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“Indeed, what is there that does not appear marvelous when it comes to our 
knowledge for the first time? How many things, too, are looked upon as quite 
impossible until they have been actually effected?” 

Pliny the Elder (23 AD - 79 AD), Natural History. 

“Let us suppose that an ichthyologist is exploring the life of the ocean. He casts a 
net into the water and brings up a fishy assortment. Surveying his catch, he 
proceeds in the usual manner of a scientist to systematise what it reveals. He arrives 
at two generalisations: 
(1) No sea-creature is less than two inches long. 
(2) All sea-creatures have gills. 
These are both true of his catch, and he assumes tentatively that they will remain 
true however often he repeats it.  

In applying this analogy, the catch stands for the body of knowledge which 
constitutes physical science, and the net for the sensory and intellectual equipment 
which we use in obtaining it. The casting of the net corresponds to observation; for 
knowledge which has not been or could not be obtained by observation is not 
admitted into physical science.  

An onlooker may object that the first generalisation is wrong. "There are plenty of 
sea-creatures under two inches long, only your net is not adapted to catch them." 
The icthyologist dismisses this objection contemptuously. "Anything uncatchable 
by my net is ipso facto outside the scope of icthyological knowledge. In short, 
"what my net can't catch isn't fish." Or--to translate the analogy--"If you are not 
simply guessing, you are claiming a knowledge of the physical universe discovered 
in some other way than by the methods of physical science, and admittedly 
unverifiable by such methods. You are a metaphysician. Bah!” 

Sir Arthur Eddington (1882-1944), The Philosophy of Physical Science, Ann Arbor 
Paperbacks, The University of Michigan Press, 1958, p. 16.  



Contents

Contributors

Foreword: The Age of Applied Stratigraphy

Acknowledgements

PART I: EVOLUTION OF A CONCEPT

1 Stratigraphy: Evolution of a Concept 3
Eduardo A. M. Koutsoukos

PART II: THE SEARCH FOR PATTERNS: ORDERING 
THE FRAMEWORK

2 Buried Time: Chronostratigraphy as a Research Tool 23
Marie-Pierre Aubry and John A. Van Couvering

3 Ecostratigraphy’s Basis, using Silurian and Devonian Examples,
with Consideration of the Biogeographic Complication 55
Arthur J. Boucot

4 Devonian Palynostratigraphy in Western Gondwana 73
Stanislas Loboziak, José Henrique G. Melo and Maurice Streel

5 Carboniferous and Permian Palynostratigraphy 101
Geoffrey Playford and Rodolfo Dino

6 Biostratigraphy of the Non-Marine Triassic: Is a Global 
Correlation Based on Tetrapod Faunas Possible? 123
Cesar L. Schultz

7 The K–T Boundary 147
Eduardo A. M. Koutsoukos

PART III: THE SEARCH FOR CLUES: ANALYZING 
AND SEQUENCING THE RECORD

8 Chemostratigraphy 165
René Rodrigues

9 Paleobotany and Paleoclimatology 
Part I: Growth Rings in Fossil Woods and Paleoclimates 
Laureen Sally da Rosa Alves and Margot Guerra-Sommer
Part II: Leaf Assemblages (Taphonomy, Paleoclimatology 
and Paleogeography) 179
Tânia Lindner Dutra

vii

ix

xi

xv

xvii

Aims & Scope Topics in Geobiology Book Series 



contents

10 Palynofacies Analysis and its Stratigraphic Application 203
David J. Batten and Darrin T. Stead

11 Sequence Biostratigraphy with Examples from the 
227

Hillary Clement Olson and Peter R. Thompson

12 Taphonomy – Overview of Main Concepts and Applications 
to Sequence Stratigraphic Analysis 249
Michael Holz and Marcello G. Simões

13 Significance of Ichnofossils to Applied Stratigraphy 279
S. George Pemberton and James A. MacEachern

14 Cyclostratigraphy 301
Martin A. Perlmutter and Nilo C. de Azambuja Filho

15 The Role and Value of “Biosteering” in Hydrocarbon 
Reservoir Exploitation 339
Robert W. Jones, Stephen Lowe, Paul Milner, Peter Heavey,
Simon Payne and David Ewen

PART IV: MODELLING THE RECORD

16 Quantitative Methods for Applied Microfossil Biostratigraphy 359
Felix M. Gradstein

References 387

Appendix: Color Version of Figures 463

Index 479

viii

Plio-Pleistocene and Quaternary



Aims & Scope Topics in Geobiology Book Series  

Topics in Geobiology series treats geobiology – the broad discipline that covers 
the history of life on Earth. The series aims for high quality, scholarly volumes of 
original research as well as broad reviews. Recent volumes have showcased a 
variety of organisms including cephalopods, corals, and rodents. They discuss the 
biology of these organisms – their ecology, phylogeny, and mode of life – and in 
addition, their fossil  record – their distribution in time and space.  

Other volumes are more theme based such as predator-prey relationships, skeletal 
mineralization, paleobiogeography, and approaches to high resolution stratigraphy, 
that cover a broad range of organisms. One theme that is at the heart of the series 
is the interplay between the history of life and the changing environment. This is 
treated in skeletal mineralization and how such skeletons record environmental 
signals and animal-sediment relationships in the marine environment.  

The series editors also welcome any comments or suggestions for future volumes. 

Series Editors:  
Douglas S. Jones dsjones@flmnh.ufl.edu
Neil H. Landman landman@amhn.org

ix



Contributors

Laureen Sally da Rosa Alves
Universidade do Estado do Rio de
Janeiro (UERJ)
Faculdade de Geologia
Departamento de Estratigrafia e
Paleontologia
Rua São Francisco Xavier,
524/4001-A
Maracanã
20559-900 Rio de Janeiro, RJ
Brazil

Marie-Pierre Aubry
Department of Geology
Rutgers State University of 
New Jersey
Piscataway NJ 00000
U.S.A.

Nilo Chagas de Azambuja Filho
PETROBRAS-CENPES
Cidade Universitária, Quadra 7
Ilha do Fundão
21949-900 Rio de Janeiro, RJ
Brazil

David J. Batten
Institute of Geography and Earth
Sciences
University of Wales
Aberystwyth SY23 3DB
U.K.

Arthur J. Boucot
Department of Zoology
Oregon State University
Corvallis, Oregon 97331-2914
U.S.A.

Rodolfo Dino
PETROBRAS-CENPES
Cidade Universitária, Quadra 7
Ilha do Fundão
21949-900 Rio de Janeiro, RJ
Brazil

Tania Lindner Dutra
Programa de Pos-Graduação 
Geologia – Unisinos
Av. Unisinos, 950
93022-000 , São Leopoldo, RS
Brazil

David Ewen
British Petroleum (BP)
Farburn Industrial Estate
Dyce, Aberdeen, AB21 7PB
U.K.

Felix M. Gradstein
Geology Museum
University of Oslo
N-0316 Oslo
Norway

Margot Guerra-Sommer
Universidade Federal do Rio Grande do
Sul (UFRGS)
Instituto de Geociências
Caixa Postal 15001
91501-570 Porto Alegre, RS
Brazil

Peter Heavey
British Petroleum (BP)
Godesetdalen 8
4065 Stavanger
Norway

xi



Michael Holz
Universidade Federal do Rio Grande do 
Sul (UFRGS)
Instituto de Geociências
Caixa Postal 15001
91501-570 Porto Alegre, RS
Brazil

Robert Wynn Jones
British Petroleum (BP)
Building H
Chertsey Road
Sunbury-on-Thames
Middlesex, TW16 7LN
U.K.

Eduardo A. M. Koutsoukos
PETROBRAS-CENPES
Cidade Universitária, Quadra 7
Ilha do Fundão
21949-900 Rio de Janeiro, RJ
Brazil

Stanislas Loboziak
(Deceased)
Ex Université des Sciences et 
Technologies de Lille (U.S.T.L.)
Sciences de la Terre
Villeneuve d’Ascq
France

Stephen Lowe
British Petroleum (BP)
Sunbury-on-Thames
Middlesex, TW16 7LN
U.K.

James A. MacEachern
Earth Sciences
Simon Fraser University,
Burnaby, British Columbia, V5A 1S6
Canada

José Henrique Gonçalves de Melo
PETROBRAS-CENPES
Cidade Universitária, Quadra 7
Ilha do Fundão
21949-900 Rio de Janeiro, RJ
Brazil

Paul Milner
British Petroleum (BP)
Godesetdalen 8
4065 Stavanger
Norway

Hilary Clement Olson
Institute for Geophysics
The University of Texas at Austin
4412 Spicewood Springs,
Bldg. 600
Austin, Texas, 78759
U.S.A.

Simon Payne
British Petroleum (BP)
Farburn Industrial Estate
Dyce, Aberdeen, AB21 7PB
U.K.

S. George Pemberton
Ichnology Research Group
Department of Earth & Atmospheric
Sciences
University of Alberta
Edmonton, Alberta T6G 2E3
Canada

Martin A. Perlmutter
ChevronTexaco Inc. 
Energy Technology Company
4800 Fournace Place
Bellaire, Texas 77401
U.S.A.

contributorsxii



Geoffrey Playford
Department of Earth Sciences/School of
Physical Sciences
University of Queensland
Brisbane 4072
Australia

René Rodrigues
Universidade do Estado do Rio de
Janeiro (UERJ)
Faculdade de Geologia
Rua São Francisco Xavier 524, Bloco A,
Sala 2016
Maracanã
20559–900 Rio de Janeiro, RJ
Brazil

Cesar Leandro Schultz
Universidade Federal do Rio Grande do 
Sul (UFRGS)
Instituto de Geociências
Caixa Postal 15001
91501-570 Porto Alegre, RS
Brazil

Marcello Guimarães Simões
Instituto de Biociências
Universidade Estadual Paulista 
(UNESP) – Botucatu
Caixa Postal 510
18618-000 Botucatu, SP
Brazil

Maurice Streel
Université de Liège
Services associés de Paléontologie,
Paléobotanique et Paléopalynologie,
Sart-Tilman, Bât. B 18,
B-4000 Liège
Belgique

Darrin T. Stead
Wellstrat Services Ltd
1 Castle Grange, Wrexham Road
Caergwrle, Wrexham LL12 9HL
U.K.

Peter R. Thompson
Computational Biochronology
P.O. Box 261039
Plano, Texas 75026
U.S.A.

John A. Van Couvering
Micropaleontology Press,
256 Fifth Ave.
New York, NY 10001
U.S.A.

contributors xiii



Foreword: The Age of Applied Stratigraphy

Few, if any, fundamental disciplines in the Earth Sciences have seen so many dramatic
changes and developments as stratigraphy. Its beginnings can be linked to the very
earliest human observations of Earth processes, and to philosophical enquires and
speculations about the nature of natural phenomena.

Nearly 200 years ago, William Smith studied fossils collected from successive
levels of sedimentary strata, and enunciated the first major principle of stratigraphy by
stating “the deeper, or lower, layers of rock must be older than the layers of rocks
which lie above them.” Subsequently, the discipline has come to be applied progres-
sively, and indispensably, to nearly all branches of the Earth Sciences: ranging among
such diverse studies as the meticulous investigation of archeological sites, the geolog-
ical evolution of sedimentary basins, the study of ancient ecosystems, and the origin
and evolution of life.

Applied stratigraphic researches have increased spectacularly during the last
decades of the 20th century, especially in response to intensive exploration and
exploitation of mineral- and hydrocarbon-bearing sedimentary sequences conducted
globally in both continental and marine settings. In particular, the past two decades
have witnessed a major renaissance in stratigraphy, through the integration of bios-
tratigraphy, magnetostratigraphy, isotope stratigraphy, and seismic-reflection data
within two entirely new disciplines, cyclostratigraphy and sequence stratigraphy.

Currently, at the beginning of the new millennium, international efforts are con-
centrating on the development of interactive, integrated stratigraphic databases that
are to be made readily accessible to the international geoscience community via the
internet. Such initiatives are vital steps in promoting global scientific cooperation,
coupled with the dissemination of well-defined stratigraphic standards. Moreover,
exciting opportunities and challenges for earth scientists will undoubtedly arise in
ensuing decades from as yet largely unforeseen or unrealized innovations and new
applications in cognate scientific fields.

This book aims to incorporate many of the major aspects and essential elements
underpinning the modern applications and perspectives of stratigraphy. It focuses on
traditional and innovative techniques and how these can be utilized in the reconstruc-
tion of the geological history of sedimentary basins and in solving manifold geological
problems and phenomena. Each chapter reviews the historical background; includes a
synopsis of study principles and methodology; and discusses recent developments and
significant applications. These sections are followed by selected case histories that
demonstrate the applications and efficacy of stratigraphic and related techniques.

Conceptually, the book consists of four parts. The introductory chapter (Evolution
of a Concept) provides a historical background to the breadth and diversity of strati-
graphic studies, whose roots lie at the very origin of all Earth Science. The second part
(The Search for Patterns: Ordering the Framework) commences with an overview of
chronostratigraphy as applied to the study of regionally extensive stratigraphic sections.

xv



The subsequent chapters review and elucidate current paleontological applications in
biochronostratigraphy, event stratigraphy, paleoenvironmental syntheses, and paleo-
biogeographic reconstructions of Phanerozoic marine and continental sedimentary
basins, thus providing insights into ancient ecosystems and their evolution through
geological time. The third part (The Search for Clues: Analyzing and Sequencing the
Record) presents comprehensive and authoritative surveys of diverse geoscience
disciplines applied to the analysis of the stratigraphic record, including correlation,
paleoclimatic and paleoenvironmental reconstructions, sequence stratigraphy, cyclo-
stratigraphy, and “biosteering.” The fourth part (Modelling the Record) discusses the
development of quantitative stratigraphy and graphic correlation techniques, both of
key importance to the refinement of chronostratigraphic frameworks as these pertain
to interactive stratigraphic databases and basin modelling.

Stratigraphy has evolved and matured to constitute the most multifaceted and
complex of disciplines within the Earth Sciences, with data deriving from and con-
tributing to an impressive array of geological and paleobiological researches, both
applied and “pure.” These include such endeavours as charting the course and com-
plexities of the evolution of life through time, understanding how ancient ecosystems
developed and operated, and furnishing data pivotal to strategic mineral exploration. It
is hoped that this book will provide the reader with key insights into all these aspects
and applications. Supplemental reading can be found in the extensive reference lists.

Rio de Janeiro
May 2004

Eduardo A. M. Koutsoukos

forewordxvi
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Chapter 1

Stratigraphy: Evolution of a Concept

EDUARDO A. M. KOUTSOUKOS
PETROBRAS-CENPES, Cidade Universitária, Quadra 7, Ilha do Fundão,
21949-900 Rio de Janeiro, RJ, Brazil.
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and Cyclostratigraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.9 Chemostratigraphy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.10 Isotope Stratigraphy (Sr, C, O)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Future Perspectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 Introduction

Stratigraphy, from the Latin stratum and the Greek graphia, is the study of rock
successions and the correlation of geological events and processes in time and space.
It is a fundamental science of all geological studies, allowing to reconstruct the

Stratigraphy is a science as old as philosophy itself, originated with the early obser-
vations by the ancients of Earth’s natural phenomena and their philosophical specula-
tions on the nature of Earth’s structure and processes. From Central Asia to Greece, to
Egypt, different views were adopted among the various ancient civilizations according
to their individual perception of the natural world, and tied to the prevailing religious

3
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sequence of events of Earth history, and the evolution of life on Earth.
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and philosophical doctrines and myths. The Chinese regarded the Earth as eternal and
immutable; to the Indians it changed according to infinite cycles of creation of the
universe. To the Western cultures, particularly the Greeks, the Earth was continuously
changing over time, and its processes were controlled by natural laws. In that scenario
powerful enquiring minds established the foundations of the scientific method of inves-
tigation by careful observation of the physical world and related natural phenonema,
and tended to treat scientific theories as extensions of philosophy.

1.2 The Ancient Greeks and Romans: The Naturalism

The major contribution of the early observations made by the ancient Ionian philoso-
phers on the Earth’s structure and processes is that they were attributed to natural phe-
nomena and not to supernatural causes. However, many of the ideas expressed by the
ancients on the natural history of the Earth were not to resurface until the Renaissance.

The term “fossil” comes from the ancient Latin fossilis, meaning virtually anything
dug from the Earth. Thus, originally it was used to indicate not just “fossils” that resem-
bled living organisms, as we would define them today, but also minerals, crystals, rocks,
and even geological strata. At those early times two hypotheses had been proposed for
the origin of “fossils” that resembled living organisms. According to the Greek philoso-
pher Aristotle (384–322 B.C.), precursor of the inorganic theory for the origin of fossils,
forms resembling extant organisms present in rocks were produced by a “formative
force” (vis formativa), i.e., produced by natural causes imitating living shapes which
naturally grew in the rocks. Aristotle’s thoughts on Earth sciences can be found in his
treatise Meteorology, where he discusses the nature of the Earth and the oceans.

However, the organic view of the origin of fossils, that is the idea that they were
indeed the remains of once living beings, appeared even before Aristotle. In the 6th

and 5th Century B.C. both Pythagoras (ca. 582–ca. 507 B.C.) and Herodotus
(ca. 484?–425? B.C.) mentioned marine shells which occurred in mountains and on
land places far from the sea, arguing these to be the remains of organisms which once
thrived in former seas that later withdrew and became land. Herodotus thought the
disc-shaped nummulitid foraminifera (genus Nummulites) found in the Eocene lime-
stones of which the Sphinx and the pyramids of Egypt were built, were lentils fed to
the slaves who built the pyramids which had accidentally spilled and turned to stone.
The Greek Xenophanes of Colophon, Ionia (ca. 570–ca. 480 B.C.), a pre-Socratic
Greek philosopher and Pythagorean, reported the occurrence of marine fossils on
mountain tops and quarries. For Xenophanes this was proof that the physical arrange-
ment of the Earth changes with time, and that the remains of extant forms were buried
in the dried sea mud owing to the blending of land and sea in ancient times.

The Romans assimilated the more practical scientific accomplishments of the
Greeks, but added little. Pliny the Elder (Caius Plinius Secundus; ca. 23–79 A.D.),
Roman naturalist and encyclopedist killed by the eruption of the Vesuvius on 23–25
August 79 A.D., wrote a major encyclopedia of natural sciences (Historia naturalis).
Pliny’s compilation consisted of 37 volumes and contained a summary of ancient
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knowledge on the nature of the physical universe, a work mostly summing up what the
ancient Greek authors had written. In the early centuries after Christ the idea of the
organic origin of fossils took root and spread, although in different form with respect
to the early Greeks. According to the Roman Carthaginian, theologian and Christian
apologist Tertullian (Quintus Septimius Florens Tertullianus; ca. 155–222) fossil
shells found in the mountains were proof of the Universal Flood described in the Old
Testament. Both the controversy between the organic and inorganic views and the
Universal Flood theory would survive until the beginning of the 18th Century.

With the collapse of the Roman Empire in the 5th Century and the coming of the
Dark Ages, many of the ancient scientific works passed into the hands of the Muslims,
who by the 7th and 8th Century had extended their influence through much of the world
surrounding the Mediterranean. All of the Greek works were translated into Arabic,
and commentaries were added. The Arabs thus preserved the scientific works of the
ancients and added to them, introducing also other contributions from Asia. This body
of learning first began to be discovered by Europeans in the 11th Century.

1.3 The Middle Ages and Renaissance: The Principles

During the Middle Ages and the Renaissance, the Aristotelian School, through a
Muslim, the Persian philosopher and physician Ibn-Sina (Avicenna, 980–1037), influ-
enced many European scholars who attributed the occurrence of fossils to failed
abortive attempts of a natural creative “plastic force” (vis plastica, or virtus formativa)
to shape living beings in a process of spontaneous generation of life.

The scientist, philosopher, and theologian Albertus Magnus (ca. 1206?–1280),
born at Lauingen, Swabia, and later Leonardo da Vinci (1452–1519), were the first to
correctly speculate on the nature of fossils as the remains of once-living ancient
organisms. The Leicester Code is a collection of numerous manuscripts with hand-
written notes of Leonardo’s scientific and technical observations. Among them there
are drawings of rock formations and of various fossil shells (mostly Cenozoic mol-
lusks), which are probably recollections of his experiences and observations on the
hills of Tuscany, Romagna or the Po River plain, during his service as an engineer and
artist at the court of Lodovico Sforza, Duke of Milan, from 1482 to 1499. From his
notes Leonardo appears to have noticed the mechanisms of sedimentary deposition on
mountains and rivers, the role that rivers play in the erosion of land, and the principles
of the law of superposition, which would later be demonstrated fully by Nicholaus
Steno in 1669. He also appear to have grasped that distinct layers of rocks and fossils
could be traced over long distances, and that these layers were formed at different
times. After Leonardo’s death his notes were scattered to libraries and collections all
over Europe. While portions of Leonardo’s technical treatises on painting were pub-
lished as early as 1651, the scope and caliber of much of his scientific work remained
unknown until the 19th Century. Yet his geological and paleontological observations
and theories foreshadow many later breakthroughs. Nearly three hundred years later,
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the rediscovery and elaboration of these principles would make possible modern
stratigraphy and geological mapping.

Georgius Agricola, latinized form of Georg Bauer (1494–1555), a physician and
geologist born in Glauchau, province of Saxony, made fundamental contributions to
stratigraphic geology, mineralogy, structural geology, and paleontology. His greatest
work, De Re Metallica (“On the Nature of Metals”), posthumously published in 1556,
is a systematic study of ore deposits and of strata, and was to remain the standard text
on mining geology for two centuries. In his profusely illustrated book Agricola noted
that rocks were laid down in definite layers, or strata, and that these layers occurred in
a consistent order and could be traced over a wide area. Agricola’s observations would
become important in understanding the arrangement and origins of the rocks of the
Earth. Agricola is considered the founder of geology as a discipline.

In the mid-16th Century the first engravings of fossils were published by the Swiss
physician Conrad Gessner (1516–1565).

Nicholaus Steno, latinized form of Niels Stensen (1638–1686), a Danish
anatomist and geologist, who in Italy was converted to Roman Catholic faith and
became a Roman Catholic prelate, pointed out the true origin of geological strata and
of fossils. He wrote the first real geological treatise in 1667, while living in Tuscany,
Italy. In 1669 he was the first recorded person to apply to the study of a sedimentary
rock outcrop what is now referred to as Steno’s law of superposition (which states
that layers of rock are arranged in a time sequence, with the oldest on the bottom and
the youngest on the top, unless later processes disturb this arrangement), his most
famous contribution to geology. In addition, Steno postulated other general principles
of Stratigraphy: the principle of original horizontality, which states that rock layers
form in the horizontal position, and any deviations from this position are due to the
rocks being disturbed later; and the principles of strata continuity (material forming
any stratum was continuous over the surface of the Earth unless some other solid bod-
ies stood in the way) and cross-cutting relationships (if a body or discontinuity cuts
across a stratum, it must have formed after that stratum). The data and conclusions of
Steno’s work on the formation of rock layers and fossils were crucial to the develop-
ment of modern geology, and were enough to have earned him the title of “Father of
Stratigraphy”.

Steno’s contemporaries, the British natural scientists John Ray (1628–1705),
Robert Hooke (1635–1703) and John Woodward (1668–1728), also argued that fossils
were the remains of once-living animals and plants. However, the opinion was still
universal that fossils represented life destroyed by the Universal Flood, a theory
championed especially by the Swiss naturalist Johann Jakob Scheuchzer
(1672–1733). Robert Hooke was perhaps the greatest experimental scientist of the
seventeenth century. He was the first person to examine fossils with a microscope, to
note close similarities between the structures of fossil and living wood and mollusc
shells, and to observe, two and a half centuries before Darwin, that the fossil record
documents the appearance and extinction of species in the history of life on Earth.
Hooke believed that the Biblical Flood had been too short in time to account for all
fossils, and suggested that earthquakes had likely destroyed ancient life forms. John
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Ray always supported the theory that fossils were once living organisms, buried in liq-
uid rock that then cooled, but was reluctant to accept the idea of extinction, explaining
that fossils which did not resemble any living organism were due to our ignorance of
the full range of extant forms. Ray expressed fully his belief in the “natural theology”
view of studying the natural world as God’s creation, a doctrine which remained influ-
ential for well over a century after his death. John Woodward related fossils to specific
rock formations and atempted to classify them. In 1695 he published Essay Toward a
Natural History of the Earth, which advanced a theory to explain stratification and the
fossils embedded in them by the deposit of debris out of the Flood.

1.4 The Eighteenth and Nineteenth Centuries: The
Dilemma of Catastrophism versus Uniformitarism
and Gradualism

At the beginning of the 18th Century the organic nature of fossils as remains of ancient
beings was decisively established, and the inorganic theory abandoned. However, the
Biblical Flood theory persisted up to the threshold of the 19th Century.

The Swiss naturalist Charles Bonnet (1720–1793) in his work Principles of
Catastrophism, suggested that at periodic intervals throughout Earth’s history all living
things have been destroyed by catastrophes or cataclysms (e.g. floods or earthquakes)
and they accounted for fossils. He thought that after each catastrophe life forms would
be replaced by an entirely different changed population, and that all creatures would
rise one level, so after a future catastrophe man would be angels and apes, man. Bonnet
was the first to use the term evolution. Catastrophism is becoming more actual now that
the various Ediacaran, latest Ordovician (Hirnantian), Permian–Triassic, and Cretaceous-
Paleogene boundary mass-extinction events are better understood.

The theoretical foundation for much of modern geology was postulated by the
Scottish geologist James Hutton (1726–1797) in his Theory of the Earth (1795),
where he stated that “the Earth must be millions of years old”. He first advanced the
basic concept of what became known as the Uniformitarian Principle, which holds
that the geologic forces and processes that shaped the Earth in the geologic past were
referrable to the same ones still in operation on the Earth’s surface and could be
observed directly. Hutton believed that igneous processes were the chief agent in rock
formation, thus representing the Plutonist (or Vulcanist) view, i.e., that some rocks had
formed from molten magma either deep in the Earth or from volcanoes. In contrast the
so-called Neptunist view maintained that the origin of all rocks was aqueous, related
to a primeval ocean and its subsidence, and thus began the Neptunist–Plutonist contro-
versy. In 1751 the French geologist, botanist, and natural historian Jean-Étienne
Guettard (1715–1786) was the first to recognize the volcanic nature of the Puy de la
Nugère and the lava flow descended from it near Volvic, as well as some seventeen
other neighboring volcanic craters and domes in the Auvergne region, central France,
and thus became the first known Vulcanist and founder of the school, though years



later he proposed that basalt originated as a precipitate out of an aqueous fluid. This
controversial Neptunist theory was supported by the German geologist Abraham
Gottlob Werner (1750–1817), and also by the German lyric poet, novelist, dramatist,
and scientist Johann Wolfgang von Goethe (1749–1832). Werner, who first demon-
strated the chronological succession of rocks and the concept of the geological time
scale, believed that rock strata were either sediments originally deposited at the
bottom of the sea or were crystallized deposits precipitated from sea water, but could
not explain the origin of insoluble igneous rocks. Goethe and the German writer
Friedrich von Schiller (1759–1805) satirized attempts of attributing basalts in
Germany to volcanoes, seeing in this a patriotic attempt to equal Italy; Goethe also
satirized the Vulcanist theory in his drama Faust (1808), attributing mountain
buildings to the parts of the devil. The Uniformitarian doctrine was further simplified
and popularized by the British geologist John Playfair (1748–1819) in his Illustrations
of the Huttonian Theory of the Earth (1802), which elucidated the methods and
principles of uniformitarianism, establishing it as the foundation of the new science of
geology.

William Smith (1769–1839), English engineer and canal builder, studied fossils
collected from sedimentary rocks. He was the first to recognize the importance of fos-
sils for the historical investigation of Earth’s strata, and introduced the principle of
faunal succession, that different sedimentary rock units contain distinct fossil assem-
blages. Smith noted that the sequence of fossils in any given stratigraphic record
follows a specific order, as a result of evolution; and that the same sequence can be
found in isolated strata elsewhere, and thus correlated between them. The principle is
still applied today in biostratigraphic correlations, although within the limits of bio-
geographic distribution of index fossil species. Smith published the first large-scale
geological map in 1814–1815, of southern England and Wales, using for the first time
the principle of fossil succession as a tool for mapping rocks by their stratigraphic
order, and not necessarily by their composition.

However, for most of the late 18th and mid-19th Century, as a consequence of
apparently contradicting current religious beliefs (e.g. the accepted biblical chronol-
ogy and the Flood), the uniformitarism doctrine was largely overshadowed by the
opposite one of catastrophism, which also stated that during these catastrophic events
the Earth’s surface, such as mountains and valleys, would be shaped. Catastrophism
was more easily correlated with religious doctrines, and as a consequence remained
for some time the interpretation of the Earth’s history adopted by the great majority of
geologists. The French naturalist Georges L. Cuvier (1769–1832) was one of its major
supporter. Cuvier suggested that four main worldwide catastrophes had occurred, the
last one being the Biblical Flood. The taxonomic classification scheme introduced by
the Swedish botanist Carolus Linnaeus (1707–1778) in his Systema Naturae (1735),
was extended by Cuvier to fossils, which he recognized as organic remains of extinct
animals. He is therefore known as the founder of paleontology as a science separate
from geology. However, Cuvier rejected the theory of evolution and Jean-Baptiste
Lamarck’s (1744–1829) theory of inheritance of acquired characteristics, proposed in
Zoological Philosophy (1809). He believed that new life forms would be created after
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periodic sea-level changes; in his view some animals died and some survived, but
none evolved. In 1811 Cuvier wrote with the French geologist, mineralogist, and
chemist, Alexandre Brongniart (1770–1847), the work Essai sur la géographie miner-
alogique des environs de Paris, in which a system of stratigraphy was developed that
relied on the use of fossils for the precise dating of strata, introducing into France
William Smith’s principle of faunal sucession and method of field work.

During the 1830’s fossils were first recognized for use in age correlation of rocks
by the German geologist and paleontologist Friedrich August Quenstedt (1809–1889)
through his work on Jurassic “time-rock units” defined by ammonites. Quenstedt
recognized the base unit, the biostratigraphic “zone”, characterized by a particular
assemblage of fossils. By the late 1830s, most of the presently known geologic
periods had been established based on their fossil content and their observed relative
stratigraphic position (see Fig. 1.1, and Moore, 1955, for a review). The twofold
modern subdivision of the Cenozoic Era (from the Greek word kainos: recent) in
Paleogene and Neogene (from palaeos: ancient, neos: new, and genos: birth/born)
goes back to combination of subdivisions proposed by C. Lyell (1833), R. Hoernes
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Era System Author & Year
Place first
recognized

Cenozoic Neogene Hoernes, 1853 Austria

Paleogene Hoernes, 1866 Austria?

Mesozoic Cretaceous J.J. D'Omalius d'Halloy, 
1822

France

Jurassic Alexander von 
Humboldt, 1795
Leopold von Buch, 
1839

France,
Switzerland,
Germany,
England

Triassic Friedrich August von 
Alberti, 1834

Germany

Paleozoic Permian Murchison, 1841 Russia

Carboniferous W.D. Conybeare and 
W. Phillips, 1822

Northern England

Devonian Murchison and 
Sedgwick, 1839

Southern England

Silurian Roderick Impey 
Murchison, 1835

Welsh Borderland

Ordovician Charles Lapworth, 
1879

Wales

Cambrian Adam Sedgwick, 1835 North Wales

Figure 1.1 Phanerozoic systems and their original definitions.



(1853), and C. F. Naumann (1866) – the terms Tertiary and Quaternary are no longer
recommended, as being antiquated like Primary and Secondary, all described by
Giovanni Arduino, in northern Italy, in the 1760’s.

Cuvier’s successors, as d’Orbigny, Agassiz, and Barrande, still maintained the
catastrophic theory well into the 19th Century. The naturalist and paleontologist Alcide
Dessalines d’Orbigny (1802–1857) published in 1850 “Prodrome de Paléontologie
stratigraphique universelle”, a major treatise comprising a catalogue list of 18,000 fos-
sil species, and proposed a subdivision of the geological record in 27 stages. His most
important work was the founding of the science of stratigraphic paleontology based on
observations of exposed fossil-bearing strata in the Paraná Basin, southern Brazil,
reported in his work Voyages dans l’Amerique méridionale, published in several parts
between 1835 and 1847. D’Orbigny’s study of foraminifera, pollen grains and spores
found in sedimentary rocks for the purpose of dating stages began the science of
micropaleontology. The Swiss-American naturalist Jean Louis Rodolphe Agassiz
(1807–1873) promoted and defended Cuvier’s geological catastrophism and classifica-
tion of living and fossil animals. His study of glaciers revolutionized geology. The
French paleontologist Joachim Barrande (1799–1883) studied fossil remains and their
distribution in the various strata in Bohemia. The results of his extensive studies 
on the Silurian system of Bohemia are contained in his great work “Système silurien de
centre de la Bohême”, published in 22 volumes from 1852 to his death.

Uniformitarianism finally became widely accepted as a result of the work of the
Scottish geologist Sir Charles Lyell (1797–1875), author of the three-volume
Principles of Geology (1830–1833), published through 11 editions between 1830 and
1872, which presented and popularized James Hutton’s work and uniformitarianism.
The uniformitarian (uniformity of natural laws and geological processes) and gradual-
ist (uniformity of rates) views expressed in Lyell’s work probably influenced the
formulation of Charles Darwin’s (1809–1882) theory of evolution and facilitated its
acceptance. Darwin’s theory of evolution through gradual variation and natural selec-
tion was published in his revolutionary work On the Origin of Species by Means of
Natural Selection, or the Preservation of Favoured Races in the Struggle for Life
(1859), often abbreviated to The Origin of Species, which was a turning-point for the
evolution theory and also greatly influenced Geology in the late XIXth Century.
Lyell’s Uniformitarism and Gradualism and Darwin’s theory would dominate the
Earth Sciences for nearly 150 years.

Darwin’s theory explained Smith’s principle of faunal succession which, combined
with Steno’s law of superposition, allowed the application of fossils to stratigraphic
dating and correlation, and the modern conceptualization of the biozone in 1856 by one
of Friedrich Quenstedt’s student, the German stratigrapher Albert Oppel (1831–1865).
Oppel devised a scheme to divide geologic formations into zones based on the overlap-
ping stratigraphic range of two fossil species (defining what are presently known as
Oppel Zones). The progressive establishing of locally defined biostratigraphic zonal
schemes led to the rapid development of an improved relative time scale and the emerg-
ing of the standard subdivisions of the modern Chronostratigraphic Scale, which has
been continuously refined since (e.g. Moore, 1955; Heirtzler et al., 1968; Harland
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et al., 1982, 1990; Berggren and Van Couvering, 1978; Berggren et al., 1995b;
Gradstein et al., 1999; website of the International Commission on Stratigraphy –
ICS/IUGS – www.stratigraphy.org).

1.5 The Twentieth Century & Beyond: The Age of
Applied Stratigraphy

The history of stratigraphy during the 20th Century is largely the history of the individ-
ual specialized branches as they developed into the traditional and new techniques by
which they are recognized today.

1.5.1 Plate Tectonics

The earliest hint of plate tectonics was made around 1800 by one of Abraham G.
Werner’s most famous student, the German naturalist and explorer Alexander von
Humboldt (1769–1859). Humboldt first suggested that the South American and
African continents had once been joined, as apparent in their complimentary coast-
lines, but this proposal was largely ignored by the scientific community of that time.
It would not be until the early 20th Century, in 1912, when the German astronomer,
meteorologist and geophysicist Alfred Wegener (1880–1930) published his first 
works (Die Entstehung der Kontiente, Petermanns Mitteilungen, 1912, pp. 185–195,
253–256, and 305–309; and a somewhat different version with the same title in
Geologische Rundschau, Vol. 3, No. 4, 1912, pp. 276–292) outlining his theory of
“continental drift”. After 1912, Wegener’s work was interrupted first by an expedition
to Greenland and then by the First World War. In 1915 Wegener published the first
edition of Die Entstehund der Kontinente und Ozeane (The Origin of Continents and
Oceans). In this book Wegener claimed that the continents had once been connected
and formed a single supercontinent mass called Pangaea (from the Greek for “all the
Earth”), about 300 million years ago, which had since split into pieces that have drifted
to their present positions. As supporting evidence for the proposed theory Wegener
noted the often matched large-scale geological features on separated continents, such
as the close similarity of strata and fossils between Africa and South America and the
close fit between their coastlines, and that fossils found in certain places often indicated
past climates utterly different from today’s. Wegener’s revolutionary theory of conti-
nental drift took decades to win general acceptance among scientists, remaining con-
troversial until the 1960’s. For most of that lapse of time stratigraphy was to stand still,
with no significant progress. In 1959 and 1962, Harry Hammond Hess proposed the
sea-floor spreading or plate tectonics theory, subsequentely confirmed by Vine and
Matthews (1963), which complemented Wegener’s continental drift theory, and gave a
much needed renewed impetus into the science of stratigraphy. Nevertheless,
Wegener’s basic insights remain sound nowadays and the same lines of supporting
evidence are being continuously complemented and expanded by ongoing research.
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1.5.2 Geochronology – Radiometric Stratigraphy

Geochronology, the science of absolute dating of rocks and determining the time
sequence of geological events in Earth’s history, particularly by radiometric dating,
developed largely at the turn of the 20th Century and during its first three decades with
the advent of atomic and nuclear physics and quantum theory (e.g. Holmes, 1911; see
also Hole, 1998, for a review). It provided the framework of absolute time within
which the relative chronostratigraphic scale could be calibrated.

1.5.3 Magnetostratigraphy

The work of Rutten (1959) presented a chronological scale of polarity reversals of the
Earth’s magnetic field based on K–Ar radiometric dating in a sequence of volcanic
rocks, and gave birth to the new science of magnetostratigraphy. Harrison and Funnel
(1964) discovered that magnetic polarity reversals (chrons) are also recorded in
marine deposits, which further improved the applicability of the technique.
Subsequent works aimed to match and calibrate the reversals with conventional strati-
graphic tools (ISSC, 1979; Tarling, 1983; Galbrun, 1984), and use the unique non-
periodic pattern of reversals to date and correlate diferent rock sequences. In
combining the marine magnetic anomalies measured over the sea-floor record in the
South Atlantic spreading profile with their dates of chrons on land, Jim Heirtzler and
colleagues in 1968 laid the foundation for the modern timescale based on Cretaceous
through Paleogene marine magnetic anomalies, also known as the Geomagnetic
Polarity Time Scale (GPTS). The Cande and Kent (1995) GPTS is the currently
accepted timescale that is in most widespread use.

1.5.4 Stratigraphic Classification, Terminology and Procedure

In 1976 the International Subcommission on Stratigraphic Classification (ISSC) of
the International Commission on Stratigraphy (ICS) published the first edition of the
International Stratigraphic Guide (edited by Hollis D. Hedberg), as a means to promote
international agreement on the principles of stratigraphic classification, terminology,
and rules of procedure. In 1983 the North American Commission on Stratigraphic
Nomenclature proposed a version of the stratigraphic code, which expanded consider-
ably its original scope. The standard international stratigraphic classification was finally
approved in 1987 by the ISSC, and updated in 1994 in a second edition of the Guide
(Salvador, 1994). An abridged version was published by Murphy and Salvador (2000),
and made available on the ICS website. General comments on stratigraphic principles
and procedures have also been presented by various authors, such as Reading (1978),
Ager (1984), Blatt et al. (1991), and Whittaker et al. (1991), among others.
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1.5.5 Facies Stratigraphy

The term and concept of stratigraphic facies (from Latin: appearance, aspect, face,
form), meaning the combined lithological and paleontological characteristics of a
stratigraphic section, were introduced in 1838 by the Swiss geologist and paleontolo-
gist Amanz Gressly (1814–1865) from his studies in the Jura Mountains. Gressly’s
pioneer contributions on the genesis and applications of sedimentary facies, strati-
graphic correlations, and paleogeographic reconstructions are fundamental to modern
stratigraphy (Cross and Homewood, 1997). Later in the course of the 19th Century the
term was assigned to a variety of descriptive meanings by geologists, paleontologis
and ecologists, which somehow confused the original definition. Facies analysis in the
modern sense restored the concept to its original meaning, aiming at the description,
interpretation and reconstruction of the depositional and paleogeographic setting of
sedimentary units, combining lithological and paleontological data (Reading, 1978,
1996; Walker, 1979, 1992; Walker and James, 1992). It provides the basic framework
to reconstruct the environmental evolution of the stratigraphic record through time
(see Pirrie, 1998, for a review).

1.5.6 Quantitative Stratigraphy

Various graphical, numerical and experimental methods applied to refining strati-
graphic resolution and basin modelling studies, have been continually developed since
the 1960’s (e.g. Shaw, 1964; Ager, 1973; Miller, 1977; Van Hinte, 1978, 1982;
Gradstein et al., 1985; Mann and Lane, 1995; Harbaugh et al., 1999; Paola et al.,
2001). These techniques have jointly the greatest potential to achieve the finest bios-
tratigraphic resolution possible in correlating different rock sequences, in studies of
regional versus global correlation of geological events, in helping to reconstruct the
geological history of sedimentary successions, and in petroleum reservoir correlation
and modelling. The methods are greatly assisted by the universal adaptation of micro-
computers to digital programming with colour graphics output.

1.5.7 Sequence Stratigraphy

Modern stratigraphy had a major impetus by the mid-20th Century, with the increase
of petroleum exploration activities, the development of new technologies (e.g. of seis-
mic reflection data in the 1970s) and the application of stratigraphic models to petro-
leum research (e.g. Sloss, 1962). In 1949 L. L. Sloss and coworkers coined the term
sequence to represent a set of sedimentary cycles limited by unconformities. The
notion of unconformity-bounded stratigraphic units received further support in the
late 1950s with the works of H. E. Wheeler (1958, 1959a and b), who also introduced
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the concept of the chrono-lithostratigraphic chart. In 1963 Sloss consolidated the term
stratigraphic sequence and its usage in regional chronostratigraphic correlations.
These studies provided the basic framework to the later formulation of the sequence
models, which was to incorporate the use of high-quality seismic-reflection data in
modelling subsurface stratal patterns and general geometry, and the expected seismic
reflection features of different lithofacies asssociations.

In a series of publications starting in the late 1970s, Peter Vail, coworkers and
colleagues presented a revolutionary stratigraphic method of basin analysis for what
became known as “Sequence Stratigraphy” (e.g. AAPG Memoir 26, edited by Payton,
1977; Vail, 1987; Van Wagoner et al., 1987, 1988, 1990, 1991; Posamentier et al.,
1988, 1992; Posamentier and Vail, 1988; Vail et al., 1991; Schlager, 1992; Walker and
James, 1992; and Posamentier and Allen, 1994, among others). Sequence models con-
stitute a powerful tool for unraveling basin-fill history, and as such have been applied
to most stratigraphic studies of basin modelling. The method is based on the study of
the relationships between global relative sea-level changes and large-scale sedimen-
tary cycles within time-equivalent depositional successions bounded above and below
by a significant gap in the stratigraphic record, i.e., by surfaces of erosion (unconfor-
mity-bounded units) or nondeposition. Suess (1906) was the first to propose that sea-
level changes could be global. The global eustatic sea-level variation curve proposed
by Vail et al. (1977a, b), and later refined by Haq et al. (1987, 1988) and Ross and
Ross (1988), for the Phanerozoic sequences, was based on the approximate correla-
tion of seismic sequences from a number of passive continental margins. In 1989
Galloway proposed the model of genetic sequences bounded by maximum-flooding
surfaces, which implied a certain discrepancy with the unconformity-bounded deposi-
tional sequences of Vail et al. (1977a) and Van Wagoner et al. (1987), based essentialy
on seismic stratigraphy. Galloway’s approach, based mostly on sedimentological
interpretation of depositional systems, facies relationships and geometries, is particu-
larly significant in stratigraphic successions with little or no available seismic data,
due to difficulties in marking and tracing regional unconformities.

Despite some controversies behind the main theoretical basis for the sequence
stratigraphy paradigm (e.g. Miall, 1991, 1994, 1997), the method brought about a
major revolution in the science of stratigraphy, leading to new research to be carried
out on complex clastic and carbonate successions around the world. By gathering
within a single stratigraphic framework information derived from diverse disciplines
of sedimentary geology, such as seismic stratigraphy, biostratigraphy, paleoecology,
paleogeography, and sedimentology, among others, the sequence models permitted a
much broader, integrated and sharper research approach in basin analysis.

1.5.8 Episodic and Cyclic Sedimentation: Event Stratigraphy and
Cyclostratigraphy

In the past decades of the 20th Century new theories developed in the geoscience
community which represent a synthesis of Lyell’s Uniformitarism and Gradualism
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combined with a revival of Cuvier’s Catastrophism, recognizing that both play 
a significant role in geological processes and the evolution of life. Theories such as the
actualistic catastrophism (Hsü, 1983), the punctualism (Gould and Elderedge, 1977;
Gould, 1984; Goodwin and Anderson, 1985), and the episodic sedimentation (Dott,
1983), are fundamented on the assumption that most of the stratigraphic record was
produced during episodic events, and that abrupt environmental changes have modu-
lated speciation and mass extinctions (e.g. Signor and Lipps, 1982; Flessa, 1986;
Hallam, 1989a, b). Major catastrophic events, such as extraterrestrial impacts (e.g.
Alvarez et al., 1980; McLaren and Goodfellow, 1990; Becker et al., 2001) and cata-
clysmic volcanic activity (e.g. McLean, 1985; Courtillot, 2000; Wignall, 2001) are
also thought to have greatly affected the evolution of life on Earth.

In 1982, G. Einsele and A. Seilacher discussed extensively the processes of cyclic
and event sedimentation, introducing the principles of what would be later known as
Event Stratigraphy (e.g. Kauffman, 1987, 1988; Walliser, 1996; Einsele, 1998). The
method deals with the integrated study of episodic and short-term sedimentary and
biotic processes in the stratigraphic record, and has the potential to improve substan-
tially the resolution of geological correlations.

Rhythmic stratigraphic cycles observed in pelagic siliciclastic and carbonate
sequences have been related to the so-called “Milankovitch cycles”, after the Serbian
astrophysicist Milutin Milankovitch (1879–1958) who in 1941 presented a firm math-
ematical basis that related periodic variations in Earth’s rotational and orbital motions
(eccentricity, obliquity, precession) to long-term climate changes. However, the
hypothesis of astronomically forced climate cycles was advanced already in the 19th

Century to the Pleistocene ice ages by the French mathematician Alphonse Joseph
Adhémar (1797–1862), in his work Les Revolutions de la mer (1842), and by the
Scottish geologist James Croll (1821–1890), who in the 1860’s and ‘70s proposed an
Astronomical Theory of the Ice Ages, subsequently published in his Climate and Time
(1875) and Climate and Cosmology (1885). These orbital-forced cycles control the
intensity of seasonal and latitudinal distribution of solar radiation (insolation) reach-
ing the planet’s surface, and directly influence global climate, depositional processes
and biotic productivity (e.g. Fischer and Arthur, 1977; Bottjer et al., 1986; Fischer,
1986, 1991; Schwarzacher, 1987; Fischer and Bottjer, 1991; Weedon, 1993; Satterley,
1996; Perlmutter et al., 1998). The detailed investigation of regular cyclic patterns in
the stratigraphic record produced by the interaction of tectonic and Milankovitch-
type climatic processes is the study of a new branch of stratigraphy named
Cyclostratigraphy (Schwarzacher, 1993; Fischer, 1993, 1995; Gale, 1998). The
method allows a way for estimating the time span of biozones and the magnitude of
unconformities, improvement of the stratigraphic framework, and for a better under-
standing of sedimentary and climatic processes (e.g. Perlmutter and Matthews, 1989,
1992). For instance, the modern Neogene timescale now depends on precise orbital
tuning of marine and continental cyclic sequences, and evolved into an astronomically
tuned (polarity) timescale (APTS), which proved to be far more precise and accurate
(e.g. Hilgen, 1991a, b; Wilson, 1993; Shackleton et al., 1995; Hilgen et al., 1995;
Zachariasse, 1999).
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1.5.9 Chemostratigraphy

Chemostratigraphy is a relatively new technique, developed mainly during the last
decade (e.g. Humphreys et al., 1991; Ehrenberg and Siring, 1992; Pearce and Jarvis,
1992, 1995; Racey et al., 1995; Pearce et al., 1999). It uses the primary geochemical vari-
ation in the whole-rock elemental composition of siliciclastic sediments and sedimentary
rocks to correlate stratigraphic sequences, as well as to gather inferences on basin paleo-
tectonic history, source rock lithologies, depositional pathways, and paleoclimates.

1.5.10 Isotope Stratigraphy (Sr, C, O)

Over the last decade there have been a substantial number of works concerned with
defining the Sr isotopic evolution of the oceans during the Jurassic, Cretaceous and
Cenozoic (see Hess et al., 1986, and McArthur, 1998, for a review). Such a high-
resolution Sr-isotope curve can be used as a global correlation tool and, over some
intervals, have a stratigraphic resolution superior to that of biostratigraphy.

Recent research on isotope stratigraphy has also been forefront in defining and
refining carbon- and oxygen-isotope curves for the Mesozoic and Cenozoic, based on
the analysis of carbonate rocks and fossils and of terrestrial organic matter (e.g.
Holser, 1984; Faure, 1986; Shackleton, 1985; Holser and Margaritz, 1989). The
oxygen-isotope curve has been primarily used for estimating the Cenozoic record
of water-mass temperatures (e.g. Frakes et al., 1992; McCauley and DePaolo, 1997).
When of characteristic shape and form, the carbon-isotope curve can be used for inter-
continental correlation (e.g. for sections across the Cenomanian–Turonian boundary;
Kuhnt et al., 1990; Gale et al., 1993; Pratt et al., 1994), as well as to allow inferences
on patterns of the long-term organic carbon cycle (e.g. Scholle and Arthur, 1980;
Arthur et al., 1985), and hence to indicate important periods of petroleum source-rock
deposition.

1.6 Future Perspectives

The growth of applied stratigraphy in the 20th Century has been unprecedented.
Whereas a particular problem might have been studied by a single investigator a cen-
tury ago, or by a small group of scientists just a few decades ago, today such a prob-
lem is dealt in by a multidisciplinary legion of highly experient researchers.

In the foreseeable future stratigraphy holds out many promises, as well as a number
of scientific problems. Research on isotope stratigraphy will include modelling
strontium-, carbon- and oxygen-isotope variations determined from analysis of fossils in
an attempt to understand significant oceanographic and other variables that have con-
trolled the chemistry of ancient oceans. High-resolution chemostratigraphy will be used
to improve stratigraphic correlation in barren siliciclastic beds and between continental
and marine sequences, and to add important information to the reconstruction of a basin
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depositional history and paleoclimatic evolution. Cyclostratigraphy will involve the
comparison of orbital time-series derived from different sequences in an attempt to
improve the absolute resolution of the geological time scales, to identify and quantify
the magnitude of gaps in the stratigraphic record, and to delineate paleoclimatic belts.
Sequence stratigraphy will aim to document paterns of sequence development in con-
junction with modelling studies at regional scale, as well as used in high-resolution
studies applied to oil and gas reservoir correlation and modelling (e.g. Cross et al.,
1993). Advanced theorectical and experimental studies on fractal geometry and
complexity theory will be applied to modelling of complex natural systems, such as
ecosystems and anisotropies in oil and water reservoirs. Altogether, these studies will be
complemented by the development of highly refined frameworks of biostratigraphy,
paleoecology, and event stratigraphy, and further integrated into interactive chronostrati-
graphic and stratigraphic databases to allow global comparisons of sedimentary cycles
and events on continental and marine sections, to analyse the relationship between
environmental changes, biotic evolution and extinction, and to identify relationships
between sea-level changes and major perturbations in Earth’s climatic, oceanographic
and sedimentary systems.

Among the many challenges faced by geoscientists are practical and critical ones,
some of profound sociological implications, such as how to best explore and exploit
Earth’s natural resources, by attaining a sustainable development of human communi-
ties and simultaneousy preserve Earth’s ecosystems’ biodiversity. In this broad sense
the science of stratigraphy has recently turned towards a more profound holistic 
non-traditional approach, by gathering information from nearly all disciplines in the
geosciences to collectively aiming to provide an unified picture of Earth history. In a
way similar to how its early foundations were laid upon in ancient times, the modern
since aims to understand and reconstruct Earth’s history on a planetary context, the
origin and evolution of life on Earth and, ultimately, predict and help to preserve its
future (Fig. 1.2).
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The Ancient Greeks and Romans:
The Naturalism

Pythagoras (ca. 582–ca. 507 B.C.) Aristotle (384 – 322 B.C.)

Xenophanes of Colophon (ca. 570 – ca. 480 B.C.) Pliny the Elder (ca. 23 – 79 AD)

Tertullian (ca. 155 – 222)

The Middle Ages and Renaissance: 
The Principles

Avicenna (980 – 1037) John Ray (1628 – 1705)

Albertus Magnus (ca. 1206? – 1280) Robert Hooke (1635 – 1703)

Leonardo da Vinci (1452 – 1519) Nicholaus Steno (1638 – 1686)

Georgius Agricola (1494 – 1555) John Woodward (1668 – 1721)

Conrad Gessner (1516 – 1565) Johann Jakob Scheuchzer (1672 – 1733)

Figure 1.2 Timeline of stratigraphic thought.
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The Twentieth Century & Beyond:
The Age of Applied Stratigraphy

Chronostratigraphy and Biochronology
Shaw (1964)

Kauffman and Hazel (1977)
Berggren and Van Couvering (1978)

Haq et al. (1987, 1988)
Harland et al. (1982, 1990)

Berggren et al. (1995b)
Gradstein et al. (1995)

Plate tectonics
Alfred Wegener (1880-1930; 1915)

Hess (1959, 1962)
Vine and Matthews (1963)

Hallam (1973)
Miller (1983)

Stratigraphic Terminology,
Classification and Concepts

Ager (1973, 1984)
NACSN (1974, 1983)

Hedberg (1976)
ISSC (1987)

Blatt et al. (1991)
Whittaker et al. (1991)

Walker and James (1992)
Salvador (1994)

Magnetostratigraphy
Rutten (1959)

Harrison and Funnel (1964)
Galbrun (1984)

Facies Stratigraphy
Amanz Gressly (1814-1865)

Reading (1978, 1996)
Walker (1979, 1992)

Walker and James (1992)
Pirrie (1998)

Figure 1.2 Continued
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William Phillips (1775-1828) Charles Darwin (1809-1882) 
Jean-Baptiste Lamarck (1744-1829) Amanz Gressly (1814-1865) 

William Smith (1769-1839) Albert Oppel (1831-1865) 
Leopold von Buch (1774-1853) Charles Lapworth (1842-1920) 

J.J. d'Omalius d'Halloy (1783-1875) Johannes Walther (1860-1937), 
William Buckland (1784-1856) Walther's law of correlation of facies (1894) 
Adam Sedgwick (1785-1873)  
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Event Stratigraphy and
Cyclostratigraphy

Milutin Milankovitch (1879-1958)
Fischer and Arthur (1977)
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Signor and Lipps (1982)
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Fischer (1986, 1991, 1993, 1995)
Goodwin and Anderson (1985)

Kauffman (1987, 1988)
Bottjer et al. (1986)

Flessa (1986)
Hallam (1989 a, b)

Perlmutter and Matthews (1989, 1992)
Schwarzacher (1987, 1993)
Fischer and Bottjer (1991)

Weedon (1993)
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.
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Scholle and Arthur (1980)

Holser (1984)
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Shackleton (1985)
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McCauley and DePaolo (1997)

McArthur (1998)
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(1995)et al.

Ehrenberg and Siring (1992)
Pearce and J rvisa (1992, 1995)

Humphreys (1991)et al.

Racey

(1999)et al.Pearce

Sequence Stratigraphy
Sloss (1949, 1962, 1963)

Wheeler (1958, 1959a,b)
Payton (1977)

Vail et al. (1977a, b)
Haq et al. (1987)

Van Wagoner et al. (1987, 1988,
1990, 1991)

Posamentier et al. (1988, 1992)
Ross and Ross (1988)

Galloway (1989)
Schlager (1992)

Walker and James (1992)
Miall (1991, 1994, 1997)
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Mann and Lane (1995)
Harbaugh et al. (1999)

Figure 1.2 Continued
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2.1 Introduction

Improvements in stratigraphic dating methods have transformed chronostratigraphy
into a practical tool that reveals unexpected realities in the place of earlier conven-
tions. As strata become more precisely ordered in time, applied chronostratigraphy
allows us to unravel cause and effect across facies boundaries and gaps, to resolve the
context of past changes, and to find relationships between the proxy records of van-
ished forces found in different lines of evidence. The advances in stratigraphic time-
analysis have in turn resulted in the reformulation of some of the basic concepts of
stratigraphy and geochronology, as for instance the operational assumption that con-
formable sections are also depositionally continuous until proven otherwise. In this
chapter we emphasize the need for integrated stratigraphy as the essential foundation
for greater precision in interpretations of regionally extensive stratigraphic sections.
Paradoxically, as temporal interpretations become more easily visualized on first
inspection, it is more difficult to hold them intellectually separate from the objective
evidence, and a new terminology is required to clarify this basic distinction in discus-
sions. As an example of problems still to be overcome, we review the discrepancies
between lower upper Miocene magnetobiostratigraphic correlations in different sec-
tions, as reported by Berggren et al. (1995c) that result in an unstable early late
Miocene biochronology.

Without conscious effort, every Earth scientist understands Steno’s First Law – that
superposed strata represent the passage of time. Beyond this, even the first geological
maps irresistibly imply a lengthy history, simply by showing that countless successive
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strata have accumulated in formations that are themselves seen to be superimposed.
The extrapolated concept of chronostratigraphy – that intervals of geological time
could be defined in terms of accumulated strata – was soon grasped by Alcide
d’Orbigny, who in his monumental study of stratigraphy only 15 years after the publi-
cation of William Smith’s great map of England, proposed the concept of the “stage”
to embody the concept of a worldwide synoptic perspective that coincided with depo-
sition of a given body of strata (our translation):

“In summary, rigorous application of the general and specialized principles of geology to
the sedimentary layers which constitute the Earth’s crust, lead to the understanding that
these layers form distinct superposed stages, characterized by a specific fauna; that each
fauna has clear and definite limits; and that the occurrence of a significant number of
species that are limited to and characteristic of these stages always permits them to be dis-
tinguished, whatever the different mineralogic [i.e. lithologic] compositions that the strata
presently show. Indeed, whereas the study of superposition and concordance of stratifica-
tion of the geological stages alone often gives excellent results when the stages are super-
posed without stratigraphic gaps, such [physical] studies cease to provide positive
evidence when intermediate stages are missing, as we see on a multitude of points on our
planet.” (D’Orbigny, 1849, pp. 7, 8.)

That this was not merely a prefiguration of faunal zones, as defined in a group of
related species and thereby bounded by diachronous paleoecological limits, is clear
from the further explanation of stages in volume 2 (our translation):

“A stage, for us, is an epoch completely identical to that of the present. It is a steady state of
ancient nature during which there were, as nowadays, continents and seas, with terrestrial
plants and animals, marine plants and animals, and in the seas coastal and pelagic animals
at all depths. For a stage to be complete it must show a collection of terrestrial and marine
beings that represent a whole epoch, with development analogous to the one which we see
today on Earth.” (D’Orbigny, 1851, pp. 256–257.)

This crucial insight, which was in all respects the modern ideal of isochronous
synchronization of the geological record, was an attractive philosophical concept and
quickly became part of geological theory. Unfortunately, it was far ahead of the means
to accomplish it in practise. Thus, for the next century and more, global chronostratig-
raphy was essentially a stratigraphic belief system, undisturbed by testable statements
that went beyond the very broadest generalizations.

It is interesting to note, in this regard, the almost completely unappreciated contri-
bution of 19th-century power politics to the creation of the Standard Time Scale.
European colonial and commercial expansion provided support for vigorous geologi-
cal surveys of the overseas territories that focused on exploitable resources as much as
on fossil beds and historical reconstructions. These studies demanded regional and
intercontinental correlations. Given the imperialistic ethic, it seemed only logical to
require that the foreign strata should all be correlated to European units, no matter
how overstretched the comparisons of paleofaunas and lithofacies, or how forced the
recognition of trans-regional events. The rapid increase of non-European “equivalent
strata” in the successive editions of Lyell’s textbooks is a clear witness to this process.

By the late XIXth century, European units that had been originally lithologic or
paleontologic subdivisions in a hodgepodge of different local conceptions – the



period, series, system, epoch, and so on – had spread outward under the wing of impe-
rialism to cover the globe with what can only be called presumptive time-equivalent
correlations. With a little trimming and fitting, these extravagant chronostratigraphic
hypotheses were combined in a unified hierarchical system that became the Standard
Time Scale. In the absence of direct tests of synchrony, correlation rested almost uni-
versally on comparative paleontology, in which often the merest resemblances were
held to be simultaneous. Even where inter-regional correlation was relatively reliable,
as for instance in upper Paleozoic and Mesozoic ammonite-bearing sequences, there
was nothing to distinguish chronostratigraphy and biostratigraphy in practise. To this
day, the stratigraphic surfaces of first and last appearances of guide fossils are the
standard of isochrony in Paleozoic and Mesozoic marine sequences.

Coming full circle, it is a curious twist of fate that the stage - the first and only
element in the time scale to be originally defined as a global chronostratigraphic unit –
should now be the only unit in the modern Standard Time Scale hierarchy that is under
attack for lacking worldwide validity. A strongly expressed view that the stage is “too
brief” for global application is, oddly, the outgrowth of improvements in geochronol-
ogy. When modern planktonic microfossil biostratigraphy and radiometric dating
revealed gross errors in long-standing regional correlations of mid-Cenozoic stages
(Van Couvering and Miller, 1971; Berggren and Van Couvering, 1978; Hardenbol and
Berggren, 1978), it was felt by some stratigraphers that if correlation was that impre-
cise, then only the broader divisions in the Standard Time Scale could have global
validity. Of course, this overlooks the rather obvious fact that the same methods
employed in debunking the old correlations are available for new correlations.
Nevertheless, the anti-stage pessimism has resulted in the strange situation, as we
write, that Cenozoic stages, whose boundaries can now be dated by multiple criteria,
are dismissed from their role as the basic element in the chronostratigraphic hierarchy
[e.g. compare Premoli Silva and Jenkins, 1998, with Brinkhuis and Visscher, 1995],
while Mesozoic and Paleozoic stages continue to be accepted as fundamental divi-
sions of the global time scale even though their boundaries are still traced in poorly
controlled biostratigraphy.

In actual fact, the rapid expansion of alternative methods of assessing stratigraphic
time, ranging from models of astronomical cycles to standardized magnetostrati-
graphic and stable isotope profiles, has already been shown to enhance, rather than
supplant biostratigraphic definitions (e.g. Hilgen and Langereis, 1994; Lourens et al.,
1996). These developments in geochronology (in the sense of Berggren and Van
Couvering, 1978, if not in the sense of geochronometry as defined by Aubry et al.,
1988) are being extended to ever older levels, so that stage-level precision in global
correlation has become commonplace and practical in the Cenozoic, and is beginning
to challenge simplistic biostratigraphy in earlier levels.

The sharpening of geochronological tools during the past 50 years, aside from caus-
ing a temporary disenchantment with stage correlations, has had wholly beneficial
results. The overall lesson to be learned, when we review these developments, is that
regional stratigraphic analyses may be far more complex than had been previously
thought. For example, the idea that prevailed until the late seventies, that mirror-image
facies on opposite sides of epicontinental basins were synchronous pairs, is no longer
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credible. The simplistic picture of undisturbed “layer-cake” accumulation in the deep-
sea stratigraphic record is vanishing as well. Overall, Derek Ager’s agnostic view (1981)
that the stratigraphic record is fundamentally incomplete, and that preserved strata are at
best an uneven and often biased record of geological history, is being vindicated.

It is fair to credit the growth and acceptance of new chronostratigraphic concepts –
temporal interpretation of sections, for example, and temporal versus stratigraphic
resolution (see Aubry, 1995, 1998) – almost entirely to the flowering of government-
funded research on deep ocean stratigraphy that began in the mid-sixties. Access to the
condensed but essentially continuous record preserved in the Earth’s most extensive
facies, that of deep-sea laminites, allowed a new emphasis on precise, globe-spanning
correlations with integrative studies of extraordinary microfossil, magnetic and iso-
topic records. Of course, not all of the applications in modern chronostratigraphy
emerged from the blue volumes of the DSDP and ODP. For instance, while modern
marine geology depends heavily on worldwide biozonation of calcareous planktonic
microfossils and the standard paleomagnetic model for geochronological control, the
basis of the planktonic foraminiferal and coccolith biostratigraphies (e.g. Bolli, 1966a;
Blow, 1979; Martini, 1971), as well as the fundamental principles of magnetostratigra-
phy (see review in Opdyke and Channell, 1997) were developed in land sections.
Similarly, techniques of tephrostratigraphic correlations of aeolian and volcanic dust-
falls, which play a vital role in marine stratigraphy (deMenocal and Brown, 1999),
were developed as an essentially continental discipline focused on East Africa (Brown
et al., 1992; deMenocal and Brown, 1999) and western North America (Sarna-
Wojcicki and Davis, 1991). On the other hand, Milankovitch’s prediction that climatic
cycles would prove to be linked to long-term astronomical cycles, while it has been
spectacularly documented in cyclostratigraphic analyses of marine sections exposed on
land (Hilgen et al., 1997; Krijgsman et al., 1999; Hilgen and Krijgsman, 1999), was
first proved to affect the geological record on the basis of stable isotope variations in
deep-sea cores (Emiliani, 1972; Hayes, Imbrie and Shackleton, 1976). In almost every
instance, however, no matter whether dating technologies originally were demon-
strated on the basis of evidence in land sections or in oceanic cores, they have been
developed to the highest level in the service of marine geology. The notable exception
is Neogene (Miocene–Pleistocene) radiometric, fission-track and trapped-charge
dating, which continues to be spearheaded by work on hominid-bearing sequences 
in Africa (e.g. Pickford et al., 1991).

With regard to developments in the deep-sea context, the astronomically-calibrated
stable isotopes series obtained from DSDP cores have been used to generate a tightly
controlled model curve that is applicable to Cenozoic strata around the world
(Shackleton et al., 2000). To give another example, advances in time–distance analysis
of the paleomagnetic reversals in the basaltic floor of the oceans has been the key to
two-decimal precision in the calibration of magnetostratigraphy (Cande and Kent, 1992,
1995). The dated model of paleomagnetic reversals, while not a “clock” per se, offers
a record of frequent, readily observed events, in both marine and continental facies,
that are more reliable indicators of age than almost any other stratigraphic evidence.
Finally, we note that there are other techniques, such as time-analytical modeling of
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conformable sedimentary sections in drill cores (Sadler, 1981) that originated wholly
within deep-ocean studies.

2.2 The Effect of Deep-Sea Studies on Modern
Chronostratigraphy

Since the advent of deep-sea studies, Upper Jurassic to Recent chronostratigraphy has
been revolutionized by the quality of data available from the unaltered, essentially
continuous record of highly fossiliferous strata on the ocean floor. Even distorted by
cryptic disconformities and selectively preserved information, the overall complete-
ness and information content in these sequences far exceeds that available on land.
Unfortunately, no older seafloor has survived the Wilson Cycle, and pre-Oxfordian
chronostratigraphy has not been advanced in the same way. The most dramatic conse-
quence of the explosion of data from deep-sea cores was a sudden shift of the center of
chronostratigraphic reference from northwest Europe and the Mediterranean, where
the primary units of the Standard Time Scale had been defined almost entirely with
reference to disconformities between epicontinental synthems, into the worldwide
arena of the deep-sea.

As a result of this shift in focus, the Mesozoic and Cenozoic stages in European
classical sequences, as well as stages in local chronostratigraphies of the Paratethys,
Japan, New Zealand, and North America, have ceased to be vehicles of direct correla-
tion, although they remain the basic elements of formal chronostratigraphy (Hedberg,
1976). The main reason, of course, is that the stratigraphic and paleontological criteria
that had traditionally defined most stage boundaries over the decades were not appli-
cable in the deep-sea context. In addition, the classical criteria were demonstrably less
well suited for long distance correlation when compared to the new standards (as
noted above). Thus, the weight of global correlation now rests almost entirely on crite-
ria developed from study of the long cores obtained by the DSDP–ODP program. The
two most important components are the network of global biozones in planktonic
marine microfossils (e.g. Srinivasan and Kennett, 1981; Berggren et al., 1995c; Okada
and Bukry, 1980; SanFilippo et al., 1985) and the model of paleomagnetic reversals
that make up the Global Polarity Time Scale or GPTS (Berggren et al., 1985a–c;
Aubry et al., 1988; Cande and Kent, 1992, 1995) and its outgrowth, the Integrated
Magnetobiochronologic Scale or IMBS (Berggren et al., 1985a–c, 1995c). A third,
and increasingly important geochronological tool from the same cores is the climati-
cally influenced record of carbon and oxygen isotope ratios, calibrated according to
Milankovitch orbital cycles (Shackleton et al., 1985; Shackleton, 1987, 2000).

Almost as soon as high-precision deep-sea chronostratigraphy began to develop, it
became a new basis for correlation, and in some instances a stimulus for redefinition,
in important open-marine sequences exposed on land, primarily in the Mediterranean,
Caribbean, Gulf Coast, and southeastern Pacific regions. Diagnostic deep-sea criteria
were more difficult to identify, however, in the updip facies where virtually all classical
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chronostratigraphic units are typified. For this reason, workers were forced to locate
most classical chronostratigraphic boundaries in the deep-sea sections by guesswork,
pending further information. The placeholder boundaries, however, soon became
deeply entrenched in the rapidly-expanding oceanographic literature. Predictably, as
“further information” from the stratotypes has developed, it has generally been found
that the deep-sea concepts were miscorrelated to a greater or lesser degree. Because of
the ascendancy of deep-sea studies, this has led to calls to abandon the long-
established stratotypes on land. The most notable example, so far, is the situation
with regard to the Paleocene–Eocene boundary (Aubry, 2000; Aubry and Berggren,
2000a, b).

In terrestrial sequences, the application of recent advances in chronostratigraphy
has met with mixed success. While magnetostratigraphic chronology is readily appli-
cable in many nonmarine contexts, opportunities for cyclostratigraphic analysis are
limited by the fact that thick laminite sequences with relatively clear and complete
records of climatic cycles are rare on land (but see Krijgsman et al., 1996). With
regard to the fine-grained global biochronology that has been developed in marine
micropaleontology, there is almost no relationship at all with terrestrial paleontologi-
cal data. It is a plain fact that while marine and nonmarine successions are physically
juxtaposed in interfingering relationships at the edge of epicontinental basins, this
does not translate to consistent or reliable relationships between the continental fossil
record and that of the deep-ocean basins. For this reason, the sound marine–terrestrial
correlations that are a basic requirement in our quest to comprehend the modalities of
global change depend almost entirely on paleomagnetic, cyclostratigraphic–stable
isotopic, and radiometric evidence.

Below, we briefly review difficulties in coordinating the deep-sea and continental
time scales that arise from the application of certain non-biostratigraphic techniques in
the interpretation of the deep-sea record. Radioisotopic dating is not discussed here,
mainly because of its relatively limited role in calibrating deep-sea stratigraphic
sequences, and also because it is the principal subject of other parts of this work. We then
discuss briefly the strength and weakness of the current IMBS (Berggren et al., 1995c).

2.3 Chronostratigraphic Method: Age Assignments and
Correlation

Stratigraphy has two main strategies for placing strata in a time context. One is to
assign an age to a stratum or body of rock. This is normally a relative age in a super-
positional context. While isolated exposures of volcanogenic strata can be dated radio-
isotopically without a superpositional context, in most instances radioisotopic (and
other direct chronometric) analyses can normally supplement, and only occasionally
modify, assignments of relative age in a timescale. This is to say, that a relative age is
positioned in a time-ordered framework or model of sequential events – e.g. a biozonal
scheme, an isotopic curve, a paleoclimatic or eustatic series, a geomagnetic polarity

aubry and van couvering28



stratigraphy, or to the boundaries in a time scale – but it has no intrinsic value in
absolute time. The absolute or numerical ages that we ascribe to a relatively dated level
are derived secondarily according to geochronometric calibration of the model in
which the relative age is fixed, or (rarely and accidentally) by direct dating of the stra-
tum itself.

The other method of dating is simply to correlate the rock body to another, the age of
which has been established by the first strategy. As more and more dates are assigned to
the stratigraphic record, however, correlation may be confused with mere synchroniza-
tion: i.e., two rock bodies independently dated to the same age. In the absence of any
corroborative data, mere synchrony should be treated as an untested assumption, and not
as conclusive proof of stratigraphical equivalence.

The calibrated model of geomagnetic polarity stratigraphy, generally termed the
paleomagnetic time scale (PMTS) or global polarity time scale (GPTS), has become a
major means of dating and correlation of marine and terrestrial deposits in recent
decades (e.g. Tauxe et al., 1994; Krijgsman et al., 1996; Cande and Kent, 1992). The
characteristic logs of black and white stripes would appear to be without uncertainty,
but Flynn and Tauxe (1998) warn of the uneven quality of published magnetostrati-
graphic data and of the shortcomings of magnetostratigraphic correlations when the
data are poorly documented or assessed. Two tests are advised to determine the relia-
bility of magnetic data, one being histograms of the parameters used to determine
polarity, and the other being the “Jacknife parameter”, or J, defined by Tauxe and
Gallet (1991). Yet, even when both tests are satisfactory, there is no guarantee that the
pattern observed has a global significance. As an example, Flynn and Tauxe (1998)
consider that the magnetic record of the upper Paleocene–lower Eocene deposits
recovered from OPD Hole 690B on Maud Rise is of superior quality, according to the
very high test values of the measurements. Nevertheless, the identification of the
chrons in the section (Spiess, 1990) conflicts with the biostratigraphy, as discussed by
Aubry et al. (1996). In particular, the identification of Chron C24n.1n-3n in the inter-
val with predominantly normal polarity between 138 and 155 mbsf (Spiess, 1990) in
this corehole was inconsistent with the simultaneous determination that this interval
should be assigned calcareous nannofossil Zone NP10 (Pospichal and Wise, 1990; see
also Aubry et al., 1996). As Flynn and Tauxe (1998) concluded, it is possible that,
despite its apparent high quality, the magnetic record at Site 690 includes overprinted
intervals, and Ali and Hailwood (1998) further suggested that this magnetic record
might be affected by disturbed remanences. Detailed analysis subsequently led Ali 
et al. (2000) to conclude that core splitting induced overprinting of the magnetic
record at Site 690. The clear message of this and other examples is that even good-
quality magnetostratigraphy benefits from testing against other dating methods, wher-
ever evidence is available (see discussion in Aubry, 1995).

Despite significant shortcomings, even in the deep-sea record, biostratigraphy has
been the backbone of stratigraphy since William Smith, as well as the backbone of
geochronology since Charles Darwin. Its one great advantage over most features
commonly found in strata is that, when undertsood as the physical record of organic
evolution, the fossil record is inherently self-ordering. In theory, one can tell by
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inspection which of any two related fossils lying on a table is the older, simply
because one will be more evolved than the other. Put in other words, biostratigraphy
contains evidence of progressive, non-repeated changes in species and communities.
In this regard it is like the progressive decay of unstable isotopes or organic molecules,
or progressive accumulation of trapped charges: it records a non-iterative series, in
which each variation in its properties can be identified with a single point in time.
Unlike the time-dependent isotopic or cumulative systems, however, the precision of
biostratigraphy – in this instance, the recognition of evolutionary and population
changes – is not a percentage of age, and is thus unaffected by distance from the present.
In addition, its accuracy – the amount by which errors in morphologic, taxonomic or
stratigraphic determinations distort the reported range limit of a taxon – is comparable
to the 3 to 5% analytical error in radiochronology, as a percentage of the total 
age-range of the fossil taxon in question.

By comparison, radioisotopic dating is actually applicable only locally and rela-
tively rarely to sedimentary strata, and overwhelmingly to continental strata in vol-
canically active settings. Biostratigraphy, however, applies to all fossiliferous rocks
from all settings. Again, certain other methods such as stable isotope stratigraphy
(particularly �18O stratigraphy), lithologic cyclostratigraphy, and magnetic suscepti-
bility stratigraphy may allow more accurate and more finely resolved correlation.
Nevertheless, biostratigraphy – notably marine planktonic micro-biostratigraphy –
remains the primary tool of broad long distance correlations, simply because of its
abundant data and simplicity of application.

Unfortunately even the most fully developed and tested biostratigraphy is often
perceived by non-paleontologists as an unreliable tool in chronostratigraphy. As
McClelland et al. (1996, p. 213) expressed it, “magnetostratigraphic correlations
should be constructed independently of biostratigraphy” – meaning marine microfos-
sil biostratigraphy. This is both regrettable and understandable. Regrettable, because it
expresses a lack of understanding of the essence of biostratigraphy, and its fundamen-
tal role in stratigraphic interpretation and correlation. Understandable, because bios-
tratigraphic studies are not always conducted with the same rigor as that which
supports the conclusions in physical and chemical geochronology. Here, we do not
refer to simple matters of interpretation, such as the differing taxonomic concepts
among authors that result in slight differences in the positioning of biozonal bound-
aries. We refer instead to a common tendency to uncritically accept the apparent tem-
poral significance of the reported lowest and highest occurrences of marker species in
different deep-sea cores, which gives rise to a discouraging picture of unpredictable
and extensive diachrony in the boundaries of oceanic (planktonic) biozones. The basis
of this credulity among paleontologists is the widespread belief that deep-sea strati-
graphic sections are essentially continuous, without missing or condensed intervals
of any significance that would affect the observed distribution. With the fossil record
seen as an essentially complete and truthful testimony, it has also been the general
rule to explain any inconsistent relationships between observed range limits and
other stratigraphic markers, such as magnetic reversals or isotopic excursions, as
examples of biostratigraphic diachrony. As discussed elsewhere (Aubry, 1995), such
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inconsistencies should always be suspected, before anything else, as being the effect
of unconformities. Even minor hiatuses not only abbreviate the observed stratigraphic
range of taxa, but by removing slice after small slice of the record can also signifi-
cantly distort the stratigraphy of magnetochrons or isotopic cycles without leaving a
detectable mark.

2.4 Biostratigraphy and Chronostratigraphy

A variety of precisely-worded terms, commonly reduced to acronyms, has been devel-
oped by different authors to meet the need for distinguishing clearly between the
objectively recorded features of biostratigraphy in the strata and their well-considered
interpretation in chronostratigraphy. In this work, we use FAD and LAD, standing for
“first appearance datum” and “last appearance datum”, to mean the actual moments of
evolution and final extinction in the history of a given taxon (Berggren and Van
Couvering, 1978). The acronyms LO and HO, for “lowest occurrence” and “highest
occurrence”, are used here for the two-dimensional stratigraphic surfaces defined by
the observed lowest occurrences and observed highest occurrences, respectively, of a
given taxon in the rock record. The stratigraphic surface that we call an LO is in fact a
composite of stratigraphic points, each of which is a reliably observed first occurrence
of the taxon in a given section or group of sections. Each specific point of observation
is here called a LOD for “lowest occurrence datum”. Similarly, the HO surface is a
composite of individual reliable observations of last occurrences, for which we use the
term HOD for “highest occurrence datum.” The use of “datum”, in these terms, refers
to a single point, whether in time or space.

Our prime example of the need to distinguish between the observed and the inferred,
as discussed below, is the way that biozone and the biochronozone have become func-
tionally identical in the context of globally correlatable fossil groups, and with plank-
tonic microfossils in particular. The obvious fact cannot be stressed too often: All
biostratigraphy is based on inherently inaccurate local observations. Even marine
microfossils, despite their ubiquitous presence in every stratum of the most common
types of marine facies, are subject not only to the general accidents of deposition and
preservation but also to the particular accidents involved in making and studying an
individual sample, that bias the records of all fossils (Signor and Lipps, 1982; Ager,
1981). Given this basic limitation, we still can evaluate local occurrence data according
to how closely it approaches the potentially observable (if not actual) beginning and end
of a species’ appearance in the stratigraphic record. A large array of methodologies,
such as graphic correlation techniques (Shaw, 1964; Edwards, 1984), abundance pat-
terns of taxa (Keller, 1983), integrated biostratigraphy based on multiple planktonic
microfossils (Moore et al., 1978), and above all the depth–age plots now becoming
common in DSDP/ODP reports (Barron et al., 1985; Aubry, 1991, 1995), permit us to
judge how much of the possible record is missing, and in particular to determine
whether an observed local range is artificially shortened, either in a disconformity or in
some other process that removes fossil evidence from the view of the scientist.
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Accepting that, with sufficient care, it is possible to correct biostratigraphy to a
large extent for the fundamentally discontinuous nature of even the most fine-layered
and apparently undisturbed accumulations in the stratigraphic record, we turn to the
chronostratigraphic potential of a unique group of fossils: the marine planktonic
groups that document what seem to be exceedingly rapid, or “geologically instanta-
neous”, worldwide population changes in the only globe-spanning biofacies, that of
the upper waters of the world ocean. The LOs and HOs in such fossil groups represent
one of two kinds of temporal significance (Figs. 2.1, 2.2). We can consider that the
worldwide LO of a species has global temporal significance if it corresponds closely
to the time horizon of the species’ First Appearance Datum (FAD). Similarly, the HO
of a species has global temporal significance if it can be shown to be close to the Last
Appearance Datum (LAD), the time horizon defined by the extinction of the species.
Even though global planktonic microfossil zones are the closest approach in bios-
tratigraphy to true chronostratigraphic units, it must be strongly stressed that a bio-
zone – even a global biozone defined by “geologically instantaneous” LO and HO
horizons as boundaries – is not even theoretically isochronous. It is always a three-
dimensional body of physical strata characterized by its paleontological content
(Hedberg, Ed, 1976). On the other hand, a biochronozone is a chronostratigraphic
unit, with absolutely isochronous boundaries, that is defined by ideal, unique FADs
and LADs. It happens, however, that the only way to correlate a biochronozone is with
the same biostratigraphic information – LOs and HOs – that define the biozone based
on the same species or assemblages. In the special case of marine planktonic bios-
tratigraphy, where biozones are defined with LOs and HOs of global temporal signifi-
cance, a biozone and a biochronozone based on the same range criteria can become
functionally indistinguishable. We would argue that the only exception is where a
significant stratigraphic gap occurs within the biozone. In Figure 2.2, compare Zone
BB in section (a) with Zone BB in sections (b) and (c). Biozone BB in section (b), as
in section (c), is not a biochronozone, even though its lower and upper boundaries are
the same as in section (a).

In pre-Cenozoic chronostratigraphy, we find biozones that have somehow become
part of the idealized, isochronous time-scale hierarchy, but without losing their pale-
ontological definition. These might best be called were-zones (i.e., biozones trans-
formed by moonlight into something unnatural). Like planktonic microfossil
biozones, these units are also based on widely-distributed and rapidly-dispersing
open-ocean groups – ammonites in particular, but also conodonts and graptolites – and
in the absence of any realistic competition have been the unchallenged standard crite-
ria for inter-regional correlations for many decades. Over the years their real nature
has been distorted by simplistic usage, with the LOs and HOs of key ammonites
treated as FADs and LADs – that is to say, instantaneous time horizons – and the bio-
zone boundaries entered as divisions of the standard time scale (Ogg et al., 1984,
1991; Gradstein et al., 1995; Hardenbol et al., 1998). Here again we encounter what
we would call “functional isochrony, ” where the available geochronological tools are
incapable of resolving the diachrony in correlated stratigraphic data. The conflation of
biozonation and biogeochronology in these groups is therefore in no way different
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Figure 2.1 Lowest (LO) and highest (HO) occurrences of species may or may not have a
temporal significance (slightly modified from Aubry, 1995, fig. 2).

The LO of a taxon has a global temporal significance in sections where it can be shown to
correspond to the First Appearance Datum (FAD) of the species. The age of the horizon where
the LO is recorded is then T1, the time (in Ma) of the evolutionary appearance of the species.
Similarly, the HO of a taxon has global temporal significance in sections where it can be shown
to correspond to the Last Appearance Datum (LAD) of the species. The age of the horizon
where the HO is recorded is then T2, the age of the extinction of the species.

