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Preface

Of all the great innovations and intellectual achievements of mankind there
is nothing that rivals the invention of counting and discovery of the number
system. The way in which this discovery led to the development of abstract
higher mathematics is the least of its merits, compared to the universal fas-
cination that the natural numbers hold for all people. Numbers are at the
roots of magic, superstition, religion and science. Numerologists can inter-
pret great historical and cosmic events, predict the future and explain human
nature. Better informed, sophisticated people may frown upon and ridicule
such claims, but the number of incidents that link numbers to physical effects
is simply too large to ignore as mere coincidence. It is in cases like these that
the more respectable number theory is substituted for numerology.

Although it is recognized as the most fundamental branch of mathemat-
ics, the vocabulary of number theory includes concepts such as prime number,
perfect number, amicable number, square number, triangular number, pyra-
midal number, and even magic number, none of which sounds too scientific
and may suggest a different status for the subject. Not surprisingly, number
theory remains the pastime of amateurs and professionals alike – all the way
from the great Gauss down. It may be claimed that abstract number theory
is more lofty than mundane science, never to be degraded into a servant of
physical theory. Even so, a constant stream of books rolls from the print-
ing presses of the world, extolling the wonderful synergy that exists between
Fibonacci numbers, the golden ratio and self-similar symmetry on the one
hand, with works of art (e.g. Da Vinci), architecture (Parthenon), biological
growth, classical music and cosmic structure, on the other.

Despite claims to the contrary some of the profound insights into the
understanding of the world were directly inspired by numbers. The best
known example is the realization by Pythagoras that harmonious music,
produced by a stringed instrument, is dictated by a sequence of rational
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fractions, defined in terms of natural numbers. Armed with this insight he
noted a parallel numerical regularity in the motion of heavenly bodies, could
hear the music of the spheres, and concluded: all is number. Quite remark-
ably, modern astronomy has confirmed, but cannot explain, the numerical
sequence that regulates the orbital motion of the planets in the solar system.
The well-known, but often ridiculed, Bode–Titius law correctly predicted
all planetary orbits, leaving a single gap, where the asteroid belt was sub-
sequently discovered, and also predicted the correct orbit for the unknown
planet Pluto. The rings of Saturn are found to obey the same law, which,
however, is still treated by the academic world as no more than entertaining
coincidence.

Another entertaining coincidence was discovered by the high-school tea-
cher Johann Balmer, in the form of a simple numerical formula, which accoun-
ted for the spectrum of light emitted by incandescent atomic matter, that
continued to baffle the physicists of the world. Thirty years later Niels Bohr,
on the basis of Balmer’s formula, managed to construct the first convinc-
ing model of the atom and introduced the quantum theory into atomic
physics. The quantum mechanics that developed from Bohr’s model managed
to extend the Balmer formula into a complete description of atomic structure
on the basis of five sets of (integer and half-integer) quantum numbers.

The quantum numbers held out the immediate promise of accounting for
the most fundamental concept of chemistry, known as the Periodic Table of
the Elements, described by one of its discoverers, Alexandre-Émile de Chan-
courtois, in the statement: the properties of the elements are the properties of
numbers. Although the quantum-mechanical explanation of elemental peri-
odicity was only partially successful, the scientific world stopped looking
(1926) for the numbers of de Chancourtois, until the chance discovery of
these numbers by the present authors (2001).

In the interim, the development of atomic theory had been prodigious
and impressive. It saw the identification of atomic species, called isotopes or
nuclides, not included in the periodic classification, and of antimatter, the
mirror image of ordinary matter. Once the proper numerical basis of the
periodic classification had been spotted, all the new forms of atomic matter
now find their proper place in the extended periodic classification. Number
theory and the Periodicity of Matter deals with this discovery, its background,
significance and predictions. The consequences are enormous. It shows why
periodicity cannot be fully described by the quantum theory of electrons.
The role of protons and neutrons, the other stable sub-atomic particles, are
of equal importance. Only by taking the number of all these particles (called
nucleons) into account is it possible to rationalize many aspects of atomic and
nuclear physics. These aspects include nuclear synthesis, cosmic abundance of
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nuclides, nuclear stability, radioactive decay, nuclear spin and parity, nuclear
size and shape, details of neutron scattering and superconductivity. At this
stage the discovery is at the same level as that of Balmer, with all the science
that it promises to produce still in the future.

New ideas on the theme have been communicated at several interna-
tional conferences and as postgraduate lecture series at the University of
Pretoria, South Africa, and of Heidelberg, Germany. The single idea received
most enthusiastically was the decisive role of algebraic number theory, the
Fibonacci series, the Farey sequence and the golden ratio in shaping the grand
periodic system in a closed topological space, best described by the geometry
of a Möbius strip. That explains why the packing of nucleons in an atomic
nucleus follows the same pattern as the arrangement of florets in a flower
head and why only special elements turn superconducting on cooling.

The haunting question, which is constantly insinuated but never answered
conclusively, concerns the nature of the natural numbers. Have they been
invented or discovered by humans? In other words, do numbers have an inde-
pendent existence outside of the human mind? The answer to this question is
non-trivial and probably of decisive importance for the future development
of both science and mathematics. At this stage it is not even clear where to
look for understanding – the abstract or the mundane, or where the twain
shall never meet.

