data
from Billymeyer (1984))

Bond Bond Length (A) Dissociation Energy
(kJ/mole)
C—C 1.54 347
c—C¢C 1.34 611
C—H 1.10 414
C—N 1.47 305
C—N 1.15 891
C—oO 1.46 360
C=—0o0 1.21 749
C—F 1.35 473
Cc—da 1.77 339
N—H 1.01 389
O—H 0.96 464
0O—O 1.32 146

Of even more interest is a comparison of bond lengths and energies given
in Table 4.3 for primary and secondary bonds which assists in understand-
ing the differences between linear and crosslinked polymers.
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Table 4.2 Cohesive energies of linear polymers. (Data from Billmeyer (1984)).

Polymer Repeat Unit Cohesive Energy
Density (J/cm3)
Polyethylene — CHCHy— 259
Polyisobutylene — CHC(CH3)y— 272
Polyisoprene |[— CH,C(CH3) — CHCH, — 280
Polystyrene — CHC(CgHs) — 310
PMMA — CH,C(CH3)COOCH3 — 348
PVC — CHCHCL — 381
PET — CH,CH,0COCgH4COO0 — 477
PAN — CHpCHCN — 992

Table 4.3 Comparsion of primary and secondary bond distances and energies.
(Data from Rosen (1993))

Bond Type

Interatomic Distance (nm)

Dissociation En-

ergy (kcal/mole)

Primary covalent
Ionic
Hydrogen
Dipole
van der Waals

0.1-0.2
0.2-0.3
0.2-0.3
0.2-0.3
0.3-0.5

50-200
10-20
3-7
1.5-3
0.5-2

Except for the dispersion bond, all bonds are functions of temperature. As
a result, variations in temperature for the same polymer lead to different
physical states as represented by Fig. 4.1. The relation of these states to
mechanical properties will be discussed further in later sections and chap-
ters. Notice that both linear and cross-linked polymers are indicated and
temperature can be used to alter the state and or the chemistry of a poly-

mer.
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Fig. 4.1 The interrelation of states in a bulk polymer. (After Billmeyer (1984)).

4.2. Polymerization

The polymerization process can be illustrated by the conversion of ethyl-
ene into polyethylene which is one of the most widely produced polymers
in the world. The unsaturated ethylene molecule or monomer is shown in
Fig. 4.2 below. (In general, the term unsaturated refers to molecules with
double or triple bonds while those with only single bonds are termed satu-
rated.)

H H
"y Qe o
7=
H H

H H

Fig. 4.2 The ethylene molecule.

Under appropriate conditions of heat and pressure in the presence of a
catalyst, the double bond between the two carbon atoms can be “opened”
or broken and replaced by a single saturated bond with other similarly
opened monomeric units on either side to form a long replicated strand of
mer units as illustrated in Fig. 4.3.
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Mer Unit
oo e
DA
H H HH HH H H
Fig. 4.3 Repeating mer units of polyethylene.

In an actual polymer each individual chain may contain from several thou-
sand to hundreds of thousand repeating mers or units.

The resulting solid polyethylene will contain a great many chains but
each chain will vary in length. This leads to the need to have special meth-
ods to quantify the molecular weight of polymers and these will be dis-
cussed in a subsequent section. In the case of polyethylene, the molecular
bonds between carbon atoms along the length of the chain are all primary
or covalent. However, the bonds between individual chains are secondary.
For this reason, under a sufficient increase in temperature, the secondary
bonds become ineffective or broken and the various long chains can move
or flow past each other with relative ease. Therefore, polyethylene is called
a thermoplastic polymer as it can be melted and molded or reformed. Poly-
ethylene and other polymers with similar characteristics are also called lin-
ear polymers because the backbone chain as shown in Fig. 4.3 appears to
be one-dimensional or like a long string.

It is important to note here that the use of the term linear to describe a
type of polymer refers only to the geometry of the chain and/or the bond-
ing state between chains and should not be confused with the term linear
used to describe the relation between stress and strain in earlier sections.

The term linear is also somewhat misleading with respect to chain ge-
ometry as even a fully extended PE chain has more of a “zig-zag” shape as
shown in Fig. 4.4 because the equilibrium angle between alternate carbon
atoms is 109° 28°. And in reality, the chains are neither linear or of a zig-
zag shape as, depending on the temperature, carbon atoms can rotate rela-
tively easily about adjacent carbon atoms as shown in Fig. 4.5. As a result,
an individual chain within a polymer will form in a random manner during
polymerization and the final shape of a chain will appear as given in Fig.
4.6. Each long chain molecule will exist together with many, many other
chains in a tangled mass which has often been said to resemble a tangled
ball of many pieces of individual strings of different length. A more pre-
cise description of a tangle ball of very long worms has been used as each
atom is in a state of constant motion or vibration. Indeed, in recent years
this analogy has been used to develop a reptation model to explain the
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manner in which one long molecule can move through a seemingly con-
tinuous mass of other chains (Aklonis and McKnight (1983)). The method
of displaying the atoms as bar-mass linkages in Figs. 4.3 and 4.4 is tradi-
tional. It is often used to visualize bonding arrangements and many types
of computations associated with molecular geometry and motion.

Fig. 4.4 Zigzag shape of polyethylene molecule.

Fig. 4.5 Random nature due to rotation of carbon molecules.
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Fig. 4.6 Shape of a 1,000 link polyethylene chain (Treolar (1975), reprinted by
permission of Oxford University Press).

The mer units of a number of frequently used thermoplastic polymers are
given in Fig. 4.7.
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Polymer Repeating (Mer) structure

"
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H H
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Polymethylmethacrylate (PMMA) —¢-G-
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ymew Y H ¢-0-CH,

o
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CH,

Fig. 4.7 Mer units of selected thermoplastic polymers.

Thermosetting or “cross-linked” polymers are also formed under catalytic
conditions of heat and pressure (often pressure is not needed). However, in
this case covalent bonds do exist between individual chains. This “cross-
linking” may vary considerably from polymer to polymer but generally



108 Polymer Engineering Science and Viscoelasticity: An Introduction

leads to a solid material which cannot be melted. Examples of several
chemical units that lead to cross-linked polymers are shown Fig. 4.8.

CH,| CH;
I
oM

Phenol-formaldehyde (bakelite)

I Il
{C—NH—R—NH—C—O—R—O%

n

Polyurethane
CH; OH CH;
-O)-¢-)-0-CH,— CH - o-O)-c-Q)-0-R
RJ[o O©-¢-Q -0-cH,-cH CH2~}n ©-¢-0O-o

Bisphenol-A epoxy based polymer

Fig. 4.8 Mer units of selected thermoset polymers.

Pheno-formaldehyde or Bakelite was one of the first polymers introduced
in the US by Leo Bakeland in 1907. Polyurethane can be polymerized with
other elements to give either elastomeric or rigid polymers. The epoxy
precursor shown can be reacted with several other compounds to give well
known epoxy resins.

4.3. Classification by Bonding Structure Between Chains
and Morphology of Chains

One simple classification scheme according to bonding structure is shown
in Fig. 4.9. Here it is appropriate to emphasize the distinction between
thermoplastic and thermosetting polymers,

Linear or Thermoplastic Polymers: Intrachain bonds are primary
(covalent). Interchain bonds are secondary (hydrogen, induction, di-
pole, etc.).
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Crosslinked or Thermosetting Polymers: Intrachain bonds are
primary. Interchain bonds are both secondary and covalent. Very
heavily crosslinked polymers are often called network polymers.

All Polymers
1
Thermoplastics Thermosets
1
I |
Crystalline Amorphous

Fig. 4.9 A simple classification scheme for polymers.

It is noted that there are variations in each type and schematically these
may be represented as given in Fig. 4.10. The branches in branched poly-
mers may vary from very short to very long. Long branches may be further
classified as comb-like, random or star shaped as shown in Fig. 4.11.

Linear Branched

Thermoplastic

Q=

Lightly Crosslinked Heavily Crosslinked
(Network)

Thermoset

Fig. 4.10 Variations in thermoplastic (top) and thermosetting polymers (bottom).
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Short Long

Star
Comb Random

Fig. 4.11 Variations in branched polymers.

Crystalline regions of a linear polymer in Fig. 4.10 are shown schemati-
cally as small parallel segments within a chain. This ordering of the struc-
ture will be discussed in a later section on morphology. However, it is im-
portant to note here the relative amount of ordering (crystallinity) for
polyethylene and the effect on density and mechanical properties. This in-
formation is given in the Table 4.4.

Characteristics and applications of several linear polymers are given in
Table 4.5.

Table 4.4 Effect of crystallinity on density and strength of polyethylene. (Data

from Hertzberg (1989))
Density (g/cm®) | % Crystallinity Ultimate Tensile Strength

MPa ksi

0.920 65 13.8 2.0

0.935 75 17.8 2.5

0.950 85 27.6 4.0

0.960 87 31.0 4.5

0.965 95 37.9 55
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Table 4.5 Characteristics of several linear polymers.

Material Characteristics Applications

Low Density Branched crystalline, inex- Films, moldings, squeeze

Polyethylene pensive, good insulator bottles, cold water plumbing

Polypropylene | Crystalline, corrosion and fa- | Fibers, pipe, wire covering
tigue resistance

Nylon 66 Crystalline, tough, resistance | Gears, bearings, rollers, pul-
to wear, high strength leys, fibers

PTFE (Teflon) | Crystalline, corrosion resis- Coatings, cookware, bear-
tance, very low friction, non- | ings, gaskets, insulation
sticking. tape, non-stick linings

PVC Amorphous, inexpensive, Film, water pipes, insulation
good processability

PMMA Amorphous, high transpar- Signs, windows, decorative
ency products

4.4. Molecular Configurations

The terms configuration and conformations are often used to describe the
arrangement of atoms in a polymer and sometimes it seems as if they can
be used interchangeably. However, herein the description for each given
by Billmeyer (1962) will be used. Configurations describe those arrange-
ments of atoms that cannot be altered except by breaking or reforming
chemical bonds. Conformations are arrangements of atoms that can be al-
tered by rotating groups of atoms about a single bond. Each will be dis-
cussed in the subsections below.

4.4.1. Isomers

Polymers that have the same composition but with different atomic ar-
rangements are called isomers. Two basic types are: stereoisomers and
geometrical isomers. Isomers occur because polymers may have more than
one type of side atom or side group bonded to the main chain (e.g. PVC,
see Fig. 4.7) such that a mer unit would appear as in Fig. 4.12(a) in which
R represents an atom or side group other than hydrogen. Polymers with
only one extra side group are called “vinyl” polymers. A “head-to-head”
arrangement of mers occurs when the R groups are adjacent to each other,
and a “head-to-tail” arrangement occurs when the R groups bond to alter-
nate carbon atoms in the chain as shown in Fig. 4.12. The head-to-tail con-
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figuration predominates as polar repulsion occurs between R groups in
head-to-head configurations.

O O S S W
-C-C - -C-C-C-C - -C-C-C-C -
I | I I
H ® H® ® H H® H ®
(a) Basic mer unit (b) Head to head config. (c) Head to tail config.

Fig. 4.12 Sequences for isomers.

For a polymer chain with a given sequence of mer groups, stereoisomers or
geometrical isomers can then be distinguished. The three types of stereoi-
somers (isotactic, syndiotactic and atactic) for a head-to-tail sequence are
shown in Fig. 4.13 and the two types of geometric isomers (trans and cis)
for a mer unit containing a double bond are shown in Fig. 4.15. In steroi-
somerism, the atoms are linked together in the same order (e.g., head-to-
tail) but their spatial arrangement is different. The isotactic configuration
(a) is when the R groups are all on the same side of the chain. The syndio-
tactic configuration (b) is when the R group is on alternate sides of the
chain and the atactic configuration (c) is when the R group alternates from
one side to the other in a random pattern. Examples of stereoisomers for
polypropylene are given in Fig. 4.14.

Conversion from one type to another is only possible by breaking a car-
bon to carbon bond, rotating and reattaching. This constraint can be seen
best by use of molecular models or three dimensional chain representations
(eg, Fig. 4.20). A specific polymer may contain more than one type of
steroisomer but one may predominate depending only on the synthesis
procedure used.

(N G G G S W G HoH e
AP O O O S S A
H®H®H®H® H®HH|—| H H
(a) Isotactic (b) Syndiotactic

H

R A

AP S

H ® H H H ® H ®

(c) Atactic

Fig. 4.13 Stereoisomers
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Fig. 4.14 Atactic (a), Isotactic (b) and Syndiotactic (c) polypropylene.

An example of geometrical isomerism is given by the isoprene mer and
is shown in Fig. 4.15. The cis-isoprene is when the structure is such that
the CH, groups are on the same side of the carbon to carbon double bond
and the trans-isoprene is when the CH, groups are on the opposite side of
the carbon to carbon double bond. Conversion between the two configura-
tions is not possible by a simple rotation as the double bond is rotationally

rigid.
) @ M o

N ’ _
~c=c{ /C—C\

-cH, cH,-  ~CcH, ()

(a) Cis-isoprene (b) Trans-isoprene

Fig. 4.15 Geometrical isomers.

With these various molecular characteristics, it is now possible to have a
more precise classification scheme of polymers as is illustrated in Fig.
4.16.
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Molecular
characteristics
| |
Chemistry Size or Structure
mer unit molecular weight

I
I l l |

Linear  Branched Crosslinked Network
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Isomer Type
|

I I
Geometrical

Isomers
]

Isotactic Syndiotactic Atactic Cis Trans

Stereoisomers

Fig. 4.16 Classification of polymers by molecular characteristics.

4.4.2. Copolymers

The polymers described previously are generally referred to as ho-
mopolymers because the mer units along the backbone chains are identical.
However, it is possible to form copolymers such that the mer units along
the backbone chain may vary. Depending on the process of polymeriza-
tion, various sequences of mers may occur along the backbone chain in
random, alternating, block or graft arrangement as shown in Fig. 4.17.
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(@)

“O”OOOOO..(:)W

(d)

Fig. 4.17 Types of copolymers: (a) random, (b) alternating, (c) block, (d) graft.

4.4.3. Molecular Conformations

In an earlier section, it was suggested that the shape of a polymer molecule
could change because of a rotation about the bond between carbon atoms.
An example of a possible rotation is given in Fig. 4.18 where two possible
positions, staggered and eclipsed, of hydrogen atoms attached to two adja-
cent carbon atoms are shown for the ethane molecule.

Fig. 4.18 Staggered and eclipsed conformations of ethane.
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A better understanding of the geometry is possible by looking along the
carbon to carbon bond as shown below in Fig. 4.19. The potential energy
of the staggered position is slightly less than the potential energy of the
eclipsed position as the hydrogen atoms are slightly further apart. For this
reason, the staggered position is more favored or more stable than the
eclipsed position. The energy varies with position as shown.

Staggered Eclipsed
_T 5 _n 2w 4n
¢=3m3 T ¢=0,3°3

Potential
energy

o—>

Fig. 4.19 Potential energy vs, angle for ethane.
(Eclipsed is maximum and staggered is minimum.)

Rotation may be quite restricted in a molecule with larger side groups.
However, many jumps between staggered positions will occur per second
but the amount of time spent in the unstable eclipsed position is small (Al-
frey and Gurne (1967)).

Recalling the zig-zag shape of a polyethylene chain from Fig. 4.4 and
that the shape of the chain can change dramatically by rotation about the
C-C bonds as described in Fig. 4.5, it is easy to see that the chain can take
on many conformations. Again, as rotation about the C-C bond occurs, the
energy state between atoms changes because the distance between atoms
changes slightly. The extended “trans” conformation of the chain is shown
in Fig. 4.20, where here the term “trans” indicates that the bonds are ro-
tated such that the hydrogens on neighboring carbon atoms are in the stag-
gered position. Fig. 4.21 shows a kinked conformation including both the
trans and the gauche positions, where the gauche configuration is such that
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the hydrogens on neighboring carbon atoms are in a position intermediate
to the staggered and eclipsed positions. The variation of the energy state
from the maximum state (where hydrogen atoms on adjacent carbons are
in the eclipsed position, not shown) to the gauche then trans and back to
the maximum is shown in Fig. 4.22.

Fig. 4.21 Kinked polyethylene molecule in the trans and gauche positions.

gauche gauche

trans

Potential energy

T T T T T T
-180° -120° -60° 0O° 60° 120° 180°
Angle

Fig. 4.22 Energy level in polyethylene chain with rotation about the C-C Bonds.

Clearly the trans state is still preferred but the gauche can be relatively sta-
ble state as well. It is to be noted that two gauche states occur. One is ob-
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tained by rotating a single bond120° CW while the other is obtained by ro-
tating 120° CCW.

The fully extended polyethylene chain is shown in Fig. 4.23 along with
a chain with several bond rotations and a convoluted chain that might re-
sult from many rotations. Notice the similarity between the convoluted
chain and that given in Fig. 4.6, which was calculated using the general
procedures in the next section. It is easy to now visualize many intermin-
gled chains giving rise to the analogy of a tangled ball of string, which is
in a constant state of agitation.

Again, depending on the temperature, many changes from one state to
another may occur per second. In the glassy or solid state few will take
place, while in the liquid state many rotations will occur. Further, which
state is preferred will depend upon whether the molecule is in a crystalline
close packed state or in the more loosely packed amorphous state. As a re-
sult, it is clear that many factors tend to determine the conformations of a
polymer molecule. Effects of orientation and temperature will be discussed
in later Sections and Chapters.

Fully Extended Chain

— AAAAS—

Bond
109° Rotation Convoluted Chain

Fig. 4.23 Various stages of conformations.

4.5. Random Walk Analysis of Chain End-to-End Distance

From the preceding sections it is seen that a single polyethylene chain
could virtually have any shape depending only upon rotations about each
C-C bond. As shown in Fig. 4.23, the chain could be fully extended or a
tightly coiled ball. If fully extended, the end-to-end distance would be the
length of the chain while in a tightly coiled arrangement, the end-to-end
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distance would be nearly zero. Assuming a polyethylene chain with 10,000
mer units, that the C-C bond angle is fixed at approximately 109° and that
each bond is restricted to the three positions of one trans and two gauche
gives rise to 10*”"" possible conformations (Painter and Coleman, 1994).
Due to thermal agitation, a single chain, if it were not confined by other
chains, might see many conformations from fully extended to tightly
coiled over a long period of time. However, very little time would be spent
in the extreme positions and most of the time would be spent in an average
convoluted state. Obviously, if one could apply a force to the opposite
ends of a single chain, the fully extended chain would be more difficult to
deform than the highly convoluted one. Thus, it is possible to begin to see
a relation between the shape of a molecule and its mechanical properties.
More of this will be discussed in following sections but for now, it is im-
portant to note the relationship between end-to-end distance and mechani-
cal properties. In a solid polymer each chain will interact physically
through entanglements with other chains and there will be additional pa-
rameters associated with the interaction. The purpose here, however, is to
give an introduction to methods to estimate the end-to-end distance or the
shape of a chain.

Each chain will have its own length (number of mer units or molecular
weight), shape and end-to-end distance. The ability to calculate the aver-
age shape or end-to-end distance of each chain and the average for all
chains in a polymer can give insight to the relation between structure (con-
formations in this case) and properties. Because of the large number of
possible arrangements of atoms in a chain, a statistical approach is neces-
sary. A simple random walk or random flight method gives the correct
form for end-to-end distance of a polymer chain. The only objective here is
to show that this can be done and a more in depth study of the required sta-
tistical thermodynamics can be found in Painter and Coleman, (1994);
Billmeyer, (1984) and Flory, (1953).

In a random walk, a person starts from an initial position and walks x
distance in a straight line. The person then turns an arbitrary angle and
walks another x distance in a different direction. After n such operations,
the objective is to compute the probability that he or she is a distance be-
tween R and R+dR from the starting point. In a random flight, the same
procedure is used except the process is accomplished in three dimensions
instead of two.

To utilize this procedure to find the correct form of the end-to-end dis-
tance of a single polymer chain, a number of assumptions must be made.
In addition to free rotation about the C-C bonds, it is assumed that the
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chain valance angle is free, i.e. for polyethylene the angle of ~109° is no
longer fixed but may be any value. Further, it is assumed that the chain can
move through itself, i.e. no entanglements result.

Consider the distance between two carbon atoms to be a vector and that
a chain can be represented by a series of vectors as shown in Fig. 4.24,

R n

Fig. 4.24 Vector representation of polymer chain.

After r; steps in three dimensions, the distance between the starting and
ending point will be the sum of the vectors,

R= E r, @.1)
i=1

where both R and r; are vectors. To find the scalar distance between chain
ends, the dot product is used,

1/2
n n

[R R]I/Z Eri . Erj 4.2)

i=1 =1

The dot product of the vector sums can be expanded as

=\L+r+r;+ . . -)'(I‘I+I‘2+I'3+ .. ) (43)

(r S I )+2( 1r,cos9,, + nricosty; + - - -)

ri2+2r (cost, + costy; + - - -

i=1
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Since the vectors are all the same length, r, =r,=...=r,=r (r is the length of
the C-C bond), and since the chain is freely jointed, all angles are equally
probable and the average of cos0,, + cos0,;, etc. will be zero. As a result,
the average end to end distance is,

R=

n 12
Erﬁ) (4.42)

i=1

and since all links are the same length and there are n links,
R= r(n)l/2 (4.4b)

Thus, the end-to-end distance of the idealized molecule, using the rather
restrictive assumptions, is proportional to the number of mer units. For ex-
ample, the end-to-end distance for a chain with 10,000 units would be 100
bond lengths. This procedure is the method used by Treloar to obtain the
estimated convolution of a polyethylene chain shown in Fig. 4.6 which is
reproduced again in Fig. 4.25 for emphasis.

Eq. 4.4, while not exact for a real chain in a solid polymer, is of the cor-
rect form as the end-to-end distance found using more sophisticated proce-
dures which is also proportional to the number of links or mer units
(Painter and Coleman, (1994)).

Fig. 4.25 Shape of a 1,000 link polyethylene chain (Treloar (1975), reprinted by
permission of Oxford University Press).
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4.6. Morphology

At one time it was thought that polymers could not be crystalline because
of the supposed tangled nature of the many long chains composing a bulk
polymer. That is, the concept of a tangled ball of strings seemed to pre-
clude long range order. However, it was found that some polymers do
cause diffraction of x-rays and exhibit diffraction patterns indicative of
short range order. See (Painter and Coleman, 1994) for a good discussion
of the x-ray technique as applied to crystals and to polymers. Fig. 4.26
gives an example of an x-ray diffraction pattern for unoriented and ori-
ented Polyoxymethylene (from Billmeyer, (1984)).

(b)

Fig. 4.26  X-ray diffraction pattern for unoriented (a) and oriented (b). (Bill-
meyer (1984), p. 294, reprinted with permission of John Wiley and
Sons, Inc.)

Now it is well accepted that some but not all polymers can be crystalline.
The amount of crystallinity may vary anywhere from a few percent to as
high as 98% (Rosen, 1993). Normally, however, polymer crystallinity is
much less than 98 % and is most often less than 50%. Polymers containing
chains with bulky side groups or branches do not generally crystallize and
cross-links prohibit crystallization. In general, transparent polymers are
completely amorphous while opaque or translucent homopolymers are
generally crystalline. On the other hand polymers with fillers or a second
phase may be opaque due to the added constituents and not due to their
crystallinity.
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Probably the best method to evaluate crystallinity is through density
measurements. If, for example, specific volume (the inverse of density or
vol./g) is measured as temperature is decreased, a sudden and nearly dis-
continuous change occurs at the melting point (due to a phase change from
a semi-solid to a very viscous fluid) for a crystalline thermoplastic polymer
as shown in Fig. 4.27,

A

Specific volume
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Fig. 4.27 Specific volume vs. temperature for semicrystalline polyethylene.

The degree of crystallinity, ¢, in percent can be obtained from,

c=—2=Y 100 (4.5)

vV, -V,

where v, is the specific volume of the amorphous phase, v, is the specific
volume of the crystalline phase and v is the specific volume of the total
sample. In Fig. 4.27, v, is found by extrapolating the v-T curve from above
the melt temperature, T,,, to 20° C. In order to find the degree of crystallin-
ity, ¢, a measure of v, is needed which is normally obtained from x-ray dif-
fraction measurements (McCrum et al (1997)).

While much has been learned about the crystalline structure of poly-
mers, the exact shape and structure of crystalline regions is still under in-
tense study as increasing the degree of crystallinity leads to improved
thermo-mechanical properties (Table 4.4). Relations between crystalline
structure and mechanical response will be discussed in more detail later.
The first interpretation of crystalline structure was suggested by x-ray dif-
fraction studies and is known as the “fringed micelle model”. The Bragg



124 Polymer Engineering Science and Viscoelasticity: An Introduction

diffraction patterns for polymers are broad and diffuse as compared to
those from the more perfect forms of metals and other crystalline materi-
als. As a result, it was inferred that the size of the crystallites were very
small, being on the order of few hundred Angstroms (Billmeyer, 1984). In
this model, a schematic of which is shown in Fig. 4.28, a single molecule
would traverse a number of amorphous and crystalline regions because a
polymer chain is much longer than a few hundred Angstroms. The regions
at the end of the crystallite would be the “fringe” and the crystallite would
be the “micelle”.

Bl

=
A=

Fig. 4.28 Fringed micelle model.

Polymer crystallinity was later observed experimentally by growing single
crystals from a dilute solution by either cooling or evaporating the solvent.
A single crystal grown by such a procedure is given in Fig. 4.29. In this
manner, thin plate like structures can be obtained that are about 10° A long
and about 10> A thick as shown in Fig. 4.30. X-ray measurements indi-
cated that the chains were perpendicular to the face of the lamellae and the
only way a long polymer chain could fit in such a small space was to be
folded. It was not clear if a chain was completely contained in the lamellae
or if it exited and reentered.
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Fig. 4.29 Electron micrograph of a nylon 6 single crystal. The lamellae thickness
are 50-100 A. (Geil, (1960), reprinted with permission of John Wiley
and Sons, Inc.)

One school of thought was that the chain exited the lamellae smoothly and
reentered at adjacent lattice sites as shown on the left (regular reentry
model) and others (especially Flory) thought the portion outside of the la-
mellae was quite chaotic as shown on the right (switchboard reentry
model). The controversy served a good cause as, to prove his point, Flory
is reported to have returned from a conference where the subject was in-
tensely debated and began a research program to understand the reentry
model. His effort was, in fact, successful and in the process he was a fore-
runner in the development of a major new field of study of polymers based
upon statistical thermodynamics (for a more complete discussion, see
Painter and Coleman, 1994). For single crystals, it has subsequently been
shown that an intermediate model is more correct, with virtually all of the
chains reentering the crystal within 3 lattice sites from their exit point. For
highly flexible polymers the number of adjacent reentry points can be as
high as 80%.
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Fig. 4.30 Folded chain model for a crystalline lamellae in polymers.

The folded chain model is now well accepted as also occurring in bulk
polymers crystallized from the melt but the lamellae may be as large as
one micron thickness. In addition, for bulk crystallization amorphous re-
gions are interspersed between crystalline lamellae and the degree of regu-
lar reentry of chains into a given lamellae is small. A more accurate picture
is given in Fig. 4.31, where a significant number of “tie molecules” are
shown connecting the crystalline regions; these molecules are important in
the improved mechanical properties of crystalline polymers. According to
Rosen (1994), recent data indicates the existence of a third interfacial
phase of significant volume fraction between the lamellae and amorphous
regions, but little is understood about this interphase region at present.
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Fig. 4.31 Compromise model: Folded chains tied together by amorphous regions
as in the Fringed micelle model.

As a polymer is super-cooled below the melt temperature, T,,, the crystal-
line regions nucleate at minute impurity sites, growing to form spherical
domains called spherulites. These spherulites grow radially until another
spherulite is encountered as shown in Fig. 4.32. The rate of cooling deter-
mines the degree of crystallinity of the solid polymer and for many materi-
als a totally amorphous glass is possible by very rapid cooling rates. Lower
cooling rates allow formation of spherulitic crystals and the number and
size of spherulites can be modified by choosing cooling rates and tempera-
tures.

Examples of spherulites obtained using microscopy are shown in Figs.
4.33-4.34. Shown in Fig. 4.33(a) is a branched spherulite in polypropylene
observed via AFM while Fig. 4.33(b) and Figs. 4.34(a) and (b) show
spherulites in polystyrene, polyethylene and poly(hydroxybutyrate) respec-
tively. The latter figures are optical micrographs taken of thin sections of
polymers as seen under polarized light (crossed polarizers). The dark areas
are the characteristic “maltese cross” created due to the birefringent prop-
erties of polymers indicating a crystalline structure.
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&

Fig. 4.33 Examples of spherulites: (a) Branched spherulite in polypropylene
from AFM (Zhou et al. (2005), reprinted by permission from Elsevier.)
(b) Field of growing spherulites in polystyrene (Reprinted by permis-
sion from Beers et al. Copyright 2003, American Chemical Society)

Birefringence occurs because polarized light passing through a crystal is
broken up into two components propagating along a plane perpendicular to
the principal axis of the crystal. Each component travels at a different ve-
locity and therefore one is retarded relative to the other. On emerging and
passing through a second polarizer, interference between the two waves
gives rise to the dark “fringes” and hence the maltese cross. Actually the
maltese cross is indicative of the directions of principal stress which are
perpendicular to each other in the plane of the section. The nature of bire-
fringence in crystals has been known for well over a century (as discussed
in the Introduction) and is the basis for the well known photoelastic stress
analysis method. In this procedure, initially amorphous polymers become
optically anisotropic due to the application of external forces. That is, the
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external forces cause a slight realignment of the molecular structure such
that the polymer reacts to light as if it were a crystal. As a result, the stress
inside the material can be visualized and analyzed using the birefringence
effect. The isochromatic fringes (lines of equal shear stress) in a sample of
polycarbonate containing a crack are shown in Fig. 4.35.

Cross-linked or thermosetting polymers are typically used for photoelas-
tic stress analysis. Thus, it is clear that a certain amount of crystallinity can
be induced by stresses in network polymers but the degree of crystallinity
is necessarily very small.

A schematic visualization of a spherulite is given in Fig. 4.36. Here the
spherical nature is apparent and it is to be noted that the individual fi-
brils/lamellae grow radially. The individual fibrils have a folded chain
structure and the chain traverses both crystalline regions and amorphous
regions as illustrated in Fig. 4.31 of the folded chain model.

&=

Yy

Fig. 4.34 Examples of spherulites: (a) Spherulites in polyethylene (Armistead et
al. (Reprinted by permission from Armistead et al. Copyright 2003, American
Chemical Society). (b) Ringed spherulites of poly(hydroxybutyrate), (Hobbs et
al. (2000)) Reprinted by permission of John Wiley and Sons, Inc.

Fig. 4.35 Birefringence photograph of polycarbonate showing isochromatic
fringes surrounding a crack.
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The application of large external loads to linear or thermoplastic polymers
can cause the material to yield and for plastic flow to occur. An example
for the plastic flow or the creation of a necked region in polycarbonate was
given in Fig. 3.7 in Chapter 3. Further application of the load can produce
a severely drawn material in which the molecular chains have become ori-
ented due to the external load. A schematic illustration of the progression
of the drawn material is given in Fig. 4.37 together with a description of
how the fold chains move in order to create the oriented structure in the
drawn material. Orientation of the lamellae in the direction of drawing
along with deformation induced crystallinity in the amorphous regions
leads to an overall increase in crystallinity with drawing.

The cold drawing of thermoplastic polymers can drastically improve
mechanical properties and is often accomplished to create favorable prop-
erties for certain applications. A case in point is the biaxial stretching of
polycarbonate for use in aircraft canopies. The ability to be drawn (either
cold or hot) is of great use commercially. For example, PET (polyethylene
terephthalate) which is often used for soft drink bottles is first produced by
injection molding as a small test tube size object. Before filling with lig-
uid, the material is heated and “blown” as large as the standard 2 liter soft
drink container.
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Fig. 4.36 Schematic diagram of a spherulite. Inset detail after Callister (1991).
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Fig. 4.37 Illustration of the transformation from a lamellar to a fibrillar structure
by drawing. (After Painter and Coleman (1994), Original from Peterlin
(1965))

4.7. Molecular Weight

The atoms in polymer chains, as in metals and all other materials, consist
of electrons orbiting a nucleus containing protons and neutrons. The
atomic mass (weight) of an element is the sum of the masses of the protons
and neutrons in its nucleus, since the mass of the electrons is several orders
of magnitude smaller and therefore negligible. Note that although atomic
mass is the more appropriate (and ISO standard) term, by common usage
atomic weight is most often found in polymer literature. The number of
protons defines the element, but for some elements several isotopes are
possible, all having the same number of protons but different numbers of
neutrons. The atomic mass of such atoms is given in the periodic table as
the weighted average (according to abundance in nature) of the atomic
masses of the naturally occurring isotopes. A proton and a neutron have
the same mass to three significant digits and the atomic mass unit (amu)
is defined on the basis of Carbon-12, the most common isotope of Carbon
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containing 6 protons and 6 neutrons, with an atomic mass of exactly
12.000 amu. The atomic mass shown in the periodic table for Carbon is
slightly higher (12.011) as it accounts for small amounts of the isotope "*C.

Since one does not typically work with single atoms or molecules, quan-
tities of chemical substances are given in moles. A mole of an element is
defined as 6.02214 x 10* (Avogadro’s number) atoms; a mole of a given
type of molecule is 6.02214 x 10* molecules. Avogadro’s number is de-
fined to provide a simple conversion to grams: 6.022 x 10> atoms (or
molecules) have the mass in grams of the atomic mass of a single atom
(molecule). For example, 1 mole (6.022 x 10> atoms) of '*C has a mass of
exactly 12.0g. The conversion is therefore

6.02214 x 10* amu = 1 gram
or 1 amu = 1.66054 x 102* g

As an example, consider a mole of water molecules (H,O) which contains
6.022 x 10* atoms of oxygen and 2 x (6.022 x 10*) atoms of hydrogen.
The atomic masses of oxygen and hydrogen are 15.9994 amu and 1.0079
amu respectively. Therefore a mole of water has a mass of 2x(1.0079g) +
15.9994g = 18.015 grams. This example also emphasizes that moles are
the necessary units to use for chemical reactions as the proper number of
atoms must be tracked: e.g. one mole of oxygen and two moles of hydro-
gen can be combined to form 1 mole of water; 1 gram of oxygen and 2
grams of hydrogen are not in the proper ratio to form a gram of water ow-
ing to the differing masses of the elements.

Historically, the terms gram-atom and gram-molecule were originally
coined to refer to the mass in grams of Avogadro’s number of atoms or
molecules, respectively; with the introduction of the term mole, these early
terms are less used but can still be found in the literature. The term “mo-
lecular weight” is by far the most common expression used to refer to the
mass of a molecule. A 1992 ISO standard dictates that the term “relative
molecular mass” should replace “molecular weight” in all publications, but
in practice adoption of the terminology has been slow. The word “relative”
is used in the expression to convey that the mass is given relative to 1/12
the mass of an atom of Carbon-12. Since the mass of 12C is exactly
12.00amu, the relative molecular mass provides the mass of a molecule in
amu although technically the quantity is unitless. Another term sometimes
seen is “molar mass” or “relative molar mass”. Both of these latter terms
refer to the mass per mole of a substance and are expressed in grams/mole.
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To give an example for a polymer, a single polyethylene chain with a
degree of polymerization of 10* (or 10* mer units) has a relative molecular
mass (molecular weight) of

Mass of 1 PE chain: 10* (2 x 12 + 4 x1) = 280,000 amu

A mole of polyethylene chains, where each chain is 10" mer units long, has
a molar mass of

Mass of 1 mole of PE chains: 280,000 grams (or grams/mole)

neglecting chain end effects. Note that the molecular mass of a chain end
(or at a branch point) is not the same as the molecular mass of a mer unit
but the difference is neglected because the effect is small in terms of the
total molecular mass of a chain.

While “relative molecular mass” is the official and more correct termi-
nology for polymers (as used in McCrum, 1997), in the following the term
molecular weight will be most often used as is common in many polymer
texts.

A useful term to describe the extent of polymerization in polymers is the
“degree of polymerization” (DP) which is defined as the number of mer
units per chain or,

n=—=DP 4.6
M (4.6)

T

where M is the molar mass (weight) of a chain and M, is the molar mass
(weight) of a mer or repeat unit. (Number average and weight average de-
grees of polymerization are also used as will be evident directly.)

The degree of polymerization or the length of a polymer chain is an in-
dicator of the nature and mechanical characteristics of a polymer com-
posed of similar length chains. The following table illustrates the relation-
ship between chain length and the character of a polymer at 25 °C and a
pressure of one atmosphere.
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Table 4.6 Degree of polymerization — phase relationship (data from Clegg and
Collyer (1993), p. 11)

Number of -CH,-CH, Molar Mass Softening Character at
Repeat units per chain kg mol’ Temperature 25°C and 1
(Degree of Polymerizatior °C at.
1 28 -169 Gas
6 170 -12 Liquid
35 1000 37 Grease
140 4000 93 Wax
430 12000 104 Resin
1350 38000 112 Hard Resin

It is now clear how to calculate the molecular weight of a single chain or
of a mole of polymer chains of identical lengths. Unfortunately, however,
the lengths of chains in a polymer vary greatly and depend to a large de-
gree on the circumstances and the manner in which the polymerization re-
action proceeds. That is, a wide distribution of chain lengths (DP’s or
chain molecular weights) exist in a typical polymer as shown in Fig. 4.38.
The distribution is seldom symmetrical and the breath of distribution var-
ies with the type of reaction. For example, the distribution is often quite
broad for polyethylene while the distribution for polystyrene may be quite
narrow (Fried, 1995).

Because of the distributed nature of the lengths of chains in a polymer it
is necessary to define the molecular weight using an averaging process.
The most common averaging processes used are the number average, the
weight average and the z-average. Only the number and weight average
methods will be described here. Both discrete and continuous distributions
are possible. For

Ni Ni

L L

M; M;

Fig. 4.38 Typical molecular weight distribution of the number of chains in a
polymer.
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example the continuous distribution in Fig. 4.38(b) is obtained by drawing
a smooth curve through the discrete distribution shown in Fig. 4.38(a).

For a discrete distribution the number average molecular weight is de-
fined as,

M, ==L = &=l @&.7)

where N; is the number of chains within an interval, M; is the median
(middle) molecular weight in an interval, K is the total number of intervals
and N is the total number of chains. If a continuous curve is fit to the dis-
crete data such that N is given as a function of M, i.e., N=N(M), the sum-
mations can be replaced by an integration to obtain (Kumar and Gupta,
(1998)),

M M
f N(M) dM f N(M) dM
Vi 0 0

Ma = [aN N @8)

The product of the number of chains in an interval, N;, and the molecular
weight of an interval, M;, equals the total weight of an interval. Exchang-
ing N; in Eq. 4.10 by N; M; defines the weight average molecular weight
and can be written as,

iNiMiz iNiMiz
_ i=1 — =l
i=1

where M is the total molar mass of the sample. Some have likened the
number average and weight average molecular weights to the first and sec-
ond moments of masses (or areas) in elementary mechanics courses. Such
an analogy is appropriate if the number of chains, N;, is replaced by a lever
arm d; with units of length. One text incorrectly relates the weight average
molecular weight to a radius of gyration.

M 4.9)
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Consider the example where,

i M; N;
Interval No. g/mole of chains No. of chains
in interval in interval
1 5,000 2
2 15,000 4
3 30,000 5
4 50,000 1

The number average and the weight average molecular weight from Egs.
4.10 and 4.11 will be,

M =il (4.102)

_2(5,000) +4(15,000) +5(30,000) +1(50,000)

; > =22,500 g/mole (4.10b)

M

Some experimental approaches separate the chains in a polymer into dis-
crete number or weight fractions. The number fraction, x;, is defined as the
ratio of the number of chains in an interval to the total number of chains in
the sample,

N.
X;=— 4.11)
N
and the weight fraction, w;, is the ratio of the total weight of the chains in
an interval to the total weight of the sample,

w, =M 4.12)

M

An example illustrating this approach is shown in the hypothetical distri-
bution given below,
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Fig. 4.39 Size distributions of a hypothetical polymer

Using this definition, the number average molecular weight or weight av-
erage molecular weight can be written as,

k
Ma = > x M, (4.13)

i=1
Mw =) wM, 4.14)

where all quantities are as previously defined and (4.13) and (4.14) yield
identical results to (4.10) and (4.12) respectively.

The number average emphasizes the importance of the smaller molecu-
lar weight chains while the weight average emphasizes the higher molecu-
lar weight chains. This is demonstrated in Fig. 4.40.

A
Q 1
g !
S 1
by o
° Sy ‘
z s S
E Shi =
gl &1 g
g
ST T
D >
.Q: f.j\
g1 =,
=3 o,
Z: (SN
‘ =
! 1

Molecular weight™

Fig. 4.40 Distributions of molecular weight in a typical polymer.
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The ratio of the weight average molecular weight to the number average
molecular weight is defined as the polydispersity index,

pp1= M 4.15)
M

n

which is often used as a measure of the breadth of the molecular weight
distribution. Typical ranges in the PDI for polymers are shown in Table
4.7.

Table 4.7 Typical ranges of MW / Mn in synthetic polymers. (Data from Bill-
meyer (1984), p. 18)

Polymer Range

Hypothetical monodisperse polymer 1.0
Actual monodisperse living polymers 1.01-1.05
Addition polymer, termination by coupling 1.5
Addition polymer termination by disproportionation 2.0
High conversion vinyl polymers 2-5
Polymers made with autoacceleration 5-10
Addition polymers made by coordination polymerization 8-30
Branched polymers 20-50

When M, is high and PDI is low there are more chance for entanglements
which in turn increases strength and rigidity because the strain is lower for
a given stress. When M, or PDI is high, chains are likely longer and the
temperature resistance is increased.

Molecular weight is an important indicator of mechanical properties.
For example the variation of tensile strength of a lightly crosslinked rubber
is shown in Fig. 4.41 and the variation of the elastic modulus above the
glass transition temperature is shown in Fig. 4.42. As may be observed,
above the Tg the modulus becomes very small when the molecular weight
is low but increases to a plateau when the molecular weight is very high.
This plateau extends to relatively high temperatures until sufficient energy
is input to begin to degrade cross-links and the backbone chain. This is of-
ten indicated by a change in color of the polymer due to charring. The rea-
son for the different behavior as a function of molecular weight is due to
increased entanglements for higher molecular weights (Clegg and Collyer
(1993)).
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Fig. 4.41 The effect of molecular weight on the elastic modulus of an amorphous
thermoplastic polymer above the T,.
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Fig. 4.42 Approximate tensile strength of a lightly crosslinked rubber as a function
of number average molecular weight. (Data from Clegg and Collyer
(1993))

4.8. Methods for the Measurement of Molecular Weight

The preceding section illustrates the importance of molecular weight on
mechanical properties. Molecular weight also has a large influence on
manufacturing and processing. For example, a resin suitable for extrusion
must have a high viscosity at low shear rates while a resin suitable for in-
jection molding must have a low viscosity at high shear rates. Both of
these requirements can be met for a polymer by the adjustment of the mo-
lecular weight distribution. Molecular weight distribution also influences
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the extent of chain entanglement and the amount of melt elasticity. For
these and many other reasons, it is necessary to measure the molecular
weight and molecular weight distribution. Indeed, as mentioned in the in-
troduction, the lack of accurate methods to measure high molecular
weights impeded the initial development and understanding of polymers.

Many of the methods used to measure molecular weight are listed in the
Table 4.8. The usual range of weights that can be found by each method is
also given. Note that the end group analysis and colligative property meth-
ods give number average molecular weight while the light scattering
method gives the weight average molecular weight. The other methods
give only a relative measure of the molecular weight and one of the former
methods must be used to provide a calibration of the method and therefore
it is possible to obtain either quantity.

Table 4.8 Average molecular weight measurement.

End Group Analysis Mn <10,000
Colligative Properties

Ebulliometry M, <100,000

Cryoscopy Mn < 50,000

Vapor Pressure Osmometry 40,000 < Mn < 50,000
Membrane Osmometry 50,000 < Mn <1,000,000
Intrinsic Viscosity -<M,,M, <-
Light Scattering 10,000 < M, <10,000,000
Size Exclusion Chromatography (SEC) M, ,M, <10,000,000
Ultracentrifuge M, .M, < 40,000,000

The intent here is not to give a complete description of each method in-
cluding the necessary equations needed to convert a particular measure-
ment into a molecular weight. Rather, the essential features of each tech-
nique will be discussed briefly.

The end group analysis method relies on a knowledge of the nature and
types of end groups present. In this method the number of molecules are
simply counted. This is accomplished by using standard analytical tech-
niques to determine the concentration of the end groups and thereby the
number of polymer molecules. See Rosen, (1993) for a more complete de-
scription of this procedure.
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When a material (solute) is dissolved in a liquid (solvent) the boiling
point, freezing point and vapor pressure are changed. As a result, if a small
amount of a solute (polymer) is dissolved in a solvent it is possible to use
the thermodynamics of solutions to calculate the change in the temperature
at the boiling point (ebulliometry) and freezing point (cryoscopy) which in
turn can be related to the number average molecular weight. It should be
noted, however, that only small changes in temperature occur and the pre-
cision of the method depends on the accuracy of temperature measure-
ment. See Billmeyer, (1984) for a more complete description of these
methods.

The vapor pressure method uses two thermister probes to measure the
temperature difference between a drop of solvent placed on one probe and
a drop of a solution of solute and solvent on the other probe. The differ-
ence in rates of vaporization at the two probes leads to a difference in tem-
perature at the two probes. This difference in temperature can be related to
the number average molecular weight. For more insight into the method
and the magnitude of the temperature differences encountered (see Kumar
and Gupta (1998)).

The membrane osmometry method depends upon finding a suitable
membrane which will allow solvent to move through the membrane but
not allow motion of the solute in the reverse direction. That is, if a solute
and solvent are separated by a semipermiable membrane as shown below
in Fig. 4.43, the motion of the solvent will create an increase in pressure in
the solute which can be measured by the relative difference of the height of
the two fluids in their respective capillaries. This pressure differential can
be related to the number average molecular weight.
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Fig. 4.43 Osmosis through a semipermiable membrane.
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The viscosity of a dilute solution of a polymer and a solvent is obviously
larger than the viscosity of the solvent alone. As a result, measurement of
the viscosity of the two fluids will give a relative measure of the molecular
weight of the mixture. If varying concentrations of polymer are placed in
solution, the relative viscosity will vary. If the molecular weight fraction(s)
of the same polymer has been made by one of the other methods, then the
molecular weight through a relative viscosity measurement can be ob-
tained by comparison. An illustration of the relation between viscosity and
molecular weight of polyisobutylene in two solutions of cyclohexane and
diisobutylene are shown in Fig. 4.44.

9? ':
2> 8 .
£ ]
(o] 6f -
2 st i
S il J
3 -
2T e CeH,, (30°C)| 1
¢ ¢ DIB (30°C)

0.1 |- -
K | 1 1 ]

8 11 11 1 1 1 11 1 11 1 1 1 A1 1 11
5 6789 4 2 3 4 5 6789 5 2 3 4 56789 6 2

10 10 10
Molecular Weight

Fig. 4.44 Instrinsic viscosity molecular weight distributions in two solvents.
(Data from Flory (1953)).

Typical glassware viscometers which are used for viscosity measurement
are shown in Fig. 4.45. The flow times through the capillaries are meas-
ured and converted to viscosity measurements using the concepts of New-
tonian flow. It should be remarked, however, that polymer solutions are
normally non-Newtonian but the error is small with properly designed
equipment. For a more complete discussion of this technique, see Rosen,
(1993).
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Fig. 4.45 Viscometers used to determine molecular weight.

One of the most popular techniques to determine molecular weight is
through gel permeation chromatography (GPC). Because a gel is no longer
used some prefer to call the technique size exclusion chromatography
(SEC). A schematic of a GPC is shown in Fig. 4.46.
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Fig. 4.46 Schematic of a gel permeation chromatograph (GPC). Basic instrument
design (left) and separation column detail (right).

ectect

effluent

In this procedure a column is packed with small porous beads. The beads
may be a porous gel (a low molecular weight polymer) or porous beads
made of polystyrene or glass. A solvent containing a polymer sample is
pumped through the column of beads at a very low rate. As shown in the
schematic of the column, the large molecular fractions cannot penetrate the
beads and are retained in the solvent which moves through the column at a
faster rate than the lower molecular weight fractions. The smaller molecu-



144 Polymer Engineering Science and Viscoelasticity: An Introduction

lar weight fractions pass through the porous bead microstructure and there-
fore move through the column at a slower rate. The mass concentration
leaving the column, the effluent, passes through a detector (a refractome-
ter) which measures the refractive index of the emerging volume. The re-
fractive index will vary with molecular weight but again another absolute
molecular weight method must be used to calibrate the system. A typical
calibration curve is shown in Fig. 4.47.

A

Log M
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Fig. 4.47 Calibration curve for a GPC.

The GPC method gives a continuous variation of the molecular fractions
with volume (or mass) and thus is well suited to yield a continuous curve
such as the one shown in Fig. 4.38(b). For more details of the procedure,
see Rodriguez, (1996).

Light passing through a medium other than a vacuum will interact with
the molecules of that medium. Light energy interacts with the normal os-
cillatory nature of a molecule and induces additional oscillations. The
amount of additional oscillation depends on the atomic nature and size of
the molecule and is measured by the polarizability of the molecule. The in-
teraction also causes the molecule to become a source of radiation. As a
result, the light will be scattered by the molecule (or will radiate from the
molecule) such that it can be seen from all directions. That is, consider
light from a point source (such as a laser) being directed at a container of a
dilute polymer solution. It will be possible to see the light from different
sides of the container. It is possible to relate the intensity of emanating
light and the appropriate geometry of observation to the molecular weight
of the solution in the container. The molecular weight of a dilute polymer
can be obtained by measuring the intensity of light scattered from various
concentrations of the polymer solution and comparing with the intensity of
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light scattered only by the solvent. It should be noted that the weight aver-
age molecular weight is determined with this approach. For an excellent
description of this method, see Painter and Coleman, (1994). Mechanical
engineers who are interested in the relation between the polarization of
light and the relative retardation of light in polymers will find the discus-
sion provided by Painter and Coleman very interesting. Further, this source
will assist in understanding the relationship between molecular parameters
and birefringence parameters.

The invention of the ultracentrifuge was one of the milestones in devel-
opment of polymer science and technology. The basic principle of this de-
vice is illustrated by observing a small sphere moving through a Newto-
nian liquid under the action of gravity as shown in the Fig. 4.48.

«—O0

Fig. 4.48 Small sphere falling gravity through a viscous fluid.

The sphere will reach a terminal velocity and, assuming the cylinder radius
is large compared to the sphere, equilibrium of the forces on the sphere
(gravity, buoyancy and drag) will give,

png—pVg—kTTV =0 (4.16)

where p is the density of the sphere, p is the density of the fluid, V is the
volume of the sphere, g is the acceleration of gravity, k is Boltzman’s con-
stant, T is the absolute temperature, v is the terminal velocity and D is the
sphere diffusion coefficient. Solving for sphere volume and multiplying
the result by the sphere density gives the sphere mass,
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4.17)

kTv
m=
Dg

If it is assumed that the sphere is a molecule, the molecular weight can be
found by multiplying both sides of the equation by Avogradro’s number
and is given as,

M= RV 4.18)

og-{ 2

where R is the universal gas constant.

In an ultracentrifuge a polymer sample (solute) in a pie shaped container
is rotated at a very high speed (70,000 rpm) in the horizontal plane. At
such high speeds the higher molecular weight polymer fractions will sepa-
rate from the solvent and will be forced to the outer wall of the container.
Eq. 4.18 can be modified by replacing the acceleration of gravity by the
angular acceleration, rw’. The sedimentation rates are measured by
Schlieren optics or by UV absorption. The procedure is used most often for
biological materials and is not used so much with synthetic polymers be-
cause of experimental difficulties and other approaches give more reliable
results. For more details on this procedure, see Kumar and Gupta, (1998)
and Rodriguez, (1996, p. 202).

