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p. cm.

Includes bibliographical references and index.
ISBN 0-387-22021-6 (alk. paper)
1. Heat- -Conduction. 2. Materials- -Thermal properties. I. Shindé, Subhash L. Goela,
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Preface

The demand for efficient thermal management has increased substantially over
the last decade in every imaginable area, be it a formula 1 racing car suddenly
braking to decelerate from 200 to 50 mph going around a sharp corner, a
space shuttle entering the earth’s atmosphere, or an advanced microproces-
sor operating at a very high speed. The temperatures at the hot junctions
are extremely high and the thermal flux can reach values higher than a few
hundred to a thousand watts/cm2 in these applications. To take a specific
example of the microelectronics area, the chip heat flux for CMOS micropro-
cessors, though moderate compared to the numbers mentioned above have
already reached values close to 100 W/cm2, and are projected to increase
above 200 W/cm2 over the next few years. Although the thermal manage-
ment strategies for microprocessors do involve power optimization through
improved design, it is extremely difficult to eliminate “hot spots” completely.
This is where high thermal conductivity materials find most of their applica-
tions, as “heat spreaders”. The high thermal conductivity of these materials
allows the heat to be carried away from the “hot spots” very quickly in all
directions thereby “spreading” the heat. Heat spreading reduces the heat flux
density, and thus makes it possible to cool systems using standard cooling
solutions like finned heat sinks with forced air cooling. A quick review of
the available information indicates that the microprocessors heat fluxes are
quickly reaching the 100 W/cm2 values, which makes it very difficult to use
conventional air cooling (see for example, “Thermal challenges in micropro-
cessor testing”, by P. Tadayan et al. Intel Technology Journal, Q3, 2000, and
Chu, R., and Joshi, Y., Eds. “NEMI Technology Roadmap, National Elec-
tronics Manufacturing Initiative”, Herndon, VA, 2002).

One approach to address this problem is to design and develop materials
with higher thermal conductivities. This is possible by developing a detailed
understanding of the thermal conduction mechanisms in these materials and
studying how the processing and resulting microstructures affect their ther-
mal properties. These aspects are the subject matter of review in this book.



viii Preface

We have chosen to review our current understanding of the conduction
mechanisms in the high thermal conductivity materials, various techniques to
measure the thermal conductivity accurately, and the processing and thermal
conduction properties of a few candidate high thermal conductivity materi-
als. This is by no means an exhaustive review, but the chapters authored by
internationally known experts should provide a good review of the status of
their field and form a sound basis for further studies in these areas.

The eight chapters in this book are arranged to provide a coherent theme
starting from theory to understanding of practical materials, so a scientist
would be able to optimize properties of these materials using basic concepts.
In Chapter 1, Srivastava covers the thermal conduction mechanisms in non-
metallic solids in some detail. The thermal conductivity expression derived is
used to provide guidelines for choosing high thermal conductivity materials.
Thermal conductivity results for various materials including diamond, carbon
nanotubes, and various other forms of carbon are presented. The results are
also extended to polycrystalline, and low dimensional systems. In Chapter 2,
Morelli deals with the thermal conductivity of materials near their Debye
temperatures. It also compares the results of a simple model to experimental
data from various classes of crystal structures. Ashegi et al. discusses accurate
characterization of thermal conductivity of various materials in Chapter 3.
They review various thermal conductivity measurement techniques available
to a researcher in detail, and also recommend techniques particularly suit-
able for high thermal conductivity materials like AlN, SiC, and diamond. In
Chapter 4. Fournier reviews an elegant technique, perfected by her group,
for measuring thermal conductivity on a very small spatial scale in hetero-
geneous materials. It is believed that this technique would be very important
when evaluating thermal performance of complex systems. Virkar et al. pro-
vides the current status of the understanding of processing, and resultant
thermal conductivity of aluminum nitride ceramics in Chapter 5. This chap-
ter lays out the thermodynamic foundation for processing that will result in
oxygen impurity removal from AlN, and thus increase its thermal conductiv-
ity. We hope that general application of these concepts will help researchers
optimize thermal conductivity of a host of material systems. In Chapters 6
and 7, Goela et al. describe the details of CVD-SiC, and diamond materials
processing and their properties. Here again the inter-relationship between the
microstructure development through processing, and its effect on thermal con-
ductivity is presented. Finally, in Chapter 8, Kwon et al. describe theoretical
and experimental aspects of the thermal transport properties of carbon nano-
tubes. The strong carbon atom network in these novel materials lead not only
to very unusual mechanical and electrical properties, but also to high ther-
mal conductivity along the tube axis. We hope that the concepts described in
these chapters will survive the test of time, and launch many curious scien-
tists into their own forays in this field of highly interesting materials and their
properties.
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1

Lattice Thermal Conduction
Mechanism in Solids

G.P. Srivastava

The theory of lattice thermal conductivity of nonmetallic solids is presented. After
discussing the fundamental issues, the kinetic-theory expression for the conductivity,
based on the concept of single-mode phonon relaxation time, is developed in some
detail, emphasizing the role of phonon dispersion relations and phonon scattering
rates. The theory presented contains only one possible adjustable parameter, viz.
Grüneisen’s anharmonic coefficient γ. The simplified intrinsic conductivity expres-
sion, within the high-temperature approximation, is used to derive a set of rules
for choosing high-thermal-conductivity materials. The theory is extended to provide
a discussion on the conductivity of solids in polycrystalline and low-dimensional
forms. Thermal conductivity results of quantum wells, quantum wires, and different
solid forms of carbon, viz. diamond, graphite, graphene, nanotubes, and fullerenes,
are presented and discussed.

1.1 Introduction

One of the fundamental properties of solids is their ability to conduct heat.
This property is usually quantified in terms of the thermal conductivity coef-
ficient K, which is defined through the macroscopic expression for the rate of
heat energy flow per unit area Q normal to the gradient ∇T

Q = −K ∇T. (1.1)

Understanding and controlling the thermal conductivity K of semiconduc-
tors plays an important part in the design of power-dissipating devices. For
example, power transistors, solar cells under strong sunlight, diodes, tran-
sistors, and semiconductor lasers sustain large internal power dissipation,
and a high thermal conductivity of the device material can help transfer
this energy to a heat sink. On the other hand, a low thermal conductivity
of semiconductor alloys helps increase the figure of merit of thermoelectric
devices.
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In nonmetals heat is conducted by phonons, quanta of atomic vibrational
modes. The thermal conductivity of a hypothetical crystal is infinite at all
temperatures if it is considered to be infinitely large, is isotopically pure, has
no imperfections, and is characterized by purely harmonic atomic vibrations.
Within the pure harmonic limit a phonon is infinitely long-lived, characterized
with its frequency ω(qs) for wave vector q and polarization index s (longitu-
dinal L or transverse T). Thus, on the application of a temperature gradient,
phonons of a purely harmonic crystal would transport all heat from the hot
end to the cold end. In other words, the thermal conductivity of a purely har-
monic crystal would be infinite at all temperatures. However, real solids are
of finite size, contain defects, and exhibit anharmonicity in atomic vibrations.
These realities limit the lifetime of phonons, rendering finite values of ther-
mal conductivity. Experimental measurements indicate strong temperature
dependence of the conductivity.

Intrinsic phonon-phonon interactions, caused by anharmonicity at finite
temperatures, are inelastic in nature. This makes the concept of phonon
lifetime an intrinsically difficult, if not impossible, concept to comprehend
and thus evaluate theoretically. Thus, it is not usually possible to obtain an
exact expression for K. In this chapter we will discuss the progress made
toward developing plausible theoretical models for lattice thermal conduction
mechanisms in nonmetallic solids. It will be pointed out that whatever the-
ory is adopted for deriving an expression for the thermal conductivity of a
nonmetallic solid, its numerical evaluation requires an accurate knowledge of
two essential inputs: (1) phonon-dispersion relation, and (2) relevant phonon-
scattering mechanisms (to construct the phonon-scattering operator or to
derive the phonon relaxation time). After a brief discussion of these aspects,
we will follow a simple relaxation-time scheme, based on an isotropic contin-
uum model, to discuss the theory of thermal conduction in crystalline, poly-
crystalline, and low-dimensional forms of nonmetals. The high-temperature
expression for the conductivity will be used to derive a set of rules for choos-
ing high-thermal-conductivity materials. Thermal conductivity results for the
various solid forms of carbon, viz. diamond, graphite, graphene, nanotubes,
and fullerene, will be presented and discussed.

1.2 Theory of Thermal Conductivity

Let us consider a crystal with N0 unit cells, each of volume Ω. Let us also
identify a phonon with its wave vector q, polarization index s, frequency
ω(qs), and group velocity cs(q). The heat current Q can be expressed by
including contributions from phonons in all possible modes

Q =
1

N0Ω

∑
qs

�ω(qs)nqscs(q). (1.2)
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The quantity nqs, which is explained later, assumes its equilibrium value n̄qs

characterized by the crystal temperature T . In the presence of a temperature
gradient across the crystal we can express

nqs = n̄qs + δnqs, (1.3)

where δnqs indicates deviation from the equilibrium value. Clearly, then, the
heat current is governed by δnqs, so that Eq. (1.2) can be reexpressed as

Q =
1

N0Ω

∑
qs

�ω(qs)δnqscs(q). (1.4)

The deviation quantity δnqs, which is significantly controlled by crystal
anharmonicity, particularly at high temperatures, is in general unknown.

Microscopic theories of lattice thermal conductivity attempt to address
the quantity δnqs. Two fundamentally different approaches have been devel-
oped: (1) linear-response methods based on the Green-Kubo formalism and
(2) methods based on solving the phonon Bolzmann equation. A detailed dis-
cussion of these theoretical methods can be found in the book by Srivastava [1].
Here we will briefly outline the fundamental concepts underlying these
approaches.

1.2.1 Green-Kubo Linear-Response Theory

The Green-Kubo formalism is rooted in quantum statistics. It begins by
expressing Eq. (1.4) as

K =
kBT 2N0Ω

3
�

∫ ∞

0
〈Q(0) · Q(t)〉dt (1.5)

=
�

2

3N0ΩkBT 2 �
∫ ∞

0
dt

∑
qsq′s′

ω(qs)ω(q′s′)cs(q) · c′
s(q

′)Cqsq′s′(t), (1.6)

where
G(t) ≡ 〈δnqs(0)δnq′s′(t)〉 ≡ Cqsq′s′(t) (1.7)

is a correlation function. The quantity nqs is regarded as the number-density
operator for phonons in mode qs in the Heisenberg representation:

nqs(t) = a†
qs(t)aqs(t), (1.8)

where a†
qs and aqs are the creation and annihilation operators, respectively.

As δnqs is generally unknown, an exact evaluation of G is not possible.
Approximate expressions for G can be derived by employing several theoretical
techniques, such as the Zwangiz–Mori projection operator method, double-
time Green function method, and imaginary-time Green function method. The
first two of these methods have been described in the book by Srivastava [1],
to which the interested reader is referred for details.
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1.2.2 Variational Principles

In applying variational principles for deriving approximate expressions for
K, the quantity nqs is considered as a distribution function nqs(r, t) that
measures the occupation number of phonons (qs) in the neighborhood of a
point r in space at time t. In the absence of an external temperature gradient,
the thermal average of the distribution function is given by the Bose-Einstein
expression

n̄qs =
1

exp[�ω(qs)/kBT ] − 1
. (1.9)

In the steady state of heat flow through a crystal, the total time rate of change
of the distribution function nqs(r, t) satisfies the Boltzmann equation

∂nqs

∂t

∣∣∣∣
diff

+
∂nqs

∂t

∣∣∣∣
scatt

= 0, (1.10)

where the first term represents diffusion (i.e., variation from point to point)
of nqs(r, t) through the solid, and the second term represents the rate of
change of nqs(r, t) due to possible phonon-scattering processes. Noting that in
equilibrium ∂n̄qs/∂t = 0, a canonical form of the linearized phonon Boltzmann
equation reads

−cs(q) · ∇T
∂n̄qs

∂T
= −∂nqs

∂t

∣∣∣∣
scatt

. (1.11)

This form of the phonon Bolzmann equation can be written in a standard
form

Xs
q =

∑
q′s′

P ss′
qq′ψs′

q′ , (1.12)

where Xs
q is a measure of inhomogeneity caused by the application the of the

temperature gradient, P ss′
qq′ is an element of the phonon-scattering operator,

and ψs
q ≡ ψqs is a function that measures the deviation quantity δnqs defined

as follows

nqs =
1

exp[�ω(qs)/kBT − ψqs] − 1
(1.13)

� n̄qs + ψqsn̄qs(n̄qs + 1). (1.14)

Using Eqs. (1.4) and (1.12), the following expression for the thermal con-
ductivity can be obtained

K =
kBT 2

N0Ω | ∇T |2
∑
qs

ψs
qXs

q. (1.15)

This expression cannot be evaluated exactly, as the anharmonic contribution
to the deviation function ψqs is generally unknown. An effort to express ψ in
terms of the inverse scattering operator P−1 would remain unsuccessful, as
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the full set of eigenvalues and eigenvectors of the operator P is not known [2].
Obtaining an approximation for Eq. (1.15) thus becomes a cherished topic of
the variational method.

In a simple variational approach the deviation function is expressed as

ψqs = φqs + δφqs (1.16)

and the semidefinite property of the operator P is expressed as

(δφ, P δφ) ≥ 0. (1.17)

A simple form of variational trial function φqs can be chosen as

φqs = q · u, (1.18)

where u is some constant vector parallel to the applied temperature gradient.
This choice for a variational trial function has been made from the momentum-
conserving property of anharmonic phonon normal (N) processes [3, 4] (also
see Sect. 1.4.2). With this choice of the trial function a lower bound K<

0 for
the exact conductivity coefficient K can be derived [5, 6]: K<

0 ≤ K,

K<
0 =

(φ,X)
(φ, Pφ)2

, (1.19)

where (f ,g) =
∑

qs fqsgqs is implied. The Ziman bound K<
0 can be improved,

i.e., brought closer to K, by employing a more general trial function [7], such
as one made as a linear combination of a few simple trial functions in powers
of q: φ =

∑N
n=1 αnφn.

The ubiquitous simple form of the variational principle just described can
be extended to take the form of complementary variational principles [8]. To
develop such principles the phonon scattering operator P is split in the form
P = L + T ∗T , such that L−1 exists and T ∗ is the conjugate of T . Using the
split form of P the phonon Boltzmann equation in Eq. (1.12) can be expressed
in a canonical Euler-Lagrange form, from which an upper and a lower bound
on K can be derived. As an alternative to using the Euler-Lagrange variational
principles, the upper and lower bounds on K can also be derived by apply-
ing Schwarz’s inequality based on the positive semidefinite nature of P and
(PL−1 − Î): (f , P f) ≥ 0 and (f , (PL−1 − Î)f) ≥ 0 for any admissible vector
function f . Using these ideas, monotonically convergent sequences of lower
bounds {K<

m}, m = 0, 1, 2, . . . [9] and upper bounds {K>
n }, n = 1, 3, 5, . . . [10]

for thermal conductivity can be derived.
While the derivation and application of the method of complementary

variational principles are somewhat involved, it is easy to appreciate their
achievement. Consider a pair of complementary bounds: an upper bound K>

n

and a lower bound K<
m, with suitably chosen large values of m and n. From

these two bounds we can define a narrow window ∆m,n = K>
n − K<

m within
which the theoretical estimate of exact conductivity K must lie. For details
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on the applications of the complementary variational principles, interested
readers are referred to chapter 5 in the the book by Srivastava [1] and refer-
ences therein.

1.2.3 Relaxation-Time Approaches

The difficulty in deriving an (approximate) expression for lattice thermal con-
ductivity can be appreciated from the discussion provided in the previous two
subsections. Relaxation-time approaches provide simple alternatives to the
variational approaches for deriving expressions for the conductivity. In gen-
eral, due to their inelastic nature, anharmonic phonon interactions are not
amenable to a relaxation-time picture [11]. But for simplicity of understand-
ing the problem it is useful to introduce the concept of anharmonic phonon
relaxation time. Starting from the phonon Boltzmann equation, the quantity
−∂nqs/∂t|scatt in Eq. (1.11), or Pψ in Eq. (1.12), can be expressed using
the concept of a relaxation-time τqs for a phonon in mode qs. It is assumed
that on application of a temperature gradient each phonon in mode qs trans-
ports heat during its lifetime (i.e., before it is annihilated due to scattering
events). Important contributions to the theory of thermal conductivity based
on relaxation-time approaches have been made, among others, by Debye [12],
Klemens [13], Callaway [14], Simons [15], and Srivastava [1, 16].

The simplest of relaxation-time approaches is the so-called single-mode
relaxation-time method. In this picture it is assumed that while phonons in
mode qs have been driven out of their equilibrium distribution on application
of a temperature gradient and transport heat for the duration of their lifetime
τqs, phonons in all other modes remain in their thermal equilibrium. In the
language of the previous subsection, this means that while ψqs 	= 0, ψq′s′ = 0
for q′s′ 	= qs. With this restriction we can represent the scattering operator
P by its diagonal part only:∑

q′s′
P ss′

qq′ψs′
q′ � P ss

qqψs
q. (1.20)

This allows the right-hand side of the Boltzmann equation in Eqs. (1.11) and
(1.12) to be simplified to

−∂nqs

∂t

∣∣∣∣
scatt

=
nqs − n̄qs

τqs
=

n̄qs(n̄qs + 1)ψqs

τqs
= P ss

qqψs
q. (1.21)

The single-mode relaxation-time τqs is thus defined from the relation

τ−1
qs =

P ss
qq

n̄qs(n̄qs + 1)
. (1.22)
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Using Eqs. (1.12) and (1.15), the single-mode relaxation-time expression for
thermal conductivity Ksmrt becomes

Ksmrt =
�

2

3N0ΩkBT 2

∑
qs

c2
s(q)ω2(qs)τqsn̄qs(n̄qs + 1). (1.23)

This expression can be viewed as the kinetic theory result

K =
1
3
Csp

v c̄2τ̄ , (1.24)

with Csp
v as the phonon specific heat (heat capacity per unit volume), c̄ as

average phonon speed, and τ̄ as average phonon relaxation time. The single-
mode relaxation-time expression in Eq. (1.23) is sometimes known as the
Debye conductivity expression, as it was first used by Debye [12].

A significant improvement over the single-mode relaxation-time approach
was made by Callaway [14], who included the special role played by the
momentum conservation in anharmonic phonon interaction. In the language
of phonon-scattering operator P , the extra contribution to the phonon relax-
ation time over the single-mode result is that due to the off-diagonal part
of the operator corresponding to the momentum-conserving normal (N) pro-
cesses. The Callaway expression for the conductivity is of the form given in
Eq. (1.23), but with the single-mode relaxation-time τ replaced by an effective
relaxation-time τC

τC = τ(1 + βC/τN), (1.25)

where the parameter βC is a function of the single-mode relaxation-time τ and
a contribution τN from anharmonic N -processes. The resulting conductivity
expression can be expressed as

KC = Ksmrt + KN-drift. (1.26)

The contribution from the N -drift term can be significantly important for
pure materials.

An attempt to incorporate the role of off-diagonal anharmonic momentum
nonconserving (umklapp, or U) processes was made by Srivastava [16]. The
resulting model conductivity expression is similar to the Callaway expression,
but with τC replaced by τS, where

τS = τm(1 + βSτN) (1.27)

with βS including the effect of τm. Here τm includes a modification of the
single-mode relaxation-time τ arising from the contribution of U -processes to
the off-diagonal part of the operator P . Clearly, τS = τC in the absense of such
an attempt (i.e., when τm = τ).
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1.3 Phonon-Dispersion Relations

From the discussion in the previous section it is clear that whatever level
of the theory of lattice thermal conductivity we decide to use, evaluation
of K requires knowledge of phonon-dispersion relation ω = ω(qs), phonon
relaxation-time τ(qs), and a scheme for performing summation over phonon
wave vectors q and polarization s of the expression in Eq. (1.23). Calculation
of the phonon-dispersion relation is a research topic in its own right, known as
lattice dynamics, and is beyond the scope of this chapter. Interested readers
are referred to the books in Refs. [1, 17]. From a knowledge of ω(qs) for a
given polarization index s the sum over q can be replaced by an integral

∑
q

→
∫

g(ω) dω, (1.28)

where g(ω) is the density of phonon states at the frequency ω. In general,
the density of states is inversely proportional to the magnitude of the phonon
group velocity

g(ω) ∝ 1
|∇qω| . (1.29)

For a proper calculation of the density of states g(ω) it is essential to obtain
numerical values of the phonon-dispersion relation ω(qs) for a large number
of phonon wave vectors q within the irreducible part of the Brillouin zone of
the solid under consideration. We will not, however, discuss this further in the
present context.

With a view to restricting our discussion to high-thermal-conductivity
materials, in this section we will examine the main features of the phonon-
dispersion relation in diamond and aluminium nitride as examples of three-
dimensional systems, graphite as an example of quasi–two-dimensional system,
and carbon nanotubes as examples of quasi–one-dimensional systems. We will
also present a simplified version of the dispersion relation and density of
states of these systems within the continuum limit for crystal structure.

1.3.1 Three-Dimensional Materials

(i) Diamond. The diamond crystal structure can be constructed from a con-
sideration of the face-centered cubic lattice and by assigning each lattice point
two carbon atoms at a relative separation of a(1/4, 1/4, 1/4) from each other,
where a is the cubic lattice constant. The atomic positions of a solid with
a closely related structure, the zincblende structure, within the conventional
cubic unit cell of length a, is shown in Fig. 1.1. The diamond structure can
be identified with the zincblende structure when the two basis atoms are of
the same species.

The phonon-dispersion relation and the density of states for diamond are
shown in Fig. 1.2. The dispersion results are plotted along the three principal
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Fig. 1.1. Atomic positions in a solid with the zincblende structure, shown in the
conventional cubic unit cell of size a.

symmetry directions: from Γ to X along [100], from Γ to K and extended up
to X along [110], and from Γ to L along [111]. Due to two carbon atoms per
primitive unit cell, there are six phonon branches. With increasing energy near
the Brillouin zone center (Γ) these are the T1A (slow transverse acoustic),
T2A (fast transverse acoustic), LA (longitudinal acoustic), T2O (fast trans-
verse optical), T1O (slow transverse optical) and LO (longitudinal optical)
branches. The density of states shows a few characteristic peaks, correspond-
ing to flatness of the dispersion curves for the various polarization branches.

(ii) β-AlN. Aluminium nitride can assume two crystal phases: zincblende
and wurtzite, known as β-AlN and α-AlN, respectively. In the zincblende

Fig. 1.2. Phonon-dispersion curves and density of states for diamond. The
results are obtained from the application of a bond charge model [18]. Experimental
measurements are indicated by filled circles.
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Fig. 1.3. Phonon-dispersion curves and density of states for AlN in the zincblende
phase (β-AlN). Solid curves are obtained from calculations employing a bond charge
model, and empty diamonds indicate experimental results. Taken from [19].

phase the cubic lattice constant is 4.38 Å. The phonon-dispersion curves
for zincblende AlN, together with the density-of-states curve, are shown in
Fig. 1.3. There are two significant differences between the dispersion curves
for diamond and AlN. First, the TO branch in AlN is very flat, leading to a
sharp peak in the density of states. Second, there is a large LO − TO splitting
at the zone center (the Γ point) for AlN. This arises due to the ionic nature
of AlN.

(iii) α-AlN. The crystal structure of the wurtzite phase of AlN can be
constructed from the hexagonal lattice with a basis of four atoms such as: Al
at (0, 0, 0), (2a/3, a/3, c/2) and N at (0, 0, u), (2a/3, a/3, c/2 + u). For α-AlN
the hexagonal lattice constants are a = 3.11 Å and c =

√
(8/3)a, and the in-

ternal parameter is u = 0.382. Although each atom is tetrahedrally bonded to
four neighbors of another species in both the zincblende and wurtzite struc-
tures, the connectivity of covalent bonds is different in the two structures. The
crystal structure and the phonon-dispersion curves and the density of states
for the α phase are shown in Figs. 1.4 and 1.5, respectively.

As a result of the geometrical differences between the β and α phases,
there are a few differences in the phonon spectra and the density of states for
the two phases. The four atoms within the wurtzite primitive unit cell result
in three acoustic and nine optical branches. The lowest three optical branches
are found to lie in the acoustic range obtained for the zincblende phase. The
other six optical branches are well separated from the acoustic and the lower-
lying optical branches. Thus there is an optical-optical gap in the phonon
spectrum for α-AlN, as opposed to the optical-acoustic gap for β-AlN. This
occurs because the extent of the Brillouin zone in the wurtzite phase along
the [111] direction is only half of that in the zincblende phase. The density of
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Fig. 1.4. Wurtzite crystal structure.

Fig. 1.5. Phonon-dispersion curves and density of states for AlN in the wurtzite
phase (α-AlN). Solid curves are obtained from calculations employing a bond charge
model, and filled circles indicate experimental results. Taken from [19].

states for α-AlN shows the development of a small but sharp peak just below
the large peak in the lower part of the optical range for the zincblende phase.

1.3.2 Graphite, Graphene, and Nanotubes

(i) Graphite. The graphite structure is characterized by a basis of four carbon
atoms assigned to each point of a simple hexagonal lattice. The distribution
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of carbon atoms can be visualized in the form of atomic planes (the so-
called basal planes). The basal atomic planes perpendicular to the c-axis
have a honeycomb arrangement. The interplanar separation is 2.36 times the
nearest-neighbor interatomic distance (1.42 Å) in a basal plane, indicating
much weaker interlayer bonding.

The primitive translation vectors in a basal plane of graphite can be chosen
as shown in Fig. 1.6. Corresponding to four atoms per primitive cell, there are
12 phonon branches for graphite, shown in Fig. 1.7. However, these branches
are rather strangely ordered and show anomalous dispersion [20]. In a basal-
plane direction there are three acoustic branches. While the LA and fast TA
branches show normal dispersion, the slow TA branch (also called the bending
mode branch) shows an anomalous dispersion ω ∝ q2 for low q-values and a
linear behavior ω ∝ q for larger values of q. There is also a very low-lying
TO branch at the zone center which shows a dispersion behavior similar to
that of the slow TA branch. The frequencies of the in-plane TA, LA, and LO
branches extend up to about 25 THz, 32 THz, and 47 THz, respectively. Along
the interplanar direction the TA and LA branches are very low-lying (below
νc(LA) = (ωc(LA)/2π) � 4 THz) and get folded into dispersionless TO and LO
branches, respectively.

(ii) Graphene. A single graphite plane is a graphene sheet. This hypo-
thetical form of carbon, therefore, contains two carbon atoms per unit cell,
leading to 6 phonon branches, as shown in Fig. 1.8(a) [21]. The three optical
branches correspond to one out-of-plane mode and two in-plane modes. Near
the zone center, with increasing energy the three acoustic branches corre-
spond to an out-of-plane mode, an in-plane tangential (bond-bending) mode,
and an in-plane radial (bond-stretching) mode, respectively. The out-of-plane
(transverse) mode shows a q2 dispersion, similar to that of the slow TA mode
in graphite. The density of acoustic modes in the graphene sheet is a constant,
as seen in Fig 1.8(b).

Fig. 1.6. The basal plane of graphite (i.e., a graphene sheet). The primitive trans-
lation vectors are indicated.
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Fig. 1.7. Phonon-dispersion curves for the three-dimensional form of graphite.
Taken from [20] with permission.

Fig. 1.8. (a) Phonon-dispersion curves and (b) density of states for a graphene
sheet. Taken from [21] with permission.
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Fig. 1.9. A graphene layer and the unit cell of the (4,2) nanotube defined by the
chiral vector Ch and the translation vector T. There are 56 atoms in the nano-
unit cell.

(iii) Nanotubes. A carbon nanotube is made by rolling up a graphene sheet.
The structure of a single-wall nanotube can be specified by its chiral vector Ch

and its translation vector T. These vectors can be expressed as suitable linear
combinations of the primitive translation vectors a1 and a2 of the graphene
sheet. In particular, Ch = na1 + ma2 ≡ (n, m). The diameter D of the tube is
D = |Ch|/π. An armchair nanotube corresponds to Ch = (n, n). The lattice
translation vector parallel to the tube axis T is normal to the chiral vector
Ch: Ch · T = 0. Fig. 1.9 shows the Ch and T vectors for the (4,2) nanotube.

Figure 1.10 shows the phonon-dispersion curves and the density of states
for the (10,10) carbon nanotube [21]. There are 40 carbon atoms in the unit cell
for the (10,10) nanotube, giving rise to 120 phonon branches. In accordance
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Fig. 1.10. (a) Phonon-dispersion curves and (b) density of states (b) for the (10,10)
carbon nanotube. Taken from [21] with permission.

with the D10h point group symmetry, 12 branches are non-degenerate and 54
branches are doubly degenerate, thus there are only 66 distinct branches. A
nanotube is characterized by four acoustic branches: with increasing energy
these are two (degenerate) TA modes, a twisting mode (related to a rotation
around the tube axis), and the longitudinal mode (in the direction of the tube
axis), respectively [21, 22]. In a radial direction, the phonon wave vectors are
quantized due to the periodic boundary conditions imposed by the cylindrical
symmetry. The density of acoustic modes in the nanotube is close to that of a
graphene layer, except for two noticeable differences. First, compared to the
graphene layer, there are a few extra small peaks in the density of states for
the nanotube, indicative of its quasi–one-dimensional nature. Second, whereas
the density of states is finite for the graphene layer, it goes to zero for the
nanotube, as ω → 0. This difference is due to the fact that ω ∝ q2 for the
graphene layer and ω ∝ q for the nanotube in the limit ω → 0.

1.3.3 Debye’s Isotropic Continuum Model

Implementation of a realistic phonon-dispersion relation and density of states
in a calculation of thermal conductivity would obviously require much effort
and time. Most calculations of the conductivity have, therefore, been made
by considering simplified forms of the dispersion relation and density of
states. One particularly simple scheme is provided by the consideration of
the isotropic continuum model and a Debye cutoff scheme. In this scheme the
realistic Brillouin zone for a three-dimensional cubic system is replaced by a
Debye sphere of radius qD and the phonon-dispersion relation is simplified to
ω(qs) = qcs for all directions of q. This relation is certainly true in the long
wavelength (small q) limit. An inspection of the dispersion curves in Figs. 1.2
and 1.3 suggests that up to approximately 60 percent of both the LA and TA
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Fig. 1.11. Phonon-dispersion curve and density of states for a single polarization
branch within the Debye model of a three-dimensional isotropic continuum.

branches can be reasonably well described by the linear dispersion relation.
The size of the Debye sphere, determined by ensuring that it contains the
correct number of acoustic phonon modes (3N modes for a crystal with N
atoms), is given by

qD =
(

6π2N

N0Ω

)1/3

. (1.30)

The density of states within the isotropic continuum model is given by the
following simple expression

g(ωs)|isotropic continuum =
N0Ω
2π2

ω2
s

c3
s

. (1.31)

Figure 1.11 shows the phonon-dispersion curve and the density of states
within the Debye model for a single polarization branch. The density of states
increases quadratically with increasing phonon frequency but in contrast to
the real situation (cf. Fig. 1.2) there are no characteristic peaks.

These considerations can also be applied to deriving expressions for the
phonon density of states for two- and one-dimensional systems. It can be
shown that the ω2 variation of the density of states for the three-dimensional
isotropic continuum changes to ω and ω0 (i.e., a constant) for two- and one-
dimensional systems, respectively.

1.4 Phonon Relaxation Times

Finite sample size, static imperfections, alloying and inhomogeneity,and anhar-
monicity in crystal potential provide the main phonon-scattering sources in
nonmetallic solids. Each mechanism acts in limiting the lifetime of phonons.
Although anharmonicity gives rise to intrinsic relaxation time, other mecha-
nisms produce extrinsic relaxation times. We will reproduce expressions for
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phonon relaxation times due to some of these mechanisms in bulk (three-
dimensional) crystals.

1.4.1 Extrinsic Relaxation Times

(i) Boundary Scattering. At low temperatures phonons acquire long wave-
lengths and the main source of their scattering is the sample size. The phonon
relaxation rate due to boundary scattering can be expressed as

τ−1
qs (bs) = cs/L. (1.32)

Here L represents an effective boundary mean free path and can be expressed
as [6] L = L0(1 + p)/(1 − p), with L0 representing the geometrical mean free
path and p 	= 0 representing surface nonspecularity. For a cylindrical shape
L0 = D, the circular cross section. For a square cross section L0 � 1.12d, for
side length d.

(ii) Scattering from Static Point Imperfections. Static point imperfections
in solids, such as isotopes, substitutional impurities with different masses, im-
purities causing changes in atomic force constants, and single and aggregate
vacancy defects, can strongly scatter phonons. For phonons with longer wave-
lengths compared with the imperfection size, the scattering is essentially of
the Rayleigh type, that is, increases as the fourth power of frequency. A gen-
eral expression for the relaxation rate of phonons from point imperfections is
[1, 23]

τ−1
qs (md) =

ΓmdΩ
4πc̄3 ω4(qs) (1.33)

=
3π

2
Γmd

ω4

ω3
D

, (1.34)

with Γmd determined from the nature of imperfection and 3c̄−3 =
∑

s c−3
s . For

a general case [23]

Γmd =
∑

i

fi

[(
1 − Mi

M̄

)2

+ 2
(

∆gi

g
− 6.4γ

∆δi

δ

)2
]

, (1.35)

where M̄ is the average atomic mass, fi is the fraction of the unit cells
having atomic mass Mi, the fractional size of the imperfection is expressed
as ∆δi/δ, ∆gi/g represents the fractional stiffness constant of the nearest-
neighbor bonds from the imperfection to the host crystal, and γ is an average
anharmonicity of bonds linking the imperfection.

(iii) Scattering from Imperfection Aggregates, Dislocations, Stacking
Faults, and Grain Boundaries. The frequency dependence of scattering
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shows departure from the Rayleigh type ω4 behavior to a ω2 power law when
the phonon wavelength becomes comparable to or smaller than a defect aggre-
gate (see, e.g., [24]). Also, the ω4 dependence of phonon scattering by point
imperfections changes to ω2 for scattering by dislocations (core region), stack-
ing faults, and grain boundaries, and to ω for scattering by the elastic region
of dislocations [6, 23].

1.4.2 Intrinsic Relaxation Times

Atomic vibrations become increasingly anharmonic as the temperature
increases, and phonon-phonon interactions become dominantly important in
controlling thermal properties of a crystal. As mentioned earlier, describing
and quantifying such interactions is an inherently difficult problem. Limit-
ing the crystal anharmonicity to the cubic terms in atomic displacement, we
can treat three-phonon interactions using first-order perturbation theory and
four-phonon interactions using second-order perturbation theory. In general,
the strength of four-phonon interactions is two to three orders of magni-
tude weaker than the strength of three-phonon interactions [25]. There is
a great deal of discussion in the literature regarding frequency and temper-
ature dependence of three-phonon relaxation rates (see, e.g., Herring [26],
Klemens [13], Ziman [6], Guthrie [27]). Unfortunately, there is no unanimous
agreement in both low- and high-temperature regions. In many works the
anharmonic relaxation rate has been expressed as a product of frequency- and
temperature-dependent terms: τ3ph ∝ f1(ω)f2(T ), where f1(ω) = Aωn and
f2(T ) = BTm, with exponents n and m chosen differently in different temper-
ature regions. However, a systematic theoretical approach [1, 28, 29] suggests
τ3ph ∝ f(ω, T ), where f(ω, T ) is a rather complicated continuous function over
the entire range of frequencies and temperatures.

A three-phonon process can be classified as either class 1 or class 2, as
shown in Fig. 1.12. In a class 1 process a phonon (q, ω) interacts with another
phonon (q′, ω′), and their mutual annihilation creates a third phonon (q′′, ω′′).
In a class 2 process an energetic phonon (q, ω) decays into two less-energetic
phonons (q′, ω′) and (q′′, ω′′). Both processes can take place either in a nor-
mal manner (N process, with momentum sum of the two annihilated/created
phonons being confined to the first Brillouin zone), or in an umklapp manner
(U process, with momentum sum of the two annihilated/created phonons ly-
ing beyond the first Brillouin zone and requiring to be flipped back to the zone
with the help of a reciprocal lattice vector). Obtaining an expression for the
cubic anharmonic term in crystal potential is an extremely difficult task. Good
progress, however, can be made by treating cubic anharmonicity within an
isotropic continuum model. Although there is no meaning of an umklapp pro-
cess within the continuum model of a solid, Parrott [30] devised a “grafting”
scheme for a pseudo-reciprocal lattice vector G = 2qD (q ± q′)/(|q ± q′|),
where the + and − signs refer to class 1 and 2 processes, respectively. The
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Fig. 1.12. Class 1 and class 2 three-phonon processes.

energy and momentum conservations conditions are:
Class 1 processes:

q + q′ = q′′ + G

ω + ω′ = ω′′,
(1.36)

Class 2 processes:

q + G = q′ + q′′

ω = ω′ + ω′′.
(1.37)

(i) Interactions Involving Acoustic Phonons. Phonon-phonon interactions
can be studied by applying Fermi’s golden rule formula, based on first-order
time-dependent perturbation theory. Application of this formula within an
isotropic continuum anharmonic model for crystal potential leads to the fol-
lowing expression for the single-mode relaxation rate due to three-phonon
interactions involving acoustic phonons [1, 28, 29]:

τqs
−1(3 ph) =

π�

4ρ3N0Ω

∑
q′s′q′′s′′

|Ass′s′′
qq′q′′ |2 qq′q′′

cscs′c2
s′′

δq+q′+q′′,G

×
{

n̄q′s′(n̄q′′s′′ + 1)
(n̄qs + 1)

δ(ω(qs) + ω(q′s′) − ω(q′′s′′))

+
1
2

n̄q′s′ n̄q′′s′′

n̄qs
δ(ω(qs) − ω(q′s′) − ω(q′′s′′))

}
. (1.38)
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The quantity |Ass′s′′
qq′q′′ |2, representing the three-phonon interaction strength,

can be expressed in terms of second- and third-order elastic constants. A
simplified form of this quantity is [1]

|Ass′s′′
qq′q′′ |2 =

4ρ2

c̄2 γ2c2
sc

2
s′c2

s′′ , (1.39)

with the mode-averaged Grüneisen constant γ providing a measure of anhar-
monicity. Within Debye’s isotropic continuum model, and using Eq. (1.39),
Eq. (1.38) can be written as

τ−1
qs (3 ph) =

�q5
Dγ2

4πρc̄2

∑
s′s′′ε

cscs′

×
(∫

dx′x′2x′′
+{1 − ε + ε(Cx + Dx′)} n̄q′s′(n̄′′

+ + 1)
(n̄qs + 1)

+
1
2

∫
dx′x′2x′′

−{1 − ε + ε(Cx − Dx′)} n̄q′s′ n̄′′
−

n̄qs

)
, (1.40)

where qD is the Debye radius, x = q/qD, x′ = q′/qD, x′′
± = Cx ± Dx′, C =

cs/cs′′ , D = cs′/cs′′ , n̄′′
± = n̄(x′′

±), and ε = 1 (−1) for N (U) processes. The
integration limits over the variable x′ are determined from considerations of
energy and momentum conservation conditions (cf. Eqs. (1.36) and (1.37)).

From Eq. (1.40) it is clear that the three-phonon relaxation rate is a rather
complicated function of temperature and phonon frequency and has the gen-
eral form τ−1

qs (3 ph) = f(ω(qs), T ). However, it is easy to show the following
low-temperature (LT) and high-temperature (HT) behaviors

τ−1(HT ) = (Aω + Bω2)T, (1.41)

τ−1(LT )|N = CωmT 5−m, (1.42)

τ−1(LT )|U = Df1(ω) + Ef2(ω, T )e−α/T , (1.43)

where m = 1, 2, 3, 4, or 5 and A, B, C, D, and E are constants. The low-
temperature behavior for N processes in Eq. (1.42) was first derived by
Herring [26]. The exponential term in Eq. (1.43) indicates that U processes
“freeze out” at low temperatures, with an appropriate constant α. The func-
tion f2 in Eq. (1.43) has the temperature dependence given in Eq. (1.42).
It should be clear that a great deal of freedom may be exercised in em-
ploying “empirically chosen” functional forms of τ−1(3 ph) in both low- and
high-temperature regions. This “freedom” has indeed been exercised in most
theoretical calculations of thermal conductivity. This practice is particularly
exemplified in the work by Guthrie [27].

(ii) Role of Optical Phonons. Optical phonons can contribute to the ther-
mal conduction process in two different manners. An optical phonon from a
dispersive branch can act as a carrier of heat and contribute to the con-
ductivity. However, as optical phonon branches are in general less dispersive
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than acoustic branches, their contribution toward conductivity is usually very
small. More significantly, optical phonons can interact with acoustic phonons
and cause extra contribution to three-phonon relaxation time and hence ther-
mal resistivity.

Let us first consider materials that have simple crystal structures and
contain atoms of nearly equal masses, such as Si, Ge, and GaAs, all of which
contain two atoms per unit cell. For all these crystals there is little or no energy
separation between the acoustic and optical phonon branches. In such cases,
the Debye model described in the previous subsection for acoustic phonons
can be extended to include optical phonon branches. This can be done by
increasing the Debye radius qD to include both acoustic and optical branches.
Rewriting Eq. (1.30) in the form qD = (6π2n/Ω)1/3, where Ω is the unit cell
volume, for diamond and zincblende structure materials we consider n = 1
when considering only acoustic phonon modes (i.e., we consider one atom per
unit cell, as required in the original Debye consideration), and we consider
n = 2 to include optical phonons as well.

For materials with a simple crystal structure but different atomic masses,
such as AlSb and GaN, it would be reasonable to assume a flat dispersion
relation (i.e., Einstein model) for optical phonons. This model would disallow
any heat transport by optical phonons, but interactions of type ac + ac → op
would be allowed, provided the mass ratio lies in the range 1 < m1/m2 ≤ 3.
The approach described previously can be adopted to derive an expression for
this interaction (see, e.g., [1]).

For complex crystal structures, that is, with more than 2 atoms per unit
cell, there is an increased possibility of acoustic-optical interaction. Group
III nitrides in the wurzite structure, with four atoms per unit cell, can be
classified as complex-structure materials in the context of the present discus-
sion. Roufosse and Klemens [31] have, however, shown that the strength of
three-phonon interaction remains substantially independent of n, the number
of atoms in the unit cell.

1.5 Conductivity of Single Crystals

1.5.1 Simplified Conductivity Integral

A simplified expression for lattice thermal conductivity can be obtained
by converting the single-mode relaxation-time expression in Eq. (1.23) to
an integral form within Debye’s isotropic continuum model. The resulting
expression is

K =
�

2q5
D

6π2kBT 2

∑
s

c4
s

∫ 1

0
dx x4τ n̄(n̄ + 1), (1.44)

where x = q/qD and τ and n̄ are understood as functions of x, T and
polarization s. The total relaxation-time is τ−1

qs =
∑

i τ−1
qs (i), with τqs(i) being
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the relaxation time due to the ith phonon-scattering mechanism. Provided
reasonable forms of the phonon-dispersion relation ω = ω(qs) and relaxation
time τ(qs) are chosen, it should be straightforward to evaluate the thermal
conductivity of a crystal.

1.5.2 Temperature Variation of Conductivity

From Eqs. (1.24) and (1.44) it is clear that the temperature variation of the
conductivity is governed by the joint temperature variation of the lattice spe-
cific heat and phonon relaxation time. It is well known that the lattice specific
heat rises as T 3 as very low temperatures and saturates to a constant at high
temperatures. The phonon relaxation time is controlled by boundary scat-
tering at very low temperatures with no temperature dependence and by
anharmonic interactions at high temperatures. Thus it is obvious that the con-
ductivity of a bulk material will sharply rise as T 3 at very low temperatures
and decrease with temperature in the high-temperature limit. The conduc-
tivity will thus reach a maximum in the intermediate temperature region.
The maximum of the conductivity will largely be goverened by scattering of
phonons from defects and impurities. The decrease of conductivity at high
temperatures will follow a T−1 behavior if only three-phonon processes are
operative but will show a decrease slighter stronger than T−1 if four-phonon
processes start to play a significant role.

1.5.3 High-Thermal-Conductivity Materials

A material with room-temperature value of K larger than 100 Wm−1K−1 is
regarded as a high-thermal-conductivity material. In the high-temperature
limit the conductivity expression in Eq. (1.44) can be approximated as

K(HT) = BM̄Ω1/3
at Θ3

D/(Tγ2), (1.45)

where B is a constant and ΘD is Debye’s temperature. This result sug-
gests four criteria for choosing high-thermal-conductivity materials: (i) low
atomic mass, (ii) strong interatomic bonding, (iii) simple crystal structure,
and (iv) low anharmonicity. Conditions (i) and (ii) help increase the quantity
M̄Θ3

D in Eq. (1.45), condition (iii) means a low number of atoms per unit cell,
resulting in fewer optical branches and hence fewer anharmonic interactions,
and condition (iv) means reduction in the strength of anharmonic interactions.
Consistent with this suggestion, at least 12 semiconductors and insulators can
be categorized as high-thermal-conductivity materials. In order of decreasing
room-temperature conductivity these are: C (diamond), BN, SiC, BeO, BP,
AlN, BeS, BAs, GaN, Si, AlP, and GaP. Table 1.1 lists the room-temperature
thermal conductivity results for these materials. The room-temperature val-
ues of the conductivity of C (natural abundance diamond), SiC, AlN, and Si
are 2000, 490, 320, and 160 Wm−1K−1, respectively.
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Table 1.1. Room-temperature values of K for high-thermal-
conductivity nonmetallic single crystals. Units are W m−1 K−1.

Crystal K Crystal K Crystal K
Diamond 2000 BP 360 GaN 170
BN (cubic) 1300 AlN 320 Si 160
SiC 490 BeS 300 AlP 130
BeO 370 BAs 210 GaP 100

1.5.4 Conductivity of Diamond-Structure Single Crystals

It will be interesting to discuss the temperature variation of the thermal con-
ductivity of Si and C, two of the high-thermal-conductivity materials with
diamond structure. The results for Si in Fig. 1.13, obtained theoretically
using a model effective relaxation time method [32], are in excellent agreement
with experimental results. At low temperatures, when the boundary scattering
mechanism dominates, the conductivity follows the expected increase as T 3.
As the temperature increases, mass-defect scattering becomes important and
reduces the T 3 dependence. Three-phonon scattering sets in at finite tempera-
tures, becoming dominant at high temperatures. As a result, the conductivity
reaches a maximum at around 20 K before starting to decrease. With only
three-phonon interactions included the theory predicts a linear decrease of

Fig. 1.13. Thermal conductivity of crystalline Si. The solid curve shows theo-
retically calculated results; the open circles present experimental results. Taken
from [32].
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conductivity above room temperature. The theory also predicts that most
heat (75% or more) is conducted by transverse phonons at all temperatures.

Figure 1.14 shows measured and calculated thermal-conductivity results
for single crystals of diamond with different isotopic concentrations. The
theoretical calculations [33] were made using the conductivity expression
in Eq. (1.44) and employing a simplified and empirically adjusted form of
τ−1(3 ph). As expected, at low temperatures, when the boundary scattering
dominates, the conductivity increases as T 3. As the temperature increases,
isotope scattering becomes important and reduces the T 3 dependence. With
a further increase in temperature, three-phonon processes become the domi-
nant scattering mechanism. As a result, the conductivity reaches around 100 K
before starting to decrease. The precise value of the conductivity maximum
and its temperature variation just before reaching the maximum depend on
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Fig. 1.14. Thermal conductivity of single crystals of diamond. Results for natural
abundance diamond (1.1% 13C) are: theoretical (lower solid curve) and experimental
(circles and filled squares). Results for isotopically enriched sample (0.1% 13C) are:
theoretical (upper solid curve) and experimental (open squares). Theoretical results
for some other isotopic concentrations are shown in the inset. Taken from [33] with
permission.
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the isotope concentration. A maximum of 41,000 Wm−1K−1 is obtained for
a 99.9% pure 12C crystal [33]. Well above room temperature, the conductivity
decreases nearly linearly with temperature rise, in accordance with the theo-
retical prediction.

1.6 Conductivity of Polycrystalline Solids

The usefulness of germanium-silicon alloys as high-temperature thermoelectric
materials has long been realized. Similarly, high-thermal-conductivity mate-
rials such as SiC, β-Si3N4, and AlN are considered to be potential candidates
for use in thermal management of semiconductor processing equipments. How-
ever, the high cost of producing single crystals has necessitated research on the
use of powdered forms of such materials. As can be expected, the thermal con-
ductivity of powders is significantly lower than their crystalline counterparts.
The usual method of producing ceramics is by powder processing and sinter-
ing. Recent research has shown that material processing involving the use of
high-purity nitride powders, hot-pressing (pressure sintering), and additives
leads to a significant increase in the thermal conductivity of ceramics and thin
films, with values close to those for single crystals (see Watari et al. [34] and
references therein).

Investigations by Goldsmidt and Penn [35] and by Parrott [36], based
on the relaxation-time theory described in this chapter, predict that sin-
tered materials should have considerably smaller thermal conductivity than
their single-crystal counterparts. The Goldsmidt-Penn-Parrott law for the
decrease in conductivity is ∆W/W ∝

√
L, where ∆W is the increase over the

single-crystal thermal resistivity W and L is the average grain size. This law
was verified in recent experimental investigations by Akimune et al. [37] for
the thermal conductivity of sintered β-Si3N4 containing Y2O3-Nd2O3 addi-
tives and one-dimensional aligned β-Si3N4 whiskers. Calculations made by
Kitayama et al. [38], based on a simple theoretical model for the thermal
conductivity of a composite material, predict that the thermal conductivity
of β-Si3N4 decreases quickly as the grain-boundary film thickness increases
within a range of a few tenths of a nanometer and then reaches almost a con-
stant value for larger grain sizes. Their theoretical and experimental studies
demonstrate that grain growth alone cannot improve the thermal conductivity
of this material. Consistent with this work, Watari et al. [39] have shown, from
theoretical and experimental investigations, that for large grain-size distribu-
tions (in the µm range) the thermal conductivity of Si3N4 at room tempera-
ture is independent of grain size. The conductivity in such samples is found to
be controlled by the internal defect structure of the grains, such as point de-
fects and dislocations. This scenario is in agreement with an earlier suggestion
made by Meddins and Parrott [40] for the possible explanation of the conduc-
tivity of sintered germanium-silicon alloys. A grain-growth-assisted percola-
tion model has been proposed by Pezzotti [41] to explain the increase in the
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thermal conductivity on annealing of an AlN polycrystal doped with Y2O3.
The model considers the concurrent effect of the growth of AlN-matrix grains
and of the collapse of grain boundaries tilled by the low-thermal-conductivity
Y2O3 phase. As a result the size of the thermally conductive AlN clusters
grows and there is a reduction in the number of grain boundaries.

1.7 Conductivity of Low-Dimensional Solids

In general, a low-dimensional system lacks the perfect three-dimensional peri-
odicity of a single crystal. Such systems can either occur naturally or be grown
in a laboratory. In the context of this chapter on high-thermal-conductivity
materials we will consider superlattices, graphite, graphene and carbon nano-
tubes as examples of low-dimensional solids.

1.7.1 Superlattices

Consider a superlattice (A)N1(B)N2 [hkl], made from growth of alternating N1
layers of material A and N2 layers of material B along a direction [hkl]. For
simplicity, let us assume that the materials A and B are of the same crystal
type and that both retain their intrinsic periodicity in each layer. Then, while
the superlattice structure retains the intrinsic bulk periodicity perpendicular
to [hkl], the periodicity along [hkl] has increased to d = d1 + d2, where d1 and
d2 are the layer thicknesses of the materials A and B, respectively. Using the
reciprocal-space language, there is a “minizone” formation along the growth
direction [hkl], with the superlattice Brillouin zone (SL-BZ) boundary being
at π/d.

In the context of our discussion of lattice thermal conductivity, we will only
discuss phonons in the bulk acoustic region, as these are the dominant heat
carriers. The dispersion of such phonons can be approximated as the average of
the dispersions in the bulk materials A and B. Along the superlattice growth
direction [hkl], however, the dispersion can be considered as the “folding” of
the bulk dispersion curves, in accordance with the “minizone” formation. This
effect is illustrated in Fig. 1.15 using the example of a superlattice in the form
of a linear chain.

In general, as can be expected, the thermal conductivity of a superlattice
along its growth direction will be lower than the weighted average value
obtained from its constituent bulk materials. The difference may be con-
tributed by three “extra” sources of phonon scattering in the superlattice:
mass disorder, strain and chemical effects, and “mini-Umklapp” processes.
The mass disorder due to superlattice formation can be expressed as ∆m/m,
where ∆m is the atomic mass difference between the superlattice layer materi-
als A and B. Superlattice strain and chemical effects arise when the materials
A and B do not have the same lattice constants, and the chemical bonds
between A–A, B–B, and A–B are not very similar. Additional phonon
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Fig. 1.15. Schematic illustration of the zone-folding effect in the phonon-dispersion
curve of a monatomic linear chain of atoms: (a) the dispersion curve for a super-
lattice, and (b) the dispersion curve for an average bulk. q(SL-BZ) represents the
superlattice Brillouin zone boundary.

anharmonic interactions in the form of “mini-Umklapp” processes will result
from the formation of the mini (or superlattice) zone. This is illustrated in
Fig. 1.16: if the sum of the phonon vectors q and q′ lies outside the super-
lattice Brillouin zone (but inside the bulk zone), it can be flipped back to
an equivalent point inside the superlattice zone with the help of a superlat-
tice reciprocal lattice vector G(SL). Theoretical work by Ren and Dow [42]
predicts a significant reduction of the conductivity peak due to mini-U pro-
cesses. Recent theoretical work [43] suggests that the thermal conductivity of
a superlattice should show a minimum when its layer thickness is somewhat
smaller than the mean free path of the phonons. Although quantitative mod-
eling of thermal conductivity of superlattices is a rather complex task, in a
general sense the preceding considerations are consistent with experimental
conductivity measurements for Si/Ge [44] and GaAs/AlAs [45] superlattices.

1.7.2 Semiconductor Quantum Wells and Wires

The lattice thermal conductivity of semiconductor quantum wells and wires
has been studied by adopting two distinctly different approaches: (a) the
single-mode relaxation-time method, as described in Sects. 1.2.3 and 1.5.1,
and (b) a molecular dynamics method [46], in which thermodynamic and
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Fig. 1.16. Schematic illustration of the mini-Umklapp process due to superlattice
formation. The vector G(SL) represents a superlattice reciprocal lattice vector. For
clarity, the bulk Brillouin zone is drawn by thin dashed lines.

transport properties are calculated from a numerical simulation of particle
trajectories in the system based on an empirical form of interatomic poten-
tial. The single-mode relaxation-time approach, based on the solution of the
Boltzmann equation, has been followed in Ref. [47] for a free-standing semi-
conductor quantum well and in Refs. [48] and [49] for wires.

Confined acoustic modes in a quantum well are characterized as shear
(S), dilatational (D), and flexural (F) waves [50]. The S modes are similar
to the transverse modes in bulk but with the displacement vector lying in
the plane of the quantum well and pointing perpendicular to the direction
of the in-plane wave-vector. The D and F waves can be viewed as a mod-
ification of the bulk longitudinal mode. The work carried out by Balandin
and Wang [47] shows that strong modifications of the phonon dispersion and
group velocities due to spatial confinement lead to a significant increase of
the relaxation rates due to three-phonon scattering, impurity scattering, and
boundary-scattering processes. Their numerical calculations indicate that the
values of the room-temperature thermal conductivity of 155-nm-wide and 10-
nm-wide Si quantum wells are approximately 45% and 13%, respectively, of
the bulk value.

Zou and Balandin [49] developed a model for heat conduction in semicon-
ductor wires. Their model is based on the solution of the phonon Boltzmann
equation, taking into account (i) modification of the bulk acoustic phonon
dispersion due to wire formation and (ii) the change in the nonequilibrium
phonon distribution due to partially diffuse boundary scattering. Numerical
calculations by Zou and Balandin for a free-standing continuum of a cylindri-
cally symmetric nanowire show significant departure of the confined acoustic
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branches from the bulk longitudinal branch. This feature would obviously lead
to very different phonon-relaxation rates in nanowires. In addition, the role of
specular phonon-boundary scattering becomes an important consideration in
calculating the thermal conductivity of a nanowire. Indeed, numerical calcu-
lations by Walkauskas et al. [48] and by Zou and Balandin [49] clearly show
that the lattice thermal conductivity of nanowire structures is dramatically
controlled by phonon-boundary scattering. Even in the case of purely specular
boundary scattering (when deviation from the bulk conductivity due to the
phonon redistribution by the boundaries vanishes), it is found that phonon
confinement effects lead to deviation of the thermal conductivity from its bulk
value. Numerical calculations carried out by Zou and Balandin [49] predict
that for purely diffusive boundary scattering the room-temperature thermal
conductivity of a cylindrical Si nanowire of diameter 20 nm would be reduced
to about 9% of its bulk value.