The theme of this book is to explore the consequences of the serendipi-
tous discovery that stable nuclides obey the same periodic law as the chemical
elements; both laws are rooted in elementary number theory. The nature of
the discovery is such that, from the related periodic structures that occur
in the natural numbers, as well as atomic matter, fundamental details about
the electronic configuration of atoms and the baryonic arrangement in atomic
nuclei can be derived, without the use of higher mathematics. A high degree of
self-consistency substantiates the basic thesis from internal evidence, without
assumption. This self-consistency includes convergence of nucleon distribu-
tion to the golden ratio and a natural limit on the number of elements and
nuclides which are stable against radioactive decay. On this basis all observed
properties of atoms and atomic nuclei can be understood as characteristic of
a number system defined on a closed interval.

The key to understanding of atomic matter through number theory exists
therein that atoms consist of whole numbers of protons, neutrons and elec-
trons. The ratio of protons to neutrons in any nuclide therefore is a simple
rational fraction, and this quantity, in relation to mass number, is the impor-
tant factor that determines the stability of nuclides against radioactive decay.
For light nuclei the ratio is Z/N = 1 and, for heavy nuclides, it converges to
the golden mean (τ = 1/Φ), as shown by geometrical construction.
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The point of convergence is established by plotting a modular(4) set of
rational fractions, ordered in Farey sequence. This infinite set contains a mod-
ular subset of points that represent stable nuclides of allowed nuclear compo-
sition along a set of 11 regularly spaced festoons. A second Farey sequence,
defined by Fibonacci fractions on the interval (1, τ), defines the set of 11
curves. This procedure shows that the limiting golden ratio is approached as
Z → 102, N → 102Φ (165) and A → 102Φ2 (267), which matches experimen-
tal observation. The analysis is valid for all mod(4) sets of nuclides, totalling
264, which decomposes into 11 periods of 24.

Periodic laws in terms of atomic and neutron numbers are readily pro-
jected out from the general law. In the case of atomic number, four periodic
laws that reflect different cosmic environments are obtained, and these are
interpreted to define a mechanism of nuclear synthesis by α-particle addition.
The neutron-based periodic law, for the first time, rationalizes the empiri-
cally derived magic numbers of nuclear physics and provides a rational basis
for the analysis of nuclear properties, including spin and parity.

To understand the full impact of the discovery the reader should have
a working knowledge of elementary number theory, the periodic table of
the elements, introductory atomic physics and elementary cosmography. The
layout of the book has been planned in accordance with these needs. The
first chapter is an introductory summary of the main thesis, followed by a
primer on number theory, and similar chapters on the periodic table and the
distribution of matter in the universe. With all background material in place,
subsequent chapters re-examine the main arguments in more detail and with
more emphasis on the wider implications of the results.

The work is presented without any pretence to expose inadequacies in
existing science or provide an alternative, more fundamental model descrip-
tion of any aspect of chemistry, physics or cosmography. It only seeks to
highlight an amazing facility of number theory to throw new light, partic-
ularly on old chemistry and nuclear physics. This descrial is all the more
remarkable when read with the following quotation from Michio Kaku [1]:

[. . .]some mathematical structures, such as number theory (which
some mathematicians claim to be the purest branch of mathemat-
ics), have never been incorporated into any physical theory. Some
argue that this situation may always exist: Perhaps the human
mind will always be able to conceive of logically consistent struc-
tures that cannot be expressed through any physical principle.

Our conclusions indicate a definite link between natural numbers and atomic
structure, supported by irrefutable internal evidence. The parallel with
conclusions reached by W.D. Harkins, almost a century ago, is of interest.
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He displayed the stable nuclides, known at the time, before discovery of the
neutron, as a function of proton/neutron ratio, converging to Z/N → 0.62,
apparently without recognizing this limit as the golden ratio. This golden
ratio turns out to be pivotal for the understanding of emerging self-similar
relationships between different forms of matter, ranging from the sub-atomic
to the cosmic.

The basis of atomic periodicity in number theory was explored by exten-
ded discussions with Demetrius Levendis during a period of sabbatical leave
that he spent with me at the University of Pretoria. This interaction led
to the interpretation in terms of Farey sequences and demonstration of the
equivalent roles of mass number and nuclear binding energy. Without his
insight this work would not have been possible.

Many of the arguments reached maturity at the Ruprecht-Karls-University
of Heidelberg where, as a visiting professor, I had the opportunity to explore
these ideas with members of the Inorganic Chemistry Institute of Professor
Peter Comba in a seminar series. Critical comments and technical assistance
from many others, over several conferences, seminars and informal discus-
sions are gratefully acknowledged. In this respect I must single out Sonke
Adlung, Pari Antalis, Aloysio Janner, Tibor Koritsanszky, Gert Krynauw,
Richard Lemmer, John Ogilvie, Zorka Papadopolos and Casper Schutte. All
inaccuracies remain my sole responsibility.

Jan C.A. Boeyens
Pretoria
July 2007
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Chapter 1

Introduction

1.1 Number Magic

There is an ancient belief that the physical world experienced by mortals
is a pale reflection of a perfect world carved in numbers. The Pythagorean
cult and the name of Plato are commonly mentioned in this context. In
modern times special numbers such as 3, 6, 7, 11, 24, 60, 666, etc., are
no longer credited with magical or secret powers, but numerology in other
guises is still widely practised. As in Pythagorean times the fascination with
prime numbers and irrational numbers continues unabated. New records in
the calculated number of digits defining π, e, and τ are set and recorded on
websites all the time. There is little doubt that these three irrational numbers
are indeed fundamental constants of Nature, although their precise relevance
may still be debated for a long time to come.