4.9. Polymer Synthesis Methods

The two fundamental approaches to obtaining polymers used by Carothers
in his pioneering synthesis efforts in the 1920’s were condensation and ad-
dition polymerization. In a condensation reaction water, ammonia or some
other substance is a byproduct and generally must be removed from the fi-
nal polymer. An example of a condensation reaction is given by the forma-
tion of nylon 6,6 from the combination of hexamethylene and adipic acid
in Fig. 4.49.
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H H I I
>N=-(CHy)g —N{ + HO-C - (CHy), -C — OH
H H

(hexamethylene diamine + adipic acid)

H

N I I

H/N—(CH2)6—lIl—C—(CH2)4—C—OH + H,0
H

Fig. 4.49 Example of a condensation reaction.

The number of reactive sites in the monomer is known as the functionality
of the unit and will determine if a polymer can be formed and if the result-
ing polymer will be a thermoplastic or a thermoset. A bifunctional mono-
mer leads to a thermoplastic while a trifunctional monomer is needed to
produce a thermoset. Generally speaking the N—H bond of an amine, the
O—H bond of an alcohol, and the C—OH bond of an acid can be split to
form another bond. Also, unsaturated bonds such as those that exist be-
tween the two carbon elements in the ethylene molecule shown in Fig. 4.2
can be broken to from bonds with other elements and ring structures such
as those shown in Fig. 4.50 can split to form other bonds.

H H
\ /
c-C
v 3\
H—- C\ /C —H o
c=cC /N
/ \ -C-C-
H H I
Benzine Ring Ring of an epoxide group

Fig. 4.50 Ring structures.

It will be noted that both hexamethylene diamine and the adipic acid in the
above example are each bifunctional and the resulting molecule after com-
bination of the two is bifunctional as well. That is, an active site exists on
each end of the original molecules and on each end of the product mole-
cule. Therefore, the reaction can continue by additional linking of the dia-
mine and the acid with the product molecule. The mer unit for nylon 6,6
can now be identified as given in Fig. 4.51. Nylon is called a polyamide
because it is formed by splitting the NH, group and is given the notation
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6,6 due to the number of carbon elements in each mer. Other nylons can be
made such that the notation would

fN= (eHp) N - € - (o, - € |
H 6 H 6 !

Fig. 4.51 Nylon 6.6 monomer.

be 5,10, 6,10, etc. An interesting procedure to form nylon 6,6 is by the so-
called “nylon rope trick” illustrated in Fig. 4.52. This is called interfacial
condensation and occurs, in this case, when solutions of acid chloride in
chloroform and hexamethylene diamine in water are combined. The two
solutions do not mix and a skin is formed at the interface between the two.
It is possible to carefully withdraw the skin from the interface and to form
a thread or film as shown.

Nylon skin
drawn off
to fornl fiber

.

diamine
in water

Nylon 6,6 formed
at the interface

Adipoyl chloride _}
in chloroform

Fig. 4.52 Nylon rope trick.

Examples of polymers formed by a condensation reaction are,

Polyamides (nylon)
Polyurethanes
Polycarbonates
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Addition reactions take place by the combination of monomers with two
reaction sites such as the case for ethylene given in Fig. 4.3 and repeated
below Fig. 4.53 for emphasis. The unsaturated double bond of carbon is
another example of a bond that can be broken to from bonds with other
elements.

i R R
1§=¢| 15§ -§-§--§-¢
H H H H H HH H H H

Fig. 4.53 Example of an addition reaction.

With this process, chains grow in a sequential manner. That is, one mono-
mer unit reacts with another monomer unit to produce a sequence of two
mer units or “dimer”. The resulting dimer reacts with a monomer to pro-
duce a sequence of three mer units or “trimer”. Trimers, dimers and
monomers can react to produce an “oligomer” or a chain composed of a
small number of mer units (often considered to be less than ten). In this
way, the reaction continues (or propagates) until eventually a chain stops
growing or terminates. As a result, an addition reaction is usually charac-
terized by three stages,

Initiation
Propagation
Termination

Polyethylene and polypropylene are in a group of polymers called polyole-
fins and their production constitutes one of the largest polymer markets in
the world.

Several important vinyl polymers (those in which a single hydrogen
element the monomer in Fig. 4.53 is replaced another element) formed by
addition polymerization are,

Polyethylene
Polyvinylchloride
Polystyrene
Polymethylmethacrylate

There are a number of different types of addition polymerization methods.
Several of these are,

Free radical
Tonic
Coordination
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Free radicals are intermediate compounds containing a free (unpaired)
electron and are highly reactive. To initiate free radical polymerization, the
unpaired electron of a free radical steals an electron from a vulnerable
bond in the monomer (such as a double bond), leaving the monomer with
an unpaired electron to propagate the reaction. The most common free
radicals used as initiators are peroxides, which are easily broken down as

R-0-0O-R — 2RO’

where the dot indicates oxygen to have a free (unpaired) electron. This
type of polymerization has a natural chain termination step which occurs
when two free radicals collide.

Ionic polymerization follows a similar process for initiation and propa-
gation of the reaction, where instead of a free radical the reactive unit on
the end of a chain is either positively (cationic) or negatively (anionic)
charged. Unlike free radical polymerization, termination occurs when the
monomer is depleted. This type of polymerization is often used to produce
block copolymers.

Coordination polymerization is a type of addition reaction in which a
fragment of the catalyst is said to be inserted into a growing chain. Much
of this type of reaction is based upon the Noble prize winning efforts of
Giullio Natta and Karl Ziegler after whom the Ziegler-Natta catalyst is
named.

It is to be noted that not all polymers made by the condensation method
form a condensate during the reaction. Polyurethanes which are formed by
a reaction of isocyanates and alcohols are such an example. Also, ring
opening polymerization reactions are considered to be of the addition type
even though they form polymers which can also be formed by a condensa-
tion reaction, e.g., the polymerization of caprolactam to form nylon 6,6
(see Painter and Coleman, (1994)). As a result, most modern texts do not
use the polymerization descriptions, condensation and addition. Rather, the
terms “step growth” and “chain” are used in place of condensation and ad-
dition respectively.

Thermosetting polymers can be made using either step growth or chain
polymerization procedures. To obtain a crosslinked polymer, at least one
of the monomers used must be trifunctional. A condensation production
process is used to produce phenolic polymers which have the highest vol-
ume usage of all thermosets. The reaction between phenol and formalde-
hyde to form a thermoset phenolic polymer is shown in Fig. 4.54. Three
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CH, bonds can be made per phenol group, allowing formation of a
crosslinked network structure.

Ho _H
‘Er
0 |
| H C|:
H + H-O-H
phenol + formaldehyde phenolic plastic water

Fig. 4.54 First step in formation of a phenolic network polymer.

Examples of important crosslinked polymers are,

Phenolics
Polyesters
Epoxies
Urethanes
Silicones

Polymerization processes are important in determining the molecular
weight, thermal and mechanical properties of a polymer. Usually either
batch or continuous processes are used. The former is normal for research
laboratory operations but to produce large quantities of polymer, the latter
is preferred. However, step growth or condensation reactions are often
very slow and a batch process is normally used. There are also single and
multiple phase processes. Generally, chain polymerization is not often per-
formed in single (bulk) phase process because of difficulties controlling
the reaction. Reactions are often either endothermic or exothermic. If the
latter is the case, it is sometimes difficult to control the temperature of the
reaction and a “run away reaction” may occur.

There are other important polymerization processes such as those of the
suspension or emulsion type. Examples of these two types are given in
Figs. 4.55 and 4.56. For an excellent description of the synthesis and kinet-
ics of polymerization methods and processes the reader is referred to more
detailed texts focusing on polymer science, eg. Painter and Coleman,
(1994) and Billmeyer, (1984).
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Fig. 4.55 Schematic representation of suspension polymerization. Polymerization
occurs by chain growth and the aqueous media serves to disperse the
heat of reaction. (After Painter and Coleman (1994), p. 54)
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Fig. 4.56 Schematic representation of emulsion polymerization. Large monomer
droplets are stabilized by surfactant molecules in water. Excess surfac-
tant forms micelles into which monomer molecules diffuse. Initiator
molecules interact predominantly with the numerous small micelles
(larger surface area) where the monomer polymerizes, resulting in a
suspension of polymer beads in water.
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4.10. Spectrography

One might ask the question, “how is it possible to know the structure of a
new polymer that has been synthesized for the first time”? One answer to
the question, is “through the use of spectrographic analysis of the resulting
polymer.” For this reason, many people involved in research and develop-
ment of polymers are specialists in spectrographic analysis of one type or
the other. A list of many of the various types of spectroscopy are given be-
low,

UPS UV (ultraviolet) Photoelectron Spectroscopy

XPS X-ray Photoelectron Spectroscopy

ESCA Electron Spectroscopy for Chemical Analysis

(S)AES (Scanning) Auger Photoelectron Spectroscopy

ISS Ion Scattering Spectroscopy

LEIS Low Energy Ion Scattering (Spectroscopy)

SIMS Secondary Ion Mass Spectrometry

SNMS Secondary Neutral Mass Spectrometry

SSMS Scanning Secondary Ion Mass Spectrometry

FAB Fast Atom Bombardment (Spectroscopy)

(S)EXAFS (Surface) Extended X-ray Absorption Fine Structure
(Spectroscopy)

RBS, HEIS Rutherford Back Scattering, High Energy Ion Scattering
(Spectroscopy)

LAMMA  Laser Micro Mass Analysis (Spectroscopy)

IETS Inelastic Electron Tunneling Spectroscopy

LEELS Low Energy Electron Tunneling Spectroscopy

ESD Electron Stimulated Desorption (Spectroscopy)

NMR Nuclear Magnetic Resonance Spectroscopy

IR Infrared Spectroscopy

Raman Raman Spectroscopy

Most of these procedures are limited to analyzing the surface of a material
and the area of specialization is often called “surface chemistry”. Persons
with this capability are often trained in chemistry, physics, or materials en-
gineering (science) departments. The equipment used is usually very ex-
pensive and is often designed through a collaboration of one of the above
groups with mechanical engineers.

While these procedures are usually limited to the surface of a material,
some of the methods can be used on the interior of the material by actually
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atomically drilling (sputtering) into the interior. Also, a newer procedure
involving infrared spectroscopy and FFT (fast Fourier transform) tech-
niques can examine fluorescing phenomenon of molecules on the interior
of materials.

Generally spectroscopy is the study of the interaction of electromagnetic
radiation with matter. The wavelength (frequency) range for various types
of electromagnetic radiation is given in Fig. 4.57.

The essential features to measure the spectrum of a particular polymer is
given in Fig. 4.58. If, for example, a beam of light is focused on a material,
it can be reflected or transmitted. In either case, some of the energy may be
absorbed or scattered. The amount of absorbtion or scattering is related to
the type of molecules or atoms encountered by the radiation. With a proper
detector, the radiation transmitted or reflected from a material can ana-
lyzed to determine the amount absorbed. A schematic of the readout of ab-
sorbed light is given in Fig. 4.58 and a typical spectra is shown in Fig.
4.59 and is an example of an infrared absorption spectrum for isotactic
polystyrene either annealed or quenched from the melt. Differences be-
tween the spectra infer changes in the molecular structure which occur dur-
ing annealing.
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Fig. 4.57 Wave length ranges for various types of eletromagnetic radiation.
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Fig. 4.58 Basic elements of a spectrometer.
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Fig. 4.59 Infrared spectrum of polyvinyl chloride (PVC) showing pristine PVC,
after aging in acetic acid, and the difference between the two spectra.

4.11. Review Questions

4.1.  Give the chemical formula for the mer units of PVC, PTFE, PP, PS
and PMMA.

4.2.  Explain the meaning of configuration and conformation when ap-
plied to a polymer chain.

4.3. Give an examples of different types of configurations.
4.4.  What are chemical bonds?

4.5. Name three primary bonds and describe each.
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4.6.

4.7.

4.8.

4.9.

4.10.
4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.
4.18.

4.19.
4.20.

4.21.

Name four types of secondary bonds. By what other name are sec-
ondary bonds known?

Give approximate energies (kcal/mole) for covalent bonds. Hydro-
gen bond. Secondary bonds.

Outline (i.e., give a schematic diagram) a simple classification
scheme based on bonds within chains and between chains and
based on their morphology.

Describe a branched polymer. Name different types of branched
polymers.

Name three types of isomers and describe each.

Describe (i.e., give a schematic diagram) a classification system
based on molecular characteristics, structure and isomeric states.

Name four types of copolymers and describe each.

What are two possible conformations of the ethane molecule? Draw
the variation of energy with angular rotation and explain the reason
for the variation.

Explain the trans and gauche positions along the backbone chain of
a polyethylene molecule.

Derive (and explain all assumptions) an approximate relationship
for the end-to-end distance of a single molecular chain.

Explain the folded chain model for crystallinity. The fringed mi-
celle model.

Describe a spherulite. How might they be formed.

What method (or instrument) is generally used to provide evidence
of a spherulite?

What method(s) is used to evaluate crystallinity? Explain.

Give approximate characteristics of a molecular chain containing
the number of mer units shown in the following table.

No. Softening Character at
Temperature 25°C

1

6

35
140
430
1,350

Name six methods to measure molecular weight.
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4.22.

4.23.
4.24.

4.25.

4.26.
4.27.

4.28.
4.29.
4.30.
4.31.
4.32.

4.33.
4.34.

4.35.
4.36.

4.12.

4.1.

Briefly describe ebulliometry. Cryoscopy. Vapor pressure osmome-
try. Membrane osmometry.

Briefly describe SEC (GPC).

Explain the chemistry example of a condensation polymerization
reaction given in the text.

Explain the chemistry example for an addition polymerization reac-
tion given in the text.

What is a dimer? A trimer?, An Oligomer?

What is the meaning of monofunctional? Bifunctional? Trifunc-
tional? Which leads to thermoplastic polymers? Which leads to a
thermoset? Can a monofunctional molecule be polymerized?

What does the term 6,6 in Nylon 6,6 mean?

What is interfacial condensation? Give an example.

What are the three features of most addition type polymerizations?
What is a polyolefin? Name two.

What are some of the difficulties associated with making polymers
on a large scale?

What do the terms batch and continuous processes mean?

Would you recommend a step-growth polymerization for automo-
tive assembly lines?

What are single and multiphase processes?

What is suspension polymerization? Emulsion polymerization?

Problems

Calculate the number average and the weight average molecular
weights for the data shown below,

i M, N,
Interval g/mole No. of chains
No. of chains in in interval

interval
1 2,000 2
2 5,000 4
3 15,000 5
4 30,000 3
5 50,000 2
6 60,000 1



5. Differential Constitutive Equations

A review of the basic definitions of stress and strain was given in Chapter
2. It was noted that a linear elastic solid in uniaxial tension or pure shear
obeys Hooke’s laws given by,

o =Ee (5.1)

=Gy (5.2)

where o (or 1) is the applied stress, € (or y) is the resulting strain, and E (or
G) is the elastic modulus and is applicable for many materials under cer-
tain circumstances of environment for small stresses and small strains.

For polymers, the torsion test is often the test of choice because, as dis-
cussed in Chapter 2, the time dependent (viscoelastic) behavior of poly-
mers is principally due to the deviatoric (shear or shape change) stress
components rather than the dilatoric (volume change) stress components.
Typically, constant strain rate tests are often used for either tension, com-
pression or torsion as discussed in Chapter 3. If the material is linear elas-
tic, the stress rate is proportional to the strain rate as the modulus is time
independent. That is,

—=E— 5.3)

On the other hand, if the modulus is time dependent a term must be added
for the time derivative of the modulus. In fact, in Chapter 3 it was found
that the differential equation for the elementary Maxwell model (where p
is viscosity) was given by

w . .
O+—0=UE 5.4
= 1 (5.4)

in which both stress rate and strain rate appear.

Elementary creep and relaxation tests as a means to experimentally
characterize polymers were discussed in Chapter 3. Further, elementary
mechanical models and the related differential equations were discussed as
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a means to phenomenologically understand creep, relaxation and constant
strain rate tests. Virtually no material exactly obeys these simple models.
As a result, more general approaches are needed to adequately model the
time dependent behavior of polymers. This chapter develops the method-
ology by which the governing differential equations for general mechani-
cal models can be developed. The differential equations are used to obtain
modulus and compliance functions under quasi-static and dynamic re-
sponse conditions. The following chapter develops an integral equation
approach to constitutive modeling.

5.1. Methods for the Development of Differential
Equations for Mechanical Models

The Maxwell and Kelvin elements introduced in Chapter 3, while typically
not able to represent real polymer behavior alone, can however be used as
the building blocks of more general models. Any number of mechanical
models can be created by assembling Maxwell and Kelvin elements to-
gether with free springs and dampers in series and/or parallel. One motiva-
tion to proceed in this manner is provided by relaxation/retardation times.
Recall that the relaxation/retardation time of a Maxwell or Kelvin element
is defined by the ratio of WE and that therefore there is a single relaxa-
tion/retardation time associated with a Maxwell or Kelvin element. From
the discussion of polymers in Chapter 4, however, it is clear that entangled
networks of polymer chains will exhibit more complicated time behavior
to mechanical load and that in fact different segments of chain lengths and
different side groups will offer a wider spectrum of relaxation times. The
concept of relaxation spectra is discussed in more detail in Chapters 6 and
7. Assembling mechanical models from multiple Maxwell and/or Kelvin
units will therefore enable the models to better mimic polymer behavior by
providing multiple relaxation/retardation times.

As with the simple models from Chapter 3, each different mechanical
model can be described by a differential equation. The differential equa-
tion governing the response for any mechanical model may be obtained by
considering the constitutive equations for each element as well as the over-
all equilibrium and kinematic constraints of the network. Once the differ-
ential equation is obtained, the response of the model to any desired load-
ing can be examined by solving the differential equation for that particular
loading. The solution for simple creep or relaxation loading will provide
the creep compliance or the relaxation modulus for the given model. In this
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section, we provide by way of example a general method to obtain the
governing differential equation for any mechanical model.

As a first example, consider the three-parameter model (sometimes
known as the Voigt-Kelvin model) shown in Fig. 5.1. This model is best
approached as a combination of a spring and a Kelvin model acting in se-
ries. The three sets of equations then become, where the subscripts O or s
indicate the value of quantities in the free spring, the subscripts 1 or k indi-
cate the value of quantities in the Kelvin element, and unsubscripted ¢ and
¢ are the remote values of stress and strain (the total stress and strain car-
ried by the three-parameter solid).

Spring Kelvin Model Three-Parameter
Model
Equilibrium | o, =0 0,=043+0, =0, O0=0,=0;
Equations
Kinematic €) =€, €, =€y =E4 =€, E=g +¢€,
Equations
Constitutive | o,=E, 0, =Eg, +ug, To be determined
Equations
E,

Ky
Fig. 5.1 Three-parameter (or Voigt-Kelvin) solid.

The objective is to find the constitutive equation (governing differential
equation) for the three-parameter model. The kinematic equation for the
three-parameter solid is,

E=g, +¢€, (5.5)

From equilibrium, the stress in the free spring, o, and the stress in the
Kelvin element, o, are the same as the remote stress, o. To find the dif-
ferential equation it is convenient to write the Kelvin constitutive equation
as,
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de
o, =Eg, +u, d_tk =E;, +u,De, (5.6)

d . . . .
where D =d_ is a differential operator. Note that D? D’ ... indicate the
t

second, third, ..., derivatives with respect to time. Since differential opera-
tors obey the fundamental rules of algebra, they may be manipulated as al-
gebraic terms in polynomial expressions by factorization, multiplication,
etc. Eq. 5.6 can now be solved for the Kelvin strain,

Oy

=——k 5.7
E, +u,D G7)

€k
Recognizing that o,= o= 0, and substituting 5.7 and the constitutive law
for the spring into Eq. 5.5, after simplification one obtains,

O+P0=qyE+qE (5.8)
where,

U __EE o wE
= qO =
E,+E,

=1 =
Po Py E,+E, = E,+E,

Differential equations for viscoelastic polymers are most often given in the
standard form as shown in Eq. 5.8. The first stress term is not differenti-
ated and the coefficient is taken as one.

The differential equation governing the relationship between stress and
strain for a given mechanical model is quite valuable, but needs to be
solved in order to determine the model response to specific loading condi-
tions. Fundamental viscoelastic properties such as the creep compliance or
relaxation modulus can be found by solution of the differential equation to
the appropriate loading. For example, the creep compliance can be deter-
mined using the conditions for a creep test of constant stress, as shown in
Fig. 5.2.

The determination of the initial conditions is best accomplished by in-
spection of the physical model. Since the input stress is constant for the
creep test, the stress rate is zero, 6 =0 and the differential equation for the
three-parameter solid, Eq. 5.8, becomes,

e+ 1w (5.9)
q q
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b“ Input w‘ Output
| £
& £
wn wn
(o) - €
time, t time, t

Fig. 5.2 Creep test.

The quantity H(t) is the Heavyside or unit step function (See appendix A)

and is defined to be,
Ho =10 =Y (5.10)
~ o, t<0 )

Eq. 5.9 is a nonhomogeneous equation whose solution is the sum of the
homogeneous and particular solutions given by,

e(t) =00[L+EL(1—6_“1)} (5.11a)

0 1

where t=" is the retardation time of the Kelvin element. The creep

1
compliance of the Three-Parameter solid is therefore

D(t) =+ L (1-e /Ty (5.11b)

0 1

Referring to the solution under creep for a Kelvin material given in Chap-
ter 3, quite obviously the solution of the three-parameter model for the
case of creep is simply the superposition of the solution for creep of a
spring and creep of a Kelvin solid.

Solutions of the differential equation for the conditions of relaxation,
constant strain or stress rate and other conditions can be obtained in a simi-
lar manner to that followed above.

Using the procedure presented for the Three-Parameter Solid, the differ-
ential equation for a four-parameter fluid model (Fig. 5.3) can be shown to

be,
O+p,0+p,0=q€+q,E (5.12)
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E,

My
Fig. 5.3 Four-parameter fluid.

Note that this Four-Parameter Fluid model is composed of a Kelvin ele-
ment (subscripts 1) and a Maxwell element (subscripts 0). Thus, the consti-
tutive laws (differential equations) for the Kelvin and Maxwell elements
need to be used in conjunction with the kinematic and equilibrium con-
straints of the system to provide the governing differential equation.
Again, treating the time derivatives as differential operators will allow the
simplest derivation of Eq. 5.12. The derivation is left as an exercise for the
reader as well as the determination of the relations between the p; and g;
coefficients and the spring moduli and damper viscosities (see problem
5.1).

The solution of Eq. 5.12 for the Four-Parameter Fluid for the case of
creep can be shown to be,

e(t) =00[L + L(l—e"”) + L]
E, E, Yo
! 1 0 (5.13)
Inst. Elastic Delayed Elastic  Flow

Term Term Term

Again, the solution is left as an exercise for the reader (see problem 5.4).
However, it should be noted that the solution of the differential equation
for a four-parameter fluid in the case of creep is the superposition of creep
of a Maxwell fluid and creep of a Kelvin solid (refer to Chapter 3).

The creep and creep recovery behavior of a four-parameter fluid is
shown in Fig. 5.4 and is recognized as the response of a thermoplastic type
polymer as given earlier in Fig. 3.13. The three stages of instantaneous
elasticity, delayed elasticity and flow represents the most general type be-
havior possible for a linear viscoelastic material. Note: Some texts do not
include the flow term as a viscoelastic component, preferring instead
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to define viscoelastic behavior only for models with no free damper or
flow term.

—

\ Input

stress, G

8

-

t; time, t* t; time, t*

Fig. 5.4 Creep and creep recovery of a four-parameter fluid.

By eliminating various elements in the four-parameter model, the response
of a Maxwell fluid, Kelvin solid, three-parameter solid (a Kelvin and a
spring in series) can be obtained and the model can be used to represent
thermoplastic and/or thermoset response as illustrated in Fig. 3.13. For ex-
ample, the creep response of a three-parameter solid is obtained by elimi-
nating the free damper in Eq. (5.13) and gives the creep and creep recov-
ery response shown in Fig. 3.13 for a crosslinked polymer. The four-
parameter fluid can also be evaluated in relaxation or other loading condi-
tions again by solving the differential equation for each case.

5.2. A Note on Realistic Creep and Relaxation Testing

The testing of polymers requires unique understanding of the viscoelastic
nature of polymers. For example in a creep test it is required to suddenly
apply a constant tensile, compression, or torsion stress to a bar of material.
The most common description of a uniaxial tensile creep test is shown in
Fig. 5.5(a). Several questions may arise one of which is: How is the load
to be applied suddenly without causing dynamic effects. One answer is for
the load to be applied as ramp input as shown in Fig. 5.5(b). Obviously,
the latter case is not a correct creep test. How big an error is involved? A
solution of the differential equation representative of the material for the
ramp input of Fig 5.5(b) can be obtained and it can be shown that the error
in the strain output is negligible if the loading time, t,, is small compared
to the retardation time of the material, T.

Similarly, the same difficulty occurs in a relaxation test. That is an ideal
relaxation test is one where a sudden input of strain is required as shown in
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Fig. 5.5c. Again, however, to avoid dynamic effects it is usual to use a
ramp input of strain as shown in Fig. 5.5d and it can be shown that the er-
ror is negligible if the ramp time, t,, is small compared to the relaxation
time of the material, T (see homework problem 5.5).

A A Thermoplastic
© €
%" 0
] w
7 o Thermoset
o) -- g €
time, t time, t
a. Ideal creep test
b“ A Thermoplastic
4 o
1] wW
@ ) Thermoset
Oy - g 80
to time, t to time, t
b. Realistic creep test
A A
w
£
<
Z 00
2 Thermoset
€ -- .
0 2 Thermoplastic
Q,
time, t time, t*
c. Ideal relaxation test
A
w
£
g ti Go
2 Thermoset
€ -- & .
@ Thermoplastic
O,
ty time, t~ to time, t

d. Realistic relaxation test

Fig. 5.5 Comparison of ideal and realistic creep and relaxation tests.
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A further concern for creep and relaxation occurs due to the stiffness of the
polymer tested. If a very soft material is tested in creep, the cross-sectional
dimensions or area may change as the material creeps and, therefore, the
test may not be a true creep test. For this case, the load must be changed
with time such that the amount of load divided by the changing area re-
mains a constant. Before the advent of modern testing machines a number
of ingenious methods were developed by which the load would vary in
proportion to the area such that the input stress would remain constant. Us-
ing a closed loop servo-hydraulic testing system similar to the one shown
in Fig. 5.6, it is easy to monitor the change in area and use the new area in
the computer load control so that the stress remains a constant.

e & 011
® - G

L

Fig. 5.6 Closed-loop servo-controlled hydraulic testing system.

In relaxation testing, the stiffness of the specimen must be small compared
to the stiffness of the load cell and testing machine. Of necessity the
specimen is in series with both the load cell and testing machine and,
therefore, the deformation in the specimen, the load cell and the testing
machine are additive. As the load in the specimen decreases or relaxes,
even in a fixed grip circumstance, the load also decreases in the load cell
and/or the test machine. The deformation will then actually increase in the
specimen to allow a decrease in the deformation (and load) in the load cell.
For a very stiff specimen (such as a fiber reinforced composite), the
change in load (or stress) recorded may reflect a redistribution of deforma-
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tion from the load cell and testing machine to the specimen resulting in a
non-constant deformation or strain in the specimen. Again, a computer-
controlled machine such as the one shown in Fig. 5.6 can be programmed
to sense the change in strain in the specimen and to have the “stroke” or
displacement of the test machine altered to keep the strain in the specimen
constant. Another example where care must be taken in the interpretation
of the relaxation stress response to a constant deformation input to the
specimen is in adhesive testing such as often obtained using a lap joint
specimen. See Sancaktar (1990) to observe data indicating both stress re-
laxation and creep occurring simultaneously in the adhesive when a typical
lap specimen is tested with constant deformation input. These examples
suggest that the relaxation response of any multiphase system must be ana-
lyzed with caution.

5.3. Generalized Maxwell and Kelvin Models

As indicated earlier, single Maxwell or Kelvin elements are of limited util-
ity in representing the actual stress-strain response of polymers. A more
realistic mathematical model can be developed, however, by considering a
series of Maxwell elements in parallel. Consider, first just two Maxwell
elements in parallel as in Fig. 5.7.

E,

E,
Fig. 5.7 Two Maxwell elements in parallel.

The equilibrium and kinematic equations are,

0=0,+0, 510

€E=¢,=¢,

The constitutive equations for each Maxwell element are,
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u
o, +EID01= w,De,

1

(5.15)
o, + L3 Do, =u,De,
E,
where D = d/dt is again the differential operator. Solving each equation in
5.15 for the stress, substituting into Eq. 5.14, recognizing that the strain in
each element is the same as for the system, and rearranging gives the fol-
lowing differential relation between the applied stress and strain.

o+ (1:1 + 'cz)d +T,T,0= (M1 + uz)é + (Mﬂz + rluz)é (5.16a)
The standard form of (5.16a) is
O+p,0+p,0=q€+q,E (5.16b)

Since the Maxwell elements are connected in parallel, if strain g(t) is
given, one can either solve the pair of linear first order Eqgs. (5.15) or the
single second order equation (5.16b) to find the solution for o(t). As an
example, consider the case of stress relaxation in which a constant strain
history is applied, &(t) =g H(t). Due to the kinematic constraint, each
Maxwell element sees the same global strain history and the solution for
o4(t) and 0,(t) from Egs. 5.15 are as given earlier in Eq. 3.17.

o,()=¢,Ee '™
(O =gEe (5.17a)

o,(t)=¢g,Ee"'™

From the equilibrium constraint, the solution for the overall stress in the
system is a simple superposition of the stresses in each element

o(t) = eO(Ele'”" + Eze'””) (5.17b)
The second order differential equation (5.16b) can also be solved to obtain
the same solution Eq. 5.17b.

Three Maxwell elements in parallel would give a differential relation
between stress and strain that contains first, second and third derivatives
(see homework problem 5.7) as given below,

O+P;0+Pp,0+P30=q€ +q,€+q;€ (5.18)

Obviously, as the number of elements increase, the order of the highest de-
rivative increases. After obtaining the differential equation for three Max-
well elements, it is possible to develop a recursion relation to obtain the
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appropriate coefficients (in terms of E;’s and w;’s, as in Eq. 5.6) for any
number of elements so desired.

It is usually not possible to represent the behavior of a polymer under
the condition of relaxation with only one or two Maxwell elements in par-
allel. Rather, as many as 5 to 15 or more elements may be necessary. A
model with many elements is called a Generalized Maxwell Model and is
shown in Fig 5.8. The differential equation for a generalized Maxwell
model may be expressed as,

O+p0+p,0+ -+ pnn0'=q1é+q2's'+ ang (5.19)

where Icli.ED“G, Po is taken to be unity and n is the number of parallel
Maxwell elements in the particular model. Mechanical models constructed
from springs, dampers and Maxwell and Kelvin elements can in general be
represented by a differential equation of the standard form

n

dc <« d*e
Epk a =E qx n (5.20)

k=0 k=0

where n=m and q,=0 for the generalized Maxwell model. As will be men-
tioned subsequently, the number of derivatives of stress and strain is not
the same for a series of Kelvin elements which provides the rationale for
the different indices n and m on the summation in Eq. 5.20. Some might
be tempted to avoid using E;’s and w;’s and instead develop a generalized
model by choosing p’s and q’s. However, as discussed in the next section,
the p’s and q’s for a differential equation of a particular order may not be
chosen arbitrarily and still represent physically meaningful behavior.

E, K
E, 1,

[¢] 5 [¢)
AW
| ]

I . . !

E, u,

AWWN—ED

Fig. 5.8 Generalized Maxwell fluid.
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As with the two-element example, the solution of a Generalized Maxwell
Model for a given strain input, €(t), can be found either by superposition
of n first order differential equation solutions or by solution of the single
n"™ order differential equation. The n first order equations are all of the
form of Egs. 5.15,

o, + T, Do, =u,De (t) (5.21a)

where i ranges from 1 to n. The kinematic constraint again provides that
the strain in each element is the same as the global strain, €,(t)=¢(t). And
the equilibrium constraint provides that the solution for the global stress is
simply a sum of the individual stresses, o(t)=0,(t)+0,(t)+:--+0,(t). For
the condition of stress relaxation, &(t) = g H(t), the solution of these linear
differential equations can again easily be found by superposition to be,

1 —[/‘I?i
o(t) = 802 Ee (5.21b)

i=1

Therefore the relaxation modulus of a Generalized Maxwell Model is
given by

E(t) = E Be '™ (5.21¢)

i=1

This type of representation is sometimes called a Prony series and such an
exponential expansion is often used to describe the relaxation modulus of a
viscoelastic material even without reference to a mechanical model.

The generalized model given above can only be used to represent a
thermoplastic if all of the w; values are nonzero. In order to represent a
thermoset a free spring is sometimes included with the result known as the
Wiechert model shown in Fig 5.9.
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E, Ky

Fig. 5.9 Wiechert Model.

The solution for stress relaxation and the relaxation modulus then become,

o(t) =g, EEie'”Ti +E,
i=1 (5.22)

E(t) = E Ee "M +E,

i-1
where E_ is the equilibrium modulus.

For a Generalized Maxwell Model, whether a solution for a given prob-
lem is found by solving the nth order differential equation or the system of
n first order equations depends on the particular loading history applied.
For the case of stress relaxation, the superposition of solutions of the first
order equations is certainly the simpler route. For more complicated strain
histories, the method of choice may also depend on whether the solution is
to be obtained numerically or analytically. Also, if stress history is applied
and strain to be found, use of the single higher order differential equation
will likely be more straightforward, since each of the o;(t) needed in the
first order equations are unknown at the outset. Finally, since the relaxa-
tion modulus for a Generalized Maxwell Model (Eq. 5.22) is known, solu-
tions may also be obtained for given stress or strain histories via an inte-
gral constitutive equation approach (instead of solving differential
equations), as is shown in the next chapter.
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A Generalized Kelvin Solid is composed of a number of Kelvin ele-
ments in series as shown in Fig. 5.10a.

My H, My
Fig. 5.10a Generalized Kelvin solid.

However, this model still has no instantaneous elasticity and a free spring
is normally included in series with the generalized Kelvin solid with the
result (sometimes referred to as the Voigt-Kelvin model),

E, E, E,

K H,

Fig. 5.10b Generalized Voigt-Kelvin solid.

A differential equation for either of the series of Kelvin elements can be
found using the same procedure described in developing the differential
equation for a series of Maxwell elements. The equilibrium constraint,
kinematic constraint and constitutive equations are given by

0=0,=0,="=0,

E=€ +E,+ +E (5.23a)

n

o,=E;, +n,De;, i=1,2,.-:n

Proper combination of these equations will result in a governing differen-
tial equation in the standard form,

o d'o =  de
P~ =)D d% ¢ (5.23b)
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where n=m-1 and p,=1. Again, depending on the loading history applied,
either the system of n first order Eqs. (5.23a) or the single nth order differ-
ential Eq. (5.23b) can be solved. For the case of simple creep loading,
o(t)=o0,H(t), the solution for the Generalized Kelvin Model can be easily
found by superposition of the solutions of the n first order equations to be,

1 - 1 —t/T:
e(t)=0y)|—+ Y —(l-e'" 5.24a
@ O[EO EE( )} (5.24)
where the creep compliance is therefore defined to be
D(t)= —+ il(l —e") (5.24b)
EO i=1 Ei

These equations can be used to represent a cross-linked material. Although
the Generalized Kelvin Model can be solved for the case of relaxation, due
to the forms of the differential equations and ease of solution, Maxwell
elements in parallel are typically used for relaxation while Kelvin elements
in series are used for creep.

A free damper as well as a free spring can be placed in series with a
number of Kelvin elements as given in Fig. 5.11,

Fig. 5.11 Generalized Voigt-Kelvin solid with a free damper.

The creep compliance will then become,

D(t) = ELO+ ElEl(l _etm )+Mi0 (5.24¢)

and can be used to represent a thermoplastic material. As with the General-
ized Maxwell Model, the creep compliance found for the Generalized Kel-
vin Model can be used to characterize a viscoelastic material and then can
be used in integral constitutive laws (Chapter 6) to determine the response
of the material to any type of stress or strain loading history without solv-
ing the differential equations for that given loading history.
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An example of creep deflection in a tensile bar for an epoxy at different
temperatures is shown in Fig 5.12. It will be noticed that the creep re-
sponse for a temperature of 155° C still has a positive slope after seven
hours. Without knowing the type of material, one might expect the re-
sponse to be that of a viscoelastic fluid. The creep response for 165° C and
170° C clearly have reached a limit and has the character of a thermoset.
Because of the nature of the response, the epoxy could be best character-
ized by a viscoelastic fluid model such as the four-parameter fluid for both
the 155° C and 160° C data. On the other hand, the epoxy could best be
characterized by a viscoelastic solid model such as the three-parameter
solid for temperatures above 160° C. To characterize the material over all
time and temperature ranges would require a generalized model with a
large number of elements. Methods to accomplish this will be discussed in
subsequent sections.

The glass transition temperature for this material is unknown but is
likely above 155° C. Assuming such is the case, the material at 155° C is in
the glassy region while the material above 170° C is in the rubbery region.
In fact, if the load could be applied instantaneously (without inertia ef-
fects), the initial elastic strain would be nearly the same for each. The ma-
jor difference would be the time to reach the limit strain. At 155° C, the
time required to reach a strain equivalent to the limiting rubbery value
would be very long, perhaps days, weeks or even months. But at 170° C
the limiting rubbery strain is reached in a few minutes or less.

4 T T T T T T
[ - = = =
o
x
£
= 2 ]
c
Ke]
©
2
2 T=170°C
o 1 N .
T=165°C
Thickness = 0.25in. — °
Width = 0.5 in. nggog
Stress = 40 psi U —
0 | | | | | |
0 1 2 3 4 5 6 7

Time, t, hours

Fig. 5.12 Creep of an araldite epoxy.
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Also, it should be noted that the deflection (or strain) reaches a higher lim-
iting value at 165° C than at 170° C. This might be considered an artifact of
the experiment at first. However, in reality this is confirmation of the Joule
effect mentioned in Chapter 1. More evidence of this phenomenon will be
given later.

5.3.1. A Caution on the Use of Generalized Differential
Equations

Sometimes in numerical studies it is tempting to attempt to understand
how a particular boundary value problem might be affected by the order of
the differential equation representing the relationship between stress and
strain. For example, the general equation,

v do o de
Pk Y= )% ¢ (5.25a)
2P a2
or
0+pld+p26+---pnn0.=qlé+q2é'+---qn 1 (5.25b)

might be truncated after the first, second derivative or higher derivative to
obtain a workable equation. Care must be taken when generating arbitrary
differential constitutive equations in this manner. For example, consider
truncation after the first derivative to obtain,

O+P0=qyE+qE (5.25¢)

This equation, is in fact the same as the equation for the three-parameter
solid and may be written as,

W G= EJE, - wEo

o+ =
E,+E, E,+E, E,+E,

(5.25d)

Now consider the relationship between the coefficients p,, qy, and q, in the
form,

wE,
9 —q, = Eo+E, _ EE, _ Eg
Pi ’ _WE, E;+E, E;+E,

E,+E,

> (0 = positive quantity (5.25e)
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Obviously, in this case the coefficients of the differential equation cannot
be selected arbitrarily and must satisfy the above inequality in order to be
physically meaningful.

Refer to Flugge (1974) for additional discussion on this subject and
other inequalities.

5.3.2. Description of Parameters for Various Elementary
Mechanical Models

The methods previously discussed in this chapter can be used to determine
the differential equations, solutions and parameters for a number of me-
chanical models using a variety of combinations of springs and damper
elements. Table 5.1 is a tabulation of the differential equation, parameter
inequalities, creep compliances and relaxation moduli for frequently dis-
cussed basic models. Note that the equations are given in terms of the p;
and q; coefficients of the appropriate differential equation in standard for-
mat. The reader is encouraged to verify the validity of the equations given
and is also referred to Flugge (1974) for a more complete tabulation.
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Table 5.1 (Part 1) Differential equations, solutions and parameters

Differential Equation

Model Name Creep compliance D(t)
Inequalities
Elastic
Solid 0=q,¢ 174,
Viscous
Fluid 0 =q,¢ /g,
Maxwell . .
Fluid O +p,0 =q,& (pl + t)/q|
. 1 B
Iéf)ll‘i’(lln O =q,€ +q,€ —(-e¥), A=d

90 9

O +p,0 =q,€ +q,€

LI e

3-parameter q q90
Solid 3o '
41 > P9 q,
O +p,0 =q,€ +q,& i+7plq';‘b (1-e),
3-parameter 9 9
Fluid A= i

P4 > 9

q,

4-parameter
Fluid

O +p,0 + p,0 =q,€ +q,&

L_'_ P ;qz (l_e*?d)
9 9

R AR IR

Plz >4p, +&e_h’ a=d
2 2 9> 9>
P49, > P9 +4,
1_pl)"l (l—eim)
O +p,0 =q,€ +q,€ +q,& DOM(Ay=A)
4-parameter _l-nt (1-e™")
Solid DA (A =4y)

qi > 49,4,
a4, > 4oP; + 4>

where A, A, are roots of

Qz}"z -qA+q,=0
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Table 5.1 (Part 2) Differential equations, solutions and parameters.

Complex Compliance

Relaxation Modulus E(t)

Real Part E, ()

Imaginary Part E, (w)

9 /4, 0
1
5(1) _
0 ©
@ q,
G giim i, a L
14 b1 P q,
9 +qo(z> 9 9,0
. 4 +4qi0’ 4 +4q 0’
2
0]
ieﬁ/pl +q0(1—e’””‘) %;’ p](;llu; _ (l]12+ qofjl)z
P q, +q, @0 4y +4, 0
Loy L fg - L)ern 21~ AP0
2, 2.2
1 4 +q;0 (¢ +q;0")0

14 b V2

1 _a .
4 -aa.)e ~(q,-da,07
o 1 )

| £ Vplz -4p, )

Bl 2p,

B

(P19, = 0,) + P1g,0°

4+ (P - pg)’

7, 22
q, +q,0

2, Z2oDo
4 t 49,

ﬂ5(1)+ 4.5 2_q2 _
P P

1 —t1p,
_72(%171 _qoplz -g,)(1-e /p)

P

4o+ (g~ 4 )0°

(4, =~ P9 )0 + q2p1w3

4o +(47 =2q49,)0” + g30°

4o +(4; =2q49,)0” + g30°
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5.4. Alfrey’s Correspondence Principle

It is possible using transform methods to convert viscoelastic problems
into elastic problems in the transformed domain, allowing the wealth of
elasticity solutions to be utilized to solve viscoelastic boundary value prob-
lems. Although there are restrictions on the applicability of this technique
for certain types of boundary conditions (discussed further in Chapter 9),
the method is quite powerful and can be introduced here by building on the
framework provided by mechanical models. Recall the differential equa-
tion for a generalized Maxwell or Kelvin model,

o d'o =  de
G—= D%+ (5.26)

which can also be written compactly in terms of differential operators, P
and Q as

Po = Qe (5.27)

The Laplace transform represented by,
ffm} =f(s)= [ (5.28)
0

can be used to convert differential equations into algebraic equations. Tak-
ing the Laplace transform of Eq. 5.26(a) changes the differential equation
to an algebraic expression in the transform parameter s and, due to the
simple form of 5.26(a), may be expressed as,

N pis'5(s) = Y a5 5 ()" (5.29)
k=0 k=0
or
P(s)5(s) = Q(s)&(s) (5.30)

See the Appendix B for fundamentals on the Laplace transform. Since the
transformed stress and transformed strain are no longer part of the summa-
tions, the expression may be further rewritten as

¥ The reader is cautioned that Eq. 5.29 must be used with care in order to include all initial
conditions properly. Significant differences arise depending upon whether the time be-
gins at O+ or 0-. In most circumstances used herein, f(t) = 0 for t < 0 but in creep or re-
laxation the jump discontinuity at t = 0 must be included.
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2 Q)
(<) = | k=0 =(<) — = .
o(s)=|* k €(s) Bes) €(s) (5.31)
Epks
k=0

The quotient of operators can be thought of as an elastic modulus in trans-
form space and the above equation can be written as,

o(s)=E (s)e(s) (5.32)

This result of the same form as Hooke’s law for a linear elastic material
under uniaxial load and is sometimes called Alfrey’s Correspondence

Principle'. The quantity, E*(s), in transform space is analogous to the
usual Young’s modulus for a linear elastic materials. Here, the linear dif-
ferential relation between stress and strain for a viscoelastic polymer has
been transformed into a linear elastic relation between stress and strain in
the transform space. It will be shown in the next chapter that the same re-
sult can be obtained from integral expressions of viscoelasticity without
recourse to mechanical models, so that the result is general and not limited
to use of a particular mechanical model. Therefore, the simple transform
operation allows the solution of many viscoelastic boundary value prob-
lems using results from elementary solid mechanics and from more ad-
vanced elasticity approaches to solids such as two and three dimensional
problems as well as plates, shells, etc. See Chapters 8 and 9 for more de-
tails on solving problems in the transform domain.

5.5. Dynamic Properties - Steady State Oscillation Testing

Viscoelastic properties are often determined with steady state oscillation or
vibratory tests using small tensile (compressive) bars, thin cylinders or flat
strips in torsion, beams in bending, etc. The approach is usually referred to
as dynamic mechanical analysis (DMA) testing or sometimes dynamic
mechanical thermal analysis (DMTA). The latter term is more appropriate
as properties are often determined and expressed in terms of temperature

! What is now known as the correspondence principle for converting viscoelastic problems
in the time domain into elastic problems in the transform domain was first discussed by
Turner Alfrey in 1944. As a result, the principle is sometimes referred to as Alfrey’s cor-
respondence principle. Later in 1950 and in 1955 the principle was generalized and dis-
cussed by W.T. Read and E. H. Lee respectively. (See bibliography for references.)
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as well as frequency. Here, sinusoidal tensile testing of a uniaxial bar will
be used as an example. However, the results will apply, in general, to all
types of dynamic testing. As with the Laplace transform approach for the
correspondence principle above, the differential equation obtained from
general mechanical models will be used to motivate and describe the dy-
namic properties here, but we will also see in the next chapter that again
the results are general (not dependent upon use of a mechanical model)
and can be obtained from integral equation methods.

Assume a small uniaxial sample is loaded with a strain input,
g(t) =g,e™ (5.33)

In practice only the real (or imaginary) part, a cosine (or sine) wave, will
be input but the algebra associated with the exponential function is easier
to manipulate and will be used for a general derivation. Note also that the
discussion here only considers the steady-state dynamic response. Tran-
sient terms associated with starting up an oscillatory loading have decayed
and are neglected as are inertial terms. Given the form of the differential
Eq. 5.26 for a general mechanical model of a viscoelastic material, an ex-
ponential input as in 5.33 will result in a stress output also of exponential
form

o) =o' e (5.34)

where o is the frequency and o* is a complex quantity. The 6* can be fur-
ther defined

0" =g,E* (im) (5.35)

such that the stress can be written as
o(t) =g,E” (im)e™ (5.36)

Here E*(iw) is defined as the complex modulus and can be decomposed
into real and imaginary parts as

E*(iw) = E'() +iE"(w) (5.37)

The real part is defined as the storage modulus, E'(w), and the imaginary
part is defined as the loss modulus:, E'(w). It will be shown later that
these respective quantities can be related to the energy stored and dissi-
pated in a loading cycle.
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Note that by combining Eqs. 5.33 and 5.36, the complex modulus di-
rectly relates the time dependent stress to time dependent strain for the
case of oscillatory loading

o(t) = E* (iw)&(t) (5.38)

If the input strain and output stress from Eqs. 5.33 and 5.36 are inserted
into the differential equation for a general mechanical model, Eq. 5.26(a),
after simplification an expression very similar to Eq. 5.31 results and the
complex modulus is found to be

D ai(io)*

E*(im)=k0 (5.39)
Epk (iw)*
k=0

Similarly, considering the case of an oscillatory stress as input with a cor-
responding complex output of strain, the complex compliance can be de-

rived as
D pilion)*
D" (iw) =40 (5.40)

Y a )"
k=0

which can be decomposed as

D* (iw) = D'(0) +iD"(w) (5.41)

where the real part is the storage compliance, D'(w), and the imaginary
part is the loss compliance, D'(w). As before, the relationship between
stress and strain is given by the complex compliance as

g(t) = D* (iw)o(t) (5.42)

from which one sees that the complex compliance is simply the inverse of
the complex modulus. To further understand the response of a viscoelastic
polymer to oscillatory loading, consider a simple Kelvin element with the
associated differential equation,
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Fig. 5.13 Kelvin solid.
o=que+ st (5.43)

Application of Eq. 5.39 can be used to find the complex modulus,

E*(iw) = 2P _E 4ipw = E(1 +itw) (5.44)
Po
with the storage and loss moduli,
E'(w)=E E"(®)=pw (5.45)

Using complex conjugates to invert Eq. 5.44, the complex compliance can
be found,

D*(iw) =~ =—Po _PolQu=ia®) _ Boluw g 4
E'(iw) 9do+iq®  qo+qio E"+uo

with the storage and loss compliances given by,

E —Uw

D'(w)=——— D'"(w)= 47
(w) %+ 00 (w) (5.47)

E? +u’w?
These results could also be obtained by solving the differential equation
for the Kelvin model using an input condition of, g,[cos(wt)]. However,
for higher order differential equations, use of Eq. 5.39 and 5.40 would ob-
viously be advantageous. Note that the above storage and loss compliances
are also given in Table 5.1, using p; and q; coefficients, along with creep
and relaxation properties. The reader is urged to use the methods given
above to verify the accuracy of the quantities given.

To obtain a physical understanding of polymer response to oscillatory
loading and the complex, storage and loss moduli, reconsider input and
output stresses and only use the real part of each quantity,

e(t) = ?ﬁ(soei‘”t ) =g, cos((ot) (5.48)



5 Differential Constitutive Equations 185

o(t) = ER[SOE* (m))ei‘m]
- ER{eO[E'(m) +iE"(0) J[cos(wt) +i sin(mt)]} (5.49)

= EO[E’(UJ) cos(u)t) - E"((n)sin(mt)]

These conditions then represent subjecting a polymer to an oscillatory (co-
sine) strain input. The stress output is also oscillatory, but is out of phase
with the strain input. To visualize, see the input and output results shown
in Fig. 5.14 at a single frequency. The total input and total output are plot-
ted, as well as the in phase and out of phase portions of the stress output.

If stress data is obtained for a real polymer subjected to a cosine strain
input, analysis of the resulting plots similar to Fig. 5.14 will allow the de-
termination of complex modulus, storage modulus and loss modulus.
Comparing the amplitudes of the in phase and out of phase outputs to the
amplitude of the strain input gives the storage, E’ (), and loss, E” (w),
moduli respectively and the complex moduli, E*(iw), can then be obtained
using Eq. 5.37. Note however that what is obtained from analysis of Fig.
5.14 is the value of the moduli at a single frequency; in order to obtain the
moduli as a function of frequency a series of such plots must be analyzed.
In practice, the DMA testing machines therefore perform a frequency
sweep to obtain moduli within a bounded frequency range (limited by the
equipment), usually several decades. Chapter 7 will discuss use of tests at
different temperatures to extend the range of moduli functions so that a
more complete picture of the behavior of the polymer from glassy (high
frequency) to rubbery (low frequency) response can be obtained.
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Fig. 5.14 Input and output for a steady state vibration test of a polymer simulated
with Kelvin model.

The origin of the phase lag seen in Fig. 5.14 can also be understood by ex-
pressing the complex moduli with a magnitude and phase angle in the
complex plane as shown in Fig. 5.15.

where

E(i0) = E(0) +i E"(0) = ‘E*(im)

0@ (5.50a)

‘E*(im)‘ = \/(E’(m))z +(E"()’ (5.50b)
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and

B E!/(m)
tanO(w) = —E’(w) (5.50c¢)

The output stress for a strain input €(t) = g coswt can therefore also be
written in the form,

* .
E (iw)

o(t) = m{eo

ei(wl + 6((»))}
(5.51)
* .
E (iw)

=g, cos(wt +d(w))

where the stress clearly lags the strain input by the material parameter
d(w), which is referred to by one of several common names in the litera-

9

ture as the “loss angle”, “loss coefficient”, “tan delta” or “damping ratio”.