1.7.3 Graphite, Graphene, Carbon Nanotubes, and Fullerenes

As discussed in Sect. 1.3.2, graphite, graphene, and nanotubes can be
considered as quasi-two dimensional, two-dimensional (2D), and quasi-one
dimensional materials, respectively. In that section we discussed the main fea-
tures of lattice vibrations in these materials. When applying the single-mode
relaxation-time theory of lattice thermal conductivity, we can regard a sin-
gle graphene sheet as a two-dimensional phonon gas. The phonon-dispersion
curves of graphite have an almost two-dimensional character, except for modes
below νc � 4 THz. As discussed in Sect. 1.3.2, the phonon spectrum of a nano-
tube formed by rolling a single graphene sheet is continuous along its tube
axis, similar to that of a graphene sheet. The phonon spectrum of a nanotube
formed by rolling a few graphene sheets contains a set of such continuous
spectra for each circumferential wave vector, with the lowest set correspond-
ing to progressive breathing modes. These features of lattice vibrations along
the axis of nanotubes, of graphene, and in the basal plane of graphite would
allow the thermal conductivity of these three forms of carbon to be modeled
by using the concept of two-dimensional phonon gas [51, 52, 53]. Here we will
briefly outline the theory of thermal conductivity in two dimensions.

The single-mode relaxation-time approach, within a dispersive continuum
model and a Debye-like approach, was employed more than three decades ago
by Dreyfus and Maynard [54] to successfully explain the thermal conductivity
of the basal plane of graphite. Here we present a simplified version of the the-
ory within the isotropic continuum model. Following Eq. (1.23), the thermal
conductivity in the basal plane of graphite can be expressed as

Ksmrt−2D =
1
2

�
2

N0ΩkBT 2

∑
qs

c2
s(q)ω2(qs)τqsn̄qs(n̄qs + 1), (1.46)

where 1/2 represents the two-dimensional average of cos2 θ, with θ being the
angle between an applied temperature gradient and a phonon velocity. To
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simplify this expression we replace the sum over q by integration and note
that the density of states of the two-dimensional system can be expressed
within the isotropic continuum model as [1]

g(ω) =
N0A

2π

ω

c2 , (1.47)

where A represents the area of the two-dimensional unit cell. We can further
replace the Brillouin zone by a circular cylinder of radius qm and height qm⊥.
The conductivity integral then becomes

K =
�

2q4
mqm⊥

4π2kBT 2

∑
s

c4
s

∫ 1

xc

dx x3τ n̄(n̄ + 1), (1.48)

with x = q/qm and only two phonon polarizations (longitudinal and fast trans-
verse) considered in the basal plane so that 2/c̄2

2D = 1/c2
1 + 1/c2

2.
Apart from the consideration of phonon-dispersion relations and con-

struction of a two-dimensional Debye model for integration in reciprocal
space, care must also be taken to rederive phonon-scattering rates for two-
dimensional systems. The boundary scattering has the same form as in the
three-dimensional case, except that the phonon mean free path L is limited
by the dimensions of the two-dimensional system. The mass-defect and three-
phonon scattering rates will, however, show frequency dependence different
from three-dimensional systems. Using the two-dimensional density of states
expression in Eq. (1.47), and following the procedure for deriving Eq. (1.34),
the mass-defect scattering rate of phonons in two-dimensional systems can be
obtained as

τ−1
qs (md − 2D) =

πΓmd

ω2
m

ω3(qs), (1.49)

where ωm = c̄2Dqm is the two-dimensional Debye frequency. Clearly the sig-
nificant difference lies in the frequency dependence: ω3 for two-dimensional
systems against ω4 for three-dimensional systems. Klemens and Pedraza [51]
have, however, shown that the expression for the three-phonon scattering rate
in two-dimensional systems is formally the same as in three-dimensional sys-
tems, except for the replacement of the Debye frequency ωD with the Debye-
like frequency ωm.

The expression in Eq. (1.48) has been employed by Klemens [52, 53] to
discuss the conductivity of graphite, graphene, and nanotubes. It should, how-
ever, be pointed out that the low-lying modes in graphite and the breathing
modes propagating parallel to the nanotubes, require careful consideration.
In particular, when considering the intrinsic conductivity (due only to anhar-
monic phonon interactions) the lower limit in the integral in Eq. (1.48) should
be taken as xc = ωc/ωm. For graphite νc = 4 THz, νm = 45.9 THz, giving
xc = 0.09. For graphene νc = 0, giving xc = 0. For the (10,10) carbon nano-
tube the breathing mode frequency is νc = 5 THz. But these modes can anhar-
monically decay into smaller modes. Klemens [53] thus considered νc = 3 THz
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and νm = 46 THz, giving xc = 0.07. It is also useful to point out that the
conductance κ, defined as Q = −κw ∇T , where w is the width of the sheet
normal to the temperature gradient, is a better measure of two-dimensional
heat transport.

Applying these considerations, Klemens [51, 52, 53] has predicted a log-
arithmic divergence of the intrinsic conductivity (i.e., conductivity due only
to three-phonon processes) of two-dimensional systems. This, he explains,
happens for two reasons: (i) interaction of low frequencies outside the two-
dimensional phonon spectrum with the low-frequency modes and (ii) limita-
tion of the phonon mean free path by the external dimensions of the two-
dimensional system. Factor (i) operates in graphite; reason (ii) is the case
in the single graphene sheet. In carbon nanotubes either factor (i) or (ii)
can operate. Employing simple expressions for three-phonon scattering rates,
Klemens has estimated that the intrinsic conductivity of graphite at room
temperature would be 1.9 × 103 Wm−1K−1. For a graphene layer of dimen-
sion 1 cm, the room-temperature values are K = 5.5 × 103 W m−1 K−1 and
κ = 18 × 10−7 WK−1. He has further estimated that the conductivity of a
long carbon nanotube would be slightly higher than the conductivity in the
basal plane of graphite: K(nano) � 1.18K(graphite).

It is interesting to discuss the low-temperature behavior of the thermal
conductivity of carbon nanotubes. It is worth pointing out that, depending
on their helical structures, carbon nanutubes can be metallic or semiconduct-
ing, but here we are only interested in discussing their lattice thermal con-
ductivity contributed by phonons. The features of phonon-dispersion curves
responsible for low-temperature specific heat and the conductivity along the
tube axis depend strongly on the tube diameter. Theoretical work by Bene-
dict et al. [55] has predicted that at low temperatures (i.e., much below Debye
temperature) the specific heat exhibits a quasi-one-dimensional behavior: for
small tube radius R, and lower temperatures, Csp

v ∝ T ; otherwise, Csp
v ∝ T 2.

This behavior is schematically illustrated in Fig. 1.17. The heat capacity of

Fig. 1.17. Schematic illustration of the temperature variation of the specific heat
of carbon nanotubes. At low temperatures (much lower than Debye temperature),
Csp

v ∝ T for small tube radius and lower temperatures, and Csp
v ∝ T 2 otherwise.

Taken from Benedict et al. [55] with permission.
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a narrow nanotube of radius R (so that T  �c̄/kBR) of a single acoustic
phonon polarization is [55]

Cv(nanotube) =
3Lk2

BT

π�vA
3.292, (1.50)

where A is the cross-sectional area of the tube, L is the tube length, and
c̄ is the average acoustic speed. The specific heat capacity of the nanotube
(specific heat per unit length) is then Csp

v = Cv/L. Assuming the phonon-
relaxation time is limited by the energy-independent boundary length lB ,
Hone et al. [56] obtained the following expression for the low-temperature
thermal conductivity of nanotubes:

K =
3.292k2

BlbT

π�A
. (1.51)

This result shows excellent fit to the experimental data obtained by Hone
et al. [56] for the conductivity of single-walled nanotubes below 30 K.

Detailed nonequilibrium molecular dynamics simulations of the thermal
conductivity of carbon nanotubes have been performed by Berber et al. [57].
The results for an isolated (10,10) nanotube over a large temperature range
are shown in Fig. 1.18. At low temperatures the results are in agreement
with the measurements made by Hone et al. [56]. The maximum conductivity
occurs at 100 K, with an unusually high value of 37,000 Wm−1K−1.
The maximum conductivity of the nanotube is close to the maximum value
of 41,000 Wm−1K−1 for a 99.9% pure 12C crystal at 104 K [33]. The
room-temperature thermal conductivity of the nanotube is predicted to be
6600 W m−1 K−1, comparable to that of a hypothetical graphene monolayer
and exceeding the conductivity value of 3320 Wm−1K−1 for 99.9% 12C,
isotopically enriched diamond [58]. It is believed that the high conductivity
values of the nanotubes are associated with strong sp2 bonding configuration
and large-phonon mean free paths in these systems.

Finally, we briefly discuss the thermal conductivity of single-crystal
fullerenes. The main contribution to the thermal conductivity of fullerenes

Fig. 1.18. Theoretical prediction of the temperature variation of the lattice thermal
conductivity of the (10,10) carbon nanotube. Taken from Berber et al. [57] with
permission.
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Table 1.2. Room-temperature values of
the thermal conductivity K of different
solid forms of carbon. The values for
graphene and nanotube are theoretical
estimates. References are cited in the main
text. Units are Wm−1K−1.

Material K
Diamond (natural abundance) 2000
Graphite (basal plane) 2000
Graphene 3320
Carbon nanotube 6600
C60 0.4

is from the lattice, with free carriers contributing less than 10% [59]. The
magnitude and temperature variation of the lattice thermal conductivity of
C60 are similar to those observed for a glassy solid and show particular sen-
sitivity to orientational disorder [60, 61]. The orientational disorder is evi-
denced by the observed time dependence of the phonon mean free path [61].
A simple phenomenological model, involving a thermally activated jumping
motion between two nearly degenerate orientations, has been found to describe
the temperature and time dependence of the thermal conductivity [61]. The
room-temperature thermal conductivity of single-crystal C60 is approximately
0.4 Wm−1K−1 [61]. Table 1.2 summarizes the room-temperature values of the
thermal conductivity of different solid forms of carbon.

1.8 Summary

In this chapter I have discussed the fundamental aspects of the theroy of lattice
thermal conductivity of nonmetallic solids in crystalline (3D), polycrystalline,
and low-dimensional (2D and 1D) forms. The role of phonon-dispersion
relations and anharmonic phonon interactions, in particular three-phonon pro-
cesses, in developing the theory of thermal conductivity has been emphasized.
Explicit expressions of phonon-relaxation times and the conductivity within
the single-mode relaxation-time approach have been produced. The theory
presented here has only one possible adjustable parameter, Grüneisen’s anhar-
monic coefficient γ. The simplified intrinsic conductivity expression, within
the high-temperature approximation, has been used to derive a set of rules for
choosing high-thermal-conductivity materials. The theory has been applied to
discuss the conductivity results for solids in bulk, powder, and low-dimensional
forms. In particular, conductivity results of quantum wells, quantum wires,
and the various solid forms of carbon—diamond, graphite, graphene, nano-
tubes, and C60 fullerenes—have been presented and discussed.
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2

High Lattice Thermal Conductivity Solids

Donald T. Morelli and Glen A. Slack

The lattice thermal conductivity κ of various classes of crystalline solids is
reviewed, with emphasis on materials with κ > 0.5 Wcm−1K−1. A simple model
for the magnitude of the lattice thermal conductivity at temperatures near the
Debye temperature is presented and compared to experimental data on rocksalt,
zincblende, diamond, and wurtzite structure compounds, graphite, silicon nitride
and related materials, and icosahedral boron compounds. The thermal conduc-
tivity of wide-band-gap Group IV and Group III–V semiconductors is discussed,
and the enhancement of lattice thermal conductivity by isotopic enrichment is
considered.

2.1 Introduction: The Importance of Thermal
Conductivity

A solid’s thermal conductivity is one of its most fundamental and important
physical parameters. Its manipulation and control have impacted an enormous
variety of technical applications, including thermal management of mechan-
ical, electrical, chemical, and nuclear systems; thermal barriers and thermal
insulation materials; more efficient thermoelectric materials; and sensors and
transducers. On a more fundamental level, the study of the underlying physics
of the heat-conduction process has provided a deep and detailed understand-
ing of the nature of lattice vibrations in solids. In this review we focus on
solid electrically insulating materials with high lattice thermal conductivity.
By lattice thermal conductivity we mean heat conduction via vibrations of
the lattice ions in a solid. Our goal is to first provide a simple physical picture
for lattice heat conduction in solids and to then compare this model with
experimental data on the thermal conductivity of several classes of crystal
structures and types of materials. The review is similar in spirit to that of
Slack [1] but incorporates and discusses data and experimental results that
have been obtained since that review. The present work is mainly concerned
with the intrinsic lattice thermal conductivity of solids. Klemens [2] has re-
viewed the influence of various types of defects and impurities on the lattice
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thermal conductivity. The classic monograph of Berman [3] discusses all as-
pects of the thermal conductivity of solids, including metals, polymers, and
amorphous materials. A more recent update on materials advances in the area
of high thermal conductivity has also recently appeared in the literature [4].

The fact that certain materials that are good electrical insulators can pos-
sess high thermal conductivity is frequently met with surprise and puzzlement
by the casual observer. This is easily understood, however, when one realizes
that whereas electrical current in a material is carried solely by charge carriers,
heat may be transported by both charge carriers and vibrations of the lattice
ions. In a good metal like copper, the electron density is large, and nearly all of
the heat conduction occurs via charge carrier transport. This electronic ther-
mal conductivity masks the lattice thermal conductivity, which is present but
small relative to the electronic term. In a material where there are no free elec-
trons to carry heat, the lattice thermal conductivity is the only mode of heat
transport available. Within the family of electrically insulating materials, the
magnitude of the lattice thermal conductivity, κ, can vary over an extremely
wide range. For instance, diamond has a thermal conductivity at room tem-
perature of 30 Wcm−1K−1, much higher than that of any material, including
the best metals. On the other hand, some polymeric materials and amorphous
electrically insulating solids have thermal conductivity at room temperature
as low as 0.001 Wcm−1K−1. We want to understand why certain materials
can possess high lattice thermal conductivity and what physical mechanisms
serve to provide a limit to the lattice thermal conductivity of solids.

The review is organized as follows. In Sect. 2.2 we will introduce simple
models of lattice heat conduction that can be used to predict the magnitude
and temperature dependence of the thermal conductivity. In Sect. 2.3 we
consider some specific classes of materials that possess high thermal conduc-
tivity and compare experimental results with the predictions of this model.
Sect. 2.4 takes a closer look at lattice heat conduction in several technolog-
ically important wide-band-gap semiconductors. In Sect. 2.5 we discuss how
the isotope effect may be used to increase the lattice thermal conductivity
of some materials. Finally, Sect. 2.6 provides a summary and suggests some
future directions of research on high-thermal-conductivity solids.

Of course we must first define what we mean by “high” thermal conductiv-
ity. As mentioned previously, the lattice thermal conductivity of solids near
ambient temperature can span an enormously wide range. “High” thermal
conductivity is thus a relative term; for instance, a polymer with a thermal
conductivity of 0.03 Wcm−1K−1 would, for this class of solids, have a “high”
thermal conductivity. On the other hand, such a value of thermal conductivity
for an inorganic crystalline semiconductor (the thermoelectric material PbTe,
for example) would be considered very “low”. Frequently in the literature
a value of thermal conductivity in excess of 1 Wcm−1K−1 has been chosen,
rather arbitrarily, as the lower limit for a high-thermal-conductivity solid.
Because the main driver in the search for high-thermal-conductivity solids is
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for thermal management of electronics systems, a more suitable metric may be
how the thermal conductivity compares to traditional materials used in these
types of applications. By far the most widely used material for thermal man-
agement in high-volume applications is crystalline alumina, with a thermal
conductivity on the order of 0.5 Wcm−1K−1. We will thus set our lower limit
for “high” thermal conductivity at 0.5 Wcm−1K−1. As we shall see, even with
this more relaxed criterion, the family of high-thermal-conductivity electrical
insulators is still rather small.

2.2 Simple Model of the Magnitude of Lattice Heat
Conduction in Solids

2.2.1 Normal Modes of Vibrations of a Lattice

The concepts central to an understanding of the lattice thermal conductivity
of a solid are captured in the simple model of a linear chain of atoms of mass
M held together by springs of force constant k. If the rest of the atoms are a
distance a apart, the relation between the frequency ω and wavenumber q of
a wave along the chain is given by

ω(q) = 2

√
k

M
| sin(qa/2)|. (2.1)

This relationship between the frequency and wavenumber of a wave is termed
the dispersion curve and is illustrated in Fig. 2.1a for wavenumber ranging
between −π/a and +π/a, which represents the first Brillouin zone for the one-
dimensional chain in reciprocal space. An essential feature of the relationship
between frequency and wavenumber that distinguishes the present case from
that of a continuum elastic wave is the bending over, or “dispersion,” of the
curve near the edge of the Brillouin zone. Because the group velocity of the
wave is given by v = dω/dq, near these extrema the velocity of the wave tends
to zero.

In a linear chain of atoms with two different types of masses, M1 and M2,
alternating along the length of the chain, there are two solutions to the wave
equation, and the resulting ω − q relations are termed the two branches of the
dispersion relation. These are shown in Fig. 2.1(b). The lower branch, called
the acoustic branch because the linear relationship ω = vq for low frequency
is similar to that for a sound wave, is the same as that for the case of a chain
of atoms of a single type, shown in Fig. 2.1(a). This branch corresponds to
two neighboring atoms moving in phase with one another. The upper branch,
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Fig. 2.1. Models of phonon-dispersion curves for solids: (a) one-dimensional case for
single-atom type spaced by distance a, fine line represents continuum case; (b) one-
dimensional case for two atoms with differing masses, showing the occurrence of both
an acoustic (lower curve) and an optic (upper curve) branch; ωD, where the acous-
tic branch meets the zone edge, is the Debye frequency for the acoustic phonons;
(c) three-dimensional lattice with two different atom masses.

called the optic branch, corresponds to the case where two neighboring atoms
are moving out of phase with one another; for low frequencies this branch is
characterized by a vanishing group velocity. Because the group velocity of the
optic branch is small, these modes generally do not participate in the heat
transport process, and most of the energy transport along the chain occurs
via the acoustic branch. This is a basic assumption that we use throughout
this review. There are instances, however, especially at high temperatures,
when this may not be true; these are touched on in Sect. 2.3. Possible heat
conduction by optic phonons is considered in more detail in the review by
Slack [1] and has been treated for the specific case of alkali halide compounds
by Pettersson [5]. Additionally, while the optic branch is generally ineffec-
tive in transporting heat, these modes may “interact” with the heat-carrying
acoustic vibrations and thus can be important in determining the magnitude
of the thermal conductivity.

Of course, an actual crystal is not a linear chain of atoms but a
three-dimensional lattice. In this case, if all the atoms of the lattice are



2 High Lattice Thermal Conductivity Solids 41

of the same mass, there are three acoustic branches representing the three
polarization modes (one longitudinal and two transverse) of the crystal. If
there is more than one type of atom per unit cell, the dispersion relation
again will contain optic modes. As in the one-dimensional case, these modes
are typified by high frequency and low group velocity. The dispersion curve for
a three-dimensional lattice containing two different types of atoms is shown
in Fig. 2.1(c). For the more general case of N types of atoms, there will be
three acoustic branches and 3(N − 1) optic branches.

Of fundamental importance in the heat transport in a lattice is the concept
of the Debye frequency, ωD, which is defined here as the maximum vibrational
frequency of a given mode in a crystal. For acoustic modes, this corresponds
to the frequency at the zone boundary as indicated in Fig. 2.1(b) for the one-
dimensional chain. One can define a Debye temperature θa for an acoustic
phonon branch as:

θa =
�ωD

kB
, (2.2)

where � is the Planck constant and kB is the Boltzmann constant. For the
three-dimensional case each acoustic branch will have a Debye temperature
given by Eq. (2.2) with its appropriate value of ωD.

An alternative method of calculating θa is by integrating the acoustic
portion of the phonon density of states g(ω) over the Brillouin zone according
to [6]:

θ2
a =

5�
2

3k2
B

ωD∫
0

ω2g(ω)dω

ωD∫
0

g(ω)dω

. (2.3)

For g(ω) ∼ ω2 these two definitions are equivalent. The Debye temperature
can be thought of as the temperature above which all vibrational modes in a
crystal are excited.

Clearly, given the dispersion relations of real crystals, the Debye temper-
ature for heat transport is determined by where the acoustic branches of the
vibrational spectrum meet the Brillouin zone edge; this will be different from
the Debye temperature determined by other means, such as calculation from
the elastic constants or from the low-temperature specific heat. The impor-
tance of this point has been discussed in detail by Slack [1] and will become
clearer as our discussion continues.

Although the preceding discussion is useful for describing the frequency–
wave vector relationships for phonons, it is insufficient for a discussion of the
thermal conductivity. This is because in the presence of only harmonic inter-
actions there is no means of interaction between different phonons, and in such
a situation the mean free path for lattice vibrations would be infinite. Only by
considering the higher-order anharmonic terms in the ionic interaction energy
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can we account for finite thermal conductivity. These higher-order terms are
characterized by the Grüneisen constant γ. This “constant” is defined as the
rate of change of the vibrational frequency of a given mode with volume:

γ = −d lnωi

d lnV
(2.4)

and is therefore not a constant but a function of q. Again, different vibrational
modes will have different values of γ. Because γ is a measure of the depar-
ture of a crystal from harmonicity, we expect that any model of the thermal
conductivity will include this parameter as well. What we really want are the
γ-values for the acoustic modes at temperatures on the order of the Debye
temperature, which unfortunately are unavailable in most circumstances. The
γ-values determined from thermal expansion data, for instance, average over
all phonon branches, including the optic branches. Thus there is a great deal
of uncertainty in the choice of this parameter for many of the solids we are
considering in this review. Recently some lattice dynamical calculations have
become available that provide mode Grüneisen parameters, and we will use
these in estimating γ-values when appropriate. In other cases γ will be esti-
mated from thermal expansion data.

2.2.2 Normal and Umklapp Phonon-Scattering Processes

Even in a perfect crystal there are interactions of phonons among themselves
that tend to restore the phonon distribution to equilibrium. The interactions
that give rise to thermal resistance involve powers higher than quadratic in the
perturbation Hamiltonian describing the potential energy of a displaced ion
in the lattice. Terms that are cubic in the displacement can be thought of
as arising from three-phonon interactions, while those that are quartic arise
from interactions among four phonons. Let us for simplicity consider only the
cubic anharmonic term involving modes (ω1, q1) and (ω2, q2) interacting and
resulting in mode (ω3, q3). The transition probability for the three-phonon
process giving rise to this term is nonzero only if:

ω1 + ω2 = ω3 and q1 + q2 = q3 + K, (2.5)

where K is equal to zero for a so-called normal phonon process and equal
to a reciprocal lattice vector for a so-called Umklapp process. This latter
process, from the German phrase “to flip over,” represents a situation in
which the net phonon flux is reversed in direction. It can be shown that only
Umklapp processes give rise to thermal resistance, and as a first approximation
one can ignore the existence of normal processes in determining the thermal
conductivity.
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2.2.3 Relaxation-Time Approximation

In the relaxation-time approximation [3], it is assumed that the phonon
distribution is restored to the equilibrium distribution at a rate proportional
to the departure from equilibrium. By assuming a linear dispersion relation,
the thermal conductivity can be expressed as:

κL =
kB

2π2v

(
kBT

�

)3
θD/T∫
0

x4ex

τ−1
C (ex − 1)2

dx, (2.6)

where x = �ω/kBT is dimensionless, ω is the phonon frequency, kB is the
Boltzmann constant, � is the Planck constant, θD is the Debye temperature, v
is the velocity of sound, and τC is the total phonon-scattering relaxation time.
The various processes that scatter phonons are assumed to be independent of
one another and to be described by individual scattering rates τ−1

i such that:

τ−1
c =

∑
i

τ−1
i . (2.7)

In general, the various scattering processes i will depend on both temperature
and phonon frequency. In addition to the intrinsic Umklapp scattering pro-
cess, a wide variety of other types of phonon-scattering mechanisms, including
boundary scattering, point defect scattering, dislocation scattering, and mag-
netic scattering, to name just a few, have been considered in the literature;
these are discussed in more detail in earlier reviews. Some of these scattering
processes will be considered in more detail later.

2.2.4 Callaway Model

While it is indeed true that normal processes themselves do not give rise to
thermal resistance, it is incorrect to assume that they do not influence the
thermal conductivity, because they are capable of redistributing momentum
and energy among phonons that are more likely to undergo a resistive scatter-
ing process. The most widely accepted model describing this process is that
of Callaway [7]. In the Callaway model, the thermal conductivity is composed
of two terms:

κ = κ1 + κ2

with

κ1 =
1
3
CT 3

θ/T∫
0

τc(x)x4ex

(ex − 1)2
dx
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and

κ2 =
1
3
CT 3

[
θ/T∫
0

τc(x)x4ex

τN (x)(ex − 1)2
dx

]2

θL/T∫
0

τc(x)x4ex

τN (x)τR(x)(ex − 1)2
dx

. (2.8)

In these expressions, τR represents the scattering time due to resistive pro-
cesses, τN the scattering time due to normal phonon processes, and τ−1

c =
τ−1
R + τ−1

N represents the combined scattering rate. We shall see that in some
circumstances an adequate description of the thermal conductivity can be ob-
tained using (2.6) while in others it is necessary to take into account normal
phonon-scattering processes.

2.2.5 Thermal Conductivity Near the Debye Temperature

We see that a comprehensive model for the lattice thermal conductivity of
a solid requires not only knowledge of the phonon spectrum and Grüneisen
parameters, but also an understanding of various types of phonon-scattering
rates and their temperature and frequency dependencies. Now we will concern
ourselves only with an understanding of the intrinsic thermal conductivity of
a solid in a temperature range where only interactions among the phonons
themselves via anharmonic Umklapp processes are important. Various early
estimates of the lattice thermal conductivity of a solid in this regime have been
discussed by Slack [1] and Berman [3], and can be considered for our purposes
as approximate expressions for the thermal conductivity at temperatures not
too far removed from the Debye temperature of the solid. These estimates all
take the form

κ = A · Maθ3
aδ

γ2T
, (2.9)

where Ma is the atomic mass of the atom, δ3 is the volume per atom, and A is
a constant. Leibfried and Schlömann [8] give the constant as A = 5.72 × 10−8

for δ in Angstroms and Ma in atomic mass units. Julian [9] pointed out an
error in their calculation and determined the following value for A:

A =
2.43 · 10−8

1 − 0.514/γ + 0.228/γ2 . (2.10)

Slack [1] put γ ≈ 2 in this expression and used A = 3.04 × 10−8. The
γ-dependence of A is slight and we will allow this parameter to assume its
value appropriate to the value of γ used to calculate the thermal conductivity.

2.2.6 Extension to More Complex Crystal Structures and Criteria
for High Thermal Conductivity

Equation (2.9) is valid for structures containing only one atom per primitive
unit cell. Using a simple counting scheme, Slack [1] extended the model to
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crystals with n atoms per unit cell:

κ = A · Maθ3
aδn1/3

γ2T
. (2.11)

By using the Debye temperature appropriate for the acoustic modes only, this
equation is a quantitative statement of our basic assumption that the optic
modes in crystals with n > 1 do not contribute to the heat transport process.

In many circumstances, especially in considering new materials and crystal
structures, the phonon-dispersion relations used to calculate θa are not avail-
able either experimentally or theoretically. In these cases, the acoustic-mode
Debye temperature can be determined from the “traditional” definition of the
Debye temperature θ (namely that determined from the elastic constants or
specific heat) by using [10]

θa = θn−1/3. (2.12)
With increasing n, the size of the unit cell (that is, the lattice constant a)
in real space increases. This means that the Brillouin zone boundary (see
Fig. 2.1) moves inward, thus cutting off phonon frequencies at smaller values
as n increases. The “traditional” Debye temperature θ depends on the atomic
mass and the bond strength but is independent of n. Thus Eq. (2.11) can be
rewritten to display the explicit n-dependence of the thermal conductivity as:

κ = A · Mθ3δ

γ2Tn2/3 . (2.13)

On the basis of Eq. (2.13) we may now list the necessary criteria for an
electrically insulating solid to possess high thermal conductivity:

• high Debye temperature,
• small Grüneisen parameter, and
• small n (simple crystal structure).

2.3 Materials with High Lattice Thermal Conductivity

2.3.1 Rocksalt, Diamond, and Zincblende Crystal Structures

We can test the validity of this simple model for thermal conductivity by
comparing it to experimental data. Let us begin by considering classes of
solids with common values of n. The only nonmetallic crystals with n = 1 are
the rare gas crystals, which crystallize in the simple cubic structure. These
crystals, however, all have Debye temperatures less than 100 K, and as a result,
have κ < 0.5 Wcm−1K−1 and will not be considered further.

The families of crystals with n = 2 include the rocksalt, diamond, and
zincblende structure compounds. The main members of these three families
that we will consider here are shown in Tables 2.1 and 2.2, respectively, along
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Table 2.1. Calculated and experimental room-temperature thermal conductiv-
ity of several rocksalt (n = 2) compounds. θa = high-temperature Debye temper-
ature of the acoustic phonon branch; γ = high-temperature Grüneisen constant;
δ3 = volume per atom; M = average atomic mass; κcalc = calculated thermal con-
ductivity from equation (2.13); κexp = measured thermal conductivity.

Compound θa γ δ M κcalc κexp

(K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

LiH 615 1.28 2.04 3.97 0.159 0.15
LiF 500 1.5 2.00 12.97 0.194 0.176
NaF 395 1.5 2.31 21.00 0.179 0.184
NaCl 220 1.56 2.81 29.22 0.048 0.071
NaBr 150 1.5 2.98 51.45 0.031 0.028
NaI 100 1.56 3.23 74.95 0.013 0.018
KF 235 1.52 2.66 2.05 0.058
KCl 172 1.45 3.14 37.27 0.038 0.071
KBr 117 1.45 3.30 59.50 0.020 0.034
KI 87 1.45 3.52 68.00 0.010 0.026
RbCl 124 1.45 3.27 60.46 0.024 0.028
RbBr 105 1.45 3.42 82.69 0.021 0.038
RbI 84 1.41 3.66 106.10 0.015 0.023
MgO 600 1.44 2.11 20.00 0.596 0.6
CaO 450 1.57 2.4 28.04 0.332 0.27
SrO 270 1.52 2.57 51.81 0.152 0.12
BaO 183 1.5 2.7 76.66 0.076 0.023
PbS 115 2 2.97 119.60 0.017 0.029
PbSe 100 1.5 3.06 143.08 0.035 0.020
PbTe 105 1.45 3.23 167.4 0.040 0.025

with the parameters needed to calculate their thermal conductivities using
Eq. (2.13).

Let us consider the rocksalt compounds first; see Table 2.1. Here the Debye
temperatures for acoustic phonons have been determined either from Eq. (2.2)
or (2.3); in cases where both the phonon density of states and the phonon-
dispersion relations are available, the calculated Debye temperatures using
these two methods differ by less than 10 percent. For the Grüneisen param-
eters we use the data collected by Slack [1]. It should be noted that there is
remarkably little variation in the γs for these rocksalts, with the majority of
them lying in the range 1.5–1.9.

Figure 2.2 is a plot of the measured thermal conductivity at room tem-
perature as a function of the calculated thermal conductivity. We see that,
with data spanning a range of two orders of magnitude, Eq. (2.13) actu-
ally gives a very good description of the thermal conductivity of the rocksalt
compounds. The tendency for the measured thermal-conductivity values to
exceed the calculated ones has been attributed to a contribution from op-
tic phonons. According to the criterion introduced earlier, only one rocksalt
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Table 2.2. Calculated and experimental room-temperature thermal conduc-
tivity of several zincblende and diamond structure (n = 2) compounds. θa =
high-temperature Debye temperature of the acoustic phonon branch; γ = high-
temperature Grüneisen constant; δ3 = volume per atom; M = average atomic mass;
κcalc = calculated thermal conductivity from Eq. (2.13); κexp = measured thermal
conductivity.

Element/ θa γ δ M κcalc κexp

Compound (K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

C 1450 0.75 1.78 12.01 16.4 30
Si 395 1.06 2.71 28.08 1.71 1.66
Ge 235 1.06 2.82 72.59 0.97 0.65
BN 1200 0.7 1.81 12.41 11.05 7.6
BP 670 0.75 2.27 20.89 3.59 3.5
BAs 404 0.75 2.39 42.87 1.70
AlP 381 0.75 2.73 28.98 1.10
AlAs 270 0.66 2.83 50.95 0.89 0.98
AlSb 210 0.6 3.07 74.37 0.77 0.56
GaP 275 0.75 2.73 50.35 0.72 1.00
GaAs 220 0.75 2.83 72.32 0.55 0.45
GaSb 165 0.75 3.05 95.73 0.33 0.4
InP 220 0.6 2.94 72.90 0.83 0.93
InAs 165 0.57 3.03 94.87 0.51 0.3
InSb 135 0.56 3.24 118.29 0.38 0.2
ZnS 230 0.75 2.71 48.72 0.40 0.27
ZnSe 190 0.75 2.84 72.17 0.35 0.19
ZnTe 155 0.97 3.05 96.49 0.17 0.18
CdSe 130 0.6 3.06 95.68 0.23
CdTe 120 0.52 3.23 120.00 0.296 0.075

structure compound, MgO, can be categorized as a high-thermal-conductivity
compound, with κ ≈ 0.6 Wcm−1K−1 at room temperature.

We turn next to the zincblende and diamond structure compounds; see
Table 2.2. One very striking feature of these compounds is that the Grüneisen
parameters tend to be much lower than those of the rocksalt structure com-
pounds: in the zincblende and diamond structures the phonons are more har-
monic. In fact, for some members of this family, e.g., silicon, some of the
mode Grüneisen parameters are negative [11]. Recent lattice dynamics cal-
culations of the mode Grüneisen parameters for diamond, silicon, and boron
nitride have been carried out [11, 12, 13]; see Fig. 2.3. Here we clearly see
that the longitudinal modes tend to have Grüneisen parameters near unity,
and the transverse modes have smaller, and even negative, γs. Of course the
important parameter is the average value of the square of γ, and this is indi-
cated in the figures. We see that the resulting average γs for these zincblende
and diamond structure compounds as derived from lattice dynamics calcula-
tions are consistent with those presented in Table 2.2, which in most cases
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Fig. 2.2. Room-temperature thermal conductivity for the rocksalt compounds of
Table 2.1 plotted against the thermal conductivity calculated from Eq. (2.13).

were derived from high-temperature thermal expansion data [1]. The necessity
of a low γ for high-thermal conductivity is a recurring theme in this re-
view. We see in Fig. 2.4 a very well-behaved relationship between measured
and calculated room-temperature lattice thermal conductivities, spanning a
range from 0.18 Wcm−1K−1 for ZnTe to >30 Wcm−1K−1 for isotopically en-
riched diamond. Twelve members of this family of materials have or are
expected to have thermal conductivity at room temperature in excess of
0.5 Wcm−1K−1 with several (diamond, BN, BP, Si, BAs, AlP, and GaP) ex-
ceeding 1 Wcm−1K−1. A more detailed description of the thermal conductivity
of diamond is the subject of Chapter 7 in this book.

2.3.2 Wurtzite Crystal Structure

For the n = 4 wurtzite structure compounds CdS, ZnO, GaN, BeO, AlN, and
SiC (Table 2.3 and Fig. 2.5) we again find excellent agreement between the
calculated and measured room-temperature thermal conductivities, except
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Fig. 2.3. Longitudinal (thin lines) and transverse (bold lines) mode Grüneisen
parameters for (a) silicon, (b) diamond, and (c) boron nitride, with the average
value 〈γ2

i 〉 as indicated.

for the case of BeO, where the measured thermal conductivity exceeds the
calculated value by about a factor of four. We note, however, that the value of
γ = 1.3, which was derived from thermal expansion data [14], is significantly
larger than that used for the other wurtzite compounds. Using a similar value
of γ = 0.75 for BeO, in fact, improves greatly the agreement between the
model and experiment. Further measurements or calculations of the Grüneisen
parameter for BeO would be desirable. We note further that all of these com-
pounds except CdS can be categorized as possessing high thermal conductivity
according to our criterion. These crystals are undergoing significant develop-
ment for their potentially useful electronic and optical properties; thus the
last decade has seen a dramatic improvement in the availability and quality
of single crystals of these wurtzites. Because of their technological potential,
we will discuss the thermal conductivity of some of these crystals in more
detail in Sect. 2.4.
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Fig. 2.4. Room-temperature thermal conductivity for the zincblende compounds
of Table 2.2 plotted against the thermal conductivity calculated from Eq. (2.13).

Table 2.3. Calculated and experimental room-temperature thermal conduc-
tivity of several wurtzite (n = 4) compounds. θa = high-temperature Debye
temperature of the acoustic phonon branch; γ = high-temperature Grüneisen
constant; δ3 = volume per atom; M = average atomic mass; κcalc = calculated
thermal conductivity from equation (2.13); κexp = measured thermal conductiv-
ity.

Compound θa γ δ M κcalc κexp

(K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

SiC 740 0.75 2.18 20.0 4.45 4.9
AlN 620 0.7 2.18 20.49 3.03 3.5
GaN 390 0.7 2.25 41.87 1.59 2.1
ZnO 303 0.75 2.29 40.69 0.65 0.6
BeO 809 1.38/0.75 1.90 12.51 0.90/3.17 3.7
CdS 135 0.75 2.92 72.23 0.13 0.16

2.3.3 Silicon Nitride and Related Structures

Up to now we have discussed structures containing only two or four atoms
per primitive unit cell. We will now consider briefly a few compounds with
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Fig. 2.5. Room-temperature thermal conductivity for the wurtzite compounds of
Table 2.3 plotted against the thermal conductivity calculated from Eq. (2.13).

n > 4 that are potentially high-thermal-conductivity materials. One example
is Si3N4. This compound assumes two crystal structures, known as the α
and β phases, and is characterized by extreme hardness and toughness aris-
ing from predominantly covalent bonding [15]. Thus one might expect this
compound to exhibit high thermal conductivity even though the crystal struc-
ture is not simple. Watari et al. [16] have reported the fabrication of hot-
pressed, polycrystalline Si3N4 samples with thermal conductivity as high as
1.55 Wcm−1K−1.

The α- and β-phases of Si3N4 are both hexagonal with n = 28 and n = 14,
respectively [17]. Recently a third high-pressure phase, called γ-Si3N4, has
been reported [18]. This phase crystallizes in the cubic spinel MgAl2O4 struc-
ture with n = 14. There are no thermal conductivity data on this structural
modification in the literature. From recently published calculated phonon-
dispersion curves [19] and thermal expansion data [20] one can estimate the
average Debye temperature for these three structural modifications. Little
information is available regarding the Grüneisen parameters of these com-
pounds. He et al. [21] calculated γ = 1.1 for β-Si3N4. This value was derived
from compressibility and bulk modulus data. Bruls et al. [22] report a high
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temperature γ = 0.63 for β-Si3N4, not too different from the value γ = 0.72
reported by Slack and Huseby [23]. In order to obtain an upper limit for
the calculated thermal conductivity we will assume the smaller value of γ
for both the α- and β-phases. We will use the value γ = 1.2 determined for
the γ-phase [20], noting that this value is consistent with γ = 1.4 for the
isostructural compound MgAl2O4 [24].

The necessary parameters for all three Si3N4 phases are collected in
Table 2.4, along with the calculated thermal conductivities. We have also
included results for MgAl2O4 that serve to verify the validity of Eq. (2.13)
for these more complex crystal structures. We see that the calculated thermal
conductivity for the α- and β-phases both exceed 1 Wcm−1K−1. The calcu-
lated value for β-Si3N4 suggests that even higher thermal conductivity than
that measured by Watari et al. may be obtained in pure β-Si3N4 material.
Reliable data on the Grüneisen parameters of these compounds would be very
useful to verify the model for these compounds.

Ge3N4 also forms in the same α, β, and γ crystal structures [17, 25]. There
are no experimental data on the thermal conductivity of these compounds; one
would expect, however, in analogy to the Group IV semiconductors Si and Ge,
that the heavier average mass of the germanium compounds will produce lower
thermal conductivity than the silicon-based isostructures. From the available
theoretical phonon-dispersion curves for the β-phase [26] and using the same
value of γ as for β-Si3N4, we can make an estimate for the thermal conductivity
of this compound; see Table 2.4.

Also very exciting from the point of view of high thermal conductivity
are the predicted compounds C3N4 from the same α, β, and γ structural
modifications [27, 28, 29] as well as a defective zincblende structure [30] and

Table 2.4. Calculated and experimental room-temperature thermal conductivity
of several phases of Si3N4 and related compounds. n = number of atoms
in the primitive unit cell; θa = Debye temperature of the acoustic phonon
branch; γ = high-temperature Grüneisen constant; δ3 = volume per atom;
M = average atomic mass; κcalc = calculated thermal conductivity from equa-
tion (2.13); κexp = measured thermal conductivity.

Compound n θa γ δ M κcalc κexp

(K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

α-Si3N4 28 337 0.7 2.19 20.03 1.32
β-Si3N4 14 485 0.7 2.18 20.03 2.61 1.55
γ-Si3N4 14 480 1.2 2.02 20.03 0.8
γ-MgAl2O4 14 352 1.4 2.11 20.33 0.24 0.24
β-Ge3N4 14 243 0.63 2.31 39.11 0.65
β-C3N4 14 ∼650 0.7 1.91 13.15 3.5
Be2SiO4 42 316 1.02 2.06 15.73 0.35
Zn2SiO4 42 236 0.52 2.318 31.83 1.29
Zn2GeO4 42 186 0.31 2.367 28.19 2.17
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even a CN phase [31]. Several of these compounds, originally proposed by Co-
hen [32], are predicted to have bulk moduli rivaling that of diamond. Of course,
many of the features favoring high hardness, such as short bond lengths and
strong covalent bond character, give rise to high thermal conductivity. Thus
it is likely, given the results on Si3N4 and the smaller mass of the carbon
atom, that at least some of the C-N phases, if they exist, may possess ther-
mal conductivities at least as high as their Si-based counterparts. Since the
predictions of their existence, there have been numerous attempts [33, 34,
35, 36, 37] to synthesize various structural modifications of C3N4 and related
phases, though it is debatable whether any has been demonstrated unequivo-
cally [38]. We can make a rough estimate of the thermal conductivity of these
compounds, although we do not have the luxury of lattice dynamical calcu-
lations of the phonon dispersion and phonon density of states. Rather, we
make an estimate of the high-temperature Debye temperature from the theo-
retical bulk and shear moduli [39] using the method of Ravindran et al. [40].
The results are shown in Table 2.4. The predicted thermal conductivity of
β-C3N4 exceeds that of β-Si3N4; if reasonably large crystals of the carbon
nitrides become available it would be very interesting to study their thermal
conductivity.

Be2SiO4 (phenacite) and Zn2SiO4 (willemite) also possess the β-Si3N4
structural modification but with two of the silicon atoms replaced by Be and
Zn, respectively [41]. As with silicon nitride itself, these and other phenacites
are typified by Grüneisen parameters on the order of or, in some cases, much
less than, unity. Thus they could be potentially high-thermal-conductivity
materials even though they have fairly large n = 42. From thermal expan-
sion data the high-temperature limits of θ and γ have been determined [23]
and θa calculated from Eq. (2.12). The estimated room-temperature ther-
mal conductivity of these and related compounds are displayed in Table 2.5.
Zn2SiO4 and Zn2GeO4 both display calculated thermal conductivity in ex-
cess of 1 Wcm−1K−1; the case of Zn2GeO4, is very interesting because this
compound has both a large n and large M . Again we see high thermal con-
ductivity arising from a very small Grüneisen parameter; this suggests that
looking for compounds with similarly low γ is another route for discovering
high-thermal-conductivity materials. The tendency for a crystal to possess a
low γ may be related to the openness of the structure [23]. This openness

Table 2.5. Calculated and experimental room-temperature thermal conductiv-
ity of some boron-containing compounds. Parameters are defined in Table 2.4.

Compound n θa γ δ M κcalc κexp

(K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

B12As2 14 390 0.75 2.10 19.97 1.10 1.2
B12P2 14 481 0.75 2.06 13.69 1.38 0.38
B12O2 14 520 0.75 2.05 11.55 1.47
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allows more freedom of movement for the transverse phonon modes, and it is
these modes that generally possess lower Grüneisen parameters [13]. Further
detailed experimental and theoretical studies on the Grüneisen parameters
and thermal conductivity of the phenacites and related structures would be
very desirable to determine whether these compounds in fact possess small γ
and large κ.

2.3.4 Icosahedral Boron Compounds

The element boron occurs in an α-structure, consisting of B12 icosahedra
linked together with covalent bonds, and a β-structure consisting of B84
units [42]. Several boron-rich compounds also form as variations of the icosahe-
dral B12 units [43]. From the point of view of high thermal conductivity, some
of the most interesting of these are the compounds B12As2, B12P2, and B12O2.
These compounds all have n = 14. The last of these, sometimes referred to
as boron suboxide, was recently reported [44] to have a hardness exceeding
that of cubic BN. Slack et al. [45] measured the thermal conductivity of a sin-
gle crystal of B12As2 and an impure oligocrystalline B12P2 sample. Table 2.5
presents the necessary parameters to calculate the thermal conductivity. For
B12As2 and B12P2, θa was calculated using Eq. (2.12) from θ-values estimated
from the specific heat and elastic constants of similar boron compounds [45,
46, 47]; their γ-values were taken equal to that of β-boron [1]. We see that the
model reproduces quite well the thermal conductivity of B12As2. As mentioned
by Slack et al., the B12P2 they measured was neither a single crystal nor a
very pure specimen, and examination of the temperature dependence of the
thermal conductivity would suggest that its thermal conductivity at room
temperature is partially limited by extrinsic scattering processes. It is likely
that pure crystals of B12P2 and boron suboxide will have room-temperature
thermal conductivity exceeding 1 Wcm−1K−1.

In addition to these compounds, there are many other structures in the
B-C-N triangle that exhibit hard or superhard behavior [48, 49], and it is
possible that at least some of these may be high-thermal-conductivity mate-
rials. This is a rich field that currently is largely unexplored from the point
of view of thermal transport and is deserving of further experimental and
theoretical scrutiny.

2.3.5 Graphite and Related Materials

The form of carbon known as graphite is a hexagonal structure, n = 4,
consisting of carbon atoms linked together in hexagons [50]. The C-C dis-
tance within the planes is 1.42 Å, nearly the same as that in benzene; the
interplanar distance, on the other hand, is 3.40 Å. These differences reflect
the very different nature of the bonding within a plane and between planes in
graphite, with the former essentially a covalent sp2-bonding arrangement and
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the latter a weak Van der Waals type of bonding. The thermal conductivity
of graphite has been extremely well studied both experimentally and theoret-
ically; for a more complete discussion the reader is referred to the review [51]
and monograph [52] by Kelly, which include discussions of the influence of
defects and various types of quasi-crystalline forms of this material. Here we
only briefly consider graphite in its most perfect form, namely single crystals
or highly oriented polycrystalline pyrolytic graphite.

Up to now, we have largely ignored the effects of anisotropy because for
the crystals we have considered these effects are either absent or quite small.
In graphite, however, the highly anisotropic nature of bonding manifests itself
as an enormous anisotropy in the conduction of heat. Because of the crystal
symmetry there are only two principle conductivities: that in the plane and
that perpendicular to the plane, or along the so-called c-axis. Figure 2.6 shows
composite curves of in-plane and c-axis thermal conductivity of graphite; these
represent an average of many measurements that have been done over the last
half century [53, 54, 55, 56, 57].

In the context of the simple model we have considered in this review, the
anisotropy is due to the large difference in Debye temperature for phonon
transport in the plane versus along the c-axis. These Debye temperatures can
be estimated from a fit to the specific heat assuming a combination of “in-
plane” and “out-of-plane” vibrations [58] and applying Eq. (2.12) to determine
the Debye temperature of the acoustic modes.

Because of the strong intraplanar covalent bonding, we will assume for
in-plane transport a Grüneisen parameter similar to that of diamond, while
for out-of-plane transport we take γ = 2. The calculated thermal conductivity
from Eq. (2.13) is shown in Table 2.6, and again we see that the simple model
can account reasonably well for the magnitude of κ both perpendicular and
parallel to the basal plane in graphite. A more complete theory of the thermal
conductivity of graphite is based on the lattice dynamics models of in-plane
and out-of-plane phonon modes (Komatsu [58]; Krumhansl and Brooks [61])
and the contribution of each of these to the basal plane and c-axis thermal
conductivities. Extrinsic scattering mechanisms may also play an important
role. The reader is referred to the book by Kelly [51] for further details.

Table 2.6. Thermal conductivity of graphite and BN in the basal plane (xy) and
perpendicular to the c-axis (z).

Compound n θa γ δ M κcalc κexp

(K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

Graphite-xy 4 1562 0.75 2.05 12.01 27 10–20
Graphite-z 4 818 2 2.05 12.01 0.5 0.06
BN-xy 4 1442 0.75 2.05 12.40 22 2–3
BN-z 4 755 2 2.05 12.4 0.4 ∼0.02
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Fig. 2.6. Thermal conductivity of highly oriented graphite parallel (upper curve)
and perpendicular (lower curve) to the basal plane.

Analogous to graphite, there exists a hexagonal form of boron nitride [62].
Measurements of the thermal conductivity have been made on sintered
compacts with crystallite sizes on the order of 1000 Å or less [63]. We see
(Table 2.7) again a reasonable agreement with the model using parameters de-
rived in a similar fashion to those of graphite. Again, as in the case of graphite,
a more complete theory of thermal conductivity in this hexagonal structural
modification would take into account the details of the lattice dynamics of
this structure.

Recently, many other forms of carbon, including fibers, sheets, C60,
graphene sheets, and nanotubes, have been demonstrated or predicted. Some
of these have or are expected to have high thermal conductivity. Chapter 8 of
this volume is devoted to the thermal conductivity of carbon nanotubes and
the reader is referred to it for further information.
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2.4 Thermal Conductivity of Wide-Band-Gap
Semiconductors: Silicon Carbide, Aluminum Nitride,
and Gallium Nitride

We have seen that among the select group of materials with high thermal
conductivity are the Group IV and Group III–V wide-band-gap semiconduc-
tors SiC, AlN, and GaN. Because of their wide gap, high-saturation electron
velocities, and high thermal conductivity, these and related compounds have
undergone significant development over the last decade for optoelectronic,
high-frequency, high-temperature, and high-power device applications [64].
There has thus been an increase in availability of high-quality single crystals.
Because of the importance of the thermal conductivity for many of these appli-
cations, we will look at these compounds in a little more detail in this section.
Our emphasis is on the thermal conductivity of nearly defect-free single crys-
tals and the influence of low levels of defects and impurities; Chapters 5 and
6 address the interesting and important subject of polycrystalline ceramics of
SiC and AlN.

SiC was the earliest of this trio to undergo development as a substrate and
active material for electronics applications. Much earlier, however, Slack [65]
presented the first, and for many years the only, detailed characterization of
the thermal conductivity of SiC single crystals and provided the first iden-
tification of this compound as a high-thermal-conductivity material. Slack
noted that electrically active impurities had a noticeably stronger effect on
the thermal conductivity than neutral impurities. Burgemeister et al. [66]
studied several n- and p-type single crystals in the region around room tem-
perature and showed that the thermal conductivity displayed a strong de-
pendence on carrier concentration. Morelli et al. [67] studied several single
crystals of different electron concentrations as a function of temperature.
These results showed that samples with higher electron concentrations not
only had lower thermal conductivity, but assumed a quadratic, as opposed
to a T3, temperature dependence at low temperature, an effect they ascribed
to scattering of phonons by electrons in an impurity band. Müller et al. [68]
measured the thermal conductivity of a single crystal from room temperature
up to 2300 K. Some of these data are summarized in Fig. 2.7.

The data on SiC afford an example of how the relaxation-time approxi-
mation and the Debye model may be used to understand the magnitude and
temperature dependence of the thermal conductivity. Theoretical fits of the
lattice thermal conductivity may be performed using the standard expres-
sion (2.6). The phonon-scattering relaxation rate τ−1

C can be written as:

τ−1
C =

v

L
+ Aω4 + Bω2T exp

(
−θD

3T

)
(2.14)

where the first term on the right-hand side represents scattering of the crystal
boundaries with an effective crystal diameter L; the second term describes any
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Fig. 2.7. Thermal conductivity of various single crystals of SiC. R66: pure crystal
Slack [65]; #1 and #2: crystals [67] with electron concentrations of 3.5 × 1016 and
2.9 × 1018 cm−3, respectively.

point-defect scattering that may be present in the crystal; and the third term
represents intrinsic phonon-phonon Umklapp scattering. The data in Fig. 2.7
for the purest sample of SiC can be fit with this expression using a Debye
temperature of θD = 800 K.

The question of the influence of the electrical state of the sample on
the thermal conductivity is important for the development of semi-insulating
substrates for high-power electronic devices. Currently three-inch-diameter
SiC substrates are commercially available and four-inch substrates have been
demonstrated in the laboratory. Semi-insulating substrates are fabricated
either by introducing vanadium during the growth process [69], thereby pro-
viding a deep level that traps free carriers, or by reducing as much as possible
the presence of nitrogen during growth while providing “native” defects that
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can trap any remaining carriers [70]. In either case, to the extent that free
carriers are eliminated, any reduction in the thermal conductivity below the
“intrinsic” conductivity will be due to the presence of the trapping species.
Studies of the thermal conductivity of silicon carbide containing these deep-
level impurities would be very revealing in this regard.

Though not nearly as intense as the development of SiC substrates, GaN
substrate development has accelerated dramatically over the last few years.
As of this writing, two-inch wafers have been demonstrated and are becom-
ing commercially available. Until recently, the only thermal-conductivity
data available were those of Sichel and Pankove [71]. More recently, Pollak
and coworkers have studied the local thermal conductivity of epitaxial lay-
ers of GaN using a scanning thermal microscopy technique. They found
that the thermal conductivity of these layers depends strongly on the dis-
location density, ranging from values as low as 1.3 Wcm−1K−1 for high-
dislocation density films to greater than 2 Wcm−1K−1 for regions on films
containing two orders of magnitude fewer dislocations [72]. Further stud-
ies by Pollak’s group on n-type GaN layers showed [73] that the thermal
conductivity also decreased strongly with increasing electronic concentra-
tion in the range 1017–1019 cm−3. Slack et al. [74] recently reported the
temperature-dependent thermal conductivity on a high-quality single crys-
tal of GaN; these results are shown in Fig. 2.8 along with the earlier re-
sults of Sichel and Pankove. This single crystal had a room-temperature
thermal conductivity of 2.1 Wcm−1K−1 and the temperature dependence
could be fit with Eq. (2.6) using a Debye temperature of approximately 525 K.
The large difference in the conductivities between this sample and that of
Sichel and Pankove was attributed to the presence of oxygen in the latter
sample.

The suggestion by Slack et al. that the difference in conductivities of
these two GaN samples is due to the presence of oxygen was based on the
well-documented studies of the thermal conductivity of the isostructural com-
pound AlN. Although substrate development for this wide-band-gap semi-
conductor is still in its nascent stage [75], some information on the thermal
conductivity is available in the literature. Slack et al. [76] studied several sin-
gle crystals and found large differences in thermal conductivity that seemed
to depend on oxygen content. A sample that was nearly free of impurities
and defects had a room-temperature thermal conductivity of 3.5 Wcm−1K−1,
while those containing measurable quantities of oxygen impurity had a lower
conductivity characterized by a depression or dip in the curve as a func-
tion of temperature. Some of these results, along with more recent results of
Slack et al [74] on a sample containing about 1000 ppm oxygen, are shown in
Fig. 2.9.