Best known of the three irrationals is π, the ratio between circumfer-
ence (s) and diameter (m) of a circle in the Euclidean plane. Although this
relationship does not hold in curved space the value of π is assumed con-
stant, such that, either s > πm or s < πm for positive and negative cur-
vature, respectively. The simplest and most familiar example of a curved
two-dimensional space is the surface of a sphere, which is approximated by
the average surface of planet earth. The shortest distance between two points
in this curved space is no longer a straight line, but a geodesic, or segment
of the great circle that connects the two points. A triangle in this surface
has the appearance shown on the left in Figure 1.1. A triangle in negatively
curved two-dimensional space is also shown for comparison.

For millenia the inhabitants of planet earth failed to notice the curva-
ture of the surface along which they moved. Today, they still fail to notice
any curvature of their three-dimensional living space. It raises the intriguing

1
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Figure 1.1: Triangles in spherical and hyperbolic two-dimensional space,
respectively.

possibility that the carefully observed value of π might be characteristic of
local non-euclidean space, näıvely interpreted as being flat. Evidence that
such is the case will be presented in the course of this work.

The basis of natural logarithms, e is the irrational number that defines
exponential growth or decay, which means growth, positive or negative, at a
rate proportional to the mass of the growing entity. The constant e relates
to π by the remarkably simple equation,

eiπ + 1 = 0 (1.1)

in which i =
√−1. It is almost self-evident that e, like π assumes a special

irrational value dictated by the local curvature of space–time.
There is some confusion around the terminology used to specify the third

fundamental irrational number, known as the golden mean, golden ratio or
golden section. In this monograph this golden constant is defined by the
symbols Φ and τ such that

Φ = 1 + τ = 1.6180... (1.2)

which obeys the following set of relationships:

1

Φ
= τ (1.3)

Φ2 =
1 + τ

τ
= Φ + 1 (1.4)

τ2 = 1 − τ

There is a current upsurge of interest in the golden mean [2], which is
known to characterize a diversity of natural phenomena such as the leaf
and seed arrangements in flower heads and cones, the curvature of elephant
tusks, the growth patterns of seashells, the flight path of a perigrine falcon
pursuing its prey in free-fall and the structure of spiral galaxies. Central to
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the theme of this book is the way in which the periodic laws pertaining to
atomic matter are dictated by space–time curvature and the golden mean. It
is therefore not too surprising to find a simple relationship between Φ and
the other irrational constants of Nature, e.g.

Φ = 2 cos
(π

5

)
(1.5)

Ramanathan [3] lists continued fractions attributed to Ramanujan relating
Φ, π and e in one formula, but these are complicated expressions that defy
comprehension.

An irrational number γ is always flanked by two rational fractions in a
Farey sequence of order N [4]

a

b
< γ <

c

d
(1.6)

The approximation of γ by rationals improves for large N , although its true
value is never reached. This convergence to irrationality is like the approach of
some discrete self-similar sequence of entities towards a grainless continuum.
For example, the ratio of protons to neutrons is rational by definition. It will
be shown how this ratio approaches an ideal irrational value demanded by the
curvature of continuous space–time. Only those nuclides with proton/neutron
ratios within the converging Farey sequence occur in Nature. Any regularities
in the nuclear set must have a counterpart in the Farey sequence as specified
by the natural numbers, and vice versa.

Only the properties of numbers are known in advance and the more fruit-
ful approach is therefore to look for structure in the set of numbers and use
this structure to derive regularities in the composition of atomic matter. At
first sight this one-to-one relationship between numbers and matter strikes
the observer, including one of us [5] as almost magical. It is not.

1.2 Periodic Structures

The proton number of an atom is an integer. It may be argued that the
known periodicity of the chemical elements should therefore match some
periodic structure in the number system. Any modular decomposition defines
a periodic distribution. The most striking of these is the distribution of prime
numbers at values of 6n ± 1.

In order to relate the prime number distribution to elemental periodicity
it is instructive to note that the common periodic groups of elements, as
defined in terms of an Aufbau procedure based on electronic energy sub-
shells in atoms, consist of 2(s), 6(p), 10(d) and 14(f) elements respectively.
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Figure 1.2: Natural numbers arranged on a spiral of period 24. Arrows identify
the eight radial directions where all prime numbers, apart from 2 and 3, are
located.

Combinations such as 2 + 6, 6 + 10, 2 + 14 and 10 + 14 are all multiples of 8,
which number therefore defines a convenient periodic basis for classification.
Such an eight-group arrangement matches the distribution of prime numbers
in a number spiral of period 24, shown in Figure 1.2. It will be demonstrated
that the 264 stable (non-radioactive) nuclides are thereby divided into 24
groups of 11, and that the familiar periodic table of the elements is a subset
of the more general periodic table of the nuclides. However, the periodic table
of the elements derived from the general law is not unique and it varies as a
function of the proton/neutron ratio at which the subset is defined.

The eight-group arrangement that agrees with the familiar form of the
periodic table occurs at Z/N → τ . An idealized form of this table, consis-
tent with the electronic energy spectrum of atomic hydrogen as defined by
Schrödinger’s equation, occurs at Z/N = τ − δ, in which δ � 1.2 − τ . Peri-
odic arrangements, derived from these two tables, by inversion of electronic
energy levels, such that Ef < Ed < Ep < Es, occur at ratios of Z/N = 1 and
Z/N = 1 + δ.

To explore the distribution of nuclear levels it is necessary to examine peri-
odic relationships in the nuclear region, defined by the limits Z/N = ±0.22.
The predicted arrangements correspond separately to the energy levels of
both neutrons and of protons in the nucleus, as defined by the semi-empirical
shell model of nuclear structure. The observation that nuclear particles obey
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the same periodic law as extranuclear electrons indicates a self-similar rela-
tionship between the two regimes.