E'(lw) T =

| .

«—;—‘E (1&))‘

5 |
E'(io)

Fig. 5.15 Storage and loss moduli as components of the complex modulus.

As mentioned at the beginning of this section, special dynamic mechanical
analysis (DMA) testing systems are commercially available for the rapid
evaluation of complex, storage and loss modulus as well as phase angle or
damping ratio. Given in Fig. 5.16(a-c) are photographs of portions of a
typical DMA system showing a polymer specimen, the linear actuator
loading mechanism and specimen grips as well as the housing for the elec-
tromagnetic coils. Also shown is the monitor of the computer used to con-
trol the testing and on which typical damping and storage modulus data are
displayed. It is interesting to note that early DMA designs used eccentric
cam mechanical loading devices instead of magnetic coils and the har-
monic input and output data was often displayed on a dual pen strip-chart
recorder as illustrated by the schematic in Fig. 5.16(d). The phase shift
was easily visualized by noting the amount the input and output curves
were shifted. Data found with the current electro-magnetic digital systems
is much more accurate than with earlier mechanical systems but there is
not the same easy visualization of the nature of the phase lag as demon-
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strated analytically in Fig. 5.14 as the live harmonic data is not typically
displayed in the accompanying software.

Another method to visualize the phase lag in older test methods was to
feed both input and output into an oscilloscope to obtain a hysteresis loop
also shown schematically in Fig. 5.16(d). The amount of energy loss per
cycle is the area within the stress-strain loop and is called the dissipation.
How the hysteresis loop is obtained is best visualized by plotting the stress
versus the strain at corresponding times on the input and output curves as
shown Fig. 5.17. As the peak input strain, €, at A begins to decrease, the
lagging output stress is still less than the peak output stress. In other words
it is the time lag between input strain and output stress that gives rise to the
hysteresis loop.

(a) DMA housing for electromagnetic  (b) Linear Actuator and
coils and controls Gripping Mechanisms

AN

AN N

(d) Time

= : history re- '
sponse and
(¢) Results display hysteresis

Fig. 5.16 A typical dynamic mechanical analysis (DMA) testing system.
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Determining hysteresis plots manually by plotting strain vs. time input and
the stress vs. time output on mutually perpendicular axis and combining
respective points in time as shown in Fig. 5.17 is tedious and is rarely
done. However, the concept gives a good physical understanding of how
the phase lag in a steady-state vibration test leads to the hysteresis loops
routinely obtained with the aid of an oscilloscope. Some use rotating vec-
tors to explain the relation between phase lag and energy loss (e.g., see
Flugge, (1974) or Aklonis and McKnight, (1983)).

A plot of the data for a Kelvin model in Fig. 5.14 at common times will
yield a hysteresis loop for the chosen frequency just as illustrated in Fig.
5.17. Note that if stress and strain are completely in phase with one another
(as is the case for an elastic material), a straight line is obtained as indi-
cated by the dashed diagonal line in Fig. 5.17. For a given viscoelastic ma-
terial, the degree of phase lag and the breadth of the hysteresis loop will
depend greatly on the frequency (and temperature) at which the test is per-
formed. For example, at a frequency/temperature where the material be-
haves in a glassy, elastic manner, phase lag, hysteresis or loss of energy
will be small to nonexistent.

Using the DMA (Fig. 5.16), steady state viscoelastic response over a
wide range of temperatures and frequencies can be found by “sweeping” a
range of frequencies at a single temperature or “sweeping” a range of tem-
peratures at a single frequency to generate master curves using the time-
temperature superposition principle (TTSP) that will be discussed at length
in Chapter 7.



190 Polymer Engineering Science and Viscoelasticity: An Introduction

t--

Fig. 5.17 Formation of the hysteresis loop for a polymer as visualized by graphi-
cal combination of the stress and strain values parametrically. The
dashed line inside the hysteresis loop represents purely elastic response.

As mentioned, the area inside the hysteresis loop represents of the energy
lost or dissipated during cyclic deformation. The dissipation can be shown
to be proportional to the loss modulus using the basic relationships be-
tween work and energy. Recall that the work per unit volume of a stressed
material is given by

W= f ode = foe'dt (5.52)
0

If a material behaves in a perfectly elastic manner, the deformation energy
supplied to the material during loading is stored in the stretching of the
molecular/atomistic configuration changes and subsequently recovered
completely upon unloading: there is no energy dissipated. Therefore for a
single complete cycle of oscillatory loading of any material (elastic or not),
the net energy stored is zero, as the material is loaded and unloaded sym-
metrically. The amount of energy dissipated in a single cycle of oscillatory
loading can thus be calculated by integrating Eq. 5.52 over a complete cy-
cle:

D= gSode - f oédt (5.53)
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For a perfectly elastic material, Hooke’s law is obeyed, = E €. This im-
plies that the width of the hysteresis loop is zero (the dashed line in Fig.
5.17) and evaluation of the integral in Eq. 5.53 results in identically zero.
For a viscoelastic material, we can write the stress as a function of the
strain via the complex modulus (Eq. 5.38) and then rearrange in terms of
the storage and loss moduli

o(t) =E (w)e(t)

=E'(w)e(t) +

E"®)  ote() (5.54)
w

EE”(U))

w

= E'(w)e(t) + £(t)

To calculate the energy dissipated over a cycle, Eq. 5.54 can be substituted
in Eq. 5.53. Using a sinusoidal strain (g(t)= g,sin wt), it can be shown:
2n/
D= f oedt
0
21/
i (E’(w)e(t) +

0

e(t) jedt (5.55)

IEH(UJ)
w

2 "
€Tt

So we see that the dissipated energy is indeed proportional to the loss
modulus. In the glassy or rubbery regions where the loss modulus is infini-
tesimal, the dissipation is therefore minimal.

5.5.1. Examples of Storage and Loss Moduli and Damping
Ratios

If the storage: and loss moduli and damping ratios are found for a Maxwell
model, the result will be as shown in Fig. 5.18(a) and 5.18(b). This result
can be found algebraically and then plotted using a spread-sheet or graph-
ics program. The behavior of real polymers is sometimes similar to the re-
sults for a Maxwell fluid as is the case for polycarbonate as given Fig.
5.20. Notice the characteristic “S” shape of the storage modulus and char-
acteristic “bell” shape of the loss in the experimental data. Note that the
Maxwell Fluid shows a loss tangent (damping ratio) unrealistic for a solid
polymer as there is no peak (the loss tangent grows without bound at low
frequencies). Including a free spring ensures a bell-shaped loss tangent
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similar to the experimental data. Results for a simple 2 element Wiechert
model (a solid containing two Maxwell elements connected in parallel
with a spring) is shown in Fig. 5.21 where the loss tangent peak can be
clearly seen. With respect to the transition region, note that the decay in
the storage modulus is relatively rapid for a single Maxwell element, lim-
ited to about a decade in frequency around the inverse of the single relaxa-
tion time, T. By moving to a model with two Maxwell elements (Fig.
5.21), the transition region of the storage and loss moduli are expanded,
becoming more like a real polymer, extending around the inverse of the
two relaxation times. Not all polymers have such simple shaped moduli
functions and the reader is referred to excellent texts such as (Ferry, (1980)
and Tobolsky, (1962)) for further examples.

In Fig. 5.18(b) results are given versus the inverse of frequency, as this
would correspond roughly to the time scale. The modulus, E(t), is also
plotted in this figure for comparison, where the values for time along the
bottom axis for this curve are identical to the inverse frequency values
given. The glassy modulus, E,, is located at short times for E(t) and at
long frequencies for E;(w). Note that the time dependent modulus is quite
similar in form to the storage modulus plotted versus inverse frequency.
Dynamic results found in the literature are sometimes plotted versus fre-
quency and sometimes versus inverse frequency.

1000 T T ||||||| T T ||||||| T LI T II||||| 1 e
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Fig. 5.18 Variation of storage and loss moduli for a Maxwell fluid with fre-
quency.
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Fig. 5.19 Variation of storage and loss moduli for a Maxwell fluid with inverse
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Fig. 5.20 Variation of storage and loss moduli with frequency for polycarbonate.
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Fig. 5.21 Variation of storage and loss moduli for a 2 element Wiechert model (a
solid) with frequency.

In addition to frequency dependent mechanical properties, as mentioned
earlier, a DMTA can also be used at constant frequency to determine tem-
perature dependence of properties. In this manner, one can probe the glass-
transition temperature (T,), assess changes in molecular structure due to
additional curing upon heating, the effect of crystallinity on properties etc..
The variation of storage modulus and tan & with temperature for a typical
polymer is shown in Fig. 5.22. The glass-transition temperature is indi-
cated as the temperature where the peak in tan 6 occurs. Notice the simi-
larity of property changes in temperature to changes with frequency in Fig.
5.20. Shown in Fig. 5.23 is a depiction of the variation of tan & of a poly-
mer over a wide range in temperature with not only the a transition (T,)
indicated but also the (3, y and 9 transitions. (The 9 transition should not be
confused with the larger o transition or tan 6. Perhaps to avoid confusion
a different terminology should be adopted but the tradition for the names
of the various transitions are well established and a change would likely
lead to even more confusion.)
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Fig. 5.22 Variation of storage modulus and Tan & with temperature as deter-
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While all polymers have characteristics similar to the above examples,
there is considerable variation among different classes of polymers. To ob-
serve this diversity, the reader is referred to the extensive study of the
steady state response of many polymer types given by Ferry (1980). In par-
ticular, he gives an excellent description of the results for eight categories
including dilute polymer solutions, low and high molecular weight amor-
phous polymers and lightly and highly cross-linked systems as well as
highly crystalline polymers.

5.5.2. Molecular Mechanisms Associated with Dynamic
Properties

The behavior given in the above examples for polymer response variation
with time and temperature under steady-state dynamic loading is directly
related to the deformation mechanisms associated with the long chain na-
ture of polymer molecules. As illustrated in Fig. 5.23, low frequency re-
sponse is similar to high temperature (rubbery) response, and high fre-
quency response is similar to low temperature (glassy) response. The basic
mechanical responses therefore relate across the time and temperature
scales, as do the underlying molecular mechanisms. A brief description of
these mechanisms follows. (For more detailed information the reader is re-
ferred to (Lazan, (1968)) and (Menard, (1999)).

As described in Chapter 4 the long molecular chains form a tangled
mass that might be analogous to a similarly tangled mass of long earth-
worms. This illustration is especially appropriate due to the constant mo-
tion of individual atoms and segments of chains even at a very low tem-
perature. It is especially important to note that the entanglement points
between individual chains in thermoplastic polymers act very much like
the covalent cross-linked sites in thermosets at low temperatures. There-
fore, the behavior of thermoplastics and thermosets are often very similar
for temperatures well below the glass-transition temperature. As a result,
for low temperatures near the delta and gamma transitions (see Figs. 5.23),
local motions or bending and stretching of primary valence bonds are the
primary mechanisms that contribute to macroscopic deformations in all
classes of polymers. At somewhat higher temperatures near the beta transi-
tion, but still below the glass transition temperature T,, side group motions
occur and coupled with the bending and stretching of primary bonds leads
to larger deformations but the polymer is still glassy and quite brittle.
Damping in this regime is small and hysteresis negligible. The delta,
gamma and beta transitions are often identified as secondary transitions
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and depend on the character of the monomeric structure of the polymer.
Near the glass transition temperature damping and stiffness properties are
governed by the chain segments between entanglement sites in thermoplas-
tics and chain segments between cross-links in a thermoset. These chain
segments are much smaller than the macromolecule but are large com-
pared to the chain length of the monomer group. The coiling and uncoiling
of these segments are quite slow just below the glass transition temperature
and are quite rapid as the rubbery range is approached. In this transition
range, damping is quite pronounced and hysteresis in stress-strain is
prominent. Crystallinity tends to reduce the intensity of the glass-transition
as compared to an amorphous polymer as illustrated in Fig. 5.23. In the
rubbery region (T,<T<T,,), polymer-damping properties are insensitive to
temperature and damping is again negligible. In fact for macromolecules
having a three-dimensional cross-linked structure the stiffness may actu-
ally increase slightly in the rubbery range. Near the melt temperature of
thermoplastic polymers entire chains begin to slip past one another and the
polymer properties are similar to those of other highly viscous liquids. On
the other hand, thermosets are prevented from such gross chain motions by
the cross-links between chains. At very high temperature well above the
glass-transition temperature, thermosets tend to char and properties will
substantially decrease due to molecular degradation. Cross-linked sites
may be broken and then reformed to give the appearance of flow. (See
Tolboslky (1962) for a discussion of these mechanisms). Examples of me-
chanical properties of thermosets that demonstrate these characteristics
will be given in Chapter 7.

The recognition of the roles of the various micromechanisms discussed
above are important for the development of damping properties that are
needed for a specific engineering application. Such design typically begins
with the selection of an appropriate monomeric species to control the glass
transition temperature T,, crystalline melt temperature T,,, and secondary
transition properties. By controlling the polymerization process the same
polymer can be produced in different forms and with different properties.
Side group configuration and their influence on crystallinity, the degree of
chain branching, crosslinking, etc. are well understood and together with
blending, plasticization and the addition of fillers allow a high degree of
flexibility in producing a polymer “tailored” for specific engineering re-
quirements.
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5.5.3. Other Instruments to Determine Dynamic Properties

There are many types of tests from which steady state (or dynamic) prop-
erties can be obtained including the vibrating reed, steady state torsion
among others. A relatively simple and easy to build free or unforced vibra-
tion test of a flat strip in torsion (torsional pendulum) shown in Fig. 5.24 is
sometimes used to obtain storage and loss moduli and damping rations.
The damping factor (or phase angle) can be found from the logarithmic
decrement which is related the decrease in amplitude oscillations and the
shear modulus can be determined from the period of oscillation. For a
more extensive discussion of this test method see (Nielsen, (1965)) or
(Nielsen and Landel, (1995)).

Clamps

Fig. 5.24 Torsional pendulum for free vibration test (A = amplitude, P = period,
logarithmic decrement = In A /A, = A,/As; = Aj/A,, etc.)

G

| S

=3

Shear Modulus (Dynes/cn12)
Damping Ratio (Logarithmic decrement)

20 0 20 40
Temperature (°C)
Fig. 5.25 Shear data for a styrene/butadiene copolymer developed using a tor-
sional pendulum. (Data from Nielsen, (1965)).
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5.6. Review Questions

5.1

5.2

53

54

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11

Describe realistic creep and relaxation tests. Illustrate your answer
with sketches of the input and output curves.

Assuming the input stress (strain) in a creep (relaxation) test is a
ramp followed by a constant stress (strain), describe under what
conditions the test will approximate an ideal creep (relaxation) test.

Discuss a proper testing procedure to insure that a constant stress
and not a constant load is applied in a creep test.

Discuss a proper testing procedure to insure that a constant strain is
applied in a relaxation test.

Give sketches for generalized Maxwell and Kelvin models. Label all
elements.

Give an equation that would represent the relaxation response for a
generalized Maxwell Fluid.

Give an equation that would represent the creep response for a gen-
eralized Kelvin Solid.

Describe how one would find the storage modulus, loss modulus and
tan O from experimental data.

Explain, describe and/or derive the rationale behind Alfrey’s corre-
spondence principle.

Describe the molecular mechanisms associated with the regions of
response in a steady state oscillation test.

Name four transition temperatures that can be found using a DMTA.
In which region is aging likely to occur?

5.7. Problems

5.1.
5.2.

5.3.

54.

Develop the differential equation for a four-parameter fluid.

Obtain the solution for creep of a three-parameter solid by solving
the differential equation.

Obtain the solution for relaxation of a three-parameter solid by solv-
ing the differential equation.

Obtain the solution for creep of a four-parameter fluid by solving the
differential equation.
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5.5.

5.6.

5.7.

5.8.
5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

Show that the effect of the initial ramp loading in a realistic relaxa-
tion test as given in Fig. 5.5 d of a material that can be represented
by a Maxwell fluid is negligible if the time of the ramp load t, is
small compared to the relaxation time, T.

Develop the differential equation for two Maxwell elements in paral-
lel.

Develop the differential equation for three Maxwell elements in par-
allel.

Develop the differential equation for two Kelvin elements in series.
Develop the differential equation for three Kelvin elements in series.

Obtain the solution for relaxation of two Maxwell elements in paral-
lel by solving the differential equation.

Find all the parameters necessary to fit the behavior of the 160° C
curve given in Fig 5.12 with a three-parameter solid. Give results on
a graph comparing the analytical curve fit to the given data. Discuss
the quality of fit using this simple model.

Find all the parameters necessary to fit the behavior of the 155° C
curve given in Fig 5.12 with a four-parameter fluid. Give results on
a graph comparing the analytical curve fit to the given data. Discuss
the quality of fit using this simple model.

Under steady state vibration test conditions:

a. Prove that the phase shift is zero for a Hookean elastic material.

b. Prove that the phase shift for a Newtonian fluid is m/2.

Develop expressions for E*(im), E'(w), E"(w) for a Maxwell model
and plot results as a function of 1/w.



6. Hereditary Integral Representations of Stress
and Strain

As discussed previously, the relation between stress and strain for linear
viscoelastic materials involves time and higher derivatives of both stress
and strain. While the differential equation method can be quite general, a
hereditary integral method has proved to be appealing in many situations.
This hereditary integral equation approach is attributed to Boltzman and
was only one of his many accomplishments. In the late nineteenth century,
when the method was first introduced, considerable controversy arose over
the procedure. Now, it is the method of choice for the mathematical ex-
pression of viscoelastic constitutive (stress-strain) equations. For an excel-
lent discussion of these efforts of Boltzman, see Markovitz (1977).

6.1. Boltzman Superposition Principle

In previous chapters, relaxation and creep testing was introduced and the
relaxation modulus and creep compliance were defined as the stress output
for a constant strain input (relaxation) and the strain output for a constant
stress input (creep). A question naturally arises as how the output could be
found if a variable input of either strain or stress were to occur. One could,
of course, attempt to solve a general differential equation if the variation is
specified but such an approach could, in some cases, be quite tedious.

The Boltzman superposition principle (or integral) is applicable to stress
analysis problems in two and three-dimensions where the stress or strain
input varies with time, but first the approach will be introduced in this sec-
tion only for one-dimensional or a uniaxial representation of the stress-
strain (constitutive) relation. The superposition integral is also sometimes
referred to as Duhamel’s integral (see W.T. Thompson, Laplace Trans-
forms, Prentice Hall, 1960).

Consider a variable stress input as shown in Fig. 6.1 with the thought of
seeking a method to find the strain output. First assume that the variable
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input can be represented by a series of step inputs each of which begins at
different time as shown. Thus

o(t) = 0 H(t) + (0, -0 JH(t=t,) +---+ (0, =0, JH(t-t,) (6.1)

b“ Variable Stress Input g“ Strain Output
g‘ w
g £
Iz g
o, 7]
“ )
[ ]
G, ‘
! |
t, t, ot time, { time, t

Fig. 6.1 Variable stress input.
Obviously, if sufficiently small steps are selected over corresponding small
time intervals, the curve can be fitted to any degree of accuracy desired.

Recall from Chapter 3 that the creep response can be represented by a
creep compliance due to a step input at time zero as,

e(t) =0,D(t) for o(t) = o H(t) (6.2)

Similarly, creep response for any single step input shifted from the origin
can be written as,
e(t)=o,D(t-t,) for o(t)=oH(t-t,) 6.3)

Because it is assumed that the material is linear viscoelastic, the strain out-
put for a general varying stress input can be represented as a sum of the
output for each individual step in the following manner (see Appendix A
for a discussion of the unit step function),

e(t) = 5,D(OH(t) +(0, -0 )D(t -t )H(t - t,) +
(0, -0, )D(t-t)H(t-t,) + (6.4)

(05 -0,)D(t—t)H(t-t5) +
~+(0, -0, )D(t-t ) H(t-t,)
or in series form,

e(t) = o, D(OH(t) + 2 (0, -0, )D(t-t,)H(t-t,) (6.5)
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Upon multiplying and dividing by the time increment between each step,
At, and taking the limit as n approaches infinity and At approaches zero
obtain,

() = 0, DOH() + lim E—)D(t t JH(t-t)AT  (6.6)
ot
or
&(t) = oDmHm+fmu-f“” 6.7)
The integral equation is most often written as
&(t) = fDa-)m“ﬂ (6.8)

where it is understood that the lower limit is from t=0" or includes the
jump discontinuity in stress at the origin and the stress is understood to be
expressed as o(t)= o (t)H(t). That is,

d[o(r)H(t)]dT
dt

e(t) = f D(t-1) (6.9)
)

Differentiation of the product of the stress and the Heavyside function
gives,

dlo(mH(®] _d[o(v)] (D) + 0(1) d[H(v)]
dt dt dt (6.10)
dlo(1)]
= H(7) +0(7)d(7)
dt
or

oo

s(t)=fD(t—1: H(7) +o(7t)d(T) tdT (6.11)
et

Due to the sifting property of the Dirac Delta function, 8(t), (see Appen-
dix), Eq. 6.11 reduces to Eq. 6.7.

Using this approach, the output for a more complicated variable stress
input as given in Fig. 6.2 (with o(t) specified) can be found by integration.
Note that one must take care in the expression of o(t) and its differentia-
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tion in Eq. 6.7 so that the jump discontinuities at t = t; and t = t, are ex-
plicitly included as is the jump discontinuity at t = 0. Examples with sim-
ple fi(t) functions are provided in homework problems 6.4-6.6.

-
?

Variable Stress Input

stress, G,

Kl

t, t, time,t

Fig. 6.2 Example of a variable stress input.

An analogous derivation of the stress output for a variable strain input
yields the equation,

ds(r)

o(t) = f E(t-1)—2 (6.12)

Because all events over the history of a viscoelastic material contribute to
the current state of stress and strain, the lower limit of the hereditary inte-
gral is most often taken to be - % and Eqs. 6.8 and 6.12 therefore become,

do('c) dS(r) dt

(6.13)

e(t) = f D(t-1) o(t) = f E(t-1)

Some might suggest that no need exists for a lower limit of negative infin-
ity as the instant of first loading is known for most structures. However, in
the case of polymer structures, it is especially necessary to carefully con-
sider all previous events including polymerization and production proc-
esses. Further, the previous history may include temperature or other envi-
ronmental changes which could lead to residual stresses that would create
changes to the molecular structure and hence need to be included in any
realistic stress analysis. Indeed, most structural polymers used in industry
are quenched which not only gives rise to residual stresses, but also creates
excess free volume at the molecular level that significantly influences the
viscoelastic properties of a material. Two such important effects that occur
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as a result of excess free volume are physical and chemical aging. Such
concepts will be discussed at greater length in a later chapter.

Several examples are in order to demonstrate the utility of the Boltzman
superposition principle.

Example 1: Assume it is desirable to find the strain output in a creep
and creep recovery test shown in Fig. 6.3(a). First note that the stress
can be easily represented by two step inputs as illustrated schemati-
cally in Fig. 6.3(b) and given by

o(t) =o H(t)-o,H(t-t,) (6.14)
As aresult, the response can be written as,
e(t) =o,D(H(t) —o,D(t-t )H(t-t,) (6.15)
A (a) Input A (b) Input
5 G q, —
t time, e g’ 0 time, F
Y5 1 R - |

Fig. 6.3 Creep-recovery stress input (a) can be represented by super-
position of two step inputs (b).

Applying this example to a material which is well represented by a
Kelvin solid, where,

D(t) = l(l —e''M), (6.16)
E
and substitution in Eq. 6.15 gives,
() =20 (1 e HO - 20 (1 —e M HE-t) (6.17)
E E
00 -t/T
Fort<t, : g(t) = f(l —e''T) (6.18)

and for t > t;: e(t) = %e“”(eIl " —1) (6.19)
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The resulting output is represented graphically as,

—
>

strain, g

T

l Output

strain, €

|
I
I
I
I
I
I
|
|
i
t

| time, {

Fig. 6.4 Output for the two step stress input given in Fig. 6.3.

which agrees with physical intuition for a Kelvin solid. To accom-
plish the same result by solving the differential equation for a Kelvin
solid would be somewhat more cumbersome. This is left as an exer-

cise for the reader (see problem 6.1).

Example 2:
Another useful example is to consider a Maxwell Fluid subjected to a

constant strain rate input as in Fig. 6.5(a), and determine the stress

output.

-
o

Strain Input o] Stress Output
w ?

R o

I

time, t time, t

Fig. 6.5(a) Constant strain-rate input for a Maxwell fluid.

Because the strain is given as, &(t)=Rt, the strain rate is constant,

% =R, and Eq. 6.12 gives,

o(t)=R f E(t-T)dt (6.20)
0
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Differentiating and rearranging will give,

1 do
E(t)=—— (6.21)

R dt
From this result it is apparent that the relaxation modulus can be
found from a constant strain-rate test by dividing the slope of the
stress output by the strain-rate. Similarly, the creep compliance can be
found from an constant stress-rate test by dividing the strain output by

the stress-rate,

1 de
D(t)=—— (6.22)

R dt
To obtain the output for a Maxwell fluid in a constant strain rate test,
the relaxation modulus, E(t) =Ee"™ must be inserted as
E(t —lp) —Ee""E and Eq. 6.20 becomes after changing the

dummy variable to ),
t
o(t) =RE [~V dy (6.23)
0
Upon evaluation, Eq. 6.23 reduces to,

o(t) =tRE(1-¢™'") (6.24)

and is the same result obtained by solving the differential equation
for a Maxwell fluid and given in Chapter 3 and is plotted in Fig.
6.5(b). Thus, the same conclusions are reached concerning linearity
for a constant strain rate test as discussed in the previous chapter.

-

\

O,

Stress Output

stress,

time, {

Fig. 6.5(b) Constant strain-rate output for a Maxwell fluid.
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6.2. Linearity

It is important to note that the condition of linear viscoelasticity requires
both superposition and proportionality. It is necessary for the responses to
stresses applied at any time to be superposable (as described in Fig. 6.1
(and Eq. 6.4)) and for responses to different stress levels to be proportional
as was illustrated using isochronous stress-strain curves from creep or re-
laxation tests discussed in Chapter 3 (e.g. Fig. 3.19) for an arbitrary con-
stant time t = t,. These are often referred to as separate conditions of line-
arity with superposition referring to the former and proportionality
referring to the latter. However, the constitutive equations resulting from
Boltzman’s superposition principle (Eqs. 6.13) are quite general and sat-
isfy both conditions for linearity, as can be easily proven. For a more de-
tailed explanation of the mathematical nature of the integral representation
of viscoelastic constitutive equations see (Christensen, 1982). Also, the
need for time-wise superposition is clearly indicated in Chapter 10 in the
development of the Schapery single integral representation for non-linear
materials.

6.3. Spectral Representation of Viscoelastic Materials

In the solution of practical boundary value problems it is necessary to have
knowledge of the actual creep or relaxation properties of the material.
Sometimes experimental data in discrete form can be used in numerical so-
lutions but most often measured values of E(t) or D(t) need to be repre-
sented mathematically. The most frequent mathematical approach to repre-
sent data is with exponential (Prony) series. The use of exponential series
was well understood by early polymer scientist and polymer physicists
who considered the need to mathematically represent data. However, as
their focus was to develop understanding between macroscopic properties
and molecular structure, they sought other general approaches that could
be applied in a relatively simple fashion. While the resulting spectral ap-
proach may not appear simple, it has been widely used in polymer litera-
ture.

To introduce the spectral approach, consider the relaxation modulus for
a generalized Maxwell model,

E(t) = 2 Be ™t (6.25)
i=1
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where A; is the reciprocal of the relaxation time, % In Eq. (6.25), we can
i

visualize discrete values of relaxation times, +T,, being superposed on the

time scale. If the number of elements in the generalized Maxwell model

become infinite in the limit, i.e.,

E(t) = Lim E Ee ™™ (6.26)

n—o;_q

then each point on the time scale is also represented by a relaxation time.
Therefore, multiplying and dividing the argument of Eq. 6.26 by an in-
crement of T, or At; will give,

n

E(0) = Lim ‘ IAE—Tiie‘k”Ari (6.27)
Aty —0 1=

The quantity E/A<; is similar to a Dirac delta function or singularity func-
tion (see appendix for a discussion) and is defined as H(t;). Taking the
limit, Eq. 6.27 becomes,

E(t) = f H(t)e ™dr (6.28)
0

The quantity H(t) is a continuous function defined as the relaxation spec-
trum and is often used in polymer literature. (Note this term should not be
confused with the Heavyside step function used earlier to represent a step
input.)

If for example, the relaxation spectrum is assumed to be,
H(t)=E0(t-T,) (6.29)

the relaxation modulus will become upon evaluating Eq. 6.28,

E(t)=Ee ' (6.30)

Eq. 6.30 is, of course, the equation for a single Maxwell model and would
only provide a very simple approximation of material behavior. The re-
laxation spectrum for a generalized Maxwell model for which

E(t) = E Be '™ (6.31)

is simply
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H(t) = EEié(r— 1) (6.32)

and for a sufficient number of elements can represent a real polymer. If
H() is thought of as many delta functions continuously distributed along
the time scale there are essentially an infinity of relaxation times and hence
the integration over relaxation time in Eq. 6.28.

Comparison with a Fourier or Laplace transform (see appendix) suggest
that H(t) can be found using the inversion integral,

1 c+ioo "
H(t)=—— E(t)e™dt 6.33
(1) 2mc_fm (t) (6.33)

where t is complex. The relaxation spectrum H(t) is also referred to as a
function for the distribution of relaxation times. Note that the units of H(t)
are psi/sec and can be thought of as a density function of the relaxation
modulus over time.

A distribution of retardation times based on a generalized Kelvin model
leads to a retardation spectrum, L(t), defined by,

D(t) = f L(r)(l-e'M )dt (6.34)
0
or
_Lwim "
L(D=5— c fw D(t)e™dt (6.35)

The relaxation and creep spectra are widely used in the polymer literature
where molecular mechanisms are related to macroscopic properties.

Most often the relaxation or retardation times involved in the viscoelas-
tic spectral representations shown in Eqgs. 6.28 and 6.34 are spread over
many decades of time and for this reason the equations are often written in
terms of a logarithmic time scale such that,

E(Int) = f H(lnt)e d(In ) (6.36)

—00

and

D(Int) = }L(ln 1:)(1 —e ™™ )d(ln 1) (6.37)
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Experimental data is most often represented using base 10 logarithms in-
stead of natural logarithms.

An example of spectra for a given polymer is shown at the end of this
chapter. Calculation of spectra is revisited in Chapter 7 along with experi-
mental data. For a more comprehensive discussion of viscoelastic spectra,
see for example Christensen (1982), Tschoegl (1989), Tolbolsky (1960),
and Ferry (1980).

6.4. Interrelations Among Various Viscoelastic Properties

Relationship between E(t) and D(t): The Laplace transform of Eqs. 6.8
and 6.12 are,

£(s) =sD(s)3(s) (6.38)
and

G(s) =sE(s)&(s) (6.39)
Substituting 5(5) from (6.38) into (6.39) gives,

E(s)D(s) = 1 (6.40)

§2
which upon using the convolution theorem yields,

f E(t)D(t - t)dt =t (6.41)

0

This result clearly shows that (unlike an elastic material) the relaxation
modulus and the creep compliance are not reciprocals. That is,

1
D(t) #= — (6.42)
E(t)
In cases where the rate of change of strain or stress is very small, the creep
compliance and relaxation modulus may be approximately the inverse of
each other. Consideration of simple Maxwell and Kelvin models confirm
the condition given by Eq. 6.42 as in Homework problem 6.7.

Relationship between E*(s) and E(s) and between ﬁ*(s) and D(s):
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In Chapter 5, using Alfrey’s correspondence principal for a generalized
mechanical model it was found that the stress and strain could be related in
Laplace transform space as

G(s)=E (s)&(s)

. (6.43)
€(s)=D (s)o(s)

where E*(S) and ﬁ*(s) are found from the coefficients of the differential

equations describing the system. Comparing Eq. 6.43 with Eqs. 6.38-39, it

is clear that the correspondence principle holds generally for a viscoelastic

material, not just one represented by a mechanical model. It is also seen

% —*
that the transformed modulus, E (s) (compliance, D (s)), is obtained
from the Laplace transform of the modulus (compliance), multiplied sim-
ply by the transform variable s:
—k —
E =sE
*(S) SE(s) (6.44)
D (s) =sD(s)
Note also that while reciprocity of the modulus/compliance is not valid in

the time domain (Eq. 6.42), it is valid in the transform domain

1

*k

E (s)

—%
D (s)= (6.45)

# #
Relationship between E (iw) and E(t) and between D (im) and D(t):
Expressions analogous to Eq. 6.43 were developed in Chapter 5 using a
strain (or stress) input of the form e = e(t)= 801-:“"t (or o= o(t)= ooei"’t)

% * . k
o —E*(m))s* (6.46)
e =D (im)o

£ £
where then E (iw) and D (iw) are termed the complex moduli of the mate-
rial.

To elucidate the relationship between the time dependent modulus and

t

the complex modulus, substitute &(t)= soeiw into the hereditary integral

Eq. 6.13, to obtain

o(t) = i, [(E(t- el Ty (6.47)

—00
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Changing variables by letting, u=t—7T or T=t—u and noting that if
T =-00,u=0o, andift =t,u=0, we obtain

o(t) = (soem )(iij(u)e_i‘””du) (6.48)
0

Examining the terms in brackets on the right hand side, we recognize the
applied strain €* and the half-sided Fourier transform of the relaxation
modulus. Comparing to Eq. 6.46 and replacing u by t the complex
modulus is defined as

% > .
E (iw) =io f E(t)e ™dt (6.49)

0

Similarly, the complex creep compliance can be found to be

* - .
D (iw)=iw f D(t)e™*'dt (6.50)

0

Thus, if the time dependent creep or relaxation properties of a material are
known, the complex moduli and compliances can be calculated simply via
Fourier transforms (Eqgs. 6.49-6.50). Comparison back to the Laplace
transforms (Eq. 6.44), we see that s or iw times the Laplace or Fourier
transform, respectively, of the time dependent properties provide the trans-
formed properties which can be used in the correspondence principle
forms Eqs. 6.43 and 6.46.

If the time dependent modulus of the material, E(t), is expressed in a
Prony series (generalized Maxwell model) representation (Eq. 6.31 or Eq.
5.22), then the simple algebraic form of the function leads to explicit ex-
pressions for the storage and loss moduli from solution to Eq. 6.49.

E'(0) = E'(0) +iE"(w)

En’ Ew/T.
=|E J i J J (6.51)
°°+E 1 2 +12 1 2
J T"‘U) ] 72+(1)
T° T
J | ! J
E! EH

Naturally, corresponding forms can be found for the complex compliance
function for a generalized Kelvin model. Verification of these expressions
is left as an exercise for the reader.
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Often integral Eqs. 6.49 and 6.50 are given in a different form. For ex-
ample, separating the relaxation modulus into two components,

E(t)=E_ +E(1) (6.52)

where E_ is the equilibrium modulus and I:l(t) is the transient modulus.
Using these expressions and separating Eq. 6.52 into real and imaginary
will give the form,

E(w)=E_ +w f E(t) sinotdt (6.53)

0

and

E'(0) =w f E(t) cos mtdt (6.54)

0

suggested by Christensen, (1982) (see homework problem 6.8.).

In using Egs. 6.53 and 6.54, it is to be noted that E_ for a viscoelastic
solid (e.g. a three parameter solid) is a non-zero quantity and the equilib-
rium modulus for viscoelastic fluid (e.g. a Maxwell fluid) is E_= 0. For

discussions of the advantages of this form see (Christensen, (1982),
Tschoegl, (1989), Tolbolsky, (1960), Ferry, (1980)).

Similarly, the creep compliance can be separated into an instantaneous
component and a transient component such that,

D(t) = D, + D(t) (6.55)

and equations for the storage and loss compliance analogous to using Eqs.
6.53 and 6.54 can be developed (see problem 6.9).

Using Fourier transforms (see Appendix B), it can be shown that the re-
laxation modulus and creep compliance can be found from the complex
modulus and the complex compliance respectively, by the equations,

_ 1 FTEGO) ] oy
E(t)—zjtic fw[ - }e d(iw) (6.56)
D(t) = —— [M}eimtd(im) (6.57)
2mi 10
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*
Returning to Eq. 6.49 expressions for E (im) can be found by substituting
E(t) from Eq. 6.28 to obtain,

E' (iw) =io f et f H(t)e Mdudt (6.58)

0 0

A similar relation can be found for D*(io)). Development of these rela-
tionships is left as an exercise for the reader. A schematic representation of
the relationship between various viscoelastic properties is given in Fig.
6.6. (Gross, (1953)).

An example of measured relaxation data for polyisobutylene is shown in
Fig. 6.7(a). The corresponding calculated relaxation spectrum is shown in
Fig. 6.7(b). The relaxation data for polyisobutylene shown in Fig. 6.7 is
spread over about sixteen decades of time in seconds. If a single test were
performed to obtain this data, the collection of data would have begun in
less than a picosecond and the test would have continued for approxi-
mately 12 days. To obtain similar curves for other temperatures would re-
quire a large number of tests. Instead, a time-temperature-superposition
procedure is used to produce a master curve by performing short-term tests
at different temperatures and shifting the measured curves on the time
scale to produce a long-time master curve for any one temperature. The
master curve can then be shifted to determine the response for any tem-
perature within the given data set. This procedure will be discussed in the
next chapter.
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Fig. 6.6 Interrelations among viscoelastic functions. (After Gross, (1953))
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Fig. 6.7(a) Measured relaxation function for polyisobutylene (Original data from
Tolbolsky, (1972) and Catsiff and Tobolsky, (1955)) and the series
expansion fit.
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Fig. 6.7(b) Associated relaxation spectra for polyisobutylene. Detail on the origi-

6.5.

6.1.

6.2.

6.3.

6.4.
6.5.

6.6.

6.1.

nal data and the Prony series fit is contained in Chapter 7.

Review Questions

Discuss the difference between superposition linearity and propor-
tional linearity and the relation of each to the Boltzman superpositon
principle.

Describe the spectral approach to representing viscoelastic behavior
of polymers.

What is the relationship between the creep compliance and the relaxa-
tion modulus.

Describe the difference between ﬁ*(s) and D(s).

Why would one wish to calculate the complex modulus from the re-
laxation modulus?

Problems

Verity the strain output for a two-step stress input given in Fig. 6.3 by
solution of the differential equation for a Kelvin model.
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6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

The relaxation modulus of a Maxwell model is; E(t)= Ee™"'". Using

the Boltzman superposition principle, find an equation for the stress
vs. time in a constant strain rate test.

1
E
ing the Boltzman superposition principle, find an equation for the
strain vs. time in a constant stress rate test. Sketch your results, i.e.,
g vs. t.

Given the stress input shown below. Give correct expressions of
strain for each time interval.

The creep compliance of a Kelvin element is D(t) = (l—e_”t). Us-

-
r

Qstress, G

time, t

Using the Boltzman superposition integral, find the strain output for
the following stress input for a Maxwell fluid.

A

|

|

1

l

to to

Using Boltzman’s superposition integral, find the strain output for a
Kelvin solid for the given stress input.

Using the relation between compliance and modulus in the Laplace
transform space (Eq. 6.40), find the compliance, D(t), for a Maxwell
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element, given its modulus of E(t)= Ee'’". Plot D(t) and the inverse
of E(t) to illustrate the validity of Eq. 6.42.

6.8. Develop equations for the complex compliance from the creep com-
pliance for a Kelvin model.

6.9. Show that Eqgs. 6.53 and 6.54 can be obtained from using Eq. 6.49.

6.10 Show that the complex moduli, E' and E”, can be represented as in-
dicated in Eq. 6.51 in the case where the time dependent modulus,
E(t) is given by a generalized Maxwell model.

6.11 Develop equations relating the storage and loss compliances to the in-
stantaneous and transient compliances analogous to Eqs. 6.53 and
6.54.

6.12.Develop equations for the complex modulus from the relaxation
modulus for a three parameter model using the integral relationship
between the two functions.

6.13.Develop equations for the complex compliance from the creep com-
pliance for a three parameter model using the integral relationship be-
tween the two functions.



7. Time and Temperature Behavior of Polymers

One of the most important functions of engineering design is to be able to
predict the performance of a structure over its design lifetime. Necessarily
the mechanical behavior of materials used in a structure must also be
known over the intended life of the structure. For engineering design based
upon linear elasticity, it is assumed that no intrinsic change in mechanical
properties occurs over time'. However, the molecular structure of polymers
gives rise to mechanical properties that do change over time.

As engineering structures are often designed to last as long as 20 to 50
years, there is a compelling reason to develop experimental and analytical
approaches for polymer based materials that will allow the prediction of
long term properties from relatively short term test data. The motivation is
even higher when one considers that part of the design process is often that
of developing and/or comparing candidate polymeric material systems.
Long term testing on the order of years to determine fundamental polymer
properties such as the relaxation modulus, E(t), or creep compliance, D(t),
are quite impractical. Fortunately, the relationship between property
changes of a polymer with time and property changes of a polymer with
temperature can be utilized to develop accelerated test methods. The meth-
ods discussed in this chapter can assist the design engineer in the difficult
task of estimating long-term properties of polymer-based materials from
short-term tests. The procedure by which such estimates can be made is
known as the time- temperature-superposition principle (TTSP) and is in-
troduced in the following sections.

I Of course, environmental factors as well as fatigue do influence mechanical
properties as a function of time but this degradation of properties due to accu-
mulated damage is quite separate from the inherent time dependence of viscoe-
lasticity considered here.



222 Polymer Engineering Science and Viscoelasticity: An Introduction

7.1. Effect of Temperature on Viscoelastic Properties of
Amorphous Polymers

In Chapter 3 creep and relaxation testing was discussed as well as a defini-
tion of the 10-second modulus. Further, the variation of the 10-second
modulus as a function of temperature for various types of polymers was il-
lustrated in Fig. 3.16 and five regions of viscoelastic behavior were identi-
fied as the glassy, transition, rubbery, rubbery flow and liquid flow re-
gions. It was noted that linear polymers exhibit all five regions while the
thermoset polymers typically only show the first three regions. However, it
was noted that at sufficiently high temperatures thermoset polymers de-
grade and this can lead to significant changes in properties. These facets
will be illustrated later in this chapter.

The general character of the five regions of behavior of thermoset and
thermoplastic polymers as a function of temperature given again in Fig.
7.1 is most often shown in the literature using 10- second modulus data.
However, the various regions can also be observed using 30-second data,
5-minute data or even one-hour data depending only on the mechanical
characteristics of the polymer being tested and the length that tests are per-
formed. The various regions of behavior can also be observed using creep
compliance data such as that shown in Fig. 7.2. The data in Fig. 7.2 is
given as the reciprocal of compliance in order for easy comparison to the
schematic results for modulus vs. temperature given in Figs. 3.16 and Fig.
7.1. It is to be carefully noted as stated in Chapter 6 that, in general, the re-
laxation modulus and creep compliance functions are not reciprocals of
each other except for regions in which the rate of change of properties is
very small. Therefore, data in the glassy and rubbery regions of Fig. 7.2
can reasonably be interpreted as modulus but those in the transition region
may significantly vary from data that would be found in a relaxation test.



7 Time and Temperature Behavior of Polymers 223

A

Transition

Glassy

Rubbery Rubbery ! Liquid

| 1 |
|
I : : Flow 1 Flow
| | | |
|
koo o e m : | |
‘B . 1 1 |
2 | Epoxy*~500 ksi (~3.45 GPa) ! : :
~X | Urethane ~130 ksi (~1.3|8 Gpa) 1 1 I
Q | | |
Q
2 : | : Crystalline:
= |  Epoxy*~2.0 ksi (~0.014 Gpa) L / !
®_ | Urethane ~0.7 ksi (~0.004 Gpa) | | Thermoset
— / | | |
%0 [-———m—mm e L2 1 1
= : | | :
: : : Thermoﬁastlic
L I : T
25°C 120°C 130°C —Epoxy Scale —» o
-60°C -30°C 25°C — Urethane Scale—>
Temperature

Fig. 7.1 Five regions of viscoelastic behavior of a polymer. Curves are generic in
form, but glassy and rubbery data given are for epoxy and urethane
(Brinson, 1965, 1968, 1976).2 For urethane also see (Williams and Ar-
entz, 1964).

As may be seen in Fig. 7.1 the modulus of a polymer varies considerably
with temperature and a polymer of reasonably high molecular weight will
be glass-like below the glass transition temperature, T,. Above the T, a
polymer will have the character of leather in the transition zone, or that of
a rubber in the rubbery region, etc. While one polymer may be glass-like at
room temperature and another may be rubbery at room temperature their
basic behavior relative to the T, is the same. To illustrate this point glassy
(25° C) and rubbery (130° C) moduli values for the epoxy shown in Fig.
7.2 with a T, ~ 120 ° C (Brinson, (1965)) are included in Fig. 7.1. Also in-
cluded in Fig. 7.1 are the glassy (~ -80° C) and rubbery (~25° C) moduli
values for a polyurethane with a T, ~ -30 ° C (Williams and Arentz,
(1964)). Note that the mechanical property response vs. temperature of
each are very similar providing the two materials are compared at the same
point relative to their respective glass-transition temperatures.

2 The exact point of the beginning of the rubbery region may be somewhat less
than the 25° C indicated in Fig. 7.1. See Williams and Arentz for details.
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Fig. 7.2 Reciprocal of compliance D(t = 30 sec.)” vs. temperature for an epoxy,
T,=120 °C. (Data from Brinson (1965), (1968).)

The schematic behavior of an epoxy as shown schematically in Fig. 7.1 is
verified by the creep data given in Fig. 7.2 for an epoxy used in photoelas-
tic investigations, Brinson (1965). It is to be noted that the two polymers
identified in Fig. 7.1 do not have a T,, but they each will exhibit degrada-
tion of properties for temperatures sufficiently above the T, as will be
demonstrated later in this chapter. Also, the transition region is very sharp
in the epoxy as shown in Fig. 7.2 with a variation of the modulus (compli-
ance) by a factor of 10 for each one degree centigrade change in tempera-
ture. Other polymers may display a more moderate-variation in the transi-
tion region. Indeed the polyurethane discussed by Williams and Arentz
(1964) shows a more gradual variation of modulus with temperature. In
this context, it is important to realize that the T, is actually a narrow tem-
perature range as opposed to a precise single value. Indeed the various
methods to measure T, in polymers (see Chapter 3) typically provide simi-
lar, but different, numbers from one another. Note also that the modulus
(compliance) of the epoxy increases (decreases) slightly with temperature
in the rubbery region as shown in Fig. 7.2. The latter is evidence of rubber-
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like behavior or Joule effect and will be discussed further subsequently for
both the epoxy and the urethane.

7.2. Development of Time Temperature-Superposition-
Principle (TTSP) Master Curves

To illustrate the Time-Temperature-Superposition-Principle consider the
short-term creep data for different temperatures shown in Fig. 7.3 for an
epoxy. Data collection for each creep test began at 30 seconds after the ini-
tial load was fully applied and the test was terminated after 10 minutes.
Each curve for temperatures below 120° C has been shifted to the left so as
to form a continuation to shorter times for the 120° C creep compliance
curve. Each curve above 120° C has been shifted to the right to form a con-
tinuation to longer times for the 120° C compliance curve. The theoretical
origin justifying such a shifting procedure will be developed in the next
few sections. At present, simply consider that data collected above 120°C
must be shifted to the right to represent the longer time needed at 120°C to
achieve the same level of creep in the test time frame. Similarly lower
temperatures are shifted to the left to represent the shorter time scale for
that amount of creep that would be observed at 120°C, providing such
measurement could be made. The total curve for 120° C is the “master
compliance curve” for that temperature. The master curve data stretches
over more than eight decades of time starting at approximately 107
(0.0001) minutes and ending at close to 10** (10,000) minutes or nearly a
week (6.9 days).

While data was collected from room temperature (~25° C) to 130° C,
only the data above 90° C is shown as it was not possible to shift data be-
low this temperature to form a realistic extension to the data shown. Note
that the TTSP method is an outgrowth of the kinetic theory of polymers
which is only strictly valid above the T,. While the TTSP is thought to be
valid for temperatures below the T,, the exact lower limit is not well de-
fined. A guiding rule of thumb is that TTSP may be used below the T, as
long as data is shiftable to form a smooth master curve.

The 120° C master curve can now be shifted to determine a new master
curve for any temperature between 90° C and 130° C. If shifted to the right
to form a master curve for 90° C, the data would span the time from about
0.5 minutes to 10** minutes (or nearly 200 years). On the other hand, if the
data were shifted to the left to form a master curve for 130° C, the data
would span the time from about 10® minutes to 10 minutes. In other
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words, complete creep (or relaxation) of the epoxy for 90° C would take a
very long time while complete creep (or relaxation) would occur very
quickly at 130° C. From a practical standpoint obtaining the long time
creep data at 90°C would be impractical while at 130°C obtaining the short
time creep data would be difficult due to the short timescale. Thus, the
power of the TTSP is in the ability to trade off temperature for time and
perform mechanical tests of short duration at multiple temperatures to de-
termine compliance (modulus) as a function of time spanning many dec-
ades in time.
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Fig. 7.3 Creep Compliance Master Curve for an Epoxy at 120 ° C. (Data from
Brinson (1965).)

Plotting the reciprocal of creep compliance for a time of 0.5 minutes from
each of the curves in Fig. 7.3 with temperature results in the data previ-
ously discussed and given in Fig. 7.2. This curve verifies the various
stages for a polymer as described by Fig. 3.16 in Chapter 3 and Fig. 7.1 in
this chapter. Here, however, as mentioned earlier no rubbery flow or liquid



7 Time and Temperature Behavior of Polymers 227

flow region is observed as the polymer is of the thermosetting type. Fur-
ther, the “so called” rubbery region in Fig. 7.2 is not a horizontal rubbery
plateau as in Fig. 7.1 and as often seen in the literature. This is due to the
nature of rubber elasticity whose explanation evolved from the kinetic the-
ory of polymers discussed in the next section (Treloar, (1975)).

~2 years ———————p|

~1 week ——p=| |
106 T T T T T T T T T T T

Master curve for 90° C

Relaxation Modulus. E(t), MPa

Relaxation Modulus. E(t), psi

102
log () time, t (min)

Fig. 7.4 Master curve for a modified epoxy. (Data from Cartner (1978).)

Another example of the application of the TSSP is given in Fig. 7.4 for a
modified (rubber toughened) epoxy adhesive (Renieri, (1976); Cartner and
Brinson, (1978); Brinson, (1999)). Here short time relaxation tests of about
10 minutes duration were used for temperatures from 70° C to 120° C to
produce a relaxation modulus master curve for 90° C spanning 12 decades
of log time from 10 minutes to two years. The resulting curve, if TTSP is
valid, can be shifted to the right by one decade to become the master curve
for 87° and the resulting master curve would provide data over 20 years.
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An additional decade of shifting to be roughly equivalent to a master curve
for 78° would provide data over approximately 200 years. Clearly with this
method a prediction of behavior over a design lifetime of 40 or 50 years is
possible though no experimental data has ever been collected for such an
extended period providing proof that the approach is valid.