In stratigraphic sections located beyong 30� latitude (right of time axis), the LO and HO do
not correspond to the FAD and LAD of the species, and thus do not have global temporal signif-
icance. However, they may have regional temporal significance. These LO and HO thus may
constitute regional datums, referred to as LOD and HOD. The LO in a given section corre-
sponds to the time of the arrival (immigration) of the species at a given latitude, which is
expressed as its LOD. At 60� latitude the LOD has an age T�1. Between 30 and 60� latitude, the
LOD has different ages comprised between T1 and T�1 (T�1 < T1). The HO in a given section
corresponds to the departure (emigration) of the species from a given latitude, a datum
expressed as the LOD of the species. �t 60� latitude, this LOD has an age T�2. Between 60 and
30� latitude, the LOD has ages comprised between T�2 and T2 (T�2 � T2).

In sections (a), (b) and (c), some LO and HO of a given species have temporal significance
whereas others do not (left of time axis). In section (a), both the LO and HO have global temporal
significance. In section (b), only the LO has global temporal significance, the HO having no age
value, the upper range of the species being truncated by an unconformity. In section (c), neither
the LO nor the HO have temporal significance because the stratigraphic range of the species is
truncated both base and top. Note that the LO and HO at latitude 60� and the LO and HO in
section (c) have the same relationships with respect to the time axis. Diachrony confers regional
temporal siginificance whereas unconformities deprive LOs and HOs of temporal meaning.



from that which we describe in the case of Cenozoic planktonic microfossils, except
that the diachrony of apparently isochronous LOs and HOs in deeper time is signifi-
cantly more difficult to resolve and may thus be significantly greater, than in younger
strata. It is to be expected, however, that as the standards for pre-Cenozoic biostrati-
graphic correlation are raised, both by comparison with rapidly-improving magne-
tostratigraphy and cyclostratigraphy, and by more rigorous internal tests for range
integrity, the “functionally isochronous” stratigraphic evidence that determines the
boundaries of the were-zones will be replaced by more refined chronostratigraphic
criteria developed in studies of the GSSP. A similar re-evaluation, to be sure, will
inevitably transform the similarly misunderstood Cenozoic planktonic microfossil
global biozones. It is not overly optmistic, we believe, to imagine a future in which the
usefulness of global biozones of all ages will be enhanced and strengthened, rather
than diminished, by a more realistic and nuanced appreciation of their real nature.

A recognizably diachronous LO (Fig. 2.1, right of time axis) includes LODs of
demonstrably different ages, just as a diachronous HO includes HODs of more than
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Figure 2.2 Relationships between biozones and biochronozones. Biozone BB (a total range
zone) is present at all latitudes between 0 and 60�. It is also present in sections (a), (d) and (e).
However, it corresponds to the biochronozone only between latitude 0 and 30�, and in section (a).
In sections (d) and (e), Biozone BB does not correspond to the biochronozone despite the fact that
the LO and HO of the marker species correspond to its FAD and LAD.



one age. This is, of course, the normal manifestation of a biozone. It is only the
unusual expansiveness of tropical–temperate marine planktonic ecofacies that consis-
tently generate fossil records in which diachroneity in correlations is not normally
resolvable (Johnson and Nigrini, 1985; Dowsett, 1989; Spencer-Cervato et al., 1994;
Berggren et al., 1995a, c). For example, diachrony has widely (and rightly) been
accepted as a universal characteristic in continental biostratigraphic correlation, fol-
lowing breakthroughs in Cenozoic K–Ar dating (Evernden et al., 1964) and magne-
tostratigraphy (Opdyke et al., 1979; Lindsay et al., 1984; Opdyke, 1989) that
demolished prevailing illusions of synchrony. This perception justifies a rigorous
distinction between temporal and stratigraphic terminology, as argued forcefully by
Walsh (1998). The complex terminology proposed by this author is, in theory, applica-
ble to all biostratigraphic data, including that of deep-sea planktonic microfossil
biostratigraphy. Nevertheless, the common circumstances of “functional isochrony”
in this latter body of data make many of the nuanced distinctions created by Walsh
(1998) functionally meaningless as well. In striking a balance, then, between a care-
less indifference to the distinction between time and rock, on the one hand, and an
impractical scrupulosity on the other, we accept the opinion of Ager (1981) that in
dealing with rock and time, a needlessly complex terminology (or “verbiage” in this
author’s expression) tends to obscure scientific clarity.

We would go slightly further, and contend that only biostratigraphic levels that
have a temporal significance (HOs and LOs that are the stratigraphic evidence of the
unique biological events called FADs and LADs) are worthy to be designated in a for-
mal terminology (contra Walsh, 1998). In circumstances of palpable diachrony, how-
ever, the terminology proposed above can be in agreement with chronostratigraphic
time scales only if we use FADs and LADs for the primary event, and recognize
regional diachrony in the propagation of the event as evidenced by biostratigraphic
LODs and HODs. Thus, the LAD of Ericsonia formosa is in Chron C12r (estimated
age of 32.8 Ma) whereas its HOD at high latitudes is in Chron C18 at about 39.7 Ma
(Berggren et al., 1995c). Similarly, the FAD of Amaurolithus primus is near the end of
the Sidufjall Event (estimated age of 4.8 Ma) but its LOD in the Mediterranean Basin
is within the Nunivak Event and has an estimated age of 4.55 Ma (Berggren et al.,
1995a; Sprovieri et al., 2002).

The application of time-significant biostratigraphic boundaries – LOs and HOs – in
chronostratigraphy is also complicated by cryptic diachrony, concealed in incomplete
samples and missing section. The most important distortion of LOs and HOs results
from the truncation of stratigraphic ranges due to unconformities (Fig. 2.1, left of time
axis). In such cases, the temporal significance of the biozonal boundaries can be com-
promised to the point that it loses its meaning. In recognition of the fact that “bound-
aries” that coincide with unconformable surfaces are not biozonal transitions, these
transitions should be called contacts to emphasize the artificial superposition of bio-
zones. For example, in section (b) there is a biozonal boundary between Biozones BA
and BB but a biozonal contact between Biozones BB and BC (Fig. 2.1). It must be
remembered that a normal succession of biozones is no guarantee of complete temporal
succession as shown in Figs. 2.1 and 2.2, sections (b) and (c) (see also Aubry, 1993a).
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These and other sources of error in stratigraphic interpretation and correlation, that
result from assuming that a given LO or HO in the strata is the same as the FAD or
LAD event which it documents, is discussed at greater length by Aubry (1995, 1998).
Unrecognized hiatuses in apparently complete sections are the greatest source of
error, far outweighing the consequences of misidentification, poor preservation and
imperfect sampling. They not only falsely simplify the record by removing evidence,
but also falsely complicate it by creating pseudoevents (Fig. 2.3a, b). If these distor-
tions go unrecognized, they will lead to incorrect timing of geological processes such
as paleontological turnover, sedimentological change, geochemical enrichment, and
biofacies and lithofacies migrations. The dating of such evidence bears directly on
interpretations of change frequency, sedimentation-accumulation rates, and evolution-
ary tempo. Ultimately, this will result in invalid interpretations of geological history
and geologically-calibrated processes.

The geological history of regional and global variations in stable isotope ratios is
becoming increasingly important in geochronology, but these observations too can be
affected by cryptic defects in the stratigraphic record. We will leave the discussion of
cyclostratigraphy to other authors in this work. Here, we note only the growing role of
carbon isotope stratigraphy in oceanic–terrestrial correlation, for example the late
Paleocene carbon isotope excursion (Kennett and Stott, 1991; Koch et al., 1992, 1995;
Stott et al., 1996; Bowen et al., 2001). This geochemical signature reflects changes in
the global carbon reservoir that would propagate, in concept, at the present decadal
rate of CO2 equilibration (Plattner et al., 2001) – in effect, instantaneously, as far as
geochronological controls are concerned. Even so, this inherently isochronous evi-
dence requires the same level of vigilant testing as other tools. Erosional gaps, in par-
ticular, can transform the record of isotope ratios, to create the impression of an
excursion simply by a jump from one part of the record to another across a hiatus.
Such pseudo events (as in biostratigraphy) must be distinguished from real events
(Fig. 2.4a, b). On the other hand, a true excursion can be erased, or two excursions can
be melded into one where the sedimentary sequence is collapsed by undetected non-
deposition. Aubry (1998) and Aubry et al. (2000) documented several such false
“excursions” in the records published by the DSDP/ODP (Deep-sea Drilling
Project/Ocean Drilling Program). Thus, peak-to-peak correlations of isotopic profiles
should be considered provisional until actual stratigraphic continuity is demonstrated.

2.5 A Case Study: The 1995 Cenozoic IMBS

In the excitement and satisfaction of seeing formerly intractable correlation problems
crumble under the application of a newly developed stratigraphic methodology, it is a
natural tendency to consider the new method to be superior to all preexisting ones, and
to expect that the new method, alone, will bring definitive answers to the problems that
it addresses. Where the new methodology can be used to strengthen the capability of
other methodologies, even greater expectations are raised. The Integrated Magneto-
Biochronologic Scale, or IMBS, of Berggren et al. (1995c) was hailed as an exemplary
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syncretism of the new magnetostratigraphy and the new marine biostratigraphy, both of
which emerged from the deep-sea research program. The IMBS brought a strikingly
improved level of precision to biostratigraphic correlations, a precision that magne-
tostratigraphy alone was unable to provide. A similar benefit is apparent from the com-
bination of magnetostratigraphy and isotope stratigraphy (except for Pleistocene
sediments), although some biostratigraphic control is also involved.

The integration of the IMBS with rigorously documented stratigraphic data leads
to what may be called “temporal analysis” in the evaluation of local stratigraphic sec-
tions. With reference to precisely calibrated magneto–biostratigraphic models, it is
possible to determine which parts of a stratigraphic section are most complete, what
intervals of geological time these represent, where unconformities lie, and what are
the ages of unconformable surfaces and the duration of the hiatuses (Aubry, 1995,
1998). Such temporal analysis of sections guarantees that correlations are, as far as
possible, truly isochronous, and not simply stratigraphic correlations that are said to
be isochronous. In this way we can hope that the evidence of actual events is not com-
pared with pseudoevents, and that the timing of the evidence in the strata is correctly
established.

One great benefit from this new advance in methodology was improvement in the
various specialized time scales that constitute the Standard Time Scale, and the
improvement in the Standard Time Scale in turn flowed back into improved local
chronostratigraphy. We see stratigraphy as the physical image of geochronology,
whose objective is the construction of time scales and the quantification of historical
geology. Time scales represent scenarios of past physical events such as magnetic
reversals, isotopic events, tectonic shifts and environmental change, together with
events in the evolution of biological life. The time scales are based not only on the evi-
dence preserved in the strata, but also (to an extent that is not widely appreciated) on
the positioning of the evidence-bearing strata in composite sections, where different
pieces of the story can be compared. It is this latter procedure, that of time correlation
of strata, that provides the framework by which the evidence is turned into history.

For most of the pre-Cenozoic time scales (Roberts et al., 1995; Opdyke, 1995;
Gradstein et al., 1995; see also Harland et al., 1990), numerical time is derived from
wide interpolations between relatively few dated points, and time-correlations are
taken directly from the stratigraphic record. In the Cenozoic, as we have have pointed
out above, and in the late Jurassic–early Cretaceous interval (Channell et al., 1995),
numerical time values are more numerous, and the geochronological significance of
stratigraphic correlations can be independently checked; “functional isochroneity” of
marine planktonic biostratigraphic correlation, in this context, is closer to true
isochroneity due to the quality of external controls. The principal time control for the
Cenozoic and the mid-Mesozoic is found in statistical standardization of the paleo-
magnetic lineations on the slowly-spreading seafloor, which provides a vast measur-
ing tape marked off with more than a hundred reversals of the magnetic poles. This
special time scale (actually a chronology, not a chronometer) is referred to as the
global polarity time scale or GPTS. With interpolation closely controlled by the stan-
dardized seafloor spreading rates, the paleomagnetic time scale is actually calibrated



by relatively few numerically dated reference horizons (Cande and Kent, 1992, 1995).
The IMBS applies the GPTS to the biostratigraphic record in deep-sea cores, to esti-
mate the ages of paleontologic events such as FADs, LADs, and eventually acmes.
Once they have been well characterized, other stratigraphic evidence as well as bios-
tratigraphic and paleoclimatic boundaries can be integrated into the IMBS, such as the
singular �18O events Ol and Mi (Miller et al., 1991), the terminal-Paleocene �13C
excursion (Kennett and Stott, 1991), and steps in the strontium isotopic evolution of
sea water (Miller et al., 1988; Hodell and Woodruff, 1994). Using paleomagnetic data
in facies where biostratigraphic correlations are difficult, the “Vail Curve” of eustatic
sealevel changes (Haq et al., 1988; Hardenbol et al., in de Graciansky et al., 1998) can
also be tested and more precisely dated and described as part of the unified historical
calendar that we call the Standard Time Scale.

Three elements determine the strength of the IMBS: (1) the reliability of the
GPTS, or rather its applicability, especially in the “blank zones” between widely-
spaced reversals; (2) the acuracy of the radioisotopic and cyclostratigraphic dates used
to calibrate the GPTS, and (3) the quality of correlations between the GPTS and the
data in deep-sea cores, with reference to both the biostratigraphic record and the pale-
omagnetic record. The first two elements, and in particular the critical role played by
the calibration points, are discussed in Cande and Kent (1995) with regard to the astro-
nomically estimated age of the Thvera calibration tie-point; by Berggren et al. (1995c)
in a postscript on the reliability of the eight other tie-points in Cande and Kent (1995),
and by Berggren and Aubry (1996) and Aubry (1998) with regard to the use of the
Paleocene/Eocene Epoch boundary as a tie-point. Although the 1995 IMBS is a
noticeable improvement on the 1985 version (Berggren et al., 1985a, b, c), mainly
because of an increase in sections with magnetobiostratigraphic data, the dependabil-
ity of the correlations in the current IMBS is still uneven (see also Berggren et al.,
1995c).

The incomparable advantage of deriving a chronology independent of the strati-
graphic record is that it frees biostratigraphy from self-referential impotence and
allows it to take on true temporal perspective. In this new light, it can be seen that
largely unsuspected unconformities riddle the stratigraphic record not only in epiconti-
nental basins, but also in the deep-sea (Aubry, 1995). For instance, in many different
coreholes around the world, the interval that includes the lower-middle Eocene
(Ypresian–Lutetian) boundary was found to contain hiatuses typically 1 to 4 m.y. in
duration, or even more. To go further, from what we know so far it appears that uncon-
formities in the deep-sea are not random, but cluster around certain levels. It may be
more precise, however, to state that unconformities involving depositional hiatuses of
measurable duration (i.e. duration perceptible to geochronologic resolution: see below)
are more common in some stratigraphic intervals than in others. In any case, it seems
clear that there are intervals of time, expressed in terms of Cenozoic biochrons (Moore
et al., 1978; Aubry, 1993a, b, 1995), that are generally well represented in the strati-
graphic record, such as the early Eocene (NP11–NP12), the late Eocene (NP19–20),
and the late Miocene (NN11). Other intervals, however, are consistently less complete,
such as the Paleocene–Eocene transition (NP9–NP10), the early Eocene–middle
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Eocene transition (NP13–NP14a), and the middle–late Miocene transition (NN8–NN9).
This implies that there are stratigraphic intervals for which magnetobiostratigraphic
correlations are firmly established, due to the wide preservation of paleomagnetic and
biostratigraphic data in those intervals, whereas correlations are much less satisfactory
for those intervals that are poorly represented. The magnetobiochronological tool is rel-
atively robust, as a result, in lower Eocene and upper Miocene sections, but weaker in
the lower part of the upper Miocene. Ideally, in the future the clock-like Milankovich
periodicities, documented in cyclostratigraphic analysis, will be available in the older
parts of the Cenozoic to further refine the magnetobiostratigraphic correlations, as we
have seen for the late Neogene (Shackleton et al., 1995; Hilgen, 1991b; Berggren et al.,
1995a; Hilgen et al., 2000; Spovieri et al., 2002). Progress is already being made in
establishing a late Paleocene–early Eocene astrochronology (Katz et al., 1999; Norris
and Röhl, 1999; Röhl et al., 2000; Cramer, 2001).

Aside from the problems caused by unconformities, there are difficulties in the
chronostratigraphy of some specific stratigraphic intervals. For instance, the middle
Eocene (NP15 to NP17 zonal interval) magnetobiochronology is generally weak, due
to the facts that middle Eocene deep-sea sections worldwide tend to yield neither a
good magnetic record nor good microfossil samples because of numerous chert hori-
zons that hinder core recovery. The low quality of the record makes it difficult, of
course, to perceive unconformities. Overall, however, magnetobiochronology is prob-
ably more reliable for the Paleogene than for the Neogene. This is due in large part to
the contrasting magnetic history of the two periods. In the Paleogene, the paleomag-
netic model exhibits a relatively simple pattern with few reversals, producing long
chrons with few, simple subchrons that are easily identified in stratigraphic sections.
In contrast, Neogene magnetic history is one of strikingly more numerous reversals,
producing many short chrons and within them multiple brief subchrons, so that it is
often difficult to identify one’s position in the stratigraphic record. A point in case is
the difference between the initial interpretation of the magnetozones in the Neogene
of DSDP Site 563 by Miller et al. (1985) and its revision by Wright et al. (1992).
Uncertainty in Neogene paleomagnetic age assignments also likely reflects an insuffi-
cient acknowledgement of the incompleteness of the Neogene deep-sea record.

One of the weakest part of the current IMBS is probably the late middle to early
late Miocene (NN8–NN9, approximately). Despite several decades of deep-sea
drilling and the recovery of cores from numerous thick Miocene sections, the magne-
tobiostratigraphic correlations in this interval must be characterized as largely uncer-
tain, despite claims to the contrary (Schneider et al., 1997). This situation largely
stems from the fact that no core has yet been recovered from a section that yields a
good magnetostratigraphic record in direct association with a good biostratigraphic
record of both planktonic foraminifera and calcareous nannofossils. Miller et al.
(1994) reviewed this problem in the light of direct correlations between magne-
tostratigraphy (albeit of less than ideal quality) and microfossil biostratigraphy in the
middle to upper Miocene section exposed at Buff Bay, eastern Jamaica. This interpre-
tation flatly contradicted the magnetobiostratigraphic correlations that had previously
been established in North Atlantic DSDP Sites 558 and 563, and that served in the
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formulation of the 1985 IMBS (Berggren et al., 1985c): biostratigraphic levels in cal-
careous nannofossils and planktonic foraminifera that were associated mainly with
normal polarity in DSDP Holes 563 and 558, proved to be associated mainly with
reversed polarity in the Buff Bay section. To help explain this, Miller et al. (1994)
pointed to temporal control from carbon-isotope data that suggested that inconsistent
relationships between magnetostratigraphy, calcareous nannofossil biozones and
those based on planktonic foraminifera, in various Atlantic, Pacific and Indian Oceans
cores, as well as the discrepancies with the Buff Bay section, were probably due to
marked diachrony of microplankton datums rather than to undeciphered unconformi-
ties. This explanation, as suggested earlier, was based on interpretation of a more lim-
ited set of examples in the North Atlantic, by Aubry (1993b).

Large and unexplained inconsistencies have been observed in the relationships of
magnetic reversals and biostratigraphy in cores from different oceanic basins, or at
different latitudes, and even some that are from relatively nearby sites (e.g. Sites 563
and 608: Table 2.1). There are clearly two groupings of these inconsistent relationships:
one that is found primarily in North Atlantic sites, the other in tropical coreholes
(Table 2.1). Clearly, these inconsistent relationships in compared biohorizons do not
reflect a pattern that can be explained by simple latitudinal diachrony in the distribu-
tion of oceanic microplankton. Due to the fact that all oceanic microplankton are sen-
sitive to watermass boundaries to a greater or lesser extent, we should observe parallel
geographic trends in the diachrony of calcareous nannoplankton taxa and planktonic
foraminifera. This, however, is not the case. Whereas diachrony is probably involved
to some degree, we suggest that undeciphered unconformities, again, provide the most
probable explanation.

In addition to the noted biostratigraphic inconsistencies in, we note that magne-
tostratigraphic relationships in the interval below the normal polarity interval that is to
Chron C5n.2n in the same time frame have been difficult to correlate to the GPTS, in
deep-sea drill sites such as Site 845. The following discussion demonstrates how an
understanding of stratigraphic incompleteness can help to resolve questions arising
from contradictory and incongruous variations in the range limits of planktonic micro-
fossils with respect to magnetostratigraphy.

In one example, the data from DSDP Sites 845 (Raffi et al., 1995) and 608
(Gartner, 1992) strongly suggests that the FAD of Discoaster hamatus lies in the mid-
part of Chron C5n.2n, and that the LO of D. hamatus is therefore not diachronous
between the equatorial Pacific and the tropical North Atlantic. In this light, the fact
that the recorded LO of D. hamatus in Hole 563 apparently occurs at the base of
Chron C5n.2n may be explained by the observation of Miller et al. (1985), that the
normal-polarity interval attributed to this chron in Site 563 can only represent its later
part. The inference that the apparent diachrony is due to a hidden unconformity is
clearly justified.

In another example of inconsistent dating, Raffi et al. (1995) and Schneider et al.
(1997) proposed that the FAD of Catinaster coalitus, based on evidence from the sites
844 and 845, lies in the early part of Chron C5n.2n, while records at other sites
suggested an older FAD. In sites 563 and 608, for instance, the LO of C. coalitus is
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Table 2.1 Comparison between magneto- and biostratigraphic relationships in sections that
have played a critical role in establishing a late middle to early late Miocene biochronology

Source Magneto- Calcareous Planktonic Correlations
stratigraphy nannofossils foraminifera

DSDP relatively good (6) good (6) LO N. acostaensis
Site 563 good; �1 m below LO D.

interpretation of hamatus, at base of
the reversal C5n. 2n
stratigraphy
below C5n. 1n is N15 � 1 m-thick
not straightforward LO D. hamatus slightly
(compare with above base C5n.2n
Wright et al., HO N. mayeri, slightly
1992) below LO D. hamatus

at base C5n.2n
LO C. coalitus �4 m
below LO D. hamatus,
in Chron C5r
LO C. calycuclus
slightly below LO 
D. hamatus

DSDP good in general, good (9, 3) good (7) LO N. acostaensis �
Site 608 but interpretation base Zone NN8, �24 m

of the reversals below LO D. hamatus
below Chronozone
C5n is uncertain
(7, p. 39) N15 � 4 m-thick

LO D. hamatus in mid
Chron C5n.2n (3)

HO P. mayeri 27 m
below LO D. hamatus

LO C. coalitus � 14.86 m
below LO D. hamatus

LO C. coalitus
questionably (7) in
Chron C5n.2r

LO C. calyculus �14
above LO D. hamatus

DSDP no data good (11) dissolution LO D. hamatus in a
Site 710 reversed polarity

interval below C5n.2n
(11, but reliability
questioned by 10)
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Table 2.1 Continued

Source Magneto- Calcareous Planktonic Correlations
stratigraphy nannofossils foraminifera

LO C. calyculus below
Chron C5n.2n (11; but
reliability questioned 
by 10)

DSDP no data good (11) dissolution LO C. calyculus below
Site 714 LO D. hamatus (10)

ODP excellent (13) good (10) dissolution LO D. hamatus in
Site 844 lower C5n.2n

LO C. calyculus in
lower C5n.2n, slightly
below LO D. hamatus

ODP excellent (13) good (10) dissolution LO D. hamatus in mid
Hole 845 C5n.2n

LO C. calyculus in
lower C5n.2n, slightly
below LO D. hamatus

ODP excellent (13) good (10) dissolution LO D. hamatus in mid
Hole 848 C5n.2n

DSDP no data good (12) good (14) LO N. acostaensis in
Site 289 upper Zone NN9, �33

m above LO D. hamatus
N15 �28 m-thick
HO P. mayeri �4 m
above LO D. hamatus
LO C. coalitus � 8 m
below LO D. hamatus
LO C. calyculus: 10.9 m
above LO D. hamatus

DSDP Magnetostratigraphy good (5) good; anoma- LO N. acostaensis in
Holes in Hole 588A lous range of upper Zone NN9, 12.5 m 
588, unreliable(8). P. mayeri, above LO D. hamatus
588A In addition, marker of top 

bottom Zone N14 and
Hole 588 just regarded by N15 � 8.5 m-thick 
in reversed many as (if base taken at HO 
immediately synonym P. siakensis)
below C5n P. siakensis HO P. siakensis 5.2 m

above LO D. hamatus

LO D. hamatus in
lower third C5n.1n
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Table 2.1 Continued

Source Magneto- Calcareous Planktonic Correlations
stratigraphy nannofossils foraminifera

LO C. coalitus � 5 m
below LO D. hamatus

LO C. calyculus � LO
D. hamatus

Buff Bay, highly good (1) good (2) N15/N16 not recovered
Jamaica questionable (8) (unconformity); � 45 m

above LO D. hamatus

N15 � 45 m-thick

HO P. mayeri � 4 m
above LO D. hamatus

LO C. coalitus � 13.4 m
below LO D. hamatus

LO C. calyculus: 22.8 m
above LO D. hamatus

Bodjono- no data good (15) good (15) LO N. acostaensis in
goro Well upper NN9, 187 m

above LO D. hamatus

N15 � 187 m-thick

HO P. mayeri � LO
D. hamatus (but coarse
sampling interval)

LO C. coalitus � 10 m
below LO D. hamatus

LO C. calyculus
inderterminate: single
occurrence 138 m
above LO D. hamatus.

N.: Neogloboquadrina; C.: Catinaster; D.: Discoaster. (1) Aubry, 1993b; (2) Berggren, 1993; (3) Gartner,
1992; (4) Kennett and Srinivasan, 1984; (5) Lohman, 1986; (6) Miller et al., 1985; (7) Miller et al., 1991;
(8) Miller et al., 1994; (9) Olafsson, 1991; (10) Raffi et al., 1995; (11) Rio et al., 1990; (12) Shafik, 1975;
(13) Schneider, 1995; (14) Srinivasan and Kennett, 1981; (15) Bolli, 1966b; W. D. Zachariasse, Utrecht,
written communication, 1990; Berggren and Aubry, unpublished data. LO ? lowest; HO ? highest. Text
abbreviated for clarity.

identified in an interval with reversed polarity that is older than Chron C5n.2n (Miller
et al., 1985; Olafsson, 1991; Clement and Robinson, 1987). There are two possible
interpretations of these inconsistent observations: one, that the LO of C. coalitus is
diachronous between the equatorial Pacific and the North Atlantic. If so, the age of
10.81 Ma estimated by Schneider et al. (1997) applies to the LOD of the species in the



equatorial Pacific, but does not date its FAD. The other alternative is that there is a nar-
row gap in the stratigraphy at Sites 844 and 845, so that the lowermost part of the
assumed Chron C5n.2n (Schneider, 1995) and the uppermost part of the reversed
interval below, in which the first C. catinaster might have been found, is absent from
the cored sections. This second alternative is controversial, in view of the excellent
magnetostratigraphic record of Hole 845 overall, but we note that whereas the match
between the magnetic record in Hole 845 and the GPTS (Cande and Kent, 1995)
above Chron C5n.2n is nearly perfect, the match between the two below Chron
C5n.2n is not as straightforward.

The probability of a disguised hiatus in these Pacific cores is also consistent with
the proposal by Raffi et al. (1995) and Schneider et al. (1997) that calcareous nanno-
fossil Biochron NN8 should be restricted to the earliest part of Chron C5n.2n, based
on the discovery of diagnostic taxa from this biozone in Site 845. Backman et al.
(1990) had earlier proposed that this biochron should be correlated essentially to
Chron C5r.2r – that is to say, in that part of the record that may be missing in Site 845 –
according to the record at Site 710. This correlation is also suggested in the Buff Bay
section (Miller et al., 1994).

Clearly there is a great need to understand the causes of contradictory magneto-
biostratigraphic datasets in different sections. Whereas it has been usual to imply
diachrony of biostratigraphic events, undeciphered unconformities constitute an
equally plausible mechanism for discrepancy. The problem is complex, and involves
not only ecological preferences on the one hand and stratigraphic gaps on the other,
but also preservational biases. Astrobiochronology offers the means to resolve the
conundrums. For instance, at the same time as the HO of C. miopelagicus is suspected
to be diachronous (Berggren et al., 1995c; Backman and Raffi, 1997), Hilgen et al.
(2000) remarked on the near synchrony of this event between the Mediterranean and
Atlantic Sites 608 and 926.

2.6 Conclusions

With the radical improvement in worldwide marine correlations and magnetochronol-
ogy derived from the first forty years of rotary coredrilling in the deep-ocean basins,
considerable advances have been made towards stabilizing and focusing the Cenozoic
time scale. Future improvements will come mainly through increasing the number and
quality of numerical dates that apply to the new marine chronostratigraphy; already,
astrochronology (the historical mirror of cyclostratigraphy) is being widely applied in
upgrading the IMBS (Hilgen and Krijgsman, 1999; Hilgen et al., 2000; Cramer,
2001). Uncertainties in the biochronologic framework remain, especially in those
intervals that have been difficult to sample (see above). Greater attention to the physical
architecture of marine stratigraphy, as well as improving the strategies of correlation,
will be needed to reduce the discrepancies that weaken the application of the vast
body of knowledge that is now available from the fossil record in the deep-sea.
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The development of the integrated magneto-biostratigraphic time scale in the
deep-sea record has modified the way we see geological time. Rather than inferring
time indirectly and in only approximately quantitatively, through the superpositional
logic of stratigraphic succession, the growing accuracy and detail in the geological
time scale now permits us to see some (if not yet all) strata as a function of time,
instead. Thanks to this, we can treat interpretations of the stratigraphic record with
ever greater rigor, leading in turn to new insights that guide further advances in
research.

The importance of improving the geological time scale is not just an academic
matter. We can be sure that the mechanisms responsible for great globin the past con-
tinue to operate today. Depending on their magnitude, such global changes are always
detrimental and sometimes catastrophic to the established global ecosystems. That
would now include human culture as well. Until the geological record of deep ocean,
epicontinental and terrestrial environments can be temporally coordinated to a degree
that reveals cause and effect at a scale that is meaningful for environmental scientists
and policy makers, however, the practical lessons that we might learn from historical
geology will remain a closed book.
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3.1 Introduction

Beginning about two-hundred years ago fossils have been used, with increasing
stratigraphic precision, to correlate fossiliferous beds near and far. The overall relia-
bility of these fossil-based correlations has been tested again and again with radiomet-
ric dating and non-radiometric isotopic techniques, and found to be good. Why is this
the case? In order for any dating technique to work there must be time systematic
changes affecting one or another variable.

With fossils these time systematic changes are of two types, as discussed
previously (Boucot, 1994). These two basic kinds give rise to different types of
biostratigraphy. The first, the d’Orbignyan, is based on the time successive series of
Phanerozoic, relatively short interval extinctions, each one followed after a brief inter-

the many extinctions followed by adaptive radiations that characterize the
Phanerozoic fossil record. These extinctions and adaptive radiations range from major
to minor, a complete spectrum. Each pair of extinctions and subsequent adaptive radi-
ations is separated from the next pair by a lengthy interval of relative evolutionary
monotony. This lengthy interval of evolutionary monotony is characterized for each
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val by a short interval of adaptive radiation. D’Orbignyan biostratigraphy recognizes
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community group within the ecological–evolutionary unit and subunit by little or no
evidence for phyletic evolutionary change among the abundant to common genera, but
some evidence among the uncommon to rare genera in each well studied community
group of phyletic (anagenetic) evolution affecting the uncommon to rare genera. Since
most of Phanerozoic time is present between the d’Orbignyan events we need a second
kind of biostratigraphy for use within each of them.

The second type of time systematic change is the Oppelian which deals with the
time intervals between the d’Orbignyan events, and gives rise to Oppelian biostratig-
raphy. Oppelian biostratigraphy is based on the fact that within each d’Orbignyan unit,
which I have termed Ecological–Evolutionary Units and Subunits (Boucot, 1983,
1984a, b), there is within any community type (my term community group, Boucot,
1975) an overlapping time sequence of species within the different genera present in
the Community Group, i.e., those uncommon to rare genera showing evidence for
phyletic evolution.

Both types ultimately involve evolution. One of them involves the abrupt evolu-
tionary, adaptive radiation changes following extinctions, were termed metacladogen-
esis (Boucot, 1978) to make it clear that these are relatively major evolutionary
changes commonly involving the generation of new families and higher taxa (in con-
trast to the minor cladogenetic changes within a genus that biogeographically give rise
to allopatrically generated species, what I have termed diacladogenesis, 1978). The
other type of evolution involves the anagenetic, phyletic evolutionary changes that
take place within some of the genera present in community groups during the
Oppelian changes occurring in the time intervals between the d’Orbignyan events.
These two types of evolutionary change are radically different! The adaptive radia-
tions involve the generation of descendent families with significantly different mor-
phologies, community ecologies, and presumably distinct behaviors and physiologies,
i.e., major genomic changes under the control of strong directional selection. In con-
trast the phyletic changes taking place within some of the uncommon to rare genera
characterizing a community group are relatively small morphologic changes, accom-
panied by no changes in relative abundances of the genera within a community group,
and are most easily explained by appealing to strong stabilizing selection and genetic
neutralism as the cause of the minor morphological changes.

Examples of such phyletic change in Silurian–Devonian brachiopods I (Boucot,
1997) have worked with include the following: (1) the Eocoelia species lineage of the
mid to late Llandovery and earlier Wenlock; (2) the many Stricklandia lens subspecies
to Costistricklandia lineage of the early Llandovery to early Wenlock; (3) the
Microcardinalia–Plicostricklandia lineage of the earlier Llandovery to mid-Wenlock;
(4) the Borealis–Pentamerus–Pentameroides lineage of the mid to late Llandovery in
Eurasia and in the mid-Llandovery to mid-Wenlock of North America; (5) the late
Ludlow–Pridoli Dayia species lineage of the European Province; (6) the Howellella
vanuxemi–Howellella cyclopterus–Acrospirifer murchisoni lineage of the Early
Devonian Appohimchi Province; (7) the Dalejina oblata–Discomyorthis lineage of 
the Early Devonian Appohimchi Province; (8) the Glypterina–Ptychopleurella
lineage of the Middle Ordovician through Early Devonian; (9) the Leptostrophia
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(Leptostrophiella)–Leptostrophia (Leptostrophia)–Protoleptostrophia lineage in the
later Silurian through Early and Middle Devonian of the Appohimchi Province; (10)
the Nanothyris–Rensselaeria–Etymothyris–Amphigenia (small followed by large)
lineage in the Early and earlier Middle Devonian of the Appohimchi Province.

Additional brachiopod examples include in the Uralian Region the Early Devonian
Karpinskia species lineage described by Zhivkovich and Chekhovich (1985), Sun and
Boucot’s (1999) Givetian examples of Stringocephalus species level lineages in East
Asia and western North America, Rozman’s (1999) Silurian species level lineage of
Tuvaella known in the Mongolo–Okhotsk Region, and the probable species lineage in
the European Late Jurassic–Early Cretaceous for the deep-water, “keyhole” brachio-
pod Pygope (Vogel, 1966, 1984). Smith (1984, pp. 115–118) discusses the Infulaster-
Hagenowia Late Cretaceous echinoid lineage from the chalk of northwestern Europe
that is well documented by Gale and Smith (1982). Ward and Blackwelder (1975)
document the Miocene to Pliocene Chesapecten lineage of eastern North America.
Experienced biostratigraphers working up and down the Phanerozoic column will be
able to think of additional examples from their own time intervals and groups.

Brett and Baird (1992, 1995; see also Brett et al., 1996) introduced the term “co-
ordinated stasis” to emphasize the fact that within all ecological–evolutionary units
and subunits the common to abundant genera do not show evidence for directional,
morphological, species-level change, i.e., evolution, from the beginning to end of the
unit or subunit. These are, of course, the genera and species present in most small to
medium size samples, those including no more than a few hundred specimens. When
significantly larger collections are made one may recover the uncommon to rare gen-
era that include examples of phyletic evolution, the type referred to in the preceding
paragraph. During times of globally high provincialism it is easier to find such exam-
ples of phyletic evolution owing to the overall more rapid evolution during such times
that correlates well with globally smaller reproductively communicating populations.
In their 1995 paper Brett and Baird provided extensive documentation for the behav-
ior of the common to abundant genera and their species within the Silurian–Middle
Devonian of the Central Appalachians that conforms to this concept. Boucot (1996,
Table 2) listed the globally recognized ecological–evolutionary units with many of
their known ecological–evolutionary subunits.

The term ecostratigraphy (Boucot, 1983, 1984a, b) has been employed to describe
the evolutionary basis of biostratigraphy. First, organisms on land and sea do not occur
in a random manner. Varied assemblages of taxa, genera for example, commonly recur
with each other from place to place within any one time interval. In any one time inter-
val there are a varying, but large number of such recurring assemblages. The ecologist
commonly terms them communities, although the term guild might be preferable if
one subscribes to the idea that a community should include ALL of the organisms
from the viral and bacterial up through the tiger sharks and blue whales that co-occur
in the ocean, or on land to the large carnivores and herbivores that co-occur with each
other. But, since the term community is not commonly used in this all inclusive man-
ner we will continue to employ community rather than guild. Frest et al. (1999) made
the very helpful suggestion that communities should be named after the numerically



dominant taxa, commonly belonging to a single guild and major taxon, whereas the
less common taxa commonly belonging to other guilds should be named associations
of the numerically dominant taxon community; this procedure enables one, for exam-
ple, to discuss a group of regularly recurring gastropods occurring in small numbers
within a numerically dominant group of brachiopods as a named gastropod associa-
tion of the numerically dominant brachiopod community, and the same with a regu-
larly recurring, less abundant group of trilobites, etc. This point is important because
the associations do not always occur within a single community. This procedure
permits a number of associations of numerically minor, distinct taxa to be described
from a single community.

3.2 Community Frameworks

A community framework is a graphical device that enables one to ascertain whether
the community groups present in any one biogeographic unit include all of the
expected, potential environments in which different communities might be expected
to occur. Boucot (1975), Wang Yu et al. (1987) and Boucot and Lawson (1999)
provide numerous examples from the Silurian–Devonian.

A community framework has a vertical ordinate on which depth correlated
features are arrayed, and a horizontal ordinate on which varying physical features of
the environment that are not depth correlated are arrayed (Fig. 3.1 is a specimen). For
example, on the vertical ordinate the intertidal and subtidal are noted, the photic and
subphotic zones, and the shelf margin equivalent (as indicated by the incoming of the
turbiditic, flysch facies). On the horizontal ordinate are noted such features as rough
water, quiet water, and normal turbulence, hypersalinity, normal salinity and hypos-
alinity, sediment grain size, anoxic, low oxygen dysaerobic and normal oxygen and so
forth (see Fig. 3.1 and the examples cited). By plotting on a community framework all
of the communities present in any one time interval and area one may see at a glance
which environments remain unaccounted for as well as lateral relations among com-
munities present. Most of this information will be derived from level bottom commu-
nities because the reef complex of communities has been little studied ecologically.

By taking advantage of the community framework approach one may immediately
estimate whether or not the overall taxic diversity, high to low, recorded for any area is
based on an ecologically sound, comprehensive sample, or not. This is potentially
important in assessing diversity changes through time and also for biogeographic
analysis. For example, Figure 3.1 indicates that turbulent condition, shallower photic
zone (Benthic Assemblages 1 and 2) communities have not been recognized in the
Pridoli of the North Atlantic Province, North Atlantic Region at this time (Boucot,
1999a), although they may well be present elsewhere within this time interval and
biogeographic unit.

Until now, only marine benthos have been considered. The nektonic and plank-
tonic organisms, the conodonts, graptolites, chitinozoans and acritarchs to name the
most abundant and widespread within the Silurian–Devonian, also must be considered
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and their ecologies integrated with that of the benthos. Chen Xu (in Mu En-Zhi et al.,
1986) has provided an excellent example, using earlier Silurian graptolite evidence. It
is clear that much of the nektonic and planktonic biota is depth stratified. This results
in some forms, the very shallow water forms, being associated with the very shallow
water marine benthos. In somewhat deeper water the shallow water plankton and nek-
tonic forms are associated with more offshore marine benthos. The relative abundance
of these somewhat deeper water forms increases relative to accompanying biota until
their maximum depth limit is reached, after which they show no increase in relative
abundance. Likewise, for the still deeper water, still more offshore forms occur. One
can, therefore, combine the benthic, nektonic and planktonic organisms in a reason-
able manner and use all three to achieve a still more refined biostratigraphy.

One can achieve additional biostratigraphic resolution by combining the biostrati-
graphic results from a single community group, within a specific ecological–evolutionary
unit, with the biostratigraphic results from an adjoining community group. Using this
Oppelian approach one may achieve the maximum biostratigraphic resolution possible
for time intervals within any one ecological–evolutionary unit. Of course, within a partic-
ular sedimentary basin, one may achieve additional biostratigraphic resolution by paying
attention to community changes that are controlled by physical events within that basin,
but almost all of these will be purely local rather than widespread on a global basis, as is
the case with some sequence stratigraphic events (Brett, 1998).
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Figure 3.1 Community framework for the Pridoli, latest Silurian, North American Province,
North Atlantic Region showing the absence of rough water, turbulent environment communities
for deeper water environments (from Boucot, 1999a).



3.2.1 Community Framework Example

Wang Yu et al. (1987, fig. 10; our Fig. 3.5) show how a community framework analysis
may be used to better understand environmental conditions within a basin, the South
China Yangtze Platform in this case. It is clear (Fig. 3.2) that although there are rich and
varied shelly faunas, low diversity to medium and high diversity representing a number
of Benthic Assemblage 1 through 3 environments plus a few from Benthic Assemblage
4 and inner 5, there is overall no representation of the rich Benthic Assemblage 5 shelly
benthos so widespread in other warm water biogeographic regions (Boucot and
Lawson, 1999) that are mostly included within the Dicoelosia–Skenidioides
Community Group. The total absence of this important, geographically widespread
benthic community group from the Yangtze Platform is best explained as owing to
anoxic, bottom conditions at Benthic Assemblage 5 depths because of the presence of
deeper water graptolitic faunas (Mu En-Zhi et al., 1986) seaward of the shallower
water shelly faunas, i.e., pelagic graptolitic fauna thrived in the shallower and deeper
parts of the water column above the deeper water, anoxic bottom waters.

Community frameworks may be similarly used to tell at a glance which environ-
ments are present in a particular basin or biogeographic unit. This relieves the worker
of trying to recall all of the complex environmental details in areas with which he is
not intimately familiar. Basin analysis possibilities are significantly enhanced by such
an analysis in which one can consider both physical and biological indicators of
environment. Keep in mind that benthic organisms are commonly far more sensitive
indicators of bottom conditions on and within the sediment than are conventional
logging and petrographic parameters. Organisms are sensitive to such things as
thixotropic and dilatant sediments, as well as turbidity conditions, that defy the
sedimentary analyst.

3.3 The Biogeographic Complication

Until now we have discussed things as though all community groups occur
everywhere in the world, i.e., a 100% cosmopolitan world with no global climatic gra-
dient or longitudinal barriers to reproductive communication. Such a situation would
materially simplify correlation by means of fossils, just as would the possibility that
both marine and nonmarine biotas occurred together everywhere, or that every possi-
ble environmental permutation occurred everywhere. Unfortunately, the world is not
like this today, nor is there any evidence from the past to suggest that it ever has been.
There has always been a a global climatic gradient (Boucot et al., in press, lays out the
global Cambrian through Miocene climatic gradient changes), which has sporadically
fluctuated from high to low, intervals with continental glaciation at one or both poles,
and intervals with many longitudinal barriers to reproductive communication as con-
trasted with few such intervals. Biogeography at lower latitudes is essentially a history
of the coming and going of longitudinal barriers to reproductive communication;
relatively cosmopolitan conditions and relatively provincial conditions.
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Correlation between different biogeographic entities, just as between differing
ecological entities, depends on the recognition of either localities with a mixing in
specific beds or interbedding of biotas containing key taxa belonging to the biogeo-
graphic entities on either side. Additional to these correlation possibilities is the
presence of key taxa that bridge the biogeographic boundaries. For example, the cor-
relation of the earlier Devonian neritic faunas of the Malvinokaffric Realm (see
Boucot and Racheboeuf, 1993, for discussion of this realm) with those present in the
extra-Malvinokaffric realms for many years could only be done by a rough stage of
evolution type argument since there are few shared genera, whereas the more recent
development of a higher land plant spore biostratigraphy usable in both biogeographic
entities makes for far better correlation precision.

A global climatic gradient, with cooler or even cold conditions at higher latitudes,
guarantees that there will be biotas adapted to these conditions at higher latitudes.
These higher latitude biotas are invariably lower in diversity at every level from class
to species, far fewer taxa, just as at present (Cox and Moore, 2000), with the Holocene
of course being characterized by a very high global climatic gradient, probably the
highest in the Phanerozoic. Boucot (1975) provides data from the Silurian–Devonian,
and it is common knowledge that the high latitude faunas of the Cambro–Ordovician
are lower diversity during the Middle Cambrian through Late Ordovician, not to men-
tion the well known, high latitude, low diversity Permo-Carboniferous Eurydesma
faunas; the situations during the Mesozoic and Cenozoic are little different. The rea-
sons for lower diversity at higher latitudes are presumably complex, and may change
over time with different causal factors changing their relative importance. High sea-
sonality, with stronger temperature fluctuations will typify times of high global cli-
matic gradient. Other factors include marked seasonal changes in light intensity and
duration, more seasonal reproduction, and many other factors. These factors are not
easy to distinguish very far back in time, except for light seasonality being fixed,
because of changing global climatic gradients through time.

Needless to say, an adaptive radiation of cool to cold climate biotas at high lati-
tudes insures that there will always be correlation problems and uncertainties vis-à-vis
lower latitude, warmer climate biotas. Within the Silurian–Devonian one needs only
think of the lower level of correlation precision between biotas of the cool climate
Malvinokaffric Realm and the warmer climate extra-Malvinokaffric Realm until the
end of the earlier Middle Devonian, Eifelian, when the global climatic gradient lowers
abruptly with consequent large scale extinction of cool to cold climate biotas (Boucot,
1975, 1988).

For the geologist the cool to cold regions are characterized, additional to their
endemic faunas, by widespread siliciclastic lithologies, with glittering, unweathered
mica flakes being widespread in the Middle Cambrian through Ordovician and
within the Silurian–earlier Middle Devonian, and an absence of limestone, dolomite,
redbeds, evaporites, reefs, lateritic deposits and other warm climate indicators. The
reverse is the case for the extra-Atlantic Realm and extra-Malvinokaffric Realm
lithologies.
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At lower latitudes, where warm conditions dominate in the neritic environments
(we know nothing of bathyal or abyssal circumstances during the Silurian–Devonian),
and presumably at lower elevations on land (our knowledge of the freshwater and
terrestrial biotas during the Silurian–Devonian is relatively limited, especially regarding
elevation correlated distinctions), biogeographic distinctions arise from the insertion
and removal of longitudinal barriers to reproductive communication through time.
One thinks here of the later Cenozoic examples, such as the Isthmus of Panama, the
Red Sea barrier, as land barriers for neritic organisms, as well as of the barrier erected
for most organisms with short planktonic larval stages by the distance from the central
to the eastern Pacific (no inter-island transport possible!; such land barriers for the
marine organisms are, of course, “bridges” for terrestrial organisms). In the earlier
Paleozoic and even mid-Paleozoic our knowledge of contemporary paleogeography is
too poor for us to be able to recognize the longitudinal barriers responsible for
differing levels of low latitude provincialism. However, the presence of reasonably
high levels of low latitude provincialism for some time intervals guarantees that such
barriers must have been present. Their location can be postulated using the presence of
boundaries between biogeographic units as the clues.

As examples of these relations one can consider the biogeography of the Silurian
and Devonian, with a few words devoted to the latest, Hirnantian part of the
Ordovician. Overall from the Hirnantian through the Famennian, end of the Devonian,
we see a global climatic gradient going from high in the Hirnantian to very low in the
Famennian.

The Hirnantian is characterized by widespread, Southern Hemisphere continental
glaciation, while the Frasnian and Famennian are characterized by a very low global
climatic gradient with no evidence for cold climates. However, during the Famennian
there is a brief very latest, Strunian interval with continental glaciation in some parts
of South America (Streel et al., 2000). Between the Hirnantian and the Famennian
there is a marked decline in the global climatic gradient.

3.3.1 Biogeographic Nomenclature

Modern biogeographers commonly employ, in descending hierarchical order, the terms
Realm, Region, Province and Subprovince as biogeographic units. Some (Westermann,
2000) drop the term “Region” in favor of Subrealm. Some employ the term Superrealm
as well. No matter what hierarchy one prefers the critical thing is to recognize that there
are differing levels of endemism that give rise to biogeographic provincialism. It is also
well to keep in mind that one does not always encounter a gradual transition through all
units of the hierarchy, i.e., one may go from realm to province in some cases without
evidence for any regions. Also keep in mind that not all paleontologists in the past have
employed the biogeographic hierarchy. Some have referred to all of their biogeo-
graphic units as “provinces,” which results in some confusion in that units now referred
to as realms or regions were earlier referred to as provinces.
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3.4 Silurian–Devonian Biogeography

Silurian–Devonian biogeographic patterns were established after the demise of 
widespread continental glaciation. After extinction of the cold water fauna of the latest
Ordovician, Hirnantian, there is an extended interval characterized by a moderately
high global climatic gradient, Early Silurian (Llandovery) time with evidence for con-
tinental glaciation in the Amazonian region and possibly within the Paraná Basin to
the south, of Brazil, but nowhere else (Boucot et al., in press). A geographically exten-
sive area at high southern latitudes from the Early Silurian through the earlier Middle
Devonian (Eifelian) is characterized by a cool climate benthic marine fauna. The
global climatic gradient abruptly lowers near the end of the Eifelian, the Kačak Event
(Boucot, 1988), following which there is no evidence for cool climate marine faunas
through the Famennian (including the Strunian as well).

From the Llandovery through the Eifelian there are varying levels of marine benthic
provincialism at lower latitude, warm regions, with the highest level present in the
later part of the Early Devonian (Pragian–Emsian). Following the Kačak Event, latest
Eifelian, there is a low but not lowest level of provincialism during the later Middle
Devonian (Givetian), followed by relatively cosmopolitan conditions in the Late
Devonian, Frasnian, Famennian; this appears to be true at the generic level, but may
not be at the specific level which has not been carefully investigated.

The causes for the lower latitude provincialism are currently unknown, but pre-
sumably are due to the insertion of barriers to reproductive communication at lower
latitudes. Unfortunately our knowledge of Silurian–Devonian paleogeography is still
too rudimentary to permit any definitive recognition of the physical barriers to repro-
ductive communication in the neritic environments.

It is worth emphasizing that for every time interval, including the Silurian-
Devonian, certain organisms are favored for biogeographic purposes. These favored
organisms commonly happen to be those which have been most subject to extended,
globally extensive taxonomic treatment. For example, the study of modern marine
biogeography (Ekman, 1953) is dominated by the echinoids because of the extensive
work on this group earlier in the 20th Century by Mortensen. Other marine groups,
such as the molluscs play a subordinate role, probably owing to the absence of a
“Mortensen” devoted to their study globally. On land the situation is little different,
with birds, mammals plus a few insect and flowering plant groups playing the domi-
nant role, while many other potentially important groups such as mites and nematodes
playing only a minor role owing to lack of taxonomic attention globally.

In the Silurian–Devonian the biogeographically key role today is played by the
articulate brachiopods. Other taxa, including the gastropods, rugose corals, trilobites,
ostracodes and pelmatozoans play only supporting roles mostly owing to the lack of
really comprehensive global attention to their taxonomy–morphology and distribu-
tion; in the future this situation may well change. At present, one can say that the non-
brachiopod groups just cited are permissively in agreement with the biogeographic
conclusions arrived at with the aid of the brachiopods. Groups such as the relatively
rapidly evolving conodonts, graptolites and goniatites during this interval are vital for
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biostratigraphic purposes but owing to their relatively broad geographic distribution
during certain time intervals are of limited use for biogeography, i.e., relatively cos-
mopolitan organisms by their very nature are of limited value for biogeography,
although biostratigraphically valuable if rapidly evolving.

3.4.1 Silurian Biogeography

Silurian biogeography from beginning to end is dominated by a cool to cold Southern
Hemisphere Malvinokaffric Realm, Afro-South American Subrealm contrasting with
lower latitude relatively warm units (Fig. 3.2). The Afro-South American Subrealm is
relatively uniform biotically, characterized by a very low diversity fauna (Boucot,
1975; Boucot and Blodgett, 2001), with the brachiopods Clarkeia and Heterorthella
being relatively abundant and widespread. This subrealm has not been subdivided bio-
geographically. Many brachiopod orders, superfamilies and families characteristic of
lower latitude warm regions are absent. This is also true of many other phyla and
classes that are widespread in warmer regions, including such things as varied rugose
corals, calcareous algae, stromatoporoids, varied bryozoans, most shelled cephalopods,
and so forth, whereas conularids and hyolithids tend to be relatively common.

The Afro-South American Subrealm is recognized in the southern two-thirds of
South America from the Amazon Basin and southern Peru south into northwestern
Argentina (Salta and Jujuy Provinces) and into the western part of the Paraná Basin in
Paraguay. It may be present in Ghana, based on a microfossil occurrence and does
occur in Guinea (Racheboeuf and Villeneuve, 1992). The South African Disa Siltstone
was formerly considered to be lowest Silurian, but is now assigned to the Hirnantian
(Boucot, 1999b) with the presence of Heterorthella indicating ancestral relations.
Areas of boundary mixing with extra-Afro-South American Subrealm faunas are
known in the Argentine Precordillera and Puna.

Lower latitude warm regions of the Silurian (Fig 3.2) are assigned to the North
Silurian Realm (Boucot, 1975, 1990), which is divided into North Atlantic and
Uralian–Cordilleran regions. The North Atlantic Region is divided into North
American and European provinces (the latter includes the Merida Andes of central
Venezuela (Boucot et al., 1972) and northeastern Tamaulipas, Mexico (Boucot et al.,
1997)). The Uralian-Cordilleran Region is partially subdivided (Rong Jia-yu et al.,
1995) into Sino-Australian and Mongolo–Okhotsk provinces. They also suggested
(their fig. 4) that eastern Laurentia might represent an additional province in contrast
to western and Arctic North America, the Uralian belt to which the Pre-Carboniferous
of the Carnic Alps and Karawanken belong, and possibly parts of Kazakhstan. The
platform Silurian of Iran may represent another unit featuring relatively abundant,
endemic Xerxespirifer. All of this suggests that there was a moderately high level of
warm region provincialism during the later Silurian. Provincialism for the Early
Silurian, the Llandovery, is not nearly as well understood; it might be more cosmopol-
itan but it might be equally provincial since adequate data for a decision are currently
unavailable.
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So little is known of nonmarine organisms in the Silurian that no attempt is possible
to characterize it biogeographically; there are only a few vertebrate, ostracode and
higher land plant localities known. This situation might change when more nonmarine
localities are recognized.

3.4.2 Devonian Biogeography

Devonian provincialism continues to increase gradually from that present in the later
Silurian, with highest levels achieved during the later Pragian–Emsian interval, follow-
ing which there is a steady decrease into the relatively cosmopolitan Late Devonian. All
of this, of course, refers to level bottom benthic provincialism because, as with the
Silurian, there has been little effort to analyse reef biogeography. In principle reef bio-
geography should exhibit higher levels of provincialism than the level bottom owing to
the far more scattered nature of the reef occurrences.

During the Devonian (Figs. 3.3, 3.4) there is, as remarked earlier, a significant
decrease in the global climatic gradient and the cool climate Southern Hemisphere
Malvinokaffric Realm disappears near the end of the Eifelian in the Kačak Event,
although holdovers, such as a few scattered Malvinokaffric Realm trilobites do persist
into the Givetian and possibly even into the Late Devonian of Brazil. In the Early
Devonian through later Middle Devonian the warm water regions are divided into a
New World Eastern Americas Realm and an Old World Realm present in the lower lat-
itude parts of the Old World plus parts of western and Arctic North America.

There are enough data from the nonmarine Devonian to begin to characterize lev-
els of provincialism. What we know of the provincialism of the higher land plants, the
tracheophytes (vascular land plants), appears to agree very well with that for the
marine benthos, although why this should be is currently unclear. The same is true for
the vertebrates, both jawed and jawless, although here the possibility for marine larval
stages might provide an explanation, i.e., many may have been anadromous although
this is still unproved.

There are some significant biostratigraphic changes within the Malvinokaffric
Realm that feature the earlier Pragian or Emsian appearance of the endemic, large ter-
ebratuloid brachiopods (for example, mutationellinids such as Scaphiocoelia and
Pleurothyrella) followed by their disappearance in the Eifelian. Overall, the
Malvinokaffric Realm is characterized by the relatively abundant, probably eurytopic
brachiopod Australocoelia, absent however in Antarctica, and the large spiriferid
Antarctospirifer. The Malvinokaffric Realm brachiopods for the most part are easily
derived from Eastern Americas Realm antecedents, although this is not the case for
the highly endemic trilobites where an Old World Realm origin is most likely. Varied
nuculoid and some other bivalves are widely distributed within the Malvinokaffric
Realm but their global biogeographic relations remain poorly understood. The few
gastropods within the realm are relatively cosmopolitan types and the single rugose
coral is known elsewhere only in the Eastern Americas Realm. The Malvinokaffric
Realm faunas are recognized in the southern two-thirds of South America
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(Figs. 3.3, 3.4), from southern Peru and adjacent Bolivia southerly through northwest-
ern Argentina (Salta and Jujuy Provinces), the Paraná Basin in Brazil and Paraguay,
Uruguay, the Sierras Australes south of Buenos Aires, Ghana, Guinea (Racheboeuf
and Villeneuve, 1989), South Africa, the Falkland Islands and Antarctica. A few
Malvinokaffric Realm brachiopod genera are known as boundary mixing region items
in New Zealand and Tasmania, as are Malvinokaffric trilobites in similar mixing areas
of northern Brazil (Parnaíba and Amazon Basins).

During the Pragian–Emsian interval, the Devonian interval of highest provincialism,
within the Eastern Americas Realm one can recognize Colombian, Appohimchi,
Amazon and Nevadan subprovinces (Fig. 3.3). The Colombian Subprovince is based
on the presence of somewhat different stratigraphic ranges for some of its genera 
as contrasted with the Appohimchi, the Amazon Subprovince by a mixing of
Malvinokaffric Realm endemic trilobite genera with Eastern Americas Realm bra-
chiopod genera, i.e., biogeographic boundary region mixing, and the Nevadan
Subprovince by a variety of species distinct from those present elsewhere within the
realm. Note that there is no evidence within the Eastern Americas Realm for region
level units, i.e., provincialism drops from the realm to the subprovince level without
intermediate units as long as one pays attention to relative levels of generic provincial-
ism. During the Eifelian there is evidence within the Appohimchi Subprovince for reef
complexes, as is also true within the Michigan Basin Subprovince, the latter not being
recognized during the Early Devonian. Reefs have not been recognized within the
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Amazon and Colombian subprovinces, although they might be present in some of the
poorly studied, massive dolomites present in the Nevada Subprovince region. Overall
evidence suggests that the Eastern Americas Realm probably represents a warm tem-
perate rather than a subtropical or tropical climate. The absence of abundant, wide-
spread calcareous algae is one symptom, as well as gradational relations with the cool
climate Malvinokaffric Realm on the one hand, and with the warmer Old World
Realm in Nevada on the other hand.

The Old World Realm, probably represents a subtropical to tropical climatic
regime with lateritic products such as bauxite known from some localities. This realm
has been divided into Rhenish–Bohemian, Uralian, Cordilleran, Tasman, New
Zealand, and South China regions plus a possible Siberian region. Blodgett et al.
(2001) further divide the Cordilleran Region into Nevada and Western Canada
provinces, with the Western Canada Province extending from at least northern British
Columbia to the boundary region between Alaska and the Yukon. Herrera and
Racheboeuf (1997) make a strong case for considering the Early Devonian bra-
chiopods of the Argentine Precordillera a zone of mixing between the Malvinokaffric
Realm and either or both the Old World and Eastern Americas realms. Their conclu-
sion about a zone of mixing is in agreement with a somewhat similar but more poorly
dated occurrence in northern Chile (Boucot et al., 1995).

A major biogeographic discordance occurs in North America in the late Eifelian as
far east as eastern New York and adjacent Pennsylvania where the Stony Hollow
Member of the Union Springs formation (Ver Straeten et al., 1994), the basal unit of
the Hamilton Group, of latest Eifelian age yields a typical Old World rather than
Eastern Americas Realm fauna (Fig. 3.4). This anomaly can best be explained by
appealing to the short term presence of a warm water gateway that diverted Old World
Realm waters briefly into eastern Laurentia.

The Appohimchi Subprovince, the most thoroughly described part of the Eastern
Americas Realm is characterized by a large number of endemic brachiopods as well as
some endemic trilobites, rugose corals and gastropods.

3.5 Conclusions

Ecostratigraphy enables one to use a combined community ecologic and biogeo-
graphic analysis to provide a far more detailed, evolutionarily based biostratigraphy. It
makes clear the lower level correlation precision all too commonly present between
biotas from different biogeographic and ecologic units. It capitalizes on the improved
correlation precision made possible by combining data from adjoining, either inter-
tonguing or mixed, ecologic and biogeographic units. It emphasizes the importance of
careful taxonomic work on the phyletically evolving species within generic lineages,
typically the uncommon to rare genera within any community group. It emphasizes
the critical importance of working with large fossil collections that have a much better
chance of recovering the uncommon to rare genera, the rarefaction phenomenon.
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4.1 Introduction

At its origin palynology was a branch of Botany, but ever since it became also an
important speciality of Micropaleontology. Its applications are numerous in varied
scientific and economic fields.

In the scope of geosciences, palynology studies the whole of the organic matter
present in sedimentary rocks. In addition to the amorphous organic matter, it also
focuses on the structured elements concentrated by means of chemical processes that
eliminate the mineral components of the sediment. These structured elements fall in
two major categories according to their provenance:

– those of nonmarine origin, as for example cuticle and wood fragments,
cryptospores, spores and pollen grains, freshwater phytoplankton,
etc.; and

– those of marine origin, like microphytoplankton elements (acritarchs,
prasinophytes and related forms, dinoflagellates) and chitinozoans.

The diversity of the biological material seen with the optical microscope, as well
as its diagenetic state, give varied and accurate information on the age, depositional
setting and thermal evolution of sedimentary rocks. The use of palynology in stratig-
raphy is its most common geological application. However, palynology can also
provide valuable information concerning several other fields of geology, such as pale-
ogeography, paleoecology, paleoclimatology, tectonics, eustasy, evolution of the
organic matter during diagenesis, and hydrocarbon generation.

4.2 Principles and Methods of Study

The foundation of any palynological research is technique, which on its turn is based
on varied procedures, the methods used depending on the results required and
available resources.

All sediments that contain organic matter are liable to provide some palynological
residue. Fine grained clastics (silts, clays), such as light grey to black, not too diage-
nesed or oxidized pelites and lutites, are potentially the most palyniferous sediments,
whereas coarser-grained rocks and even pelites with red, green or yellow colors are
generally unsuitable.

Laboratorial procedures include three phases: a mechanical phase, a chemical
phase, and residue mounting. The steps to be followed are not the same in all cases,
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but instead depend on the composition of sediments and the palynological material
that has to be analysed. For sediments in general there are standard methods to which
laboratories adapt their own processing techniques. A detailed description of the varied
procedures is found in Wood et al. (1996), and thus, only a brief overview of the main
laboratorial steps is given next.

4.2.1 The Mechanical Process

Contamination during sampling of sedimentary rocks is a frequent problem in
palynology. Therefore as concerns outcrop samples, trenching to expose a fresh sur-
face is recommended. Of all types of samples recovered from wells, cuttings are the
least desirable because of caving problems but, unfortunately, they often represent the
only available source of palynological information in the oil industry. So they must be
carefully cleaned and sieved so as to minimize contamination risks. Conventional and
sidewall cores are preferred. However, because they are often penetrated by or coated
with drilling mud they are not immune to contamination, and therefore washing is
usually required in order to eliminate the mud cake. Because laboratorial contamina-
tions are also frequent, all equipment must be carefully washed and cleaned before
every new batch of samples is processed.

Washed rock samples are first crushed and sifted. The amount of rock to be
submitted to chemical treatment depends on its colour, which is often a function of its
organic matter content, as well as on the lithology itself.

4.2.2 The Chemical Process

The aim of the chemical procedure is extraction and concentration of the organic residue
from sedimentary rocks. The general procedure for processing paleopalynological
samples and eliminating the mineral matter involves a routine series of inorganic acid
(HCl–HF–HCl) attacks followed by density separation and organic matter oxidation.

Numerous processes have been proposed in the literature for the extraction of the
organic matter, but none have thus far solved the problem of completely separating the
organic and mineral parts. The most important difficulty lies mainly on the size of par-
ticles of the mineral residue which are insoluble in HF. These particles, the chemical
composition of which is not yet accurately known, are usually very small sized. They
are agglomerated into clumps with colloidal aspect and are more abundant in residues
from rocks with higher percentage of clay minerals. Several chemical agents have been
used in attemps to eliminate these undesirable materials: washing the residue with
diluted and hot HNO3 immediately after the treatment with HF (Reissinger, 1939),
which is the most classic method; the use of oxidizing agents before and during the HF
treatment (de Jekhowsky, 1959); the ultrasonic treatment (Funkhouser and Evitt, 1959;
Dumait, 1962; Alpern, 1963) or the use of a «Millipore» filtration instrument with a
15 	m mesh sieve (Streel, 1965). Microwave processing machines have also been
developed (Shane in McGregor et al., 1996), the heating of palynological samples by



microwaves reducing the time and the volume of rock and chemicals needed for the
acid treatment. The combined use of nitric acid and the microwave technique enhances
the oxidation of superfluous kerogen without affecting the palynomorph concentration
in palynological preparations (Jones, 1994).

4.2.3 Mounting

Once concentrated, the organic matter intended for optical microscope studies is
pipetted and dispersed on a transparent slip cover, gently heatened for drying, and then
fixed on a glass slide by means of a mounting media with appropriated optical properties
so that palynomorphs can be examined under transmitted light. Homogeneous slides are
obtained by double mounting with a dispersing agent like Hydroxyethylcellulose subse-
quently covered with Euparal.

Palynologists have adopted a variety of mounting media. Some also commonly used
are glycerine jelly, Canada balsam, silicone oil and elvacite. They differ in durability,
optical properties and their effect on palynomorphs. None is superior in all respects.

Organic residues can be stored dry or in a liquid, as for example ethanol, methanol or
a mixture of water and phenol. All residues must be chemically neutralized because resid-
ual chemicals may cause decay of palynomorphs, or crystals may form in the final mount.

4.2.4 Microscopy

Bright-field microscopy with or without phase interference or contrast is the commonly
preferred method for palynomorph examination. Incident light fluorescence microscopy
is also a common procedure. It provides data that allow palynologists to reach a variety
of interpretations, mainly in palynofacies studies. The use of the transmission electron
microscopy (T.E.M.), and particularly scanning electron microscopy (S.E.M.), has 
also become popular. Both techniques represent excellent auxiliary tools to the light
microscopy, chiefly in research concerned with taxonomic and ultrastructural aspects of
palynomorphs, because they allow elucidation of external features at very high magnifi-
cations combined with the examination of internal structures. However, due to the
higher operational costs and lengthier procedures involved, electron microscopy studies
are seldom considered in routine palynology of the oil industry.

4.3 The Main Devonian Palynomorph Groups and Brief
Comments on Their Morphology

Here we will only take into account the palynomorph groups most used in palynological
studies of Devonian sediments, i.e. acritarchs and related morphotypes, chitinozoans and
miospores. Cryptospores, on their turn, have their main application in Ordovician–
Silurian biostratigraphy, and for this reason they will not be included in this discussion.
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4.3.1 Chitinozoans

Chitinozoans are an extinct group of organic-walled microfossils only known in situ
from marine sedimentary rocks of Ordovician through Devonian age. Chitinozoans are
characterized by vesicles of radial symmetry and varied shape (e.g. bottle-, enrlen-
meyer- and urn-shaped, globose, subcylindrical, etc.). Vesicles in general are within the
50–2000 	m size range but most of them do not exceed 250 	m in length. They occur
singly, in linear or coiled chains, or still in cocoon-like aggregates and radial clusters.
The vesicle wall can be glabrous or variably ornamented with rugulae, foveae, gran-
ules, crests, felt- or web-like coverings, spines and longer processes which may be sim-
ple, ramified, coalescent, spongy, etc. Distinctive external structures can be developed,
such as a marginal carina or cingulum, diverse apical (basal) structures related to inter-
vesicle linkage in a chain, or a membranous sleeve extending well beyond the vesicle
base. Membranous envelopes or wing-like expansions around the vesicle also charac-
terize some chitinozoan taxa. The type and arrangement of ornamentation, the external
structures, the overall vesicle shape, and the closing mechanism of the aperture (either
an external circular lid, the operculum, or an internal tubular plug, the prosome), alto-
gether play a major role in the modern chitinozoan classification.

Chitinozoans were probably first illustrated by Hinde (1882), who found them on
the bedding planes of shale samples taken from the early Wenlock Högklint Beds at
Visby, Gotland Island, Sweden (Y. Grahn, writ. com., 10 April 2001). However, it was
only half a century later that they were finally named by Eisenack (1931) after their
supposed zoological affinity and the chitin-like composition of the vesicles, which
appear characteristically dark in most light microscope preparations. The most influ-
ential publications on those microfossils are mainly dated from the mid-1950’s
onwards, when their outstanding biostratigraphic significance was first demonstrated
by the French in the course of oil exploration campaigns in North Africa. The applica-
tion of S.E.M. analyses to chitinozoan studies has become common practice mainly
during the past three decades. It has proved truly revolutionary to the taxonomic clas-
sification of this fossil group, because it permits the accurate observation of critical
morphological features that could not be sufficiently characterized in conventional
(light microscope) investigations.

Chitinozoans have already been tentatively assigned in the literature to such disctinct
groups as protists, protozoans, metazoans, and fungi. The problem of the biological
affinity of chitinozoans remains still unsolved. However, the dominant opinion amongst
specialists (Paris, 1981; Grahn, 1981; Miller, 1996; Paris et al., 1999) has been to regard
them as eggs or egg cases of some unknown group of extinct, possibly soft-bodied
marine metazoans (Grahn’s 1981 enigmatic “chitinozoophorans”). Because chitino-
zoans cannot be compared with certainty to any known group of extant or fossil taxa,
their classification is largely artificial and relies only on observable morphological and
structural features of the vesicle.

Several authors laid the foundation for chitinozoan morphological terminology and
classification. Morphological terms used nowadays in the description of chitinozoans
derive mainly from Combaz et al.’s (1967) terminology, which has undergone further
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adaptations by Laufeld (1974) and Paris (1981), and lately also by Miller (1996) and
Paris et al. (1999). The suprageneric classification of chitinozoans into Orders,
Families and even Subfamilies, first proposed by Eisenack (1931), is regaining grow-
ing acceptance in the recent literature (e.g. Paris, 1981; Achab et al., 1993; 
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Figure 4.1 Phylogeny of selected chitinozoan genera, after Paris (1981, 1990), F. Paris apud
Miller (1996), and Paris et al. (1999), modified with newer South American data. * – Ordovician
stages currently in revision.



Miller, 1996; Paris et al., 1999) in place of the simpler but less useful classification sys-
tem based on the alphabetical listing of genera (Laufeld, 1967, 1974; Jenkins, 1970).
The newest scheme of chitinozoan classification, by Paris et al. (1999), complies with
the ICZN rules and is based on diagnostic morphological features ranked after statisti-
cal and evolutionary criteria. A tentative phylogeny of selected chitinozoan genera is
shown in Figure 4.1.

4.3.2 Organic-Walled Microphytoplankton

Devonian organic-walled marine microphytoplankton consists essentially of
acritarchs and allied morphotypes, such as prasinophytes. Acritarchs are organic-
walled microfossils of varied morphology and poorly known, probably heterogeneous
biological affinities (Servais et al., 1997), which cannot be assigned to any definite
group of organisms. Most of them – though not all – probably represent the resting
cysts of varied marine phytoplankton groups. Prasinophytes, on their turn, represent a
well-defined class of cyst-forming, planktonic green algae (Chlorophyta). Many
forms previously characterized as herkomorph, pteromorph and sphaeromorph
acritarchs are now regarded as fossilized prasinophyte cysts or phycomata (Wicander,
1974; Tappan, 1980; Wicander and Wood, 1981; Playford and McGregor, 1993;
Strother, 1996). In addition to acritarchs and prasinophytes, other “acritarch-related”
groups (both algal and non-algal in origin) also make up a significant proportion of
Devonian microphytoplankton assemblages (Le Hérissé et al., 2000). Some “colo-
nial” forms usually associated with acritarchs – such as the Western Gondwanan
genera Proteolobus and Petrovina, of Late Devonian age – have been regarded as
coenobial chlorococcalean algae (Oliveira and Burjack, 1996; Wood, 1997).

Devonian microphytoplankton morphology is very diverse. Most specimens
consist of a single, hollow vesicle that may bear outgrowths (unbranched or ramified
processes) as well as planar membranes that form septa, muri, wings, or a velum. The
processes and vesicle wall can be further ornamented with sculptural elements such as
grana, knobs, small spines, rugulae, striae, etc.

The vesicle symmetry, size and shape, the excystment method, the wall structure,
and the shape of processes as well their distribution, density and mode of attachment
on the vesicle, constitute the main descriptive characters of acritarch/prasinophyte
morphology.

A generalized successive appearance of the main types of excystment opening,
plus some selected vesicle outlines showing a variety of ornamentation, are illustrated
in Figure 4.2.

4.3.3 Miospores

Miospores are mostly issued from vascular plants (tracheophytes). In the fossil record
they are only represented by their external envelope, the exine. This bears diagnostic
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structures and/or sculptural elements that became more and more elaborated along
geological time.

Miospores originated in the Ordovician Period (Steemans, 1999) when they
developed, in one of their poles, the first undoubted trilete mark which is the trace of a
dissociating tetragonal tetrad. Haptotypic (i.e., linked to the tetrad status) proximo-
subequatorial features are first noticed in the earliest retusoid miospores, which are
often recovered from coeval strata. Distal thickening of the exine (the patina) was soon
differentiated in that same period. Proximal radial muri and interradial papillae as well
as diverse sculptural patterns (verrucate, foveolate, apiculate, reticulate, and rarely
biform) appear during the Silurian Period. Zonate two-layered forms, i.e., miospores
bearing an equatorial extension of the external layer of the exine (the sexine), first
occur in the beginning of the Devonian Period to soon give rise to an explosive phase of
miospore diversification. Indeed, by the end of the Early Devonian they had developed
most of their Devonian characteristics (Alpern and Streel, 1972; Richardson and
McGregor, 1986). Camerate miospores, i.e., miospores having a cavity between the
sexine and the inner layer (the nexine), evolved from two-layered zonate miospores and
display almost all kinds of exinal sculpture, including typical biform ornaments and
bifurcated spines. The average spore size had increased from less than 25 	m (the size
of extant bryophyte spores) to 50–150 	m (the size of extant fern spores), occasionally
even reaching megaspore size (�200 	m) possibly in relation to incipient plant
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Figure 4.2 Generalized succession of appearance of main types of excystment opening and
ornamentation variety in selected Paleozoic acritarchs, after Martin (1993).
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heterospory. During Middle and Late Devonian times miospore size changed again in
two steps. A dramatic increase started little before the Emsian/Eifelian transition, with
species (many of them camerate) often surpassing the 200 	m size limit, probably
related now to the development of true heterospory. Close to the Frasnian/Famennian
boundary most of the miospores returned to the 50–150 	m size range, possibly in
response to new strategies in land plant reproduction such as the differentiation of the
seed and prepollen. The first occurrence of endoreticulate miospores near that stage
boundary could reflect such a change. Therefore, miospores encountered in the Middle
and Late Devonian may include not only isospores (from homosporeous plants),
microspores (from heterosporeous plants), and prepollen (from possible gymnosperm
ancestors), but also megaspores below the 200 	m size limit. The most characteristic
features of the miospore evolution are shown in Figure 4.3.

4.4 Palynostratigraphy

Biostratigraphy and correlation of sedimentary rocks are the primary applications of
palynology in geological sciences. Because palynomorphs are commonly recovered
from both marine and nonmarine sediments, they have the potential for correlating
deposits of continental and transitional settings with those of marine origin. This is
particularly true in the case of miospores, which are often transported far away from
the mother plant by running water and wind and dispersed over a variety of sedimen-
tary environments related to distinct biofacies.

4.4.1 Types of Biostratigraphic Units

Various types of biostratigraphic units and elements that are considered in their
descriptions have been used in the palynological literature. Among them, three major
types of biozones are roughly recognized, in terms of the International Stratigraphic
Guide (ISG) and the North American Commission on Stratigraphic Nomenclature
(NACSN), sometimes with significant differences in interpretation. They are:

– the range zones, on their turn comprising: (a) interval zones which are
strata between the successive stratigraphically highest and/or lowest
occurrences of index taxa, and/or (b) Oppel Zones which, according to
ISG, represent the known range of one single taxon or group of selected
taxa or, according to Hedberg (1976, p. 58), may be defined as an asso-
ciation or aggregation of selected taxa of restricted and largely concur-
rent ranges, chosen as indicative of approximate contemporaneity;

– the assemblages zones, which include strata characterized by an associ-
ation of three or more distinctive taxa; and

– the acme or abundance zones, composed of strata characterized by
maxima (epiboles) in the relative abundance of one or more taxa.
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Figure 4.3 Morphological trends of miospores from Ordovician to basal Carboniferous:
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As concerns the Devonian miospore stratigraphy two zonal concepts were
adopted. One of them is the assemblage zone concept, mainly used by Richardson and
McGregor (1986) in their miospore zonation of the Old Red Sandstone Continent and
adjacent regions. These authors described assemblage zones defined by a combination
of different criteria, such as the co-occurrence of characteristic taxa, the first appear-
ance of selected species, and the appearance of selected morphological features. This
concept was proposed as the only one that would allow correlation on a global scale.
Indeed, the Old Red Sandstone Continent and adjacent regions obviously comprise
different Devonian phytogeographic provinces, and therefore, in order to accommo-
date a maximum of available data it was necessary to apply such a comprehensive
zonal concept. Note that in Eastern Europe Russian authors still favor a concept of
Assemblage Zone based on, and generally named after, the acme of characteristic
species, whereas the true inceptions of taxa are seldom taken into account. Such kind
of biozonation is still largely applied to a Devonian phytogeographic area in the eastern
part of northern Euramerica.

The other concept is the interval zone adopted by Streel et al. (1987) for the type
marine Devonian strata of the Ardenne-Rhenish regions in Western Europe. Streel et al.’s
miospore zonal scheme comprises a series of interval zones entirely erected within the
limits of one single phytogeographic province, to the contrary of Richardson and
McGregor assemblage zones. The advantage of the interval zone concept is that it allows
unequivocal correlation with interval zones based on varied fossil groups.

4.4.2 Calibration with Other Reference Units

The main purpose of the biostratigraphic tool, aside from paleoenvironmental evalua-
tions, is to date sediments and correlate them accurately throughout long distances. To
make such purpose feasible, the relationships between the proposed biozones and the
litho- and chronostratigraphic units, as well as their relation with biozones based on
other fossil groups, should be established as precisely as possible. So the interval
zones are especially suitable for such calibration.

An example is given in Streel and Loboziak (1996), who propose a table of corre-
lation for the Middle and Upper Devonian of the Ardenne-Rhenish regions, in which
the first occurrences of thirty miospore key species are calibrated according to the
standard conodont zonation. Of course, the quality of these correlations, named the
Quality Index of Correlation, depends not only on the distance in time and space
between each miospore datum and the nearest faunal datum, but also on the kind of
stratigraphic unit that is being used.

4.5 Paleoenvironment and Paleogeography

The occurrence, composition and state of preservation of the organic matter in sediments
yield information on its transport to the depositional site, on the paleoenvironment in
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which it has been deposited, and on its alteration once deposited. For instance, it is a well-
established fact in the palynological study of marine sedimentary rocks that the propor-
tion of land-derived organic debris (land plant cuticles, wood, and miospores) tends to
increase inshoreward. The opposite trend is often characterized by the predominance of
amorphous (unstructured) organic matter, of probable algal origin, and marine paly-
nomorphs over scarcer terrestrial organic matter. Post-depositional erosion or mass trans-
portation of palyniferous sediments may cause palynomorphs to be reworked into
deposits of different geological ages (most often within stratigraphically younger sedi-
ments). Reworked palynomorphs, which are considered as mere contamination by some
biostratigraphers, may however help to detect tectonic uplifts and eustatic falls (Streel and
Bless, 1980; Eshet et al., 1988; Di Pasquo and Azcuy, 1997). Moreover, they provide a
key to the source area of the sediments into which they have been recycled. Therefore,
reworked palynomorphs are regarded as valuable tools for the reconstruction of important
geological events.

When the quantitative analysis of nonreworked miospore assemblages is possible,
it permits the recognition of different paleoenvironmental settings of the nonmarine
realm. Downstream (coastal lowland) “coal” swamp and swamp margin environments
are directly controlled by short-term sea-level changes: any sea-level highstand will
induce a high fresh-water table in those environments and therefore increase their
importance by means of a higher proportion of swamp plant miospores in neighboring
seas, highstands of sea level corresponding to the extension of coastal lowland
swamps. The upstream (upland) “coal” swamp and upstream swamp margin environ-
ments are not directly affected by the sea-level fluctuation. Their retreat or expansion
are first controlled by dry versus wet climates. Wet climates produce flooding
episodes that, in turn, carry more upland miospores into the marine basin.

Studies carried out in North Africa and Brazil (Loboziak et al., 1988; Streel et al.,
1988; Loboziak and Streel, 1989) have demonstrated the potential of recognizing
Western European defined miospore zones, particularly those from the Ardenne-
Rhenish regions (Streel et al., 1987), in the regional Devonian of Western Gondwana.
A quantitative approach based on the relative abundance of Devonian miospore taxa,
first inside Western Gondwana (Loboziak et al., 1989), then between the latter and
Southern Euramerica (Streel et al., 1990), indicates a remarkable uniformity of land
plant vegetation, and therefore of climate, from paleotropical to paleopolar realms
during at least the Givetian and Frasnian (Streel et al., 2000b).

The aforementioned miospore-based studies suggest that Southern Euramerica
and Western Gondwana constituted a single major phytogeographic province during
the Middle and Late Devonian. Although the biostratigraphic scheme developed in the
Ardenne-Rhenish region can be applied to practically the whole of this phytogeo-
graphic province, it does not mean that the flora was homogeneous over such a huge
area. For example, some species were restricted to Western Gondwana during the
Middle and early Late Devonian (Loboziak and Streel, 1995a), where they can repre-
sent a significant part of the miospore assemblages. This becomes particularly evident
if the percentages computed for each sample take into account the number of speci-
mens rather than the number of species. Two kinds of climatic restrictions are evoked
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to explain this lack of homogeneity: (a) macroclimatic, probably latitudinal,
differences determining subprovinces, and (b) microclimatic, mainly altitudinal, vari-
ations affecting plant communities in local areas.

In the marine realm, according to Molyneux (in Molyneux et al., 1996, p. 515–516),
the distribution of microphytoplankton is conditioned in a general way by two major
environmental trends. These, on their turn, dictate ultimately several interrelatd physi-
cal, chemical and biotic controls such as: nutrient, light and oxygen supply, predation,
competition, and seawater depth, salinity, pH, temperature, hydrodynamics, and tur-
bidity, amongst others. Although primarily envisaged to explain the distribution pattern
of Paleozoic microphytoplankton, Molyneux’s trends have also a bearing on the co-
occurrence of other marine palynomorph groups with more problematic paleoecology,
such as chitinozoans (see below). These trends are:

– the relative distance from shoreline (Molyneux’s inshore–offshore
trend): by and large, the abundance, diversity and morphological com-
plexity of microphytoplankton assemblages in shelf paleoenvironments
tend to increase offshorewards, with less diverse, more eurytopic
(sphaeromorph-dominated) assemblages predominating in the shal-
lower marine settings. However, this general tendency may be variably
affected by environmental factors determined by coastal physiography,
seabottom relief, marine currents, etc.; and

– the paleolatitudinal trend: this leaves a less evident imprint on the com-
position of ancient microphytoplankton assemblages than do paleoeco-
logical factors related to shoreline distance. Latitudinal controls are
influenced ultimately by climate and paleogeography. They may be
detected in the form of acritarch/prasinophyte provinces, which are
ideally distributed as latitude-parallel belts, best documented for the
Ordovician and Silurian, but also recognizable in the Devonian 
(Le Hérissé et al., 1997a). Some authors (Wood, 1984; Vavrdová et al.,
1993; Vanguestaine, 1986; Vavrdová and Isaacson, 1996, 1999, 2000)
record different microphytoplankton taxa characteristic of late Middle to
Late Devonian assemblages from Western Gondwana and Euramerica.
Wood’s (1984) Late Devonian Umbellasphaeridium saharicum
Bioprovince is believed to characterize high latitude marine environ-
ments of the Southern Hemisphere supposedly influenced by a cold
water subpolar gyre (Isaacson and Díaz Martínez, 1995). References to
additional works concerned with Devonian acritarch paleobiogeography
are provided by Le Hérissé et al. (2000, p. 196–197).