The number spiral, interpreted as a basis for the periodicity of atomic
matter, imposes upper limits of 300 and 100 on the number of stable nuclides
and elements respectively. These limits are only reached in periodic systems
defined at Z/N � 1. At Z/N ≈ τ these numbers are reduced to 264 and 81,
respectively. This reduction in number has a clear implication for the process
of nuclear synthesis and transformation.

The first important general conclusion to be drawn from the relationship
between atomic periodicity and the number spiral is the surprising result
that a wealth of detail about nuclear structure and electronic configuration
of atoms emerges without the use of higher mathematics. Even an ill-defined
concept such as electronegativity acquires new logical meaning on the basis
of an improved periodic law.

1.3 Nuclear Synthesis

Known trends, related to the effect of applied pressure on the electronic
energy levels of atoms [6], provide convincing evidence that the inversion
of electronic energies inferred from periodicities is linked to different ther-
modynamic conditions associated with Z/N ratios at τ and 1, respectively.
Under conditions that favour nuclear synthesis, at high pressure, the optimal
ratio is unity. This ratio is the same that characterizes an α-particle, 4

2He2+.
This observation supports the conjecture that, at sufficiently high pressure,
α-particles can be fused in a chain reaction to produce nuclides of steadily
increasing mass number. With increasing mass number the ratio Z/N → 1,
irrespective of initial structure.

The mechanism of nuclear synthesis by α-addition becomes especially
attractive under the observation that progressive α-addition to four elemen-
tary units of mass number N(mod4) ≡ 0,±1,±2, allowing for radioactive
decay where empirically indicated, only produce all of the known 264 stable
nuclides. Significantly, nuclides of elements 43 and 61 are circumvented.

A consistent picture emerges from the assumption that nuclear synthe-
sis by α-addition occurs in massive stars that favour a Z/N ratio of unity.
A total of 300 stable nuclides of 100 elements, are produced in four series of
mass number A = 4n, 4n ± 1, and 4n + 2. Should the star disintegrate, the
300 types of nuclide, released into regions of lower pressure, suffer a phase
transition that inverts electronic configuration and renders a number of pre-
viously stable nuclides unstable against radioactive decay. In the solar system
only 264 different nuclides of 81 elements survive the phase change.
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The proposed scheme provides a simple rationalization of the six peri-
odic systems identified at different Z/N ratios. Four of these systems refer
to extranuclear electronic configurations of atoms, apparently associated with
different thermodynamic conditions. Alternatively, these different states could
be interpreted as different states of space–time curvature. Unit ratio has
already been linked to massive stars, known to cause severe curvature of
space–time. By analogy, the curvature of planetary space can be correlated
with the golden mean τ . It is therefore no accident that biological and crystal
growth, like nuclear stability on the planet, is closely linked to the ratio τ ,
which by implication characterizes near-empty, slightly curved space–time.

Empty euclidean space, devoid of matter, and of zero curvature, proba-
bly has no real existence. The hypothetical space, invoked by Schrödinger’s
model of the hydrogen atom that recognizes no interaction other than the
coulombic attraction between proton and electron, is truly empty and flat.
Electronic configurations of atoms in such an environment obey Schrödinger’s
law, but deviate from actual, observed configurations. The inverse of flat
space has infinite curvature. It follows that the fourth state of atoms with
totally inverted electronic structure, is confined to the singularity supposed
to exist at the centre of a black hole.

When the same analysis is repeated in terms of neutron number N =
A − Z, rather than atomic number, three equivalent periodic systems are
projected out at Z/N = 1, τ and 0, all of them consistent with the empirically
derived nuclear energy spectrum defined by the so-called magic numbers.
Compared to the flexible variable system defined by atomic number, nuclear
periodicity remains invariant under all cosmic thermodynamic conditions.

1.4 Nuclidic Periodicity and Stability

Periodicity of the elements is well known to reflect variation of electronic
configuration as a function of atomic number. In the more general case of
nuclidic periodicity this cannot be the only factor. A more important factor
is the variation of nuclear stability as a function of neutron excess, defined in
terms of atomic number Z and mass number A, as Ne = A−2Z. As a general
trend Ne increases with increasing mass number. A simple explanation of this
trend is that more neutrons are required to screen the coulombic repulsion
between the protons in heavy nuclei.

Neutron excess increases in discreet steps. It increases from 0 to 43 in 44
unit steps over the entire range of stable nuclides. Within a (mod 4) family
the step size is four units and the linear relationship between Z and A for each
set of Ne, always has a gradient of 2, as shown in Figure 1.3. Each nuclidic
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Figure 1.3: Relationship between atomic and mass numbers for nuclides of
constant neutron excess in the A(mod 4) ≡ 0 series.

group of constant neutron excess terminates at both ends in a radioactive
nuclide and since, invariably, ∆A = 2∆Z, each region of stability is defined
in terms of the golden mean,

√
(∆A/2)2 + (∆A)2 =

√
5

2
∆A =

(
φ − 1

2

)
∆A (1.7)

Furthermore, the maximum stability in each group occurs in the middle of
the range and by averaging over neighbouring modular-group segments the
11 periods of 24 nuclides are reproduced as a function periodic in nuclear
stability. To confirm this conclusion it is noted that an appropriately scaled
plot of experimentally measured nuclear binding energy vs Z is virtually
indistinguishable from Figure 1.3-type plots over the same nuclides.