A final example of data that is shiftable to form master curves at differ-
ent temperature is given in Fig. 7.5. Here data for polyisobutylene for
various temperatures is given with a projection of the master curve for
each temperature. While still not a definitive “proof of principle” for the
use of the TTSP for reasonable long or short extrapolations, collectively
the data provides significant evidence.
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Fig. 7.5 Master curves for polyisobutylene. (after Aklonis and McKnight, (1983);
Original data from Tolbolsky, (1972) and Catsiff and Tobolsky, (1955))

7.2.1. Kinetic Theory of Polymers

An examination of Figs. 7.1-7.4 indicate the similarity between the varia-
tion of relaxation modulus (creep compliance) with time and temperature.
For this reason, the time and temperature variation of the moduli (or
compliances) of a polymer are often said to be related or, in fact
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pliances) of a polymer are often said to be related or, in fact equivalent.
This apparent equivalency led H. Leaderman of National Bureau of Stan-
dards (now known as the National Institute for Standards and Technology)
to propose the time-temperature-superposition-principle in the early
1940’s. Rouse, Zimm, Bueche and others later verified the TTSP using the
“kinetic theory of polymers”. The method has been extensively studied and
extended for many applications by Tobolsky (1960), Ferry (1964), Nielsen
(1965), Nielsen and Landel (1994) and many others where extensive refer-
ences to earlier literature may be found.

The theories of Rouse and Zimm were developed for dilute solutions of
polymers above the T, but Ferry and coworkers essentially extended these
to bulk polymers in the rubbery state. In doing so, a number of assump-
tions were made among which were:

* A bar-mass linkage was used to represent a segment
(mer) of a polymer molecule.

e Each polymer segment has a relaxation time and, there-
fore, the polymer has a very large spectrum of many re-
laxation times

e It is not possible to calculate an average relaxation time for a
polymer based on the molecular structure but it is possible to
calculate the relaxation time of the p™ segment of a polymer
molecule in a dilute solution and then extrapolate to the case for
a polymer molecule moving through a viscous medium of its
own kind.

The Rouse equation for the relaxation time of an p™ (arbitrary) segment is,
(see Nielsen (1965), Nielsen and Landel (1994) as well as an article by E.
Passaglia and J.R. Knox in Baer (1964)),

T 7.1)

TppRT
where 1 is the viscosity of the of the dilute solution, M is the molecular
weight of the segment, p is the number of segments per molecule, p is the
density of the solution, R is the gas constant and T is the absolute tempera-
ture. Rearranging gives,
T M

=——— =constant (7.2)
n  ap’R

and therefore,
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T,(D) =1(90T0) 73
Tp(TO) T]O pT ( ’ )

or the ratio of the relaxation time at one temperature to that at a reference
temperature, T, is given by Eq. 7.3. If the temperature dependence of the
relaxation time is the same for all segments, the ratio of relaxation times
may be extrapolated to the case of a molecule moving through a medium
of its own kind or that of a bulk polymer and the ratio can be equated to a
shift factor ar,

_ (D _n(pTh 7.4
T ©(Ty) no(pT) 74

That is, the relaxation times of the bulk polymer at one temperature can be
found from that at another temperature by multiplying each relaxation time
by the shift factor or,

T,(T)=a;7,(T,) (7.5)

Thus, the shifting of the data demonstrated in Fig. 7.3 should be repre-
sented by Eq. 7.4. The term thermorheologically simple refers to the key
caveat that all relaxation times of the polymer must be affected by tem-
perature in the same way. This assumption has been found to hold for a
vast array of homogeneous polymer systems. Typically shift factors are
found experimentally or by the WLF equation discussed in the next sec-
tion.

7.2.2. WLF Equation for the Shift Factor

M.L. Williams, R.F. Landel and J.D. Ferry (1955; see also Ferry, (1980))
applied the TTSP to a large number of polymers and found empirically the
following expression for the shift factor,

oT) _ ~C(T-T,)
©T)) C,+(T-T,)

log,,a =log,, (7.6)
where the constants C; and C, had the values of 17.44 and 51.6 respec-
tively if the glass transition temperature T, is used as the reference tem-
perature T,.

The development of the above equation has been shown to be of great
importance and has become widely used. It is commonly known as the
WLF equation and must be one of the most referenced equations ever in
the polymer literature. Eq. 7.6 was thought to be a universal equation for
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the shift factor for all amorphous glass-forming polymers above the glass-
transition temperature. However, further testing proved that different
classes of polymers have different constants.

Equation 7.6 can be developed from Doolittle’s concept of free volume
of a liquid. In Chapter 4 it was noted that the specific volume varies with
temperature during quenching as shown in Fig. 4.27 and can be used to
identify the degree of crystallinity as well as the melt temperature, T,,.

The variation of specific volume with temperature is shown again in
Fig. 7.6 where the amount of free volume increases with increasing tem-
perature above the T,. Free volume can be thought of as the space within a
material that is “unoccupied” by atoms and their quantum shells. (Actu-
ally, this theory has recently received criticism for not being a good repre-
sentation of the state of matter. However, the concept of free volume is a
useful model to assist in the explanation of the molecular motion of poly-
mers associated with viscoelastic behavior.) The slope of the specific vol-
ume curve shown in Fig. 7.4 is the coefficient of thermal expansion, Q.¢rg,
and, in fact, one definition of the T, is the point at which the coefficient of
thermal expansion suffers a discontinuity. The variation in free volume al-
lows for greater mobility of the molecular chains and gives rise to greater
time or viscoelastic effects as temperature increases. Sufficiently far above
the T, the polymer can be considered to be a fluid (for thermoplastic
polymers). As the polymer is cooled slowly to the T, it can be considered
to be a super-cooled fluid. (Continued slow cooling can suppress the T,
but the times required for molecular equilibrium are quite long. See Ferry,
1980 for a more complete discussion.) For example the T, is near the up-
per portion of the transition region for the epoxy shown in Fig. 7.1 and the
free volume is relatively small below the T, and little viscoelastic response
occurs as is illustrated in Fig. 7.3. On the other hand, above the T, free
volume is much larger and increases dramatically as temperature increases
with resulting increasing viscoelastic effects with temperature again as il-
lustrated in Fig. 7.3. When the rubbery region is reached the free volume is
so great that time effects occur almost instantaneously in a creep or relaxa-
tion test. See also Fig. 5.12 to visualize the effects of temperature on time
effects and hence on the free volume.
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Fig. 7.6 Specific or relative volume vs. temperature for an amorphous polymer.

Doolittle’s equation for the viscosity of a liquid is,
V-V, )

f

(7.7)

lnn=lnA+B(

where V is the total volume and V; is the free volume. Defining the frac-
tional free volume as,

v
f=_tf 7.8
v (7.8)

Doolittle’s equation becomes,
ln1r|=1nA+B(%—1) (7.9)

Above the T, the fractional free volume can be expressed as (see Aklonis
and McKnight, (1983)),

f=f, +o(T-T,) (7.10)

where f, is the free volume at T,. Substituting Eq. 7.10 into Eq. 7.9 yields,
1

In T](T)—ln A+B m—l (7.11)

The ratio of the natural log of viscosity at any temperature to that at the Tg
will give after simplification,

11D =B[ 1 -ll (7.12)
W) |G ra(T-T,) 1,
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Converting to base 10 logarithms gives,

(D) B T-T,
log,y ——2 = — (7.13)
n(T) " 23031,
o £
or
-C(T-T
log,par = G- (7.14)
C,+(T-T,)

The kinetic theory of polymers and the TTSP are only valid above the
glass transition temperature. However, many feel that the procedure, in a
modified form, is valid below the glass-transition temperature but exactly
how far below is uncertain. The WLF equation, on the other hand is known
to be only valid above the T, because below this temperature the material
can no longer be considered a super cooled liquid. In fact, Ferry, (1980)
notes that the slope of the shift factor curve should be discontinuous at the
T, for the same reason that the coefficient of thermal expansion suffers a
discontinuity at the T,.

A shift factor below the T, can be developed using the Arrhenius activa-
tion energy equation,

U(T) = Ae 5 /RT (7.15)

where T is the relaxation time, E, is the activation energy, R is the gas
constant and T is the absolute temperature. Rewriting in logarithmic form,

E
In t(T)=In A-—= 7.16
(T) RT (7.16)

and taking the ratio at an arbitrary temperature and the glass transition
temperature will give after converting to base 10 logarithms,

1 1

oT) _ E, 1 1
T T,

- (7.17)
«T,)  2303R

log,,ar =log,

Obviously, the shift factor based on activation energy is quite different
than the shift factor given by the WLF equation (see HW problem 7.2 and
7.3).
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The glass-transition temperature for the epoxy represented in Figs. 7.2
and 7.3 as determined from relative volume measurements (i.e., by meas-
uring the change in dimensions of a small unstressed specimen at different
temperatures) is given in Fig. 7.7. As may be observed, the T, =120° C.
For the above reasons, the master curve of Fig. 7.3 is given for a tempera-
ture of 120° C.

The shift factors necessary to obtain the master curve of Fig. 7.3 are
given in Fig. 7.8 and compared to the WLF equation. The measured shift
factor data for compliance agrees well with the WLF equation for tempera-
tures above the T, if the constants are taken to be C; =17.44 and C,= 51.6.
Also shown is a best fit of the WLF equation to the shift factor above T,
via a least squares algorithm and the associated constants in Eq. 7.14. For
the limited data points given, the result is relatively insensitive to modest
changes in the constants. Below the T, the measured data diverges drasti-
cally from the WLF equation and the character of the curve changes at the
T,. It is interesting to note, as Ferry (1980) indicated, that the slope of the
shift factor vs. temperature curve does suffer a discontinuity of slope at the

T,.
T T I T T T T I T T T T I T
1.04 [ § |
O Specimen 6 :
- & Speci 5
< pecimen
o 1031 —
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>
2> 1.02- —
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[}
o
1.01 —
1.00 -2 L

50 100 Ty 150 200
Temperature (°C)

Fig. 7.7 Relative volume vs. temperature for epoxy of Figs. 7.2 and 7.3. (Data
from Brinson (1965), (1968).)
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O Experimental Data
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Fig. 7.8 Shift factor from Fig. 7.3a compared with the WLF equation. (Data from
Brinson (1965), (1968).)

7.2.3. Mathematical Development of the TTSP

An equation to explain the TTSP procedure can be found using an exten-
sion to the relaxation spectra definition given by Eq. 6.28,

E(t) = f H(t)e ' "dr (7.18)
0

Obviously, the relaxation spectra H(t) is a function of temperature as is
the relaxation modulus E(t) and Eq. 7.18 should be written as,

E(t,T) =fH[1:(T),T]e_”Td17 (7.19)

0

Actually, H(t) is more strongly dependent upon the temperature implicitly
through the relaxation time rather than explicitly through temperature. In
fact, the explicit dependence of H(t) on temperature is very weak and can
be neglected (Passaglia and J.R. Knox (1960)). The Rouse theory suggests
the temperature dependence of the relaxation spectra is such that (see again
Passaglia, et al. (1960)),
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E(t,T)=pT f h(t)e™""dv (7.20)
0

where h(t) has no explicit temperature dependence. Multiplying by the
factor (poTy)/(pT) gives,

T, 1
(%)E(t,T)=pOTO [h(vedr (7.21)

0

Eq. 7.20 must be valid for any temperature and therefore can be rewritten
for the temperature T, as,

E(LT,) = p,T, [ h(z)e™ ™ dr, (7.22)

0

Since the relaxation times are all identically affected by temperature in the
same way and the relationship can be expressed as

ap=—  or Typ=— (7.23)
Ty ar

Eq. 7.22 can be written alternatively using a new time scale as,
Et,T,)) =p,T, f h(t)e™dv (7.24a)
0

where the new time scale, t’, is associated with temperature T, and
t'=t/a (7.24b)

Comparing Egs. 7.24a and 7.21 indicates that the right hand side of each
are the same providing the time scale in 7.21 is replaced by t’.

In turn the left hand sides are equal under the same condition and

E(t'.T,) = (pO—TO)E(t =a;t',T) (7.25a)
pT
or equivalently
PT \&/or
E@,T) = E(t'=t/a,T,) (7.25b)
PoTo
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Equation 7.25 is a formal statement of the TTSP and shows that the
modulus at one temperature is identical to that at another temperature after
modifying the timescale by a multiplicative factor (and the modulus scale
by a small temperature factor). On a logarithmic scale, this multiplicative
time factor results in a horizontal shift as demonstrated below. A similar
expression can be developed for the creep compliance. Eq. 7.25 can be
used in the process of creating a master curve, in which tests are performed
at many temperatures and shifted to the chosen reference T, temperature.
Eq. 7.25 can also be used to shift the master curve from its reference tem-
perature to provide the modulus master curve at another temperature.

An alternative approach to develop the TTSP expression (Eq. 7.25) is to
consider an expression of the viscoelastic modulus as a Prony series as
given by Eq. 5.21b or Eq. 6.25 with the temperature dependence now in-
cluded on the basis of the theories of Rouse and Zimm.

E(Ty,0) = p,T, ), Ee™/% ™) (7.26)

where the relaxation times at the reference temperature T, can be related to
those at any other temperature via the shift factor

T,(T) =a;7(Tp) (7.27)
The modulus at another temperature T can thus be expressed

E(T.0=pT Y Ee /T
— pTE E'e_t/aTTi(TO)
- pTE Ee/ar)/m(To) (7.28)
— pTE Eie—(t')/fa(To)
PoTo (4= o,T, EE'G—(t/)/Tz(TU)
pT T 00 i i

and thus comparing Eq. 7.28 with Eq. 7.26, one obtains

pO—?ET(t) —E(T,t'=t/a,) (1.29)
p

which is equivalent to Eq. 7.25b.



238 Polymer Engineering Science and Viscoelasticity: An Introduction

Use of Eq. 7.25 is demonstrated in Fig. 7.9. The shift factor is given by
Eq. 7.24b which upon taking logarithms becomes,

log,,t =log,,a; +log,t' (7.30)
and therefore,
log,,t'=log,,t—log,,ar (7.31)

For a reference temperature lower than the test temperature, Ty < T, the
WLF equation will give a shift factor on a log scale less than zero, i.e.,

-C(T-T,)
C,+(T-T,)

As a result, E(t',T,) is found from E(t,T) by shifting the data down and to
the right as shown in Fig. 7.9.

log,ar = <0 (7.32)

E(t,T)

-
_

log; (E(t)

Fig. 7.9 Example for shifting relaxation modulus data for T, < T. (Vertical shift
exaggerated for clarity.)

The change in density is usually very small and much less than the change
in temperature. As a result, density changes are often neglected and the
TTSP equation is usually written as,

E(t',T,) =(%)E(t —a.t',T) (7.33)

In fact in many cases the amount of change due to temperature is also
small and the TTSP equation is simply expressed as,

E(t',T,)=E(t=a,t',T) (7.34)
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For example the data of Fig. 7.3 includes only a maximum vertical shift of
about 10% due to temperature differences.

The TTSP method is sometimes referred to the “method of reduced
variables” because of the necessity of a vertical and horizontal shift due to
temperature differences in the collected data.

Eqgs. 7.20 or 7.33 can be used to confirm mathematically the Joule effect
or the increase of modulus with temperature in the rubbery range (see
problem 7.5). The elastic (or 30 second) modulus for the epoxy of Fig. 7.3
in the rubbery range is shown plotted vs. absolute temperature in Fig. 7.10.
Obviously, the rubbery modulus does increase linearly with increasing
temperature. Even though the extrapolated data does not go through the
origin it does serve as confirmation of the Joule effect mentioned in Chap-
ter 1.

Epoxy
3k A modulus
O stress fringe value

Elastic Modulus, E*10° , psi

1 1
0 100 200 300 400 500

Temperature (°K)

Fig. 7.10 Variation of modulus for the epoxy of Fig. 7.3 in the rubbery range.
(Data from Brinson (1965), (1968).)

Data for a crosslinked polyurethane rubber is shown plotted vs. absolute
temperature Fig. 7.11. The data shown is for temperatures between T=
300° K (~25° C) to T=425° K(~150° C) and is well above the T, of about -
25° C. Up to T=375° K the material is quite rubbery. However, beyond
this temperature, the transparent (orange color) polymer begins to darken
and noticeable creep occurs. In essence this is a rubbery flow region even
though cross-linked polymers are not supposed to have such a region. Ac-
tually, the temperature is so high that the material begins to physically de-
grade by compromising some of the primary cross-link bonds which begin
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to break and reattach leading to a creep mechanism. For example, consider
the three chains in Fig. 7.12. For a sufficiently high temperature, the
crosslink bonds of chain 1 break at site A and reattach at site B of chain 2.
This process leads to a permanent deformation which cannot be recovered
upon reheating as is normally the case for a thermoset.

Creep of the polyurethane of Fig. 7.8b for a temperature of 150° C is
shown in Fig. 7.13. The strain varies linearly with time similar to that ex-
pected for a Maxwell fluid and reaches nearly 20%. While the strain is in-
creasing, the birefringence remains constant. Since birefringence is caused
by the interaction of light with the molecular structure, the latter is an indi-
cation that the molecular network is not seeing additional strain. These re-
sults then suggest a deformation mechanism as described by Fig. 7.12.

8 T T T T T

Polyurethane °
O Modulus :
A Stress fringe value

Elastic Modulus ETx102, psi

| : |
0 100 200 ~Tg 300 400 500

Temperature (°K)

Fig. 7.11 Modulus vs. temperature for a cross-linked polyurethane in the rubbery
range. (Data from Brinson (1965), (1976).)

Fig. 7.12 Tllustration of creep of a thermoset polymer due to thermally induced
degradation.
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Fig. 7.13 Creep of a polyurethane T =150 °C (Data from Brinson (1965), (1976).)

Since the various methods of representing viscoelastic data including re-
laxation modulus, creep compliance, relaxation spectra, creep spectra,
complex modulus, complex compliance storage and loss moduli and stor-
age and loss compliance are all related as discussed in Chapter 6 and
shown schematically in Fig. 6.6, the TTSP principle is valid for each. Data
of each kind is often generated using the TTSP principle as is illustrated by
the storage and loss moduli given in Fig. 5.19 for polycarbonate.

7.2.4. Potential Error for Lack of Vertical Shift

As noted in the preceding section, often no vertical shift is used when mas-
ter curves are formed using the TTSP method. However, the lack of inclu-
sion of a vertical shift, even if small, can lead to substantial errors in the
prediction of properties over a long time. For example, assume the true
master curve for the compliance of a polymer is known and is as given in
Fig. 7.14 for a temperature of T,. Next assume the original data for a tem-
perature T; > T, is as given in Fig. 7.14 and must be shifted both horizon-
tally and vertically to fit the true master curve. Obviously if the data is
only shifted horizontally and not vertically, an error in both the time scale
and the compliance will result. Not only is the error compounded due to
the error in both the time scale and the compliance but also the error is
cumulative. As a result, large errors may occur even if the temperature ra-
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tio is small. Also, as will be noted in the section on nonlinear behavior,
vertical shifts may be necessary for reasons other than the differences in
the temperatures for the collected data.

A
True master curve T=T,,
Original data for T=T,
= Compliance
E ’/Z €rror
3 st o S ™
=2 M - AD(t
.§ T, /Ty : } ©
— > — - —
e — At
§ | Correct location Time scale error
data for T; > T,
after shifting.
Time, t=

Fig. 7.14 Potential error for lack of a vertical shift (exaggerated for clarity).

7.3. Exponential Series Representation of Master Curves

In the solution of boundary value problems it is often desirable to have a
mathematical representation for master curve data for a given polymer
over many decades of logarithmic time. A relatively straightforward ap-
proach is to use either a generalized Maxwell or Kelvin model with suffi-
cient elements to span the spectrum of relaxation times represented by the
transition behavior of the data. Before proceeding, it is instructive to con-
sider again the shape of creep and relaxation representations for a Maxwell
model as a simple function of time or logarithmic time. As introduced in
Chapter 3, the relaxation modulus for a Maxwell model is given by

E(t) =Ee™'" (7.35)
while the creep response for a Maxwell model is,
1t
Dt)=—+— (7.36a)
E u
or
1 t
D(t)=—(1+-) (7.36b)
E T

where and E and p are the spring stiffness and damper viscosity, respec-
tively, and T = w/E.
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Variation of the relaxation modulus and creep compliance of a Maxwell
model on linear-linear (left) and log-log (right) scales are shown in Figs.
7.15-7.16. Notice the rapid decay of the modulus as the time approaches
the selected relaxation time and the flow at long times due to the fluid na-
ture of the Maxwell model. The behavior of the modulus and compliance
for a simple Maxwell element is similar to that for many polymers in the
glassy and transition region.

2.0x10° T T T T 1
linear axes 10°
1 Maxwell model 10°
© t=100s |
< E = 2x10° Pa
g 1.0+ = 104
=
© —
[e]
= ~10°
0.5+ —
0
log axes 10
0.0 | | | | 107
0 200 400 600 800 1000 10° 10" 10% 10° 10*

Time (s)

Fig. 7.15 Relaxation modulus of a Maxwell model on linear (left) and loglog
(right) scale.
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Fig. 7.16 Creep compliance of a Maxwell model on linear and loglog scales.

If several Maxwell models are used in series to represent polymer re-
sponse, as in the generalized Maxwell model (see Chapter 6), and if the
spring moduli and relaxation times are judiciously chosen, the transition
region broadens as shown in Fig. 7.17. The parameters used for the curves
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in Fig. 7.17 are shown in Table 7.1. Notice that as the number of elements
spanning a time period increases, the transition behavior can be smoothly
represented (the two element versus the 5 element case shown here). When
a free spring is included, in each case the material model goes from viscoe-
lastic fluid to viscoelastic solid at long times. Clearly, the location of the
relaxation times and magnitude of the associated modulus value can be
manipulated to produce master curves which represent all five regions of
viscoelastic behavior as needed. The two element model shown displays a

long rubbery plateau before the flow region, while the five element model
suppresses the rubbery plateau for the fluid case.
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Fig. 7.17 Master curve representation using one, two and five Maxwell elements.
Curves without E,, decay rapidly at larger times, while curves with the
E, term are constant at long time as indicated. Parameters in Table 1.

Table 7.1 Parameters used in generalized Maxwell models for Fig. 7.17. Spring
constants in Pa, relaxation times in s.

One Element Two Elements Five Elements
T; E, T; E, T; E,
100 2e9 100 2e9 100 2e9
5000 2e6 500 4e8

1000 3e7

5000 2e6

10000 4e5
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While the above description suggests that various master curve shapes can
be represented by generalized Maxwell or Kelvin models, it does not mean
that the determination of the proper values of the spring moduli or relaxa-
tion times to obtain a precise fit is trivial.

Examination of the relaxation modulus of a generalized Maxwell model
demonstrates the complexity. That is,

EM®)=Ee " +E,e '™+ ... +Ee"'" (7.37)

n

and
Et=0)=E,+E,+ -+ +E, (7.38)

Obviously, there are 2n unknowns in Eq. 7.37, i.e., n moduli and n relaxa-
tion times. Therefore, at a minimum, 2n equations are needed to solve for
the unknowns. For five Maxwell elements as in Fig. 7.17, ten data points
would need to be selected in order to write a set of 10 equations. Further,
an approach simply fitting to 10 discrete data points from an extensive
master curve would not produce a smooth curve that fit the entire data set
over time well. In order to obtain a mathematical expression that provides
a good fit for an entire master curve from experimental data, a different
approach is required. While a number of techniques can be found in the
literature, one method will be briefly described in the next section.

7.3.1. Numerical Approach to Prony Series Representation

A general issue in working with viscoelastic materials is representing the
measured material properties by an appropriate mathematical function. As
indicated earlier, a closed mathematical form facilitates solution of bound-
ary value problems, as well as ease of manipulation of data. While viscoe-
lastic properties can be represented by a number of functional forms, the
exponential Prony series

N
E(t)=E,_+ E Be '™ (7.39)
i=1
or
1 wl -t/
D(t)=E—+EE—(l—e ) (7.40)
0 i=1 —1i
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is particularly attractive for a number of reasons. First, the coefficients can
be related to simple spring and damper coefficients in a mechanical model
(see Chapter 5), facilitating interpretation. Second, a series of simple ex-
ponentials is easy to store and manipulate mathematically, as the deriva-
tives and integration of the terms are trivial. Third, in the case where nu-
merical solutions of a boundary value problem are desired, use of the
Prony series form for the material modulus enables use of a recursive algo-
rithm for fast and easy solution of the convolution integral constitutive law
(Taylor et al., (1970)). This fact is extremely important for calculation of
viscoelastic response at long times, as integrating over the long time his-
tory requires only retaining terms at the previous time step.

Experimental data for a given material will produce modulus or compli-
ance functions for a polymer as a function of time (for relaxation or creep
data) or frequency (for steady state dynamic data from a DMA). As de-
scribed earlier in the chapter, given the time scale of polymeric response, it
is usually necessary to perform separate tests at multiple temperatures in
order to obtain the full spectrum of polymer response from glassy to rub-
bery behavior. The TTSP can then be used to construct a master curve of
the data as illustrated in the time domain in Fig. 7.3 or in the frequency
domain in Fig. 5.19. Given such a master curve over time or frequency
space, the challenge is to find the parameters <T;, E; to provide a good fit
over all time of the data. This problem has been addressed by a number of
methods in the literature including Procedure X (due to Tobolsky and Mu-
rakami and discussed by Tschoegl, 1989), the collocation method by
Schapery (1962), the multidata method (Cost and Becker, (1970)) and the
windowing method (Emri and Tschoegl, (1993)). Here we describe briefly
a sign control method developed by Bradshaw and Brinson (1997) which
is based on the multidata method.

In the sign control method, as in several approaches, the first step is to
select the relaxation times in a reasonable manner based on the time scale
of the data. In such a process, the relaxation times are not chosen based on
any known polymer structure or derived timescales, but are chosen for
mathematical convenience. As real polymers contain a continuous distribu-
tion of relaxation times, in this approach a sufficient discrete subset of
these relaxations are chosen in order to provide a mathematical function
that will fit the material data. For a typical data set, such as that in Fig. 7.3,
choosing the relaxation times evenly spaced in log time over the data range
is reasonable. The number of relaxation times required varies depending
on the smoothness of the data, but 10-20 relaxation times over 10 decades
of time is a good rule of thumb. To facilitate fitting non-constant values at
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either end of the data set, one or two relaxation times can be added to lie
beyond the time domain data.

Once the relaxation times are selected, the problem reduces to finding
the coefficients E; such that the Prony series function optimally matches
the provided time domain data. An obvious procedure to use is a general-
ized least squares approach, which was done in the multidata method (Cost
and Becker, 1970). In this approach, coefficients are found that minimize
the x2 error between the modulus data (given as P data pairs (E,,t,)) and
the calculated function, E(t),

o i(E(tp;—Ep

p=1 p

2
(7.41)

where E(t,) is the value of the Prony series function (Eq. 7.39) evaluated
at time t, and o, is the standard deviation of the p" data point. However,
this method will typically provide values for E; that are both positive and
negative in value. Given the physical relationship between the E; coeffi-
cients and springs in a mechanical model, it is desired for these coeffi-
cients to remain positive. In addition, it can be shown that a sufficient con-
dition for the viscoelastic modulus to satisfy all physical and
thermodynamic principles for a material is that the Prony coefficients E; be
positive.

Consequently, the sign control method (Bradshaw and Brinson, 1997),
modifies the use of the least squares algorithm to ensure that the Prony co-
efficients be positive. This is accomplished via an iterative Levenberg-
Marquadt method based on the first derivatives relative to each unknown
coefficient (Press et al, 1992). The method is provided with an initial guess
for the coefficients (all positive), uses these to predict a new set of values
and then calculate . If the new set decreases the error, it becomes the cur-
rent step; otherwise the previous values are used to take a smaller step. The
additional constraint that E, >0 is enforced by setting E; =|Ei before

calculating the y* error; only those cases that lead a reduction in the %* er-
ror are kept. From this procedure, optimal E; values are found such that the
Prony series fits the entire data range.

To illustrate the ability of a generalized Maxwell Model (Prony Series)
to fit long term data, consider the master curve data from Fig. 7.5 for poly-
isobutylene. A complete data set at 25°C was constructed as shown in Fig.
7.18. Thirty relaxation times evenly spaced in log time between 10" and
107 were chosen and the sign control method used to calculate the Prony
series representation seen in Fig. 7.19. The modulus E(t) calculated from
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the Prony terms in Fig. 7.19 is overlaid on the experimental data in Fig.
7.18. It is clear that the Prony series has captured the data well. In addition,
with the large number of coefficients taken, the discrete E; spectrum is ap-
proaching a continuous spectra. In the next section, we will compare these
coefficients with the spectra found via another method. Note also that the
Prony series as a well-behaved mathematical function will provide values
for modulus for any time inserted into Eq. 7.39. However, as the coeffi-
cient values were obtained for data only in a specific range, care should be
taken when using these functions to ensure that predictions are made only
within the bounds of the known experimental data. As seen in Fig. 7.18,
the Prony series will predict a value for the modulus at times beyond 10°
and less than 10", however these values are fictitious as they do not corre-
spond to measured experimental data.

10

10

Modulus (N/m?)
)

10
10
B Catsiff and Tobolsky data
3 —— Prony Series Fit
10
102 | | | | | | | | |
10" 10" 10® 10% 10* 107 10° 10* 10*  10°
Time (sec)

Fig. 7.18 Master curve for tensile modulus of polyisobutylene at 25°C (Original
data from Tolbolsky, (1972) and Catsiff and Tobolsky, (1955)). Fit
from Prony series shown in Fig. 7.19.
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Fig. 7.19 Prony series coefficients used to obtain tensile modulus for Polyisobu-
tylene. Fit to data shown in Fig. 7.18.

The sign control method can also be used to fit frequency domain data,
which is useful given the prevelance use of DMAs to measure storage and
loss moduli for polymers. In this case, the storage and loss moduli as func-
tions of frequency are used as the data to be fit, and the relationship be-
tween the Prony coefficients and these functions (Eq. 6.51) are used as the
functional form. An example of this application is shown in Fig. 7.20 for
Polycarbonate. The storage and loss moduli obtained from DMA data and
shifted to form a master curve is shown in Fig. 7.20 (the temperature data
was also shown in Fig. 5.19). A 28 element Prony series was used to fit the
data and the coefficients are shown in Fig. 7.21, while the fit to the ex-
perimental data is overlaid on Fig. 7.20. Again it is seen that the mathe-
matical representation of a Prony series provides an excellent form to rep-
resent measured experimental data for a polymer. Given the Prony series
that fits the frequency based data, the time domain modulus can be readily
produced using Eq. 7.36a. Note that the large oscillation of the Prony co-
efficients between relaxation times of 1 and 100 is not indicative of an os-
cillating spectra and these oscillations can be eliminated by refining the
chosen relaxation times while still maintaining the quality of the fit to the
experimental data.
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Fig. 7.20 Experimental data from a DMA for polycarbonate shifted to form a
master curve. Lines showing the fit of the Prony series from Fig. 7.21
are overlaid on the plot.
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Fig. 7.21 Prony coefficients used to fit the data for Polycarbonate in the fre-
quency domain in Fig. 7.20.

Further details on the application of the sign control method can be found
in the original paper (Bradshaw and Brinson, (1997)). A software code in
C (dynamfit.c) written to perform these calculations is available on the
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authors’ websites at University of Louisville and Northwestern University
respectively. This code has been written to perform the calculations de-
scribed above to find the moduli or compliances of time domain or fre-
quency domain data. In addition, the mathematical fitting procedure de-
scribed can be extended to perform interconversions between viscoelastic
properties as discussed in Chapter 6 (e.g. between modulus and compli-
ance) and the existing code allows for such calculations as well.

7.3.2. Determination of the Relaxation Modulus from a
Relaxation Spectrum

Recall from Chapter 6 that the spectrum of relaxation times is defined by
the equation,

E() = [H(ve"dv (7.42)
0
One can think of the spring moduli as having been replaced by the spec-
trum of relaxation times, H(t). As a result, Fig. 7.19 or 7.21 can also be
thought of as a discrete representation of H(t) as a function of t.

Sometimes H(t)=tH(t) is defined such that,
[ In =+
ED= [ H) -t [H(ve"dIn< (7.43)
0 K Int=-0
Tobolosky and his students have used this approach extensively and sug-
gest certain forms for H(t). Aklonis and McKnight, 1983 (a former stu-
dent of Tolbolsky) suggests the following data for H(t) for a viscoelastic
fluid with a simple transition region as shown by the curve in Fig. 7.22,

Table 7.2 Wedge Approximation of H(t) for Fig. 7.22.

H(1)=0 log,, T<0 ort<1

ﬁ('l:)=E O<log,t<l orl<t<10
T

H(1)=0 log,, t>1 ort>10

Using these values in Eq. 7.43 results in,



252 Polymer Engineering Science and Viscoelasticity: An Introduction

E(t) = %(e““‘) - e") (7.44)

Fig. 7.22 illustrates the relationship between the wedge distribution, H(T),
given in Table 7.2 and the exponential series given in Eq. 7.44.

Using this approach, it is possible to obtain relatively simple function
that can represent a complete master curve. For example, Tolbolsky has
suggested that the master curve for polyisobutylene given in Fig. 7.18 can
be found from the “wedge” and “box” distribution shown in Fig. 7.23,
where the wedge represents the transition and the box the rubbery plateau
and flow regions. Note the similarity in form to the Prony coefficients
found via the sign control method for the same data as shown in Fig. 7.19.

A

o
T

Master curve
E(t)

log H(t)/k or log E(t)/k

1
(38}
T

Y

(S ] S

0 1
logt or logt

1

Fig. 7.22 Continuous (wedge) distribution of relaxation times and corresponding
relaxation modulus. (After Aklonis and McKnight, (1983), p. 155)
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Fig. 7.23 Wedge and box distributions of H(T) needed to fit the Master Curve
for Polyisobutylene; Here H(t) in dynes/cm?; to convert to Pa, divide
by 10; the magnitude and form match the discrete spectra in Fig. 7.19.
(After Aklonis and McKnight, (1983), p. 156.)
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Alternatively, one can use various approximations (see Ferry, 1980) to de-
termine the relaxation spectra directly from modulus data or a mathemati-
cal function fit to the data. A method that works well is known as Alfrey’s
rule, in which the exponential function in the integral in Eq. 7.42 is 0 at
small ©’s and 1 at large t’s and is thus replaced by a step function H(t-t).
With this simplification, Eq. 7.42 can be differentiated to obtain

dE(t)

H(t)=-
(© dInt

(7.45)

t=1

And with substitution of the Prony series in for E(t), one obtains the re-
laxation spectra as

t

N t -
—Ege " (7.46)

H(t)EET,

=1

Application of Alfrey’s rule to the polycarbonate data of Fig. 7.20 results
in a continuous and smooth relaxation spectra as shown in Fig. 7.24. The
shape and magnitude of the spectra obtained in this fashion corresponds to
the discrete Prony elements of Fig. 7.21 when smoothed so as to eliminate
the oscillations obtained in the least squares fitting process. While the
spectrum in Fig. 7.20 still exhibits slight non-smoothness, manipulation of
the Prony elements and/or use of a more accurate method to determine
H(t) could provide a smoother curve. For most purposes, the spectra
shown is adequately smooth.

Polycarbonate

Relaxation Spectrum H(t) (Pa)
=)

10° | | | | | |
0.0001 0.001 0.01 0.1 1 10 100 1000
time (s)

Fig. 7.24 Relaxation spectra of polycarbonate calculated from the Prony series
elements in Fig. 7.21 via Alfrey’s rule.
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7.4. Constitutive Law with Effective Time

Recall from Chapter 6 that the constitutive law describing the stress and
strain relation of a viscoelastic material can be written as

e(t) = f D(t-7 )d o(t )dr or oft) = f E(t- (7.47)

ds(r)

dt
If temperature changes during the loading history, clearly the material
property inside the integral must change accordingly. In order to be able to
account for general thermomechanical loading including spatial and tem-
poral variations in temperature, the relationship between time and tempera-
ture developed in this chapter can be utilized. Returning to the TTSP Eq.
7.25b and taking the vertical shift to be negligible, we can relate the mate-
rial modulus at one temperature to the modulus at a reference temperature
T, by the shift factor, ap

E;()=E; (E=t/a,) (7.48)

Thus, one can consider the modulus at temperature T and time t to be the
same as the modulus at a reference temperature T, at a reduced time §. At
a small time increment later, dt, the modulus at temperature T has changed
to a new value correspondingly d§ later in reduced time at the reference
temperature

E;(t+dt)= ET0 (E+df) (7.49)
where
A 750

Physically, this expression represents that all relaxation times in a time in-
crement at temperature T are 1/a times slower/faster than those occurring
in the reduced time increment at the reference temperature. Integrating one
obtains an expression for reduced time, or “effective time” as it is often
called, as

E(1) = f T (C)) (7.51)

Note that the shift factor is a function of time according to the temperature
history: as the temperature changes, so does the shift factor. To account for
a temperature history, the constitutive law can thus be written in effective
time space as
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o(8) = f Eq, (§- §>£d§’ (7.52)
Mapping this constitutive law to the real time domain results in
o(t) = f Eq, (50 - & ))—dt (7.53)
where
: dg
t' = 7.54
a( (C)) ¢ =0 , a(T(T) 759

Eq. 7.53 is straightforward to apply for a problem with both temperature
and strain known as functions of time. The effective time is determined via
Eq. 7.54 for the given temperature history. The modulus function is then
evaluated at the effective time and used with the differentiated strain func-
tion to determine the stress response history. However, Eq. 7.53 is no
longer a convolution integral and as such can be difficult to solve. Thus,
often problems are solved in the effective time domain (Eq. 7.52). The
constitutive law can be written to find the strain response as a function of
stress history analogously as

e(0) = [ Dy, (500 - 50) o (7.55)
J

where the effective time is as given in Eq. 7.54.

The effects of a number of environmental factors on viscoelastic mate-
rial properties can be represented by a time shift and thus a shift factor. In
Chapter 10, a time shift associated with stress nonlinearities, or a time-
stress-superposition-principle (TSSP), is discussed in detail both from an
analytical and an experimental point of view. A time scale shift associated
with moisture (or a time-moisture-superposition-principle) is also dis-
cussed briefly in Chapter 10. Further, a time scale shift associated with
several environmental variables simultaneously leading to a time scale
shift surface is briefly mentioned. Other examples of possible time scale
shifts associated with physical and chemical aging are discussed in a later
section in this chapter. These cases where the shift factor relationships are
known enables the constitutive law to be written similar to Eq. 7.53 with
effective times defined as in Eq. 7.54 but with new shift factor functions.
This approach is quite powerful and enables long-term predictions of vis-
coelastic response in changing environments.
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7.5. Molecular Mechanisms Associated with
Viscoelastic Response

As discussed in Chapter 4, the forces holding polymer molecules together
are primary (covalent) or secondary bonds though even metallic-like and
ionic types bonds can be found in certain polymers. However, in general,
the bonds between mer units along the backbone chain are covalent as are
those within side groups and those connecting side groups to the main
chain. In thermoset polymers both covalent and secondary (e.g., dipole,
Van der Waal) connect individual chains to each other, while in thermo-
plastic polymers only secondary bonds connect individual chains to each
other. These distinctions between the molecular character of thermoplastic
and thermoset polymers dictate the differences seen in behavior throughout
the five regions of viscoelastic behavior depicted in Figs. 3.16, and 7.1.
However, it should be noted that entanglements in thermoplastic polymers,
especially where the chains have extensive side groups, often demonstrate
behavior very similar to thermosets especially below the T,.

Many factors are important in understanding the molecular mechanisms
associated with the macroscopic behavior of a polymer. A few of these are
the degree of polymerization (see Table 4.6), the degree of crystallization
(see Table 4.4), the relative extent of cross-linking and/or entanglements,
complexity of side groups, deformability of bonds and bond angles, the
amount of thermal energy with chains or chain segments associated with a
particular environment (such as temperature or moisture content). Clearly,
the most important single parameter to define the state of a polymer is the
temperature, especially the glass transition temperature, T,, and possibly
other transition temperatures such as those for the B,y and 8 transitions as
well as the melt temperature, T,,. As stated earlier in the discussion of a
particular epoxy and a particular polyurethane (see Fig. 7.1), one polymer
may be glassy at a temperature where another may be rubbery. Below the
T,, polymers are glass-like solids with only a small amount of viscoelastic-
ity (creep or relaxation) within a short (minutes or hours) time frame. Near
the T, increasing amounts of viscoelasticity are encountered as the tem-
perature is increased. These differences can be explained on the basis of
thermal agitation or vibrations of individual chains, or perhaps more ap-
propriately chain segments, in the presence of free volume. Obviously, free
volume increases with increasing temperature above the T, (see Fig. 3.18
and 7.6). Below the T, molecular agitation can only occur in very small lo-
cal regions and any amplitude of vibration must be correspondingly small.
As the temperature is raised above the T,, free volume and chain vibrations
increase, resulting in translational and configurational motions of chains
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with respect to each other. The frequency and amplitude of motion in-
creases with increasing temperature until a state of almost pure Brownian
motion occurs.

In the glassy region, deformations associated with instantaneous elastic-
ity are the lengthening and shortening of bond distances and bond angles.
If creep occurs, it is often associated with motion of side groups. In the
transition region, the molecular motions involved are short range transla-
tional and configurational changes due to rotations about bond angles and,
to a lesser extent, the same mechanisms encountered in the glassy region.
Molecular segments are more flexible as the temperature is increased in
the transition region and, in time, are able to slide past one another giving
evidence of a fluid-like behavior. Molecular mechanisms in the rubbery
regions are much like the ones in the transition region except the time scale
is much shorter. That is, creep or relaxation is near instantaneous and vis-
coelastic behavior can only be observed by dynamic tests such as steady
state oscillations and/or impact conditions. In the rubbery and liquid flow
regions, pronounced unrecoverable deformation occurs with the mecha-
nisms mostly associated with long range configurational changes. Mole-
cules slide past each other with relative ease and bonds (secondary and, in
some cases primary) may be broken and reformed.

It is descriptive here to quote from Aklonis and McKnight, (1983). “It is
impossible to describe quantitatively the time ranges that give each type of
behavior, since the temperature variable causes all these ranges to be rela-
tive. Accordingly ... a plastic (a polymer in the glassy state) would have a
modulus of a rubber on a time scale of perhaps a thousand years while a
rubber might behave like a plastic on a nanosecond time scale.”

7.6. Entropy Effects and Rubber Elasticity

Early molecular theories were unable to describe the high deformation (as
much as 1000%) of natural rubber under an applied stress (Treloar,
(1975)). An early theory, similar to the theory still used today to describe
inter-atomic forces (see Chapter 11), suggesting deformations were associ-
ated with the stretching of inter-atomic or intermolecular bonds could only
account for a few percent of strain. One method considered to overcome
this shortcoming was the two-phase theory of Ostwald that attributed de-
formations to the molecular network being embedded in a second highly
viscous phase. Such a theory was used by photoelasticians to explain the
“frozen stress” effect which led to the “stress freezing and slicing method”
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that was used successfully for many years to experimentally determine the
internal stress in three-dimensional bodies (Hetenyi, (1938)). Another ap-
proach that could account for larger deformations was the folded chain
model that permitted strains up to 300%. However, the foregoing models
could not explain the thermo-elastic or Joule effect inspiring further model
development that led to the forerunner of what is now called the kinetic
theory of polymers that stated that deformations in the rubbery state are di-
rectly proportional to the absolute temperature. (See Treloar, (1975) for a
complete discussion of the history of the relation between the development
of the kinetic theory and the thermo-elastic effect).

As noted in the previous section, deformations below the T, are associ-
ated with stretching and shortening of bond distances and bond angles
while in the rubbery region deformations are associated with rotation about
bond angles (see Fig. 4.4). The former mechanisms are associated with
changes in internal mechanical energy and the latter are associated with
changes in internal entropy. Indeed, as stated by Rosen (1993), “... to ex-
hibit significant entropy elasticity, the material must be above its glass
transition temperature and cannot have appreciable crystallinity”.

A tensile force applied to a linear elastic bar does a certain amount of
work as the bar is stretched defined by the relation,

dW =fdl (7.56)

where f is the force and dl is the amount of axial deformation. The work
(or input energy) is transferred to the bar as internal energy. Typically it is
normal to assume that the internal energy is only mechanical energy that
can be recovered as that in an ideal spring. In fact, part of the input work
causes a change in the temperature of the bar and just as with a perfect gas
the temperature increases if the bar is compressed and decreases if the bar
is stretched. A tensile bar tested adiabatically (no heat flow into or out of
the bar) will show a small decrease in temperature that, in turn, will cause
the elastic modulus to change slightly. Timoshenko and Goodier, (1970),
note that the difference between the adiabatic and isothermal (constant
temperature) modulus of iron is only about 0.26% and reference experi-
mental work performed by Kelvin in 1855 to support this small difference.

One method to approximate adiabatic testing is to perform the test rap-
idly enough that no heat is lost from the sample but not so rapid that dy-
namic or inertia effects occur. Mueller (1969) gives experimental results
obtained by cyclic testing 2.5 cm diameter steel bars in tension, compres-
sion and torsion with a loading-unloading cycle of about one minute in du-
ration. In a tensile test he shows a decrease in temperature of approxi-
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mately one degree centigrade on loading and a similar increase on unload-
ing. In a compression test he shows a similar temperature increase in load-
ing and decrease in unloading. That is, the thermal effect is reversible in
either tension or compression as is the mechanical effect. Mueller also
shows that in torsion there is no change in temperature on loading and un-
loading as is expected because torsion or pure shear can be thought of as a
combination of equal tension and compression on a differential element as
shown in Fig. 2.19. On testing a 2.0 cm PVC bar in compression Mueller
shows a more significant 6.5°C temperature rise but does not show a re-
versible thermal effect upon unloading. That is the thermal processes in the
PVC were irreversible and can be attributed to viscoelastic and/or flow
processes. Further insight to the mathematics of irreversible thermody-
namic processes of polymers and other materials can be found in the many
papers of Schapery (1964, 1966, 1969), the book by Lubliner (1990) or the
book by Fung (1965). A discussion of the thermodynamics of irreversible
processes is beyond the scope of this text but the results of Schapery’s
early irreversible thermodynamic approach for nonlinear viscoelastic mate-
rials is presented in Chapter 10.

The study of the amount of heat energy absorbed or released by a poly-
mer as it is heated or cooled is most often accomplished with a calorime-
ter. For example the differential scanning calorimeter (DSC) is often used
to measure the melting point temperature and the heat of melting, the glass
transition temperature, curing and crystallization processes. Mueller (1969)
describes the development, design and use of a special differential defor-
mation calorimeter that allows the measurement of the amount of heat ab-
sorbed or released when a specimen is loaded in simple tension. For the
greatest sensitivity he suggests testing only samples with small cross-
sectional dimensions such as fibers, wires or films.
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Fig. 7.25 Deformation calorimeter (After Mueller, (1969))

A schematic of the Mueller’s deformation calorimeter is given in Fig. 7.25
and consists of two parallel cylinders immersed in a thermostatic bath. The
sample to be tested is centrally located in one cylinder between two poly-
amide or Teflon clamps with low heat capacities. The top clamp is at-
tached to a thin invar wire through which a load is applied that is resisted
by the specimen through a lower clamp attached to the bottom of the cyl-
inder. The second cylinder contains a heating coil and both cylinders are
connected to a differential manometer. If the sample gains heat on defor-
mation in tension (as with a rubber) an excess pressure occurs and causes a
feedback mechanism attached to the differential manometer to provide
heat to the comparison cylinder. Knowing the balancing heat as a function
of time allows the determination of the total change in enthalpy. Endo-
thermic effects can be determined by preheating the cylinder that would
then be cooled by a sample tested in tension (for samples tested at tem-
peratures below the rubbery range). Also, more recent efforts on the meas-
urement of entropy effects using a deformation calorimeter similar to the
one designed by Mueller can be found in papers by Farris (1989) and
Kishore and Lesser (2005).

To convert measurements of heat changes in a sample to information
about the distribution of input work (energy) into either internal mechani-
cal energy or thermal energy requires the use of basic thermodynamic rela-
tionships. The following gives only a small glimpse into the relationships
between energy, entropy and temperature and the reader is advised to con-
sult the more elaborate sources found in Mueller (1969), Treloar (1975),
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Lubliner (1990), and other texts for a more thorough treatment of the
mathematics of the thermodynamic effects related to either reversible of ir-
reversible processes of deformed solids.

The relationship between energy, entropy and temperature for reversible
processes is best described using the first and second law of thermodynam-
ics. The first law relates the change in internal mechanical energy, dU, and
the change in internal thermal energy (heat), dQ, to the work done on the
system by external forces, dW, and is given as,

dW =dU - dQ (7.57)

The second law of thermodynamics defines the entropy change, dS, in a
reversible process such that,

TdS =dQ (7.58)
Combing Eqs. 7.57 and 7.58 gives,
dW =dU - TdS (7.59)

If the Helmholtz free energy* is defined as A = U — TS then changes in the
Helmbholtz free energy at constant temperature are given by,

dA =dU-TdS =dW (7.60)

and states that the Helmholtz free energy is equivalent to the external work
done on the system or the difference between the internal mechanical en-
ergy and internal heat energy.

For the circumstance where a tensile bar is under a constant hydrostatic
pressure (e.g. atmospheric pressure) as well as a tensile load, the total input
work would be (Treloar, (1975)),

dW* =dW — pdV =1{dl — pdV (7.61)
and Eq. 7.57 could be written as,
dW - pdV =dU - TdS -pdV =dG (7.62)

where dG is the change in Gibbs free energy’. Hence, the Gibbs free en-
ergy is also equivalent to the external work on the specimen but the exter-

T Assuming the existence of a strain energy potential, the Hemholtz free energy,
(under constant temperature and volume) and the Gibbs free energy, (under
constant temperature and pressure) can be written in terms of stress and strain

as (see Gittus, (1975)),
_ | 0A _ | 0G
%™ {oe, ) 77|y
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nal work includes a portion associated with the hydrostatic pressure. In
terms of enthalpy, H=U - pV, and for a constant temperature and pressure
Eq. 7.62 becomes,

dG =dW* =dH - TdS (7.63)

For polymers in the rubbery range the volume change dV is small and if
the pressure is only the atmospheric pressure the pdV term is so small as to
be negligible. The negative sign for the pV term in the enthalpy definition
here is due to the fact that the work of atmospheric pressure is in opposi-
tion to the positive work of a tensile force on an uniaxial specimen.

Assuming a constant volume Eq. 7.59 (or Eq. 7.62) can be written as,
fdl =dU - TdS (7.64)

Using Eq. 7.64 and recognizing that the derivatives are total derivatives
Rosen (1993) obtains the following equation for the change in length for a
change in temperature for tensile specimen under a constant load and con-

stant volume,
0l 1{oU T( oS
— | === -=|= 7.65
(57,15, () 79

This equation defines the change in length for a change of temperature for
the aforementioned conditions and provides an explanation for the classic
experiment of Joule for a tensile specimen of rubber heated while hanging
under a constant tensile load. The first term on the right represents the
change in internal energy and corresponds to the usual effect of positive
change in length for an increase in temperature. The second negative term
represents the change in entropy for an increase in temperature. For rubber
the entropy effect completely dominates the energy effect and, therefore,
the length of the rubber specimen contracts when heated under a constant
load.

The change in the Hembholtz free energy may be written for non-
constant temperatue as,

dA =dU-TdS - SdT (7.66)
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Using Egs. 7.66 and 7.64 Treloar (1975) obtains the following relations,
aS of U of

= | == —| =f-|—= 7.67

B4 @ o
The first equation provides a definitive method to determine the entropy
change per unit extension and the second equation provides a definitive
method to determine the associated energy change per unit extension. Tre-
loar further explains that if a rubber specimen is stretched and held at con-
stant length while the temperature is varied both the entropy and internal
energy can be determined. Specifically, if the force temperature diagram
found from such a test is linear then both the internal energy and entropy
are independent of temperature. If the linear force temperature plot passes
through the origin, the internal energy is zero and the elastic modulus of
the rubber is only related to the change in entropy. If the force temperature
plot intercepts the positive force axis, the departure from the origin repre-
sents the contribution of the internal energy to the elastic modulus. A simi-
lar analysis to experimentally determine the distribution of external work

energy into internal entropy and internal mechanical energy is given by
Mueller (1969).

In the test just described the stress can be determined from the force and
the strain is a constant. As a result the modulus versus temperature would
vary in the same manner as the force versus time. Therefore, the fact that
the modulus of the polyurethane shown in Fig. 7.11 increases linearly with
absolute temperature and goes through the origin is indicative that the as-
sociated deformation processes were only related to changes in the internal
entropy and not to changes in internal energy.