As discussed by Paris (1996, p. 544–545), chitinozoans too, with their supposedly
planktonic mode of dispersion, were sensitive to environmental parameters related to
both the inshore–offshore and paleolatitudinal trends. This can be inferred from varia-
tions in the taxonomic composition of chitinozoan assemblages (diversity), the
absolute abundance of chitinozoans (expressed in counts of specimens per gram of
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rock), and their relative frequency in the total palynological residue (ratio of chitino-
zoans to other palynomorphs and land plant clasts). Wicander and Wood (1997)
combined chitinozoan diversity trends with microphytoplankton and miospore quanti-
tative data in order to estimate paleoshoreline fluctuations related to transgressive/
regressive cycles in the Middle Devonian of Iowa, U.S.A. Evidence of faunal differen-
tiation and endemism at genus and species levels is recorded by Paris et al. (2000) in
Devonian chitinozoan assemblages from separate areas like Australia, Brazil and
Ghana.

4.6 Devonian Palynostratigraphic Schemes in 
Western Gondwana

4.6.1 Chitinozoans

Chitinozoans altogether span from Early Ordovician to Late Devonian and have been
reported from all continents. Many chitinozoan species and even some genera have
restricted stratigraphic ranges and relatively widespread geographic distribution,
which makes them excellent biostratigraphic tools.

Devonian chitinozoans have been reported and described from a variety of
Western Gondwanan regions, such as Brazil, Argentina and the Malvinas Islands,
Bolivia, Uruguay, Paraguay, Ghana, and North Africa (see main references in Grahn,
1992; Wood, 1994; Paris, 1996; and Paris et al., 2000). However, relatively few works
have focused on the determination of accurate stratigraphic ranges and the erection of
regional biozones based partly or entirely on chitinozoans in Western Gondwana. Of
these, the main ones refer to Brazilian basins, Uruguay, eastern Paraguay and north-
western Argentina (Lange, 1967a–b; Quadros, 1982, 1988; Volkheimer et al., 1986;
Ottone, 1996; Grahn, 1997, 1998a–b, 1999a–b; Grahn et al., 1997, 2000, 2001, 2002
and 2003; Grahn and Melo, 2002, 2003 and in press, a–b; Grahn, 2003a–b; Azevedo-
Soares and Grahn, in press); Bolivia (Limachi et al., 1996; Dufka in Vavrdová et al.,
1996; Grahn, 2002); Gondwanan portions of SW Europe (Cramer, 1964; Díez and
Cramer, 1978; Paris, 1981); Ghana in West Africa (Anan-Yorke, 1974); and Algerian
and Libyan basins of North Africa (Taugourdeau and Jekhowsky, 1960; Jardiné and
Yapaudjian, 1968; Massa and Moreau-Benoit, 1976; Boumendjel, 1987; Boumendjel
et al., 1988; Paris in Streel et al., 1988).

Most of the chitinozoan datings and biozonations published before the late 1990’s
for northern Brazilian basins and Ghana are now in need of revision following the latest
advances of Devonian miospore biostratigraphy in the Solimões, Amazon and Parnaíba
Basins of Brazil. Grahn (1992) summarized the stratigraphic distribution of Devonian
chitinozoans in Brazil, but without designating formal biozones, and some of his age
conclusions also require update because based on now obsolescent databases. Paris
(1996, text-fig. 8) presented a range chart of selected Devonian chitinozoan species
integrating data from Gondwanan regions and other parts of the world. Paris et al.
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(2000) were the first to present a provisional global biozonation of Devonian chitino-
zoans including eighteen interval range zones and one total range biozone, based on
chitinozoan data from all continents. Unfortunately, however, limitations to the world-
wide application of these biozones still persist, mainly posed by such constraints as
chitinozoan endemism, scanty biostratigraphic data for the Emsian, Frasnian and
Famennian stages, and insufficient information from several regions of the world. On
the other hand, ongoing and future studies will surely bring about further improve-
ments to the biostratigraphy of Devonian chitinozoans in the coming years. For exam-
ple, a relatively large number of species (mostly yet undescribed, in addition to those
newly erected by Grahn, 2002, Grahn and Melo, 2002 and in press, a–b) occur in late
Middle to Late Devonian strata of Bolivia and northern Brazil. Although possibly
endemic to Western Gondwanan areas, some of these forms could eventually add con-
siderable refinement to the regional Eifelian–Famennian chitinozoan biostratigraphy.

4.6.2 Organic-Walled Microphytoplankton

Considerable advances have been made in recent years as concerns the taxonomy of
Devonian organic-walled microphytoplankton (chiefly acritarchs and prasinophytes).
A relatively large amount of such taxonomic works dealing with Western Gondwanan
assemblages has accumulated during the past four decades, particularly as concerns
SW Europe, North Africa, and South America. On the other hand, continued effort has
to be concentrated on the biostratigraphy of Devonian microphytoplankton taxa as
well as their paleoecology (including a better understanding of the main factors that
control their environmental distribution).

Unfortunately, many of the papers dealing with Devonian acritarchs and related
forms provide insufficient information on their accurate age and stratigraphic distribu-
tion. Relatively few, too widely separated contemporary acritarch/prasinophyte suc-
cessions have been studied in detail thus far, so hampering the erection of a widely
accepted global Devonian microplankton biozonation. Nevertheless, as more
Devonian sections are continuously studied from a variety of locations and paleoenvi-
ronments, it becomes evident that, beside the many taxa with restricted geographic
distribution or too extended stratigraphic ranges, there are also a number of cosmopol-
itan or semi-cosmopolitan species with short stratigraphic ranges that are useful for
long-distance correlations. This is demonstrated in range charts compiled by Le
Hérissé (in Molyneux et al. 1996, text-fig. 10) and Le Hérissé et al. (2000, tab. 1) for
selected Devonian species recorded in various continents, although some of the ranges
presented need revision because based on partly obsolete bibliographic databases for
Western Gondwana. Several of these taxa can be used for intercontinental correlations
despite some degree of provincialism in their geographic distribution.

In Western Gondwana, the most significant biostratigraphic accounts derive from
North Africa (Algerian Sahara, western and eastern Libya) and northern Brazil
(Solimões, Amazon and Parnaíba Basins). Discrete published results also concern Iran
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(Hashemi and Playford, 1998); Spain (Cramer, 1964); Ghana (Anan-Yorke, 1974); and
southern Brazil (Paraná Basin), Paraguay, Uruguay, Bolivia, and Argentina in South
America (Daemon et al., 1967; Pöthe de Baldis, 1974, 1978, 1979; Barreda, 1986;
Oliveira et al., 1995; Ottone, 1996; Ottone and Rossello, 1996; Vavrdová and Isaacson,
1996; Vavrdová et al., 1993, 1996; Le Hérissé et al., 1997b; Oliveira, 1997; Quadros,
1999). In addition, some regional palynozones for the Devonian of Bolivia have been
erected on the basis of mixed and poorly documented phytoplankton/miospore data
(Lobo-Boneta, 1975; Lobo-Boneta et al., 1977; Suárez-Soruco and Lobo-Boneta, 1983;
Limachi et al., 1996).

Jardiné (1972, text-figs. 1, 2) presented integrated range charts of selected
Devonian microphytoplankton species from SW Europe, the Algerian Sahara, and
South America. Still regarding the Algerian Sahara an acritarch/prasinophyte range
chart and a regional biozonation are also given in Jardiné et al. (1974, fig. 2), based on
results from the Grand Erg Occidental (Magloire, 1968; Lanzoni and Magloire, 1969)
and the Illizi (Fort Polignac) Basin (Jardiné and Yapaudjian, 1968). The range chart
shows the distribution of selected 160 microphytoplankton species and a palynostrati-
graphic scheme alongside a composite lithostratigraphic column.

More recent data from the Illizi Basin concern the Emsian to latest Famennian
(«Strunian») stratigraphic interval (Coquel and Latrèche, 1989; Moreau-Benoit et al.,
1993). Several phytoplankton assemblages are listed but no biozonation is proposed,
all datings being based on the associated miospore results.

In regard to the Hammadah Basin of western Libya (also named Rhadamès or
Ghadamis Basin in the previous literature), Moreau-Benoit (1984) gives a list of taxa
identified in Givetian and latest Famennian («Strunian») samples from three wells and
their stratigraphic distribution. Some of the most significant taxa are described and
illustrated. In Cyrenaica (northeast Libya) organic-walled microphytoplankton
assemblages have been recognized from samples assigned to the Givetian–Famennian
stratigraphic interval of several exploratory wells. The most significant forms are
illustrated in Paris et al. (1985). The stratigraphic and paleogeographic implications of
these assemblages are discussed in a second paper (Vanguestaine in Streel et al.,
1988). A list of taxa identified in the uppermost Devonian of the Mourzouk Basin is
provided by Vavrdová (1987).

In northern Brazil two main biozonations have been proposed. They concern the
Parnaíba (formerly Maranhão) Basin (Brito, 1971 partly modified by Quadros, 1982)
and the Solimões Basin (Quadros, 1988), both of which require update in terms of their
taxonomic bases and age implications. In addition, the Late Devonian microphyto-
plankton biostratigraphy of the Amazon Basin is currently under review (Le Hérissé,
2001; A. Le Hérissé, unpubl. data). As a whole, the organic-walled microphytoplank-
ton record in those three basins concerns the stratigraphic interval currently dated by
miospores from possibly the latest Early Devonian (late Emsian) to the end-Devonian
(Loboziak and Melo, 2000, text-fig. 2: A, B). Riegel’s (1996) post-Devonian “phyto-
plankton blackout”, recognized through an abrupt decrease in the relative abundance
and diversity of Carboniferous assemblages all over the world (Le Hérissé et al., 2000,
p. 201), can be also identified right above the Famennian/Tournaisian boundary in
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northern Brazilian basins despite the maintenance of widespread marine settings in
those areas (Melo and Loboziak, 2003).

4.6.3 Miospores

Publications on the stratigraphic distribution of Devonian miospores actually started with
the classic work of Naumova (1953) on the Russian platform, in the northeast part of the
Euramerican Continent. Ever since, additional Devonian sections have been zoned by
various authors, mainly within Euramerica but also elsewhere around the world.

In respect of the Devonian of Western Gondwana, the earliest and most significant
miospore-based syntheses were established in the late 60’s and 70’s. They concern
mainly the Illizi (Fort-Polignac) Basin of the Algerian Sahara (Jardiné and
Yapaudjian, 1968), the Hammadah Basin of western Libya (Massa and Moreau-
Benoit, 1976), and the Brazilian Amazon, Parnaíba and Paraná Basins (Daemon et al.,
1967; Daemon and Contreiras, 1971; Daemon 1974, 1976). Other relevant Devonian
miospore investigations concern Iran (Coquel et al., 1977), Paraguay (Menendez and
Pöthe de Baldis, 1967), the Cordillera Oriental of Bolivia (McGregor, 1984), north-
ernmost Bolivia (Vavrdová et al., 1993, 1996), and the Subandean regions of southern
Bolivia and northwestern Argentina (Pérez-Leyton, 1991; Ottone, 1996; Melo, 2000).

In the past few decades numerous studies have been carried out in North Africa,
Brazil and Saudi Arabia. As shown in Figure 4.4, most of these investigations are 
relatively recent, and several were made by the same group of authors.

4.6.3.1 Miospore Events
Figure 4.5 depicts the most significant Devonian miospore events recorded in Western
Gondwana (Loboziak, 1999; Loboziak and Melo, 2000, 2002; Melo and Loboziak,
2001, 2003). The events are dated by correlation with faunally calibrated interval
zones of the Ardenne-Rhenish regions (Streel et al., 1987) and the assemblage zones
of the Old Red Sandstone Continent and adjacent regions (Richardson and McGregor,
1986). With the exception of some stratigraphically useful species that are restricted to
Western Gondwana, most of the selected taxa are common to both Southern
Euramerica and Western Gondwana.

During most of the Early Devonian, i.e. from Lochkovian to the early late Emsian,
miospores were diverse and rather small-sized. Richardson and McGregor (1986) report
prominent flimsy zonate taxa from the base of their E. micrornatus – S. newportensis
Assemblage Zone within the early Gedinnian (Lochkovian). In the Ardenne-Rhenish
region (Streel et al., 1987; Steemans, 1989) the zonates, represented by the species
Cirratriradites diaphanus, are noted for the first time in the equivalent MN Oppel
Zone, more precisely in the upper part of the phylogenic zone E. micrornatus var.
sinuosus (Si). Small non-spinose zonates have been recorded in various miospore
assemblages of the Hammadah, Illizi and Al Kufrah Basins of North Africa, as well as
in Bolivia and the Brazilian Amazon and Paraná basins. Based on independent
chitinozoan–acritarch datings of regional Upper Silurian–Lower Devonian miospore
successions in the Hammadah Basin, western Libya, Rubinstein and Steemans (2002)
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now consider that the earliest zonates there, including such species as Breconisporites
simplex and Perotrilites laevigatus, could be as old as Late Silurian (Pridoli).

Another significant feature in Lower Devonian palynofloras is the first occurrence
of the index reticulate species Dictyotriletes emsiensis. This species is an eponym of
Richardson and McGregor’s (1986) D. emsiensis–V. polygonalis Assemblage Zone,
which is an equivalent of the V. polygonalis–D. wetteldorfensis (PoW) Oppel Zone
defined in the Ardenne (Streel et al., 1987). In this latter region, the first occurrence of
Dictyotriletes emsiensis (Streel et al., 1987; Steemans, 1989) characterizes the base of
the D. emsiensis (E) Interval Zone, the youngest subdivision of the B. breconensis– 
E. zavallatus (BZ) Oppel Zone which underlies the PoW Biozone. According to 
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Figure 4.4 Selected occurrences of Devonian palynofloras in Western Gondwana and respec-
tive data sources. Paleogeographic reconstruction after Heckel and Witzke (1979).
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Figure 4.5 Main Devonian miospore events in Western Gondwana, after Loboziak (1999),
Loboziak and Melo (2000, 2002), and Melo and Loboziak (2001, 2003), modified.

Streel et al. (2000a, p. 18, text-fig. 8), the base of the E Biozone is close to (but below)
the lower limit of the Pragian stage. However, detailed studies of Lower Devonian
palynofloras in northern Brazilian basins (Rubinstein et al., in press) now suggest that
the stratigraphic inception of reticulates belonging to the so-called Dictyotriletes
emsiensis Morphon could be as old as early late Lochkovian (Si Zone-equivalent), at
least in some of the Western Gondwanan regions where the same bio-event has been
recognized (North Africa, Saudi Arabia, Brazil and Bolivia).



The next miospore event is the first occurrence of Camarozonotriletes sextantii
and Emphanisporites annulatus, a well-known radially-ribbed species with a distal
concentric ring. The inception of these two taxa defines the base of the E. annulatus -
C. sextantii Assemblage Zone of Richardson and McGregor’s zonation, somewhere
above the base of Emsian, as now redefined (Yolkin et al., 1997) by the appearance of
the conodont P. kitabicus. According to Streel et al. (1987) the E. annulatus–
C. sextantii Assemblage Zone corresponds to the E. annulatus–B. bellatulus (AB) and 
E. foveolatus–V. dubia (FD) Oppel Zones of the Ardenne-Rhenish regions.
Camarozonotriletes sextantii is present in North Africa and Saudi Arabia but has not
yet been recorded in Brazil.

Emphanisporites annulatus is an Emsian–Givetian species with world-wide distri-
bution. It has been recorded in various Western Gondwanan regions, such as North
Africa, Saudi Arabia, Bolivia, and Brazil. Its accurate stratigraphic inception in
Brazilian basins is still uncertain, because early Emsian strata are either missing or
poorly characterized palynologically there. This is particularly true in the Amazon and
Parnaíba Basins, whereas in the Paraná Basin the species was used by Daemon et al.
(1967), under the designation Emphanisporites cf. erraticus, to characterize their D2b
and D3 Intervals, attributed by those authors to the Emsian–Eifelian.

A renewal of the palynoflora occurred in the late Emsian, mainly due to a dramatic
increase in miospore size. This event is well documented by the appearance of large,
prominently spinose zonates and pseudosaccates belonging to the Samarisporites/
Grandispora complex and the disappearance of several smaller forms, particularly
reticulate elements well known in the Lower Devonian.

The large spinose zonates–pseudosaccates first occur and proliferate in the transi-
tion between the E. annulatus–C. sextantii and the overlying G. douglastownense–
A. eurypterota Assemblage Zones of Richardson and McGregor (1986). This same
interval of latest Emsian age correlates with the transition between the E. foveolatus–
V. dubia (FD) and the succeeding A. apiculatus–G. protea (AP) Oppel Zones of the
Ardenne-Rhenish regions (Streel et al., 1987).

In Western Gondwana this group of miospores is abundant throughout the Eifelian,
attains its epibole in the Givetian and becomes gradually rarer in the Frasnian. Some
specimens, mainly belonging to Grandispora incognita, still persist into palynophase
«IV», which is the highest miospore subdivision of the Frasnian according to Streel
et al.’s (1987) zonal scheme. Therefore, assemblages of large zonates-pseudosaccates
are useful in identifying the late Emsian–early late Frasnian interval.

Several successive first occurrences of characterisitic or index species defining
miospore events are recorded within the in situ range of the large zonates–pseudosaccates
in Western Gondwana. In ascending order they are:

– the first occurrence of several endemic zonates and pseudosaccates in
Western Gondwanan areas, such as Grandispora permulta, within 
a stratigraphic interval equivalent to the Ardenne-Rhenish AP/
A. acanthomammillatus–D. devonicus (AD) transition of late early
Eifelian age;

loboziak ET AL.92



– the appearance of Geminospora lemurata, a species widely dispersed
all over the world, at the base of the G. lemurata (lem) Interval Zone,
very close to, but above, the base of the Givetian;

– the appearance of Samarisporites triangulatus and allied congeneric
forms at the base of the S. triangulatus–A. ancyrea (TA) Oppel Zone of
late early Givetian age;

– the first occurrence, in the early Frasnian, of miospore taxa bearing 
tabulate sculpture: Verrucosisporites bulliferus at the base of the 
V. bulliferus–C. jekhovskyi (BJ) Oppel Zone, and Geminospora pili-
formis, an endemic Western Gondwanan species, within a stratigraphic
interval equivalent to the BJ/V. bulliferus – L. media (BM) zonal transi-
tion of the Ardenne-Rhenish zonation; and

– the first occurrence of Rugospora bricei, a small-sized pseudosaccate
species with fine rugulate sculpture at the base of the palynophase «IV»
of late Frasnian age.

A return to palynofloras dominated by smaller-sized miospores is documented close
to, but below, the Frasnian/Famennian boundary. From this level to the upper Famennian,
miospore assemblages in the Ardenne-Rhenish regions include various small-sized, spin-
ose pseudosaccate species of the genus Grandispora. The successive first occurrences
of these species characterize the bases of most of the miospore zone subdivisions from
palynophase “IVc” through the A. verrucosa–V. hystricosus (VH) Oppel Zone.

Unfortunately, the lower and middle Famennian interval has not been sufficiently
documented in North Africa and the Middle East. Results from the Hammadah Basin
(Massa and Moreau-Benoit, 1976) and the Al Kufrah Basin (Grignani et al., 1991) are
disputable because of the absence of diagnostic Famennian miospore species amidst
the described assemblages and the lack of any faunal control. By contrast, a late
Famennian (Fa2c) palynoflora was recorded in the Illizi Basin (Boumendjel et al.,
1988) and Cyrenaica (Paris et al., 1985; Streel et al., 1988).

In the northern Brazilian basins index species of latest Frasnian to middle Famennian
Ardenne-Rhenish palynozones are rare or unknown, even along potentially coeval, care-
fully investigated rock sections. Possible causes of this problem may include lithologies
unsuitable for miospore preservation, biostratigraphic gaps related to sedimentary con-
densation, or the scarcity of contemporary vegetation cover in those high latitude areas
due to climatic constraints. Therefore no Western European-defined miospore zones
within this stratigraphic interval have been individualized on an indisputable basis.
Sedimentary sections of same age are seemingly absent in the Paraná Basin.

The successive inceptions of at least three reliable diagnostic species can be taken
into account within the latest Frasnian–late Famennian of Western Gondwana areas.
These are:

– Teichertospora torquata, an eponym of the T. torquata–G. gracilis
Assemblage Zone of the Old Red Sandstone Continent biozonation not
yet recorded in Ardenne-Rhenish regions;
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– Rugospora radiata, an eponym of the R. flexuosa–G. cornuta
Assemblage Zone of the Old Red Sandstone Continent and which first
occurs at the base of the D. versabilis–G. cornuta (VCo) Oppel Zone in
Ardenne-Rhenish regions; and

– Vallatisporites hystricosus, the first occurrence of which characterizes
the base of the V. pusillites (sensu lato)–A. fructicosa Assemblage Zone
in the Old Red Sandstone Continent (Richardson and Ahmed, 1988)
and of the A. verrucosa–V. hystricosus (VH) Zone in the Ardenne-
Rhenish regions (Maziane et al., 1999).

The youngest Devonian characteristic miospore event is the first occurrence, at the
base of the latest Famennian or «Strunian», of Retispora lepidophyta, a well-known
cosmopolitan species which permits accurate chronocorrelation all over the world. Its
total range within the «Strunian» is subdivided into three biozones, each of these
being characterized by the first occurrence of a diagnostic species, viz.: Knoxisporites
literatus (LL), Indotriradites explanatus (LE) and Verrucosisporites nitidus (LN).

The «Strunian» interval has been palynologically investigated in various areas of
North Africa (Lanzoni and Magloire, 1969; Attar et al., 1980; Massa et al., 1980;
Grignani et al., 1991) and the Middle East (Coquel et al., 1977) giving rise to different
regional biozonations based on miospore assemblages. Their comparison with the
biozones defined in northern Brazilian basins (Loboziak et al., 2000a) suggests that
the lower part of the Retispora lepidophyta total range may be missing in these
regions, although an assignment to the LL Zone has been proposed by Streel et al.
(1988) for several samples from well A1-37 in Cyrenaica.

In northern Brazilian basins most of the latest Famennian miospore assemblages
contain Indotriradites explanatus and a few other characteristic species, mainly
Vallatisporites verrucosus and Vallatisporites vallatus, which first occur only in the
upper subdivisions of the Retispora lepidophyta range. Therefore, the LL Zone could
not be identified in any of the investigated sections and may be entirely absent in
northern Brazil. This indicates a biostratigraphic, and probably also lithological, gap
between at least the VH Zone (or still, older parts of the underlying VCo Zone) and 
the base of the section containing Retispora lepidophyta, which is further character-
ized by massive reworking of Middle Devonian and Frasnian palynomorphs. Due 
to the scarcity, or even local absence, of Verrucosisporites nitidus in most of the stud-
ied sections the Retispora lepidophyta range cannot be accurately subdivided.
Therefore a comprehensive LE–LN zonal attribution is preferably proposed for this
entire interval.

In the subsurface of the Paraná Basin, Loboziak et al. (1995a) reported a LE-LN
palynoflora from diamictites. This may document the first in situ occurrence of
«Strunian» miospores in that basin. Diamictites and other glacio-marine sediments
with same age are widespread in northern Brazilian basins (Loboziak et al., 1992b,
1993, 1995b, 1996, 1997b, 2000b; Grahn et al., 2001; Streel et al., 2000b, 2001; Melo
and Loboziak, 2001, 2003) and also occur in Bolivia, where they have been dated by
means of their miospore and acritarch content (Pérez-Leyton, 1991; Vavrdová et al.,
1991, 1993, 1996; Díaz et al., 1993a–b, 1999).
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4.7 Applications of Devonian Palynology to Petroleum
Geology: Some Western Gondwanan Examples From
South America

Palynology constitutes a powerful auxiliary tool to hydrocarbon exploration in a variety
of ways. Of these the most important concerns biostratigraphy, involving primarily the
palynomorph-based subdivision, dating, and correlation of sedimentary rocks.
However, palynology can also provide critical information on the thermal evolution of
organic matter and hydrocarbon generation, the reconstruction of sedimentary envi-
ronments, and the geological history of sedimentary basins. Most of these matters
have already been sufficiently covered in recent works (Tyson, 1995; Batten, 1996a, b;
McGregor et al., 1996), and so, only three examples concerning the palynostrati-
graphic application of Devonian organic-walled microfossils to the hydrocarbon
exploration in sedimentary basins of South America are provided next.

4.7.1 Subsurface Correlation of Hydrocarbon Reservoirs in
Southern Subandean Bolivia

In structurally complicated Paleozoic basins, complex faulting, folding and deforma-
tion may affect inextricably siliciclastic sequences characterized by monotonous,
recurrent pelite/sandstone successions. Under these circumstances, seismic resolution
becomes very limited, and palynostratigraphy eventually provides a most reliable tool
for the recognition and tracing of exploratory target intervals from one well to another.
This was the case in an area of southern Subandean Bolivia drilled for gas by a pool 
of oil companies including PETROBRAS. There, two sandy intervals with very simi-
lar lithology but quite distinct ages (and palynological content) – ascribed to the
Devonian Santa Rosa and Huamampampa formations – were easily confused with
each other on seismic sections. Only one of them included the main productive reser-
voir, and poorly understood lateral shifts of shaley–sandy lithofacies further compli-
cated the issue. Fortunately the biozonal succession in a few critical wells was soon
elucidated, based on accurate palynological correlation with carefully analysed,
structurally less complicated reference sections in the nearby Devonian outcrop belt.
The palynological signature and age of the main rock units – including the target inter-
val – could be then established (Melo, 2000), and improved correlations provided a
basis for new interpretations of regional facies relationships in the light of sequence
stratigraphy concepts (Miranda et al., 2000; Souza Cruz et al., 2000). Palynological
support has proved crucial to structural and stratigraphic interpretations in the area,
and therefore to drilling decisions involving several millions of dollars.

4.7.2 Integrated Palynological–Geochemical–Clay Mineral Characterization of
Potential Source Rocks in the Devonian of Parnaíba Basin, Northern Brazil

High-resolution palynostratigraphy can be coupled with analytical techniques such as
organic geochemistry and clay mineralogy to achieve a detailed characterization and
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Figure 4.6 Integrated miospore biostratigraphy, geochemistry, and clay mineralogy data from
Devonian potential hydrocarbon source rocks in well 1-IZ-2-MA, Parnaíba Basin, northern
Brazil, after Rodrigues et al. (1995), modified. The Parnaíba Basin map shows the location of
the studied well and isolith curves (in meters) for the Frasnian radioactive shale interval.
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subdivision of potential hydrocarbon source rocks. This is well exemplified by
Rodrigues et al.’s (1995) study of Late Devonian black shales belonging to the
Pimenteira Formation (Parnaíba Basin, northern Brazil). Based on a carefully sampled
core section from well 1-IZ-2-MA (Imperatriz nr.2), those authors integrated
miospore biostratigraphy with varied geochemical bulk analyses (total organic car-
bon, total sulphur, hydrogen index), biomarker and carbon isotopic analyses, trace ele-
ment data and clay mineralogy, in order to characterize the early stages of the Frasnian
anoxic event in the western part of the Parnaíba Basin (Figure 4.6). Bands of sedimen-
tary condensation, originated under distal marine settings, and detected palynologically
in the form of apparent biostratigraphic gaps (“missing” miospore biozones) and high
microphytoplankton concentrations, were shown to coincide with maximum flooding
surfaces and increased anoxia based on organic geochemical data. Such integrated
high-resolution studies are valuable in the accurate delimitation of intervals with high-
est hydrocarbon potential within lithologically uniform black shale sections.

4.7.3 Palynological Dating of Frasnian–Famennian Anoxia and 
Glacio-Eustatic Events in the Amazon Basin of Northern Brazil,
and their Bearing on Basin Modelling

In higher-paleolatitude Devonian basins such as Brazilian ones, traditional high-
resolution biostratigraphic tools like conodonts are very scarce or absent due to cli-
matic constraints. Under these circumstances, the recognition of suitable palynozones
(such as Western European-defined miospore zones, which are conodont-calibrated in
the type marine Devonian of Ardenne-Rhenish areas) provides the best way to estimate
the duration of regional sedimentary cycles. These data are critical to calculations of
sediment accumulation rates and other basin modelling procedures followed in the oil
industry. An example from the Upper Devonian of northern Brazil is given next.

The Late Devonian Barreirinha Formation of the Amazon Basin is an essentially
pelitic unit which comprises a moderately thick (less than 100 m in average), lower
section of highly radioactive, well-laminated, organic-rich black shales, and a usually
thicker upper section of far less radioactive and fissile, mainly dark grey shales. The
lower Barreirinha sub-unit represents the main potential hydrocarbon source rock of
the Amazon Basin. The formation is overlain by siltstones, sandstones and diamictites
belonging to the Curiri Formation (although some diamictites have also been partlly
attributed in older PETROBRAS reports to the succeeding Oriximiná Formation).
Altogether, the Barreirinha and Curiri Formations depict a broad transgressive–
regressive cycle in the Upper Devonian of the Amazon Basin. According to earlier
palynological accounts (Daemon and Contreiras, 1971; Daemon, 1974), the two units
were loosely correlated with the entire Frasnian and Famennian respectively, and no
significant stratigraphic gaps were recognized between or inside them. In terms of the
newest Late Devonian time-scale based on conodont biochronology (Sandberg et al.,
1997 apud Streel et al., 2000b, text-fig. 35), this could imply supposedly continuous
sedimentation along a time-span of up to 15 Ma, with no additional information on
sedimentary rate variations.
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The latest miospore-based assessments of the Barreirinha and Curiri Formations
(Loboziak et al., 1996, 1997a–b; Loboziak and Melo, 2000; Melo and Loboziak,
2001, 2003) now permit more improved estimates of the relative duration and inten-
sity of Late Devonian sedimentary pulses in the Amazon Basin. The lower Barreirinha
unit is demonstrated to correspond to a sustained anoxic phase characterized by very
diluted, distal marine, organic-rich clay sedimentation, punctuated with several non-
depositional (condensed sedimentation) episodes of variable duration. If Loboziak 
et al.’s (1997a) correlation of the entire lower Barreirinha with parts of the TA/BJ –
GF miospore zonal range of Western Europe is accepted, and using Streel et al.’s
(2000b, text-fig. 35) equivalence between the Late Devonian miospore and conodont
zonal schemes as a standard, then a time-span of up to 10 Ma may have elapsed
between the onset of the lower Barreirinha sedimentation and that of the upper
Barreirinha unit. Both this latter and the overlying lower Curiri unit sensu Loboziak
et al. (1997a–b) (i.e., the diamictite-free part of the formation that also includes the
Protosalvinia Zone) display a regressive, roughly shallowing-upward character (Melo
et al., 1996; Melo and Loboziak, 2003). Although invariably thicker than the lower
Barreirinha, the upper Barreirinha–lower Curiri package corresponds to only the
VCo–VH miospore zones of Western Europe, thus pointing out to a ca. 3 Ma phase of
highly intensified marine sedimentation. A minimum stratigraphic gap of only about
0.5 Ma (corresponding to the regional absence of the LL miospore Zone in the Amazon
Basin) separates the top of that section from overlying glaciogenic strata of the upper
Curiri unit. This latter is usually characterized by the presence of diamictites, extensive
reworking of pre-“Strunian” palynomorphs, and attains considerable thickness along the
basin margins (often within the 75–200 m range, occasionally even more). The upper
Curiri unit records massive, glacially-driven erosion and resedimentation throughout the
basin during a time-span no longer than ca. 1.0 Ma, which is the combined duration of
the LE and LN miospore Zones (Streel et al., 2000b, text-fig. 35). Its top is characterized
by a renewed flooding of the basin very close to the Devonian/Carboniferous boundary
(the LN/VI–HD transition, after Melo and Loboziak, 2003).
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5.1 Introduction

From an historical perspective, early investigations (conducted during the late 19th and
early to mid 20th centuries) of the spore–pollen contents of upper Paleozoic terrestrial
sedimentary strata can be viewed as having provided the impetus, indeed the essential
foundations, for paleopalynological studies of an extensive range of pre-Quaternary
sequences. This, in turn, has led to the burgeoning status appertaining to paleopalynol-
ogy, especially from the mid 1940’s onwards. Accordingly, in concert with significant

paleopalynology has become widely acknowledged as a vital and uniquely important
micropaleontological discipline. Its major applications, of particular importance in
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improvements in optical microscopes and the development of electron microscopy,
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geological exploration, are undoubtedly in biostratigraphic zonation of Phanerozoic
and, to a lesser extent, Proterozoic successions of both terrestrial and nearshore marine
origin. Moreover, in the case of the facies-independent spores and pollen grains – whose
distribution effectively transgresses otherwise impeditive nonmarine/marine biofacies
boundaries – precise chronostratigraphic correlations can be established between
Silurian and younger sequences deposited under such disparate circumstances.

Upper Paleozoic palynological investigations were initially centered in Western
Europe, most notably in the Upper Carboniferous (Pennsylvanian) coal-bearing
sequences of Britain and Germany (see historical reviews by Smith and Butterworth,
1967; Jansonius and McGregor, 1996; Owens, 1996). Similar groundbreaking studies
were conducted on coeval coals of North America, as summarized by, inter alia, Phillips
et al. (1973) and Peppers (1996). These North American researches in early decades of
the 20th century can be viewed as culminating in the publication by Schopf et al. (1944),
which contains the first comprehensive taxonomic treatise on Carboniferous spores (and
spores generally). In the Gondwana realm of the southern hemisphere and peninsular
India, pioneering spore–pollen investigations commenced somewhat later, and focused
more broadly on Pennsylvanian-basal Permian “pre-glacial” and glacigene strata and on
stratigraphically succeeding Permian coals and associated deposits; e.g. in Australia
(Dulhunty, 1945, 1946; Balme, 1952; Balme and Hennelly, 1955, 1956a, b), India
(Virkki, 1946; Bharadwaj, 1962), southern and central Africa (Hart, 1960, 1965a, b),
Antarctica (Balme and Playford, 1967), and South America (Sommer, 1953; Menéndez,
1965; Daemon, 1966; Azcuy, 1975).

From the 1960’s onwards, spores and pollen grains have become increasingly
utilized as a prime or ancillary basis for local, regional, and even international chronos-
tratigraphic correlations of Carboniferous and Permian sequences. The essential focus
of the present account is, thus, palynostratigraphic. However, it would be remiss not to
cite here other important applications of upper Paleozoic palynological analyses;
among them, paleoecological and paleogeographic syntheses, paleofloristic recon-
structions, source-rock analyses, thermal maturation histories, and provenance studies.

5.2 Carboniferous and Permian Palynomorphs: A Synopsis

Preserved, often very profusely, in Carboniferous–Permian sequences that may other-
wise appear virtually unfossiliferous, palynomorphs are represented chiefly by an
extensive array of small spores and pollen grains (miospores); to a lesser extent by
megaspores and microphytoplankton (acritarchs and prasinophytes); and, very rarely,
by scolecodonts and chitinozoans. These organic-walled, essentially acid-resistant
microfossils can be extracted readily, for detailed study and identification, by means
of relatively simple, physico-chemical laboratory procedures (e.g. Phipps and
Playford, 1984; Traverse, 1988; Wood et al., 1996). Routine examination of slide-
mounted, concentrated palynological residues containing the smaller palynomorphs
(miospores, microphytoplankton) is normally and satisfactorily conducted by means
of a high-powered stereo-binocular microscope equipped with transmitted light
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source. Larger, semi-opaque palynomorphs (megaspores, chitinozoans, scolecodonts)
are normally studied in the first instance by relatively low powered light microscopy
using incident light. For investigation of the often intricate detail of palynomorph
morphology, which may have taxonomic importance or implications, scanning- and
transmission-electron microscopy can very usefully augment light-microscopic
observations.

5.2.1 Miospores

As defined by Guennel (1952, pp. 9-10), the term miospore incorporates “all fossil spores
and spore-like bodies smaller than 0.20 mm, including homospores (� isospores), true
microspores, small megaspores, pollen grains, and pre-pollen”. Guennel acknowledged
the “arbitrary” nature of this grouping, in particular the �200 	m size limitation.
Nonetheless, as noted by Traverse (1988, p. 59), the term is reasonably appropriate for
accommodation of functional microspores as distinct from functional megaspores,
although some of the latter are �200 	m and some pollen grains may (uncommonly)
exceed 200 	m.

5.2.1.1 Small Spores
In the absence of a definitive term for spores, as distinct from pollen grains, that fit
into the miospore size category, the term “small spores” as used by some previous
authors (e.g. Kosanke, 1969) is adopted herein. It should be noted, however, that there
seems to be a tendency among a few paleopalynologists to apply the term miospore
exclusively to such small spores (i.e. to the exclusion of pollen); this, of course, is
contrary to Guennel’s (1952) original inclusive definition.

Small spores are represented abundantly in upper Paleozoic sequences. They are
overwhelmingly predominant components of Mississippian and older Paleozoic ter-
restrial palynofloras, but are joined by increasing representation of pollen grains,
including so-called prepollen (Traverse, 1988, pp. 56, 110), in the later Carboniferous
and Permian. The spores were produced by a considerable range of lower vascular
plants (seedless metaphytes), chiefly lycopods, “horsetails” (sphenophytes), and
ferns. Of these, the first two groups attained evolutionary peaks – in respect of num-
bers, diversity, and stature (spectacular arborescence in some cases) – during the
Carboniferous, when they were conspicuous components of forest and “coal swamp”
communities, especially in the Euramerican region.

Because the botanical affinities of these plant microfossils are often very difficult
to ascertain in other than very generalized terms, they are named and treated taxonom-
ically on the basis of morphological features that are, in the main, readily discernible
and definable via conventional light microscopy. Smith and Butterworth (1967),
Traverse (1988), and Playford and Dettmann (1996) provided synopses of spore-
morphological attributes and outlined the currently accepted “turmal” classificatory
scheme, which is acknowledged as being inherently artificial but may, in part, reflect
genuine botanical affiliations.



Upper Paleozoic assemblages of small spores comprise mainly radiosymmetric
trilete forms (with a three-rayed tetrad mark functioning as the germinal aperture), but
bilaterally symmetrical, bean-shaped spores bearing a single-rayed (monolete) tetrad
mark are often plentiful in Pennsylvanian and Permian deposits. The layering, struc-
tures, and sculpture of the spore wall (exine) vary considerably, with the result that a
very substantial number of form genera and form species have been defined. Many of
the latter are short-ranged and hence important stratigraphically. In addition to simple
spores with essentially unmodified, single-layered (acavate) exines, morphologically
more complex forms may exhibit two-layered exines (as in cavate/pseudosaccate
spores), equatorial structures such as cingula, auriculae, or coronae, and a range of
sculptural projections or indentations (see, for example, representative photomicro-
graphs in such publications as Smith and Butterworth, 1967; Hart, 1969; Kosanke,
1969; Clayton et al., 1977; Utting, 1996, pls. 1, 2).

5.2.1.2 Pollen Grains
Prior to the inception of the angiosperms (true flowering plants) at the beginning of
the Cretaceous, producers of pollen grains were exclusively gymnosperms, the more
primitive category of seed plants that had their origins in the Devonian. During the late
Paleozoic, such gymnospermous groups as seed ferns (pteridosperms), cordaitaleans,
and primitive coniferaleans became increasingly important elements of the land vege-
tation and hence significant contributors to terrestrial palynofloras. The morphologi-
cal characteristics of Carboniferous–Permian pollen grains, constituting the basis of
their form taxonomy and classification, are diverse, as will be evident from illustra-
tions in, for example, Traverse (1988, Fig. 9.6), Owens (1996, pl. 2), and Utting
(1996, pls. 1, 2).

In gross terms, many of these gymnospermous pollen grains possess a prominent
central body (corpus) which is enveloped by a relatively thin, more or less inflated,
bladder-like membrane (saccus) in the case of monosaccate forms. Or the corpus
may be flanked by a pair of sacci (one at each “end” of the corpus), as in typical
bisaccate pollen grains. Relative sizes of corpus and saccus or sacci are varied among
different form categories and this is manifested especially at form-generic level.
Moreover, the corpus itself may be striate or taeniate, with relatively thick, parallel,
band-like strips of exine separated by thinner clefts of intervening exine. In what
appears to be a more or less globally synchronous series of palyno-events during the
Pennsylvanian through Permian interval, monosaccates became subordinate to non-
taeniate bisaccates, and these in turn to taeniate bisaccates, with the latter attaining
conspicuous dominance in the Permian especially in Gondwana (and persisting,
albeit declining progressively, through the Triassic). The other principal (and non-
saccate) group of pollen grains represented in late Paleozoic palynofloras are more
simply constructed ellipsoidal unilayered forms. These are mostly monocolpates in
that they characteristically feature a distinct longitudinal germinal aperture termed a
colpus (or sulcus).
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5.2.2 Megaspores

Knowledge of the megaspore fossil record has been derived largely from coals and
associated richly carbonaceous deposits, because of their relative abundance therein.
Megaspores, being relatively large palynomorphs, have a much lesser dispersive capa-
bility than miospores, tending to be restricted mostly to depositional environments
proximate to growth sites of their parental plants and hence to essentially autochtho-
nous, organic-rich rocks. However, they do occur, albeit sporadically, in somewhat
less carbonaceous, clastic deposits. These latter are normally processed in the labora-
tory primarily for their miospore content by methods that are not conducive to recov-
ery of other than fairly low numbers of fragmented megaspores. Successful retrieval
of intact megaspores from their host rocks obviously involves application of more
delicate preparation techniques, including careful sieving, as described by Traverse
(1988, pp. 473–475) and Scott and Hemsley (1996, p. 629). Similar precautionary
measures are necessary for recovery of chitinozoans (see 5.2.5, below).

Megaspores are and were (from Early Devonian times) produced during the life
cycles of heterosporous, lower vascular plants (pteridophytes); viz., some lycopods
and ferns, also extinct progymnosperms. In contrast to homosporous pteridophytes
which shed only one kind of spore (homospores, a.k.a. isospores, classified paleopaly-
nologically as miospores), the heterosporous pteridophytes produce, on an individual
plant, both microspores (of the miospore category) and the larger megaspores (mostly
�200 	m in diameter). Progressing from the Devonian initiation of heterospory, the
heyday of heterosporous pteridophytes – in particular the lycopods – was undoubtedly
during the Carboniferous. Thereafter they declined quantitatively and qualitatively,
although megaspores do occur, sometimes plentifully, in younger deposits. In present-
day floras, megaspores are produced freely by only a few lycopods and ferns.

The morphology of megaspores, like that of small spores, is considerably varied
and similar morphological terms (and form-classificatory tenets) are applicable to
fossil representatives of both groups. However, some megaspores do exhibit certain
structures not encountered among their smaller relatives, necessitating the use of addi-
tional terms. Moreover, in conjunction with observations from optical and scanning
electron microscopes, transmission electron microscopy is being applied increasingly
for determination of exine ultrastructure, which in turn provides insights into botanical
affiliations (Scott and Hemsley, 1996).

5.2.3 Organic-Walled Microphytoplankton

Conventionally included in this broad palynomorph category are acritarchs, prasino-
phyte phycomata, and dinoflagellates (“dinocysts”). The last-named are abundant and
diverse protists, mainly though not exclusively marine. Because they are essentially
post-Paleozoic, flourishing from the Jurassic onwards, they are outside the scope of
the present account. On the other hand, acritarchs and prasinophytes do merit
consideration here because of their presence in Paleozoic deposits.
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5.2.3.1 Acritarchs
The Acritarcha was established by Evitt (1963, p. 300) as an informal taxonomic “group”
consisting of a heterogeneous, polyphyletic, “catch-all” conglomeration of cysts or 
cyst-like microfossils whose natural affinities are uncertain or, at best, equivocal. Evitt
recommended that they be treated taxonomically in accordance with the International
Code of Botanical Nomenclature, and this has been universally accepted. Clearly, the
majority of these enigmatic microfossils are of eukaryotic–algal origin (Martin, 1993),
probably representing the resting cysts of various algal groups. Acritarchs range from the
Proterozoic through to the present day, and although predominantly marine, many
brackish- and fresh-water forms have been reported. They reached their acme, in terms of
abundance and diversity, in early to mid Paleozoic times, but declined sharply from the
latest Devonian onwards and are relatively uncommon post-Permian.

Most acritarchs are less than 100 	m in diameter (though some attain several
hundred micrometers). They possess a highly resistant wall (eilyma) composed of a
sporopolleninous organic compound, and consequently are extracted readily from
sedimentary rocks by applying essentially the same techniques as are used for
miospore preparations. Being mainly marine in occurrence, they commonly co-occur
with miospores in nearshore marine deposits, but predominate over the latter progres-
sively offshore. The basic morphology of acritarchs is relatively simple: a hollow central
body or vesicle that comes in various shapes (and sizes) and comprises a one- or, less
commonly, two-layered, transparent or translucent wall. Projecting from the eilyma,
itself smooth or finely sculptured, there may be hollow or solid processes of diverse
shapes, sizes, and distribution, that may (if hollow) communicate with the vesicle
interior. The eilyma may possess a consistent slit or other type of “excystment” open-
ing. These and other form features of acritarchs – as discussed and illustrated by, inter
alia, Martin (1993) and Strother (1996) – provide an objective basis for the recogni-
tion of form genera and form species (e.g. Fensome et al., 1990, 1991). A supra-
generic (ipso facto, phenetic) classification of acritarchs was proposed by Downie 
et al. (1963) but is not widely adopted. Taxonomic accounts normally incorporate
photomicrographs from both optical and scanning electron microscopy.

5.2.3.2 Prasinophytes
Prasinophytes are generally regarded as primitive unicellular green algae. Some
authors have classed them – paleopalynologically – as acritarchs (e.g. Playford and
Dring, 1981; Knoll, 1996, p. 73), but features such as the microstructure and surface
modifications of the wall of these cyst-like, organic-walled microfossils suggest,
though not always unequivocally, that they represent phycomata of prasinophycean
green algae (Colbath and Grenfell, 1995). Thus interpreted, prasinophytes extend
from the Proterozoic through all of Phanerozoic time, during which they have evi-
dently been relatively stable in terms of their fundamental morphology and their suc-
cessful adaptation to a range of aquatic (marine, brackish, fresh-water) environments
(Guy-Ohlson, 1996). In palynological residues from marine Paleozoic rocks, prasino-
phyte phycomata are often reasonably plentiful but are generally subordinate, quanti-
tatively and qualitatively, to acritarchs.
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5.2.4 Scolecodonts

Scolecodonts are the disjunct, fossilized, pseudochitinous mouthparts of marine
segmented worms (polychaetous annelids) exhibiting considerable morphological vari-
ation. They occur, sometimes quite profusely, in association with other organic-walled
microfossils (acritarchs, prasinophytes, chitinozoans) in palynological residues
extracted from marine Paleozoic rocks. Scolecodonts have received comparatively little
detailed study, not only because of their generally lesser abundance than their palyno-
logical associates, but also because of inherent taxonomic problems (single vs. multiele-
ment) not unlike those that have plagued the studies of conodonts in past decades.
Scolecodonts range from the Early Ordovician and were most common and diverse in
Paleozoic times. They offer some potential, as yet unrealized but possibly limited, in
biostratigraphy. Known environmental sensitivities of modern polychaetes suggest that
they may ultimately prove efficacious as paleoecological indicators (Szaniawski, 1996).

5.2.5 Chitinozoans

Like scolecodonts, chitinozoans are relatively large, morphologically varied, and
exclusively marine palynomorphs, with a durable organic wall composed of pseudo-
chitin. As with megaspores and scolecodonts, the successful procurement of chitino-
zoans from enclosing rock necessitates application of more delicate laboratory
procedures (e.g. Traverse, 1988, pp. 473-475; Miller, 1996, pp. 329–330) than those
employed for retrieval of smaller palynomorphs.

The vesicle (a.k.a. test) of chitinozoans is typically bottle- or urn-shaped, some-
times tubular, with considerable size and sculptural variation; most are ca. 150–300 	m
in length. In an authoritative account, Miller (1996) concluded that, although found
either singly or aggregated, all chitinozoans probably developed originally as colonial
groupings (e.g. Paris and Nõlvak, 1999, fig. 2) and were probably mostly planktic. A
continuing and seemingly intractable problem pertains to the biological affiliations of
chitinozoans. Miller (1996, pp. 315–318) and Paris and Nõlvak (1999, pp. 318–320)
have furnished useful commentaries on this intriguing topic. Paris et al. (1999)
inclined towards Grahn’s (1981) hypothesis that chitinozoans are the eggs of soft-bod-
ied metazoans (so-called chitinozoopharans).

Chitinozoans are studied routinely with reflected light binocular microscopy and,
more definitively, using scanning electron microscopy (see, for example, Miller, 1996,
pls. 1–5; Paris, 1996, pls. 1–3).

Some authors consider that chitinozoans range from Cambrian (even
Precambrian) through Permian (e.g. Traverse, 1988, p. 5; but cf. his fig. 1.2). Miller
(1996), Paris (1996), and Paris et al. (1999) are, however, in unison that bona fide,
in-situ chitinozoans are unauthenticated from either pre-Ordovician or post-Devonian
rocks. In any event, reports of chitinozoans from Carboniferous and Permian rocks are
so rare that, even if in situ, they have no or negligible biostratigraphic importance; and
some, at least, have evidently been recycled.
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5.3 Stratigraphic Applications

From the above discussion, it will be evident that small spores and pollen grains (i.e.
miospores), representing the land flora, are the palynomorphs that have greatest signifi-
cance in Carboniferous–Permian stratigraphy. They form the basis of numerous zona-
tion schemes that are, with varying degrees of precision, applicable to dating and
correlation of terrestrial and also marine successions in many parts of the world. Indeed,
as mentioned previously herein, the burgeoning development of paleopalynology, in
particular palynostratigraphy, over the past five or six decades owes much to the early
investigations of spore–pollen palynofloras retrieved in multifarious profusion from
upper Paleozoic strata.

The practical effectiveness of fossils in biostratigraphic correlation depends on the
formulation of clearly defined biostratigraphic units, known collectively as biozones
(or palynozones where based on palynomorphs). A review of Carboniferous–Permian
palynological literature – or at least of those works having some stratigraphic empha-
sis or aspiration – shows that a diversity of criteria have been utilized in the definition
of miospore-based biostratigraphic units, which moreover are sometimes informally
labelled (i.e. with numbers and/or letters). While conformity with international codes
of stratigraphic (including biostratigraphic) nomenclature (Hedberg, 1976; Salvador,
1994) is clearly desirable, the efficacy of those palynozonations which fail to so con-
form is not, in general, significantly compromised. Many palynozones fall into the
category of assemblage zones; others are essentially interval zones, concurrent range
zones, or taxon range zones. FADs and LADs (first- and last-appearance datums of
selected taxa) provide important boundary criteria for most zonal units (e.g. Peppers,
1996; Price, 1997). Some palynozones are based (desirably) on specified reference
sections; others are not clearly or objectively designated in that respect.

Dating of palynozones with respect to the relative geological timescale obviously
depends on reliable correlation with marine sequences bearing age-definitive faunas.
Most palynozones embody largely terrestrial stratigraphic intervals (i.e. essentially
devoid of marine fossils), thus posing considerable hindrances to their precise dating.
However, the zones may be traceable laterally into reliably dated marine sections;
moreover, marine intercalations and radiometrically datable igneous rocks within pre-
dominantly terrestrial palyniferous sections often provide vital chronostratigraphic
information or tie-points, as do magnetostratigraphic data from both sedimentary and
igneous rocks.

Stratotypes for stages of the Carboniferous and Permian systems are based classi-
cally in Europe, and their defining biostratigraphic criteria (fundamentally, but not
exclusively, ammonoids, conodonts, and fusulinid Foraminifera) are subjects of ongo-
ing revisionary scrutiny and refinement (e.g. Paproth and Streel, 1984; Lane and
Ziegler, 1985; Brenckle and Manger, 1991; Jin Yugan et al., 1997). The reliability of
biostratigraphic correlation with the stratotypes, and hence age determination in terms
of the international timescale, depends on many separate and interrelated factors,
including fossil content, paleogeography, paleoecology, and faunal and floral provin-
cialism. For the Devonian, long-distance correlations based on both marine faunal and
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terrestrial floral data are more readily achievable than is the case with the later
Paleozoic. For instance, from a purely palynological perspective, McGregor and
Playford (1993) have demonstrated the applicability of miospore–zonal correlations
between Devonian successions of the Old Red Sandstone Continent (Northern
Euramerica) and of Australia (Eastern Gondwana); this provides confirmation of
previously reported intimations of floristic cosmopolitanism during much of the
Devonian period. Particularly striking, as discussed by many authors (more recently,
Playford and McGregor, 1993; Streel and Loboziak, 1996), is the fact that the
Devonian–Carboniferous boundary is recognizable globally by the exiting of a dis-
tinctive and seemingly omnipresent, late Famennian miospore species, Retispora lep-
idophyta (Kedo) Playford, 1976. In the later Paleozoic – more particularly during the
later Carboniferous and Permian – regionalism among global floras developed pro-
gressively (e.g. Chaloner and Meyen, 1973; Chaloner and Lacey, 1973; Meyen, 1987;
Chaloner and Creber, 1988), and is most conspicuously manifest by the Permian
development of the highly distinctive Glossopteris flora throughout and confined to
Gondwana. The inevitable consequence of this is that long-distance palynostrati-
graphic correlations, particularly Gondwanan–Euramerican, become increasingly less
feasible from Mississippian through Permian time.

Ensuing paragraphs are intended to provide a brief and fairly selective (for space
limitations, non-comprehensive) coverage of the stratigraphic applications of
Carboniferous and Permian miospore assemblages, and with reference to some of the
more notable examples of such applications from various parts of the world.

5.3.1 Carboniferous Palynostratigraphy

As noted by Higgs (1996, p. 553), the Carboniferous has received the most extensive
(and intensive) palynological study of all the Paleozoic systems. This applies most
cogently to the British Isles and to mainland Western and central Europe, with partic-
ular but by no means exclusive emphasis on the coal-bearing Upper Carboniferous
(Pennsylvanian).

Western European Carboniferous miospore assemblages were illustrated and
classified into 12 biozones by Clayton et al. (1977); these collectively span the upper
Visean to the base of the Autunian. Although subsequent studies have produced some
modifications to the zonal scheme, it remains an important palynostratigraphic
standard for that region and facilitates external correlation, particularly with
Pennsylvanian successions in other parts of Euramerica and, to a lesser extent, even
beyond that province (e.g. Owens et al., 1978, 1989; Owens, 1996). Clayton (1996)
focused on the recognition (initially by Sullivan, 1965, 1967) of palynologically
expressed provinces in the Mississippian, especially in the later (Visean) part of the
epoch, and discussed the consequences of these for long-distance correlations.
Moreover, he presented an updated miospore zonation scheme (Clayton, 1996; 
Fig. 5.1 herein) for the Tournaisian through lower Namurian succession of Western
Europe. Earlier, Riley (1993) had usefully established precise chronostratigraphic
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correlations among British Mississippian zonations based on various marine faunal
groups and on miospores.

Many Carboniferous miospore zonations have been promulgated in various parts
of the world, some extending into the Permian. They have proven stratigraphically
effective in local and regional contexts; e.g. in Russia (Byvscheva, 1974; Peterson,
1999), eastern Canada (Utting et al., 1989), U.S.A. (Ravn, 1986), North Africa
(Coquel et al., 1988; Loboziak and Clayton, 1988), Saudi Arabia (Clayton, 1995;
Clayton et al., 2000), Australia (Kemp et al., 1977; Playford, 1985; Jones and
Truswell, 1992), China (Gao Lianda, 1985), and South America (Playford and Dino,
2000b; Césari and Gutiérrez, 2001). Long-distance chronostratigraphic correlation
(e.g. from Gondwana to northern hemisphere regions) based on ranges of certain
species is practicable to a limited extent for the Mississippian (e.g. Playford, 1978,
1991). However, with the advent of increasing phytogeographic differentiation of land
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floras and hence declining miospore cosmopolitanism, international correlations or
comparisons on a palynofloral basis becomes much less feasible as the remaining
Carboniferous and the Permian are ascended.

A particularly impressive example of extended or interregional palynostrati-
graphic correlation – in this case embracing Midcontinent U.S.A., Western Europe,
and the Donetz Basin of the former U.S.S.R – was furnished by Peppers (1996). While
the principal focus of Peppers’s research was on the palynology of Pennsylvanian
coal-bearing sequences of the Illinois Basin and of other U.S. basins, he was able to
detail similarities between his U.S. (Illinois Basin-based) miospore zonation and
those established in successions of various parts of the European domain. The basis of
his zonal correlations, including vertical ranges of important miospore species in indi-
vidual successions, is graphically depicted in Peppers (1996, pls. 1, 2), and a synoptic
version of his inferred trans-Euramerican chronostratigraphic correlations is presented
herein (Fig. 5.2).

5.3.2 Permian Palynostratigraphy

Precise palynological demarcation of the Carboniferous–Permian and Permian–
Triassic boundaries remains elusive in many parts of the world (e.g. Helby, 1966;
Balme, 1970, cf. Foster, 1979, 1982; Balme, 1980a, b; Piasecki, 1984; Gomankov,
1992; Foster et al., 1998; Playford and Dino, 2000b). This uncertainty stems from sev-
eral factors, including unfossiliferous or non-palyniferous deposits in critical strati-
graphic intervals, and, more fundamentally, controversy and equivocation regarding
faunal criteria for diagnosing the systemic boundaries in different marine realms and
provinces (see Utting and Piasecki, 1995, pp. 239–241). In any case, as discussed
below, Permian palynofloras are likewise strongly influenced by regional and global
phytogeographic variations. Notwithstanding problems of pinpointing the lower and
upper limits of the Permian system, its miospore floras are unmistakably distinctive,
in gross character as well as in detail, from those hosted by Carboniferous and Triassic
strata. Palynological zonation of Permian successions, with (preferably) or without
independent marine–biostratigraphic age constraints, is extensively utilized in sedimen-
tary basin analyses worldwide.

Major alterations in the composition and diversity of land floras around the end of
the Carboniferous were triggered by pronounced geological and climatic changes.
These changes, of global extent, are manifest paleofloristically by increasing qualita-
tive and quantitative representation of primitive conifers, pteridosperms, and other
gymnosperms and by concomitant decline of some cryptogam groups, most notably
extinction of the arborescent lycopods that were so prevalent in coal-forming swamp
forests of the Pennsylvanian. Moreover, the latest Pennsylvanian–Early Permian was a
time of accelerated phytogeographic differentiation. This resulted in the establishment
of several distinct, paleolatitudinal, megafloral provinces (which themselves exhibited
changing geographic configurations during the Permian: Chaloner and Meyen, 1973;
Chaloner and Lacey, 1973; Chaloner and Creber, 1988). In Laurasia, the northerly
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Angara province became well-differentiated (with Siberian, Pechoran, Far-Eastern,
and Sub-Angaran subdivisions discernible in the later Permian), as did the equatorial
Cathaysia and Euramerica (Atlantic and North American) floral provinces. Largely
confined to the vastness of the Gondwana southerly supercontinent is the Gondwana
province, which is characterized especially by a highly distinctive pteridospermous
(glossopterid-dominated) flora. This floral association became well-established
following the waning of the Pennsylvanian–earliest Permian glaciation and proliferated
through subsequent Permian time. The temporal and spatial distributions of late
Paleozoic floral provinces are summarized by Utting and Piasecki (1995, figs. 1, 2).

Obviously, the conspicuous changes in the terrestrial megafloras - Carboniferous
vis-à-vis Permian – are reflected in the miospore palynofloras, i.e. in the assemblages
of spore–pollen propagules that are preserved in such abundance and diversity in
Permian sedimentary rocks. Furthermore, as would be anticipated, the phytogeo-
graphic provinces cited above are mirrored by the distinctive character of the paly-
nofloras preserved in those respective provinces, but with transitional assemblages
recorded in some regions, e.g. in North Africa, where the Euramerica and Gondwana
provinces are conterminous. Indeed, as noted by Utting and Piasecki (1995, p. 256),
miospore floras from otherwise unfossiliferous Permian sequences often facilitate attri-
bution of the latter to a particular floral province, assist in delineating provincial bound-
aries, and indicate variations in the paleogeographic spread of provinces through
Permian time. However, Balme (1970, p. 431) has cautioned that palyno-phytogeo-
graphic inferences based on identification of other than well-characterized, morpho-
logically distinctive miospore species may prove erroneous or misleading. He
recommended specifically that most form genera should be disregarded in this particu-
lar context.

Not surprisingly, therefore, Permian palynostratigraphic correlations are essentially
restricted paleogeographically, i.e. provincially bound (Utting and Piasecki, 1995;
Warrington, 1996). However, in a broader, virtually global perspective, one can observe,
inter alia, the proliferation of saccate pollen grains, especially taeniate bisaccates, in
part presumably reflecting homeomorphic phenomena involving different parental plant
groups in the various provinces (Foster, 1978, 1979; Gomankov et al., 1998). Studies of
the miospore palynology of Permian successions have been prosecuted, albeit in varying
detail, in all of the aforementioned provinces, usually with no more than passing refer-
ence to any associated megaflora and directed primarily towards stratigraphic goals. The
publications by Utting and Piasecki (1995) and Warrington (1996) together constitute an
impressive compendium of Permian miospore research. Even if sufficient space were
available, it would obviously be a redundancy to duplicate here their comprehensive
reviews. Quite clearly, as with the Carboniferous and other systems but certainly exem-
plified by Permian researches, meticulous taxonomic analyses of miospores really does
produce impressive stratigraphic-correlative outcomes.

While it may appear somewhat invidious to focus on a particular publication to the
exclusion of others warranting similar notice, the work of Backhouse (1991) on the
Permian palynostratigraphy of the nonmarine, coal-bearing Collie Basin (southwest-
ern Australia) can justifiably be singled out as a notable example of the application
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Figure 5.3 Inferred correlation of Permian palynozonations established in Australia and the
Karoo Basin of South Africa. Adapted from Backhouse (1991, fig. 10).

of Permian spores–pollen in local, regional, and intraprovincial (in this case intra-
Gondwanan) correlation. An essential ingredient of Backhouse’s detailed palyno-
stratigraphic synthesis was his own meticulous and well-illustrated taxonomic
analysis (Backhouse, 1991, pp. 257–306, pls. I–XXIV), well-supported by previous
Australian Permian systematic–palynological studies (principally Balme and
Hennelly, 1955, 1956a, b; Foster, 1975, 1979; Rigby and Hekel, 1977). Backhouse
was thus able to formulate a sequence of ten successive miospore zones (mainly
referred to as “palynostratigraphic units”) embracing the largely subsurface (cored
and open-cut) basinal succession (glacigene Stockton Formation and overlying
Collie Coal Measures). The zone boundaries were diagnosed from FADs of selec-
ted miospore species, which were adopted as zone eponyms; however, the zonal
characterizations incorporated the ranges and quantitative representations of many



additional species (Backhouse, 1991, pp. 245–251; figs. 7, 8, 11). The palynozonation
facilitated correlation (a) within and among the three Collie sub-basins; (b) with upper
Paleozoic sequences of other palynologically documented Australian basins (see also
Backhouse, 1993, 1998; Eyles et al., 2002); and (c), elsewhere in southern Gondwana,
specifically with South Africa’s northern Karoo Basin (see Backhouse, 1991, figs. 9,
10; Fig. 5.3 herein). The age-range of the Collie Basin sequence was adduced as latest
Carboniferous/Asselian through early Late Permian, mainly on the grounds of limited
marine faunal evidence from correlative strata in other Western Australian basins
(Backhouse, 1991, pp. 256–257). Dating of individual zones in terms of the Russian
(Urals) Permian standard was (and remains) understandably tentative, as implied by
the absence of stage boundaries in the left-hand column of Figure 5.3.

5.4 Pennsylvanian–Permian Palynostratigraphy of the
Amazonas Basin: A Case History

The intracratonic Amazonas Basin extends over a substantial area – some 500,000 km2 –
of northern Brazil. As the basin lies largely within the Amazonas rainforest, outcrops are
uncommon or inaccessible, so that knowledge of its stratigraphy and structure has
accrued largely from drilling and geophysical operations. The youngest part of the
largely Paleozoic sedimentary succession, termed the Tapajós Group or Carboniferous–
Permian Supersequence, usually exceeds 2500 m in thickness and comprises four con-
formable formations defined from cored successions in numerous exploratory wells
drilled by Petróleo Brasileiro S.A. (Petrobras). Given that the Tapajós strata are essen-
tially available only as small samples (cores, cuttings) and that they are the products of
neritic to continental sedimentation, it follows that palynology has, since the very early
phases of basin exploration, provided the major tool for dating and correlating the strata.

The initial studies, produced as unpublished internal reports by Petrobras palynolo-
gists, dealt with samples from upper Paleozoic sections encountered in particular bore-
holes in the Amazonas Basin and in the contiguous Solimões Basin (i.e. the western
sector of the Amazonas Basin sensu lato). These reports included identifications of
selected spores and pollen grains to generic level or, where deemed feasible, to specific
level. Descriptions and illustrations were normally not included; and the species,
assigned generically, were often given informal alphabetical and/or numerical designa-
tions. This company work culminated in the publication by Daemon and Contreiras
(1971) which effectively encompassed the entire stratigraphic column of Silurian
through Quaternary. They subdivided the upper Paleozoic succession into eight
palynostratigraphic units, of which the upper four (termed, in ascending order, Intervals
XIII–XVI) embraced the Pennsylvanian–Permian of the basin. These zonal intervals can
be regarded generally as assemblage zones, each of them being defined on an associa-
tion of spore–pollen forms, some restricted to the particular zone and some entering or
exiting therein. Vertical distributions of the zone-defining taxa were depicted by
Daemon and Contreiras (1971) in a substantial range-chart, but neither descriptions nor
illustrations of the palynomorphs were provided. Correlations between the well sections
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were effected by application of the zonal scheme through much of the Amazonas Basin
and, extending westwards, into the Solimões and Acre Basins. As Playford and Dino
(2000b, p. 123) commented, although one can easily point to deficiencies in the taxo-
nomic and stratigraphic basis of Daemon and Contreiras’s scheme, it must be acknowl-
edged as a significant, ground-breaking achievement.

The most recent and most comprehensive account of the palynology and palynos-
tratigraphy of the upper Paleozoic sequence (Tapajós Group) in the Amazonas Basin
consists of a two-part monograph by Playford and Dino (2000a, b). Their study was
based on over 440 core samples collected from 26 wells distributed throughout the
basin and covering the group’s four formations (in ascending order, Monte Alegre,
Itaituba, Nova Olinda, and Andirá Formations). Because no single well section
included the entire Tapajós sequence, a composite palynostratigraphic reference sec-
tion was assembled from six wells (Playford and Dino, 2000a, text-fig. 6). This served
as an objective basis for palynozonal subdivision of the Tapajós Group in toto (Fig. 5.4)
and facilitated correlation with and among the numerous other palyniferous well sec-
tions. The palynozonation – comprising seven stratigraphically successive assemblage
zones – was underpinned by detailed taxonomic analysis of the palynofloras, includ-
ing documentation and illustration (with optical and scanning electron micrographs)
of some 90 species of spores and pollen grains, certain examples of which are figured
herein (Figs. 5.5, 5.6). Detailing the occurrence of all the species identified in the
palyniferous samples (e.g. Playford and Dino, 2000b, text-fig. 1) provided the data-
base necessary for establishing the stratigraphic ranges of the taxa within the
Amazonas Basin, thus facilitating their biostratigraphic application. Accordingly,
Playford and Dino’s (2000b, pp. 119–123, text-fig. 2) seven spore–pollen assemblage
zones were defined on such criteria as constant or characteristic species associations,
FADs and LADs, and relative abundances of particular taxa (Fig. 5.4). The zonal
nomenclature followed the recommended and widely adopted practice of using a
binomial name eponymously, based on a species confined to the zone or one that is
particularly plentiful or otherwise especially characteristic of the zonal interval. For
example, the eponym of the Raistrickia cephalata Zone is a distinctively sculptured
species of trilete spores (see Playford and Dino, 2000a, pp. 18–19, pl. 3, figs. 8–15,
pl. 4, figs. 10–12, text-fig. 6; Fig. 5.4 herein) that is restricted to and relatively common
within the zone, with well-defined FAD and LAD demarcating the zone’s lower and
upper limits respectively. The zonation scheme was calibrated chronologically as pre-
cisely as possible (Fig. 5.4), mainly with reference to available independent (mostly
marine-faunal) evidence. The zonation thus serves the need for precise biostrati-
graphic correlation throughout the basin-wide extent of the Tapajós Group, and exem-
plifies the value of detailed palynological analyses in petroleum exploration.

Crucial to the scope of the Playford and Dino (2000a, b) research were the
numerous (�200) wells drilled in the basin from which abundant core material was
available. Not all of the samples proved palyniferous, and those that were contained
plant microfossils in varying concentrations and states of preservation. Such variation
notwithstanding, the zonation proved serviceable even in sections that, for instance,
had been subjected to thermal metamorphism (which tends to adversely affect
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Figure 5.5 Plant microfossils characteristic of the Tapajós Group, Amazonas Basin, northern
Brazil. 1: Spelaeotriletes triangulus Neves and Owens, 1966; 2-PE-1-AM well; slide 970221,
E.F. N25/3; R. cephalata Zone. 2: Lophotriletes lentiginosus Playford and Dino, 2000a; 2-BI-1-
AM well; slide 960427, E.F. C39/2; S. triangulus Zone. 3: Waltzispora polita (Hoffmeister,
Staplin, and Malloy) Smith and Butterworth, 1967; 2-BI-1-AM well; slide 960427, E.F. T51/4;
S. triangulus Zone. 4: Meristocorpus explicatus Playford and Dino, 2000b; 2-PC-1-AM well;
slide 970237, E.F. X34; S. incrassatus Zone. 5: Potonieisporites marleniae Playford and Dino,
2000a; 1-AM-2-AM well; slide 970176, E.F. V41/1; S. triangulus Zone. 6: Potonieisporites
seorsus Playford and Dino, 2000a; 2-BI-1-AM well; slide 960427/43, E.F. N44/4; S. triangulus
Zone. 7: Costatascyclus crenatus Felix and Burbridge emend. Urban, 1971; 2-PC-1-AM well;
slide 970237, E.F. J32/2; S. incrassatus Zone. 8: Mabuitasaccites crucistriatus (Ybert) Playford
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and Dino, 2000b; 1-TR-1-AM well; slide 970299, E.F. M48/4; S. incrassatus Zone. 
9: Striomonosaccites incrassatus Playford and Dino, 2000b; 2-PC-1-AM well; slide 970237/5,
E.F. K40/2; S. incrassatus Zone. 10: Vallatisporites arcuatus (Marques-Toigo) Archangelsky 
and Gamerro, 1979; 2-IP-1-AM well; slide 9706103, E.F. M47/3; I. unicus Zone. 
11: Apiculatasporites daemonii Playford and Dino, 2000a; 2-PE-1-AM well; slide
9706190A/20, E.F. K37/2; S. heyleri Zone. 12: Illinites unicus Kosanke, 1950; 9-FZ-2-AM well;
slide 9705473, E.F. M23/2; I. unicus Zone. 13: Illinites unicus Kosanke, 1950; 2-PE-1-AM
well; slide 9706190, E.F. E27; R. cephalata Zone. 14: Striatosporites heyleri (Doubinger)
Playford and Dino, 2000a; 2-PE-1-AM well; slide 970221, E.F. K54/4; R. cephalata Zone. 
15: Striatosporites heyleri (Doubinger) Playford and Dino, 2000a; 2-PE-1-AM well; slide
9706190, E.F. L36/3; R. cephalata Zone. 16: Protohaploxypinus hartii Foster, 1979; 2-PE-1-AM
well; slide 9706190, E.F. A23/3; R. cephalata Zone. 17: Barakarites rotatus (Balme and
Hennelly) Bharadwaj and Tiwari, 1964; 1-FZ-1-AM well; slide 970473, E.F. L56/2; I. unicus
Zone. Scale-bar unit � 30 �m.

palynomorph preservation). The taxonomic documentation, based upon detailed sys-
tematic descriptions and photomicrographic illustrations of the diversity of spores and
pollen grains, was judged an essential prerequisite for their biostratigraphic utiliza-
tion; i.e. for the definition of their component palynozones. This underlines the fact
that, as with any paleontological research having primarily stratigraphic objectives, a
rigorous taxonomic approach normally yields appreciable dividends in terms of
stratigraphic-correlative efficacy. Moreover, in this particular case history, it proved
feasible to extend the palynostratigraphic correlation beyond the Amazonas Basin,
albeit with lesser precision, to other palynologically documented regions of the
Gondwana supercontinent (Playford and Dino, 2000b, text-figs. 3, 4).
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Figure 5.5 Continued
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Figure 5.6 Plant microfossils characteristic of the Tapajós Group, Amazonas Basin, northern
Brazil. 1: Limitisporites scitulus Playford and Dino, 2000b; 2-PC-1-AM well; slide 970237/41,
E.F. N35/1; S. incrassatus Zone. 2: Lunatisporites onerosus Playford and Dino, 2000b; 2-PE-1-
AM well; slide 970221A/67, E.F. K39/2A; R. cephalata Zone. 3: Potonieisporites pyriferus
Playford and Dino, 2000b; 2-PE-1-AM well; slide 970221A/3, E.F. K40/3; R. cephalata Zone.
4: Raistrickia cephalata Bharadwaj, Kar, and Navale, 1976; 2-PE-1-AM well; slide 9706190,
E.F. R34/3; R. cephalata Zone. 5: Vittatina saccata (Hart) Playford and Dino, 2000b; 9-FZ-28-
AM well; slide 9705908, E.F. F26/4; T. toreutos Zone. 6: Vittatina subsaccata Samoilovich,
1953; 9-FZ-2-AM well; slide 9705473, E.F. X36/3; V. costabilis Zone. 7: Peppersites ellipticus
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Ravn, 1979; 2-PE-1-AM well; slide 9706190A, E.F. B56/1; R. cephalata Zone. 8: Vittatina
costabilis Wilson, 1962; 9-FZ-28-AM well; slide 9705915, E.F. G57/1; V. costabilis Zone. 
9: Punctatisporites sp.; 9-FZ-28-AM well; slide 9705908, E.F. L52; T. toreutos Zone. 
10: Verrucosisporites insuetus Playford and Dino, 2000a; 9-FZ-28-AM well; slide 9705908,
E.F. N43/4; T. toreutos Zone. 11: Lueckisporites virkkiae Potonié and Klaus emend. Clarke,
1965; 9-FZ-28-AM well; slide 9705916, E.F. K50; V. costabilis Zone. 12: Thymospora obscura
(Kosanke) Wilson and Venkatachala, 1963; 9-FZ-28-AM well; slide 9705915, E.F. L63/4; V.
costabilis Zone. 13: Hamiapollenites fusiformis Marques-Toigo emend. Archangelsky and
Gamerro, 1979; 9-FZ-28-AM well; slide 9705899, E.F. X48/2; T. toreutos Zone. 
14: Hamiapollenites andiraensis Playford and Dino, 2000b; 9-FZ-28-AM well; slide
9705916/3, E.F. L40; V. costabilis Zone. 15: Tornopollenites toreutos Morgan, 1972; 9-FZ-28-
AM well; slide 9705915, E.F. M41/4; V. costabilis Zone. 16: Tornopollenites toreutos Morgan,
1972; 9-FZ-28-AM well; slide 9705915, E.F. A61/3; V. costabilis Zone. 17: Laevigatosporites
minor Loose, 1934; 9-FZ-28-AM well; slide 9705911, E.F. O53/4; V. costabilis Zone. 
18: Vittatina costabilis Wilson, 1962; 9-FZ-28-AM well; slide 9705908, E.F. N43/1; T. toreutos
Zone. 19: Pakhapites fusus (Bose and Kar) Menéndez, 1971; 9-FZ-28-AM well; slide 9705915,
E.F. V50/1; V. costabilis Zone. 20: Pakhapites fusus (Bose and Kar) Menéndez, 1971; 9-FZ-2-AM
well; slide 9705473, E.F. H30/4; V. costabilis Zone. Scale-bar unit � 30 �m.

Figure 5.6 Continued
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6.1 Introduction

The Triassic Period, as indicated by its name, is characterized, in its type-section 
(in Germany), by a succession of three series: the Bunter (� Lower Triassic), the
Muschelkalk (� Middle Triassic) and the Keuper (� Upper Triassic), corresponding to
the Early, Middle and Late Triassic epochs. Besides, the system/period as a whole have
been divided into five to seven stages/ages (Fig. 6.1). Despite the dominance of continen-
tal deposition, the biostratigraphy and biochronology of these ages are based totally on
marine invertebrates, mainly ammonoids and conodonts (e.g. Dagys and Weitschat,
1993; Gradstein et al., 1995), coming from complete marine sessions from which other
parameters as thickness, depositional rate, sea-level changes, magnetometric and radio-
metric data were also considered to establish the standard ages (Stipanicic, 2002).

boundary Stratotype Section and Points), for each one are yet consensual [IUGS/ICS Sub-
commission on Triassic Stratigraphy (STS), Business Meeting, Halle/Saale, Germany,
1998]. Even in marine deposits, it is difficult to get good associations of biostratigraphic

123

E.A.M. Koutsoukos (ed.), Applied Stratigraphy, 123-145.

Nevertheless, neither the boundaries among these divisions nor the GSSPs (Global
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and geochronologic data. According to Gradstein et al. (1995), within the Triassic, only
the Ladinian/Anisian Boundary can be considered an important anchor point due to the
presence of tuff layers in the basal part of the lowermost Ladinian Nevadites ammonite
Zone, which indicates an age around 232 m.y. for this boundary.

However, ammonoids and conodonts are useless for correlation of Triassic conti-
nental strata, and the extensive prevalence of “red beds” among these layers precludes
the use of spores and palynomorphs for this purpose. Notwithstanding, most of the
papers dealing about stratigraphy and biostratigraphy of non-marine Triassic
sequences adopt the same division defined to the standard marine sequence, some-
times in a quite speculative way.

To by-pass this problem, the use of fossil tetrapods has been suggested as the key
for correlation among non-marine Triassic sediments (e.g. Bonaparte, 1973; Cox,
1973; Romer, 1966, 1975; Cooper, 1982; Ochev and Shishkin, 1989; Shishkin et al.,
1995; Shubin and Sues, 1991; Lucas, 1990, 1993, 1998, 2001; Lucas et al., 1998;
Lucas and Hancox, 2001; Lucas and Heckert, 2002; Hunt and Lucas, 1991). This tool is
particularly reliable for this period since Triassic tetrapod faunas – and also the floras –
show one of the highest grades of cosmopolitanism in the history of life on Earth.

According to Shubin and Sues (1991) the Triassic is unique because it is the only
period of tetrapod history during the entire length of which a single landmass existed.
Few (if any) physical barriers for biotic interchange among continental tetrapods
existed during this period, generating unparalleled potential for global biotic inter-
change. This paleogeographic condition, added to a relative climatic uniformity,
favoured the dispersion and the cosmopolitanism of the floras and tetrapod faunas.

Triassic tetrapod-bearing layers occur in South America, Antarctica, Africa,
Australia, Asia, Europe and North America (Fig. 6.2), and major faunal successions
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Figure 6.1 Some time-scales for the Triassic (modified from Gradstein et al., 1995).
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and evolutionary trends among the fossil groups can be easily detected by correlation
among them.

Notwithstanding the progress reached until now, the possibility of good correla-
tion among non-marine Triassic strata and even the establishment of a time scale
based on their tetrapod faunas do not resolve entirely the problem, since it is still nec-
essary to link these data with those of marine Triassic, not only regarding to the limits
between the stages/ages but specially to the definitions of the P–T and T–J boundaries,
both controversial even among marine paleontologists. To aim this goal, it will be nec-
essary to improve and enchain not only stratigraphic and paleontologic data, but also
radiometric and magnetometric data (or even other geological techniques that could
be useful for this purpose), whenever it is possible.

6.2 The Triassic: General Aspects

During the Triassic Period, the continents formed a united landmass known as the
Pangea supercontinent, introduced by Wegener (1924). Pangea began to assemble dur-
ing the end of the Carboniferous, with the collision of Gondwana and Laurasia and
reached its maximum development in Triassic with the addition of Kazakhstan, Siberia,
parts of China and southeastern Asia (Ziegler et al., 1983; Veevers, 1991, 1994). During
the Triassic, Pangea was distributed symmetrically in relation to the equator, forming 
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Figure 6.2 Map of Triassic Pangea showing locations of principal vertebrate fossil assem-
blages: 1 � Karoo basin, South Africa; 2 � Zambia; 3 � Tanzania; 4 � Namibia; 5 �
Parana basin, Brazil; 6 � Argentina; 7 � Transantarctic Mountains, Antarctica; 8 �
Pranhita-Godavari Valley, India; 9 � Damodar, India; 10 � Essaouira basin, Morocco; 
11 � Ilizi basin, Algeria; 12 � Newark Supergroup basins, eastern USA-Canada; 13 �
Moenkopi and Chinle basins, western USA; 14 � Scotland; 15 � Germanic basins; 16 �
northern Italy; 17 � Devon, UK; 18 � eastern Greenland; 19 � Svalbard; 20 � Russian
Urals; 21 � Junggur basin, China; 22 � Ordos basin, China. (Modified from Lucas, 1998).



a continuously exposed landmass from about 85� N to 90� S (Ziegler et al., 1983).
According to Stanley (1989), the Triassic was defined by Friedrich August von Alberti
in 1834, in Germany, as a system bearing a unique fauna, bounded by the Permian
extinction below and by another extinction above. The name (originally “Trias”) refers
to the occurrence, in that country, of a succession of three distinctive stratigraphic
units: a marine sequence, the Muschelkalk (or “mussel limestone”) sandwiched
between two predominantly non-marine sequences, the Bunter deposits beneath it, and
the Keuper deposits above. Nevertheless, this definition is not appropriate for all
sequences deposited during Triassic time. Through this period, sea level was relatively
low (Vail et al., 1977) and the sedimentary deposits around the Pangea were domi-
nantly continental, with restricted marine sediments occurring only at the western
shoreline of ancestral North and South America, in the east of Asia and along the north-
ern and southern coastline of the Tethys (Tucker and Benton, 1982) (Fig. 6.3).

According to Embry (1988), nine eustatic sea-level cycles of third-order, and four of
second order, can be recognized for this period, although the Triassic has been divided in
seven stages, on basis on marine faunas. Embry (1988) stressed that worldwide strati-
graphic, sedimentologic, and paleontologic data for the Triassic are relatively sparse in
comparison to those for the Jurassic, Cretaceous and Tertiary, so that his attempt at a
Triassic eustatic sea-level curve could be changed with the addition of more data.

Regarding to the Triassic climate, the absence of glacial deposits (tillites) added to
the generalized occurrence of plants and evidence of seasonal changing climatic condi-
tions in latitudes up to 60�, suggests that global climate was much hotter than nowa-
days, with high average annual temperatures even in polar latitudes (Holz and Scherer,
2000). To many authors (e.g. Robinson, 1973; Hallam, 1985; Parrish et al., 1986) an
essentially arid climate is accepted to the Triassic. Indeed, Frakes (1979) considered
the climate of the Middle Triassic was possibly the most arid in the history of the Earth.

Besides the hotter climate, the latitudinal belts of humidity and aridity were com-
pletely different from those existing nowadays. According to Hallam (1985), Pangea
was characterlized by a wide-spaced climatic zoning, with three climatic zones: one
eminently humid at high latitudes, a seasonally humid zone at middle latitudes, and an
arid zone at the lowest latitudes. These climatic zones are supported by quantitative
atmospheric modelling of the Triassic (e.g. Wilson et al., 1994).

This climatic arrangement, despite the great cosmopolitanism observed in the flora
and fauna, suggests by itself the possibility of some degree of endemism between north
and south portions of Pangea, and it really occurs, which difficult the establishment of
global tetrapod biozones.