In order to gain a deeper understanding of the influence of oxygen on
the thermal conductivity of AlN, it is useful to understand the kinetics of
oxygen impurities in this compound. Oxygen in the aluminum nitride lattice
has its origin in small amounts of Al2O3 dissolved in the AlN grains. At high
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Fig. 2.8. Thermal conductivity of GaN as a function of temperature. Open points:
data of Slack et al. [74]; lower dotted line: results of Sichel and Pankove [71]. Dashed
line shows low-temperature boundary limit, assuming a crystal dimension of 500
microns.

temperatures, dissolution of Al2O3 occurs according to the reaction:

Al2O3 −→ 2Al + 3ON + VAl, (2.15)

where the subscripts N and Al, respectively, indicate that the O atoms occupy
the nitrogen site and the vacancy occurs on the aluminum site. Thus, the
presence of oxygen in the AlN lattice is always accompanied by the presence of
vacancies, with the oxygen-vacancy ratio of 3:1. This is because the Al/O ratio
in Al2O3 is 2:3 and the Al/N ratio in aluminum nitride is 1:1. The presence
of an impurity (in this case oxygen) or a defect (in this case the vacancy)
in an otherwise perfect aluminum nitride lattice will cause a reduction in
thermal conductivity. This reduction has been well studied [2] and arises due
to differences in the mass and size of the impurity or defect. These differences
cause a scattering of the heat-carrying lattice vibrations; the scattering rate for
this process is proportional to the square of the difference in mass between the
host atom and the impurity. The mass difference between oxygen and nitrogen
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Fig. 2.9. Thermal conductivity of single-crystal AlN. “Pure AlN” is the calculated
result for a crystal containing no impurities; samples W-201, R-162, and B-21 are
single crystals with varying amounts of oxygen concentrations; see text. A ceramic
sample is shown for comparison.

is not large; thus, the direct effect of oxygen on the thermal conductivity of the
aluminum nitride is small. On the other hand, the fractional mass difference
between a vacancy and aluminum is 100 percent, and this gives rise to a
very large scattering rate. Thus, the lowering of the thermal conductivity by
oxygen in AlN is really due to the presence of the vacancy on the aluminum
site, which inexorably accompanies the less malevolent oxygen. The influence
of oxygen is well described by the additive resistivity approximation [76]:

Wtotal = Wpure + ∆W1 (2.16)

were Wtotal is the measured thermal resistivity (=1/κtotal), Wpure is the
thermal resistivity of a pure AlN crystal (Wpure = 0.3 K cm W−1), and ∆W is
the increase in resistivity due to the presence of oxygen and is proportional
to the oxygen concentration. For an oxygen concentration α by weight, the
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data of Fig. 2.3 yield ∆W = 110α at room temperature. Thus, to obtain high
thermal conductivity (>0.5 Wcm−1K−1), the oxygen concentration in AlN
must be below about 1.5 percent. The influence of oxygen on the thermal con-
ductivity of AlN is particularly important for the commercial manufacture of
ceramic polycrystalline substrates of this material, as these ceramics are sin-
tered using an oxide binder [77]. The thermal conductivity of AlN ceramics is
discussed in detail in Chapter 5.

2.5 Isotope Effect in High Lattice Thermal Conductivity
Materials

Since the early work of Pomeranchuk [78], it has been known that isotopes,
due to their mass difference, can scatter phonons and decrease thermal con-
ductivity. This effect was discussed also by Slack [79]. Geballe and Hull [80]
provided unequivocal evidence for the influence of isotopes on the thermal
conductivity with their experiments on natural abundance and isotopically
purified germanium.

With the ready availability of isotopically purified source materials, the
isotope effect has undergone reexamination over the last decade. Isotopically
purified diamond [81, 82, 83, 84] displays a room-temperature isotope effect
on the order of 40 percent. More recently, Asen-Palmer et al. [59] carried out
a very thorough investigation of the isotope effect in germanium and showed
that an isotopically purified sample had a 30 percent larger κ than natural
abundance Ge. Very recently, Ruf et al. [85] reported an isotope effect in
silicon of 60 percent at 300 K, although the same authors [86] subsequently
downgraded the magnitude to 10 percent.

The magnitude of the isotope effect in these materials is at first surpris-
ing because a simple estimate using the standard Debye theory of lattice
thermal conductivity [3] (Eq. 2.6) yields increases in all cases of 5 percent
or less. A more thorough and complete understanding of the isotope effect
in these materials must recognize the importance of normal phonon-phonon
scattering processes [87, 88, 89] within the context of the Callaway model. In
the case of diamond it has been argued [87, 88, 89] that including the effect
of normal phonon-scattering processes can explain the experimental result,
although assuming infinitely rapid normal processes can only qualitatively fit
the data [82].

Recently an extension of the Callaway model was provided by Asen-Palmer
et al. [59], who successfully modeled the lattice thermal conductivity of
Ge by not only using the Callaway formalism but also by considering the
explicit mode dependence of the thermal conductivity and summing over one
longitudinal (κL) and two degenerate transverse (κT ) phonon branches:

κ = κL + 2κT , (2.17)
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where
κL = κL1 + κL2. (2.18)

The partial conductivities κL1 and κL2 are the usual Debye-Callaway terms
given by:

κL1 =
1
3
CLT 3

θL/T∫
0

τL
C (x)x4ex

(ex − 1)2
dx, (2.19)

κL2 =
1
3
CLT 3

[
θL/T∫

0

τL
C (x)x4ex

τN (x)(ex − 1)2
dx

]2

θL/T∫
0

τL
C (x)x4ex

τL
N (x)τL

R(x)(ex − 1)2
dx

, (2.20)

and similarly, for the transverse phonons,

κT1 =
1
3
CT T 3

θT /T∫
0

τT
C (x)x4ex

(ex − 1)2
dx, (2.21)

κT2 =
1
3
CT T 3

[
θT /T∫

0

τT
C (x)x4ex

τT
N (x)(ex − 1)2

dx

]2

θT /T∫
0

τT
C (x)x4ex

τT
N (x)τT

R (x)(ex − 1)2
dx

. (2.22)

In these expressions, (τN )−1 is the scattering rate for normal phonon pro-
cesses; (τR)−1 is the sum of all resistive scattering processes; and (τC)−1 =
(τN )−1 + (τR)−1, with superscripts L and T denoting longitudinal and trans-
verse phonons, respectively. The quantities θL and θT are Debye temperatures
appropriate for the longitudinal and transverse phonon branches, respectively,
and

CL(T ) =
k4

B

2π2�3vL(T )
(2.23)

and
x =

�ω

kBT
. (2.24)

Here ω is the phonon frequency and vL(T ) are the longitudinal (transverse)
acoustic phonon velocities, respectively.

The temperature dependence and the magnitude of the lattice thermal
conductivity are determined by the temperature and frequency dependence
of the scattering rates comprising (τN )−1 and (τR)−1, their coefficients,
and the Debye temperatures and phonon velocities. The resistive scattering
rate includes contributions from Umklapp processes, isotope scattering, and
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Table 2.7. Percentage Increase in Room-Temperature Thermal
Conductivity due to the Isotope Effect in Some Group IV and
Group III–V semiconductors.

Element/ ∆κ/κ∗ ∆κ/κ∗∗ ∆κ/κ∗∗∗

Compound (%) (%) (%)

Ge 30 28 30
Si 12 60
C 23 35–45
SiC 36
GaN 5
BN 125
∗ Model [59].
∗∗ Model [60].
∗∗∗ Experimental results.

boundary scattering. Using the isotope scattering rate of Klemens [90] and
appropriately adjusting the coefficients of the normal and Umklapp phonon-
scattering rates, Asen-Palmer et al. [59] were able to quantitatively fit their
experimental results over the entire temperature range of 10–300 K.

Recently, Morelli et al. [60] extended and modified this approach to model
the isotope effect in diamond, silicon, germanium, silicon carbide, gallium
nitride, and boron nitride. As mentioned previously, experimental data exist
for the cases of diamond, silicon, and germanium. The model was able to
account for the magnitude of the isotope effect all these semiconductors.
Table 2.7 displays the measured and predicted isotope effect in these Group
IV and Group III–V semiconductors at room temperature. Particularly note-
worthy is the predicted magnitude of the isotope effect in boron nitride. This
has its origin in the light atom masses and the natural abundance distribu-
tion of boron isotopes. Although boron nitride single crystals are extremely
difficult to fabricate, it would be very desirable to study the isotope effect in
this wide-band-gap semiconductor.

2.6 Summary

The intrinsic lattice thermal conductivity of crystalline solids near the Debye
temperature can be understood on the basis of a simple model based on infor-
mation that can be obtained from the crystal structure and lattice dynamics
or phonon dispersion. The measured thermal conductivity of simple crystal
structures such as rocksalt, zincblende, diamond, and wurtzite agree quite
well with the predictions of the model. The model can be extended to other
crystal structures to predict the thermal conductivity of new materials.
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Several materials have been discussed that can be categorized as having
high thermal conductivity. These include most of the simple zincblende,
diamond, and wurtzite structure compounds. Various compounds possessing
the hexagonal Si3N4 structure have been found or are predicted on the basis
of this model to have high thermal conductivity, as have several compounds
based on icosahedral boron structures. High lattice thermal conductivity com-
pounds may be discovered in structures within the B-C-N or B-Si-N triangles
and in similar triangles with oxygen substituted for nitrogen. This predicted
high thermal conductivity would arise due to the strong covalent bonding and
potentially low Grüneisen parameters of these structural modifications. The
isotope effect may be used to increase the thermal conductivity of several
wide-band-gap semiconductors, especially those containing boron.
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Thermal Characterization of the
High-Thermal-Conductivity Dielectrics

Yizhang Yang, Sadegh M. Sadeghipour, Wenjun Liu,
Mehdi Asheghi and Maxat Touzelbaev

It has been recognized that future improvements in performance and reliability of the
microelectronic devices may only be possible through the use of new high-thermal-
conductivity materials for thermal management in compact packaging systems. The
diamond-like dielectric materials, in bulk form or thin film configurations are the
likely choice, due to their high thermal conductivity and their excellent mechanical
and electrical properties. However, the accurate thermal characterization of these
materials has proven to be extremely challenging due to variations in fabrication
processes and therefore their microstructures, as well as the practical difficulties
in measuring small temperature gradients during the thermal characterization pro-
cess. The variations in microstructure of these materials (e.g., CVD diamond) would
manifest into anisotropic, nonhomogeneous, and thickness-dependent thermal prop-
erties that may vary by several orders of magnitude. As a result of these com-
plications, a wide range of experimental techniques have been developed over the
years, which may or may not be appropriate for thermal characterization of high-
thermal-conductivity material of given microstructure and physical dimension. We
will describe and critically review the existing thermal-characterization techniques
for high-thermal-conductivity dielectric materials. In addition, we propose a number
of techniques that are particularly tailored for accurate thermal characterization of
diamond, silicon nitride (Si3N4), aluminum nitride (AlN), and silicon carbide (SiC)
films and substrates. In each case, specific comments about the experimental tech-
nique and procedure, detailed description of the heat transfer process, and sensitivity
analysis are provided.

3.1 Introduction

Continuous reduction in the size of electronic devices and systems and their
process time scales requires fast removal of enormous heat for reliable perfor-
mance. The lack of an efficient thermal-management strategy and system
can often lead to overall system failures. This is not feasible except through
use of high-thermal-conductivity materials as heat spreaders or heat sinks. A
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thorough thermal-conductivity evaluation of synthetic single crystals, com-
bined with theoretical calculations, has revealed that most of the high-
thermal-conductivity materials (>100 Wm−1K−1, at room temperature) are
adamantine (diamond-like) compounds, for example, diamond, BN, SiC, BeO,
BP, AlN, BeS, GaN, Si, AlP, and GaP [1]. The extensive research in recent
years has concentrated on fabrication and characterization to obtain noble ma-
terials with improved mechanical or thermal properties. These efforts have re-
sulted in development of new production or processing techniques, which have
improved thermal conductivities of adamantine materials enormously (a few
orders of magnitude, in some cases) and reduced their fabrication cost consid-
erably. These developments have made the widespread use and commercializa-
tion of the passive diamond-like materials (in semiconductor devices and elec-
tronic systems) feasible and economically justified. For example, diamond is an
excellent heat conductor and a good electrical insulator, rendering it ideal for
passive applications. The high cost of synthesis at high temperatures and pres-
sures, where diamond is thermodynamically stable, has been a barrier to the
widespread commercial use of diamond in the past. However, evolution of the
technology for low-pressure moderate-temperature chemical-vapor-deposition
(CVD) of diamond on nondiamond substrate has removed this barrier.

Recent investigations [2]; [3] have led to the fact that, in addition to dia-
mond itself, nitride and carbide, nonoxide diamond-like ceramics, demonstrate
unique mechanical, electrical, and magnetic performances, compared to oxide
ceramics. Accordingly, the significance of high-thermal-conductivity nonox-
ide ceramics has been recognized in many industrial fields. They have been
increasingly used as heat spreaders for highly integrated circuits and optoelec-
tronics, structural components for producing semiconductors, engine-related
material components, etc. [4]. At present, SiC with measured thermal con-
ductivity of 270–360 Wm−1K−1 and AlN are the commonly used ceramics
for high-thermal-conductivity applications [1]. Due to the low reliability that
arises from their poor mechanical properties, however, widespread use of SiC
and AlN ceramics is still restricted. In addition, application of the SiC ce-
ramics is further limited due to the low electric resistance and high dielectric
constant. Silicon nitride (Si3N4) ceramic, on the other hand, is well known as
a high-temperature structural ceramic with high strength and fracture tough-
ness [5]. Compared with conventional processing techniques for single crystals
and polycrystalline bulk ceramics, deposition process techniques have a strong
potential for industrial application in terms of cost, scalability, and reliability.
Chemical-vapor deposition (CVD) is a promising technique for producing bulk
and film ceramics for a variety of applications, because it can yield materials
with high purity and densification. Very recently, a significant increase in the
thermal conductivity of polycrystalline films has been achieved. Several high-
thermal-conductivity applications in the area of semiconductor processing,
optics, electronics, and wear parts have been demonstrated [1]. Goodson [6]
has categorized applications of the CVD diamond layers in electronic systems



3 Thermal Characterization of High-Thermal-Conductivity Dielectrics 71

into three groups, called generations due to their varying stages of devel-
opment. The first two generations consist of passive applications, and the
third generation refers to the active application of diamond layers. The first
generation, which has many industrial applications in production, uses thick
(>100 µm) diamond plates for passive cooling of high-power electronic devi-
ces. Thermal resistance of the attachment material and distance between the
active region and the diamond usually controls the effectiveness of using dia-
mond as a heat spreader. The impact of diamond on the temperature rise in
the device strongly depends on the time scale of the heating. The improvement
for the case of a brief pulse heating can be larger than for the case of steady-
state heating. However, using diamond may show no improvement if pulse
duration is very short. The second generation of the CVD diamond layers,
which is in applied research stage, is about deposition of the thin (<10µm)
diamond films within electronic microstructures to improve thermal conduc-
tion in the vicinity of the active semiconducting regions. The close proximity
of the diamond to the active regions and direct deposition, needing no attach-
ment material, will diminish the high temperature rise in the device. This will
also promise a reduction in the maximum temperature rise in the device due
to short pulse durations. Of course, deposition of the thin diamond films on
nondiamond substrate results in a considerably lower thermal conductivity,
especially at low temperatures, compared to the thick diamond plates. The
third generation applications, currently under basic/applied research, use
doped diamond as an active semiconductor in high-power electronic devices
and thermistors.

It is well recognized that the definition of the thermal property and the
thermal characterization of high-thermal-conductivity dielectric materials are
extremely difficult mainly due to the fact that the variation in fabrication
processes can strongly influence the material microstructures. In order to
remove any ambiguity in this regard, a review of the microstructure of
the CVD diamond, silicon nitride, aluminum nitride, and silicon carbide
and its correlation with the observed anisotropic, nonhomogeneous, and
thickness-dependent thermal properties of these materials are provided in
Sect. 3.2. The available measurement techniques for thermal characterization
of high-thermal-conductivity materials, with particular attention to the heat-
ing and thermometry techniques, are described in Sect 3.3. The role of time
scale (Sect. 3.3.2) and the shape of heat source (Sect. 3.3.3) on the extracted
thermal property and the extent of the heated (probed) zone in the transient
techniques are demonstrated and discussed in detail. Section 3.4 discusses the
steady-state techniques such as the DC heated bar method (Sect. 3.4.1), the
film-on-substrate approach (Sect. 3.4.2), the suspended membrane technique
(Sect. 3.4.3), and the comparator method (Sect. 3.4.4). A new structure is
also proposed for fast and routine thermal characterization of high-thermal-
conductivity dielectric films and substrates (Sect. 3.4.2). Sections 3.5 and
3.6 review the transient techniques. Frequency domain methods, such as the
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Ångström thermal wave technique and the modified calorimetric method, are
described in Sects 3.5.1 and 3.5.2, respectively. Applications of the 3ω tech-
nique for thermal characterization of (a) high-thermal-conductivity layers on
low-thermal-conductivity substrates (Sect. 3.5.3); (b) anisotropic silicon ni-
tride substrates (Sect. 3.5.4); and (c) spatially variable thermal conductivity
of AlN substrates (Sect. 3.5.5) are also demonstrated. The time domain tech-
niques, including laser heating (Sect. 3.6.1) and Joule heating (Sect. 3.6.2)
and the thermal grating technique (Sect. 3.6.3) are reviewed and discussed in
Sect. 3.6.

3.2 Microstructure of High-Thermal-Conductivity
Dielectrics and Its Relevance to Thermal Transport
Properties

Chemical-vapor deposition (CVD) is an attractive method for producing bulk
and thin film materials for a variety of applications. The materials produced by
CVD are theoretically dense, highly pure, and have other superior properties.
By varying the process parameters, the CVD process can produce materials
in a variety of forms such as single crystal, polycrystalline, or amorphous.
Some examples of materials produced by CVD are diamond, SiC, Si, Si3N4,
pyrolytic graphite and BN, ZnS, ZnSe, TiB2, and B4C [7].

3.2.1 CVD Diamond

Initial work on high-thermal-conductivity materials was carried out by Euken
[8], who discovered that diamond was a reasonably good conductor of heat
at room temperature. It has been determined [9] that intrinsic thermal con-
ductivity of diamond is 2000 Wm−1K−1 at room temperature, much higher
than that of either copper (400 Wm−1K−1) or silver (430 Wm−1K−1), which
has the highest thermal conductivity of any metal at room temperature. The
thermal properties of CVD diamond strongly depend on the microstructure
of the material, which in turn is sensitive to the details of the process. The
ratio of methane to hydrogen concentrations used during deposition strongly
influences both the phase purity and the thermal conductivity of CVD dia-
mond layers [10]. Diamond growth begins with the nucleation of the individual
crystallites at random spots on the substrate, followed by competitive growth
as the crystallites enlarge and merge. Those crystallites that happen to be
oriented with their fastest crystallographic growth direction normal to the
plane of the substrate eventually dominate, so that a strong columnar tex-
ture develops, with the long axis of the columnar grains being normal to the
film; see Fig. 3.1. The average plane dimensions of the grains increase, more
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or less linearly, with distance z from the substrate. With such a microstruc-
ture, one would expect transport properties such as thermal conductivity to
be anisotropic, nonhomogeneous, and thickness dependent [7], [12]. The local
normal and lateral thermal conductivities are governed by phonon scattering
on the grain boundaries [12]. The normal conductivity is usually greater than
the lateral conductivity, due to the larger average separation distances be-
tween adjacent grain boundaries. Conductivities in both directions are very
small in the regions close to the substrate due to very small grain sizes or
very high grain boundary per unit volume. Graebner et al. [12], [13] mea-
sured the normal and lateral thermal conductivities of the CVD diamond
films of different thicknesses, from which they extracted variations of the
local thermal conductivities with the film thickness [14]. Their results show
that both local normal and lateral thermal conductivities start from some
small similar values close to the substrate and increase to the conductivity of

(a)

(b)

Fig. 3.1. (a) Cross-sectional electron micrograph of a diamond layer deposited at
800◦C and nucleated using a bias voltage; (b) schematic of the grain structure in a
micron-scale diamond layer deposited on silicon [11]. Reprinted with permission.
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the gem-quality diamond with distance from the substrate (>300 µm). Unlike
the typical CVD-grown diamond films, the nanocrystalline films do not exhibit
columnar growth and are often referred to in the literature as poor-quality
diamond [15].

Figure 3.2 shows the range of the reported lateral and normal thermal
conductivities of diamond layers with thickness less than 10 µm. The normal
thermal resistances can be divided into two components, namely, the spatially
average thermal resistance of the diamond layer, Rf = d/kf , and the thermal
boundary resistance at the diamond-silicon substrate interface, Rb. The inter-
face thermal resistance is due to the formation of disordered microstructures,
at the first stages of the crystal growth, which can dominate thermal conduc-
tivity in the diamond layers [11]. This additional thermal resistance can cause
severe impediment to heat conduction for both packaging and device-cooling
applications. As a result, measurements of the thermal boundary resistance at
the interface of diamond-silicon substrate should be considered one of the most
important components of the thermal characterization of diamond layers and
substrates. The total thermal resistances of the diamond films deposited on
silicon substrate, R = Rf + Rb, was estimated to be between 1.5 × 10−8 and
3.5 × 10−8 m2KW−1 [16]. However, there is great scientific and technological
interest in separating the contributions of the diamond layer and the thermal
resistance at the interface. The measurement techniques for evaluation of the
thermal boundary resistance of diamond layers are discussed in Sects 3.6.1
and 3.6.2.

Fig. 3.2. The measured normal and lateral thermal conductivities of the diamond
layers of thickness less than 10 µm; thermal conductivity is a strong function of the
microstructure, and as a result, data are scattered [11].
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3.2.2 CVD Silicon Nitride (Si3N4)

Silicon nitrides can be found in the forms of α- and β-Si3N4, where the for-
mer is unstable and converts to the more stable phase β-Si3N4. The β-Si3N4
formation has higher fracture toughness and therefore has been favored over
α-Si3N4 ceramics. The thermal conductivity of β-Si3N4 ceramics has been
increased over the past decade by a factor of three through development of
densification and orientation technologies, application of sintering aids and
raw powders, and firing at high temperatures (>2200 K). Details of the man-
ufacturing process and the effect of microstructures on thermal conductivity
of the silicon nitride have been thoroughly discussed and reviewed previ-
ously (e.g., [4]). Figures 3.3a–c show the microstructures of dense β-Si3N4
with Y2O3 additive fabricated by capsule-HIPing; gas-pressure sintering; and
tape-casting and HIPing, respectively. Reported thermal conductivity values
for these samples are 72 Wm−1K−1 for capsule-HIPing [17]; 110 Wm−1K−1

for gas-pressure sintering [18] and 155 and 65 Wm−1K−1 along the tape cast-
ing and stacking directions, respectively, for the tape casting and HIPing.
This brings us to the central point of our discussion that the orientation of
β-Si3N4 grains results in the enhancement of the thermal conductivity and
furthermore induces anisotropic thermal conduction in silicon nitride speci-
mens [5]. It can be shown that the existing experimental techniques can be
modified to obtain the thermal conductivity of anisotropic β-Si3N4 films; see
Sect. 3.5.4.

3.2.3 Aluminum Nitride (AlN)

High thermal conductivity of the AlN ceramics combined with good elec-
trical insulation has made it attractive for electronics packaging application.
Thermal conductivity of sintered AlN has been enhanced over the years by re-
sorting to effective sintering aid, development of high-purity fine powders and
oxygen trapping into grains, and firing under a reduced-N2 atmosphere. The

Fig. 3.3. Microstructure of the β-Si3N4 samples that are prepared using
(a) capsule-HIPing at 2073K, (b) gas-pressure sintering at 2273K, and (c) tape
casting with β-Si3N4 single-crystal particles as seeds and HIPing at 2773K [4].
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Fig. 3.4. Diffusion of the oxygen out of the AlN substrate induces an oxygen con-
centration gradient that can cause a spatial variation in thermal conductivity of the
sample.

thermal conductivity of the pure single-crystal AlN is nearly 300 Wm−1K−1

at room temperature, while significantly lower conductivities are reported
for polycrystalline AlN due to random orientation of the grains, dissolved
impurities (e.g., oxygen), and secondary phases with poor conductivities at
the grain boundaries. The maximum solid solubility of oxygen in AlN at about
2000◦C has been reported to be 2 × 1021 cm−3 or nearly 1.6 wt% [19]. It is
suggested that the thermal conductivity of the single-crystal AlN ceramics
would decrease linearly (from 300 Wm−1K−1 at 0 wt% to 71 Wm−1K−1 at
1 wt%) with added oxygen content [19]. On the other hand, impurities such
as CaO or Y2O3 (1 wt%) are known to enhance densification of AlN ceramics,
which in turn would improve the thermal conductivity by nearly a factor of
two, up to a certain limit [20]. Extensive details about microstructure and
composition of AlN ceramics and their thermal properties have been reported
in the past [4], [20], [21] . Therefore, no further detailed information will be
provided on this topic except the realization that there might be a strong oxy-
gen concentration gradient in the sample during the manufacturing process.
Buhr et al. [20] observed a strong gradient in oxygen content (0.5–0.9 wt%)
over the depth of ∼4 mm of a 9-mm AlN sample. Having in mind our previous
discussions, this would induce a strong gradient in thermal properties of the
AlN sample, as shown schematically in Fig. 3.4. In the past, a common prac-
tice was to cut the samples in pieces to obtain their local thermal-transport
properties. We will, however, introduce a new approach here (Sect. 3.5.5) that
enables us to obtain the thermal-conductivity gradients in AlN samples.
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3.2.4 CVD Silicon Carbide (SiC)

SiC has polytypisms with numerous crystallographic modifications, some with
better thermal conductivity than others. High-temperature treatments can
lead to changes in the crystal structure, depending on the quality and type of
raw powders and type of sintering aids. This effect may be used to enhance
the polytype 6H, for example, which has high thermal conductivity relative to
some other SiC polytypes. Densification is the method that has been used for
SiC ceramics. The applied pressure during sintering and the effective additives
are the controlling factors in obtaining the proper dense ceramics. The type
of the sintering aids and the concentration of the aid elements dissolved in the
grains remarkably affect thermal conductivity of the dense SiC. Four forms
of SiC are commercially available: single-crystal, CVD, reaction-bonded, and
hot-pressed. Their thermal conductivity values are 490, 300–74, 120–70 and
50–120 Wm−1K−1, respectively [7]. A small variation (∼10%) in thermal con-
ductivity of the relatively thick SiC substrates was observed across the sample
thickness [7], such that no special consideration for thermal characterization
of the bulk SiC is required.

3.3 Overview of the Measurement Techniques

Ever-increasing demands for packaging applications have encouraged the
industry to invent new materials and improved deposition techniques for high-
thermal-conductivity dielectric materials (e.g., CVD, sintering). These emerg-
ing process technologies yield materials that are polycrystalline and can vary
considerably in properties and structure. Thin-film geometry, microcrystalline
or amorphous structure of thin films, and the large number of potential defects
due to the microfabrication process lead to inhomogeneity and anisotropic
physical properties on a microscopic scale [22], [23]. As a result, thermal prop-
erties of materials in thin-film form in many cases differ strongly from those
in bulk materials [24]. The term thermal characterization refers to diagnos-
tic techniques that measure internal thermal resistance, thermal boundary
resistance at the interfaces, lateral and normal thermal conductivities, and
heat capacity of thin layers. A variety of thin-film thermal characterization
techniques are available [24], [25], [26]; however, it is not always clear which
technique is most appropriate for a given application. The time scale of the
measurements and the geometry of the experimental structures influence
the measured thermal-transport properties. If the film is nonhomogeneous,
the region governing the signal can vary strongly depending on the measure-
ment technique. For these reasons, it is possible to extract thermal property
data for a given film that are substantially different from those governing the
temperature distribution in a given device containing that particular film.
It is therefore important that measurements be tailored to yield a specifically
targeted property needed in the design process [27].
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Recently, several outstanding review papers have been published on ther-
mal-characterization techniques at micro- and nanoscales (e.g., [25], [26], [27],
[28]) with more emphasis on low-thermal-conductivity materials. However,
performing reliable thermal measurements on highly conducting material [29]
is not a trivial task; it requires special consideration during the measure-
ments. As a result, we only focus on thermal-characterization techniques that
are more relevant to high-thermal-conductivity materials. We will pay partic-
ular attention to the techniques that are specifically tailored to measure the
transport properties of diamond, AlN, SiC, and Si3N4 dielectrics. The exper-
imental techniques for thermal characterization of high-thermal-conductivity
dielectrics can be classified differently. It is common practice to categorize [30],
[31] these techniques as follows: (a) steady-state techniques, which measure the
heat flux necessary to maintain a fixed thermal gradient in the sample and
are the only methods to obtain thermal conductivity directly; (b) thermal wave
(frequency domain) methods, which allow measurement of the thermal diffusiv-
ity by determining the propagation constants of thermal waves in the sample
and surrounding media; and (c) pulsed (time domain) methods, which deduce
the diffusivity from the time required for a heat pulse to propagate through
a section of the sample. Alternatively, one can classify the techniques under
two more general steady-state and transient groups. With this classification,
the thermal wave and pulsed methods will be under the transient division.
The steady-state techniques result in direct evaluation of the thermal conduc-
tivities. The transient techniques (including the frequency and time-domain
techniques), however, are based on the measurement of thermal diffusivity.
Therefore, they require advance knowledge of the heat capacity for thermal
conductivity evaluation. Fortunately, when adjusted for porosity, the heat ca-
pacity for a given material is not strongly sensitive to microstructure and, for
most technologically relevant materials, the heat capacity per unit volume is
known through measurements of bulk specimens [26]. Clearly, the sensitivi-
ties of these methods to the heterogeneity and anisotropy of high-thermal-
conductivity dielectrics (e.g., CVD diamond) could be vastly different [32].

Heating and thermometry are the most essential actions in most ther-
mal property measurements. Therefore, the measurement techniques in the
preceding classifications are usually distinguished by their methods of heating
and thermometry and by the temporal and spatial resolutions of the measure-
ments. The measured properties are greatly affected by the measurement time
scales, in particular the characteristic time scale of heating and the resolu-
tion of thermometry. We briefly review the existing heating and thermometry
techniques and discuss the relevance of measurement time scales in precise
determination of the type of properties measured by a given technique.

3.3.1 The Heating and Thermometry Techniques

The heat needed for measurements is usually induced by either Joule heating
or absorption of thermal radiation. Each of these methods has advantages and
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disadvantages. For example, the accurate measurement of deposited heat in
Joule heating is possible, but the absorbed heat in thermal radiation can’t be
quantified easily. On the other hand, fabrication of the special measurement
structures on the sample surface and their electrical insulation, if needed, are
required for Joule heating is more difficult than the surface preparation needed
for the thermal radiation method, which is at most deposition of a metal film
on the surface of the sample. The optical techniques are advantageous for
thermal characterization of the novel materials whose chemical and structural
stability during standard fabrication procedures are often not available.
In this measurement technique, which is noncontact, the relative temperature
response at the surface of the sample at different heating frequencies can be
used to extract properties of the underlying layers.

There are different thermometry techniques, each of which has advantages
and disadvantages. Electrical resistance thermometry is one of the most com-
mon and accurate temperature measurement techniques that can be precisely
calibrated. Thermoreflectance thermometry uses the temperature dependence
of the reflectivity to detect changes in the surface temperature of the sam-
ple. This technique has the advantage of being contact-free, needing minimum
sample preparation, but the surface needs to be sufficiently reflective for the
detector to collect the necessary radiation. Because of the small thermore-
flectance coefficient of the metals at room temperature (10−4–10−6 K−1) such
measurements require averaging or lock-in detection to improve the signal-
to-noise ratio [33].

3.3.2 Measurement Time Scale

Many of the techniques, such as 3ω and pump and probe, measure tempera-
tures at heating locations, where the temperature rise is highest and easiest
to measure. Figure 3.5 shows the surface temperature response as a function
of frequency for a representative multilayer structure. In this structure, the
heat is absorbed by the top metal layer (100 nm), which has a thermal re-
sistance at its boundary with the next-highest thermal-conductivity diamond
layer (5µm). The femtosecond laser heating and thermometry technique is
used to measure this thermal boundary resistance, as well as the thermal
conductivity of the underlayer film. At longer time scales, heat reaches the
thermal boundary resistance at the diamond-silicon substrate interface and
then further diffuses into the substrate. Both nanosecond laser thermome-
try and Joule heating possess the relevant frequency range for these types
of measurements. The electrical methods are more accurate but offer limited
measurement frequency range. These low frequencies are suitable, though, for
measuring the thermal boundary resistance at the diamond-silicon interface
and the substrate thermal conductivity.

Measurements can also be done in the time domain, as in the thermal
grating technique [34], [35] or in the laser flash technique [36]. Both of these
methods measure the characteristic rise time at a location away from the point
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Fig. 3.5. Frequency range for the most common types of heating and thermo-
metry. The layers, whose internal or boundary thermal properties govern the sur-
face temperature response, change with the measurement frequency. Film thickness
df = 5 µm and substrate thickness ds = 300 µm; thermal conductivity of film kf =
100Wm−1K−1, thermal conductivity of substrate ks = 150Wm−1K−1; boundary
resistance at metal/film interface Rth1 = 1 × 10−8 m2KW−1, boundary resistance
at film/substrate interface Rth2 = 5 × 10−8 m2KW−1; ∆Tf = temperature rise from
the film; TS = temperature rise from substrate; Ttot: total temperature rise of the
structure.

of maximum heat flux. Due to the nature of the phase delay techniques, the
measured property is the directional thermal diffusivity.

3.3.3 Impact of Geometry on Thermal Property Measurements in
the Transient Techniques

Geometry of the heat source has a major impact on the type of proper-
ties, which can be extracted from the measurements; see Fig. 3.6 [27]. This
effect can be demonstrated by examining the analytical solutions to the heat
conduction equation. The geometry of induced heat flux in many experimen-
tal techniques can be approximated by a plane, line, or point source. Under
a temporally harmonic, or periodic, heating source QA(r, ω) exp[i(ωt + ϕ0)],
where ω is the angular frequency and ϕ0 is the initial phase, the solutions to
the heat conduction in semi-infinite media are given as [37]:

θplane(r, ω) =
QA

A

exp(−pr)
pk

, (3.1a)

θline(r, ω) =
QA

πL

K0(pr)
k

, (3.1b)

θpoint(r, ω) =
QA

2π

exp(−pr)
kr

, (3.1c)
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Fig. 3.6. The geometry of the heat source has a major impact on the type of
properties that can be extracted from the measurements [27].

where A is the area of the plane heat source; r is the distance from the heat
source; p = (1 + i)/Ld; Ld =

√
2α/ω is the diffusion length; L is the length of

the line source; k and α are the thermal conductivity and diffusivity; Kn is the
modified Bessel function of order n; and θ(r, ω) = TA(r, ω) exp[−i∆ϕ(r, ω)],
where TA and ∆ϕ are the amplitude and phase delay of the temperature,
respectively. Knowing θ(r, ω), temperature can then be found as:

T (r, ω, t, ϕ0) = θ(r, ω) exp[i(ωt + ϕ0)]. (3.2)

For convenience, the nondimensional parameters G and H may be introduced
and defined as:

G =
r

θ

∂θ

∂r
=

∂ ln(θ)
∂ ln(r)

=
∂ ln(TA)
∂ ln(r)

− i
∂∆ϕ

∂ ln(r)
, (3.3a)
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H =
∂ ln(θ)
∂ ln(ω)

=
∂ ln(TA)
∂ ln(ω)

− i
∂∆ϕ

∂ ln(ω)
. (3.3b)

The real and imaginary components of G and H can be determined experi-
mentally by varying the position or frequency of the measurements. Analytical
expressions for these parameters, only functions of the nondimensional vari-
able pr, are given in Table 3.1. They can be fitted to experimental data to
acquire a value for p and from that to obtain thermal diffusivity of the sample.
There is no need for the absolute values of temperature and heat flux. The
only requirements are sufficient bandwidth and the linear response of the ther-
mometry technique over the temperature and frequency range encountered in
the experiment. There is another class of techniques, however, which require
absolute magnitudes of temperature and heat flux. These techniques use mea-
surements at the heat source, r = 0. If r = 0, G and H become independent
of p, which makes these techniques use measurements of temperature at dis-
tant locations, comparable to Ld, away from the heat source. Substituting the
asymptotic values for K0(pr) and exp(−pr), when pr → 0 in Eqs 3.1 will re-
sult in the equations for the functional dependence of the surface temperature
on the measured angular frequency as:

θplane(ω) =
QA

A

1 − i√
2

k−1α
1
2 [ω− 1

2 ], (3.4a)

θline(ω) =
QA

L

1
2π

k−1[− ln(ω)] + C, (3.4b)

θpoint(ω) = QA
1
2π

(1 + i)√
2

k−1α− 1
2 [−ω

1
2 ] + C, (3.4c)

where C is a constant independent of frequency. The results are summarized
in Table 3.2. In the case of plane and point sources, either an in- or out-
of-phase component may be used to find the corresponding combination of
thermal properties.

Table 3.1. Mathematical expressions for analysis of experimental
data directly governed by the sample’s thermal diffusivity α. Ther-
mal diffusivity is related to the parameter p. Experimental values of
the functions G and H can be determined from temperatures mea-
sured at varying positions or frequencies. The assumed geometry is
semi-infinite.

Source
geometry

G(r, ω) =
r

θ

∂θ

∂r
H(r, ω) =

ω

θ

∂θ

∂ω

Plane −pr −0.5(pr + 1)

Line −pr
K1(pr)
K0(pr)

−0.5pr
K1(pr)
K0(pr)

Point −pr − 1 −0.5pr
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Table 3.2. Mathematical expressions for the analysis of experimental temperature
response obtained at the location of heat source (r = 0). The assumed geometry is
semi-infinite [27].

Source Geometry Plane Line Point

Extracted property kα−0.5 k kα0.5

Frequency dependence,
F(ω) ω−0.5 ln(ω) ω0.5

In-phase slope of
temperature
as a function of F(ω)

QA√
2A

k−1α0.5 − QA(√
2
)2

πL
k−1 − QA(√

2
)3

π
k−1α−0.5

Out-of-phase slope
of temperature as a
function of F(ω) − QA√

2A
k−1α0.5 0 − QA(√

2
)3

π
k−1α−0.5

3.4 Steady-State Techniques

Steady-state techniques induce a time-independent heat flux and measure the
resulting temperature difference or distribution in the layer, from which ther-
mal conductivity is then measured. Therefore, an adequate spatial resolution,
which requires knowledge of at least two temperatures at precisely defined po-
sitions within the measurement structure, is particularly important for these
techniques. Touzelbaev and Goodson [27] have outlined three requirements to
be met by the geometry of the measurement in well-designed steady-state tech-
niques. First, thermal resistance between the measurement positions should
be controlled by or be strongly dependent on thermal conduction in the layer
of interest. Second, this resistance should have very little or no dependence
on thermal conduction to the environment once heat flows out of the mea-
surement structure. And third, thermal resistance between the measurement
locations has to be at least comparable to the total thermal resistance to the
environment or heat sink in order to reduce measurement errors.

To measure the lateral thermal conductivity of the films, a long sample
of uniform rectangular cross section (thickness d, width w) is usually used.
The sample, which is thermally grounded at one end and fitted with a heater
generating heat at a constant rate Q at the other end, can be either a free-
standing layer (a suspended bridge) or a layer on a substrate with low thermal
conductivity. The free-standing bridge consists of a layer without a substrate,
but a film on a substrate is a layer-substrate composite. Assuming that all heat
losses through the thermometer and heater lead wires are controlled and kept
low by proper selection of materials, radiation and convection (or conduction)
to the surrounding air and conduction to the substrate for the films on a
substrate are the only paths of heat loss. If there is no heat loss to the air
or substrate, all the heat generated by the heater Q will be conducted along
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the layer, causing a linear temperature distribution. In this case temperatures
measured at two points, separated by a distance ∆x, can be used to measure
the lateral thermal conductivity as:

kf =
Q

wd

∆x

∆T
. (3.5)

If surface losses to the surrounding area or substrate are not negligible,
temperature distribution along the layer will be nonlinear and the equation
governing its distribution will be:

d2θ

dx2 − m2θ = 0, (3.6)

where θ = T − T0, T0 is the base temperature, and m =
√

HP/kfA is a mea-
sure of the relative importance of heat conduction along the layer and heat
losses (by radiation, convection, and conduction) from its surfaces. This formu-
lation neglects any temperature change in the normal direction. The healing
length, LH = 1/m, is a characteristic length commonly used in the analy-
sis that defines the length for which thermal resistance for the surface heat
loss and conduction along the film are of similar orders of magnitude [38].
This defines a length of the film over which most of the temperature drop
occurs. A large value of LH is an indication of high thermal conductivity for
the layer or low heat loss from its surfaces. A(= w × d), and P (= 2w + 2d)
are the cross-sectional area and the perimeter of the layer, respectively.
H(= Hrad + Hcon + Hsub) is the total heat transfer coefficient for heat loss
from the layer surfaces. It includes coefficients for radiation and conduction
(or convection) exchange with the surroundings and heat loss by conduction
to the substrate. For the films on substrate, heat loss to the substrate is
dominant [38]. For the suspended bridges, however, this term does not exist,
and the importance of heat loss to the surroundings depends mainly on the
dimensions of the bridges.

For heat loss from the surfaces by radiation, we can write:

Qrad = PLεσ(T 4 − T 4
0 ), (3.7)

where ε, the emissivity, takes a value between zero and one, depending on
surface condition, and σ(= 5.67 × 10−8 Wm−2K−4) is the Stephan Boltzmann
constant. Using Eq. (3.7), an approximate equation for Hrad can be derived
as:

Hrad ≈ 4εσT 3
0 , (3.8)

which is a good approximation if [(T/T0) − 1]  2/3. For measurements at
room temperature (T0 = 300 K) and with emissivity equal to one, Hrad =
6.1 Wm−2K−1. Obviously, this value will increase or decrease proportional to
the temperature cube at other temperatures.

For most of the cases, a test is conducted in a vacuum so that there is no
convection effect. For other cases, there will be a free convection heat transfer
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with a coefficient that usually has an order of magnitude of ten. However,
because of the small dimensions of the layer, this coefficient will be much
smaller, and in fact the heat transfer regime approaches that of molecular air
conduction heat transfer.

To evaluate the importance of the heat transfer from the surface relative
to that along the layer, we may compare their relevant thermal resistances:

Rf,cond/Rf,surf =
Hp

kfA
L2 =

(
L

LH

)2

, (3.9)

where Rf,cond and Rf,surf are the thermal resistance for lateral heat conduc-
tion and combined radiation and convection or conduction from the surface,
respectively. This ratio, and as a result heat loss from the surface relative to
heat conduction along the layer, can be reduced by reducing the length L
relative to the healing length, LH . This can be achieved by either reducing
L or increasing LH . Considering the fact that the diamond-related mate-
rials generally have high thermal conductivities for testing long (especially
thin) samples at room or higher temperatures, it is less likely to have a case
with negligible surface heat loss. As a result temperature distribution will
be nonlinear, which requires temperature measurements at more than two
points.

3.4.1 The Heated Suspended Bar Technique

The DC heated-bar technique has been used to measure the lateral thermal
conductivities of the layers of various materials. Graebner et al. [12] used this
method to measure the lateral thermal conductivity of the CVD diamond
films, of thickness 27.1 to 355 µm at room temperature, from which they
extracted the local thermal conductivity. This technique was later used to
extend the measurements to cover the wider temperature ranges of 0.15–7 K
[39], 5–400 K [40], and 77–900 [41]. In this method, one end of the bridge is
attached (clamped) to an isothermal heat sink at temperature T0 in a vacuum
chamber. The bridge is equipped with an electrical resistance heater (attached
to or deposited directly on the surface) at its suspended end and a row of
thermometers (thermocouples or resistive thermometers) along its surface to
measure the local temperatures. The thermometers should be mostly within
the LH length, if LH < L. Primary causes of experimental errors in this tech-
nique are conduction through the thermocouples and heater wires, which can
be minimized by using very thin wires, and radiation from the heater [25]. Sur-
face heat loss by molecular air conduction may be avoided by performing the
experiment in a vacuum, although heat loss by surface radiation may still be
important. Radiation heat transfer from the surface causes temperatures along
the bridge to fall slightly from the linear distribution. Equation (3.6) governs
this temperature distribution. Solving the equation with the boundary condi-
tions θ = θ1 = T1 − T0 at x = 0 and θ = θ2 = T2 − T0, at x = L, temperature
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distribution will be:

θ(x) =
θ1 sinh(m(L − x)) + θ2 sinh(mx)

sinh(mL)
. (3.10)

By changing θ1, θ2, and m one can find the best fit for this equation
to the measured temperatures. The lateral thermal conductivity can then
be calculated using the boundary condition on the heat flux at the heater,
kf [dT/dx]x=L = Q/A [31]. Selection of the temperature gradient at the heater
will reduce the effect of radiation on the temperature gradient:

kf =
Q sinh(mL)

mA[θ2 cosh(mL) − θ1]
(3.11)

Clearly, the temperature gradient at x = L, and as a result kf calculated
from Equation (3.11), are very sensitive to the accuracy of the curve fit. The
two-heater method with high sensitivity has been used to detect and cor-
rect for the presence of surface heat loss using only two instead of a row of
thermometers [12], [40], [42]. The second heater, identical to the first one, is
placed on the bridge near the thermal ground. In the absence of any heat
loss from the surface, turning on each heater H1 and H2 individually, while
the other is off, will result in a linear and uniform temperature distribution
along the bridge, as shown by the solid lines in Fig. 3.7. The dashed lines
represent the temperature distributions in the presence of radiation from the
surfaces. The difference between the solid and dashed lines is an indication of
the surface heat loss. To correct for the effects of surface radiation, one may
add the temperature difference for the case when the heater H2 is on to that
of the case when the heater H1 is on. In this way, the effect of surface radia-
tion on the temperature distribution in the bridge is reasonably compensated
for and, therefore (Eq. 3.5) for no surface radiation case, it can be used to
measure the thermal conductivity. The distance between the heater and the
nearest thermometer should be at least 5 times the thickness of the bridge to
ensure a uniform distribution of the thermal current across the cross section
of the sample in the vicinity of thermometers. At low temperatures, the mean
free path of phonons, Λ, becomes comparable to the dimension of the layer,
d. As a result, the heat transport around the heater element is ballistic and
the heat diffusion equation is no longer applicable. However, at distances in
the order of 2–3 Λ, or alternatively 2–3d, away from the heater, this effect is
reduced considerably. By positioning the closest thermometer to the heater
at a distance five times the film thickness, it will also be outside the ballistic
effect region. The overall accuracy in the measurement of kf is usually lim-
ited by the accuracy of the sample dimensions. For polished laser-cut diamond
bridges, comparing with the as-grown CVD samples, better accuracies can be
achieved [32].

The advantages of the DC heated-bar technique are [32] the ease of anal-
ysis due to one-dimensional heat conduction configuration and high accuracy
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Fig. 3.7. (a) Experimental arrangement for the two-heater-bar technique for mea-
suring the lateral thermal conductivity. Heater H2 is used to test and correct for
the surface heat loss. (b) For no surface heat loss, one expects a linear temperature
distribution, as indicated schematically by the solid lines, for either H1 or H2 ener-
gized. Having significant surface heat loss, one expects the curved lines (dashed), as
described in the text [40].

in the measurement of the steady temperature gradient. This technique is,
however, very labor-intensive due to the small size of the samples, heaters,
and thermometers. The heat losses from the heater through the connecting
wires could become significant if the heater is not properly attached to the
testing sample. In addition, it is susceptible to significant radiative or convec-
tive losses for poorly conducting materials, but it can be properly accounted
for according to the procedure described previously [12], [40], [42]. Figure 3.8
can be used as a guideline to assess the error associated with the radiation
loss for a given sample dimension and the best estimate of its thermal con-
ductivity. For a given thermal conductivity value, each line represents the
proper sample thickness and length for achieving less than 5% error due only
to radiation loss. Measuring thermal conductivity of a film layer with a par-
ticular thickness on the left side of the corresponding line for choosing the
sample length ensures negligible surface heat loss by radiation. However, for
a sample length, which puts us on the right side of the lines, surface heat loss
becomes important and should be considered. For example, given the dimen-
sions and range of thermal conductivities in Asheghi et al.’s [43] experiments,
the radiation losses would have been negligible even for layer thicknesses down
to 1 µm.
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Fig. 3.8. A guideline to assess the error associated with the radiation loss as a func-
tion of the sample dimensions and its estimated (or measured) thermal conductivity.

3.4.2 The Film-on-Substrate Technique

Another DC heated method that has been used to measure the film’s lateral
thermal conductivity uses film-on-substrate configuration. The whole struc-
ture consists of the film layer (of thickness d and conductivity kf ), the
underlying low-thermal-conductivity layer (of thickness d0 and conductivity
k0), and a high-thermal-conductivity substrate. Due to very low thermal re-
sistance in the path of heat flow to the substrate by conduction relative to
that to the surroundings by radiation, most of the surface heat loss will be
absorbed by the substrate, causing a very short healing length. While the heat
losses by surface radiation and convection cannot be assessed accurately or
controlled properly, the heat loss to the substrate through the low-thermal-
conductivity material can be tailored and modeled more accurately. Asheghi
et al. [38] used this method to measure the thermal conductivity of single-
crystal silicon layers within the temperature range of 20–300 K. This idea can
be used to design a test bed for measuring the lateral thermal conductivity
of the diamond-like thin films by sandwiching them between two composite
layers or shells (Fig. 3.9). Each layer consists of a thin (plexi) glass layer
(d0 = 1 mm and ko ≈ 0.5 Wm−1K−1) as the low-thermal-conductivity mate-
rial and a thick (1 cm) copper layer (k ≈ 400 Wm−1K−1), as the substrate
(heat sink). The electric resistance heater and the thermometers are deposited
on one of the glass layers and are covered with polyimids; therefore this setup
can be used repeatedly for thermal conductivity measurement of different lay-
ers (Fig. 3.10). Some thermal grease, oil, or even water must be applied to
improve the thermal contact between the sample and the glass. The whole
structure should then be put under pressure to create a good contact be-
tween the sample surfaces and the glass, the heater, and the thermometers.
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The thermal resistance associated with the adhesive layer will not play a role
in the measurements due to the large thermal resistance of the glass layer
and the high thermal conductivity of the sample under test. The second shell
in fact serves two different purposes: preventing any possible heat loss from
the top surface by gas conduction or radiation and making it possible to apply
pressure for better contact.

Heat conduction in the multilayer structure shown in Fig. 3.10a can be
approximated by the one-dimensional fin model (Fig. 3.10b) if the following
three conditions are satisfied [38]:

1. The temperature variation across the substrate is small compared to the
temperature drop across the low-thermal-conductivity layer.

2. The temperature variation in the film normal to the substrate (y direc-
tion) at any position x is negligible compared to that in the low-thermal-
conductivity underlying layer. This condition is met if the ratio of normal
thermal resistance of the film to that of the underlying layer is small,
(d/kf )/(d0/k0)  1.

3. The lateral conduction in the underlying layer is negligible compared to
that within the film. This condition is satisfied if the ratio of their lateral
thermal resistances is small, (d0k0/dkf )  1.

This problem now resembles the previous problem of one-dimensional heat
flow in a suspended bridge. Simple fin equations and appropriate boundary
conditions can very accurately predict solutions to the heat-diffusion equation
in the multilayer system consisting of the high-thermal-conductivity layer,
glass layer, and high-thermal-conductivity substrate. Therefore, P = 2L1, A =
dL1, and H = k0/d0, and the equivalent definitions for m and healing length
will then be m = (2k0/kfdd0)1/2 and LH = (kfdd0/2k0)1/2.

Two fins are considered, one with (−W < x < 0) and the other without
(L2 > x > 0) heat-generation term (heater), as depicted in Fig. 3.10b. Bound-
ary conditions include adiabatic ends at x = −W and L2 and continuity of
temperatures and heat fluxes at x = 0. Temperature distribution for the fin
without heat source, L2 > x > 0, is given by

θ(x) = T (x) − T0 = C cosh m(x − L2), (3.12a)

where

C =
Q sinh(mW )

WHP sinhm(W + L2)
. (3.12b)

Figure 3.11a shows the ranges of thermal conductivity and layer thickness
that satisfy these conditions such that the lines A: d = 0.01 (d0/k0) kf and
B: d = 100 (d0k0)/kf would determine the regions where the one- or two-
dimensional heat-conduction models are applicable.

Figure 3.11b shows the difference between the predicted values of ∆T =
T1(x1 = 5d) − T2(x2 = 3LH) as a function of kf , thermal conductivity, from
solutions of the 2-D heat-diffusion equation in the multilayer system and 1-D
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Fig. 3.9. Schematic of a test setup in which the sample is sandwiched between two
identical substrates to avoid surface radiation.

Fig. 3.10. (a) Cross section of the actual experimental setup, and (b) the simplified
geometry used for the one-dimensional heat-conduction model in the high-thermal-
conductivity layer.

fin model given by Eq. (3.12a). One should notice that the absolute values of
the temperature T1(x1) and T2(x2) become irrelevant in the evaluation of the
thermal-conductivity value. For x2 < 3LH , the differences between these two
(1-D and 2-D) models are negligible. Results in Fig. 3.11b are given for
two values of the thickness of the film layer and the low-thermal-conductivity
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Fig. 3.11. (a) The range of the applicability of the one-dimensional model
(Eq. 3.12a) is shown for do = 100,500 µm and ko = 1 Wm−1K−1. (b) Sensitiv-
ity curves for the temperature difference, as a function of the thermal conductivity
and thickness of the sample, d, and the thickness of the low-thermal-conductivity
film, do.

layer. Given the accuracy in the measurement of the temperature difference at
locations x1 and x2, one can obtain the uncertainty in thermal conductivity
of the layer under investigation.

3.4.3 The DC Heated Suspended Membrane

Another version of the DC heated-bar technique is the suspended membrane,
which is designed to reduce the effects of surface radiation to a negligible level
and to make fabrication of the suspended thin films feasible.
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As is seen from Eq. (3.9), a way to minimize radiation effects is to
decrease the length L. To achieve this goal, Graebner et al. [44] made very thin
samples of diamond, deposited on silicon, free standing by etching a rectangu-
lar window entirely through the silicon. The remaining substrate then served
as a natural support and heat sink for the film. The choice of relative di-
mensions of the window is crucial for reliable measured temperatures that
have not been distorted by the surface radiation. The window has length L
and width L2 with the heater deposited onto the surface of the diamond film
along its midline. The thermal resistances in the paths of heat conduction in
film from the heater to the silicon substrate and radiation heat loss from the
surface to the surroundings can be approximated as Rf,cond ≈ L2/(4kfL1d)
and Rf,surf ≈ 1/(2L1L2H), respectively. The ratio of these two terms then
becomes:

Rf,cond

Rf,surf
≈ HP

kfA
(L2/2)2 =

(
L2/2
LH

)2

, (3.13)

where A = d × L1, P = 2L1, d is the film thickness, and H is the total heat
transfer coefficient from the surface. As is seen, L2/2, comparable to the length
of the suspended bridge, plays a major role in determining the importance of
the surface radiation. L2, the width of the window, is usually kept small
compared to the length of a free-standing bridge. For measuring the thermal
conductivity of a film with d = 1µm, kf = 100 Wm−1K−1 at room tempera-
ture with H = 6.1 Wm−2K−1, we find LH = 2.9 mm. Therefore, if we choose
a window with width L2 = 2 mm, we have committed about 12% error for
neglecting the surface radiation.

Circular membranes are also used to measure thermal conductivity of
the large-area samples with irregular outlines. Jansen et al. [45] and Jansen
and Obermeier [46], [47] performed finite element simulations to find tem-
perature distributions in the heated rectangular and circular membrane and
bar-structure micromechanical devices in order to find the best heater and
thermoresistor pattern and to determine the effects of thermal radiation for
the lateral thermal-conductivity measurements. The thermal conductivities
of the CVD diamond films of different microstructures and thicknesses were
measured over a temperature range of −195 to 300◦C, using the Joule-heating
and electrical-resistance thermometry in these structures. The unusual shape
of the suspended membrane, however, makes the data extraction procedure
rather difficult. Graebner et al. [44] used a somewhat similar approach to mea-
sure the lateral thermal conductivity (k = 190–600 Wm−1K−1) of suspended
diamond membranes of thickness between 2.8 and 13.1 µm. The heater at the
center of the suspended layer establishes a temperature distribution, which
is a strong function of the membrane aspect ratio. For the given membrane
dimensions (2 × 4 mm2), the temperature distribution was found to be two-
dimensional. Several thermocouples at the center of the structure and along
the direction of the temperature gradient were used for thermometry at dif-
ferent locations. This method has the advantages that (1) only a relatively
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small sample is needed, (2) effects of thermal radiation are avoided, and
(3) only modest expertise in thin film deposition and patterning is required.
The thermal-conductivity data were estimated using a 2-D heat-conduction
equation in the suspended membrane with the T = T0 boundary condition at
the base. The uncertainties in the positions of the thermocouples (typically
15 µm) were considered to be one source of the errors in this measurement.
The temperature at the base of the membrane was higher than that of the
substrate due to the large thermal resistance at the interface of the diamond-
silicon substrate. This would introduce some error in this measurement and
make the measurements extremely tedious.