The assumed 11×24 periodicity in mass number can also be demonstrated
by plotting nuclide distributions on axes of Z/N vs A. The well-defined
periodic function that emerges here is independent of Z/N and confirms
the 11-period assumption. The exact inverse of the nuclide distribution, but
still in line with the same periodicity, is obtained in a plot of (Ne/Z) vs A.
Both of these plots describe neutron imbalance and converge to the same
value, which is readily calculated from the condition Z/N = (N − Z)/Z,
as Z/N → τ as Z → 102, N → 165 and A → 267 = Z/τ 2. All of the
assumptions based on prime-number distribution therefore emerge naturally
from internal evidence.
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The distribution of stable nuclides is conveniently indicated on a two-
dimensional plot of their positions, with respect to axes of Z/(A − Z) vs Z.
In this representation a straight line that limits the stability of nuclides
against β+ decay is constructed by connecting points, which define a set
of rational Fibonacci fractions that converge to τ , and appear on the 44
curves through the positions of nuclides of constant neutron excess. This line
extends between coordinates of (1,0) and (τ, 102). Since there are no nuclides
with atomic numbers 43 and 61, exactly 100 elements are included in the set
defined by 0 < Z ≤ 102. A maximal subset of the same Fibonacci fractions,
between coordinates of (14

19
, 0) and (2

3
, 87) defines a straight line that limits

nuclear stability against β− decay, in the same way. The resulting triangle
of stability agrees with observation and automatically limits the maximum
allowed atomic number to 83.

1.5 Hidden Symmetry

Discovery of the periodic law of the elements by Mendeléeff and others
sparked a lot of activity aimed at finding the ultimate symmetric formu-
lation of that law. By 1920 the most successful formulation [7] was modelled
on pseudo-periodic vibrations on a string, consisting of 11 unequal peri-
ods, approaching eight atomic-number units and excluding hydrogen. After
that date attention shifted to redefinition of the law in terms of quantum-
mechanical atomic models, in preference to graphic representations as advo-
cated by Stewart [7].

Recognition of the periodic law as a special case of a more general law [5]
now reveals that a fully symmetrical formulation is possible after all.
Figure 1.4 shows some detail of the analysis that leads to the recognition
of the general periodic law. An important feature is the symmetry observed
at both the highest and the lowest Z/N ratios. At the high ratio that cor-
responds to infinite curvature of space–time, the periodic limits indicated as
black dots are symmetrically disposed around atomic number 51. At Z/N = 0
that represents the nuclear energy spectrum of neutrons an equivalent sym-
metry, but different in detail, occurs around 51. The connecting lines between
the two symmetrical sets generate four additional periodic arrangements of
lower symmetry. One of these, at Z/N = τ , refers to the system considered
by Stewart [7]. In this instance the symmetry observed at the extreme ratios
are broken, or hidden; to explain Stewart’s limited success.

The four sets of almost parallel lines in Figure 1.4 create the impression
that together they describe a closed function. When the high-ratio points
related by reflection across 51, are identified so as to share common positions,
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Figure 1.4: Some of the straight lines that generate periodic relationships at
appropriate values of nuclidic proton/neutron ratios and reveal the hidden
symmetry.

the function is seen to close on the double cover of a Möbius surface. Rather
than being two sets of lines that define the same periodic relationships twice
over, these lines now spontaneously separate to lie on opposite sides in the
Möbius double cover. The two sets are interpreted to represent atoms of
matter and antimatter respectively.

A sine curve is readily fitted through the set of periodic limiting points
of the fully symmetric arrangements. The resulting curves represent closed
functions in the interval (0, 102) on identification of the extreme values. Iden-
tification of these points is again seen to require a twist and inversion between
matter and antimatter. Two elements remain excluded, thereby limiting the
number of natural elements to 100. In familiar space (Z/N = τ) the sym-
metry is hidden due to the disappearance of 18 elements through instabil-
ity. Three gaps, each one six elements long, are required to keep electronic
structures in register with periodic requirements. A graphic of the result-
ing arrangement is shown in Figure 1.5. To reveal the hidden symmetry in
this representation it is necessary to distinguish between symmetry num-
ber (0–101) and atomic number1 (0–83). Although Stewart, unaware of the
hidden symmetry, had no reason to include three blank regions, he came

1The neutron is identified as element 0.
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Figure 1.5: Atomic positions superimposed on the sine wave that describes the
hidden symmetry of periodic classification. Short vertical lines define allowed
positions for closed electronic sub-shells; the horizontal axis represents sym-
metry numbers. Atomic numbers are shown in parentheses.

remarkably close to recognizing the full symmetry that excludes the end
members from the periodic region, as in Figure 1.5. This shift of two atomic-
number units arises from scaling of the experimental nuclidic stability curve
to coincide with predictions based on the parabolic function

x2 − x − n = 0 (1.8)

that generates the golden ratio. All aspects of the general periodic function
are therefore fully accounted for in terms of aspects of number theory that
relates to the golden ratio.

1.6 Number Patterns

An observed periodicity of 24 in the countdown of natural numbers, when
used as a model for nuclidic periodicity, has produced the scheme that maps
atoms of matter and antimatter on opposite sides of a Möbius interface. It is
instructive to note that an identical mapping may be used to represent nat-
ural numbers and their conjugates. The crucial assumption required here is
an identity of infinities as illustrated in Figure 1.6. Following the arrows, real
numbers convert at R = +∞ into their conjugates. At I = −∞ imaginary
numbers convert into their real conjugates.2

If the numbers are arranged on a spiral as before, each domain, like matter
space, will be chiral. Numbers on opposite sides of the Möbius interface will

2A familiar example of such an inversion is provided by the trigonometric tan function
that approaches +∞ at π/2 and returns from −∞ immediately beyond that value.
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Figure 1.6: Unfolded double cover of a Möbius strip to model the relationship
between real and imaginary numbers. Continuation of R+ beyond +∞ at 1
proceeds through 1 at I = +∞, with a twist as indicated by the arrows. The
conversion from R to I happens gradually in terra incognito near infinity.

be of opposite chirality, but passing along the surface, chirality is gradually
inverted from one chiral form to the next.