6.3 Triassic Tetrapod Biostratigraphy and 
Biochronology – A Retrospective

According to Kitching (1995), one of the first attempts at dividing a Triassic sequence
into paleontological zones based on tetrapods, was made by Seeley (1892) in the
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Karoo Basin of South Africa. Some years later, Broom (1906, 1907, 1909) divided the
Beaufort into six zones, three of them in the Lower/Middle Triassic, character-
ized, from the lower to the upper one, by the presence of the genera Lystrosaurus,
Procolophon and Cynognathus. Dutoit (1918, apud Groenwald and Kitching, 1995)
remarked on the unique use of the Lystrosaurus Zone for regional mapping purposes.
However, the Lystrosaurus and Cynognathus Zones have been used by paleontologists
world-wide and the identification of biozones based on these genera was accepted for
many years in South America, Antarctica, India, Russia and China.

Romer (1966, 1975) proposed a threefold division of Triassic tetrapod assem-
blages on a global scale. At the base was the Zone A (Predominantly Therapsid)
dominated by archosauriform diapsids and dicynodonts, which was best documented
from the Lower Triassic portion of the Beaufort Group of South Africa. The Zone B
(Intermediate Assemblage) was dominated by traversodont cynodonts and rhyn-
chosaurian reptiles and was better known from the Middle Triassic of Argentina,
Brazil, and Tanzania. The Upper Triassic Zone C (Predominantly Archosaur), by its
turn, was dominated by a great diversity of archosaurian reptiles, especially dinosaurs.
According to Shubin and Sues (1991), Romer and other authors (e.g. Colbert, 1984)
used these assemblages to hypothesize that the Triassic was a time of competitive
replacement of nonmammalian synapsids by diapsids. Other authors (e.g. Anderson
and Cruickshank, 1978; Tucker and Benton, 1982; Ochev and Shishkin, 1989) also
adopted such kind of triple division to the non-marine Triassic, but not exactly the
same proposed by Romer, 1966, 1975. Indeed, Tucker and Benton (1982) associated
the occurrence of these three major vertebrate faunas with the presence of three suc-
cessive different floras (“transitional”, Dicroidium and Conifer). Besides, each associ-
ation of fauna and flora was found in a different sedimentary facies association (Fig. 6.4):
(A) fluvio-lacustrine sandstones and mudrocks with coal seams and abundant plant
material; (B) fluvio-lacustrine sandstones and mudrocks with rare coals, some red beds
and calcretes, occasional gypsum and plant material common; (C) fluvio-lacustrine 
red beds with calcrete, playa mudrocks, gypsum and halite, and gypsum deposits and
aeolian sandstones.

According to Tucker and Benton (1982), these successive changes of faunas,
floras and sedimentary facies reflect climatic changes leading to increasing aridity
towards the end of Triassic, affecting particularly Gondwana and Laurasia. In turn,
these climatic changes resulted from plate motions of Pangea northwards. In fact, this
paper constituted the first attempt to integrate the biostratigraphy of the non-marine
Triassic as a whole with stratigraphic and paleoclimatic data.

However, Holz and Scherer (2000), also using sedimentologic and paleontologic
evidences, agree that paleoclimatic changes occurred along the Triassic, but following
a global trend towards a humid – rather than arid – paleoclimate at the end of the
period. According to the same authors, sedimentary evidences for this hypothesis are
the substitution, during the Carnian/Norian, of red beds bearing gypsum by paralic
sediments with coal and also by the presence of kaolinite in continental and marine
sediments.

schultz128



biostratigraphy of the non-marine triassic 129

Regarding to the causes of the faunal successions, Benton (1983, 1986, 1989,
1994) instead the competitive replacement hypothesized by Romer (1966, 1975) and
others, proposes an opportunistic ecological replacement model.

Thus, the division of the Triassic into three series/epochs seems to be clearly sup-
ported, regarding both the marine and non-marine record, but it does not mean that the
boundaries among the divisions are directly correlated, once that it is not common that
index fossils from each one of these environments occur together. This problem just
increases as detailed as a global correlation is intended.

Several other authors proposed biostratigraphic zonations for the non-marine
Triassic using different criteria (Fig. 6.5). Cooper (1982) presented a more detailed
proposal of a global tetrapod biostratigraphy using mainly dicynodonts. He estab-
lished six zones for the Triassic, but considered the Lystrosaurus zone as Permian
rather than Early Triassic as most authors.

Ochev and Shishkin (1989) based on the tetrapod faunas coming from triassic 
sediments of Cis-Uralian region (East European Platform), divide the Triassic also in
three successive global epoches referred to as Proterosuchian (Early Triassic),
Kannemeyeroid (Middle Triassic) and Dinosaur (Upper Triassic). The Proterosuchian
time includes the Neorachitome Fauna (Induan-Lower Olenekian) and the
Parotosuchus Fauna (Upper Olenekian � Spathian). In the Kannemeyeroid Epoch,
the Eryosuchus and Mastodonsaurus Faunas correspond to the Muschelkalk and
Lettenkohle of the germanic basin, respectively. The proterosuchian epoch is marked
by the dominance of the primitive thecodonts over other reptiles; the succeeding 
kannemeyeroid epoch demonstrates the radiation of anomodonts and the appearance
of the pseudosuchians, the gomphodonts and the advanced bauriamorphs. The assem-
blages of the proterosuchian epoch are of particular biostratigraphic importance
because they constitute the only regional sequence so far known among the Triassic
tetrapod faunas that permits a direct comparison with the marine sections (due to the
presence of common labyrinthodont genera).

Better results regarding to more detailed subdivisions of continental Triassic have
been obtained from provincial studies. Bonaparte (1966a, b, 1973, 1982) proposed
“reptile ages” for the Triassic of Argentina. This author characterized the faunal asso-
ciations taking into account the evolutive stage of determinate taxa, its presence 
or absence and the dominance of some groups in the faunas, as well as its possible
relationship with other gondwanic paleofaunas (Stipanicic and Riccardi, 2002).
Bonaparte (1973) present a general chronological scheme to the Argentinean and
Brazilian Triassic in which a series of Reptile/Ages were established based on Local-
Faunas [sensu Wilson, 1950 (in Simpson, 1971), i.e. “geo-biotic units constituted by
the totality of the species collected in some important outcrops or group of outcrops,
composed by organisms that lived in the same geologic time and in the same area but
are not representative of the totality of an extensive litho or chronostratigraphic unit”].
These Reptile/ages were: Puestoviejense Age (Eotriassic) including the Local-Faunas
of the Puesto Viejo and Rio Mendoza Formations of Argentina; Lower Chañarense
Age (Early Middle Triassic) including the Local-Fauna of the Los Chañares
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Formation of Argentina; Upper Chañarense Age (Late Middle Triassic), including
the Local-Fauna of the Santa Maria Formation of Brazil; Ischigualastense Age (Early
Neotriassic), including the tetrapod association of the Ischigualasto Formation of
Argentina; and Coloradense Age (Late Neotriassic) including the Local-Faunas of
the Los Colorados Formation and Laguna Colorada Formation (El Tranquilo Local-
Fauna), both in Argentina.

In Brazil, a biostratigraphic zonation for the Triassic, based on the scheme of
Bonaparte (1973) was elaborated by Barberena (1977) and later enhanced by Barberena
et al. (1985a, b, 1991). In these last papers, the authors identified, to the south Brazilian
Permo-Triassic package, seven Local-Faunas, five into the Triassic. However, although
the use of Local-Faunas could bring good results in some cases, it is not proper to large-
scale correlations, as will be discussed ahead, justly due to its local reach.

Just aiming such a larger-scale approach, Lucas (1993) proposed, for the Chinese
Early-Middle Triassic, a succession of paleofaunistic associations called Land-
Vertebrates Faunachrons (LVFs). The beginning of each LVF is defined by the First
Appearance Datum (FAD) of a widespread tetrapod genus. Following the same
method, Lucas and Hunt (1993) proposed Late Triassic LVFs based on the Chinle
Group tetrapod record from the western United States, while Huber et al. (1993) and
Lucas et al. (1998) proposed Middle-Late Triassic LVFs based on the Newark
Supergroup record of eastern North America.

In eastern Europa, Sennikov (1995) introduced a new approach to the study of
triassic biotas. He defined a succession of terrestrial and freshwater tetrapod com-
munities, reconstructed as food-webs (Figs. 6a,b).

This author identified an Early and Mid-Triassic thecodontian-dicynodontian ter-
restrial community, with evolution from Early Triassic lystrosaurids to Mid Triassic
kannemeyerids, and a temnospondyl aquatic community. The change of tetrapod fau-
nas at the Permo-Triassic boundary was characterized by (1) replacement of therap-
sids by archosaurs, and (2) replacement of the top carnivores and wholesale changes
in the food web structure.

Barberena et al. (1993), Scherer (1994) and Schultz et al. (1994, 2000) returned to
the perspective of a formal biostratigraphy to the Middle-Upper Triassic of South
Brazil (Fig. 6.7), through the individualization of two Cenozones, the Therapsid
Cenozone, below, and the Rhynchosaur Cenozone, above, followed by a third infor-
mal unit, the “Jachaleria Level”, characterized by the presence of this tuskless
dicynodont. The Therapsid Cenozone was considered as Middle Triassic (probably
“Ladinian”) due to the dominance of therapsids, while the Rhynchosaur Cenozone, by
the same reason, was attributed to Late Triassic (probably “Carnian”) following the
models used for other authors (e.g. Tucker and Benton, 1982). The Jachaleria Level,
by its turn, was considered as “Norian” by correlation with Argentina, where the same
genus occurs at the basal layers of the Los Colorados Formation, which were consid-
ered as having this age (e.g. Stipanicic and Marsicano, 2002). Radioisotopic dating of
the basis of the underlying Ischigualasto Formation (227.8 
 0.3 million years, Rogers
et al., 1993) indicates an early to middle Carnian age for this unit (and, by faunal
correlation, for the Rhynchosaur Cenozone of Brazil). However, Rogers et al., 1993
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Figure 6.6A Reconstructed food-web for the terrestrial component of the Lower Vetluga
Community (Early Triassic, Induan) of eastern Europe. Lines with arrows indicate the movement
of energy through the community: solid lines show feeding pathways, and dashed lines show
decay pathways. 1 � plants; 2 � invertebrates; 3 � plant and animal detritus; 4 �
Lystrosaurus; 5 � Scalopognathus; 6 � Procolophonid Phaanthosaurus; 7 � Blomosaurus;
8 � Vonhuenia (modified from Sennikov, 1995).

Figure 6.6B Reconstructed food-web for the terrestrial component of the Donguz Community
(Mid Triassic, Anisian/Ladinian) of eastern Europe. Lines with arrows indicate the movement of
energy through the community: solid lines show feeding pathways, and dashed lines show decay
pathways. 1 � plants; 2 � invertebrates; 3 � plant and animal detritus; 4 � Rhadiodromus;
5 � Antecosuchus; 6 � Procolophonid Kapes; 7 � prolacertiform; 8 � Dongusaurus;
9 � Sarmatosuchus; 10 � Erythrosuchus; 11 � Dongusuchus; 12 � Dorosuchus (modified
from Sennikov, 1995).



estimate the depositional time-range of the Ischigualasto formation between 
1–4 million/years, indicating that both the basis of the overlying Los Colorados
Formation in Argentina and the Jachaleria Level in Brazil would be still Carnian in
age (rather than Norian as suggested also by Cox, 1991 and Battail, 1993). The upper
layers of Los Colorados bear a quite distinct fauna (La Esquina), dominated by
prosauropod dinosaurs, to which is attributed a Norian Age by most authors (e.g.
Bonaparte, 1973; Tucker and Benton, 1982; Lucas and Hancox (2001)). Whatever be
the precise time-range of the Ischigualasto Formation, it is undoubted inserted into
Carnian, which confirms that the dominance of hyperodapedontidae rhynchosaurs in
the Triassic tetrapod faunas occurred during this age.

Lucas and Huber (1998) reviewed global Late Triassic tetrapod biochronology and
suggested the broad utility of the Chinle Group tetrapod biochronology proposed by
Lucas and Hunt (1993). Following this idea, Lucas (1998) established (Fig. 6.8) eight
temporally successive assemblage zones of tetrapod (amphibian and reptile) fossils,
which provide the basis for dividing Triassic time in eight Land-Vertebrate
Faunachrons (LVF).

Neveling et al. (1999) re-studied the interval separating the Lystrosaurus and the
Cynognathus assemblage zones (respectively in the Katberg and Burgersdorp
Formations), in South Africa, which was believed to be barren of tetrapod fossils, and
recognized distinct fossil tetrapods assemblages in that level, named “impoverished
zone.” Based on these new findings, the authors established a new Procolophon Zone
(not that of Broom, 1906) and divided the overlying Cynognathus Zone into Sub-zones
“A” and “B” (Fig. 6.9). According to these authors, the presence of the amphibian
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Figure 6.9 Biostratigraphic faunal distribution of the tetrapod fossils from the Lower Triassic
of South Africa (modified from Neveling et al., 1999).



Trematosuchus in the upper reaches of the Katberg Formation (Procolophon Zone) is
strongly indicative of an Upper Olenekian age for these strata. Thus, the Lootsbergian
LVF from Lucas (1998) could be potentially divided in two portions, based on
Procolophonids.

Lucas and Hancox (2001) considered the younger Triassic nonmarine strata in
southern Africa, assigned to the Molteno and Elliot formations, as problematic for
correlation. The only tetrapod fossils from the Molteno Formation are footprints, and
the presence of dinosaur tracks suggest late Carnian as a maximum age for the upper
part of the formation, because the oldest records of dinosaur fossils are Otischalkian
(�late Carnian: Lucas, 1998). The lower Elliot, by its turn, contains a tetrapod fossil
assemblage dominated by prosauropod dinosaurs (the Euskelosaurus range zone,
Kitching and Raath, 1984). On basis on the presence of a traversodontid cynodont,
Gauffre (1993) argued for a lower Carnian age for the Lower Elliot, as well as for
both Ischigualasto and Santa Maria Formations, but Lucas and Hancox (2001) points
out three problems in this assertion: (1) traversodontids are known through the
Rhaetian; (2) the Ischigualasto and upper Santa Maria assemblages are late Carnian;
and (3) no taxa are shared between Ischigualasto-Santa Maria and the lower Elliot, so
their correlation lacks any basis. The dominance of prosauropod dinosaurs in the
Lower Elliot leads Lucas and Hancox (2001) to assign it a Norian age because:
(1) the only other prosauropod-dominate Late Triassic faunas – that of the German
Knollenmergel and that of the Los Colorados Formation in Argentina – are Norian;
(2) Euskelosaurus may be an ecological vicar of Plateosaurus; (3) its footprint 
ichnofauna is closest to Norian ichnofaunas; and (4) Lower Jurassic strata directly
overlie the lower Elliot.

However, even Lucas and Hancox (2001) admit that none of these arguments is
incontrovertible. We agree that a correlation between the Lower Elliot and Los
Colorados-Knollenmergel assemblages, based on the dominance of prosauropod
dinosaurs, is more probable than between Ischigualasto-Santa Maria and Lower Elliot
faunas, but it doesn’t means that the correlated Los Colorados-Knollenmergel-Lower
Elliot faunas are necessarily Norian, once that Ischigualasto-Santa Maria assemblages
are not undoubted Late Carnian for the reasons just discussed.

The middle and upper Elliot, by its turn, contains a more diverse tetrapod assem-
blage defined as the “Massospondylus range zone” including, besides the prosauropod
dinosaur Massospondylus, a coelurosaur and several ornithischians, sphenosuchian
archosaurs, a proganochelyid turtle, a tritylodontid and other cynodonts and also mam-
mals (Lucas and Hancox, 2001). For these authors, the age of the Massospondylus
range zone is unclear and they conservatively assign it an Early Jurassic age.

In Brazil, a new tetrapod fauna, dominated by non-mammalian cynodonts, was
recently presented by Abdala et al. (2001) for the Middle-Upper Triassic. This new
assemblage is the only within the Santa Maria Formation characterized by the preva-
lence of cynodonts and absence of both dicynodonts and rhynchosaurs, suggesting it
represents a temporal interval not previously recognized for the Brazilian Triassic
(Fig. 6.10). However, the geographic occurrence of this fauna is very restricted (as
pointed out by Lucas, 2001) suggesting, at first, it would be more prudent to consider
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it as a Local-Fauna rather than a Zone. Nevertheless, the hypothesis of the occurrence
of a distinct faunal assemblage for this interval fits into the faunal succession observed
by Tucker and Benton (1982) (Fig. 6.4), i.e. a peak of cynodont-dominated faunas just
before the explosion of the hyperodapedontidae rhynchosaurs around the world.

Besides, a new Triassic fauna, also dominated by cynodonts, has been discov-
ered in Madagascar (Flynn et al., 1999, 2000). This fauna, which has so far yielded
procolophonids, rhynchosaurs, dinosaurs, sphenodontians, dicynodonts and mainly
cynodonts, is regarded provisionally to be late “Ladinian”/early “Carnian” in age.
The described Malagasy traversodontids show notable similarities to some of the
traversodontid types from the Santa Cruz do Sul fauna (Abdala et al., 2001). These
similarities, even when restricted just to cynodonts, let Abdala et al. (2001) infer,
together with the arguments above discussed, a late Ladinian (but not necessarily
early Carnian) age for the Santa Cruz Fauna. Finally, the age inferred for this bio-
zone fits to the limit between the Berdyankian and Otischalkian LVFs from Lucas
(1998), who considered (see discussion ahead) that an other LVF could be poten-
tially be recognized for that interval, although data to do this were insufficient at
that moment.

Lucas (2001) reviewed the Brazilian Triassic biostratigraphy and concluded that
the stratigraphic data (or lack thereof) and the composition of the tetrapod assem-
blages of the Santa Maria Formation support only the recognition of two, temporally
successive tetrapod faunas separated by a substantial hiatus (Fig. 6.10). According to
the same author, recent attempts to refine this correlation by recognizing more sub-
divisions (e.g. Schultz, 1995; Abdala et al., 2001) are laudable, but they lack support
from lithostratigraphic or biostratigraphic data. To get a detailed lithostratigraphic
framework of the Brazilian Triassic tetrapod localities may be impossible, given the
heavily vegetated landscape of Rio Grande do Sul, where outcrops are intermittent
and few exposures encompass more than several meters of stratigraphic section.

From that, Lucas (2001) erected a Dinodontosaurus Assemblage Zone (�
Berdyankian, Lucas, 1998) and a Hyperodapedon Assemblage Zone (�Otischalkian,
Lucas, 1998). Besides, in this paper, the author proposes a synonymy for some taxa
(Ischigualastia � Stahleckeria in the Dinodontosaurus AZ and Jachaleria �
Ischigualastia in the Hyperodapedon AZ) so reinforcing the existence of only two bio-
zones. However, neither the proposed synonymy nor the inclusion of the fauna from 
the upper portion of Santa Maria and that from the Caturrita Formation in a single bios-
tratigraphic unit are accepted by Brazilian paleontologists (see discussion ahead).

Lucas and Heckert (2002) based on recent revision of some South American and
Malagasy rhynchosaurs (Contreras, 1999; Langer and Schultz, 2000; Langer et al.,
2000a, b), which redefined most of them as belonging to the genus Hyperodapedon, as
well as in a rhynchosaur recently documented from the Upper Triassic Popo Agie
Formation of Wyoming and also attributed to the same genus, define a Hyperodapedon
biochron of late to latest Carnian (Otischalkian-Adamanian) age for strata in North
America, Scotland, India, Zimbabwe, Tanzania, Madagascar, Argentina, and Brazil
(Fig. 6.11).
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6.4 Discussion

Anderson (1980) claims that reliable correlations depend on reliable biostratigraphy
based on comprehensive sampling and sound taxonomy. Regarding to these aspects,
non-marine sequences will always be less reliable than marine ones due the non-conti-
nuity of the basins, the lateral faciologic variation of the sequences and the scarcity of
the samples, which leads to a high number of doubtful taxonomic interpretations.
Most of the authors cited above perform faunal correlations at the level of genera.
However, a “genus” is an arbitrary taxonomic unit whose monophyly can only be con-
firmed after a phylogenetical analysis, and it was not made for many taxa used in the
correlations.

Shubin and Sues (1991) stressed that the age of early Mesozoic continental strata
can only rarely be refined beyond the stage level. Intercontinental correlations gener-
ally prove difficult because of the depositional heterogeneity of the standard Triassic
sequence in the Germanic basin of central Europe. From this sequence only the Upper
Triassic (Keuper) produced significant assemblages of terrestrial plants and tetrapods.
Besides, as cited by Ochev and Shishkin (1989), the assemblages of the Early Triassic
regional sequence constitute the only so far known among the Triassic tetrapod faunas
that permits a direct comparison with the marine sections, due to the presence of com-
mon labyrinthodont genera. According to the same authors, tetrapod faunas provide
the best means for correlation of triassic fossil-bearing continental deposits. However,
in biostratigraphic studies, the purpose cannot be restricted to a simple co-ordinating
the particular faunas into one or another sort of the correlation charts as it often
occurs. The data obtained in such a way should be analyzed in order to reveal the most
universal biotic replacements which could serve as an integral framework for compar-
ing the regional faunal changes.
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Figure 6.11 Global correlation of Hyperodapedon localities (modified from Lucas and
Heckert, 2002).



6.4.1 The Question of Cross-Correlation Between Marine and 
Non-Marine Timescales to Triassic

Lucas (1998) believes that the Triassic LVFs may provide a framework for the correla-
tion of Triassic non-marine deposits with a temporal resolution comparable to the
seven Triassic Stages/Ages of the standard chronostratigraphic scale (SGCS).
Nevertheless, although it constitutes the finest degree of resolution for a global tetra-
pod-based biochronocorrelation available until the moment, some aspects of this
scheme must be viewed with caution.

The main question, as in all proposals of such kind, is the link between the non-
marine ages (LVFs or any other) and the SGCS (based on marine strata and fossils),
specially regarding to Middle and Late Triassic ages (see Benton, 1986, for further
discussion). In Lucas’ (1998) scheme we find:

– Lootsbergian LVF (non-marine) X Induan (SGCS): cross-correlation
provided by the occurrence of characteristic Lootsbergian tem-
nospondyls in ammonite-bearing Induan strata of the Wordy Creek
Formation in Eastern Greenland. However, it is uncertain if
Lootsbergian correlates to the end of the Induan (Lucas, 1998). This is
the ideal situation, i.e. the presence of shared fossils in marine and non-
marine correlated strata.

– Nonesian LVF X Olenekian: the occurrence of the temnospondyl
Parotosuchus in marine Olenekian strata of the Mangyshlak Peninsula
in western Kazakstan and the occurrence of Aphanerama or
Parotosuchus records in Svalbard, Germany and/or North America
support this correlation.

– Perovkan LVF X Anisian: Direct correlation can be made by the pres-
ence of marine facies containing Anisian conodonts and tetrapods in the
Lower Röt (Upper Buntsandstein), Germany.

– Berdyankian LVF X (Ladinian � Early Carnian): there is no direct
cross-correlation to the standard chronostratigraphic scale. According
to Lucas (1998) it is possible that there is a need for another LVF
between the Berdyankian and Perovkan, but it could not be defined and
characterized at that time due to inadequate data. In the same way, there
is potential to recognize an LVF between the Berdyankian and
Otischalkian (base of Late Carnian), although data to accomplish this
are still insufficient.

– Otischalkian LVF X Late Carnian: correlation supported by the pres-
ence of Paleorhinus and Metoposaurus records in marine strata in
Austria, palinostratigraphy and magnetostratigraphy. The tetrapod taxa
that support this correlation, however, are not undoubted. Fara and
Hungerbühler (2000) and Hungerbühler (2000), for example, demon-
strate that the monophyletic status of the phytosaur Paleorhinus (the
guide-fossil for the Otischalkian LVF) is very doubteous. For Lucas
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(1998) the Otischalkian is not represented in South America. However,
South American paleontologists (e.g. Schultz et al., 2000; Abdala et al.,
2001) consider both Ischigualasto Formation of Argentina and the upper
layers of the Santa Maria Formation as, at least, beginning in Early
Carnian, once that the radiometric age obtained by Rogers et al. (1993) in
Argentina match the base of the Carnian in most of the timescales (e.g.
Ross et al., 1994; Gradstein et al., 1995; Gradstein and Ogg, 1996). Lucas
(1998), however, adopts the paleomagnetic data and the time-scale of
Kent et al., (1995), in which that age fits in the late Carnian. It just
demonstrates that, even the existence of absolute ages in some strata not
necessarily solves such kind of controversies regarding to biochronology.

– Adamanian LVF X Latest Carnian: the correlation is based on paly-
nostratigraphy and magnetostratigraphy (using also the data of Kent
et al., 1995, among others). The Hyperodapedon biochron proposed by
Lucas and Heckert (2002) to late/latest Carnian (Otischalkian-
Adamanian) provides a biochronological resolution coarser than that
achieved using other taxa, principally phytosaurs and aetosaurs, used in
Lucas’ (1998) scheme, and it does not solve the problem of the direct
cross-correlation to the standard chronostratigraphic scale. According to
Lucas (2001) the faunas of the upper layers of the Santa Maria Formation
and those of the overlying Caturrita Formation belonged both to the
Hyperodapedon Assemblage Zone, correlated to the Ischigualastense
Reptile-Age (�Adamanian, Lucas, 1998). The main faunistic argument
for this purpose would be the presence of the rhynchosaur
Hyperodapedon in both Brazilian formations, notwithstanding all the rest
of the taxa is different in each unit. However, the rhynchosaur of the
Caturrita Formation (“Scaphonyx” sulcognathus) is a hyperodape-
dontinae, but is not Hyperodapedon at all (Langer and Schultz, 2000).

– Revueltian LVF X Norian: Palynostratigraphy, magnetostratigraphy
and sequence stratigraphy suggests the type Revueltian assemblage is
of Norian Age (Lucas, 1998). Revueltian correlates approximately with
the entire Norian, however, whether or not the beginning and end of the
Revueltian and Norian are exact equivalents is unclear. There is no
direct correlation to the marine sequences of the SGCS.

– Apachean LVF X Latest Norian: According to Lucas (1998), the
Apachean is the most difficult Triassic LVF to correlate globally. This
almost certainly reflects a provincialization of the global tetrapod
fauna. There is no direct cross-correlation to the standard chronostrati-
graphic scale.

So, proposals of global tetrapod based time-scales as that of Lucas (1998) are
laudable and must be enhanced, but still must overcame some problems, specially
taking into account that: “the use of fossils in the establishment of a relative time-scale
includes three important points: first, the reliability of the taxonomic identification of
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the fossils and the correlation among the biotas (which is particularly important
to fragmentary records); second, the reliability of the ages attributed to the fossil-
bearing strata (fundamental to correlate non-continuous units), and third, the facio-
logic control regarding to the fossil-bearing levels (which interferes directly in the
correlation and is very important in continental environments). So, to pay no attention
to anyone of these points can lead any kind of biostratigraphic hypothesis to become
highly speculative” (Marsicano, 2002).

In the Triassic, due to its particular paleogeographic and paleoclimatic conditions,
these problems used to be still more difficult to solve than in other periods. Most of the
continental area of Pangea was subject to erosion, with deposition taking place in
restricted areas, mainly in narrow rift and some epicontinental basins. Triassic succes-
sions are rarely complete, commonly showing depositional hiatuses that hinder the cor-
relation among the different basins (Embry, 1988). Besides, the tetrapod fossil record is
often fragmentary, making difficult precise taxonomic identification and its correlation.

6.4.2 Problems Regarding Correlations Among Continental Basins

It is easy to realize that correlation between non-marine sediments reveals more obsta-
cles than in marine ones. Marine sedimentation is controlled by sea-level changes, but
what about continental deposition? Continental tetrapod-bearing layers are mainly of
fluvial origin. Some authors (e.g. Shanley and Mccabe, 1994; Miall, 1996) advocate
that tectonics is the main factor that controls the accommodation of alluvial sedimen-
tation. Others (Wright and Marriot, 1993; Koss et al., 1994; Olsen et al., 1995; Emery
and Myers, 1996) stressed the role of eustasy in controlling the creation of space for
fluvial deposition. Anyway, the concept that base level variations control accommoda-
tion (the basis of sequence stratigraphy) is surely applicable to fluvial strata. However,
the use of sequence stratigraphy to continental systems is still controversial due to the
presence of two conflicting paradigms (Miall and Miall, 2001): the first one – the
“Global eustasy paradigm” – claims that eustatic variations are global and, for this rea-
son, their signs would be registered somehow in the sedimentary basins of the whole
planet, and it could be traced from one to another; on the other hand, the “Complexity
paradigm” states that there are many factors which affect the depositional architecture
of a basin, precluding long-distance correlations.

6.4.3 The Role of Taphonomy in the Samples Used to Correlation

Vertebrate taphonomists must also take into account that vertical distribution and
time-averaging may introduce strong preservation biases in terrestrial taphocenosis
preserved in fluvial facies (e.g. Behrensmeyer and Hook, 1992). This bias is con-
trolled by the depositional style of the channel and the overbank deposits. Smith
(1993) demonstrated that bone weathering increases and bone density decreases with
distance along a channel. Thus, the proximity of the burial site to the main channel and
the frequency and intensity of the floods that bury the bones in the floodplain control
the taphonomic signature of the vertebrate fossils.
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Willis and Behrensmeyer (1994) state that the preserved succession is not a result
of a gradual aggradational sedimentation of the overbank fines, but rather a product of
sedimentation followed by long periods of non-sedimentation and soil formation. In
some cases, the fossil record would be biased by the alternation of habitats formed by
phases of aggradation and phases of fluvial incision separated in time for a lot of
years. Lag deposits of reworked bones, representing time averaged taphocenoses,
could be formed during the phases of fluvial incision. For example, Smith (1993) dis-
cusses the time resolution regarded to the fluvial facies of the Hoedemaker Member of
the Late Permian Teekloof Formation of South Africa. The bones found at the flood-
plain indicates a floodplain accretion rate of 5.5 mm/y, while the pedogenetic features
of the paleosoils, in turn, indicate periods of about 10,000 years of almost non-deposition,
with an accretion rate of 0.035 mm/y.

Thus, it is clear that the preservation of terrestrial vertebrate fossils (even bones,
tracks or footprints) depends on the facies type of the fluvial system, i.e. the development
of channel and floodplain facies. The development of these facies, in turn, is controlled by
variation of base level, so that one can conclude that the taphonomic preservation, as well
as the distribution of terrestrial body and trace fossils is a function of base level change. In
this context, their preservation, as well as their first and last occurrences within a given
stratigraphic unit may not be biologically, but stratigraphically controlled, in a manner to
what Holland (1995a,b) demonstrated for the distribution of marine fossils. Thus, bio-
stratigraphic problems, concerning both the temporal resolution and interbasinal correla-
tion, may reflect the lack of integration between studies concerning fluvial sequence
stratigraphy and taphonomy. Most of the biostratigraphers, working with terrestrial fau-
nas, use lithostratigraphic columns as a geologic basis for their work, and take first and
last appearance of certain taxa as horizons for correlation. In this context, biostratigraphic
mismatches may reflect different sedimentation regimes. Taking this into account,
sequence boundaries and key flooding surfaces may be traceable laterally throughout the
marine to non-marine succession and will provide a tool for correlation between terres-
trial and marine guide fossils (see Holz and Simões, in this book, Chapter 12).

Meanwhile, the potential – and the limitations – of a biostratigraphy and biochronol-
ogy for the non-marine Triassic based on tetrapods must be stressed. New findings of
Triassic tetrapods continuously provide new data to improve, as demonstrated, this bios-
tratigraphic framework. On the other hand, variations in the faunal content from a place
to another can have different explanations, including time span, paleoecology (specially
endemism related to climatic latitudinal zonation) or sampling. Indeed, the role of the
time-averaging in such kind of continental fossil-bearing sequences is not yet fully eval-
uated, and any attempt to establish a biostratigraphy for the non-marine Triassic based
on tetrapods must be based on a detailed taphonomic work.

6.4.4 Can Radiometric and Paleomagnetic Data Solve the Problem?

In order to reinforce the link between marine and non-marine time-scales, it would be
necessary, in addition to the continuous improvement of paleontologic and strati-
graphic correlation, to obtain more radiometric and paleomagnetic data, mainly from
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tetrapod-bearing strata. The age obtained by Rogers et al. (1993) at the basal layers of
the Ischigualasto Formation, Argentina, is the only radiometric datum coming from
tetrapod-bearing non-marine Triassic sequences available until today. Additional data
can be obtained, for example, from some other Argentinean Middle-Upper Triassic
sedimentary sequences, which are interbedded with volcanoclastic layers (Stipanicic
and Marsicano, 2002). This work is just in development in Argentina and Brazil and
new data are expected for the next years. Regarding to paleomagnetic data, Vizan
(apud Stipanicic and Marsicano, 2002) advertises: “among the first-order problems
which until now persists universally in the scope of paleomagnetism, is the uncer-
tainty about the pre-Jurassic configuration of Pangea. The knowledge about the posi-
tion of the plates during Triassic is still controversial and it is difficult accept any
model as definitive.” Nevertheless, it constitutes an important tool to enhance the
geochronological framework of the Triassic, and its use must be disseminated, mainly
on non-marine sequences, where such kind of data is practically absent.

6.5 Conclusions

The Triassic was the only period of tetrapod history during the entire length of which a
single landmass existed, and this paleogeographic condition favoured the dispersion
and the cosmopolitanism of the floras and tetrapod faunas. In turn, Triassic succes-
sions are rarely complete, commonly showing depositional hiatuses that hinder the
correlation among the different basins. Besides, endemism of land vertebrate assem-
blages may also be due to facies, sampling and taphonomic biases. Notwithstanding, a
global correlation among non-marine Triassic strata and the establishment of a time
scale based on their tetrapod faunas is quite possible, but it is still necessary more evi-
dences to link these data with those of the marine sequences.

To complete this goal, the continuity of the fieldwork on Triassic strata shall prob-
ably provide new radiometric and paleomagnetic data, both from marine and conti-
nental strata, which today are still very scarce. Besides, fieldwork in non-marine
sequences will provide also new findings of tetrapods, which can continuously
improve this tetrapod-based biostratigraphic framework if they are properly studied
and compared. However, the most essential thing is that fieldwork on continental
tetrapod-bearing Triassic beds must be based in a systematic taphonomic analysis and
on the application of the concepts of sequence stratigraphy for continental strata.
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7.1 Introduction

Chronostratigraphic boundaries have great importance in the geosciences. These
occur in both marine and continental realms, provide key markers for geological cor-
relations, and for attaining more refined paleogeographic and biogeographic recon-
structions. Stage boundaries are commonly characterized by significant geological
and paleobiological events which leave a distinct signature in the stratigraphic record.

The Cretaceous-Tertiary (K–T) boundary marks the end of the Mesozoic Era,
about 65 million years ago, when widespread oceanic basins had global circulation
patterns somewhat similar to present day (e.g. Gordon, 1973; Berggren and Hollister,
1974; Hancock and Kauffman, 1979; Haq et al., 1987, 1988). For the last two decades
of the 20th

K–T boundary sections worldwide, with about two-thirds being outcrops (Lima,
1999, and references therein), from oceanic to marginal basins, interior seaways and
continental sites. This makes the K–T transition the best documented ever in pub-
lished geoscience literature.

This paper summaries these results and in so doing shows the strengths and weak-
ness of the different approaches that have been used.
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7.2 Nature of the Stratigraphic Record

7.2.1 Stratigraphic Completeness and Sampling Bias

The K–T boundary is globally recognized by an event which involved the extinction
of around 64 to 85% of all species on Earth (e.g. Sepkoski, 1990, 1994; MacLeod 
et al., 1997), including organisms in both marine and terrestrial environments. This
makes it the second largest mass extinction in Earth’s history (the first is the Permian-
Triassic boundary, when nearly 94% of all species disappeared). Major issues include:

● the precise positioning of the K–T boundary and the completeness of
the stratigraphic record (e.g. Dingus, 1984; Benton, 1989; MacLeod
and Keller, 1991; MacLeod, 1996a,b),

● the pace and magnitude of the extinction process (i.e. Was it gradual or
catastrophic? Why is there a clear discrepancy between the timing and
intensity of the mass extinction at high and low latitudes?),

● survivorship and origination rates per fossil group in the aftermath of
the event (recovery interval),

● the nature of the boundary event itself (see below);
● and, ultimately, evaluate the ecosystem dynamics in response to major

environmental changes.

To assess the completeness of a stratigraphic boundary a detailed, high-resolution,
biostratigraphic study has to be undertaken, and further complemented with a thor-
ough sedimentological evaluation and supporting stratigraphic analyses, such as of
stable isotopes, cyclostratigraphy, etc. These combined analyses would have the obvi-
ous advantage of highlighting any minor change in sediment accumulation rate and
mark the presence of possible non-depositional hiatuses in the succession, which are
of difficult perception after single visual analyses.

A less than rigorous sampling method (e.g. Signor and Lipps, 1982) and the
vagaries of biogeographically restricted/stenotopic species occurrences (e.g. Wignall
and Benton, 1999), greatly decreases the chances of finding rare diagnostic taxa.
Coupled with failure to identify properly the presence of event deposits (such as hard-
grounds and bioturbated layers, gravity flows and turbidites, where reworking and
fossil mixing commonly take place), condensed sections, and discontinuities in sedi-
mentary successions, these have often lead to erroneous interpretations in estimating
patterns and rates of biotic extinction, survivorship and speciation across the K–T
boundary transition (e.g. Smit, 1982; Argast et al., 1987; Rigby Jr., 1987; Keller,
1988, 1989a,b, 1993; Eaton et al., 1989; Liu and Olsson, 1992; Olsson and Liu, 1993;
Huber, 1996; MacLeod and Huber, 1996; Wignal and Benton, 1999). In addition,
common reworking of uppermost Cretaceous fossils into lower Danian beds further
contributes to the difficulties in precisely positioning the boundary (e.g. Florentin
et al., 1991; Montgomery et al., 1992; Zachos et al., 1992; Olsson and Liu, 1993;
Huber, 1996; Huber et al., 2002).



the k–t boundary 149

7.2.2 The K–T Boundary Stratotype at El Kef, Tunisia

The GSSP stratotype of the K–T boundary has been designated by the International
Commission on Stratigraphy (ICS) at the El Kef outcrop section in northern Tunisia,
which has a continuous and exceptionally thick calcareous pelagic sedimentary
sequence, with no unconformities, hardgrounds, or stratigraphic gaps, and with excel-
lent preserved micropaleontological, geochemical and lithological marker criteria
(Smit, 1982; Cowie et al., 1989; Odin, 1992). The section, deposited at the upper
bathyal (estimated paleodepth of 300–500 m; Speijer and Van der Zwaan, 1994,
1996), yields an abundant and well-preserved microfossil record, allowing for the
reconstruction of a complete succession of bioevents across the K–T transition.

The main criteria defining the K–T boundary at the El Kef stratotype section are
summarized in Remane et al. (1999). The boundary is placed at the extinction horizon
of nearly all upper Maastrichtian planktonic foraminifera and of many coccolith
species, and coincides with a lithological change, from uppermost Cretaceous gray
marlstones to a 50-cm-thick dark, organic rich claystone, which records the sequential
appearances of the first Tertiary species (Fig. 7.1). Marking the exact positioning of
the K–T boundary, at the base of the claystone, lies a 2–3 mm thick red oxidized layer
enriched in Ir and Ni-rich spinels (Fig. 7.1). The boundary is also marked by a negative
�13C shift (e.g. Keller and Lindinger, 1989; Keller et al., 1995; MacLeod, 1996c;
Ginsburg et al., 1997; Smit et al., 1997; Robin and Rocchia, 1998) and a 87Sr/86Sr
maximum anomaly (Vonhof and Smit, 1997), which have been related to drastic
global environmental changes induced by the K–T boundary event. However, Ir-
enriched clay layers associated with geochemical anomalies are not restricted to the
K–T boundary horizon (e.g. at the P�/P1a boundary in Poty, Brazil: Albertão et al.,
1994; Koutsoukos, 1998; in Mexico, Guatemala, and Haiti: Keller et al., 2003; and at
the P1b/P1c boundary in Negev, Israel: Hansen in Hansen et al., 2001), and thus cannot
be considered alone as a defining K–T boundary criterion.

A turnover of the benthic foraminifera across the boundary transition was recorded
by Speijer and Van Der Zwaan (1996). A diverse latest Maastrichtian upper bathyal
benthic foraminiferal assemblage was replaced by a Danian low-diversity, middle-
outer neritic assemblage, with about 30% of extinction rate.

7.2.3 Patterns of Extinction and Speciation

The stratigraphic record is much more complete in marine than in continental succes-
sions, where the knowledge of patterns of extinction and speciation becomes often
blurred by the scattered fossil recovery. Despite vagaries in fossil occurrence and
preservation (e.g. Signor and Lipps’ effect, 1982), the well-preserved sedimentary and
fossil record documented from several continuous terminal Cretaceous and K–T
boundary sections, clearly indicate that: (a) extinctions of some taxonomic groups
occurred well before the boundary (e.g. of marine organisms such as inoceramid and
rudist bivalves, ichthyosaurs, plesiosaurs, mosasaurs and pliosaurs, and on land, of
flying reptiles – pterosaurs, by the mid-Maastrichtian – Table 1), apparently in
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Figure 7.1 Composite section of the K–T boundary stratotype at El Kef, northern Tunisia,
with main defining biostratigraphic markers (planktonic foraminifera; after Keller, 1988;
D’Hondt, 1991; Brinkhuis et al., 1994; Keller et al., 1995; MacLeod, 1996c; Smit et al., 1997;
Li and Keller, 1998), and Ir profile (Robin et al., 1991; Keller et al., 2003).



response to slow environmental changes such as the gradual lowering of sea-level
(Haq et al., 1987; Stanley, 1984; Hallam, 1987, 1992; Hallam and Wignall, 1999) and
cooling temperatures during the early to late Maastrichtian (Haq et al., 1987; Barrera,
1994; Barrera and Savin, 1999; Hallam and Wignall, 1999; Miller et al., 1999; Stoll
and Schrag, 2000); (b) there was a catastrophic event at the boundary, which severely
affected or eliminated several taxonomic groups in terrestrial and marine ecosystems.

Of the diverse biota which existed at the end Cretaceous, several terrestrial and
marine groups perished or suffered great losses at or around the boundary event. The
marine ecosystems saw the demise of several taxonomic groups, such as most species
of ammonite cephalopods and belemnites. Major extinctions also affected several other
groups in the plankton (e.g. foraminifera, calcareous nannofossils), and, to a lesser
extenct, in the benthos (e.g. larger benthic foraminifera, and many corals). On the con-
tinents, dinosaurs (ornithiscians and non-avian saurichians), marsupial mammals, and
many plant species (except the ferns and seed-producing plants; Hickey, 1984; Johnson
and Hickey, 1990; Hickey and McSweeney, 1992) became extinct. On the other hand,
most placental mammals, birds, crocodilians, turtles, snakes, lizards, amphibians (frogs
and salamanders), nautiloid cephalopods, fishes, bryozoans, brachiopods, gastropods,
echinoderms, smaller deep-water dwelling benthic foraminifera, radiolarians, dinofla-
gellates, and diatoms, were little affected by the K–T event (cf. references in Table 7.1).

7.3 Causes of the K–T Boundary Event

The nature of the K–T boundary event, and related stratigraphic record and biotic
changes (mode and rates of species extinction and radiation) have been subject of much
debate and conflicting arguments for the last two decades. Several hypotheses have
been proposed trying to explain the mass extinctions at the end Cretaceous, but the
most commonly advocated causes are global sea-level changes (e.g. Stanley, 1984;
Hallam, 1987), catastrophic volcanism (e.g. McLean, 1985; Rampino and Stothers,
1988; Courtillot, 1990a,b; Courtillot et al., 1988, 1996; Glasby and Kunzendorf, 1996),
and extraterrestrial bolide (asteroid or comet) impacts (e.g. Alvarez et al., 1980,
1984a,b, 1992; Alvarez and Muller, 1984; Rampino and Stothers, 1984; Schwartz and
James, 1984; Alvarez and Asaro, 1990; Hildebrand and Boynton, 1990; McLaren and
Goodfellow, 1990; Smit, 1990; Sigurdsson et al., 1991; Florentin et al., 1991;
Shartpton et al., 1992, 1993; Ivany and Salawitch, 1993). These three processes share
in common the likely effects of a drastic change in global climate, which would have
disrupted global ecosystem dynamics and triggered a sharp increase of extinction rates
in both continental and marine realms. It has also been shown that species of high-lati-
tude cooler regions seem to have had greater survivorship rates than the ones thriving
along warm low latitudes (e.g. non-marine ostracodes in northern Alaska: Brouwers
and De Deckker, 1996; bivalve and gastropods of the Arctic Ocean: Marincovitch Jr.,
1996), suggesting that, whatever was the nature of the event, it somewhat favored
species adapted to cold-water conditions and/or had a lesser impact on high latitudes.
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Coles (1990)

Watley (1990)
Fauth (2000)

Ostracodes

Planktonic Foraminifera

Koutsoukos (1996)

Smit (1982)

Keller et al. (1993)
Olsson and Liu (1993)

Keller (1988, 1989a,b)
Liu and Olsson (1992)

MacLeod et al. (1997)

Huber (1996)

Dinoflagellates

MacLeod (1996)

Calcareous Nannofossils

MARINE ECOSYSTEMS

ZOOPLANKTON PHYTOPLANKTON

MICROBENTHOS

Benthic Foraminifera
Widmark and Malmgren (1992)
Coccioni and Galeotti (1994, 1998)
Kuhnt and Kaminski (1993, 1996)
Speijer and Van der Zwaan (1996)
Widmark (1997)
Culver (2003)

Willams and Bujak (1985)
Brinkhuis and Zachariasse (1988)
Moshkovitz and Habib (1993)
Elliot et al. (1994)
Askin and Jacobson (1996)
Schioler et al. (1997)
Brinkhuis et al. (1998)

Bramlette and Martini (1964)
Perch-Nielsen (1979, 1982)
Percival and Fischer (1977)
Monechi (1979)
Thierstein (1981)
Perch-Nielsen et al. (1982)
Henriksson (1996)
Pospichal (1994)
Gardin and Monechi (1998)
Mai (1999)

Table 7.1 Overview of selected references for biotic extinction and recovery patterns across
the K–T boundary
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Sloan et al. (1986)

Archibald and Brayant (1990)

Hickey (1984)

Mollusks

Smith and Jeffery (1998, 2000)

Case (1995)
Hoganson et al. (1997)

VERTEBRATES

Zikui et al. (1991)

Clemens and Nelms (1993)

Nichols et al. (1986)

Russell (1984, 1996)
Axelrod (1984)

Benton (1989, 1992)

Hickey and McWeeney (1992)
Nichols (1992)

Wolfe and Upchurch (1986)

Wolfe (1990, 1991, 1992)

Spicer (1989)

Archibald (1991, 1992)

Zweers et al. (1997)
Hurlbert and Archibald (1995)
MacLeod et al. (1997)

Echinoderms
Jefferey (1997)

Bonaparte et al. (1987)

Lucas et al. (1987)

Sloan (1987)

Sheehan et al. (1991)

Charig (1989)

Cutler and Behrensmeyer (1996)

Brachiopods

Bryozoans

Horner et al. (1992)

Brouwers et al. (1987)

Land Vertebrates

CONTINENTAL
ECOSYSTEMS

INVERTEBRATES

Unwin (1987)

Kardong (1997)

Surlyk and Johansen (1984)

Corals
Kauffman (1984)

Johnson and Hickey (1990)

Tschudy et al. (1984)

Land Plants
Orth et al.(1981)

Sheehan and Fastovsky (1992)

Håkansson and Thomsen (1979,1999)

Kauffman (1984)
Ward et al. (1986)
Kennedy (1989, 1993)
Raup and Jablonski (1993)
Sepkoski (1990)
Jablonski and Raup (1995)
Johnson and Kauffman (1996)
Marshall and Ward (1996)
Jablonski (1998)
Goolaerts et al. (2004)

Table 7.1 Continued



Sites worldwide have recorded a major eustatic sea-level fall to have occurred
throughout the late Maastrichtian (Stanley, 1984; Hallam, 1987, 1992), which would
have contributed to the progressive exposure and disappearance of vast areas in epi-
continental seas, such as in the western interior seaway of North America (Williams
and Stelck, 1975).

An intense episode of widespread continental flood basalt volcanism, particularly
associated with the Deccan Traps in the Indian Ocean and elsewhere (McLean, 1985;
Courtillot, 1990a; Courtillot et al., 1988, 1996), would have additionally contributed
to global environmental instability by increasing greenhouse-inducing atmospheric
CO2 levels and, consequently, induced extinctions. Radiometric dating of the lava pile
succession has suggested controversial age assignments, but most studies suggest a
short period (of less than 2 Ma) for the main eruptions beginning at or slightly before
the K–T boundary (Wignall, 2001).

The asteroid or comet impact hypothesis was proposed by Alvarez et al. (1980), based
on unusually high concentrations of the Platinum group element Iridium, a heavy metal
very sparsely found on Earth’s crust but enriched in meteorites, which was detected in the
thin boundary clay layer of a K–T section near Gubbio, northern Italy. This suggested an
extraterrestrial origin for the Ir-enriched layer, which would have been deposited globally
as dust impact debris of the vaporized bolide. Subsequently, overwhelming supporting
evidence to the impact theory came from several studies of different K–T boundary sec-
tions around the world, which also reported the Ir anomaly (e.g. Alvarez et al., 1984a,b;
Schmitz et al., 1992; Bruns et al., 1997; Norris et al., 1999), occurrence of impact-
shocked quartz grains (Bohor et al., 1984, 1987; Izett, 1987; Bohor, 1990), microtektites
(Hansen et al., 1986; Izett et al., 1991; Sigurdsson et al., 1991; Smit et al., 1992; Koeberl,
1993; Norris et al., 1999), Ni-rich spinel, a mineral formed by fusion and oxidation in the
atmosphere of meteoritic material (Kyte and Smit, 1986; Robin et al., 1991; Robin and
Rocchia, 1998), soot, produced from impact-induced forest wildfires (Wolbach et al.,
1985, 1990), impact-generated tsunami deposits (e.g. Bourgeois et al., 1988; Hildebrand
and Boynton, 1990; Smit et al., 1992), and the c. 65 Ma-old (crater melt rock dated as
64.98 
 0.05 Ma) giant impact crater at Chicxulub on the Yucatán Peninsula (e.g.
Hildebrand et al., 1991, 1995; Swisher III et al., 1992; Koeberl, 1993; Kring, 1993; Kring
and Boynton, 1993; Sharpton et al., 1992, 1993; Bralower et al., 1998).

The detailed and integrated stratigraphic study of several K–T boundary sections
has shown compelling evidence of a complex sequence of events across the boundary
transition. The occurrence of possible impact-derived material (tsunami beds, anom-
alous enrichments of Ir and other siderophile elements, microspherules, and shocked
quartz) in deposits yielding in situ early Danian microfossil assemblages (e.g. Brazos
River, Texas: Montgomery et al., 1992; Coxquihui, Veracruz, east central Mexico, and
Bochil, Chiapas, southern Mexico: Keller et al., 2003; Beloc, Haiti: Florentin et al.,
1991, Stinnesbeck et al., 1999, Keller et al., 2003; Poty, Pernambuco, NE Brazil:
Koutsoukos, 1998), suggests possible multiple closely-spaced impact events, span-
ning about 1 Ma or less (multiple events theory: e.g. Hut et al., 1987; Schmitt, 1989).

Reports of a latest Maastrichtian global cooling and sea-level fall followed by a
warming and sea-level rise trend (Haq et al., 1987; Barrera and Savin, 1999; Clarke 
and Jenkyns, 1999; Hallam and Wignall, 1999), coupled with environmental
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deterioration/turnover (Officer et al., 1987; McCartney et al., 1990), have also been
argued as evidence of pre-boundary, gradual (non-catastrophic) changes. Many species
are known to have become extinct earlier or had a greater diversity decline in the high
southern latitudes (e.g. earlier disappearance of inoceramid bivalves and belemnites, and
major diversity drop of ammonite faunas in the Antarctica: Zinsmeister and Feldmann,
1996), which would support the hypothesis of an end Cretaceous global cooling con-
straining the thriving of these species in cooler high latitude regions.

Hence, the controversy is far from settled. It seems likely, however, that there was
not a single cause to account for all the end Cretaceous mass extinctions, but likely a
complex interplay of somewhat coeval and climatically-related global phenomena
coupled with and/or induced by possible multiple impact events which took place
across the K–T transition.

7.4 Case Study: The K–T Boundary at Poty, Ne Brazil:
Event Stratigraphy

The stratigraphic, biotic and environmental changes recorded in a K–T boundary sec-
tion near Recife (the Poty section), in Pernambuco, northeastern Brazil (Figs. 7.2, 7.3),
illustrates some of the problems of studying the K–T transition in low-latitude South
Atlantic regions.
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Figure 7.2 Location map of the K–T boundary Poty section, in northeastern Brazil.



7.4.1 The Stratigraphic Record and Depositional Dynamics

Closely spaced samples were collected in the Poty quarry from measured outcrop sec-
tions and from a core (Poty #1) drilled in June 1992 in the SE part of the quarry.
Samples were processed for foraminiferal analysis using standard techniques, with a
minimum of 300 specimens collected from the size fraction �63 	m. The planktonic
foraminiferal zonation of the Poty section (Fig. 7.4), based on outcrop and core sam-
ples, and discussions on the nature of the event beds across the K–T boundary transi-
tion have been presented in Albertão et al. (1994) and Koutsoukos (1996a,b, and 1998).

7.4.1.1 Maastrichtian
At the Poty quarry the uppermost Maastrichtian outcropping section (Plummerita
hantkeninoides Zone; Figs. 7.3, 7.4), about 10 m thick, is represented by alternating
beds of carbonate mudstones and marlstones of the Gramame Formation. The succes-
sion was deposited in an upper bathyal environment (estimated depth around 300 to
400 m). This is suggested by the abundance of deep-water dwelling, high-trochospiral
planktonic foraminifera, such as large specimens of Contusotruncana. There are also
benthic forms commonly found in upper bathyal environments, such as
Coryphostoma midwayensis, Cibicides hedbergi, Pyramidina rudita, Fursenkoina
sp., Guttulina adhaerens, Nonionella cretacea, Neoflabelina ex gr. pilulifera,
N. rugosa, Vaginulinopsis midwayana, Orthokarstenia whitei and Siphogenerinoides
bramlettei (Fig. 7.4). In addition, nearly all known latest Maastrichtian planktonic
foraminifera (except Abathomphalus) occur in these beds (fig. 2 of Koutsoukos,
1996b).
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Figure 7.3 The Poty quarry section, showing the positioning of the K–T boundary – see colour
version of this figure in Appendix.
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Figure 7.5 Lithostratigraphy and distribution of selected benthic foraminifera across the K/T
boundary section in the Poty quarry (samples from core Poty #1).



A non-graded, nodular carbonate mudstone/wackestone (bed B, base of the Maria
Farinha Formation; Figs. 7.4, 7.5), about 50 cm thick, overlies the marlstones. It contains
the first occurrences of Gavelinella stephensoni, Orthokarstenia clarki, O. parva,
Nuttallides truempyi, Valvulineria amarali, Gaudryina laevigata, G. pyramidata and
Dorothia bulleta. This bed appears to be a slump or mud-flow deposit, which originated
at or near the neritic/bathyal transition, containing mixed deep neritic and upper bathyal
microfossils and, more rarely, upper bathyal taxa from underlying beds. Alternatively,
this deposit could have accumulated during a sea-level low and the microfossil mixing
caused by the extensive bioturbation observed in these beds (Chondrites and
Thalassinoides burrow systems). The depositional setting for this layer appears to have
been the same as that of the underlying marlstones, or slightly shallower water (deep ner-
itic-upper bathyal, c. 150–250 m). A sharp erosional surface marks the K–T boundary at
the top of this bed, and a significant sea-level fall, probably in the order of between 100
and 300 m, is inferred across the K–T transition (Figs. 7.4, 7.5). A sea-level fall of similar
magnitude was recorded at the El Kef K–T boundary stratotype section by Speijer and
Van der Zwaan (1994, 1996), who inferred a shallowing from an upper bathyal environ-
ment in the latest Maastrichtian to middle-outer neritic conditions in the earliest Danian.

7.4.1.2 Danian
A thinly bedded (5.5 cm-thick) marly limestone breccia (bed C; Figs. 7.4, 7.5), rests
upon the K–T boundary, and is interpreted as the initial deposit of an impact-triggered
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Figure 7.6 Detail of beds across the K–T boundary at the Poty quarry. Beds A to B, uppermost
Maastrichtian: marlstone (A) and mudstone/wackestone (B) deposits in upper bathyal to deep
neritic environments. Beds C to I, lowermost Danian: marly limestone breccia (C), graded bio-
clastic packstone (D), and interbedded fine-grained limestones and marlstones (E–I); probable
early Danian impact-generated tsunami deposits in a middle to deep neritic environment – see
colour version of this figure in Appendix.



tsunami event (surge of the wave). This is overlain by a 50 cm-thick graded bioclastic
packstone (bed D), interpreted as to represent deposition during the return of the main
wave, and by a 15–20 cm thick succession of alternating beds of fine-grained lime-
stones and marlstones (beds E to I), which probably represent the deposits of multiple
attenuated secondary tsunami waves. These beds record the first occurrences of
Allomorphina paleocenica, Nonionella ovata, N. soldadoensis, Tappanina selmensis,
Loxostomoides plummerae, Pulsiphonina prima, Anomalinoides acuta, A. capitata,
A. praeacuta, Valvulineria scrobiculata, Alabamina midwayensis, Gavelinella coonensis
and Cibicidoides alleni, and are interpreted to have been deposited in a middle to deep
neritic environment (around 50 to 150 m depth). The foraminiferal assemblages are
representative of the continental shelf “Midway-type fauna” of Berggren and Aubert
(1975).

These beds yield abundant reworked Cretaceous microfossils and rare early
Danian specimens (foraminifera and ostracodes; upper part of the P� foraminiferal
zone; Koutsoukos, 1998, Fauth, 2000). Apparently the P0 and the lower P� zones are
missing, probably eroded and/or mixed within the lower Danian beds. Probable
impact-related ejecta material, such as altered microspherules and shattered shock-
metamorphozed quartz grains, occur scattered throughout these lower Danian beds.

A thin hemipelagic claystone layer (layer I), about 1–3 cm, lies on top of the event
sequence and is marked by an Ir anomaly, which is up to 69 times the background level
(Albertão et al., 1994). It probably represents the condensed fall-out material of an
impact event in the early Danian. This bed contains abundant early Danian planktonic
foraminifera of the upper P� Zone, and authochthonous benthic foraminifera  (Figs.
7.4, 7.6) which indicate deposition in a middle to deep neritic setting for the event beds.
Its top marks the boundary between the Paleocene P� and P1a foraminiferal zones.

It has been argued that the Danian microfossils present in beds C to I are due to
bioturbation mixing, as similarly reported by Scasso et al. (in press) from a K–T
boundary section in the Neuquén basin. This may truly occurs in boundary sections
where intense bioturbation is detectable. However, several aspects of the Poty section
stratigraphic record give support to the Danian dating of the beds: (1) though bioturba-
tion is present, and particularly conspicuous at the the top of layer H (which marks the
end of the interpreted tsunami event and, as thus, the return to normal depositional
conditions), it is rare to absent in the underlying beds G to C, the base of which lie
down about 75 cm below layer I; (2) the first occurrence of the Danian microfossils
occurs consistently at the same horizon in closely-spaced samples collected from ran-
domly selected sections in the outcropping area, and also in core Poty #1; (3) Danian
microfossils which are known to be extinct at the top of the P� foraminiferal Zone,
such as Eoglobigerina fringa, Guembelitria irregularis and Parvularugoglobigerina
eugubina (the total-range zonal marker), are exclusively recorded within layers C to I,
and do not occur above (the upper limit marks the P�/P1a zonal boundary), and thus
can not be interpreted as contaminated by bioturbation; (4) in addition to that, thin
sections of the sample with the Ir anomaly from layer I (Fig. 7.7) show only well-
developed diagnostic Danian microfossils, and no Cretaceous forms, which gives
further support to the Danian dating of the event.
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The uppermost Danian beds exposed represent deposition in progressively shal-
lower neritic environments, with stronger influence of storm events. The benthic
foraminifera decline sharply in diversity and are characterized by assemblages domi-
nated by anomalinids with subordinate vaginulinids (Fig. 7.5).

To conclude, the Poty section presents evidence (i) of a sea-level fall, in the magni-
tude of 100 to 300 m, at the K–T boundary in low-latitude South Atlantic regions; and
(ii) of possible impact-triggered tsunami deposits in the early Danian, which supports
the hypothesis of a sequence of multiple closely-spaced impact events around the K–T
boundary transition.
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Figure 7.7 Thin-section micrograph of the marlstone sample with the Ir anomaly from layer I,
lower Danian, Poty quarry. Planktonic foraminifera of the Danian upper P� Zone:
1. Parvularugoglogigerina eugubina (longiapertura morphotype); 2. Woodringina claytonensis;
3. W. hornestownensis. Scale bar � 100 �m – see colour version of this figure in Appendix.
Photo by Gilberto A. Albertão, reproduced by courtesy.
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8.1 Introduction

Chemical stratigraphy or chemostratigraphy involves the application of organic and
inorganic geochemical data to characterize and correlate strata. Sequences can be sub-

tures potentially provide a means of defining and correlating sedimentary units over
wide areas. Such sort of studies is specially important in areas in which traditional
methods of correlation, as biostratigraphy and wirelog signatures, have proven to be
inadequate for precise correlations. This is specially true in cases of poorly fossilifer-

shales or carbonates in which the wireline log signatures are monotonous and fail to
provide accurate correlation.

165

divided into stratigraphic units with diagnostic geochemical signatures. These signa-
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ous or non-fossiliferous sequences, in areas with very high sedimentation rates in
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which biostratigraphic resolution is poor, and in many thick monotonous marine
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This chapter is not intended to discuss exhaustively all geochemical parameters
that could be used in chemostratigraphy, but rather to present and discuss those used
in applied stratigraphic interpretations from selected Brazilian basins (Fig. 8.1).

8.2 Organic Matter

Sedimentary organic matter provides a variety of indicators that can be used to
reconstruct the history of geological records of ancient marine and continental environ-
ments. The organic matter concentration in rocks depends on its production and preser-
vation in the depositional environment.

The major source of organic matter entombed in the sediments is the organic-
walled phytoplankton that thrived in the photic zone of the aquatic environment. Land
plants can also be important additional contributors to the organic matter preserved in
the sediments. As a consequence, determination of these different types of organic
matter is important for interpretation of the paleoenvironmental conditions. The 
phytoplankton records the primary productivity of the pelagic environment, while the
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terrestrial plants reflect the local land organic productivity and transport to an aquatic
depositional environment.

Organic matter, being a reduced form of carbon, is unstable under aerobic deposi-
tional conditions. Under normal oxygenated water conditions its degradation is rela-
tively rapid during its transport from the water surface to the sediment–water interface,
and continues further within the bioturbated layer of the sediment. Usually, only a very
small percentage of the primarily produced organic matter survives the remineraliza-
tion process and is preserved in the sediments (e.g. Wakeham et al., 1980; Emerson and
Hedges, 1988). Normally these depositional conditions predominate in the sedimen-
tary record and are characterized by stratigraphic intervals with low organic carbon
contents, as normally found in Tertiary shale sections of the Brazilian marginal basins
(see case studies of the Cenozoic). On the other hand, it is also important to identify the
organic matter alteration, taking into account that degradation processes modify the
original composition and concentration of the organic matter, despite the relatively
short time involved from the primary organic matter production to its final burial in the
sediments. The more labile fractions of organic matter (lipids and proteins) are selec-
tively degraded, creating compositional changes as organic particles sink. This means
that algal organic matter degrades faster than land-derived (terrestrial) organic matter.
Detailed organic petrographic studies and rock-eval pyrolysis allow us to make such
differentiations (Fig. 8.2). Despite this fact, the sedimentary organic matter retains
considerable information about its source and depositional environment.

During times of strong stratification of water column and/or of high primary
production, dissolved oxygen is used before it can be replenished, and anoxic bottom
waters are developed. Organic matter preservation appears to be enhanced under 
these conditions (e.g. Demaison and Moore, 1980). Pedersen and Calvert (1990)
postulate that increased inflow of organic matter coupled with high productivity can
produce organic carbon-rich sediments in oxygenated water columns. However, it is
hard to explain the very high concentrations of organic carbon (�10%) associated
with very high hydrogen indices found in some black shales (like those shown in the
upper high part of Fig. 8.2), without invoking increased primary productivity and
inflow of organic matter, combined with improved organic matter preservation and
limited clastic dilution. These depositional conditions are rare in the sedimentary
record, and are normally associated with global dysoxic–anoxic events (e.g.
Schlanger and Jenkyns, 1976; Ulmishek and Klemme, 1992). These stratigraphic
intervals are easily identified by anomalous high organic carbon contents, high hydro-
gen index values, and high concentrations of sulfur-related chemical elements (mostly
Mo, V, Cu, Pb; see Figs. 8.3, 8.4)

8.3 Major, Minor and Trace Elements

In a marine environment subject to siliciclastic deposition under low oxygen bottom
water conditions, the main factor which controls pyrite formation is the availability of
iron and sulfur ions. Under normal salinity conditions, a reducing marine environment
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usually has an excess of sulfur ions released by the reduction of sulphates through
anaerobic bacterial activity. In these settings, the main constraint to pyrite formation
would be the free amount of reactive iron ions (Raiswell and Berner, 1985). These
environmental conditions can be identified by the high direct correlation of organic
carbon, sulfur and iron.

To some extent, it is a well-known fact that certain metals tend to concentrate in
the form of sulfide and organometallic compounds within autochthonous organic mat-
ter deposited in a reducing environment (e.g. Le Riche, 1959; Kulbicki and Rumeau,
1967). Trace elements, as U, Mo, V, Cu, and Ni, are statistically associated with both
organic carbon and sulfur. However, frequently U, Mo and V show greater covariance
with organic carbon than with sulfur. Benthic flux measurements using bell jars
revealed a significant release of some of these metals from the sediment during oxic
bottom water conditions, while these same metals were fixed in the sediment during
times of dysoxic-anoxic bottom water (e.g. Westerlund et al., 1986). This study focus
mostly on Mo, which is among the most diagnostic element for sediments deposited
under dysoxic–anoxic bottom water conditions.
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In contrast, Mn generally keeps in solution in the water column under anoxic
conditions, and precipitates in the form of oxides and carbonate under less reducing
conditions (Frakes and Bolton, 1984).

The detrital clastic sources for other major, minor, and trace elements can be
inferred by the relationship among them and concentrations of Al, an abundant litho-
genic element. Some of the elements that show high correlation with Al include Ti,
Mg, Na, K, Ga, La, and Nb.

Barium is considered to be a marker of organic productivity and biogenic sedi-
ments (e.g. Dymond, 1981; Papavassilou and Cosgrove, 1982; Schmitz, 1987).
However, data shown in the case-studies (see Fig. 8.3) indicate that the Ba concentra-
tions does not correlate with organic carbon, but with Al. This suggests that Ba was
supplied to the basin together with terrestrial detrital influx, mostly in clay minerals.

8.4 Carbon and Oxygen Isotopic Composition of Carbonate

8.4.1 Oxygen Isotopes

The primary variables which determine the oxygen isotope signal in marine carbon-
ates are water temperature and the 18O/16O composition of the sea water. The isotopic
composition of oxygen in a solid phase is not the same as that in water when the two
are in equilibrium. There is a differential partition in the solid and liquid phases, with
18O being enriched in the solid phase. This enrichment in 18O during carbonate forma-
tion is temperature-dependent: at higher temperatures, more carbonate ions with 18O
atoms could remain in solution, and therefore the carbonates precipitated under these
temperature conditions should be less enriched in 18O than those formed under lower
temperatures (e.g. Urey, 1947; Emiliani, 1955). For a constant oxygen isotopic com-
position of the sea water, the 18O/16O ratio in carbonates deposited in isotopic equilib-
rium will decrease by 0.23‰ with each degree centigrade increase of temperature
(e.g. Epstein et  al., 1953; Emiliani, 1955). Thus, with this findings it was possible to
estimate at which water temperature the carbonate precipitation took place (e.g.
Epstein et al., 1951, 1953; Craig, 1965; Erez and Luz, 1983).

The most important process that can produces modification in the oxygen isotope
composition of the sea water is evaporation. This process concentrates the heavy 18O
isotope in the liquid phase, which so becomes relatively enriched in 18O as compared
to the vapor phase that becomes enriched in the light 16O isotope. During glaciations,
water vapor in the clouds precipitates 16O-rich water on ice caps in the form of snow,
leaving the ocean water enriched in 18O. This means that changes in oxygen isotope
ratios in carbonates during ice ages are primarily an ice volume signal, with a minor
effect due to temperature (e.g. Shackleton, 1967).

The above relationships have provided the basis for numerous studies of past
climate changes, continental glaciations and changes in marine current systems.
Furthermore, by studying the isotopic compositional changes in both benthic and
planktonic foraminifera it is possible to investigate the structure between surface and
deep water and their evolution in the geological history.
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8.4.2 Carbon Isotopes

The variables affecting the carbon isotope composition of carbonates are still not com-
pletely understood. Primary �13C values in marine carbonates are considered to be a
function of the 13C/12C of dissolved inorganic carbon (�CO2) in surface water, since
there is little fractionation associated with carbonate precipitation.

Significant changes in carbon isotope ratios reflect changes in carbon cycling of
the ocean, particularly between reservoirs of very different isotopic compositions. The
two most important metabolic processes affecting the �13C of �CO2 are respiration
and photosynthesis. Phytoplankton photosynthesis strongly discriminates against 13C,
preferentially incorporating 12C in organic matter formed by this process. Thus,
phytoplankton productivity or bacterial oxidation of organic matter in the water
column will significantly affect the �13C values of the �CO2 in the surface water. As
organic matter is enriched in the light isotope 12C, its removal by burial from oxidative
recycling renders the ocean richer in 13C, and therefore increases the �13C values of
carbonates precipitated under these conditions (Scholle and Arthur, 1980). This water
conditions normally characterize dysoxic–anoxic events as will be discussed later.

It is a well known fact that the isotope composition of planktonic foraminifera
tests is enriched in 13C (heavy) and in 16O (light) compared to that in benthic
foraminifera, which is lighter in carbon isotopes and heavier in oxygen isotopes. Thus,
by utilizing isotopic compositional changes in both benthic and planktonic
foraminiferal tests it is possible to investigate how the structure between surface and
deep water responded to the influence of changing sources of deep waters and the
process of their formation, as well as the cycling of nutrients during their transit
around the ocean basins (Kennett and Stott, 1990).

During extinction phenomena, as that of the Cretaceous–Tertiary (K–T) boundary,
the ocean would have no gradient of carbon isotope from top to bottom, because the
water surface would no longer be depleted in 12C due to photosynthesis (reduction of
primary productivity). Carbonates deposited at that time should have a more negative
�13C signature as compared to values from the underlying and overlying carbonates,
which would explain the negative �13C excursion at the K–T boundary (e.g. Hsü and
Mckenzie, 1985).

During diagenesis carbon isotopes are also fractionated by bacterial reactions,
forming CO2 rich in 12C through organic matter oxidation or sulfate reduction, and
CO2 enriched in 13C due to methanogenesis. If both oxygen and carbon isotopes
become simultaneously negative, this could mean fresh-water diagenesis, and there-
fore a possible sequence boundary (see case studies of the Cenozoic).

8.5 Brazilian Case Studies

Whole rock isotope analyses are generally considered to have little stratigraphic value.
Nevertheless, despite the presence of some diagenetic overprint, the carbon and oxygen
isotope records resemble those derived from careful analyses of individual foraminifera
species. Moreover, the general trend is not masked when viewed within the framework
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of sequence stratigraphy. Also, strong diagenetic overprints may be related to sea-level
lowstands that correlate well with sequence stratigraphic boundaries. Based on these
findings it is intended to demonstrate here the usefulness of whole-rock sample analyses
applied to chemostratigraphic studies, in particular those based on ditch-samples, which
are the commonest sort of rock samples available from oil-well drillings. All examples
presented are from Brazilian sedimentary basins (Fig. 8.1), involving intervals ranging
in age from the Devonian to Cenozoic.

8.5.1 Methods

All samples were hand-picked and split into two parts, for organic and inorganic
geochemistry investigations. For organic geochemistry studies, one aliquot was
ground in rotary mill and, after dissolution of carbonates by hydrochloric acid, ana-
lyzed for organic carbon using a Leco SC-444 apparatus. Rock-Eval analyses were
performed using a Delsi II instrument, according to the procedures described by
Espitalié et al. (1977). Major and trace element determinations have been obtained by
X-ray fluorescence in a Phillips PW-1480 equipment. For carbon and oxygen isotope
analyses, carbonate powder was reacted with phosphoric acid, and the measurements
made according to standard techniques on a Finnigan MAT 252 mass spectrometer
with an on line carbonate preparation device (Kiel device). The �13C and �18O values
are reported in relation to the PDB standard. All analyses were carried out at the
Petrobras Research Center in Rio de Janeiro.

8.5.2 The Paleozoic

The Frasnian dysoxic–anoxic event is relatively well-known global event (e.g.
Ulmishek and Klemme, 1992), and is widely represented in Paleozoic basins of north
and northeast Brazil (Rodrigues, 1995, 2001).

In the Parnaíba Basin (northeast Brazil, Fig. 8.1), this radioactive shale interval is
best developed in the central and northwestern parts of the basin, where it may reach
thickness up to 40 m. These marine strata represent the maximum flooding event of
the Devonian sequence, and are easily recognized in well logs by their higher radio-
activity, sonic transit time and resistivity, and by their low density values. Such fea-
tures are caused by the high concentration of organic matter in relation to that of the
surrounding rocks (Fertl et al., 1986). Detailed geochemical and miospore-based bio-
stratigraphic investigation of this event were carried out by Rodrigues et al. (1995).

The dysoxic–anoxic interval is made up of fissile, dark shales, with organic carbon
content ranging from 4.0 to 5.0%, thus contrasting with the lower concentrations 
of intervals immediately below and above, 1.0% and 2.0%, respectively (Fig. 8.3).
The lower lithological contact (with partially bioturbated shale and very fine-grained
sandstone) is abrupt, and suggests quick replacement of oxic bottom conditions by
dysoxic–anoxic ones, possibly in response to sudden sea-level rises and a consequent
decrease in bottom water circulation. Higher up in the studied section, the disappear-
ance of fine lamination and the increased silt content of the shales could imply a
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higher sedimentation rate, as well as progradation in a highstand system tract with a
relative increase in bottom water oxygenation.

The distribution pattern of sulphur, Mo, V, Cu, Pb and hydrogen index, similar to
that of organic carbon, points out to the reduction of sulphate through anaerobic bacte-
rial activity, and a better preservation of organic matter under dysoxic–anoxic bottom
water conditions, during deposition of the interval with higher organic carbon content
(Fig. 8.3).
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In the Amazonas Basin, located to west of Parnaíba Basin (Fig. 8.1), this 
dysoxic–anoxic event is also very well documented (Rodrigues, 1973; Trigüis and
Rodrigues, 2000; Rodrigues, 2001), and comprise a more than 40 meters thick section
of black shales (Fig. 8.4). Ranging in age from Frasnian to Famenian, it represent a distal
condensate section of Parnaíba Basin, where in the same age interval was deposited the
dysoxic–anoxic black shales (maximum flooding) and the progadational interbeds of
shales, siltstones and sandstones (highstand system tract) of the Pimenteira Formation.

8.5.3 The Mesozoic

The Brazilian marginal basins are directly related to the rifting of the African and
South American plates. Thick sequences of lacustrine and fluvial deposits were accu-
mulated during the Early Cretaceous rifting phase. Following this, tectonic activity
has been restricted to subsidence (Estrella et al., 1984) while intermittent marine
transgressions took place in the lower Aptian. The sedimentary record of these marine
transgressions is characterized by the presence of chemical fossils derived from
marine algae and carbonates with higher �13C values, as compared to the underlying
sequences that present biomarkers and carbon isotopic signatures consistent with
freshwater to saline lacustrine environments (e.g. Takaki and Rodrigues, 1984; Mello
et al., 1988; Rodrigues, 1995). The isotopic signatures (Fig. 8.5) can be correlated in
several wells in the Espirito Santo and Campos Basins, and probably correspond to
the same isotope events observed by Menegatti et al. (1998) in the lower Aptian,
Globigerinelloids blowi foraminiferal zone of the Roter Sattel (Swiss Pre-Alps) and
Cismon (southern Alps of northern Italy) sections.

The global distribution of bituminous black shales within the Aptian and Albian
stages and at the Cenomanian–Turonian boundary has led to the interpretation that
these deposits result from global Oceanic Anoxic Events (Schlanger and Jenkyns,
1976). Widespread deposition of marine organic rich shales took place about the
Aptian–Albian transition, mostly in northeast and equatorial Brazilian marginal
basins. The black shale interval yields high total organic carbon content (TOC up to
25%) and high hydrogen index (HI up to 980 mgHC/gTOC) (Fig. 8.6).

At the Cenomanian–Turonian boundary, even more widespread deposition of
marine bituminous shale occurred in the equatorial through southeast Brazilian off-
shore marginal basins. Co-variation of the high organic carbon content in pelagic
rocks with positive shifts of carbon isotope values within the corresponding shallow
carbonate facies points out to closely related phenomena, caused by the same dysoxic-
anoxic event. In order to test the applicability of the �13C shifts to the chronostrati-
graphic correlation of dysoxic–anoxic events, a detailed isotope study was carried out
in a shelf carbonate sequence of Sergipe–Alagoas Basin (Fig. 8.2), at a time when no
detailed biostratigraphic studies were regionally available, and the sequence was
demonstrated to be coeval with the black shale deposition episode (Takaki and
Rodrigues, 1993). Whole rock carbon isotope results point out to an abrupt increase of
the �13C values from burial depths of 700 m to 600 m, followed by a decrease
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towards 500 m (Fig. 8.7). Carbon isotopic variations of 2.5‰ in inorganic fractions of
Upper Cretaceous sequences have only been recorded for the dysoxic–anoxic event at
the Cenomanian–Turonian boundary (e.g. Scholle and Arthur, 1980; Pomerol, 1983).
Based on these assumptions, the Cenomanian-Turonian boundary was tentatively
placed at about 700 m (Takaki and Rodrigues, 1993). Subsequent biostratigraphic dat-
ing of the same event by Cunha (2000) confirms the isotope-based age estimates, as
shown in Figure 8.7. The more negative �18O values suggest that the dysoxic–anoxic
event took place under mild climatic conditions, associated with higher relative tem-
peratures of sea-water.

Following the carbon isotope event, a sharp increase in the manganese content of
carbonates appears to characterize the end of the anoxic period. Most of the
manganese would have remained in solution during anoxia, and later precipitated in
larger quantities during the shift from dysoxic-anoxic to oxygenated environmental
conditions (Fig. 8.7).

The �13C fluctuations, turning gradually less positive in Turonian and younger
sequences, might reflect a decrease in organic productivity of the ocean. This
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phenomenon was probably related to the continuous cooling of oceanic waters in
response to the progressive opening of South Atlantic Ocean, as suggested by the
increasing �18O trend from Turonian to Santonian (Fig. 8.7), but that reached the
Maastrichtian.

8.5.4 The Cretaceous–Tertiary Boundary

The Cretaceous–Tertiary (K–T) boundary event is well recorded in several places of
the Brazilian continental margin. The sudden decrease in �13C values near K–T
boundary appears to result from a corresponding fall in the rate of primary productiv-
ity in surface waters, due to mass mortality of oceanic plankton and the accumulation
of nutrients, including dissolved CO2, in the photic zone.

The Cretaceous–Tertiary boundary was sampled in several wells drilled in the
Brazilian offshore area. This event in northeast and southeast offshore sedimentary
basins is normally very well marked, and represented by a sharp increase in total
organic carbon values and by �13C and �18O negative excursions. In the example
shown in Figure 8.8, the organic carbon content of the Cretaceous section is around
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0.4%, being followed by a prominent increase up to 0.8% and 1.2% values. These
organic carbon contents in the K–T boundary are not similar everywhere in Brazilian
offshore basins, but as a rule they are two to three times higher in the Paleocene. The
very low hydrogen index of the same samples indicate a predominance of oxidized
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organic matter, probably derived from the continental area. The negative oxygen and
carbon isotopic excursions (1.0 to 2.0‰) are believed to be related to changes in ocean
thermal conditions (greenhouse effect) and the result of rapid reduction in the rates of
primary productivity and nutrient accumulation (mass mortality of oceanic plankton)
due to the effects of a possible meteorite impact (e.g. Boersma et al., 1979; Hsü and
Mckenzie, 1985; Schmitz et  al., 1992).

8.5.5 The Cenozoic

The increased �13C and �18O values documented for the late Paleocene are interpreted
as a recovery of surface water productivity and to changes in the climatic conditions to
the levels that existed before the K/T boundary event.

As shown by the �18O isotope data, the rapid climatic change of the latest
Paleocene was one of the most dramatic warming events in the geological record 
(Fig. 8.8). Oxygen isotope values decrease during late Paleocene to reach a minimum
in the earliest Eocene, thus suggesting maximum sea surface temperatures at that
time, as pointed out by Shackleton and Kennett (1975). Synchronous with the
decrease in �18O values was a abrupt negative excursion in the �13C values. The
Paleocene–Eocene boundary event is isotopically similar to that of K–T boundary,
probably reflecting a similar origin. In general, the Eocene are characterized by
continuous cooling of sea-waters, as suggested by the continuous increasing of �18O
values (Figs. 8.8, 8.9).
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In the Campos Basin, the Tertiary oxygen isotope record shows the first Cenozoic
�18O maxima at �40 Ma, probably linked to Antarctica’s ice growth event. As a con-
sequence of this glacio-eustatic sea-level fall, an unconformity at the middle-upper
Eocene boundary is suggested by a sharp decrease of �18O and �13C values, related to
meteoric diagenetic effect (Eo-1 in Fig. 8.9). The Oi-1 oxygen isotope event of Miller
et  al. (1991) in the lowermost Oligocene, also observed in the Campos Basin (Oi-1 in
Fig 8.9), is considered to represent the earliest robust evidence of the glaciation-
deglaciation event in Antarctica (Miller et  al., 1991). The lower Oligocene is charac-
terized by a set of higher frequency glaciation–deglaciation events. These are
probably related to Milankovicht cycles of 400 Kyr. with two �18O maxima at 35 Ma
and 30 Ma, the later corresponding to the lower-upper Oligocene boundary (Oi-1a and
Oi-2, respectively in Fig. 8.9). The decrease of �18O values in the uppermost
Oligocene points out to a warmer event, that precedes the �18O maxima of the lower-
most Miocene (Miller’s Mi-1 in Fig. 8.9). Following the Mi-1 event, an unconformity
is suggested by the abrupt, negative �18O and �13C excursion at approximately 20 Ma
in the lower Miocene (Unc in Fig. 8.9).

The total organic carbon data are an another interesting point to be considered. The
coeval variation between the oxygen isotope data and the total organic carbon content,
associated with organic matter predominantly derived from higher plants, suggest an
increase of terrestrial organic matter transported to the sea during the sea-level fall
(Fig. 8.9).

8.6 Acknowledgments

I thank José Henrique Gonçalves de Melo and Eugenio Vaz dos Santos Neto
(Petrobras-Cenpes, Rio de Janeiro) for their careful review and helpful comments,
which much improved the manuscript.



Chapter 9

Paleobotany and Paleoclimatology

Part I: Growth Rings in Fossil Woods and 
Paleoclimates

LAUREEN SALLY DA ROSA ALVES1 and MARGOT 
GUERRA-SOMMER2

1 Universidade do Estado do Rio de Janeiro (UERJ), Faculdade de Geologia Departamento de
Estratigrafia e Paleontologia, Rua São Francisco Xavier, 524/2032-A, Maracanã, 20559-900
Rio de Janeiro, RJ, Brazil.

2 Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Geociências, Caixa
Postal 15001, 91501-570 Porto Alegre, RS, Brazil.

Part II: Leaf Assemblages (Taphonomy, Paleoclimatology and
Paleogeography)

TÂNIA LINDNER DUTRA
Universidade do Vale do Rio dos Sinos (UNISINOS), Av. UNISINOS, 950,
93022-000 São Leopoldo, RS, Brazil.