Asheghi et al. [43] designed a structure that significantly simplifies the
measurement procedure by increasing the aspect ratio of the membrane from
2 : 1 [44] to 13 : 1. Figure 3.12a shows a schematic of the experimental struc-
ture used to measure the lateral thermal conductivity of the doped silicon
layers. The lateral dimensions of the suspended membrane are 1 × 10 mm2.
The aluminum heater and thermometers are extended over the entire length
of the membrane, but the power generated in the heater and the tempera-
tures at points A and B are measured at the center of the suspended mem-
brane within a region with lateral dimensions of 1 × 1 mm2. This is achieved
by measuring the voltage drops in the aluminum bridges over the extent of

Fig. 3.12. (a) The experimental structure used to measure the lateral thermal
conductivity of the SOI silicon device layer; (b) temperature distribution in the sus-
pended membrane, which shows that the temperature distribution in the x-direction
is one-dimensional.
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the measurement section, L1. This ensures one-dimensional heat conduction
along the layer in the x-direction as verified by finite element calculations
(Fig. 3.12b). The heater is located at the center of the suspended membrane.
During the measurement, heat is generated by electrical current sustained in
the aluminum line resulting in a linear temperature distribution along the
〈110〉 crystallographic direction. The temperatures at two locations above the
silicon layer are detected using electrical-resistance thermometry in the pat-
terned aluminum bridges A and B. The heat is conducted predominantly along
the suspended membrane in the x-direction. Conduction to the surrounding
air, conduction along the aluminum bridges, and radiation to the environ-
ment are negligible. The silicon layer thermal resistance is at least two orders
of magnitude less than the thermal resistance due to surface radiation and
three orders of magnitude less than the thermal resistance due to conduction
along the heater and thermometer legs. The measurements are performed in
a vacuum in order to minimize the heat conduction to the surrounding air.
The thermal conductivity of the silicon layer is extracted using

kf =
(Q/2)

A(∆T/∆X)
, (3.14)

where Q = I × ∆V is the power dissipation in the heater and I and ∆V are
the current and voltage difference across the length L1, respectively. Separa-
tion distance between bridges A and B is ∆x = 390µm and their temperature
difference is ∆T . The cross-sectional area for heat conduction is A = d × L1.
Figure 3.13 shows the thermal-conductivity data for the 3-µm-thick free-
standing silicon layers, doped with boron and phosphorus at concentrations

Fig. 3.13. Thermal conductivity data for the 3-µm-thick silicon layers [43].
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ranging from 1 × 1017 to 3 × 1019 cm−3, measured at temperatures between
15 and 300 K [43].

3.4.4 The Comparator Method

The thermal comparator method was developed [48] and used extensively
to measure thermal conductivity of bulk materials. The classical comparator
method has certain restrictions, which limit its application to bulk materials
with reasonably high hardness and low thermal conductivity. This method was
then modified to measure the normal thermal conductivity of the low-thermal-
conductivity dielectric films on substrates [49]. In this method, a heated probe
is used and the temperature difference between the body of the probe and the
tip that makes contact with the sample is measured (Fig. 3.14). During mea-
surement, while keeping the temperatures of the copper block and the sam-
ple constant, the finger is pressed against the sample with a controlled force
and the steady-state thermocouple voltage is recorded. Using the calibration
curve, this voltage is then converted to apparent conductivity, which is a com-
bined measure of the thermal resistances of the film, boundaries (at fingertip-
sample, and sample-substrate interfaces), and substrate. The calibration curve
is generated using bulk samples of the known thermal-conductivity materials.

There are difficulties in using the classical comparator method, particu-
larly for thermal characterization of the high-thermal-conductivity films. Some
of these problems and the solutions adopted in further modification of the
method to make it usable for measuring the thermal conductivity of the CVD
diamond films [50] are discussed here. The sample temperature approaches
the probe temperature, using the classical comparator method to characterize
the high-thermal-conductivity films. In this situation, heat transfer from the
probe seems to be controlled by convection from the sample surface instead of
sample thermal conductivity. To prevent this from happening, heat is removed
from the base by active cooling to keep its temperature lower than the probe
tip and the ambient temperatures.

Fig. 3.14. Schematic of the comparator measurement technique.
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The area of contact between the probe tip and the sample surface is meant
to be the primary path for the flow of heat from the heated probe to the sample
and therefore should be kept constant during calibration and measurement.
Thus the proper compression force for each sample material is found, in terms
of the radius of the contact area, radius of curvature of the probe tip, and the
Poisson ratio and the modulus of elasticity of the probe tip and the sample.
The environmental temperature and humidity are controlled to minimize heat
transfer from the sample to the environment or to keep it constant and pre-
vent any condensation on the sample. The heated block is shielded to reduce
radiation heat transfer to the sample.

Heat, which leaves the probe tip, is expected to flow through a sequence of
thermal resistances (probe-film interface, Rp−f/film, Rf/film-base interface,
Rf−b/base, Rb/base-chuck interface, Rb−c), before it is eventually dumped in
the temperature-controlled thermal chuck. The, comparator method works on
the principle that the rate of heat transfer from the probe is controlled by the
film’s thermal resistance. We need to alert the users of this technique that,
despite all of these precautions, there are still some factors that may distort
the results. Some of these causes are discussed next.

1. A closer observation of the problem reveals that the area of contact
between the probe tip and the sample surface is not the only path for heat
transfer. The sample may also receive heat from the probe by radiation
or conduction in the air. A simple calculation proves thermal radiation
to be negligible, but heat conduction through the air can be significant,
depending on conditions such as the contact pressure and radius of the
contact area (see Table 3.3).

2. In measuring the high-thermal-conductivity films, the thermal resistance
of the sample loses its controlling role, and other resistances, in particular,
the contact resistances between the sample and the probe and base, Rp−f

and Rf−b, take the role instead. The role of these two is particularly
critical because they can be considerably different from one sample to
another and with changes in the applied load. This condition violates the
first requirements for a well-designed steady-state measurement technique
[27]. Cheruparambil et al. [50] have observed a change in the comparator
output by changing the applied pressure on a particular film, which was
more pronounced for softer materials.

Table 3.3. The estimates of the thermal resistance, for different
paths of heat transfer from the probe to the sample surface.

Radius of the Conduction Conduction Radiation
contact area in solid in air in air
(µm) (K/W) (K/W) (K/W)

7 6.5 × 104 3.6 × 104 3.8 × 106

25.4 4.9 × 103 2.8 × 104 106
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3. When the radius of the contact area of the probe tip reduces to the values
of the same order of magnitude as the thickness of the film layer, the
2-D shape factor can become important [27]. This effect can, of course,
be avoided if the samples in calibration and measurement have the same
thickness.

3.5 Frequency-Domain Techniques

The frequency-domain techniques have been used extensively in the past
for thermal characterization of the bulk materials and thin film layers. The
frequency-domain techniques can be used to measure the directional thermal
conductivities of the anisotropic film layers [51], [52], [53], [54] and the ther-
mal boundary resistance between the layers. In these methods heat is usually
generated by electrical Joule heating. It can be shown that when a metal line
is subjected to harmonic Joule heating, the resulting temperature rise can be
extracted from the third harmonic component of voltage oscillations across
the line [55]. The optical heating has gained popularity due to its convenience
and minimum microfabrication process requirements. However, due to the
difficulty in determination of the absorbed absolute power from the optical
beam, the extracted thermal property is restricted to measuring α, rather
than both α and k. Thermocouples, thermistors, infrared sensors, or variation
in thermal reflectance of a metallic layer can be used for thermometry. The
measured temperature rise as a function of frequency can then be compared
with the solution of the heat-conduction equation in the frequency domain,
which allows extraction of the thermal transport properties of the film layers
or substrates.

In this section, we will provide a general overview of the frequency-domain
measurement techniques with different heating and thermometry schemes,
different substrate (or films) configurations and geometries, and different
locations of the heater or thermometer elements. Many of these techniques,
such as the Ångström thermal wave (Sect. 3.5.1) and modified calorimetric
techniques (Sect. 3.5.2), have been successfully implemented for thermal char-
acterization of both low- and high-thermal-conductivity dielectrics [26], [27].
Whereas these techniques use periodic heating in one-dimensional structures
or samples, more recently developed techniques can induce local heating in the
geometry of a point source and thus achieve high spatial resolution in mapping
sample thermal properties. One promising example is the study that applied
local harmonic heating generated in a resistive element with a contact area
dimension of around 30 nm along the surface of diamond layer [56]. The effects
of contact topography, which governs thermal contact resistance between the
heater and the layer, can easily be decoupled, because it results in frequency-
independent contributions to the thermal signal. By directly comparing data
with the data taken on the material with known thermal properties, Fiege
et al. [56] spatially mapped the thermal conductivity of thick CVD-diamond
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film. Both the Ångström thermal wave and modified calorimetric techniques
as well as steady-state [38] methods, can be used for the films on substrate if
the film has a higher conductance than the substrate, which is discussed in
Sect. 3.5.3. We also propose and examine new variations of the 3ω technique
for the measurement of silicon-nitride (Si3N4) substrate (or layer) anisotropic
thermal conductivity (Sect. 3.5.4) and nonuniform thermal conductivity across
the AlN substrates (Sect. 3.5.5).

3.5.1 The Ångström Thermal Wave Technique

In the Ångström thermal wave technique [57], a periodic (electrical or opti-
cal) heat source with variable frequency is applied to a suspended thin film
(or bar) in order to establish a one-dimensional thermal wave along the spec-
imen (Fig. 3.15). The amplitude and phase of the temperature variations
can be measured, either at the location of heating or along the suspended
layer, to determine the thermal diffusivity α. Figure 3.16 shows the predicted
reduced temperature rise at the heating location as a function of inversed
root of frequency for a layer of thickness 30 µm and thermal conductivity of
500 Wm−1K−1. Both in- and out-of-phase components can be used to extract
the thermal properties. The plane source solution is well suited for the geo-
metry of the suspended films (or bars). This method directly uses the result
given in Eq. (3.4a) and Table 3.2:

θplane(ω) =
QA

A

1 − i√
2

k−1α
1
2

[
ω− 1

2

]
, (3.4a)

which is shown by solid lines. Obviously, the area A is twice the cross-sectional
area of the film. There are two important issues in this measurement that req-
uire careful consideration, namely, surface (convective or radiative) heat loss
from the suspended membrane and interaction of thermal waves with the

Fig. 3.15. Schematic of the measurement structure for the Ångström thermal wave
technique.
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Fig. 3.16. Example of the 3ω measurement with plane heating source. The
temperature signal deviates from predictions for the one-dimensional heating of a
semi-infinite substrate, due to the surface losses, and the influence of the boundary
condition in the actual suspended membrane geometry.

boundaries. Figure 3.16 also shows how the surface heat losses can alter the
frequency response of the suspended membrane. The surface heat losses can
be minimized by reducing the thermal penetration length, at sufficiently high
frequencies [58], or be compensated for by using the geometric mean of dif-
fusivity, obtained from phase and amplitude methods [59], [60]. In addition,
Fig. 3.16 shows that the frequency response of the systems would deviate from
the one-dimensional semi-infinite model, should the thermal waves reach the
boundaries of the membrane. The interaction with the boundaries can also
be limited by reducing the thermal penetration length in the suspended layer.
While it is more appropriate to perform these measurements at high frequen-
cies to limit the thermal penetration length, the 3ω signal would become
increasingly small at these frequencies. As a result, it would make more sense
to perform these measurements on sufficiently low frequencies and long sam-
ples while using the geometric mean of phase and amplitude data to eliminate
surface loss effects.

3.5.2 The Modified Calorimetric Method

Another technique, which measures the amplitude of temperature oscillation
as a function of distance from the heat source, was first introduced by Hatta
[61] and then used by Yao [62] for thermal characterization of the 10-µ-thick
free-standing AlAs/GaAs superlattice. In this method, which uses optical
illumination as a heat source, the amplitude of the temperature oscillation,
∆T , is measured as a function of distance, x, between the edge of a movable
mask and the thermocouple junction used to measure the film temperature
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Fig. 3.17. Schematic of the measurement for the modified calorimetric technique.

(Fig. 3.17). The mask protects a part of the film layer from the laser light,
and the exposed portion receives heat at a rate Q = QAeiωt, where QA is the
amplitude of absorbed heat flux. Assuming that heat loss from the surface
is negligible, the solution for the temperature in the covered section of the
plate, as a function of x, distance from the heat source, and frequency, is
given as [59]

θ(x, ω) =
QA

2ωCd
exp[−λx − i(λx + π/2)], (3.15)

where, λ =
√

ω/2α is reciprocal of the diffusion length. Plotting either
ln |θ(x, ω)| or arg[θ(x, ω)] versus x, thermal diffusivity of the film can be
extracted from the slope of the lines, which is equal to λ(=

√
ω/2α). If we

know the specific heat, then the thermal conductivity can be calculated. Val-
ues of thermal diffusivity or thermal conductivity found from either amplitude
or phase are the same, α = αa = αp and λ = λa = λp, if heat loss from the film
surface is negligible. However, because heat loss from the surface is important,
the amplitude and phase components of λ will be different (λa > λp). The
correct values for λ and diffusivity will then be λ =

√
λaλp and α = √

αaαp,
respectively. As we see, the value of applied surface heat flux does not have
any effect on the final results, and existence of the surface heat loss doesn’t
add any complexity to the problem.

In the recent round-robin measurements [32], different variations of heating
and thermometry techniques were used for thermal property measurement of
diamond samples. It appeared that the laboratories that used both phase
and amplitude signals, employed scanned laser heating (stronger signals), and
made corrections for boundary effects produced more reliable and consistent
data for thermal diffusivity with very little variation from the mean value.

This method can also be used for the films on substrate, if the film has a
higher conductance than the substrate, dkf � dsks, where d and kf , and
ds and ks are the thickness and conductivity of the film and substrate,
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Fig. 3.18. The measured temperature rise as a function of thermocouple distance
from the mask edge and frequency. Working in the hatched zone should be avoided
for possible edge effects.

respectively [25]. Figure 3.18 shows the temperature rise measured by the
thermocouple as a function of the heating frequency and distance between the
thermocouple and edge of the moving mask. Possible reflection of the thermal
waves from the edge (edge effects) for measurements in the hatched region
can cause inaccuracy in the results.

3.5.3 The High-Thermal-Conductivity Films on the
Low-Thermal-Conductivity Substrates

Both the Ångström thermal wave and modified calorimetric techniques can
be used for films on substrate, if the film has a higher conductance than
the substrate, dkf � doko, where d and kf , and do and ko are the thickness
and conductivity of the film and substrate, respectively [25], [63]. Figure 3.19
shows a schematic of the measurement structure that can be used to measure
the thermal conductivity of the dielectric layers [63] or in general for thermal
characterization of the layers with lateral thermal conductivity in the range of
10 to 2000 Wm−1K−1 and thickness of 0.5 to 10 µm. In this measurement,
a metal bridge with variable width, deposited on the thin film, serves as both
the heater and the thermometer. The thick silicon-dioxide layer under the
sample acts as a thermal barrier. The lateral thermal conductivity of the thin
film can be extracted by comparing the measured average temperature rise in
the metal bridge with the analytical or numerical solution of the frequency-
domain heat-diffusion equation.

The quality and microstructure of the CVD diamond is a strong function
of the crystalline silicon substrate on which it is grown. However, the high
thermal conductivity of the silicon substrate would significantly reduce the
sensitivity of this measurement technique. As a result, it is crucial to grow
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Fig. 3.19. The experimental structure for thermal property measurement of the
ultrathin dielectrics and metallic layers.

high-quality CVD diamond on the ultrathin silicon-on-insulator (SOI) wafers
to achieve high sensitivity in this measurement. The thickness of the silicon
overlayer should be on the order of 10 nm or less to avoid any contribution of
the lateral conduction in this layer to the measured thermal conductivity of the
diamond film. This approach significantly reduces the need for removing the
silicon substrate that requires relatively elaborate microfabrication process.
In addition, the radiative and convective losses, which become increasingly
important for very thin films, can be avoided altogether. The frequency-
domain heat conduction analysis shows that, for layers deposited on (d0 =)
0.5-µm-thick SiO2 film, one can achieve the required sensitivity for the mea-
surement of lateral thermal conductivity of diamond layers at maximum power
that the lock-in amplifier can dissipate in the metal bridge (Fig. 3.20).

3.5.4 Thermal Characterization of the Anisotropic
Silicon-Nitride Substrates

As was discussed earlier, the orientation of β-Si3N4 grains induces a strong
anisotropy in thermal conductivity of the silicon-nitride specimens [5]. It
is clear that, in order to measure the directional thermal properties, one
should confine the heat conduction and therefore the temperature gradi-
ent in a given direction. This is usually achieved by cutting three samples
with perpendicular orientations (x, y, and z) and performing three inde-
pendent measurements. However, the 3ω technique can be used to obtain
the anisotropic thermal conductivity of β-Si3N4, using only one aluminum
heater–thermometer bridge, which is deposited on the dielectric substrate.
A schematic of the measurement structure and the thermal-conductivity
coordinates are shown in Fig. 3.21.

Figure 3.22 shows sensitivity of the measurements to a 10% variation in
the thermal conductivities kx, ky, and kz for a given bridge length, at two
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Fig. 3.20. Thickness restriction for the samples to ensure proper sensitivity for the
temperature measurement.

Fig. 3.21. Schematic of the structure, for 3ω measurements of the anisotropic ther-
mal conductivities of the silicon nitride substrates (∼500 µm).

different frequencies, ω = 1 and 10,000 rad/s. It is clear that, depending on
the measurement frequency and bridge length, the sensitivity of the measure-
ment to thermal conductivity in a given direction varies substantially. For a
long bridge, L = 4000µm, and at high frequencies, ω = 10,000 rad/s, the mea-
surement is not sensitive to kx, the thermal conductivity for the x-direction.
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Fig. 3.22. Variation of the sensitivity of the measurements with the directional
thermal conductivities, heater length, and frequency.

However, the measurement is sensitive to the conductivities in the y- and
z-directions and, therefore, a combination of these two properties can be ex-
tracted. On the other hand, at low frequencies, the measurement becomes
more sensitive to the variation in kx, and sensitivity of the measurement to
kz is reduced so that a combination of kx and ky can be extracted. In the
actual measurements, the thermal response of the substrate as a function of
frequency can be measured using a lock-in amplifier. Subsequently, the data
will be fitted to the three-dimensional heat conduction in the substrate over
a range of frequencies from 1 to 10,000 rad/s from which thermal properties
will be extracted. This procedure has been extensively used in the past for
thermal characterization of different layers and substrates [53].

Figure 3.23 shows that, for a bridge of length L = 4000µm, the sensitiv-
ity of the measurements varies with the thickness of the substrates. For the
substrates (layers) of thickness less than 200 µm, the measurement is more
sensitive to kx and ky at low frequencies and to ky and kz at high frequencies.
For the 20-µm-thick layer, the measurement is only sensitive to the ky at high
frequencies and to the combination of kx and ky at low frequencies.

3.5.5 Thermal Characterization of the AlN Substrates with
Spatially Variable Thermal Conductivity

A strong gradient in the oxygen concentration of an AlN substrate was
observed [20], which can translate to variations in thermal property across a
given sample (Fig. 3.4). The 3ω technique can be used to probe different
depths of a given substrate in order to extract its local thermal-transport
properties. In this manner, one can avoid the complicated cutting process
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Fig. 3.23. Variation of the sensitivity of the measurements with thickness of the
substrate (or layer) and frequency. Heater has a constant length, L = 4000 µm.
Dashed and solid lines correspond to the frequencies ω = 10,000 and 1 rad/s,
respectively.

and cumbersome repeated measurements. Because the heat penetration depth
in the frequency-domain techniques is inversely proportional to the square
root of the heating frequency, we can control the desired heated volume by
controlling the heating frequency. Temperature oscillations in the heater are
determined by the average thermal property for a given thermal penetration
depth. By fitting the measured temperature rise in the heater to the predic-
tions of the frequency-domain heat-conduction solution and assuming uniform
thermal properties, we can obtain the effective thermal conductivity over the
heated region. This provides valuable information for determining the local
thermal conductivity at different depths away from the sample faces. For this
purpose, a 2-D (finite volume) numerical model is developed for the 3ω mea-
surements in the frequency domain. Thermal conductivity is considered to
be a function of position in general. Figure 3.24 shows the simulated magni-
tudes of the temperature oscillation ∆T in the heater as a function of heating
frequency from both top and bottom surfaces. The thermal conductivity in
lateral direction, ky, is assumed to be uniform along the depth and equal to
100 Wm−1K−1. The profile of the normal thermal conductivity, kz, is given
as kz(z) = 50 + 50e−1000z Wm−1K−1 from the top surface, as was shown in
Fig. 3.4. The layer has a total thickness of 20 mm and extends infinitely in the
lateral direction. The second surface of the layer is insulated and heated from
the first surface. In the case of heating from the top surface, due to the fast
decay of kz in the near-surface region, deviation of the temperature rise from
that resulting from a uniform kz, starts at relative high heating frequency
and becomes even larger as frequency decreases. This implies that more vol-
ume with lower thermal conductivity ky is heated. However, the calculated
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Fig. 3.24. Variation of the temperature rise with heating frequency for top and
bottom surface probing.

temperature difference becomes smaller at very low frequencies, partly
because, in this situation, the heat penetration depth exceeds the thickness of
the layer and thus the boundary condition becomes important for determin-
ing the temperature rise. When heating the layer from its bottom surface,
the calculated temperature rise is almost identical with that using a uniform
value of kz = 50 Wm−1K−1 over a large range of the heating frequency, until
at some heating frequency the thermal waves reach the region of drastic varia-
tion in kz. The lower the heating frequency, the larger the observed difference
would be. Based on the temperature rise from two-side heating, we can some-
how deduce the profile of the normal thermal conductivity kz as a function of
depth, or at least the varying tendency at different thicknesses.

3.5.6 The Mirage Technique

The mirage method is basically a modified version of the Ångström ther-
mal wave technique that uses higher frequencies. During the measurement, a
focused power laser is used to generate a localized heat source at the sam-
ple surface. Temporal modulation of the laser intensity results in oscillatory
temperature distributions both in the body of the sample and on its surface.
The induced temporal and spatial variations of the index of refraction of the
air film in proximity to the heated surface are detected using a continuous
probing laser aligned nearly parallel to the sample surface. The magnitude
and phase of both the normal and transverse components of the refracted
probe beam are monitored by a position-sensitive photodetector. The ther-
mal diffusivity can be obtained by fitting the solution to a three-dimensional
heat-diffusion equation for the relevant system (e.g., air, film, and substrate)
to the experimental data [64], [65].
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Two different schemes have been reported to detect the mirage signal for
thermal-diffusivity measurement. In the transverse scheme, the probe laser
beam travels in air skimming over the sample surface, heated by the pump
beam, whose intensity is periodically modulated. This scheme has been used
to measure samples with a wide range of thermal diffusivities from low,
10−7 m2/s, such as for glass [66] and polymer [67] to high, 10−2 m2/s, say
for diamond [68]. The main concern in the transverse scheme is the skimming
height of the probe beam from the sample surface. To avoid probe scatter-
ing on sample surface, the beam needs to travel some distance z away from
the surface [69], [70]. For a low-thermal-diffusivity sample, the height z must
be smaller than its thermal diffusion length (α/ω)1/2, where α and ω are the
sample thermal diffusivity and the heating modulation frequency, respectively.
Otherwise, the measurement will seriously be affected by the heat diffusion
in air. The surface reflection scheme is an alternative scheme to overcome the
skimming height problem in which the probe beam is reflected on the sample
surface close to the heating zone [68]. The disadvantage of this new scheme
is that it cannot be applied to the nonreflecting samples, such as absorbing,
rough, or transparent samples. One proposed solution to the problem has been
deposition of a thin reflecting film on the sample surface. This, unfortunately,
poses a new problem, which is the reflection of the pump beam.

Due to its noncontact configuration, the mirage technique does not require
special sample preparations, especially for the standard transverse scheme.
However, it involves more complicated experimental setup and data acquisi-
tion, than other thermal wave techniques.

3.6 Time-Domain Techniques

The time-domain techniques are based on application of heat to the sample’s
surface and monitoring its temperature changes with time. The source of
heat is either electrical or optical. In the Joule heating method, the surface
temperature rise is monitored during a relatively long (∼100 µs) heating pulse.
However, the laser heating method monitors the temperature relaxation after
a very brief (∼1µs) heating pulse [16]. Due to its shorter time scale than
the Joule heating method, the laser heating technique has a potential for
investigating nonhomogeneities in the diamond thermal conductivity. Each
of these techniques has advantages and disadvantages, which are discussed
in the following sections. Goodson et al. [16] have used both Joule and laser
heating methods to measure the normal thermal conductivity of the diamond
layers. They were able to significantly improve the certainties of their diamond
thermal-resistance measurements over previously reported works.

3.6.1 The Laser Heating Method

The laser heating method, which uses a laser for both heating and temper-
ature measurement, is an example of a time-domain technique. In the most
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common experimental configuration, the film layer of interest is sandwiched
between the substrate and a thick deposited metal film (Fig. 3.25). Heat
flux normal to the layered structure is generated by the absorption of light,
from a high-power laser, in the metal layer. The laser power is pulsed with a
duration of ∼10 ns. The temperature-induced changes of the metal surface
reflectivity are then detected, using a low-power continuous-wave helium-neon
laser. High thermal conductivity of the metal film will help fast absorption
of the laser heat and its redistribution, causing a uniform temperature dis-
tribution. The metal film will also facilitate detection of changes in surface
reflectivity.

This technique has proven to be extremely useful for characterization of
optical and thermal properties of thin films, taking advantage of being non-
contact and remote-sensing, and of the possibility for both high spatial and
temporal resolution. The property extracted in this technique is the thermal
resistance of the film layer. Stoner and Maris [71], using mode-locked lasers,
measured the Kapitza resistance between the metal and a diamond film. Due
to the high thermal conductivity, the effect of thermal conduction in diamond
on the surface temperature rise is negligible. Goodson et al. [16] used the same
technique to measure the total thermal resistance for conduction normal to the
diamond layers on silicon substrate, to extract the thermal resistance of the
diamond-silicon boundary.

An analytical solution of the transient thermal-diffusion problem in the
layered material is necessary to identify the governing parameters and eval-
uate the thermal properties from the time-dependent thermal response. For
the case of one-dimensional heat flow in a single-layer structure with the plane
source geometry, the surface temperature, provided that the heating power

Fig. 3.25. Schematic of the laser heating method. Changes in surface temperature
are measured by laser reflectance thermometry.
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Q(t) is an even function of time, Q(t) = Q(−t), to satisfy ϕ0 = 0, is given as

T (t) =
1
2π
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where
Q(ω) =

∫ ∞

−∞
Q(t) cos(ωt)dt. (3.16b)

Similarly, using the transmission-line theory [72], the frequency domain
solution for a multilayer system, which accounts for the thermal-boundary
resistances between adjacent layers, and the heating pulse shape factors can
easily be obtained. For the one-dimensional transient heat diffusion in a metal-
film-substrate system, the temperature rise on the top surface of the metal
layer, under a Dirac function heating pulse at a Laplace frequency domain is
given by
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where ei = ki/
√

αi, i = 1, 2, 3 are the thermal effusivity of the metal, film,
and substrate; ηi = di/

√
αi, i = 1, 2 for the metal and thin film (the substrate

is modeled as a semi-infinite medium); e31 = e3/e1, e32 = e3/e2; and finally,
Rth1 and Rth2 are the thermal-boundary resistances at metal-film and film-
substrate interfaces. Thus the time-domain surface temperature is given by
the numerical inverse Laplace transform of Z(s):

θDirac(t) =
1

2πi

∫ χ0+i∞

χ0−i∞
Z(s) exp(st)ds, (3.17b)

where the real-valued χ0 is chosen to exceed the real part of any singularity
of the integrand such as the origin. Once we know the temperature rise for a
Dirac heating pulse, the temperature rise for heating pulses of any shape ϕ(t)
can be obtained by

θ(t) =
∫ t

0
ϕ(t′)θDirac(t − t′)dt′. (3.17c)

Figure 3.26 shows the simulated surface temperature decay of the Au/
Diamond/Si multilayer structure, under a 10-ns laser pulse. The thickness



110 Yang, Sadeghipour, Liu, Asheghi, and Touzelbaev

of the diamond layer is 5µm, coated with a 1.5-µm Au layer and the silicon
substrate is modeled as a semi-infinite medium. The temperature profile
basically consists of three parts; first, a fast temperature rise to peak value
from 0 to 10 ns, caused by the laser pulse heating; second, a fast tempera-
ture decay from 10 ns to 20 ns, due to the high thermal conductivity of the
Au layer, as the thermal wave penetrates through it rapidly; and third, rel-
atively slow temperature decay from 20 ns to 500 ns, which is determined by
the thermal properties of the diamond layer and silicon substrate. The ther-
mal resistance of the diamond layer is modeled either by the lumped thermal
conductivity of diamond, which includes the combined thermal resistances of
the film and the film-silicon interface, or by the summation of two thermal
resistances caused by the film and its boundary with the silicon substrate.
It is clear from the plots that the temperature decay curve based on the
latter model falls out of the ±20% variation of the k band, in the lumped
thermal-resistance model. This indicates that in thermal characterization of
the high-thermal-conductivity films, the effect of thermal-boundary resistance
at the film-substrate interface should be considered. At long time scales, when
thermal-diffusion length in the silicon substrate is larger than the diamond-
layer thickness, however, the shape of the temperature decay curve becomes
sensitive to the combination of thermal conductivities of the diamond layer
and silicon substrate, instead of the diamond-silicon boundary resistance.

Fig. 3.26. Temperature decay on the surface of an Au/Diamond/Si system in
the laser heating method. The 5-µm-thick diamond layer is coated with a 1.5-
µm Au layer for the absorption of radiation energy. Solid line: temperature for
lumped thermal conductivity model. Gray band: ±20% variation of the lumped ther-
mal conductivity. Dashed line: Consider the thermal boundary resistance Rth2 =
1 × 10−8 m2KW−1 at the diamond/silicon interface (Rth1 = 0 at Au/Diamond
interface).
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Graebner et al. [13] used the laser heating technique to measure the normal
thermal conductivity of CVD diamond samples with thicknesses of 10–300µm.
Instead of the front-surface sensing, however, they used an infrared-detecting
sensor to monitor the temperature rise at the rear face of the layer, as heat
diffused through, provided that the laser pulse was short compared with the
thermal diffusion time of the sample. The measured normal conductivity was
at least 50% greater than the lateral conductivity. This is the direct result of
the columnar microstructure of the CVD diamond.

3.6.2 The Joule Heating Method

The Joule heating method is another time-domain technique, which has been
used to measure thermal properties of diamond films [16]. In a common test
structure, the diamond film is deposited on a silicon wafer with a metal bridge
deposited on its surface. The metal bridge has the dual responsibility of heat-
ing and thermometry. An electrical heating pulse with duration of 100µs is
applied to the metal bridge, and changes in the surface temperature are mon-
itored by measuring the electrical resistance change along the bridge, which
depends on temperature. By fitting the measured temperature to the tran-
sient three-dimensional thermal conduction equation, the thermal resistance
for conduction normal to the diamond layer is calculated with RT = d/kf .
The proper width for the bridge (> film thickness) will ensure one-dimensional
heat transfer in the direction normal to the film layer. Otherwise, lateral heat
transfer in the diamond film will result in underprediction of the normal ther-
mal resistance. The diamond film is assumed to have a homogeneous isotropic
conductivity with a volume thermal resistance, which is larger than the bound-
ary resistances at its interfaces with the metal bridge and the substrate. To
estimate the thermal boundary resistance caused by the diamond-silicon
interface, the measured temperature rise is compared with the temperature
rise of a similar structure, excluding the diamond film. Using a doped diamond
bridge, in the Joule heating method, there is also a potential for eliminating
the metal diamond boundary resistance.

3.6.3 The Thermal Grating Technique

In the thermal grating technique, the thermal diffusivity is measured by the
pulsed-laser excitation and detection of intensity change of the diffracted light,
which is modulated by temperature variation on a sample surface. The sample
is excited by two laser beams of spatial and longitudinal coherence, which are
crossed inside the sample at an angle θ. As a result, the complex refraction
index of the sample is periodically modulated with a period λG. The period of
the induced grating-like structure can thus be varied by simply changing the
crossing angle of the two pump beams. After the excitation, the heat is released
by thermal diffusion from the sample surface in, creating a spatial sinusoidal
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temperature field on the sample surface with modulation amplitude ∆T , which
decays as a function of time. As a consequence, the temperature dependence of
the refractive index creates an optical (phase) grating in the sample. The tem-
perature decay, then, can be detected by measuring the intensity of diffracted
probe beam from the excited area on the sample surface. Because the ther-
mal grating method probes the materials to a depth ∼λG/π, it seems to be
suitable for the thermal property measurement of thin film materials, espe-
cially for those film-substrate structures. Kaeding et al. [35] demonstrated its
application to the study of anisotropic lateral heat transport and thermal dif-
fusivities of metal and diamond films. Marshall et al. [73] performed transient
thermal grating experiments on a thin-film layer (∼100 nm) of YBa2Cu3O7
on MgO and SrTiO3 substrates to measure the anisotropic thermal diffusiv-
ity and boundary resistance between the thin film and substrate. The lateral
thermal diffusivity of the high-conductivity materials such as diamond was
measured by adjusting the grating period λG to be much smaller than the
light absorption length [34], [74], [75]. Compared to other time-domain tech-
niques, this method involves a more complicated experimental apparatus and
sample preparation for a highly reflecting surface.

3.7 Summary

This chapter described the available techniques and proposed new methods
for measuring the highly anisotropic thermal properties of high-thermal-
conductivity films and substrates. A variety of the steady-state and frequency-
and time-domain techniques have been reported that are being used to
measure the thermal properties of adamantine (diamond-like) materials. The
choice of measurement technique for a particular experiment depends, obvi-
ously, on many factors, such as the required accuracy, the size and shape of
the existing sample, and the availability of equipment and the skills to use it.
Some of these techniques can measure the spatially variable properties, but
others only measure the average values.

The steady-state measurements (e.g., heated bar) usually yield the highest
level of accuracy and reliability, on the order of ±5–10%, although one should
carefully account for and minimize the convection and radiation losses from
the specimen during the measurements. The accuracy of the measurements
depends on the knowledge of the sample’s precise dimensions. The proposed
“film-on-substrate” technique can be used for routine thermal characterization
of film layers with different thicknesses and, unlike the more conventional
steady-state techniques, is entirely immune to errors due to the radiation
and convection losses. The extension of the “classical comparator technique”
to the thermal characterization of high-thermal-conductivity material seems
promising, but the measurements require careful heat transfer analysis and a
clear understanding of errors associated with the thermal-boundary resistance
at the interfaces.
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The Ångstrom thermal wave and the modified calorimetric methods
require less effort in sample preparation but more careful consideration of the
heater location and operational frequencies to minimize radiation losses and
reduce the effect of the boundaries (e.g., the edge effects). Surface heat loss can
be conveniently dealt with by combining the amplitude and phase solutions.
By changing the shape of the heat source, either the thermal conductivity
or diffusivity or a combination of the two properties can be extracted. These
methods have been extensively used to measure both normal and lateral ther-
mal properties. By proper choice of the bridge length and the frequency in
the 3ω technique, the anisotropic thermal conductivity of the silicon-nitride
substrates can be measured. The same technique can be used to characterize
the aluminum-nitride substrates with spatially variable normal thermal con-
ductivity. The mirage technique is even less dependent on sample dimensions
with minimal need for specimen preparation and is ideally suited for films on
substrates. The Ångstrom’s thermal wave and the mirage techniques can yield
relative uncertainties of ±5–10%, and ±5–15%, respectively [32]. These tech-
niques require a high level of expertise and experience in the measurements
and an in-depth understanding of the microscale heat-transfer processes.

The time-domain techniques, in particular the laser heating and thermal
grating techniques, demand a relatively elaborate and expensive experimental
apparatus. whereas the thermal reflectance technique (see Sect. 3.6.1) requires
very little sample preparation, highly polished sample surfaces are needed for
the thermal grating technique. The relative uncertainties are on the order of
15–20% [32], and at times even larger errors are expected.
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Thermal Wave Probing of High-Conductivity
Heterogeneous Materials

Danièle Fournier

Thermal wave probing has turned out to be a very interesting way to study
thermal diffusivity of materials at various scales without much metallographic
preparation. Understanding thermal conductivity and microstructure of hetero-
geneous materials is more difficult than understanding those of single crystal
because they consist of grains and grain boundaries. The knowledge of thermal
parameters at various spatial scales is necessary because macroscopic thermal prop-
erties of these materials are strongly dependent on the microscopic properties of
grains and grain boundaries. We describe thermal wave techniques for characterizing
thermal properties of materials with heterogeneous microstructure.

In the first part, photothermal experimental setups are described: detec-
tion of thermal waves can indeed be done with different experimental setups
depending on the physical parameters under investigation (refractive index,
infrared emissivity, acoustic waves, local deformation). Then we show which
pertinent parameters can be extracted from this kind of experiment. In the
second part, we illustrate the ability of our mirage setup to study materials at
millimeter scales; judicious choices of frequency modulation and experimental
conditions geometry allow us to measure thermal properties of very thin sam-
ples, such as 1-micrometer-thick layers of synthetic diamond, or to evaluate
thermal resistance interfaces. In the third part, our photoreflectance micro-
scope is described in detail, and we underline all the abilities of this unique
experimental setup to determine thermal diffusivity of individual grain in a
ceramic sample such as AlN ceramic. The same setup is also able to evalu-
ate thermal resistance at the grain boundaries of heterogeneous samples. We
conclude with a brief comparison of the abilities of all these setups with more
classical methods.

4.1 Introduction

In recent years, high-thermal-conductivity materials such as ceramics and
films have been developed. Understanding thermal conductivity and micro-
structure of these materials is more difficult than understanding single crystal,
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because they consist of grains and grain boundaries. Because macroscopic
thermal properties of these materials are strongly dependent on the micro-
scopic properties of grains and grain boundaries, knowledge of thermal
parameters at various spatial scales is necessary. Thermal wave probing has
turned out to be a very interesting way to study thermal diffusivity of materi-
als at various scales without much metallographic preparation. In this review,
we describe this technique for characterizing thermal properties of materials
with heterogeneous microstructure.

4.2 Thermal Parameter Determination with a
Photothermal Experiment

4.2.1 Photothermal Experiment Principle

A photothermal experiment is the “combination” of the illumination of the
sample with a pulsed or modulated pump beam and the detection of the
surface or volume temperature variations related to the transformation of
this radiant energy into heat. This measurement leads to the determination
of the thermal properties of the sample.

This detection can be done with different experimental setups depending
on the physical parameters, which are affected by the temperature variation:
refractive index, infrared emissivity, acoustic waves, or local deformation. In
this chapter, we use mainly two kinds of optical detection: the mirage effect for
1D or 3D experiments and the photoreflectance for 3D configuration setups,
both of which allow detection of the surface or the bulk temperature variation
with a very good sensitivity.

4.2.2 Plane and Spherical Thermal Waves

When the heat source is intensity modulated, the diffusion of the heat can
be described with the concept of a “thermal wave.” To explain the concept
of a thermal wave, let us solve the heat diffusion equation in a semi-infinite
medium with a plane modulated heat source (absorbed modulated light flux)
located at x = 0. The solution is the following:

T (x, t) = K exp(−x/µ) exp(j[ωt − π/4 − x/µ]), (4.1)

where T (x, t) is the temperature at a distance x from the sample surface
(see Fig. 4.1), µ is the thermal diffusion length that characterizes the heat
propagation in the medium and can be controlled by the modulation frequency
(f = ω/2π) of the heat source; µ is related to κ (thermal conductivity), ρ
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Fig. 4.1. Creation of the modulated heat source at the sample surface.

(density), C (specific heat), and f by the following expression:

µ = (κ/2πfρC)1/2 = (D/2πf)1/2,

where D is the thermal diffusivity and K = Φ0/
√

ω
√

κρC, where Φ0 is the
light power (W/m2) and

√
κρC = e is the effusivity of the sample.

Figure 4.2 clearly demonstrates that the heat propagation is strongly
damped if x is larger than 2πµ. Moreover, expression (4.1) could describe
the propagation of an optical wave for which the real part and the imagi-
nary part of the refractive index would be equal. A thermal wave, like an
optical wave, can reflect, diffract, and propagate. Note that Eq. (4.1) clearly
indicates that measuring the phase lag of the complex temperature allows
both the measurement of the thermal diffusion length and the localization of
heat sources in the sample.

Fig. 4.2. Temperature inside the sample at various times (ωt = 0, π/4, π/2, π . . .)
versus x/µ.
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To carry out a thermal diffusivity measurement with our setups, a focused
heating spot has to be used. Therefore, to interpret the results, the heat dif-
fusion equation has to be solved in a spherical T (R, t) or cylindrical geometry
T (r, z, t). Fourier and Hankel transforms then allow easy calculations in the
case of modulated heat sources. Let us simply outline that in the case of a
heat point source, the result is given by:

T (R, t) = T0 exp
(

−R

µ

)
exp

(
j

(
wt − R

µ

))
. (4.2)

Thus, for the heat diffusion equation in a homogeneous material, we have a
spherical thermal wave. Let us underline that the thermal diffusion length
can also be measured with the phase lag versus the distance to the heat source
point.

4.2.3 Thermal Conductivity, Thermal Diffusivity,
and Thermal Effusivity

In order to determine the thermal behavior of a sample or component we have
to determine three parameters, the thermal conductivity κ, the thermal dif-
fusivity D, and the thermal effusivity e. The first one, κ, governs the transfer
of energy within a material. The rate of heat transfer depends on the temper-
ature gradient and the thermal conductivity of the material. The second one,
D, characterizes heat conduction in a nonstationary regime, and the last one
characterizes the thermal contact of two samples.

In a modulated photothermal experiment, the sample is heated with a
modulated heat source. We saw in the previous section that, whatever the
geometry of the experiment (plan or point heat sources), a thermal wave
propagates in the sample with a characteristic length µ. This length can easily
be extracted from a photothermal experiment by measuring the phase lag of
the local temperature versus the distance from the heat source. The thermal
diffusivity, then, is the pertinent parameter of a photothermal experiment.

The thermal conductivity and the thermal effusivity are more difficult to
obtain directly because they need absolute measurements.

4.2.4 Thermal Waves and Photothermal Setups

The measurement of the thermal diffusion length can be done easily if the
phase and the amplitude of the surface temperature are realized. In our lab-
oratory we have developed three setups able to do such measurement: the
mirage setup, the photothermal microscope, and the infrared microscope.
In the first, we take into account the temperature gradient in the adjacent
fluid above the sample, associated to the surface temperature variations. The
deflection of a laser beam propagating in this refractive index gradient is a
measurement of the surface temperature and then of the thermal diffusivity
length. In the photothermal microscope, a probe beam is reflected on the
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surface of the sample. The measurement of the variation of this reflected light
allows the determination of the surface temperature variation. Finally, it is
also possible to measure the variation of the emissivity of the surface sample
with an infrared detector to detect the surface temperature.

In the three cases, we have to scan the heated area to get information on
both amplitude and phase. The scan is achieved by moving the mirage cell,
the probe beam, or the infrared detector. The modulation frequency of the
beam intensity is achieved with either a mechanical chopper or an acousto-
optic modulator. The modulation frequency range of all experiments extends
from 10 Hz to 1 MHz. The thermal diffusion length for a given sample can be
reduced by 300 when the modulation frequency goes from 10 Hz to 1 MHz.

To understand the behavior of complex materials such as ceramic, film,
and composite, it is important to know not only the physical parameters at
a macroscopic scale associated to the average behavior but also the thermal
parameters of each constituent at microscopic scale. Photothermal experi-
ments that are able to determine the thermal diffusivity at different spatial
scales from the micrometer to the millimeter by only varying the modulation
frequency are good solutions for the investigation of complex materials.

4.2.5 Analysis of the Experimental Data

4.2.5.1 Bulk Sample. When the sample is illuminated with a laser beam, we
have to take into account the Gaussian repartition of the flux and convolute
the heat point source solution with the Gaussian repartition. Moreover, the
detection is done with a finite size detector, so we also have to take into
account the detector size.

Figure 4.3 shows the surface temperature in amplitude (log scale) and
in phase (degrees) versus the distance of the laser beam in the case of a
100-µm-diameter Gaussian excitation at 1000 Hz. Far from the center, where
the shape of the curve is strongly affected by both the width of the pump
beam and the detector size, the phase curves are linear versus the distance to
the heat source, and the slope (−1/µ) is inversely proportional to µ. We can
read directly on the figure the thermal diffusion length for one radian variation
∆r equals µ (µ gold = 200µm and µ diamond = 560µm). Figure 4.4 shows
the behavior of the thermal propagation at 1 MHz. As expected, the thermal
diffusion length is inversely proportional to the square root of the frequency,
and µ is 6.2 µm for gold and 17µm for diamond. Whatever the frequency, the
measurements of the slope give directly the thermal diffusion length.

4.2.5.2 Influence of the Sample Thickness. Formula (4.2) corresponds to the
heat propagation in an infinite sample. For a given sample thickness we have to
be careful with the choice of the modulation frequency. If the sample thickness
is smaller or of the same order of magnitude as the thermal diffusion length,
the slope does not give directly the expected thermal diffusion length. We
have to solve the heat diffusion equation, taking into account heat diffusion
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Fig. 4.3. Surface temperature of gold and diamond samples illuminated with
100-µm-diameter pump beam (1000Hz); µ is obtained for a phase lag of 57◦.

Fig. 4.4. Surface temperature of gold and diamond samples illuminated with
1-µm-diameter pump beam (1MHz); µ is obtained for a phase lag of 57◦.
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Fig. 4.5. Influence of the sample thickness at a given modulation frequency
(1000 Hz; D = 10 cm2/s; µ = 564 µm).

in three media: air, sample, and air (or backing). Figure 4.5 illustrates the
case of a finite sample thickness; the slope is not an actual measurement of
the thermal diffusion length if the thermal wave reflects at the bottom of the
sample (case of the 500-µm-diamond thick).

4.2.5.3 Absorbing and Reflected Layer Deposited on Top of the Sample. We
generally use an argon laser to create the heat source at the sample surface.
If the sample is transparent or scatters the laser beam, we have to deposit an
absorbing layer. For the photothermal microscope setup, a 100-nm gold layer
is usually deposited on top of the sample; for the infrared microscope a 100-nm
Au/Pd layer is used. We have to know whether this layer has to be taken into
account when the thermal diffusivity of the substrate is measured. To know
the temperature distribution in the whole assembly we have to solve the heat
diffusion equation in all the media (fluid, coating, sample, and backing). In
the case of a layered sample the main parameter is the effusivity of each
layer. At each interface, the incident thermal amplitude (A0) is transmitted
(A1) and reflected (B0) according to the thermal properties of the media with
the thermal reflexion coefficient B0/A0 = e0 − e1/e0 + e1 where the analog of
the refractive index is the thermal effusivity e. To illustrate, consider a gold
layer deposited on three substrates. Table 4.1 gives the thermal reflection
coefficients for the three substrates.

Figure 4.6 illustrates the influence of a 100-nm gold layer deposited on
three samples. In this case, the thermal diffusion length in the layer is larger
than the thickness (thermally thin case). Following the thermal mismatch
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Table 4.1.

Gold Platinum Silicon Diamond

Effusivity (Jm−2K−1s−1/2) 2.8 × 104 1.44 × 104 1.58 × 104 3.79 × 104

Thermal reflection 0 0.32 0.27 −0.15
coefficient/gold

at the interface, this layer has to be taken into account (R = 0.32) or not
(R = −0.15 and R = 0.28). When the sample is a better or equal conductor
than the layer, we can ignore it in our analysis. But if the substrate ther-
mal conductivity is lower than the gold thermal conductivity (in the case of
platinum), we have to use a multilayered model to determine the thermal dif-
fusivity of the substrate. In conclusion, it seems wise to achieve a complete
calculation in all cases.

4.2.5.4 Multilayered Samples. When the sample under investigation is mul-
tilayered, it is possible to extract the thermal diffusivity of the layer if the
thickness of the layer and the thermal properties of the substrate are known.

Moreover, if the thermal properties of the layer and the substrate are
unknown, in some cases we can develop the following strategy.

Fig. 4.6. Influence of a 100-nm gold coating deposited on different samples: dia-
mond, silicon, and platinum at 1MHz. In two cases (diamond and silicon), the slopes
give directly the values of the thermal diffusion length.
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Fig. 4.7. Amplitude and phase versus the distance of the heat source of a layered
sample (10 µm Au/Platinum) and a bulk gold sample at 1MHz.

Fig. 4.8. Amplitude and phase versus the distance of the heat source at low
frequency (10Hz) of a layer sample (10 µm Au/platinum).
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Fig. 4.9. Amplitude and phase versus the distance of the heat source at interme-
diate frequency (10 kHz) of a layer sample (10 µm Au/platinum), bulk gold sample
and bulk Pt sample.

At high frequency, the thermal wave propagates only in the first layer
and we can extract the thermal diffusivity of the first layer (Fig. 4.7). At
very low frequency, the main contribution is the contribution of the bulk
(Fig. 4.8), whereas the intermediate frequency experiments allow determining
the effusivity ratio of the layer and the bulk (Fig. 4.9).

To do that, we have to fit the experimental data taken on the whole fre-
quency range with the help of a best-fit program in which three parameters
have to be determined: the thermal diffusivities of the layer, the substrate,
and the ratio of the effusivities, for instance.

4.3 Photothermal Experiments on Complex Materials
at Millimeter Scale

4.3.1 Determination of the Thermal Diffusivity with the
Mirage Experiment

With respect to measuring the thermal diffusivity of a sample, we have to
explore the heated area around the heat source created by the absorption
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of the intensity modulated excitation beam (50- to 100-µm-diameter Argon
laser spot). In a mirage experiment [1], the measurement of this surface tem-
perature variation is done through the measurement of the refractive index
gradient associated with the temperature gradient developed above the heated
area of the sample. The mirage cell [2] is a setup, which allows the measure-
ment of very small deviation angles of a laser beam. In Fig. 4.10, we can see
the compact (30-cm-long) block; a He-Ne laser is in its bottom. After two
reflections, the laser beam is focused on the sample surrounding with a 7-cm
focal length, corresponding to a 100-µm beam waist. The deviation angle is
measured with a position sensor connected to a lock-in amplifier. This setup is
easily photon-noise-limited, that is, the smallest deviation angle we can mea-
sure is on the order of 10−10 radian/Hz1/2. This very small angle corresponds
to 10−5 degrees/Hz1/2 temperature variation on the sample surface. The mod-
ulation frequency range is on the order of a few kHz; above this frequency
the thermal diffusion length in air is too small to compare to the diameter
of the probe beam. To scan the heated area, we use computer-controlled step
motors, which move the mirage cell at a constant distance (100 µm) above the
sample surface. The extent of the heated area explored (a few millimeters) is
dependent on the diffusivity of the sample and the modulation frequency. The
phase of the mirage signal is a pertinent parameter to record, because it is less
sensitive to the imperfections of the sample surface. But the amplitude has to
be carefully examined in order to correlate the results obtained with the phase
measurements. To determine the thermal diffusivity exactly, we have to solve
the heat diffusion equations in all the media (air, coating, sample, etc.) and
to calculate the deviation angle of the probe beam crossing the resulting tem-
perature field in air. A best fit of our experimental data allows determination
of the thermal diffusivity with a precision of about 10%.

Fig. 4.10. Mirage cell setup scheme.
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If we compare the conventional flash measurement with our mirage exper-
iment, we can underline the following points:

• In the two experiments the sample surface has to be coated with an opaque
layer for the photothermal excitation.

• The size (thickness and width) of the sample has to be perfectly determined
in the case of the flash technique; in a mirage experiment well-defined size
is not required.

• It is straightforward, by varying the modulation frequency, to measure
the thermal diffusivity at various scales in the sample and then to get
information from micrometer to millimeter scales.

Note finally that the two experiments are related by a Fourier transform,
because the illumination is a light pulse in the flash laser technique and an
intensity-modulated beam in the mirage technique.

4.3.2 Thermal Diffusivity Determination on CVD
Diamond Samples

When the thickness of the CVD diamond films reaches a few hundred
micrometers, the thermal quality of the sample is the same as the type II
natural diamond in spite of its polycrystalline microstructure. Figure 4.11
shows measurements obtained with our mirage setup on a free-standing CVD
diamond layer of 330-µm thickness, produced at the Philips research labo-
ratories in Aachen, Germany, by a microwave-assisted method and covered
with a 80-nm gold layer. An exponential regression of the amplitude and a
linear regression of the phase far from the center give a value for the thermal
diffusivity of D = 10.5 ± 1.0 cm2/s. We have investigated a lot of polycrys-
talline diamond samples with thickness between one micrometer and a half
millimeter, and we have clearly demonstrated the correlation between the
nondiamond-phase contents estimated by Raman spectroscopy and the grain
size with the thermal diffusivity estimation [3].

4.3.3 Aluminium Nitride Ceramics

Another interesting result is to know why the thermal conductivity of com-
mercially available AlN ceramics ranges between 90 and 190 W/mK, whereas
the thermal conductivity of a pure single crystal attains 320 W/mK. We have
investigated and summarized the thermal diffusivity of various commercially
available AlN substrates, the surface percentage of secondary phase deduced
from image analysis, and atomic oxygen content in AlN grains as shown in
Table 4.2. From the table, it seems difficult to clearly demonstrate the perti-
nent parameter we have to choose to get the best ceramic. Another important
parameter we have to take into consideration is the morphology and thermal
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Table 4.2. Comparison of thermal diffusivity and oxygen concentration in AlN
grains and secondary phase percentage deduced from image analysis

Sample A B C D E F G

D cm2/s 0.35 0.4 0.5 0.57 0.68 0.78 0.95
Surface % of 12 10 9 4 6 6 6

secondary phase
Oxygen atomic % in 1% 0.95% 0.65% 0.65% 0.95% 0.9% 0.5%
AlN grain

properties of the secondary phase. To achieve this study, the local proper-
ties of both the AlN grains and the secondary phase have to be very well
known.

The results at micrometer scales with our photothermal microscope are
provided in the next section.

Fig. 4.11. Typical mirage experiment results: amplitude (top) and corresponding
phase (bottom) obtained on Polycrystalline CVD 330-µm-thick diamond at differ-
ent modulation frequencies (330Hz, 660Hz, and 1320Hz). Left and right columns
are the results obtained on the two sides (growth side and substrate side) of the
polycrystalline CVD sample. The thermal diffusivity of this sample is evaluated to
10.5 ± 1.0 cm2/s.
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4.3.4 Silicon Nitride Ceramics

The thermal conductivities of Si3N4 ceramics are lower than those of AlN
ceramics. But Si3N4 ceramics are very interesting for their excellent mechan-
ical properties complementing their good thermal conductivity. Recently, a
Si3N4 ceramic with highly anisotropic microstructure with large elongated
grains uniaxially oriented along to the casting direction was developed by
tape casting with seed particles. Mirage experiments [5] have clearly demon-
strated that the sample is thermally anisotropic. The thermal diffusivity along
the tape-casting direction (0.54 cm2/s) is two times larger than the diffu-
sivity along the two perpendicular directions (0.35, 0.26 cm2/s). In order to
understand the origin of this macroscopic thermal anisotropy, local deter-
mination of the thermal diffusivity is needed; this is discussed in the next
section.