Real and imaginary numbers in orthogonal relationship, co-exist in the
achiral Möbius interface, to be interpreted as the complex plane. It fol-
lows that the Möbius representation is an over-simplification. A more real-
istic representation is provided by the projective plane, or two-dimensional
generalization of the one-dimensional Möbius strip. This construct cannot
be embedded in three-dimensional space and requires at least four
dimensions.

Natural periodic systems and numbers unfold in the same geometric
space. Periodic systems that occur in local space–time depend on param-
eters related to the golden mean. The same parameters, not only describe
biological and crystal growth in a local environment, but also the shape of spi-
ral galaxies. It follows, by implication, that a characteristic, locally observed
non-euclidean manifold pervades all of space–time as a general global curva-
ture, and that extreme conditions of curvature are only associated with the
accumulation of high-density mass. The golden mean and the values of π and
e are characteristic of the global curvature.

The two most important features associated with the golden mean is the
property of self-similarity and the appearance of rational Fibonacci fractions.
Any pattern that depends on either or both of these principles, automatically
involves the golden mean. Nuclides are built up in rational proportions from
protons and neutrons, consistent with the most efficient packing in space;
a property dictated by τ and the Fibonacci fractions. The same principle
regulates extranuclear electronic configurations, except for a change of scale.
Atomic and nuclear structures are self-similar and obey the same periodic
law as natural numbers. The considerations underlying Fibonacci phyllotaxis
in biology are exactly the same.
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The DNA code is digital and correlation with any number system, espe-
cially of base 4, is therefore hardly surprising. More surprising is the high
correlation between prime-number values of DNA codons and coded amino
acids [8]. This correlation, as a function of evolution may not be equally well
defined at all times and, at present, might be hidden. By analogy however, it
appears that a number-based periodicity applies to amino acids and codons,
on the same basis as to elements and isotopes. The ratio between prime-
cross numbers and natural numbers, 8:24 per cycle, is the same as between
21 amino acids and 63 codons, or 100 elements and 300 nuclides. The myste-
rious link between atomic matter, natural numbers and biological structures
can only be the geometry of space–time and its critical parameters π, e and τ .

1.7 Cosmic Structure

The relationship between numbers, atoms and space–time is consistent with
the cosmic geometry proposed before [9] on the basis of quantum theory.
This proposal portrays the world on the surface of a Möbius strip, or hyper
projective plane in more dimensions, such that matter and antimatter are
juxtaposed on opposite sides of the interface.

The macroscopic world is known, for instance from the electromagnetic
right-hand rule, to be chiral. Because of the Möbius twist, displacement along
the surface gradually inverts chirality and converts matter into antimatter.
Using state of aggregation as a criterion to differentiate between classical and
non-classical entities, the interface between two sides of the Möbius surface,
can be viewed as the quantum domain. All massless bosons, such as photons
are transmitted in this interface. It is gratifying to note that in the number
system this interface contains the complex plane. The fundamental differ-
ence between classical and non-classical theories is the complex phase [10]
associated with quantum systems.

An important consequence of generally curved space is that it obviates the
Doppler interpretation to red shifts in galactic light. Three-dimensional space
is proposed to curve into a fourth, time coordinate. Remote objects hence
find themselves at different time coordinates. When a photon passes between
two sites this time difference has the same effect as a Doppler recession. If
therefore, the expanding universe is no longer a logical necessity, big-bang
cosmology becomes less attractive.

Without the big-bang time constraint, the issue of nuclear synthesis is
open for reconsideration. The mechanism of α-particle fusion may warrant
serious consideration. It is well known that 4He gas forms a Bose-Einstein
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condensate at about 4K. Like 4He an α-particle is also a boson and a con-
densate thereof under high pressure may well be the source of heavy nuclei.

The realisation that the electronic configuration of atoms can vary in
different thermodynamic environments enables simple new interpretations of
several cosmological riddles. It resolves the paradox of high red-shift quasi
stellar objects that are physically associated with low red-shift galaxies by
providing an alternative explanation of the postulated intrinsic red shifts.
The observation of anomalous Fraunhofer absorption effects in the corona of
quasars is probably due to the same effect.

1.8 Nuclear Structure and Properties

Nuclide distribution, plotted as a function of neutron imbalance and mass
number has been shown to converge to the golden ratio and to fix the lim-
its to the formation and transformation of atomic matter. To confirm that
the observed and postulated periodicities are more than a curiosity of num-
ber theory, an almost identical plot is obtained by substituting and scaling
experimental values of nuclear binding energy, for neutron imbalance on one
axis. In the actual plot, the quantity (BE/N − BE/Z) is used as second
axis. Convergence is now towards an energy value of 8.5MeV, instead of τ .
Remarkably, when plotting the two parts separately, separate periodic distri-
butions, exactly in line with the postulated variation of stability as a function
of neutron excess, is obtained.