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Part I: Growth Rings in Fossil Woods and Paleoclimates  . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.2 Fossil Woods and Paleoclimatology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.3 Gymnosperm Growth Rings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.4 Case Study: Barakaroxylon (Surange and Maithy) Kulkarni, Maithy and 

Surange 1970 in Upper Permian Sequences of the Paraná Basin, Brazil  . . . . . . . . . . 187
9.5 Conclusions – Fossil Woods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Part II: Leaf Assemblages (Taphonomy, Paleoclimatology and Paleogeography) . . . . . . 194
9.6 Leaf Assemblages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.7 Case Study: The Upper Cretaceous–Paleogene Paleoflora from

Autocyclic and Allocyclic Processes in High Latitudes Environments  . . . . . . . . . . . 197
9.7.1 The Context of Southern High Latitudes and 

the Evolution of Paleoflora  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.7.2 Paleoenvironment, Assemblages and Physiognomy at 

King George Island Paleofloras  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.8 Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

179

© 2005 Springer. Printed in the Netherlands.

King George Island, Northern Antarctic Peninsula: A Tool to Understand 

E.A.M. Koutsoukos (ed.), Applied Stratigraphy, 179-202.



9.1 Introduction

Paleoclimate interpretation from fossil plants is based on two aspects: their adaptive
morphology and the relationship between vegetal communities distribution and pres-
ent day climate zones. The effects of latitude, continent position and relief, together
with other climatic factors have been used to characterize the present day climatic
zones of the Earth. These zones are also defined by ecosystem or ecoregion distribu-
tion. Nowadays, the main criteria used to delineate ecoregions are the floral composi-
tion and distribution (Tricart and Cailleux, 1972; Bailey and Cushwa, 1981). By this
criteria there are several domains, which comprise divisions that are further subdi-
vided into provinces. The province concept is basically founded on Köppen’s (1931),
later modified by Trewartha (1969), large climatic zones (the polar, wet temperate, dry
and wet tropical domains). Paleofloristic interpretations based on the Actualism
Principle consider distinct paleoclimates to be important elements in depicting paleo-
floristic provincialism, as they should restrict vegetation from spreading between
regions. Within present day floras it can be observed that, whereas latitude imprints a
global pattern on the distribution of specific climate zones, topography plays a role in
the delineation of distinct environments. In any particular area, characterized by 
its own type of soil, topography and microclimate, distinctive species live together
with evidely tolerant species, the latter ones occupying broader regions. These factors
combine to give an ecosystem diversity and biographic distribution complexity that
are difficult to characterize from fossil floral studies alone.

Therefore, not all plants are useful as paleoclimate indicators because some of
them are very tolerant to differing environmental conditions. Comparative analysis
between paleoflora and present day flora is also limited by some morphostructural
features that are present in fossil plants but absent in modern forms due to evolution-
ary processes. Taking into account that many species are able to migrate throughout as
well as between continents, as a result of tectonism and consequent climatic changes,
studies based on homology may be misleading. Floras from middle latitude highlands
are similar to those from high altitude lowlands. About this subject, Raup and Stanley
(1978) reported that within sedimentary successions deposited in low latitudes an
upland local fossil flora could erroneously be interpreted as an indication of a regional
temperate climate.

Wherever the essential conditions for development of the taphonomic processes
are ensured, lowland associations dominantly represent the paleofloristic register due
to their higher preservation potential. Plants from hydrophilous, hygrophilous and
mesophilous environments have the greatest potential to autochthon or hypoau-
tochthon preservation. On the other hand, plants from xerophilous environments, nor-
mally represented by hypoautochthonous or, less commonly, allochthonous elements
of the paleofloristic associations, must be carefully considered, as suggested by the
taphonomic studies performed by Scheihing and Pfefferkorn (1984) on terrestrial
plants of the Orinoco delta, and by Rich (1989) on Holocene lakes. These authors
observed that the aerial parts of the plants tend to be buried relatively close to their
growth place hence endorsing the already well-established concept of the dominant

alves ET AL.180



hypoautochthonous nature of the vegetal remains of paleofloristic associations.
Several factors play a role in the selection of the fragments to be preserved, including
texture, transport agent and energy, nature of the trapping sediment, season and water
temperature. In view of these peculiarities, it is possible to conclude that it may not be
completely safe to interpret paleoclimate based entirely on an actualistic conception.

Part I: Growth Rings in Fossil Woods and 
Paleoclimates

9.2 Fossil Woods and Paleoclimatology

Terrestrial plants are highly dependent on environmental conditions due to their
sedentary way of life, which makes them directly influenced by climate changes. On
the other hand, higher plants are composed of several organs, which are quite often
separately incorporated into sediments. The distinct organs are detached from each
other through processes related to the plants’ life cycle, biological agents or natural
catastrophes. They also have different potential of fossilization, which is more closely
related to their chemical composition rather than their physical structure. Thus,
diverse kinds of fossilization may occur as a consequence of specific taphonomic
processes closely related to specific depositional environment characteristics.

In terms of wood petrification, fossilization of organic structures can result in inor-
ganic mineral replicas that preserve microscopic anatomical features. This sort of fos-
silization, widespread around the world within rocks of different ages, has been
studied to obtain paleoecologic and paleoclimatic information. Scurfield et al. (1974),
Scurfield (1979), and Scurfield and Segnit (1984) developed comprehensive studies
concerning the mechanism of silicification. They compared the obtained results with
the processes occurring during chemical pulping of wood, and indicated that silica
penetration initiates on the walls, through its micropores, providing a mineral frame-
work able to keep the three-dimensional stability of the fossil wood.

Either the presence or absence of growth rings in fossil woods has been related 
to remarkable climate differences among distinct biogeographic realms (Elkins 
and Wieland, 1914; Arnold, 1947; Beck, 1953; Matten and Banks, 1967). Different
authors carried out paleoenvironmental interpretations supported by the characteris-
tics of growth rings in fossil woods.

Chapman (1994) compared fossil woods (Jefferson, 1981, 1982; Kelly and
Moncrieff, 1992) from different areas of a fossil forest from the upper Albian of the
Alexander Islands, Antarctica (paleolatitude 69�S), which grew close to the sea-level
on a large delta plain. Some fossil woods with wide tracheids were considered to have
thrived in places where the water supply was abundant during most of the growing
season; in another area, the fossil woods present much smaller tracheids, and conse-
quently the mean ring widths of these specimens are smaller than in the large-celled
specimens. According to Chapman (1994), this may indicate that they come from a
drier part of the delta plain.
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Yao et al. (1994), in their study of Permian sequences of the Western Henan,
Northern China, demonstrated the possibility of revealing regional paleoclimate evo-
lution through the study of growth rings of fossil wood, in combination with
miofloristic analysis and lithological data. According to these authors, fossil woods
collected at the sequence base (Araucarioxylon yichuanense), in the Taiyuan
Formation (Asselian/Sakmarian), as well as those taken from the overlying strata
(Protophylocladoxylon henanense), in the Sanshi Formation (Artinskian), do not
show growth rings. These evidences associated with other data such as the presence of
Lepidodendron stems, indicates a warm humid, equable climate, most probably a
tropical rainforest type. Secondary woods (Araucarioxylon yamaense) from the mid-
dle member of the overlying Schichienfeng Formation (Artinskian–Changhangian)
show growth rings.The presence of growth rings was interpreted as the result of a pro-
nounced climate change that took place by the end of the Late Permian in the Western
Henan, Northern China, as also attested by the abrupt decline of the Gigantopteris
flora. Previous studies of Yao (1983) reported the absence of the growth rings 
in woods of the lower Upper Permian, South China, in fossil floras dominated by
Gigantopteris. According to Yao et al. (1994) based in wood analysis supported by
results from lithological as well as chemical analysis, in the realm of the Permian
Cathaysia Floristic Province, the North China Subprovince, entered into the arid zone
of the Northern Hemisphere during the Late Permian while the South China
Subprovince still remained in a tropical zone.

Two opposite interpretations about the position of the British Isles within the Early
Carboniferous (Late Tournasian–Late Visean) paleoclimatic zones were reconciled by
Falcon-Lang (2000) using anatomical wood ring evidence. Results obtained from the
geological evidence (calcretes, vertisoils, vertically laminated lacustrine units,
lagoonal facies and playa-like evaporites) supported paleoclimatic interpretations
positioning the British Isles within the tropical zone, invigorating a tropical seasonal
monsoonal climate (Golonka et al., 1994). On the other hand, Chaloner and Creber
(1973), based on growth ring analysis in fossil woods, indicate a humid or weakly sea-
sonal tropical climate for this interval. Subsequently, Falcon-Lang (1999a, b) exam-
ined wood fragments from these assemblages, and observed that only about 50%
exhibited growth rings. Falcon-Lang (2000) demonstrated that the studied gym-
nosperms had a long leaf longevity. In consequence, no growth rings were produced,
or growth rings had very subtle ring boundaries, not reflecting annual growth periods.
These irregular and subtle growth rings are formed in modern araucarian conifers in
the monsoonal tropics of Northern Australia (Ash, 1983, 1985).

The aforementioned studies indicate that growth rings can be used as an important
tool for interpreting ancient climate and environments, but its significance must be
interpreted considering other available geological data.

9.3 Gymnosperm Growth Rings

Gymnosperm secondary xylem is composed of a tissue system spreading both hori-
zontally (radial extent) and vertically (axial extent) in the stems, branches and roots.
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Its function includes water and minerals transport, storage of substances and structural
support. The axial system of present day gymnosperms is represented by the tracheids
and, less often, by the axial parenchyma.

Within tropical regions, plants with active cambium during their entire develop-
ment have continuously subdividing cambium cells, the resultant cells gradually 
differentiating to form the xylem and phloem. However, not all tropical plants show 
a continuous cambial activity (Fahn, 1974). Kramer and Kozlowski (1972) indicated
that, even in the more favorable climates, trees do not grow continuously all year
round. Nonetheless, although growth rings can be formed in tropical regions with dry
and wet seasons (Worbes, 1989), most species do not form distinct growth rings and,
often, these rings do not correspond to xylem increments produced during actual
growth seasons (Jacoby, 1989).

Among present day tropical floras of some regions, such as Northern Australia,
India, Argentina, Central America, Western Africa, Kenya and South Africa, woods
displaying growth rings occur and allow a more detailed analysis. This characteristic
is ascribed to both the seasonal nature of some areas, with environmental conditions
favoring dormancy, and the plant’s genetic propensity to cyclically develop growth
rings (Jacoby, 1989). These rings are formed during the longer dry season and clearly
express the cambial activity rhythim.

Détienne (1989) recorded a sometimes macroscopically imperceptible growth
rings of tropical trees. The author dismissed the possibility of determining the plant’s
age from growth ring counting since many false growth rings can be formed.

In temperate climates, cambial activity regulation is controlled by the photoperiod,
which cyclically triggers the activity of the hormone auxin. Cambial dormancy always
occurs during periods of environmental stress, and plant growth reinitiates whenever
this phase ends. Thin young leaves lose much water due to evapotranspiration, requir-
ing a high conduction capacity from the xylem, which is supported by the wide tra-
cheids of the early wood. During the subsequent growth season evapotranspiration
decreases as a consequence of cuticle thickening. Therefore, a smaller sap volume per
time is required, its transport being efficiently done by the thicker-walled tracheids,
typical of the late wood. The latest cells of the growth ring can be identified by their
reduced lumen and very thick secondary walls.

The foundation for wood growth ring analysis is related to density differences
between the wood produced in the early stages relative to that produced by the end of
the growth season. The early wood is less dense, has wider cells and thinner walls.
Within a growth ring, the transition from the early to the late wood may be gradual and
in perceptible, whereas the transition from the late wood of one ring to the early wood
of the next ring is always abrupt and clearly delineated (Raven et al., 1996). Studies of
Creber (1977), Keller and Hendrix (1997) and Parrish and Spicer (1988) comproved
that the markedness of the ring boundary (in particular, percentage latewood) has been
used to indicate the intensity of climatic seasonality or as a measure of the favourabil-
ity of conditions towards the end of the growing season.

The width of each growth ring changes each year has been considered as a result of
luminosity, temperature, rainfall and soil moisture variations. Under favorable growth
conditions, such as during periods of adequate rainfall, wider growth rings are formed
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whereas under less favorable circumstances narrower growth rings are created
(Larcher, 1986).

Abrupt changes in water availability, or in any other environmental parameter, can
cause the formation of more than one ring during a single cycle. For this reason,
the indiscriminate use of the term “annual rings” is inadequate to name any feature
related to the periodical growth of woody plants (Creber and Chaloner, 1984; Raven
et al., 1996).

Different studies in woods growing under similar conditions in actual floras, as
well as analysis in fossil assemblage from the same geographic demonstrate that the
origin of growth ring in woods is not influenced only by the climatic seasonality, but
also by genetic control (Tomlinson, 1980; Kumagai et al., 1995). Taking in to account
this control, classification schemes of modern conifer woods use growth rings patterns
as a specific character (Barefoot and Hankins, 1982; Greguss, 1972). La Marche
(1982) showed that growth rings pattern changed within different conifer families,
and observed that this character has some correlation to regional climate. These
results correlate nature of growth rings with partially genetic control. The relative
importance of the intensity of climate seasonality and of genetic control, in the gener-
ation of grow rings patterns has not yet been clarified. In a detailed study, Falcon-Lang
(2000) presented numeric data to support the relationship between growth ring
markedness and leaf longevity. Data presented suggest that ring markedness may be
strongly influenced by leaf longevity in addition to reflecting intensity of climate sea-
sonally. This hypothesis provides a possible endogenous basis for the relationship
between ring markedness and leaf longevity. A strong inverse linear relationship
between median leaf longevity and growth ring markedness (RMI) is demonstrated
for different genus of conifers in South England. So, leaf longevity may be an impor-
tant factor that must be taken into account in the inference of paleoclimate from
growth rings.

On the other hand, Francis and Poole (2002) using analyses on growth rings of 
fossil woods (Cretaceous and Paleogene of Northern Antarctica Peninsula) supported
by sedimentary and geochemical evidence concluded that, despite possible taxonomic
and internal control on growth ring formation, a strong external climate signal can be a
detect which matches global climate.

Irregular exchange activity related to changes in environmental conditions can
cause the formation of false growth rings. Unusually, due to extremely unfavourable
conditions, an entire growth ring related to one development period can be completely
missing. Barefoot and Hankins (1982) emphasized that indistinct growth rings, which
are apparently definite when observed macroscopically, can occur in the southern
hemisphere temperate zones (Figs. 9.1A, B, 9.2).

Puri et al. (1983) concluded that dense forests protect trees from extreme tempera-
tures. Even under dry conditions, the temperature within a forest may be very low but
the relative humidity is kept high. Therefore, trees are protected and the possible 
damage caused by freezing is less dramatic (Geiger, 1965). Evidence of cambial alter-
ations caused by freezing is shown by the presence of a dark zone of compressed or
crushed cells around the branch replacing a growth ring that should have been formed
(Chapman, 1994).
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B

Figure 9.1B Morphogenus B: Detail of pith and growth rings of Figure 9.1. Scale bar equal to
0.26 cm – see colour version of this figure in Appendix.

A

Figure 9.1A Thin section of morphogenus B: (A) false growth ring; (B) true growth ring. Irati
Formation, State of São Paulo, Brazil. Scale bar equal to 0.86 cm – see colour version of this
figure in Appendix..

The use of the mean sensitivity analysis in growth rings of modern woods aims to
establish the global growth trend for a specific association. This measurement takes
into account changes in the growth ring width within a succession and may range from
zero, when every growth ring has the same width, to more than one. Trees having 
a mean sensitivity less than 0.3 are classified as complacent, whereas figures greater



than 0.3 characterize sensitive trees. The definition of the mean sensitive trends of fos-
sil woods can be a useful a indicator of the regularity of the length of the growing sea-
son and a criteria to interpret the environmental conditions under which an association
has grown, specially the degree of environmental stress experienced at the growing site
(Creber, 1977; Francis, 1994). However, of the efficiency method relies on the presence
of abundant and correlative fossil material (Creber, 1977; Jefferson, 1981, 1983).

Chapman (1994) highlighted that fossil woods present some benefits in terms of
their use as paleoenvironmental and paleoclimatic indicators, such as: preservation:
due to its lower density than water even large pieces of wood can float for an undeter-
mined period of time before being incorporated into sediments. Fossilized wood
debris associated with carbonate matrix or marine fossils therefore must be carefully
analysed as they could be very far from their place origin. Nevertheless, the paleolati-
tude information that can be inferred from a trunk association preserved within a sedi-
mentary succession still remains very important (Jefferson, 1981; Basinger, 1991).
Complexity: in contrast to leaves, pollen or spores, wood does not represent a single
organ. Roots, as well as different parts of the stems and branches, have particular fea-
tures that require distinct appraised whenever paleoenvironmental or paleoclimatic
information is searched. The function of wood: the main energy source of the plants is
obtained by the leaves through photosynthesis. The energy used for growth ring devel-
opment (wood production) varies according to the plant species, amount of energy
required by the other parts of the plant, amount of saved energy during the previous
year and energy production during the current year. These variations generate a very
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Figure 9.2 Scleromedulloxylon batoviense Guerra-Sommer 1978. Apparent growth ring.
Serra alta Formation, State of Rio Grande do Sul, Brazil. Scale bar equal to 330 �m – see
colour version of this figure in Appendix.



complex pattern that must be considered where growth rings are used for climate
interpretation purposes.

According to Chapman (1994), based in Bannan (1954a, b), Carlquist (1975),
Creber (1977), Creber and Chaloner (1984), the main characteristics of different wood
organs, important for identification of isolated fossil material can be summarized as
follows: twigs and branches: narrow rings, narrow tracheids, multiple rings traumatic
parenchyma, reaction wood, upper trunk: rings regular, tracheids wide, reaction wood
unusual; lower trunk: rings regular, tracheids wide, one ring per year near base, frost
damage near base.; stump: rings irregular, tracheids wide, one ring per year; root:
rings narrow and faint in outer parts; tracheids very wide, late wood cell walls thin,
very few late wood cells (Fig. 9.3).

9.4 Case Study: Barakaroxylon (Surange and Maithy)
Kulkarni, Maithy and Surange 1970 in Upper
Permian Sequences of the Paraná Basin, Brazil

Analyses performed on permineralized paleoxylogical associations that occur within
Late Permian sequences of the Paraná Basin show a significant compositional 
variation as well as excellent anatomic preservation (Guerra-Sommer, 1977, 1978;
Costa, 1981).
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Figure 9.3 Myelontordoxylon glandulifera Pessôa 1985. Detail of transverse section of
growth ring of probably a root. Serra Alta Formation, State of Rio Grande do Sul, Brazil. Scale
bar equal to 98 �m – see colour version of this figure in Appendix.



The Paraná Basin, situated on the western border of South America, is an intracra-
tonic basin filled with Paleozoic strata, Mesozoic sedimentary rocks and basalt lava
and Cenozoic deposits. It overlies an area larger than 1.400.000 km2 that includes part
of the territory of Brazil, Eastern Paraguay, Argentinean Mesopotamia and Northern
Uruguay.

The material studied here was collected from the southern portion of the Paraná
Basin included in the Carboniferous–Lower Triassic Megasequence defined by Milani
et al. (1998) for the Paraná Basin, based on the paradigm of sequence stratigraphy.
According to lithostratigraphic criteria, the material comes from the Serra Alta
Formation and Assistência Member of the Irati Formation (Schneider et al., 1974).

The main aims of this study are:

– to define relative differences in growth rings of the fossil wood 
collected in both the Irati and the overlying Serra Alta Formations, in
the same geographic area; and

– to infer the climatic conditions during the plant’s life cycle and to 
correlate different growth rings patterns with climate changes.

Considering that processes related to growth ring formation are a result of both
genetic and environmental parameters, the material studied here is strictly related to
the morphogenus Barakaroxylon (Surange and Maithy) Kulkarni, Maithy and
Surange, 1970.

Level 1: The samples related to Barakaroxylon resiniferum (Fig. 9.4), collected in the
Passo São Borja (RS) outcrop come from a succession characterized by an alternation
of carbonate and terrigenous mudstone and related to the Assistência Member of the
Irati Formation (Schneider et al., 1974).

A characteristic feature of Barakaroxylon resiniferum is the presence of a narrow
band of late wood, generally composed of one to four cells, which differs from the
wide early wood, which comprises 55 to 92 cells. Growth ring boundaries are well
defined and within some growth rings the transition of the early to the late wood is
gradual, although the boundary between successive layers is always abrupt. The pres-
ence of growth rings in the secondary wood suggests cyclical climatic variations. The
analysis of the narrow, true growth rings indicates a climate with well-defined seasons
and moisture deficiency during the growth season (Fig. 9.5).

The cambium activity initiation marks the beginning of the wet season hence early
wood production; at the end of this probably short-term season, and under decreasing
of humidity, late wood was produced. The subsequent dry season was accompanied by
vegetative stagnation and consequent cambium inactivity. The return of the humid
season was coeval with the re-initiation of the cambium activity. The regular alterna-
tion of dry and wet seasons is attested by the uniform thickness of the growth rings.
The lack of false growth rings is a response to the well-defined, uniform and clearly
marked seasons.

Based on the aspects presented here, the appraisal of the Barakaroxylon
resiniferum growth rings the inference that this plant grew in a winter wet biome,
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Figure 9.4 Barakaroxylon resiniferum Guerra 1976 (Alves, 1994). Detail of the pith and
growth rings. Irati Formation, State of Rio Grande do Sul, Brazil. Scale bar equal to 1.5 cm –
see colour version of this figure in Appendix.

Figure 9.5 Barakaroxylon resiniferum Guerra 1976 (Alves, 1994). Limit of the growth ring.
Irati Formation State of Rio Grande do Sul, Brazil. Scale bar equal to 98 �m – see colour
version of this figure in Appendix.



a floral association identified by Walter and Box (1976) for present day floras,
during the development of a Mediterranean-like climate. It is possible to assert that 
the Irati Formation, at least in the São Gabriel region, was deposited under a climate
characterized by well defined and uniform seasons throughout the years. The growth
ring structure suggests a warm and relatively dry climate, similar to the present day
Mediterranean region, as narrow growth rings indicate climatic conditions not
favorable in terms of water supply.

Strahler and Strahler (1989) said that the present day Mediterranean climate, in
both hemispheres, is characteristic of latitudes ranging from 30� to 45�, such as
Central and Southern California, Mediterranean coast, Western and Southern coast of
Australia, Chilean coastline, Cape Town and southern regions of Africa. According to
these authors, the Mediterranean climate is characterized by a wide range in water
supply (semi-arid, sub-humid and humid conditions), rainy winter and dry summer.
For them, this climate is also portrayed by temperature oscillations of moderate mag-
nitude, with hot summers and moderate winters. Demangeot (1987) stressed that in
the wintertime the Mediterranean regions are affected by polar-related cyclones
whereas in the summertime these regions are influenced by subtropical high pressure
cells that cause arid conditions similar to those of deserts. According to them, these
extreme seasonal alternations constitute the world’s most contrasting climates.

Level 2: The Barakaroxylon guerrae Monteiro, 1979 and Barakaroxylon sp. (Fig. 9.6)
specimens were collected in an outcrop located in the São Gabriel-Batovi region. 
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Figure 9.6 Barakaroxylon sp. Transversal section. Limit of growth ring. Serra Alta Formation,
State of Rio Grande do Sul, Brazil. Scale bar equal to 330 �m – see colour version of this figure
in Appendix.



This exposure is related to the Serra Alta Formation (Schneider et al., 1974; Lavina 
et al., 1991) and includes a succession composed of siltite, gray shale and carbonate
concretions. Their growth rings are wider than those previously described, displaying
more than 150 cells per ring and a narrow late wood (not more than 8 cells).

This species presents well-defined growth ring limits. In the studied specimens, the
transition from the early to the late wood can be either gradual or diffuse, although the
boundary between the layers is always abrupt. Late wood tracheids are rectangular and
flattened, displaying a diameter decrease and wall thickening. These features infer that
cyclical climatic conditions were favourable, and growth seasons were long (Fig. 9.7).

The simple presence of growth rings displaying similar features to those men-
tioned above can not be conclusively correlated to present day climates. These attrib-
utes can be either produced under pluvial temperate climate, such as in the Californian
Sequoia and Southern Chile Larch forests, both located in the Humid Temperate
Domain, such as in the Atlantic Forest in Torres (RS, Brazil), also located in the
Humid Tropical Domain. However, a humid pluvial climate, with long-term growth
seasons, can be safely concluded from the growth rings analysis.

The studied material confirms the 50�S paleolatitude of the Brazilian Gondwana
during the Kazanian, as formerly proposed by previous authors (Scotese et al. 1979;
Ziegler et al., 1996) in their paleogeographic reconstruction studies.

The paleoclimatic conditions inferred from both of these woods improve the simu-
lated climate of late Permian for Pangea B. configuration of Fluteau et al. (2001).
Based on atmospheric general circulation model, using Walter and Box (1976) 
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Figure 9.7 Barakaroxylon sp. Detail of transversal section of Figure 9.6. Limit of growth ring.
Serra Alta Formation, State of Rio Grande do Sul, Brazil. Scale bar equal to 98 �m – see colour
version of this figure in Appendix.
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classification, Fluteau et al. (2001) included the studied area in a warm temperate, dry
summer, to humid warm temperate climate.

Previously achieved climate inferences, based upon other paleontological and
sedimentological data, corroborate the ideas extracted from the growth rings patterns.
The widespread Mesosaurus mortality, registered in tempestites of the Passo São
Borja (RS) outcrop, was interpreted as a result of storm-induced physical–chemical
environmental changes (Lavina et al., 1991). This interpretation was supported by
microflora studies performed by Alves (1994) that indicated anoxic conditions related
to phytoplankton collapse (Table 9.1). Morphological studies on striated pollen 
collected in the Passo São Borja outcrop (Irati Formation) has shown the presence of
wide taenias that extend beyond the central body. This feature indicates a protective
mechanism against desiccation due to severe climatic conditions related to seasonal
aridity (Alves, 1994).

Most of the former authors agree that the environment in which the deposition of
the Irati Formation took place was associated with an intracontinental water body
(Hachiro, 1991; Santos-Neto, 1993). According to Santos-Neto (1993) a very shallow
water depositional setting for the deposition of the Irati Formation can be deduced
from the occurrence of some sedimentary structures, such as wave-generated cross-
stratification, and features related to subaerial exposure.

According to Milani et al. (1998) the shallow intracontinental basin related to the
shale deposition of the Irati Formation was flooded during the shale deposition of the
Serra Alta Formation, denoting the last marine flooding in the Paraná Basin.
Consequently, the regional events responsible for the climate change at the Irati–Serra
Alta Formations transition were related to a sea-level rise that modified local climate
and improved water availability. Therefore, a relatively isolated depositional system,
in which recurring climatic alternations have played a decisive role on facies associa-
tion, was slowly replaced, due to a slow base-level rise, by another, less confined
depositional system characterized by a more humid climate.

Facies changes at the Irati–Serra Alta Formations transition, such as the disappear-
ance of carbonate beds and bituminous shales and the occurrence of slightly coarser-
grained deposits, indicate a less restricted environment and a more humid climate
relative to the arid and semi-arid conditions that had characterized the deposition of the
Assistência Member. The Boro content decrease at the Irati–Serra Alta formation transi-
tion indicates salinity reduction, probably ascribed to climate improvement (Table 9.1).

9.5 Conclusions – Fossil Woods

Although climate interpretations may be inferred from the presence or absence of
growth rings in fossil wood, several limitations still remain because the controlling
factors for growth ring formation have a very complex nature. Bearing in mind 
these constraints, however, the efficiency of the method it is possible to assert that 
data obtained from wood analysis can produce important information on continental
environment, biological productivity and seasonal nature.



The analyzed case study shows that, although absolute ring width has little 
significance for climate inferences, it permits to evaluate relative climate changes in
comparisons of assemblages from different stratigraphic units.

Part II: Leaf Assemblages (Taphonomy,
Paleoclimatology and Paleogeography)

9.6 Leaf Assemblages

Like fossil wood, leaf assemblages normally attest hypoautochthonous or
parautochthonous depositional conditions, being more useful for local paleoflora
reconstitution than the pollen record (microfossils), which generally represent a large-
scale vegetation distribution (Table 9.2). According to Burnham (1993) taphofloras
compounded by remains of leaf denote quasi–instantaneous and minimally trans-
ported accumulations or time slices, making them more suitable for comparison
between paleocommunities and for analogy with modern biomes.

In terms of depositional environments, fossil assemblages help to portray the
diversity of lowland habitats. An example of these are fluvial systems, where the
inhabitants of the crevasse splays, levees and ox-bow lakes, lakes, marshes and
swamps can be distinguished by its paleofloristic association. Sometimes, through
river transportation, also the extrabasinal uplands and some proximal high areas could
be represented (Greenwood, 1991).

Fossil leaf assemblages are also very useful in illustrate the evolutionary changes
in plants (Hickey, 1984; Crabtree, 1987; Takhtadjan, 1991; Hill et al., 1999). So, when
accompanied by detailed fieldwork, they could also constitute a good biostratigraphic
tool (Upchurch and Wolf, 1987; Hill, 1994).

But probably it is in obtaining information on paleoclimate that fossil leaves could
be best used. Foliar physiognomy is very sensitive to environmental variation, as it
modifies its anatomy and morphology in response to distinct climatic parameters. The
close relation between vegetational types and climate has been long used as a method
of mapping variations in humidity, relief, temperature and soils (Bailey, 1998). Thus,
it may be a key to paleoclimatic (Chaloner and Creber, 1990; Wolfe, 1993, 1995;
Chaloner and McElwain, 1997; Uhl and Mosbrugger, 1999; Wilf, 2000) and paleo-
geographical inferences (Durden, 1974; Wing and Bown, 1985).

The climatic response of leaves observed for the first time by Raunkiaer (1934)
and Webb (1959), has been tested in a large number of modern biomes, and this has
led to the identification of a group of foliar characteristics, the most visible of which
are presented in Figure 9.8.

The shape and size sensitiveness of living leaves to moisture conditions have 
a great potential when applied to the fossil leaves of flowering plants. The correlation
between leaf-area/mean annual precipitation and leaf-margin/mean annual tempera-
ture was used by Wilf et al. (1998) and Jacobs (1999), for example, in the evaluation
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BROAD (MESOPHYLLIC SIZE)
MEMBRANACEOUS TEXTURE  
ACUMINATE APEX,  
ENTIRE MARGINS 
MOSTLY BROCHIDODROMOUS
OR OTHER CLOSED VEIN
PATTERN

BROAD AND CORIACEOUS  TEXTURE 
NOTO – TO MICROPHYLLIC SIZE
ROUNDED APEX 
ENTIRE MARGINS 
CLOSED VEIN PATTERN 

a
b

MEMBRANACEOUS TEXTURE 
MICROPHYLLIC 
ACUTE TO EMARGINATE APEX 
NON ENTIRE AND LOBATE MARGINS, 
OPEN VEIN PATTERN

c

THE SAME AS  C BUT WITH 
CORIACEOUS TEXTURE AND  
SOMETIMES WITH PROMINENT 
TEETH

d

CORIACEOUS TEXTURE 
MICROPHYLLIC SIZE 
ROUNDED APEX 
ENTIRE MARGINS
REDUCED VEIN PATTERN

e

TROPICAL  LATITUDES

SUBTROPICAL TO WARM TEMPERATE LATITUDES 

COLD TEMPERATE LATITUDES

Figure 9.8 Distinct leaf physiognomy and their relation with environmental parameters:
(a) warm and wet; (b) warm and dry; (c) cold and wet; (d) seasonal (wet/cold) dry; (e) cold and dry.

of climatic changes along the Paleocene–Eocene boundary in the United States and
Africa, respectively. The presence of overarching papillae or reduced and deeply
sunken stomata, like those showed by Hill (1994) in the Australian Araucariaceae,
Proteaceae and Casuarinaceae during the Tertiary, are indicative of water stress or
cold temperatures. The same could be inferred from thickened leaf margins (Esau,
1976) or reduced sizes of the leaf lamina (Wardle, 1967).

The use of CLAMP (Climate–leaf Analysis Multivariate Program by Wolfe, 1993)
offers an accurate and precise method for obtaining climatic parameters from leaf



assemblages. Its use in taphofloras has been extensively tested in Late Cretaceous and
Tertiary paleofloras (Wolf and Upchurch, 1986, 1987; Greenwood, 1992, 1994;
Wolfe, 1990, 1995; Wilf, 1997; Donohoo, 2001).

Moreover, the inverse relationship between atmospheric CO2 and the stomatal
index in leaves of C3 plants can be used to infer paleo-CO2 concentrations in the
atmosphere (Beerling et al., 1998; Royer, 2001; Kerp, 2002). In otherwise, high vena-
tion density normally have a positive correlation with wet climates (Hill, 1983).

Best resolutions can be obtained when the study includes the determination of
common morphological characteristics between fossil leaves and those of compara-
tive modern taxa (“nearest living relative method”). This approach is used for Tertiary
assemblages, where many extant plant groups are represented (Mosbrugger and
Utescher, 1997).

In view of those aspects, the plant macrofossils data from the Southern
Hemisphere basins are of special interest. Although not as well known as those from
the Northern Hemisphere, they are able to depict changes related to the Gondwana
drift, especially between the late Mesozoic and Early Tertiary. This interval includes
major changes in terms of paleogeography, such as the development of new interior
seas, mountain buildings and onset of volcanic activity, which produced a deep impact
on the world’s life and climate (Francis, 1994).

The case study presented here uses one northern Antarctic Peninsula record to
illustrate past environmental changes as reflected in a fossil flora.

9.7 Case Study: The Upper Cretaceous–Paleogene
Paleoflora from King George Island, Northern Antarctic
Peninsula: A Tool to Understand Autocyclic and
Allocyclic Processes in High Latitudes Environments

9.7.1 The Context of Southern High Latitudes and 
the Evolution of Paleoflora

By the end of the Jurassic, latitudes higher than 50� in the northern and southern parts
of the world were under the influence of wet and warm climate conditions (Hallam,
1985; Upchurch and Wolfe, 1987; Parrish, 1990; Greenwood, 1994). It provided ideal
growth conditions for forests composed mainly of conifers, tree ferns, bennetittales
and cycads. Although their diversity decreased as the timeframe moved into the
Cretaceous, these floras showed a strong resistance to the mass extinction events that
characterize the Cretaceous–Tertiary boundary (Crame, 1992).

The land masses, with extensive and continuous continental environments distrib-
uted from one pole to the other, produced a unique global climate that included wide
tropical and subtropical belts and a narrow temperate one (Meyen, 1987; Vakhrameev,
1991). The polar ice cap was probably limited to the pole surroundings.

In the Southern Hemisphere, at latitudes between 60�S and 70�S, the Early
Cretaceous was marked probably by an incipient system of westerly winds resulting
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for the onset of the drifting of continental masses. At the Pacific margin of the
Antarctic Peninsula and southern South America (Elliot, 1988, 1991; Del Valle et al.,
1992; Hathway, 2000) their influence is magnified by the oceanic conditions of the
climate. In addition, the continuous subduction movements create new high areas in
the western border of the Peninsula that bar the winds and guarantee good precipita-
tion rates – between 1000 and 2000 mm/year – favorable to wood growth (Jefferson,
1983; Francis, 1991, 1994) in those places, extensive to Australia and East Antarctica
coast. Those processes give place to special ecotypes (sensu Margalef, 1983) or adap-
tive facies (Van Valen, 1986), which are useful in the paleogeographic and paleocli-
matic reconstructions. Forests composed of Podocarpaceae, plants bearing
Classopollis pollen (Francis, 1991), most probably Cheirolepidaceous conifers and
pteridophytes were characteristic and cycads and broad-leafed ginkgos were common
inhabitants of the coeval coastal lowlands (Archangelsky and Baldoni, 1972).

The first angiosperms arrived onto this scenery during the Albian. The first mem-
bers of the fagalean lineage (Phillipe et al., 1993; Cantrill and Nichols, 1996) were
recorded on the South Shetland Islands (West Antarctic Peninsula). They were found
between the Alexander Island assemblages, on the South Shetland Islands (70�S)
showing two main foliar morphologies (palmate and pinnate craspedodromous), with
mesophyllic to microphyllic leaf sizes, acute apices and entire margins that support
the hypothesis of an adequate atmospheric humidity and temperature range. Growth
rings of in situ fossil wood also attested high productivity although restricted to the
summer months (Jefferson, 1982; Jefferson, 1983). The existence of a cold season is
testified by the occurrence of the Cyatheacidites sp. and Lycopodium clavatum spores
(Dettmann, 1986; Mohr, 1990).

By the end of the Campanian, leaf morphotypes (Fig. 9.9A) that could be related to
modern Nothofagus (Nothofagaceae) made their first appearance in the Northern
Antarctic Peninsula (Zastawniak, 1990; Francis, 1991; Dutra, 1997a; Dutra, 2000;
Dutra, 2001; Dutra and Batten, 2000). The periodic and great environmental distur-
bance gave an opening to this opportunistic plant, which was able to colonize the new
propitious volcanic soils and niches created. The genus went on to become the most
characteristic of the Austral basin assemblages in the Tertiary (South America and
Australasia) and today represents the most common element (with southern conifers)
of the Southern Hemisphere temperate rainforests, where it maintains a preference for
disturbed areas and thin volcanic soils (Veblen et al., 1983; Hill, 1990; Hill, 1992;
Hill, 1994; Veblen et al., 1996).

9.7.2 Paleoenvironment, Assemblages and Physiognomy at 
King George Island Paleofloras

The testimony of those evolutionary and geological events are preserved in the South
Shetland Islands archipelago, where the lithologies are better known on Alexander
(Jefferson, 1982; Cantrill and Nichols, 1996), Livingston (Phillipe et al., 1993) 
and King George Islands (Birkenmajer, 1980; Birkenmajer and Zastawniak, 1989;
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Figure 9.9 Diversity index (DI) and proportional distribution of angiosperms (families) at
King George Island paleoflora between the Upper Cretaceous and Lower Tertiary (ACA �
Acanthaceae, ANA � Anacardiaceae, ANGpri � primitive angiosperms, AQU �
Aquifoliaceae, ARA/ ARL � Araliaceae, BER � Berberidaceae, CAE � Caesalpinaceae,
CUN � Cunoniaceae, ELA � Elaeocarpaceae, FLA � Flacourtiaceae, LAU � Lauraceae,
MET � Melastomataceae, MON � Monimiaceae, MON (Lil) � Monocotyledons,
MYR � Myrtaceae, PAS � Passifloraceae, RHA � Rhamnaceae, NOTpri � primitive
Nothofagus, NOT � Nothofagaceae, PRO � Proteaceae, ROS � Rosidae, SAP � Sapindaceae,
SAX � Saxifragaceae, SMI � Smilacaceae, STE � Sterculiaceae, WIN � Winteraceae).



Shen Yanbin, 1994). The few periods of sedimentologically controlled regimes,
specially in those levels dating to the end of Cretaceous, show that the fossil leaf
preservation was commonly associated with braided river systems, floodplains and
lakes (Cantrill and Nichols, 1996; Dutra et al., 1996; Dutra, 1999).

The changes in paleofloristic content and from marine to continental environments
during the late Jurassic and Lower Cretaceous were diachronous in the South Shetland
Island area. An Albian age in the south (Alexander) and a Campanian age in the north
(King George Island) is given and suggests either the gradual northwards uplifting of
the magmatic arc (Elliot, 1988) or the presence of a hot spot under the Drake Sea, as
proposed by Birkenmajer et al. (1986a).

These also allow the observation of a short cold interval that characterized the
South Atlantic Ocean during the Cretaceous–Tertiary transition (Barrera et al., 1987;
Pirrie and Marshall, 1990; Klasz and Koutsoukos, 1991; Barrera, 1994). At this time,
the western part of Antarctic Peninsula (South Shetland Islands) and the Pacific side
of the Antarctic continent, showed micro-thermal conditions of climate during part of
the year, and this was imprinted in the fossil wood by a short-term change of the
growth ring pattern (Francis, 1991).

In the east (Larsen Basin sensu Del Valle et al., 1992), in an area that was more
protected by the maintenance of the proximity of the South America–Antarctic
Peninsula, these changes were less remarkable. The first occurrence of Nothofagus
pollen in the Maastrichtian of Southern South American (Menéndez and Caccavari de
Filici, 1975; Romero, 1978) and Australian paleofloras (McLoughlin and Hill, 1996)
confirms this physical continuity and the presence of a biogeographical province
(Weddelian Province from Case, 1988). It also endorses the existence of a short 
cooling interval at the end of the Cretaceous that allowed this genus to migrate to the
north. This event could be similar to that proposed by Villagrán (1990) for the cyclical
climate changes occurred in South America during the Quaternary. She observed that
during the glacial phases, the sub-Antarctic flora migrated northwards in such a 
pronounced way that taxa of the Magallanes tundra can be found in Central Chile
associated with grass pollen.

At the end of Paleocene (Thanetian), the King George Island region was character-
ized by widely uniform environments resulting from a short interval of no intense 
volcanic activity. The simultaneous climate improvement, gave way to a more diversi-
fied paleoflora similar to what happened in several other parts of the world (Wolfe,
1990; Wise et al., 1991; Thomson, 1992; Askin, 1990). The diversity indices found for
the King George Island floras (Figs. 9.9B and 9.10) are also similar to those from the
Late Paleocene of Northern Hemisphere (Wing and Bown, 1985; Wing et al., 1995;
Wilf, 2000) and other Austral floras (Hill, 1990; Greenwood, 1994). The same
occurred in terms of the number of taxa present in the paleoassemblages, which
reached 49 to 50 at this moment.

These changes were enhanced by an uplifting pulse of the magmatic arc, which
caused a depositional break in the early Eocene record that can be followed along
many sectors of the Northern Antarctic Peninsula (K–Ar ages between 8–52 Ma,
according to Elliot and Trautmann, 1982; Birkenmajer et al., 1986b; Soliani Jr. et al.,
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1988; Shen Yanbin, 1994). From this time on, an altitudinal stratification of the forest
types was established, accompanied by distinct taphonomic responses to the volcanic
events (Askin, 1990; Dutra, 1999; Dutra, 2001; Poole et al., 2001). Also a decrease 
in terms of diversity and equability followed each of the distinct volcanic phases 
(Fig. 9.9C).

The Middle to Late Eocene flora from King George Island will show a striking
resemblance to those from the Eocene of Tasmania (Carpenter et al., 1994) and New
Zealand (Pole, 1994) and with the modern vegetation of Western Patagonia along the
Andean Mountain Belt (Veblen et al., 1983; Villagrán, 1990; Armesto et al., 1995),
exhibiting a specialization to altitudinal stratification and to cooler environments. 
In the flat areas of the eastern side of the Antarctic Peninsula (Larsen Basin) the
appearance of palm tree pollen suggests the onset of the South Atlantic coastal
environments (Askin, 1992; Baldoni and Barreda, 1986; Baldoni and Medina, 1989).

By the end of the Eocene the first microphilic and deciduous (with plicate verna-
tion) Nothofagus leaves appeared in the assemblages of all northern Peninsula region,
therefore pre-announcing the coldness that was going to characterize the
Eocene–Oligocene transition (Case, 1988; Gazdzicki and Stolarski, 1992; Ditchfield
et al., 1993). This tendency is confirmed by the low diversity of Upper Eocene. Early
Oligocene flora of King George Island (Fig. 9D), which is composed by taxa with
leaves of coriaceous texture (Berberidaceae) and prominent teeth (Cunoniaceae
and/or Rosidae). The foliar physiognomy and microphily of the Nothofagus leaves are
very similar to those found in N. antarctica and N. gunnii, the modern southernmost
elements of this genus.

Beds with shell layers and striated pebbles of the Late Early Oligocene as well as
coarser-grained beds (in well logs) at the Weddell Sea support both this climatic infer-
ence and the assumption of a sea level fall (Ehrmann, 1991; Doktor et al., 1988) at the
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end of the Rupelian. Birkenmajer (1988) considered it as the most expressive
Cenozoic glacial event in the Antarctic Peninsula.

Although a climatic amelioration had taken place during the early Miocene
(Ehrmann, 1991) there were no more vegetational elements capable of reconstructing
the previous landscapes (Dutra, 1997b). The South Shetland Islands drift from the
Antarctic Peninsula and Southern South America, caused by the opening of the
Bransfield Straight and Drake Sea, probably hindered vegetation from re-colonizing
the area.
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10.1 Introduction

During the past 25 years there has been much interest in the way in which the
composition of acid-resistant organic matter, or palynological matter (PM), in sedi-
mentary rocks can be used to aid the interpretation of depositional environments.
Linked to this is its proven value for indicating the potential of a particular stratum as

gist by training. Depending on the degree of precision required, the latter can be deter-
mined by palynologists, coal petrographers or organic geochemists. More recently,
the composition of PM recovered from rock samples, otherwise known as the palyno-
facies associated with a deposit, has also been used for stratigraphic determinations on
a local scale for fine correlation of reservoir sections within oil-fields, and to some
extent on a regional scale, particularly in areas and within successions in which more
conventional biostratigraphic markers are scarce or lacking.

The environmental and source-potential aspects of palynofacies analyses have been
discussed previously at some length by Tyson (1995), Batten (1996a, b, 1999a) and others.
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The purpose of this chapter is to concentrate on the stratigraphic applications.
Consideration of palynofacies in their stratigraphic context can help in the interpretation
of the processes controlling deposition and provide a basis for paleogeographic recon-
structions. Although it is often possible to infer depositional environments from lithofa-
cies characteristics, including their shelly faunal content, if any, palynofacies data may
enable a more accurate appraisal, particularly in otherwise unfossiliferous deposits,
which in turn may also have local or regional stratigraphic significance. Before this
approach can be discussed satisfactorily, it is first necessary to put it into context by
commenting, albeit briefly, on facies in general, palynofacies in particular, and the fac-
tors affecting their composition. In this connection, of fundamental importance are
methods of sample preparation and the basis for distinguishing between, and naming,
organic particles and masses in a microscope slide that is viewed in transmitted light.

10.2 Origin, Deposition and Diagenesis of Organic Matter

The origins of sedimentary organic matter are extremely diverse. Much is derived from
land plants, some comes from associated life forms, such as fungi and beetle carapaces,
and some will have been eaten and excreted by herbivores, both large and small. The
remains of aquatic plants and algae, especially in an amorphous condition, are also abun-
dant, and some of this too is preserved as faecal pellets, but there is also a wide variety of
resistant bodies, such as the cysts of phytoplankton, that are readily preserved as fossils.

The geographic and stratigraphic distribution, and facies relationships of sedimen-
tary organic matter vary widely. Only a very small fraction of what is potentially avail-
able for deposition becomes incorporated in sediment and preserved, and this is
commonly at least partly decayed. Most organic material is rapidly degraded by a
variety of means (as discussed in some detail by Batten, 1996a, pp. 1012–1016). It
may still be destroyed by microbial activity or diagenetic processes even when it has
been buried in sediment (Batten, 1996a, pp. 1016, 1018; 1996b).

The physical and chemical changes that take place both before and after deposition
lead to four main kinds of organic matter being preserved in all but the most thermally
altered of sedimentary rocks (see Batten 1996a, b and references therein). These are:
(1) the protective walls of spores, pollen grains, prasinophyte algal bodies and other
microfossils of distinctive morphology; (2) more or less structured fragments such as
cuticles and woody tissues; (3) unstructured materials having an amorphous appear-
ance; and (4) soluble compounds that can be extracted using organic solvents and
which often contain what geochemists call ‘biological markers’ or ‘biomarkers’. The
last of these is beyond the scope of this chapter.

10.3 Facies and Palynofacies

The term ‘facies’ has been much discussed since its introduction in the late 1830s.
Nowadays it is generally accepted that it is a body of rock of a specified character. On its



own it covers numerous features so prefixes are commonly added to limit and/or clarify
the sense in which it is being used. Hence, ‘lithofacies’ refers to all the characters of a
rock record of any sedimentary environment; ‘biofacies’ to the composition and preser-
vation of the organic components of a rock or unconsolidated sediment; ‘freshwater
facies’ to the environment that the sediment reflects or in which the sediments that make
up a particular type of rock or suite of mixed rocks is thought to have accumulated.

‘Palynofacies’ (or ‘palynological facies’) is most widely applied in a general way
to mean organic matter that is recovered from a rock or unconsolidated sediment by
the standard palynological processing technique of digesting a sample in HCl and/or
HF (see sample preparation below), i.e. in the sense of Combaz (1964, 1980). All sed-
imentary deposits containing organic matter have, therefore, an associated palynofa-
cies, be it a few charcoal particles or a wealth of miospores (small spores and pollen
grains) and phytoclasts (fragments of plants; see section 5). Ideally, it is a distinctive
association of acid-resistant organic components of a deposit that accumulated under
certain conditions and reflects a particular process or environment. In practice, how-
ever, many palynofacies are not especially distinctive and, as a result, not particularly
useful from either biostratigraphic or paleoenvironmental viewpoints. Hence, they
inevitably vary in their interpretative value.

As discussed by Batten (1996a), some authors have provided other definitions of
palynofacies, among which are those that include mention of (inferred) depositional
environment. In our opinion it is better to separate palynological facts (the composi-
tion of palynofacies) and the labelling of recognizable types from their (paleo)envi-
ronmental interpretation. The latter should not be considered without reference to
other characteristics of a deposit unless for some reason this information is unavail-
able, because the conclusions drawn will inevitably be more equivocal than when
these data are combined. An understanding of the sedimentary context of a particular
palynofacies is, therefore, essential if an environmental interpretation is to be more
than broadly based. In a paleopalynological context, this means the difference
between, for example, backswamp and merely non-marine.

The recognition of a particular type of palynofacies, and hence the pointers it pro-
vides to depositional conditions, must depend upon its recovery on at least several,
and preferably many, occasions from different sedimentary successions of varying
age. Repetitive character combinations are thus of fundamental importance and can
only be obtained if sufficient numbers of samples have been examined. Detailed inter-
pretations require that a large amount of time be spent identifying palynomorphs and
determining relative abundances of both these and the associated organic detritus, and
the more samples considered the better.

A vertical succession of conformable sedimentary deposits of varying character
must indicate accumulation in changing conditions. At any two levels within it, the
different environments represented will probably have been present elsewhere within
the area or basin of deposition. If erosive or other breaks are present, these may repre-
sent the passage of one or more different environments, the evidence for which, if any,
was removed subsequently. Even if the junction between two beds is merely sharp the
environments they reflect may not have been geographically neighboring.
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The fact that palynofacies, in common with lithofacies, do occur repeatedly
enables some order to be brought to the otherwise continuous variation in composition
of sedimentary deposits and the organic matter they contain. In a rhythmically or
cyclically deposited succession several kinds of palynofacies may be encountered
together although not necessarily in the same order. Such facies associations are fun-
damental to environmental interpretation, whether usually sequential or apparently
occurring at random.

The first step towards establishing palynofacies associations in outcrop or
borehole/well sections is to examine the color, bedding, composition, texture, fossil
content and sedimentary structures; in other words, the lithofacies. Determinations of
palynofacies types may lead to refinements of, and provide evidence for, changing
environmental conditions inferred from such ‘conventional’ facies analysis, but only if
based on reliable criteria generated from the accumulation of large quantities of data.

Computer-based numerical methods and statistical techniques can be useful for
handling palynofacies (and lithofacies) data when the amount of information available
becomes difficult to manage and assess. In our opinion, they should not, however,
generally be used as the main means of identifying palynofacies, as Batten (1996a,
1999a) has noted previously. It is more satisfactory from a practical viewpoint if they
are categorized simply on the basis of relative abundances and other data on the vari-
ous components of an organic preparation. If the information accumulated is not char-
acteristic of any particular environment or group of lithofacies then it is unlikely that a
numerical analysis will produce much that is useful.

Commonly there is a need to modify the data in various ways so that they can be
handled effectively, and more abundant or more obvious components tend to be
stressed at the expense of data that are close to being statistically insignificant but
nevertheless geologically important. Although such modifications can be taken into
account by re-examining the raw data after an analysis has been completed, it is at this
stage that numerical methods and statistical tests are better applied, as a means of
checking or reinforcing rather than determining palynofacies identifications.

10.4 Sample Preparation for Palynofacies Analysis

Methods of sample preparation for palynofacies, source-potential and organic-maturation
studies have been considered previously by Batten and Morrison (1983) at some length,
and more recently by Tyson (1995), Batten (1996a, 1999a, b) and others. Treatment of
this topic here will, therefore, be restricted to the salient points.

Palynofacies studies rely on comparisons between occurrences and relative
abundances of the organic components of a palynological preparation. In view of the
number of variables involved it is most important to maintain as routine a preparation
procedure as possible; hence consistency is of the essence. Standard weights of
sample should be used: 5 g is normally sufficient but if the rocks or sediments to be
dealt with are unlikely to yield much organic matter, such as some limestones and
chalks, and sandy facies, multiples of this amount should be processed. It is then
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possible to measure the quantity of organic matter yielded by each sample, at least in a
general way.

Digestion of the mineral matrix is commonly achieved using concentrated HCL and
HF, the amounts of acid required and the duration of the treatment varying according to
the lithology of the sample. A limestone will normally need to be immersed in HCL
considerably longer than, for example, a shale containing a few ostracod fragments. A
quartz-rich sandy siltstone must be subjected to HF for a lengthier period than an
argillaceous chalk. A coal comprising mainly gelified woody tissues and an oil-shale
containing a large quantity of amorphous organic matter resulting from bacterial degra-
dation of algae and aquatic plants may not respond to treatment in either of these acids,
disaggregation being achieved only by physical crushing or subjection to oxidizing
reagents. The latter should not, however, be carried out before the first ‘kerogen’ slide
is made. This is prepared whether or not there has been any reaction with HCL and HF.
Exceptionally a slide may, in addition, be made prior to HF treatment if the sample is
mainly carbonate. We prefer glycerine jelly as a mounting medium but other sub-
stances can be used if preferred or necessary (e.g. in a hot climate).

One of the problems with the residues remaining after the onslaught of HCL and
HF is that they often contain large amounts of finely disseminated detritus less than 
10 	m in diameter. The resulting slide preparation may, therefore, not only look unat-
tractive under a microscope but also be difficult to analyse because at least some of the
larger phytoclasts and palynomorphs are smothered and rendered indeterminate, their
characters being obscured. Since categorization of the coarser fraction can be vital to
the interpretation of both depositional environment and source potential for hydrocar-
bons, it is important to remove at least some of the offending debris. This may be done
by filtering using a sintered glass funnel (porosity 2) or by sieving through a fine (e.g.
10 or 15 	m) screen. The former allows the preparator to remove as much or as little
finely particulate matter as necessary. The latter tends to result in ‘cleaner’ prepara-
tions because most of the particles smaller than the diameter of the mesh are removed.
Since the presence of finely divided organic matter is critical to analyses of both pale-
oenvironments and source potential, its loss can lead to misinterpretations. Despite
this risk, most palynologists find it more convenient to use sieves.

The preparation procedure may be taken a stage further if required (and as
advocated by Batten and Morrison, 1983 and Batten, 1996a), such as by subjecting the
remainder of the residue to brief ultrasonic and/or oxidative treatment. Depending on
the composition and maturity of the organic assemblage, the ultrasonic vibration will
break up coagulated fine-grained detritus, dislodge it from the surface of paly-
nomorphs, cuticles and other phytoclasts, and cause fragmentation of brittle compo-
nents. The end product, after further sieving and filtering, is usually a preparation that
is at least slightly cleaner. Oxidation may have similar effects and, in addition, may
brighten or lighten the color of the palynomorphs, making it easier to study their mor-
phology. A second ‘standard’ slide is made following this treatment.

Unlike HCL and HF, use of oxidising reagents and alkalis can effect considerable
changes in the general aspect of a preparation. Care must, therefore, be taken in decid-
ing how much of each is required. This will depend on both the composition and the

stratigraphic application of palynofacies 207



maturity of the organic matter that is preserved in the first slide. It is because of the
risk of altering the proportions of organic components of a preparation that most pub-
lished palynofacies studies have been based on unsieved and/or sieved organic matter
isolated from rock or sediment samples solely by HCl and/or HF treatment.

10.5 Classification of Sedimentary Organic Matter

The basis for classifying and naming components of sedimentary organic matter has
been the subject of numerous papers, and was discussed in detail by Tyson (1995) and
Batten (1996a). Many of these are concerned with characters that are observable in
reflected light, the terminology of which is now widely agreed. Unfortunately no such
consensus exists for the non-palynomorph components of palynofacies as seen under a
transmitted light microscope. The number of terms potentially available is greater
than required for effective categorization. The following are among those we consider
are acceptable, with accompanying abbreviations; all may be directly or partially cor-
related with maceral groups and subdivisions thereof that are generally accepted by
coal petrologists:

1. Structured organic matter (STOM). This consists of phytoclasts and
zooclasts. Phytoclasts include wood (black and brown), charcoal and
other black particles, cuticles, bark and cork, other (non-cuticular) tis-
sues, tubes, filaments and hairs, and fungal hyphae. Zooclasts include
egg cases and fragments of beetle carapaces.

2. Unstructured (structureless) organic matter (USTOM). This comprises
amorphous organic matter (AOM), which may have either terrestrial
(AOMT) or aquatic (AOMA) origins, gelified matter, resin and amber,
and solid bitumen. AOM commonly has bacterial and algal components,
and may be dominated by them. It is typically fluffy and/or homoge-
neous in appearance, often uniformly granular, and commonly very
finely laminated, but depending on the structure of the original con-
stituents it may also appear rather membranous or fibrous, have paly-
nomorphs embedded within it, and/or fluoresce strongly when examined
in blue or ultraviolet light (see Tyson, 1995; Batten, 1996a, b).

An aspect of classification not dwelt on previously by Batten is the ‘palynomaceral’
grouping of Whitaker (1984; also Whitaker et al., 1992), which has been used (some-
times in a modified form) successfully by others (e.g. van der Zwan et al., 1993; 
Fig. 10.1), including one of us (Stead), in a number of investigations. This concerns the
transmitted-light characteristics of phytoclasts especially as they relate to their hydro-
dynamic properties (buoyancy) and degradation, but with support from ultraviolet,
reflected-light analyses. Although they may have a variety of origins, palynomacerals
have been considered to equate in a general way to biological and coal-petrographic
types. By applying basic sedimentological principles to the terrestrial input and
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paleontological principles to the aquatic (marine or non-marine) content, depositional
environments have been interpreted by this means.

In Whitaker et al. (1992) four palynomacerals are recognized. These are summa-
rized diagrammatically, and in a non-marine paleoenvironmental context (after van
der Zwan et al., 1993), in Figure 10.1. Palynomaceral 1 was considered to comprise
orange-brown or dark brown structured or structureless dense material of variable
shape and preservation. In palynological preparations Whitaker et al. (1992, p. 172)
included “structured plant debris (mainly resinous cortex material), humic gel-like
substances, resinous substances, and algal detritus (mainly degraded Botryococcus
spp.)”, which were considered to be of low buoyancy because of their “frequently
large size and higher specific gravity”, with the “spongy cortex nature” rendering it
susceptible to waterlogging. They noted that the maceral is not resistant to physical
abrasion and would have been readily destroyed in high-energy environments.
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(1993), modified, showing categories of palynomacerals and their relative abundance in a
succession comprising terrestrial and fluvio-lacustrine deposits.



Of this heterogeneous mixture of organic particles the most surprising inclusion is
Botryococcus. This is because dead specimens of extant species are known to form a
floating scum on lake surfaces (Batten and Grenfell, 1996). They are also difficult to
destroy by chemical means in the laboratory.

Palynomaceral 2 was described (p. 173) as “Brown-orange structured or structureless
material of irregular shape. It may include structured plant material (some leaf, stem or
small rootlet debris), algal detritus and, to a lesser extent, humic gel and resinous sub-
stances. Buoyancy is considered to be higher relative to palynomaceral 1 because of its
thinner and often lath shaped character.”

Palynomaceral 3 was categorized (ibid.) as “Pale, relatively thin, irregularly
shaped, usually structured material, occasionally bearing stomata. It is considered the
most buoyant of palynomacerals 1–3. It may include structured plant material (mainly
of leaf origin, which may or may not bear a waxy surface coating), and degraded aque-
ous plant material.”

Finally, the characteristics of palynomaceral 4 were regarded (ibid.) as “Black, or
almost black, equidimensional, blade- or needle-shaped material, which is usually
uniformly opaque and structureless, but might occasionally show cellular structure.”
The origins of this palynomaceral are many and varied, and include “compressed
humic gels, charcoal (resulting from forest fires), reworked charcoal and geothermally
fusinized (occasionally semi-opaque) material.” In addition, Whitaker et al. also
noted: “Opaqueness, or darkening of organic material can also be the result of second-
ary effects such as staining by migrating fluids within the sediments.”

The blade-shaped forms were considered to reflect the preferential breakup of
larger pieces of “oxidised (mainly charcoal) woody debris parallel to the long axis of
elongate cellular structure typical in stem material.” As they noted, such material is
particularly resistant to degradation and very buoyant. It can, therefore, be transported
over long distances, and is “especially concentrated in [deposits that reflect] high
energy palaeoenvironments.” Needle-shaped material was also regarded as buoyant,
but less likely to be preserved in high-energy settings. Equidimensional forms of paly-
nomaceral 4 were described (p. 174) as “frequently intermediate in character to paly-
nomacerals 1 or 2 and may thus have a relatively lower buoyancy.”

The forms of palynomaceral 4 have been recorded by Batten (unpublished data) on
many occasions but the other three palynomacerals are regarded by him as being too
heterogeneous for satisfactory application, although as noted above, Stead has made
use of them with success. We both recommend that whenever possible a project using
the palynomaceral approach to palynofacies should be carried out by only one person
so that recording of the various categories noted above is consistent. This is because
what one person might regard as relatively thick palynomaceral 2 another might con-
sider to be palynomaceral 1. As a result, when two people are involved in investigating
a series of well sections, for example, such recording differences might mean that
some palynofacies correlations between the sections would not be recognized.

Despite Batten’s reservations about palynomacerals 1–3, a point of agreement
with Whitaker et al. is that it is useful to take into account the buoyancy of paly-
nomorphs in paleoenvironmental interpretations. Saccate, especially bisaccate, pollen
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grains are known to be particularly buoyant. Large numbers of bisaccates have been
encountered in marine deposits far removed from any source vegetation, reflecting
long-distance transport by both wind and ocean currents (e.g. Traverse, 1988, p. 379).
Flimsy, thin-walled spores may also be transported and concentrated in fine-grained
sediments hundreds of kilometers offshore. On the other hand, thick-walled spores
and larger plant products (e.g. megaspores, seeds) tend to behave more like silt or very
fine sand particles in water and, hence, become incorporated in coarser deposits closer
to their terrestrial source.

It is also useful to take into account the diversity of palynomorph assemblages,
which can aid significantly the interpretation of environments of deposition.
Commonly fossil spores and pollen grains are abundant and varied in sediments that
accumulated in near-shore marine, lagoonal and non-marine settings whereas impov-
erished assemblages, limited in both numbers and diversity, tend to be associated with
deposits far from land. On the other hand, palynofacies containing common represen-
tatives of only a few taxa may indicate close proximity to the source vegetation. In
such circumstances their distribution reflects the composition of the local vegetation
and the quantity of spores and pollen grains produced by the parent plants concerned
more than their size and buoyancy.

10.6 Palynofacies Types

Detailed sedimentological analyses of subsurface successions and surface exposures
coupled with an equally thorough documentation of the preservation and distribution of
palynological constituents can often lead to the determination of a variety of environ-
ments and subenvironments that may be characterized palynologically. The basis for
recognizing and labelling palynofacies types has been published in papers by a number
of authors. An early attempt was made by one of us (Batten, 1973) to classify palynofa-
cies recorded from the largely non-marine Lower Cretaceous, Wealden succession of
southern England. Other approaches to identifying and classifying have also tended to
be limited in their application to the particular successions being investigated.

Whitaker et al. (1992, p. 172) used the relative abundances of the main paly-
nomorph groups they recorded (“non-saccate sporomorphs, freshwater algae, fungal
spores, saccate sporomorphs, dinocysts, acritarchs, marine algae, microforam[iniferal]
text linings”), “structureless (sapropelic) organic matter” and their four palynomacerals
as a basis for defining five palynofacies associations. These range from association 1,
which consists of a very small amount of PM, mostly or entirely small particles of paly-
nomaceral 4, and devoid of, or containing very few palynomorphs, to association 5,
which is dominated by ‘structureless organic matter’. In between these two extremes
are preparations that consist of: large, mainly equidimensional and irregularly shaped
palynomaceral 4, again with only a few or no palynomorphs (association 2); a mixture
of large and small palynomacerals 1–4 together with palynomorphs (association 3);
and assemblages dominated by palynomorphs (miospores and/or algae) with subordi-
nate small palynomacerals 1–4 (association 4).
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To these associations they added three environmental prefixes (M, marine; B,
brackish; T, terrestrial) and a variety of morphological suffixes (e.g. e, notably equidi-
mensional; s, exceptionally small; 1s, one type of spore type dominant; 2d, two
dinoflagellate cyst species dominant) as qualifiers. Hence, for each major environ-
mental type, associations 1–5 were considered (p. 175) to reflect “a gradual decrease
in energy, oxygenation and proximity to a terrestrial source”.

However, since palynofacies are infinitely variable in composition, their
characteristics grade into one another, which means that intermediate stages and atyp-
ical associations also need to be identified. According to the system of Whitaker et al.,
intermediate stages can be represented by noting the next closest type in brackets, e.g.
M3(M4). Other variations can be expressed in a similar way. An association that is
typical of marine palynofacies 4 but which contains an abundance of large palyno-
maceral 2 would, for example, be logged as M4(M2). In both cases the general envi-
ronmental setting is indicated by the M for marine. Hence, the system of Whitaker
et al. is flexible enough to accommodate such variations, although the more complex
the combination of characters the more complicated the label becomes.

Whether or not one chooses to use such a labelling system, as noted previously it is
important not to link a palynofacies type too closely with an environment of deposi-
tion. Leaving aside the classification of Whitaker et al. from here on, we now consider
some of the associations of palynomorphs, phytoclasts and AOM in deposits that
reflect marine, brackish and non-marine/freshwater environments of deposition.

It makes sense to begin with a few of the most morphologically and numerically
limited types of palynofacies, namely those consisting of only small assemblages of
black or nearly black blade- and/or needle-shaped fragments of charcoal and no or very
few palynomorphs or any other organic particles in association. They may be typical of
either coarse or fine-grained lithologies; both reflect oxidizing conditions, the former
in high-energy settings from which most of the organic content has been winnowed out
leaving only a few trapped oxidized fragments behind, and the latter in low-energy set-
tings. In freshwater and brackish environments, oxidizing and/or high-energy condi-
tions may be associated with periodically exposed areas of floodplains and river beds,
and lake or lagoon margins (Fig. 10.1). In the marine realm, equidimensional blade-
shaped particles may occur in beach and near-shore sands and sandstones, and also far
offshore in muds and mudstones that reflect very low rates of deposition.

Since there are commonly no, or only a very few, palynomorphs in these
impoverished palynofacies, the environment represented by a particular bed within a
sedimentary succession cannot be determined as marine, brackish or freshwater with
any certainty unless there other indicators (e.g. invertebrate fossils) present in the
deposit. If these are also missing, the relationship of the bed concerned with adjacent,
palynomorph- or other fossil-bearing facies may help in this respect, though less posi-
tively, especially in marine basin-margin successions in which depositional environ-
ments may cover an entire spectrum from marine through variable salinity to
freshwater and terrestrial (soils).

A variation on the organically impoverished theme is a phytoclast assemblage of
similar composition but which consists mostly of comparatively large fragments of
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black woody detritus. This tends to indicate closer proximity to the source of the
detritus, hence often implying less comminution and more rapid entrapment of phyto-
clasts. It can be common in fluvial systems where, for example, it may be associated
with point-bar successions above channel-lag gravels.

The next stage in the progression towards greater diversity is an assemblage in
which palynomorphs are present in larger numbers. It now becomes more difficult to
generalize because of the increased number of variables involved. One feature com-
mon to most palynofacies containing large palynomorph assemblages is that varying
amounts of tissues and less altered (non-charcoalified) woody detritus (vitrinite rather
than inertinite according to the coal maceral terminology) are also usually present.
Another is that they reflect generally lower energy environments than many impover-
ished woody assemblages.

Depending on the age of the deposit sampled, in the marine realm the palynofacies
may contain palynomorphs derived from both land plants (spores and pollen grains)
and aquatic organisms (dinoflagellate cysts and/or acritarchs). The logical expectation
that the further offshore the deposit the fewer and smaller the land plant products
(spores, pollen grains and phytoclasts) is commonly substantiated, although such a
trend can be much modified by the freshwater input of major rivers and dispersal
by ocean currents. Open marine associations are typically dominated by paly-
nomorphs of marine origin together with subordinate organic matter of largely aquatic
(algal) origin, amounts per gram of sediment varying from large in areas of oceanic
upwelling to very small in regions where most of the organic matter that is potentially
available for deposition is eaten or otherwise removed from the water column.

Nearer shore the composition of the marine palynomorph assemblages recovered
from deposits reflecting similar low-energy conditions commonly changes, with
fewer taxa and different proportions. Cysts of marine phytoplankton and remains of
other marine organisms become even less numerous in brackish-water deposits
although the number of individuals of the species concerned may be very great.
Marine organisms will, of course, normally be absent from sediments that have 
accumulated inland, although freak storm conditions leading to temporary marine
incursions may leave their mark in a lowland sedimentary succession that reflects
mostly freshwater deposition.

Low-lying marginal-marine environments are very susceptible to minor changes
in climate, sea level, and other local and regional conditions, all of which can have a
major effect on the composition of the sediments that accumulate in the area. The very
large number of sedimentary facies variations that are encountered in marginal-
marine to freshwater and terrestrial successions is reflected in a great diversity of
associated palynofacies as a result of numerous local influences. A few examples 
of these are: minor changes in the salinity of coastal lagoons and estuarine marshes;
differences in the composition of the local vegetation; the susceptibility of compo-
nents of the vegetation to desiccation and wildfire during dry periods; and the 
tendency for some water bodies to dry up during droughts and for others to become
stagnant. On a lamination-by-lamination scale, the differences in palynofacies associ-
ations recovered may also reflect seasonal changes.
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Stagnation is the final stage in the reduction of the energy of environments of
deposition. There is so little disturbance that oxygen levels are lowered and the
organic matter that accumulates is only partially consumed by bacteria or other organ-
isms. Such low-energy settings in which bottom-water conditions and some (or much)
of the overlying water column are dysoxic or anoxic are today characteristic of deep-
water deposition in partially enclosed basins (e.g. the Black Sea) and regions of
oceanic upwelling, and any area of stagnant water, such as a small pond within a
swamp. In the geological record there is plenty of evidence of long periods of wide-
spread stagnation in the marine realm, resulting from sluggish water circulation.

All of these observations are intended to give a general impression of the considerable
variety of palynofacies that may be encountered and, hence, their potential in analyses
of environments of deposition, which in turn can be used to varying degrees in a strati-
graphic context. They are supplemented by illustrations of fields of view of palynofa-
cies, and a few of their components, representing and reflecting different ages and
depositional conditions respectively (Figs. 10.2, 3, 4; some of the photographs in
these figures are cited individually in section 10.7). On a more detailed level, what an
analyst records from a suite of samples from a particular sedimentary succession will
depend to some extent on the general or dominant environment of deposition repre-
sented. For example, in Jurassic successions both on- and offshore in north-west
Europe, parts are dominated by non-marine deposits, other parts by marine forma-
tions. The non-marine deposits pose a particular problem for biostratigraphers
because very few of the palynomorphs encountered are stratigraphically useful on a
fine scale. This is where a detailed assessment of variations in palynofacies can be
useful (see below).

10.7 Stratigraphic Application

The application of palynofacies analysis to stratigraphy involves the recognition of the
‘same’ environment within an age-controlled sedimentary succession. This is particu-
larly useful, and may be essential, for correlating approximately coeval sections
within rocks or sediments that do not contain biostratigraphic markers or do not repre-
sent a sufficient amount of time for any significant changes in the composition of

Figure 10.2 Examples of palynofacies and their components from successions of different ages
reflecting a variety of depositional environments. A, palynofacies dominated by splintered, lath-
shaped black wood; late Cretaceous, Bass Strait, Tasmania. B, brown wood; early Cretaceous,
southern England. C, brownish black to black palynomorphs (acritarchs), phytoclasts and AOM
form a deposit that is over-mature from the petroleum potential viewpoint; early Paleozoic,
southern Sweden. D, dinoflagellate-rich (Nannoceratopsis) palynofacies, indicating marine dep-
osition but perhaps in conditions of lower than normal marine salinity; mid Jurassic (Bajocian),
North Sea. E, dinoflagellate-rich marine palynofacies; early Cretaceous, Australia. F, mixed
black and brown wood, and AOM; late Jurassic (Oxfordian), England. All �120 – see colour
version of this figure in Appendix.
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Figure 10.3 Examples of palynofacies and their components from successions of different
ages reflecting a variety of depositional environments. A, AOMA-rich assemblage from an oil
shale; late Jurassic (Kimmeridgian), southern England. B, AOMA and a bisaccate pollen grain
buried within it, fluorescing under UV illumination; late Jurassic (Oxfordian), England, C,
degraded brown ‘wood’ full of resinous globules; Carboniferous, England. D, AOMA preserved
in faecal pellets; late Jurassic (Oxfordian), England. E, palynofacies with AOM and abundant
pyrite, much of which is preserved in framboids; early Cretaceous, Celtic Sea, offshore UK. F,
palynofacies dominated by brown wood, cuticles and other membranous tissues; mid Jurassic,
Denmark. All � 120 except B, which is � 300 – see colour version of this figure in Appendix.

assemblages of palynomorphs, ostracods, foraminifers, ammonites or other fossils to
be recognised. In a succession that is, for example, entirely early Bajocian in age,
standard (bio)stratigraphic methods may not lead to any basis for subdivision, there-
fore hindering precise correlation with sections of similar age elsewhere. A high-
resolution palynofacies analysis may enable subdivision of the succession into several
units.

This type of analysis is particularly useful in horizontal drilling projects, which are
driven by the need for reservoir-scale stratigraphic control. Production biostratigraphy
aims to subdivide a reservoir into correlatable units. The target (e.g. reservoir) unit to
be drilled may be very thin and beyond the dating resolution achievable through the
standard palynostratigraphic or other biostratigraphic techniques that are traditionally
used on a regional exploration scale. One or more distinctive palynofacies may,
however, be associated with it, enabling continuous lateral recognition. For example,
if deposits that accumulated in a lower shoreface environment are being targeted then
the palynofacies for this environment need to be established. Above may be upper
shoreface accumulations, and below beds that reflect deposition in near-shore marine
conditions. By determining the palynofacies characteristics for each unit, the direction
of drilling can be controlled. In this case, if the palynological matter changes to a more
marine aspect it may be inferred that the drill bit has penetrated too deeply and that the
direction of drilling needs to be altered. If a more proximal facies is recorded then it is
possible that the drill bit has shifted upwards into strata overlying the critical unit.
This approach to drilling along specific horizons is known as biosteering, and is now
of major importance in analysing reservoirs prior to and during their commercial
development (Fig. 10.5).

Some formations can generally be recognised from their associated palynofacies
without the need to find particular biostratigraphic markers. For example, although
the total organic recovery from the Kimmeridge Clay Formation in the North Sea
Basin is often very large, only a small proportion usually consists of readily identifi-
able palynomorphs, dark AOM being the dominant component (Fig. 10.3A, B). Such
palynofacies are also typical of recovery from onshore sections of this formation in
north-east Scotland, and in eastern and southern England, thus indicating extensive
lateral continuity of one type of palynofacies.
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Figure 10.4 Examples of palynofacies and their components from successions of different ages
reflecting a variety of depositional environments. A, palynofacies associated with a fluvial chan-
nel-fill mudstone containing abundant AOMT and common miospores; early Cretaceous, south-
ern England. B, as A but after brief oxidation and ultrasonic treatment, which has removed much
of the amorphous matter. C, typical association of Botryococcus with non-marine AOMA; earli-
est Cretaceous, English Channel, offshore UK. D, oxidized, poorly preserved assemblage of
miospores with some dinoflagellate cysts in a low salinity palynofacies; early Cretaceous, south-
ern England. E, tissue showing evidence of fungal attack; late Cretaceous, Peru. F, epiphyllous
fungus in a non-marine palynofacies; Cretaceous, Egypt. All �120 except E, which is �300 –
see colour version of this figure in Appendix

Another example from the North Sea concerns the Middle Jurassic Brent Group,
the palynofacies characteristics of which have been documented by Whitaker et al.
(1992, p. 179, fig. 6), Williams (1992) and Sawyer and Keegan (1996). Occurrences of
individual palynomorph taxa are of little biostratigraphic value in the succession; as a
result the palynostratigraphic assessment is based on abundance ‘events’ and palyno-
facies interpretation. Depending on which field within the Brent Formation is the sub-
ject of analysis, a large number of consistent and distinct palynofacies types can be
recognised. The paleoenvironments represented are well understood. Typically these
are offshore marine at the top (Heather Formation), passing downwards through
marine/brackish (Tarbert Formation), lacustrine, mature marsh, lagoonal and swamp-
lagoonal (Ness Formation, summarised as delta/prograding delta and lagoon/
swamp), upper shoreface (Etive Formation), lower to upper shoreface – brackish/
marine (Rannoch Formation), marginal to offshore marine (Broom Formation), and
offshore marine (Drake Formation). These formations are generally recognizable on
the basis of the palynofacies characteristics of the samples recovered from them 
(cf. Fig. 10.6).

As with all palynofacies work, the key to the stratigraphic application of
palynological matter is careful observation and description of every aspect of the slide
preparations. In addition to quantitative and/or semi-quantitative logging of the
organic components, other points also need to be noted. These include the shape, size,
color and state of preservation of phytoclasts, and the quantity of organic matter
recovered. For example, in the Brent Group succession, the occurrence of blade/lath-
shaped black wood (Fig. 10.2A) has been used to correlate events over a wide area.

In a number of well sections and surface exposures in basins that we have
investigated, a general darkening of organic matter within certain stratigraphic units is
a consistent feature. The significance of other assemblage characters that are com-
monly ignored in routine biostratigraphic analyses can also be taken into account,
such as abundances of very thin, crumpled palynomorphs (Fig. 10.4D) and the occur-
rence of reworked material. Everything that can be seen in a preparation is potentially
useful and should be documented. After a number of samples from different locations
within a particular succession or basin have been analysed, characters that may have
some stratigraphic application start to become apparent.



It is important to note that samples devoid of palynomorphs may still be rich in
organic matter. These would be ignored in ‘standard’ biostratigraphic analyses, but
may be usefully included in palynofacies investigations.

10.7.1 Limitations

The main limitations to applying palynofacies analyses to biostratigraphic problems
are that palynological matter of very similar aspect may be encountered in deposits
that are widely separated in time, whereas its composition may alter laterally within a
single sedimentary unit because of changing environmental conditions.

By way of illustration of the first point: Jurassic deposits that reflect a lacustrine/
lagoonal environment in which water circulation was rather restricted may well yield
abundant AOM with Botryococcus spp. in association. An assemblage of identical aspect
with the same environmental implications may also be recorded from a Cretaceous 
(Fig. 10.4C) or Cenozoic succession. Hence, a basic stratigraphic framework arrived at
by ‘traditional’ means is still usually required if an analysis of palynofacies is to be
applied successfully to stratigraphic problems, although the importance of this point may
vary from basin to basin. Within a particular depositional area, for example, the occur-
rence of light-colored AOM with Botryococcus spp. in association may be immediately
recognisable as Miocene because such a facies is not seen again at any other level. On the
other hand, age control via standard biostratigraphic analysis is necessary in connection
with the Brent Group in the North Sea, but once within this succession, palynofacies
analysis becomes important. Within the lowest (Drake) formation of the group and below
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Figure 10.5 Structural cross-section along a well path to show the importance of biostratigraphy
and recognition of palynofacies types during biosteering. Conventional biostratigraphy
determines the angle of build of the well path; biostratigraphy and palynofacies, or palynofa-
cies analyses on their own, keep drilling on target. B, biostratigraphy; Pf, palynofacies; TD,
terminal depth.
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Figure 10.6 Variations in the composition of palynofacies through a cored interval in the
lower Brent succession in a North Sea well, based on figure 9 in Sawyer and Keegan (1996).
Gp, Group; Fm, Formation; Z, Zone; Sz, Subzone; CMF, coarse, medium, fine. 1, marine paly-
nofacies containing a diverse assemblage of dinoflagellate cysts; 2, major influx of bisaccate
pollen, lath-shaped palynomaceral 4 common, influx of species of the dinoflagellate cyst
Nannoceratopsis; 3, increase in palynomaceral and palynofloral diversity; 4, large palynomac-
eral 4, minor influxes of Nannoceratopsis; 5-6, limited recovery of organic matter, mainly small
palynomaceral 4, often rounded; 7, common blade-shaped palynomacerals 2–4, rich miospore
assemblage, Nannoceratopsis common.



it, the deposits reflect more open marine conditions and traditional biostratigraphic meth-
ods are again important.

The laterally extensive marine Kimmeridge Clay Formation is potentially well
suited to correlation based on palynofacies types. A modern example of a widespread
depositional environment that will yield non-marine palynological matter of broadly
similar composition is the extensive swamps of southern Sudan. Where deposits of a
particular character are less extensive, the role of palynofacies as a stratigraphic tool is
more limited, although even in successions in which facies changes are rapid both lat-
erally and vertically, as, for example, in the non-marine Wealden succession of south-
ern England, consistent associations of palynomorphs, phytoclasts and amorphous
organic matter together with differences in preservation not only have paleoenviron-
mental significance but also can be used to identify different formations (Batten,
1973, 1975). In the marine realm, rapid facies changes are commonly associated with
the building of deltas. Since blade-shaped black wood is very buoyant it can be wide-
spread in sediments that accumulated in near-shore marine-deltaic environments, but
it is inevitable that the palynofacies associated with samples taken from sediments of
the same age from a delta outwards into a basin will reflect this change to more open
marine conditions. In these circumstances it is necessary to look for overlapping
features to effect correlations.

10.7.2 Case Study: Brent Group, Ninian Field, UK Sector, North Sea

Here we add a little more to the references that have already been made above to the
Brent Group because its characteristics are such that they provide a good example of
the sort of succession in which palynofacies analyses yield valuable stratigraphic and
paleoenvironmental information where other methods fail or are less useful. The
group is also of economic importance in that it forms a reservoir unit in the Ninian 
Oil Field.

The strata of which it is composed represent a progradational shoreface–deltaic
wedge. The biostratigraphy is well established, a number of zones giving good age
control having been recognized. Within the succession, the Broom, Rannoch, and
Etive formations (noted above) are virtually barren of palynomorphs. These are all
within the lower part of the group (Zone A) that Sawyer and Keegan (1996) targeted in
their paper on the use of palynofacies in characterizing sand-dominated sequences.
Their method involved analysis and photography of palynodebris in addition to con-
ventional biostratigraphy of both mudstone- and sandstone-dominated units.

Individual sandstones typically reveal a recognizable palynofacies, the characters
of which were a result, not surprisingly, of a combination of factors: the type of mate-
rial available for inclusion in the sediment, the mode of transport, and subsequent
environment of deposition. Sawyer and Keegan analysed the succession using a mod-
ified version of the approach of Whitaker (1984) combined with representative photo-
graphs. Use of the latter enabled the identification of subtle, minor changes in
palynological content that often characterize sand bodies.
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The approach adopted was used subsequently at the well site as a geosteering tool in
order to keep the well on target. It has also been employed to improve the stratigraphic
understanding of wells within an oil-field succession. Well-site biostratigraphy is crucial
in projects of this sort. Palynofacies and palynological ‘events’ are identified and tied in
with the gross zonal breakdown and sedimentary description of the succession.

10.7.3 Palynofacies and Sequence Stratigraphy

Much of the above discussion also applies to the use of palynomorph occurrences and
palynofacies analyses in sequence-stratigraphic interpretations (e.g. Prauss, 1993; Steffen
and Gorin, 1993; Helenes and Somoza, 1999). The characteristics of the PM recovered
combined with other data on a sedimentary facies have been shown to be of considerable
value in this respect. Lowstand systems tracts (LSTs) are typically indicated by palynofa-
cies that contain abundant, often comparatively large phytoclasts and numerous spores
and pollen grains that are not very well preserved, suggesting that they have been partly
oxidised. Black, charcoalified, woody detritus is commonly an important component of
such palynofacies. By contrast, transgressive systems tracts (TSTs) are frequently associ-
ated with palynofacies in which dinoflagellate cysts are more important components
whereas the assemblage of miospores and phytoclasts is smaller and less varied, and
highstand systems tracts (HSTs) may contain a significant component of AOM, with
dinoflagellate cysts being the most numerous of the palynomorphs recovered.