4.3.5 Thermal Heterogenëıty Evidence on Diamond Samples

A low-frequency mirage experiment can also give significant information on
the microstructural heterogeneity of CVD polycrystalline samples. When com-
paring the curves measured on the substrate side (right) and on the growth
side (left) of Fig. 4.11, we observe a much more pronounced maximum around
the excitation on the substrate side than on the growth side. In Fig. 4.12,

Fig. 4.12. 330-Hz mirage experiment on a 350-µm-thick sample. The central part
of the amplitude given in arbitrary units of the experiment done on the substrate
side is larger than when done on the growth side; this is a clear signature of the
presence of a poor conductive layer on the substrate side.
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we can see a superposition of the two amplitude measurements. This is the
typical signature of an inhomogeneous sample; the high grain boundary den-
sity at the substrate side leads to a lower local diffusivity than at the growth
side. The lines drawn in the plots represent a fit of the calculated mirage sig-
nal for a system of two layers with thickness and diffusivities of l1 = 30µm,
D1 = 1.0 cm2/s (substrate side) and l2 = 300µm, D2 = 11.5 cm2/s (growth
side). We note that the fit is predominantly sensitive to the thermal thickness
of the layers. To get more precise inversion we have to do more experiments
at various frequencies to probe the poor thermal conductor layer. Neverthe-
less, there can be no doubt about the presence of a poorly conducting layer
near the substrate. Only high-frequency experiments can give more thermal
information concerning this layer.

4.4 Photothermal Experiment at Microscopic Scale

4.4.1 Photothermal Microscope

Figure 4.13 shows the photoreflectance microscope built in our laboratory.
The physical principle of this setup is the following: the optical reflection
coefficient R is sensitive to the temperature, and a low-intensity DC probe
beam flux impinging a sample surface whose temperature varies from T to
T + ∆T is reflected with an optical reflection coefficient varying from R
to R + ∆R. The measurement of ∆R allows measurement of the tempera-
ture variation ∆T . The sample is heated by an intensity-modulated focused
excitation spot. The temperature modulation is transferred via the refractive
index and the reflectance to the reflected probe intensity. The amplitude and
phase are then measured by a lock-in amplifier. To obtain spots as small as a
few micrometers, we use a commercial microscope to focus the heating beam
(Argon laser: 514 nm) as seen in Fig. 4.13. The probe beam is produced by a
670-nm laser diode. After reflection, the probe beam is received on a silicon
photodiode coupled with a high-frequency lock-in amplifier. This experiment
requires high modulation frequencies to prevent heat from diffusing over a
large area if an experiment on a small area or if a photothermal image of
good resolution is needed. It is possible to measure variations of ∆R as small
as 10−6 R with a frequency range up to 20 MHz [6], [7], [8]. Note that our
setup allows scanning the sample surface with the probe beam set on a fixed
point of the surface while the excitation beam is scanned around it. This con-
figuration allows measurements on poorly polished samples while the inverse
configuration (heating spot fixed and scans with the probe beam) requires
a good-optical-quality sample surface. In view of the reciprocity theorem for
Green’s functions of problems with homogeneous boundary conditions the
detected signal would remain unchanged. Moreover, photothermal images of
the sample surface with or without the two beams superimposed are obtained
with a microcontrol actuator having a step resolution of 0.1µm.
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Fig. 4.13. Photoreflectance setup principle.

4.4.2 Thermal Diffusivity Measurement at a Single Grain Scale

4.4.2.1 AlN Ceramics. In the case of ceramic materials, we have already
mentioned that the prediction of the macroscopic thermal behavior is related
to the values of the local thermal determinations. In AlN ceramics with Y2O3
addition, the secondary phase often consists of yttrium-aluminates with low
thermal conductivity. Figure 4.14 shows the photothermal signal phase maps

Fig. 4.14. Local high-resolution diffusivity measurement in an AlN-based Y2O3-
sintered ceramic, coated with a 70-nm gold film. Phase contour lines in an AlN grain
(left) and the Y2O3 intergranular phase (right), showing the much lower diffusivity
of Y2O3. Modulation frequency: 1MHz; length unit on both axes: 1 micrometer. The
thermal diffusivity of the AlN grain is 0.4 cm2/s and that of the secondary phase is
ten times smaller.
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of an AlN grain and the intergranular phase. The contours are very closely
spaced on the intergranular phase, which corresponds clearly to a poor thermal
conductor.

4.4.2.2 Si3N4 Ceramics. Understanding the origin of the thermal anisotropy
of the tape-casted Si3N4 ceramics is of great interest [5], [10]. Figure 4.15 shows
the dependence of the amplitude and phase of the thermoreflectance signal
on a Si3N4 grain (100µm in length (c-axis direction) and 17µm in width
(a-axis direction)) as a function of the separation of the two spots. This fig-
ure shows strong thermal anisotropy inside the grain, depending on crystal
axes. The principal thermal diffusivities were determined from the result of
Fig. 4.15 and were 0.84 cm2/s for the c-axis of Si3N4 crystal and 0.32 cm2/s for

Fig. 4.15. Dependence of the amplitude (a) and of the phase (b) on the heating
and probe spots’ spacing, along the a-axis or c-axis, for the widest Si3N4 grain in
our sample. Modulation frequency is 250 kHz. Experimental points are (triangles
and squares and theoretical best fit are the solid lines). The thermal diffusivities in
the two directions are 0.84 (c-axis) and 0.32 (a-axis) cm2/s.
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the a-axis. The corresponding thermal conductivities were 180 and 69 W/mK.
Measurements in grains of different sizes have shown the anisotropic diffusivi-
ties of the grains to be independent of the size of the grains. Thus, the thermal
anisotropy is an intrinsic property of Si3N4 grains.

4.4.3 Photothermal Imaging

Photothermal microscopy is also capable of creating thermal images with
micrometer resolution. Figure 4.16 is an example of such micrometer-scale
resolution on carbon-carbon composite. We can clearly see how the heat dif-
fuses when a heating point source is created in the center of the image. The
composite exhibits a strong anisotropy in the heat diffusion due to its lamellar
structure.

4.4.4 Thermal Barrier Evidence on AlN Ceramics

An additional capability of our setup is the detection of defects in the sample.
If the defects or heterogeneous structures are parallel to the sample surface,
1D photothermal experiments versus the modulation frequency associated to
an inversion procedure is a convenient method to detect them. It is also pos-
sible to detect the presence of vertical or slanted thermal barriers by scanning
the sample with the pump spot and the probe spot superimposed in a 3D
geometry. The thermal barriers prevent the heat from diffusing with a cylin-
drical geometry and are then associated with an increase in the amplitude and
a variation in the phase. Figures 4.17, 4.18, and 4.19 are examples of thermal

Fig. 4.16. Thermal anisotropy evidence of a carbon-carbon composite at the
micron scale. Modulation frequency: 1MHz—phase map around a point source.
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Fig. 4.17. 1-MHz modulation frequency photoreflectance signal associated with
the scanning of two intergranular phases along the line on the SEM image. The
scan starts in one grain of AlN, crosses the secondary phase, and finishes in another
grain. Because the secondary phase is a poor thermal conductor the amplitude of
the photothermal signal is higher.

barrier between two AlN grains, revealed by a photoreflectance experiment
run at 1 MHz with the two beams superimposed [4], [9]. The white parts in
the SEM images of the samples correspond to the secondary phase, and the
gray area corresponds to AlN grains.

Modeling this kind of experiment requires the resolution of the heat diffu-
sion equation without any cylindrical geometry. When the barrier is vertical,
it is possible to solve the equation analytically [11], but when the barrier is
slanted we have to use a numerical approach [12]. It is very difficult in this
kind of experiment to estimate quantitatively the behavior of the thermal
barrier, because it is difficult to guess the structure beneath the surface.

Fig. 4.18. 1-MHz modulation frequency photoreflectance signal associated with
the scanning of a thick intergranular phase along the line on the SEM image.
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Fig. 4.19. 1-MHz photoreflectance signal associated with the scanning of three
grains along the line on the SEM image. Note that grain boundary on the left does
not exhibit any thermal signature.

Thus, in this study, we have tried to take into account macroscopic thermal
diffusivity, percentage and distribution of the secondary phase, local diffusivity
in each phase, and presence of thermal barriers at the grain. We have shown
[9] that it is possible to predict the effective thermal conductivity if a random
set model describes the distribution of the phases, if the local conductivity is
well known and if the thermal continuity at the grain boundaries is effective.
If these three conditions are fulfilled for one sample under investigation, we
have effectively calculated two bounds between which the experimental value
has been found [9]; another AlN sample cannot even be modeled. In fact, this
sample shows many thermal barriers at grain boundaries, and a three-phase
model including a third phase at the grain boundaries would be necessary to
complete the simulation.

4.4.5 Very Thin Layer Thermal Property Determination

Another feature of our experiments is the ability to determine thermal prop-
erties of very thin layers [13], [14]. The samples under investigation were thin
layers (100 to 400 nm thick) YBaCuO deposited on various substrates (ZrO2,
LaALO3, and SrTiO3). Thermal interface resistance and diffusivity measure-
ments on thin high Tc superconducting films are important for the develop-
ment of thin film devices such as photodetectors. The response time of the
bolometer is actually dominated by the rate of heat transfer in the supporting
substrates.

We have conducted photothermal experiments on a large scale of frequen-
cies with our photothermal microscope. Note that the optical quality of the
samples was adequate and the optical reflection coefficient was large enough
to complete the experiments without any coating. Moreover, the optical ref-
lection coefficient is around 10%, but the dR/dT is around 10−2, which allows
us to easily record the data.
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4.4.5.1 Thermal Diffusivity Determination of the Substrate. In order to have
a precise determination of the thermal properties of the substrates, we first
did measurements on the substrates coated with a thin (80–90 nm) gold layer.
Figure 4.20 shows the experimental data and the best fit we have done on
four experiments at different frequencies. In this fit we have simultaneously
estimated the Au film diffusivity, the substrate diffusivity, and the thermal
boundary resistance. We have to take into account the thermal barrier, which
is present at the interface to fit our data. A multiparameter fitting procedure
has minimized the square variance between the measured and the calculated
phases. The experimental parameters, such as the diameters of the two (exci-
tation and detection) lasers, were carefully measured and considered as fixed
parameters in the fitting procedure. Let us underline that at low frequency

Fig. 4.20. Photothermal microscope experiments and the best-fit curves (solid
lines) on 89-nm Au deposited on Zirconia substrate at 4 modulation frequencies
(10 kHz, 50 kHz, 200 kHz, and 1 MHz).
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Table 4.3. Experimental determination of the thermal properties of the YBCO
samples deposited on three substrates [13], [14]

Film Substrate Dth Film Dth Substrate Rth
cm2/s cm2/s (m2K/W)

Au (89 nm) ZrO2 0.96 0.010 0.4 10−8

Au (78 nm) LaAlO3 1.0 0.040–0.044 0.8–1.0 10−8

YBCO (400 nm) ZrO2 0.019 0.010 2.5 10−7

YBCO (130 nm) ZrO2 0.031 0.010 2.2 10−7

YBCO (300 nm) LaAlO3 0.032 0.042 2.0 10−7

YBCO (300 nm) SrTiO3 0.030–0.033 0.035 2.5–1.6 10−7

the substrate diffusivity is dominating, while at high frequency the influence
of the film diffusivity and the thermal resistance increase. It is then very
important to conduct experiments at different frequencies. The results are
given in Table 4.3.

Fig. 4.21. Photothermal microscope experiments and the best-fit curves (solid
lines) on 300-nm YBaCuO deposited on LaAlO3 substrate at 4 modulation fre-
quencies (5 kHz, 20 kHz, 60 kHz, and 200 kHz).
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4.4.5.2 Determination of the YBaCuO Layer Thermal Diffusivity and of the
Thermal Interface Resistance. Once the method is validated on gold layers,
we proceed to the investigation of the YBaCuO samples. The experimental
data were taken at at least three frequencies (usually four) and then the same
fitting procedure was done. Figure 4.21 shows the experimental data and the
results of the fitting procedure on YBaCuO layer deposited on LaAlO3.

Table 4.3 gathers all the results on all the samples we investigated. The
thermal resistance determination can be more precise if the layer and substrate
properties are comparable. But it is very important to determine simultane-
ously the three parameters.

4.5 Conclusion

The setups developed in our laboratory are unique tools to measure thermal
properties at different spatial scales without much metallographic prepara-
tion. The mirage technique is possible to investigate the thermal behavior
at millimeter scale, whereas photothermal microscopy is possible to investi-
gate at microscopic scale. Combination of the information obtained at these
scales and statistical morphological data obtained by image analysis makes
it possible to analyze the macroscopic thermal behavior of bulk material and
films.
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Fabrication of High-Thermal-Conductivity
Polycrystalline Aluminum Nitride:
Thermodynamic and Kinetic Aspects of
Oxygen Removal

Anil V. Virkar and Raymond A. Cutler

It is now well recognized that the principal factor that lowers the thermal conduc-
tivity of polycrystalline AlN well below its theoretical value of ∼320W/mK at room
temperature is the presence of dissolved lattice oxygen. Covalently bonded AlN is
difficult to fabricate by pressureless sintering due to very low diffusion coefficients.
It is also now well-established that certain additives, predominantly oxides, facili-
tate densification of AlN by liquid phase sintering, and in the process lead to the
purification of AlN lattice—a prerequisite to attaining high thermal conductivity.
The additive must have the ability to form a liquid phase, which facilitates sintering
at the processing temperature. The additive must also have a strong enough affin-
ity for aluminum oxide (Al2O3), which is the form in which oxygen is dissolved in
AlN, so that various aluminates can be formed as secondary phases—effectively
scavenging Al2O3 and purifying the lattice. The thermodynamic considerations
relate to the affinity between Al2O3 and the additive to form aluminates, which
can be described in terms of the standard free energy of formation, ∆Go, of the
respective aluminate. The greater the |∆Go|, with ∆Go < 0, the greater is the abil-
ity of the additive to scavenge Al2O3. The kinetics relate to various processes, such
as the sintering kinetics and the kinetics of the removal of dissolved oxygen from
within the grains to grain boundaries. In addition, other kinetic processes involve
changes at the microstructural level, such as changing the wetting characteristics of
secondary grain boundary phases and the occurrence of grain growth. This chapter
presents a brief review of the role of dissolved oxygen on the thermal conductivity
of AlN and a brief review of the role of sintering and processing procedures used
in the fabrication of high-thermal-conductivity AlN ceramics. The focus will be on
using the lattice model of thermal conductivity of AlN, the role of thermodynamics
and phase equilibria in the purification of AlN lattice, and the kinetics of various
processes central to the fabrication of high-thermal-conductivity AlN ceramics.

5.1 Theoretical Basis

Aluminum nitride (AlN) in a polycrystalline form has been investigated for
application as a substrate material for microelectronics applications due to its
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attractive properties, including (1) a moderately low dielectric constant and
a low loss tangent, (2) a coefficient of thermal expansion similar to that of
silicon, (3) high electrical resistivity (electrical insulator), and (4) high thermal
conductivity when appropriately processed. AlN is covalently bonded and has
the wurtzite structure. Slack and coworkers identified AlN as a potential ma-
terial for application in the microelectronics industry for the aforementioned
reasons [1], [2], [3]. All other properties, such as the coefficient of thermal
expansion, elastic constants, and heat capacity, are not strong functions of
the processing history as long as the final material is of high density (low
porosity). Such, however, is not the case with thermal conductivity. It is now
well known that depending on how the material is processed, the thermal con-
ductivity, κ, of AlN can vary over a very wide range, from as low as 40 W/mK
to more than 270 W/mK at room temperature. It is this great variability in
thermal conductivity as a function of processing parameters and the poten-
tial for application in the microelectronics industry that has attracted the
attention of researchers.

Slack and coworkers were the first to recognize that the principal factor
that determines the thermal conductivity of AlN at ambient temperature is
related to impurities dissolved in the lattice [1], [2], [3]. This is because the
main mode of heat conduction in AlN, which is an electrical insulator, is by
lattice vibrations—phonons. At a given temperature, the highest thermal con-
ductivity that an electrically insulating material can exhibit is governed by
the phonon mean free path, which is dictated by phonon-phonon interactions.
Impurities, however, can scatter phonons and effectively lower the thermal
conductivity of AlN. In the simplest description of thermal conduction pro-
cesses wherein the principal mode of heat transmission is by phonons, the ther-
mal conductivity can be adequately described by an equation of the form [4]

κ =
1
3
Cv�, (5.1)

where C is the heat capacity, v is the lattice velocity, and � is the phonon mean
free path. Neither the heat capacity, C, nor the lattice velocity, v, is sensitive
to the possible presence of impurities. However, impurities can significantly
alter the phonon mean free path, �, and thus effectively influence κ. Slack and
coworkers further proposed that it is the presence of oxygen dissolved in the
AlN lattice that serves as an effective phonon scatterer [3]. More accurately,
it is the vacant aluminum site that forms on the dissolution of aluminum
oxide, Al2O3, in AlN lattice which is the culprit. AlN invariably contains
some dissolved oxygen in its lattice due to the manner in which it is often
made. Also the surface of fine powders readily oxidizes when exposed to air
to form Al2O3. Some of the surface Al2O3 can dissolve into the AlN lattice
at the high temperatures required for processing. The incorporation of Al2O3
in the AlN lattice can be described by the following defect reaction:

Al2O3 −→ 2AlAl + VAl + 3ON , (5.1a)
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where aluminum atoms occupy aluminum sites, oxygen substitutes for
nitrogen, and VAl denotes a vacant aluminum site. It is the mass difference
between a regular Al atom and its vacancy, VAl, that makes the vacancy a
strong phonon scatterer. That is, oxygen has an indirect effect in reducing κ,
and increased κ in an AlN ceramic can be realized if the lattice is purified
by removing as much of the dissolved Al2O3 as possible. The ability of an
impurity to scatter phonons can be described in terms of a parameter known
as the phonon-scattering cross section, Γ, and is given by [5], [6]

Γ = xs(1 − xs)

[(
∆M

M

)2

+ χ

(
∆δ

δ

)2
]
, (5.2)

where M is the atomic weight of the host atom, ∆M is the difference in the
atomic weights between the host and the impurity species occupying the site
normally occupied by the host atom, δ is the atomic diameter of the host
atom, ∆δ is the difference between the atomic diameters of the host and the
impurity, χ is a dimensionless constant, and xs is the site fraction occupied
by the impurity. For very small concentrations of the impurity, such as would
be the case with dissolved oxygen, Eq. (5.2) may be approximated by

Γ ≈ xs

[(
∆M

M

)2

+ χ

(
∆δ

δ

)2
]

. (5.3)

With Al2O3 dissolved in AlN, the (∆M/M)2 ≈ 0.02 for oxygen (atomic
weight = 16) occupying a nitrogen (atomic weight = 14) site, which is very
small. However, for an empty aluminum site, (∆M/M)2 = 1, which is equiv-
alent to a vacancy occupying a site normally occupied by aluminum. It is for
this reason that oxygen as an impurity is effective in scattering phonons in
an indirect manner. That is, had aluminum oxide existed as AlO instead of
Al2O3, its effectiveness as a phonon scatterer would have been very small.
Slack and coworkers have examined the effect of oxygen as an impurity on
the thermal conductivity of AlN. They demonstrated that the thermal con-
ductivity of polycrystalline AlN decreases with increasing dissolved oxygen
concentration and obeys a relation of the form

1
κ

≈ 1
κo

AlN

+ α
∆n

no
, (5.4)

where κo
AlN is the thermal conductivity of pure AlN, no is the number of

nitrogen atoms per unit volume, ∆n is the number of oxygen atoms per unit
volume, and α is a constant. At room temperature, κo

AlN is about 320 W/mK
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and the constant α was determined to be 0.43 mK/W. This suggests that at
room temperature, one may use Eq. (5.4) to estimate the oxygen concentration
by rearranging it as follows:

∆n

no
≈ 1

α

(
1
κ

− 1
κo

)
. (5.5)

Equation (5.4) describes the dependence of thermal conductivity as a function
of oxygen content at a given temperature. Abeles has examined the thermal
conductivity of materials as a function of both the temperature and impurity-
induced phonon scattering [5]. The general form of the equation is given by

κ ≈ 1
A

√
ΓT + BT

, (5.6)

where the constants A and B are given by

A = 9.67 × 102γ1
√

(1 + 5ε/9)
√

Mβ−2δ3 (5.7)

and
B = 7.08 × 10−4γ2

1 (1 + 5ε/9)
√

Mβ−3δ7/2, (5.8)

where γ1 is the aharmonicity factor, ε and β are constants, and δ3 is the
atomic volume. Equation (5.6) may be rearranged as

1
κ

= A
√

ΓT + BT (5.9)

or
1

κ
√

T
= A

√
Γ + B

√
T . (5.10)

The significance of Eq. (5.10) from the standpoint of application to experimen-
tally measured thermal conductivity is that a plot of 1/κ

√
T vs.

√
T should be

a straight line, with A
√

Γ as the intercept and B as the slope. Equation (5.6)
is thus useful in analyzing experimentally measured thermal conductivity as
a function of temperature. Equation (5.6) suggests that at very low temper-
atures (but still above the Debye temperature), the term in the denominator
under the square root is dominant, and the thermal conductivity is dictated
by phonon-impurity scattering. At high temperatures, the term in the denom-
inator that is linear in temperature is dominant, and the thermal conductivity
is dictated by phonon-phonon scattering. Equation (5.6) thus is useful for the
analysis of data to identify the role of both dissolved oxygen and temperature.

5.2 Procedures for the Fabrication of
High-Thermal-Conductivity Aluminum Nitride Ceramics

As stated earlier, because AlN is a very refractory material with covalent
bonding, diffusion coefficients are rather low even at elevated tempera-
tures. This makes pressureless densification by a solid-state method difficult,
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although this has been recently achieved using carefully prepared fine AlN
powders. The most direct method of sintering AlN is by adding other materi-
als as sintering aids to form a liquid phase at the sintering temperature. Many
rare earth oxides and alkaline earth oxides are known to form eutectic liquids
with Al2O3. This fact has been long recognized and forms the basis of sinter-
ing processes for the fabrication of high-density AlN ceramics [7], [8], [9], [10],
[11]. The pioneering work of Komeya and coworkers has demonstrated that
AlN can be sintered to a near theoretical density by adding various additives,
typically oxides [7], [8]. The oxide additives serve two important functions:
(1) They react with surface Al2O3 to instantaneously form a liquid phase at
elevated temperatures facilitating rapid densification, and (2) they effectively
serve to remove dissolved oxygen from the lattice and thereby enhance κ.
Thus, the addition of rare earth and alkaline earth oxides assists in densi-
fication, and in the process purifies the AlN lattice such that the resulting
multiphase mixture (purified AlN and aluminates) actually has a consider-
ably higher thermal conductivity than the original AlN, despite the fact that
aluminates are generally poor thermal conductors. The reason is that oxygen
dissolved in AlN is far more detrimental to the thermal conduction process,
because it lowers the phonon mean free path (increases the phonon scattering
cross section). By contrast, oxygen present in secondary phases, such as alumi-
nates, has a relatively weak effect on thermal conductivity as long as the AlN
phase is contiguous. The thermal conductivity of a two-phase mixture can usu-
ally be described in terms of an appropriate rule of mixtures. Not all additives
are expected to be equally effective in purifying AlN. For example, the phase
diagram between Al2O3 and the oxide additive determines the effectiveness
of an additive as a sintering aid, depending on the temperature at which a
liquid phase forms. Also, the effectiveness of an additive in oxygen scaveng-
ing depends on the thermodynamic affinity of the oxide additive for Al2O3.
Finally, factors such as the kinetics of the overall process and the resulting
morphology of grain boundary oxide phases determine the final properties
of sintered AlN. In the remainder of this chapter, the effects of some ther-
modynamic, kinetic, and microstructural factors on the fabrication of high-
thermal-conductivity AlN ceramics is discussed, and the thermal conductivity
is examined in light of the lattice (phonon) model.

The typical procedure for the fabrication of polycrystalline AlN ceramics
consists of the following steps:

1. Mix fine AlN powder with the powder of an additive, which may be a
rare earth oxide or an alkaline earth oxide. The required amount of the
additive depends on the purity of the AlN powder, especially its oxygen
content.

2. Consolidate the powder in the form of discs, plates, etc. using die-pressing,
tape-casting, or other green-forming methods.

3. After removing organics at a lower temperature, sinter and anneal in a
reducing atmosphere. The typical sintering temperature is on the order
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of 1850◦C, and the typical sinter/annealing time is on the order of a few
minutes to a few hours.

Various other sintering/annealing procedures are used depending on powder
characteristics, the type and amount of the additive, and the desired final
properties.

5.3 Phase Equilibria, Sintering, and Thermodynamic
Considerations

Sintering is typically achieved by liquid phase sintering, wherein a liquid phase
is formed between Al2O3 inherently present on the surface of a typical AlN
powder and the additive. Over the range of typical sintering temperatures
(∼1650 to 1900◦C), liquid phases form in alkaline earth oxide—Al2O3 systems
and a number of rare earth oxide—Al2O3 systems. Also, several aluminates,
usually exhibiting very narrow ranges of stoichiometry (line compounds), exist
in these systems, the significance of which is discussed shortly. To date, high-
thermal-conductivity AlN ceramics have been made using a number of oxide
additives, such as Y2O3, Yb2O3, Dy2O3, Er2O3, Gd2O3, Nd2O3, and Sm2O3,
as well as with CaO; and many other inorganic materials including some
carbides and fluorides. The following discussion will be confined to oxides,
in particular to Y2O3 for the purposes of illustration, although the general
conclusions are applicable to essentially all other rare earth oxide–based and
other oxide additive–based systems.

The system Al–Y–O–N can be represented as a quaternary isothermal
section with end members AlN (or Al4N4)–YN (or Y4N4)–Y2O3 (or Y4O6)–
Al2O3 (or Al4O6), as shown in Fig. 5.1. Also shown are the possible condensed
two-phase and three-phase fields. All phases are assumed to have very limited
stoichiometry ranges. Thus, each single-phase field is represented by a point,
for example, the Al4N4 corner. Figure 5.1(a) shows the various phase fields
at a temperature at which no liquid phase is present. Figure 5.1(b) shows the
various phase fields at a temperature at which a liquid phase is present. The
latter is the relevant phase diagram at the sintering temperature and may also
represent conditions during subsequent annealing. In the figure, Y represents
Y2O3 and A represents Al2O3. Thus, YA represents Y2O3Al2O3 or YAlO3;
the perovskite phase, Y3A5, represents (Y2O3)3(Al2O3)5 or Y3Al5O12, the
yttrium aluminate garnet phase (YAG); and Y2A represents (Y2O3)2Al2O3
or Y4Al2O9. The pseudobinary AlN–Al2O3 is represented by the left-hand
vertical side of the quaternary in Figs. 5.1(a) and (b). The phase ALON
has the approximate stoichiometry Al3O3N, which actually has a relatively
wide stoichiometry range and should strictly be shown as a line along the
Al4N4–Al4O6 join and as an area extending into the quaternary. The starting
AlN powder thus can be represented (insofar as the overall composition is
concerned) by a point on this line, close to the AlN (or Al4N4) corner. The
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Fig. 5.1. (a) Schematic of the AlN–Al2O3–Y2O3–YN quaternary at a temperature
at which no liquid phase is present; (b) schematic of the AlN–Al2O3–Y2O3–YN qua-
ternary at a temperature at which a liquid phase is present; (c) schematic equilibrium
activity of Al2O3, aAl2O3 , as a function position in a given phase field corresponding
to Fig. 5.1(b).

addition of Y2O3 (or Y4O6) moves this point in the interior of the quaternary,
close to the AlN corner, as the overall concentration of AlN is much greater
than that of any of the other species. However, at equilibrium, the composition
may lie in different triangles (three (condensed) phase fields) or in two-phase
(solid) fields (characterized by lines separating three phase fields) or in a two-
phase field with a liquid phase present, characterized by a near triangle. The
Al-Y-O-N quaternary diagram is a four-component (C) system. In a phase
field containing three condensed phases, the actual number of phases (P) is
four (three condensed + gas). According to the Gibbs phase rule, the number
of degrees of freedom that a system has is given by

F = C − P + 2. (5.11)
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If the temperature is fixed and the total pressure is fixed, then according
to the Gibbs phase rule, a four-component system with four phases present
(three condensed + gas) has no degrees of freedom (F) left. (The total pres-
sure can be fixed by fixing, for example, nitrogen pressure, which fixes par-
tial pressures of all other species.) In such a case, the chemical potentials or
the thermodynamic activities of all species are fixed. If, on the other hand,
there are two condensed phases, then P = 3 and the system has one degree
of freedom, that is, F = 1. In such a case, the activities of species can vary
across the two-phase field. (From here on, we will only state the number of
condensed phases present. Thus, when we refer to a phase field as a two-
phase field, the existence of the gas phase is implicitly assumed, and the
system actually has three phases, that is, P= 3.) The implication is that
in a three-phase field, the activity of Al2O3, aAl2O3 , is constant, regardless
of where the composition is within a given three-phase field. The composi-
tions of interest are very close to the AlN apex of the triangle. The activity
of Al2O3 in AlN is also the same, because solid AlN is one of the phases
corresponding to a given three-phase field. By contrast, the aAl2O3 is not
fixed in a two-phase field, characterized by a (near) triangle when a liq-
uid is present (Fig. 5.1(b)) or essentially by a line when the two phases
present are solid. The further implication is that the activity of Al2O3,
aAl2O3 , changes abruptly across such a two-phase field. Figure 5.1(c) shows the
dependence of aAl2O3 as a function of composition, that is, as a function of
the phase field the composition is in, for the quaternary shown in Fig. 5.1(b).
Note the abrupt changes in aAl2O3 as the composition shifts from one three-
phase field to another three-phase field, across the dividing two-phase field
indicated by a line. For the two-phase field comprising L + AlN, however, the
aAl2O3 varies smoothly, consistent with the Gibbs phase rule and the preceding
discussion.

Referring to Fig. 5.1(b), note that as the amount of Y2O3 added is
increased relative to Al2O3 inherently present in the starting AlN powder,
the composition progressively shifts into three-phase fields containing AlN
and aluminates richer in yttrium. With an increase in the Y2O3 content, the
relative amount of low-thermal-conductivity secondary phases increases and
the activity of Al2O3 in AlN decreases. This means, effectively, that the AlN
lattice is increasingly purified. This has two effects: (1) an increase in the
amount of secondary (aluminate) phases should lead to a decrease in thermal
conductivity of the multiphase mixture; (2) purification of the AlN lattice
should lead to an increase in the thermal conductivity. At small concentra-
tions of Y2O3, as the amount of Y2O3 is increased, the increased purification
of the AlN lattice leading to an increase in κ outweighs a decrease in κ due to
the increase in the volume fraction of the aluminate phase. Thus, κ initially
increases with increasing Y2O3 content. At large concentrations of Y2O3, a
compromise between these two factors can lead to a maximum in thermal
conductivity. This aspect is discussed later.
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5.3.1 Free Energies of Formation and the Activity of Al2O3

The ability of a given oxide additive to scavenge Al2O3 out of AlN depends on
the free energies of formation of the respective aluminates. In the Y2O3–Al2O3
system, for example, the formation of YAlO3 can be described by the following
reaction

1
2 Y2O3 + 1

2 Al2O3 −→ YAlO3 (5.11′)

for which the standard free energy change is given by ∆Go
ii. Because this

reaction is known to occur over a wide temperature range, it is clear that
∆Go

ii < 0. If neither Y2O3 nor Al2O3 is present as a secondary phase and
the only oxide phase present is YAlO3, then at equilibrium we know that

aAl2O3 × aY2O3 = exp
[
2∆Go

ii

RT

]
, (5.12)

where aY2O3 is the activity of Y2O3 and R is the universal gas constant.
Similar equations can be written for other aluminates. Unfortunately, free
energies of formation of the majority of the aluminates are generally not avail-
able, which precludes a quantitative determination of the activity of Al2O3.
Nevertheless, thermodynamics provides a powerful scientific basis on which
processing decisions for the fabrication of high-thermal-conductivity AlN can
be made. For example, a schematic free energy–versus–composition diagram
can be developed for a given system based on the knowledge of the phase dia-
gram. Consider again the Y2O3–Al2O3 system, for which the phase diagram is
known. In what follows, we restrict discussion to experimental conditions cor-
responding to all condensed phases being solid, for example, corresponding to
Fig. 5.1(a), for the purposes of illustration. Thus, in this case, the changes in
aAl2O3 are expected to be abrupt across single-phase fields in the Y2O3–Al2O3
system (or across two-phase fields in the Y2O3–Al2O3–AlN system). Based
on the fundamentals of phase equilibria and thermodynamic considerations, a
schematic of the free energy–versus–composition diagram can be established.
This is given in Fig. 5.2(a), in which Y2O3(Y) is on the left side and Al2O3(A)
is on the right side. The vertical lines extending down from the horizontal line
(axis) in Fig. 5.2(a) are measures of free energies of formation of the various
aluminates in the Y2O3–Al2O3 system, namely, Y2A (the same as Y4A2),
YA, and Y3A5. The straight lines joining them at the ends of these lines and
forming an approximately concave curve upward is the free energy–versus–
composition diagram at the temperature of interest (here corresponding to
Fig. 5.1(a), for example). A tangent drawn to this curve at any point intersects
the two vertical axes (corresponding to pure Y and pure A). The intercept
on the A-axis is directly proportional to the logarithm of the correspond-
ing activity of Al2O3, that is, ln aAl2O3 . The free energy–versus–composition
trace is not a smooth curve, because the phase diagram is characterized by
the presence of line compounds and two-phase fields between them, rather
it is made of segmented straight-line portions. (If the phase diagram were
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Fig. 5.2. (a) Schematic of the free energy of formation versus composition diagram
for the Y2O3–Al2O3 system corresponding to Fig. 5.1(a); (b) schematic equilib-
rium activity of Al2O3, aAl2O3 , in the various three-phase fields corresponding to
Fig. 5.1(a).

to correspond to a solid solution, then the free energy vs. composition trace
would have been a smooth, concave-up curve.) Region III in Fig. 5.2(a), for
example, is a two-phase field in the Y-A system (which, with the presence
of AlN, would be a three-phase field) with the two phases being Y2A and
YA. An extension of the line joining the ends of the vertical lines corre-
sponding to the free energies of formation of YA and Y2A (effectively the
tangent) to the A-axis intersects it at some place. This vertical intercept
(which is negative) is given by RT ln aAl2O3(III), from which the activity of
Al2O3 can be estimated. In the presence of AlN, if the oxide phase equilib-
rium corresponds to region III, it means that the activity of Al2O3 dissolved
in AlN is also given by aAl2O3(III). Returning to Fig. 5.2(a), note that for
region I corresponding to the presence of Y3A5 and A, the activity of Al2O3
is essentially unity—the same as for pure Al2O3. (Note, however, that the
highest activity of Al2O3 in equilibrium with AIN is that corresponding to
the AIN–ALON–Y3A5 three-phase field (marked by X) in Fig. 5.1(a), which
is less than unity. In Fig. 5.1(c), this activity is identified by ao

Al2O3
, where

ao
Al2O3

< 1.) However, the activity of Al2O3, aAl2O3 , is much lower in region
II, which represents the coexistence of Y3A5 and YA. The aAl2O3 continues
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to decrease as the Y content is increased, and the phase field progressively
shifts from I to II to III and eventually to IV. Figure 5.2(b) shows the vari-
ation of the activity of Al2O3, aAl2O3 , as a function of the Y2O3 content,
which is similar to Fig. 5.1(c). Clearly, when AlN is also present, the equi-
librium aAl2O3 corresponding to Al2O3 (or oxygen) dissolved in AlN follows
the same trend. This shows that with the addition of Y, we expect the puri-
fication of AlN lattice to occur—a prerequisite to achieving high thermal
conductivity.

The implication of the preceding discussion concerning the thermal con-
ductivity of AlN, when Y2O3 is added as a scavenger, is that there must
also be an abrupt change in thermal conductivity as the composition shifts
from, say, region II (AlN + Y3A5 + YA) to region III (AlN + YA + Y2A).
Experimental work by Jackson et al., who made AlN samples by adding var-
ious yttrium aluminates directly to AlN and then fabricating the samples, is
consistent with this expectation [10]. Figure 5.3 shows the measured thermal
conductivity of as-fabricated AlN samples made with no yttrium-containing

Fig. 5.3. Thermal conductivity comparison of hot-pressed AlN and AlN sintered
with Y2O3 or yttrium aluminate additives and the thermal conductivity of individual
aluminates.
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phase added, with Y3A5 added, with YA added, and with Y added. Note
that the thermal conductivity increases from ∼70 W/mK for AlN with no Y
added to ∼86 W/mK with Y3A5 added to ∼124 W/mK with YA added and
finally to ∼177 W/mK with Y added.

These results thus demonstrate the role of thermodynamics in achieving a
high-thermal-conductivity AlN ceramic. A thorough quantitative analysis will
have to be deferred until relevant thermodynamic data become available. In
general, however, we do not expect great variability between the various rare
earth oxides because the general features of their phase diagrams are similar,
indicating that possible differences in free energies (among the various rare
earth aluminates) are probably small. As a general rule, the magnitudes of
free energies of formation of the various aluminates, ∆Gos, namely |∆Go|,
are expected to be modest (typically less than 100 kJ/mol). This is because
when Al2O3 (an oxide) reacts with a rare earth oxide (RE2O3), no further
valence changes are expected, as all cations are already in their fully oxidized
states. Thus, the magnitude of the enthalpy of the reaction, which is primarily
related to short-range interactions, is usually small, and so is the magnitude
of the free energy of formation. Jackson et al. noted that the thermal con-
ductivity of the final sintered AlN ceramic was less sensitive to which rare
earth oxide was used [12]. (With the exception of CeO2 and Eu2O3, using
which dense samples could not be obtained [12].) Rather, the thermal con-
ductivity was more sensitive to the amount of the rare earth oxide additive,
consistent with the discussion on the role of thermodynamics and the process-
ing history. We emphasize that even though the |∆Go| for the majority of the
aluminates is expected to be small, the relative difference between two oxides
can be significant. It can be shown that the equilibrium activity of aAl2O3 is
given by

aAl2O3 ≈ exp
[
ξ∆Go

RT

]
, (5.13)

where ξ is a positive number whose magnitude depends on the stoichiometry
of the aluminate formation reaction. We will assume ξ to be one in what fol-
lows. Then, for a ∆Go of −10 kJ/mol and a processing temperature of 1800◦C,
the estimated aAl2O3 is ∼0.56. If, on the other hand, the ∆Go is −50 kJ/mol,
the corresponding aAl2O3 is ∼0.055, that is, a purification by a factor of about
10. Indeed, it has been shown that with CaO as the additive, thermal conduc-
tivity of ∼137 W/mK can be achieved. However, with MgO as the additive,
the thermal conductivity achieved was only ∼63 W/mK [13]. This is consis-
tent with the measured free energies of formation of CaAl2O4 (∼ − 54 kJ/mol)
and MgAl2O4 (∼ − 37 kJ/mol).

5.3.2 Thermodynamics of Oxygen Removal and the Analysis of
Thermal Conductivity

Equation (5.6) describes the combined effect of phonon-phonon inter-
actions and phonon-impurity interactions on the thermal conductivity.
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Equation (5.10) suggests that a plot of 1/κ
√

T versus
√

T should be a straight
line, with A

√
Γ as the intercept and B as the slope. As suggested by Eqs. (5.7)

and (5.8), the slope B should be essentially independent of the oxygen content
of the lattice (and thus independent of the amount of Y2O3 added, as long
as it is not too large). Also, the square of the intercept divided by the slope
should be proportional to the scattering cross section, Γ. That is, we expect
that the ratio

Γ ∝
(

intercept
slope

)2

(5.14)

provides a measure of the scattering cross section. (Actually, the square of the
intercept itself is proportional to Γ. The reason for choosing the ratio of inter-
cept to the slope is to minimize the possible effects of oxygen content on other
factors in A and B from Eqs. (5.7) and (5.8).) Data given by Jackson et al.
are plotted as described in Figs. 5.4(a) through (d) for samples of AlN made
using between 1 wt% and 8 wt% Y2O3 added and sintered for 100 minutes
at 1850◦C [12]. Note that the data can be adequately represented by straight
lines consistent with Eq. (5.10). Also note that the slopes for samples with
2%, 4%, and 8% Y2O3 are virtually identical, consistent with expectations,
although that for the sample with 1% Y2O3 is a factor of 2 off. The corre-
sponding intercepts, slopes and (intercept/slope)2 are listed in Table 5.1. The
(intercept/slope)2 ranges between ∼5,425 for a sample with 1% Y2O3 added
to ∼6.2 for a sample with 8 wt% Y2O3 added. Because Γ ∝ xs, where xs is
the concentration of dissolved oxygen in the AlN lattice, it is seen that in the
sample with 8 wt% Y2O3, the oxygen content is 6.2/5425 or about 0.0011
of that in the sample containing 1 wt% Y2O3. That is, addition of 8 wt%
Y2O3 has been very effective in purifying the AlN lattice. Based on the oxy-
gen content of the AlN powder used for this work, samples with 1 wt% Y2O3
correspond to the formation of Y3A5 as the aluminate phase and the composi-
tion could correspond to the three-phase field comprising AlN–ALON–Y3A5,
signifying little purification of the AlN lattice compared to AlN without any
Y2O3 added. By contrast, samples with 8% Y2O3 correspond to the forma-
tion of Y2A as the aluminate phase. This once again shows the profound role
of thermodynamic effects, namely that the activity of Al2O3 in AlN when
Y3A5 (or lower Y) is present is orders of magnitude higher than when Y2A
is present. The consequence of this thermodynamic effect is that the thermal
conductivity of AlN corresponding to this phase field is rather low.

5.3.3 Kinetics of Oxygen Removal and Microstructural Changes

We have so far discussed the role of thermodynamics in scavenging oxygen
out of AlN grains and forming aluminate phases along the grain boundaries.
The aluminate phases have very low thermal conductivities, and thus their
net volume fraction should be as small as possible. Note that as the amount
of the additive is increased, there are two opposing factors that come into
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Fig. 5.4. (a) A plot of 1/κ
√

T vs.
√

T for a sample sintered with 1 wt% Y2O3;
(b) a plot of 1/κ

√
T vs.

√
T for a sample sintered with 2 wt% Y2O3; (c) a plot of

1/κ
√

T vs.
√

T for a sample sintered with 4 wt% Y2O3; (d) a plot of 1/κ
√

T vs.
√

T
for a sample sintered with 8wt% Y2O3.
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Fig. 5.4. Continued



158 Anil V. Virkar and Raymond A. Cutler

Table 5.1.

Y2O3 Intercept A
√

Γ Slope B
(

intercept
slope

)2

Content (%)

1 4.473 × 10−4 6.073 × 10−6 ∼5, 425
2 1.316 × 10−4 1.401 × 10−5 ∼88
4 7.426 × 10−5 1.514 × 10−5 ∼24
8 4.085 × 10−5 1.643 × 10−5 ∼6.2

play: (1) An increase in the additive content lowers the aAl2O3 , increases
the phonon mean free path, and thus increases thermal conductivity; and
(2) an increase in the additive content increases the volume fraction of the
low-thermal-conductivity aluminate phases and thus decreases the overall con-
ductivity. It is thus expected that the thermal conductivity would initially in-
crease rapidly with increasing additive content, reach a maximum, and there-
after exhibit a slow decrease in thermal conductivity. This has indeed been
observed. Figure 5.5 shows thermal conductivity as a function of the volume
fraction of secondary oxide phases for Y2O3 as the additive. Similar obser-
vations have been made with Sm2O3 and Er2O3 as additives, and similar
observations are expected with other oxygen-scavenging oxides. The maxi-
mum in κ approximately corresponds to the maximum level of purification,
and the corresponding three-phase field is expected to contain “purified” AlN,

Fig. 5.5. Thermal conductivity as a function of volume fraction of the yttrium
aluminate phases in AlN–Y2O3 compositions sinter/annealed at 1850◦C. Squares =
100 minutes, circles = 1000 minutes.
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the aluminate phase with stoichiometrically the largest amount of the addi-
tive, and the additive itself. That is, with Y2O3 as the additive, the three-phase
field corresponds to AlN, Y2A, and Y; or it could correspond to the exis-
tence of AlN, YN, and Y (Y2O3). Beyond the maximum, a further increase in
the additive merely increases the amount of the oxide phases, without causing
further purification of the AlN lattice.

The dependence of κ on the volume fraction of secondary phases can be
readily described in terms of rules of mixtures. Numerous phenomenologi-
cal models have been described in the literature, which include simple series
and parallel models, as well as models that take into account dispersion of one
phase into another [14], [15], [16]. Several articles have discussed this at length;
it will not be discussed further in this chapter. Also, from a practical stand-
point, AlN-containing materials beyond the maximum are of little interest.

Figure 5.5 also shows thermal conductivity as a function of the volume frac-
tion of oxide phases for two different thermal treatments: (1) Sinter/annealed
at 1850◦C for 100 minutes; and (2) sinter/annealed at 1850◦C for 1000
minutes. An important point to note is that for small volume fractions of
the oxide phases, the thermal conductivity of samples sinter/annealed for
1000 minutes is considerably greater than that for samples sinter/annealed
for 100 minutes. Figure 5.6 shows thermal conductivity as a function of

Fig. 5.6. Thermal conductivity as a function of sinter/annealing time for samples
of AlN containing various rare earth oxides (Ln2O3): Y2O3 (squares), Er2O3 (circles)
and Pr2O3 (or Pr6O11) (rhombus). The amount of Ln2O3 added was such that the
molar ratio of Ln2O3 to Al2O3 (as determined by chemical analysis of the starting
powder) was one.
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sinter/annealing time at 1850◦C for samples containing Y2O3, Er2O3, or
Pr2O3 (Pr6O11). The amount of the rare earth oxide added was in an equimo-
lar proportion to the actual Al2O3 present in the powder, as determined by
chemical analysis. Densification in these systems is known to occur by liquid
phase sintering, which is essentially complete within a few (<10) minutes at
temperature. Thus, most of the time is spent in annealing the samples. Based
on thermal conductivity measurements, it is evident that significant changes
must be occurring beyond the original densification stage. These changes are
at both the submicrostructural level and the microstructural level.

At the submicrostructural level, the main change that occurs is the removal
of oxygen (more accurately Al2O3) from within the AlN grains to the grain
boundaries, where the oxide additive forms a liquid phase with surface Al2O3
present. The removal of dissolved oxygen (more precisely Al2O3) can in prin-
ciple be achieved by either a dissolution-reprecipitation process comprising
dissolution of the original impure (oxygen-rich) AlN grains and reprecipita-
tion of pure AlN grains or by solid-state diffusion of oxygen (that of dissolved
Al2O3) from within the grains to the grain boundaries. While dissolution-
reprecipitation is a possible mechanism (that can occur in parallel), we do not
discuss it further as little relevant data are currently available to make even
a semiquantitative estimate. This mechanism is nevertheless most certainly
operative, at least during the subsequent annealing stage, as will be discussed
shortly. For now, we will restrict our discussion to the removal of oxygen
(Al2O3) by solid-state diffusion from within the grains to the grain bound-
aries. As the activity of Al2O3, aAl2O3 , at the grain boundaries is very low (due
to the presence of the additive or additive-rich aluminates), there is a thermo-
dynamic driving force for the removal of Al2O3 from within the AlN grains
to grain boundaries. Because the concentration of dissolved Al2O3 is rather
small, the use of simple Fick’s laws is reasonable. Diffusion of Al2O3 in AlN
is expected to occur in such a way that Al diffuses on the Al-sublattice while
O diffuses on the N-sublattice. Virkar and coworkers have analyzed the data
on the thermal conductivity of AlN as a function of annealing time assuming
diffusion as the dominating kinetic process [13]. A convenient method of study-
ing the kinetics of oxygen removal is to measure the thermal conductivity at
room temperature as a function of time of annealing at the sinter/annealing
temperature. The kinetics of conductivity (measured at room temperature)
change with time (at the sinter/annealing temperature) can be adequately
described by an Avrami-type equation as follows

X(t) =
κ(t) − κ(0)
κ(∞) − κ(0)

= 1 − exp
[
−
(

t

τ

)m]
, (5.15)

where κ(0) is the initial thermal conductivity immediately after the sintering
stage, κ(∞) is the thermal conductivity after long-term annealing (a stable
value), κ(t) is the thermal conductivity after annealing for time t, τ is the
requisite time constant for the underlying kinetic process, and X(t) is the
normalized conductivity function, which is a measure of the extent to which
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purification has occurred. The range of X(t) is from 0 to 1. The time constant
for the process, τ , is related to the grain size, d, and the chemical diffusion
coefficient (of Al2O3 in AlN), D̃, by an equation of the type

τ ≈ a
d2

D̃
, (5.16)

where a is a positive constant, on the order of unity. The experimental data
at 1850◦C can be adequately described by Eq. (5.15) with a τ on the order
of 100 minutes assuming a grain size of ∼5 microns. This corresponds to a D̃
of about 10−11 cm2/s. No information is available on the diffusion of Al2O3
in AlN. However, given the fact that diffusion is notoriously sluggish in these
covalently bonded materials and the fact that when Al2O3 is dissolved in AlN,
transport on the N-sublattice is further suppressed and dictates the overall
diffusion of Al2O3 (which is the chemical diffusion coefficient of Al2O3) in
AlN (assuming diffusion to occur by a vacancy mechanism). The preceding
value of D̃ is only approximate as many other processes occur simultaneously,
such as grain growth and dissolution-reprecipitation. Thus, the measured time
constant, τ , embodies many phenomena in addition to diffusion, and at the
present time there appears to be no simple way of separating one from the
other.

5.3.4 Long-Term Annealing and Microstructural Changes

Many significant and important changes occur during the sinter/annealing
processes, which have a profound effect on the thermal conductivity of sintered
polycrystalline AlN with oxide additives. From the standpoint of sintering,
the most significant aspect is the formation of a liquid phase, which facilitates
densification. It is well known that in most liquid-phase sintered materials,
densification occurs rapidly—within minutes, or even seconds. AlN is no ex-
ception to this general observation. Rapid densification requires that the liquid
phase completely wet the grains of the host material, here AlN, for full den-
sification to occur. Thus, one concludes that at least in the initial stages, the
oxide-rich phase must wet AlN grains. The typical volume fraction of the ox-
ide phase in a sintered sample with κ on the order of 180 W/mK is about
0.1. The oxide phase has a κ of about 5 W/mK. If the oxide phase were to
continue to completely wet AlN grains after processing is complete, the per-
tinent thermal conductivity model for the two-phase materials would be the
series model (because the high-thermal-conductivity AlN grains would then
be isolated from each other, surrounded by the oxide phase), given by

1
κ

=
1 − Vv

κo
AlN

+
Vv

κoxide
, (5.17)

where κo
AlN is the thermal conductivity of pure AlN (∼320 W/mK) and Vv is

the volume fraction of the oxide phase. For these values, the estimated κ is
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∼44 W/mK, which is much lower than the observed value. This clearly implies
that the oxide phase does not completely coat AlN grains after sintering is
nearly complete and during the subsequent annealing stage, and thus it also
does not completely coat AlN grains in the final material cooled to room
temperature. The other extreme limit is the parallel model, in which both
phases form a completely contiguous network with a high degree of intraphase
contiguity. According to this model, the thermal conductivity is given by

κ = (1 − Vv)κo
AlN + Vvκoxide. (5.18)

The estimated κ according to the parallel model is ∼288 W/mK. The ex-
perimentally measured value is on the order of 180 W/mK, showing that it
lies between the two extreme limits. As stated earlier, there are numerous
phenomenological equations, the results of which lie between these two limits
[14], [15], [16].

From the standpoint of this discussion, the most significant point is that
the thermal conductivity of samples even after a rather short sinter/annealing
time is much greater than can be described by the series model, which implies
that the grain boundary oxide phase must undergo dewetting soon after the
sintering stage is complete. Indeed, it has been observed using transmission
electron microscopy (TEM) that the oxide phase does not completely wet
the grain boundaries even after sintering for a very short time (1 minute).
(In most sintering operations, the actual time a sample spends at elevated
temperatures may be greater by several minutes due to the thermal inertia
of the furnace.) Figure 5.7 shows a TEM micrograph of a sample containing

Fig. 5.7. Transmission electron micrographs (TEM) showing convex-shaped alu-
minate particles along boundaries of AlN grains. The dihedral angle is greater than
72.54◦.
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4.9 wt% Y2O3 sintered for 1 minute (hold time at temperature) at 1850◦C. It
is readily seen that the second phase does not completely coat AlN grains but
exists as isolated particles. What is even more significant is that the secondary
oxide phase along three-grain junctions exhibits a convex surface, indicating
that the dihedral angle is greater than 60◦. Measurements have shown that
in fact the dihedral angle is greater than 72.54◦, the latter value being the
included angle between the intersecting faces of a regular tetrahedron. The
significance of this statement is as follows. In a polycrystalline material with
an equiaxed grain structure, the grain shape is usually a regular tetrakaidec-
ahedron (a regular polyhedron with fourteen sides, which can be created by
cutting cube corners along {111} type faces). Four such grains meet at a cor-
ner, where the four three-grain edges meet. These four three-grain edges are
equivalent to joining the center of a regular tetrahedron to the four corners.
A second phase precipitate at a four-grain junction (corner) exists in the form
of a tetrahedron. If the dihedral angle is less than 72.54◦, the faces of the
second-phase tetrahedron are concave outward, and if the dihedral angle is
greater than 72.54◦, the faces of the tetrahedron are convex outward. If the
dihedral angle is thus greater than 72.54◦, the second phase will always exhibit
positive curvature inside the polycrystalline body and thus would have greater
chemical potential inside the polycrystalline material than if it existed as a
(nearly) flat bulky particle completely out of the polycrystalline material. In
such a case, the second phase is thermodynamically unstable in the polycrys-
talline body—and given enough time at temperatures high enough for kinetics
to be fast enough, it will have a tendency to migrate to the surface of the body.

The observation that the dihedral angle is greater than 72.54◦ has profound
implications from the standpoint of processing of high-thermal-conductivity
AlN ceramics. This is because it suggests the possibility that the oxide volume
fraction of a sintered AlN polycrystalline material can in principle be reduced
by simply annealing for a long enough time that the second phase migrates
to the surface. This indeed has been observed in samples annealed for long
periods of time. Figure 5.8(a) shows the near surface regions of a sample of
AlN with 4.9 wt% Y2O3 added that was sinter/annealed at 1850◦C for more
than 3000 minutes. The light region is the yttrium-aluminate phase, which has
migrated from the interior of the same sample to the surface. Figure 5.8(b)
shows the interior of the sample. As is clearly seen, the volume fraction of the
aluminate phase is very small in the interior, as most of it has migrated to
the surface. The process of migration may occur by solid-state diffusion or by
dissolution-reprecipitation. Regardless of the actual mechanism involved, it is
clear that the thermodynamic driving force for its expulsion from the bulk
is related to surface energy (wetting characteristics) considerations. Another
important point requiring emphasis is that regardless of whether the second
phase is liquid or solid, the kinetics of expulsion are expected to be limited
by rearrangement of the bulk AlN grains and thus is expected to be sluggish.
Further, because transport involves macroscopic distances, the thicker the
sample, the greater the time required for migration to the surface.
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Fig. 5.8. Scanning electron micrographs (SEM) of AlN-4.9 wt% Y2O3 sin-
ter/annealed at 1850◦C for more than 3000 minutes: (a) edge of the sample showing
migration of the aluminate phase toward the surface; (b) interior of the sample.

Migration of the oxide phase to the surface thus further improves the
thermal conductivity of AlN, because the volume fraction of the low-thermal-
conductivity oxide phase is effectively lowered in the bulk. To ensure that
the thermal conductivity of the entire sample is enhanced, it is necessary
that the oxide phase migrated to the surface must be somehow removed.
It is known that at the elevated temperatures required for the processing
of AlN under certain conditions, evaporation of the oxide phase from the
surface can be facilitated. This can be achieved by suitably adjusting the
atmosphere. Another option consists of simply grinding away the surface layer
after the material has been cooled to room temperature, which is readily done
for components of simple shapes.