Another approach to verifying that the modulus varies linearly with ab-
solute temperature uses statistics to relate the entropy changes under load-
ing to configurational changes of the molecular chains. This information
combined with the second of Eqgs. 7.62 (with the change in energy term
taken as zero) yields the following result (Rosen, (1993)),

3pRT
(initial) — M—

C

(7.68)

where p is the density, M, is the number average molecular weight, R is
the gas constant and T is the absolute temperature.
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7.7. Physical and Chemical Aging

Even with no applied stress, the mechanical properties of polymers may
vary with time due to changes occurring in the molecular structure. Varia-
tions due to changes in molecular packing are called physical aging and
changes due to modification of the inter/intra-molecular bonding are re-
ferred to as chemical aging. Physical aging effects are thermoreversible
while chemical aging effects are not.

Physical aging effects can be best explained through an understanding
of the molecular packing or free volume changes that take place during
cooling after the polymerization processing steps are completed. As dis-
cussed in Chapter 3 and shown in Fig. 3.18, the specific or relative volume
decreases linearly with temperature until the glass transition temperature is
reached. At the T, the rate of change of specific volume decreases as
shown again in Fig. 7.26. The exact location of the T, depends upon the
rate of cooling. If the rate of cooling is very slow, the T, will be decreased
or if the rate of cooling is very fast, the T, will be increased as shown in
Fig. 7.26. Manufacturing processes often involve rapid cooling and thus
can lead to significant increased T, and an excess of free volume below the
T,. Such a state suggests the material can experience increased viscoelastic
response to a stress or deformation input, as well as increased physical ag-
ing effects.

quenched

Free volume
unquenched

T

T, Temp.

g

Fig. 7.26 Specific or relative volume vs. temperature for a quenched or un-
quenched polymer.

In general, as the temperature is decreased, molecular motions decrease
and the molecular structure becomes more tightly packed as indicated by
the amount of free volume. Above the T,, molecular reconfigurations to at-
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tain the equilibrium volume are accomplished in the experimental time
scale of the temperature change. However, below the T, decreased chain
mobility and the small amount of free volume result in a non-equilibrium
thermodynamic state. The polymer chains are unable to rearrange to attain
their equilibrium volume during the timescale of the temperature change
and thus there is continued, slow rearrangement of molecules long after the
temperature change as thermodynamic equilibrium is sought. During this
approach to equilibrium volume and structure, mechanical and other prop-
erties of the polymer change with time in a process called physical aging.
In general, as polymers age modulus increases and they become more brit-
tle. The temperature range for physical aging is between the T, and the
first highest secondary transition temperature, T (see Fig. 5.24 and Fig.
7.6).

An excellent discourse on the subject of physical aging may be found in
Struik, (1969). With very careful measurements, Struik demonstrated that
the effect of aging is to continuously decrease the compliance of the mate-
rial and that the short term aging curves are related to each other by a shift
factor along the time axis. Thus, master curves can be constructed that give
the effects of physical aging over extended times from measurements of
aged compliance over shorter times, very similar to the previously dis-
cussed TTSP (time-temperature-superposition-principle). This process is
referred to as a time-aging-time-superposition-principle and it is illustrated
in Fig. 7.27 with data for PMMA.

Notice that data at each aging time is related via a simple shift in log
space. This shift factor is typically denoted as a,. The aging shift factor
takes a particularly simple analytical form

w
a, = (t—f) (7.69)

where t.. is the reference aging time (aging time the curves are shifted to),
t. is the aging time and w is the shift rate, defined by the slope of the shift
factor - aging time curve.
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Fig. 7.27 Tllustration of the concept of physical aging for PMMA. Material is
first rejuvenated above T, then quenched to 15°C below T, for iso-
thermal aging. Creep compliance curves are obtained at each aging
time and these can be shifted as shown to provide a momentary master
curve. A Kohlrausch fitting function is also shown through the shifted
data. (Data from Wang (2007).)

Because the material ages continuously, the creep tests performed as in
Fig. 7.27 must be of short duration at each aging time so that the compli-
ance result is representative of viscoelastic properties at that aging time.
The individual curves and the shifted master curve (also called the momen-
tary master curve) is typically well fit by a Kohlrausch stretched exponen-
tial function

t/‘c)B

D(t) = Dye! (7.70)

where P is the stretch parameter which has the effect of creating a spec-
trum of relaxation times even though only a single parameter T is used. If a
long term creep test is performed, the continued aging during the applica-
tion of the load leads to a continued stiffening of the material and a roll-
over in the compliance function as is illustrated in Fig. 7.28. It is possible
to define an effective time, &, based upon the aging shift factor similar to
the effective time defined for temperature shift factor in Eq. 7.51

50 = [[a,()dg (7.71)
0
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where the shift factor evolves with the time of loading as

eV ()
a, =|-k| =| —L (7.72)
t t, +t

€

and t, is the aging time at t=0. By doing so, long term response accounting
for accumulate aging can be predicted using expressions similar to Egs.
7.48 and 7.52.

Dlongterm ()= D(E(t)) (7.73)

where D(t) is the momentary master curve at t.=t... Such a prediction is
shown compared to the data in Fig. 7.28.
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Fig 7.28 Long term data for PEEK and effective time theory prediction based on
momentary master curve (based on short term creep experiments). (Data
courtesy of R. D. Bradshaw, University of Louisville; long term predic-
tion using shift rate from Guo and Bradshaw (2007).)

The aging superposition process can be combined with the TTSP provide
more extensive information of the material response as a function of time,
aging time and temperature. In the last two decades many have studied
physical aging extensively. Representative references include Wong, et al.,
(1981), McKenna, (1989, 1994), and Crissman, et al., (1990). A discussion
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of viscoelasticity and physical aging concepts together with an extensive
list of references can be found in Brinson and Gates, (2000).

As shown in Fig. 7.6, the rate of change of the specific volume increases
slightly for temperatures below the T,, which indicates that the free vol-
ume actually begins to increase slightly with decreasing temperature below
the T,. This same trend is shown in Struik, 1969 and is, perhaps, one rea-
son that the lower limit for physical aging is the beta transition tempera-
ture. An interesting study by Adamson, 1983 demonstrates a unique aging
process for temperatures below the beta transition. With very careful mois-
ture absorption measures for a Hercules 3501-5 epoxy resin system used as
a matrix material for graphite/epoxy composites, he demonstrated that ad-
ditional water can be “pumped” into the resin and/or the composite by
changes in the operating temperature of the material. It was demonstrated
that if the epoxy was moved from a 74°C bath after more than 100 days to
a 25°C bath that approximately 25% more moisture would be absorbed in
the next 50-60 days. Further it was shown that if the sample was returned
to the 74°C bath, the sample desorbed moisture to return to the previous
moisture content within a few days. This phenomenon is referred to as the
reverse thermal spike mechanism and demonstrates that moisture absorp-
tion mechanisms can be quite different than expected in both resins and
polymer-matrix composites and lead to damage that might be unantici-
pated.

Struik (1969) defines chemical aging as “thermal degradation, photo-
oxidation, etc.” It can safely be said that chemical aging is not as mature a
subject as physical aging and fewer recent references exist specifically re-
lated to chemical aging. Indeed, the authors are not aware of any compen-
dium on chemical aging similar to the outstanding study compiled by
Struik (1969) for physical aging. That having been said, it is possible to
find a considerable amount about the degradation of polymers beginning
with the classic book by Tobolsky (1962) wherein is found a long chapter
on “chemical relaxation”. This chapter includes a description of vulcanized
rubber exhibiting a rather rapid decay to zero stress in a relaxation experi-
ment in the temperature range of 100° C — 150° C. Tobolsky argues that
because in a network polymer a relaxation to a non-zero stress is expected
the phenomenon can be attributed to a rupture of the rubber network and is
due to the presence of molecular oxygen. His text contains numerous ex-
perimental results to substantiate this claim. He also indicates that some
rubbers in the temperature range of 100° C — 150° C show a softening or
modulus reduction while others show a hardening or modulus increase.
The former is similar to the behavior of a polyurethane rubber discussed
herein in an earlier section of this chapter. The softening process is due to
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chain scission or the breaking of a chain resulting in two chains (Rodri-
guez, (1996)) and the hardening process is due to the occurrence of addi-
tional cross-linking taking place at the higher temperatures. Tobolsky,
(1962) describes the process of cleavage (scission) at cross-link cites as
well as along a chain. He further describes the process of chemical perma-
nent set and chemical creep under constant load that would explain the re-
sults given in Fig. 7.13. More recent results on the response of rubbers at
elevated temperatures, accounting for chain scission and oxygen depletion
can be found in papers by Shaw, Wineman and co-workers (2005).

Epoxy specimens used in the creep experiments resulting in Figs. 7.2,
7.3 and 7.10 and urethane specimens used in the creep experiments result-
ing Fig. 7.11 and Fig. 7.13 are shown in Fig. 7.29. The two specimens on
the left are epoxy and third specimen is polyurethane with the final recti-
linear strip being an untested polyurethane sample. The first epoxy speci-
men was used in the creep tests with temperatures not exceeding 130° C
(see Fig. 7.2 and Fig. 7.3) while the second epoxy was use in the creep
tests between 130° C and 200° C (see Fig. 7.2 and Fig. 7.11). The change
in color between the two indicates some degree of degradation though any
change in the room temperature modulus was undetectable. The polyure-
thane specimen before testing was the same color as the untested strip and
had the same dimensions as the epoxy specimens. Clearly, the color
changed significantly during the creep test at 150° C and significant unre-
coverable deformation remained. The room temperature modulus was also
significantly lowered for the polyurethane due to chemical aging at the
elevated temperatures. These tests and specimens reinforce the information
given by Tobolsky.

Fig. 7.29 Epoxy (left two) and urethane (right two) specimens showing degrada-
tion when tested at high temperatures.
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While physical aging occurs between the beta- and glass-transition tem-
peratures, chemical aging effects are most often observed at temperatures
significantly above the glass-transition temperature or for other extreme
environmental conditions. For example, radiation can lead to additional
cross-linking or even to the cross-linking of a linear polymer (Sullivan,
(1969). The effect of atomic oxygen (AO) has been studied extensively for
spacecraft applications (Pippin, (1995) and setas-www.larc.nasa.gov/
LDEF/ATOMIC_OXYGEN/ao_intro.html. Atomic oxygen can lead to the
erosion of polymers in space applications and can lead to a breakdown of
the chemical structure.

A common occurrence related to resins used in the manufacture of com-
posites is the slow continued crosslinking at high operating temperatures
leading to increased brittleness and micro-cracking. An interesting study
by Kuhn, et al., (1995), uses a modification of an equation first proposed
by Debenedetto (see Kuhn, et al. for reference) to predict changes in the
glass-transition temperature due to additional cross-linking for a high-
temperature carbon fiber-reinforced polyimide composite. The effects of
both physical and chemical aging related to changes in the glass-transition
temperature and dimensional changes were documented experimentally.

More information on polymer degradation mechanisms can be found in
Rodriguez, (1996); Kumar and Gupta, (1998) and other texts. The various
degradation mechanisms discussed include chain scission, depolymeriza-
tion, side group changes, antioxidants, radiation, moisture. While not all of
the included information would be classified as chemical aging, it is a
good start to understand many similar mechanisms.

As a final note it is appropriate to point out that not all aging effects can
be classified as either physical or chemical. For example, in many poly-
mer-processing operations for consumer items such as art objects, kitchen
utensils, souvenir items, or auto parts, plasticizers are used to make parts
more pliable during processing and/or to speed up processing time. Often
some of the plasticizing agent remains after the process is complete and,
over time, the plasticizer desorbs leaving voids or cracks leading to dimin-
ished mechanical properties. For transparent objects, the resulting small
surface crazes or cracks are clearly visible. Sometimes even very large
cracks result and they can be observed even it the object is not transparent.
Most reputable manufactures are aware of these problems and adjust their
processing operations so as to minimize such concerns.

The subject of physical and chemical aging received a great deal of at-
tention for applications related to the aerospace industry in the late 20"
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century and deserves more attention by other industries that manufacture
structural systems from polymer based materials.

7.8. Review Questions

7.1.

7.2.

7.3.
7.4.
7.5.
7.6.
1.71.

7.8.
7.9.

7.10.

7.11.

7.12.
7.13.

Name the five regions of viscoelastic behavior of a polymer and give
a sketch of the 10 second modulus vs. temperature for thermoplastic
(amorphous and crystalline) and thermoset polymers.

Describe how the 10 second modulus is determined experimentally
using sketches and equations as necessary.

Define and describe the time-temperature-superposition principle.
What is a master curve? How is one produced?

Who was the person that first introduced the use of master curves.
Describe the kinetic theory of polymers.

Discuss the meaning of the term “dilute solution” and describe how
this is important in the development of the TTSP.

Under what conditions is the WLF equation valid?

Define specific volume and how is it measured? What is the frac-
tional free volume?

What is a relaxation spectrum and how is it related to a relaxation
modulus?

Describe the molecular mechanisms associated with viscoelastic re-
sponse in the glassy, transition and rubbery regions of behavior.

Describe the process of physical and chemical aging.

Describe the thermal spike mechanism associated with moisture ab-
sortion.

7.9. Problems

7.1. Given the data below, develop a master curve using TSSP.

Time
(min) D(t), 90C D(t), 100C D(t), 110C | D(t), 115C
0.5 2.700E-06 2.990E-06 3.330E-06 | 4.260E-06
1 2.820E-06 3.080E-06 3.570E-06 | 4.650E-06
2 2.900E-06 3.170E-06 3.700E-06 | 5.130E-06
5 3.130E-06 3.390E-06 4.080E-06 | 6.060E-06
10 3.230E-06 3.640E-06 4.440E-06 | 7.410E-06
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Time
(min) D(t), 120C D(t), 122C | D(t), 125C | D(t), 130C
0.5 7.690E-06 1.282E-05 3.030E-05 1.786E-04
1 9.260E-06 1.587E-05 4.651E-05 2.632E-04
2 1.163E-05 2.128E-05 7.143E-05 3.333E-04
5 1.667E-05 3.571E-05 1.351E-04 3.636E-04
10 2.222E-05 4.762E-05 2.000E-04 3.704E-04
10-3 T T T T
g_ A130C
O 125C
S x 122CTH
s o 1200 i bt
115G !
3k S foc H I &
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Short term compliance data at eight temperatures for a polymer.

7.2. Determine the shift factors needed to obtain the master curve found in

7.3.

problem 1. Plot your results (Log,, ar vs. temperature) and compare
with a plot of the WLF equation.

Calculate the shift factors for the data of problem 2 using the activa-
tion energy approach and compare with the experimentally deter-
mined shift factors found below the T,.
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7.4. The creep data for an epoxy is given in Chapter 5 on page 135 of
these notes. Using the TTSP equation derived in class, determine the
maximum (asymptotic) value you would expect the deflection, 0, to
be for the temperatures, T= 155° C, 160° C and 165° C.

7.5. Using the TTSP prove that modulus should increase with increasing
temperature (the Joule effect) in the rubbery range.

7.6. A master curve for a polymer for a temperature of 100° C is given in
the figure below. Assuming the TTSP and the WLF equation is valid,
estimate the short and long time response for temperatures of 120° C
and 90° C. Sketch the expected master curves for each temperature on
the given graph.

2x10°

1x10°
5x10?

2x10°

E(t) MPa

1x10°2
5x10

2x10

x10 H—————t——t—F—+—

-4 -3 2 -1 0 1 2 3 4
Log,ptme, min

Master curve for a polymer at 100°C.

7.7 A master curve and data are given below for a polymer at T, = 100°
C. Construct an E(0.1 min) vs. temperature curve from the data. (You
may neglect a vertical shift for this problem.)



274 Polymer Engineering Science and Viscoelasticity: An Introduction

Time Modulus
(min) (GPa)
0.01 2
0.1 1.6
1 0.8
3.5 0.4
10 0.12
35 0.025
100 0.01
1000 0.006
1.0E+04 0.005
1.0E+05 0.005
10
iy
1 .
g
Q
S o X
s
0.01 S
= ]
0.001
107 107 10" 10° 10 107 10 10 10
Time (min.)

Master curve at 100°C for a polymer associated with tabulated values in problem
7.7.



8. Elementary Viscoelastic Stress Analysis for
Bars and Beams

The study of polymer engineering science and viscoelasticity is not com-
plete unless attention is given to the stress (or strain) analysis of important
structural problems. These include sets of problems related to viscoelastic
materials (e.g., polymers) analogous to those in the first course in solid
mechanics (often called strength of materials), courses on structural me-
chanics (including energy methods, Castigliano’s theorems, etc.), the the-
ory of linear elasticity (stress functions, three dimensional problems, etc.),
the theory of linear elastic plates and shells, elastic stability and others.
While it is not possible to cover all these topics, it is possible to cover se-
lected problems in several areas to demonstrate common methods of ap-
proach such that individuals can continue to explore problems unique to
their own area of interest. Hopefully, even the brief introduction given here
can assist one in solving structural analysis problems for viscoelastic mate-
rials provided the necessary background to solve a similar structural analy-
sis problem for an elastic material has been mastered.

8.1. Fundamental Concepts

Generally viscoelastic problems can be solved using relations between in-
ternal stresses and external loads subject to the geometry of the structure in
a similar manner as for elastic materials in the subject areas mentioned
above. For both elastic and viscoelastic materials, the “state of the mate-
rial” or equations of state must be included. Here elastic and viscoelastic
materials are different in that the former does not include memory (or time
dependent) effects while the latter does include memory effects. Because
of this difference, stress, strain and displacement distributions in polymeric
structures are also usually time dependent and may be very different from
these quantities in elastic structures under the same conditions.
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In Chapter 6, it was shown that the Boltzman superposition principle
could be used to derive an integral constitutive law for a linear viscoelastic
material as

o(t) = fEa wddﬂ
8.1)
Taking the Laplace transform of this convolution integral yields
G(s) =sE(s)&(s) (8.2)
which can also be written as
G(s)=E (s)&(s) (8.3)

—k
where E (s) is s times the Laplace transform of the time dependent
modulus of the material, E(t). In Chapter 5 it was also shown that for rep-
resentation of viscoelastic materials by mechanical models and differential

—k
equations, E (s) is the ratio of the transform of the strain and stress differ-
ential operators.

Eq. 8.3 is equivalent, in transform space, to Hooke’s law for an axially
loaded elastic bar or,

o=Ee (8.4)

The stress and strain in an elastic structure may vary with time providing
external loads vary with time. Therefore, it is possible to transform time
dependent stresses and strains for elastic structures to give,

o(s) = Eg(s) 8.5)
but since the modulus is time independent, the resulting equation is quite

different than Eq. 8.3, i.e., E in Eq. 8.5 is a constant but E* (s) in Eq. 8.3
is the Laplace transform of time dependent functions.

The fact that Eq. 8.3 can be considered as the equivalent of Hooke’s law
in the transform domain leads to a general method to solve many practical
viscoelastic boundary value problems in a simple manner. This procedure
is often attributed to Turner Alfrey and is sometimes referred to as Al-
frey’s correspondence principle. Simply stated the procedure is as fol-
lows:
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* Find a previously solved linear elasticity boundary value
problem with the same geometry, loading, and boundary con-
ditions as the linear viscoelastic boundary problem for which
a solution is needed.

* Replace all variables in the elastic solution (stresses, strains,
displacements, etc.) and the applied loads by their Laplace
transform.

* Replace all elastic constants by s times the transform of the
time dependent moduli (or the ratio of the transform of the
analogous differential operators). That is:

E—E (s)=sE(s)

DD (s)=sD(s) 56

G—G (s)=sG(s)
Vv (s)=sv(s)

* The resulting expressions are the solution in the transform
domain to the viscoelastic boundary value problem. The solu-
tion in the time domain can be found upon inversion.

In this chapter the correspondence principle will be used to solve elemen-
tary viscoelastic problems for bars and beams. In the following chapter the
principle will be used to solve problems in two-dimensional elasticity. This
procedure can only be used for a certain class of problems. In general, the
procedure can be used on any problem in which the load functions (includ-
ing boundary conditions) can be separated into a product function of space
and time. These restrictions will be discussed more fully in the following
chapter on two and three-dimensional problems. It is also appropriate to
note that in addition to the correspondence principle there are, in general,
two additional methods that may be used to solve viscoelastic boundary
value problems. These are: formulate and solve the problem in the time
domain or formulate and solve the problem in the transform domain. The
latter two techniques will be discussed and demonstrated in detail in Chap-
ter 9. The reason for mentioning these methods here is that they can best
be demonstrated at an elementary level using the derivation of the beam
deflection equation for pure bending as discussed later in this chapter.
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8.2. Analysis of Axially Loaded Bars

Consider an elastic and a viscoelastic bar in uniaxial tension as shown in
Fig. 8.1 where the axial load may be time dependent.

E E(t)
| / | | /t |
Ll L

P(t P(t P P(t

Fig. 8.1 Loads and deformation in elastic (a) and viscoelastic (b) bars.

As noted for an elastic bar in Chapter 2, the average or engineering stress,
the average or engineering strain and Hooke’s law are given by,

POy 30
A L

where P(t) is the applied load, L is the original length, A is the original
cross-sectional area and E is Young’s modulus and is a constant. Obvi-
ously, the only reason for the variation of stress and strain with time is due
to the variation of load with time. The stress-strain equation can be written
as,

o(t) , o(t) = Ee(t) 8.7)

PO _ b0 8
A L
and the axial deformation would be,
P(t)L
o(t) = 8.9
(t) AE 8.9)

Again, the deformation varies with time only because the load varies with
time. Note the cross sectional area used is still the original area and is con-
stant. If true stress were used, the cross section would change but for many
polymers under practical loads the variation would be small and can be
neglected.

For a viscoelastic bar, a solution for stresses, strains and displacements
can be obtained using the correspondence principle by replacing all vari-
ables in Eq. 8.7 by their Laplace transforms and the moduli by s times
their Laplace transform,
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P(s) _ 8(s)  _, . —=*_ < P(s)L =
—, e(s)=—=, e(s)=D o(s), O(s)= D
A (s) L (s) (8), 0(s) A
where Hooke’s law and the deformation have been written in terms of
compliance instead of modulus. The solution for stress in the time domain

can be found by finding the inverse Laplace transform and would be,

PQ)

o(s) = (8.10)

o(t) = (8.11)
Comparing Eq. 8.11 with the first Eq. in 8.7 it is seen that the stress is ex-
actly the same as in an elastic beam with a time dependent axial load.

In fact, from this result it is clear that any elastic problem in which
no elastic constants appear in the solution will have a counterpart vis-
coelastic solution that will be identical to the elastic solution.

Solutions for deformations where tractions are prescribed always have
material properties included and therefore, displacements in elastic and
viscoelastic bodies will be quite different. Noting that,

D (s)=sD(s) (8.12)

the displacement of the viscoelastic bar given by the last equation in Eq.
8.10 is rewritten as,
8(s) = % -sD(s) (8.13)

Eq. 8.13 can be inverted using the convolution integral and is,

dP(§)
dg

S(t) = f D(t-&)—>dg (8.14)

For uniaxial loading, either Eq. 8.13 or Eq. 8.14 can be used to solve for
the displacement in a viscoelastic bar over time given an explicit loading
function, P(t) and material compliance, D(t). It is sometimes useful to ma-
nipulate the expressions algebraically in the Laplace domain, Eq. 8.13, and
then simply invert the final expression to the time domain.

In the simple case that the axial load is a constant step input given by,
P(t) = P,H(t) and P(s) = L} 8.15)
S

the stress in the bar (elastic or viscoelastic) will be,



280 Polymer Engineering Science and Viscoelasticity: An Introduction

P
oO=— 8-16
A (8.16)
The displacement for a viscoelastic bar can be rewritten as in Eq. 8.14,
H(E)
3(t) == f D(t-g) -+ = 4P, = Iy dg (8.17)
or
PL |
3(t) =—2= [ D(t-E)d(E)dE (8.18)
A

where, due to unfortunate conventional notation the 6(t) on the left hand
side is the axial deformation, while the 8(§) on the right hand side is the
Dirac delta function. Eq. 8.18 becomes (upon using the result in Appendix
A for integrating Dirac delta functions),

P,L

- 2o~ 8.19
3(t) A D(t) (8.19)

or as mentioned above, Eq. 8.13 can be rewritten using Eq. 8.15 to obtain,
3(s) = % -D(s) (8.20)

and inverted to obtain Eq. 8.19 without recourse to integral equations.

Thus, for the constant load input of Eq. 8.15, the resulting displacement
for an elastic bar is a constant, PL/AE, while the viscoelastic bar exhibits
creep and increasing displacements with time.

Note that the result for the case of a step load is quite simple and pro-
vides displacements in Eq. 8.19 that are identical in form to the elastic dis-
placements in Eq. 8.9 with 1/E replaced by the elastic compliance D.
However, for any non-constant load, the integration of Eq. 8.14 becomes
non-trivial, cannot be solved without explicitly stating a form for compli-
ance D(t) and yields a very different displacement field in the viscoelastic
material over time.

To provide an example of a non-trivial case, consider a bar in uniaxial
tension where the load is given by

P(t)=p,t and  P(s)=p,/s’ (8.21)

In this case, the stress field for both elastic and viscoelastic bars is



8 Elementary Viscoelastic Stress Analysis for Bars and Beams 281

Po
o(t) ==t 8.22
(® A (8.22)
and the displacement field for the elastic bar from Eq. 8.9 is given by
L
8(t) = Loz 8.23
(t) AE (8.23)

For a viscoelastic bar, Eq. 8.13 can be used in the Laplace domain, simpli-
fied and inverted, or Eq. 8.14 can be used directly in the time domain as il-
lustrated here. In either case, the time dependent compliance of the mate-
rial must be chosen to determine the solution. Here, choose a simple
Kelvin solid such that

D(t) = %(1 - e"/‘) (8.24)

Using Eq. 8.20 and 8.23 in Eq 8.14 yields

L1 =BV
6(0:X{E(l_e( ! )pOdE (8.25)

= %(t - 1:(1 —e't/r))

which is clearly different in form from the elastic solution Eq 8.22. The re-
sulting time dependent displacements can be plotted as shown in Fig. 8.2,
where it is seen that the displacements in the viscoelastic bar lag the elastic
solution due to the delay in the viscous term.
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Fig. 8.2 Displacement with time for uniaxial loading with P(t)=p,t. Note differ-
ence in elastic and viscoelastic response. Simple Kelvin model used for
viscoelastic bar.

8.3. Analysis of Circular Cylinder Bars in Torsion

A viscoelastic bar in torsion can be analyzed in a similar manner as the ax-
ial bar in tension or compression. Assume a time dependent end torque is
applied to a circular cylindrical bar as shown in Fig. 8.2,

AY

T(t),—*5(t) Tt
-V@_ ------ bx

Fig. 8.3 Torsion of elastic and viscoelastic bars.

The stress and angular deformation for an elastic bar is given by,
T(t)L

_TOr _TOL
=7 and o(t) = L, G (8.26)

p

T(t)

where I, is the polar moment of inertia (second moment of area), r is the
radius to the location in the cross section where the stress is to be deter-
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mined, T(t) is the time dependent input torque, L is the length and G is the
shear modulus.

For a viscoelastic bar in the transform domain, the solution is found by
replacing all variables in elastic solution by their Laplace transform (and
moduli by s times their Laplace transform) such that,

Tis)r and B(s) = T(s)L
L

p

T(s) = -sJ(s) (8.27)

where J(s) is the transform of the shear creep compliance and
T (s) =sJ(s).

Inversion of the equation for the transform of shear stress will give the
solution for shear stress in the time domain,

T(t)r

T™(t) = (8.28)

P

which is identical to the elastic solution given in Eq. 8.26. Inversion of the
transform of the angular displacement provides (using the same procedure
as previously for a bar in tension or compression),

L dT
a(t) = f 1-5) 916 4 (8.29)
P 0 dg
For a simple step input in torque,
T(t) = T,H(t) and T(s) = T (8.30)
S
the solution for stress and angular displacement will become,
= Tor and 0(t) = J (t) (8.31)
L I,

As for the uniaxial tension case, while the elastic solution for angular dis-
placement is constant in time for a constant torque input, the viscoelastic
bar exhibits increasing displacement from creep over time. Note again that
the expression Eq. 8.31 is quite simple in the step input case and analo-
gous in form to the elastic solution Eq. 8.26. For time varying loading, the
integration of Eq. 8.29 is nontrivial and results in a more complex form.
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8.4. Analysis of Prismatic Beams in Pure Bending

In general, developing appropriate stress and deformation analysis solu-
tions for the design of complex structures made with viscoelastic polymer-
based materials can be very difficult and challenging. However, as dis-
cussed in this section, the various analytical approaches mentioned earlier
can be illustrated using the elementary analysis associated with beams in
pure bending.

8.4.1. Stress Analysis of Beams in Bending

A viscoelastic bar in pure bending can be analyzed in a similar manner as
the axial bar in tension or compression and the circular cylindrical bar in
torsion. Assume a time dependent bending moment is applied to a bar
(with a vertical axis of symmetry) as shown in Fig. 8.4,

Fig. 8.4 Pure bending of elastic and viscoelastic bars.

The bending stress and deformation for an elastic bar is given by,

M,y  d’d(x,t) M, (1)
T dx2 El

z

o, (y,t) = (8.32a, 8.32b)

z

where 1, is the moment of inertia (second moment of area) of the cross-
section, y is the vertical distance from the neutral axis to the location in the
cross section where the stress is to be determined, M,(t) is the time de-
pendent input bending moment, L is the length and E is Young’s modulus.

For a viscoelastic bar in the transform domain, the solution is found by
replacing all variables in the elastic solution by their Laplace transform
(and all moduli by s times their Laplace transform) such that,
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GJ%®=M%2X (8.33)

z

Inversion of the Eq. 8.33 will give the solution for axial stress in the time
domain,

(8.34)

Gx(y’t) = @

z

which is identical to the elastic solution given in Eq. 8.32a. Displace-
ments, on the other hand, will be quite different for elastic and viscoelastic
beams in bending as is illustrated in the following sections.

8.4.2. Deformation Analysis of Beams in Bending

Three methods of solving viscoelastic boundary value problems were
given early in the Fundamental Concepts section of this chapter. The de-
velopment of the beam equation serves as a simple method to illustrate
these various techniques. Before proceeding with this section, the reader is
advised to review the procedure for developing the deflection equation for
linear elastic prismatic beams given in elementary texts on solid mechan-
ics.

It may be well to note that while the deflection derivations shown in this
section are for pure bending, the equations developed are valid for general
loadings (i.e., point, distributed, etc.) as long as shear deformations are
negligible as in elastic beams.

(1) Development of beam deflection equation using the correspon-
dence principle: Development of an appropriate equation for the deforma-
tion of any viscoelastic beam can be developed using the correspondence
principle. That is, the viscoelastic equivalent to the deflection equation
given by Eq. 8.32a can be developed in the transform domain by replacing
the appropriate variables by their Laplace transform,

dzg(x,s) _ M, (s) 5*(s) (8.35)
dx?

z

or

f&x9=MJ®
dx?

-sD(s) (8.36)

z

Inversion yields,
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2 t
dd(x.n 1 dM,(§)
— t d 8.37
— IZ{(E)ga (8.37)
If a step bending moment is input such that,
M, (t) =M H(t) =M, and M, (s) = M, (8.38)
s
integration of Eq. 8.31 yields,
d*d(x,t) M,
—==—0D(t 8.39
= bw (8.39)

z

M,(1)

D
du(y,t)

Fig. 8.5 Deformation of a viscoelastic beam in pure bending.

(2) Derivation of viscoelastic beam deflection equation in the time do-
main: It is instructive to derive the deflection equation for a viscoelastic
beam without resorting to Laplace transforms. Consider the undeformed
and deformed beam shown in Fig. 8.5. Making the assumptions (the same
as in elementary solid mechanics) of small deformations, linear behavior,
and a non-warping cross-sections (plane sections remain plane) will give
the relations,

dx =p(H)do(t)  du(y,t) = yde(t) % - % —e (y,) (8.40)

where p(t) is the radius of curvature, 8(t) is the angular rotation of adja-
cent cross-sectional plane sections and u(t) is the deformation in the x di-
rection of a point y distance from the neutral axis (NA). The length of the

beam at the neutral axis does not change with time but the radius of curva-
ture, p(t), decreases with time as the angular deformation increases with
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time. The relation between axial stress and strain at any point on the cross-
section is given by,

do, (y,E)
S = )

where K(t) is the curvature. Alternatively, writing with stress as the de-
pendent variable gives,

£, (y.t) = f D(t-&) = yK(t) 8.41)

IK(E)
IS

Equilibrium of forces in the axial direction on any cross-section gives,

PR ()
f E(t g)—dE deldA

f ydA
A

and indicates that the neutral axis is at the centroid of the cross-section as
in elementary beam theory. Equilibrium of moments about the z-axis
gives,

o (Y0 =y f B(t-§) = =208 (8.42)

EFX=0=fy

(8.43)

dx(§)
E
f -H==

dg

dx(E)
M, =0=M,(t) - E(t-8) 28 ge ldA (8.44)
5 ISIEEL
or
M. (t) = f y f E(t-E) d“g) dEldA (8.45)
From Egs. 8.40,
£, (X,t) = —— = yK(t) (8.46)
p(t)
and noting that,
2 2 2 2
k(1) = d°v/dx d’v _dd 8.47)

I +(dv/dx)2]m & de?

where v is the displacement in the y direction, one obtains,
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M- [y’ [f E(t-9) E(dé)dEdA (8.48)

or
dzé(t) 1 dM, () 4 4
7 f Dt-H—¢ E} (8.49)

which is the same result obtained by the correspondence principle given by
Eq. 8.37. The proof that Eq. 8.49 follows from Eq. 8.48 is left as an exer-
cise for the reader (See homework problem 8.5).

(3) Derivation of viscoelastic beam deflection equation in the trans-
form domain: The beam loaded as shown in Fig. 8.5 can be converted to
an associated problem in the transform domain by transforming all time
dependent parameters and the boundary conditions. Obviously, the deflec-
tion equation in the transform plane can be developed following the deri-
vation steps as used in elementary solid mechanics and a result equivalent
to Eqs. 8.35-8.37. This proof is left as an exercise for the reader (see
homework problem 8.6).

8.5. Stresses and Deformation in Beams for Conditions
other than Pure Bending

The equations for bending stress and deflection developed in the previous
sections may be used for beams with loading conditions other than pure
bending. In so doing, the same restrictions apply as in using their elastic
counterparts for conditions other than pure bending. A few examples will
be given for beams with distributed loads.

Example 1: Consider a simply supported rectangular viscoelastic beam
with a step input of a uniformly distributed load as given in Fig. 8.6(a).

q(®) b./ft. = qy H(t) qolb/ft.

LT " LT

P ] P
(a) Viscoelastic Beam (b) Elastic Beam

Fig. 8.6 Uniformly loaded elastic and viscoelastic beams.
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The solution for stresses, deformations and strains for an elastic beam of
the same geometry and loading is known. For example the maximum
bending stress occurs at the outer surface of the beam at mid-span and is
given by,

M,y _3q®OL* _ 3g,l’

O pax = 8.50
max I 2 h3 2 h3 ( )
Replacing all variables by their Laplace transform gives,
s)L? 2
_max (S) - E q( ? = E qOL (8.51)

Inversion of this solution will provide the solution for the viscoelastic
beam and will be,

3 q(t)L?
o t) == 8.52
max (D) 2o (8.52)
or
3 q,L?
o (== H(t 8.53
max (D) > h (t) (8.53)

Again, the viscoelastic solution for stress is exactly the same as the elastic
solution stress. As stated earlier, in general, if the linear elastic solution for
stresses for a given boundary value problem does not contain elastic con-
stants, the solution for stresses in a viscoelastic body with equivalent ge-
ometry and equivalent loads is identical to that for the elastic body. This
means that the stress analysis of most problems considered in elementary
solid mechanics such as beams in bending, bars in torsion or axial load,
pressure vessels, etc. will have the same solution for stress in a linear vis-
coelastic material as in a linear elastic material. Further, stress analysis of
combined axial, bending, torsion and pressure loads can be handled easily
using superposition.

Solutions for beam deflections (or stresses induced by deflections such
as a sagging supports) will be quite different for elastic and viscoelastic
materials. This difference is due to the appearance of elastic constants in
the mathematical expressions for deflections and displacements and is
demonstrated in the next examples.

Example 2: The maximum elastic deflection for the beam in Fig. 8.6(b)
will be,
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4 4
om0 LS by (8.54)

33 1 E 384 1
where D =1/E is the elastic compliance. The viscoelastic solution in the

transform domain will be,

5 QL' ox

Smax<s>=38 ;o D® (8.55)

Recalling that D* (s)=sD(s) gives,
5 gLt
384 1

Knowing that the transform of q(t) = q, H(t) is q,/s and substituting in Eq.
8.56 gives,

S, (8)= -sD(s) (8.56)

— 5 ql' =
S (s)=——2D(s 8.57
and the viscoelastic solution in the time domain will be,
5 q,L*
8 ()=—22D(t 8.58
max () TYRE, (t) (8.58)

Assuming the material to be a thermoset polymer that can be represented
by a three parameter solid, the deflection at mid-span would become,
5 qlt

o, . (t)=—o
max (1 384 1

i+i(1-e'”f)
EO El

(8.59)

and the maximum deflection would vary with time. Again, note that the
simple inversion of Eq. 8.57 and the resulting elastic-like form of Eq. 8.58
is due to the constant load applied in this example. For time varying loads,
the inversion step results in expressions that differ substantially in form
from that of the elastic solution. This case will be considered in Examples
4-5.

Example 3: Now consider the case of the simply supported viscoelastic
beam shown in Fig. 8.7 which is suddenly given a constant deformation at
mid-span. The objective is to find the amount of a center load needed for
the beam deformation to remain constant.



8 Elementary Viscoelastic Stress Analysis for Bars and Beams 291

E(t E
%) L N L
______________ Bl Dh el N W T
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h
& = const i 2 4 = const i
F(t)
(a) Viscoelastic Beam (b) Elastic Beam

Fig. 8.7 Elastic and viscoelastic beam.

The deflection produced by a central constant force in the elastic beam will
be,

3
_ L (8.60)
48EI
or
481
F="5 SE (8.61)

and, of course, this force will remain constant for an elastic beam. For a
viscoelastic beam, the force corresponding to a central displacement can be
found using the correspondence principle,

481 <

F(s) = o 8(s) E* (s) (8.62)

If the deflection input it is assumed to be stepwise or &(t) = &, H(t), the
Laplace transform will be 8(s)=93,/s. Substituting this input condition into

—% —
Eq. 8.62 as well as E =sE(s) and inverting gives the viscoelastic solu-
tion,

F(t) = %60 E(t) (8.63)

The force F(t) will vary with time as the relaxation modulus varies with

time. If the beam is made of a thermoplastic polymer and if representation
by a Maxwell model is appropriate, the solution will be,

F(t) = %60 Ee " (8.64)

and the force will vary with time as shown in Fig. 8.8.
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A
F(t)

time, {

Fig. 8.8 Force need to maintain a constant central deflection a thermoplastic vis-
coelastic beam.

The force needed to hold the deflection constant will become zero for a
time large compared to the relaxation time. On the other hand if the beam
is made of a thermoset, the force would not decrease to zero regardless of
the time duration.

This example further illustrates that the stresses are not the same in a
viscoelastic beam as in an elastic beam when displacements are prescribed.
That is, the stresses in the beam of this example approach zero as time ap-
proaches infinity.

Determining deflections for circumstances when the load is both a func-
tion of the spatial coordinates and time requires special attention. The fol-
lowing example demonstrates the appropriate approach.

Example 4: Assume a beam is loaded as shown in Fig. 8.9 and that the
distributed load is both a function of distance and time. While a general
loading, p(x,t), can be accommodated with the correspondence principle,
only a loading which is a product of two separate functions as shown in
Fig. 8.9., i.c., p(x,t) = p(x)f(t) will be discussed here.

p(x,t) = p()f(t)
Y4 f(t)

time, o
|‘_ X _.| 3(x,t)

Fig. 8.9 Viscoelastic beam with a spatially varying distributed load.
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The solution for an elastic beam with an equivalent load can be written as,

8(x.1) = p(é D o(x) = p(%’t)gmm&f(”g(xm (8.65)

where D is the constant elastic compliance and g(x) contains the spatial
distribution of the deflection solution beyond p(x). To clarify the definition
of g(x), consider the deflection equation of an elastic beam with a uni-
formly varying load, where p(x,t)=qyX, which can be found in elementary
texts to be,

= — 2= (7L} -10L%x” +3x* 8.66
0= 51 senr ) (66
Using the notation from Eq. 8.65, for this case

o(x) = L1012 43xH (8.67)

Returning to the general expression Eq. 8.65, using the correspondence
principle for a polymer beam that is viscoelastic, the solution in the trans-
form domain will be,

8(x9) =2 60 F9D ") - B a([f(s) sD®)] (868

Using the definition of the convolution integral, the solution in the time
domain will be,

f(r)

8(x,t) = 8'(x) f D(t-1) g (8.69)

where,
0'(x)= LIX)F(X) (8.70)

In Eq. 8.70 6’(X) is the deflection for an elastic beam loaded only with

p(x) but with the Young’s modulus removed. That is, Young’s modulus is
now included in the integrand of Eq. 8.69 as the compliance in the trans-
form domain. For the loading given in Fig. 8.9, it is to be noted that the
integral must include the jump discontinuity at the origin by recognizing
that the initial value of f(t) is fyH(t). Using the results of Appendix A, the
inverse of Eq. 8.68 can be written as,
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d(x,t) =8'(x)|f,D(t) + fD(t ) df(;) dg 8.71)

Example 5: To illustrate the use of the results of Example 4, consider a
beam under a uniformly varying distributed load as shown in Fig. 8.10
which has a time dependency as given also in Fig. 8.10.

f(t)
p(x,t) = py f(H)

L
NN o

------

8(x,0) !
X ‘ t) time,

Fig. 8.10 Viscoelastic beam with a uniformly varying distributed load.

The elastic solution for a uniformly loaded beam is,
3(x,t) =0'(x)f(t)D 8.72)

where
/ _ Po 4 3 3
800 = I[x 20X’ +L x] (8.73)

The viscoelastic solution can be found using Eq. 8.69 noting that the time
dependent portion of the load function can be written as

f(t) = f—OtH(t) _f (t-t,)H(t-t,) (8.74)
1 1
To perform the integration, it will be convenient to separate the integral
and thus the function into portions before and after t;. In this form, f(t) and
it’s first derivative may be written:

f(t)=f—0t, $=f—°, O=<t=t,
boodtg (8.75)
df
f(t)=£f,, —=0, t>t
(t) " |

Using Eq. 8.71, the deflection is found to be given by,
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&@ElfDa-gmg O=<tst,
S(x,1) = lf t (8.76)
M@?fDmfmaumfmu@mg t>t,

1o

4

Assuming the beam can be represented as a Kelvin solid such that,

DG—@=%P—€“wq (8.77)
the deflection will be,
6;)() &[t—t(l —e‘”’)], Ostst,
t
d(x,p=4 " ! (8.78)
d'(x) f—o[tl—‘ce_m(e“”—l)], t>t,
E t

A non-dimensional plot of the center deflection given by Eqs. 8.77 and
8.78 are shown plotted vs. time in Fig. 8.11. For comparison the response
of an elastic material for the time t, is also given. If the retardation time, T,
is much larger than the time t; as in the upper curve (t;=10), the material
behaves essentially elastically during the loading up to t; and there is a
long transient response before the asymptotic value is reached after the
load is held constant. If the retardation time is much less than the time t, as
in the lower curve (t;=500), there is an initial transient response of the
polymer lagging the applied load, but after the test time reaches the relaxa-
tion time (t=100), the material responds nearly linearly with the rising ap-
plied load. After the constant load is reached, the remaining transient re-
sponse occurs quickly and the asymptotic value is reached after a short
time relative to t,.
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Fig. 8.11 Variation of deflection for the beam given in Fig. 8.10. Retardation
time of polymer is the same for all cases, but time where load becomes
constant, t,, varies (and is indicated by arrows on each curve). Elastic
response also shown for two cases.

8.6. Shear Stresses and Deflections in Beams

The vertical shear stress in an elastic beam is given by,

V(x,1)Q

T, (X,t) =
o (X.0) b

(8.79)
where V(x,t) is the vertical shear force (and is a function of time if the
loading is a function of time) at a section x distant from the left end, Q is
the first moment of the cross-sectional area about the neutral axis for the
area above the point on the cross-section where the stress is desired (for
further details, see an elementary solid mechanics text), I, is the moment of
inertia of the cross section about the neutral axis and b is the thickness of
the beam at the location in the cross-section that the shear stress is desired.
Since no properties are contained in the elastic solution, the viscoelastic
solution is identical to the elastic solution.

The above solution is only valid for beams whose cross-sectional di-
mensions are small compared to the length. That is if b,,,/L is approxi-
mately 10 or larger. For beams that do not meet this condition, deflections
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developed using pure bending theory must include a correction factor to
account for the effects of shear. Also, shear stresses need to be corrected as
well. The reader is referred to both elementary and advanced solid me-
chanics texts for the details regarding the shear correction terms.

However, as long as the material is linear, the correspondence principle
can be used to obtain viscoelastic solutions from the appropriate elastic so-
lution. It is well to note that such shear corrections are more important for
polymeric materials than for metals as moduli are smaller and deforma-
tions are correspondingly larger. Therefore, shear corrections are typically
more important.

8.7. Review Questions

8.1. Who first introduced the concept of the correspondence principle?

8.2 Describe how to use the correspondence principle to solve stress
analysis problems.

8.3 Under what conditions are the solutions for stress identical for elastic
and viscoelastic structures?

8.4 Describe three analytical approaches for obtaining solutions viscoe-
lastic boundary value problems.

8.8. Problems

8.1. Determine an expression for the maximum stress in a viscoelastic
cantilever beam made of a thermoplastic polymer that can be repre-
sented by a Maxwell fluid. Assume the beam of square cross section
and is uniformly loaded with a step input.

8.2. Determine the maximum deflection in a cantilever beam made of a
thermosetting polymer that can be represented by a three parameter
solid. Assume the beam of square cross section and is uniformly
loaded with a step input.

8.3. Determine an equation for the deflection of a simply supported beam
with a uniform load varying in time similar to the one of Example 5.
Assume the material to be Maxwellian. Graphically show the result-
ing deflection in a similar manner as in Fig. 8.11.

8.4 Prove that Eq. 8.49 follows from Eq. 8.48. Hint: use Laplace trans-
forms.
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8.5 Reformulate the beam in pure bending shown in Fig. 8.5 to a problem
in the transform domain and derive the appropriate deflection solution
showing that the result in the time domain is the same as given by the
correspondence principle and the derivation given in the time domain.

8.6 Given a beam loaded as shown. Determine an expression for the
maximum deflection as a function of time for loading condition in (a)
assuming a Kelvin model. Determine an expression for the maximum
deflection as a function of time for loading condition in (b) assuming
a Kelvin model.

p(x,0) = py (D)

4

A
=
o f(t)“
s
fo
fol----------
fol21 :
1
1
0 time, t X
1
-fo/21 L -
0 t 15} to t



9 Viscoelastic Stress Analysis in Two and Three
Dimensions

The various approaches to the solution of viscoelastic boundary value
problems discussed in the last chapter for bars and beams carry over to the
solution of problems in two and three dimensions. In particular, if the solu-
tion to a similar problem for an elastic material already exists, the corre-
spondence principle may be invoked and with the use of Laplace or Fou-
rier transforms a solution can be found. Such solutions can be used with
confidence but one must be cognizant of the general equations of elasticity
and the methods of solutions for elasticity problems in two and three di-
mensions as well as any assumptions that might often be applied. To pro-
vide all of the necessary information and background for multidimensional
elasticity theory is beyond the scope of this text but the procedures needed
will be outlined in the following sections.

This chapter will focus on developing the equations, assumptions and
procedures one must use to solve two and three dimensional viscoelastic
boundary value problems. The problem of an elastic thick walled cylinder
will be used as a vehicle to demonstrate how to obtain the solution of a
more difficult reinforced viscoelastic thick walled cylinder. In the process,
we first demonstrate how the elasticity solution is developed and then ap-
ply the correspondence principle to transform the solution to the viscoelas-
tic domain. Several extensions to this problem will be discussed and addi-
tional practice is provided in the homework problems at the end of the
chapter.

9.1 Elastic Stress-Strain Equations

To this point the relations between stress and strain (constitutive equa-
tions) for viscoelastic materials have been limited to one-dimension. To
appreciate the procedure for the extension to three-dimensions recall the
generalized Hooke’s law for homogeneous and isotropic materials given
by Egs. 2.28,
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£, = —[oxx —v(oyy +0'ZZ)], v, = Téy
€y = %[oyy - V(04 +0‘ZZ)], Y, = réz 9.1)
€, = %[GZZ - V(Gxx +0,, )] oy = Téz

Most generally stresses, strains and mechanical properties E, G, and v are
time dependent for a viscoelastic material. The relation between shear
stress and strain for a viscoelastic material are easy to formulate as they
only contain a single property, the shear modulus, G. Using the principles
developed in preceding chapters, the integral equations and transform
methods can be developed. However, equations involving the relationship
between normal stresses and strains present a difficulty as two material
properties are present and it is unclear how to formulate proper relation-
ships analogous to the one-dimensional differential or integral equations
necessary for a viscoelastic material. This difficulty can be overcome by
using deviatoric and dilatational components of stress and strain as given
in Chapter 2 by Egs. 2.58 and 2.62 which can be written for an elastic ma-
terial as,

1
8;;=0j; —gokkéij 9.2)

and

1
€ =¢; _gskkéij 9.3)

Using these stresses and strains, the elastic stress-strain relations given by
Eq. 9.1 can be shown to be,

8= 2Ge i
94
O, =3Ke,,
which is the same as Eqgs. 2.63 given in Chapter 2 and where,
O =30, =30=0,+0,+0; ©.5)

€ =3€, =3€E=¢€,+¢€, +¢,
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and (from Table 2.1),

E E

- d = = 9.6
2(1+v) wmd R 3(1-2v) 00

By rewriting the constitutive equations as in Eq. 9.4, each equation con-
tains only one material property: the deviatoric stress and strain are related
by the shear modulus, G, while the dilatational stress and strain are related
by the bulk modulus, K.

9.2 Viscoelastic Stress-Strain Relations

In the elastic constitutive law in Eqs. 9.4 G and K are constants, with G
being the elastic shear modulus and K being the elastic bulk modulus,
again as defined in Chapter 2. The first equation (three equations for the
three independent components S;,, Si3, Sp3 ) represents only shape changes
while the second equation only contains volume changes. Since only one
material property is contained in each equation, the derivations developing
viscoelastic constitutive laws using integral or differential equations in
Chapters 5 and 6, respectively, can be applied to each equation individu-
ally. Thus, Boltzman’s superposition principle can be applied to the shear
and dilatational strains separately, adding up incremental contributions to
the resulting stress components (as in development of Eqgs. 6.13) resulting
in
0 de;;(T)
sij(t)=2fG(t— O dv

t 9.7)
0u(®=3[K(t-7) as%”dr

where G(t) and K(t) are the shear and bulk relaxation moduli. Alternately,
the viscoelastic stress-strain relations in integral form can be written as,

1 9s;(T)
e =2 { J(t-1) — —dv

9.8)

1 90, (1)
£ (D) =§:£B(t—t)g%dr

where J(t) and B(t) are the shear and bulk creep compliances.
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Similarly, the differential operator equations for the shear and dilata-
tional responses of a viscoelastic material may be written analogous to the
one-dimensional case in Chapter 5 (Eq. 5.20 or Eq. 5.26b) as,

P[Sij(t)] = 2Q[eij(t)]

. 3 9.9)
Plo(H)] =3Q[e(v)]

where P, Q, Pand Q are differential operators and include the moduli and
viscosity of each spring and damper in the mechanical models.