Among recently published sequence-stratigraphic studies is one on a Cretaceous
succession in Ecuador by Vallejo et al. (2003) that is based on a lithofacies, biofacies
and biostratigraphic analysis. These authors recognised a series of LSTs, TSTs, HSTs
and sequence boundaries using the ratio of marine to terrestrially derived paly-
nomorphs, the main components of the palynofacies, a number of calcareous nanno-
fossil and palynomorph ‘events’, occurrences of oysters and planktonic foraminifera,
and other fossil and sedimentological evidence, as shown in Figure 10.7. The paper
demonstrates the value of taking a multidisciplinary approach to sequence strati-
graphic studies and the contribution that palynofacies analyses can make to them.

10.8 Conclusion

Careful observation and recognition of repeated occurrences of types of palynological
matter is the key to successful palynofacies studies, no matter what the goal of a
particular project. What might appear at first to be insignificant detail may prove in the
longer run to be vital; everything should be noted: palynomorph taxa, the size, shape
and type of phytoclasts, the presence of amorphous detritus, even persistent mineral
content (e.g. Fig. 10.3E) and evidence of fungal attack (e.g. Fig. 10.4E, F). Variations
in the type and abundance of organic matter in fine-grained deposits both laterally and
vertically are a result of sedimentological sorting and preservational differences, and
therefore important for determining (paleo)environments and source rock potential
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Part of a stratigraphic succession encountered by a well drilled in Ecuador show-
ing lithologies, biostratigraphically important ‘events’ in the calcareous nannofossil and paly-
nomorph records, the total organic carbon (TOC) content, the preservation and occurrence of
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palynological matter (particulate organic matter), sedimentary structures and other sedimento-
logical and paleontological data, and their sequence stratigraphic interpretation (based on
figs. 2 and 3 in Vallejo et al. 2003, modified).
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Figure 10.7   Continued
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Figure 10.7 Continued

for petroleum. Identification of palynofacies in conjunction with conventional bios-
tratigraphy can lead to an improved and more complete understanding of the stratigra-
phy of sand-dominated sequences. It can be employed in sequence-stratigraphic
studies to recognize boundaries in successions within which there is apparently no
sedimentological evidence for them. It can also be used to guide the well trajectory
during drilling by discriminating between non-pay zones above, below and within
reservoirs.
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11.1 Introduction

Sequence biostratigraphy is the use of (micro)fossil samples to describe the age and
paleoecological nature of key bounding surfaces and depositional systems tracts and
cycles within a sequence stratigraphic framework. Where possible, it can be used to
delineate the temporal and spatial extent of these surfaces, systems tracts and cycles in
concert with sedimentological, petrophysical, and geophysical data. Although sequence
stratigraphy was originally perceived as a rival to biostratigraphy, both disciplines are
now well integrated and iterative in nature (Emery and Myers, 1996; Simmons, 1998).
Sequence biostratigraphy requires a deliberate effort between biostratigraphers, sedi-
mentologists, petrophysicists, and geophysicists to develop the most parsimonious
explanation of geological events, and yet one that honors all observational data.

Microfossil samples contain a wealth of biological and mineralogical information
concerning biostratigraphy, paleoecology, and taphonomy. The biostratigrapher has the
responsibility of using this myriad of data to sort out cogent patterns contained within
the samples, and to recognize their stratigraphic significance. Depending upon the suite
of available data and the age of the stratigraphic section, the tasks in sequence biostratig-
raphy consist of: (1) taxonomic identifications of microfossils; (2) quantitative estima-
tion of species abundances standardized to known sample volume; (3) mineral-content
evaluation; (4) age determinations/zonal assessments; (5) paleoenvironmental analysis;
(6) glacial/interglacial interpretations; and (7) graphical display of the patterns obtained
from these assessments against log character, core analysis, lithology, and possibly
seismic data (van Gorsel, 1988; Powell, 1992). The goals of this paper are to discuss the
important tasks of a sequence biostratigraphic study, to stress the need for their integra-
tion in sequence stratigraphic interpretation, and, finally, to demonstrate the application
of sequence biostratigraphy to two end-member (well-cuttings vs. cores) examples from
the Plio-Pleistocene and Quaternary records of the Gulf of Mexico.

11.2 Sampling/Processing Techniques and Data Collection

11.2.1 Collection Methods, Sample Spacing, and Sampling Interval

The spectrum of collection methods for microfossil samples ranges from outcrop
hand samples to subsurface well-cuttings. In the subsurface, drilling fluids may



obscure and dilute true sample volume of well-cuttings, and drilling-fluid additives
may introduce contaminating microfossils or adversely damage the fossils by chemical
reaction.

Both the sample spacing (distance between two samples) and sampling interval
(length of stratigraphic section covered by one sample) may vary greatly. In very
detailed piston core or outcrop studies (e.g. section 11.6.2) sample spacing may be on
the order of 10’s of cm and sampling intervals on the order of 1–2 cms. This detailed
stratigraphic control is in stark comparison with typical studies of subsurface wells
(e.g. section 11.6.1). In the subsurface, sample spacing may be as much as 20 m and
sampled intervals may be amalgamated because fluid-circulated well-cuttings essen-
tially produce a composite sample. To minimize uncertainty regarding the exact loca-
tion of stratigraphic horizons, biostratigraphic data should be interpreted against a
more continuous signal such as core or outcrop description, or wireline log.

11.2.2 Sample Volume: Standardization of Samples

Both sample volume and standardization are critical when comparing stratigraphic
sections from outcrops, cores, and/or wells. Too small a sample volume may hinder
recognition of rare, diagnostic taxa; too large a sample volume may prohibit thorough
sample examination. Micropaleontological, quantitative data presented without
regard to sample weight or volume can be very misleading because sample sizes are
not standardized (Thompson, 1981). Frequently, foraminiferal samples are normal-
ized for comparison by weight (dry weights measured both before and after wash-
ing/sieving; Shepard and Moore, 1954). Results are then reported with reference to
“per gram,” etc. (e.g. section 11.6.2). In some microfossil disciplines, standardization
may be achieved through alternative means. For example, palynomorph concentration
can be calculated by spiking samples of measured volume with a known number of
exotic marker flora, such as the spore Lycopodium clavatum (Stockmarr, 1971;
McCarthy and Gostlin, 2000), before chemical treatment.

11.2.3 Coarse Fraction

Coarse fraction is that portion of the washed sample sieved at 63 or 74 microns
(Shepard and Moore, 1954). Normally, it is reported as a weight percentage of the
initial sample weight. The relative proportions of minerals and biogenic components
within the coarse fraction are a direct function of the depositional environment. For
example, hemipelagic sediments have virtually no mineral content but are rich in
microfossils; clastic sediments have a high dilution of fossil assemblages by terrige-
nous grains. Although coarse fraction data are often used to calibrate microfossil data
with lithologic interpretations from logs, these data can also be used as proxies for
sea-level fluctuations during glacial and interglacial cycles (see sections 11.4.2.3 
and 11.6.2).
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11.2.3.1 Analyzing the Coarse Fraction Content: Microfossil Content
Microfossil abundances are obtained either by absolute counts or quantitative
estimates. Microfossils studied may include a diverse association ranging from cal-
careous to siliceous to phosphatic to organic remains (e.g. Jones, 1996; Davydov 
et al., 1997; Ross and Ross, 1997; Buck et al., 1999; Graefe, 1999; McCarthy and
Gostlin, 2000; papers in Olson and Leckie, 2003). Each microfossil type dictates the
specific counting techniques required for collecting and the quantitative analytical
methods available for analyzing the data. Many approaches are discussed in this book
as well as elsewhere in the literature (e.g. Lipps, 1993; Neal et al., 1995; Klapper,
1997; Lagoe et al., 1997; Buzas and Hayek, 1998; Bown, 1999; Jones and Rowe,
1999; Olson et al., 2003).

11.2.3.2 Analyzing the Coarse Fraction Content: Mineral Grains
Microfossil sample processing extracts and concentrates not only one or more fossil
types, but also mineral grains, from their matrix. For the sake of efficiency, visual esti-
mates of mineral abundances are normally recorded. The abundance of minerals vs.
fossils gives an indication of dilution, which, in turn, is a function of proximity to a
clastic source, sediment accumulation rate, and accommodation space. Estimation of
the coarse fraction constituents (commonly quartz, glauconite, mica, pyrite, coal, and
lignite) provides an excellent means of differentiating depositional environments. In
subsurface studies, the relative abundances of microfossils-to-minerals should be inte-
grated with lithologic and depositional interpretations based on coarsening/fining
trends on wireline logs.

11.3 Correlation Patterns in Sequence Biostratigraphy

11.3.1 Fossil Ranges

The value of the fossil record is in its non-repetitive continuity: every index fossil has
a determinant beginning in time and, for all but extant forms, a time of extinction. For
organisms that become fossilized, we can study their distribution both in time and
space. The temporal distribution of a species, or Biochronozone, is the interval
between that particular species’ evolutionary appearance (First Appearance Datum or
FAD) and evolutionary extinction (Last Appearance Datum or LAD). Latitudinal and
other geographic obstacles prevent most organisms from a pole-to-pole occurrence so
that shorter, partial ranges exist towards the edges of their spatial distribution 
(Fig. 11.1). These partial ranges are bracketed by local first occurrences (FO; compat-
ible with FAD) and last occurrences (LO; compatible with LAD), which create the
Biozone and are often used as correlation markers in local studies.

In core or outcrop, it is a straightforward matter to sample a measured interval and
delineate the depth of first and last occurrences. In the rotary well-cuttings acquired
by industry (Fig. 11.2), however, biozonal events are observed in rock chips whose
precise depth cannot always be determined. When dealing with outcrops or borehole
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Figure 11.1 The time range of the biozone (local range) for a particular species can vary
significantly from its biochronozone (range of existence from inception to extinction). In this
diagram, the biozone of species “A” at location “X” spans a significantly shorter period of
time than the biochronozone. Last Occurrence (LO) is often used to signify the highest occur-
rence of a fossil (top of biozone) in a stratigraphic section, as distinct from the Last Appearance
Datum (LAD), a term applying to the top of the biochronozone. Similarly, First Occurrence
(FO) is often used to signify the lowest occurrence of a fossil (base of biozone) in a strati-
graphic section, as distinct from the First Appearance Datum (FAD), a term applying to the base
of the biochronozone.

cores, both the FO and the LO are generally distinguishable. However, when
examining well-cuttings, cavings from uphole can obscure the FO. Thus, the customary
procedure is to identify the LO of a particular taxon (i.e. Fig. 11.2). If borehole mud
pressures are well monitored, cavings are minimized and the FO may also be
distinguishable.

11.3.2 Chronostratigraphic Correlation vs. Depressed Biostratigraphic Events

Sedimentary sequences on continental margins commonly bear a mixture of LADs,
LOs, depressed LOs, reworked LOs, and elevated LOs, and it is the task of the bios-
tratigrapher to derive a chronostratigraphy from these datums. Because the LO and
FO of biostratigraphic markers do not always represent the same chronostratigraphic
age, the chronostratigraphic framework is established through the transfer of select
(i.e. high confidence) biostratigraphic events onto a lithologic section, wireline log
profile, or seismic line. Although, many geoscientists are aware of the discrepancies
between biostratigraphic markers, the daunting question remains: “How do I know
which tops or events are most reliable and which are in fact suspect?”



11.3.2.1 What is a Depressed Event?
Changing paleoenvironment through time impacts the occurrence of age-diagnostic
fossils. Specifically, the term depressed event is often used to describe an apparent
extinction event that is in fact only a local emmigration of a species due to a change in
environmental parameters. Figure 11.3 shows the distribution of a marine taxon, Species
A, with evolutionary range from just before Time 1 to slightly after Time 3. During this
time interval, a sandy delta lobe migrates into the area. The species cannot tolerate the
physiochemical properties of the clastic plume, such as low salinity, high turbidity,
restricted food supply, etc., and is suppressed progressively from locations 2 through 6.
As the lobe wanes higher in the section, the species immigrates in a landward direction
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over time. A complete sampling of this depositional sequence underscores the discrep-
ancy between the stratigraphic positions of the LO in locations 2–3 and the highest
occurrence of the species in locations 4–8. A break in continuous occurrences is also
apparent in locations 4–6. Depressed events 2–3 should not be correlated to the strati-
graphically younger LOs in locations 4–8.

11.3.2.2 Distinguishing Between a Chronostratigraphic and 
a Depressed Event

In the case where two correlation lines cross, both of the correlation lines cannot
represent true chronostratigraphic horizons. Either one of the correlation lines repre-
sents a true time horizon and the other line does not, or both of the correlation lines are
invalid with respect to chronostratigraphy. Figure 11.4 shows two wells along a dip
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transect with two biostratigraphic datums recorded in each well. Correlation of
datums A and B between the wells results in correlation lines that cross. Clearly the
lines cannot both represent valid chronostratigraphic datums. When analyzing the
various logical scenarios that could have resulted in these two crossing correlation
lines, it is first important to note the direction of dip in the section. In the examples
shown, well 1 is downdip from well 2.

Assumption 1: A is the Valid Correlation Line. Because we have now assumed that
correlation line A1–A2 is chronostratigraphically significant, we correct our time line
for datum B by reconstructing it parallel to datum A. We can achieve this in one of two
ways: moving B1 or moving B2.
Scenario 1: B1 incorrect: In this scenario, we correct datum B by moving B1 to a posi-
tion higher in the section in well 1, renamed B1� (Fig. 11.4). A possible explanation for
the difference between the real position of the correlation lines and the “corrected”
position would be that B1 is environmentally depressed downdip in well 1. We con-
sider this scenario improbable because, although depression downdip may occur, it is
difficult to document in the stratigraphic record: taxa are easily transported 
post-mortem down dip.
Scenario 2: B2 incorrect: Once again, assume that correlation line A1–A2 is chronos-
tratigraphically significant. However, in order to correct our time line for datum B in
this example, we move B2 to a lower position in the section in well 2, renamed B2�

(Fig. 11.4). This scenario is not very probable because it would call on a species to be
reworked in an up-dip section (well 2), and somehow not be transported down-dip
where it would also appear reworked at the same chronostratigraphic horizon in well 1.

Assumption 2: B is the Valid Correlation Line. For this scenario, we assume that cor-
relation line B1–B2 is the valid chronostratigraphic horizon. We correct our time line
for datum A by reconstructing it parallel to datum B. Similar to the two scenarios
above, we can achieve this in one of two ways: moving A1 or moving A2.
Scenario 3: A1 incorrect: In this scenario, we correct datum A by moving A1 to a posi-
tion lower in the section in well 1, renamed A1� (Fig. 11.4). A possible explanation for
this scenario is that A1 is reworked up section in well 1, i.e. in a down-dip direction.
Reworking is a possible but not highly probable explanation because it calls upon
somewhat extreme geological circumstances. Higher confidence would be given to a
“reworking down dip” explanation if several species were found reworked.
Scenario 4: A2 incorrect: Again, we assume that correlation line B1–B2 is the valid
chronostratigraphic line. However, in this scenario we correct our correlation line for
datum A by moving A2 to a position higher in the section in well 2, represented by A2�

(Fig. 11.4). A plausible explanation for this scenario would be that A2 is environmen-
tally depressed updip. This scenario is the most probable of the four presented because
there are many organisms (both benthic and planktonic) that become environmentally
depressed updip (i.e. towards a shallower environment) where their absence can then
be recorded in the stratigraphic record.
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11.4 Biofacies Patterns in Sequence Biostratigraphy

11.4.1 Biogeography: Living Microorganisms are Proxies for
their Environment

Benthic organisms are sensitive proxies for the environmental properties of water
masses and substrates in a particular location; and the complex environmental gradi-
ent associated with depth in the ocean leads to benthic communities that are depth-
stratified. In contrast, planktonic organisms occupy marine surface waters (upper
100–200 m), and their environmental distribution is largely determined by tempera-
ture and salinity factors. They are largely absent or rare in coastal waters and abundant
in open marine waters. Thus, the ratio of planktonic to benthic foraminifera (P/B ratio)
increases across most continental shelves onto the slope (Grimsdale and van
Morkhoven, 1955).

11.4.2 Paleoecology: Fossil Organisms are Proxies for Paleoenvironment

11.4.2.1 Paleo-Water Depth
Paleoenvironmental analysis, by appealing to a direct analogue with the distributions
of living organisms, is the basis for interpretation of depositional environments.
Paleoecology has a dual relationship with sequence stratigraphy: fossils provide tools
for reconstructing patterns of environmental change that relate to sequence-forming
processes (especially paleo-water depth estimations), and sequence stratigraphy pro-
vides a predictive framework that facilitates recognition and interpretation of patterns
of biotic change in the geologic record (Brett, 1998).

Taphonomic processes can introduce fossils (i.e. by downslope transport) where
they did not live, remove fossils that did exist at a particular site, or concentrate fossils
at a site in “lags.” Whereas, allocthanous and exotic species complicate paleoenviron-
mental interpretation (e.g. Denne and Sen Gupta, 1989), the displaced elements in the
faunal assemblage provide information about the provenance of the sediments and,
thus, information about depositional processes (e.g. Thompson, 1992; Lagoe et al.,
1992; case study in section 11.6.2).

11.4.2.2 Oxygenation: Biofacies Record of Transgression and Regression
An excellent example of how biofacies record the influence of transgressive and regres-
sive episodes on oxygenation is the study by Nagy et al. (2001) on the Callovian Brora
Argillaceous Formation of the Inner Moray Firth Basin. They interpreted oxygenation
trends using five foraminiferal biofacies: (1) Transgressive-anoxic: diversity reduction,
agglutinant-frequency increase, dominance increase; (2) Transgressive (MFS)-oxygen
depletion: diversity reduction, high dominance, low frequency/absence of calcareous
taxa; (3) Transgressive-improved environmental setting: diversity increase, dominance
decrease, frequency increase in calcareous taxa; (4) Regressive-hypoxic improving to

sequence biostratigraphy 237



normal oxygenation: diversity increase, frequency/diversity increase in calcareous
taxa, dominance decrease; and (5) Regressive-normal marine conditions: high diver-
sity, high frequency of calcareous taxa, low dominance (Nagy et al., 2001).

11.4.2.3 Climatic Fluctuations: Insights from Sequence Biostratigraphy
Climate change is a mechanism for effecting global environmental changes that are
reflected in the biotic population. Concomitant changes in the fossil record illuminate
the history of glacial/interglacial fluctuations and associated geologic processes.

Response to Climate Fluctuations. Cyclic patterns of cool- and warm-water taxa
within a stratigraphic context shed light on climatic fluctuations, and their impact on
such geologic factors as sea level, depositional processes, and sediment source/supply
(e.g. section 11.6.2). Interpretations of palynological assemblages, characterizing dry
and humid climatic conditions, such as those by Van der Zwaan and Spaak (1992) in
the Triassic of Northwest Europe, link sedimentary cycles with sequence stratigraphy
and Milankovitch orbitally forced cyclicity. Biostratigraphic patterns can be integrated
with other climate signals, such as isotopic signatures (e.g. Baum et al., 1994).

Grain-Size and Carbonate Responses to Climate Fluctuations. Numerous studies
during the CLIMAP Project in the 1970’s (e.g. CLIMAP, 1976; Cline and Hays, 1976)
demonstrated that in the Atlantic, Caribbean and Gulf of Mexico, total carbonate
(CO3) curves in late Quaternary sediment cores could be used as proxies for oxygen-
isotope curves (e.g. Damuth, 1975; Prell and Hayes, 1976). In deep water, increases in
coarse fraction and CO3 during interglacials reflect an increase in the concentration of
foraminifera due to hemipelagic sedimentation processes. Decreases in coarse frac-
tion and CO3 during glacials are commonly the result of dilution of foraminiferal con-
tent by increased terrigenous supply to deep water. In section 11.6.2, we demonstrate
the use of these patterns in determining glacial and interglacial deposits, and in deter-
mining the relationship between sea-level change and depositional processes.

11.5 Anticipations from Sequence Biostratigraphy

11.5.1 The Framework of Sequence Biostratigraphic Patterns

Historically, the most important contributions from micropaleontology were age
control and paleo-water depth. In sequence biostratigraphy, we go beyond these two
traditional roles and attempt to define the key bounding surfaces and depositional sys-
tems tracts within a sequence stratigraphic framework, and to describe the age and
paleoecological nature of these surfaces and systems tracts.

In this section we discuss biostratigraphic patterns and their integration into a
sequence stratigraphic framework. The resultant interpretations we discuss using the
language of sequence stratigraphy, a discipline initially defined within the context of
seismic scale observations. We employ the familiar seismic stratigraphic terminology
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of a clastic passive margin model (Vail et al., 1977b; papers in Wilgus et al., 1988),
although it is equally applicable to the framework presented by Galloway (1989).

Since the revolution that has occurred in stratigraphy since AAPG Memoir 26 in
1977, stratigraphy has stressed the incompleteness of the rock record and sought to
estimate this incompleteness (Holland, 1999). Biostratigraphy is key to this endeavor.
Holland (1999) calculated that the completeness of the stratigraphic record could be
as low as 10–40% at the 100-k.y. timescale and as low as 1–5% at the 10-k.y. timescale.

11.5.1.1 Sequence Boundaries and Lowstand Systems Tracts in
Passive Margin Basins

The sequence boundary (SB) surface represents a major regression and is commonly
accompanied by subareal exposure, erosion, and landward downcutting. As the hiatus
associated with the SB is traced into the basin, however, less section is often absent
until the surface becomes totally conformable in the marine basin. These surfaces may
be identified and dated using marine microfossils (e.g. Poag and Commeau, 1995).
However, where the duration of a hiatus is minimal, the missing section may fall
within a single biozone and be difficult, if not impossible, to detect given the limita-
tions of biostratigraphic resolution and the sample interval (Powell, 1992).

Biostratigraphic patterns associated with the SB include: (1) abrupt truncation or
diminution of marine microfossil (e.g. foraminifera, nannofossils, dinoflagellates)
abundance at the surface, (2) overlying increase in terrestrial pollen and spores and
their diversity (e.g. Helenes and Somozoa, 1999; Rull, 2000), (3) overlying microfos-
sils indicating cooler climate, (4) overlying decrease in P/B ratio, (5) overlying
increase in reworked (older) microfossils derived either from the hinterland (rivers) or
the slope (slumping), (6) overlying increase in coarse fraction, as well as its mineral
component (more sand prone), and (7) well-expressed substrate-controlled ichno-
coenoses resulting from firmground erosional surfaces (e.g. Glossifungites ichnofa-
cies or Thalassinoides-dominated fabrics; Savrda, 1995; Savrda et al., 2001a, b).

The lowstand systems tract (LST) is an accumulation of sediment that represents
deposition along slope and base of slope subsequent to the marine regression repre-
sented by the SB. LST deposits range from turbidites to mass-transport deposits (e.g.
slumps, slides, debris flows) and are often characterized by many of the same bios-
tratigraphic patterns delineated in the above paragraph, specifically, a minimum in
paleo-water depth and an increase in the sand content of the coarse fraction.

In cases where a SB is followed by a lack of increase in sand content, the pattern
suggests lowstand sediments are not present. In such a case, the SB may be placed at
or near the point at which paleo-water depth shifts to a minimum. In deep water, this
horizon may be characterized as a faunal discontinuity where the transgressive sys-
tems tract (TST) lies directly on the highstand systems tract (HST) of the previous
sequence.

11.5.1.2 Transgressive Systems Tract
During the rise in sea level following the regression, sedimentation eventually
decreases along the slope and basin as marine waters flood across the shelf-break and
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lock the primary distribution of sediment onto the shelf. TST sediments are deposited
during this phase of the marine transgression and are characterized by the following
biostratigraphic patterns: (1) upward increase in marine microfossil abundance and
paleo-water depth (e.g. Tye et al., 1994), (2) FOs as species occupy new niches,
(3) upward decrease in terrestrial spores and pollen and their diversity (e.g. Rull,
2000), (4) microfossils indicating a warmer climate, (5) upward increase in the P/B
ratio, (6) upward decrease in reworked microfossils, (7) upward decrease in coarse
fraction, as well as its mineral component (less sand prone), (8) possible upward
increase in percentage of glauconite within the mineral component, (9) coquinas of
skeletal debris often typical at the bases (Brett, 1995), (10) paleontological event beds
during late transgressive stage as a result of episodic burial in sediment starved, and
commonly low oxygen, settings favoring extraordinary preservation (Brett, 1995),
and (11) Thalassinoides-dominated fabrics resulting from transgressive ravinement
(Savrda, 1995). Limestones may be present resulting in washed residues with poor
fossil assemblages due to cementation and nannofossil recrystallization, or rich
assemblages due to the lack of detritus dilution.

11.5.1.3 Maximum Flooding Surface
The maximum flooding surface (MFS) above the TST represents the time of maximum
marine incursion and is biostratigraphically characterized by: (1) profound pulse of
deep water benthic microfossils and maximum paleo-water depth, (2) maximum
incursion into shelf regions of planktonic foraminifera, nannofossils and dinoflagel-
lates, (3) tops of various rare taxa because subsequent shallow-water ecology excludes
taxa from the area or because increased clastic detritus dilutes the fossil abundance too
much to find specimens, (4) minimum in terrestrial pollen and spores (e.g. Helenes
and Somozoa, 1999; Rull, 2000), (5) minimum in reworked microfossils, (6) maxi-
mum in P/B ratio, (7) maximum shale content evidenced by coarse fraction analysis,
(8) abrupt to subtle vertical ichnofabric successions that signal sea-level-mediated
environmental change and possible “oxygen-deficient” ichnocoenoses (Savrda,
1995), and (9) Thalassinoides firmgrounds formed in response to transgression-
induced sediment starvation (Savrda et al., 2001a and b).

11.5.1.4 Highstand Systems Tract
After the maximum marine incursion, the HST is deposited as sea level begins to fall
toward the level of the shelf-slope break. The sedimentary locus may shift as sedi-
ments prograde in the direction of the shelf edge and are biostratigraphically charac-
terized by: (1) common marine microfossils and upwards-shallowing paleo-water
depth, (2) irregular LOs due to problems of ecology and clastic dilution, (3) decrease
in the P/B ratio, (4) increased mineral component (mostly fine-grained minerals and
often lignitic) of coarse fraction content, and (5) limestones on low sediment-input
shelves.
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11.6 Sequence Biostratigraphic Case Studies

11.6.1 Gulf of Mexico Plio-Pleistocene Sediments and 3rd-Order Cycles:
Evaluating Biostratigraphic Datums and Correlating Faunal 
Discontinuities Between Wells

Previous studies of the Plio-Pleistocene of the Gulf of Mexico illustrate the importance
of sequence biostratigraphy. Here, we re-examine two wells from the Armentrout and
Clement (1990) and Armentrout (1996) studies with emphasis on (1) the role of faunal
discontinuities in interpreting SB and MFS candidates, (2) crossing biostratigraphic
correlation lines, (3) biostratigraphic correlation lines as a guideline for correlating fau-
nal discontinuities, and (4) the initial integration of log and seismic data.

Interpretive panels from two wells in the western Gulf of Mexico are illustrated in
Figure 11.5: Mobil A-158 #1 and Mobil A-70 #1. Wavy lines denote faunal discontinu-
ities on each well panel. In order to determine the geographic extent of these discontinu-
ity surfaces, the faunal discontinuities must be correlated within a stratigraphic
framework. Armentrout and Clement (1990) presented a correlation study of these
wells, and we use their faunal discontinuity numbering system: FDA-1, FDA-2, etc. The
methodology used for correlating biostratigraphic datums in this study (Armentrout and
Clement, 1990), has not been previously documented, and is discussed below.

Biostratigraphic tops from well-cuttings are recorded using codes (key at bottom
of Fig. 11.5) on each well. Twenty tops are posted for the Mobil A-70 #1 well and
are correlated with their equivalents in the Mobil A-158 #1 well. These lines must
be evaluated for their chronostratigraphic significance. Each of the three categories
of microfossils (nannofossils, benthic foraminifera and planktonic foraminifera) has
a different line pattern; lines interpreted to have higher chronostratigraphic confi-
dence are shown using bolder and thicker lines. These higher-confidence correlation
lines are then used as guidelines for correlating faunal discontinuities between
wells.

Faunal discontinuities near the top of the section are constrained using correlation
lines for Trimosina denticulata (2B) and Angulogerina illingi (1B). Notice that 2B and
L (Fig. 11.5) are crossing correlation lines (see Fig. 11.5 for rationale). We interpret
Pseudoemiliana lacunosa (L) to be depressed updip and choose T. denticulata as the
preferred correlation line. Somewhat lower in the section LG (large Gephyrocapsa)
and H (Helicosphaera sellii) are crossing correlation lines with 4B (Trifarina rutila).
T. rutila, and just below, Calcidiscus macintyrei (M) are considered more valid corre-
lation lines; LG and H are rejected due to updip environmental depression. These four
correlation lines (2B, 1B, 4B and M) are used to constrain the correlation of faunal
discontinuities FDA-3, -4 and -6 (Armentrout and Clement, 1990) between the two
wells. Not every faunal discontinuity should be assumed present in every well: some
may merge and some may be merely local in nature. In this particular example, FDA-3
and -6 are higher confident correlations than FDA-4 because of the proximity of bios-
tratigraphic tops to the two former faunal discontinuities.
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Proceeding lower in the section, Discoaster brouweri (B), Alvarezina sinuata (6B)
and Cristellaria subaculeata (7B) are interpreted as depressed updip because they
cross the second occurrence of Trifarina rutila (5B) and Globorotalia miocenica (1P).
Notice that the depth of tops 6B and 7B is also correlative with the faunal discontinu-
ity in the Mobil A-70#1 well, a relationship indicating potential environmental depres-
sion. Armentrout and Clement (1990) also interpreted 8B (Bolivina imporcata) to be
depressed in the updip well. Although the 8B correlation line does not cross other
lines, it is coincident with the faunal discontinuity at 3550 ft and a drop in paleo-water
depth to middle neritic water depths. These characteristics would support a possible
depression of 8B updip and could be confirmed with a more extensive evaluation
including additional wells. Using the planktonic markers 1P and 3P (Globoquadrina
altispira), as well as the benthic marker 5B, the following faunal discontinuities are
correlated: FDA-9, -10, -13, -14 and -15. We may interpret that 3P is slightly
depressed updip based on geometry and the coincidence of 3P with FDA-15 in the
Mobil A-158#1 well.

At the base of the well, 2P (Globorotalia multicamerata) is depressed below 3P;
whereas, T (Discoaster tamalis) and A (Sphenolithus abies) are depressed below 5P
(Globigerina nepenthes), and T is depressed below 4P (Globorotalia margaritae). The
lowest correlative faunal discontinuities form FDA-17. The faunal discontinuity present
in the updip well at 5320 ft appears to be missing in the downdip well.

These correlations and candidate sequence boundaries must be integrated with
logs and seismic data. The log for the downdip well, Mobil A-158#1, is shown in the
upper left of Figure 11.5. A preliminary interpretation of systems tracts can be made
using log patterns (gamma ray and spontaneous potential), as well as foraminiferal
and nannofossil abundances. The faunal discontinuities in deeper paleoenvironments
(below 3000 ft in the well) correspond quite well to SB picked out on the log display.
However, the faunal discontinuities in shallower paleoenvironments (above 3000 ft in
the well) correspond more closely to the transition from TST to HST, i.e. the MFS.

Patterns of large-scale evolutionary radiation and mass extinction may be related
to large-scale, sea-level fluctuations (Brett, 1998). Transgressions provide increased
habitat space and climates that foster evolutionary radiations. However, the spread of
bottom-water anoxia during transgressions may result in the loss of seafloor habitat
and produce large numbers of extinctions. Bioevents are commonly associated with
either a SB or MFS, with major extinctions associated with habitat reduction during
major regressions or with anoxic events during major transgressions. Generally, rising
sea level correlates with evolutionary radiations. Thus, some ecological-evolutionary
unit boundaries may correlate either with a SB or MFS (Brett, 1998). These patterns
are recognized in the case study discussed above from the Plio-Pleistocene of the Gulf
of Mexico.

More detailed interpretations can be made when the wireline logs are viewed at a
larger scale than presented here (refer to Armentrout, 1996). Importantly, these depo-
sitional systems tracts interpreted from wireline logs, can now be correlated between
wells based on the correlation lines defined using biostratigraphy. Finally, the larger
scale systems can be incorporated into interpretations of seismic geometries. Notice
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that the seismic data do not allow for the same detail as shown in the logs. However,
the seismic data are the best display of continuous geometries in the study area and
illustrate an expanding stratigraphic section from right to left.

11.6.2 Gulf of Mexico Quaternary Sediments and 5th-Order Cycles: Climate
History, Sea-Level Response, and Timing and Sourcing of 
Downslope Transport

Latest Quaternary sediments in the Gulf of Mexico intraslope basin province are
situated in a region of complex structure that results from gravity tectonics and salt
diapirism. One of the study objectives was to determine the relationship of deposi-
tional processes to sea-level fluctuations. Interpretation of over 71,000 km of high-
resolution seismic data and 239 piston cores has been augmented through a sequence
biostratigraphic approach. The most important tools applied were foraminiferal analy-
sis, climate zonations (Z, Y, X, etc. of Ericson and Wollin, 1968), coarse fraction and
percent CO3, reworked faunal analysis, depositional processes analysis from cores,
and integration with seismic facies analysis (Damuth and Olson, 2001; Olson et al.,
2001).

Foraminiferal biostratigraphy (especially within the G. menardii complex), and
fluctuations of coarse fraction and CO3 contents of the piston cores were used to deter-
mine ages, climatic zones and late Quaternary sea-level fluctuations. Piston Core
IG41-17 serves as a stratigraphic reference for the project (Fig. 11.6). Fluctuations in
the abundance of Globorotalia menardii complex demonstrate that some cores pene-
trate the Z zone (most recent interglacial [highstand]-high G. menardii abundance), Y
zone (most recent glacial [lowstand]-low G. menardii abundance), and part of the X
zone (previous interglacial [highstand]-high G. menardii abundance). Marker taxa
include an interval containing Globorotalia ungulata near the top of the Z zone, disap-
pearance of Globorotalia inflata at the top of the Y zone, and the LAD of abundant
Globorotalia flexuosa at the top of the X zone. The G. flexuosa marker is consistent
with the occurrence of a white volcanic ash found in several of the cores in the intraslope
basins.

In addition to the G. menardii index, the percent coarse fraction and the percent
CaCO3 show the following general trends through the X, Y and Z zones: both high
coarse fraction and CaCO3 content during interglacials (highstands), and low coarse
fraction and CaCO3 content during glacials (lowstands). (These trends differ from sce-
narios situated closer to direct clastic sources, such as the Mississippi River, and
detailed above in section 11.2.3.2. In the above case, the coarse fraction increases due
to the increase in foraminiferal content, rather than an increase in clastic material.) A
crossover between the coarse fraction curve and the CO3 curve occurs commonly dur-
ing glacials when a sandy interval is encountered in the core. For example, thin sand
beds show up as an increase in coarse fraction, but a decrease in CO3 in Core IG38-15
(Fig. 11.6). In this case, the increased coarse fraction is not a result of increased
foraminiferal concentration, but rather, an increase in the sand content.
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Stratigraphic Reference: Piston Core IG41-17 
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 3.5 kHz record across the middle portion of the western lobe of the East Breaks Slide Complex. The mass-transport deposits of the 
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sediments because the sandy sediments contain Globorotalia flexuosa, a foraminifera characteristic of X interglacials and older. The 
thickness of units and the nature of the samples indicate that the G. flexuosa forms are reworked, rather than stratigraphically in place.

Piston Core 91L575-2BPiston Core IG38-15

Core log

Core log Core log

Figure 11.6 Core IG41-17 at the top illustrates the various stratigraphic horizons utilized in
the study of Latest Quaternary piston cores within the intraslope basins in the Gulf of Mexico.
This core represents an excellent, stratigraphically coherent section illustrating the X, Y and Z
zones of Ericson and Wollin (1968), as well as the Globorotalia ungulata, G.inflata, and G. flex-
uosa markers, and the white volcanic ash at the top of the X zone. G. ungulata is present at the
top of the Z zone and G. inflata marks the top of the Y zone. The G. flexuosa marker is consistent



Analysis of depositional processes and facies within the stratigraphic framework
developed in this study sheds light on the timing of various depositional events within
the intraslope basins. The majority of cores show that very little downslope transport
occurs during interglacials. Most cores record hemipelagic deposition during the Z
and X zones. However, sediments through the glacial Y zone record downslope trans-
port processes in the intraslope basins. Several cores show a pattern of slumps and
debris flows followed immediately upsection by sandy turbidites and deposits derived
from channelized flow. For example, Core IG38-15 (773 m water depth) in Figure 11.6
contains numerous silt and fine sand laminae and thin beds from 300–469 cm repre-
senting overbank deposits derived from flows down a small leveed channel. These
sands overlie deformed mud and sand beds that are apparently a slump/debris flow
deposit. Both the mass transport deposits and the overbank deposits represent LSTs
that were deposited in the Y zone.

Integration of reworked microfossils into the framework highlights the occurrence
of remobilization of sediments during the Y zone. Redeposition is most spectacularly
displayed in the region of the East Breaks Slide Complex. For example in core
91L575-2B, G. flexuosa (240 cm) is present in LST turbidites (220–270 cm) of the
East Breaks Slide Complex. The Z zone in this core is approximately 150 cm thick
and the G. inflata marker is found at 160 cm. Based on stratigraphic markers and
thicknesses, G. flexuosa appears to be reworked and represents Y zone remobilization
(during sea-level lowstand) of sediments originally deposited during the X zone.
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with the occurrence of a white volcanic ash found in several of the cores in the intraslope
basins. Note the parallel coarse fraction and carbonate plots that are used in conjunction with
the Menardii Index to zone the cores (see text for discussion). Additional cores for this study
were used to calibrate the seismic facies (e.g. 91L580-2; facies types after Damuth, 1980) – see
colour version of this figure in Appendix.

Figure 11.6 Continued
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12.1 Introduction: Taphonomy – What is it About?

Paleontologists study the fossil record to learn about ancient lifeforms, their evolution
and interaction in the geological past. However, their efforts are constrained by the
uneven and incomplete nature of the rock and fossil record. As discussed in this chap-
ter, Taphonomy and related disciplines, such as paleoecology and stratigraphy, are his-
torical sciences (Martin, 1999) concerned with the history of Earth and the evolution
of life recorded in the rocks.

When looking to the origin of a particular skeletal concentration in the geological
record, taphonomists try to identify the historical pathways to explain their genesis, and
to access their temporal resolution and spatial fidelity with obvious implications for

complex, because the origin of the fossil concentrations depends on an array of
processes and conditions operating at different scales, including (Behrensmeyer et al.,
2000): (a) rate of input, total volume, and composition of biological remains; (b) selec-
tivity and intensity of modification by physical, chemical and biological agents; (c)
the rate and permanence of burial; (d) diagenetic conditions in the upper part of the
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paleoecological and evolutionary studies. However, taphonomic pathways could be very
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sedimentary column, and (f) tectonic setting, determining rates of sediment aggradation
and compaction, and structural deformation. Thus, in Taphonomy, laws that are applica-
ble to the genesis of all fossil concentrations without restrictions are absent. However,
some empirical generalizations, principles or rules, can be determined (Wilson, 1988;
Martin, 1999), such as: (a) organisms with hard parts are more likely to be preserved; (b)
rapid burial, particularly by fine-grained particles, in the absence of decay and scaven-
ing, favor preservation; (c) taphonomic loss in shallow-marine environments is medi-
ated by dissolution and bioerosion, whereas in terrestrial and fluvial settings it is largely
enhanced by transport, disarticulation, sorting, and breakage; (d) small hard parts do not
necessarily outnumber large ones; and (e) big hard parts do not necessarily last longer
than small ones (see Martin, 1999, for a more complete list of principles).

In the context above, the term Taphonomy, in its sensu stricto (literally “burrowing
laws”), is a misnomer (Cadée, 1991; Martin, 1999), and a more realistic definition is
that Taphonomy is the study of how biological, chemical, and physical processes oper-
ating between each stage or pathway preserve or destroy organic remains and affect
information in the fossil record (Behrensmeyer and Kidwell, 1985; Behrensmeyer
et al., 2000). Viewed from this perspective, the ultimate value of Taphonomy is that
there are patterns and processes that can only be documented by the fossil record, sup-
plying relevant information on sedimentary environments and processes which them-
selves have left no traces in the stratigraphic record (Fernández-López, 2000).
Determine and understand these are the main challenge of taphonomists.

Although as old as Paleontology (Cadée, 1991), applied taphonomic studies began
only in the twentieth century with the work of German school of Aktuopaläontology
(mainly during the twenties, e.g. Wasmund, 1926; Weigelt, 1927a, b; Richter, 1928)
and later on, by the work of the russian geoscientist Efremov (1940). Taphonomy
spread from Russia and Europe to United States and has been intensively applied to
Vertebrate Paleontology, initially by researchers, such as Olson (1958), Schaefer
(1962), Lawrence (1968), Brain (1969) and Voorhiess (1969), and more recently by
Boy (1977), Behrensmeyer (1978, 1988), Hill (1979), Bishop (1980), Hanson (1980),
among others. Taphonomy found its entry to Invertebrate Paleontology by the work of
Seilacher (1959, 1973), Kidwell et al. (1986) and Flessa (1987); and to Paleobotany
by the work of Spicer (1980), Gastaldo (1986) and Pfefferkorn et al. (1988), among
others. Nowadays, studies in taphonomy are applied to almost all paleontological
branches. The most recent tendencies in taphonomy include a revival of some of the
actuopaleontological concepts of the German school of the beginning of the century,
which led to development of the branch of Experimental Taphomomy (e.g., Lask,
1993; Kidwell and Labarbera, 1993; Briggs, 1995). The tendency toward the study of
temporal resolution of fossil concentrations, which began in the early eighties, were
employed not only to marine faunas (e.g, Fürsisch and Aberhan, 1990; Flessa et al.,
1992; Kidwell, 1993; Kowalewski, 1996; Olszewski, 1999), but also to terrestrial fos-
sil assemblages (e.g. Behrensmeyer, 1988; Kidwell and Behrensmeyer, 1993b; Aslan
and Behrensmeyer, 1996; Holz and Souto-Ribeiro, 2000). A very complete overview
on taphonomy and its role in modern Geosciences and Biosciences is given by
Behrensmeyer et al. (2000).



Since the advent of Sequence Stratigraphy in the late 1980’s (e.g. Wilgus et al.,
1988) and its increasing application in almost all types of marine and terrestrial depo-
sitional systems, taphonomy is experiencing a strong tendency towards integration
with sequence stratigraphy studies. The integration between the dynamic concepts 
of stratigraphic analysis (e.g. identification of parasequences and depositional
sequences) and the analysis of the fossil record (e.g. appearance and disappearance of
fossils in the geological column, temporal mixture of fossils etc.) and the increasing
integration between sequence stratigraphy and applied taphonomy are the key points
of the present chapter. In other words, we will focus on the integration between
sequence stratigraphy and taphonomy, in order to demonstrate that the stratigraphic
control on fossil distribution and preservation is optimally analyzed and interpreted
within a genetic stratigraphic framework, obtained by high-resolution stratigraphic
analysis.

12.2 Concepts and Methods

In the last 20 years, the renewed interest in Taphonomy produced several studies
where the basic concepts and some taphonomic methods were proposed and discussed
(see, for example, Brett and Baird, 1986, 1997; Kidwell et al., 1986; Speyer and Brett,
1986; Kidwell and Bosence, 1991; Kidwell and Behrensmeyer, 1993b; Kidwell and
Flessa, 1995; Kowalewski, 1996, 1997; Martin, 1999; Fernández-López, 1999;
Behrensmeyer et al., 2000). Among them, the concepts of Taphonomic Feedback,
Spatial Fidelity, and Time-averaging and its implications to paleoecology were
intensely debated and critically reviewed by several authors (e.g. Kidwell and
Bosence, 1991; Kidwell and Flessa, 1995; Kidwell, 1998; Kowalewski, 1996, 1997;
Kowalewski et al., 1998; Behrensmeyer et al., 2000; Kidwell, 2002).

In sequence stratigraphy and applied taphonomy, genetic terms such as stratigraphic
cycles, stratigraphic sequences, parasequences and taphofacies are employed to denote
rock bodies of the stratigraphical record (see also Fernández-López, 2000, for the con-
cepts of taphocycles, taphosequences and taphorecords). Here, one of the most impor-
tant concepts is that fossil concentrations and their taphonomic traits change along
environmental gradients. The differential preservation of bioclasts among sedimentary
facies reflects the differential activity of taphonomic processes in different depositional
settings. In this context, Fürsich and Oschmann (1993) proposed a genetic classifica-
tion of the fossil concentrations based on the two main features: biofabric (three-
dimensional arrangement of skeletal remains in the matrix, including orientation,
packing and sorting of bioclasts) and taphonomic signatures that express the quality of
preservation. Both features records biotic and abiotic parameters of the environment,
along an onshore–offshore gradient. While the taphonomic signatures of skeletal ele-
ments often reflect the original habitats of the species, the biofabric is determined by the
final concentration process (Davies et al., 1989; Fürsich and Oschmann, 1993). Thus, the
use of the biofabric and the taphonomic signatures resulted in a genetic classification,
including nine genetic types (see the next section).
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Taphofacies or taphonomic facies (Speyer and Brett, 1986) correspond to “suites
of sedimentary rock characterized by particular combinations of preservational fea-
tures of the contained fossil” (Brett and Speyer, 1990). Taphofacies are defined and
interpreted by considering (a) the state of preservation of bioclastic particles, such as
the degree of abrasion, dissolution, bioerosion and mineralization, and (b) the bio-
stratinomic style of skeletal accumulations that varies predictably along environmen-
tal gradients (Speyer and Brett, 1986, 1988, 1991; Brandt, 1989; Fürsich and
Oschmann, 1993; Kowalewski et al., 1994). Thus, the taphofacies concept could be
used as a predictive tool (see Speyer and Brett, 1988, for an example) not only in the
marine sequences, but also to continental deposits (see Behrensmeyer, 1988).
However, it should be noted that after fifteen years of the publication of the Speyer
and Brett’s (1998) paper a critical look into the taphonomic literature shows that no
consensus has emerged on taphofacies methodology (see Kidwell et al., 2001, for a
critical review). Anyhow, taphonomic signatures (Davies et al., 1989; Fürsich and
Oschmann, 1993) are still the main tools to determine the state of preservation of
organic particles. These were documented for a variety of organisms both in the mod-
ern and ancient sedimentary environments. However, consensus does not exist in the
literature regarding the taphonomic variables scored (e.g. degree of articulation, bio-
erosion, breakage), how damage states are quantified (grades), and which methods of
data analysis must be employed (Kowalewski et al., 1994; Best and Kidwell, 2000a, b;
Kidwell et al., 2001), making comparisons among different works difficult. In fact,
only very recently, some methodological strategies based on the sensitivity of tapho-
nomic signatures to sampling, data-collection, and data analysis were tested using the
skeletal accumulations from subtidal mud, sand, and shell gravel in the San Blas
Archipelago of Caribean sea, in order to standardize the methods in taphofacies stud-
ies (see Kidwell et al., 2001). However, as observed by the authors the protocol sug-
gested deserves testing in the fossil record (Kidwell et al., 2001).

Keeping the methodological problems above aside, it should be noted that several
studies (Speyer and Brett, 1986, 1988, 1991; Fürsich and Oschmann, 1986; Brett and
Baird, 1997; Fernández-López et al., 2000) have consistently demonstrated that the
genetic types of skeletal concentrations agree well with the stratigraphical, sedimento-
logical, paleoecological, and ichnological data of a given sedimentary basin (see e.g.
Fürsich and Oschmann, 1993; Fürsich and Pandey, 2003).

12.3 Taphonomy and Sequence Stratigraphy in Paralic
Depositional Systems

The processes and events that are subject of applied taphonomic studies are essentially
the same as those that control the genesis of a given sedimentary deposit. Thus, the
taphonomic analysis has to be closely related to stratigraphic analysis. In other words,
only by fully understanding the stratigraphic framework and the processes that acted
during its genesis one can practice paleontology in an adequate and secure manner. 
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In fact, many of the current models in paleontology (e.g. biozone analysis, mass
extinctions versus stepwise extinctions, punctuated equilibrium) require robust strati-
graphic knowledge in order to be applied. Hence, every significant paradigmatical
change in stratigraphic science affects paleontology, and specially taphonomy. With
the advent of sequence stratigraphy as an analytic tool aiming a genetic interpretation
of the sedimentary record, the pathway to taphonomic interpretation has changed – the
dynamic manner of stratigraphic interpretation inspired taphonomists to look at the
fossil record in a new manner. This includes the fossiliferous rock record at the level
of facies and depositional systems as well as on the level of parasequences and sys-
tems tracts.

The recognition that the sedimentary record is highly punctuated, where the
average day-by-day sedimentation is obliterated by sedimentary events of high mag-
nitude, has led taphonomists to practice a new type of analytical approach on fossil
occurrences – an approach that is clearly stratigraphy-orientated. For example, Brett
and Seilacher (1991) depicted a model of storm taphonomy where most of the classi-
cal fossillagerstätten of the world are interpreted in terms of tempestites. Onshore
zones preserve concentration-lagerstätten (e.g. the Triassic Muschelkalk coquina),
while under deep water conditions conservation-lagerstätten are generated (e.g. the
Solnhofen or the Hunsrück fossils). O’Brien et al. (1994) applied this concept to
crinoid-bearing mudstones from the Silurian of New York and Soares (2000) used it to
explain the unique Mesosaurus taphocoenosis of the Permian Paraná Basin, Brazil.

The popularity of sequence stratigraphy analysis increased during the nineties and
with its almost universal application - from marine to continental settings – taphono-
mists now are aware that the record of fossils is clearly conditioned by the depositional
history as depicted by sequence stratigraphic analysis. The insight came from inverte-
brate taphonomists due to the proximity of their subject of study – the marine fossils –
and the pioneer sequence stratigraphic model. Skeletal concentrations, as shell-beds and
bone-beds in shallow marine facies, were thought to be the product of storms and other
reworking events, as pointed out, for instances, by Mongin (1959), Reif (1971, 1982),
Aigner (1985) and Kidwell (1989).

12.3.1 Shell-Beds, Taphofacies and Sequence Stratigraphy

Sequence stratigraphy has its root in the oil industry since it has originated from
seismic stratigraphy (e.g. Payton, 1977), but with the increasing spread and popularity
of the sequence stratigraphic concepts in the academia, taphonomy and sequence
stratigraphy began to recognize their mutual importance. Key surfaces within a strati-
graphic framework can be marked with the help of certain types of skeletal concentra-
tions, and its origin can be adequately analyzed and understood by the application of
concepts of sequence stratigraphy.

Banerjee and Kidwell (1991) were the first authors to state this clearly. Their study
was based on the investigation of the systematic association between shell beds and
parasequence-scale flooding surfaces in a Cretaceous third-order sequence, linked to
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a coal-bearing unit (Mannville Group of the Alberta Foreland Basin, Canada).
Parasequences within the transgressive and highstand systems tracts of the studied
interval have shell beds positioned in stratigraphically controlled levels (Fig. 12.1).

The authors recognized that shell-beds may develop at the base and at the top of
parasequences. The fossil concentrations at the base of parasequences, named the
“base-of-parasequence” or BOP shell-beds, are simple, single-event storm concentra-
tions composed of comminuted, exotic shell debris and constitute valuable clue to
flooding surfaces, specially within the more distal part of the transgressive systems
tract, where the flooding surfaces may be lithologically hard to recognize. The BOP
shell-beds lay upon flooding surfaces. Shelly accumulations occur also at the top of
parasequences. These so-called TOP shell-beds are thicker, microstratigraphically
complex units that denote local reworking or indigenous concentrations. The TOP
shell-beds are capped by flooding surfaces and are specially useful in the shallower
parts of the transgressive systems tract, where the BOP shell-beds may be absent. A
third type of shell bed is recognized in deep water facies between parasequences and
commonly is associated with firmgrounds and hardgrounds. These “Mid-sequence
shell-beds” are composed of lime mudstones with disperse shells in various stages of
dissolution and replacement, and represent a terrigenous-starved hiatal concentration
generated during episode of maximum flooding (Fig. 12.2).

We consider the work of Banerjee and Kidwell (1991) as a classic example of inte-
gration of sequence stratigraphy and taphonomy, because it clearly demonstrates that
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Figure 12.1 Schematic diagram of parasequences of an interval within the Manville Group,
Lower Cretaceous of Canada, showing the stratigraphically controlled occurrence of shell beds
(after Banerjee and Kidwell, 1991, modified).



analyzing the shelly concentrations and interpreting correctly its genetic signature, the
taphonomists may provide important clues for delimitation of flooding surfaces
within the stratigraphic framework. On the other hand, the stratigraphers may aid the
taphonomists interpreting some particular concentrations by providing stratigraphic
information about the fossiliferous horizons.

Another example worth commenting is provided by Kidwell (1991), who defines
three types of shell-beds, based on the dynamics of accumulation: (1) event concentra-
tions, which are relatively thin and locally restricted coquinas originated during rapid
events (e.g. a single mass mortality or a single event of storm reworking); (2) compos-
ite concentrations, which are thicker and wide spread coquinas resulting of multiple
events, accumulated in shallow marine and coastal environments, such as tidal inlets,
washover fans etc.; and (3) hiatal or condensed concentrations, formed in sites of very
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Figure 12.2 Characterization of the different kind of shell beds associated with flooding
surfaces (after Banerjee and Kidwell, 1991, modified).



low to nil sedimentation rate. These three types of shell beds have a predictable
distribution within a depositional sequence, as shown in Figure 12.3. Kidwell (1991)
does not show the depositional sequence on a depositional systems tract level, but in
the context of a transgressive–regressive cycle. The stratigraphic significant coquinas
are as follows:

(1) a base-of-cycle coquina, mostly a composite or a hiatal concentration,
which may coincide with a sequence boundary or, in cases where low-
stand deposits are absent, with a transgressive surface;

(2) a midcycle coquina, generally a hiatal concentration associated with the
condensed section of the depositional sequence;

(3) an end-cycle coquina, in general a composite concentration forming a
regressive lag.

Fürsich and Oschmann (1993) combined the use of shell-bed taphonomy with a
sequence stratigraphy framework, in a sedimentary basin analysis. For example, shell-
beds within the Jurassic (Bathonian–Oxfordian) shallow-water pericratonic basins of
Kachchh and Rajasthan, western India, were grouped in nine genetic types: (a) fair
weather wave concentration, (b) storm wave concentration, (c) proximal tempestite,
(d) distal tempestite, (e) current concentration, (f) primary biogenic concentration,
(g) winnowed concentrations, (h) transgressive lag, (i) condensed concentration.
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Figure 12.3 Idealized distribution of shelly hiatal and lag concentrations within a marine
sliliciclastic depositional sequence. (A) shows the proximal to distal trend of the different types
of coquinas and (B) shows their distribution within retrogradational to progradational para-
sequences representing a regressive–transgressive cycle (after Kidwell, 1991, modified).



These concentrations correspond to different bathymetric settings, and although some
types occur in the same bathymetric range, their taphonomic signatures coincides well
with the sedimentological data of geological sections where they are found.

By plotting the distribution of the nine genetic types of skeletal concentrations
against the stratigraphical record of three sections (Kamaguna, Keera, Jumara) and
supplementing it with sedimentological, paleoecological and ichnological data,
Fürsich and Oschmann (1993) noted that the shell-beds records three orders of bathy-
metric trends. According to the authors, the first two orders are shallowing–deepening
cycles, that may represents eustatic changes in sea level, and the third order corre-
sponds to parasequences with a strong asymmetric sedimentary record.

The distribution pattern of skeletal concentrations in the Kamaguna section (Jura
Dome), for example, encompassing rocks of Patcham and Chari Formations, allows
the recognition of one large shallowing–deepening cycle, indicated by the replacement
of storm-influenced concentrations by winnowed concentrations and by a decrease in
the stratigraphic frequency of concentrations up-section (Fürsich and Oschmann,
1993). A second trend is noted by changes in grain size and sedimentary structures,
and in the pattern of the nine types of skeletal concentrations. Finally, the third trend is
manifested by the occurrence of transgressive lags, which follow abruptly skeletal
concentrations that are indicative of shallow water conditions (Fürsich and
Oschmann, 1993). At Jumara Dome, the rocks of the upper part of the Patcham
Formation and Chari Formation, record cycles analogous to those of Jura Dome.
However, the scarcity of skeletal concentrations generated under processes operating
in shallow water conditions, and the low stratigraphic frequency of all identified types
of skeletal concentrations are suggestive of a more offshore, deeper position of the
area, showing that the overall trend is also modified according to their bathymetric
position within the basin.

Gomez and Fernández-López (1994) focus on condensed sections and the presence
of mixed taphocoenosis as a commonly employed criterion for the recognition of
stratigraphic condensations. Within the basic sequence stratigraphy model, periods of
maximum flooding lead to a temporal condensation of sediments in the offshore
region, where the condensed section forms an important level for basin-wide correla-
tion. These beds, recognizable by the presence of hardgrounds, high concentration of
organic matter, offshore microfossils and autigenic minerals such as glauconite and
siderite, are in general the first to be picked up during the initial stratigraphic analysis,
and their relatively easy recognition gives the false idea that the condensed sections
develop only during transgressive maxima. The authors drove attention to two issues:
(1) other factors than major transgressions may condense sediments and (2) these fac-
tors should be recognized and taken into account in sequence stratigraphic analysis.
Therefore, the authors recognize three categories of condensed sections: (1) strati-
graphic condensation (due to decrease of the net sedimentation rate), (2) sedimentary
condensation (due to decrease in the accommodation rate), and (3) taphonomic
condensation (due to mixture of different age fossils).

Only the first category marks the transgressive maximum (near the R inflection point
of the eustatic curve as depicted by the concept of Posamentier et al., 1988, see p. 257).
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The second is linked to low accommodation as during regressions and should be linked
to lowstand systems tracts and late highstand systems tracts. The third category
involves reworking of fossils in a high-energy environment and commonly occurs at
the base of tempestites, i.e, sediments with high accumulation rate. Periods of tapho-
nomic condensations are represented by concentrations formed by reworked fossils of
different ages and different modes of preservation, and this type of condensation does
not necessarily mark horizons of stratigraphic or sedimentary condensation. The
authors concluded that the relative distribution of condensed sections cannot be used
as a criterion for paleogeographic characterization or as indicators of base level
changes, and that the presence of taphonomic condensed levels as an indication of
stratigraphic condensation may not be a useful criterion.

Brett (1995, 1998) was one of the first to recognize and summarize the relationship
of sequence stratigraphy to biostratigraphy, taphonomy and paleoecology. His main
premise is that the predictive conceptual framework of sequence stratigraphy may be
helpful to analyze and understand certain fossil concentrations, including fossil-
lagerstätten. Brett (1995) shows the linkage between systems tracts and different
taphonomic modes of preservation, using the classical Ordovician and Devonian
records from New York State, as an example. He shows conclusively that taphofacies
have a close relationship to sequence boundaries and flooding surfaces, because the
sedimentation rate and environmental energy that characterize the periods of sequence
boundary formation or flooding events determine the formation of different types of
taphofacies (Fig.12.4). This concept has been applied by Simões et al. (2000) to the
fossil concentrations of the Devonian sequence of the Paraná Basin, Brazil.

Brett (1995) states that corroded and fragmentary fossils are associated with
sequence boundaries and with the development of the lowstand system tracts. Sediment
bypass due to low accommodation, during lowstand systems tracts and initial trans-
gressive systems tracts may lead to the development of coquinas with fragmented and
abraded bioclasts. Thus, these shell-beds with high reworked elements are the most
typical taphonomical expression for the base of parasequences, during lowstands and
transgressive systems tracts, similar to what has been pointed out by Banerjee and
Kidwell (1991). Reaching the period of maximum flooding and the development of the
so-called condensed section, biohermas reef structures will overly major flooding sur-
faces in shallow water facies. In deeper water, fossils will not be significantly reworked
because of the relatively low energy conditions of the offshore environment, but will be
gradually destroyed by geochemical and biological processes (e.g. corrosion, dissolu-
tion, borings and incrustation), resulting in thin accumulation of geochemically stable
skeletal fragments (e.g. conodont elements and vertebrate teeth). Highstand deposits,
in turn, may display discrete thin skeletal hash beds. The author points out that the
smooth transition between the early and the late highstand sediments, as predicted by
the general model, does not occur in many sequences. Careful examination of several
sections in the Paleozoic Appalachian basin revealed the occurrence of a distinct dis-
continuity, capped by a discrete condensed shell-bed separating the aggradational and
the progradational phase of the highstand systems tracts. These so-called “precursor
beds” would mark the initial phase of forced regression, bringing portions of the sea
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floor within the storm wave base and causing submarine erosion (Brett, 1995). It is
worth to highlight the fact that the regressive phase of the late highstand and the forma-
tion of regressive systems tracts, as stated by several authors (e.g. Hunt and Tucker,
1992; Plint, 1996), is not predicted by the original model of sequence stratigraphy (e.g.
Wilgus et al., 1988) and, thus, the “precursor beds” of Brett (1995) represent an important
contribution of taphonomy to sequence stratigraphic analysis.

12.3.2 Paleoecology and Sequence Stratigraphy

In his 1998 paper, Brett focuses on the relationship of sequence stratigraphy and
paleoecology, since the two disciplines share partly their conceptual and methodolog-
ical framework. One relationship is the usage of the analysis of paleoecological data
as a sequence stratigraphic tool (e.g. Sagemann, 1992). Paleoecological information
(e.g. salinity, water depths, bottom-water oxygenation) may indicate stratigraphic posi-
tion within a depositional sequence. Concentration of echinoderms and cephalopods
may be an indicator for open marine conditions, typical for late transgressive and
early highstand deposits, and may even permit the recognition of sequence strati-
graphic key surfaces (e.g. the appearance of marine ichnofossils as indicative of
marine incursions associated with maximum flooding events; Fig. 12.5).

An inverse relationship does exist: the conceptual framework of sequence
stratigraphy allows studies and predictions of the patterns of biological changes in the
geologic record. The chronostratigraphic character of the framework of sequence
stratigraphy can be used to make distinction between ecological successions (changes
in ecosystems over a time-span of tens to few hundreds of years, i.e. short-term
ecological changes) from community replacement (community change over tens to
hundreds of thousand years, i.e. a long-term ecological change).

In summary, different kind of shell beds occur not randomly within a paralic
succession, but have their distribution and taphonomic signature controlled by the
sedimentation regime, as it can be analyzed and predicted by sequence stratigraphy.
Figure 12.6 shows an overview on shell bed occurrence as discussed by above cited
authors. It is a very schematic representation, which tentatively shows the distribution
of coquinas in a ramp margin setting.

The sequence boundary is characterized by abraded and fragmented fossils due to
forced regression, which reworks and transports bioclasts basinwards; the transgres-
sive surface may be marked by the base-of-cycle shell beds of Kidwell (1991), the
maximum flooding surface is characterized by condensed, hiatal shell beds due to
slow or nil sedimentation rate (equivalent to the mid-sequence shell beds of Banerjee
and Kidwell, 1991); and a occurrence of reworked shell beds, the precursor beds
(Brett, 1995) mark the turnover from the initial to the late highstand systems tract.

Within each parasequence two kinds of shell beds may occur, the top-of-para-
sequence (TOP) and base-of-parasequence (BOP) shell beds as described by Bannered
and Kidwell (1991). The occurrence and distribution of these shell beds is dictated by
the normal weather and the storm weather wave base. In the offshore portion, well
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below storm wave base, sedimentation of muddy, distal tempestites may preserve
benthic fauna in life position, forming a zone of in situ burial (obrution deposits), as
described by Brett (1995) and Simões et al. (2002).

Emery and Myers (1996) present an attempt to summarize the fossil signature of
the different depositional systems tracts of the general sequence stratigraphic model,
but the information is strongly biased towards the offshore facies. As pointed out by
the authors, their review is limited by the small number of available studies where
paleontology and sequence stratigraphy were fully integrated, and most of the exam-
ples come from biostratigraphic research of the Gulf of Mexico. Nevertheless, it is
worth discussing and summing up (Table 12.1).

Another example that shows the fundamental importance of paralic sequence
stratigraphy for the understanding of preservational aspect of taphocoenosis comes
from the pioneer work of Holland (1995a, b). The author used computer added simu-
lations of first and last appearances of fossils within hypothetical stratigraphic frame-
works to show that the distribution of fossils are not random, but strongly controlled
by the facies changes, ecological attributes of the organisms and episodic accumula-
tion of sediments. In subsequent papers, Holland improved the model, predicting
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Figure 12.5 Summary of body and trace fossils as indicators for significant stratal surfaces
created by paleoenvironmental change. (A) the ichnological signature of a marine flooding sur-
face, (B) the reflex of minor marine incursions into a non-marine environment, (C) an omission
surface associate with shallowing and overlying by a “precursor bed”, and (D) an omission
surface recording an interval of sediment starvation and hardground development in offshore
facies (after Brett, 1998, modified).
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stratigraphic distribution of first and last occurrences, changes in species abundance,
changes in species morphology and distribution of gaps in the fossil record (Holland
and Patzkowsky, 1999; Holland, 2000).

In order to understand the control on body fossil distribution in stratigraphic
section, the author develops a series of models with increasing complexity and “geo-
logical reality”. Preferred water depth of the taxa is used to model sedimentological
control, by dividing 80 time steps into two identical shallowing upwards successions 
(�two parasequences) separated by a sharp flooding surface (Fig. 12.7). Assuming that
all the 50 modeled taxa share the same facies control, the model shows that there is a
clear control on the fossil distribution. Shallow water taxa cluster near the parase-
quence boundary, deep water taxa occur preferentially at the base of the parasequences.

As a depositional sequence is formed by parasequences arranged in sets with dif-
ferent stacking pattern, the author incorporates the previous model to the depositional
sequence concept. Lowstand, transgressive and highstand systems tracts are modeled
in terms of parasequence set, incorporating a hypothetical diversity of 1000 taxa. All
parasequences have the same duration and rate of shoaling. Figure 12.8 shows the
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Table 12.1 Paleontological signature of the different systems tracts within a depositional
sequence (summarized after Emery and Myers, 1996)
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Figure 12.7 Model of the stratigraphic distribution of fossils within a parasequence, showing
that shallow-water taxa cluster near the parasequence boundary, while deep-water taxa occur
preferentially at the base of the parasequences (after Holland, 1995a, modified).

Figure 12.8 Result of the simulation of a section with two identical depositional sequences.
The first and last occurrences of taxa are clearly not random, but controlled by the stratigraphic
key surfaces of the sequences: clusters of first occurrences occur above the sequence boundary
and at all flooding surfaces of the transgressive systems tract, while clusters of last occurrences
occur beneath the sequence boundary and the flooding surfaces at the base of the transgressive
systems tract (after Holland, 1995b, modified).



results of the simulation of a section with two identical depositional sequences. The
first and last occurrences of taxa are clearly not random, but controlled by the strati-
graphic key surfaces of the sequences: clusters of first occurrences appear above the
sequence boundary and at all flooding surfaces of the transgressive system tracts,
while clusters of last occurrences are present beneath the sequence boundary and the
flooding surfaces at the base of the transgressive systems tract.

A preliminary test of the model is given by Holland (1995a, b), integrating
sequence stratigraphy and available paleontological data from the Upper Ordovician
section of southeastern Indiana, USA. The six sequences (Fig. 12.9) are composed by
limestones and shales, yielding marine invertebrates, with many hundreds of species
identified by previous workers. The author uses the paleontological data of Cummins
and Galloway (1913, in Holland, 1995a, b), who present the stratigraphic range of
over 230 species, most benthic forms, such as bryozoans, brachiopods, trilobites and
mollusks. As shown in the above-mentioned figure, the distribution of the first and last
occurrence spikes is clearly not random, but stratigraphically controlled. Most spikes
are clustered near the sequence boundaries, others within the transgressive systems
tract, corroborating the predictions of the model.

In summary, the history of a sedimentary basin influences strongly the distribution
of fossils and introduces a bias towards preservation. First and last occurrences of

taphonomy 265

Figure 12.9 First and last occurrences of marine taxa in the Upper Ordovician of
Indiana/USA. The dotted 99,9% line indicates the maximum peak size to be expected most of the
time, if the number of first or last occurrences were randomly distributed among the total num-
ber of horizons, indicating that the FADs and LADs are far more clustered than it would be
expected from random distribution (after Holland, 1995b, modified).



fossils within a geologic section are strongly controlled by base level changes, so that
the their range and pattern of distribution can not be accepted at face value, at least for
marine fossils. Terrestrial body fossils may have similar stratigraphic control, as we
discuss further on in this chapter.

Taphonomists are aware that beside biasing factors such as selective transport,
time-averaging, differential diagenetic influence and others, there is also a strati-
graphic bias introduced by the above discussed factors that control the generation of a
parasequence and its relative position within a depositional sequence. Holland (2000)
recognizes unconformity bias, facies bias, and condensation bias as the main strati-
graphic influence on fossil distribution (Fig. 12.10).

Unconformity bias occurs on the fossil distribution across sequence boundaries.
First and last occurrences tend to cluster because of erosion and/or no deposition dur-
ing the time span of life of the taxa. The bias increases with the duration of the hiatus
represented by the sequence boundary (Fig. 12.10A). Facies bias causes first and last
occurrences to cluster near flooding surfaces. Shallow water species tend to appear
below and vanish towards the parasequence limit, while deep-water species tend to
disappear toward the shallow facies of the parasequence and appear at or above the
flooding surface (Fig. 12.10B). The condensation bias causes first and last occur-
rences to appear relatively clustered within the condensed section of a depositional
sequence, where sedimentation rate is minimum (Fig. 12.10C). This bias alters the
perception of the relative timing of the biotic events, making them more closely
spaced than they actually are (Holland, 2000).

Another example concerning the stratigraphic control on fossil preservation in
paralic settings is provided by Gregory and Hart (1992) studying palynomorph record.
They tested the palynologic response to sea-level changes as recorded by the different
systems tracts within a depositional sequence. The results from different tested areas
were integrated into a model which can be summed up as follows.

The lowstand systems tract is characterized by a relatively high amount of terrige-
nous palynomorph, reflecting the domination of terrigenous forms even in outer shelf
regions. The amount of reworked palynomorphs will also be high because of the remo-
bilization of previously deposited sediments during the base-level drop and adjustment
of the river profiles. The age of the recycled material will depend upon the severity of
valley incision during the epoch of early lowstand deposition (i.e. the basin floor fan).

Preservation of terrestrial palynomorphs in the transgressive systems tract shows a
decreasing trend because of the increasing distance between depositional site and the
shoreline and the trapping of the terrigenous sediment in estuaries and bays of the coastal
zone. The record of recycled material will also decrease, and will probably indicate ero-
sion associated with the formation of a ravinement surface, or represent suspended load
that escaped from the estuarine zone during times of extreme high river discharge.

In the highstand systems tract the inverse pattern occurs, because sedimentation is
progressively more progradational, and the quality and quantity of the palynological
record will depend upon the proximity of the incoming deltas. This concept has been
applied by Holz and Dias (1998) to an Early Permian succession of the Brazilian
Paraná Basin.
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Figure 12.10 Types of stratigraphic biases, as discussed in the text (after Holland, 2000,
modified).



12.4 Taphonomy and Sequence Stratigraphy in 
Non-Marine Depositional Systems

It is noteworthy that almost all above discussed researches towards integration of
sequence stratigraphy and taphonomy are based upon fossil concentrations of
nearshore to offshore systems. This is due to three main issues:

1. the basic model of sequence stratigraphy, as depicted by the so-called
“Exxon-school” in the late eighties, is based on paralic systems, and
most of the key surfaces of the model (mainly the parasequence limits
and the maximum flooding surfaces) are readily recognized in those
settings, but are hard to identify in fluvial settings;

2. the stratigraphic record of terrestrial systems is spatially more patchi-
ness and vertically more discontinuous than the paralic record, hence
increasing the difficulty of the stratigraphic analysis;

3. apparently, the intrinsic taphonomic complexity of a given tapho-
coenosis is better recorded by shells and other marine invertebrate
remains than by bones in terrestrial settings.

However, sea-level is ultimate base-level, and, therefore, the application of the
basic concept of accommodation space as the control factor of fluvial sedimentation
has been investigated in the last few years, and stratigraphers are attempting to apply
the basic concepts of sequence stratigraphy to fluvial settings.

In a seminal paper, Wright and Marriott (1993) discuss the role of accommodation
and fluvial sedimentation. The authors stress the idea that a floodplain has a limited
capability to store sediment. Since the accommodation space available for sediments
to accumulate on a floodplain is controlled by the elevation of the channel and its
bankfull depth, the base-level is also the main control to sedimentation in fluvial set-
tings. When base level is stationary, floodplain deposits will rapidly aggradate and lat-
eral accretion will replace aggradational sedimentation. Channels will, therefore, be
more amalgamated. If the base level rises, the increasing accommodation favors stor-
age on the floodplain and channels will be isolated. In addition, the development of
hidromorphic soils may be favored due to the rising base level. Based upon these
premises, Wright and Marriott (1993) propose a simple architectural model for a flu-
vial sequence (Fig. 12.11). In this model, the lowstand systems tract is characterized
by coarse-grained channel in restricted areas and development of well-drained soils
on terrace surfaces. During the initial deposition of transgressive systems tract, the
accommodation, although increasing, is low enough to produce multistory sandbod-
ies, while the deposition of the late transgressive systems tract, due to the high accom-
modation rate, leads to the development of isolated channel bodies. During the
deposition of sediments under highstand system tract conditions, the rapidly decreas-
ing accommodation space is responsible for the formation of amalgamated channels
and higher rates of floodplain reworking.
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A similar model is depicted by Olsen et al. (1995) for the Upper Cretaceous
Mesaverde Group of Utah, USA. Five unconformity-bounded fluvial sequences are
recognized. The internal organization of a typical sequence (Fig. 12.12) shows amalga-
mated fluvial sandstone sheet at the base (corresponding to the lowstand systems tract
of the previous model of Wright and Mariott), followed by a succession of increasingly
scattered and isolated sandstone bodies which may culminate with marine or brackish
transgressive deposits. This is topped by a slightly amalgamated sandbodies with a
coarsening-upwards trend. While in the lower portion soil formation and large flood-
plain deposits are not easily preserved due to the reworking events, the middle part of
the ideal sequence (the transgressive systems tract in Wright and Mariott’ model) has a
higher preservation potential, with well preserved bed forms and bars forms, and
greater preservation of fine-grained deposits. In the topmost part of the idealized
sequence, the decreasing accommodation leads to reworking and greater amalgamation
of the sand bodies, and corresponding less preservation of fine-grained deposits.

The role of eustasy in controlling the creation of space for fluvial channels to
develop and amalgamate was stressed by several authors (e.g. Wright and Mariott,
1993; Koss et al., 1994; Olsen et al., 1995; Emery and Myers, 1996), while others (e.g.
Shanley and McCabe, 1994; Miall, 1996) advocated the role of tectonics, as the main
factor that controls base level and, therefore, alluvial sedimentation. Anyway, the basic
concept of sequence stratigraphy – that base level variations control accommodation – is
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Figure 12.11 A pioneer architectural model for fluvial sequence stratigraphy. The essential
concept is that during phases of low accommodation rate, the channels will amalgamate (as
during the LST and late HST), while during times of increasing accommodation rate (during the
TST), channels will become isolated and floodplain deposits will be more widespread (after
Wright and Marriot, 1993, modified).



surely applicable to fluvial strata, as shown conclusively by the literature. We refer the
reader specially to the collection of papers edited by Shanley and McCabe (1998).

This basic concept of a model for “fluvial sequence stratigraphy” has been further
discussed and improved (e.g. Blum and Price, 1998; Legaretta and Ulina, 1998), but
taphonomists working with terrestrial systems have never properly discussed the rela-
tionship between the taphonomic mode of fluvial preservation and the controls on
sedimentation as depicted by sequence stratigraphy.

Vertebrate taphonomists are aware that terrestrial taphocoenosis preserved in flu-
vial facies have strong preservation bias that reflects vertical distribution and on time-
averaging (e.g. Behrensmeyer and Hook, 1992). This bias is introduced by the
depositional style of the channel and the overbank deposits, as shown by the following
key studies.

Smith (1993) studied the fluvial facies of the Hoedemaker Member of the Late
Permian Teekloof Formation of South Africa. Analyzing the proximal to distal flood-
plain facies, he found that each setting has vertebrate fossils with distinct taphonomic
characteristics. The fossils of the channel bank environment are less weathered than
those of the floodplain, where, in turn, fossils are more densely packed. Weathering
increases and bone density decreases with the distance from the channel, so that in dis-
tal floodplain facies only scarce and weathered fossils do occur. Thus, the controlling
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Figure 12.12 Idealized alluvial sequence as depicted by Olsen et al. (1995). Compare with
Figure 12.11.



factor of the taphonomic signature of the vertebrate fossils is the proximity of the burial
site to the main channel combined with the frequency and intensity of floods capable to
bury the skeletal remains in the floodplain. Similar observation has been made by Holz
and Barberena (1994) studying the vertebrate fossil record of the Middle Triassic Santa
Maria Formation of the Paraná Basin from Brazil.

From a combination of pedogenic and taphonomic data, concerning quantification
of floodplain accretion rates and comparison between rates of accumulation and
destruction of bones, Smith (1993) discusses the time resolution of the studied sec-
tion. The findings of well-preserved Diictodon skulls in proximal floodplain facies are
an indication of the deposition rate: since bones exposed on the floodplain do not
withstand weathering for more than about 15 years (Behrensmeyer, 1978), the
approximate time needed to bury a well preserved bone element can be calculated.
The small (10 cm long) dicinodont skulls used by Smith (1993) indicate a floodplain
accretion rate of 5.5 mm/y. The pedogenetic features of the paleosoils, in turn, indicate
periods of about 10,000 years of very slow deposition, with an accretion rate of 
0,035 mm/y.

Studying in detail the Miocene overbank deposits of the Chinji Formation of
Pakistan, Willis and Behrensmeyer (1994) state that the preserved succession is not
the result of a gradual aggradational sedimentation of the overbank fine-grained sedi-
ments, but rather a product of sedimentation followed by long periods of non-
sedimentation and soil formation. Five hypotheses to explain the preservation of the
floodplain deposits are presented (Fig. 12.13), starting with the rather simplistic
model that the entire floodplain aggrades episodically. The second hypothesis postu-
lates that rates of sediment aggradation is controlled by the proximity of the channel:
in near-channel setting the sedimentation rate is greater than in the distal part of the
floodplains. Well developed paleosoils covering the overbank successions would indi-
cate depositional hiatuses generated during epochs when the main channel avulsed to
distant places on the floodplain. This model matches the interpretation of the
Hoedemaker Member by Smith (1993). The third hypothesis predicts episodes of
degradation and incision, and posterior aggradation due to raise in base level.
Channels and floodplain deposition is restricted to the valley until it is filled up, than
the river system is free avulse to other locations, in a process similar to hypothesis 2.
The fourth hypothesis predicts a continuous process of localized overbank deposition
in several positions over the floodplain, filling up areas where accommodation is
locally higher due to differential compaction or fault control, resulting in a patchwork
of stratified floodplain sequences. The fifth hypothesis predicts that channel avulsion
occurs during periods of rapid overbank deposition. The new channel belt creates its
course across the floodplain, filling lower areas with stratified sediments and resulting
in a depositional architecture similar to that of hypothesis four. Regarding vertebrate
taphonomy, Willis and Behrensmeyer (1994) discuss the influence on distribution and
pattern of fossil preservation by comparison of the depositional styles depicted from
the five hypothesis and the possible taphonomic modes of preservation. The deposi-
tional mechanism of the first hypothesis would result in a large preservation, with the
preserved fossils representing the floodplain fauna, as a whole. The preservation of
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Figure 12.13 Five hypothesis to explain preservation of floodplain deposits, as depicted by
detailed study of the Miocene Chinji Formation of Pakistan, as presented by Willis and
Behrensmeyer (1994). Discussion in the text.



fossils in sediments deposited by the mechanisms of the second hypothesis would be
controlled by the proximity of the channel. As the channel belt is relatively stable and
floodplain sedimentation decreases with distance from the margins, a ecological
gradient could be recorded.

For the third hypothesis, the fossil record would be biased by the alternation of
habitats formed by the phases of fluvial incision, when habitats are to the incised val-
leys, and the phases of aggradation, when the environment would become more uni-
form. Lag deposits of reworked bones, representing time-averaged taphocoenosis,
could be formed during the phases of fluvial incision. Hypothesis four and five predict
similar geometry of the overbank deposits, with contemporaneous depositional and
soil-forming areas. Vertebrate accumulations would be patchy and localized in flood-
plain channel deposits associated with crevasse-splay deposition, similar to the
Permian taphocoenosis studied by Smith (1993).

In a study on bone beds in the Lower Cretaceous Wealden Group of England,
Cook (1995) has shown that vertebrate accumulations in high-energy fluvial settings
are characterized by fragmentary bones with well-developed abrasion features, result-
ing from several cycles of reworking by the river system and deposition as a win-
nowed lag deposit within the channel. In low-energy overbank settings the skeletal
elements are less abraded and fragmented, but more weathered.

Thus, it is clear that the preservation of terrestrial vertebrate body fossils is
controlled by the facies type of the fluvial system. But preservation of vertebrate trace
fossils (tracks and footprints) is also facies-dependent, as shown by several studies
(e.g. Cohen et al., 1991; Smith, 1993; Nadon, 1993). In fluvial settings, the trace
fossils preserve most likely in proximal floodplain settings.

Abridging the above discussion, one may say that the mode of the fossil record in
fluvial systems is controlled by the development of channel and floodplain facies, as
summarized in Table 12.2. The sub-environments of the fluvial settings have signifi-
cant differences in sedimentation rate and channel features, leading to different
taphonomic signatures.

The development of these settings, in turn, are controlled by variation of base
level. Hence, well versus poorly drained floodplains and large amalgamated versus
isolated sand bodies are a question of systems tract development. Thus, one can con-
clude that the taphonomic preservation, as well as the distribution of terrestrial body
and trace fossils are a function of base level change. In this context, their preservation,
as well as their first and last occurrences within a given stratigraphic unit may not be
biologically, but stratigraphically controlled, in a manner analogous what Holland
(1995a, b) demonstrated conclusively for the distribution of marine fossils.

Since the taphonomic signatures of terrestrial fossils are controlled by the type of
fluvial settings, we may speculate that the overall characteristics of a taphocoenosis
will show predictable variations within a fluvial depositional sequence. Figure 12.14
shows an attempt of integration between sequence stratigraphy and vertebrate taphon-
omy, derived form the previous discussion. Considering hypothetical taphocoenosis
represented by bones collected in the three fluvial settings depicted in Table 12.2, the
intrinsic taphonomic features of that concentrations would be controlled by its
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position within the fluvial depositional sequence. Avulsion and crevassing of the
fluvial channels is closely and directly related to the degree of disarticulation of the
considered taphoncoenosis, and to the degree of time-averaging. Increasing channel
amalgamation reduces skeletal articulation. This is the typical situation during low-
stand and late highstand deposition. During times of transgressive systems tract devel-
opment, the increasing accommodation will preclude channel amalgamation and
enhance overbank deposition, and the fluvial style will change from braided to anasto-
mosing. This will decrease disarticulation and mixture of faunal elements, hence
decreasing time-averaging. The excision would be the “condensed section” of the
fluvial sequence: during times of maximum accommodation rate (the “maximum
flooding surface” in Fig. 12.14), most of the depositional site would be represented by
distal floodplain deposits because of the scarcity and separation of the fluvial chan-
nels. The typical low sedimentation rate of this timing would lead to more prolonged
exposure of the vertebrate remains, and therefore the bones of the taphocoenosis
would be slightly more disarticulated and time-averaged than in the earlier part of the
transgressive systems tract. Occasional tidal influence during the times of “maximum
flooding”, as predicted by some authors (e.g. Olsen et al., 1995), would lead to a sim-
ilar taphonomic signature because of the reworking caused by tidal currents.