1.8.1 Nuclide Abundance

The demonstration that binding energy per neutron or proton follows the
trend predicted by number theory, suggests that the disputed mechanism
of nucleogenesis could be resolved by testing the data on cosmic abundance
against the same periodic relationship. It has been accepted for a long time by
astrophysicists that only an equilibrium mechanism can result in abundances
that are directly related to the binding energies of nuclides. The alternative,
α − β − γ, or big-bang mechanism maps out individual synthetic pathways
for all nuclides, independent of binding energy. The most reliable published
data on solar abundances were used to investigate their relationship to mass
number within modular families, A(mod 4). It turns out that nuclide abun-
dance follows the same periodic trend within the 11 × 24 scheme as binding
energy per nucleon. The equilibrium mechanism as assumed in the scheme
of α-particle addition is clearly favoured.
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1.8.2 Nuclear Spin and Parity

The periodic law based on neutron number provides an unequivocal definition
of an energy spectrum, clearly consistent with the accepted shell structure
of the nucleus, which is based on magic numbers generated by an assumed
strong spin-orbit coupling. Reworking the assignment of nuclear spin and
parity in terms of the new magicity failed to improve previous assignments
significantly. The agreement for odd-mass nuclei of atomic and/or neutron
number less than 50 is reasonable, but it fails completely at higher mass
number.

The magic spectrum is clearly not of central-field type. The spin-orbit
scheme that assumes a central field probably fails because of this inconsis-
tency. As an alternative the 11×24 periodic law, which is readily interpreted
in terms of a simple central-field assignment, may be considered instead. As
a first approximation, Hund’s rule which is based on maximal quenching of
orbital angular momentum of spherically symmetrical atoms [11] succeeds
for about two thirds of all spins. In all other cases an unexplained excess
over Hund’s rule spin is observed. Strong correlation with nuclei known to
be distorted, confirmed that the angular momentum of unsymmetrical nuclei
contributed the excess spin. It has now been demonstrated that nuclear dis-
tortion and excess spin both occur for nuclei where the mass-levels and magic
levels are slightly out of register.

Mass number periodicity arises from the stacking of nucleons whereas
magic-number periodicity reflects pairwise interaction energies involving neu-
trons and protons. In many cases the overall shape of a nucleus may depend
critically on the symmetry requirements of different interactions, analogous
to the Jahn-Teller effect in the ligand fields of coordination complexes. In
the latter case, a symmetrical ligand field is distorted by an unsymmetrical
electron distribution on the central atom, in a process that lowers the overall
energy. Interaction between the two nuclear fields produces distortion by the
same mechanism.

Parity is not affected by these distortions and the assignment follows
directly in terms of two quantum numbers associated in a logical way with
the energy levels defined by the new magic numbers.

1.8.3 Neutron Scattering

The size and shape of atomic nuclei is inferred from experiments such as the
way in which they scatter neutron beams. Apparent nuclear size, as measured
by low-energy neutrons, is commonly tabulated as thermal-neutron scatter-
ing cross section. Nuclides with mass number within a few broad regions have
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been known to have anomalously large scattering cross sections, ascribed to
cooperative properties such as collective vibrational and rotational motion.
A direct correlation with the appearance of high-spin nuclei now provides a
reasonable explanation of both effects. Cooperative effects are seen to cluster
periodically within modular A (mod 4) groups where cross section, polariz-
ability, nuclear size and high spin, all approach local maxima. It is important
to note that the concept of high-spin nuclei is undefined within the standard
spin–orbit scheme.

An even clearer picture of size periodicity is presented by data on coher-
ent neutron scattering lengths. Within a family of nuclides with common
neutron excess, scattering length varies periodically with mass number, to
reach maxima close to or at the completion of packing energy levels.

1.8.4 Radioactivity

Having defined stable nuclei as non-radioactive it follows that, like binding
energy radioactivity must be a periodic property of nuclides. In fact, radioac-
tivity has been the first property of nuclides found to recur as a function of
neutron excess within modular families. Whenever the ratio of Z/N within a
modular set exceeds the critical limit, set by a convergent triangle of stability,
the next nuclide is an unstable potential positron emitter or it transforms by
electron capture. Beyond the low-ratio limit a β−-emitter occurs.

A number of unstable α-emitters occur within the triangle of stability.
The most important characteristic that such nuclei have in common, is their
proximity to both proton and neutron magic-number levels, within a region
of large polarizable nuclei. In this case the opposing effects of proton and
neutron level symmetries counteract the tendency to lower nuclear energy by
distortion of the nucleus. The combined effect is that the nuclei concerned
are rendered unstable with respect to α-emission. The puzzling instability of
8Be is due to the same cause.

Bound-state β-decay provides direct experimental confirmation of conti-
nuity between the nucleus and extra-nuclear electron clouds, consistent with
the notion that a common periodic law operates in both domains.

1.8.5 Nuclear Structure

The unique properties of atomic nuclei arise from the operation of the strong
nuclear force that originates within the quark structure of nucleons. The
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interaction between proton and neutron, symbolically represented by an
interconversion of up and down quarks

ψ(uud) ↔ ψ(ddu)

may also be described as the exchange of a charged virtual pion, ψ(ūd), con-
sisting of a quark–antiquark pair. The binding energy of 8.5 MeV per nucleon,
associated with this process, is shown to represent the energy equivalent of
the golden ratio.