Considering Eqgs. 9.7 and 9.9, Laplace transforms yield
5.(s) =2G " (s)e. (s
1(5)=2G"(5)8,(s) 0.10)
G (8) = 3K (5) (3)

where G* (s) and K (s) are related to the transforms of the shear and bulk
relaxation moduli via (see also Eq. 6.44)

—% J—

=sG

G*(s) sG(s) ©.11)

K (s) =sK(s)
Alternately, the viscoelastic stress-strain relationships in the transform
domain may be written as,

a

§,(5) = %i*@)ﬁﬁ(s)
1 9.12)
. (5) = 3E*(s)akk(s)

where j* (s) and B* (s) are similarly related to the transforms of the shear
and bulk creep compliances

—% —

J_*(S) - SJES) (9.13)

B (s) =sB(s)
The two Egs. 9.10 may be recombined in the transform domain to obtain
an expression relating the total stress and strain tensors, o;; and &;;. In do-
ing so, the relationship between Lame’s constant, X*(s), and bulk and
shear moduli, K*(s) and E*(s), will be recovered, Further manipulations

in the transform domain result in the usual relationship between total strain
and stress, analogous to Eq. 2.36
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*

N A

ij= ik O-ij_?o-kkéij

Note that with Eqs. 9.10, 9.12 and 9.14, we again have the viscoelastic
constitutive law represented in the transform domain in a form equivalent
to elasticity. These relationships will then allow us to utilize the corre-
spondence principle as in Chapter 8 to solve 2D and 3D viscoelastic

boundary value problems based on elasticity solutions.

9.14)

9.3 Relationship Between Viscoelastic Moduli
(Compliances)

Egs. 9.10 and 9.12 as well as 9.7 and 9.8 are the viscoelastic equivalent to
the generalized Hooke’s law for elastic materials.

For isotropic elastic materials, there are only two independent elastic
constants and relations exist between various constants as given in Table
2.1 such as,

E E 9GK _ 3K-2G

== =— —~ _ E= =
21+v) ~  3(1-2v)"  3K+G '’ YTk +2G

9.15)

For an isotropic viscoelastic material only two time dependent properties
are independent and it is clear from the correspondence principle that simi-
lar relationships to Egs. 9.15 hold for the Laplace transformed moduli such
that,

G- K'()=
2(1+v*(s)) 3(1-2v*(s))
(9.16)
B (s) 9G (5)K (s) ) - 3K (s)-2G (s)

— —k —% —k
3K (s)+G (s) 6K (s)+2G (s)
Using relations 9.11 will convert the Eqs. 9.16 to relations between the
Laplace transform of the of relaxation moduli, creep compliances. For ex-
ample,
9G(s)K(s)

E = .
K 3K(s) +G(s) o1
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or
3E(s)K(s) + E(s)G(s) = 9G(s)K(s) (9.18)
By the convolution theorem (Appendix B) Eq. 9.18 becomes,

3 f E(t- 1)K (t)dt + (f) E(t-1)G(t)dt =9 f G(t-vK(t)dt  (9.19)

0 0

Similar integral equations can be developed for each relationship given in
Eqgs. 9.16 or Table 2.1.

9.4 Frequently Encountered Assumptions in Viscoelastic
Stress Analysis

In solving viscoelastic stress analysis problems, assumptions on the mate-
rial properties are often essential as gathering accurate time dependent data
for viscoelastic properties is difficult and time consuming. Thus, one often
only has properties for shear modulus, G(t) or Young’s modulus, E(t), but
not both. Yet of course for even the simplest assumption of a homogene-
ous, isotropic viscoelastic material, two independent material properties
are required for solution of two or three dimensional stress analysis prob-
lems. Consequently, three assumptions relative to material properties are
frequently encountered in viscoelastic stress analysis. These are incom-
pressibility, elastic behavior in dilatation and synchronous shear and bulk
moduli. Each of the common assumptions defines a particular value for ei-
ther the bulk modulus or Poisson’s ratio as follows.

1. Incompressibility: For small deformation linear elastic problems in-
compressibility is assured if Poisson’s ratio is equal to 0.5, which also
means that the bulk modulus is infinite (see Eq. 9.6). Under this assump-
tion then, v = 0.5 and K, = o. Under the same conditions Poisson’s ratio
for an incompressible viscoelastic material is also a constant 0.5 and,

K(t) = (9.20a)
or
K(s) = (9.20b)

Naturally, this assumption also implies that the dilatational strains are al-
ways zero. For computer simulations of viscoelastic problems, this as-
sumption can sometimes cause numerical difficulties. Most standard finite
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element codes have provisions or options to be used in this case to circum-
vent the numerical difficulties. The assumption of incompressibility is
most reasonable if the polymer under consideration is being considered at
temperatures such that it is mostly within the rubbery regime.

2. Elastic in dilatation: In this case, K, = constant and,
K(t) =K H(t) (9.21a)

Ko
S

K(s) = (9.21b)
Since the viscoelastic bulk modulus changes much less with time and tem-
perature than the shear modulus, this assumption is often a good one in
cases where one only has characterization data for one viscoelastic prop-
erty. Note that with this assumption, the Poisson’s ratio retains its time de-
pendence.

3. Synchronous shear and bulk moduli: In this case it is assumed that
the ratio of the bulk modulus to the shear modulus is a constant such that

K(t) =C,G(t) 9.22)

where C, is a constant. Thus this case assumes that the time dependence of
the two moduli is the same and that the magnitude of their changes through
the glass transition are proportional. As was mentioned above, typically
the bulk modulus values change significantly less in crossing the glass
transition, so the validity of this assumption should be carefully assessed
depending on the temperature and time ranges of the problem at hand.

Given assumption (9.22), clearly the transformed moduli are also related
by the same constant:

K (s) _K@s) _c
G's) GG 1

And it can be shown that this assumption then leads to a constant Poisson
ratio:

9.23)

v(t) =v, =constant (9.24)

The proof of this result is left as an exercise in Problem 9.1c.



306 Polymer Engineering Science and Viscoelasticity: An Introduction

9.5 General Viscoelastic Correspondence Principle

In solving simple one dimensional problems as in previous chapters, one
could simply convert boundary conditions (applied loadings or displace-
ments) to a known stress (or strain) state and then use the constitutive law
to find the corresponding unknown strain (or stress), In two and three di-
mensional elasticity, it is necessary to be more rigorous in the complete set
of governing equations, the application of boundary conditions and their
solution. The reader is referred to excellent classical books on elasticity
theory such as Timoshenko and Goodier (1970) for the developmental de-
tails. Here we summarize the final set of governing equations and list a
few solution strategies for elasticity in two and three dimensions. Then we
extend this knowledge to solution of viscoelastic problems in two and
three dimensions,

9.5.1 Governing Equations and Solutions for Linear Elasticity

The essential governing equations for a linear elastic body are given be-
low. In these equations the position variable, x,, is explicitly shown to em-
phasize that in multidimensional problems the stress and strain fields vary
spatially in the material.

azui(xk)
ot>

Equations of motion; 0;;i(x )+ X (X ) =p (9.25)

where, X; are body forces and the right hand side is zero for static equilib-
rium problems.

Strain-displacement equations; &;(x,,t) = %[ui, (X)) +ug(xy )] (9.26)

8;;(x,) =2Ge;(xy)

Stress-strain equations; 9.27)
O (X;) = 3Key, (X))
Boundary conditions; 0 ;(x,) n;=T(x,) (9.28a)
(in terms of known tractions, T;) and/or displacement conditions
ui(xk) =L1(Xk) (9.28b)

in terms of known displacements L;. The tractions, T;, are applied surface
forces, and are related to the stress components at the surface by the
Cauchy formula



9 Viscoelastic Stress Analysis in Two and Three Dimensions 307

T.=0.n. (9.28¢)

where n; is the unit normal to the surface. Note the T; and L; are applied to
the surfaces of the body and for two-dimensional problems there are two
conditions per surface, while for three-dimensional problems there are
three conditions per surface.

The governing equations 9.25, 9.26, 9.27 comprise 15 coupled partial
differential equations in 15 unknowns which are to be solved based upon
the boundary conditions (Eq. 9.28). As can be seen from Eqs. 9.28, there
are several types of boundary value problems that can be formed:

1. Traction BVPs: Loading is applied through prescribed surface
tractions.

2. Displacement BVPs: Loading is applied through prescribed
surface displacements.

3. Mixed BVPs: Loading is applied through a combination of pre-
scribed tractions and prescribed displacements.

Full development of the methods to solve elasticity boundary value prob-
lems in either two or three dimensions is beyond the scope of this text.
Here we outline the two major approaches.

The first approach is based upon direct solution involving the displace-
ments. In the most basic sense, a strategy can be found to solve the 15
coupled differential equations directly. However, other approaches are
more expedient. The most classical approach is to develop the Navier
equations by putting the strain-displacement equations (Eq. 9.26) into the
constitutive equations (Eq. 9.27) to obtain the stresses, Oj;, in terms of the
displacements, u;. The result is then inserted into the equilibrium equations
(Eq. 9.25), yielding three, coupled, second order partial differential equa-
tions on the three displacements, w;. These three equations can then be
solved for the displacements. Upon solution the stresses and strains can be
found by substitution of the displacements in to the appropriate expres-
sions.

The second approach is based upon solution in terms of the stresses,
specifically without use of the displacements directly. While this approach
is often more intuitive, allowing calculations of only stresses and strains,
caution must be taken to ensure that physically meaningful displacements
could be found. Because the strains are calculated by differentiating the
displacements, finding displacements necessitates integrating the strain
fields. Thus, in stress-based solutions it is essential that the equations of
compatibility also be satisfied. The equations of compatibility are equa-
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tions derived from the strain-displacement relations which relate the strain
components to one another, imposing conditions upon them. Of the six
compatibility equations, only three are independent expressions and these
ensure integrability of the resulting strain field to yield continuous dis-
placements. A basic method of solution based on stresses then involves
rewriting the compatibility equations in terms of stresses (the Beltrami
Michell Equations) and subsequently solving three compatibility equations
together with the equations of motion for the six stress components, O;;.
More details on the possible solution methods can be found in many elas-
ticity texts including a nice synopsis of classical methods in A.J. Durelli,
E.A. Phillips, C.H. Tsao; “Introduction to the Theoretical and Experimen-
tal Analysis of Stress and Strain”, McGraw Hill, NY, 1958, p.99.

Another popular and useful approach for many practical engineering
problems that can be reduced to two dimensional plane strain or plane
stress approximations involves an auxiliary stress potential. In this ap-
proach, a bi-harmonic equation is developed based on the stresses (in
terms of the potential) satisfying both the equilibrium equation and the
compatibility equations. The result is that stresses derived from potentials
satisfying the biharmonic equation automatically satisfy the necessary field
equations and only the boundary conditions must be verified for any given
problem. A rich set of problems may be solved in this manner and exam-
ples can be found in many classical texts on elasticity. In conjunction with
the use of the stress potential, the principle of superposition is also often
invoked to combine the solutions of several relatively simple problems to
solve quite complex problems.

9.5.2 Governing Equations and Solutions for Linear
Viscoelasticity

The governing equations for a viscoelastic material are the same as those
for an elastic material except all stresses, strains and displacements are
time dependent and the stress-strain equations are the integral equations
given by Egs. 9.7 or 9.8. The dependent variables x, and t are explicitly
included to emphasize that in multidimensional problems the stress and
strain fields vary spatially in the material and that for viscoelasticity the
fields are also time dependent.

azui (Xk at)

v 9.29)

Equations of motion; 0;i(x,) + X (X .0 =p
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Strain-displacement equations; € ;(x, ,t) = %[ui, {(Xpt) g (x ,t)] (9.30)

t
,T
Stress-strain equations; sij(xk =2 f G(t) M 9.31)

O (x;i0) =3 [ K(t)m

Boundary conditions; o J-i(xk,t) ;= T.(Xt) (9.32a)

(in terms of known tractions, T;) and/or displacement conditions

u,(x,,t) =L, (x,,t) (9.32b)
in terms of known displacements L; .
Taking the Laplace transform of the Eqs. 9.29 — 9.32 gives,

97 (X,,8)

v 9.33)

Equations of motion; G i(Xy,8) + Xi(xk,s) =p

Strain-displacement equations; €;(x,,s) = %[ﬁi’ {(X4,8) +uy;(x ,s)] 9.34)

5,(x108) =267 ()8(x,9)

Stress-strain equations; 9.35)
Gy (X,,8) = 3K™ (8)&,, (X ,,5)

Boundary conditions; G;i(Xy,8) 0= Ti(xk,s) (9.36a)

T,(X,,8) = L (X,.8) (9.36b)

Obviously, the above transformed governing equations for a linear viscoe-
lastic material (Eqs. 9.33- 9.36) are of the same form as the governing
equations for a linear elastic material (Eqs. 9.25 - 9.28) except they are in
the transform domain. This observation leads to the correspondence prin-
ciple for three dimensional stress analysis: For a given a viscoelastic
boundary value problem, replace all time dependent variables in all the
governing equations by their Laplace transform and replace all material

properties by s times their Laplace transform (recall, e.g., E*(s)= sG(s)),
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thereby converting the viscoelastic boundary value problem in the time
domain into an associated elastic boundary value problem in the transform
domain.

Methods for Solving Viscoelastic Problems: As mentioned in Chapter 8
on bars and beams, three related methods can be used to solve linear vis-
coelastic boundary value problems. These are:

Method 1: Solve the viscoelastic problem in the time domain using
Egs. 9.29 - 9.32.

Method 2: Solve an associated elasticity problem in the transform
domain using Eqs. 9.33 - 9.36. Invert the solution to the time do-
main.

Method 3: Convert an existing elasticity solution into a viscoelastic
solution as follows:

1. Find an elastic boundary value problem and solution with the
same geometry, loading and boundary conditions as the vis-
coelastic boundary value problem or, if not available, solve an
elasticity problem with the same geometry, loading and
boundary conditions as the viscoelastic boundary value prob-
lem.

2. Convert the solution of the elastic problem to the solution of
the viscoelastic problem in the transform domain by replac-
ing all variables by their Laplace transform and all elastic
constants by their equivalent in the transform domain, i.e.,

o —0(s)

€ —¢€(s)

u—u(s), v—=v(s), w—w(s) 9.37)

—% —%k —*
E—E (s),D—=D (s),G—=G (s),etc.

P — P(s) , all loads, etc.

3. Invert the solution obtained in 2 to the time domain to obtain
the solution to the viscoelastic problem in the time domain.

Method 3 allows viscoelastic problems to be solved quite easily providing
that the analogous elastic solution exists or can be found. There are im-
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portant restrictions to this procedure such that the method cannot be
used directly on mixed boundary value problems (combination of ap-
plied displacements and applied tractions) in which the boundary
condition regions change with time. Two notable examples where this
restriction applies are the stress analysis of bodies containing a crack (the
Griffith problem) or contact problems (the Hertz and associated problems).
Although beyond the scope of this text, the reader should be aware that an
extended correspondence principle was developed by Graham, (1968) that
allows such viscoelastic problems to be solved using the elastic solution
for the same problem. Note that this is still an active field of research, with
recent problems associated with contact problems for thin polymer films
on substrates (eg, M. Sakai, (2006)) and in the areas of microelectronics,
nanoindentation and MEMS processing such problems are technologically
important.

As stated in Chapter 8, the correspondence principle presented here will
always be valid when the boundary conditions are a product of separable
functions of space and time, e.g. T(x;,t)=T/(x;)f(t) and
u; (x;,) = uj(x;)g(t).

9.6 Thick Wall Cylinder and Other Problems

While it is beyond the scope of this introductory text to fully develop and
solve a wide variety of multidimensional stress analysis problems in vis-
coelasticity, we provide here a classic example to illustrate the use of the
correspondence principle to derive a viscoelastic solution from a practical
problem in elasticity. We choose here the problem of a Thick Walled Cyl-
inder, often referred to as the Lame Solution. In the following, we first
generate the elasticity solution to the classic Lame problem, then extend
this elasticity solution to that for a reinforced thick walled cylinder. Subse-
quently, we use the latter solution to develop the viscoelastic solution via
the correspondence principle.

9.6.1 Elasticity Solution of a Thick Wall Cylinder

The thick wall cylinder shown in Fig. 9.1 is a good example of a problem
which is solved using the stress function approach to the solution of two
dimensional plane stress or plane strain problems of engineering impor-
tance. In this approach, stress fields are derived from a set of potentials, @,
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which satisfy the biharmonic equation. Stresses found from such potentials
automatically satisfy the equilibrium and compatibility equations. Thus
only the boundary conditions for the problem of interest must be satisfied.

y

Fig. 9.1 Thick wall cylinder (often known as the Lame problem).

All the elasticity equations given by Eqs. 9.29 - 9.32 as well as the bihar-
monic stress function equation can be developed for cylindrical coordi-
nates (see, Timoshenko and Goodier, (1970)). The biharmonic equation is
written as,

V=0 (9.38)
or in cartesian coordinates,

4 4 4
90, 00 90 939)
X ax“dy~ 9y

which becomes in polar coordinates,

7 19 1 9 (o9 1op 1 0%
—t+t-——+—— | —+-——+——1|=0 (9.40)
(ar2 ror r’ 392I3r2 rar r?96°

For axisymmetric problems there can be no dependence on the angle 8 and
Eq. 9.40 becomes,
4 3 2
(d—¢+28¢ ! a¢+l3@)=o 9.41)

dr* roar® r?or? 1 or
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which is known as Cauchy’s equation or the equi-dimensional equation.
The solution for this equation is well known and is given by,

¢ = Alog(r) + Br’log(r) + Cr* + D (9.42)

where A, B, C, and D constants that must be determined from the bound-
ary conditions for a particular boundary value problem such as the thick
wall cylinder shown in Fig. 9.1.

Using the definition of the relationship between the stress function and
stresses in polar coordinates, the stresses in any axisymmetric boundary
value problem can be found and are,

lop 1 0% A
o, =—+——=—+B[1+2log(r)]+2C
"oror r?or® r? [ gl

2
O =z_‘f=-§2+B[3+2log(r)]+2c (9.43)
T T
_Llog 1% _
O 9r 1 orod

Note that the stress function D (constant) leads to trivial stresses and is
thus subsequently omitted. If there is no hole at the origin, constants A and
B must vanish to avoid singular stresses at the origin. In the solution for
the thick wall cylinder, B must be zero because although the corresponding
stress fields would be admissible in the absence of material at the origin,
the resulting displacements are multivalued and not admissible for this ge-
ometry. Thus, solution to the Lame problem reduces to finding the con-
stants A and C from Eq. 9.43 from the boundary conditions,

o, (r=a)=-p, and o,(r=b)=-p, (9.44)
noting that the boundary conditions requiring o, to be be zero on both

surfaces are automatically satisfied by Eq. 9.43. The general solution to
the Lame problem thus is,

_ azbz(Po -pi) 1 azpi—b2p0
© b*-a’ r_2+ b*-a’
a’b’(p,-p) 1 a’p,—b’p,
b’ r_2+ b*-a’
where p, is the pressure at the outer boundary and p; is the pressure at the
inner boundary. Note that the solution for stresses in an elastic cylinder do

not contain elastic constants. Therefore, the solution for stresses is the
same in a viscoelastic and an elastic cylinder. The displacements, which

T

9.45)

Ogg =
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can be derived from this solution by using the stress-strain equations (Eq.
9.27) and then integration of the strain-displacement equations (Eq. 9.26),
do however contain the elastic constants. A detailed solution for displace-
ments in a viscoelastic thick wall cylinder with pressure only on the inner
surface is given in Flugge (1974).

9.6.2 Elasticity Solution for a Reinforced Thick Wall Cylinder
(Solid Propellant Rocket Problem)

Based upon the classic Lame solution above, many other useful problems
can be solved in elasticity by variations and extensions. Here we examine a
reinforced thick walled cylinder consisting of an inner cylinder of one ma-
terial and an outer cylinder of another material. The structural analysis of a
reinforced thick wall cylinder played an important role in the space pro-
gram and, indeed, variations of the problem are still important today. A
solid propellant rocket can be approximated by such a double cylinder ge-
ometry as shown in Fig. 9.2. Here the outer shell is an elastic material such
as aluminum and the inner cylinder is a polymer composite, typically
composed of polyurethane with particulate inclusions to aid in developing
maximum thrust during burning. Note that as with many engineering
analyses, that considered here is a simplification of a more complex situa-
tion. For example, the geometry of an actual rocket propellant typically
contains a star shaped inner surface for optimum ablation and thrust. Fur-
ther, it is a dynamic problem with the rocket accelerating vertically and ro-
tating and the inner boundary moving due to ablation. Nevertheless the
ability to obtain an analytically exact solution for a simplified case is ex-
tremely valuable in providing checks upon more sophisticated numerical
analyses.

v

t
Fig. 9.2 Geometry of the reinforced thick wall cylinder.
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Since modulus of the outer metallic cylinder is much larger than that of the
inner polymer cylinder, it is reasonable to assume the outer shell is rigid.
This assumption provides a further simplification to the problem. In this
section, we develop the fully elastic solution based upon the classic Lame
solution. Subsequently we will consider the viscoelasticity of the polymer
and invoke the correspondence principle to solve the viscoelastic problem,

The elasticity solution to the reinforced thick walled cylinder can be
found based upon the stress function given in Eq. 9.42 except now the
constants must be reevaluated. As before, the constant B must remain zero,
but constants A and C must be found from the new boundary conditions
which for the case of a rigid outer cylinder are

b

noting again that the boundary conditions requiring G, to be be zero on

both surfaces are automatically satisfied. Based on Eq. 9.42, the stresses

are again given by Eq. 9.43, omitting the terms with coefficients B and D:
A

Oy =5 +2C1 (9.47)

(9.46)

O,=-p
u, =

a,
b, 0

Since one of the boundary conditions in Eq. 9.46 is now a displacement
boundary condition, we also require the expressions for the displacements
in terms of the constants A and C. These are found first by using the
stress-strain-displacement relations and then by integrating the strain com-
ponents to determine the displacements. The stress-strain-displacement
equations for the condition of plane strain in cylindrical coordinates are,

£, = d(;rr =%[0rr = V(O +0ZZ)]

€0 =_r+__=_r=_[099 -v(o, +O'ZZ)] (9.48)

T Note that in this and the following equations the comma is used in the sub-
scripts on stress to be able to write both the radial and hoop stresses in one
equation. Since the form of these stresses differs only by a minus sign, it is
preferred to emphasize their similarity by this nonstandard notation rather
than write the two equations separately.
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From the last equation, o, =\/(0rr +Gee). Substituting this value for o,
into Eq. 9.48 and solving for the radial displacement gives,

_l+v

T

_A o - 2\/)] (9.49)
T

Note that because of the axisymmetry of the problem, ug=0 and thus the
second equation in Eq. 9.48 provides u, directly without need for integra-
tion.

Using the boundary conditions from Eqs. 9.46 with Eqs. 9.47 and 9.49
to obtain values for A and C results in expressions for stress and radial
displacement

2
1:('3) (1-2v)
O g0 =P ;2 (9.50)
1+~ (1-2
+(a)( v)
ur=(1+v) pb(12—2v) [E_L} 051
E b r b
1+() (1—2v)
a

9.6.3 Viscoelasticity Solution for a Reinforced Thick Wall
Cylinder (Solid Propellant Rocket Problem)

Since we have the elasticity solution to the reinforced thick walled cylinder
problem, we can now find the solution to the viscoelastic problem by ap-
plying the correspondence principle (Method 3 from earlier in this chap-
ter). Replacing the variables in Eqs. 9.50 and 9.51 by the appropriate
transforms gives the solution for stresses and displacements of the viscoe-
lastic problem in the transform domain,

1 i—(b)z[] -2V (9)]

1+(:)2[1 -2v*(s)]

9.52)

arr,ee (r,s) = —ﬁ(S)
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9.53)

u,(r,8) =

149 () | POY1-2V')] (9_5)
E® 1+(b)2[1-2v*(s)]
a

If it is assumed that the polymer is incompressible, ¥ (s)=0.5, the solu-
tion is,

Oy 00 (1) = —p(t)

9.54
u (r,t)=0 ( )

which is identical to the elasticity solution for an incompressible material.

If the material is not incompressible, the solution for stresses in Eq. 9.52
can be used to obtain the stress field with time for the viscoelastic problem
given the material properties. In order to examine a particular loading and
material, it is convenient to use Eqs. 9.16 to obtain the stress solution in
terms of the shear and bulk moduli in order to make reasonable assump-
tions about the material similar to those outlined earlier in Eqs. 9.20-9.24.
The term including Poisson’s ratio can be rewritten as

% 36*(8) 3G(s)
- )= ___ 3G (9.55)
( v (s) 3K*(s)+§*(8) 3K (s) + G(s)

Substitution of Eq. 9.55 into Eq. 9.52 leads to

)
_ _ | “\r)\3K(s)+G(s)
G, 00 (1,8) ==P(s) —

B( 3G(s) )

3K(s) + G(s)

2
113('3)
T

3K(s) + G(s)(1+ 3B)

(9.56a)
3K(s) +G(s)

-(s)

where

B= (9) (9.56b)
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The radial stress expression from Eq. 9.56a can also be written as

3K(s)G,, (r,8) +(1+3B)G(s)T,, (r.9)

2
1+ 3(—)
T

and the hoop stress expression (Ogg) can be written similarly with the ap-
propriate change of sign. These expressions can be simply inverted to con-
volution integral expressions in the time domain using the properties of
Laplace transforms (see Appendix B). For example, the radial stress ex-
pression becomes

(9.57)

= -p(s)3K(s) - p(s)G(s)

3[K(t-8)o,, (r,8)dE +(1+3p) [ G(t-§)o, (r,5)dE =
‘ 0 (9.58)

t 2\t
-3f K(t—%)p(%)d%—(us(?) JG-epE0ds
0 0

Provided that the loading function, p(t), and the moduli, G(t) and K(t), are
known, Eq. 9.56a can be solved for the stresses in the Laplace domain.
These may be inverted to obtain the stresses in the time domain. Alterna-
tively, with suitable numerical and computational skills integral Eq. 9.58
can be solved numerically directly for the stresses as a function of time.

To illustrate the solution technique for a specific case, we make some
simple assumptions for the loading and the material properties. The inter-
nal pressure is taken to be a step input in time and the bulk modulus of the
polymer is not time dependent (elastic in dilatation behavior) while the
shear modulus of the polymer is represented by a single Maxwell model
(Maxwellian in shear). These assumptions are summarized as:

p(t) =p H(t)  or B(s) = P?o
K'(5)=K, or K(s)= N0 (9.59)

S

GO

G(t)=G,e™™  or G(s) =
%+S

Substituting into Eq. 9.56a will give after simplification,
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B(r)-C
arrﬁe(res)=_p0 l+ C (9.603)
B S A
—+S
C
where
1 b\
A=3K,—, B(1)=3K,+G, 113(—) . C=3K,+G,(1+3B) (9.60b)
T r

Inversion of Eq. 9.60 gives the solution in the time domain as,

A
O 0 (T1) =—p |1 + ( B(_:C )e c' 9.61)

A number of features may be pointed out about this solution that are im-
portant. First, note that at the inner boundary, r=a, B(r)=C and thus the ra-
dial stress reduces to the applied pressure p,, satisfying the applied bound-
ary condition. Because of the negative sign in B(r) for the hoop stress, Ggg
is nonzero at the inner boundary.

The limit cases at long and short times are also of interest. At long
times, t — o, the exponential term vanishes, leaving both radial and hoop
stresses at all locations in the polymeric material identically equal to the
applied pressure p,. At t=0, the exponential term is unity, the relaxation
time of the polymer is not involved and the solution is identical to an elas-
tic material with elastic constants K, and G,. These limit cases are reason-
able since a Maxwell model is a viscoelastic fluid: at t=0 only the elastic
spring can respond, but at long times it is a fluid response and thus yield-
ing the incompressible behavior.

The radial and hoop stresses are plotted versus position in Fig. 9.3,
where it is easily seen that the boundary condition of o .(r=a)=-p, is
met on the inner boundary and the limit case of uniform stresses at long
time for incompressible behavior is also apparent. The elastic solution is
included, which overlays the viscoelastic response at t=0. While the inter-
nal pressure applied is compressive leading to compressive radial stresses
at all positions and all times, the hoop stress at the inner surface is tensile
due to the expansion of the cylinder. While the hoop stress remains tensile
for all time for an elastic cylinder, this tensile stress relaxes in the viscoe-
lastic cylinder, ultimately becoming compressive.
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Fig. 9.3 Variation of the radial stress and hoop stress with position in the viscoe-
lastic reinforced cylinder loaded with a step input of internal pressure.
Parameters used are Ky/G,=3, t=1000, where the viscoelastic cylinder
has an elastic bulk modulus and is a single Maxwell element in shear
modulus. Response parameterized with time from the initial application
of load at t=0 to asymptotic response at long times.
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The variation of the stresses with time at the inner surface is shown in Fig.
9.4, where these effects can be clearly seen. The relaxation and inversion
of the hoop stress is particularly interesting because the load applied is a
constant stress, which might lead one to expect radial creep, which calcula-
tions of the displacements would bear out. However, the interaction of the
response in two dimensions combined with the incompressible behavior at
long times lead to a pseudo-relaxation response in the hoop direction and
ultimately approach to the incompressible stress state.

It is interesting to note that even though the material was assumed to be
Maxwellian in shear or a fluid like material such as a thermoplastic, the
form of the solution for stresses is similar to what might be expected for a
Kelvin solid. The reason, of course, is the interaction of bulk and shear be-
havior together with the boundary conditions.
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Fig. 9.4 Variation of the stresses at the inner boundary, r=a, for elastic and vis-
coelastic reinforced cylinder. Parameters and conditions the same as
described in Fig. 9.3.

Using the same assumptions of the example solved in the Laplace domain
(step input in pressure, elastic bulk modulus and Maxwell behavior in
shear) with Eq. 9.58, the solution of the integral equation (Eq. 9.58) will
yield the same results. (See homework problem 9.4). Since polymers are
such that many Maxwell or Kelvin elements are needed to represent actual
behavior, this example shown here is simplistic. However, such simple so-
lutions can show trends in behavior and may give insight to the differences
between thermosets and thermoplastics. The next section discusses briefly
use of broadband material response functions for more physically realistic
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polymer representation, as well as the difficulties associated with obtaining
properties such as the bulk modulus or Poisson’s ration over long time.

The reinforced thick wall cylinder problem with interior pressure has
also been solved for the case when the outer shell is assumed to be elastic
rather than rigid. (This case obtained by W.B. Woodward and J.R.M. Ra-
dok is reported by E. H. Lee in Viscoelasticity: Phenomenological Aspects
(J.T. Bergen, Ed.), Wiley, (1960)). The solution for the circumferential

stress is,
LN 2 2 ]
al-v ") (b_l)_(bzﬂ)
a(l+v (s))=E (s)\T r

v (o) 2]

o147 (5))-E (s)\ 2 a

9.62)

699 (r,S) = I_)(S)

where a is a constant prescribing the reinforcement of the outer shell. The
solution can be inverted to give the viscoelastic solution in the time do-
main once the material parameters and loading are determined. E. H. Lee
(1963) further discusses how the solution of an elastically reinforced vis-
coelastic thick walled cylinder can be found by numerically integrating in-
tegral equations such as Eq. 9.58 using measured creep or relaxation func-
tions.

From these examples, it is clear that known solutions in the theory of
linear elasticity for two and three dimensional problems including plates
and shells can be converted to viscoelastic solutions in the transform do-
main relatively easily and the solution in the time domain can be found by
inversion. Using this method many problems of practical interest can be
solved. It is appropriate to note that buckling problems are a special case
and the same approach, if not used wisely, can lead to erroneous results.

9.7 Solutions Using Broadband Bulk, Shear and
Poisson’s Ratio Measured Functions

As discussed in Chapter 7 real material properties extend over many dec-
ades of time and for realistic solutions of boundary value problems it is
necessary to have methods to incorporate these real measured properties.
When material properties can be represented by a Prony series composed
of a number of terms, it is possible to obtain solutions for more practical
representation of polymers. Examples of the use of Laplace transforms for
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such an approach may be found in Christensen, (1982). Additionally,
methods to numerically integrate convolution integrals such as that given
by Eq. 9.58 using Prony series expansions for the properties were dis-
cussed in Chapter 7.

However, it is also necessary to discuss how broadband bulk, shear and
Poisson’s ratio are measured. The measurement of the broadband shear
modulus is easily accomplished using the time-temperature-superposition-
principle (TTSP) and a torsion test. See Kenner, Knauss and Chai (1982)
for a description of a simple torsiometer and the measurement of a master
curve for a structural epoxy adhesive, FM-73, at 20.5° C.

The accurate measurement of broadband bulk modulus and Poisson’s
ratio presents greater difficulties. While the shear and tensile relaxation
modulus vary by several orders of magnitude over many decades of time,
the bulk modulus and Poisson’s ratio vary very little over the same number
of decades. To complicate matters more, in general, the variations of bulk
relaxation modulus and Poisson’s ratio are not synchronous with the shear
and tensile relaxation modulus over the same time scale. To visualize the
dilemma, consider that Poisson’s ratio for most polymers is approximately
1/3 in the glassy range and approximately 1/2 in the rubbery range. Using
the relation given in Chapter 2 for the bulk modulus in terms of Young’s
modulus and Poisson’s ratio,

E

= m (9.63)

the bulk modulus is equal to the Young’s modulus if v = 1/3 and is infinite
if v = 1/2. In the glassy range of a polymer, measured values of the bulk
modulus are nearly the same as measured values of extensional modulus
(see, Arridge, (1974)). In the rubbery range, the bulk modulus is indeed
large compared to the extensional modulus but certainly not infinite and it
is doubtful that Poisson’s ratio ever becomes exactly 1/2. Experiments do
tend to verify that variations in bulk modulus from the glassy to rubbery
range are small compared to either extensional or shear moduli (see Ferry,
(1980) and Tschoegl, et al., (2002)). Methods to measure bulk modulus
have been proposed by Arridge (1974), Duran and McKenna (1990), Sane
and Knauss (2001), and Park, et al. (2004). Emri and Prodan (2006) have
proposed a single apparatus to measure both the bulk and shear modulus.
However discussion of the optimal procedures and accuracy required to at-
tain true values of the bulk modulus or Poisson ratio’s over time is still on-

going.
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The contradictions posed by use of a viscoelastic Poisson’s ratio have
been discussed by Flugge, (1975), Shames and Cozzarelli, (1992), Lake,
(1998) and Tschoegl, et al., (2002). Some issues that arise are non-physical
values for Poisson’s ratio when simple mechanical models are used (e.g.
Maxwell or Kelvin), and even the fundamental definition of a time-
dependent Poisson ratio. Various definitions of Poisson’s ratio and its
measurement are discussed in depth by Tschoegl, et al., (2002). Therein
the suggestion is given that the ratio is best measured in relaxation and that
extreme four-digit accuracy is required which is presently not found in the
literature.

As a result, at the present time, use of one or more of the assumptions
provided earlier in the chapter, together with broadband data for shear or
extensional modulus, represent the most fruitful approach to the solution of
viscoelastic boundary value problems.

9.8 Review Questions

9.1 Investigate and discuss the peculiar nature of Poisson’s ratio for vis-
coelastic materials. (Hint: See Flugge (1974), Shames and Cozzarelli
(1992).

9.2  Why are viscoelastic constitutive equations normally written using
bulk and shear properties?

9.3 Describe three assumptions that are often made for viscoelastic
stress analysis.

9.4 Describe three methods for solving viscoelastic boundary value
problems.

9.5 Describe the three types of boundary value problems encountered in
solid mechanics.

9.6  Which type of boundary value problem cannot be solved using the
standard (or Alfrey) correspondence principle?

9.7 Name two frequently encountered viscoelastic boundary value prob-
lems in solid mechanics that cannot be solved with the standard cor-
respondence prionciple.\
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9.9 Problems

9.1.

9.1b.

9.1c.

9.2.

9.3.

9.4.

9.5.

Develop an expression for the shear relaxation modulus assum-
ing the tensile relaxation modulus can be represented by a Max-
well fluid. Hint: Use Table 2.1.

Starting from Eqgs. 9.10, derive a relationship between the total
stress and total strain tensors, o;; and €;;. In the process, find the
expression Lame’s constant in the transform domain in terms of
the transformed shear and bulk moduli.

Show that the synchronous moduli assumption, Eq. 9.22, results
in a Poisson’s ratio being constant.

Find a solution for the radial displacement in a thin-wall cylin-
drical pressure vessel with closed (spherical) ends. Assume a
step input in internal pressure, the cylinder is made of a polymer
whose properties are elastic in bulk and Maxwellian in shear.

Obtain the solution for a reinforced thick wall cylinder similar the
one of Fig. 9.2. Assume the shell is rigid and that the propellant can
be represented by a Kelvin Material.

Determine the stresses in a thick wall cylinder similar the one of Fig.
9.1 using the integral equation solution given by Eq. 9.58. Use the
assumption of a step input in pressure as well as elastic response in
bulk and Maxwellian in shear as in the earlier example. Compare
your solution to that obtained using the correspondence principle.

Solve each of the problems below using the correspondence princi-
ple. The elastic solutions can be found from elementary books on
solid mechanics (such as Timoshenko), an elasticity book (such as
Timoshenko and Goodier) or from fundamental principles of either.

a. Find the solution of for the radial stress in a rotating disk. As-
sume steady state conditions, i.e., the disk is rotating at a con-
stant angular velocity. Assume the disk is made of a polymer
whose properties are elastic in bulk and Maxwellian in shear.

b. A polymer bar of circular cross section is compressed within a
steel die whose internal diameter is exactly the same as the rub-
ber bar. Assume that the axial compression load on the bar is P(t)
= P,Ht) and the die to be rigid. Also assume no friction and the
properties of the polymer are elastic in bulk and Maxwellian in
shear. Determine an expression for the pressure between the bar
and the die. (see Fig. below).
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c. A solution of a problem not listed above that can be obtained us-
ing one of the methods of solutions discussed in class. (Here, it
would be best to verify with the instructor that the problem you
select is of similar level of difficulty as those above.)

P(t)=P,H(t)

[1]

rigid plate

steel die

polymer bar

Schematic of polymer compressed in a rigid die for Problem 9.5b.



10. Nonlinear Viscoelasticity

Because Young’s modulus of most polymers is relatively low compared to
other structural materials such as metals, concrete, ceramics, etc., strains
and deformations may be relatively large. A casual glance at the stress-
strain response of polycarbonate given in Fig. 3.7 indicates that the strain
at yield is about 5% and at failure is more than 60%. Further, examination
of the creep response of polycarbonate (Brinson, (1973)) as discussed in
Chapter 11 indicates inear behavior for strains larger than about 3% and
the material begins to neck or yield (Luder’s bands form) for strains larger
than about 5%. Obviously, polycarbonate as well as other polymers with
similar behavior cannot be considered to be linear for such circumstances.
For these reasons, it is appropriate to have basic understanding of nonlin-
ear processes in order to be able to design structures made of polymeric
materials. The intent here is to give basic definitions that will assist in
identifying nonlinear effects when they occur and to review several non-
linear approaches.

As many nonlinear approaches are beyond the intended level and scope
of this text, the focus will be on single integral mathematical models which
are an outgrowth of linear viscoelastic hereditary integrals and lead to an
extended superposition principle that can be used to evaluate nonlinear
polymers. The emphasis will be on one-dimensional methods but these can
be readily extended to three dimensions using deviatoric and dilatational
stresses and strains as was the case for linear viscoelastic stress analysis as
discussed in Chapters 2 and 9.

10.1. Types of Nonlinearities

The two types of nonlinearities that are most often encountered in practice
and in the literature are identified as being either material nonlinearities or
geometric nonlinearities. Material nonlinearities refer to nonlinear stress-
strain response that occurs due to the inherent constitutive response of the
material, while geometric nonlinearities refer to mathematical issues that
arise when displacements and strains become large and the linearized defi-
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nitions of stress and strain become inadequate. In this chapter we are con-
cerned with material nonlinearities. Two complications should be men-
tioned at the outset. First, material nonlinearities typically become appar-
ent in material response as the strain level increases. However, only a few
percent strain is often sufficient for material nonlinearities to become im-
portant and at that level of strain, the linearized definitions of the stress
and strain tensors are mathematically sufficient. Second, when dealing
with metals, it is common to plot the stress-strain curve for a constant
strain rate test and regard any deviation of that curve from linearity as an
indication of the onset of material nonlinearity. As mentioned in Chapter 3,
because of the dependence of viscoelastic material response on time, the
stress-strain curve from constant a constant strain rate test for linear vis-
coelastic materials is not linear. As time increases during a test, relaxation
occurs simultaneously with increasing strains. Thus, one must examine
other methods to establish linearity for polymers, such as isochronous
stress-strain plots at different times or modulus plots at different stress lev-
els.

t
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Fig. 10.1 Typical isochronous stress-strain diagrams of elastic and viscoelastic
materials for two values of lapsed time.

Typical examples of tensile (isochronous) linear and nonlinear stress-strain
diagrams for elastic and viscoelastic materials are shown in Fig. 10.1. For
elastic materials, the response is time independent, so there is a single
curve for multiple times and the nonlinearity is apparent as a deviation of
the stress-strain response from linear. For linear viscoelastic materials, the
isochronous response is linear, but the effective modulus decreases with
time so that the stress-strain curves at different times are separated from
one another. When a viscoelastic material behaves nonlinearly, the iso-
chronous stress-strain curves begin to deviate from linearity at a certain
stress level. Fig. 10.2 shows creep compliance data for an epoxy adhesive
as a function of stress level for various time intervals after initial loading.
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Such a plot is sometimes more illuminating than the usual isochronous
plot. For linear viscoelasticity, the compliance is independent of stress
level and the isochronous compliance as a function of stress must be con-
stant at each time instant (a horizontal line on Fig. 10.2). As the material
enters the nonlinear range, the compliance begins to exhibit a dependence
on stress and the isochronous curve starts to deviate from horizontal. For
the material shown in Fig. 10.2, notice that the demarcation between linear
and nonlinear behavior appears to be a function of time after initial loading
(incubation time). The data suggests that if tests were conducted for a suf-
ficient length of time, the material might appear to be nonlinear from ini-
tial loading. This result simply indicates that it is not always easy to tell
from short time tests if a material is linear or nonlinear over a longer time
period.

For some rubbery materials, stress may be linearly related to strain for
strains as large as 20% to 50% or more. Such a case gives rise to “geomet-
ric” nonlinear behavior in which strains of higher order must be included
in analyses. Here it should be noted that only odd order terms are consid-
ered in order to avoid negative values of stored energy. Of course, for large
strains both material and geometric nonlinearities may occur simultane-
ously. Indeed for rubbers, where strains can easily reach 500%, a great
deal of work has been devoted to development of accurate nonlinear elas-
ticity models where both material and geometric nonlinearities are ac-
commodated. See for example work by Arruda and Boyce (1993) where an
8-chain model is developed to represent the macromolecular deformations,
and interaction effects of non-uniaxial loading are accounted for by limits
on chain extension.

Extension ratios are most often used in cases of large strains or large de-
formations and can be found by examining the basic tensile strain defini-
tion as follows,

=0y ¢
€= =—-—1 (10.1a)
g() g 0
or
A= L. £ +1 = extension ratio (10.1b)
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Fig. 10.2 Isochronous creep compliance of an adhesive (FM-300) at 60°C. (Data
from Hiel, (1984). See also Brinson, (1985).)

As nonlinear elasticity constitutive models must include higher order terms
the amount of error involved between linear and nonlinear formulations
can easily be seen by comparing A%, A°, etc. to A. It is easy to see that for
strains at yield in most metals (0.2% or 0.002 in/in) higher order terms
(A% A2, etc.) lead to an error of about 0.4% and can most often be ne-
glected. Even for strains at yield for polycarbonate (~5% or 0.05) higher
order terms lead to only an error of about 10 % over linear theory.

Other less well-known types of nonlinearities include “interaction” and
“intermode”. In the former, stress-strain response for a fundamental load
component (e.g. shear) in a multi-axial stress state is not equivalent to the
stress-strain response in simple one component load test (e.g. simple
shear). For example, Fig. 10.3 shows that the stress-strain curve under pure
shear loading of a composite specimen varies considerably from the shear
stress-strain curve obtained from an off-axis specimen. In this type of test,
a unidirectional laminate is tested in uniaxial tension where the fiber axis
runs 15° to the tensile loading axis. A 90° strain gage rosette is applied to
the specimen oriented to the fiber direction and normal to the fiber direc-
tion and thus obtain the strain components in the fiber coordinate system.
Using simple coordinate transformations, the shear response of the unidi-
rectional composite can be found (Daniel, 1993, Hyer, 1998). At small
strains in the linear range, the shear response from the two tests coincide.
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However, the difference observed at high strain levels is postulated to be
due to the effect of stress normal to the fiber in addition to the shear stress
along the fiber in the off-axis loading test. Similarly, tests of a neat poly-
mer in simple torsion (shear) or tension-torsion/compression-torsion
(multi-axial load) in Fig. 10.4 also demonstrate that the shear compliance
extracted from the test data differs in each case. This data shows an inter-
action nonlinearity and the authors postulate its origin lies in the coupling
of dilatation and free volume for the polymer. Schapery (1969) and Lou,
Y.C. and Schapery (1971) have shown that the invariant associated with
the octahedral shear stress can be used as a normalizing parameter to ac-
count for such differences in PVC and in glass and carbon polymer matrix
composites. A more recent paper by Knauss and Zsu (2002) investigated
the nonlinear behavior of polycarbonate under multi-axial loading and
concluded that the octahedral shear stress is nearly constant for all combi-
nations of shear and normal stress investigated.

Even less well known are intermode nonlinearities that occur when sev-
eral different mechanisms contribute to the deformation process simulta-
neously such as yielding and buckling. In this text only material nonline-
arities will be considered with strains and deformations being small.
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Fig. 10.3 Extent of stress interaction in off-axis unidirectional boron-epoxy cou-
pons. (After Cole and Pipes, (1974); see Hiel et al., (1984))
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Fig. 10.4 Shear creep compliance curves for pure torsion and torsion with super-
imposed tension or compression for PMMA. Change in creep compli-
ance with multiaxial load test illustrates interaction nonlinearity (Lu
and Knauss, (1999); reprinted with kind permission from Springer Sci-
ence and Business Media).

10.2. Approaches to Nonlinear Viscoelastic Behavior

As mentioned earlier, there have been many attempts to develop mathe-
matical models that would accurately represent the nonlinear stress-strain
behavior of viscoelastic materials. This section will review a few of these
but it is appropriate to note that those discussed are not all inclusive. For
example, numerical approaches are most often the method of choice for all
nonlinear problems involving viscoelastic materials but these are beyond
the scope of this text. In addition, this chapter does not include circum-
stances of nonlinear behavior involving gross yielding such as the Luder’s
bands seen in polycarbonate in Fig. 3.7. An effort is made in Chapter 11 to
discuss such cases in connection with viscoelastic-plasticity and/or visco-
plasticity effects. The nonlinear models discussed here are restricted to a
subset of small strain approaches, with an emphasis on the single integral
approach developed by Schapery.
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Nonlinear Mechanical Models: It is possible to represent nonlinear be-
havior by introducing nonlinear spring and damper elements into the deri-
vation of differential stress-strain relations. For example, for the four-
parameter fluid shown in Fig. 10.5, the spring moduli, damper viscosities
and relaxation times are functions of stress, i.e.,

E,=E.(0), u,=w,(0), T,=1,(0), i=1.2,...

If only the spring moduli are nonlinear, a nonlinear generalized Kelvin
model can be represented by,

E,

EU

u,

Fig. 10.5 Nonlinear four parameter fluid.

D(t) = i%(l—e_mi) (10.2)

1

where f;(0) is a nonlinearizing function of stress. Obviously, three parame-
ters must now be determined for each Kelvin element one of which is non-
linear with stress and if a large number of elements are needed the diffi-
culty in determining properties from experimental data is increased
considerably over the use of a linear model. If the nonlinearity can be
modeled to affect all the springs in the same manner, f;(c) becomes simply
f(o) and the complexity is reduced.

Nonlinear Creep Power Law: It has been empirically observed that the
creep of metals and other materials can be approximated using a creep
power law of the form:

e(t) =¢, +mt" (10.3)

For steady state (or secondary) creep of both metals and polymers it is of-
ten assumed that n = 1.0. In this form g, is a fitting parameter and is found
by extrapolation of the linear (with time) secondary creep portion of the
curve to zero time (Dillard, (1981)). Another form used by Findley (1976)
is
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£(t) = 5, D(t) =0y (A+Bt") (10.4a)
or using standard viscoelastic notation
£(t) = 3,D(1) = 0, (D, + Dyt" (10.4b)

Where A = D,, B = D,, and n are material constants.

Early stress dependent power law models were developed for the creep
of metals, mostly associated with the dependence of secondary or steady
state creep on stress level, i.e. de/dt = ko® (Findley et al., (1976)). The
nonlinear form given in Eq. 10.5 is sometimes called the Findley creep
power law,

o, o

n

e(t) =¢, sinh(i)+ mt" sinh(i) (10.5)

where &, Gy, m, G, and are constants. However, many have contributed to
the various forms of these equations including Andrade, Ludwik, Nadali,
and Prandtl (see Findley et al., (1976), p. 8-21, for an excellent discussion
and review of early efforts; also, see Dillard (1981) for a thorough descrip-
tion of the use of the power law as well as potential difficulties).

The fundamental idea behind the power law is to have a simple form,
using few parameters, that will give a broadband approximation to a mas-
ter curve rather than the more accurate generalized Maxwell or Kelvin
models. The power law sacrifices accuracy at any one time to obtain a rea-
sonable representation over the entire time scale from short term (glassy)
behavior to long time (rubbery) behavior. For example, Fig. 10.6 shows
the compliance data for an epoxy from Chapter 7 along with several power
law fits to the data. The first two fits use only data points from the earlier
times and thus under predict at long times. When the longer time compli-
ance slope is fit (the “fitlong” curve), the quality of the fit at shorter times
is sacrificed. In addition, note that the power law is unable to fit the long
time rubbery plateau of the material response as the mathematical form en-
sures ever increasing compliance values with time. Note that the Prony se-
ries fit also shown overlays the data exactly. Hiel et al. (1984) shows that
the parameter n is most sensitive to experimental error. An example of the
variation of n with the length of the creep tests used to collect data is
shown in Fig. 10.7a for an epoxy resin often used in composites. The ex-
ponent n varies with the length of the test but becomes stable after rela-
tively large creep times. He also shows that the exponent n becomes stable
in a shorter time if it is determined from a creep recovery test as illustrated
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in Fig. 10.7b, where the stabilized value from Fig. 10.7a is obtained in
tests an order of magnitude shorter in time. (The creep recovery test will
be covered in detail later when discussing Schapery’s method.)

Fig. 10.6 Power law fits to compliance data for epoxy (Hysol 4290). Symbols

show compliance data from Fig. 7.3.
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Fig. 10.7 Variation of power law exponent for an epoxy resin used in composites
with length of creep test and length of recovery test. (Data from Hiel et
al., (1984))
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Multiple-Integral Approaches: The two preceding methods of represent-
ing nonlinear viscoelastic response and many others found in the literature
were developed for the purpose of fitting one step uniaxial creep or con-
stant strain-rate data. The major difficulty with nonlinear behavior is that
superposition of the effects of multiple step stresses, a continuously vary-
ing stress or multiaxial stresses via the Boltzman superposition principle is
no longer allowed. For this reason, the multiple and single integral ap-
proaches discussed in this section include modified superposition concepts
that are necessary for successful stress analysis.