We feel that some of the biostratigraphic problems, concerning both the temporal
resolution and interbasinal correlation, may be due to the lack of integration between
studies concerning fluvial sequence stratigraphy and taphonomy. Most of the biostratig-
raphers working with terrestrial faunas take first and last appearance of certain fossils as
undoubted horizons for correlation. For instance, Lucas (1998) proposes that the first
and last appearance datum (FAD and LAD) define a “land-vertebrate faunachron”, an
informal biochronological units used for biostratigraphical and biochronological corre-
lation of the Triassic in a global scale. But sequence stratigraphy is completely absent as
it is in almost all papers of this type, mostly because the lack of integration between
paleontologists and stratigraphers. In this way, the appearance datum used by Lucas
(1998) and others might be reflecting, at least in part, a stratigraphically controlled
taphonomic history and therefore may not be such a accurate datum for correlation. We
feel that this is a particularly important issue concerning correlation of the Triassic
systems worldwide. If one studies the terrestrial fossil content of a transgressive systems
tract of an alluvial setting of a certain basin and compares it with an alluvial succession
developed during highstand systems tract situation in a different basin, the comparison
between the appearance datum of the fossils may not match because of the different sed-
imentation regime, as discussed above. Floodplain accretion and soil preservation, as
well as the reworking inside the channel setting will be completely different in the two
situations, and may lead to the biostratigraphic problems concerning correlation of
biozones of terrestrial vertebrate fossils, since almost all paleontologists use only lithos-
tratigraphic columns as a geologic basis for their biostratigraphic study (mainly because
in many instances these are the unique sources of data available, see Schultz, this
volume, Chapter 6). Viewed from this perspective, we feel that taphonomy of fluvial
fossil-bearing successions integrated to detailed sequence stratigraphic study of those
succession might shed some light on the problems of correlation.
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12.5 Conclusions and Afterthoughts

The advent of sequence stratigraphy – the geoscience that divides the infill of a
sedimentary basin into genetic packages – revitalized and modified the traditional way
in describing and interpreting the sedimentary record of a basin. Initially applied to
paralic settings, nowadays sequence stratigraphic models arose also for non-marine
systems, specially for fluvial settings. In a certain manner, stratigraphic science under-
went a revolutionary process, where the traditional litostratigraphic approach, prac-
ticed by most stratigraphers until the 1980’s, was replaced by process-orientated
stratigraphic analysis.

As the processes and events that produce fossil accumulations are essentially the
same as those that control the formation of the enclosing sedimentary deposit, the tapho-
nomic analysis has to be closely related to stratigraphic analysis. Only by fully under-
standing the stratigraphic framework and the processes that acted during its genesis one
can practice paleontology in an adequate and secure manner. Hence, every significant
paradigmatical change in stratigraphic science affects paleontology, and specially
taphonomy. With the advent of sequence stratigraphy as an analytic tool aiming a genetic
interpretation of the sedimentary record, the pathway to taphonomic interpretation has
changed, and now taphonomists look at the fossil record in a new manner.

Initially, most of the taphonomic studies under the sequence stratigraphy viewpoint
concerned paralic setting, because the new stratigraphic paradigma was closely related
to coastal and shallow marine settings. But the increasing sequence-stratigraphic
research of terrestrial setting has led to models which clearly show that the basic con-
cepts of sequence stratigraphy are also applicable to non-marine settings, specially to
fluvial depositional systems. It is a fact that the exact relation between taphonomic
signature and fluvial sequence stratigraphy is still unclear in comparison to taphon-
omy of paralic settings. However, taphocoenosis of these setting certainly are strati-
graphically controlled as their paralic counterparts, and preliminary schemes as that
one shown in Figure 12.14 are mainly suited to indicate the pathway of future studies
in the taphonomy of the terrestrial realm.

We feel that our line of thinking leads to a afterthought concerning stratigraphical
and paleontological correlation between basins with different geological character,
what is specifically true for the Triassic period. Marine fossils are the basis for bios-
tratigraphy and biochronology of this period, and can not be used for correlation and
biostratigraphic studies of non-marine strata. But, if sequence stratigraphy would be
used? Some of the German Triassic section have a very detailed sequence strati-
graphic framework (e.g. Aigner and Bachmann, 1998). Attempts to correlate base-
level variations and the consequent sedimentation pattern might be the only key
towards a correlation between marine and non-marine strata of the Triassic period.
This should be tested in an area were detailed stratigraphic and paleontological data
are available for a marine succession laterally interfingered with an alluvial succes-
sion. Caution is necessary because of the non-contemporanity of the key surfaces
along the depositional axis: sequence boundaries have a landwards increasing hiatus
and the incised valley fill occurs only after the initial transgressive surface that
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separates the lowstand from the transgressive systems tract (e.g. Shanley and
McCabe, 1994; Miall, 1996; Emery and Myers, 1996). Taking this into account,
sequence boundaries and key flooding surfaces may be traceable laterally throughout
the marine to non-marine succession and will provide a tool for correlation between
terrestrial and marine guide fossils.
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13.1 Introduction

of various discontinuity types and to assist in their genetic interpretation. Ichnology 
may be employed to resolve surfaces of stratigraphic significance in two main ways:
(1) through the identification of discontinuities using substrate-controlled ichnofacies,
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and (2) through careful analysis of vertical softground (penecontemporaneous) ichno-
logic successions (analogous to facies successions). Ichnological analysis is a valuable
but highly under-utilized tool in genetic stratigraphic studies.

Stratigraphy, once considered to be a somewhat routine and mundane discipline,
consisting mainly of the dry cataloguing of lithostratigraphic units, has undergone a
dramatic renaissance. With the advent of genetic stratigraphic paradigms over the last
two decades, stratigraphers have radically altered how we perceive and, therefore,
interpret the rock record.

The stratigraphic utility of trace fossils can take on many guises and their signifi-
cance varies depending on what stratigraphic paradigm is being employed. In the past,
trace fossils were considered to be almost useless in stratigraphy because: most trace
fossils have long temporal ranges; they are largely facies dependent; a particular struc-
ture may be produced by the work of two or more different organisms living together,
or in succession, within the structure; the same individual or species of organism may
produce different structures corresponding to different behaviour patterns; the same
individual may produce different structures corresponding to identical behaviour but
in different substrates, (e.g. in sand, in clay, or at sand–clay interfaces); and identical
structures may be produced by the activity of systematically different tracemaking
organisms, where behaviour is similar (Ekdale et al., 1984).

These factors combine to make their biostratigraphic value negligible. Tradi-
tionally, it was thought that there were only three ways in which trace fossils could be
utilized in chronostratigraphy: (1) tracing the evolution of behaviour; (2) as morpho-
logically-defined entities (with no assumptions concerning their genesis); and 
(3) as substitutes for the trace-making organisms. In contrast, trace fossils are proving
to be one of the most important groups of fossils in delineating stratigraphically
important boundaries related to genetic stratigraphy (Savrda, 1991; Pemberton et al.,
1992; Pemberton and MacEachern, 1995) and event stratigraphy (Pemberton and
MacEachern, 1997). Genetic stratigraphy lies at the core of three main stratigraphic
paradigms: genetic stratigraphic sequences, allostratigraphy, and sequence strati-
graphy. The recognition of stratigraphic breaks is essential in any genetic stratigraphic
paradigm but is commonly a difficult task, particularly in subsurface analysis.
Interpreting the origin of the discontinuity can be vital in resolving depositional 
environments of associated deposits, and in determining the stratigraphic framework
of the system. To accomplish this requires the integration of ichnofacies relationships,
physical sedimentology and sequence stratigraphic techniques.

13.2 The Conceptual Framework of Ichnology

Trace fossils are biologically produced sedimentary structures that include tracks,
trails, burrows, borings, fecal pellets and other traces made by organisms. Excluded
are markings that do not reflect a behavioral function. Owing to their nature, trace fos-
sils can be considered as both palaeontological and sedimentological entities, thereby
bridging the gap between two of the main subdivisions in sedimentary geology.



Summaries dealing with general ichnological principles can be found in Ekdale et al.
(1984), Pemberton et al. (1992, 2002) and Bromley (1996).

The importance of ichnology to the fields of stratigraphy, palaeontology, and 
sedimentology stems from the following characteristics displayed by trace fossils:
(1) long temporal ranges; (2) narrow facies range; (3) not commonly transported; 
(4) occurrence in other wise unfossiliferous rocks; and (5) creation by non-preservable
soft bodied biota. These characteristics are exceedingly useful in facies analyses,
including reconstruction of individual palaeoecological factors, sedimentary dynamics,
and the documentation of local and regional temporal facies changes.

13.2.1 Behavioural Classification

Perhaps the single most important ingredient of ichnology is the functional interpreta-
tion of individual traces. Fundamental behavioral patterns can be dictated and modi-
fied by prevailing environmental parameters. Ekdale et al. (1984) recognized seven
basic categories of behaviour; resting traces (cubichnia), locomotion traces (repich-
nia), dwelling traces (domichnia), grazing traces (pascichnia), feeding burrows
( fodinichnia), farming systems (agrichnia), and escape traces ( fugichnia). Ekdale
(1985) added predation traces (praedichnia), and Frey et al. (1987) emphasized the
importance of equilibria ( fugichnia) to all other behavioral patterns. The fundamental
behavioral patterns are genetically controlled but are not phyllogenetically restricted.
The basic ethological categories have persisted throughout the Phanerozoic. Indivi-
dual tracemakers may have evolved but basic benthic behavior has not. This ability to
discern the behavioral trends of benthic organisms represented in the rock record
greatly facilitates environmental interpretations.

13.2.2 The Ichnofacies Concept

Perhaps the essence of trace fossil research involves the grouping of characteristic 
ichnofossils into recurring ichnofacies. The concept, developed by Adolph Seilacher
in the nineteen-fifties and nineteen-sixties, was based originally on the fact that many
of the parameters that control the distribution of tracemakers change progressively
with increased water depth. eight recurring ichnofacies have been recognized in 
the marine realm, each named for a representative ichnogenus (Fig. 13.1): Trypanites,
Teredolites, Glossifungites, Psilonichnus, Skolithos, Cruziana, Zoophycos, and Nereites.
Distinct non-marine associations are now being recognized, e.g. the Mermia ichnofa-
cies, the Termitichnus ichnofacies, and the Scoyenia ichnofacies (Frey et al., 1984;
Smith et al., 1993; Buatois and Mángano, 1995). Ichnofacies reflect adaptations of
tracemaking organisms to environmental factors such as substrate-texture and consis-
tency, food supply, hydrodynamic energy, salinity, water turbidity, sedimentation
rates, temperature, and oxygen levels among others (Frey et al., 1990; Bromley and
Asgaard, 1991).
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Seilacher's Concept of Recurring Ichnofacies

TRACE FOSSILS BEHAVIOUR ENVIRONMENT

ECOLOGICAL CONTROLS

1. Sedimentation Rate

2. Substrate Coherence

3. Salinity

4. Oxygen Level

The distribution and behaviour of benthic organisms is limited by a number of interrelated 
ecological controls, including:

5. Turbidity

6. Light

7. Temperature

8. Water Energy

Distribution of Common Marine Ichnofacies

Typical trace fossils include:  1) Caulostrepsis; 2) Entobia; 3) echinoid borings; 4) Trypanites; 5) Teredolites; 
6) Thalassinoides; 7, 8) Gastrochaenolites or related genera; 9) Diplocraterion (Glossifungites); 10) Skolithos; 
11,12) Psilonichnus; 13) Macanopsis; 14) Skolithos; 15) Diplocraterion; 16) Arenicolites; 17) Ophiomorpha; 
18) Phycodes; 19) Rhizocorallium; 20) Teichichnus; 21) Planolites; 22) Asteriacites; 23) Zoophycos; 24) Lorenzinia; 
25) Zoophycos; 26) Paleodictyon; 27) Taphrhelminthopsis; 28) Helminthoida; 29) Cosmorhaphe; 30) Spirorhaphe.  

Trace fossils are a manifestation of behaviour which can be modified by the
environment. 

Figure 13.1 The concept of recurring ichnofacies (modified after Pemberton et al., 1992).



Ichnofacies are part of the total aspect of the rock and therefore, like lithofacies,
are subject to Walther’s Law. Ichnofacies stand today as one of the most elegant but
also most widely misunderstood concepts in ichnology. Marine ichnofacies are arche-
typal models based upon recurring trace fossil assemblages and are not intended 
to be paleobathymeters (Frey et al., 1990). The non-marine assemblages (Scoyenia,
Mermia, and Termitichnus) are general and in need of revision; brackish water 
assemblages have not as yet been named but they are distinct; the marine soft ground
ichnofacies (Psilonichnus, Skolithos, Cruziana, Zoophycos and Nereites) are well-
defined and distributed in response to numerous environmental parameters; and the
traces in firmground (Glossifungites), woodground (Teredolites), and hardground
(Trypanites) are distributed on the basis of substrate type and consistency.

13.3 Substrate-Controlled Ichnofacies and the Recognition
of Stratigraphic Discontinuities

Three substrate-controlled ichnofacies have been established (Ekdale et al., 1984):
Glossifungites (firmground), Trypanites (hardground), and Teredolites (woodground).
In clastic settings, most of these trace assemblages are associated with erosionally
exhumed (dewatered and compacted or cemented substrates, and hence, correspond 
to erosional discontinuities. Depositional breaks, in particular condensed sections,
may also be semilithified or lithified presumably at the upper contact (or downlap 
surface) and may be colonized without associated erosion. In general, however, the
recognition of substrate-controlled ichnofacies may be regarded as equivalent to the
recognition of discontinuities in the stratigraphic record.

Although certain insect and animal burrows in the terrestrial realm may be prop-
erly regarded as firmgound (e.g. Fürsich and Mayr, 1981) or more rarely, hardground
suites, they have a low preservational potential and constitute a relatively minor com-
ponent in the geologic record of such associations. The overwhelming majority of
these assemblages originate in marine or marginal marine settings. A discontinuity
may be generated in either subaerial or submarine settings; but colonization of the sur-
face may be regarded to be under marine influence, particularly in pre-Tertiary inter-
vals. This circumstance has important implications, pertaining to the interpretation of
the origin of the discontinuity.

The substrate-controlled ichnocoenoses typically cross cuts a pre-existing soft-
ground suite and, hence, reflect conditions post dating both initial deposition of the
unit and erosion of that unit. Such suites also correspond to a hiatus between the ero-
sion event (which exhumes the substrate) and deposition of the overlying unit. During
this time gap, organisms colonize those substrates. By observing (a) the softground
ichnofacies (contemporaneous with deposition of the unit), (b) the ichnofacies of the
exhumed substrate, and (c) the ichnofacies of the overlying unit, it is possible to make
some interpretation regarding the origin of the surface and the allocyclic or autocyclic
mechanisms responsible (Fig. 13.2).
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13.3.1 The Trypanites Ichnofacies

The Trypanites ichnofacies (Fig. 13.3) develops in fully lithified substrates such as
hardgrounds, reefs, rocky coasts, beachrock and other omission surfaces. As such,
development of this ichnofacies also corresponds to discontinuities that have major
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Stage Development of Glossifungites Ichnofacies

burial erosional
exhumation

colonization
during

depositional
hiatus

deposition
and passive

infill

Figure 13.2 Schematic development of a Glossifungites demarcated erosional discontinuity. 
A: The muddy substrate is buried and dewatered, resulting in a compacted stiff character. B: The
shaly bed is erosional exhumed, resulting in development of a firm substrate. C: Colonization of
the discontinuity surface by trace makers of the Glossifungites ichnofacies proceeds under
marine conditions during a depositional hiatus. D: The structures are passively filled during a
succeeding depositional episode (modified after Pemberton and MacEachern, 1995).

Trypanites

Gastrochaenolites

Entobia

Figure 13.3 Trace fossil association characteristic of the Trypanites ichnofacies.



sequence stratigraphic significance. The traces are characterized by: (1) cylindrical to
vase, tear or U shaped to irregular domiciles of suspension feeders or passive carni-
vores; (2) raspings and gnawings of algal grazers and similar organisms (mainly
chitons, limpets, and echinoids); (3) moderately low diversities, although the borings
and scrapings of individual ichnogenera may be abundant; and (4) borings oriented
perpendicular to the substrate which may include large numbers of overhangs. In con-
trast to the Glossifungites ichnofacies, the walls of the borings cut through hard parts
of the substrate rather than diverting around them.

13.3.2 The Teredolites Ichnofacies

The Teredolites ichnofacies (Fig. 13.4) consists of a characteristic assemblage of bor-
ings or burrows in woody or highly carbonaceous substrates. Woodgrounds differ from
other substrates in three main ways: (1) they may be flexible instead of rigid; (2) they
are composed of carbonaceous material instead of mineral matter; and (3) they are
readily biodegradable (Bromley et al., 1984). Such differences dictate that the means
by which, as well as the reasons for which these two types of substrates are penetrated
are different. Because currents can raft woody substrates, it is important to determine
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whether the borings are autochthonous or allochthonous. Only the autochthonous
forms are true members of the Teredolites ichnofacies. These assemblages may also be
important in defining sequence and parasequence boundaries (Savrda, 1991).

The Teredolites ichnofacies is characterized by: (1) sparse to profuse club shaped
borings; (2) boring walls that are generally ornamented with the texture of the host
substrate (i.e. tree ring impressions); (3) stumpy to elongate subcylindrical excava-
tions in marine or marginal marine settings; and (4) shallower, sparse to profuse 
nonclavate etchings (isopod borings) in freshwater settings.

13.3.3 The Glossifungites Ichnofacies

The Glossifungites ichnofacies is environmentally wide ranging, but only develops in
firm, unlithified substrates such as dewatered muds or compacted sands. Dewatering
results from burial and the substrates are made available to tracemakers if exhumed 
by later erosion (Pemberton and Frey, 1985). Exhumation can occur in terrestrial 
environments, as a result of channel meandering or valley incision, in shallow-water
environments as a result of meandering tidal channels, coastal erosion, erosive
shoreface retreat, or as a result of submarine channels cutting through previously
deposited sediments (Pemberton and Frey, 1985). Such horizons commonly form at
bounding discontinuities and may be critical in the evolving concept of sequence
stratigraphy (Pemberton et al., 1992).

The Glossifungites ichnofacies (Fig. 13.5) is characterized by: (1) vertical,
cylindrical U or tear shaped pseudo borings, sparsely to densely branching dwelling
burrows, and/or mixtures of burrows and pseudo borings; (2) protrusive spreiten in
some burrows that develop mostly through animal growth (funnel shaped
Rhizocorallium and Diplocraterion [formerly Glossifungites]); (3) animals that leave
the burrow to feed (e.g. crabs) as well as suspension feeders; and (4) low diversity, but
commonly abundant individual structures.
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Figure 13.5 Trace fossil association characteristic of the Glossifungites ichnofacies.



Firmground traces are dominated by vertical to subvertical dwelling structures of
suspension feeding organisms. The presence of vertical shafts within shaly intervals is
anomalous, as these structures are not capable of being maintained in soft muddy
substrates. Glossifungites trace fossils are typically robust, commonly penetrating 
20–100 cm below the bed junction, they tend to be large in diameter (e.g. 0.5–
1.0 cm), and are sharp-walled and unlined (Fig. 13.6). Further evidence of substrate
stability, atypical of soft muddy beds, is the passive nature of the burrow fill demon-
strating that the structure remained open after the tracemaker vacated the domicile,
thus allowing material from subsequent depositional events to passively accumulate in
the open burrow. The post-depositional origin of the Glossifungites suite is clearly
demonstrated by the ubiquitous crosscutting relationships with the previous soft-
ground assemblage. The final characteristic of the suite is the tendency to demonstrate
colonization in large numbers. In numerous examples, seven to fifteen firmground
traces, most commonly Diplocraterion habichi, have been observed on the bedding
plane of a 9 cm (3.5 inch) diameter core, corresponding to a density of between 1100
to 2300 shafts per m2.

13.4 Ichnological Applications to Genetic Stratigraphy

The applications of ichnology to genetic stratigraphy are mainly twofold. The most
obvious use is in the demarcation of erosional discontinuities. The second use is
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Characteristics of the Glossifungites Ichnofacies

A

B

C

D

Figure 13.6 Characteristics of trace fossils that are associated with the Glossifungites ichno-
facies. A. The burrows tend to be robust, unlined domiciles, B. Are found in very high densities,
C. Commonly display scratch marks; and D. Cross cut the original soft ground trace fossil
assemblage – see colour version of this figure in Appendix.



subtler, and is concerned with the paleoenvironmental implications of the trace fossil
suites, both with respect to the softground and the substrate-controlled assemblages.

13.4.1 Sequence Boundaries

Although subaerial exposure and/or erosion during relative sea level lowstand may
produce widespread development of dewatered, firm or cemented substrates, most 
are unlikely to become colonized by substrate-controlled trace fossil suites unless the
surface is subsequently exposed to marine or marginal marine conditions. In
Cretaceous strata of the Western Canada Sedimentary Basin, deposition of significant
thicknesses of nonmarine strata precludes development of such suites. These nonma-
rine deposits are, themselves, conspicuously unburrowed. For the most part, lowstand
deposits rarely dominate incised valley complexes, since the system is largely a zone
of sediment bypass (Van Wagoner et al., 1990). Much of the sediment accumulation in
these systems occurs during transgression, and typically rests on a marine flooding
surface, typically, a ravinement surface amalgamated with the sequence boundary.

13.4.1.1 Incised Submarine Canyons
In the exceptional case of lowstand incised submarine canyons, the erosional discon-
tinuity lies within a marine setting at the time of its excavation, and colonization of the
walls and floor has a higher probability than in terrestrial valleys. Outcrops of the lower
Miocene Nihotupu and Tirikohua formations in Northland, New Zealand, contain a note-
worthy Glossifungites association related to submarine canyon incision (Hayward, 1976).
The underlying Nihotupu Formation consists of volcanogenically derived siltstones,
sandstones and subaqueous mass flow conglomerates, together with submarine andesite
pillow-pile complexes. The softground assemblage is sparse, characterized by localized
individual occurrences of Thalassinoides, Planolites and Scalarituba. These deposits are
interpreted as turbidites emplaced at bathyal water depths (based on faunal content)
within an inter-arc basin on the lower eastern flanks of the west Northland volcanic arc.

The contact with the overlying Tirikohua Formation is sharp and erosional, and
exhibits visible relief. The exhumed substrate is demarcated by a Glossifungites
assemblage, consisting of Skolithos, Rhizocorallium, and Thalassinoides. Hayward
(1976) interpreted the erosional discontinuity as a submarine canyon wall, excavated
into bathyal to neritic inter-arc sediment gravity flow deposits, due to tectonic uplift of
the basin margin. Colonization of the canyon walls by the firmground tracemakers
preceded eventual burial by canyon floor and neritic turbidite deposits of the
Tirikohua Formation, probably corresponding to late stage relative sea level lowstand
or early transgressive fill of the submarine canyon.

13.4.1.2 Forced Regression and Lowstand Shorefaces
Regressive surfaces of erosion generated below forced regression shorefaces or
sequence boundaries formed beneath lowstand shorefaces (cf. Plint et al., 1988;
Posamentier et al., 1992; MacEachern et al., 1998) are cut within marine settings and
therefore favour colonization of the discontinuity by substrate-controlled assemblages.
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These settings have been proposed for sharp-based sandstones of the Viking Formation
in the Joarcam Field (Posamentier et al., 1992), the Garrington Field (Davies and
Walker, 1993), as well as the Kaybob Field (Pemberton and MacEachern, 1995).

In the forced regression and lowstand scenarios, the regressive surface of erosion
and the sequence boundary are cut by wave erosion, and extend only as far seaward as
fairweather wave base (in storm-dominated systems, storm erosion may obscure this
surface). Seaward of these positions, the erosional discontinuity passes into a non-
erosional correlative conformity. As a result, the Glossifungites assemblage does not
develop in positions where the overlying facies reflect deposition below fairweather
wave base. In these basinal positions, coarse-grained lag deposits are absent as well.

Forced regression and lowstand shoreface deposits tend to be fairly thin, in
response to the diminished accommodation space associated with relative lowstand of
sea level. Lowstand shorefaces may be slightly thicker because they may be developed
during late lowstand, where a slow rise in relative sea level may be initiated with asso-
ciated increased accommodation space. Otherwise, these shoreface successions are
virtually identical to the shoreface deposits of the highstand and the transgressive
shorelines. Bioturbated silty shales and sandy shales comprise the base of the succes-
sion. These facies contain thin hummocky cross-stratified sandstone beds, and display
distal to archetypal Cruziana assemblages. The silty and sandy shales constitute the
lower and upper offshore deposits of the succession, reflecting deposition below fair-
weather wave base. In these positions, the basal contact is the non-erosional correla-
tive conformity, typically bioturbated but lacking both a Glossifungites assemblage
and a pebble lag. In proximal positions, the sequence boundary is erosional and
directly overlain by bioturbated muddy sandstones and hummocky cross-stratified
sandstones (Fig. 13.7). A fully marine, diverse proximal Cruziana suite, grading
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A B

Figure 13.7 Expression of the Glossifungites-demarcated sequence boundary at the base of
the Kaybob forced regression shoreface. A. Kaybob interval in Well 11-35-61-20W5. B. Detail
of firmground Skolithos at sequence boundary, 11-35-61-20W5, 1759 m – see colour version of
this figure in Appendix.



upward into a Skolithos assemblage, dominates thoroughly burrowed successions.
Where a more complete succession occurs, trough cross-bedded sandstones, containing
a sporadically distributed Skolithos suite, reflecting upper shoreface environments,
may directly overlie the sequence boundary or grade upward from the middle
shoreface sandstones. The lower shoreface, middle shoreface, and upper shoreface
deposits overlie the erosional expression of the discontinuity, which may be demar-
cated by the Glossifungites ichnofacies.

13.4.2 Transgressive Surfaces

Transgressive surfaces are manifest by 1) mainly non-erosional marine flooding surfaces
(MFS) and 2) low relief, erosional (ravinement) surfaces. The ravinement surfaces are
referred to as transgressive surfaces of erosion (TSE).

13.4.2.1 Marine Flooding Surfaces (MFS)
Marine flooding surfaces (MFS) are typically abrupt contacts across which there is
evidence of an increase in water depth. These surfaces are mantled with dispersed
sand, granules or intraformationally-derived rip-up clasts, indicating some erosion.
The preservation of underlying markers indicates that the degree of erosion is mini-
mal. MFS are typically characterized by the abrupt juxtaposition of offshore, shelf or
prodelta shales on shallow marine sandstones and are easily picked on geophysical
well logs.

The Lower Cretaceous Viking Fm. in Western Canada contains numerous MFS 
separating coarsening-upward, regionally extensive parasequences. In contrast, the
regional Viking parasequences are interpreted to reflect shoreface progradation under
fully marine conditions. Three facies comprise a complete coarsening cycle, although
the minor cycles rarely comprise a complete cycle. The basal facies consists of intensely
bioturbated silty mudstone. Trace fossils are uniformly distributed and diverse, consti-
tuting a distal Cruziana assemblage. Bioturbated sandy mudstone facies grade upward
from the silty mudstones and are intensely burrowed with a uniformly distributed and
highly diverse Cruziana assemblage (18 ichnogenera). Muddy sandstone facies grade
upward from the sandy shale facies and are intensely bioturbated with a diverse 
(18 ichnogenera) and uniformly distributed, proximal Cruziana suite. The cycles reflect
both coarsening upward of facies, and an increase in diversity of ichnogenera, under
fully marine conditions. Each major cycle is interpreted as progradational lower 
offshore to lower shoreface successions, developed during highstand conditions.

The marine flooding surfaces in the major cycles are commonly marked by the
return to lower offshore or shelf shale deposition, and are typically abrupt. These flood-
ing surfaces are unlikely to be disrupted by the diminutive trace makers that characterize
the lower offshore settings. In other cases, minor cycles may show much biogenic modi-
fication of the MFS, particularly where lower shoreface deposits are overlain by upper
offshore sandy mudstones. Such contacts may appear gradational, owing to the biogenic
homogenization of the surface by the more robust and penetrative tracemakers.
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Elsewhere, the upward transition from shallow to deeper water deposits may occur over
intervals of several decimeters or more, reflecting, “slow” relative sea level rise.

13.4.2.2 Transgressive Surfaces of Erosion (TSE)
Transgressive surfaces of erosion (i.e. ravinement surfaces) afford the most elegant
manner of generating widespread substrate-controlled assemblages, because the
exhumed surfaces are produced within a marine or marginal marine environment 
(Fig. 13.8B). This favour firmground colonization by organisms as the ravinement
surface is excavated, and prior to accumulation of significant thicknesses of overlying
sediment. The upper portion of the Albian Viking Formation in the subsurface of cen-
tral Alberta contains numerous transgressive surfaces of erosion (TSE), recording a
complex history of transgression, which culminated in maximum flooding of the
Western Interior Seaway.

The recognition of discrete TSE is difficult on the basis of sedimentology alone,
particularly when dealing with the upper Viking Formation, where there exist abun-
dant, sharp-based pebble stringers and thin, trough cross-stratified, coarse-grained
sandstones, intercalated with interbedded sandstones, siltstones and shales. A few of
these coarse stringers could reflect the veneer on transgressive ravinement surfaces,
but due to their abundance, picking which ones have regional stratigraphic signifi-
cance is difficult. However, virtually every TSE incised into, or ravined across, shaly
sediments and exhibits a Glossifungites suite. Many firmgrounds also appear to have
been developed on siderite-cemented intervals within the shales. Whether the siderite
is a function of the ravinement, a chemical response related to deep penetration by 
the tracemakers of the Glossifungites suite, or that pre-existing, siderite-cemented
bands formed resistant layers through which the TSE could not incise, is uncertain. 
In the latter case, soft-bodied fauna would presumably find it difficult or impossible to
penetrate a cemented layer.

These Glossifungites assemblages are manifest by firmground examples of
Diplocraterion, Rhizocorallium, Skolithos, Arenicolites, and Thalassinoides (Fig. 13.8).
The Glossifungites assemblages record suspension-feeding behaviour associated with
the period of higher energy during active ravinement. Colonization of the exhumed 
surface post-dates erosive shoreface retreat but occurs prior to significant deepening.
These transgressive surfaces of erosion are commonly overlain by conglomeratic lags,
or erosionally-based, highly burrowed, marine pebbly and sandy shales and more rarely,
by muddy sandstones.

13.4.2.3 Transgressively Incised Shorefaces
Several Viking Formation oil and gas fields in central Alberta produce hydrocarbons
from NW–SE trending, sharp-based sandstones interpreted as incised shoreface
deposits. Many of these shoreface deposits are believed to rest upon a transgressive
surface of erosion, including Chigwell (Raychaudhuri et al., 1992), Joffre (Downing
and Walker, 1988; MacEachern et al., 1998), Gilby (Raddysh, 1988), and Giroux Lake
(MacEachern and Pemberton, 1992).
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The facies that comprise these Viking transgressive shoreface successions are 
virtually identical to those of the forced regression complexes. The main differences
lie in the thickness of the offshore to upper shoreface succession; transgressive 
systems tend to be thicker due to the increased accommodation space available.

The other principal difference between the forced regression complex and the 
transgressively incised shoreface complex lies in the erosional extent of the basal dis-
continuity. In the transgressive scenario, lower and upper offshore deposits, reflecting
deposition below fairweather wave base, can overlie the erosional component of the
basal discontinuity. Transgressive ravinement permits the generation of an erosional dis-
continuity which ultimately lies seaward of fairweather wave base during subsequent
periodic progradation. This is because the modified surface was cut prior to shoreface
progradation, while sea level lay at a stratigraphically lower position (Fig. 13.9).

A Glossifungites assemblage commonly demarcates the transgressive surface of
erosion, even in positions where the overlying facies reflect deposition well below
fairweather wave base. In these positions, a coarse-grained lag is also likely to be
associated with the discontinuity. The transgressive surface of erosion passes seaward
into a non-erosional marine flooding surface (MFS). In settings characterized by
intense burrowing the contact may be obscured. Only the full integration of sedimen-
tology, ichnology and stratigraphy permits the reliable recognition and interpretation
of the discontinuity.

The Viking Joffre Shoreface Complex of the Gilby–Joffre trend (MacEachern 
et al., 1998) contains a sharp-based shoreface, incised into stacked marine parase-
quences of the regional Viking. The incision surface (an FS/SB) slopes steeply along
its landward edge and flattens out seaward, forming an asymmetric, one-sided ero-
sional scarp. Granules and small pebbles of chert locally mantle the erosional discon-
tinuity. More commonly, the surface is demarcated by firmground Thalassinoides,
Diplocraterion and Skolithos of the Glossifungites ichnofacies, in both proximal 
and distal positions (Figs. 13.8A, C). The FS/SB is overlain by a coarsening-upward
(shallowing-upward) succession of gritty sandy shales and muddy sandstones, con-
taining a fully marine, diverse and uniformly distributed, archetypal to proximal
Cruziana ichnofacies, reflecting an incised, weakly storm-influenced shoreface 
complex. The transgressive origin of the shoreface is supported by the presence of 
a Glossifungites suite, which demarcates an erosional expression of the discontinuity,
overlain by deposits accumulated below fairweather wave base. This indicates that the
surface was cut while sea level was lower, and was prograded across (cf. Fig. 13.9).
The Joffre Shoreface Complex is interpreted to have prograded northward during 
a pause in transgression.

13.4.3 Amalgamated Sequence Boundaries and Marine Flooding Surfaces

Amalgamated sequence boundaries and transgressive surfaces are commonly 
colonized by substrate-controlled tracemakers. The lowstand erosion event typically
produces widespread firmground, hardground, and woodground surfaces. The following
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transgressive event, commonly accompanied by erosion, generates a TSE that tends to
remove most or all of the lowstand deposits, and exposes the discontinuity to marine
or marginal marine conditions and permits organisms to colonies the re-exhumed sub-
strate. The discontinuity may correspond to subaerially exposed areas, such as delta
plains, fluvial floodplains, interfluves, or incised valleys.

13.4.3.1 TSE Across Subaerially Exposed Surfaces
The Dunvegan Formation in the subsurface of the Jayar Field, central Alberta, con-
tains a TSE, cut into rooted and subaerially exposed delta plain deposits (Bhattacharya
and Walker, 1991). The erosional discontinuity is demarcated by a Glossifungites suite
of Thalassinoides, passively filled with coarse-grained sands infiltrated from an over-
lying transgressive sand sheet. An excellent example of this type of surface also
occurs at the Lower Albian Mannville Group–Joli Fou Formation contact in the
Kaybob Field of central Alberta. There, rooted incipient paleosols are crosscut by
robust, firmground Thalassinoides, passively filled with muddy sand and large
siderite-cemented clasts. The overlying silty shales contain a distal Cruziana to
Zoophycos trace fossil assemblages, recording deposition in proximal shelf to lower
offshore environments. The amalgamated surface corresponds to an interfluve (Van
Wagoner et al., 1990) that was transgressively over run.

13.4.3.2 Bay-Head Delta/Channel and Embayment Deposits
In the Viking Formation of the Joffre Field area, an amalgamated sequence boundary and
flooding surface with a scarp-like geometry truncates underlying regional Viking parase-
quences and the transgressively incised Joffre Shoreface Complex. A Glossifungites
assemblage dominated by Skolithos, Diplocraterion and rare Thalassinoides locally
demarcates this erosional discontinuity.

The deposits overlying the discontinuity constitute the Viking reservoir facies at
Joffre. These deposits are oriented NW–SE, are at least 35 km long, and 8.5–9.0 km
wide. The reservoir facies are dominated by trough cross-stratified and low angle 
planar stratified sandstones, pebbly sandstones and conglomerates, concentrated along
the southern margin of the amalgamated sequence boundary and flooding surface. The
coarse clastics progressively interfinger with, and ultimately pass into, interbedded
mudstones and fine-grained sandstones in a northward and eastward direction. Near
the base, the coarse clastics contain glauconite, siderite-cemented mudstone interbeds,
mud interlaminae and resistant mudstone rip-up clasts, and display moderate to low
degrees of burrowing, diminishing in intensity upward. The trace fossil suite corre-
sponds to the Skolithos ichnofacies. Upward, facies are dominated by well-sorted, uni-
directional trough cross-bedded and low angle planar stratified coarse clastics, locally
in fining upward cycles with scoured bases. The clastics contain mudstone rip-up
clasts and thin mudstone interbeds. Burrowing is of low abundance, and reduced diver-
sity, with Diplocraterion, Skolithos, Palaeophycus and Ophiomorpha of the Skolithos
ichnofacies. The interbedded mudstone and sandstone beds contain oscillation ripple
and wavy parallel lamination and are weakly burrowed with a sporadically distributed,
low diversity (salinity stressed?) trace fossil suite of the mixed Skolithos–Cruziana
ichnofacies (MacEachern and Pemberton, 1994).
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Detailed ichnological, sedimentological and stratigraphic analyses demonstrate
that the coarse clastics overlying the discontinuity comprise at least 3 parasequences.
These parasequences onlap on the discontinuity in a southwest direction and inter-
finger with mudstones to the northeast. Toward the north end of the field, erosional
amalgamation of the coarse clastics is more pronounced and parasequence boundaries
cannot be delineated easily. Near the southern end of the field, these parasequences
partition the reservoir along the seaward (and structurally up-dip) edge of the deposit.
Amalgamation of the reservoir facies at the north end limits the degree of partitioning.

The final parasequence of the embayment complex is truncated by a regionally
extensive flooding surface, typically manifest by a wave ravinement surface. The
wave ravinement surface is commonly demarcated by the Glossifungites ichnofacies.
Facies overlying the marine flooding surface reflect fully marine conditions.

13.4.3.3 Incised Valley Complexes: Demarcation of Valley Surfaces
Five Viking Formation fields, namely Crystal, Willesden Green, Sundance, Edson,
and Cyn-Pem, contain facies associations interpreted to reflect estuarine incised 
valley deposition. The facies successions and their distributions indicate that they
accumulated in a barrier estuary or wave-dominated embayed estuary setting, in the
sense of Dalrymple et al. (1992). In most of the incised valley systems of the Viking
Formation, the valley base and walls are demarcated by a Glossifungites assemblage,
indicating that the valley probably did not fill until the ensuing transgression 
(Fig. 13.8C). Either the valley served as a zone of sediment bypass and possessed no
fluvial deposits, or any lowstand deposits were eroded and reworked during the subse-
quent transgression, producing an amalgamated (co-planar) sequence boundary and
initial transgressive surface of erosion. The transgressive surface of erosion most
likely reflects tidal-scour ravinement. The base of the estuarine valley fill serves 
both as the sequence boundary and as the base of the transgressive systems tract. 
In addition to the valley base, the incised estuarine complex also contains additional
erosional discontinuities (Fig. 13.10).

13.5 The Glossifungites Ichnofacies and
Porosity/Permeability Trends

The utility of trace fossils is not limited to palaeoenvironmental interpretation. As we
have just noted, recent work has shown that ichnology is important in delineating sur-
faces that may have stratigraphic significance. In particular, the Glossifungites ichno-
facies is used to demarcate burrowing into firm substrates (firmgrounds) that may be
exposed where sediment accumulations are erosionally exhumed during changes in
sea level.

Because of their discretely packaged permeable fill, Glossifungites surfaces can
enhance the permeability of a relatively impermeable substrate. Permeability enhance-
ment occurs where open burrows emplaced into a firmground are filled with sediment
exhibiting textural characteristics distinctly different from the matrix. In such instances
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Glossifungites surfaces potentially alter the physical character of subsurface hydro-
carbon reservoirs. The ability to characterize the resulting effective permeability pro-
vides a reservoir development tool that may be applied in a predictive or qualitative
framework. However, the problem of determining effective flow parameters (such as
permeability) in such highly heterogeneous media is difficult (Gingras et al., 1999).
This is an especially important consideration when heterogeneous elements, such as
sand-filled burrows, are discrete and continuous. Such conduits essentially bypass the
groundmass, controlling virtually all of the fluid flow parameters. Gingras et al.
(1999) evaluated the impact that a Glossifungites surface might have on effective per-
meability. Key to this is the determination of the effective vertical permeability (kv),
and the effective horizontal permeability (kh). Assessment of the effective permeabil-
ity should be based on quantifiable characteristics of the bioturbated media, including
the permeability of the matrix (km) and the burrows (kb), trace fossil connectivity, and
burrow density.

Both primary and diagenetic processes potentially alter or preserve higher porosity
and permeability in and adjacent to trace fossils. This is contrary to the commonly
held belief that bioturbation reduces overall permeability, and is the result of trace 
fossils locally introducing heterogeneity’s to the rock matrix that improve the overall
flow characteristics of that rock. Glossifungites surfaces provide a striking example of
bioturbated substrates that potentially alter the flow characteristics of a reservoir.

Preliminary work indicates that such effects can be associated with both clastic
and carbonate regimes. Research has been done on carbonate systems in the
Cretaceous Shuaibia Formation in Qatar, and the Jurassic Ghawar Field in Saudi
Arabia. In the example from Saudi Arabia the differences result in what is referred to
as “super-perm”.

In clastic systems, these concepts have been successfully applied in the Triassic
Sag River Formation in Alaska. The top of the Sag River is a series of transgressive
surfaces of erosion culminating in the deposition of the Kingak Shale (Fig. 13.11).
These surfaces are characterized by distinct Glossifungites surfaces that are regionally
correlatable. Detailed mini-permeameter work indicates that the matrix permeability
is approximately 50 md as measured by core plugs. The burrows, however, display
permeability 5 to 6 times (250–300 md) that of the matrix. This results in a dual per-
meability system that can have effects on deliverability, reserve calculations and 
secondary recovery considerations. In the case of the Sag River Formation the
Glossifungites systems acted as conduits for enhanced fluid flows (Fig. 13.12).
Measurements indicated that in the case of the Glossifungites surfaces at the top of the
Sag River Formation the Kv was greater than the Kh and it was recommended that the
zone be drilled and drained horizontally.

13.6 Conclusions

The main applications of ichnology to applied stratigraphy are twofold. The most obvi-
ous use lies in the demarcation of erosional discontinuities. To date, substrate-controlled
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ichnofacies have been under-utilized as a means of recognizing and mapping these
stratigraphically important surfaces, both in outcrop and the subsurface. Locally, many
surfaces are obvious on the basis of sedimentology alone; however, their appearance can
change markedly across the study area, making correlation difficult. The Glossifungites
ichnofacies is important in both the recognition and genetic interpretation of erosional
discontinuities in marine-influenced siliciclastic intervals, as the many Cretaceous
examples cited from the Western Canada Sedimentary Basin demonstrat. In many cases,
the genetic interpretation of the discontinuity has come principally from the ichnofossil
assemblage associated with the discontinuity and the overlying units. The continued
integration of substrate-controlled ichnofacies with detailed stratigraphic and sedimen-
tologic analysis will undoubtedly enhance and refine developing genetic stratigraphic
paradigms.

The second use is subtler, and is concerned with trace fossil behaviour and their
paleoenvironmental implications. Trace fossils, when used in conjunction with pri-
mary sedimentary structures, are useful in the delineation and interpretation of facies
and facies associations. When these behavioral and substrate-controlled aspects of
ichnology are integrated fully with other sedimentologic and stratigraphic analyses,
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Figure 13.11 Schematic representation of the relationship of the Sag River Formation to the
Shublik and Kingak Formations. The cross-section shows the distribution of the internal 
surfaces and the interpreted depositional environments.



the result is a powerful approach to the recognition and genetic interpretation of 
discontinuities in rock record.
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Glossifungites-enhanced Permeability
TRIASSIC SAG RIVER FORMATION, ALASKA

Figure 13.12 Glossifungites assemblage trace fossils (mainly the shrimp burrow Thalassinoides)
characterize a number of surfaces in the Sag River Formation. Detailed mini-permeameter 
measurements indicate that in some instances these burrows have much greater permeability than the
rock matrix and they may represent permeability conduits. Such systems would not generally show up
on most permeability logs models. The Glossifungites assemblage burrows therefore could act as the
conduits for enhanced fluid flow in this reservoir – see colour version of this figure in Appendix.
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14.1 Introduction

14.1.1 Definition

Cyclostratigraphy is the subdivision of geologic study that investigates cyclic 
depositional patterns. At present, there are two main areas of inquiry that have 
developed in cyclostratigraphy. One area focuses on understanding how climatic and
sedimentary processes interact with tectonic processes to produce the observed strati-
graphic cycles. The second focuses on the techniques of time measurement of cycles
and the development of a geochronologic framework. In order to understand the
causes and frequency of stratigraphic cycles both areas need to be integrated.

14.1.2 History

Although the stratigraphic record has been interpreted as having cyclic patterns for
well over one hundred years and the terms cycle or cyclic stratigraphy have been used
to describe these patterns for decades, the first use of the term cyclostratigraphy was
relatively recent. Kalmykova et al. (1979) used the term in a paper that described its
application to the study of Permian marine strata on the Russian Platform. Fischer
(1986) later used the term to describe a method for the time correlation of stratigraphy
using orbital cycles. Perlmutter and Matthews (1989) also used the term to describe a
technique developed in the mid 1980’s at Texaco’s Research Center that used an
understanding of the effects of orbital cycles on depositional systems and lake and sea
level to predict lithostratigraphy.

14.1.3 The Geologic Processes that Cause Cyclicity

Three factors have been associated with the cause of stratigraphic cycles; sea level (or
lake level) change, tectonism (uplift and subsidence), and climate change. Sea level
change was probably the first factor to be recognized to have the potential to create
repetitive sedimentary sequences. In 1874, Newberry suggested that the rise and fall
of sea level produced fining upward sequences overlain by coarsening upward
sequences. In 1936, Wanless and Shepherd proposed that glacioeustasy and associated
climate cycles caused the cyclothems in the Paleozoic. In the recent past, the analyti-
cal tool known as sequence stratigraphy was developed by relying on sea level change
as the dominant control of marine sedimentary processes and depositional patterns
(Vail et al., 1977a; Goldhammer et al., 1987; Posamentier and Vail, 1988). Causes of
global sea level change are associated with mid-oceanic ridge volume, a long-term
tectonic effect, and ice mass at the poles, an effect that has both long-term and short-
term impact, and can have tectonic and climatic components.

Variations in the uplift and subsidence of provenance areas and sedimentary basins
have also been identified as fundamental causes of stratigraphic cycles (Williams,
1891; Twenhofel, 1932; Krynine, 1942; Weller, 1956; Bott and Johnson, 1967; Veizer



and Jansen, 1985; Blair, 1986). These tectonically induced changes can alter rates of
erosion and sediment transport and shift the distribution of depocenters. Cycles pro-
duced in this manner can range in frequency from tens of thousands of years to tens of
millions of years, but are episodic, not regular, tending to occur randomly in time.

Climate change was first suggested, as a primary cause of sedimentation cycles,
by Gilbert in 1895. This work was followed by many others who recognized that regu-
larly occurring depositional cycles could be produced by recurrent climatic changes
associated with periodic variations in the Earth’s orbit around the Sun (Penck, 1914;
Bradley, 1929; Twenhofel, 1932; Krynine, 1942; Garner, 1959; Van Houton, 1964;
Crook, 1967; Young et al., 1975; Fairbridge, 1976; Olsen, 1980; LeTourneau,
1985; Herbert and Fischer, 1986; Dean and Gardner, 1986; Perlmutter and Matthews,
1989). Climate cycles cause stratigraphic cycles by: (1) changing sea level by varying
the volume of polar and alpine glaciers; (2) changing lake level by altering the local
balance of precipitation and evaporation; (3) changing sediment production rates,
grain size and mineralogy by varying the weathering conditions in the drainage basin;
(4) changing sediment transport rates by altering the hydrodynamic conditions in the
river system; and (5) changing and shifting the environments of deposition by altering
the climate in the receiving basin.

14.2 Quantitative Analysis of Cycles

The periodic variations in the Earth’s orbit around the Sun were first quantified by
Milankovitch in 1941. These cycles, now called Milankovitch cycles, have three main
components related to aspects of the Earth’s orbit and tilt that affect the receipt and
distribution of heat from the Sun; eccentricity, obliquity and precession. Eccentricity,
the variation of the ellipticity of the Earth’s orbit around the Sun, has two primary fre-
quencies, about 413 kyr and about 100 kyr. Obliquity, the variation in the amount of
tilt of the Earth’s axis, has one primary frequency, about 41 kyr. Precession of the
Equinoxes, the progressive change in when seasons occur relative to the position of
the Earth’s orbit around the Sun, has two primary frequencies, 19 kyr and 23 kyr. The
interference patterns of all these cycles can produce a long-term climate cycle that
varies but can be up to 2.4 myr long (Matthews and Frohlich, 1991). Milankovitch
cycles are discussed in more detail in the section on climate.

The objectives of quantitative cyclostratigraphic analyses are to identify and
reconstruct the astronomical periodicities responsible for observed stratigraphic pat-
terns. Commonly, this is done by evaluating changes in bed thickness and composition
of the components of a cycle within a calibrated timeframe. Statistical tools have been
developed to facilitate these correlations and to determine the chronology of the
cycles under investigation. Schwarzacher (1993) presents an excellent review of the
statistical and mathematical techniques that are commonly used to evaluate cycles,
including spectral analysis. He also discusses the data requirements for analysis and
problems inherently related to the conversion of bed thickness into time. Lacunarity, a
relatively new technique, is a multi-scaled measure of translational invariance or the
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extent to which a pattern varies by location (Plotnick et al., 1993, 1996). Lacunarity
has been successfully used to evaluate component frequencies of cyclic sequences and
the relative contribution of each frequency to the variability of the cycles (Perlmutter
and Plotnick, 1997, 2002).

The most critical aspects affecting quantitative cycle analysis are the completeness
of the stratigraphic record under investigation and density of the sampling regime. A
record in which cycle components have not been related properly to the processes that
are forcing the changes in thickness or lithology over the span of a cycle, or by a record
that contains many difficult-to-distinguish erosional or hiatal surfaces, can cause erro-
neous evaluations. In addition, flawed answers can result from improper resolution of
the stratigraphic system caused by a sampling interval that is greater than the variability
of the cycles themselves. Great care must be taken to ensure the viability of the dataset.

To extract time and periodicity properly from sedimentary cycles, it is important to
understand the causes of their origin. This is accomplished by identifying the significant
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sedimentary characteristics of the cycles and associating these characteristics with the
sedimentary processes that created them. For example, to assist this analysis, Einsele 
et al. (1991) identified sedimentary bedding types and proposed that these bed types 
be classified into groups based primarily on bed thickness and cyclicity (Figs. 14.1,
14.2, and 14.3).

Another important issue that needs to be taken into account is the restricted lateral
extent of the data commonly available for the analysis of cyclicity, such as wells, cores
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or outcrops. It is crucial to integrate additional data, such as seismic sections, to com-
plement the understanding of lateral variations.

14.3 The Impact of the Resolution of Data and 
Tools on Interpretation

We are going to focus our discussion on sequences controlled by allocyclic forces
(those generated from outside the sedimentary system such as orbital cyclicity and
climate change) as opposed to autocyclic forces (those operating within a sedimen-
tary system such as river avulsion, turbidite flows, or storms). The time span
recorded in a sedimentary cycle caused by orbital cycles can vary due to regional 
or local factors such as climate succession. It is, therefore, important to identify
these variations in order to make an accurate evaluation of the time span and fre-
quencies of a cycle. If this is done properly, cyclostratigraphy can then be used for
geochronology.

However, determining depositional variations within a cycle is not always straight-
forward. For example, changes in accumulation rates can cause mistakes in the 
interpretation, especially when rates are interpreted from wire-line logs. The inherent
variation in bed thickness, combined with the limits of the vertical resolution of the
logging tool itself, can cause the interpreter to inadvertently combine cycles of differ-
ent periodicities. The lack of resolution of the tool thus produces errors by under-
sampling the sequence, generating cycle frequencies that are not linked with the
processes that caused them (Davis, 1986; Fig. 14.4). To eliminate this problem, higher
resolution tools need to be used. Alternatively, a technique can be applied that consists
of building a matrix in which possible periodicities are plotted against possible bed or
cycle thickness (vertical resolution) at varying accumulation rates. This matrix, com-
pared with average accumulation rates of the total analyzed succession, can indicate
intervals that could produce interpretation errors related to the vertical resolution
(Table 14.1).
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Sampling
interval

Figure 14.4 Sinusoidal wave of high frequency (dashed line) sampled at discrete intervals,
creating a new wave with an apparent lower frequency (solid line). The frequency of the 
original line is above the Nyquist frequency for that sampling interval.



14.4 Sedimentation Rates vs. Accumulation Rates

The direct use of modern sedimentation rates to estimate accumulation rates in 
stratigraphic sequences is not a straightforward exercise because the intervals of accu-
mulation include times of erosion or non-deposition. In general, the longer the time-
span of a stratigraphic interval, the greater the number of periods of erosion and
non-deposition that is included in that interval. As a consequence, modern deposition
rates may be significantly higher than ancient ones (Kukal, 1990; Sadler and Strauss,
1990). A method to evaluate the completeness of a stratigraphic section was proposed
by Schwarzacher (1993). He defines completeness as C (n) � 1U/n, where C (n) is
the completeness of the stratigraphic record related to the total time, U is the number of
stratal units without deposition and n is the time interval. In order to simplify the analy-
sis, deposition rates are assumed to be non-varying when this equation is applied. This
assumption may not be accurate. A way to estimate possible errors associated with
these analyses is to use the random walk model proposed by Schwarzacher (1993).

14.5 Tools and Techniques Used to Evaluate Cyclicity

14.5.1 Spectral Analysis

Once the completeness of the stratigraphic section is understood, either time series
analysis or power-spectral density analysis may be used to quantify the periodicity of
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410 100 41 23 19 180 yr 80 yr 44 yr 22 yr 11 yr 5 yr

Rates
cm/kyr

Cycle Thickness in m

1 4.1 1 0.4 0.2 0.2 0.0018 0.0008 0.00044 0.00022 0.00011 0.00005

2 8.2 2 0.8 0.5 0.4 0.0036 0.0016 0.00088 0.00044 0.00022 0.0001

5 20.5 5 2.1 1.2 1 0.009 0.004 0.0022 0.0011 0.00055 0.00025

10 41 10 4.1 2.3 1.9 0.018 0.008 0.0044 0.0022 0.0011 0.0005

15 61.5 15 6.2 3.5 2.9 0.027 0.012 0.0066 0.0033 0.00165 0.00075

20 82 20 8.2 4.6 3.8 0.036 0.016 0.0088 0.0044 0.0022 0.001

30 123 30 12 6.9 5.7 0.054 0.024 0.0132 0.0066 0.0033 0.0015

50 205 50 21 12 9.5 0.09 0.04 0.022 0.011 0.0055 0.0025

100 410 100 41 23 19 0.18 0.08 0.044 0.022 0.011 0.005

1000 4100 1000 410 230 190 1.8 0.8 0.44 0.22 0.11 0.05

2000 8200 2000 820 460 380 3.6 1.6 0.88 0.44 0.22 0.1

 traditional log resolution (GR, resistivity, Sonic, Density)

Table 14.1 Matrix comparing accumulation rates, periodicities and cycle thickness



a sequence. In time series, cycles in the sedimentary record are analyzed for their 
harmonics or component cycles (Chatfield, 1989). Spectral analysis is essentially a
modification of Fourier analysis to make it suitable for stochastic values which can be
only partially predicted by past values, rather than deterministic functions of time in
which a time series can be predicted (Schwarzacher, 1975). The recognition of hidden
cycles by spectral analysis has been compared to the way a prism reveals the compo-
nent colors of white light (Davis, 1986; Fig. 14.5).

14.5.2 Application of Spectral Analysis in Sedimentary Sequences

There have been many studies that link stratigraphic cycles to climate oscillations and
orbital cycles, as well as to higher frequency changes such as solar and tidal cycles.
Spectral analysis of Pleistocene sediments has indeed shown that climatic oscillations
are linked to the Earth’s orbit, and can range from thousands to millions of years.

As indicated previously, however, care must be taken when applying spectral
analysis in sedimentary successions because thickness is commonly substituted for
time. Most sedimentary processes do not produce continuous accumulations, causing
a distortion in the conversion of cycle thickness into time. In addition, changes in
weathering and depositional conditions over a climate cycle can produce variations in
lithology. These lithologic changes may be very significant depending on the location
and may cause the number of beds in a cycle to be misinterpreted (Perlmutter and
Matthews, 1989). The selection of sections with rhythmic bedding is very important to
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Figure 14.5 A wave composed of many frequencies can be deconvoluted into its component
waves. This is similar in principle to the way prisms break down white light into a spectrum of
colors (Davis, 1986).



avoid misinterpretations, sections not showing this property will be very prone to lead
the interpreter to the wrong results.

One method to convert between thickness and time is to reconstruct the astronom-
ical periodicities responsible for observed stratigraphic patterns. This can be done as
follows: (1) Select a stratigraphic interval in a well that has sedimentary cycles of rel-
atively uniform thickness (Fig. 14.6). If there are many variations in cycle thickness in
the well, divide the section into shorter intervals; (2) Estimate the time interval 
of the section under investigation using biostratigraphy; (3) Determine the average 
accumulation rate of the interval based on biostratigraphic data; (4) Determine the
vertical resolution of the tool used to measure the data and compare with the cycles
expected for the interval based on the average accumulation rate calculated in item 3
(Table 14.1); (5) Take samples at uniform intervals; (6) Calculate sedimentary cycle
thickness with spectral analysis by dividing the most significant frequency values by
the sampling interval (Fig. 14.7); (7) Build a matrix of thickness and compare it with
the matrix composed of periodicities of the Milankovitch bands (Tables 14.2 and
14.3). Select only the values of the matrix that have similarities greater than 90% to
95% to be more selective; (8) Plot the selected ratios and corresponding thickness–
Milankovitch periods against the corresponding average accumulation rates of the
analyzed interval; (9) Choose those with the best statistical fit. This implies having
cycles with similar ranges of sedimentation rates (Table 14.4); (10) Count the number
of cycles in the interval and multiply by the periodicity to establish the preserved time
span of the analyzed section. An unidentified, but significant hiatus in the interval will
create a discrepancy in the accumulation rates obtained from the Milankovitch band
compared with the one calculated only based only on biostratigraphy.

Another type of discrepancy can occur caused by the difference between the thick-
ness of the calculated long eccentricity cycle (18.66 m) relative to the thickness of this
cycle in the log (Figure 14.6) (21 m), and the corresponding accumulation rate in
(Table 14.4). This inconsistency is explained by the fact that the total analyzed interval
is not long enough to get a sufficient number of data points for the spectral analyses to
properly identify the 21 m cycle, which would correspond to an accumulation rate of
5.08 instead of 4.52, closer to those of the other cycles. Selecting a larger interval to be
analyzed would solve this discrepancy.

14.5.3 Frequency and Amplitude in Sedimentary and Stratigraphic Models

A sequence stratigraphic model proposed by Mitchum and Van Wagoner (1991; 
Fig. 14.8) uses the interaction of eustasy and subsidence in order to form parase-
quences and high frequency sequences. This model erroneously implies that the
amplitudes of the higher frequency cycles are always smaller than the lower frequency
cycles. However, it is well documented from the Pleistocene record of oxygen 
isotopes and the sea level change that higher frequency cycles can also have very 
high amplitudes (Imbrie and Imbrie, 1979). Data indicate that: (1) over the last 2 myr,
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sea level repeatedly rose and fell tens of meters at a cycle frequency of about 20 kyr
(precession cycle); and (2) the largest rises in sea level, over a hundred meters,
were actually the most rapid, occurring during the warming phase of a precession
cycle associated with the shift from glacial to interglacial. What the sedimentary
record actually shows is that 3rd order cycles are composed of bundles of these high
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ka 410 100 41 23 19

410

MILANKOVITCH MATRIX

1.00 4.10 10.00 17.83 21.58

100 1.00 2.44 4.35 5.26

41 1.00 1.78 1.78

23 1.00 1.21

19 1.00

Table 14.2 Matrix showing the ratios of cycle thickness in meters. Adjacent to the ratios the
corresponding higher similarities (�95%) of the Milankovitch ratios are shown in brackets

m 18.66 5.09 2.15 1.21 1

18.66 1.00 3.66 (4.10) 8.68 (10.00) 15.42 (17.83) 18.66 (21.58)

5.09 1.00 2.36 (2.44) 4.20 (4.35) 5.09 (5.26)

2.15 1.00 1.77 (1.78) 2.15 (2.16)

1.21 1.00 1.21 (1.21)

1 1.00

Table 14.3 Matrix showing the ratios of the Milankovitch periodicities



frequency cycles, rather than single, lower frequency phenomenon with high 
amplitude. However, due to the low vertical resolution of the seismic data available for
the studies, the shifts in the sedimentary record are interpreted as 3rd order cycles or
sequences.
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Sedimentary cycle
thickness

(m)

Corresponding
Milankovitch

period
(ka)

Accumulation rate
(cm/ka)

18.66 410 4.55

5.09 100 5.09

2.15 41 5.25

1.21 23 5.29

1.00 19 5.26

Table 14.4 Correlation of cycle thickness with Milankovitch periodicities and corresponding
accumulation rates.
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4th. ORDER EUSTATIC CYCLE

5th. ORDER EUSTATIC CYCLE

COMPOSITE CURVE OF 3rd., 4th.

AND 5th. ORDER CYCLES

Figure 14.8 Model of a composed curve of relative sea level to produce parasequences using
different eustatic frequencies and constant subsidence in a basin (modified from Michum and
Van Wagoner, 1991). This model is discussed in the text.



14.6 Applications

14.6.1 Campos Basin: The Cyclicity of the Oligocene–Miocene Section

The Oligocene–Miocene section of the Campos Basin, offshore Brazil, consists
mostly of marlstones and mudstones with some chalk and turbidite layers, deposited
in a bathyal environment (Fig. 14.9 – Oligocene). Part of this sedimentary section
(lower Miocene) was used to illustrate the methodology discussed above in Tables
14.2–4 and Figures 14.6 and 14.7.

An interval of the Oligocene, composed of rhythmically intercalated marlstones
and mudstones was cored (Fig. 14.9). The interval shows a well-defined variability in 
the percentage of the CaCO3 content based on samples collected at 5 cm spacing 
(Fig. 14.10). The spectral analyses performed on these variations showed CaCO3

cycle thicknesses of 20–25 cm, 42–50 cm, 120 cm and 420 cm. Assuming an 
average accumulation rate of 1–1.2 cm/kyr for the Oligocene section in this area, the
conversion of cycle thickness into time displays good agreement with Milankovitch
periodicities (Fig. 14.11). These carbonate cycles are primarily related to the 
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Figure 14.9 Rhythmically interbedded marlstones and mudstones deposited in a bathyal 
environment during the Oligocene in the Campos basin (modified from Azambuja Filho, 1990).
Note that the carbonate–mudstone cycle is around 20–25 cm thick. The average regional 
accumulation rate for this interval is 1 to 1.2 cm/kyr. The vertical scale is 10 cm long.
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Figure 14.10 Percent carbonate of the cored interval, shown in Figure 14.9, plotted versus
depth. Note two well defined frequencies or cycles. The highest frequency corresponds to centime-
ter-scale alternations or couplets of approximately 25 cm thick, defined by color variations from
lighter to darker in the core. The carbonate content is related to the relative abundance of nanno-
fossils and foraminifer related to mudstone (modified from Azambuja Filho, 1990).

eccentricity and precession, while obliquity was only locally important (Azambuja
Filho, 1990; Azambuja Filho and Azevedo, 1995).

Similar analyses were also carried out on the same Oligocene–Miocene sedimen-
tary section making use of a seismic amplitude trace processed at a sampling interval
of 2 milliseconds (Castro, 1999). These data were compared to a sonic log from a
nearby well (Figs. 14.6, 14.12, and 14.13). There is a general increase in the accumu-
lation rates vertically from the lower Oligocene up to the present. This is indicated by
the progradational feature clearly shown in the seismic section and is further estab-
lished by comparing accumulation rates from cored intervals and logs from the
Oligocene (Fig. 14.9 – accumulation rate of 1 cm/kyr) and the Miocene (Fig. 14.14
and Table 14.4 – accumulation rate of 5.2 cm/kyr). The marlstone–mudstone couplets
in the Miocene are much thicker than those of the Oligocene as can be seen in the
Figure 14.14. High accumulation rates in the Miocene, combined with relatively low
interval velocities, allowed good vertical seismic resolution, making it possible to
identify periodic oscillations in the CaCO3 content and their link to the orbital cycles
(Table 14.4). Both the 100 and 413 kyr eccentricity cycles were identified by combin-
ing seismic and sonic logs (Figs. 14.6 and 14.13). The sonic log additionally allowed
the identification of the precession and obliquity cycles due to its higher vertical 



resolution. These results indicate that seismic is a potential tool for cyclostratigraphic
analyses when sedimentary successions have very high accumulation rates and low
interval velocities.

This type of cyclostratigraphic analysis was also applied to refine the geochronol-
ogy of the Oligocene–Miocene turbidite systems existing in the Campos Basin. It
indicated that these turbidite deposits were generated in well-defined depositional
stages. Each stage is characterized by sudden deposition of sand with a sharp termina-
tion. This is expressed as a box-like wire-line log pattern (Fig. 14.15a). Subsequently,
each system was overlain by the deposition of pelagic and hemipelagic sediments rep-
resented by cycles of marlstone and mudstones. The frequencies of variability of the
turbidite systems were compatible with that of Milankovitch cycles. Within the pelagic
and hemipelagic sediments interval minor turbidite events can be identified. They have
occurred with a periodicity of about 400–500 kya (Fig. 14.15b), while the major 
turbidite events occurred within time intervals on the order of about 1.2–1.5 Ma
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PERIODICITIES OF THE CaCO3%
IN THE CORED  INTERVAL (27 m) 
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Figure 14.11 Periodogram showing the dominant cycle frequencies and corresponding
Milankovitch periodicities of the cored interval. The conversion of cycle thickness into time was
performed by dividing the value of the main cycle frequencies by the sampling interval (5 cm).
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Figure 14.13 Comparison of sonic log frequencies with the nearby seismic amplitude trace. 
In the lower part of the well, below 2200 m, there is a substantial decrease in the seismic 
frequencies due to a velocity increase caused by an increase in the CaCO3 content. This was
due to a decrease in the accumulation rates (modified from Castro, 1999).

Figure 14.14 Lower Miocene upper bathyal mudstones and marlstones. Note the increase in
the marlstone–mudstone cycle thickness compared to Oligocene (Fig. 14.9). This is due to 
an increase in the accumulation rates mainly in mudstones. The vertical scale is 10 cm.
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(Azambuja Filho, 1990). During the Oligocene–Miocene of the Campos Basin the
recurrence of this type of events were recorded as a series of sand-rich turbidites,
which are schematically represented in Figure 14.16.

14.7 Climate

14.7.1 Milankovitch Orbital Oscillations: The Core of Climate Cycles

Climate cycles are produced by the interaction of the Earth’s orbital parameters,
eccentricity, precession of the equinoxes, and obliquity, which periodically alter the
seasonal distribution of insolation (Milankovitch, 1941; Berger, 1980; Lockwood,
1980; Fischer, 1986; Kukla and Gavin, 1992; Perlmutter and Plotnick, 2002; Fig.
14.17). Eccentricity causes the orbit of the Earth around the Sun to periodically vary
from elliptical to almost circular. When the orbit is elliptical, the distance from the
Earth to the Sun varies throughout the year. Precession progressively shifts where in the
Earth’s orbit the closest (perihelion) and farthest (aphelion) distance to the Sun occurs.
In other words, the time of the year when perihelion and aphelion occur, changes.
Presently, the Earth is closest to the Sun in December and farthest in June. The impact
of the precession decreases and disappears as eccentricity nears zero. The result is that
eccentricity bundles precession cycles by causing minimal or missed precession-
related changes when the Earth’s orbit becomes circular (Fig. 14.18). Obliquity causes
seasonality to vary by altering the tilt of the Earth’s pole of rotation, the higher the 
tilt the greater the seasonality. Obliquity also causes the seasons of the Northern 
and Southern Hemispheres to be six months out of phase. When it is summer in one
hemisphere, it is winter in the other. Combined, eccentricity and obliquity cause the
effects of precession to be out of phase between the hemispheres as well (Fig. 14.19).
For example, when perihelion occurs during the Northern Hemisphere summer (June),
aphelion will occur six months later during the Southern Hemisphere summer
(December). This is important to understand because this means that when the Earth’s
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Figure 14.16 Schematic representation of the main turbidite systems of the Oligocene and
early Miocene age, in the Campos basin (modified from Azambuja Filho, 1990).



orbit is eccentric, warm summers (perihelion in summer) occur with cold winters
(aphelion in winter) in one hemisphere, while in the opposite hemisphere moderate
summers (aphelion in summer) occur with moderate winters (perihelion in winter).
This hemispheric pattern gradually reverses itself over the course of a precession cycle.
The obliquity cycle may become dominant as eccentricity approaches zero.

The primary harmonics of the eccentricity cycle have periods of around 100 kyr
and 413 kyr; precession, around 19 kyr and 23 kyr; and obliquity, around 41 kyr.
Constructive and destructive interference of these primary cycles causes longer-term
variations in insolation on the order of 1.6–2.4 myr in duration (Matthews and
Frohlich, 1991). Equations to calculate orbital cycles for the last 10 million years were
developed by Berger (1978) and Berger and Loutre (1988). When seasonal insolation
cycles are plotted, it becomes apparent that the largest changes in insolation, up to
30%, occur at the time scale of precession (Fig 14.19). Although these equations are
rigorous for last 10 million years only, cyclic variations in insolation have occurred
throughout Earth history (Berger et al., 1992). It is important to recognize, however,
that the lengths of cycle frequencies and the amplitudes of Milankovitch cycles have
gradually varied over geologic time (Berger and Loutre, 1988).

14.7.2 Climatic Response to Orbital Cycles

Changes in seasonal insolation can alter regional temperature patterns. The atmosphere
accommodates changes in heating by adjusting the distribution of atmospheric pressure
cells and circulation patterns. Combined, the changes in temperature, pressure and
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circulation alter patterns of precipitation and evaporation, shifting associated climate
patterns and causing climate cycles (Glennie, 1984; Perlmutter and Matthews, 1989;
Park and Oglesby, 1994; Perlmutter et al., 1998). High frequency climate simulations
of the Mid Cretaceous (Park and Oglesby, 1994) and the modern (Moore et al., 2000)
indicate that the largest climate shifts experienced by a region are indeed associated
with changes that occur at the scale of precession. Eccentricity and obliquity cycles
modulate the extent of the effect, as does the long-term interference of the main orbital
harmonics. The result is a repetitive array of short-term, precession-scale climate
cycles that vary between true end-member conditions determined by the longer-term
interaction. The warmest end-member will be referred to as the climatic maximum and
the coolest climatic end-member is referred to as the climatic minimum.

The response of the climate system of a particular region to a specific condition of
insolation is not only a function of the phase of the insolation cycle itself, however.
The response is inherently associated with location (latitude and longitude) and the
(paleo)geography of the area (Perlmutter and Matthews, 1989; Park and Oglesby,
1994; Perlmutter et al., 1995; Moore et al., 2000). The result is that within a hemi-
sphere not all areas become wetter or drier at the same point in an insolation cycle. For
example, as insolation varies over an orbital cycle, equatorial areas may become drier
while mid-latitude areas become wetter or one mid-latitude area may get wetter 
while another area gets drier. Climate variability is a function of the specific regional 
conditions (which can change over geologic time). Therefore, different zones of a 
single hemisphere can undergo different climatic successions in response to the same
insolation cycle (Ibid.).
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Regional paleoclimatic changes can be interpreted by mapping the global distribu-
tion of paleoclimate indicators and constructing seasonal climate maps for each 
phase of an insolation cycle (Perlmutter and Matthews, 1989, 1992; Matthews and
Perlmutter, 1994; Perlmutter and Plotnick, 2002, 2003). To demonstrate this, the 
climates for the Wisconsin glacial period and the Holocene were mapped from paleo-
climate indicators to compare the most recent shift of the global climate patterns 
(Fig. 14.20a,b; Perlmutter and Matthews, 1989, 1992). Figure 14.20 compares the 
differences interpreted from paleoclimate indicators for the last climatic minimum
with present day conditions for the month of July. Note, that there is a well-defined
poleward migration in atmospheric circulation, including the position of the intertrop-
ical convergence zone and the locations of pressure cells, oceanic surface currents and
major climate belts.

To make the global climate pattern easier to explain and understand, seasonal 
climate maps have been simplified into a single map showing a series of climate belts
(Perlmutter and Matthews, 1989). Each belt represents a zone of the Earth’s surface
that, to a first approximation, has similar climatic end-members over a climate cycle.
The climatic succession of a belt is worked out by interpolating between the end-
members. However, in order to use a climate belt map to evaluate the climatic range in
an area, the regional to local conditions that may modify this first approximation of
climate need to be incorporated. Conditions that need to be included are prevailing
winds, proximity to an ocean or large body of water, ocean temperature and currents,
orographic effects, and monsoonal effects.

The climate belt map for the last 3 million years is shown in Figure 14.21a. 
The climate succession of each belt by phase of the insolation cycle is shown in 
Figure 14.21b. Overall, equatorial and polar regions tend to become drier and mid-
latitude regions tend to become wetter as conditions progress from the climatic 
maximum to minimum. However, even in this simplified view of climate change over
an insolation cycle, a highly variable global pattern is apparent.

An additional level of complexity is added when one considers that the insolation
cycles of the Northern and Southern Hemispheres are 180� out of phase on a preces-
sion scale (Perlmutter et al., 1998; Perlmutter and Plotnick, 2002, 2003; Fig. 14.19).
This causes the exact same climatic successions in opposite hemispheres to be out of
phase with respect to time; about 10 kyr out of phase. To illustrate, the highest sum-
mer insolation for a hemisphere, the climatic maximum, occurs when eccentricity is
high and perihelion occurs during the summer (Kukla and Gavin, 1992). Aphelion
will be during winter, six months later. The condition of low summer insolation, the
climatic minimum, occurs when eccentricity is high and aphelion occurs during the
summer. Perihelion then occurs during the winter. Thus, hot summers and cold win-
ters characterize the hemispheric climatic maximum, while cool summers and mild
winters characterize a hemispheric climatic minimum. At the timescale of preces-
sion, the result is that, in general, when the Northern Hemisphere is at a climatic
maximum, the Southern Hemisphere is at a climatic minimum. One consequence of
such hemispheric differences could be the ability of a monsoon to produce summer
rain. Monsoonal climates tend to respond directly to insolation and are strongest
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Figure 14.20 Distribution of global climate patterns with the average position of July 
atmospheric pressure cells, wind patterns and ocean currents superimposed. (a) Present day. (b)
Last climatic minimum estimated from paleoclimate indicators (after Perlmutter and Matthews,
1989) – see colour version of this figure in Appendix.
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Figure 14.21 Cyclostratigraphic belt map for the Pleistocene/Holocene and associated
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1994) – see colour version of this figure in Appendix. (b) Idealized, end-member and climatic



when hemispheric insolation values are highest (Kerr, 1986; Park and Oglesby,
1994). Therefore, a rigorous, rainy monsoon could exist in one hemisphere, while a
sluggish, dry monsoon occurs in the other, even if the geographic conditions are
identical (latitude, land area, proximity to an ocean, sea surface temperature, eleva-
tion, prevailing wind direction, etc.) because of the differences in summer heating.
These variations require that a paleoclimate evaluation for a specific time period
include at least four seasonal maps, including the July and January for climatic 
maximum and minimum that account for the range of paleoclimatic indicators in an
interval (Perlmutter et al., 1995, 1998). When equatorial areas are being evaluated,
an equinox map is interpreted for maximum and minimum conditions as well. 
Figure 14.22 shows a climatic analysis for the early Permian. High and low sea level
conditions are a function of Southern Hemispheric glaciation (Perlmutter and
Plotnick, 2002, 2003).

14.7.3 The Relationship of Climate and Sea Level

As noted above, climatic response to a particular insolation cycle is regional. That is,
not all regions become warmer or cooler, wetter or drier, at the same time point in an
insolation cycle. However, the glacioeustatic response to a particular insolation cycle
is global, with synchronous sea level highs or lows everywhere on Earth. This means
that regional climate cycles of different geographic areas may have different phase
relationships with glacioeustatic cycles (Perlmutter et al., 1995, 1998; Perlmutter and
Plotnick, 2002, 2003). Because climate directly impacts weathering, sediment trans-
port and environments of deposition, these differences in the phase relationships of
regional climate cycles and global sea level cycles can produce very different strati-
graphic patterns during the same insolation cycle. Recognizing that an insolation
cycle can cause stratigraphic cycles to vary depending on the specific conditions of
climate and deposition is extremely important for correlating intervals and developing
a geochronologic framework. In order to appreciate this phenomenon fully, the impact
of climate and sedimentation must be evaluated.
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sequences by cyclostratigraphic belt for the Pleistocene/Holocene. The climate cycle is divided
into six phases: A – the climatic maximum, B1 and B2 – the cooling transition, C – the climatic
minimum, and D1 and D2 – the warming transition. Uniform box size does not necessarily indi-
cate equal lengths of time for each phase. Equatorial areas are affected by a wet monsoon dur-
ing some climate phases, with the number of rainy months per year indicated in parentheses.
Note that mid-latitudes become more humid toward the climatic minimum, while equatorial and
polar latitudes become less humid. Abbreviations are as follows: Tr � tropical; Te � tem-
perate; P � polar; VH � very humid; H � humid; SH � subhumid; D � dry; A �
arid. See text for explanation.

Figure 14.21 Continued
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(Perlmutter and Plotnick, 2002)

(a)

(Perlmutter and Plotnick, 2002)

(b)

Figure 14.22 Climatic variability in the early Permian. (a). Early Permian climatic maximum,
Southern Hemisphere summer. High eccentricity. Hot Southern Hemisphere summers occur during
perihelion. Cold Southern Hemisphere winters occur during aphelion. The Northern Hemisphere
experiences mild summers and winters. Hot Southern Hemisphere summers are unfavorable for ice-
cap formation in the Southern Hemisphere. This is a time of high sea level. (b) Early Permian cli-
matic minimum, Northern Hemisphere summer. High eccentricity. Mild Northern Hemisphere
summers occur during aphelion. Mild Northern Hemisphere winters occur during perihelion. The
Southern Hemisphere experiences extreme summer (hot) and winter (cold) conditions. Hot summers
are unfavorable for icecap formation in the Southern Hemisphere. This is a time of high sea level.
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(Perlmutter and Plotnick, 2002)

(c)

(Perlmutter and Plotnick, 2002)

(d)

Figure 14.22 Continued. (c) Early Permian climatic maximum, Northern Hemisphere summer.
High eccentricity. Hot Northern Hemisphere summers occur during perihelion. Cold Northern
Hemisphere winters occur during aphelion. The Southern Hemisphere experiences mild summers
and winters. Low Southern Hemisphere summer temperatures are likely to be favorable for icecap
formation in the Southern Hemisphere. This is time of low sea level. (d) Early Permian climatic
minimum, Southern Hemisphere summer. High eccentricity. Mild Southern Hemisphere summers
occur during aphelion. Mild Southern Hemisphere winters occur during perihelion. The Northern
Hemisphere experiences extreme summer (hot) and winter (cold) conditions. Low Southern
Hemisphere summer temperatures are likely to be favorable for icecap formation in the Southern
Hemisphere. This is time of low sea level. Maps were interpreted from the geographic distribution



14.8 The Impact of Climate on Sediment Yield

Sediment yield is a complex interaction of many processes, including elevation, slope,
climate, provenance and vegetation. However, elevation is commonly considered 
the primary factor that determines yield (e.g. Milliman and Syvitski, 1992), with 
climate having only a secondary effect, despite a relatively large body of information
indicating the importance of climate (e.g. Garner, 1959; Leopold et al., 1964; Wilson,
1973; Schumm, 1977; Schumm and Brakenridge, 1987). Clearly, the total potential
volume of sediment that can be produced from an area is a function of the volume of
material above base level. However, the manner and rate that the material is weath-
ered, eroded, transported and deposited is a function of the climate and slope. A
mountain produces a very different sedimentary deposit depending on whether it
erodes in a desert or a rainforest. The generalization that elevation is the primary 
control occurs because the detailed quantitative information needed to evaluate the
effect of climate, and the interaction of climate and elevation, on sediment yield are
very limited. In addition, time resolution of the geologic record at the scales necessary
to differentiate rapid (sub-Milankovitch) variations in yield is difficult.

An initial attempt to resolve the effects of elevation and climate was made by 
plotting sediment yield/unit area vs. the maximum elevation of the largest 29 modern
river systems (Fig. 14.23; Perlmutter et al., 1998; Summerfield and Hulton, 1994).
When plotted as an undifferentiated group, the analysis shows that elevation accounts
for only about half the variance in the data. However, when the data were grouped by
the climate of the headlands of each drainage basin projected down to sea level, differ-
ences in the load/unit area become apparent. This evaluation shows that in general,
subhumid climates have the greatest yield, followed by monsoonal and dry
Mediterranean climates, and finally humid climates. Arid climates are assumed 
to have the lowest yield. What this plot demonstrates is that for a given elevation 
sediment yield may vary by over an order of magnitude, depending on the climate
(Perlmutter and Matthews, 1994; Perlmutter et al., 1995, 1998). There is an ongoing
effort to increase the total number of drainage basins used to determine the impact of
climate and elevation on yield (Perlmutter et al., 1998).

14.8.1 The Impact of Climate Change on Sediment Yield

As indicated above, the actual phases of climate cycles vary significantly depending
on location. To demonstrate how climatic succession can affect sediment flux, yield
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and temporal range of paleoclimate indicators (after Perlmutter and Matthews, 1989). Base maps
were generated using the program PGIS (Paleogeographic Information System; Ross, 1992) based
on Paleomap paleogeographic reconstructions (Scotese et al., 1992). Conditions favorable for ice-
cap formation were estimated using criteria from Kukla and Gavin (1992) – see colour version of
this figure in Appendix. 

Figure 14.22 Continued



cycles were estimated for each cyclostratigraphic belt, assuming similar provenance
areas and a maximum elevation of 2 km (Fig. 14.24). From this analysis, the greatest
change in yield is shown to occur in a climatic succession that shifts from arid to sub-
humid. This climate shift occurs in mid-latitude belts 3, 4a, 4b, and 5.

Figure 14.24 highlights the fact that yield cycles are not globally synchronous. For
example, in belt 1, yield is highest at the climatic maximum and lowest at the climatic
minimum; in belt 4b, yield is highest at the climatic minimum and lowest in the cli-
matic transitions, just before and after the climatic maximum. In general, belts show
more than one peak episode of sediment yield over a climate cycle. As a consequence,
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(Perlmutter et al.,1998)

Figure 14.23 Sediment yield/unit area vs. elevation subdivided by climate (Perlmutter et al.,
1998). Numbers refer to rivers: (1a) Brahamaputra, (1b) Ganges, (2) Amazon, (3) Mississippi,
(4) Chiang Jiang, (5) Indus, (6) Mekong, (7) Colorado, (8) Orinoco, (9) MacKenzie, (10)
Huang He, (11) Nile, (12) La Plata, (13) Yukon, (14) Danube, (15) Orange, (16) Amur, (17)
Zaire, (18) Shatt-El-Arab, (19) Zambezi, (20) Niger, (21) Murray, (22) Columbia, (23) Rio
Grande, (24) Ob, (25) Lena, (26) Yenisei, (27) São Francisco, and (28) Kolyma. Estimates of
yield for headlands with a climatic range were made by averaging values.
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sedimentation cycles produced by river basins in different parts of the world do not
have to be in phase with each other or with sea level.

14.9 Effects of Interaction of Climate Sediment and
Sea Level Cycles on Stratigraphy

Sequence stratigraphic convention assumes that: (1) as sea or lake levels fall, the 
associated base-level fall increases sediment yield by increasing erosion of river 
valleys and newly exposed shoreline and shelf; and (2) during a sea or lake level rise,
the associated base-level rise traps sediment in the fluvial drainage basins and the
newly flooded areas, decreasing yield to distal regions of the depositional basin. It is
clearly understood however, that this convention must be modified by climatic consid-
erations (Vail et al., 1977a). Figure 14.24 indicates that only in the climatic succes-
sions represented by belts 2a, 4b, and 5 can sediment yield actually increase at some
point during falling and lowstand sea level and decrease during the rise. Other belts
show maximum supply during the rise, low or highstand, depending on the location.

To investigate the potential effects of climate and sediment cycling on stratigraphy
Perlmutter et al. (1998) simulated four different phase relationships between sediment
yield and eustasy using the 2D stratigraphic computer model Sedpak (Kendall et al.,
1991). Sediment yield and sea level cycles were simulated as simple sinusoidal curves.
The phase conditions simulated in these experiments were: (1) maximum yield during
the fall, minimum during the rise; 2) maximum yield during lowstand and minimum
during highstand; (3) maximum yield during the rise, minimum during the fall; and (4)
maximum yield during highstand, minimum during lowstand. Model results were then
interpreted using a sequence stratigraphic framework with well-established criteria
(Vail et al., 1991). Model input, output, and the interpretations of stratigraphic surfaces
were then compared to determine possible effect.