5.4 Summary

High-purity aluminum nitride, AlN, is an excellent electrical insulator and
an intrinsically high-thermal-conductivity material, with κ greater than
270 W/mK at room temperature, and has potential applications in the micro-
electronics industry, as well as a heat sink in many other applications. The
dominant contribution to thermal conduction in AlN is due to phonons. AlN
usually contains a small amount of oxygen in the form of Al2O3 dissolved
in its lattice. The presence of dissolved Al2O3 has a detrimental effect on
the thermal conductivity of AlN, because dissolved Al2O3 creates aluminum
vacancies, VAl, which scatter phonons and effectively lower its thermal con-
ductivity. To realize high thermal conductivity, it is necessary that the oxygen
concentration from the AlN lattice is reduced to as low a value as possible.
AlN is also a highly refractory material with covalent bonding, which makes
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densification by solid-state sintering difficult, if not impossible. Dense samples
containing AlN can be made by introducing a small amount of rare earth or
alkaline earth oxide into AlN powder, forming a powder compact, and heating
to a high temperature (∼1850◦C) in a reducing atmosphere. Introduction of
the oxides not only facilitates sintering by a liquid-phase mechanism, but also
serves to purify the AlN lattice by scavenging Al2O3 in the form of alumi-
nates. The kinetics of sintering is generally very rapid due to the presence
of a liquid phase. The ability of a given oxide additive to scavenge Al2O3
depends on the free energy of formation of respective aluminates. The more
stable the aluminate relative to the individual oxides, the lower the equi-
librium activity of Al2O3 dissolved in AlN, the greater the degree to which
AlN can be purified, and the higher the thermal conductivity. Experimental
work shows that thermodynamics and phase equilibria determine the degree
to which purification of the AlN lattice can be achieved. After the densifica-
tion of AlN by liquid-phase sintering is complete, continued annealing leads
to further improvement in thermal conductivity, which arises due to two phe-
nomena. The first is the removal of Al2O3 from within the grains to grain
boundaries in the form of aluminates, which can occur by solid-state diffusion
or dissolution-reprecipitation or both. The second phenomenon is the removal
of the aluminates to the surface of the sample, which can also occur by solid-
state diffusion or dissolution-reprecipitation or both. The driving force for the
expulsion of the second phase to the surface of the sample is related to surface
energy considerations, because the second phase dewets, as evidenced by the
observation that the dihedral angle is greater than 72.54◦. Fabrication of high-
thermal-conductivity AlN ceramics starting with an impure AlN powder is an
excellent textbook example wherein basic concepts in solid-state physics, such
as lattice conduction of thermal energy, basic concepts in thermodynamics and
kinetics of condensed phases, and traditional methods of ceramic processing,
can be put to use.
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6

High-Thermal-Conductivity SiC and
Applications

J.S. Goela, N.E. Brese, L.E. Burns, and M.A. Pickering

6.1 Introduction

Although it does not occur in nature and was first synthesized a little more
than a century ago, silicon carbide is one of the most important industrial
ceramic materials, with consumption greater than one million tons per year.
Discovered by Pennsylvanian Edward Acheson in 1891 and patented shortly
thereafter [1], silicon carbide justified a premium price (more than $800/lb)
due to its unique abrasive character. The availability of inexpensive hydro-
electric power in Niagara Falls led Acheson to set up his Carborundum facility
in the vicinity. Slight modifications of the original process are used today to
generate hexagonal forms of SiC from the high-temperature reaction of quartz
sand and petroleum coke [SiO2 + 3C → SiC + 2CO]. Silicon carbide played a
key role in the industrial revolution and is still widely used as an abrasive and
as a steel additive, refractory, and structural ceramic. An excellent review is
available in [2].

Silicon carbide crystallizes in a close-packed structure of covalently bonded
silicon and carbon atoms. These atoms are arranged so that two primary
coordination tetrahedra, SiC4 and CSi4, where four carbon or silicon atoms
are bonded to a central Si or C atom, are formed [3]. These tetrahedra are
linked together through their corners and stacked to form polar structures
called polytypes, which are alike in the two dimensions of the closed packed
plane but differ in the stacking sequence in the dimension perpendicular to
these planes. The stacking sequence in SiC can be described by an ABC
notation. In a cubic, 3C, or β-SiC, a sequence of three planes or the ABC
stacking (. . .ABCABC . . .) is repeated to form a zinc-blend structure whereas
in a simple hexagonal 2H-SiC, a sequence of two planes (. . .ABAB . . .) is
repeated. In addition, more than 100 polytypes of SiC exist that contain
more complex stacking arrangements derived from these two forms. All these
noncubic forms of SiC are known as α-SiC.

Silicon carbide (SiC) is a good material for high-heat-flux applications due
to its many attractive properties, such as high thermal conductivity, which
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is exceeded only by diamond, low values of density and thermal expansion
coefficient, and high values of hardness, elastic modules, flexural strength,
and thermal shock resistance. Further, SiC is a wide-band-gap material
(band gap = 2.2–2.86 eV) with good transmission in the wavelength region
0.5–6 µm, so it can also be used as windows and domes for high-speed aircraft
and missiles.

The properties of SiC depend considerably on the specific method used
to produce it. Four basic types of SiC are currently available: hot pressed
or sintered, siliconized or reaction bonded, single crystal and chemical vapor
deposited (CVD). In the hot-pressed process [4], [5], SiC powders are mixed
with suitable sintering aids and grain growth inhibitors and are consolidated
at high temperature and pressure to form near 100% dense SiC parts of
relatively simple shapes. Use of hot isostatic pressing allows fabrication of
small components of intricate shapes. Although this technique provides good
mechanical properties, the resulting SiC does not provide high values of other
properties such as thermal conductivity, optical transmission, or high surface
quality. Further, reliable bonding techniques are required to fabricate large
and complex-shaped parts.

The reaction-bonded SiC (RB-SiC) is a two-phase material consisting of
SiC and 10–40% of Si [4], [5[, [6]. First, a SiC porous body is formed by
casting an alpha SiC slurry and then this body is infiltrated with Si to fill
the pores and yield a near 100% dense material. Thus the properties of this
material are primarily determined by the Si content. This method permits
fabrication and in-process repair of parts such as lightweight structures for
space mirrors. However, due to the presence of particles of different thermal
conductivity, refractive index, and hardness, this material does not provide
very high thermal conductivity, it is not useful for transmissive optics applica-
tions, and it cannot be polished to a high degree of surface figure and finish.
The last drawback is usually overcome by overcoating this material with a
layer of CVD-SiC, Si or any other suitable material.

Single-crystal SiC (undoped) can provide good thermal, optical, and phys-
ical properties of interest for high-thermal-conductivity applications [7], [8].
However, single-crystal SiC is expensive, difficult to produce in large sizes,
and susceptible to fracture along the cleavage planes. The hexagonal form of
single-crystal SiC (α-SiC) has been produced in small sizes for semiconductor
applications using sublimation and is currently available commercially. The
single-crystal β-SiC, which is cubic and isotropic, is not readily available.

Chemical-vapor-deposited SiC is a superior material for high-thermal-
conductivity applications [9], [10], [11], [12], [13], [14], [15], [16]. By varying
the process parameters, the same CVD method can produce high-thermal-
conductivity SiC with other properties such as electrical resistivity or optical
transmission optimized for a variety of applications. CVD-SiC is a theoretically
dense, highly pure, polycrystalline material, which is free from voids and
microcracks. The CVD process permits use of near-net shape and preci-
sion replication technologies to fabricate components, which require minimal
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Table 6.1. Comparison of important properties of different forms of SiC.

Material Density Thermal CTE Elastic Polishability
(gcm−3) Conductivity 20–1000◦C Modulus (Å RMS)

(Wm−1K−1) (K−1 × 10−6) (GPa)

CVD-SiC 3.21 300–390 4.0 466 ≤3
Single-crystal SiC 3.21 300–490 — — ≤3
Reaction-bonded

SiC 3.1 120–170 4.3 391 ≥20
Hot-pressed SiC 3.2 50–120 4.6 451 ≥50

postdeposition fabrication and polishing. Further, the CVD process is scalable.
Monolithic 0.5-m-diameter or 1.0-m-long and 25-mm-thick parts have been
successfully produced. This process can be further scaled to yield multimeter-
size parts. Large-scale capability reduces cost and makes CVD-SiC com-
ponents cost-effective in comparison to other competing materials. Finally,
the CVD process is reproducible. This reproducibility has been demon-
strated statistically by plotting important properties of CVD-SiC on statistical
quality-control charts. A consequence of reproducibility and homogeneity of
CVD-SiC is that a fabrication process can be developed to yield parts of
consistent quality and finish from batch to batch.

Table 6.1 shows a comparison of important properties of different forms
of SiC. We see that CVD-SiC has properties superior to all other forms of
SiC except the single-crystal SiC, which is not readily available in bulk form.
Specifically, CVD-SiC has substantial advantage in terms of thermal conduc-
tivity and polishability in comparison to hot-pressed and RB-SiC.

We present CVD β-SiC process and property data relevant for high-
thermal-conductivity applications. Discussion has been limited to bulk
CVD-SiC, and no attempt has been made to include applications of CVD-SiC
coatings. In Section 6.2, the process conditions used to produce high-thermal-
conductivity SiC are presented. Many applications may require not only high
thermal conductivity but also optimum values of other properties such as flex-
ural strength, optical transmission, electrical resistivity, and chemical purity.
Consequently, important physical, thermal, mechanical, optical, and electri-
cal properties of CVD-SiC are provided in Section 6.3. The high-thermal-
conductivity applications of CVD-SiC are discussed in Section 6.4. Finally, a
summary and conclusions are presented in Section 6.5.

6.2 CVD-SiC Process

The CVD process can be used to produce two different types of SiC—opaque
and transparent. Many properties of these two forms of SiC are the same. The
main difference is in the visible-infrared transmission. The transparent SiC has
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high transmission in the 0.5–6µm region whereas the opaque material exhibits
substantial scattering, which makes it unsuitable for those applications that
require both high thermal conductivity and high transmission. Although thin
samples (<0.1 mm thick) of the opaque SiC appear transparent, most trans-
mission applications, such as windows for high-speed missiles and aircraft,
require material of reasonable thickness (>1 mm). Silicon carbide has many
applications where its transmission properties are not required and because
transparent SiC is more difficult to produce, most of the CVD process devel-
opment efforts to date have been concentrated on the opaque SiC.

Several different silicon and carbon sources have been used to produce
SiC in a CVD chamber. These sources include different silanes, such as SiH4,
SiCl4, and SiHCl3 for Si; different hydrocarbons such as CH4, C3H8, and
C5H12 for carbon; and carbosilanes, such as CH3SiCl3, (CH3)2SiCl for both
Si and carbon. Good discussions of the CVD-SiC process are provided in
References [3], [14], [15], and [16]. Many studies have been performed on the
pyrolysis of methyltrichlorosilane [17], [18], [19], [20], [21], [22].

In comparison, very few studies were performed to produce good-quality
transparent β-SiC. Single-crystal [23] or thin-film epitaxial growth techniques
[24], [25], [26] yielded good-quality β-SiC, but the size or thickness of the
material produced was quite small. Postdeposition annealing of CVD β-SiC
[27] had the potential to produce large areas of SiC, but the best value of the
attenuation coefficient obtained at 3 µm was about 11 cm−1, which is too large
for high-speed missile applications. Other efforts that used CVD techniques
[17], [28] and were focused specifically on improving optical transmission of
β-SiC also met with limited success. Weiss and Diefendorf [17] obtained small
pieces of translucent SiC (attenuation coefficient = 6 cm−1 at 0.6328 µm) by
flowing reagents in a small slot at high speed, but when the same reagents
were made to flow in a larger-area box, opaque SiC was produced. Chu and
Han [28] correlated the SiC deposit morphology to infrared transmission, but
they did not report specific values for the attenuation coefficient.

Opaque and transparent SiC have been produced at Rohm and Haas
Advanced Materials under different process conditions described elsewhere
[13], [14], [29]. The opaque SiC is currently available commercially under the
trade name CVD SILICON CARBIDE�. Rohm and Haas has done limited
research in producing transparent SiC [30], [31], [32], [33], [34]. This research
led to preparation of higher-transmission SiC in the visible and infrared re-
gions. To date, small samples 30 cm2 × 1.5 mm-thick have been produced [30],
[31], [32], [33], [34], [35], [36]. Additional work is required to scale the process
to make it useful for many optical applications.

Figure 6.1 shows a schematic of the top and front views of the CVD-SiC
deposition chamber [29]. It consists of a water-cooled stainless-steel chamber
with graphite heating elements. The SiC deposition area consists of inside
walls of an open deposition box. The flow of reagents is from top to bottom,
although other flow directions are also possible. The carbon- and silicon-
containing gas mixture reacts on the mandrel surface to produce SiC by the
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Fig. 6.1. Schematic illustration of the SiC deposition setup showing top and front
views.

heterogeneous reaction. Figure 6.2 shows a picture of the CVD-SiC furnace.
Using this furnace we have been able to prodice SiC parts in the meter-size
range.

CVD-SiC is produced in large sheets. These sheets are cut into various
sizes, and these parts are individually fabricated to the required specifica-
tions. Near-net-shape and precision-replicated parts also can be produced in
the CVD process. To accomplish that, the mandrels are placed perpendicular
to the flow, so that the flow impinges on them [37]. This configuration provides
a more uniform SiC deposit. The thickness uniformity is further improved by
rotating the mandrels at 1–2 rpm and distributing several injectors appropri-
ately in the radial and azimuthal direction [38], [39], [40]. This arrangement
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Fig. 6.2. A picture of CVD-SiC deposition chamber used to produce silicon carbide.

provides thickness uniformity of a few percent azimuthally and about 10% in
the radial direction on 1-m-diameter parts.

An important concern in ceramics materials is the reproducibility of the
production process to yield identical material properties from batch to batch.
This process reproducibility was investigated by plotting several material
properties, such as chemical purity, hardness, fracture toughness, flexural
strength, grain size, thermal conductivity, and thermal expansion coefficient,
on statistical quality-control charts. The analysis of these charts indicated
that CVD-SiC process is highly reproducible [41].

As an example of process reproducibility, Fig. 6.3 shows the average ther-
mal conductivity of CVD-SiC for thirty-eight different lots. For each lot, seven
samples were taken from different locations of the furnace and measurements
were performed by the laser flash technique at Holometrix, Bedford, MA, and
also at Rohm and Haas Advanced Materials using Holometrix equipment.
Because SiC samples are translucent to laser radiation at 1.06µm, they were
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Fig. 6.3. The average thermal conductivity of CVD-SiC for 27 different lots.

made opaque by first applying a thin coating of gold by sputtering followed
with spraying a thin layer of carbon on the surface. From Fig. 6.3 we see that
the average thermal conductivity value is 306 ± 16 Wm−1K−1. Thus within
5%, the thermal conductivity results are reproducible in the CVD-SiC process.

6.3 Properties of CVD-SiC

CVD-SiC has been extensively characterized for important physical, mechani-
cal, optical, thermal, and electrical properties. Table 6.2 lists important prop-
erties of opaque and transparent SiC. From Table 6.2 we see that CVD-SiC
is a theoretically dense, void-free, highly pure, polycrystalline material with
high oxidation, thermal shock, abrasion, and corrosion resistance [42], [43]. In
addition, electrical resistivity has been tailored in the range of 0.01–1000 ohm-
cm by varying the SiC process conditions with minimal effect on the other
properties of CVD-SiC.

Table 6.3 shows the typical X-ray diffraction results for CVD-SiC. Also
shown are relative intensity values for a SiC powder sample. The transparent
SiC sample shows a very high preferred orientation along the <111> direction
whereas the opaque SiC is randomly oriented. This preferred orientation may
be the key to obtaining high transmission with high thermal conductivity in
SiC [33].

CVD-SiC is a highly pure material. The total trace element impurity in
CVD-SiC has been measured to be less than 5 parts per million by weight
(ppmw) by glow discharge mass spectroscopy at Shiva Technology, Inc.,
Cicero, NY. Table 6.4 lists the trace element impurity concentration for fif-
teen important elements. Most impurities are below the detection limit of this
method and fall in the fraction-of-parts-per-million range.
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Table 6.2. Important properties of CVD-SiC.

Property Average Value

Color Dark gray (opaque SiC)
Yellow (transparent SiC)

Crystal structure FCC polycrystalline, β-phase
Randomly oriented

(opaque SiC)
Highly oriented <111>

(transparent SiC)
Average grain size (µm) 5–10
Transmittance, 0.6–5.6 µm >40% (transparent SiC)

(0.5mm thick)
0% (opaque SiC)

Attenuation coefficient (cm−1)
@ 0.6328 µm 6.9 (transparent SiC)

>100 (opaque SiC)
3 µm 2.2 (transparent SiC)

>60 (opaque SiC)
Density (g cm−3) 3.21
Vickers hardness (1Kg load) 2540
Fracture toughness, KIC(MN m−1.5) 2.2 (transparent SiC)

3.1 (opaque SiC)
Elastic modulus, GPa 466
Flexural strength, MPa 470
Weibull parameters

Modulus, m 11.45
Scale factor, MPa 462

Trace element impurities (ppmw) <5

Thermal expansion coefficient (10−6 K−1)
@ 293K 2.2

Thermal conductivity (Wm−1K−1)
@ 27C 214 (transparent SiC)

300–390 (opaque SiC)
Heat capacity (Jkg−1K−1) 640
Electrical resistivity (ohm-cm) 4.5 × 104 (transparent SiC)

0.01–1000 (opaque SiC)
Dielectric constant (35–50GHz) 136
Dielectric loss (35–50GHz) 75
Loss tangent 0.55
Refractive index

@ 633 nm 2.635
1152 nm 2.576
1523 nm 2.566

Thermo-optic coefficient, dn/dT (10−6 K−1)
@ 2–4 µm 37
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Table 6.3. X-ray diffraction data for CVD-SiC.

2θ d-spacing Orientation Relative Intensity (%)
Values (Å)
(degrees) SiC Transparent Opaque

Powder SiC SiC
Pattern

35.7 2.51 <111> 100 100 100
41.3 2.18 <200> 20 0 8.1
59.9 1.54 <220> 35 0 29.8
71.7 1.32 <311> 25 0 27.2
75.4 1.26 <222> 5 5.32 6.2
89.9 1.09 <400> 5 0 2.7

100.7 1.00 <331> 10 0 7.0
104.3 0.98 <420> 5 0 2.2
119.8 0.89 <422> 5 0 6.4

Figure 6.4 shows the grain size and microstructure of CVD-SiC. Because
CVD-SiC is not readily attacked by acids and bases it is difficult to etch. Two
methods that have been successful in etching SiC involve using hot KOH and
fluorine plasma. In the former method, pure KOH pellets are heated to 900◦C
in a nickel crucible and the SiC sample is etched in the molten KOH for up
to 10 minutes. In the latter method, the sample is first etched in an argon
plasma for 5 minutes followed by etching in a CF4 + 4% O2 plasma for one
hour. The plasma power used was 300 watts, frequency 13–56 MHz, and the

Table 6.4. Trace element impurity concentration
as determined by gas discharge mass spectroscopy.

Element Concentration (ppmwt)

Li <0.001
B 0.41
S 0.03
Na <0.01
Cl <0.05
Ni 0.11
Co <0.005
Cu <0.05
Fe 0.12
Al <0.01
Cr <0.1
W <0.01
Mo <0.05
Ti <0.005
Mn <0.01
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Fig. 6.4. Grain size and microstructure in CVD-SiC (a) grain structure, KOH etch-
ing, Sample 1; (b) microstructure (cross-section), KOH etching, Sample 1; (c) grain
structure, plasma etching, Sample 2; (d) microstructure (cross section), plasma etch-
ing, Sample 2.

gas pressure was 350 torr. Microstructure parallel and perpendicular to the
growth direction from both these methods are compared in Figs. 6.4 (a)–(d).
We see that KOH etching provides clearer pictures of the grain structure.
The plasma etching process does not etch the SiC surface uniformly, so only
a few grains are visible. However, it does show crystallite defects as well as
the columnar structure characteristic of the CVD process. SiC microstructure
shows the presence of a few large grains and many small grains. The average
grain size falls in the range of 5 to 10 microns. The cross section shows growth
columns that have low angle deviation from the growth direction.

Transmission electron microscope images of opaque and transparent SiC
samples are shown in Fig. 6.5. In a transparent SiC sample (Fig. 6.5(a)), the
grains contained a low density of dislocations. Grains were about 5 to 10
microns and were almost always found to have one of their <111> direction
perpendicular to the deposition surface within a few degrees [33]. In many
cases, the preferred orientation was nearly “perfect” in several abutting grains.
In comparison, the opaque SiC sample contained many grains and growth
defects (see Fig. 6.5(b)).

The CVD-SiC samples were fractured perpendicular to the deposition sur-
face (cross section), and the fracture patterns were examined by scanning
electron microscope. Figure 6.6 shows the results. The transparent sample
exhibited a highly oriented columnar structure with a deviation of only a few
degrees (Fig. 6.6(a)) whereas the opaque samples did not show much preferred
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Fig. 6.5. Transmission electron microscope pictures of transparent and opaque
CVD-SiC: (a) transparent SiC, (b) opaque SiC (from [33]).

orientation (Fig. 6.6(b)). These results are in accord with the X-ray diffraction
data discussed earlier.

6.3.1 Thermal Properties

In this section we discuss three thermal properties—thermal conductivity, spe-
cific heat, and thermal expansion coefficient—and their variation with temper-
ature. Also discussed is the thermal shock resistance of SiC, which is required
in many high-thermal-conductivity applications.

6.3.1.1 Thermal Conductivity and Specific Heat. Thermal conductivity is
the product of thermal diffusivity, density, and specific heat of the material.
To obtain thermal conductivity as a function of temperature, thermal diffu-
sivity and specific heat were measured as a function of temperature at Purdue
University, Lafayette, IN, and then, from these data, thermal conductivity was
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Fig. 6.6. Scanning electron microscope pictures of fracture pattern of transparent
and opaque SiC: (a) transparent SiC, (b) opaque SiC (from [33]).

calculated using the density value at room temperature (d = 3.207 g cm−3).
Figure 6.7(a) shows the specific heat of CVD-SiC as a function of tempera-
ture in the temperature range −150◦C to 1800◦C. The specific heat values
were measured using Netzsch differential scanning calorimeter up to 1200◦C.
Values at and above 1400◦C were extrapolated. These specific heat values are
typical of polycrystalline SiC.

Figure 6.7(b) shows the thermal conductivity of CVD-SiC as a function of
temperature in the range of −150◦C to 1800◦C for two samples, which were
taken from two different areas of the furnace. At −150◦C and 1800◦C, the
thermal diffusivity values were not measured but extrapolated. Both sam-
ples in Fig. 6.7(b) show essentially the same thermal conductivity values
indicating that CVD-SiC is homogeneous. Further, the thermal conductivity
peaks at 485 Wm−1K−1 near 173 K and the curve shows a T−1 dependence
above 200◦C.
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Fig. 6.7. Specific heat and thermal conductivity as a function of temperature:
(a) specific heat, (b) thermal conductivity for two samples of CVD-SiC taken from
two different areas of the SiC furnace.

The polycrystalline SiC produced by CVD under optimum conditions has
exhibited very high-thermal-conductivity values, 300–374 Wm−1K−1 at room
temperature [29]. These values are comparable to the best values that metals
have exhibited (e.g., copper is 390 Wm−1K−1) and are exceeded only by dia-
mond. Silicon-carbide conductivity depends on CVD process conditions such
as substrate temperature, furnace pressure, and flow rates of reagents.

The mean value of thermal conductivity for 78 production runs came out
to about 300 Wm−1K−1 with a range of about 374–120 Wm−1K−1 [29]. The
conductivity values less than 200 Wm−1K−1 are usually obtained from sam-
ples taken from near the plate edges where the flow is stagnant. Higher
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conductivity values are produced at those locations in the reactor where
optimum process conditions exist.

The variation of thermal conductivity along the growth direction in
CVD-SiC is shown in Fig. 6.8. A SiC sample about 25 mm thick was taken
and sliced into seven samples, each 2 mm thick. The conductivity was mea-
sured along the growth direction using a laser flash technique, and the data
are shown in Fig. 6.8. We see that the thermal conductivity for all samples fall
into a narrow range between 327 and 363 Wm−1K−1. Thus the conductivity
variation is only ±5% around the mean value, 345 Wm−1K−1. This variabil-
ity is much less than the variability observed in other CVD materials, such as
diamond.

Variations across columnar grains are also interesting. The thermal con-
ductivity has a higher value perpendicular to the deposition surface (i.e., along
the columnar grains) than parallel to it. This is typical of CVD materials
because in the latter case the transport of heat is affected by the pres-
ence of grain boundaries. The conductivity difference in the two directions
is about 15%.

The phonon mean free path in SiC is on the order of tens of nanometers.
Consequently, the thermal conductivity of CVD-SiC can be affected by crystal
imperfections such as stacking faults. In order to assess this effect, we analyzed
X-ray diffraction scans of CVD-SiC. Typically the X-ray diffraction patterns
collected from cubic β-SiC (a = 4.35 Å) are expected to have sharp diffraction
(Bragg) peaks at the following locations in 2θ, if using Cu Kα radiation:
35.8◦ {111} and 41.5◦ {200}. Stacking fault features appear as broad features,
several degrees in width, near their Bragg counterparts [44], [45], [46].

Fig. 6.8. Variation of CVD-SiC thermal conductivity along the thickness (growth
direction).
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To monitor the stacking faults in CVD-SiC, we sum the total diffrac-
tion intensity from 32◦ to 48◦ and subtract the baseline and the intensity
attributable to the Bragg diffraction (35.5◦ to 36◦ and 41.25◦ to 41.75◦).
The ratio of the remaining intensity to the total intensity is a measure of
the amount of irregularity in the crystalline order. Twenty-eight samples were
taken from different SiC production runs and the X-ray intensities attributable
to stacking faults were determined for each sample and plotted as shown in
Fig. 6.9. The thermal resistance (inverse thermal conductivity) is observed to
vary roughly linearly with the stacking fault density, as would be expected if
the added thermal resistance is due to the presence of stacking faults. We also
note that the thermal resistivity extrapolated to zero stacking fault density
corresponds to a thermal conductivity of 500 W/mK, in agreement with the
value for single-crystal SiC.

It has been shown previously that increasing the deposition temperature in
the CVD-SiC process increases the material’s thermal conductivity [47]. This
effect may be due to a reduction in stacking faults in the CVD-SiC rather than
an increase in grain size or it may be attributable to a combination of the two.

6.3.1.2 Thermal Expansion Coefficient. Figure 6.10 shows the thermal expan-
sion coefficient (CTE) of CVD-SiC as a function of temperature in the range of

Fig. 6.9. Thermal resistivity (inverse thermal conductivity) as a function of the
stacking fault density. To calculate the stacking fault contribution, we summed the
area from 32 to 48 degrees two theta (Cu Ka), subtracted the baseline (average of
30–2 and 55–6◦), then subtracted the Bragg peak areas (35.5–36.0 and 41.25–41.75),
and finally normalized stacking fault area to total area.
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133 K to 1273 K. These measurements were made using a differential dilatome-
ter supplied by Theta Industries, Inc. We see that CTE decreases rapidly at
low temperatures and remains relatively constant at high temperature. This
behavior is typical of crystalline materials such as CVD-SiC.

6.3.1.3 Thermal Shock Resistance. Many high-thermal-conductivity appli-
cations where high heat loads are present require that the material exhibits
good resistance to thermal shock. The thermal shock parameter, R, is defined
as σκ (1 − ν)/αE, where σ is the flexural strength, κ is the thermal conduc-
tivity, ν is the Poisson ratio, α is the thermal expansion coefficient, and E is
the elastic modulus. This parameter provides a relative indication of thermal
shock resistance of materials when the Biot number, hL/κ ≤ 1 [48]. Here h
is the heat transfer coefficient and L is the characteristic dimension, which
could be the thickness of the window or dome. Table 6.5 compares the thermal
shock parameter of CVD-SiC with that of several competing materials [48],
[49]. We see that CVD-SiC provides a thermal shock parameter value that is
significantly greater than those of all other materials, except CVD diamond.
However, diamond is a relatively expensive material and is difficult to polish
and obtain in large sizes. Further CVD diamond grown in thick layers exhibits
growth in grain size with increasing thickness that result in considerable
thermal conductivity variation along the thickness of the material. Overall,
CVD-SiC is a preferred material for high thermal shock resistance.

6.3.2 Mechanical Properties

In this section we discuss two mechanical properties—flexural strength and
elastic modulus—and their variation with temperature.

Table 6.5. Comparison of thermal shock resistance of some important optical
materials.

Material Flexural Elastic Poisson Thermal CTE Thermal
Strength Modulus Ratio Conductivity α Shock
σ (MPa) E (GPa) ν κ (Wm−1K−1) (10−6 K−1) Parameter

R

CVD-SiC 420 466 0.21 300 2.2 97
Sapphire 400 380 0.27 24 8.8 2.1
Spinel 160–190 190 0.26 14.6 8.0 1.2–1.39
ALON 300 315 0.24 12.6 7.8 1.02
Yttria 116 164 0.3 14 7.1 0.94
MgF2 100 115 0.3 16 11.0 0.89
CVD 160–400 1140 0.069 ≤2300 0.8 ≤939

diamond
GaP 100 103 0.31 97 6 10.8
GaAs 60 86 0.31 53 6 4.3
CVD-ZnS 103 75 0.29 16.7 7 2.3
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Figure 6.11 shows the flexural strength and elastic modulus as a function of
temperature. The flexural strength measurements were made at the University
of Dayton Research Institute in the temperature range of 79 K to 1723 K using
an Instron machine. For these data, all the beams were prepared with a surface
finish of ∼0.5 µm RMS. The solid line is a least square linear regression fit to
the data points. Error bars represent standard deviation in the measured data.
We see that CVD-SiC strength increases with temperature (Fig. 6.11(a)). This
effect has been observed previously for CVD-SiC and is attributed to a small
plastic deformation that occurs at crack tips at higher temperatures.

The elastic modulus was measured at the University of Dayton Research
Institute using a Grindo Sonic, MK3 (J.W. Lemmens Co). From Fig. 6.11(b)
we see that the sonic modulus decreases by only 10% when the temperature
increases from room temperature to 1500◦C.

Because SiC is a brittle ceramic material, it is susceptible to the flaw-
induced fracture. The flaw size, Cf in a brittle material is given by the for-
mula [14]:

Cf = 0.79(K1C/σ)2, (6.1)

where K1C is the fracture toughness and σ is the strength of the SiC part.
Because the fracture toughness of the material is a constant, the strength
of the part depends on the size of the flaw in the material, which in turn
depends on the volume of the material used in the part. Thus the larger
the part, the higher the probability of finding a larger flaw. For SiC with
K1C = 3.4 MNm−1.5 and σ = 421 MPa, the flaw size is about 52µm, which is
quite small and is a few times the grain size of the material. The maximum

Fig. 6.10. Thermal expansion coefficient as a function of temperature for several
samples of CVD-SiC.
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Fig. 6.11. Flexural strength and elastic modulus as a function of temperature for
CVD-SiC: (a) flexural strength, (b) elastic modulus.

allowable stress, σ, in large parts can be calculated from the following formula:

σ = σ1(A1/A)1/m, (6.2)

where σ1 is the mean fracture stress for the test specimens, A is the area of the
large part, A1 is the area of the test specimen, and m is the Weibull modulus.
For SiC, m = 11.45, σ1 = 421 MPa, and A1 = 160 mm2. Consequently, for a
1-m-diameter part, the allowable maximum stress in the part is 200 MPa.
For as-grown SiC surfaces, however, the value of m was determined to be
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about 4 with σ1 = 262 MPa. In this case the allowable maximum stress in
the 1-m-diameter part is only about 31 MPa, which is quite small. These
calculations indicate that while producing large parts by the CVD process,
SiC deposits should not be stressed beyond the allowable values during furnace
cooldown.

The flexural strength of the CVD-SiC can be enhanced by annealing,
appropriate surface treatment, or introducing a compressive stress in the
material. The flexural strength of CVD-SiC increased by 37% to 53% when
it was heated in the temperature range of 600◦C to 1000◦C and quenched in
water or annealed in flowing N2. In the case of thermal shock by water quench-
ing, the increase started at 600◦C and became relatively constant above 800◦C.
This increase was attributed to an increase in compressive residual stresses
and partially due to healing of machining flaws [50].

6.3.3 Electrical Properties

Electrical resistivity is another property that may require tailoring when SiC
is used for high-thermal-conductivity applications. The electrical resistivity
of CVD-SiC has been tailored in the range of 0.01–1000 ohm-cm by varying
the CVD process conditions with minimal effect on the other properties of
CVD-SiC, particularly thermal conductivity. When SiC is produced by the
opaque CVD-SiC process, SiC with an electrical resistivity in the range of
1–100 ohm-cm is produced. This variation in electrical resistivity may be due
to a small amount of contaminants, which are invariably present in the process
but escape detection by the gas-discharge mass spectroscopic analysis. SiC
with resistivity greater than 100 ohm-cm was produced by controlling this
contaminant “noise” level in the CVD-SiC process. Material with resistivity
less than 1 ohm-cm was produced by introducing appropriate concentration
of dopants in the CVD-SiC process. As higher concentration of dopants were
introduced, the process yielded lower resistivity values and less spread in the
data. Even at very high dopant concentrations, the thermal conductivity of
CVD-SiC was minimally effected.

Figure 6.12 shows plots of high- and low-resistivity samples as a function
of sample temperature in the temperature range of 20◦C to 500◦C. We see
that the resistivity of SiC decreases as its temperature increases. This effect
is typical of SiC and is due to increase in carrier concentration as the sample
temperature increases. The SiC samples were held at 500◦C for 500 hours.
No hysteresis effects were observed, and the resistivity values as function of
temperature remained the same.

6.3.4 Optical Properties

Chemical-vapor-deposited SiC has been polished to the smoothest surfaces
ever produced. The surface roughness has been measured to be less than
0.5 Å RMS by the Zygo heterodyne profiler, less than 1 Å RMS by the Talystep
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Fig. 6.12. High- and low-resistivity SiC as a function of temperature.

mechanical contact profiler, and less than 5 Å RMS by the atomic force micro-
scope. These measurements were made at the Naval Weapons Center, China
Lake, CA. The total integrated scatter was measured to be less than or equal
to 1 × 10−4 at 0.6328µm at the Naval Weapons Center, China Lake, CA and
TMA (now Schmidt, Portland, OR). The bidirectional reflection distribution
function (BRDF) was measured to be less than or equal to 5 × 10−6 from 10 to
80 degrees from the specular at 0.6328 µm.

The reflectivity of CVD-SiC in the visible-infrared regions is less than
20%. Furthermore CVD-SiC exhibits anomalous scattering in the infrared
region [51], that is, it does not follow the λ−4 scattering law. At ±10 degrees
from specular, BRDF was measured to be less than 1 × 10−5 at 0.325 µm and
0.6328 µm, but 3 × 10−4 at 10.6 µm. Such a high value of BRDF at 10.6µm
indicates that the scattering is not occurring topographically from the surface
according to λ−4 law. The reflectivity of CVD-SiC was substantially increased
by applying a coating of protective silver and gold. A silver-coating thickness
of at least 500 Å is required on CVD-SiC to eliminate the anamolous scattering
effect and obtain good broadband reflectance in the visible-infrared region.

Because gold does not adhere well to SiC, a bonding layer of chrome/nickel
or other reactive metal is usually applied first by the vapor-deposition pro-
cess. Subsequently, coating methods such as electroplating, evaporation, and
magnetron sputtering are used to apply the gold coatings. Electroplated gold
coating of thickness 1000–2500 Å have been successfully applied on the pol-
ished surface of CVD-SiC. This coating has yielded a reflectivity of less than
98% at 0.8 µm with a surface roughness of less than 5 Å RMS. Testing of an
electroplated gold coating in a simulated space environment indicated that
impingement of any particle of space debris does not extend the damage
regions much beyond the size of the debris or the particle. Further, the gold
coating is relatively hard and easily cleaned.
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Now we present the thermal and cryogenic stability data on CVD-SiC.
Thermal stability measurements were performed on a 0.25-m polished
lightweight SiC substrate. This substrate consisted of a 2.5-mm-thick SiC
faceplate with a lightweight SiC back structure deposited by the CVD pro-
cess. The surface figure and radius of curvature were measured to be 0.1λ rms
(root mean square, λ = 0.6328 µm) and 7.44-m, respectively. This substrate
was then heated to 1350◦C in a CVD chamber and maintained at that temper-
ature continuously for 60 hours. The substrate was then cooled to room tem-
perature, and its figure and radius of curvature were measured to be 0.41λ rms
and 7.48 m, respectively. This change amounts to a figure change of 0.3λ rms
and a radius of curvature change of only 0.54%, which is quite small. An
optical path difference (OPD) map was also taken before and after thermal
cycling and is shown in Fig. 6.13.

The cryogenic stability of the CVD-SiC was assessed on a 2-inch-diameter
SiC coupon. The surface figure at room temperature was measured to be
0.045λ rms (λ = 0.6328 µm). This coupon was cooled to −190◦C and then
brought back to room temperature, and the surface figure was measured to
be λ/125 rms and λ/70 rms, respectively. These changes are extremely small
and show that CVD-SiC exhibits excellent cryogenic stability.

Next we discuss the optical properties of transparent SiC. Figure 6.14
shows a plot of visible-infrared transmittance of transparent SiC. The sample
thickness is about 0.25 mm. The maximum transmittance is about 65%, which
is close to the theoretical value for β-SiC. This transmittance corresponds to
a specular attenuation coefficient of about 2 and 6.9 cm−1 at wavelength 3
and 0.6328µm, respectively. The specular attenuation coefficient at 1.06 µm
is 1 cm−1. When the contribution of scatter from the attenuation coefficient is
taken out, one obtains the absorption coefficient. At wavelength >3 µm, the
four phonon band is visible [35]. At 3µm, the absorption coefficient is about
0.1 cm−1 at 291 K and about 0.4 cm−1 at 912 K. As the wavelength decreases,
the absorption coefficient also decreases. The absorption coefficient values at
other wavelengths are summarized in Table 6.6.

Fig. 6.13. Change in figure of 10-inch-diameter lightweight SiC mirror before and
after the optic was cycled to 1350◦C for 60 hours (from [42]).
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Fig. 6.14. Visible-infrared transmittance of a transparent SiC sample of 0.25-mm
thickness.

The emittance of a 1-mm-thick sample of CVD-SiC was computed as a
function of wavelength based on the absorption coefficient. The mean emit-
tance at 4–5 µm is about 0.3 at room temperature and 0.5 at 815 K. However,
in the 3–4µm range, the mean emittance is about 0.05 at room temperature
and about 0.1 at 815 K. These data show that transparent SiC is a good candi-
date material for high-heat-flux optics applications, particularly at wavelength
less than 4 µm.

The change in refractive index with temperature, dn/dT, for transpar-
ent SiC as a function of wavelength was also measured and came out fairly
constant in this wavelength range, 2–4 µm and equal to about 37 × 10−6 K−1.

Table 6.6. Absorption coefficient of transparent SiC.

Wavelength Absorption Coefficient (cm−1)
(µm)

291K 609K 912K

5.4 14.42 16.84 28.09
4.89 6.0 7.72 16.2
4.47 2.4 3.0 10.11
3.96 1.38 1.53 2.6
3.49 0.52 0.56 0.92
3.22 0.31 0.38 0.65
2.95 0.51 0.17 0.27
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6.4 High-Thermal-Conductivity Applications

High thermal conductivity of CVD-SiC along with its many other attractive
properties such as high flexural strength, low thermal expansion, and excellent
resistance to thermal shock, oxidation, and chemicals makes it an ideal candi-
date for high-heat-load applications. These applications may arise in several
different areas, such as semiconductor processing, optics, electronics, and wear
parts [52].

6.4.1 Thermal Management and Semiconductor
Processing Applications

High-resistivity CVD-SiC can be used in the electronics industry for thermal-
management applications. Because the thermal expansion coefficient of CVD-
SiC is compatible with Si, high-power and high-performance Si devices can
be produced directly on the SiC substrates. Furthermore, CVD-SiC can be
readily metallized with a variety of materials such as silver, gold, TiN, and
Mo. This permits fabrication of more complex patterns and structures on SiC
substrates.

Even when the resistivity of SiC is not high, it can still be used for thermal-
management applications by coating it with a thin layer of CVD diamond
to make its surface electrically nonconducting. Both diamond and SiC have
low-thermal-expansion coefficients, and thus SiC substrates are compatible
with diamond deposition. In addition, diamond has high thermal conductivity,
which makes these diamond-coated SiC substrates very effective in thermal
management.

In semiconductor processing, CVD-SiC applications include different sup-
port components such as susceptors, lifting parts, plates, and flow controls
for such processes as RTP (rapid thermal processing), CVD, ion implanta-
tion, etching, lithography, and dry, vapor-phase, and wet cleaning. High-heat-
load applications include susceptors and rings for processes such as RTP;
cantilevers and wafer carriers for oxidation or diffusion furnaces; electrodes,
liners, focusing rings, and plasma screens for plasma etch systems; and sus-
ceptors for RF heating [53]. Figure 6.15 shows a picture of several CVD-SiC
components including RTP rings, susceptors, and gas diffusion plates used in
semiconductor processing systems.

Semiconductor processing chambers used to deposit epitaxial films
require very high temperatures and extreme cleanliness. The severe tempera-
ture excursions, particularly in the rapid thermal processing systems have a
tendency to crack or flake the SiC coating on the currently used graphite
susceptors. Consequently, bulk CVD-SiC susceptors provide an attractive
alternative. In addition, the high stiffness-to-weight ratio of CVD-SiC allows
the susceptor to have low weight and good surface flatness. This low mass
coupled with low heat capacity and high thermal conductivity keeps the heat
ramps rapid and contributes to temperature uniformity over the wafer. The
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Fig. 6.15. A variety of CVD-SiC components, including rapid thermal processing
rings, susceptors, and gas-diffusion plates, used in semiconductor processing systems.

CVD-SiC susceptors also do not readily degrade during hot HCl cleaning
cycles, permit tight susceptor tolerances due to a close thermal expansion
match with Si, generate fewer particulates, and can be thermally cycled many
more times than other competing materials. The excellent machinability and
process reproducibility of CVD-SiC ensures that the parts are fabricated to
the same shape with consistent high quality.

In addition to susceptors, slip rings constitute a critical element in RTP
reactors. Such a ring surrounds the wafer and is usually slightly offset from
its plane. The slip rings serve to make the radial temperature profile more
uniform in the wafer. Without a slip ring, the edge of the wafer is hotter
than the rest of it during ramping, whereas in steady state, there is a thermal
loss at the edge. CVD-SiC provides definite advantages over other materials
because of its high thermal conductivity, predictable absorption, and emission
characteristics, higher-purity and low-particle generation.

Semiconductor furnaces often employ high temperatures for oxidation or
diffusion and use support components such as cantilevers, wafer carriers, sup-
port tubes, and paddles. Currently used cantilevers are heavy, conduct heat
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poorly, and have a coefficient of thermal expansion that is different from
silicon. Quartz is relatively fragile, produces more particulates, cannot stand
HF in wet processing, and may contain impurities, such as sodium. For all
these reasons, CVD-SiC offers an attractive alternative. Currently, efforts are
being made to fabricate these components from CVD-SiC.

The resistivity of CVD-SiC can be made low (<0.1 ohm-cm) and tailored in
the range of 10–1000 ohm-cm without significantly affecting its other proper-
ties. This large range of values makes CVD-SiC very attractive for fabricating
a variety of support components in the plasma etch chambers. Gas diffu-
sion plates and focusing rings are made from high-resistivity SiC, whereas
the liners and plasma screens are made from low-resistivity SiC. Components
made from CVD-SiC are robust and last for a long time in the hostile plasma
environment. This reduces equipment downtime and makes this material very
competitive in terms of cost of ownership.

Low-resistivity SiC may also be used to make susceptors for coupling
RF energy in semiconductor furnaces. The high-thermal-shock resistance of
CVD-SiC permits heating these susceptors very rapidly to high temperatures
(>1200◦C). These susceptors are better than graphite susceptors due to their
high purity, extremely low particulate shedding, and low wear rate.

6.4.2 Optics and Wear Applications

In optics, CVD-SiC has been used to fabricate lightweight mirrors, X-ray graz-
ing incidence mirrors, optics standards, and optics baffles [51], [54], [55], [56],
[57], [58], [59]. The CVD-SiC mirrors are used in surveillance, high-energy
lasers, laser radar systems, synchrotron X-ray equipment and vacuum UV
telescopes, large astronomical telescopes, and weather satellites. Active cool-
ing through heat exchanger channels or patterns is employed in optics to
manage high heat loads. These patterns can be fabricated on the backside
of the CVD-SiC mirror faceplates directly in the CVD chamber by a near-
net-shape replication process. Deposition occurs layer by layer on a molecular
scale and replicates patterns down to very fine details. This replication of fine
features was demonstrated in CVD-SiC during a thermally controlled tertiary
mirror (TCTM) program [60]. Figure 6.16 shows a picture of such replication
in CVD-SiC. This picture shows a heat exchanger pattern consisting of posts
and crosses. The depth of this pattern is about 1 mm, the thickness of crosses
is 0.25 mm, the diameter of posts is 0.75 mm, and the spacing between cen-
ter lines of two adjacent posts is 1.25 mm. This replication was performed on
graphite. From Figure 6.16 we see that fine features of the heat exchanger
pattern are replicated precisely. There was no evidence of any rounding, pits,
holes, or voids on the surface. The cross section of the replicated structure
indicated that the sharpness of the replication was maintained throughout the
depth of the structure.
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Fig. 6.16. Heat exchanger patterns replicated during CVD-SiC process. Post diam-
eter is 0.75mm; crosses are 0.25mm wide, pattern depth is 1mm, and post spacing
is 1.25mm.

Table 6.7 shows a comparison of important properties of CVD-SiC with
other candidate mirror materials. The important figures of merit are: (1) den-
sity, ρ; (2) the pressure and bowing distortion parameter E, which is the
modulus of elasticity; (3) the thermal distortion parameter κ/α, which is the
ratio of thermal conductivity to coefficient of linear expansion; (4) the natu-
ral frequency and inertia loading parameter E/ρ; and (5) the thermal stress

Table 6.7. Comparison of important properties of CVD-SiC with other candidate
mirror materials.

Material Property CVD Mo Al Be ULE Zerodur
SiC 7971

Density, ρ 3.21 10.2 2.7 1.85 2.20 2.55
(kg m−3 × 103)

Coefficient of thermal 2.4 5.4 25.0 11.4 0.03 0.15
expansion α (K−1 × 10−6)

Thermal conductivity 325 134 237 216 1.3 6.0
κ (Wm−1K−1)

Elastic modulus, 466 250 76 303 67 90
E (GPa)

Thermal distortion 13.5 2.5 0.95 1.9 4.3 4.0
parameter κα−1

(Wm−1 × 107)
Inertia loading parameter 145 24.5 28.1 164 30.4 35.3

Eρ−1 (Nmkg−1 × 106)
Thermal stress parameter 2.9 1.0 1.25 0.63 6.4 4.4

κα−1 E−1

(WmN−1 × 10−4)
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parameter κ/αE. It is desirable to have high values for all these figures of
merit except density. Thermal conductivity plays an important role in two
figures of merit: thermal distortion and thermal stress. Thus, a high value
of thermal conductivity increases the value of both these parameters. From
Table 6.7 we see that SiC has the highest values of the elastic modulus and
the thermal distortion parameter and the second-highest value of the inertia
loading parameter. These properties, combined with the fact that SiC is a
lightweight material with moderate values of the thermal stress parameter,
make it a preferred material for reflective optics applications.

Klein [61] evaluated different candidate mirror materials for cooled high-
energy laser applications. He considered a 1-mm-thick faceplate cooled by
heat exchanger channels on the back side. The results showed that if laser
beam distortions are of concern, the important parameter to consider is the
thermal distortion parameter. This study ranked SiC third after diamond and
carbon-carbon composites, but ahead of Si, Mo, and Cu. Because diamond
is an expensive material that is difficult to scale to large sizes, and carbon-
carbon composites have fabrication issues, SiC appears very promising for this
application.

The transparent SiC can be used in transmissive optics applications for
severe environments associated with high-speed missiles, combustion, space,
and laser systems. Klein and Gentilman [62] have ranked important materials
for use as windows and domes when they are suddenly exposed to a super-
sonic flight environment. This environment leads to intense convective heat
loads due to rise in temperature of the boundary layer. For the thermally
thick case (Bi > 1), transparent SiC ranked second after Si3N4, but ahead of
diamond, sapphire, and AlN. For thermally thin case (Bi < 1), the transpar-
ent SiC also ranked second, behind diamond, but ahead of AlN, Si3N4, and
sapphire.

An important application of transparent SiC is its use in laser welding sys-
tems and free electron lasers operating at a wavelength of 1.06 µm. Table 6.8
shows the results of high-power CW Nd : Yag laser irradiation of a sample
of transparent SiC for laser-welding applications. The Yag laser was passed
through a fiber-optic cable to produce a spot size of 750 µm. The sample
thickness was 0.54 mm. The input power was varied in the range 55–550
watts. We see that even at very high-energy densities there was no apprecia-
ble degradation in the transmittance of transparent SiC. Further, after laser
irradiation was completed, no visible damage to the transparent SiC sample
was observed. In comparison, other competing materials such as sapphire,
AlON, CLEARTRAN�, and quartz, did not survive the extreme thermal
shock.

In the area of wear, CVD-SiC has been successfully used as a substrate
material for making optics molds because of its high value of thermal conduc-
tivity, elastic modulus, and flexural strength and its resistance to abrasion,
scratching, oxidation, and corrosive materials. The use of CVD-SiC pro-
vides a more uniform temperature over the whole surface of glass or plastic
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Table 6.8. CW Nd :Yag laser irradiation results: laser wavelength = 1.06 µm; spot
size = 750 µm; sample thickness = 0.54mm.

Input On Power Density Energy Output Transmittance
Power Time (KW cm−2) Density Power (%)
(W) (s) (KJ cm−2) (W)

55 5 12 60 34 62
58 5 13 65 37 64
82.5 5 19 95 52 63

290 5 66 330 177 61
550 3 125 375 — —

optics, thus minimizing residual stress during lens cool-down. The significant
advantages of CVD-SiC are particularly realized when large-area optics molds
are used. Further CVD-SiC molds are robust and have been successfully used
for fabricating hundreds of optics parts from a single mold.

6.5 Summary and Conclusions

CVD-SiC is a good material for high-heat-flux applications due to its superior
thermal, optical, physical, and mechanical properties, particularly its thermal
conductivity. The thermal conductivity of CVD-SiC depends on the particu-
lar growth method and specific process conditions used for growth. In general,
high-thermal-conductivity values are obtained along the columnar grains in
a material that has low stacking faults. CVD-SiC has good high-temperature
property retention. The flexural strength of CVD-SiC increases slightly and
the elastic modulus reduces by about 15% when CVD-SiC is heated to a tem-
perature of 1500◦C. The flexural strength of CVD-SiC increased by 37–53%
when it was heated to a temperature range of 600◦C−1000◦C and quenched
in water or annealed in flowing N2 or a vacuum. The electrical resistivity of
CVD-SiC was tailored in the range of 0.01–1000 ohm-cm by adjusting the
dopant concentration without affecting its thermal conductivity. Due to its
superior properties, CVD-SiC is used for thermal management applications
in semiconductor and electronic devices and for high-heat-load applications
in RTP and plasma etch systems, RF heated susceptors, synchrotron and
high-energy-laser mirrors, and optics molds.
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7

Chemical-Vapor-Deposited Diamond for
High-Heat-Transfer Applications

J.S. Goela and J.E. Graebner

7.1 Introduction

Diamond has always been a material of intense interest for scientists due to
its wide range of extreme properties, such as very high thermal conductiv-
ity; low expansion coefficient; high hardness, elastic modulus and electrical
resistivity; low dielectric constant; high resistance to heat, acids, and radi-
ation; and optical transmission over a wide range of wavelength, from the
ultraviolet to the far infrared [1], [2]. These properties make it an ideal can-
didate material for many applications in the areas of thermal management,
optical windows and domes, cutting tools, precious gems, and wear parts. A
major obstacle in using natural diamond for many applications is its high
cost and availability only in small size and quantity. To overcome these
obstacles, scientists have been trying to develop a synthetic route to dia-
mond production that would produce diamond crystals comparable in qual-
ity to natural diamond. Initial efforts were focused on developing synthetic
diamond by compressing carbon in a high-temperature (1550–2250◦C) and
high-pressure (50,000–100,000 atmosphere) cell. This technique requires mas-
sive equipment, but under suitable conditions it can produce high-quality
diamond single crystals.

Interest in diamond became intense in the last twenty years with the
discovery that high-quality diamond can be produced by chemical-vapor-
deposition (CVD) techniques. CVD diamond exhibits many thermal, opti-
cal, mechanical, and electrical properties comparable to natural diamond if
the growth conditions are optimized. CVD diamond is a theoretically dense,
highly pure, polycrystalline material. The CVD process permits use of near-
net-shape techniques to produce components that do not require extensive
postdeposition fabrication. Further, the CVD process has been scaled to pro-
duce monolithic parts of 0.25-m-diameter and a few mm thick. Large-scale
capability reduces CVD diamond cost and makes it a more attractive mate-
rial for use in different applications. Finally, the CVD process is reproducible.
A consequence of reproducibility of CVD diamond is that production and
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fabrication processes can be developed to yield parts of consistent quality and
finish from batch to batch.

Although claims for diamond deposition using low-pressure gases date
as far back as 1911 [3], [4], systematic studies of diamond deposition using
vapor deposition techniques began in the 1950s in the Soviet Union and United
States. Boris Derjaguin and Boris Spitsyn led the early Soviet efforts to
deposit diamond on diamond seeds by chemical vapor deposition. These eff-
orts involved thermal decomposition of hydrocarbons and H2/hydrocarbon
gas mixtures at 1000◦C with no additional activation of gas mixtures. These
results were published in a Scientific American [5] article but did not generate
much enthusiasm in the scientific community because the reported diamond
growth rates were quite low (angstroms/hr) and graphitic carbon always code-
posited with diamond.

During this early time period, similar research was being conducted in the
United States. William Eversole of Union Carbide deposited new layers of
carbon atoms (diamond) on the surface of natural diamond seed crystals by
decomposition of CO or CH4 at 900–1100◦C [6], [7]. This synthesis process,
documented in a patent filed in 1958, required many cycles of growth followed
by hydrogen etching to remove excessive graphitic deposits [7]. Again the di-
amond growth rates were very low. In the 1960s and 1970s John Angus and
coworkers [8], [9] pursued these diamond-deposition techniques and also ob-
tained diamond deposits on natural diamond powders at low deposition rates.

In the late 1970s and early 1980s, Deryagin’s group reported the use of gas
activation techniques that eliminated much of the graphite codeposition and
resulted in dramatic increases in diamond growth rates [10], [11]. The major
Japanese effort also began in the 1970s at the National Institute for Research
on Inorganic Materials and many papers were published in the early 1980s
describing diamond deposition by hot filament, radio-frequency glow dis-
charge, electron-assisted chemical vapor deposition, and microwave-plasma-
assisted processes [12], [13], [14], [15], [16]. These papers generated intense
interest in the scientific community, and a large number of studies were initi-
ated with the aim of understanding CVD diamond-deposition processes.

Diamond has a cubic crystallographic structure formed completely from
tetrahedrally bonded sp3 carbon. This should be distinguished from graphite,
which is formed completely from trigonally bonded sp2 hybridized carbons,
and lonsdaleite which is a hexagonal form of diamond. The four equivalent
sp3 bonds in diamond and lonsdaleite form strong, uniform, three-dimensional
frameworks whereas the graphitic sp2 bonding creates strongly bonded two-
dimensional planes but weak bonding between the planes. In diamond, the
three carbons at one end of the bond are staggered with respect to the three
carbons at the other end of the bond. In Lonsdaleite, these same carbons
eclipse each other, and this causes its structure to be slightly less stable than
the diamond structure [3].

Diamond can be distinguished from mixtures of other forms of carbon by
measuring the Raman spectrum in the wave number range of 1000–1700 cm−1.
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(a)

(b)

(c)

Fig. 7.1. Raman spectra for three typical diamond samples vapor deposited on
single crystal silicon (a) highly perfect diamond film, (b) film of intermediate per-
fection, and (c) film containing appreciable amounts of sp2 carbon. Note the intensity
scale change in each of the three spectra. The 519 cm−1 line is from the silicon sub-
strate, the 1332 cm−1 line is characteristic of diamond, the broad peak in the 1500–
1600 cm−1 range is characteristic of the sp2-type disordered carbon. (Reprinted with
permission of the American Ceramic Society, www.ceramics.org. c© 1989 [3].)
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Highly perfect diamond shows a very sharp peak at or around 1332 cm−1. The
disordered sp2-type carbons show broad peaks in the 1500–1600 wave number
range. Diamond-like carbon films that have very fine, nanosize crystallites
would not show the 1332 wave number peak. This technique is very sensitive
for identifying pure diamond sp3 bond because the ratio of Raman scattering
efficiency for sp2 versus sp3 carbon is 50 [3]. Figure 7.1 shows three Raman
spectra for different quality diamond films deposited on silicon substrates.
The 519 cm−1 line is from the silicon substrate.