As noted by Robotnov (1980), the earliest description of a method to
mathematically model nonlinear viscoelastic behavior was accomplished
by Volterra using an earlier representation developed by Frechet in the
early 1900’s. The Volterra-Frechet equation for one dimension cited by
Robotnov is,

e(t) = fD(t—t)do(t)+ffD (t=7,,t=T,)do(T,,T,) +... (10.6)

—00 —00

According to Robotnov, this method was forgotten until the procedure was
generalized to three dimensions by Rivlin and Green in 1954 (see Robot-
nov for reference). The multiple integral approach has been explored by
many and an excellent description of various efforts are given by Robot-
nov (1980), Findley, et al. (1976) and Hiel, et al. (1984). Findley has per-
haps documented the technique more fully than others both theoretically
and experimentally in his 1976 book and in numerous journal articles cited
therein. The following third order approximation is developed by Findley
(1976) using a less rigorous approach than the functional analysis method
given by others (see appendix A2 of his book for a derivation involving
functional analysis),

e(t) = fD(t—'l:)dG(T)

tot

+ [ [Dy-m.t- daé:) do(tz)d v dv, (10.7)

—00 —00

t ot t

do(w,) do(t,) do(t,)
+fffD3(t—rl,t—rz,t—t3) dtl dt2 dt3 dt,dv,dr,

—00 —00 —00

where the three kernel functions must be found from a three-step creep
test. In an earlier paper, Findley, et al., (1965) gives a fourth order expan-
sion that requires the determination of 14 kernel functions. Because the of
the difficulty in experimentally evaluating a large number of functions and
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because of stability problems Robotnov (1980) suggests limiting studies to
only a third order expansion. Both Findley and Robotnov give several ap-
proximate methods of evaluating kernel functions as well as experimental
data and analysis.

Single Integral Approaches: Leadermann (1948) recognized the non-
linear nature of polymers and suggested an approach based on a linear he-
reditary integral given by,

6(t,0) = [ D(t—r)%w(t,o)d‘c (10.8)

where nonlinear effects are incorporated in the stress measure, Y (t, o). In
his 1980 book Rabotnov™ describes a similar equation for the one-
dimensional behavior of metals (from his 1948 paper) that may be written
as (Hiel, 1984),

do(7)
dt

o(t,€) = f D(t-7) dr (10.9)

except the nonlinearization was through the strain measure ¢(t, €). Hiel
(1984) also reports that Koltunov* used a combination of the equations
proposed by Leadermann and Rabotnov to obtain

o(t,€) = { D(t—t)dirlp(t,o)dt (10.10)

which includes both a nonlinear strain and stress measure.

Two general methods for the development of single integral nonlinear
constitutive equations that have been used are the rational (functional)
thermodynamic approach and the state variable approach (or irreversible
thermodynamic approach), each of which are described in a well-
documented survey by K. Hutter (1977). In rational thermodynamics, the
free energy is represented as a function of strain (or stress), temperature,
etc, and then constitutive equations are formed by taking appropriate de-
rivatives of the free energy. The state variable approach includes certain
internal variables in order to represent the internal state of a material. Con-
stitutive equations which describe the evolution of the internal state vari-
ables are included as a part of the theory. Onsager introduced the concept
of internal variables in thermodynamics and this formalism was later used

* See Hiel for references. The 1948 Rabotnov paper and the Kotunov paper are in
Russian journals and are not available to the authors.
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by Biot in the derivation of constitutive equations of linear viscoelasticity.
Schapery (1964, 1965) used this method to develop a modified linear he-
reditary integral approach to nonlinear viscoelastic materials. Knauss and
Emri (1981) also used a single integral method to associate the nonline-
arizing parameters to free volume and in this manner allowed the inclusion
of stress-induced dilatation, moisture or other diffusion parameters in the
theory.

10.3. The Schapery Single-Integral Nonlinear Model

The Schapery single integral approach (1964, 1969) is an outgrowth of the
irreversible thermodynamic procedures developed by Biot, and others and
is likely the most widely used technique to represent the nonlinear time-
dependent behavior of polymers. The thermodynamic derivation of the
fundamental equations needed to represent data is beyond the scope of this
text but an excellent description of the original derivation is given by Hiel,
et al. (1984). Schapery in 1997 also provides an updated mathematical ap-
proach that includes viscoplasticity effects. The purpose here is to intro-
duce the method as a means of representing polymer data and provide a
basic understanding of how to obtain the necessary material parameters
from experiments. The development of equations here closely follows the
description of Schapery (1969) and Lou and Schapery (1971).

It is important to point out that the reason to develop a relatively simple
and easy to use single integral method is not only to determine the neces-
sary material parameters more easily, but to have a method that can be
used with more ease and confidence in solving nonlinear boundary value
problems to obtain stress, strain and displacement distributions for engi-
neering design. This of necessity entails having a modified superposition
approach as well as use of the time-shift principles discussed in Chapter 7.

10.3.1. Preliminary Considerations

In Chapter 6 it was shown that linear viscoelastic materials could be repre-
sented by the hereditary convolution integrals,

et)= [ D(t—r)%dt (10.11)

or
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o= [ E(t-r)%dr (10.12)

where the lower limit is such that all previous history of loading is in-
cluded. If the material is initially “dead” or has no previous history prior to
time zero, the lower limit was t=0" and the equations are,

t

e = [ D(t-1) 39 4 (10.13)
dt

o

or

o= [ E(t—r)%d‘c (10.14)
J

Also as explained in Chapter 6, Eqs. 10.13 and 10.14 can be written as,

&(t) =0, DOH() + [ D(t-1) %dt (10.15)
!
or
o(t) =0 EMH® + [Et-1) %dr (10.16)
’,

when a step input occurs at t = 0. An additional form can be obtained by
separating the creep compliance into instantaneous and transient terms
such that,

D(t) =D, + D(t) (10.17)
or the relaxation modulus into equilibrium and transient terms such that,
E(t) =E_ +E(t) (10.18)

As an example the creep compliance of a three parameter solid may be
written as,

D) =| 2+ - 1-e™/ f)} - D, +D(V (10.19)
0 1

where

D, = EL and D)= EL(l —e") (10.20)
0 1
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Similarly, the relaxation modulus for a three parameter solid (from Table
5.1) is,

E(t) =q, + (% —qy)e™P (10.21)
1
where the coefficients p;, qo, and q, are given in Chapter 5 and,
E.E » q —t/
E,=q)=5" and E(t) = (2L —q,)e '™ (10.22)
* E,+E, p

Using the separated forms of the creep compliance or relaxation modulus,
the linear viscoelastic constitutive laws 10.13 and 10.14 may be rewritten
as

(1) = Dyo(®H() + [ D(t-) %dr (10.23)
J

o(t) = Ego(H(®) + [ E(t-1) %dr (10.24)
)

which are used as the base forms for the Schapery nonlinear model.

10.3.2. The Schapery Equation

Using irreversible thermodynamic (or energy) descriptions of the state of a
viscoelastic material subjected to external loads, R. A. Schapery (1964,
1966) developed the following single-integral representation for strains
due to a variable stress input,

g, o(HH(1)]
dt

P d
£(1,0) =g, DoOH(® +g, [ D(xp—w'){ [ }dr (10.25)
J

where g, g, €5, 8, are material parameters which are dependent on stress.
The parameter ag is a shift factor which modulates the time scale much in
the same way that the temperature dependent shift factor, ap, modulates the
time scale for temperature effects. The shifted stress dependent time scale
is given by,

t

dt

o 10.26
0 By (®) ( )

Y(t,0) =

dt
a,(7)

and V'(1,0) = f
0
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The Schapery method given by Eqs. 10.25 and 10.26 is a mathematical
definition of a time-stress-superposition-principle or TSSP that is analo-
gous to the TTSP. Later it will be shown how to obtain stress dependent
compliance and modulus master curves from experimental data using
TSSP much in the same manner as temperature dependent master curves
were determined from experimental data using the TTSP.

An analogous equation for stress under a variable input of strain was
also developed by Schapery and is given by,

h, “e(H(T)]

o(t,e) =h,E_o(OH(t) +h, f E(tp—w’){d[ = }d‘t (10.27)
)

and

t

w(te) = [

0

dr
a. (1)

e
a,(t)

and Y(re) = [ (10.28)
0

In Eqs. 10.25 and 10.27, the parameters g,, g;, g, arise from third and
higher order dependence of stress on the Gibbs* free energy while h,, h;,
h, arise from third and higher order dependence of the strain on the Hem-
holtz” free energy. The Hemholtz and Gibbs free energies are given by the
energy balance equations,

Hembholtz free energy: A=U-T-S

: (10.29)
Gibbs free energy: G =F=(U +PV)-T-S

where U is the internal energy, T is the temperature, S is the entropy, P is
the pressure (hydrostatic), V is the volume and H=(U+PV) is the enthalpy.
(See also Chapter 7, section on rubber elasticity for additional discussion
of thermodynamics.)

It should be noted that the Boltzman superposition integral for linear
viscoelasticity is recovered in Eq. 10.25 if the nonlinear parameters are
each identically equal to one, i.e.,

=g =g=a, =1 (10.30)

Further, if all parameters except a; are unity Knauss’s free volume model
(Knauss and Emri, 1981) is recovered in which,

g=g=g=1 (10.31a)

* See Chapter 7 for a brief thermodynamic description of Gibbs and Helmholz
free energies.
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a % 1 (10.31b)
a, ~ Free Vol. (f) (10.31¢)
f=f, +a AT+ BAc+vyAC (10.31d)

where a is the coefficient of thermal expansion, B is a parameter relating
stress to the amount of free volume and y relates moisture concentration to
free volume.

The Schapery Equation for a Two Step Stress Input: Determination
of the material parameters necessary for the application of the Schapery
Equation are best done by using creep-recovery data and will be demon-
strated in a later section. Toward that end, we develop the specific form for
the Schapery equation with a simple two-step load. In this section, we as-
sume a general two step stress distribution such that,

o(t) =o,H(t) + (0, -0, JH(t-t,) (10.32a)
or
0,, O=ts=st,
o(t) = { (10.32b)
O,, t>t,

also illustrated in graphical form in Fig. 10.8. To obtain the stress loading
profile for creep-recovery, the second step is simply negative of the first
step and this will be calculated explicitly in the next section.

A
o(t)

VG|

O(t)

e

ty time, t

Fig. 10.8 Two step creep load.

Since stress is constant in each of the two time regions (below and above
t,), the nonlinear parameters are also constant in each of those regions. We
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a.
[

refer to @; and @, for t < t, as gi'and a’; similarly for t > t, g; and a, are
referred to as g}’and a(b,. In application to Schapery’s Eq. 10.25, the super-
script for the a, and the g; coefficients correspond to the time interval of
evaluation of the term. The superscript for the g, and g, coefficients are af-
filiated with the stress value that each coefficient modifies. Using these pa-
rameters, Schapery’s Eq. 10.25 becomes

&(t) = 20, DoH() + (260, - gho, JDyH(t-t,)

t (10.33)
s, [ D(lp—q)‘)d%(g;oaH(t) +(ghor, - ggoa)H(r—ta))dr
)

The integral can be broken up into two integrals, before and after t, and
noting the derivative of the step function as the dirac delta function

&(t) = 20, DoH() + (g6, - gho, JDyH(t-t,)

g%0,8(7) + (ggob - ggoa)a(r - ta)]d‘c (10.34)
%/_J

zero

+g ff)(lP -")
e

+g?f]5(w_w|)(g;0a6i2+(ggo‘b _gazoa)é(r_ta))d‘c

zero

Note the superscript on the g, term remains unspecified for the first inte-
gral and will depend upon the time period of evaluation. The terms indi-
cated with zero provide no contribution to the integral in which they ap-
pear and thus, the expression becomes

e(t) = go0, DoH(t) + (ggob - g0, )DoH(t -t,)
+g [j.f)(w - y")(gio,5(0) | (10.35)
J
+g) f By - (eho, - gho, o(r-t,)|dv

For 0 =t =< t,, the expression simplifies to,

e(t) = g3Dy0, H(t) + g f Dy -y )(g;oaa(r))dr (10.36)

0-
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where the integrand must be evaluated at T = 0. As a result, the effective
times may be calculated as

t
Y= d—: = Ld (10.37)
_a a
0 o o
and
Lt
P'= T =—=0 (10.38)
_a

With these considerations, Eq. 10.36 becomes,

ao)

For the interval, t > t,, the strain is given by,

e(t) = o H(t) Os<tst, (10.39)

goD, +g/g5D

&(t) = 20Dy0 H(t—t,) + g [ D(y-)(gio,d(v)Jdv +
- (10.40)

g f D(y-v)(g5o, - 250, Jo(r-t,)dv

¢

a

The first term is the effect of the step input of the stress, o, = o, + (O}, —
o,), at t = t, which includes the effect of the step stress of o, at t = 0. The
second term is the transient portion of the step input of stress, G,, att =0
whose effect continues beyond t = t, and the third term is the transient por-
tion of the step input of the stress, 0, — G,, att =t,.

The first integral must be evaluated at T = 0 and the second at T = t, to
determine the effective times. For the first integral,

t a t T
po [EJLE L aa = [ 04
_a _a a _a
0 o 0 o td o 0 o
or
t,  t-t, :
Y=t and P =0 (10.42)
aO aU

For the second integral,
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t T
dt ) d
y=it Y = f_: (10.43)
ta ao Ta ao
or
t—t, ,
PY=—" and YP'=0 (10.44)
aG
As aresult, the final equation for creep strain for t > t, is,
anf t, t=t, o\ t=t,
(t) =2¢Dy 0, +g/g5D a—a+—b)oa +g7| (250, - 230, )0 )] (10.45)

Schapery Equation for a Creep and Creep Recovery Test: Schapery
suggested using a creep and creep recovery test (as shown in Fig. 10.9) to
determine the stress dependent parameters g, 8,» 8, . This condition is a
special case of the two step loading of Eq. 10.32a in which stresses o, =
o, and o, = 0 and thus

o(t) =o H(t)-o H(t-t,)

or (10.46)
0, O=t=t,
o(t) =
0, t>¢
and the parameters associated with o), are,
g =gl =gr=2, =1 (10.47)
5 (t)ll
00
-
0 t, e(t)

Fig. 10.9 Two-step creep load and creep recovery load.



346 Polymer Engineering Science and Viscoelasticity: An Introduction

It is necessary to specify D(t) in order to evaluate the parameters and for
that Schapery suggested using a power law given by,

D(t) =D, +D,t" (10.48)
where Dy, D; and n are constants and D(t) is given by,
D(t) = Dt" (10.49)

The creep strain for the interval 0 < t < t; from Eq. 10.39 becomes after
substituting the conditions given in Eqgs. 10.46 —10.49,

n

e(t) =|g,Dy +g,2,D,| - | |o,H) , Ostst, (10.50)
a

o

The recovery strain for t > t; is found from Eq. 10.45 after substituting the
same conditions given in Eqs. 10.44 and 10.46 — 10.49 is,

e, (t)=|D, t—1+t—t1) -Dy(t-t,)" |g,0, (10.51)
a

o

The constants D,, D;, and n as well as the stress dependent parameters g,
g1, 85 and a, in Eqs. 10.50 and 10.51 must be found or, in other words,
seven material properties are needed to represent nonlinear uniaxial creep
and creep recovery behavior. While this may seem excessive, it actually
represents quite a large economy over the multiple integral form repre-
sented by Eq. 10.6. (See Findley (1976) and Rabotnov (1980) for exam-
ples of the use of multiple integrals.) For creep alone, only 5 parameters
are needed if g, and g, are combined with D;. However, the recovery strain
is necessary to separate g, and g,. Also, because of the sensitivity of n to
the length of either a creep or creep recovery test as presented in the previ-
ous section on the power law, Schapery, et al. (1971) suggests using data
from recovery to determine n. As will be seen in the following, the values
of the strain jumps at the initial load and unloading arise naturally in de-
termining the parameters. However, it is important to note that when deal-
ing with experimental data both &(t=0") and e(t=t;) are ill-defined
quantities because, as noted in Chapter 5, creep or recovery stresses (and
hence strains) are not instantaneously applied in order to avoid dynamic ef-
fects. It is also important to note that even if the jump stresses are instanta-
neous at t = 0" and at t = t;, the theory indicates the instantaneous jump
strains are not equal in magnitude. For example, consider Eq. 10.51 rewrit-
ten as,
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sr(t)=g2D1(at—1) [l+(i—°)(t—tl)] -(i—o) (t-t,)" to,  (10.52)

or
g, (1) = gle(t—l) {[1 +agh] - (aok)n}oo (10.53)
aO
where
] (10.54)
tl
o(t)A s(t)A
""""" ] e
00
801 -i
0 t 0 t e

Fig. 10.10 Creep and Creep Recovery: Applied stress (left) and material re-
sponse (right). Instantaneous strains at t=0 and t=t, are denoted as g,
and Ag(t,). Transient strain refers to the time dependent strain and the
magnitude of the transient strain at t=t, is depicted.

The creep and creep recovery data will appear as shown in Fig. 10.10. The
magnitude of the instantaneous creep recovery, Ag(t,) is given by,

Ae(t) =&(t]) —e(t)) (10.55)
From Egs. 10.50 and 10.51,

t

e(t)) = goDo+glg2Dl(a—‘) o, (10.56)
o

and

e (t))= gle(—l) o, (10.57)
a
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or

a

o

Ae(t) =¢ (t7) —&(t]) =—g,D 0, + gle(t—‘) (1 -g )00 (10.58)

Note that the jump in strain when the creep load is first applied at t = 0 is,
e(t=0)=g,D,0, (10.59)

Comparison of Egs. 10.58 and 10.59, shows that the strain jump disconti-
nuity at t=0 and t=t, are not the same, even though the stress change is
identical in magnitude. This dependence on load history is due to the non-
linearity of the material. In particular, the parameter g, can be identified as
the source of this difference, since for a linear material g;=1 and Eq. 10.58
reduces to the negative of Eq. 10.59 as is expected for a linear material.

10.3.3. Determining Material Parameters from a Creep and
Creep Recovery Test

Currently the approach most often found in the literature to determine the
seven material parameters to represent nonlinear viscoelastic behavior us-
ing the Schapery procedure is via numerical fitting of experimental data
both in the linear range and in the nonlinear range at different stress levels.
Examples of such a numerical approach can be found in work by Peretz
and Weitsman (1982), Rochefort (1983), or Tuttle (1985). The latter two
used a commercially available least-squares fitting program on a main-
frame computer. Now it is easy to do the numerical curve fitting to a
power law using a personal computer and programs such as Math Cad or
MatLab (for example see Wing et al. (1995)). Schapery and co-workers
have also described a method to determine the parameters based on DMA
testing (Golden et al. (1999)), where the strains are first separated into os-
cillatory and transient components, then further dissected and the linear
and nonlinear coefficients are determined directly or by integration of sev-
eral expressions. In this section, however, we describe the approach origi-
nally set forth by Schapery (1969) and Lou and Schapery (1971), which al-
though a bit cumbersome in its description, provides insight into the
meaning and origin of the nonlinear parameters. Using this original ap-
proach, determination of the seven material parameters require creep and
creep recovery tests to be performed at several stress levels. —

Finding the Material Constants D,, D, and n: These linear material
constants need to be determined from the experimental data in the linear
stress range before the nonlinear parameters can be properly determined.
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For linear viscoelastic response, when the transient strain is large com-
pared to the initial step input, the strain vs. time on a log-log plot is a
straight line at long times and the slope of the line is the power law expo-
nent, n, (see Fig. 10.6). Additionally, the initial strain jump &, equals
g,D,0,, which could then provide the value of D,, since g, is unity in the
linear range. However, these approaches to determine n and €, are inaccu-
rate due to the inability to apply a truly instantaneous stress jump as men-
tioned earlier. Therefore, in general, €, must be considered a fitting pa-
rameter that must be found in addition to the seven other parameters. The
original approach set forth by Lou and Schapery (1971) circumvents these
difficulties and provides a semi-graphical approach that allows all seven
parameters to be found. Further, his approach is insightful in relating the
nonlinear parameters to various portions of the creep and creep recovery
process. Equally important, the approach allows for a convenient way for
students to demonstrate their understanding of the analysis and parameters
without recourse to numerical curve fitting packages — see Homework
problem 10.5.) This approach is outlined in the following discussion.

From Eq. 10.50 the transient creep strain at t = t; (depicted in Fig.
10.10) is,

4
a()'

er(t) = gngDl( ) Oy (10.60)

The creep and creep recovery strain, Eqs. 10.56 and 10.53, can now be
written as,

e(t) =[goDy + &1 (t)) o, (10.61)
_ ST(tl) n n
g, () = . {[1 +a,M]" —(a,A) } (10.62)
where
p=17h (10.63)

t

Eq. 10.62 can be used to find n and €4 (t,) for a creep and creep recovery
stress in the linear range by noting that all nonlinear terms are unity, i.e., g,
=g, =g =as = 1, and thus

Er(t) _ n an
o0 [(42) -] (10.64)
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The numerator on the left hand side (LHS) of Eq. 10.64 represents data
and the right hand side (RHS) represents a mathematical representation of
the data from which n and €, (t,) can be found. The RHS can be plotted
as parametric family of curves with respect to n as shown on Fig. 10.11 by
the solid lines. The numerator on the LHS is known creep recovery data
for a stress level in the linear range and is shown by square symbols in Fig.
10.11. The denominator represents the amount, € (t,), the linear recovery
data must be shifted downward on a log scale to match the curve with the
proper exponent and is equivalent to the transient creep strain at t, for the
same stress level in the linear range. The x symbol shows that the recovery
data when shifted does not match the exponent n = 0.25. The diamond
symbol shows that the recovery strain when shifted downward by the cor-
rect amount does fit the exponent n = 0.15. Thus the power law exponent
is found as well as the transient creep strain, € (t,), for the particular
stress level used in the linear range.

100 : T T T T T II T T T LI II T T T T T I:

E (m} 3

B m ]

L O _

m
0 g .

10 = - =

= L O Original recovery data g
= L X data shifted by e(t,)=92 |

g ¢ data shifted by e.(t,)=168

n 4L _
> E X ]
g E ]
2 C y ]
3 I X ]
m - -
01E "=

F 025 7

C 0.20 7

| —— parametric curves 015 ]

of ((1+M)"-A") 0.10 |

001 ol 2R
0.01 0.1 1 10

Fig. 10.11 Procedure for finding n. See also Fig. 10.12. (Data on FM-73 from
Rochfort (1983) for a creep stress of 3.5 MPa (493psi).)
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Alternately, n and € (t;) could be found by simply solving Eq. 10.64
with data taken for two different values of A. The value of m and
e (t;) so determined for various values of A should be the same but, due
to experimental error, a small variation may be obtained using different
points and an average should be used. At this point D, could be found from
Eq. (10.60) since the nonlinear parameters are unity and €,(t;) and n
have been determined. However the original approach differs slightly as
follows.

The equation for creep strain (Eq. 10.50) for a linear viscoelastic mate-
rial can be written as,

e(t) = [D0 + D,t"]oO =g, +¢t" (10.65)

where € is the initial strain and €, is the transient strain coefficient. Select-
ing two values of transient strain at two values of time for a stress level in
the linear range provides two equations from which €, and €, can be found
and hence the coefficients D, and D, can be found. Note that the strains se-
lected should be more than five times the amount of time required for the
initial stress to be applied (See Lou and Schapery (1971)). Knowing €, and
g, for a stress in the linear range allows the determination of &€1(t;) for the
same stress level and this should match the amount determined by shifting
the linear data in Fig. 10.11. However, due to experimental error a small
difference may be found.

gng:

o4

Finding the quantities g, and Using the creep strain Eq. 10.50,

e(t) = o (10.66)

t n
gDy + g1g2D1(a—)

o

and two values of measured strain for two time values (again more than

five times the initial loading time) will allow the determination of g, and

818
n

a5

the initial strain, €,, €, and the transient strain, €(t;), for each stress level
in the nonlinear range.

at each nonlinear stress level. This also allows the determination of
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Fig. 10.12 Creep-recovery data and shifting process to form to for a master
curve. (Data from Rochfort, (1983)).

Determination of g , g, and a,: Consider the recovery data shown in Fig.
10.12 and the recovery strain given by Eq. 10.62 written as,

e (1) n n
——=ll+a,A| —(a,\ (10.67)
er(t)/g [ ] ( )

The data for all stress levels can be shifted to coincide with the linear vis-
coelastic data represented in Fig. 10.11 by the power law exponent n =

0.15 by moving each curve downward by the amount ETg—(tl) and to the left
1

by the amount a_ as shown in Fig. 10.12. This process forms a master

(o}
curve as shown and is similar to time-temperature master curves discussed
in Chapter 7. As a result this procedure is sometimes referred to as the ana-
lytical basis for the time- stress-superposition-principle (TSSP), which is
discussed in the next section. As the transient strain, €5 (t,), was previ-
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ously determined for each stress level in the nonlinear range, g, can be de-
termined. Thus, a; and g; are now known. The parameter g, can be found,

as all other quantities in the expression ¢, = gl—%zDIOO are known.
a

o

All parameters are now known that are needed to predict the response of
a nonlinear viscoelastic material using the Schapery technique. Lou and
Schapery (1971) used this semi-graphical procedure to characterize a glass
epoxy composite and showed good correlation between creep and creep
recovery experimental data and their analytical representations using Eqs.
10.50 and 10.51. Cartner used this approach to determine all the necessary
Shapery parameters for a chopped glass fiber composite, SMC-25, and a
structural adhesive, Metalbond 1113-2. He showed excellent correlation
between creep data and theory for the SMC. The comparison was very
good for the adhesive at low to moderate stress levels but diverged consid-
erably at the higher stress level. Peretz and Weitsman (1982) used a com-
puter-aided numerical least squares curve fitting approach to find all the
parameters needed in the Schapery model to represent the structural adhe-
sive FM-73. They showed a good correlation between data and theory.
Rochefort (1983) used a similar computer-aided numerical least squares
curve fitting approach to find the necessary parameters for FM-73 and his
comparison between creep and creep recovery data is shown in Fig. 10.13.
It is interesting to note that parameters in the two separate studies on FM-
73 are similar even though performed in separate laboratories with materi-
als made by different groups. For example Peretz and Weitsman found n =
0.12 and Rochefort found n = 0.15. Considerable differences were found in
some of the nonlinear parameters, however.
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Fig. 10.13 Creep and recovery of FM-73 data and comparison to Schapery equa-
tion representation (Data from Rochefort, (1983)).

Experimental Procedures: Obtaining good experimental data from any
creep and creep recovery testing program is difficult for high performance
materials such as fiber reinforced polymer matrix composites and thin film
adhesives and a few comments about procedures are necessary. Strain is
typically measured using strain gages. As a result, it is important to recall
the brief comments given in Chapter 3 about the possible reinforcement ef-
fects of strain gages and the possibility of strain gage heating effects. In-
deed, Lou and Schapery (1971) estimated the effect of strain gage rein-
forcement to be about 2% for the glass-epoxy specimens they tested and
considered this to be low enough to be neglected. However, without care-
ful consideration, the error could be much larger especially for very thin
specimens. Strain gage heating effects should be evaluated and can be
minimized by limiting the amount of current used or by pulsing the current
to gage only when a measurement is taken.
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For materials such as the continuous fiber or chopped glass fiber com-
posites as well as film type adhesives, it may be necessary to mechanically
condition specimens prior to performing creep and creep recovery tests.
The rationale is that numerous small and unstable flaws are created during
processing and that when first tested these flaws grow by a small amount
at relatively low stress and strain levels to a stable configuration. Therefore
without mechanical conditioning prior to a creep test, an unknown portion
of the initial strain and transient strain may be due to the accumulation of
deformation associated with these flaws. Lou and Schapery, 1971 and
Cartner, 1978 used cyclic constant strain rate tests to about 50% of ulti-
mate to condition each test specimen. In Cartner’s case, no change was
found after the 20" cycle. For SMC materials the fibers flow in a random
manner during the cure process and so it is necessary to take specimen
from the central portion of the panel in the same direction to minimize po-
tential scatter. Rochefort (1983) used a short creep and creep recovery test
to mechanical condition specimens of FM-73. The test was repeated to
convergence, where no change was found from the previous test.

Peretz and Weitsman (1982) describe an excellent test program to obtain
the best results for an epoxy film adhesive (FM-73). Each test was per-
formed in triplicate and each was repeated twice yielding six creep and
creep recovery sets of data for each stress level that was then averaged. In
this manner experimental scatter was minimized to be less than 2.5%.

All the testing programs described were for relatively short periods (less
than one hour of creep and less than two hours of recovery). In reality,
most structures made from the material used are designed to last days,
months or years. As a result, a relative question to ask is: “how reliable
would the use of predictive equations whose parameters were obtained
from such short-term tests be in the design of structure for much longer pe-
riods of time”? In attempt to answer this question, Tuttle (1985) performed
short-term tests on 90° and 10° unidirectional graphite epoxy specimens
(creep of 480 minutes, recovery of 120 minutes) to obtain the necessary
seven parameters. He then used the data in the Schapery model in conjunc-
tion with a lamination theory analysis to predict the long-term creep re-
sponse of a symmetric composite laminate in a matrix-dominated direc-
tion. The result was compared with experimental data from independent
long-term creep tests on the appropriate laminate. The analysis under-
predicted the response at 10° minutes by about 8%. However, for several
years, the error would be much greater. Upon performing a sensitivity
analysis on all fitting parameters he found that the power law exponent
was the largest contributor to error. As seen earlier, the power law does not
provide the best fit to general viscoelastic creep compliance data, likely
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leading to this result. Thus while the small number of parameters makes
the power law amenable to the semi-graphical approach to finding the
Schapery model parameters, the numerical methods mentioned earlier can
be successfully applied using a Prony series expansion for the creep com-
pliance (Tuttle, (1995)) and may provide better results.

A TSSP recovery master curve such as the one shown in Fig. 10.12 is
not very useful for long-term predictions. However, creep data (or its ana-
lytical representation) as shown in Fig. 10.13 can be converted into creep
compliance data as a function of time for various stress levels. The data
can then be shifted to form a master curve for any one of the individual
stress levels similar to the process of shifting data at different temperatures
to achieve a TTSP master curve as described in Chapter 7. By shifting data
to the lowest stress level (analogous to shifting to the lowest temperature),
a master curve extending to the longest times can be found. This approach
to form a stress dependent master curve is discussed and demonstrated in
the next section.

Before closing this section it is important to point out that the Schapery
nonlinear characterization approach is best used for materials that do not
have residual permanent deformation when the stress is removed. There-
fore, the technique is best used for cross-linked or thermosetting polymers
and not for thermoplastics or those referred to as linear polymers. It has
been demonstrated that the Schapery technique may be used if the residual
permanent deformation is subtracted from the creep and creep recovery re-
sponse. However, the amount of permanent deformation needs to be small
and a means to pro-rate the total amount over the total time scale is neces-
sary. Tuttle et al. (1995) and coworkers (see also Pasricha et al. 1995 and
Wing et al. 1995) have developed procedures to include parameters in the
Schapery method that allow permanent deformation to be a part of the
analysis. They use a nonlinear viscoplastic functional employed by Zapas
and Crissman together with the Shapery model to find all material parame-
ters for a graphite-bismaleimide composite and then use the results to pre-
dict the response of a laminate using classical laminated plate theory.
Popelar, et al. (1990) has developed a nonlinear model that incorporates
permanent deformation into the analysis and prediction of properties of
polyethylene pipe. In addition, in recent years analytical models have been
developed for nonlinear viscoelastic materials including the growth of
damage and associated permanent deformation. For example see Weitsman
(1988) and Ha and Schapery (1998). Segard et al. (2002) have used a pro-
cedure similar to that of Tuttle to model the behavior of a chopped glass
fiber polypropylene composite with linear and nonlinear viscoelastic re-
gions without damage and a nonlinear viscoelastic region with damage.
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10.4. Empirical Approach To Time-Stress-Superposition
(TSSP)

The fundamental concept behind both the TTSP and the TSSP is that the
deformation mechanisms associated with time-dependent response at one
temperature or stress (strain) level are the same as those at another level
except that the time scale of the sequence of events is longer at a lower
stress (strain) level or the time scale is shorter for a higher stress (strain)
level. Basically, this allows for the deceleration or acceleration of the
mechanisms of deformation and allows for either decelerated or acceler-
ated predictions of response. Obviously, the latter is the most useful as by
performing a test at a higher temperature or higher stress level, the collec-
tion of essential material data (parameters) can be shortened. For example,
it is often necessary to design engineering structures for a life of 20 to 50
years. It is impossible to run tests for that duration to understand how
polymer properties change over that time scale prior to making material
decisions and building a structure. As a result, it is critical to have a proc-
ess such as the TTSP and the TSSP to allow the determination of time de-
pendent properties that may occur over a long time from tests that take
place only over a short time.

The development of master curves using a semi-empirical TTSP ap-
proach was discussed in Chapter 7. A similar semi-empirical TSSP is can
also be used to obtain a master curve valid over a long time at one stress
level by shifting and superposing creep compliance (or relaxation
modulus) data obtained at other stress levels in a short term test. This prin-
ciple is illustrated in Fig. 10.14.
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Fig. 10.14 TSSP master curve formation.
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Hiel has used both the TSSP and the Schapery procedure to produce mas-
ter curves of the shear behavior of a carbon epoxy composite. An example
of his results is given in Fig. 10.15. The shear creep compliance of a car-
bon epoxy composite is shown for various stress levels. The data were
shifted horizontally to form a smooth master curve for the lowest stress
level as illustrated by the open symbols. The Schapery procedure was also
used independently on this data set and the resulting master curve predic-
tion is indicated by the solid line. For more details, see the cited reference
in Fig. 10.15.
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Fig. 10.15 Shear compliance of a carbon/epoxy composite at 320° F. (Data from
Hiel et al., (1984)). Master curve shown with open symbols shifted by
a, and Schapery master curve fit (thicker solid line); Schapery pa-
rameters retrofitted to the individual creep curves also shown.

The TTSP and the TSSP can be combined to produce a master curve that
can be shifted both as a function of temperature and stress. The shift fac-
tors are therefore multiplicative or additive on a logarithmic time scale.
This process is shown in Fig. 10.16 where two paths are indicated to find
the final master curve. In both cases, creep curves at different stress and
temperature levels are found experimentally. Following the left path, the
family of curves for each stress level is assembled on one graph and TTSP
used to obtain TTSP master curves of the response at a reference tempera-
ture; one master curve for each stress level is obtained. Subsequently,
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TSSP is performed on the master curves in (c) to obtain the grand Time-
Temperature-Stress-Superposition master curve in (e). The right path is
performed similarly, but starting with TSSP and then applying TTSP to the
stress based master curves in (d). The same grand master curve should be
obtained via either path. A detailed discussion of the limitations of the
process can be found in Griffith (1980). An example for the formation of a
master curve using TSSP is shown in Fig. 10.17 and Fig. 10.18 for the
shear compliance of a carbon epoxy composite at 320° F.
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Fig. 10.16 Combination of TTSP and TSSP to form a TTSSP master curve.

TTSP was also used to form a master curve for the same material and the
combined shift function surface is shown in Fig. 10.19.

From this discussion as well as the information in Chapter 7 on time-
temperature relationships and time-aging time relationships, it is clear that
there are a variety of environmental factors that affect the long-term re-
sponse of polymers and their composites. These parameters include tem-
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perature, stress, moisture”, physical aging, chemical aging, and others. In
many of these cases, as has been shown here and in Chapter 7 with tem-
perature, physical aging and stress, it is possible to consider the effects of
the variables individually over short time periods and to represent long
time behavior via superposition principles. These superposition principles
are such that shifting experimental data on the log time scale produces
shift factors which are used as a multiplicative factor on the time in ex-
pressions for material properties and in constitutive equations. And it is in
this manner that long-term predictions can be made for material response.
Ideally, it is desirable to find a convenient way by which all the relevant
environmental factors could be combined into a single procedure to make
lifetime predictions. This concept is expressed in the shift factor surface as
shown in Fig. 10.19 for the two parameters of stress and temperature, and
can in general be thought of as a multidimensional surface for all factors
similar to that proposed by Landel and Fedders (1964). However, in the
examples shown here, each effect is probed individually to produce the
shift factors, while when the environmental conditions occur simultane-
ously there are nonlinear interaction effects that prevents application of
such a simple concept universally. The nonlinear model pioneered by
Knauss and Emri (1981) mentioned earlier is one approach to attempt to
address these coupled effects theoretically in a single complex shift factor
function. Recently, Popelar and Leichti (2003) have extended this ap-
proach to incorporate distortional changes into the Knauss free volume
model that is largely related to dilatational effects. This area of long-term
predictions of polymer behavior considering multiple coupled environ-
mental variables is still an active area of research where continued effort is
needed (Going to Extremes, National Academy Press, 2006).

A time-moisture-superposition-principle is discussed, for example, by Cross-
man and Flaggs, 1978. See also, Flaggs, D. L. and Crossman, F. W., 1981.
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the same material given in Fig. 10.18. (From Griffith et al., (1980)).

Review Questions

Name and describe the two types of nonlinearities most frequently
used in engineering analysis.

Name and briefly describe two other less well-known types of non-
linearities.

Define extension ratio. In which type of nonlinearity is the exten-
sion ratio typically used?

Why is creep recovery data often used to determine the exponent,
n, in the creep power law?

What is the TSSP? Describe the experimental process by which it
is used.

What analytical approach is a mathematical statement of the TSSP?
Is it possible to combine TTSP and TSSP? If so describe the proc-
ess.
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10.8.
10.9.

10.10.

10.6.

10.1.

10.2.

10.3.

10.4.

10.5.

Is there evidence of a time- moisture-superposition principle?

Why are concepts such as the TTSP and TSSP important? Give ex-
amples.

It is suggested that the reader perform additional reading on the
subjects of the theory of rubber elasticity with especial emphasis on
the thermodynamic approach to the theory.

Problems

Discuss the power law in its various forms and compare it to the
use of a Prony series to represent viscoelastic data.

Discuss various methods to find the creep exponent in the power
law. Is it ever a function of stress? Temperature? Explain.

Perform a literature search for various forms of the power law with
special attention to a modified form that allows a better representa-
tion of long time behavior. The latter is sometimes referred to as
the modified or generalized power law. (Three sources are Hiel, et
al., (1984), Halpin, (1967) and Landel and Fedders, (1964).)
Determine the power law parameters for the following creep data.
0, = 6.19 MPa (1ksi)

Time (min) Strain(%)
1 0.324
5 0.335
10 0.340
20 0.348
30 0.352
40 0.355
50 0.359

(Hint: There are several methods used to find power law parame-
ters but sometimes the fastest is trail and error. However, the
reader would benefit from research for various possible procedures
as suggested in problems 10.1 — 10.3.)

Consider a nonlinear viscoelastic material which is well modeled
by the Schapery approach. Would it be possible to determine all
seven (7) material parameters only using creep tests? That is, not
using recovery (unloading) data or a multiple steps in stress? Give
a detailed explanation for your answer.
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10.6. Using the nonlinear creep and creep recovery data given below,
find the seven material parameters (D,, D, n, g;, g,, g, a,) needed
for representation by the Schapery equations.

Creep
Stress 1ksi 2ksi 3ksi 4ksi Sksi
Time e 10% e 10% e 10% e 10% e 10%
(min) u in/in u in/in u in/in u in/in u in/in
0.0 3.00 6.30 9.90 13.80 18.0
0.5 3.63 7.84 12.48 17.71 23.46
1.0 3.75 8.13 12.96 18.44 24.50
2.0 3.89 8.48 13.54 19.32 25.73
5.0 4.12 9.04 14.48 20.75 27.72
10.0 4.33 9.55 15.35 22.06 29.56
20.0 4.59 10.17 16.38 23.62 31.74
30.0 4.76 10.58 17.07 24.67 33.20
Recovery

Stress 1ksi 2ksi 3ksi 4ksi Sksi
Time e 10% e 10% e 10% e 10% e 10%
(min) W in/in W in/in W in/in W in/in W in/in
30.0 1.52 3.38 5.44 7.94 10.72
30.5 1.13 2.55 4.14 6.11 8.35
31.0 1.02 2.30 3.76 5.57 7.65
32.0 0.89 2.02 3.32 4.95 6.85
35.0 0.70 1.61 2.67 4.02 5.62
40.0 0.55 1.28 2.13 3.25 4.60
50.0 0.41 0.95 1.61 2.48 3.56
60.0 0.33 0.78 1.33 2.06 2.98




11. Rate and Time-Dependent Failure:
Mechanisms and Predictive Models

No text on polymer science and viscoelasticity is complete without a dis-
cussion of time-dependent failure and just as with other structural materi-
als, failure must be defined. In this chapter, only failure by a creep to yield
or a creep to rupture (separation) will be considered. We will address both
the mechanisms of deformation that often precede these types of failures as
well as modeling to describe this behavior. The primary focus will be on
one-dimensional models but many of the models discussed have been or
can be extended to three-dimensions. The procedures to be discussed are
not new and are relatively easy to use by the design engineer to make esti-
mates of the time for either yielding or rupture to occur. While no discus-
sion of either viscoelastic fracture mechanics or fatigue crack growth will
be given these are very important topics and the reader is referred to
Knauss (1973, 2003) for the former and to Kinloch and Young (1983) for
the latter for an in-depth discussion of these topics. Fracture based ap-
proaches for prediction of time to failure work best when a crack of a
known size exists. The same is true for fatigue as a relation between crack
growth rates and time to failure can be established. Newer approaches pro-
vided by damage mechanics (Krajcinovic, (1983)) and viscoplasticity
(Lubliner, (1990)) provide a more rational but highly mathematical ap-
proach to damage and/or failure evolution for three-dimensional stress
states and are perhaps best suited for numerical procedures such as the fi-
nite element method. Here we restrict ourselves to simpler, analytic ap-
proaches to introduce the fundamental issues.

Failure is a defined quantity that must be established in the initial design
stages. Typically, structural failure is defined as excessive deflection,
yielding, or rupture. Excessive deflection may occur while materials of a
structure are linear elastic or viscoelastic without yielding and for such cir-
cumstances can be predicted and prevented by elastic or viscoelastic stress,
strain and deflection analysis as described in earlier chapters. The focus in
this chapter will be on excessive deformation due to time-dependent yield-
ing and/or progressive damage accumulation leading to rupture.



366 Polymer Engineering Science and Viscoelasticity: An Introduction

For metals, concrete and other usual building materials various design
criteria have emerged to avoid failure by either yielding or rupture. These
are often called “theories of strength” and date back to discussions by Gali-
leo in 1638 (see Sandhu, (1972)). Three such strength theories discussed
previously in Chapter 2 are the maximum normal stress theory, the maxi-
mum shear stress theory and the maximum distortion energy theory. While
these are the most used theories, in reality there are hundreds more that
have been proposed since the days of Galileo. Sandu (1972) describes
more than 30 theories of failure for isotropic and anisotropic materials,
most of which have been used for fiber-reinforced laminated (polymer and
metal matrix) composites but none include a creep to yield or creep to rup-
ture process. A review article by Yu (2002) entitled “Advances in strength
theories for materials under complex stress state in the 20th Century” cites
more than a 1000 references but only about ten are related to polymers and
these do not explicitly speak to a time dependent failure process.

A major difficulty with predicting any type of failure including those for
time dependent materials is that our analytical foundation for stress, strain
and deformation analysis is based upon continuum mechanics that assumes
that the material is continuous without flaws down to infinitesimal dimen-
sions. Certainly such an assumption is not true for any realistic structural
material including polymers. Therefore a method is needed to include a
distribution of defects into continuum models which is what time depend-
ent versions of plasticity theories, fracture mechanics and damage mechan-
ics attempt to do. Herein some of the earlier approaches for the prediction
of time dependent failures will be presented, several of which provide ex-
plicit elementary equations that can be used to predict the onset of time
dependent yield and/or rupture. Two of these approaches (Nagdi and
Murch, (1963) and Reiner, (1939 and 1964)) are unique in that the viscoe-
lastic constitutive model for the material is contained in the failure law and
for that reason are sometimes called a “unified models”. With these intro-
ductory approaches and accompanying data, we demonstrate the funda-
mental issues of creep yielding and creep rupture in polymers along with
simple tools to describe such behavior. Armed with this knowledge, the in-
terested reader can delve into more advanced treatises on viscoelastic frac-
ture and damage accumulation mentioned earlier.

11.1 Failure Mechanisms in Polymers

Before entering into mathematical descriptions of creep yielding and rup-
ture, it is instructive to describe several of the physical deformation
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mechanisms most often considered to lead to polymer failure. These
mechanisms involve large-scale irreversible molecular changes with the
most common optically visible result of shear banding or crazing as de-
scribed below.

11.1.1 Atomic Bond Separation Mechanisms

As discussed in Chapter 2, the rupture or fracture of materials must, at the
atomic and molecular scale, involve the separation of individual atoms and
molecules. A long-standing interpretation of interatomic forces and the re-
sulting energy necessary for equilibrium is as given in Fig. 2.22(d). In or-
der to break the bond between two atoms the applied external force must
generate internal forces which exceed the maximum. Equivalently, the
amount of energy created by external forces must be larger than the bond
energy, Eg = D, at the equilibrium spacing r,. From Fig. 2.22(a) the addi-
tion of the attractive force and the repulsive force gives total force and is,

no mp

= hel m+l (11.1a)
r r
and the total energy is,
g-b_o (11.1b)
ot

where the variables are all as defined in Chapter 2. These equations are for
only two atoms. However, expressions for groups of atoms are similar to
the above equations with summation over the group.

As discussed in Chapter 4, atoms are in a constant state of motion with
the frequency and amplitude being related to the temperature. In a poly-
mer, the motion is related to the amount of free volume and is small below
the glass transition temperature and increases dramatically as the tempera-
ture is increased above the glass transition temperature. At the T, the free
volume in many polymers is approximately 1/40 or 2.5 % of the total vol-
ume.

In thermoplastic polymers the bonds between individual chains are sec-
ondary and the amount of free volume is sufficient for local chain motion.
In thermosetting polymers interchain interactions between cross-linked
sites are also secondary bonds and motion of these segments is similar. A
mechanism of “switching” often used to describe the nature of motion in a
viscous liquid is sometimes used to describe these local atomic movements
in polymers. As illustrated in Fig. 11.1(a), the atoms in a liquid can change
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positions through a rotational jump. (See McClintock and Argon, (1966);
Courtney, (1990); and Shames and Cozzarelli, (1992) for more detailed
discussion of this process.)

T AE

(a) Rotational jump in a liquid. (b) Atom at temperature T vibrating in an
energy well.

~ S\,

JA/ \/\’_.>

(c) Schematic of polymer chain movement through its neighbors by reptation.

Fig. 11.1 Molecular mechanism for flow of liquids and creep of solids.

In a liquid with a low viscosity or in a gas, the switching can take place
spontaneously without the application of stress. For solid thermoplastic
polymers, a first approximation is to assume that the application of exter-
nal forces creates an internal shear stress sufficient to cause an atom to es-
cape the energy well shown in Fig. 2.22(e) and Fig. 11.1(b) (D is the dis-
association energy) and thus enable switching.

While many have used the above analogy for metals and for polymers,
the nature of the switching phenomena is quite different in a polymer than
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in a simple liquid. In a polymer the beads in Fig. 11.1(a) must represent
atoms along the backbone chain and, hence, it is difficult to visualize how
the switching can take place without affecting the primary bonds along the
backbone chain. A newer approach that treats the motion of polymer mole-
cules in terms of reptation or a worm-like creeping motion of one polymer
molecule through the matrix formed by its neighbors is likely a better visu-
alization for polymers (Fig. 11.1(c); see also Aklonis, et al., (1983) for a
brief description).

It is possible to show that the binding or disassociation energy that must
be overcome is (see; Shames and Cozzarelli, (1992)),

D= %(1 - 11.2)
I'() m

Clearly the energy needed to escape the energy well varies with tempera-
ture and since all properties of polymers are both time and temperature de-
pendent, it is reasonable to assume that the disassociation energy, D, for
polymers is also a function of time and rate. Often this time and tempera-
ture dependence is modeled by the Ahrrenius reaction rate equation,

E

D=Ae KT (11.3)

where @ is the rate of a process, A is a constant, E, is the activation en-
ergy, k is Boltzman’s constant and T is the absolute temperature. This
equation was developed by Ahrrenius presumably for the purpose of ex-
plaining the rate of chemical reactions but is also widely used to model the
rate of many processes. Undoubtedly, Ahrrenius was strongly influenced
by Boltzman (he was an associate of Boltzman’s for a time) and his equa-
tion has a strong resemblance to the well-known Maxwell-Boltzman equa-
tion. The Maxwell-Boltzman equation was developed for the gaseous state
and defines the probability that a molecule will have a particular energy
state among all the energy states of the total number of molecules in the
volume (for a discussion, see; Freudenthal, (1950) and Glasstone, S,
Laidler, K.J. and Iyring, H., (1941)).

Iyring has suggested that the Ahrrenius equation is inadequate in many
instances and that an equation with two reaction rates is more appropriate.
His equation can be written as,

-E
D=Pe™ =aT" exp(—2)ex
0 p( KT )exp

-E,,
—as 114
S(c+ T )} ( )
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where a, ¢, w, E,, E,, and k are constants. In Eq. 11.4 E,, and E,;, are the
two activation energies while S is a stress dependent function and

— a,

n=c+ (for a description of this approach, see: Carfagno and Gibson,

(1980); or Ward and Hadley, (1993)). Others have also noted that the acti-
vation energy is not a constant and have suggested that the activation
should be represented as a variable function of temperature and stress.

The activation energy approach has been used to develop both time de-
pendent yield and time dependent rupture models, wherein a critical acti-
vation energy is defined and the expressions can be used to determine the
time to yield or rupture under given static loading conditions. A few of
these approaches will be discussed briefly in later sections.

Before closing this section it should be mentioned that efforts have been
made to directly calculate the failure or fracture (separation) strength of a
solid using the atomic bonding model. It is relatively easy to show that,
based on Fig. 2.22 and Eq. 11.1, the theoretical strength of a perfectly ar-
rayed crystalline solid should be on the order of the elastic modulus. For
example, since the modulus of mild steel is 206x10° MPa (30 x 10° psi) the
strength should be of similar magnitude. Since the tensile strength of mild
steel is only 206x10> MPa (30x10° psi) there is obviously something sig-
nificant missing from the strict atomic bond separation prediction for
strength. A similar argument can be made for any solid polymer. The an-
swer is, of course, that both types of solids have many inherent flaws due
to production processes that drastically lower the tensile strength. Some of
these flaws and imperfections that lead to lower strength in polymers will
be discussed in succeeding sections as well as potential mechanisms that
lead to lower strength. It is known, however, that the strength of ether met-
als or polymers can be drastically improved if the production process is
better controlled to avoid flaws and imperfections. Further, by creating
more perfect crystalline structures strength properties can be greatly im-
proved.

11.1.2 Shear Bands

Shear bands develop in polymers due to large-scale movement of molecu-
lar chains and usually initiate at a site of higher stress than the surrounding
region or a point of stress concentration. An example of a shear band for-
mation in a uniaxial tensile test of a thin specimen of polycarbonate is
shown in Fig. 11.2. The Luder’s band begins to form at a point of high
stress (likely due to an edge defect created during machining) such as that
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indicated by the high concentration of isochromatic fringes at the begin-
ning of the tapered region of a tensile specimen of polycarbonate shown in
(a). The yield region grows into a V-shaped band as shown in (b) where
the photo is taken after removal of the load. The existence of the birefrin-
gence fringes after unloading indicates residual permanent strains remain
after unloading. A neck forms with continued loading beyond the point of
Luder’s band initiation as shown by the unloaded specimen in (c).

(a) (&) (c)

Fig. 11.2 Typical isochromatic fringe patterns! showing stress contours in
polycarbonate: (From: Brinson, (1973))
(a) at incipient yielding. (b) unloaded specimen after Luder’s band for-
mation. (c) unloaded specimen after neck formation.