Results of the comparisons are shown in Table 14.5. Even using the simplified
conditions of the models, variations are evident in the timing of surfaces and systems
tracts relative to the eustatic cycle. This is important information to consider because
the common assumption made by most interpreters is that specific stratigraphic sur-
faces and systems tracts are associated with certain phases of sea level. This set of
experiments suggests that the phase relationships of high frequency sedimentation
cycles can impact the timing relative to sea level by delaying or accelerating the con-
ditions that produce regressive and transgressive surfaces, and enhancing or inhibiting
the development of systems tracts. Perlmutter (1985) and Kolla and Perlmutter (1993)
demonstrate this phenomenon by re-evaluating the Pleistocene stratigraphy of the
Gulf of Mexico in relationship to the sediment yield cycle of the Mississippi River.
They show that the deposition of submarine fans extended well into the mid-rise of sea
level during the deposition of the transgressive systems tract. The phase relationship
may also be critical if a specific surface, such as a maximum flooding surface, is used
for correlation across a basin that is being filled by multiple river systems that drain
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regions with different climates. The same kind of surface in different portions of the
basin may actually represent different phases of the eustatic curve. The effects of the
phase relationship of high frequency sediment supply cycles and lake level cycles on
lacustrine depositional systems may be more profound than for marine systems
because lakes and their associated drainage basins can react more rapidly and to a
greater extent to local to regional climate changes (Perlmutter and Matthews, 1989;
Matthews and Perlmutter, 1994).

In addition to changing the rate of the sediment supply, climate also affects river
hydrodynamics, grain size, vegetation, turbidity, and nearshore salinity etc. For
example, variations in weathering over a climate cycle can alter the sand/shale ratio
(Perlmutter and Matthews, 1989). Additionally, for some climatic successions, the
percent sand increases as total sediment volume decreases. Thus, for some regions,
the timing of optimal reservoir potential will also be a function of the balance between
the total volume of coarse material and the coarse fraction of sediment. The sand/shale
ratio also impacts the potential for seals, which can effect hydrocarbon migration and
entrapment. Vegetation and freshwater discharge can affect the type and content of
organic matter in potential source rocks.

In summary, sea level cycles caused by changes in glacial mass at the poles tend 
to track the insolation cycle (Matthews and Frohlich, 1991; Kukla and Gavin, 1992;
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Transgressive

Surface

Maximum
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just prior to the
inflection point

Condensed
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Lowstand

Prograding

Complex

90˚
(Fall)

180˚
(Low)

Very Early Fall 
just after highstand

Highstand Highstand
Early
Rise

Low to
Early Rise

Surfaces
& StrataPhase

Shift of
Yield & Eustasy
(Max. yield)

Lowstand

Very Late Rise 
just prior to

highstand

Very Late Rise 
just prior

to highstand

Rise

Fall

Very Early Rise 
just after
lowstand

Mid Rise 
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inflection point

Very Late
Fall and

Lowstand

Mid Rise
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(Rise)

360˚
(High)

midway between
highstand and the

inflection point

Lowstand

Late Rise 
midway between

the inflection point
and highstand

Lowstand
Late

Fall

Sequence

Boundary

Perlmutter et al., 1998

Transgressive

Surface

Maximum

Flooding Surface

Mid Fall –
just prior to the
inflection point

Condensed

Section

Lowstand

Prograding

Complex

90˚
(Fall)

180˚
(Low)

Very Early Fall –
just after highstand

Highstand Highstand
Early
Rise

Low to
Early Rise

Lowstand

Very Late Rise – 
just prior to

highstand

Very Late Rise – 
just prior

to highstand

Rise

Fall

Very Early Rise – 
just after
lowstand

Mid Rise – 
at the

inflection point

Very Late
Fall and

Lowstand

Mid Rise
270˚

(Rise)

360˚
(High)

Early Fall –
midway between
highstand and the

inflection point

Lowstand

Late Rise –
midway between

the inflection point
and highstand

Lowstand
Late

Fall

Table 14.5 The effect of the interaction of sediment and glacioeustatic cycles on the interpre-
tation of key stratigraphic surfaces and selected strata (Perlmutter et al., 1998). This table was
compiled from interpretations of output from the stratigraphic computer Sedpak. A phase shift
of 90� (fall) indicates the maximum amplitude of the sediment supply cycle coincides with sea
level fall. A phase shift of 180� (low) indicates the maximum amplitude of the sediment supply
cycle coincides with sea level lowstand. A phase shift of 270� (rise) indicates the maximum
amplitude of the sediment supply cycle coincides with sea level transgression. A phase shift of
360� (high) indicates the maximum amplitude of the sediment supply cycle coincides with sea
level highstand.



Berger, 1992): sea level is high around the insolation maximum and low around the
insolation minimum. In addition, the climatic succession of each belt relative to the
insolation cycle is different, causing phase relationships of yield and sea level cycles
to vary. Depending on location, maximum and minimum sediment yield can occur 
at any phase of glacioeustatic cycle. The same is true for the sediment yield and 
lake-level curves.

14.10 Examples of the Effect of Climatic Succession and
Glacioeustacy on Reservoir Distribution

14.10.1 Surma Basin, Bangladesh

The late Miocene section of the Surma Basin, Bangladesh, demonstrates that 
reservoir distribution can be controlled by a combination of climatic succession and
glacioeustacy (Perlmutter et al., 1998). At that time, the climatic maximum conditions
in the fluvial drainage area providing sediment to the Surma basin were interpreted as
tropical wet, with a short dry season. A wet tropical climate causes vigorous biochem-
ical weathering and produces mostly very fine-grained sediments. The climatic mini-
mum was interpreted as cooler, with a wet summer, and a dry winter monsoon,
increasing both the volume and coarseness of sediment yield at this point in the cycle.
Alpine glaciers may have also existed in the higher elevations of the headlands at this
time, with seasonal melting of ice adding to the yield. As the climate cycle progressed
and conditions warmed, the area became wetter and sediment yield and coarseness
decreased.

The phase relationship of sediment yield and eustatic cycles for the Surma basin
was affected by unipolar glaciation. In the late Miocene, the Southern Hemisphere
had a polar icecap but the Northern Hemisphere did not. At the scale of precession, the
Northern and Southern Hemispheres are out of phase so the climatic maximum in the
Northern Hemisphere corresponds to the climatic minimum in the Southern
Hemisphere. Consequently, the highest volume and coarsest sediment yield to the
Surma basin (Northern Hemisphere climatic minimum) corresponded to high sea
level (Southern Hemisphere climatic maximum, glacial minimum). The lowest vol-
ume, finest-grained yield (Northern Hemisphere climatic maximum) therefore corre-
sponded to low sea level (Southern Hemisphere climatic minimum, glacial
maximum). Sediment yield would have been highest in and around high sea level,
peaking just as sea level fall began and the alpine glaciers in the headlands melted.
Yield and grain size decreased as tropical wet conditions redeveloped in the drainage
basin near the time of low sea level. High levels of river discharge would have caused
erosion of the shelf as base-level fell.

Based on this correlation of yield and sea level, the potential for deposition of
reservoir-forming strata in the Surma basin should have increased toward the eustatic
high, with the highest reservoir potential in the later transgressive and highstand system
tracts. A sediment pulse early in the sea-level fall would have increased this potential
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and increased the rate of highstand progradation. Data from the Surma basin indicate
that the stratigraphy is indeed cyclic. Shallow shelf transgressive and highstand 
systems tracts are sandy, with marginal marine lowstand wedges and prograding com-
plexes predominantly muddy and silty (Radovich et al., 1995). Condensed sections
are thin and muddy, overlying transgressive shoreline sands. These data and interpre-
tations are completely consistent with the forecasts made using cyclostratigraphy.

14.10.2 Gulf of Mexico

The phase relationship of the sediment yield cycle of the Mississippi River and the
glacioeustatic cycle in the late Pliocene and Pleistocene was previously evaluated by
Perlmutter (1985) and Kolla and Perlmutter (1993). Maximum total yield occurred
during the early to mid-rise of eustasy, and was over an order of magnitude greater
than the minimum yield. A maximum coarse yield, 20 times larger than the minimum
coarse yield, also occurred during sea level rise. Minimum total and coarse yields
occurred during low runoff around the eustatic low. Sea level highstands were charac-
terized by warmer and wetter conditions and fine-grained sediments. These analyses
indicated that the highest potential for reservoirs should have occurred in intervals
deposited during the early to mid-rise of sea level, in lowstand prograding complexes,
thick sandy fans and early transgressive systems tracts (Kolla and Perlmutter, 1993).

Prior to the glaciation of North America in the late Pliocene (�2.5–3 ma;
Galloway et al., 1991), climate conditions in the western headlands of the Mississippi
drainage basin, where most of the sediment was produced, were warm temperate/sub-
humid to dry during the climatic maximum and cool temperate/humid to subhumid at
the climatic minimum (Perlmutter and Matthews, 1989; Matthews and Perlmutter,
1994). Alpine glaciers may have existed in the higher elevations of headlands during
the climatic minimum. These climates were used to estimate early Pliocene sediment
yield by using Figure 14.23; yield was highest during the climatic maximum (�9,000
kg/km2/yr) and lowest during the climatic minimum (�3,000 kg/km2/yr). Seasonal
melt from Aalpine glaciers during the climatic minimum worked to counterbalance
the effect of the reduced amount of water in the hydrologic cycle due to lower temper-
atures. These estimates indicate that maximum yield was likely to have been two to
three times the minimum yield. The shift to a cooler but more humid climate in the
western portion of the drainage basin would have tended to reduce grain size.

Again, prior to the build up of a glacier in North America, only the Southern
Hemisphere had a large polar icecap and, therefore, controlled glacioeustasy. High
eustatic sea level (Southern Hemisphere climatic maximum, glacial minimum) corre-
sponded to the time of the lowest volume yield (Northern Hemisphere climatic mini-
mum). As sea level fell, the climate in the Mississippi drainage basin warmed, runoff
increased, alpine glaciers melted, and sediment load increased. The associated fall in
base level, combined with an active river system, caused erosion of the shelf, possibly
making the total volume of sediment delivered to the Gulf of Mexico during the fall
about equal to that of low eustatic sea level (the time of the Northern Hemisphere
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climatic maximum and highest yield from the Mississippi drainage basin). As sea
level rose during the next phase of the cycle, climate in the drainage area became
cooler and more humid, decreasing yield and grain size. This, combined with the addi-
tion of accommodation space caused by rising sea level, would have significantly
reduced sediment volume reaching the Gulf of Mexico. The resulting yield cycle has
had its highest amplitude around the mid-fall and low sea level. Recall for compari-
son, that in the late Pliocene–Pleistocene section, maximum supply and coarse yield
occurred during the early to mid-rise of eustasy (Perlmutter, 1985). In early Pliocene
time, therefore, the highest potential for sandy reservoirs in the Gulf of Mexico should
have been in systems tracts deposited in relative lowstand position, fans and prograd-
ing complexes.

A detailed sequence stratigraphic analysis of a regional line on the Louisiana shelf,
Gulf of Mexico, was made by Radovich et al. (1990). These authors integrated seis-
mic interpretation, electric logs, and biostratigraphy to interpret systems tracts in five
prograding sequences that ranged in age from early Pliocene to early Pleistocene.
Biostratigraphy indicated that water depths in the area of study were predominantly
outer shelf and slope during deposition of transgressive and highstand systems tracts.
This location permitted excellent definition of lowstand prograding complexes, which
were expanded and sand-rich compared to the transgressive and highstand systems
tracts, which are mostly thin and predominantly shaly. Thus, the interpretation of the
distribution of potential reservoir-forming sands, made using sequence stratigraphy,
does coincide with the forecasts made using cyclostratigraphy. Overall, the predomi-
nant lowstand locations of high potential reservoirs in the Gulf of Mexico are very
different than the sandy reservoirs in the Surma basin, which occur in more updip
positions, in transgressive and highstand systems tracts.

14.11 Summary and Discussion

High frequency climatic succession is a function of global position and is therefore
interpretable and mappable. Climatic succession may cause sediment flux to vary by
over an order of magnitude through the span of an insolation cycle. Climate succession
is a function of geographic location, while glacioeustatic sea level is global and tends to
track the insolation cycle. The phase relationship between the sediment yield cycle and
glacioeustasy therefore varies as a function of paleogeography. Maximum or minimum
sediment supply is not necessarily related to any specific stage of sea-level change. 
The impact of this variability is that the distribution of potential hydrocarbon reser-
voirs, seal and source rocks; (1) may be affected by the relative timing of the climate,
sediment yield and base-level (lake and sea level) cycles, and (2) has predictable
regional differences. This information should be incorporated into exploration 
programs to focus on those basins and time intervals with higher probabilities of hydro-
carbon occurrence. More specifically, it can be used to focus prospect assessment and
development toward those intervals with systems tracts with the highest probability of
reservoir, capped by a competent sealing shale in proximity to a source rock.
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Simplified simulations using the computer model Sedpak have been used to inves-
tigate the impact of the phase relationship of sediment cycles and sea (or lake) level
cycles. Even in these relatively uncomplicated simulations, variation occurred in the
timings of surfaces and systems tracts relative to the timing of the eustatic cycle. This
suggests that the timing of the sediment supply cycle with respect to sea level may
affect the interpretation of stratigraphy and reservoir potential.

The distribution of reservoirs in the late Miocene section of the Surma 
basin, Bangladesh, was compared with the Pliocene sections of the Gulf of Mexico in
the area of the Mississippi River to demonstrate the effect climatic succession has on
lithostratigraphy. Potential reservoirs in the Gulf were associated with thick, sandy, low-
stand prograding complexes, while reservoirs in the Surma basin were associated with
transgressive and highstand systems tracts. In both cases, actual distributions closely
matched the distribution forecasts obtained by using cyclostratigraphic methods.
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15.1 Introduction

Case histories are presented of applications of biosteering in British Petroleum (BP).
They have been selected so as to give a reasonable representation of geological
settings, reservoir ages and facies, and analytical techniques. They are:

Andrew Field, North Sea (Upper Paleocene deep marine clastic

Valhall Field, North Sea (Upper Cretaceous deep marine carbonate
reservoir – biosteered using micropaleontology and nannopaleontology);
Cusiana Field, Colombia (Upper Cretaceous shallow marine clastic
reservoir – biosteered using palynology);
Sajaa Field, Sharjah (Lower Cretaceous shallow marine carbonate
reservoir – biosteered using thin-section micropaleontology and 
microfacies).
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reservoir – biosteered using micropaleontology and microfacies);
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The value added to date by the application of biosteering throughout the BP port-
folio runs into hundreds of millions of dollars. It is anticipated that this figure will fur-
ther increase in the future, as the technology is transferred to fields in areas only now
entering into production.

15.2 Biosteering

Biosteering involves real-time monitoring of stratigraphic position relative to reser-
voir in a (deviated) well by biostratigraphic techniques applied at well-site. It also
involves, as necessary, for instance when encountering a sub-seismic fault or a prob-
lem with seismic depth conversion or survey data, issuing instructions to redirect the
well trajectory to ensure optimal reservoir penetration. The high resolution of the
technique (its “window”), usually established by analyses of closely spaced samples
from offset wells or a pilot hole, is often of the order of only a few feet or metres.

The technique is, and will remain, critical to the exploitation of many petroleum
reservoirs. It was first applied on Maersk’s Dan Field in the Danish Sector of the North
Sea as long ago as 1987 (see, for instance, Shipp and Marshall, 1995; Shipp, 1999).

15.3 Discussion of Results

15.3.1 Andrew Field, North Sea

Reservoir � Upper Paleocene deep marine clastics (Andrew Formation).
Biosteering technology � Micropaleontology and microfacies.
Contractor � Ichron Ltd., Northwich, Cheshire.

The Andrew Field (see also Payne et al., 1999; Holmes, 1999) is situated in the UK
Sector of the North Sea (Fig. 15.1). The reservoir comprises deep marine submarine
fan sandstones and subordinate mudstones of Late Paleocene age (Andrew Formation).
Reserves are estimated at 118 million barrels. The pay interval is comparatively thin.
The field is currently (1999) being produced using horizontal wells. Production com-
menced in June, 1996, and rates are currently at 64000 barrels/day. Understanding of
the reservoir facies and heterogeneities and consequences for fluid flow, and optimal
placement of wells with respect to fluid contacts are critical to the maximization of oil
production prior to the inevitable early gas and/or water breakthrough.

Micropaleontological biostratigraphy in conjunction with petrophysics and core
sedimentology has been used to establish a subdivision of the reservoir into seven
zones of the order of a few metres or tens of feet thick (Fig. 15.2). Microfacies in con-
junction with core sedimentology has been used to identify facies and heterogeneities
within each zone, thereby establishing the spatio-temporal distribution of reservoir
and non-reservoir units and potential consequences for fluid flow (Fig. 15.2).



Mudstones A3 and A1 have been interpreted on the basis of high abundance and
diversity, low dominance (stress) “tranquil” assemblages of agglutinating foraminifera
characterized by comparatively high incidences of complex infaunal “morphogroup”
C as hemipelagic. They have therefore also been interpreted as potentially of 
field-wide extent and constituting barriers to fluid flow. This has been confirmed by
pressure data.
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Figure 15.1 Location Map, Andrew and Valhall Fields.
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Mudstone A2 has been interpreted on the basis of low abundance and diversity,
high dominance (stress) “disturbed” assemblages dominated by simple epifaunal
“morphogroups” A (suspension-feeders) and B as interturbiditic. It has therefore also
been interpreted as potentially of limited areal extent, and constituting only a baffle to
fluid flow. The “morphogroup” nomenclature alluded to above follows Jones and
Charnock (1985), Jones (1996) and Jones (1999) and additional references cited
therein; key stratigraphically and paleoenvironmentally useful species have been
illustrated by Charnock and Jones (1990).

Biosteering – by means of agglutinating foraminiferal micropaleontology and
microfacies – has targeted Reservoir Unit B (Fig. 15.2). Fortuitously, the top of this unit
is effectively coincident with the gas-oil contact over the crest of the field. Realization
of this fact has allowed the biosteered well-bore to be run more medially through the
reservoir than in the initial well plan (with an initial 50 : 50 stand-off from the gas-oil
contact as against a standard 63 : 37), with the overlying Mudstone A3 acting as a bar-
rier to fluid flow (see above) and hence protecting it from gas invasion (Fig. 15.3).

It is estimated by the Andrew Business Unit that the optimal well placement
enabled by the biosteering has added 10 million barrels of reserves to the books.

15.3.2 Valhall Field, North Sea

Reservoir � Upper Cretaceous deep marine carbonates (Tor Formation).
Biosteering technology � Micropaleontology and nannopaleontology.
Contractor � Network Stratigraphic Consulting Ltd., Potters Bar, Hertfordshire.

The Valhall Field (see also Bergen and Sikora, 1999; Sikora et al., 1999) is situated in
the Norwegian Sector of the North Sea (Fig. 15.1). The reservoir comprises deep
marine carbonates (allochthonous chalks and chalky turbidites) of Late Cretaceous,
essentially Maastrichtian, age (Tor Formation). Recoverable reserves are estimated at
705 million barrels. Offtake is by means of high-angle wells, of which 50 have already
been drilled. Production rates are currently (1999) at 105,000 barrels/day.

Biostratigraphy in conjunction with petrophysics and core sedimentology has
been used to establish a subdivision of the reservoir into seven zones of the order of a
few metres of tens of feet thick (Fig. 15.4).

Biosteering – by means of calcareous benthic and planktonic foraminiferal
micropaleontology and nannopaleontology – has targeted Zones C and D (Zones A
and B possessing better reservoir properties in terms of porosity and permeability, but
being unstable and prone to collapse under drawdown).

On particularly successful well that was kept within Zone D by biosteering is cur-
rently (1999) producing 12,000 barrels/day (Fig. 15.5).

Other well-site applications of biostratigraphy include setting casing close to the
base of the overburden without drilling overbalanced into the underpressured zone at
the top of the reservoir, thereby causing formation damage, and “biostopping” (mak-
ing the TD call) at the base of the reservoir. Another application is identifying the
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Reservoir Stratigraphy, Valhall Field.Figure 15.4
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Figure 15.5 Impact of Biosteering, Valhall Field. Well kept within best reservoir (Zone D)
 throughout trajectory by biosteering.
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Figure 15.5  Continued
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origin of caved material and hence unstable zones in the tophole, impacting well
design and drilling mud requirements.

In terms of value added, 30% of the current field production of 105,000
barrels/day is attributed by the Valhall Business Unit to optimal reservoir placement
enabled by biosteering. Moreover, a minimum of $1 million per well (7 days drilling,
about $150,000 per day) is saved by being able to set casing in the correct place by
means of biostratigraphy (see above).

15.3.3 Cusiana Field, Colombia

Reservoir � Upper Cretaceous shallow marine clastics (Guadalupe Formation).
Biosteering technology � Palynology.
Contractors � BSI (Brenac Stratigraphy International), Llanddulas, North Wales;
KRA (Keith Richards & Associates), Llandudno, North Wales.

The Cusiana Field (see also Cazier et al., 1995; Cooper et al., 1995a–b) is situated in
the Llanos Basin, more specifically in the frontal thrust-sheets of the Eastern
Cordillera, some 150 miles north-east of Bogota in Colombia (Fig. 15.6). The reservoir

Figure 15.6 Location Map, Cusiana Field.
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comprises shallow marine sandstones of Late Cretaceous, Santonian-Campanian, age
(Guadalupe Formation). Recoverable reserves are estimated at 1.5 billion barrels of
light oil and condensate and 3.4 trillion cubic feet of gas. The field is currently being
produced using horizontal wells. Production rates are currently (1999) in excess of
300,000 barrels/day.

Biostratigraphy in conjunction with petrophysics and core sedimentology has
been used to establish a subdivision of the reservoir into seven zones of the order of a
few tens of feet thick (Fig. 15.7).

Biosteering – by means of palynology – has targetted Zones GR3–GR7, which are
developed within the best (“Upper Phosphate”) reservoir (Fig. 15.8). A BP designed
portable unit has enabled safe handling at well-site of the dangerous chemicals used in

Figure 15.7 Reservoir Stratigraphy, Cusiana Field.
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palynological processing. A BP sponsored research programme is currently underway
with the objective of eliminating altogether the need for the use of such chemicals.

In terms of value added, the production potential from the first biosteered horizon-
tal well of the field was approximately 30,000 barrels/day, as against 12,000
barrels/day from the best conventional vertical well. Moreover, one biosteered well
costing $26 million effectively does the work of 3–4 conventional wells costing
$15–18 million each. Thus, the three that have been drilled to date have resulted in
savings in drilling costs of $57–138 million.

15.3.4 Sajaa Field, Sharjah

Reservoir � Lower Cretaceous shallow marine carbonates (Kharaib and Shuaiba
Formations).
Biosteering technology � Thin-section micropaleontology and microfacies.
Contractor � Robertson Research International Ltd., Llandudno, North Wales.

The Sajaa Field (see also Blinten and Wahid, 1983; Beydoun, 1988) is situated in the
frontal thrust-sheets of the Oman Mountains, some 25 miles east of Sharjah town in
Sharjah in the United Arab Emirates (Fig. 15.9). The reservoir comprises shallow
marine carbonates of Early Cretaceous, Barremian–Aptian, age (Kharaib and Shuaiba
Formations). Recoverable reserves are estimated at between 100–400 million barrels
of condensate and 1.5–6 trillion cubic feet of gas. Production commenced in 1982.
1985 rates were 60,000 barrels/day. The field is currently (1999) being produced using
horizontal wells.

Figure 15.8 Impact of Biosteering, Cusiana Field. Well kept within best reservoir (Zones
GR3-7) throughout trajectory by biosteering.
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Integration of biostratigraphic, petrophysical and core sedimentological data has
enabled a 21-fold subdivision of the Kharaib and Shuaiba reservoirs into zones of the
order of a few tens of feet thick (Figs. 15.10a–b). Incidentally, detailed paleobathy-
metric interpretation of closely-spaced samples from equivalent reservoir sections
elsewhere in the United Arab Emirates (in Abu Dhabi) and in Kuwait has contributed
significantly to the understanding of parasequence-scale reservoir faces and architec-
ture in these areas, and to the identification of reservoir “sweet spots” (reservoir qual-
ity being related primarily to depositional facies, with little diagenetic overprint). The
methodology for the paleobathymetric interpretation is described by Banner and
Simmons (1994) and Jones (1996); key stratigraphically and paleoenvironmentally
useful species are illustrated by Whittaker et al. (1998).

Biosteering – by means of thin-section larger benthic foraminiferal micropaleonto-
logy and microfacies – has been achieved over distances of several thousands of feet (a
world record of 10,228' in the equivalent reservoir section in Al-Shaheen Field, offshore
Qatar; Shipp and Marshall, 1995). It has effectively replaced geosteering using
coherency, which worked well in unfaulted but not in faulted sections (the approach taken

Figure 15.9 Location Map, Sajaa Field.
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Figure 15.10 Reservoir stratigraphy, Sajaa Field. (a) Shuaiba reservoir; (b) Kharaib
reservoir.
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Figure 15.10 Continued
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on encountering a fault being to steer upwards to a known point in the stratigraphy –
usually the base of the Nahr Umr Formation – and then back down again, which 
could take up to 24 hours). Biosteering of multilateral wells has also been possible 
(Fig. 15.11).

15.4 Concluding Remarks

Benefits accruing from biosteering and optimal reservoir placement in the cited exam-
ples include:

● Savings of tens of millions of dollars in drilling costs;
● Addition of tens of millions of barrels of reserves; 
● Addition of tens of thousands of barrels per day of production (sustainable

throughout field life).

Costs incurred are typically less than 0.5% of an individual well budget. The value
added to date by the application of biosteering on over 200 wells throughout the BP
portfolio runs into hundreds of millions of dollars.

It is anticipated that this figure will further increase in the future, as the technology
is transferred to fields only now entering into production, for example deep-water
Angola and the Gulf of Mexico.
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“Quantitative stratigraphy uses relatively simple or complex mathematical-statistical
methods to calculate stratigraphic models that with a minimum of data provide a
maximum of predictive potency, and include formulation of confidence limits”, (F.P.
Agterberg, 1990).

16.1 Introduction

Modern biostratigraphy frequently copes with occurrence data from hundreds of
fossil taxa, in thousands of samples, derived from many wells or sections in many
different basins. Two challenges, particularly on a regional, basinwide scale, are:

(a) to increase stratigraphic resolution in biozonations, using a combina-
tion of eventls derived from several different micro- and/or macrofossil
groups, and
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(b) to calibrate these zonations to modern time scales, and extract sequence
stratigraphic signals that assist with seismic mapping of prospects, and
burial history for basin modelling.

This study focuses on the first challenge. Conventional stratigraphic resolution
places considerable emphasis on the end pioints of a few taxa in a few sections. Since
a limited number of sections are likely to have the uniform presence or consistent
order of all “zonal or index” taxa, there always is a fair amount of subjective judg-
ments as to the perceived “true” order.

New tools in stratigraphy, using semi-quantitative or quantitative methods, make it
easier to build integrated zonations, and individual wells or outcrop sections may be
tested for ‘stratigraphic normality’. Advantages of these tools in stratigraphy, particu-
larly in frontier regions, are:

1. Standardization during digitization of the fossil record and execution of
(semi-) objective stratigraphic methods gives easy access to all data and
interpretations.

2. Data sets and results are easy to communicate and are rapidly updated
with new information.

3. Integration of all fossil and also physical (e.g. isotope, well-log) events
in one stratigraphic solution increases resolution and practical use.

4. Methods and results (zonation + correlation) are more objective than
‘hand-made’ solutions.

5. Zones, events and their correlations may have error bars attached,
which improve insight into true stratigraphic resolution and reliability
of event correlation.

6. Interpolation of missing event positions in sections increases detail in
correlations.

7. Unlike subjective stratigraphy, the new methods provide more than one
possible solution of the data, depending on run conditions (multiple
working hypothesis).

8. Sequence stratigraphic levels or trends may be detected and defined.
9. The new methods handle large and complex data sets, and calculate

reliable solutions quickly.

That is not to say that there are no limiations to quantitative biostratigraphy. For
example, the fossil record cannot be modelled a priori for spatial and temporal distri-
butions, and it is difficult to directly weigh records (observations) in terms of strati-
graphic quality. In addition, the methods are time consuming because of demands on
data organization and data formating. On the other hand, modern studies are showing
that benefits of the quantitative approach outweigh limitations, and enhance the quality
of geologic interpretations.



16.2 Properties of Stratigraphic Data

A paleontological record is the position of a fossil taxon in a rock sequence. The
stratigraphic range of a fossil is a composite of all its records. The end-points of the
range are biostratigraphic events, which includes the first appearance in time, and
disappearance from the geologic record. A biostratigraphic event is the presence of a
taxon in its time context, derived from its position in a rock sequence. Fossil events are
the result of the continuing evolutionary trends of life on earth; they differ from phys-
ical events in that they are unique, non-recurrent, and that their order is irreversible.

Often the first and last occurrences of fossil taxa are relatively poorly defined
records, based on few specimens in scattered samples. Particularly with time-wise
scattered last occurrences, reworking may have locally extended the record, which
may be distinguished by differentiating between the last occurrence (LO), and the last
common or last consistent occurrence (LCO) of taxa.

The spacing in relative time between successive fossil events is called resolution.
The greater the probability that such events follow each other in time, the greater the
likelihood that correlation of the event record models isochrons. Most industrial data
sets make use of sets of LO and LCO events. In an attempt to increase resolution in
stratigraphy, particuarly when many sidewall cores are available, efforts are made to rec-
ognize a half dozen events along the stratigraphic range of a fossil taxon (Fig. 16.1),
including last stratigraphic occurrence (‘top’ or LO event), last common or consistent
occurrence (LCO event), last abundant occurrence (LAO event), first abundant occur-
rence (FAO event), first common or consistent occurrence (FCO event) and first occur-
rence (FO event). Unfortunately, such practice may not yield the desired increase in
biostratigraphic resolution sought after, for reason of poor event traceability.
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Figure 16.2 Cumulative frequency of microfossil event occurrences versus number of wells for
seven subsurface data sets. Dots – 23 wells/702 events, Cretaceous of North Sea and offshore
Norway, various consultants, unpublished; dashes – 60 wells/391 events (Gradstein et al., 1994;
Gradstein and Bäckström, 1996, and unpublished); dot-dash – 26 wells/190 events, Cenozoic off-
shore eastern Canada (Gradstein et al., 1994); closely spaced dots – Upper Cretaceous nannofos-
sils (with relatively high traceability, as seen from the hump in the curve), offshore East Canada
(Doeven et  al., 1982); pairs of dots – 13 wells/135 events, Indian and Atlantic Oceans Deep Sea
Drilling Sites and Ocean Drilling Sites with relatively low fossil diversities and frequent hiatusses
(Gradstein et al., 1992); small dashes – Jurassic dinoflagellates, Troll area, offshore southwest
Norway (R. Woollam, pers. comm., 1994); solid line – 29 wells/494 events, Cretaceous foraminifers
and dinocysts, offshore Norway (Gradstein et al., 1999).



Poor event traceability is illustrated in Figure 16.2, where cumulative event distri-
butions are plotted using a wide variety of microfossils from different stratigraphic
intervals in different basins. All curves are asymptotic, showing an inverse relation
between event distribution and the number of wells. None of the events occur in all
wells, and far fewer events occur in 5 or 6 wells than only in 1 or 2 wells; hence, the
cumulative frequency drops quite dramatically with a small increase in the number of
wells. Obviously, the majority of fossil events have poor traceability, which is true for
most data sets, either from wells or from outcrops. Groups of microfossils with higher
local species diversity, on average have lower event traceability.

Data sets with above average traceability of events are those where one or more
dedicated observers have spent above average time examining the fossil record, veri-
fying taxonomic consistency between wells or outcrop sections, and searching for
‘missing’ data. In general, routine examination of wells by consultants for drilling
completion reports yields only half or (much) less of the taxa and events than may be
detected with a slightly more dedicated approach.

There are other reasons than lack of details from analysis for why event traceabil-
ity is relatively low. For example, lateral variations in sedimentation rate change the
diversity and relative abundance of taxa in coeval samples between wells, particularly
if sampling is not exhaustive, as with well cuttings or sidewall cores. Because chances
of detection depend on many factors, stratigraphical, mechanical, and statistical in
nature, increasing sampling and studying more than one microfossil group in detail is
beneficial.

Although not always explicit, biostratigraphy relies almost as much on the
absence, as on the presence of certain markers. This remark is particularly apt for
microfossils that generally are widespread and relatively abundant, and compose
many stratigraphically useful events. Only if non-existence of events is recognized in
many, well-sampled sections, may absences be construed as affirmative for strati-
graphic interpretations. If few samples are available over long stratigraphic intervals,
the chance to find long-ranging taxa considerably exceeds the chance to find short-
ranging forms. In actual practice, index fossils have a short stratigraphic range, are
generally uncommon and hence easily escape detection. Therfore, interpretations
based on absences should be used with caution.

16.3 Data Bookkeeping

An important aspect of quantitative stratigraphy is microfossil event input, and effi-
cient bookkeeping of such records for many wells. The creation of datasets that pro-
vide meaningful stratigraphic answers is dependent on such. In the process, detailed
checks are advisable to eradicate taxonomic errors and to remove gross outliers repre-
senting caved (in exploration wells) or geological recycled (reworked) events. There is
no doubt that data input, data bookkeeping and data checking take most of the time in
a project. Without a suitable computer program to digitize, organise, pre-digest
and filter data of many wells or outcrop sections, such tasks can not be executed,
and quantitative biostratigraphic methods cannot be applied. A key property of such
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a methodology is that all wells in a dataset are accessible simultaneously for queries,
corrections, and modifications, so-called multi-well tasking. Both standard spread-
sheet or relational database programs can be adapted to the task, and should offer
some or all of the following options:

(a) bookkeeping and organisation of fossil events such that they can be
queried simultaneously in all wells;

(b) calculation of simple census-type statistics;
(c) tracing of events over all well sites;
(d) finding of co-occurring events, synonyms and geographic substitutes;
(e) cross-plot events from two wells, or of well versus zonation to eliminate

outliers;
(f) reformat files for direct input in quantitative stratigraphy programs;
(g) create subsets of the original data to verify local biozonal trends with

selected taxa; and
(h) provide a complete printed record of all data, suitable for reports.

The curious anomaly in data processing is the lack of agreement on a standard for-
mat in which biostratigraphic data are processed and stored. This is a challenge that
needs an urgent consensus.

16.4 Stratigraphic Methods

16.4.1 Introduction

Traditionally, biostratigraphic zonations are executed ‘by hand’ through a painstaking
process of (mental) stacking in relative geologic time of numerous fossil events from
many different outcrop or well sections. Subtle stratigraphic order relationships are
evaluated, and frequent gaps are bridged by superpositional hypothesis, where data
are scarce. The human mind is good at evaluating observed and virtual superpositional
data and bridging data gaps.

Quantitative methods of biostratigraphy, like graphic zonation and correlation, or
ranking and scaling cannot easily match the subtilities of very detailed subjective
zonations, based on many, often incomplete stratigraphic sections, using much infor-
mation on missing data. As mentioned above, the experienced biostratigrapher uses
almost as much information on absence as on presence of data, and the former cannot
be evaluated by a method. To produce a data set that is detailed and informative
enough to yield quantifiable, high-resolution zonations is a considerable task. How-
ever, once such a dataset and its derived quantitative zonation is accomplished, and
made available together with its raw data and data processing details, it serves as a
more reliable model for correlation and chronostratigraphic calibration than a poorly
documented, subjective zonation. True stratigraphic resolution improves if event spac-
ing in relative time is assessed with standard deviations, that create an understanding
as to the chance that two events are superpositional.
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16.4.2 Deterministic and Probabilistic Methods

There are two principal families of quantitative stratigraphic methods: (a) determinis-
tic, and (b) probabilistic. Deterministic methods seek the total or maximum strati-
graphic range of taxa, whereas probabilistic methods calculate the most probable or
average range (Fig. 16.3), accompanied by an estimate of stratigraphic uncertainty.
Deterministic methods assume that inconsistencies in the stratigraphic range of a
taxon from well to well are due to missing data. On the other hand, probabilistic meth-
ods assume that the inconsistencies are the result of random deviations from the most
commonly occurring or average stratigraphic range. Athough this concept is relatively
foreign to conventional biostratigraphy, the large (and often noisy) body of local range
data for microfossils in many different basins makes this concept attractive for explo-
ration biostratigraphers in particular.

Hood (1995) evaluated the use of average composite sections from graphic correla-
tion, showing a model of taxon first occurrence with a localized speciation event, with
delayed migration into different environments in a basin (Fig. 16.4; see also figure 49
in Thierry, 1997). The shape of the ‘average’ first appearance emphasises the difference
between the use of maximum and average event positions for realistic zonations and
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Figure 16.3 Deterministic biostratigraphy tries to find the total range of a taxon, whereas
probabilitistic methods seek the average stratigraphic range. The latter may have an estimate of
uncertainty attached that is a function of the spread in local ranges of the taxon in the eight
sections examined (after Cooper et al., in press).



correlations. Similar figures may be drawn for average last occurrence distributions of
fossils.

Deterministic methods are traditionally simple, and most suitable for data sets of
few wells or outcrop sections; they lack error analysis, are slow to execute, and sensi-
tive to geological reworking and poor sampling. Probabilistic methods have a mathe-
matical basis, and may be more complex, but have detailed error analysis, execute
quickly, and are less sensitive to reworking of taxa or incomplete sampling. A pre-
requisite for both methods is good data input, and good data organisation, with proba-
bilistic methods more effective with larger data sets. Characteristics of programs in
both categories of methods are in Table 16.1.

16.4.3 Graphic Correlation

Among deterministic methods, Graphic Correlation is best known. Graphic Zonation
and Correlation, also called Shaw’s Method (Shaw, 1964) has become accepted and
used by academic and industrial biostratigraphers as a simple, semi-objective tool to
assess the fossil record for zonation and correlation purposes. This is actually a type of
“crossplot” method, where a comparison is made between order and spacing of strati-
graphic events in pairs of sections, using bivariate scatterplots. First, one of the
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stratigraphically more complete sections is selected as the reference, and a second
section is crossplotted with it, using the events common to both. On one axis the
events are in the order (and spacing if so desired) they have in the reference section,
and along the other axis they are in the order (and spacing) that they have in the com-
pared section. The line of correlation (LOC) between two sections is derived either
from subjectively connecting points (events) in common in the two-way scattergrams,
or from a statistically modeled best fit line between the scattered points. Traditionally,
stratigraphers have used either single straight lines, or segmented straight lines as
LOC. Using the LOC, the original section is interpolated with the second section,
using a few simple rules, to produce a composite sequence. The composite of the two
is then crossplotted with a third section, and again interpolated. This procedure is
repeated for all (well) sections, and the final solution is called the composite standard.
This composite standard is a handy and detailed zonation, expressed in composite
standard units that may be used to interpret the sequence history of wells, not unlike
conventional geohistory.

For theory and applications with graphic zonation and correlation the excellent
book by Mann and Lane (eds., 1995) is recommended, as well as the elegant study
with Ordovician graptolite data of Cooper and Lindholm (1991). The latter gives a
clear illustration of the principle and utility of the method for closely controlled, high-
resolution datasets (Fig. 16.5). The authors created a standard graptolite zonation with
45 FA (first appearance) and 45 LA (last appearance) events of 90 taxa, using fourteen
closely sampled and closely studied sections in Australia, Texas, NW Canada,
Newfoundland, S. Sweden and S.E. Norway. The Australian sequence, the richest and
best known was taken as the initial reference section to be composited with the order
of the other thirteen ones. Figure 16.5A shows a plot of the chosen reference section
against the S. Sweden section. Figure 16.5B is a plot of the final composite standard
sequence against the original Australian section, revealing the extent to which the
Australian section has been modified by incorporation of the order of events in other
sections. In positioning the LOC, the authors gave weight to events based on species
that are relatively distinctive, relatively abundant, and relatively short ranging. The
latter minimizes awkward ‘unfilled range’ situations, and allows plotting the data (by
hand) on straight line segments.

16.4.4 Constrained Optimization

Recently, a new method has appeared that overcomes some disadvantages of graphic
zonation and correlation. It is called CONOP (constrained optimization), and was
designed by Kemple et al. (1995), with P.M. Sadler (University of California, Riverside)
doing further development. A recent stratigraphic application is by Cooper et al. (2001;
see below). As in graphic correlation, order and thickness spacing of events in sections
are used, but the method is multi-dimensional in the sense that it treats the observations
in all sections simultaneously. Like in RASC (see below) it can complete the task of
sequencing (the ranking problem), before the task of scaling (the spacing problem).
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Figure 16.5 (A) First round plot of composite standard sequence standard sequence and
sequence of S. Sweden, using Ordovician graptolites; the line of correlation is the diagonal, and
unfilled range events are relocated as shown. (B) Final (second) round of graphic correlation of
composite standard sequence and Australian sequence with a segmented line of correlation fit-
ted (after Cooper and Lindholm, 1991).



Instead of building a solution from the data, CONOP works through a series of
iteratively improved guesses about the solution. Each guess is compared with the data;
the misfit between the solution and data guides the next guess. Geophysicists like to
call the process ‘inversion’. Unfortunately, solution time increases as 2N, where N is
the number of events. This means that for an exhaustive search of e.g. 124 events (LO
and FO of 62 taxa), the searching time becomes impossible. In order to find a good
solution without waiting ‘forever’ CONOP uses a version of the simulated annealing
algorithm, using heuristic search techniques; such a technique is incapable of proof,
but serves to guide to acceptable solutions.

The method is constrained in that it eliminates impossible solutions (constraint),
and then searches for the best of all the possible ones (optimization). The method may
be thought of as fitting a multidimensional line of correlation (LOC) simultaneously
to all points in all sections. The composite ‘true’ section of events is that hypothetical
sequence of ordered and spaced events that causes the least net disruption or penalty
when the ranges of taxa in each of the well sections are adjusted to match it. Like
graphic correlation, the observed tops of species in individual well sections are
extended stratigraphically upwards, and bases downward to achieve a best fit. In this
sense, penalty represents a measure of inconsistency of individual tops or bases
among the well sections, and is expressed in meters. This penalty resembles that used
in method STRATCOR (Gradstein, 1996) that keeps track of the cumulative amount
(distance) over all wells that events shift from their observed position to their interpo-
lated one. CONOP has a host of other features, and presently builds a Lower Paleozoic
conodont-graptolite composite that assists with the construction of a detailed geologic
time scale (R. Cooper, pers. comm., 2000).

16.4.5 Ranking and Scaling

The principal method of probabilistic biostratigraphy is called Ranking and Scaling
(RASC; Agterberg and Gradstein, 1999; Gradstein et al., 1985, 1999). The many
options in RASC method of biostratigraphy are listed in Table 16.2. During the last
two decades, RASC has been applied to a wide variety of datasets involving many
tyoes of microfossils. A majority of applications are with well data sets from industry
or scientific ocean drilling. Published literature on and with the method is extensive,
and is listed in the literature cited.

Unlike graphic correlation, the RASC method considers the stratigraphic order of
all fossil events in all wells simultaneously, and calculates the most likely (optimum)
sequence of events. In this sequence, each event position is an average of all individual
positions encountered in the wells.

Ranking is based on superpositional relationships between events. In general,
there are three possible types of superpositional relationships for a pair of events co-
occurring in the same section. An event can be observed to occur above or below
another event, or the two events coexist in the same sample. In the ranked optimum
sequence, which is based on a large number of sections, two events can be coeval on
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the average when one of them occurs exactly as many times above the other one as it
occurs below it. If an event is observed above another event in some sections but
below it in others, a stratigraphic inconsistency involving these two events is indi-
cated. The purpose of constructing the optimum sequence is to utilize and resolve
such inconsistencies. In fact, there is no point in applying RASC if inconsistencies are
missing when sections are compared with one another. Lines of correlation connect-
ing observed positions of events in sections show cross-overs when there are inconsis-
tencies, which is a normal event feature (see Fig. 16.6).

Scaling of the optimum sequence in relative time provides information on the strati-
graphic clustering of events, and is a function of the frequency with which events in
each each pair in the RASC optimum sequence cross-over their relative positions
(observed records) from well to well. The more often any two events cross-over, the
smaller their interfossil distance. Final distance estimates are expressed in dendrogram
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Table 16.2 Products of the RASC and CASC programs for probabilistic stratigraphy

PROGRAM RASC – zonation, variance analysis and normality testing
Bookkeeping

Value of input parameters
Sequence of wells
Tabulation of event records, using frequency and cumulative frequency
Summary of RASC run results (vital statistics)
Dictionaries of events – numerical and alphabetic listings
Occurrence table of events in all wells

Ranking and Scaling (� probabilistic zonation)
Optimum sequence of events, with option to insert variances and unique (rare) events
Final scaling of optimum sequence of events, with option to insert unique events 

Normality ‘testing’ of event record in wells
Graphical correlation of well sequence record and optimum sequence, with estimation 

‘how far’ events are off best fit line (cubic spline)
Step model per well, with penalty points for out of place events
Rank correlation of event well sequences with (scaled) optimum sequence
Normality test per well, with second order difference statistics for all events 
Comparison of observed and expected second order difference values

Variance analysis
Standard deviations of events per well
Event variance analysis (difference in each well between observed and stratigraphically 

expected event position � frequency distribution)
Summary of event variance analysis results
Estimation of event ranges – numerical and graphical representation of probable 

minimum–, probable maximum –, and average observed stratigraphic event positions
Estimation of event cross-over ranges 

PROGRAM CASC – correlation of RASC zonation, with flattening option in graphics
displays

Probable position in wells of optimum sequence events, with 95% confidence limits 
Observed event positions with 95% confidence limits



format, where tightness of clustering is a measure of nearness of events along a strati-
graphic scale. The scaled version of the optimum sequence features time successive
clusters, each of which bundles distinctive events. Individual bundles of events are
assigned zonal status. The process of zone assignment in the scaled optimum sequence
is subjective, as guided by the stratigraphic experience of the users. Large interfossil
distances between successive dendrogram clusters agree with zonal boundaries,
reflecting breaks in the fossil record due to average grouping of event extinctions. Such
extinctions occur for a variety of reasons, and may reflect sequence boundaries. From a
practical point of view it suffices to say that taxa in a RASC zone on average group
close together in relative time.

16.4.6 Variance Analysis

Anyone that tries to apply an event correlation framework from a zonation, quickly
notices that closely spaced events tend to cross-over between wells (Fig. 16.6), indica-
tive of some kind of uncertainty in event sampling and stratigraphic position. One way
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to rationalize such uncertainty is to use RASC zonations with variances, that identify
more reliable stratigraphic markers (D’Iorio and Agterberg, 1989; Gradstein and
Agterberg, 1998). The principle of variance calculation is straightforward. Individual
well sequences are compared to the scaled optimum sequence using bivariate curve fit-
ting to obtain the sum of differences between the observed and expected values of the
events. The expected values are on the best fit line, meaning that an event would have
zero variance. Once the differences between the observed and expected values are com-
piled for all RASC optimum sequence events in all wells, frequency distributions can
be estimated. If an event is close to all lines of correlation considered it has a relatively
small standard deviation; this means that it is a relatively good marker, as will be
demonstrated for Subbotina patagonica in the lower Eocene, North Sea.

Graphical representation of differences between observed and expected positions
at the well locations, such as on a map, may show that the large variance of an event is
due to transgressive behaviour. Thus, variance analysis can be useful for tracking the
time transgressive behaviour of events, as illustrated below.

RASC features two more tests to determine if the individual well record differs
from the most likely zonation, the Stepmodel and the Normality tests (Table 16.2),
both described in the literature cited. These tests, like variance analysis guide the user
to outliers due to event misidentification, reworking or sample contamination, and to
‘good and bad’ wells.

16.4.7 Correlation and Standard Error Calculation

The preceding chapters dealt with zonation of fossil events, and tests to discern “good
and bad” events and “good and bad” wells, using the RASC method. A companion
method performs geologic correlation of RASC events and standard error calculation,
and is named CASC, for Correlation and Standard Error Calculation. The technique is
an extension of so-called “graphic correlation”, as discussed in more detail in Gradstein
et al. (1985), and in Agterberg (1990). Uncertainty limits (error bars) are calculated for
both the most likely–, and the observed event positions in the wells or outcrop sections.
Well correlation diagrams are both displayed in numerical and in colour graphics for-
mat. A detailed application in the Lower Cretaceous subsurface of the Grand Banks,
eastern Canada, that also converts the RASC optimum sequence based on foraminifers
to a RASC timescale and correlates isochrons, is in Williamson (1987); a recent applica-
tion of CASC on a large Cretaceous dataset with many events using dinoflagellate cysts
and foraminifers, offshore Norway is in Gradstein et  al. (1999).

16.5 Stratigraphic Applications

16.5.1 Constrained Optimization: Taranaki Basin

The Taranaki Basin, New Zealand’s producing hydrocarbon province, contains a
highly fossiliferous Upper Cretaceous–Cenozoic sedimentary succession, resting
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unconformably on an erosional surface of varied relief that cuts across a ‘basement’ of
Paleozoic and Mesozoic rocks. The basin has a complex depositional history with
depositional breaks, condensed intervals, contemporaneous faults and folds, and lat-
eral facies changes. Biostratigraphy from over 80 wells is an essential tool to interpret
depositional history. Cooper et al. (2001) developed a detailed statistically based bio-
zonation scheme for the purpose of increasing stratigraphic resolution, and assessing
depositional rates across the basin. In addition, the team of stratigraphers wanted to
evaluate the relative merits of deterministic and probabilistic approaches to quantita-
tive biostratigraphic subdivision and correlation, using the methods outlined above:
CONOP, RASC, and GRAPHCOR.

In all, the dataset of choice comprises 8 wells, from which 351 usable range tops
of 351 foraminifers, nannofossils and palynomorphs were extracted from early
Paleocene through early Miocene ages. In order to emphasize events that have cor-
relation potential, and to calculate event variances, those events that occur in fewer
than four wells were removed from the dataset. However, the methods allow unique
events back in the analysis, such as index fossils or local marker horizons found in
fewer than 4 wells. The dataset was thus reduced to 178 events in the 8 wells, with
first stages of analysis leading to removal of 91 more events as being highly incon-
sistent in position from well to well, or having tops elsewhere above the youngest
level sampled in the wells. The final dataset hence comprises 87 events, with 
508 records. Direct correlation of the events in the CONOP composite, based on the
observed depth of the range-end tops, produced an intricate network with the
usual cross-overs and mismatches (Fig. 16.6) of conventional well correlations. In
Figure 16.7, the CONOP ordinal and scaled composite sequences are displayed; the
same figure also shows correlation of the calculated zonation to the regional scheme
of stages using key markers, and correlation of the zonation through three wells
with interpolated depths, like in graphic correlation. Note that the scaled composite
section (right column of Fig. 16.7) is in arbitrary units based upon interpolation and
extrapolation of the stratigraphic thicknesses of the interevent-units in all well
sections.

The main conclusion of the study is that the RASC probable sequence (not shown)
and the CONOP composite sequence are remarkably similar, and the two compare
well with classical graphic correlation that cannot be executed in automated batch
mode. Several stratigraphically promising species events were detected, not generally
used for conventional biostratigraphy. The CONOP composite section gives the best
estimate of the ‘true’ stratigraphic tops of taxa, based on the 8 well sections. It is con-
sistent with the aims of conventional biostratigraphy based on range-end events,
which are to establish zonations and correlations schemes based on the (maximum)
ranges of species. Hence, it relates best to the conventional regional stratigraphy of
New Zealand. The RASC scaled optimum sequence, on the other hand, gives the most
probable order of events and its spacing and is particularly useful as a predictive zona-
tion and correlation tool for future exploration drilling in the basin. The probabilistic
and deterministic techniques are experienced as complimentary in order to best under-
stand biostratigraphic potential of a dataset.
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16.5.2 Ranked and Scaled Optimum Sequences with Variances: North Sea

The North Sea region, a prolific petroleum province, contains remnants of stratigraph-
ically superimposed sedimentary basins of Late Paleozoic through Cenozoic age, like
stacks of half eaten pancakes. The regional history is complex; differential subsidence
and uplifts are related to extensive mobilization of the North Atlantic rift systems.
Deeper water, bathyal sediments, including minor and major gravity flow, siliciclast
wedges, of middle Cretaceous through Paleogene age, are widespread and contain
diversified agglutinated benthic foraminifera assemblages (Jones, 1988; Gradstein
and Bäckström, 1996). In the southern part of the central North Sea, where deep water
conditions prevailed into Miocene, the (DWAF) assemblage accordingly extends
stratigraphically upwards (see below). The assemblages assist with biostratigraphy
and paleobathymetry in exploration and exploitation wells, and DWAF taxa are
prominent in the regional RASC zonation, as shown below.

The large scale deposition of basaltic ash (Balder unit) during earliest Eocene
coincides with the eruption of major flood basalts in eastern Greenland and Rockal, at
the onset of seafloor spreading in the Norwegian Sea. The ash is a prominent North
Sea seismic reflector. Due to the flood-basalt outpourings, the North Sea became
restricted, as reflected in the widespread distribution of diatoms, including the pyri-
tized pillbox Fenestrella antiqua (Rank position 69 in Fig. 16.8, and Zone NSR3 in
Fig. 16.9), and virtual absence of bottom fauna in the severely dysaerobic basin.
Surface water salinity may have been abnormally low.

Correlations between the onshore NW Europe and North Sea Basin succession in
the Paleocene and Eocene is achieved by dinoflagellate cyst biostratigraphy, inte-
grated with the biostratigraphy provided by the calcareous plankton (foraminifera and
nannoplankton) benthic foraminifera, magnetostratigraphy and volcanic ash stratigra-
phy. In this way a correlation network has been established over NW Europe, which
serves as the background against which the probabilistic zonation was developed
shown below. This probabilistic zonation serves as a template for range charts of
DWAF in the petroleum basin.

Figure 16.8 shows the RASC optimum sequence with standard deviations, calcu-
lated with the variance analysis method (see section on Variance Analysis), using 1430
event records in 30 wells, based on the LO and LCO occurrences of 289 benthic and
some planktonic foraminifera and dinoflagellates, most or them analysed ‘in-house’,
which greatly enhances taxonomic consistency. In addition, North Sea log markers
were incorporated (NS Log B–G) for which precise well depths data are available (see
Gradstein et al., 1994 for details). Each of the 88 events in the zonation occurs in at
least 7 wells, except for 16 unique events (marked with two asterisks in Figs. 16.8 and
16.9) that occur in fewer than seven wells, and are inserted to complement the zona-
tion, and/or assist with age calibration. Forty-two of the events in the optimum
sequence, including many DWAF taxa, have standard deviation below average, which
is quite a good number for an industrial type dataset.

The RASC scaled optimum sequence with zones assigned is shown in Figure 16.9.
There are 18 zones and subzones assigned, named NSR1–13 (NSR � North Sea

gradstein378



RASC), of early Paleocene through early Pleistocene age. Large breaks (at events 129,
50, 206, 6, 266 and 23) indicated transitions between natural microfossil sequences,
and/or hiatuses, and are candidates for sequence stratigraphic breaks if corroborated
by regional seismic analysis. The zones contain 33 DWAF events (32 LO and 1 LCO
events) for 32 taxa. On average, event observation in the wells may be closer to the
average stratigraphic position than the last occurrence end points in regional range
charts.

The average range end of DWAF in the North Sea (coarse agglutinated spp. in 
Fig. 16.9) is generally in mid-Cenozoic, and falls in zone NSR8A, late Oligocene. It
occurs in 27 out of 30 wells in the dataset, and has an sd of 2.402, which is above aver-
age (Fig. 16.8). With variance analysis technique in RASC it is possible to display the
well deviations (Fig. 16.10). Since the wells in this figure are arranged from north
(left) to south (right), the method confirms that the DWAF LO is time-transgressive,
with younger occurrences southward, as can be readily observed in southern (Central
Graben) wells. Since in subregions of the dataset the DWAF LO is a reasonable good
marker, a histogram of stratigraphic deviations (Fig. 16.10a), although rather wide
still shows a reasonable central (normal Gaussian) distribution.

A more marked central tendency, and a much lower sd of 1.287, despite a sample
size of only 14 and not 27 as for DWAF, is calculated for the distinctive planktonic
foraminifer Subbotina patagonica of Zone NSR4, Lower Eocene (Fig. 16.10). 

Given a large enough dataset (10 or more wells is a reasonable rule), the variance
analysis technique allows to rapidly rank events in the RASC solutions on strati-
graphic fidelity.

16.6 Computer Programs

A PC desktop computer version under DOS of the original method of graphic correla-
tion is program GRAPHCOR (Hood, 1995; K.C. Hood, 9707 Arrowgrass Dr., Houston,
TX 77064, USA). It was converted by Amoco Oil Co for interactive operation on a Unix
workstation. An example of adaptation of graphic correlation to probabilistic stratigra-
phy is found in program STRATCOR (Gradstein, 1990), which has hybrid features 
to RASC.

Desktop PC program CONOP under DOS, has many features to analyse medium-
size stratigraphic datasets. It has colour graphics displays, and the progress of search
for the optimal range chart may be watched on screen, which is an instructive option.
The program is actively being developed by Peter M. Sadler (Department of Earth
Sciences, University of California, Riverside, CA 92521, USA).

The probabilistic stratigraphy programs that perform ranking, scaling, correlation
and standard error calculation operate as a single module under MS Windows, and are
called RASC & CASC. One windowing master menu controls the operation of the pro-
grams and their results that also include the data input and re-organising module called
MAKEDAT, and correspondence analysis program COR (Hill, 1979; Bonham-Carter 

quantitative methods for applied microfossil biostratigraphy 379



gradstein380

   1
   

   
   

 
  7

7 
   

E
lp

hi
di

um
 s

pp
.  

   
   

   
   

   
   

   
   

   
20

  0
.6

75
 

  2
   

   
   

22
8 

   
C

as
si

du
lin

a 
te

re
tis

20
  0

.5
59

 3
   

   
   

 
  3

1 
   

C
ib

ic
id

oi
de

s 
sc

al
di

se
ns

is
   

   
   

  
8 

 0
.7

24
 4

   
   

   
27

0 
   

C
ib

ic
id

oi
de

s 
gr

os
sa

17
  0

.6
56

 5
   

   
   

  
   

 1
   

 N
eo

gl
ob

oq
ua

dr
in

a 
pa

ch
yd

er
m

a 
   

   
12

  1
.0

68
 6

   
   

   
17

1 
   

B
uc

ce
lla

 fr
ig

id
a 

   
   

   
   

   
   

   
   

   
7 

 1
.4

21
 7

   
   

   
31

8 
**

 M
on

sp
el

ie
ns

is
 p

se
ud

ot
ep

id
a

 8
   

   
   

31
6 

   
T

rif
ar

in
a 

flu
en

s 
   

   
   

   
   

   
   

   
   

7 
 1

.9
09

 9
   

  
0 

1 
  

23
 

S
ig

m
oi

lo
ps

is
 s

ch
lu

m
be

rg
er

i  
   

   
   

   
18

  1
.2

19
10

–1
0 

   
   

 4
G

lo
bo

ro
ta

lia
 in

fla
ta

   
   

   
   

   
   

   
   

9 
 1

.1
23

11
   

  
0 

1 
  

26
9 

   
N

eo
gl

ob
oq

ua
dr

in
a 

at
la

nt
ic

a 
   

   
   

   
14

  1
.1

62
12

   
   

   
 

  7
4 

**
 N

eo
gl

ob
oq

ua
dr

in
a 

hu
m

er
os

a
13

–1
0 

  
26

6 
   

G
lo

bo
ro

ta
lia

 p
un

ct
ic

ul
at

a 
   

   
   

   
   

   
8 

 0
.9

14
14

   
 0

 2
   

13
0 

   
S

ip
ho

ni
na

 a
dv

en
a 

   
   

   
   

   
   

   
   

   
9 

 1
.0

83
15

–1
0 

   
   

 6
N

eo
gl

ob
oq

ua
dr

in
a 

ac
os

ta
en

si
s 

   
   

 
7 

 0
.9

29
16

   
  

0 
1 

  
21

9 
   

M
ar

tin
ot

ie
lla

 c
yl

in
dr

ic
a 

   
   

   
   

   
   

11
  2

.3
47

17
   

   
   

30
1 

**
 B

ol
bo

fo
rm

a 
m

et
zm

ac
he

ri
18

–1
1 

   
  9

1 
   

D
ia

to
m

s/
ra

di
ol

ar
ia

ns
 L

C
O

   
   

   
   

   
12

  1
.4

75
19

–1
1 

  
20

7 
   

N
S

 L
og

 G
   

   
   

   
   

   
   

   
   

   
   

 
 1

5 
 1

.6
53

20
–1

0 
  

28
2 

   
U

vi
ge

rin
a 

ex
.g

r.
 s

em
io

rn
at

a 
   

   
   

   
 

7 
 1

.7
77

21
   

   
   

 
  5

8 
**

 N
eo

gl
ob

oq
ua

dr
in

a 
at

la
nt

ic
a 

(d
ex

t)
22

   
   

   
41

1 
**

 G
lo

bo
ca

ss
id

ul
in

a 
su

bg
lo

bo
sa

 v
ar

.
23

   
   

   
12

3 
   

G
lo

bi
ge

rin
oi

de
s 

tr
ilo

bu
s 

   
   

   
   

   
 

8 
 1

.0
22

24
   

   
   

23
6 

   
G

. e
x.

gr
. p

ra
es

ci
tu

la
 z

ea
la

nd
ic

a
   

 
16

  1
.2

81
25

   
   

   
28

5 
   

C
au

ca
si

na
 e

lo
ng

at
a

10
  1

.4
78

26
   

   
   

36
2 

**
 C

an
no

sp
ha

er
op

si
s 

ut
in

en
si

s
27

   
   

   
12

5 
  

N
eo

gl
ob

oq
ua

dr
in

a 
co

nt
in

uo
sa

   
   

  
8 

 2
.1

50
28

   
   

   
 

  1
7 

   
A

st
er

ig
er

in
a 

gu
ric

hi
   

   
   

   
   

 
21

  1
.6

25
29

   
   

   
 

  1
8 

   
S

pi
ro

pl
ec

ta
m

m
in

a 
ca

rin
at

a
7 

 1
.8

67
30

   
   

   
 

  1
5 

   
G

lo
bi

ge
rin

a 
pr

ae
bu

llo
id

es
   

   
   

   
  

18
  2

.3
69

31
   

   
   

52
8 

**
 C

at
ap

sy
dr

ax
 p

ar
vu

lu
s

32
   

   
  

34
8 

**
 S

ph
ae

ro
id

in
el

la
 d

is
ju

nc
ta

33
   

   
   

13
8 

   
T

en
ui

te
lla

 a
ng

us
tiu

m
bi

lic
at

a 
   

   
   

7 
 3

.5
68

34
   

   
   

11
1 

   
G

lo
bi

ge
rin

a 
ex

.g
r.

 o
ffi

ci
na

lis
   

   
   

 
7 

 3
.8

55
35

   
   

   
41

3 
   

S
ili

ci
ou

s 
bi

of
ac

ie
s 

8 
 1

.0
26

36
   

   
   

 
  2

0 
   

G
yr

oi
di

na
 g

ira
rd

an
a 

   
   

   
   

   
   

 
12

  2
.6

33
37

   
   

   
 

  2
5 

   
C

oa
rs

e 
ag

gl
ut

in
at

ed
 s

pp
.  

   
   

   
   

 
28

  2
.5

12
38

   
   

   
36

9 
**

 R
ho

m
bo

di
ni

um
 d

ra
co

39
   

   
   

36
8 

**
 C

hi
ro

pt
er

id
iu

m
 m

es
pi

la
nu

m
40

   
   

   
 

  9
7 

   
C

yc
la

m
m

in
a 

pl
ac

en
ta

   
   

   
   

   
   

 2
4 

 2
.9

68
41

   
   

   
18

2 
   

S
pi

ro
si

gm
oi

lin
el

la
 c

om
pr

es
sa

   
   

   
22

  1
.0

52
42

   
   

   
26

2 
   

K
ar

re
ru

lin
a 

ho
rr

id
a

12
  3

.7
80

43
   

   
   

25
9 

   
A

m
m

od
is

cu
s 

la
tu

s
   

   
   

   
   

   
   

9 
 2

.4
07

44
   

   
   

18
3 

   
R

et
ic

ul
op

hr
ag

m
iu

m
 r

ot
un

di
do

rs
at

um
  

15
  2

.2
40

45
   

   
   

 
  2

4 
   

T
ur

ril
in

a 
al

sa
tic

a 
   

   
   

   
   

   
   

   
11

  2
.1

26
46

   
   

   
14

0 
   

R
ot

al
ia

tin
a 

bu
lim

oi
de

s 
   

   
   

   
   

   
 

14
  1

.5
72

S
ta

nd
ar

d 
de

vi
at

io
n

S
D

N
N

&
 U

I
0

1
2

3
4

¼



quantitative methods for applied microfossil biostratigraphy 381

47
   

   
   

26
1 

   
H

ap
lo

ph
ra

gm
oi

de
s 

w
al

te
ri 

   
   

   
   

 
22

  2
.7

22
48

   
   

   
32

1 
   

D
or

ot
hi

a 
se

ig
lie

i
13

  1
.7

13
49

   
   

   
28

9 
   

A
de

rc
ot

ry
m

a 
ag

te
rb

er
gi

   
   

   
   

   
   

13
  1

.2
55

50
   

   
   

14
8 

**
 G

lo
bi

ge
ra

ps
is

 in
de

x
51

   
   

   
 

  1
2 

   
A

re
os

ph
ae

rid
iu

m
 d

ik
ty

op
lo

ku
s

8 
 1

.8
64

52
   

   
   

53
5 

   
A

nn
ec

tin
a 

bi
ed

ai
 8

  3
.0

61
53

   
   

   
22

9 
   

R
ec

ur
vo

id
es

 e
x.

gr
. w

al
te

ri 
   

   
   

   
  

8 
 2

.9
60

54
   

   
   

20
6 

   
N

S
 L

og
 F

   
   

   
   

   
   

   
   

   
   

 
14

  2
.0

66
55

   
   

   
 

  2
9 

   
R

et
ic

ul
op

hr
ag

m
iu

m
 a

m
pl

ec
te

ns
 2

8 
 1

.5
11

56
   

   
   

 
  3

2 
   

A
m

m
os

ph
.p

se
ud

op
au

ci
lo

cu
la

ta
   

   
 

17
  2

.0
85

57
   

   
   

26
3 

   
A

m
m

om
ar

gi
nu

lin
a 

au
be

rt
ae

   
   

   
   

14
  2

.0
73

58
   

   
   

26
0 

   
H

ap
lo

ph
ra

gm
oi

de
s 

ki
rk

i  
   

   
   

   
   

 
14

  2
.1

13
59

   
   

   
 

  6
8 

   
S

pi
ro

pl
ec

ta
m

m
in

a 
sp

ec
ta

bi
lis

 L
O

   
  

24
  1

.9
32

60
   

   
   

 
  3

7 
**

 A
ca

rin
in

a 
pe

nt
ac

am
er

at
a

61
   

   
   

26
4 

   
K

ar
re

ru
lin

a 
co

nv
er

sa
   

   
   

   
   

   
 

19
  3

.4
33

62
   

   
   

20
5 

   
N

S
 L

og
 E

   
   

   
   

   
   

   
   

   
   

  
15

  1
.3

37
63

   
   

   
 

  1
4 

**
 E

at
on

ic
ys

ta
 u

rs
ul

ae
 L

C
O

64
   

   
   

 
  4

7 
**

 P
la

no
ro

ta
lit

es
 p

la
no

co
ni

cu
s

65
   

   
   

 
  5

4 
   

S
pi

ro
pl

ec
ta

m
m

in
a 

na
va

rr
oa

na
   

   
   

19
  1

.7
21

66
   

   
   

27
9 

   
R

ec
ur

vo
id

el
la

 la
m

el
la

   
   

   
   

   
   

  
9 

 1
.4

64
67

   
   

   
 

  5
0 

   
S

ub
bo

tin
a 

pa
ta

go
ni

ca
   

   
   

   
   

  
14

  1
.2

87
68

   
  

0 
1 

  
27

7 
   

T
uf

f
7 

 1
.0

89
69

–1
0 

   
  2

2 
   

F
en

es
tr

el
la

 a
nt

iq
ua

   
   

   
   

   
   

   
12

  1
.3

23
70

   
   

   
 

  7
8 

   
T

ro
ch

am
m

in
oi

de
s 

co
ro

na
tu

s 
   

   
   

10
  3

.1
65

71
   

   
   

20
4 

   
N

S
 L

og
 D

   
   

   
   

   
   

   
   

   
   

   
  

15
  0

.9
83

72
   

   
   

20
3 

   
N

S
 L

og
 C

   
   

   
   

   
   

   
   

   
   

   
  

15
  1

.1
11

73
   

   
   

10
5 

   
R

ze
ha

ki
na

 m
in

im
a 

   
   

   
   

   
   

   
   

   
8 

 0
.8

94
74

   
   

   
34

3 
**

 C
en

os
ph

ae
ra

 s
p.

 (
di

sc
 o

r 
fla

t)
75

   
   

   
31

0 
   

S
ac

ca
m

m
in

a 
pl

ac
en

ta
   

   
   

   
   

   
  

11
  2

.1
62

76
   

   
   

 
  7

6 
   

R
et

ic
ul

op
hr

ag
m

iu
m

 p
au

pe
ru

m
   

   
  

19
  0

.8
97

77
   

  
0 

2 
  

28
3 

   
R

et
ic

ul
op

hr
ag

m
iu

m
 g

ar
ci

la
ss

oi
   

   
  

7 
 2

.0
83

78
–1

0 
   

  5
7 

   
S

pi
ro

pl
ec

ta
m

m
in

a 
sp

ec
ta

bi
lis

 L
C

O
 

20
  0

.9
72

79
   

   
   

12
9 

   
A

m
m

oa
ni

ta
 r

ut
hv

en
m

ur
ra

yi
   

   
   

   
11

  1
.8

39
80

   
   

   
13

4 
   

C
au

da
m

m
in

a 
ex

ce
ls

a 
   

   
   

   
   

   
 

11
  2

.5
12

81
   

   
   

53
2 

   
C

ys
ta

m
m

in
a 

sv
en

i 
12

  2
.8

60
82

   
   

   
53

1 
**

 A
m

m
oa

ni
ta

 in
ge

rli
sa

e
83

   
   

   
 

  5
5 

   
G

av
el

in
el

la
 b

ec
ca

rii
fo

rm
is

   
   

   
   

   
  

15
  1

.2
45

84
   

   
   

10
7 

   
R

em
es

el
la

 v
ar

ia
ns

 8
  1

.6
70

85
   

   
   

20
2 

   
N

S
 L

og
 B

   
   

   
   

   
   

   
   

   
   

   
  

12
  1

.1
43

86
   

  
0 

1 
   

  6
1 

   
S

ub
bo

tin
a 

ps
eu

do
bu

llo
id

es
   

   
   

  
 1

8 
 1

.0
46

87
–1

0 
   

  6
0 

   
P

la
no

ro
ta

lit
es

 c
om

pr
es

su
s 

   
   

   
   

  
12

  0
.5

54
88

   
   

   
25

3 
   

S
ub

bo
tin

a 
tr

ilo
cu

lin
oi

de
s

10
  0

.5
93

 

'A
ve

' S
D

F
ig

ur
e 

16
.8

R
A

SC
 O

pt
im

um
 S

eq
ue

nc
e 

fo
r 

th
e 

C
en

oz
oi

c 
of

 th
e 

N
or

th
 S

ea
; 

lo
w

 s
ta

nd
ar

d 
de

vi
at

io
ns

 a
re

 a
n 

in
di

ca
ti

on
 o

f g
oo

d 
st

ra
ti

gr
ap

hi
c 

m
ar

k-
er

s;
 a

ve
 S

D
 �

av
er

ag
e 

ev
en

t s
ta

nd
ar

d 
de

vi
at

io
n;

 N
 �

ev
en

t o
cc

ur
re

nc
e 

in
 w

el
ls

; U
I �

un
ce

rt
ai

nt
y 

in
te

rv
al

 o
n 

ev
en

t p
os

it
io

n 
(i

n 
th

is
 c

as
e 

�
/

1 
or

2 
po

si
ti

on
s)

; 
ea

ch
 e

ve
nt

 h
as

 a
 d

ic
ti

on
ar

y 
nu

m
be

r 
in

 fr
on

t.



gradstein382

77 22
8 31 01 27
0

17
1

31
6

31
8 04 23 26
9

26
6 74 06 30
1

41
1

13
0

21
9

36
2 91 58 20
7

34
8

28
2

12
3

23
6

28
5

12
5 15 17 41
3 18 20 25 13
8 97 36
9

36
8

11
1

18
2 24

E
lp

hi
di

um
sp

p.
C

as
si

du
lin

a 
te

re
tis

C
ib

ic
id

oi
de

s 
sc

al
di

se
ns

is
N

eo
gl

ob
oq

ua
dr

in
a 

pa
ch

yd
er

m
a

C
ib

ic
id

oi
de

s 
gr

os
sa

B
uc

ce
lla

 fr
ig

id
a

T
rif

ar
in

a 
flu

en
s

**
M

on
sp

el
ie

ns
is

 p
se

ud
od

ot
ep

id
a

G
lo

bo
ro

ta
lia

 in
fla

ta
S

ig
m

oi
lo

ps
is

 s
ch

lu
m

be
rg

er
i

N
eo

gl
ob

oq
ua

dr
in

a 
at

la
nt

ic
a

G
lo

bo
ro

ta
lia

 p
un

ct
ic

ul
at

a
**

N
eo

gl
ob

oq
ua

dr
in

a 
hu

m
er

os
a

N
eo

gl
ob

oq
ua

dr
in

a 
ac

os
ta

en
si

s
**

B
ol

bo
fo

rm
a 

m
et

zm
ac

he
ri

**
G

lo
bo

ca
ss

id
ul

in
a 

su
bg

lo
bo

sa
 v

ar
.

S
ph

on
im

a 
ad

ve
na

M
ar

tin
ot

ie
lla

 c
yl

in
dr

ic
a

**
C

an
no

sp
ha

er
os

is
 u

tin
en

si
s

D
ia

to
m

s/
ra

di
ol

ar
ia

ns
LC

O
**

N
eo

gl
ob

oq
ua

dr
in

a 
at

la
nt

ic
a(

de
xt

)
N

S
 L

og
 G

**
S

ph
ae

ro
id

in
el

la
 d

is
ju

nc
ta

U
ve

ge
rin

a
ex

. g
r.

 s
em

io
m

at
a

G
lo

bo
ge

rin
oi

de
s 

tr
ilo

bu
s

G
.e

x.
 g

r.
 p

ra
es

ci
tu

la
 z

ea
la

nd
ic

a
C

au
ca

si
na

 e
lo

ng
at

a
N

eo
gl

ob
oq

ua
dr

in
a 

co
nt

in
uo

sa
G

lo
bo

ge
rin

a 
pr

ae
bu

llo
id

es
A

st
er

ig
er

in
a 

gu
ric

hi
S

ili
ce

ou
s 

bi
of

‡c
ie

s
S

pi
ro

pl
ec

ta
m

m
in

a 
ca

rin
at

a
G

yr
oi

di
na

 g
ira

rd
an

a
C

oa
rs

e 
ag

gl
ut

in
at

ed
 s

pp
.

T
en

ui
te

lla
 a

ng
us

tiu
m

bi
lic

at
a

C
yc

la
m

m
in

a 
pl

ac
en

ta
**

R
ho

m
bo

di
ni

um
 d

ra
co

**
C

hi
ro

pt
er

id
iu

m
 m

es
pi

la
nu

m
G

lo
bi

ge
rin

a
ex

. g
r.

 o
ffi

ci
na

lis
S

pi
ro

si
gm

oi
lin

el
la

 c
om

pr
es

sa
T

ur
ril

in
a 

al
sa

tic
a

P
le

is
to

ce
ne

N
S

R
13

N
S

R
12

N
S

R
11

N
S

R
10

N
S

R
9B

N
S

R
9A

N
S

R
8B

N
S

R
8A

La
te

 P
lio

ce
ne

E
ar

ly
 P

lio
ce

ne

La
te

 M
io

ce
ne

 p
. p

.

La
te

 O
lig

oc
en

e

21
9 18

2

28
9

29

M
id

dl
e 

M
io

ce
ne

ea
rli

es
t M

io
ce

ne

la
te

 E
ar

ly
 to

ea
rly

 M
id

dl
e 

M
io

ce
ne



quantitative methods for applied microfossil biostratigraphy 383

18
3

25
9

14
0

26
2

28
9

32
1

26
1

53
5

14
8

22
9

20
6 12 32 29 26
0

26
3 68 37 26
4 14 20
5 47 54 27
9 50 27
7 22 20
4 78 20
3

34
3

10
5

31
0

13
4

53
2 57 76 28
3

12
9

53
1

10
7

20
2 55 61 60 25
3

C
yc

la
m

m
in

a 
ro

tu
nd

id
or

sa
ta

A
m

m
od

is
cu

s 
la

tu
s

ro
ta

lia
tin

a 
bu

lim
oi

de
s

K
ar

re
ru

lin
a 

ho
rr

id
a

A
de

rc
ot

ry
m

a 
ag

te
rb

er
gi

K
ar

re
rie

lla
 s

ei
gl

ie
i

H
ap

lo
ph

ra
gm

oi
de

s 
w

al
te

ri
A

nn
ec

tin
a 

bi
ed

ai
**

G
lo

bi
ge

ra
ps

is
in

de
x

R
ec

ur
vo

id
es

ex
. g

r.
 w

al
te

ri
N

S
 L

og
 F

A
eo

sp
ha

er
id

iu
m

 d
ik

ty
pl

ok
us

A
m

m
os

ph
. p

se
ud

op
au

ci
lo

cu
la

ta
R

et
ic

ul
op

hr
ag

m
iu

m
 a

m
pl

ec
te

ns
H

ap
lo

ph
ra

gm
oi

de
s 

ki
rk

i
A

m
m

om
ar

gi
nu

lin
a 

au
be

rt
ae

S
pi

ro
pl

ec
ta

m
m

in
a 

sp
ec

ta
bi

lis
**

A
ca

rin
in

a 
pe

nt
ac

am
er

at
a

K
ar

re
ru

lin
a 

co
nv

er
sa

**
E

at
on

ic
ys

ta
 u

rs
ul

ae
 L

C
O

N
S

 L
og

 E
**

P
la

no
ro

ta
lit

es
 p

la
no

co
ni

cu
s

S
pi

ro
pl

ec
ta

m
m

in
a 

na
va

rr
oa

na
R

ec
ur

vo
id

el
la

 la
m

el
la

S
ub

bo
tin

a 
pa

ta
go

ni
ca

T
uf

f
F

en
es

tr
el

la
 a

nt
iq

ua
N

S
 L

og
 D

T
ro

ch
am

m
in

oi
de

s 
co

ro
na

tu
s

N
S

 L
og

 C
**

C
en

os
ph

ae
ra

sp
. (

di
sc

 o
r 

fla
t)

R
ze

ha
ki

na
 m

in
im

a
S

ac
ca

m
m

in
a 

pl
ac

en
ta

C
au

da
m

m
in

a 
ex

ce
ls

a
C

ys
ta

m
m

in
a 

sv
en

i
S

pi
ro

pl
ec

ta
m

m
in

a 
sp

ec
ta

bi
lis

 L
C

O
R

et
ic

ul
op

hr
ag

m
iu

m
 p

au
pe

ra
R

et
ic

ul
op

hr
ag

m
iu

m
 g

ar
ci

la
ss

oi
A

m
m

oa
ni

ta
 r

ut
hv

en
m

ur
ra

yi
**

A
m

m
oa

ni
ta

 in
ge

rli
sa

e
M

at
an

zi
a 

va
ria

ns
N

S
 L

og
 B

G
av

el
in

el
la

 b
ec

ca
rii

fo
rm

is
S

ub
bo

tin
a 

ps
eu

do
bu

llo
id

es
P

la
no

ro
ta

lit
es

 c
om

pr
es

su
s

S
ub

bo
tin

a 
tr

ilo
cu

lin
oi

de
s

N
S

R
7B

N
S

R
7A

N
S

R
6B

N
S

R
6A

N
S

R
5

N
S

R
4

N
S

R
3

N
S

R
2B

N
S

R
2A

N
S

R
1

La
te

 E
oc

en
e

E
ar

ly
 O

lig
oc

en
e

E
ar

ly
 O

lig
oc

en
e

E
ar

ly
 E

oc
en

e

ea
rli

es
t E

oc
en

e

La
te

 P
al

eo
ce

ne

E
ar

ly
 P

al
eo

ce
ne

In
te

re
ve

nt
 D

is
ta

nc
e

26
3 54 12

9
57

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

la
te

 M
id

dl
e 

E
oc

en
e

ea
rly

 M
id

dl
e 

E
oc

en
e

0

F
ig

ur
e 

16
.9

Sc
al

ed
 v

er
si

on
 o

f t
he

 R
A

SC
 O

pt
im

um
 S

eq
ue

nc
e 

of
 F

ig
ur

e 
16

.8
,w

it
h 

ei
gh

te
en

 in
te

rv
al

 z
on

es
 a

ss
ig

ne
d 

(N
SR

1 
– 

13
) o

f e
ar

ly
 P

al
eo

ce
ne

th
ro

ug
h 

P
le

is
to

ce
ne

 a
ge

.



gradstein384

S
u

b
b

o
ti

n
a

 p
a

ta
g

o
n

ic
a

S
a

m
p

le
 s

iz
e

 =
 1

4
 

S
ta

n
d

a
r
d

 D
e

v
ia

ti
o

n
 =

 1
.2

8
7

*
 S

tr
a

ti
g

r
a

p
h

ic
 p

o
s

it
io

n
 i

n
 w

e
ll

s
 h

ig
h

e
r
 o

r
 l

o
w

e
r
 t

h
a

n
 e

x
p

e
c

te
d

Lower*Higher*

W
E

L
L

 #

D
e
v
ia

ti
o

n
 f

r
o

m
 e

x
p

e
c
te

d
 s

tr
a
ti

g
r
a
p

h
ic

 p
o

s
it

io
n

02 1 -1 -2 -3

1
2

3
5

7
1
1

1
3

1
4

1
6

1
8

2
3

2
8

2
9

3
0

C
la

s
s

e
s

Frequency

(R
a

k
in

k
 s

o
lu

ti
o

n
)

H
is

to
g

r
a
m

 o
f 

s
tr

a
ti

g
r
a
p

h
ic

 d
e
v
ia

ti
o

n
s

34 2 1 0

1
2

3
4

5
6

7
8

9
1

0



quantitative methods for applied microfossil biostratigraphy 385

S
a

m
p

le
 s

iz
e

 =
 2

7
 

S
ta

n
d

a
r
d

 D
e

v
ia

ti
o

n
 =

 2
.4

0
2

*
 S

tr
a

ti
g

r
a

p
h

ic
 p

o
s

it
io

n
 i

n
 w

e
ll

s
 h

ig
h

e
r
 o

r
 l

o
w

e
r
 t

h
a

n
 e

x
p

e
c

te
d

Lower*Higher*

W
E

L
L

 #

-4

1
2

6
7

8
9

1
0

1
2

1
5

1
6

1
7

1
8

1
9

2
0

2
3

2
4

2
7

2
8

2
9

3
0

3
1

3
2

3
4

3
5

3
6

3
7

3
8

-202468

C
la

s
s

e
s

Frequency

(R
a

k
in

k
 s

o
lu

ti
o

n
)

H
is

to
g

r
a
m

 o
f 

s
tr

a
ti

g
r
a
p

h
ic

 d
e
v
ia

ti
o

n
s

0123456

1
2

3
4

5
6

7
8

9
1

0

F
ig

ur
e 

16
.1

0
D

ev
ia

ti
on

s 
fr

om
 e

xp
ec

te
d 

st
ra

ti
gr

ap
hi

c 
po

si
ti

on
 a

nd
 h

is
to

gr
am

s 
of

 s
tr

at
ig

ra
ph

ic
 d

ev
ia

ti
on

s 
fo

r 
th

e 
av

er
ag

e 
L

O
 o

f 
D

ee
p 

W
at

er
A

gg
lu

ti
na

te
d 

Fo
ra

m
in

if
er

a,
an

d 
of

 th
e 

pl
an

kt
on

ic
 fo

ra
m

in
if

er
 S

ub
bo

tin
a 

pa
ta

go
ni

ca
,N

or
th

 S
ea

.



et al., 1986). Graphics results are displayed in colour, and may be modified and edited
with a build-in 2D chart control program, and colour printed or plotted from the screen
displays. The program is actively being developed by F.P. Agterberg and F.M. Gradstein.
More details may be found on websites www.rasc.uio.no, and www.stratigraphy.org.
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