In this chapter, we present a brief review of the CVD diamond process
and important properties relevant for high-thermal-conductivity applications.
In Sect. 7.2, the CVD processes used to produce high-thermal-conductivity
diamond are presented. Many applications may require not only high ther-
mal conductivity but also optimum values of other properties such as flexu-
ral strength, optical transmission, electrical resistivity, and chemical purity.
Consequently, important physical, thermal, mechanical, optical, and elec-
trical properties of CVD diamond are provided in Sect. 7.3. The high-
thermal-conductivity applications of CVD diamond are discussed in Sect. 7.4.
Finally, summary and conclusions are presented in Sect. 7.5.

7.2 Diamond Synthesis by CVD

The chemical-vapor-deposition process involves heterogeneous reaction of a
gas-phase compound or compounds on or near a substrate surface to produce
a solid deposit. The CVD technique for producing diamond involves activat-
ing a mixture of H2 or O2 and carbon-containing gases to produce diamond
on a heated solid surface in a deposition chamber (Fig. 7.2). The carbon-
containing gases could be hydrocarbons, such as CH4, C2H2, or CO, CO2;
various alcohols; or acetone. The activating source could be a hot filament, a
plasma (DC, RF, or microwave), a combustion flame (oxyacetylene or plasma
torches), an optical pumping source, or a laser. The last two techniques are
more recent and offer the advantages of lowering the diamond-growth tem-
peratures and driving diamond growth through selective reaction pathways.
Although most diamond-deposition processes use excess H2 in the reaction
mixture, CVD diamond has also been produced by processes that contain
large amounts of O2. In the CVD process, the diamond deposition occurs at
those temperature and pressure conditions under which graphite is the stable
form of carbon. This occurs because activation of the reactant gas mixtures
drives a complex chemistry that inhibits graphite formation and promotes
diamond growth.

Two of the popular CVD processes that also produce high-quality diamond
deposits are the microwave plasma-assisted CVD process (MPACVD) and the
hot-filament method (HFCVD). The MPACVD technique was first proposed



7 CVD Diamond for High-Heat-Transfer Applications 203

Fig. 7.2. A schematic of a generic CVD process to deposit diamond.

by Kamo et al. [13]. A schematic diagram of a typical tubular microwave re-
actor is shown in Fig. 7.3. It consists of a magnetron source that produces
microwaves at a frequency of 2.45 GHz. These microwaves are monitored by
a power monitor, tuned with a stub tuner, and then pass through a metallic
waveguide. A plunger is attached at the end of the waveguide to minimize
the reflected power. A quartz tube passing through a sleeve and a hole in
the waveguide serves as the diamond deposition chamber. The end of the
quartz tube is connected to a vacuum pump to maintain low pressure in
the deposition chamber. The substrate is mounted in a holder and placed at
the intersection of the quartz tube and the waveguide. The substrate temper-
ature is controlled by heating the holder either with the microwaves or with
an independent resistive heater. The substrate temperature is measured with
either a thermocouple or a pyrometer. When a mixture of H2 and hydrocar-
bon (such as CH4) is passed through the quartz tube, microwaves create a
plasma in the quartz tube and activate the gas mixture causing diamond to
deposit on the substrate.

Typical deposition conditions for MPACVD are as follows: tube diam-
eter <4.5 cm, 0.2–4 vol% CH4 or other hydrocarbon diluted in H2, cham-
ber pressure = 1–400 Torr, substrate temperature = 500–1000◦C, microwave
power = 100 W–1.5 KW and substrate sizes 2–3 cm in diameter. The typical
growth rates are 0.1–30 µm/hr [17]. Since the first use of a microwave reac-
tor, great advancement has been made in the development of various types
of microwave plasma reactors aimed at improving the quality and size of
the diamond deposition. Some of the microwave machines used include bell
jar reactors, plasma jet, and disk reactors, and ellipsoid, surface-wave, and
magneto microwave plasma reactors [18]. Using advanced microwave plasma
machines, the parameters for diamond deposition have been extended over a
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Fig. 7.3. Schematic of microwave plasma-assisted chemical-vapor-deposition-
system (from [13]).

wide range as follows: substrate size ≤30 cm, growth rates ≤1 g/hr, chamber
pressure = 0.01–760 Torr, and microwave power ≤60 KW.

A hot-filament system is popular because it is a relatively simple and
inexpensive system (Fig. 7.4). It consists of a small vacuum chamber, 55–
80 mm diameter, which could be made from quartz, pyrex, or alumina tubes.
On one end of this tube is mounted a filament of suitable material such as
tungsten, tantalum, rhenium, or platinum. The filament is heated to a temper-
ature of 1800–2300◦C. A mixture of 1% CH4 in H2 is passed on this filament
to preheat and dissociate the gas mixture. The substrate of a suitable material
such as Si or Mo is mounted in a holder and is placed 3–10 mm away from the
filament. The substrate temperature is maintained in the range of 600–1000◦C
with a resistance heater. The substrate and filament temperatures are mea-
sured with a thermocouple and optical pyrometer, respectively. The chamber
pressure is maintained in the range of a few to hundreds of Torr. The gas flow
rate is in the range of 0.1–1 standard liters per minute. The deposition time
depends on the thickness of the diamond film required and typically ranges
from one to a few hours. Typical growth rates are 1–5 µm per hour.
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Fig. 7.4. Schematic of a hot-filament-assisted chemical-vapor-deposition diamond
growth system.

Important issues with the hot-filament process are scaling to large sizes,
low growth rates, diamond film contamination with hydrogen atoms and fil-
ament material, and diamond film quality, uniformity, and near net shap-
ing. Over the past twenty years considerable technological developments have
taken place that have provided innovative solutions to these issues. With cur-
rent technology hot-filament systems can provide good-quality diamond films
on substrates up to 12 inch diameter and growth rates up to 19µm/hr for a
single filament system and 5 µm/hr for multifilament systems and some near
net shaping on dome shapes [2], [19].

Hydrogen plays a critical role in the deposition of diamond at temperatures
at which graphite growth is favored. Hydrogen atoms are produced when the
gas mixture is “energized” either thermally or with electron impingement.
The hydrogen atoms promote the diamond deposition process as follows: (1)
H atoms react with hydrocarbon molecules to create reactive radicals such as
CH3, which react on the substrate surface to produce C–C bonds necessary for
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diamond growth, (2) H atoms terminate the “dangling” carbon bonds on the
growing diamond surface and thus prevent them from forming a graphite-like
surface, and (3) atomic hydrogen etches away any graphite that is codeposited
with diamond.

The substrate material and its surface preparation are critical for growing
continuous, good-quality diamond films. Single-crystal silicon has been the
most popular substrate material for growing CVD diamond films because it
has a high melting point (1410◦C) and a low thermal-expansion coefficient,
which is more closely matched to diamond than most other substrate materi-
als. It is also relatively inexpensive and readily available. Furthermore, after
diamond deposition, silicon can be removed by either polishing or chemical
etching to form free-standing diamond. Diamond deposition on Si involves
formation of a thin and localized carbide interfacial layer on which diamond
then grows. On some substrates, such as Fe, Ni, and Ti, carbon is very reactive
and forms thick carbide interfacial layers [1]. These thick carbide layers can
affect the mechanical properties and thus the quality of the diamond deposit.
Tungsten and Mo are two other substrate materials that perform similarly to
Si and can yield good-quality diamond films. Other substrate materials used
for diamond deposition are SiC, WC, Cu, diamond, and SiO2.

In diamond deposition, nucleation usually occurs on surface defect sites
such as scratches, digs, protrusions, or steps. These sites are generally created
by polishing the substrate surface mechanically or by ultrasonic agitation
using the diamond powder. Other methods of creating defect sites, such as
chemical etching or polishing with alumina powder, do not provide as high
nucleation density as polishing with diamond powders. On untreated surfaces,
the nucleation density is usually very low and the crystal size is relatively
large. Over the years diamond nucleation has been enhanced on nondiamond
substrates by using different techniques such as abrading the substrate surface
with powders of diamond and metals (W, Ta, Fe, Ti, Mo), using different
forms of carbon (clusters, fullerenes, fibers, graphitic, amorphous), applying
a negative bias to the substrate, coating silicon with a catalytic material such
as iron, and electrostatic seeding of diamond nanoparticles [20].

7.2.1 Postdeposition Processing

The CVD deposited diamond films usually have nonuniform thickness, are
quite rough on the growth surface, have low thermal conductivity on the
substrate surface, and are attached to the nondiamond substrate. Conse-
quently, postdeposition processing which may include substrate removal,
cutting, grinding, lapping, and polishing, is required to make it suitable for
thermal management and other applications. Mechanical polishing and chem-
ical etching processes are used to remove the silicon substrate. Because of the
extreme hardness of diamond, cutting of diamond with a diamond saw is a
very slow process. A better process of diamond cutting is the use of high-power
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lasers such as an Nd-YAG laser in combination with a reactive gas such as
O2. The laser beam can be focused to a very fine spot and results in heating
and oxidizing the diamond as it is moved along the cut. The carbon in dia-
mond reacts with oxygen to form CO2 and CO leaving behind a clean cut.
High-power pulsed lasers such as an Nd-YAG laser operating at 1.06 micron
and 0.532 micron have also been used to drill small holes of diameter 100–150
micron in diamond [20].

To make the diamond surface smooth it is often required to remove 20 to 50
microns or more material from its two surfaces. Many techniques for lapping
and polishing of diamond have been developed over the years [21]. Because
materials harder than diamond are not available, diamond is usually machined
and polished using diamond powder, but this is a very slow process and is
not particularly suitable for removing large amounts of material. Oxidizing
chemicals such as KOH have been used to enhance the removal rate in the
mechanical polishing process. Hot metal lapping on an iron wheel at 900◦C
in a hydrogen atmosphere has been used successfully because of the high
solubility of carbon in iron. Removal of carbon by an oxygen plasma has
the disadvantage of preferential etching at grain boundaries. Laser ablation
and ion beam polishing are noncontact techniques that have been used for
smoothing and patterning of both flat and curved surfaces but their equipment
costs are quite high.

Another technique that appears to be well suited to batch processing with
high rates of removal makes use of the diffusion of carbon into certain metals,
either solid or molten as shown by Jin and coworkers. Free-standing diamond
films, for example, can be sandwiched between foils of iron and heat treated
under weight at 900◦C for 48 hours in an argon atmosphere, resulting in a
100-µm reduction in thickness (1µm/hr) [22]. Manganese powder can alter-
natively be used [23] because of its higher solubility for carbon [24]. Some
mechanical fine polishing is needed after the thinning process to obtain flat
surfaces for thermal applications. Molten rare earth metals such as cerium
or lanthanum provide not only higher solubility of carbon, but also intimate
contact because of the excellent wettability between diamond and the molten
metal [25], [26]. Low-cost mischmetals (a mixture of rare earth metals) [27]
or rare earth/transition metal alloys with eutectic melting temperatures [28]
have also been used. A very fast diamond-etch rate in excess of 50 µm per
minute in thickness reduction has been achieved using molten mischmetals.

Another technology that is important for using diamond for high-thermal-
conductivity applications is bonding. For heat-spreader applications, diamond
must be connected very well thermally to the heat-producing device and the
ultimate heat sink. Several techniques such as applying epoxy adhesive, solder-
ing, or brazing have been proposed for bonding of diamond. The use of epoxy
adhesive provides only moderate thermal contact, even if the epoxy is filled
with metal powder. Low-temperature solders provide better thermal contact
by a factor of ten, but they do not adhere well to diamond and have low
thermal conductivity. Strong carbide-forming elements such as Ti, Zr, V, Nb,
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Ta, Cr, and Si generally provide reliable metal-diamond bonding. For exam-
ple, a metallization scheme for solder bonding of laser diodes [29] to diamond
uses a three-layer configuration of Ti/Pt/Au. The Ti layer provides bonding to
diamond, the Pt layer provides a diffusion barrier, and the gold overcoat serves
as a protective layer to minimize platinum-solder reactions and also as a bond
layer to a Au-Sn eutectic solder. The thickness of sputter-deposited metalliza-
tion layers on diamond are, for example, 100 nm Ti, 200 nm Pt, 500 nm Au,
and 2.5 µm of Au-20Sn eutectic solder. The solder bonding of the laser diode
onto the diamond heat spreader is carried out by rapid thermal annealing
(e.g., at 300–350◦C for several seconds).

Brazing with metals is another technique that can have higher thermal
conductivity than low-temperature solders but the processing is carried out
at higher temperatures [21]. Even better thermal contact can be made if the
device is grown on one side of a Si wafer and the diamond is deposited
on the other side with careful choice of nucleation and growth conditions
[30], [31]. This configuration places the source of heat in very close con-
tact with high-thermal-conductivity diamond to achieve maximum cooling
efficiency.

7.3 Properties of CVD Diamond

CVD diamond has been extensively characterized for important physical, me-
chanical, optical, thermal, and electrical properties. Table 7.1 lists important
properties of CVD diamond [32], [33], [34], [35], [36]. In general, high-quality
CVD diamond samples have exhibited many properties such as transmission,
refractive index, thermal expansion coefficient, hardness, and thermal conduc-
tivity close to those of natural Type IIa diamond, which is the purest natural
diamond. Diamond has a very wide indirect band gap of 5.5 eV, which makes
it optically transparent over a wide wavelength range from 0.225 µm in the
UV to far infrared beyond 20µm. However there are 2-phonon and 3-phonon
absorption bands in the wave number range of 1332–3996 cm−1, which makes
it unsuitable for window applications in the shortwave infrared region (3–
5 µm). The elastic modulus and Poisson ratio for randomly oriented polycrys-
talline diamond can be calculated by appropriately averaging the single-crystal
diamond data over all orientations. This yielded a modulus of 1140 GPa and
a Poisson ratio of 0.069, which are consistent with the measurement of biaxial
modulus, E/(1-Poisson ratio), of randomly oriented CVD diamond deposits
[32], [33].

The CVD diamond is a brittle polycrystalline material, and therefore it
is susceptible to flaw-induced fracture. The strength of CVD diamond from
three different suppliers was measured with a ring-on-ring fixture and came
out to be in the range of 200–400 MPa [34]. This strength is less by an
order of magnitude than the tensile strength for natural diamond (∼3 Gpa)
[35] and is attributed to the presence of microcracks, residual stresses, and



7 CVD Diamond for High-Heat-Transfer Applications 209

Table 7.1. Important properties of CVD diamond at room
temperature

Property Average Value

Density (g cm−3) 3.51
Hardness (Kg mm−2) 9000
Fracture toughness (MPa.m0.5) 5.3–8
Band gap 5.5 eV
Elastic modulus, GPa 1140
Flexural strength, MPa >200
Poisson ratio 0.069
Thermal expansion coefficient (10−6 K−1) 0.8
Thermal conductivity (Wm−1K−1) ≤2300
Heat capacity (Jkg−1K−1) 640
Electrical resistivity (ohm-cm) >1.0 × 10

13

Dielectric constant (35–50GHz) 5.7
Dielectric strength (Vm−1) 1.0 × 107

Loss tangent (35GHz) <0.00015
Refractive index @ 10 µm 2.38
Optical absorption coefficient

@ 8–12 µm 0.1–0.3
Emissivity

@ 8–12 µm, 300–500◦C 0.02–0.03

other flaws in CVD diamond. In addition, no degradation in flexural strength
was measured when the temperature increased from 20◦C to 1000◦C. Klein
[33] also analyzed the strength of CVD diamond based on the Weibull distribu-
tion and reported similar low values—an average flexural strength of 398 MPa
and 160 MPa when the nucleation or the growth surface is in tension, respec-
tively. In addition, the spread in strength data was quite large, which yielded
a Weibull modulus, m, of 2.6 and 4.70 when nucleation and growth surfaces
were in tension, respectively. Savage et al. [36] measured CVD diamond frac-
ture stress by 3-point bend testing and concluded that the fracture stress
decreases as the thickness of the diamond sample decreases (≤2.5 mm) and
grain size increases (16–400 µm). In addition, larger values for Weibull modu-
lus (m = 11) when nucleation side is in tension were obtained indicating more
consistent fracture stress values for CVD diamond.

7.3.1 Thermal Conductivity of Diamond

At temperatures above approximately 50 K, diamond has the highest ther-
mal conductivity of any known material with the possible exception of carbon
nanotubes [37]. At room temperature, gem-quality diamond exhibits values
of thermal conductivity κ in the range of 2000–2500 W/mK, which is 5 to
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Fig. 7.5. Thermal conductivity of microwave-assisted and hot-filament CVD dia-
mond samples (from [40] with permission).

6 times higher than that of copper [38], [39]. Lower-optical-quality diamond
has correspondingly lower thermal conductivity. The particular conditions of
growth determine the quality of the diamond, which can vary from black (with
κ ∼ 300 W/mK) to clear (with values greater than 2000 W/mK). The qual-
ity is generally highest with the lowest growth rate, but it depends on many
other parameters as well, such as substrate temperature, gas pressure and
composition, and growth method. Morelli et al. [40] measured and compared
the thermal conductivity of diamond produced from microwave plasma and
hot-filament techniques. Figure 7.5 shows the thermal conductivity data fit-
ted to a Debye model. In the temperature range of 10–300 K, the microwave
plasma diamond sample followed the Debye model and showed thermal con-
ductivity higher than the hot-filament diamond sample. The latter sample
also showed slight deviation from the Debye model in the temperature range
of 20–60 K, and this was attributed to phonon scattering from defects in the
hot-filament diamond sample that are not present in the microwave plasma
diamond sample.

The thermal conductivity of diamond depends on the grain size [34], [41].
At low temperatures the mean free path for phonons in polycrystalline di-
amond is 4 to 10 times greater than the grain size [42]. Above 500 K, the
phonon mean free path is smaller than the grain size and the thermal conduc-
tivity does not vary much with temperature. This suggests that above 500 K,
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good-quality CVD diamond should have the same thermal conductivity as
Type IIa diamond. Reference [34] recommends the following equation for
estimating the thermal conductivity of CVD diamond or Type IIa diamond
in the range of 300–1200 K:

κ = (2.833 × 106)/T 1.245, (7.1)

where κ has the units Wm−1K−1 and T is in Kelvin. Equation (7.1) yields
κ = 2340 Wm−1K−1 at 300 K and 416 Wm−1K−1 at 1200 K.

7.3.1.1 Local Thermal Conductivity. The thermal properties of CVD dia-
mond are strongly dependent on the microstructure of the material [43].
Diamond growth begins by the nucleation of individual crystallites at
random spots on the substrate, followed by competitive growth as the crys-
tallites enlarge and merge. Those crystallites that happen to be oriented with
their fastest crystallographic growth direction normal to the plane of the sub-
strate eventually dominate, so that a strong columnar texture develops with
the long axis of the columnar grains oriented normal to the film (Fig. 7.6).
The average in-plane dimensions of the grains increase more or less linearly
with the distance z from the substrate. With such a microstructure, the ther-
mal conductivity κpar for heat flowing parallel to the film is different from the
conductivity κ⊥ for heat flowing perpendicular to the film, and the thermal
conductivity is thickness-dependent, as described below.

As most methods for measuring thermal conductivity provide a value
that is averaged over the full thickness of the sample, special techniques are
required to determine the z-dependence of the local thermal conductivity [44].
Slicing the CVD diamond into thin layers at various values of z is a possible
approach but is very difficult because of the hardness of diamond and the
potential damage during such processing. Instead, five samples of thickness
14, 48.5, 90.5, 145, and 285µm were prepared by microwave plasma CVD,
all under the same conditions and differing only in thickness. The in-plane
thermal conductivity κpar of each sample was measured with a DC heated-
bar technique with an accuracy of 1–2%. The observed thermal conductivity
κobs

par is an average over the thickness of a sample and increases with sample
thickness Z as shown in Fig. 7.7 (inset). A local conductivity was deduced
using the expression κlocal

par (z) = ∂
(
Zκobs

par
)
/∂Z.

The perpendicular thermal diffusivity was measured with a fast version
of the laser flash technique [45], [46] for four samples, 0.5 × 1 cm2 in area,
with average thicknesses of 28.4, 69.1, 185, and 408 µm. The diffusivity values
were then converted into thermal conductivity by multiplying with the heat
capacity per unit volume, ρC. The deduced thermal conductivity κobs

⊥ is an
average over sample thickness Z and increases with it even more rapidly than
κobs

par. The deduced value of thermal conductivity was converted to local values
κlocal

⊥ as follows: Because the heat pulse encounters successive layers in series,
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Fig. 7.6. (a) Cross-sectional SEM micrograph (fracture surface) showing the
dependence of grain size on the height above the substrate, (b) micrograph of the top
surface of four specimens of different thickness, illustrating the growth of the grain
size with thickness (from [43] with permission).

one can define the resistance per square R = Z/κ⊥ for a sample thickness
Z. For two samples of thicknesses Zi and Zk (Zk > Zi), the extra resistance
per square of sample k compared with sample i is Zk/κ⊥,k − Zi/κ⊥,i, which
can be defined as the average local resistance per square at the average height
(Zi + Zk)/2. The local conductivity at the average height is then given by

κlocal
⊥ =

(Zk − Zi)(
Zk

κ⊥,k
− Zi

κ⊥,i

) . (7.2)

The conductivities for both heat flow directions are shown in Fig. 7.8. Both
local conductivities extrapolate to 2300 ± 200 Wm−1K−1 for large z(> 350 µm)
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Fig. 7.7. κpar (T) for the five samples of different thicknesses. The inset shows the
derivation of the local conductivity at 298K (from [45]).

and 550 Wm−1K−1 for small z (∼5 µm). A strong dependence on z for
both components of conductivity is evident in the figure (i.e., a factor of
at least four comparing the conductivity at large z with that at small z
(∼20 µm)). An anisotropy κlocal

⊥ /κlocal
par ∼ 2 for z in the range 30–100µm

is also observed. Intuitively, it seems reasonable that the fine-grained less-
perfect material near the substrate surface should have lower thermal con-
ductivity than the large-grained more-perfect material for z ∼ 300 µm, and
heat should flow more easily in the direction of the columns than across
them.

A more detailed analysis reveals information about the type and location
of the defects responsible for thermal resistance. The in-plane conductivity
κpar of the samples was measured [45] from above room temperature to liquid
helium temperature and analyzed to deduce a local conductivity as a func-
tion of temperature (Fig. 7.9). The phonon-scattering model of thermal
conductivity was then applied to the data in Fig. 7.9 on the assumption
[46] that the thermal conductivity was limited by a number of distinct
phonon-scattering mechanisms: phonon-phonon (intrinsic) scattering, atomic
point defect scattering, extended defect scattering, dislocation scattering, and
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Fig. 7.8. (a) Local thermal conductivity versus height (distance from the bottom)
for heat flowing parallel (κ||) or perpendicular (k⊥) to the plane of the specimen, (b)
schematic illustration of the nonuniform anisotropic microstructure in CVD diamond
films (from [43]).

clean-grain-boundary scattering. The results are presented in Fig. 7.10 as
approximate partial resistivities due to each of these mechanisms.

The general trend toward lower extrinsic thermal resistance with increasing
z is consistent with the increasing conductivity with z in Fig. 7.8. The point
defect scattering is partly due to the 1% 13C isotopic impurity that occurs
naturally in the otherwise 12C carbon. The rest of the point defect scattering is
probably not due to the likely suspects, hydrogen and nitrogen, on the basis of
infrared absorption and other studies on the same samples, but is more likely
due to vacancies [47], [48], [49], [50]. The extended defects are roughly 1.4 nm
in diameter, as determined by the broad dip in the κpar(T ) data in Fig. 7.9
and may be the high-order twin intersections that often occur in diamond.
The scattering at clean grain boundaries for the grain size observed is not
strong enough to account for a large portion of the total resistivity.

Quantitative comparison of the various contributions to the resistivity
in Fig. 7.10 shows that the factor-of-two anisotropy for z in the range
∼30–100 µm is difficult to explain unless the (non-13C) point defects and,
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Fig. 7.9. Local thermal conductivity versus absolute temperature at five different
heights z above the substrate. The curves are fits of a phonon-scattering model of
thermal conductivity with the strengths of various scattering mechanisms adjusted
to fit the data (from [45]).

perhaps, the dislocations are located preferentially at or near grain boundaries.
Then the conductivity along the grains can be substantially higher than the
conductivity across the grains. This dirty-grain-boundary model has been exp-
ressed mathematically by Goodson and coworkers with the assumptions that
all extrinsic defects are located at grain boundaries and the number density of
defects per unit area of the grain boundary is independent of z [51], [52]. With
all extrinsic scattering mechanisms parameterized by the grain size, d, the
standard phonon-scattering calculations for room temperature yield the solid
line in Fig. 7.11. Also shown are the corresponding plot for clean grain bound-
aries and data from nine separate reports [53]. The clean- and dirty-grain-
boundary models both approach 2500 Wm−1K−1 at large d, where boundary
scattering is negligible compared with intrinsic scattering, but show a large
difference as the grain size becomes increasingly smaller. For both plots, the
effect of grain size does not reduce the conductivity significantly until the
grain size becomes smaller than ∼10 µm. Because the mean free path in per-
fect diamond at room temperature is of order 0.3 µm, grain size limitation to
thermal conductivity occurs when the grain is on the order of a few micro-
meters or less. Although the experimental data show significant scatter, the
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Fig. 7.10. Approximate partial thermal resistivities deduced from the fits to the
data of Fig. 7.9. The thermal resistance due to each of the four extrinsic mecha-
nisms decreases monotonically with height z above the substrate. Intrinsic scattering
mechanisms (scattering of phonons) from other phonons [umklapp] or from 13C are
independent of z (from [45]).

model gives a reasonably good fit over a wide range of grain sizes. Deviations
can be understood as cleaner or dirtier grain boundaries, depending on the
growth conditions.

7.3.1.2 Thermal Conduction Near Diamond-Substrate Interface. For many
applications in thermal management, the thermal resistance at or near the
interface between CVD diamond and the substrate is of central importance
because it can become a serious bottleneck for heat flow into or out of the
diamond. Anisotropy of the in-plane and normal thermal conductivity can
become even more severe for diamond layers that are very close to the sub-
strate. Several researchers [31], [54], [55] measured the thermal resistance of
thin (<2.7 µm thick) diamond films deposited on silicon. Measurements close
to the interface required special techniques to determine the thermal resis-
tance. These techniques included: (1) the DC step heating of patterned metal
microbridges on the diamond surface and simultaneous temperature measure-
ment by monitoring the electrical resistance of the heater; (2) a laser heating
method in which a metal film on the diamond absorbs a short (6 ns) wide-area
laser pulse and its temperature is monitored for several microseconds by means
of the reflection of a second , continuous–wave laser; and (3) a transient
thermal grating laser-heating technique that measures thermal diffusivity
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Fig. 7.11. In-plane thermal conductivity κ|| at room temperature versus average
grain size for CVD diamond from nine reports. The dashed line is the thermal
conductivity expected with clean grain boundaries and the solid line is calculated
by Goodson et al. [51] using the dirty-grain-boundary model, which assumes that
all defects are located at grain boundaries (from [53]).

parallel and perpendicular to the plane of the film. Goodson et al. [54] mea-
sured the normal thermal resistance R⊥ of diamond films of three different
thicknesses, 0.2, 0.5, and 2.6 µm, and then calculated the effective thermal con-
ductivity κ⊥ by dividing film thickness by the thermal resistance. The effective
conductivity increased with thickness from 12 to 22 to 74 Wm−1 K−1. These
values are much smaller than the values obtained earlier for diamond films
of thickness 14 µm and higher and could be due to the presence of a highly
imperfect region near the silicon-diamond boundary that exhibits large local
resistance. Verhoeven et al. [31] found that the effective boundary resistance
at the diamond-silicon interface depends on the grain size at the interface.
This resistance can be improved significantly, in some cases by an order of
magnitude, by selecting process conditions that yield low nucleation density
and large grains at the interface. For instance, the average effective boundary
resistance decreased from 2.4 × 10−7 m2 K W−1 to 1.2 × 10−8 m2 K W−1 when
the grain size increased by an order of magnitude from 10 nm. Excessive
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reduction in nucleation density, however, can also result in voids that reduce
thermal conduction.

In another study, Verhoeven et al. [55] used the laser heating and tran-
sient thermal grating techniques to measure thermal diffusivity both parallel
and perpendicular to the plane of the diamond films grown on Si. Figure 7.12
shows the expected nearly isotropic conductivity for the random nanometer-
size grains (κ⊥/κpar = 0.8). Highly oriented samples exhibited very high
anisotropy (a factor of 10–20), especially for those samples with a thin layer
of β-SiC separating the diamond and the silicon, and a decrease in bound-
ary resistance by two orders of magnitude. Such isotropy suggests that the
dominant scattering of phonons still takes place at dirty grain boundaries
or at anisotropic scattering centers, even in the first few microns of these
high-quality thin films.

7.3.1.3 Thermal Conductivity of Isotopically Enriched Diamond. Thermal
conductivity in isotopically enriched synthetic single crystals of diamond

Fig. 7.12. Anisotropy of the thermal conductivity in thin films of CVD diamond
on silicon. The dashed line indicates isotropy, κ|| = κ⊥, and emphasizes the very
large anisotropy observed for the columnar-grained and the highly oriented (quasi-
epitaxial) films. From [55].
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have shown [56], [57], [58], [59] a dramatic increase (∼30%) in the room-
temperature thermal conductivity as the 13C concentration is reduced from
the natural abundance of 1.1% to 0.07%. This has been attributed [58],
[59], [60], [61], [62], [63] to the importance of normal phonon-phonon scat-
tering processes, which tend to enhance the effect of Rayleigh scattering
from the point defects present (13C atoms). This unusually high sensitiv-
ity of the thermal conductivity to point-defect isotope scattering is usu-
ally observable only in high-purity single crystals [64]. It allows high-quality
diamond, already a remarkable conductor at its typical room-temperature
value of 22–25 Wcm−1K−1 to be improved to 30–33 Wcm−1K−1 by isotopic
purification.

The polycrystalline diamond made by the CVD process has also exhibited
significant improvement in thermal conductivity due to isotopic enrichment
from 13C to 12C. Isotopically enriched (0.055% 13C) diamond plates (650µm
thick) were prepared by microwave-enhanced CVDusing 12C-enriched methane
and both the in-plane and perpendicular conductivities were measured [65].
The in-plane conductivity, κpar improved from 18 Wcm−1K−1 to 21.8 W
cm−1 K−1 (a 21% improvement) when the concentration of 13C reduced from
1.1% to 0.055%. The perpendicular conductivity, κ⊥, was measured to be 26 W
cm−1K−1 with isotopic enrichment, which is a record value for CVD diamond.
Analysis of the temperature dependence of κpar revealed that the point-defect
scattering of phonons in isotopically enriched diamond is significantly lower
than expected for the natural abundance of 13C and that it is responsible for
the improved conductivity. The observed anisotropy κpar/κ⊥ = 0.84 at room
temperature is associated with the anisotropic grain structure.

7.3.2 Thermal Shock Resistance

Many high-thermal-conductivity applications where high heat loads are
present require that the material exhibits good resistance to thermal shock.
One such application is the use of diamond as windows and domes for high-
speed aircraft and missiles. In such cases the allowable heat load depends on
the parameters of windows and domes as well as heat flow regime as character-
ized by the Biot number, Bi = hL/κ [33]. Here h is the heat transfer coefficient
at the outer surface of the window or dome and L is the characteristic dimen-
sion, which could be thickness of the window or dome. The thermal shock
parameter R, which is essentially a figure of merit for comparing different
materials, is defined for thermally thin (Bi < 1) and thick (Bi > 1) conditions
as follows:

RThin = σκ(1 − ν)/αE, if Bi < 1 (7.3)

RThick = σ(1 − ν)/αE, if Bi > 1 (7.4)

where σ is the flexural strength, κ is the thermal conductivity, ν is the Poisson
ratio, α is the thermal expansion coefficient, and E is the elastic modulus. For
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Table 7.2. Comparison of thermal shock resistance of important optical materials
in thermally thin case (Bi < 1)

Material Flexural Elastic Poisson Thermal CTE Thermal
Strength Modulus Ratio ν Conductivity α Shock
σ (MPa) E (GPa) κ (Wm−1K−1) (10−6 K−1) Parameter

rThin

CVD 160–400 1140 0.069 ≤2300 0.8 ≤939
diamond
CVD-SiC 420 466 0.21 214 2.2 69
Si3N4 320 310 0.27 33 1.8 14
AlN 350 440 0.29 220 4.4 28
Sapphire 400 380 0.27 24 8.8 2.1
Spinel 160–190 190 0.26 14.6 8.0 1.2–1.39
ALON 300 315 0.24 12.6 7.8 1.2
MgF2 100 115 0.3 16 11.0 0.89
GaP 100 103 0.31 97 6 10.8
GaAs 60 86 0.31 53 6 4.3
CVD-ZnS 103 75 0.29 16.7 7 2.3

thermally thick case, RThick is similar to the Hasselman parameter for strong
shock [66]. Table 7.2 compares the thermal shock parameter of CVD diamond
with that of several competing materials [67] in the thermally thin case. We see
that even though the flexural strength of CVD diamond is lower by an order
of magnitude than single-crystal diamond, CVD diamond has the highest
thermal shock parameter value in the thermally thin case due to its very
high thermal conductivity. For the thermally thick case, however, the thermal
shock parameter does not include the thermal conductivity. Consequently,
CVD diamond does not perform as well and has the third highest value behind
silicon nitride and silicon carbide. If the CVD processing is improved to a level
so that the flexural strength of the CVD diamond is close to the single-crystal
value (∼3000 MPa), then the CVD diamond will have the highest value of the
thermal shock parameter for the thermally thick case as well. In practice, one
does not encounter many situations where the Biot number for diamond is
greater than 1 because the high-thermal-conductivity diamond is usually thin
(<2 mm). Thermal shock parameters specific to diamond windows and domes
are discussed in more detail in Ref. [33].

7.4 High-Thermal-Conductivity Applications

The extremely high thermal conductivity of CVD diamond, along with its
many other attractive properties such as low thermal expansion, high resis-
tivity, low dielectric constant, high elastic modulus, and excellent resistance
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to thermal shock and chemicals, makes it an ideal candidate for a variety of
applications in thermal management, optics, and electronics parts.

7.4.1 Thermal Management Applications

As power densities in electronics continue to increase with circuit miniaturiza-
tion, the need to control the flow of heat has become increasingly important.
Due to its very high thermal conductivity, high resistivity, and low dielec-
tric constant, CVD diamond finds increasing use in the electronics industry
for thermal management of high-power laser diodes, multichip modules and
3-dimensional architectures, and radio-frequency power amplifiers for radar
and communications. Diamond helps in transporting the heat more quickly
from the hot devices to the ultimate heat sink, minimizes hot spots, and
lowers the junction temperatures that increase device life and reliability. In
addition, diamond heat spreaders permit more closely packed circuits, which
can provide faster operation without overheating. Specific examples include
CVD diamond plates which can be substituted for ceramic circuit boards
supporting high-power amplifiers. For large-scale cooling, multiple 10-cm
diamond wafers with multichip-module attachment of chips can be stacked in
close proximity to each other to achieve a short electrical delay time between
wafers and still have enough thermal conductance to avoid the buildup of
dangerously high temperatures. Diamond heat spreaders have increased out-
put power and lifetimes in In-Ga-As laser diodes and diode arrays enhancing
performance in industrial material processing and direct-to-plate printing sys-
tems. In power transistors operating at microwave frequencies, diamond heat
spreaders provide high heat transport rates, yield higher power output with
increased reliability, and can be easily metallized with appropriate patterns
that can become an integral part of the transistor package design.

Another possible use of diamond is as a thin layer buried in a silicon wafer
[30]; such a configuration would make use of the very low thermal boundary
resistance that is possible between CVD diamond and the silicon substrate.
Diamond is also being considered for use as actively cooled substrates to
replace silicon in thermal management applications [20]. Microchannels are
fabricated on the back side of a diamond substrate and the heat-producing
device is built on its front side. Diamond conducts the heat from the device
to the microchannels where the flowing coolant removes the heat. Due to its
very high thermal conductivity, diamond performs much better than silicon.

7.4.2 Optics and Other Applications

Diamond is a good material for optics applications due to its high transmis-
sion in UV, visible and long-wave infrared regions, very high thermal con-
ductivity, low value of thermal expansion coefficient, and high thermal shock
resistance. Klein [68] evaluated different candidate mirror materials for cooled
high-energy laser applications. He considered a 1-mm-thick face plate cooled
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by heat exchanger channels on the back side. The results showed that if laser
beam distortions are of concern, the important parameter to consider is the
thermal distortion parameter. This study ranked diamond at the top of the list
of candidate mirror materials, which included CVD-SiC, Si, Mo, and Cu. Thus
diamond has great potential as mirror material if issues of cost, fabrication,
and scaling to large sizes can be satisfactorily resolved.

The CVD diamond can also be used in transmissive optics applications
for severe environments associated with high-speed missiles, and space and
laser systems. Klein [33], [67] has ranked important materials for use as
windows and domes when they are suddenly exposed to a supersonic flight
environment. This environment leads to intense convective heat loads due to
a rise in temperature of the boundary layer. The CVD diamond ranked at
the top of the list for a thermally thin case (Bi < 1), and third after Si3N4
and SiC for a thermally thick case (Bi > 1). Diamond is particularly suit-
able as a window material for the high-power industrial CO2 lasers based
on megawatt-power microwave tubes [2] due to diamond’s very high thermal
conductivity, good transmission at 10.6 µm, and moderate absorption coeffi-
cient. An edge-cooled diamond window transports heat to the edges quickly
and thus produces smaller thermal and refractive index gradients and signifi-
cantly less beam distortion than a ZnSe window. Further, the ZnSe windows
cannot be adequately cooled to survive these systems due to its low thermal
conductivity and low mechanical strength.

Advances made in the CVD process and diamond fabrication technologies
in the last several years have demonstrated precision infrared imaging win-
dows up to 120 mm in diameter, fully polished hemispherical domes 70 mm in
diameter, and shallow diamond lenses for use as laser-output coupling windows
[69], [70].

CVD diamond is also used for producing 1-megawatt gyrotron tubes for
nuclear fusion research due to its high thermal conductivity and low loss
tangent (3 × 10−5 at 144 GHz) [2]. These tubes measure 106 mm diameter by
1.8 mm thick and have water-cooled edges to keep the aperture cool. The tubes
can withstand temperatures up to 450◦C and pressures up to 7 atmospheres.

7.5 Summary and Conclusions

CVD diamond is a good material for high-heat-flux applications due to its sup-
erior thermal, optical, physical, mechanical, and electrical properties, particu-
larly, its very high thermal conductivity. High-quality CVD diamond samples
have exhibited many properties such as transmission, refractive index, ther-
mal expansion coefficient, hardness, and thermal conductivity close to
those of natural Type IIa diamond, which is the purest natural diamond. The
thermal conductivity of CVD diamond depends on the particular growth
method, the specific process conditions used for growth, and the typical colum-
nar microstructure of the material. Because of the columnar microstructure,
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the thermal conductivity κpar for heat flowing parallel to the film is smaller
than the conductivity κ⊥ for heat flowing perpendicular to the film, and this
anisotropy can be explained reasonably well by the dirty-grain-boundary
model. In general, high-thermal-conductivity values are obtained along the
columnar grains in those areas where the grain size is large.

Due to its superior properties, CVD diamond is finding increasing use for
thermal management in semiconductor and electronic devices and has exhib-
ited considerable potential for use in high-heat-load applications associated
with windows and domes for high-speed missiles and aircraft and high-energy
laser mirrors for space applications. However, widespread use of diamond will
require satisfactorily resolution of important issues such as its high cost, fab-
rication difficulties, particularly curved shape geometries, and scaling to large
and uniform-thickness parts.
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Unusually High Thermal Conductivity in
Carbon Nanotubes

Young-Kyun Kwon and Philip Kim

Recently discovered carbon nanotubes have exhibited many unique material prop-
erties including very high thermal conductivity. Strong sp2 bonding configurations
in carbon network and nearly perfect self-supporting atomic structure in nanotubes
give unusually high phonon-dominated thermal conductivity along the tube axis,
possibly even surpassing that of other carbon-based materials such as diamond
and graphite (in plane). In this chapter, we explore theoretical and experimental
investigations for the thermal-transport properties of these materials.

8.1 Introduction

The miniaturization of electrical and mechanical systems is the main achieve-
ment of modern technology, making faster and more efficient devices. With
the continually decreasing size of electronic devices and microelectromechan-
ical systems (MEMS), there is an increasing effort to use nanoscale materials
as components of nanoscale devices. The thermal properties of the nanoscale
materials are of fundamental interest and play a critical role in controlling
the performance and stability of the device that consists of these materials.
Among these materials, carbon nanotubes are of particular interest for their
unique electric and thermal properties [1], [2].

Carbon nanotubes were discovered by Iijima in 1991 [3]. These novel
materials, in fact, are natural extensions of fullerene clusters that have been
extensively studied since the discovery of C60 [4] in 1985. Like other fullerenes,
carbon nanotubes are made of only carbon, and the sp2 bonding yields a
π-bonding network. However, unlike most fullerenes and their derivatives,
carbon nanotubes have extremely high aspect ratios. Structurally, carbon
nanotubes consist of seamless cylindrical tubes that can be conceptually
formed by cutting and rolling up a graphene sheet (a single layer of graphite).
Single-walled nanotubes (SWNTs) consist of only a single seamless cylinder,
whereas multiwalled nanotubes (MWNTs) consist of several concentric shells.

Traditionally, carbon-based materials, such as diamond and graphite, have
been a material class that exhibits very high thermal conductivity. Isotope
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impurity-free monocrystalline diamond is one of the best thermal conduc-
tors due to the high speed of sound resulting from the stiff covalent sp3

bonds between the carbon atoms and greatly suppressed impurity phonon
scattering [5]. High thermal conductivity should also be expected in carbon
nanotubes, which are held together by even stronger sp2 bonds. These sys-
tems, consisting of seamless and atomically perfect graphitic cylinders a few
nanometers in diameter, are self-supporting. Thus, the rigidity of the graphitic
walls, combined with the absence of atomic defects or coupling to soft phonon
modes of the embedding medium, should make isolated nanotubes very good
candidates for efficient thermal conductors.

In this chapter, we present both theoretical and experimental surveys for
the investigation of thermal conduction in carbon nanotubes. In the first
part, we present theoretical calculations of thermal conductivity of nanotubes.
After a brief discussion of phonons in carbon nanotubes, we discuss several
computational methods based on molecular dynamics simulations used to
determine thermal conductivity of nanotubes. The resulting thermal conduc-
tivities of carbon nanotubes and other carbon allotropes and their tempera-
ture dependencies will be reviewed. An unusually high thermal conductivity
is predicted for isolated SWNTs in the calculations. In the second part, we
discuss the reported experimental results in thermal-conductivity measure-
ments of carbon nanotube materials. First, the bulk measurements including
carbon nanotube composite materials are reviewed. In addition, a detailed
description of recently demonstrated mesoscopic nanotube thermal-transport
measurement will be presented. Finally, the comparison of theoretical and
experimental results is given in the last part of the chapter, which confirms
the proposed unusually high thermal conductivity in these materials.

8.2 Theory of Energy Conduction in Carbon Nanotubes

The thermal-transport properties of materials can be calculated using two
main computational schemes. One scheme is the use of the Boltzmann equa-
tion, and the other is based on linear response theory from which the ther-
mal correlation functions are derived. Whereas the former scheme, which is
empirical, can be applied only to the materials that have experimental inputs
available, the latter, which can be performed from first principle, is often
used to predict the thermal properties of newly synthesized materials such as
carbon nanotubes.

Carbon nanotubes are classified primarily into achiral and chiral nanotubes
[1], [6]. An achiral nanotube exhibits a mirror symmetry on the plane normal
to the tube axis whereas a chiral one shows a spiral symmetry. There are
only two types of achiral nanotubes that show higher symmetry than chiral
tubes. One is an “armchair” type and the other a “zigzag,” as discussed later.
The structure of a nanotube is more specified by the orientation of hexagonal
carbon rings on cylindrical graphene sheets with respect to the tube axis.
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This orientation is characterized by the chiral index (n, m) defined by the
chiral vector Ch

Ch = na1 + ma2, (8.1)

where ai(i = 1, 2) are real space unit vectors of the hexagonal lattice. This
chiral vector, as shown in Fig. 8.1, connects two equivalent sites O and A
on a graphene sheet. Its magnitude Ch represents a circumferential length
of a nanotube being characterized by Ch. The direction perpendicular to Ch

becomes a tube axis. A pair of integers (n, m) in Eq. (8.1), specifying all
possible chiral vectors, defines a different way of rolling the graphene sheet
to form a nanotube. Zigzag nanotubes, which have the zigzag shape of the
cross-sectional ring, and armchair nanotubes, which have the armchair shape,
are denoted by the vectors (n, 0) and (n, n), respectively.

The tube diameter dt is given by

dt = Ch/π

=
√

3dCC(n2 + nm + m2)1/2/π, (8.2)

where dCC is the nearest-neighbor distance between two carbon atoms (in
graphite dCC = 1.42Å). And the chiral angle θ, defined as the angle between
the chiral vector Ch and the lattice vector a1, is given by

cos θ =
Ch · a1

Cha

=
2n + m

2
√

n2 + nm + m2
. (8.3)

The chiral angle θ is just in the range of 0 ≤ |θ| ≤ 30◦, because of the hexa-
gonal symmetry of the graphene sheet. Armchair nanotubes, in particular,
correspond to θ = 30◦ and zigzag ones θ = 0◦.

Fig. 8.1. A nanotube can be constructed by connecting site O to site A and site
B to site B′. This nanotube is (6, 3) (see the text for the tube classification). The
chiral vector Ch and the translational vector T of the nanotube are represented by
arrow lines of OA and OB, respectively. The rectangle OAB′B defines the unit cell
of the nanotube.



230 Y.-K. Kwon and P. Kim

The vector T, called the translation vector, is parallel to the tube axis,
that is, perpendicular to the chiral vector Ch. Using the relation of Ch·T = 0,
the vector T, which becomes the lattice vector in a 1D tube unit cell, can be
expressed in terms of the basis vectors ai as

T =
1

dR
[−(n + 2m)a1 + (2n + m)a2], (8.4)

where dR is the greatest common divisor of (n + 2m) and (2n + m). Further-
more, dR can be expressed in terms of the greatest common divisor d of n
and m. If n − m is a multiple of 3d, dR = 3d; otherwise dR = d. Note that the
bigger dR, the smaller the length of T. For example, T = −a1 + a2 for any
(n, n) armchair nanotubes (dR = 3d = 3n) and T = −a1 + 2a2 for any (n, 0)
zigzag nanotubes (dR = n). A (6, 3) nanotube (d = dR = 3) shown in Fig. 8.1
has T = −4a1 + 5a2.

The rectangle formed by two vectors Ch and T determines the unit cell of
a nanotube, as shown as OAB′B in Fig. 8.1. Because, in this unit cell there
are 2N carbon atoms (the number of hexagons N in the unit cell is expressed
in terms of n, m, and dR as N = 2(n2 + nm + m2)/dR) we expect there are
6N phonon-dispersion branches.

The corresponding vectors in reciprocal space are determined from the
relations

Ch ·K1 = 2π, T ·K1 = 0,
Ch ·K2 = 0, T ·K2 = 2π,

(8.5)

where K1 is in the circumferential direction and K2 along the tube axis. The
resulting expressions for K1 and K2 are given by

K1 =
1
N

(−t2b1 + t1b2),

K2 =
1
N

(mb1 − nb2),
(8.6)

where bi (i = 1, 2) are the reciprocal lattice vectors of the hexagonal lattice.
K2 is the reciprocal lattice vector that is the counterpart of T in real space,
whereas K1 is just a corresponding vector to Ch, which gives discrete k values
in the circumferential direction.

In this section, we discuss the computational approach to probe the
thermal properties of carbon nanotubes. After we review phonon-dispersion
relations of 2-dimensional (2D) graphite and carbon nanotubes, we describe
computational methods based on molecular dynamics simulations for deter-
mining thermal conductivity and their pitfalls when applied to nanotubes.
Combining equilibrium and nonequilibrium molecular dynamics simulations
with Green-Kubo formalism, we determine the thermal conductivity of
SWNTs and other carbon allotropes. Our results suggest an unusually high
value κ ≈ 6, 600 W/m · K for an isolated (10, 10) nanotube at room temper-
ature, comparable to the thermal conductivity of a hypothetical isolated
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graphite monolayer or diamond. We find that these high values of κ are
associated with large phonon mean free paths in these systems.

8.2.1 Phonons in Carbon Nanotubes

It has been shown that the 1-dimensional (1D) electronic band structure of
carbon nanotubes [7], [8], [9] can be obtained from that of an ideal 2D graphene
sheet using the zone-folding approach. Likewise, the zone-folding approach has
been used to determine the phonon-dispersion relations of carbon nanotubes
from those of the graphene sheet [6], [10], [11], obtained by solving the secular
equation of its dynamical matrix to be determined by a simple force constant
model. (See [6], [11] for a more detailed description of phonon modes of 2D
graphite and carbon nanotubes.)

The equations of motion of the lattice are, in general, expressed as

miẍi = −
∑

j

K(ij)(xi − xj) , (i = 1, . . . , N), (8.7)

where mi and xi are, respectively, the mass and the displacement vector from
its equilibrium position of the ith atom among N atoms in a unit cell, and
K(ij) is the 3 × 3 force constant matrix between the ith and jth atoms.

∑
j

means the summation taken over all interacting neighbor atoms, which are
usually considered up to the nth nearest neighbors, including ones in other
unit cells. If we seek normal mode solutions of Eq. (8.7)

xl =
∑
k

u(l)
k e−i(k·rl−ωt), (8.8)

where the summation is taken over all the wave vectors k in the first Brillouin
zone. Here rl is the equilibrium position of the lth atom and u(l)

k denotes the
Fourier coefficient of xl. We assume the same eigenfrequencies ω for all xl.
Substituting Eq. (8.8) into Eq. (8.7) and using the orthogonal condition in
reciprocal space, ∑

rl

e−i(k−k′)·rl = δ(k − k′), (8.9)

where δ(k − k′) is a delta function in the continuum k space, Eq. (8.7) becomes

−miω
2Iu(i)

k = −
∑

j

K(ij)
(
u(i)

k − e−ik·riju(j)
k

)
, (i = 1, . . . , N), (8.10)

where rij = ri − rj and I is a 3 × 3 identity matrix. This equation can be
written more compactly in a tensor form as

D(k)uk = 0, (8.11)
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where D(k) is a 3N × 3N matrix called a dynamical matrix and decomposed
into the total N2 number of 3 × 3 submatrices {D(ij)(k)} expressed as

D(ij)(k) =

(∑
l

K(il) − miω
2(k)I

)
δij − K(ij)eik·rij . (8.12)

Note that the dynamical matrix includes the contributions from all interact-
ing neighbor atoms. Equation (8.11) is simply an eigenvalue equation, whose
nontrivial solutions are obtained by finding the eigenvalues ω2(k) resulting
when the secular equation det D(k) = 0 is solved for a given k vector.

For a single graphene sheet, in the unit cell of which there are two carbon
atoms, α and β, its dynamical matrix will be a 6 × 6 matrix and can be
expressed as (

D(αα) D(αβ)

D(βα) D(ββ)

)
(8.13)

in terms of the 3 × 3 submatrices D(ij), (i, j = α, β). D(ij) contains all the
contributions to the atom i from up to the fourth nearest-neighbor atoms
equivalent to the atom j. As given in Eq. (8.12), D(ij) is constructed by
calculating the force constant matrix K(ij), which is composed of the force
constant parameters f

(n)
r , f

(n)
ti

, and f
(n)
to

, (n = 1, . . . , 4), which are determined
by the interactions of the nth neighbor atoms, in the radial (bond stretching),
in-plane and out-of-plane tangential (bond-bending) directions, respectively.
Table 8.1, which was originally shown in [10], gives values for the force con-
stant parameters for 2D graphite obtained by fitting to experimental phonon-
dispersion relations measured along the ΓM direction [12], [13].

Consider the contributions to the atom α from three first nearest neighbor
atoms β

(1)
1 , β

(1)
2 , and β

(1)
3 . Assume that the atom β

(1)
1 is in the same unit

cell as the atom α, whereas each of the other two atoms is in a neighboring
unit cell. In a coordinate system in which the atom α is at the origin, the
atom β1 is on the x-axis, and the z-axis perpendicular to the graphene sheet
is passing by the atom α. Then, the contribution from the atom β

(1)
1 to the

Table 8.1. Values for the force constant parameters f
(n)
r , f

(n)
ti

,
and f

(n)
to

(n = 1, . . . , 4), for 2D graphite up to the n = fourth
nearest neighbor interactions, originally shown in [10]. The sub-
scripts r, ti, and to refer to radial, tangential in plane, and out of
plane, respectively. The values are given in units of 104 dyn/cm.

Radial Tangential

f
(1)
r = 36.50 f

(1)
ti

= 24.50 f
(1)
to

= 9.82

f
(2)
r = 8.80 f

(2)
ti

= −3.23 f
(2)
to

= −0.40

f
(3)
r = 3.00 f

(3)
ti

= −5.25 f
(3)
to

= 0.15

f
(4)
r = −1.92 f

(4)
ti

= 2.29 f
(4)
to

= −0.58
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force constant matrix K(αβ) is given by

K̃

(
αβ

(1)
1

)
=

⎛
⎜⎝f

(1)
r 0 0
0 f

(1)
ti

0
0 0 f

(1)
to

⎞
⎟⎠. (8.14)

The force constant matrix K is expressed in terms of K̃ as

K(αβ) ≡
∑

n

∑
l

K̃

(
αβ

(n)
l

)
. (8.15)

Using a rotation matrix Rl given by

Rl =

⎛
⎝ cos φl sin φl 0

− sin φl cos φl 0
0 0 1

⎞
⎠, (l = 2, 3), (8.16)

where φl = 2(l − 1)π/3 are rotational angles between β
(1)
1 and β

(1)
l , the con-

tributions from the other two atoms β
(1)
2 and β

(1)
3 , both of which are geomet-

rically equivalent to the atom β
(1)
1 , are expressed by

K̃

(
αβ

(1)
l

)
= R−1

l K̃

(
αβ

(1)
1

)
Rl, (l = 2, 3). (8.17)

We also calculate all other contributions of the nth nearest neighbor atoms to
the force constant matrix in a similar way. Considering all these contributions
and the corresponding phase factor eik·rij , we complete the construction of
the dynamical matrix D(k) and thus obtain the phonon-dispersion relations
by solving the secular equation det D(k) = 0.

The phonon-dispersion relations for 2D graphite are displayed in Fig. 8.2.
There are a total of six phonon branches, three of which correspond to acoustic
modes that have zero energy at the Γ point, and the other three are optical.
The lowest mode in energy corresponds to the to mode, and the second and
third lowest ones to ti and r, respectively, near the Γ point. The ti and r modes,
both of which are in-plane modes, show a linear k dependence as usually seen
for acoustic modes, whereas the to mode that is an out-of-plane mode, shows a
special k2 dependence, which comes from the three-fold rotational symmetry
(C3) around the z-axis. Although no linear combination of kx and ky can
be invariant under C3 rotation, the quadratic form of k2

x + k2
y as well as a

constant is invariant. Similarly, the optical to mode (ω ∼ 865 cm−1 at k = 0)
shows a k2 dependence.

The phonon-dispersion relations for SWNTs are obtained by the zone-
folding method from those of 2D graphite ωl

gra(k) (see Fig. 8.2), where l =
1, . . . , 6 labels six phonon branches and k is a vector in 2D reciprocal space.
Supposed that an SWNT has N hexagons in its unit cell, that is, 2N carbon
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Fig. 8.2. The phonon-dispersion relations for the 2D graphene sheet, plotted along
high-symmetry directions, using the set of the force constant parameters in Table 8.1
[10], [11]. The points shown along the ΓM line are experimental values [12], [13].
[Courtesy of Millie Dresselhaus]

atoms. Then its phonon-dispersion relations ωlν
nt(k) are given in terms of Ki,

(i = 1, 2) given in Eq. (8.6) by

ωlν
nt(k) = ωl

gra

(
νK1 + k

K2

|K2|

)
, (8.18)

where ν = 0, . . . , N − 1 and k is a 1D wave vector of the nanotube ranging
from −π/T to π/T with T = |T|.