Another example of a Luder’s band in polycarbonate is shown in Fig.
11.3(a). Also shown in Fig. 11.3(b) are micro-shear bands which form in
polystyrene. In each case, birefringence photos of an unloaded specimen
show the residual plastic deformation remaining after load removal. In
polycarbonate, yielding initially produces a single slip (shear) band at a
54.7° angle with the long axis of the specimen as seen in Fig 11.3(a). With
propagation and depending on the specimen thickness, the shear band can

' The birefringence photos here and elsewhere were taken by viewing a specimen
using polarizing filters such that stress or strain induced birefringence could be
viewed. The fringes are termed isochromatics because if they are viewed with
polychromatic light they will appear in various colors dependent upon the stress
field. The fringes are black here as the specimen is illuminated with mono-
chromatic light. In this text the isochromatics are not being used for stress or
strain analysis but simply to enhance the ability to view the shear band region.
For more information, see Optical Methods in engineering Analysis by G.
Cloud, Cambridge University Press.
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develop a V-shape as shown in Fig. 11.2. Very thick specimens will from a
band (or neck) perpendicular to long axis of the specimen. Interestingly,
the angle of the slip band does not coincide with the direction of maximum
shear stress of 45° as might be expected. Rather, the angle conforms to the
direction associated with the maximum distortion energy or the octahedral
angle as described in Chapter 2. (See Nadai, A., (1950) for a discussion of
Luder’s bands in metals and Hetenyi, (1952) for a discussion of Luder’s
bands in nylon 66.) However, the angles of the slip bands will depend
upon the ductility of the material. Polycarbonate exhibits nearly perfectly
plastic flow past the yield point and a distortion energy failure law is
reasonable.

{  1mm

& .\'/." N ,/
(a) Slip band in polycarbonate. (b) Micro-shear bands in polystyrene.
(From: Kinloch and Young, (1995))

Fig. 11.3 Shear (slip) bands in two polymers.

Molecular mechanisms associated with shear band formation are indicated
schematically in Fig. 11.4. Shear bands form due to the orientation of
molecules in regions of high stress. Initially, deformation in glassy poly-
mers is associated with stretching bond angles and small conformation
changes due to bond rotations. However, as the external loads increase, the
internal stresses on the molecular scale increase and the level of molecular
energy nears the disassociation energy for secondary bonds, large move-
ment of the molecules can occur. Some motion comes from the relaxation
of kinks in the structure during polymerization and some comes from con-
formation changes. That is, the molecules tend to become unentangled and
they begin to orient in the direction of the local maximum octahedral shear
stress (or the direction of maximum distortion energy). Eventually, the
molecules will tend to orient with the direction of maximum external load
as shown in Fig. 11.4.
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Fig. 11.4 Mechanisms for the formation of slip bands and a neck in a ductile
polymer.

11.1.3 Crazing

Crazing is another deformation mechanism for glassy polymers but unlike
shear bands crazes form perpendicular to the maximum normal stress.
Crazes are micro-cracks that occur due to the formation of micro-voids at
points of high stress concentration such as surface scratches, particulate in-
clusions such as dust particles or even small voids occurring during proc-
essing. Crazes in a modified (rubber toughened) epoxy are shown in Fig.
11.5. Here the crazes are quite small but many of them join together to
produce white striations across the specimen. For transparent polymers, a
milky appearance or translucency may occur while in an opaque polymer,
as in Fig. 11.5, the crazes appear as white regions often called stress whit-
ening. (This is the principle behind plastic labeling tape). Generally, crazes
are caused by dilatational stresses while shear bands are caused by devia-
toric stresses.

Crazes occur in both brittle and ductile polymers but they are often very
hard to see with the naked eye. For example, they can be seen in tensile
tests of thin polycarbonate fracture specimens if viewed from the correct
angle and with lighting such that the edge of the tiny cracks are positioned
to reflect light back to the viewer. A single edge notched tensile specimen
is shown in Fig. 11.6 after plastic zone growth and load removal. The
crack is at the extreme left and the plastic zone is the long, horizontal
flame shaped region in the center; the sudden reduction in thickness of the
specimen at the edges of the plastic zone changes the refraction of light
from the specimen allowing its visualization. Just ahead of the plastic zone
is a region of crazes that formed while loading and due to the residual
permanent deformation remain visible after unloading. The craze zone at
the end of the plastic zone is nearly circular and represents the intense en-
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ergy region often discussed in regard to the stress field in front of a crack
in a brittle material that arises using the theory of linear elastic fracture
mechanics. The distortion of the circular shape is due to the angle at which
the specimen was photographed. Linear elastic fracture mechanics forms
the basis for the analysis of cracks in ductile materials via the Dugdale
model. (See Brinson, (1969)).

Several mechanisms have been suggested to explain the formation of
crazes in polymers. One approach suggests that crazes initiate either on the
surface of a polymer at imperfections such as small flaws or scratches, or
at internal defects such as air bubbles dust particles, etc. The mechanism
for the crazes shown in Fig. 11.5 is likely the inclusion of rubber particles
as discussed in Chapter 3 (see Fig. 3.2). The crazes shown in Fig. 11.6
may be both due to small surface or internal cracks occurring in the intense
stress region at the crack or plastic zone tip. While a craze may start at an
imperfection such as a dust particle or small void, a mechanism for craze
growth is needed to account for the multiplicity of crazes at the plastic
zone tip in polycarbonate seen in Fig. 11.6 which, of necessity, must be
different than that due to the inclusion of rubber toughened particles as in
shown in Fig. 11.5. One explanation is that the triaxial stress field stress
field in the region ahead of the tip of a micro-crack must be sufficient to
cause a new crack to nucleate immediately ahead of the old crack while
leaving a small ligament in between. The nucleation process is repeated
until a number of the micro-cracks coalesce to form a larger visible crack.
Numerous such visible cracks are formed and eventually one will dominate
and lead to eventual failure. This mechanism of craze growth and others
are described in detail by Kinloch and Young, (1995) and Courtney,
(1990).

- e '\separation point

Fig. 11.5 Crazes (whitened regions) in a modified epoxy Metalbond 1113-2
(Renieri, (1976)). (a) Failed tensile specimen. (b) Enlargement of a
central crazed area.
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plastic zone

Fig. 11.6 Craze region at tip of plastic yield zone ahead of an edge crack in thin
sheet of polycarbonate. (The white region along the crack and the long
plastic zone is reflected light due to the oblique angle of exposure (out
of the plane of the page).

11.2 Rate Dependent Yielding

First it is important to place in perspective the concept of yield behavior.
For most metals yielding is defined as the point on the tensile stress strain
diagram found in a constant strain-rate test after which a permanent de-
formation will exist on unloading. As it is experimentally difficult to de-
termine this point, often a 0.2% offset method is used as described in
Chapter 2. However, in the case of mild steel it is customary to define
yielding as having occurred when the load in a constant strain rate test de-
creases while the strain continues to increase as shown in Fig. 2.8. In this
manner, both upper and lower yield points are identified. Typically the
lower yield point associated with the plateau region is defined as the cor-
rect one to use in analysis. In Chapter 3, Fig. 3.7 shows that polycarbonate
has a stress strain behavior similar to that of mild steel and again it is ap-
propriate to define yielding at the lower yield point. However, for polycar-
bonate, if true stress and strain are used no stress decrease occurs and
yielding may be considered as the beginning of the plateau region. Such a
description agrees with the use of Considere’s definition of yielding given
in Fig. 3.5. It should be noted that many different yield criteria have been
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used for polymers and no single definitive definition is available which is
suitable for all polymers.

For mild steel the tensile stress strain behavior in a constant strain-rate
test is often approximated by two straight lines as shown earlier in Fig.
2.9(b) and here in Fig. 11.7. Here the permanent strain, €, after unloading
is indicated and the total strain, &, at some arbitrary point is given by,

€t =€ TE, (11.5)

where €, is the elastic strain and ¢, is the plastic strain or the amount of
strain past the yield point. This type of stress strain diagram forms the ba-
sis for classical plasticity theory. The stress strain law for the elastic por-
tion of the diagram is given by o =Ee and for the yielded portion by
o =pé. That is, the elastic portion is represented by Hooke’s law and the
yielded portion is represented by the Newtonian law for viscous liquids. It
might appear that the yielded portion is rate dependent but that is not the
case as in classical plasticity theory the yield stress is assumed to be rate
independent. Newton’s law of viscosity simply provides a convenient way
to calculate the deformation past the yield point inasmuch as a constant
strain rate test is being used.

o o
Oy‘4 §> &
o, | € |«—Sp» Oy, f3> fz
: : OY‘Z §2> &
: : Oy‘l €
I I
| |
| |
I I
1 1 > >
0 & &  E ¢ 0 €
Fig. 11.7. Idealized stress-strain Fig. 11.8. Rate dependent ideal
diagram for mild steel. rigid-plastic stress-strain

response.

It is well known that many materials have yield points that vary with strain
rate. Notably mild steel has a significant variation in the yield stress with
strain rate at high temperature, as do other metals. As a result, various rate
dependent plasticity theories have been developed for metals and some of
these have been extended to polymers. Early approaches used idealized
stress-strain response such as that shown in Fig. 11.8 and Fig. 11.10. In
Fig. 11.8 the material is assumed to be rigid but with a rate dependent
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yield point. Such an assumption can be reasonable in cases where the
component for the elastic strain is very small compared to the plastic strain
component and for practical purposes can sometimes assumed to be zero.
A more realistic ideal elastic-plastic rate dependent material is shown in
Fig. 11.10.

A mechanical model to represent a rigid-plastic material is shown in
Fig. 11.9(a). The model is simply a friction element that moves or slides
only when the frictional resistance is overcome. Thus the constitutive
equation for the friction element is

0;=0
foro<o
e=0 Y (11.6)

;= =
o;=0, foro=o0,

Note that when the stress applied to the friction element reaches o,, the
strain increase is not defined and thus this element must be used in con-
junction with other elements to define the strain (rate) changes.

A rigid-elastic element is shown in Fig. 11.9(b) that moves linear elasti-
cally after friction is overcome. Stress-strain diagrams of the two materials
are also shown in Fig. 11.9.
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(a) Rigid-plastic material (b) Rigid-elastic material

Fig. 11.9 Mechanical models to represent yielding.
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In studies of viscous fluids (such as paint), Bingham (1922) suggested
that some fluids do indeed have a yield point and suggested the model
shown in Fig. 11.10(a). In this model, a viscous element and a friction ele-
ment are in parallel. Upon applying a stress, no movement occurs until the
resistance of the friction element is overcome. The stress-strain response is
that of a rigid-viscous material and is as shown in Fig. 11.10(b).

A t)

(0}
t
o, 2
ts
o &,
— —> :
.
1)
0 >
(a) Rigid-viscous model of a fluid (b) Isochronous stress-strain behav-
with a yield point. ior of a rigid viscous fluid.

Fig. 11.10 Bingham model for a rigid viscous-fluid with a yield point.

To account for rate effects after yielding in solids Ludwik, (1909) and
Prandtl, (1928) observed that for some materials the yield stress in uniaxial
tension was linearly related to the logarithm of strain rate and suggested
use of the equation,

0, =0,+0, log(Z—p) 11.7)
0

where Oy is the applied tensile stress at yield for the strain rate ¢,, Oy is a
constant and Oy is the yield stress for the strain rate €,. Constant strain
(head) rate tests on polycarbonate shown in Fig. 11.11 reveal the applica-
bility of Eq. 11.7 to polymers. Also, it should be noted, that similar results
were obtained for a modified (or rubber toughened adhesive (Brinson, et
al., (1975)). In Fig. 11.11(a) the term “initial” applied to the strain rate
emphasizes that in reality the strain rate varies slightly in a constant head
rate test especially for a viscoelastic polymer at stresses and strains near
the yield point.

Equations to represent the rate dependence of polymers have been de-
veloped by Bauwens-Crowet, et al. (1969) using the Eyring activation en-
ergy method resulting in the following expression,
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o, = E, +(§)ln(i) (11.8)

A% A% C

where v is an activation volume, ¢, is a constant and the other parameters
are as described previously. A plot of the yield stress as a function of strain
rate and temperature for polycarbonate is given in Fig. 11.11(b). See,
Miller, (1996) for a brief description of this model, as well as the original
reference.
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Fig. 11.11 Yield stress strain-rate behavior of (polycarbonate). (a) Room tem-
perature data (Brinson, (1973)). (b) Variation with temperature (data
from Bauwens-Crowet, (1969); see also Miller, (1996)).
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Rearranging Eq. 11.8 results in

. o, -0,

€, =€gexp 11.9)
Oy

where the conversion factor from base 10 logarithms to natural logarithms

is contained in €,,.

Use of Eq. 11.9 to describe rate effects is often called the over-stress
model which was developed mostly for metals under high rates of loading
and used more in dynamic circumstances of impact, ballistic penetration,
wave propagation, etc. (See Christescu, (1967)). Krempl and his associates
have used the over-stress technique for various polymers (e.g., Bordonaro
and Krempl, (1992)).

Malvern, expressed stress as a function of plastic strain rate as,

o=f(e) +aln(l+Eg)) (11.10)
which can be expressed as,
¢, = %{exp 0‘;(8)]-1} (11.11a)
or
E¢, =F(o-f(e)) (11.11b)
and since, € =€, + ép, then,
E¢ =6 +F(0-1(¢)) (11.12)

Malvern also used the more general form,
Eé=G+g(0.e) (11.13)

Sokolovsky, suggested the equation,

(11.14)

é=g+g(0—0 ) o>0
E y y

Perzyna, generalized the overstress concept to obtain,
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éij=ﬁ’ f<0

; ot (11.15)
6. =—L1yp(f)— , >0
TRl i

where y ~ p is a material constant.

The above mathematical models? (and later derivatives) define constitu-
tive relationships for the plastic strain regime and they all assume a linear
elastic behavior terminated by a yield point that is rate dependent. Hence
the yield surface of the material is rate dependent. Since the purpose of
these models are to develop methods to calculate deformations which are
rate dependent beyond the yield point of a material they are often referred
to by the term viscoplasticity. (see Perzyna, (1980), Christescu, (1982)).
This practice is analogous to referring to methods to calculate deformation
beyond the yield point of an ideal rate independent elastic-plastic material
as classical plasticity. However, more general theories of viscoplasticity
have been developed in some of which no yield stress is necessary. See
Bodner, (1975) and Lubliner, (1990) for examples.

11.3 Delayed or Time Dependent Failure of Polymers

Due to their inherent viscoelastic behavior many polymers exhibit a time
dependent failure process either by delayed yielding or rupture under con-
ditions of constant load. Depending upon the type of structure and loading
circumstance this may occur under either creep or relaxation conditions.
The creep response of Polycarbonate is shown in Fig. 11.12(a) and indi-
cates that creep to yield occurred in 5 minutes at a stress level 9,056 psi but
took 40 hours for yielding to occur at 7,952 psi. In Fig. 11.12(b) a delayed
rupture occurred in a [+45°], graphite epoxy specimen containing a cen-
trally located circular hole. Here several tensile specimens were ramp
loaded in a closed loop hydraulic testing machine and at a certain point the
machine was stopped and held in a fixed grip (or relaxation) mode. De-
pending on the aspect ratio of the hole diameter to specimen width, rupture
(complete separation) of two specimens occurred at the times indicated.
(The load was removed prior to failure for the specimen with the lowest

2 For a review of early models, see E. Sancaktar, (1987). Also see Christescu,
(1967, 1982) for the references cited as well as further discussion. For a more
complete description of of plasticity and viscoplasticity see, .LH. Shames and
F.A. Cozzarelli, (1992) as well as Bodner, (1975) and Lubliner, (1990).
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aspect ratio.) The fact that the specimen failed while the load was decreas-
ing significantly can be attributed to the viscoelastic behavior of the matrix
which led to time delayed failure. Examination of the perimeter of the hole
revealed small growing cracks in the outer plies in the +45° direction while
other cracks on the interior plies in the -45° were growing in the opposite
direction. For this reason, far field strains (and hence loads) were decreas-
ing to compensate for the increased local strains in the cracked region in
such a way that the overall (global) deformation could remain constant.
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Fig. 11.12 Delayed Failures in polymer based materials. (a) Creep of polycar-
bonate (data from Brinson, (1973)). (b) Deformation control tensile
test of a graphite/epoxy specimen; solid points represent rupture (data
from Brinson, et al., (1981)).

Creep failures such as those illustrated in Fig. 11.12 are often called static
fatigue and are not uncommon in practical applications such as pressurized
piping applications. Kinloch and Young (1983) gives data on the creep
rupture of high-density polyethylene pipe (HDPE) and an excellent discus-
sion of the mechanisms associated with static fatigue.

At this juncture it is appropriate to recall the failure envelope given in
Chapter 2, Fig. 2.21 that displays a comparison of failure stresses for both
metals and polymers to the three failure theories mentioned therein. The
data provided for both polymers and metals were developed without regard
to possible rate and/or viscoelastic effects. In Fig. 11.11 and in Fig. 11.12
it has been demonstrated that yielding of polycarbonate is both rate and
time dependent. The same is true for most ductile polymers and, as a re-
sult, the yield (or failure) surface for polymers should be understood to
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change with rate or time as depicted in Fig. 11.13. While not to be consid-
ered herein, strain hardening (indicated by k) is also well known to change
the yield surface for metals. However, little information on strain harden-
ing often associated with the Bauschinger effect is available for polymers.
(See the excellent article by Drucker, (1962) or Lubliner, (1990) for an in-
troduction to plasticity and the Bauchinger effect in metals.) Fig. 11.13
shows that the yield surface expands due to strain rate effects, shrinks due
to time effects and expand due to strain hardening effects. Clearly yielding
in particular and failure in general are very complicated aspects of the be-
havior of polymers. Obviously viscoelastic processes are involved in the
delayed failure behavior of polymers and it would be desirable to have a
delayed failure analytical model that combines the prediction of failure
with viscoelastic analytical constitutive models such as those discussed in
Chapters 5, 6 and 10. The next sections address this issue where the objec-
tive is to develop relatively simple closed form equations that would allow
the prediction (and prevention) of time dependent failure by design engi-
neers without recourse to extensive numerical procedures.

Y

7 fdeldt t, %)

Fig. 11.13 von Mises yield surface displaying the effect of rate, time or strain
hardening.

11.3.1 A Mathematical Model for Viscoelastic-Plastic Behavior

In 1963 Nagdi and Murch published a paper entitled “On the Mechanical
Behavior of Viscoelastic-Plastic Solids” just before Schapery first pub-
lished his efforts on a thermodynamic approach to nonlinear viscoelasticity
and prior to the development of early viscoplastity theories. Likely because
both nonlinear viscoelasticity and/or viscoplasticity caught the attention of
the technical community, Nagdi’s work received little attention. However,
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if the tensile stress-strain diagrams of polycarbonate given in Fig. 3.7 and
3.8 are combined, the result will be the diagram shown in Fig. 11.14 where
the stress-strain diagram has been extended past the yield point by the
dashed lines. The dashed lines could be extended out to a strain of about
60% but have been abbreviated for clarity. Therefore, it is easy to think of
polycarbonate as a viscoelastic perfectly plastic material in much the same
way that mild steel is often considered to be a perfectly elastic-plastic ma-
terial. For a tensile stress less than 4,000 psi, rate and time effects are quite
small and the material is essentially elastic. For the rates used to produce
Fig. 11.14 rate and time effects are substantial above a tensile stress of
4,000 psi and cannot be neglected (note the creep data given in Fig.
11.12(a)). For these reasons polycarbonate can be considered to be nearly
elastic below 4,000 psi and viscoelastic between 4,000 psi and 10,000 psi.
Above the instability point of approximately 8,500 psi, depending upon the
strain rate, the material exhibits a tensile instability. That is, Luder’s bands
form and the material begins to neck. As a result it is appropriate to think
of polycarbonate as a material that has three regions of behavior, i.e., a lin-
ear elastic region for low stresses and strains, a viscoelastic region (por-
tions of which may be linear and nonlinear) for intermediate stress levels
and a plastic flow region when the stress is high. When a step stress is ap-
plied in the viscoelastic region, delayed yielding will occur after a suffi-
cient incubation time. It is interesting to note that the yield strain (defined
as peak of the stress-strain curve) increases with strain-rate as does the
yield stress. The fact that yield strain increases with strain rate is, in fact,
similar to the phenomena of increasing failure stress for increasing rates in
polymers (in the rubbery region) and elastomers. (See, Smith, (1965) and
Landel and Fedders, (1964)).

The Nagdi-Murch Model

For the purposes here, the behavior of polycarbonate appears to be a
good candidate to explore the use of the Nagdi and Murch viscoelastic-
plastic theory to determine if it is possible to develop, as suggested in the
preceding section, a relatively simple closed form equation that would al-
low the prediction of time dependent yielding including viscoelastic effects
without recourse to extensive numerical procedures.



11 Rate and Time-Dependent Failure: Mechanisms and Predictive Models 385

I I I I I I
10 50.8 onmin.
€ 5.08/cm/min .
5.0é cm/min.
0025 cm/min
AR — 60
+0.005 cm/min
8 )
D
[oN
-~ - 1 o
x 6 : / | — 40:1/
: Ny . ! 2
? elastic 1 viscoelastic : 3
a ot —————————————————————————— ' =
3 ! ! (%]
= i 1
2 4 1 1
1 1
1 1
— 20
oL E=2.4 GPa (350ksi)
0 | | | | | | 0
0 1 2 3 4 5 6 7

Strain, ¢, %

Fig. 11.14 Constant strain-rate behavior of polycarbonate. (Data from Brinson
(1973).)

Here it is necessary for a few brief comments about plasticity and visco-
plasticity theories without providing details needed to fully appreciate the
mathematical procedures involved in their development. First, it is noted
that failure (here referred to as yield) theories as discussed in Chapter 2 are
mainly used to predict the onset of yielding and might be properly called
theories of insipient yielding. Plasticity and viscoplasticity theories are es-
sentially subsequent yielding theories developed for the purpose of deter-
mining the growth of yielded regions within load bearing structures. For
this reason, plasticity or viscoplasticity constitutive equations are provided
for regions of loading, neutral loading and for unloading. These include a
flow rule as well as conditions for normality and convexity of the yield
surface.

The von Mises theory for yielding given in Chapter 2 can be written in
the form,

2

(01 —02)2 +(02 —03) +(c53 —01)2 -20,=0 (11.16)
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This and all yield (or failure) theories can be written in functional form as,

f(0,,0,,05,0,)=0 11.17)

More general plasticity theories as well as the one of Nagdi and Murch
write Eq. 11.17 in the form,

f(O-ij’ 857 Xija Kij) =0 (11.18)

where o is the stress tensor, €f is the plastic strain tensor, and Kj; is a ten-

sor representing strain hardening (which will not be used herein). In Eq.
11.18 a time dependent factor, ¥, introduced by Nagdi and Murch is in-

cluded to account for viscoelastic effects.

The Nagdi and Murch theory of viscoelastic-plasticity contains many of
the same caveats as in plasticity theory and, in fact, reduces to the two lim-
iting cases of plasticity for non-viscoelastic materials and linear viscoelas-
ticity for non-yielded materials. The only portions needed here are the lin-
ear viscoelastic constitutive equations given in Chapter 6 and a generic
failure law given by,

f(oy, e, x;) =0 (11.19)

The important feature is the form of the time dependent term which Nagdi
and Murch assumed to be a function of the time dependent strains such
that,

Xij = A€~ &) (11.20)

where aivj is the viscoelastic strain. Here the elastic strains are subtracted

from the viscoelastic strains as in Chapter 10.

The Crochet Model Time Dependent Yielding Model

Later Crochet, (1966) (Nagdi’s research assistant) assumed Xij» tO have the
specific form,

v E \ E 12
x=[(e 5 )(ey -] (11.21)
undoubtedly guided by the von Mises yield criteria written as,

f=j =%sijsij -k*=0 (11.22)
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where the yield stress k = o, = f(). Eq. 11.22 reduces to Eq. 11.16 upon
expansion. Crochet applied the Nagdi and Murch theory to obtain the solu-
tion for a viscoelatic-plastic cylinder under internal pressure in a state of
plane strain. He also used the approach to address the solution of a viscoe-
lastic-plastic cylinder under torsion.

Note that % in the form given in Eq. 11.21 is a scalar and when ex-
panded for the case of uniaxial tension becomes,

2 2 2 1/2
X=[(81V1—£1E1) +(e;’2—s§2) +(e;’3—s§3) ] (11.23)

For uniaxial tension, Crochet assumed that the yield stress was related to
the % function as follows,

o, = A+B[exp(-Cy)] (11.24)

where A, B, and C are constants. No rationale for this equation was given
except to note that the assumption agrees with the fact that the yield stress
is an increasing function of strain rate for many materials including metals
and polymers as described by others. A careful examination of Fig. 11.14
reveals that the yield strain actually increases with strain rate as does the
yield stress in polycarbonate and this might lead one to question the as-
sumption associated with Eq. 11.24. However, if the time for yielding cal-
culated from the strain at yield in Fig. 11.14 is divided by the strain rate
for yield in Fig. 11.11(a), it is clear that the time for yielding to occur in a
constant strain rate test decreases with increasing strain rate. Therefore Eq.
11.24 is a reasonable assumption based upon experimental evidence. Also,
as discussed in the next section in regard to the Zhurkov (1965) theory for
time dependent failure some consider the rate at which failure occurs to be
an activated process and therefore in this light Eq. 11.24 is quite reason-
able.

Phenomenologically, the behavior of polycarbonate can be represented
by a mechanical model containing a friction or “stick-slip” element to rep-
resent yielding. Such a model was first introduced by Bingham (See Bing-
ham, (1922) and Reiner, (1971)) to explain the behavior of certain fluids
such as paint and later adapted to explain yielding in various materials in-
cluding polymers with various modifications as shown in Fig. 11.15.

The relation between stress and strain for the Modified Bingham model
in Fig. 11.15(b) has three regions of behavior, linear elastic, linear
viscoelastic and plastic flow. The relations between stress and strain for the
first two regions in Fig. 11.16(d) can be described by,
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Fig. 11.15 Various mechanical models with a yielding (friction) element. (After
Brinson and DasGupta, (1975)).

e=2 . 5=0 (11.25)
E
. 0 o0-0
E=—+— , Gsosoy (11.26)
E wu

where 0 is defined as the linear elastic limit stress and oy is defined as the
yield stress. Above the yield stress a suitable relation for plastic flow must
be used. The stress-strain equations corresponding to a constant strain-rate
test can be shown to be,

o=Ee, o<0

(11.27)

o(t):@nER[l-e'(t'to)”, 0<o<0

y

where the relaxtion time, T, is given by T=u/E and t; is the time at the
elastic limit. The second equation can be written as,

o(e) =e+rER[1-e'(8'¢)/RT], d<c=<o, (11.28)
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where R is the strain rate and ¢ is the linear elastic limit strain. The stress-
strain response for a constant strain-rate test up to the yield point can be
accurately model by Eq. 11.28 for any particular strain rate as shown by
Brinson and DasGupta, (1975). To model all rates with only one equation
requires that the relaxation time vary with strain-rate which makes the rep-
resentation physically inconsistent. That is, if the relaxation time varies
with strain rate then the relaxation time is a function of either stress and/or
strain and would mean that the material is nonlinear. However, as will be
shown this simple model can be used with the viscoelastic-plastic theory of
Nagdi, Murch and Crochet to allow the prediction of delayed failures for
polycarbonate and other polymers.

The differential equation Eq. 11.26 for the modified Bingham model of
Fig. 11.15(b) can be solved for creep to give,

o,-0
u

e(t) =

o
t +EO’ 0<o<o, (11.29)

This result predicts a linear variation of strain with time and, therefore,
does not well represent the case of creep for polycarbonate. Combining
models b and d in Fig. 11.15 would give the desired form of creep re-
sponse. (See HW problem 11.4.) The modified Bingham model is, how-
ever, compatible with the experimental data given in Fig. 11.14, in the
sense that there appears to be a stress below which creep or relaxation will
not occur.

Using the modified Bingham model in the Nagdi-Murch analytical ap-
proach, the difference between viscoelastic and elastic strains in a creep
test becomes,

2
2 -
(e -eh) =(00u et) , o0=0 (11.30)
and the lateral strains become, upon assuming a constant Poisson’s ratio,
2
2 2 -
(ex-e5) = (e -e%) = Vz(OOTet) , 020 (11.31)

The time factor, %, in Crochet’s time dependent yield criteria for uniaxial
tension now becomes,

X=(0°M_et)(l+2vz)”2, G20 (11.32)
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and the expression for the time dependent yield behavior of Eq. 11.24 be-
comes,

0, (t) = A+Bexp[-K(o,-0)t], 0=6 (11.33a)
where the constant K is given by,

_Ca+2v)'"?
u

K (11.33b)
In Eq. 11.33a o, and o, are the same, as this is the representation for a
creep test. Also, the time in Eq. 11.33a is the time for yielding to occur. As
aresult Eq. 11.33a is rewritten as,

o,()=A+ Bexp[-K(oy - e)tf], 0=0 (11.34)

where t; is the time to yield or time to rupture in the case of a more brittle
material. An explicit expression for the time to failure can be obtained by
rearranging Eq. 11.34,

1 lnB

tf:K(oy—e) o,-A

(11.35)

The yield stress (Luder’s band formation) vs. creep to yield time from Fig.
11.12 is shown in Fig. 11.16 and compared to Eq. 11.35. The constants A,
B and C in Eq. 11.35 were determined from the creep to yield data. Pois-
son’s ratio was assumed to be 0.4 and all other parameters were deter-
mined for the modified Bingham model. A similar procedure was used to
obtain the creep to yield behavior of a rubber-toughened adhesive (Brin-
son, et al., (1975)).

The modified Schwedoff model as given in Fig. 11.15 could easily be
changed to have a friction element in series with model which would be-
come the yield point and change the friction element in parallel with the
spring and damper to the elastic limit stress. (See HW problem 11.4.) Such
a model would better represent the creep process but would be more cum-
bersome to use and it would not be possible to develop a closed form equa-
tion for the creep to yield time as given by Eq. 11.35. At the higher stresses
polycarbonate is nonlinear and it would be best to use a nonlinear approach
rather than mechanical models using friction elements. From Egs. 10.47
and 11.23 and it is easily shown that the % parameter including the
Schapery parameters is given by (Carter, et al., (1978))
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172
% =D, #8201 (14+2v?) (11.36)
a

o

which when substituted in Eq. 11.24 results in the time to failure equation,

1/n
1 B
t,=|—In—=— 11.37
71 CBo; n o - A] ( )
where B is given by,

12

B=D, _&%2 (1 + 2\/2) (11.38)
a

o

Here the symbols o is used rather than o, to indicate that the process may
be used for creep to rupture as well as creep to yield behavior. Eq. 11.37
was used to represent time dependent failure data for a chopped fiber com-
posite (SMC 25) and a modified adhesive (Metlbond 1113-2) as given in
Fig. 11.17.
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Fig. 11.17 Uniaxial creep to failure of (a) Metlbond 1113-2 and (b) SMC-25
(Data from Cartner, (1978)).

Long Term Delayed Yielding and Three-Dimensional Problems

The forgoing development only presents the framework for including the
viscoelastic constitutive equation in developing a method and equations to
predict the onset of delayed yielding due to the viscoelastic behavior of a
polymer. Further, only one-dimensional examples have been given and
only for relatively short times. Naturally, for realistic circumstances, any
such approach needs to be modified to predict time dependent yielding in
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more complicated problems associated with real structures where the time
scale may be on the order of years.

An illustration of such a realistic problem was the July 2006 failure of
anchor bolts held in place by an epoxy adhesive that led to massive
amounts of concrete to fall on motorists in the D Street portal of the Inter-
state 90 (I-90) connector tunnel in Boston, resulting in one death. The
NTSB Highway Safety Board announced in July of 2007 that the cause of
the failure was due to creep of the epoxy adhesive. The time from installa-
tion until failure was a number of years, perhaps as many as ten. Obtain-
ing ten-year data in advance of a project is not realistic but perhaps well-
defined creep to yield or rupture tests could have established a lower
bound and given engineers a better understanding of how to make sure
that such a failure would not occur.

One way to obtain long-term information is through the use of the time-
temperature-superposition principle detailed in Chapter 7. Indeed, J. Lohr,
(1965) (the California wine maker) while at the NASA Ames Research
Center conducted constant strain rate tests from 0.003 to 300 min"' and
from 15° C above the glass transition temperature to 100° C below the
glass transition temperature to produce yield stress master curves for
poly(methyl methacrylate), polystyrene, polyvinyl chloride, and polyethyl-
ene terephthalate. It should not be surprising that time or rate dependent
yield (rupture) stress master curves can be developed as yield (rupture) is a
single point on a correctly determined isochronous stress-strain curve.
Whether linear or nonlinear, the stress is related to the strain through a
modulus function at the yield point (rupture) location. As a result, a time
dependent master curve for yield, rupture, or other failure parameters
should be possible in the same way that a master curve of modulus is pos-
sible as demonstrated in Chapter 7 and 10.

To avoid time dependent yielding in circumstances where a two or
three-dimensional viscoelastic stress analysis is needed it would be neces-
sary to define the lifetime of the structure. Then tensile creep tests are
needed to determine a failure envelope for the defined lifetime similar to
those depicted by Fig. 2.20. A loading for the structure would be selected
such that the stresses determined in a viscoelastic stress analysis of the
structure would be inside the envelope.
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11.3.2 Analytical Approaches to Creep Rupture

In this section the concern is failure by rupture or separation rather than by
yielding as in the previous section. For example, the toughened epoxy ten-
sile specimen shown in Fig. 11.5 failed by separating into two parts with
the fracture surface being perpendicular to the specimen length. That is, of
all the many visible crazes, eventually only those on the line of separation
reached the critical state. To reiterate, for failures of this type in many ma-
terials including polymers, it is thought that the fracture process begins at
small microscopic defects or flaws in the material and if an induced stress
field around these flaws is sufficient, additional cracks will nucleate near
the tip of the flaw. There will be many of these competing micro-cracks
and eventually one dominant crack will prevail and a tensile specimen will
fail as in Fig. 11.5. This has led some to consider the fracture process to be
a stochastic event and to develop statistical tools for the evaluation of vis-
coelastic fracture processes. For a description, see Halpin and Polley,
(1967). Indeed, they demonstrated that the breaking stress for an SBR
Gum polymer at different temperatures could be shifted to form a breaking
strength master curve that could be fit with a modified power law.

Knauss, (1963), suggested that that weak bonding areas in a polymer
could also serve as the site for small cracks to nucleate. That is, during the
polymerization process not all molecules are able to move freely to reach
the optimum position for maximum bond strength. As a result, weakly
bonded regions are distributed throughout the bulk polymer and serve as
an ideal location for an induced stress field to create a small fissure. In de-
veloping a comprehensive molecular based approach to fracture, the Ar-
rhenius rate law given earlier was used as a starting point.

In the following several time dependent failure laws will be considered
that can be used by the design engineer to make estimates of the probable
time for rupture failure in uniaxial tensile tests. The section will conclude
with a brief discussion of how to apply these approaches to more compli-
cated structures. While the following methods have been developed pri-
marily for a creep to rupture phenomenon, they can potentially be used for
creep to yield as well or even possibly as a means of determining the de-
marcation between linear and nonlinear viscoelastic regimes. Some of the
examples included are applied in this manner.

Activation Energy Approach to Creep Rupture

The creep behavior of many materials including most metals and thermo-
plastic polymers is often described as given in Fig. 11.18 and contains
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three stages; primary (transient), secondary (steady state) and tertiary por-
tions. Ultimately, with sufficient loading and sufficient time the material
will creep until rupture occurs. The time associated with transient and ter-
tiary response is often very small compare to the time associated with sec-
ondary creep. As a result, an approximation for the time to creep to rup-
ture, t.,, can be obtained by using the Ahrrenius reaction rate equation.
Assuming that the secondary region can be extended to approximate the
tertiary portion, the rate of strain can be calculated and equated to the reac-
tion rate,

E

! a

& 7% _p= Ae KT =¢ = constant (11.39)

r

t

T

where t, is the time to creep to rupture, €,, € are defined in Fig. 11.18 and
all other parameters are previously defined in Eq. 11.3. Rearranging gives,

Ed
t.=A'ekT (11.40)
where A’ is a new constant.
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Fig. 11.18 Typical creep curve for metals and thermoplastic polymers.

Taking logarithms of both sides and converting to base 10 logarithms
gives,

E
log, t, =1 A'+M == 11.41
0810 L =108y kT ( )
where M = 0.4343 is a factor relating natural logarithms to base 10 loga-
rithms. From Eq. 11.39 both A’ and E, are functions of the (constant)
stress level. However, the Larson-Miller Parameter method for determin-
ing creep rupture time of a material assumes E, is a function of stress
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while A’ is a constant. Based on this assumption and Eq. 11.41 the Lar-
son-Miller parameter is defined as,

LMP =T(log,st, +C,, ) =f(0) (11.42)

where C,, is a new constant. The Sherby-Dorn method to determine the
creep rupture time of a material assumes A’ is a function of stress while E,
is a constant. Again with this assumption and Eq. 11.41 the Sherby-Dorn
parameter is defined as,

SDP =log,t, — C,lid =f(o) (11.43)
(For a more complete description of these time dependent failure ap-
proaches, see Dowling, (1993)). As an illustration of the use of the utility
of Larson-Millard parameter, method data from Dillard (1981) for the
uniaxial creep rupture of a [90/60/-60/90],s graphite/epoxy composite at
various temperatures is given in Fig. 11.19. The rupture stress is plotted
against the LMP as shown and reduces failure stresses at three different
temperatures to a single linear master curve. Such an approach is very
convenient for a designer as it provides an upper bound for the failure
stress as a function of both temperature and time that can be used for the
engineering design of structures. If all stresses in a structure are kept below
the data scatter, then failure is not likely to occur for any temperature and
the line can be extrapolated so a design lifetime can be estimated.
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Fig. 11.19 Application of Larson-Miller parameter method to creep of a [90/60/-
60/90],5 graphite/epoxy laminate. (Data from Dillard, (1981)). Line is
a fit of the data using the Larson Miller equation.
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The Larson-Miller and other similar methods have been widely used for
metals but here it is important to note that difficulties arise for fiber rein-
forced composite laminates because the constants are only valid for one
configuration of the plies and a more general approach is needed. Dillard
(1981) developed an incremental viscoelastic time dependent lamination
theory approach that included the Tsai-Hill failure law modified to account
for delayed failures using the Zhurkov time dependent failure model that
will be discussed in the next section. The advantage of the Dillard ap-
proach is that information on the viscoelastic behavior as well as the de-
layed failure behavior of 0°, 10° and 90° plies can be used to predict the
behavior of general laminate configurations.

The Zhurkov Method

Another variant of the activation energy approach (Eq. 11.40) is the
Zhurkov method, sometimes referred to as the kinetic rate theory, which is
based upon tests on more than 50 different materials including both metals
and polymers (see Zhurkov, (1965)) and results in an equation for the time
to creep to rupture given by,

E,-yo

t, =tee KT (11.44)

where t. is the time to creep to rupture in a uniaxial tensile test, t,, and ¥y,
are constants, E, is a constant activation energy, o, is the applied true
stress, k, is Boltzman’s constant and T is the absolute temperature. The pa-
rameter, ty, is described by Zhurkov as the period of natural oscillation of
the atomic structure and is said to be constant for all materials. In the
original form, the activation energy was defined by a parameter, u,, as an
energy barrier that must be overcome to rupture the atomic structure and is
therefore similar to the activation energy, E,, in the Ahrrenius equation.
Therefore, in Eq. 11.44 the standard activation energy symbol has been
used. This modified activation energy approach is quite similar to Eq.
11.40.

If the activation energy, E,, is equal to the quantity, Yo, the creep rup-
ture time is independent of temperature and implies the existence of a
common “pole” as shown in Fig. 11.20. That is,

YO

lim t, = lim t exp(E“_
yo—E, ' yo—E, kT

)=t, (11.45)

a
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and data for different temperatures will intersect at the common pole as
shown in Fig. 11.20. All the materials tested by Zhurkov displayed this
behavior.

Various modifications of Zhurkov’s equation have been suggested and a
discussion of these can be found in Griffith, (1980). The Zurkov equation
can be written in the form,

Int, = A+% (11.46)

where B is a function of stress and A=Int,.
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Fig. 11.20 Temperature dependence of the Zhurkov equation for creep rupture
for PMMA. (Data from Zurkov, (1965))

Cumulative Creep Damage of Polymers

For multi-step creep loading or even single-step creep loading in inho-
mogenous materials, it is necessary to have a cumulative creep damage
rule similar to Minor’s rule for cumulative fatigue damage. Such a rule is
essential for both creep to yield and creep to rupture theories and can be
used in conjunction with a given failure theory. Note that for materials
with several constituents such as a laminated polymer composite material
it is possible for a single lamina to see a change in stress level even when
the laminate is under a constant uniaxial creep loading. Often cumulative
damage under multi-level creep loads is represented by an approach known
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as Robinson’s life fraction rule shown in Table 11.1 where t; is the time at
the creep stress level o; and t; is the time to creep rupture for the stress o;.
Therefore, if the rule holds it is possible to predict the time to creep to fail-
ure under an arbitrary number of step stress inputs providing the creep rup-
ture times are known for various single step input. While this theory sug-
gest that damage is proportioned equally to the creep time for each stress
level, actual data indicates that the right hand side of Robinson’s equation
varies between 0.3 and 2.0 for various particular polymers. These varia-
tions are not surprising, as Minor’s rule is notorious for it’s inability to
properly predict the failure of a material with multiple stress steps under
fatigue loading. For this reason a number of modifications to the Robinson
rule have been suggested and are given in Table 11.1.

Table 11.1 Various Cumulative Damage Rules for Polymers

1. | Robinson’s life fraction rule 4 -1
- ty

2. | Lieberman’s creep strain-fraction E g,(t)
rule

3. | Oding and Burdusky proposed a
rate of void production rule propor- e \"
tional to the secondary creep rate, E(—l) =1
€, and the rate of void accumula- i
tion, m.

4. | Johnson proposed a rate of void
production rule similar to 3 except ¢\
that the rate of void accumulation E(—l) =1
was also related to primary creep, i
W.
5. | Freeman and Voorhees proposed a E (tA c. )“ 2

combination of equations of 1 and
2.

6. | Abo El Ata and Finnie proposed a t; £
combination of equations 1 and 2. KE(_)+ (1 - K)E(_) =1

7. | Kargin and Slonimsky proposed an

[ dt
. . =1
integral approach for varying f —tf[o(t),T(t)]
stresses and temperatures 0
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For a more complete discussion of the various cumulative creep damage
rules as well as references to those given in Table 11.1 see Zhang, et al.,
(1986) and Dillard, (1981).

Zhang conducted extensive creep and creep to failure tests of polycar-
bonate and polysulfone for both single creep loads and multiple step-up or
step-down creep loads as illustrated in Fig. 11.21 and developed an equa-
tion of the form,

n

q t,
EKi[—i] -1 (11.47)
tfi

i=1

where n is a constant, K; is a constant for each creep time interval, t; is the
time interval for stress o; and t;; is the time for failure at a single step stress
of o;. For a two step loading Eq. 11.47 becomes,

Kl[t—l} + Kz[t_zl -1 (11.48)
Ly Lo

In experiments for both polycarbonate and polysulfone Luder’s bands
formed. In polycarbonate the Luder’s band was a precursor to yielding but
in polysulfone the Luder’s bands were a precursor to rupture that occurred
almost simultaneous with formation.

Creep to yield times (Luder’s band formation) for a single creep load are
shown in Fig. 11.22 for polycarbonate and vary linearly with log time.
Creep to yield times for a single step-down or step-up loading for polycar-
bonate are shown in Fig. 11.23 and 11.24 in non-dimensional form. The
dashed line is Robinson’s life fraction rule for a single step-down or step-
up loading. Solid lines represents polycarbonate yield data for step-down
or step-up loading fitted with Eq. 11.48 where K;, K, and n are given in
the each figure. Each data point in Fig. 11.22 - Fig. 11.24 represents five
independent tests.
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Fig. 11.21 Typical step-up and step-down creep tests. Zhang, et al. (1986). Re-
printed with kind permission of Springer Science and Business Media.
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Fig. 11.22 Creep to failure (rupture) for Polycarbonate for a single creep load.
Zhang, et al. (1986). Reprinted with kind permission from Springer
Science and Business Media.

Clearly Robinson’s life fraction rule is invalid for polycarbonate and the
same was true for polysulfone though not shown here. This is not surpris-
ing as the effects of memory are not included, illustrating once again that
using analytical methods developed for metals are not usually viable for
polymer based materials. Unlike Robinson’s life fraction rule, Eq. 11.48 is
nonlinear and fits the data for polycarbonate well though the equation is
still empirical. The data for two different loading histories given in Fig.
11.24 demonstrates that the parameters in Eq. 11.48 vary with time and
must be determined for each load history. Perhaps the Nagdi-Murch-
Crochet approach could be used for a multi-step load though that awaits
further study.
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Fig. 11.23 Step down loading creep to failure (yield) for polycarbonate. Zhang,
et al. (1986). Reprinted with kind permission from Springer Science
and Business Media.
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Fig. 11.24 Step-up loading creep to failure (yield) for polycarbonate. Triangles
and circles are for different loading histories. Zhang, et al. (1986).
Reprinted with kind permission from Springer Science and Business

Media.
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Reiner-Weissenberg Criteria for Failure

As discussed previously, failure is most often treated as a separate issue
from the determination of modulus properties of materials. In fact, most
failure laws are derived empirically from observations related to a cata-
strophic event such as yielding or rupture. As a result, a great deal of test-
ing and data analysis is necessary to establish an appropriate law. On the
other hand, modulus or constitutive laws are derived by more rational
means of relating deformations to the forces that produce them. For this
reason, often much less testing is necessary to define a constitutive law for
a material especially if deformations do not depart from the linear elastic
or reversible deformation range of a material.

Failure, however defined, should be a part of a complete constitutive de-
scription of a material as discussed in the previous sections. In other,
words, the key to dealing effectively with the failure of time dependent or
viscoelastic polymers lies in treating failure properties as a termination of a
nonlinear viscoelastic process. Perhaps, for this reason, a number of inves-
tigators have suggested that modulus and strength laws should be related to
each other for polymers (eg., Landel, (1964)).

The concept of distortional energy as a measure for the critical magni-
tude of the stress state a material can endure at a point in an elastic mate-
rial (von Mises criterion) cannot be carried over directly to viscoelastic
materials because viscoelastic deformation involves dissipative mecha-
nisms. Thus, at any point in time the energy balance must be written as,

Total deformation energy = Stored (Free) energy + Dissipated Energy

Reiner and Weissenberg, (1939) suggested that the energy storage capacity
of a material is responsible for the transition from viscoelastic response to
yielding in ductile materials or to rupture (fracture) in brittle materials.
They assume that a threshold value of the distortional free (or recoverable)
energy, called the resilience of the material, is the quantity that governs
failure. If the Reiner-Weissenberg (R-W) approach is applied to a material
with zero dissipation (elastic material) it becomes identical to the von
Mises failure law. When applied to a viscoelastic material, however, the
free energy under constant load changes with time and the variation must
be known. If the mechanisms through which total deformation energy is
transformed into dissipated energy are activated such that no free energy
can accumulate, there is practically no limit to the amount of deformation
energy that can be applied without failure occurring. That is, forces up to a
certain magnitude can be applied for any length of time without leading to
rupture. If the material cannot accommodate this energy redistribution fast
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enough then the material will store energy until the critical value needed
for failure is achieved. At that time failure will occur. The failure process
is therefore delayed (or time dependent) which limits the life of a given
structure to a finite value or defines the time required for failure to occur
after initial loading. The instant of yielding or rupture is thus clearly de-
pendent upon the final outcome of the connection between deviatoric free
energy and deviatoric dissipated energy. Thus, the effect of the strain his-
tory on delayed yielding or rupture follows from this model in a natural
way.

The advantage of this approach is that the onset of failure is defined by a
single parameter, the distortional free energy, while that the former method
of Nagdi and Murch and Crochet required the determination of three new
parameters in addition to those needed to describe constitutive behavior.

The following description is a brief review of the Reiner-Weissenberg
criterion that follows that given by Hiel, (1984) and Bruller, (1978, 1981).
(See Hiel for additional Brueller references to his extensive investigations
and application to polymeric materials.)

Free Energy Accumulation in a Three-Parameter Model Under Creep
Loading: In order to apply the R-W criterion the stored (free) and dissipa-
tive energy must be calculated and, as an example, these will be deter-
mined for a three-parameter model with the notation given in Fig. 5.1. Re-
call from Chapter 5 that work or total energy is,

W= fods (11.49)

0
which for an elastic material reduces to

W = %GZD (11.50)
where D is the compliance (inverse of modulus, E). Thus, the energy

stored in the elastic spring under creep loading is,

W, = %ogno (11.51)
and the energy stored in the Kelvin element spring can be shown to be,
W, =Lo2D,(1—et'm)? 11.52)

2

The total stored energy in the springs under creep is therefore,
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1 -t/T,
Waprings = Wored =75 oD, + 202D (1-e™'™)? (11.53)
The dissipated energy in a 3-parameter solid is due to the damper, W,, in

the Kelvin element and can be calculated from,

Woamper =W f o —“dt (11.54)
where
de i de D, _in
Oy =U dt“ g, =€ =D (1-¢™"'™) | dt“ = 0,te YT (11.55)

where the subscript u represents the damper and K represents the Kelvin
element. Therefore, the dissipated energy is,

Wdamper = Wu = %OSDI (1 - e_zutl ) (11.56)
The total energy in the three-parameter model under creep loading is found
by adding Eqs. 11.53 and 11.56 to obtain,

W, =W +W, =20,

total — springs damper 2

Dl(l—exp(—t/'cl))] (11.57)

The extension of Eqgs. 11.53, 11.56 and 11.57 to an N-element Kelvin unit
with a free spring is,

N
WGtored = vvspringq = [ 0 + E% 1- exp(_t/t )) ] (11'58)

i=1

N
D.
Wdissipated = Wdampers = Og E 71 (l - eXP(‘zt / ri))] (11'59)
N
Wtotal = 03 % + E D1(1 - eXP(—t/Ti))] (11.60)
i=1

Taking the limits for t — o gives,

N

[W 0

D,
qprmgq 7 (11.61)

N|CU
+
o\

lim t —o
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yE (11.62)
ldamperq =0 E 7 o
im t —oo i=
N
W, ]-0320+ $'p. (11.63)
[ lotal] Oy 2 + i °
lim t -0 Pt

Thus, half the work done by the external forces on the Kelvin elements
goes to increase the free energy while the other half is dissipated.

If a torsion test is used, Eqs. (11.58 — 11.60) give the stored (free), dis-
sipated and total deviatoric energy. However, if a uniaxial tensile test is
used, Egs. (11.58 — 11.60) give the total (shear and bulk) strain energy,
each of which has a stored and dissipated energy component. However, as-
suming Poisson’s ratio to be a constant, it can be shown that the deviatoric
stored energy comprises 93% of the total stored energy in a uniaxial ten-
sion test. See HW 11.9.) The stored energy due to volume change is rela-
tively small and as only unidirectional data will be considered here it is as-
sumed that the deviatoric stored energy and total stored energy are the
same.

The master curve for a [90°]s, graphite/epoxy composite in uniaxial ten-
sion using TTSP is shown in Fig. 11.25. The following six-term Prony se-
ries representation of the data is also shown in Fig. 11.25 and as may be
observed the agreement between the two is excellent.

D(t) =0.71+0.02(1 - ") +0.02(1-¢™""") +0.04(1 -¢™*"")

/100 ~£/1000 ~£/10000 10 e (11.64)
+0.04(1-e )+0.18(1-¢ )+0.25(1-¢ )x10 psi

Using expression 11.64 in Eqs. 11.58 — 11.60, the total energy, the stored
(free) energy and the dissipated energy for creep was determined with the
results shown in Fig. 11.26 normalized with respect to the initial total en-
ergy. The total energy and the stored energy are the same initially and
therefore, if sufficient creep stress were imposed, failure would occur upon
loading. If a lower creep stress were imposed, dissipation would prevent
failure until a critical stored energy is reached.
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Fig. 11.25 Comparison between a TTSP master curve and a six term Prony series
for a [90°] graphite/epoxy composite at 160° C (320° F) and a stress of
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35.7 MPa (5.18 ksi). Data from Hiel, (1984).
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Fig. 11.26 Total stored and dissipated energy as calculated from Eqs. 11.58-
11.60 normalized with respect to the initial total energy (t = O min) us-
ing the Prony series representation of the master curve in Fig. 11.25
Due to the log scale starting at