Although the zone-folding method describes the overall features of the
phonon modes of a nanotube quite well, some of their features, especially
near the low-frequency region, are not described by the method. For example,
the acoustic to mode of 2D graphite, which has ω = 0 at k = 0, corresponds to
a radial breathing mode in the carbon nanotube, which has nonzero frequency,
ω > 0, at the Γ point. Another example is an acoustic mode of a nanotube,
the vibration of which is normal to the nanotube axis corresponding a rigid
shift of the nanotube along, for example, the x-axis. This mode is formed by
a linear combination of in-plane and out-of-plane modes in 2D graphite in
which one mode is not coupled with the other. Hence, this mode is a unique
acoustic mode of the nanotube.

To avoid considering these additional physical concepts to determine the
phonon-dispersion relations of nanotubes, we solve the 6N × 6N dynamical
matrix D(k) of a nanotube, which has 2N carbon atoms denoted by αi and βj

(i, j = 1, . . . , N), directly. (N atoms of αi, (or βj) are geometrically equivalent
to each other.) Similarly as discussed earlier D is decomposed into 3 × 3 small
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matrices D(αiβj) for a pair of αi and βj atoms as

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
D(αiαj) · · · D(αiβj)

...
. . .

...
D(βiαj) · · · D(βiβj)

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8.19)

By a similar discussion on unitary transformation (see (8.14)–(8.17)), a con-

tribution of the force constant matrix, K̃(αiβ
(n)
j ) is calculated in terms of the

nonzero contribution of the force constant matrix related to α1 or β1, using,
for example,

K̃

(
αiβ

(n)
j

)
= R−1

i−1K̃

(
α1β

(n)
j−i+1

)
Ri−1, (8.20)

where Rl is a unitary matrix for rotation by an angle φ = 2lπ/N around the
tube axis and given by Eq. (8.16) if the z-axis is taken for the tube axis.
K̃(α1β

(1)
1 ), in which β

(1)
1 is a nearest neighbor atom of the atom α1 that is

on the x-axis, is determined by rotating the matrix of Eq. (8.14) by an angle
π/6 − θ around the x-axis, and then by an angle ξ/2 around the z-axis. Here,
θ is the chiral angle of the tube and ξ is the angle between α1 and β

(1)
1

around the z-axis. Once K̃(α1β
(1)
1 ) is determined, all other contributions to

the force constant matrices K̃(αiβ
(1)
j ), (i, j = 1, . . . , N) of the nearest atoms

βj are obtained using Eq. (8.20). Similarly, the other contributions from nth
nearest neighbor atoms are also determined, as are all of the force-constant
matrices. The force-constant tensor along with the corresponding phase factor
eikzij , where zij is the z-component of rij , determines the dynamical matrix D
to be solved for the phonon-dispersion relations of the nanotube. (For a more
detailed description of the dynamical matrix D and consideration of curvature
effects on the force-constant parameters, see [6]).

For example, the phonon-dispersion relations for a (10, 10) carbon nano-
tube, which has 2N = 40 carbon atoms in its unit cell, are displayed in Fig. 8.3.
For 40 atoms, there should be 120 (=3 × 2N) vibrational degrees of freedom,
but they exhibit only 66 distinct phonon modes, because 54 phonon branches
are doubly degenerate and 12 modes are nondegenerate. The corresponding
density of states (DOS) for a (10, 10) nanotube is shown in Fig. 8.4, where, for
comparison, that for a 2D graphene sheet is also shown with the same units of
state/(C atom)/cm−1 scaled by a factor. The overall feature for the nanotube
is similar to that for the graphene, because the phonon-dispersion relations of
the former are related to the zone-folding of the latter. The differences between
their detailed features originate from the van Hove singularities existing only
in 1D nanotubes and the low-energy modes near the Γ point, as discussed
later.
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Fig. 8.3. The phonon-dispersion relations for a (10, 10) carbon nanotube [11]. There
are 2N = 40 carbon atoms in its unit cell, thus 120 vibrational degrees of freedom,
but there are only 66 distinct phonon modes because of degeneracies. The wave
vector k is given in units of π/T . [Courtesy of Millie Dresselhaus]

Now, we consider the low-energy phonon modes near the Γ point. Shown
in Fig. 8.5 are four acoustic branches, that have zero energy (ω = 0) at the Γ
point (k = 0), showing a linear k dependence. The transverse acoustic modes,
which are doubly degenerated at the lowest energy curve, result from the
vibrations (along the x- or y-direction) perpendicular to the tube axis. These
modes do not exist in 2D graphite, as discussed earlier. The longitudinal
acoustic mode or the vibration in the direction of the tube axis (z-axis) is
shown as the highest energy acoustic mode in Fig. 8.5. The other acous-
tic phonon curve, located between the lowest and highest ones in Fig. 8.5,

Fig. 8.4. The phonon densities of states for a (10, 10) carbon nanotube (solid line)
and a graphene sheet (dotted line) [11]. [Courtesy of Millie Dresselhaus]
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Fig. 8.5. The phonon-dispersion relations for a (10, 10) carbon nanotube in a low-
energy region near the Γ point [6], [11]. Shown are four acoustic phonon modes
(two degenerate TA modes, one twist mode, and one LA mode, listed in order of
increasing energy, respectively) and several lowest optical subbands including the
radial breathing mode at ω(k = 0) ≈ 20.5meV. [Courtesy of Millie Dresselhaus]

is related to a rigid rotation of the tube around the tube axis. This mode,
corresponding to the in-plane transverse acoustic mode for 2D graphite, is
called the twisting mode. The sound velocities of the transverse, twisting, and
longitudinal acoustic modes for a (10, 10) carbon nanotube are estimated to
be vTA = 9.43 × 103 m/s, vTW = 15.0 × 103 m/s, and vLA = 20.35 × 103 m/s,
respectively.

Several lowest optical subbands obtained by the zone-folding of 2D
graphite, are also shown in Fig. 8.5. Among them are included an E2g mode
at ω(k = 0) = ∼17 cm−1 = 2.1 meV, an E1g mode at ∼118 cm−1 = 14.6 meV,
and an A1g mode at ∼165 cm−1 = 20.5 meV, which is the radial breathing
mode corresponding to the acoustic mode showing a k2 dependence in a
graphene sheet. Some phonon bands, which have the same symmetry, show
anticrossing behavior because they couple to each other, whereas the modes
with different symmetries simply cross because they do not interact with each
other.

8.2.2 Computational Methods

Here we describe several computational methods that calculate the thermal
conductivity and its temperature dependence. The thermal conductivity ten-
sor Λ is related to the thermal current density J and the temperature gradient
∇T by

J = −Λ∇T, (8.21)

known as Fourier’s definition of the thermal conductivity. If we consider
the thermal conduction of a solid along a particular direction, for example,
along the z-axis, the thermal conductivity κ can be expressed by combining
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Eq. (8.21) with the continuity equation for heat conduction as

1
A

dQ

dt
= −κ

dT

dz
, (8.22)

where dT/dz is the z-component of the temperature gradient and dQ is the
heat flowing along the z-axis through the cross-sectional area A during the
time interval dt.

Electrons and phonons, in principle, contribute to thermal conduction in
solids. Both theoretical [14] and experimental studies [15], [16] show that
the dominant contribution to heat conductance in graphite and nanotubes
comes from phonons, whereas the contribution from electrons is extremely
small even at low temperatures. In the following, we consider only the phonon
contribution to thermal conduction in nanotubes.

The thermal conductivity κ is proportional to
∑

Cvl, where C is the spe-
cific heat capacity, v the speed of sound, l the phonon mean free path, and∑

means the summation over all phonon modes described in Sect. 8.2.1. The
mean free path l can, in general, be determined from two contributions to the
inelastic phonon scattering processes, which can be expressed as

1
l

=
1
lst

+
1

lUm
. (8.23)

where the first term lst on the right-hand side is limited by scattering from
sample boundaries (related to grain sizes) and defects, which are dominant
at low temperatures. lst is, therefore, independent of temperature so that the
thermal conductivity κ shows its temperature dependence similar to that of
the specific heat, C at low temperatures. On the other hand, the lUm is
determined by phonon-phonon Umklapp scattering that is dominant at high
temperatures. As the temperature increases, the Umklapp scattering becomes
more frequent, and thus it reduces lUm further. At high temperatures, there-
fore, the temperature dependence of κ is expected to be dominated by lUm.
Such strong dependence of the thermal conductivity κ on l is demonstrated
by the reported thermal conductivity values in the basal plane of graphite,
which scatter by nearly two orders of magnitude [17]. Most factors determin-
ing the mean free path l of a sample, such as its grain size, sample quality,
and isotope ratio, vary sample by sample.

We describe a few methods based on molecular dynamics simulations that
have been used to calculate thermal conductivity of nanotubes.

8.2.2.1 Direct Molecular Dynamics Approach Based on Velocity Rescaling.
To determine the thermal conductivity of nanotubes, we first used a method
based on a direct molecular dynamics simulation, which had been success-
fully applied for glasses [18]. As illustrated schematically in Fig. 8.6(a), we
consider a periodic array of hot and cold plates (e.g., a single circumferential
ring in a nanotube) perpendicular to a direction (e.g., tube axis, z) along
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Fig. 8.6. (a) Schematic diagram of the direct molecular dynamics approach used to
determine the thermal conductivity κ. Two gray regions represent the hot and cold
plates maintained by subtracting δq from the energy of the particles in the cold one
and adding it to that in the hot one. The particles in these two regions are depicted
by a black solid circle. Through other particles depicted by an empty circle, heat
gets transferred from the hot plate to the cold plate. (b) Ideal linear temperature
profile along the z-axis, along which κ is being calculated.

which κ will be calculated. Heat exchange δq with hot and cold plates is
achieved by velocity rescaling of particles in the plates. Due to the velocity
rescaling, heat transfer is imposed, that is, thermal current flows between two
regions. Once the system reaches a steady current state, one can determine
thermal current density Jz along the z-direction to be δq/(2A∆t), where A is
a cross-sectional area of the hot plate and ∆t is a time step for the molecular
dynamic simulation. The thermal conductivity, then, can be calculated using
Eq. (8.21), or

κ = − Jz

∂T/∂z
, (8.24)

when the z-component of the temperature gradient, ∂T/∂z, does not vary sig-
nificantly, as shown in Fig. 8.6(b), which exhibits an ideal linear temperature
profile or a constant temperature gradient.

A real molecular dynamics simulation applied to a (10, 10) carbon nano-
tube, however, reveals a significant deviation from a stable linear temperature
profile, as displayed in Fig. 8.7. In addition, the perturbations imposed by
the heat transfer limit the effective phonon mean free path artificially below
the unit cell size. Because the unit cell sizes tractable in our molecular dynam-
ics simulations are significantly smaller than the phonon mean free path l of
nanotubes, it has been found to be difficult to achieve the convergence of the
simulations. Due to their high degree of long-range order, nanotubes exhibit
an unusually long phonon mean free path l over hundreds of nanometers.
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Fig. 8.7. Temperature profile of a (10, 10) nanotube along the tube axis.

8.2.2.2 Equilibrium Molecular Dynamics Simulations Based on the Green-
Kubo Formalism. As an alternative approach determining the thermal con-
ductivity, we used equilibrium molecular dynamics simulations [19], [20] based
on the Green-Kubo relation for the Navier-Stokes thermal conductivity coef-
ficient, which is derived in a relatively straightforward way from the Langevin
equation [21]. The Green-Kubo expression relates the thermal conductivity to
the integral over time t of the heat flux autocorrelation function by [21], [22]:

κ =
1

3V kBT 2

∫ ∞

0
C(t)dt, (8.25)

where kB is the Boltzmann constant, V is the volume, T is the temperature
of the sample, and C(t) is the the heat-flux autocorrelation function given by

C(t) = 〈J(t) · J(0)〉, (8.26)

where the angled brackets 〈· · · 〉 denote an ensemble average. (It is usually
very difficult to evaluate C(t) quantum mechanically. Considering the
quantum effects and the anharmonicity in the interaction potential, it has
been proved that the classical autocorrelation function can be used with
validity to calculate the thermal conductivity [23].) The heat-flux vector J(t) is
defined by

J(t) =
d

dt

∑
i

ri∆ei

=
∑

i

vi∆ei +
∑

i

∑
j(�=i)

rij(fij · vi),
(8.27)

where vi is the velocity of atom i and ∆ei = ei − 〈e〉, the excess energy of
atom i with respect to the average energy per atom 〈e〉. ri is its position
and rij = ri − rj . Assuming that the total potential energy U =

∑
i ui can be

expressed as a sum of binding energies ui of individual atoms, fij = −∇iuj ,
where ∇i is the gradient with respect to the position of atom i.
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Once J(t) is known, the thermal conductivity can be calculated using
Eqs. (8.25) and (8.26). We found, however, that these results depend sen-
sitively on the initial conditions of each simulation, thus necessitating a
large ensemble of simulations. This high computational demand was further
increased by the slow convergence of the autocorrelation function, requiring
long integration time periods. This is illustrated in Fig. 8.8, which shows the
autocorrelation function of a (10, 10) carbon nanotube as a function of time.
The convergence has not been achieved even after several tens of thousands
of molecular dynamics time steps of ∆t = 5 × 10−16 sec. Moreover, because
the autocorrelation function represents the average response to the fluctuation
of the equilibrium system, which is fairly small, the signal-to-noise ratio is
often small.

8.2.2.3 Nonequilibrium Molecular Dynamics Simulations Based on the
Green-Kubo Formalism. To overcome these disadvantages, we now introduce
an alternative approach [24] that uses molecular dynamics simulations based
on nonequilibrium thermodynamics [25], [26]. It has been shown that this
approach, developed in a computationally efficient manner [27], reduces the
inefficiencies that occur in equilibrium approach. In the following, we describe
briefly the nonequilibrium molecular dynamics simulations combined with the
Green-Kubo formalism.

In this approach, the temperature T of the sample is regulated by a
Nosé-Hoover thermostat [28], [29], which indicates the temperature of a sur-
rounding thermal reservoir. An important fact that makes this approach
nonequilibrium is the introduction of a small fictitious “thermal force,” which
improves the signal-to-noise level of the response dramatically. The fictitious
thermal force Fe, which has a dimension of inverse length, is equally applied
to individual atoms. This fictitious force Fe and the Nosé-Hoover thermostat
impose an additional force ∆Fi on each atom i. This additional force modifies

Fig. 8.8. Autocorrelation function calculated from the z-component of the heat
flux vector, Jz(t) for a (10, 10) carbon nanotube.
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the gradient of the potential energy and is given by

∆Fi = ∆eiFe −
∑
j(�=i)

fij(rij ·Fe)

+
1
N

∑
j

∑
k(�=j)

fjk(rjk ·Fe) − αpi. (8.28)

Here, α is the Nosé-Hoover thermostat multiplier acting on the momentum
pi of atom i. α is calculated using the time integral of the difference between
the instantaneous kinetic temperature T of the system and the heat bath
temperature Teq, from α̇ = (T − Teq)/Q, where Q is the thermal inertia. The
third term in Eq. (8.28) guarantees that the net force acting on the entire
N -atom system vanishes. With the additional force ∆Fi for a given value
of Fe, the heat-flux vector J(Fe, t) is determined, for a given time t, using
Eq. (8.28). The resulting thermal conductivity along the z-axis is given by

κ = lim
Fe→0

lim
t→∞

〈Jz(Fe, t)〉
FeTV

, (8.29)

where Jz(Fe, t) is the z-component of the heat-flux vector for a particular
time t and V is the volume of the sample.

In low-dimensional systems, such as nanotubes or graphene monolayers, we
infer the volume from the way these systems pack in space to convert thermal
conductance of a system to thermal conductivity of a material. (Nanotubes
form bundles and graphite forms a layered structure, both with an inter-wall
separation of ≈3.4 Å.)

8.2.3 Thermal Conductivity of Carbon Nanotubes

We now present the results of nonequilibrium molecular dynamics simula-
tions combined with the Green-Kubo formalism described in Sect. 8.2.2.
We have used the Tersoff potential [30], [31], which has been augmented by
van der Waals interactions fitted from interlayer interactions in graphite [32],
for atomic interactions in the molecular dynamics simulations. The tempera-
ture dependence of the thermal conductivity of nanotubes and other carbon
allotropes is presented. We show that isolated nanotubes are at least as good
heat conductors as high-purity diamond. Our comparison with graphitic car-
bon shows that interlayer coupling reduces thermal conductivity of graphite
within the basal plane by one order of magnitude with respect to the nanotube
value, which lies close to that for a hypothetical isolated graphite monolayer.

In Figs. 8.9–8.11 we present the results of our nonequilibrium molecu-
lar dynamics simulations for the thermal conductance of an isolated (10, 10)
nanotube aligned along the z-axis. In our calculation, we consider 400 atoms
per unit cell and use periodic boundary conditions. Our results for the time
dependence of the heat current for the particular value Fe = 0.2 Å−1, shown
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Fig. 8.9. (a) Time dependence of the axial heat flux Jz(t) in a (10, 10) carbon
nanotube. Results of nonequilibrium molecular dynamics simulation at a fixed ap-
plied thermal force Fe = 0.2 Å−1, are shown at temperatures T = 50K (dashed line),
100K (solid line), and 300K (dotted line). (b) Time dependence of Jz(t)/T , a key
quantity for the calculation of the thermal conductivity, for Fe = 0.2 Å−1 and the
same temperature values. (Reproduced from [33])

in Fig. 8.9(a), suggest that Jz(t) converges within the first few picoseconds
to its limiting value for t → ∞ in the temperature range below 400 K. The
same is true for the quantity Jz(t)/T , shown in Fig. 8.9(b), the average of
which is proportional to the thermal conductivity κ according to Eq. (8.29).
Each molecular dynamics simulation run consists of 50,000 time steps of
∆t = 5.0 × 10−16 s, or a total time length of 25 ps to represent the long-time
behavior.

To study the Fe dependence of the thermal conductivity, we define a quan-
tity by

κ̃ ≡ lim
t→∞

〈Jz(Fe, t)〉
FeTV

. (8.30)

In Fig. 8.10 we show the dependence of κ̃ on the fictitious thermal force. We
have found that direct calculations of κ̃ for very small thermal forces carry
a substantial error, as they require a division of two very small numbers in
Eq. (8.30). Our calculations of the thermal conductivity at each temperature
are based on 16 simulation runs, with Fe values ranging from 0.4–0.05 Å−1.
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Fig. 8.10. Dependence of the heat transport on the applied heat force Fe in the
simulations for T = 100 K. The dashed line represents an analytical expression that
is used to determine the thermal conductivity κ by extrapolating the simulation
data points κ̃ for Fe → 0. (Reproduced from [33])

As shown in Fig. 8.10, data for κ̃ can be extrapolated analytically for Fe → 0
to yield the thermal conductivity κ, shown in Fig. 8.11.

Figure 8.11 also shows the temperature dependence of the thermal
conductivity of an isolated (10, 10) carbon nanotube. The temperature
dependence reveals the fact that κ is proportional to the heat capacity C
and the phonon mean free path l. As we discussed, l is nearly constant at
low temperatures, and the temperature dependence of κ follows that of the
specific heat. At high temperatures, where the specific heat is constant, κ
decreases as the phonon mean free path becomes smaller due to Umklapp
phonon-phonon scattering processes. Our calculations suggest that at T =
100 K, carbon nanotubes show an unusually high thermal-conductivity value
of 37,000 W/m · K. This value lies very close to the highest value observed
in any solid, κ = 41, 000 W/m · K, which has been reported [5] for a 99.9%
pure 12C crystal at 104 K. In spite of the decrease of κ above 100 K, the
room-temperature value of 6,600 W/m · K is still very high, exceeding the
reported thermal-conductivity value of 3,320 W/m · K for nearly isotopically
pure diamond [34]. Another theoretical study has shown that the thermal

Fig. 8.11. Temperature dependence of the thermal conductivity κ for a (10, 10)
carbon nanotube for temperatures below 400 K. (Reproduced from [33])
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conductivity of a (10, 10) carbon nanotube approaches ∼2, 980 W/m · K along
the tube axis [23].

Our theoretical prediction has been confirmed by an experimental mea-
surement of the thermal conductivity of a single MWNT at mesoscopic scale
[16]. The measured value has been reported to be κ � 3, 000 W/m · K near
room temperature. We describe some details on this measurement in the next
section.

It is useful to compare the thermal conductivity of a (10, 10) nanotube to
that of an isolated graphene monolayer and bulk graphite. For the graphene
monolayer, we unrolled the 400-atom large unit cell of the (10, 10) nanotube
into a plane. The periodically repeated unit cell used in the bulk graphite
calculation contained 720 atoms, arranged in three layers. The results of our
calculations, presented in Fig. 8.12, suggest that an isolated nanotube shows
very similar thermal-transport behavior to a hypothetical isolated graphene
monolayer. Whereas even larger thermal conductivity should be expected for
a monolayer than for a nanotube, we must consider that unlike the nan-
otube, a graphene monolayer is not self-supporting in a vacuum. For all car-
bon allotropes considered here, we also find that the thermal conductivity
decreases with increasing temperature in the range depicted in Fig. 8.12.

Very interesting is the fact that once graphene layers are stacked in
graphite, the interlayer interactions quench the thermal conductivity of this
system by nearly one order of magnitude. For the latter case of crystalline
graphite, our calculated thermal-conductivity values are in general agreement
with available experimental data [35], [36], [37] measured in the basal plane
of highest-purity synthetic graphite, which are also reproduced in the fig-
ure. We would like to note that experimental data suggest that the thermal
conductivity in the basal plane of graphite peaks near 100 K, similar to our
nanotube results.

Fig. 8.12. Thermal conductivity κ for a (10, 10) carbon nanotube (solid line) in
comparison to a constrained graphite monolayer (dash-dotted line) and the basal
plane of AA graphite (dotted line) at temperatures between 200K and 400K. The
inset reproduces the graphite data on an expanded scale. The calculated values are
compared to the experimental data of [35] (open circles), [36] (open diamonds), and
[37] (open squares) for graphite. (Reproduced from [33])
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Based on the described difference in the conductivity between a graphene
monolayer and graphite, we should expect a similar reduction of the ther-
mal conductivity when a nanotube is brought into contact with other sys-
tems. This should occur when nanotubes form a bundle or rope or interact
with other nanotubes in the “nanotube mat” of “bucky-paper” and could
be verified experimentally. Consistent with our conjecture is the low value of
κ ≈ 0.7 W/m · K reported for the bulk nanotube mat at room temperature
[15], [38].

In summary, we combined results of equilibrium and nonequilibrium mole-
cular dynamics simulations with accurate carbon potentials to determine the
thermal conductivity κ of carbon nanotubes and its dependence on temper-
ature. Our results suggest an unusually high value κ ≈ 6, 600 W/m · K for an
isolated (10,10) nanotube at room temperature, comparable to the thermal
conductivity of a hypothetical isolated graphite monolayer or graphene. We
believe that these high values of κ are associated with the large phonon mean
free paths in these systems. Our numerical data indicate that in the presence
of interlayer coupling in graphite and related systems, the thermal conduc-
tivity is reduced significantly to fall into the experimentally observed value
range.

8.3 Experiments of Thermal Conduction in
Carbon Nanotubes

In the previous section, we discussed theoretical prediction of unusually high
thermal conductivity in nanotubes. In this section we discuss the experimental
results of thermal conductivity in these materials. Experimentally, carbon-
based materials, such as diamond and graphite (in-plane), have exhibited the
highest measured thermal conductivity among the known materials at mod-
erate temperatures [39]. The measured value of thermal conductivity of high-
quality, 99.9% isotope-free diamond has been recorded up to 40,000 W/mK at
77 K and ∼3,000 at room temperature [5]. The in-plane thermal conductivity
of graphite is very high: the values of room-temperature thermal conductivity
obtained from single crystals and highly oriented pryolytic graphite (HOPG)
were reported above 2000 W/m K [40]. Similar to graphite single crystals, a
careful study on the axial thermal conductivity of vapor-grown graphite fibers
with high-temperature heat treatments (∼3000◦C) shows that the high ther-
mal conductivity is closely related to the degree of graphitization, that is, the
reduction of the grain-boundary density in the samples [41].

The thermal conduction is largely dominated by the phonon contribution
in graphite. The electrical conduction is much poorer than that of most met-
als due to the semimetallic nature of the electron band structure of graphite
with greatly reduced carrier density near the Fermi level. On the other hand,
the stiff carbon-carbon bonds in graphitized planes increase the speed of
sound, and thus, the phonon conduction in the graphite is greatly enhanced.
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The thermal conductivity contributed by electrons, κel, can be estimated
experimentally using the Wiedemann-Franz law:

κel

σT
= L0, (8.31)

where σ is the electrical conductivity and L0 is the Lorenz number, L0 =
2.45 × 10−8 (V/K)2. In graphite single crystals, it has been found from the
thermal- and electrical-conductivity measurements that the phonon contri-
bution of the thermal conductivity, κph, dominates κel and thus κ ≈ κph for
T > 20 K [40].

The discovery of carbon nanotubes [3] has led speculation that this new
class of 1D materials could have a thermal conductivity greater than that
of graphite due to the long-range crystalline order without boundaries and
suppression of phonon-phonon scattering in one dimension [42]. The initi-
ally experimental efforts to measure the thermal conductivity of nanotubes
have focused on the “bulk” measurements using milimeter-sized mats of
nanotubes. The experiments on MWNTs [43] and SWNTs [15] showed the
low-dimensional nature of the phonon conduction in these materials. How-
ever, the absolute value of the measured thermal conductivity of these bulk
samples were two orders of magnitude smaller than theoretically expected
values. Later, the improvement in sample preparation was made by aligning
nanotubes using a high magnetic field. The measurements of these aligned
nanotube samples showed a greatly enhanced measured thermal conductivity
in these macroscopic samples allowing the heat flows preferentially along the
tubes. Very recently, the group that one of the authors worked with demon-
strated mesoscopic thermal conductivity measurements that probed the ther-
mal conductivity of a single isolated MWNT. These results showed that the
experimentally measured thermal conductivity of nanotubes is approaching
the theoretical predictions as discussed in the previous section [16]. In this sec-
tion, we discuss briefly the previous bulk thermal-conductivity measurements
and then the details of the method and results of the mesoscopic thermal-
transport measurements.

8.3.1 Bulk Thermal-Conductivity Measurements of
Carbon Nanotubes

In bulk thermal-conductivity measurements of nanotubes, milimeter-sized mat
samples are used in a conventional DC measurement setup with differential
thermocouples of Ac 3ω method using self-heating of samples. Usually these
bulk samples consist of networks of tightly packed nanotube bundles. The
filling factor of the sample volume is one of the important factors in the
estimation of thermal conductivity from a measured thermal conductance of
the samples. Due to the large uncertainty in this filling factor estimation, it is
often difficult to obtain the absolute values of the thermal conductivity of the
bulk sample accurately. However, the temperature dependence is expected to
be less affected by the uncertainty in the filling factor estimation.
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The first thermal-conductivity measurements on bulk MWNTs samples
were reported by Yi et al. [43] using the MWNTs synthesized by a chemical
vapor deposition (CVD) method [44]. The sample consists of the MWNT’s
diameter ranges 20–40 nm, which correspond to 10–30 graphene walls along
the tube axis. A self-heating 3ω method was used in this experiment to mea-
sure the thermal diffusivity and specific heat simultaneously. The thermal
conductivity was estimated from these quantities considering the filling factor
and the density of the sample. Figure 8.13 shows the resulting thermal conduc-
tivity of MWNT samples from 4 to 300 K. In the entire temperature range,
the measured thermal conductivity, κ(T ), increases monotonically without
any signature of saturation. The room-temperature thermal conductivity is
∼25 W/mK, which is much smaller than the theoretically predicted values.

It is interesting to compare κ(T ) obtained from this bulk MWNT measure-
ment with κ(T ) observed in graphite fibers. In highly graphitic fibers, κ(T ) fol-
lows a T 2.3 temperature dependence until T < 100 K then begins to decrease
with increasing T above ∼150 K [41]. The decrease in κ(T ) above 150 K is due
to the onset of phonon-phonon Umklapp scattering. The Umklapp process be-
comes more effective with increasing temperature as higher-energy phonons
are thermally populated. In less graphitic, and thus more disordered, fibers,
however, the magnitude of κ is significantly lower and the Umklapp peak in
κ(T ) is absent [41]. This drastic change of κ(T ) in disordered graphite fiber
indicates that the Umklapp phonon scattering is much less important than the
grain-boundary phonon scattering in the disordered samples. In the MWNT
experiments discussed here, the behavior of κ(T ) resembles that of disordered
graphitic fibers. The room-temperature thermal conductivity is smaller than
that of the disordered graphitic fibers, and κ(T ) does not exhibit a peak due
to Umklapp scattering; both properties are consistent with phonon scattering
dominantly by the disorders in the samples.

Fig. 8.13. Measured thermal conductivity of MWNTs mat samples at deferent
temperatures. Solid line is fit by a T 2 curve up to 120 K. (Reproduced from [43])



8 Unusually High Thermal Conductivity in Carbon Nanotubes 249

Unlike these similarities in the high-temperature regime, the
low-temperature behavior of κ(T ) observed in these bulk measurements is
different from that of graphite fibers. At low temperatures (T < 100 K), κ(T )
of the MWNTs increases as ∼T 2 (solid line in Fig. 8.13) as opposed to ∼T 2.3

in graphite. One possible explanation for this difference in low-temperature
behavior of κ(T ) is that the 2D nature of phonon conduction plays an im-
portant role in MWNTs. Because the thermal contacts between the MWNTs
are only made through the outermost walls (thermal conduction is relatively
poor across shells), only the outermost walls of MWNTs can contribute to
the thermal-conductivity measurements. Because of the large diameter of
MWNTs, phonons in the outermost walls essentially behave like a 2D phonon
system. If this interpretation is correct, the magnitude of axial thermal con-
ductivity of MWNTs can be much larger than the measured κ(T ). We discuss
this interesting dimensional cross over in MWNT phonon transport later in
this section in connection with the recent mesoscopic measurements.

We now discuss the experimental thermal conductivity of SWNT bulk
samples. Compared to the MWNT mat samples, much effort has been made
in SWNTs to improve the bulk sample quality for thermal transport mea-
surements. Hone et al. first reported the measured thermal conductivity in
an unaligned mat sample that consists of ropes of SWNTs average diam-
eter 1.4 nm [15]. Later, Hone et al. reported much improved results using
aligned SWNTs samples [45]. In the latter experiment, the SWNT ropes
in the sample were aligned by a suspension deposition in a high magnetic
field, followed by annealing the samples at 1200◦C to help the tight packing
of SWNT ropes in the sample. The very high density samples (about half
the crystallographic value) were obtained in this method. A comparative DC
technique and an AC self-heating method were used in low-temperature (10–
300 K) and high-temperature (300–400 K) ranges, respectively. Figure 8.14
compares of measured thermal conductivity of these aligned and unaligned
samples. The thermal conductivity, κ(T ), was measured along the aligning
axis for the aligned sample. Although the temperature dependence of κ(T )
is similar for both 1.4-nm-diameter SWNT samples, the magnitude of κ(T )
is very sensitive to the disorderness of samples. In unaligned disordered sam-
ples, the room-temperature thermal conductivity is only ∼35 W/m K, while
the aligned and less disordered sample shows the thermal conductivity higher
than 200 W/m K. This observation implies that the numerous junctions in
nanotubes mat are the dominant thermal resistance source for the bulk ther-
mal conductivity measurements. At room temperature, κ(T ) of the aligned
SWNT sample is still an order of magnitude smaller than that of diamond or
graphite (in-plane). Above 300 K, κ(T ) increases slowly and then levels off
near 400 K. Graphite and diamond, on the other hand, show a decreasing κ(T )
with increasing temperature above ∼150 K due to phonon-phonon Umklapp
scattering, as we discussed earlier.

This absence of the Umklapp scattering peaks in κ(T ) of SWNTs ropes
implies that the dominant phonon-scattering source in a rope of SWNTs is
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Fig. 8.14. Thermal conductivity of the aligned and unaligned SWNT bulk samples.
The thermal conductivity was measured parallel to tube direction for the aligned
sample. (Reproduced from [45])

defects or boundary-scattering-related mechanism rather than phonon-phonon
interaction. Although an isolated SWNT does not have a boundary that
a phonon can scatter off, a rope of SWNT has its boundary that a long
wavelength phonon can scatter off. In addition, the restricted geometry of
the SWNTs may also affect the Umklapp scattering process. In 1D systems,
Umklapp scattering is expected to be suppressed due to the low availability of
appropriate phonons for conservation of energy and wave vector [46]. This
inherent suppression of phonon-phonon scattering in one dimension can be the
alternative explanation of the observed absence of Umklapp scattering peak in
κ(T ). More quantitative work should elucidate this important issue, extend-
ing this measurement to higher temperatures and using SWNT bulk samples
with different diameters and disorderness.

The low-temperature behavior of κ(T ) of SWNT samples deserves more
attention. As highlighted in Fig. 8.15, κ(T ) of SWNT bulk samples shows
a linear temperature dependence below ∼35 K. This linear T dependence of
κ(T ) at low temperature reflects the 1D phonon band structure of individual
SWNTs [47]. At low temperatures, only the four acoustic phonon modes are
thermally populated, while at slightly higher temperatures the lowest zone-
folded phonon subband begins to be populated [11]. κ(T ) can be modeled
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Fig. 8.15. Temperature-dependent thermal conductivity of SWNTs at low-
temperature regime. The linear broken line represents the contribution from the
acoustic band, and the quadratic dotted line corresponds to the contribution from
the first subband in the two- band model (see text for details). The solid line is the
sum of the two contributions compared to the measurements (circles). (Reproduced
from [47])

using a simplified two-band model, considering only an averaged single acous-
tic band and one zone-folded subband. In a simple zone-folding picture, the
acoustic band has a dispersion relation ω = vk and the first subband has dis-
persion relation ω2 = v2k2 + ω2

0 , where w0 = v/R, and R and v are the radius
and sound velocity of the sample, respectively. The thermal conductivity from
each band can then be estimated using these dispersion relations [47]. The
solid line in Fig. 8.15 shows a fit with this two-band model with the parameters
v and �ω0/kB chosen to be 20 km/s and 35 K, respectively [47]. These choices
are within a reasonable range considering that the sound speed of two acous-
tic modes in nanotubes are 15 km/s (twist mode) and 24 km/s (longitudinal
mode) [11]. Note that in this model, the contribution from the lowest optical
subband freezes out at temperatures below ∼35 K as indicated by the dotted
line in the figure. Below this temperature, κ(T ) shows a linear T dependence.
A similar linear T dependence of κ(T ) was observed in micromachined silicon
nitride membrane at very low temperatures (<0.6 K) and has been interpreted
as the signature of the quantization of phonon thermal conductance in a 1D
system [48]. Although the absolute value of κ(T ) of an individual SWNT was
not obtained in the bulk measurements, qualitatively, this linear T behavior
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Fig. 8.16. Enhancement in thermal conductivity relative to pristine epoxy as a
function of SWNT and vapor-grown carbon fiber (VGCF) loading. (Reproduced
from [49])

of the SWNTs κ(T ) below 35 K strongly suggests that the phonon conduction
may be quantized in SWNTs. Extremely restricted phonon-transport channels
and absence of the boundary scattering make such quantization occur at rela-
tively elevated temperatures in SWNTs. Thermal-conductance measurement
on an isolated SWNT should address this interesting problem in the future.

In addition, SWNTs were used to augment the thermal-transport pro-
perties of industrial epoxy [49]. Figure 8.16 shows the thermal conductivity
enhancement in this SWNT-epoxy composite material. Epoxy matrixes loaded
with 1 wt% SWNTs show a 70% increase in thermal conductivity at 40 K,
rising to 125% at room temperature (squares). As shown in the same graph
for a comparison, the enhancement due to 1 wt% loading of vapor-grown
carbon fibers is three times smaller (circles). These results suggest that the
thermal-conduction properties of epoxy composites are significantly enhanced
by optimally introduced highly thermal-conductive nanotubes into the epoxy
matrix, and SWNTs are much more effective for this than larger-diameter
carbon fibers.

8.3.2 Experimental Method for the Mesoscopic Thermal
Transport Measurement

Although the previously mentioned bulk studies have provided a qualitative
understanding of the thermal properties of these materials, there are signif-
icant disadvantages to these macroscopic measurements for understanding
intrinsic thermal properties of a single nanotube. One problem is that these
measurements yield an ensemble average over the different tubes in a sample.
Moreover, in thermal-conductivity measurements, it is difficult to extract
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absolute values for these quantities due to the presence of numerous tube-
tube junctions. These junctions are in fact the dominant barriers for thermal
transport in a mat of nanotubes. Most importantly, it is only at the mesoscopic
scales where one can study the quantum limit of energy (thermal) transport.
In this regard, the mesoscopic thermal-transport measurements are neces-
sary to elucidate the intrinsic thermal properties of nanotubes. Thanks to the
advances of modern semiconductor process technology, such mesoscopic
experiments on semiconducting devices have been recently demonstrated [48].
Inspired by this work and using novel hybridized synthesis techniques in com-
bination with semiconductor device fabrication techniques, one of the authors
recently demonstrated mesoscopic thermal transport in carbon nanotubes [16].
In this subsection, we discuss this novel method, which allows us to probe the
thermal-transport properties of nanotubes at mesoscopic scales.

For small-signal thermal-transport measurements, AC thermal transient
techniques, such as the self-heated 3ω method [43], [50] are often used to
enhance measurement precision. In these methods, an AC heating current with
a frequency ω is applied to generate an oscillating thermal energy flow at a
frequency 2ω in the sample. Because the propagation of the heat wave is
related to the thermal diffusivity and the thermal conductivity of the sample,
measuring this wave propagation as a function of ω will provide the values of
these quantities [43]. The measurement of the heat wave propagation can be
achieved by probing the amplitude and phase of the third-order harmonics
(3ω) in the heater voltage. This 3ω voltage fluctuation is caused by the
resistance change of the heater itself due to the 2ω fluctuation in temper-
ature. It has been successfully demonstrated that this AC 3ω method can
be used to measure the thermal conductivity of bulk nanotube samples [43],
[45]. However, it is difficult to apply this 3ω method directly to a mesoscale
measurement due to the limited dimension of samples. Especially, for indi-
vidual nanotubes with a usual length of 1–10µm, the required frequency to
observe the changes in amplitude and phase of heat-wave propagation is more
than 100 MHz. Such high frequency thermal-transport measurements are very
difficult to realize in a mesoscopic scale. Therefore, a conventional steady-state
measurement technique is suitable to probe the thermal conduction through
a nanotube at mesoscopic scales.

Figure 8.17 shows a schematic for the steady-state thermal- transport mea-
surements. A sample is clamped between the two thermal reservoirs at the
temperatures Th and Tc, respectively. Thermal energy is supplied from the
heat reservoir on the left side so that Th ≥ Tc. To measure the heat flow, Q,
through the sample, a calibration reference with a known thermal conduc-
tance, K0, is connected between the cold reservoir (Tc) and the heat sink at
temperature T0 (Tc > T0). The thermal conductance of the sample, Ks, is
obtained by Ks = K0(Th − Tc)/(Tc − T0). This simple experimental scheme
works only if: (1) all the heat flow through the sample flows through the
calibration reference, (2) Ks is not too small compared to K0. The latter con-
dition ensures that the measurement has a high enough signal-to-noise ratio.
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Fig. 8.17. Schematic for experimental setup of steady-state thermal-conductivity
measurements.

These two conditions put the following stringent requirements for the thermal
conduction measurements at mesoscopic scales. First, the device for measuring
temperatures and applying heat should be suspended and free from substrate
contact except through small but well-controlled thermal pathways. There-
fore, the experiment should be carried out under high vacuum to suppress the
residual gas conduction. The radiational heat loss at high temperature ranges
should also be considered carefully. These requirements reduce the parasite
heat loss from the thermal paths and allow the first condition to hold at
mesoscopic scales. For example, the thermal conductance due to residual gas
conduction of air, Kgas, is estimated from a simple kinetic theory:

Kgas ≈ 10−5 × P (torr) lc(µm)√
T/300K

Watt/K, (8.32)

where P is pressure and lc is the characteristic length scale of the mea-
suring device. For isolated nanotubes, we expect Ks � 10−7 Watt/K, while
lc ∼ 10 µm. Thus P  10−4 torr is required for room-temperature measure-
ments. For the thermal-transport measurements in the ultimate quantum
limit, Ks ∼ 10−12 Watt/K at 1 K [48], and hence P ∼ 10−9 torr is required.
On the other hand, the radiational heat loss, Krad, from the surface of the
mesoscopic sample is not significant compared to Kgas. Due to the greatly
reduced surface area in this mesoscopic measurement, Krad ≤ 10−13 Watt/K
even at 300 K for an isolated nanotube sample.

In addition, very thin and long bridges are required to suspend the heaters,
thermometers, and samples to achieve the condition Ks ∼ K0. For example, a
patterned silicon nitride strip with cross-sectional area 1 × 1 µm2 and length
200 µm provides K0 ∼ 10−7 Watt/K at room temperature, which is com-
patible for an isolated MWNT measurement (Ks ∼ 10−8 Watt/K), but still
too large for a single SWNT measurement (Ks ∼ 10−10 Watt/K). Further-
more, the metal lines that connect the heater lines and the thermometer
should be designed to meet the second condition, especially for low temper-
atures where electron thermal conduction becomes important compared to
the phonon counterpart. For extremely low-level signal measurements, such
as the quantized thermal-conductance experiment (K0 ∼ 10−13 Watt/K),
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superconducting leads that completely remove the electronic thermal con-
duction should be used [48].

Thanks to the advances MEMS technology, the aforementioned suspended
devices for the mesoscopic thermal-transport measurement are possible.
Recent work on the thermal-conductivity measurement in an isolated MWNT
used this advantage [16]. In this experiment, suspended structures were
fabricated on a silicon nitride/silicon oxide/silicon multilayer substrate. A low-
stress silicon nitride 0.5-µm-thick layer and a 10-µm-thick silicon
oxide layer were grown on a silicon wafer by the CVD method. The microscopic
Pt/Cr heaters, thermometers, and lead lines were fabricated by electron beam
lithography. After fabricating metallic structures, the silicon nitride layer was
patterned by photolithography followed by a reactive ion etching that anisotro-
pically etches away exposed silicon nitride layer. In the final step, the silicon
oxide sacrificial layer is etched away by HF wet etching, followed by a critical
point-drying process. The resulting microdevices were suspended 10µm above
the underlying silicon substrate.

Figure 8.18 shows a representative device, including two 10-µm × 10-µm
adjacent silicon nitride membrane (0.5-µm-thick) islands suspended with 200-
µm-long silicon nitride beams. On each island, a Pt/Cr thin film resistor,

Fig. 8.18. A large-scale scanning electron microscopy (SEM) image of a micro-
fabricated suspended device. Two independent islands are suspended by three sets of
250-µm-long silicon-nitride legs with Pt/Cr lines that connect the microthermometer
on the islands to the bonding pads. The scale bar represents 100 µm. The inset shows
an enlarged central part of the suspended islands with the micro resistors. The scale
bar represents 1 µm. (Reproduced from [16])
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fabricated by electron beam lithography, serves as a heater to increase the
temperature of the suspended island. These resistors are electrically connected
to contact pads by the metal lines on the suspending legs. Because the resis-
tance of the Pt/Cr resistor changes with temperature, they also serve as a
thermometer to measure the temperature of each island.

Once such suspended devices are fabricated, the mesoscopic thermal trans-
port in nanotubes and nanowires can be probed as described later. The meso-
scopic sized samples are placed on the device and form a thermal path between
two suspended islands that are otherwise thermally isolated from each other.
Figure 8.19 shows a simple schematic for the heat transfer in such a hybrid
device. The islands with heater resistor, Rh, and temperature sensor resistor,
Rs, are suspended by beams with the total thermal conductance Kd for each
island. A bias voltage applied to one of the heater resistors, Rh, creates Joule
heat and increases the temperature, Th, of the heater island from the thermal
bath temperature T0. Under steady state, there is heat transfer to the other
island through the sample with the thermal conductance of the connecting
sample, Ks, and thus the temperature, Ts, of the resistor Rs also rises. One
can use a linear heat-transfer model to extract Ks and Kd, from the relations
of the temperature increases as a function applied to heating power, W :

Th = T0 +
Kd + Ks

Kd(Kd + 2Ks)
W ; Ts = T0 +

Ks

Kd(Kd + 2Ks)
W. (8.33)

It is worth noting that in the derivation of this equation we assumed that
each suspended island is in thermal equilibrium at temperature Th and Ts,
respectively. This assumption is valid for Ks < Kd, which generally holds for
most nanoscale material measurements we discuss.

These suspended structures have been used to measure the thermal
conductivity and thermoelectric power of nanotubes [16] and nanowires [51].
Mechanical manipulation similar to that used for the fabrication of nanotube
scanning probe microscopy tips [52] has been used to place nanotubes and
nanowires on the desired part of the device. This approach routinely produces
a MEMS-nanotube/nanowire hybrid device that can be used to measure the

Fig. 8.19. Schematic heat-flow model of the suspended device with a sample across
the two islands.
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Fig. 8.20. The change of resistance of the heater resistor (Rh) and sensor resistor
(Rs) as a function of the applied power to the heater resistor with a silicon nanowire
bridging the two islands. The inset shows a detailed SEM image of the device. The
scale bar represents 1 µm.

thermal conductivity and thermoelectric power of the bridging nanomaterials.
Shown in the upper panel of Fig. 8.20 is an example of such a device with
a silicon nanowire. The silicon nanowire with a diameter ∼50 nm is bridging
the two suspended islands with microfabricated heaters (inset). The graph
shows the temperature changes of each suspended island connected by this
nanowire as a function W at room temperature. From the slopes of Rs and
Rh versus W , Ks and Kd at temperature T0 can be computed using Eq. 8.33.
By measuring the samples diameters and length, the thermal conductivity of
the sample can be estimated at different temperatures.

8.3.3 Thermal Conductivity of Multiwalled Nanotubes

In this subsection, we discuss the experimental results of mesoscopic thermal
conductance measurement of MWNTs using the suspended devices described
in the previous subsection. The thermal conductivities of small bundles of
MWNTs and an isolated MWNT sample are presented.

Figure 8.21 displays the image of the MEMS-nanotube hybrid device that
was used for the thermal conductance measurement of a single MWNT. The
MWNT in this device has a 14-nm diameter and a 2.5-µm length of the
bridging segment. The thermal conductance, Ks, was measured as described
in the previous section in the temperature range 8–370 K. Below 8 K, both Rs

and Rh become saturated due to the impurity scattering in Pt/Cr resistors
and cannot be used for a temperature sensor. To ensure that the measurement
remains in the linear response regime, W was limited to make Th − T0 < 1 K
during the measurement. The measured Ks increases by several orders of
magnitude as the temperature is raised, reaching a maximum of approximately
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Fig. 8.21. SEM image of the suspended islands with a bridging individual MWNT.
The diameter of the MWNT is 14 nm. The inset shows the top view of the device.
The scale bar represents 10 µm.

1.6 × 10−7 W/K near room temperature before decreasing again at higher
temperatures.

This measured thermal conductance includes the thermal conductance of
the junction between the MWNT and the suspended islands in addition to the
intrinsic thermal conductance of the MWNT itself. From a study of scanning
thermal microscopy on a self-heated MWNT, the thermal conductance of the
nanotube-electrode junction at room temperature was estimated; the heat-
flow rate from a unit length of the tube to metal electrode at a given unit
junction temperature difference was found to be ∼0.5 W/m K. Considering
the contact length of the MWNT to the electrodes on the islands is ∼1 µm,
the junction thermal conductance is ∼5 × 10−7 W/K at room temperature.
Because the total measured thermal conductance is 1.6 × 10−7 W/K, this sug-
gests that the intrinsic thermal conductance of the tube is the major part of
the measured thermal conductance.

To estimate thermal conductivity from the measured thermal conduc-
tance, we have to consider the geometric factors of the MWNT and the
anisotropic nature of thermal conductivity. The outer walls of the MWNT
that make good thermal contacts to a thermal bath contribute more in ther-
mal transport than the inner walls, and the ratio of axial to radial thermal
conductivity may influence the conversion of thermal conductance to ther-
mal conductivity. Although the anisotropic electronic transport in MWNTs
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has been studied recently [54], the anisotropic nature of thermal transport in
MWNTs has not been studied to date. Without knowing this anisotropic ratio
of MWNT thermal conductivity, it would be the first-order approximation to
estimate the averaged thermal conductivity, assuming a solid isotropic mate-
rial to consider geometric factors. This simplification implies that the thermal
conductivity estimated in this work is a lower bound of the intrinsic axial
thermal conductivity of an MWNT. Further study to analyze the contribu-
tion of individual layers of MWNTs in the thermal transport should elucidate
this important issue in the future. Another major factor of uncertainty to
determine the thermal conductivity arises from the uncertainty in diameter
measurement. A high-resolution SEM was used to determine the diameter of
the MWNT in this device. For MWNTs with ∼10 nm diameter, the resulting
uncertainty in thermal conductivity can be as high as 50% of the estimated
value.

Shown in Fig. 8.22 is the temperature-dependent thermal conductivity,
κ(T ), of the isolated MWNT in Fig. 8.21. This result shows remarkable dif-
ferences from the previous “bulk” measurements as described here. First, the
room-temperature value of κ(T ) is greater than 3000 W/m K, whereas the

Fig. 8.22. The thermal conductance of an individual MWNT of 14-nm diameter.
The solid lines represent linear fits of the data in a logarithmic scale at different
temperature ranges. The slopes of the line fits are 2.50 and 2.01, respectively.
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previous “bulk” measurement on an MWNT mat using the 3ω method esti-
mated only 20 W/m K [42]. Note that our observed value is also an order of
magnitude higher than that of aligned SWNT samples (250 W/m K) [44] but
comparable to the theoretical expectation, 6000 W/m K as described in the
previous section. This large difference between single-tube and “bulk” mea-
surements suggests that numerous highly resistive thermal junctions between
the tubes largely dominate the thermal transport in mat samples. Second,
κ(T ) shows interesting temperature-dependent behavior that was absent in
“bulk” measurement. As shown in this log-log plot, at low temperatures,
8 K < T <50 K, κ(T ) increases following a power law with exponent 2.50.
In the intermediate temperature range (50 K< T < 150 K), κ(T ) increases
almost quadratically in T (i.e., κ(T ) ∼ T 2). Above this temperature range,
κ(T ) deviates from quadratic temperature dependence and has a peak at
320 K. Beyond this peak, κ(T ) decreases rapidly.

This observed behavior of the thermal conductivity can be understood by
considering the dimensionality changes in the MWNT phonon system and
Umklapp phonon scattering. In a simple model, the phonon thermal conduc-
tivity can be written as

κ =
∑

p

Cpvplp, (8.34)

where Cp, vp, and lp are the specific heat capacity, phonon group velocity,
and mean free path of phonon mode p, respectively. The phonon mean free
path consists of two contributions—l−1 = l−1

st + l−1
um, where lst and lum are

static and Umklapp scattering length, respectively. At low temperatures, the
Umklapp scattering freezes out, l = lst, and thus κ(T ) simply follows the tem-
perature dependence of Cps. For MWNTs, below the Debye temperature of
interlayer phonon mode, Θ⊥, κ(T ) has a slight three-dimensional nature, and
κ(T ) ∼ T 2.5 as observed in graphite single crystals [40]. As T > Θ⊥, the inter-
layer phonon modes are fully occupied, and κ(T ) ∼ T 2, indicative of the 2D
nature of thermal conduction in an MWNT. From this cross-over behavior of
κ(T ), we estimate Θ⊥ = 50 K. This value is comparable to the value obtained
by a measurement of specific heat of MWNT [43]. At very low temperatures,
one should expect that the phonon transport is quantized as was observed
in [48]. The thermal effects of 1D phonon quantization in a nanotube should
be measurable as T < T1D = hv/kBR, where h is the Plank constant, kB is
the Boltzman constant, and R is diameter of the nanotube. For an MWNT
with 10-nm diameter, however, T1D is estimated to be ∼3 K, which is the
temperature range in which the experiments could not be carried out. Above
this temperature, phonon transport in an MWNT essentially behaves like in
a 2D graphene sheet as we discussed earlier.

As T increases, the strong phonon-phonon Umklapp scattering becomes
more effective as higher energy phonons are thermally populated. Once
lst > lum, κ(T ) decreases as T increase due to rapidly decreasing lum. At
the peak value of κ(T ), where lst ∼ lum (T = 320 K), we can estimate the
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T -independent lst ∼ 500 nm for the MWNT using Eq. (8.34). Note that this
value is an order of magnitude higher than previous estimations from “bulk”
measurements [44] and is comparable to the length of the measured MWNT
(2.5µm). Thus, below room temperature where the phonon-phonon Umklapp
scattering is minimal, phonons have only a few scattering events between the
thermal reservoirs, and the phonon transport is nearly ballistic. This remark-
able behavior was not seen in the bulk experiments, possibly due to additional
extrinsic phonon-scattering mechanisms such as tube-tube interactions.

It is also interesting to estimate the electrical contribution of thermal con-
ductivity experimentally, κel, using the Wiedemann–Franz law. The measured
electrical resistance of the MWNT is ∼35 kΩ, and thus, κel/κ ∼ 10−3 at room
temperature. This ratio is found to be even smaller at lower temperatures.
Therefore, the thermal transport is completely dominant in all temperature
ranges in nanotubes.

Finally, we discuss the diameter-dependent effects in κ(T ) of MWNT
bundles. In most materials, decreasing size of the sample increases the surface-
to-volume ratio and thus increases the phonon-scattering rate by the surface
boundary. This effect is clearly shown in Fig. 8.23(a), which displays mea-
sured κ(T ) of silicon nanowires with different diameters [51]. As the diameter
of silicon nanowire decreases, κ(T ) decreases drastically. This result clearly
demonstrates the suppression of phonon transport due to the increased
boundary scattering in small-diameter nanowires. The size dependent effect is
completely opposite in the nanotube samples. Figure 8.23(b) displays the
measured κ(T ) of MWNT bundles with different diameters. Surprisingly, κ(T )
increases as the diameter of the bundle decreases, as opposed to the silicon
nanowire example. This interesting behavior arises from the peculiar geometry
of nanotubes. Unlike nanowires, nanotubes have no boundary at the surface.
A seamless graphitized wall of nanotubes provides phonon transport along the

Fig. 8.23. (a) Thermal conductivity of silicon nanowires with different diameters.
(Reproduced from [51]); (b) thermal conductivity of MWNT bundles with different
diameters. (Reproduced from [16])
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tube axis without phonon boundary scattering caused by “surface”. Bundling
individual nanotubes, on the other hand, creates a new phonon-scattering
source by the intertube interaction and reduces the thermal conduction in
the sample. Indeed, this experimental observation strongly suggests that the
thermal conductivity of an SWNT might be even higher than that of an
MWNT due to the absence of intershell phonon scattering as proposed by the
theory in the previous section.

8.4 Summary and Future Work

We have presented both theoretical and experimental studies of thermal
conduction in carbon nanotubes. The molecular dynamic simulations sug-
gest a thermal conductivity of SWNTs up to 6600 W/mK at room temper-
ature. This unusually high thermal conductivity of nanotubes is associated
with the large phonon mean free paths in these systems. The mesoscopoic
experimental study in MWNTs indeed confirms this theoretical expectation,
showing that the measured values are of the same orders of magnitude. The
observed thermal conductivity of an MWNT is more than 3000 W/m K at
room temperature and the phonon mean free path is ∼500 nm. The tempera-
ture dependence of the thermal conductivity shows a peak at 320 K due to the
onset of Umklapp phonon scattering. This observation strongly suggest that
the phonon Umklapp process might be suppressed in this system due to the
effectively reduced dimensionality. Although the theoretically predicted ther-
mal conductivity of SWNTs is in good agreement with the experimentally
measured value on MWNTs, we will perform more realistic theoretical cal-
culations on MWNTs to understand some different features on the tempera-
ture dependence of thermal conductivity observed between calculations and
measurements.

Of particular interest are mesoscopic thermal-transport measurements in
SWNTs. The quantization of the phonon degrees of freedom has been shown to
modify the heat capacity [45]. This quantization should lead to the thermal-
conductance quantization, as shown in other 1D phonon-transport systems
at low temperatures [48]. In addition, an extremely long phonon mean free
path is expected in an isolated single SWNT due to the absence of intershell
phonon scattering and further suppression of Umklapp process in this 1D
nanoscale system. Experiments attempting to measure these unique phenom-
ena in SWNTs are underway in one of the authors’ group.
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