Although this simple picture suggests a structureless distribution of nucle-
ons, documented regularities associated with the appearance of excess spin
and nuclear polarization, point at a regular pattern of nucleon arrangement.
One vivid pattern is the periodic recurrence of excess spin along two par-
allel mass-number series that stay out of phase by ten mass units. In two-
dimensional analogy, two nucleon layers that spiral together from the centre
outwards, fall into step after an initial mismatch and maintain this phase
difference as successive nucleons occupy progressively larger volumes from
the inside out, as shown in Figure 1.7. The analogy to botanical Fibonacci
phyllotaxis is unmistakable. Like the florets in a sunflower head nucleons may
be viewed as spread along a surface that spirals out in three dimensions. An
interesting property of such a spiral is its visibility, which is masked by sec-
ondary optical effects. The two drawings shown in Figure 1.8 are developed
around the same set of primary points. As on the surface of a pineapple, the
fundamental, space-filling spiral goes undetected while the macroscopic pair
of Fibonacci spirals presents a more stable image.

It is tempting to correlate respective proton andneutron positionswith such
Fibonacci spirals. This phyllotaxis predicts the ratio of protons to neutrons to

Figure 1.7: Two dimensional section through a proposed packing model that
may account for the observed two-sequence periodicity observed on the nuclear
spin function.
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Figure 1.8: The space-filling spiral (left) defined by a set of points may be
invisible to the untrained eye, whereas a pair of Fibonacci spirals (right) that
connect the same points, are readily discerned.

be the ratio of successive Fibonacci numbers, which is known to converge to the
golden ratio, as also observed for stable nuclides of high mass number.

Of more fundamental importance is the relationship between nuclear chi-
rality and parity, elucidated by this picture. Chirality depends on the direc-
tion of a three-dimensional space-filling spiral, while parity is determined
by the sequence of secondary, alternating even and odd Fibonacci spirals.
Whereas chirality is fixed for all matter, the parity of nuclei, considered in
periodic sequence, inverts at the completion of neutron energy levels.

1.9 Holistic Symmetry

The periodicity of atomic matter arises from the mapping of nuclear com-
positions on atomic number, in a closed interval. As the closure requires an
involution, number periodicity appears in parallel with periodic states of mat-
ter in a mapping on to a projective plane in four dimensions, interpreted as a
cosmic phase diagram. It implies self-similarity between sub-atomic entities
and cosmic domains, regulated by the topology of space–time and dictates a
geometrical structure of the universe, based on the golden ratio.

The same symmetry is imposed on the arrangement of nucleons as well as
extra-nuclear electrons in an atom. Should this holistic balance be disturbed
the atom decays radioactively in order to restore the balance. An important
consequence of this holistic balance in an atom is that interaction between the
nuclei on regular lattice sites in a solid matrix can lead to cooperative effects
such as superconductivity. No other single theory can rationalize all forms of
superconduction and, the recognition of new criteria that determine transition
temperatures, may lead to the development of improved superconductors.



Chapter 2

Number Theory Primer

2.1 Introduction

Number theory is arguably the purest and most fundamental branch of math-
ematics, but certainly not the most useful. The claim, often repeated, that
mathematics provides the most powerful tool to address social, commercial
and engineering needs, may well be correct. To infer that mathematics has
been developed for this purpose is an exaggeration. Mathematics found its
own direction during classical times1 when it was converted into an abstract,
deductive and axiomatic system of thought. Number theory, above all, con-
stitutes reasoned response to purely intellectual challenges.

The insistence on deductive reasoning as the sole method of proof in
mathematics established this branch of learning as a system of thought in
the human mind. Reason, not observation, had to decide what was correct.
This exclusive use of deduction has differentiated mathematics from all other
fields of knowledge. In particular, it defines the sharp distinction between
science and mathematics. Science, that also uses conclusions obtained by
experimentation and induction often has to revise or discard such conclusions,
whereas the conclusions of mathematics have stood for thousands of years.

The Pythagoreans were the first to use the process of deduction exclu-
sively and systematically and to treat mathematical concepts as abstractions.
The advantage of abstraction is a gain in generality. A theorem, once proven
about an abstract triangle, applies to a triangle formed by matchsticks as
well as by the positions of three heavenly bodies. The Greeks distinguished

1An historical account of the philosophy and practice of mathematics is given by
Kline [12].

19
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mathematical theory from practices such as geodesy and calculation, and
developed arithmetica, the theory of numbers.

The fascination of number theory is such that after 2,000 years it still is
the only branch of mathematics pursued with equal fervour by both profes-
sionals and amateurs. The level of interest in the present instance, is some-
where between the two extremes and less pure than either. It is inspired
by the realisation that elements of number theory, applied to atomic sys-
tems, provide a more fundamental clarification of the periodic law than the
advanced theories of physics and chemistry.

Only those aspects of number theory, relevant to the central theme of
atomic periodicity will be discussed here, without aiming at mathematical
rigour, but with all arguments based on well-established theorems [4, 13, 15].

2.2 Numbers and Arithmetic

The numbers of number theory are familiar to most as the units of counting.
The counting numbers belong to a larger class of numbers, called integers.

The Integers

The positive integers or natural numbers are the counting numbers

1, 2, 3, 4, 5, .......

The integers are the counting numbers, their negatives and zero:

{I} = 0,±1,±2,±3, ..... (2.1)

The non-negative integers are the positive integers and zero.
Counting is the simplest example of a mathematical abstraction. The

same system is used to count all enumerable entities, be they dogs, diamonds
or delinquents. The counting process experienced with small numbers, can
be shown to remain valid also for large, untried numbers, by the method
of mathematical induction. Recall that [12] deductive reasoning consists of
those ways of deriving new statements from accepted facts that compel the
acceptance of derived statements, and that deductive proof is the only proof
accepted in mathematics. However, there exists a mathematical induction
principle which, unlike induction in science, is independent of experimental
observation. It is used when a relation between two functions of an integral
variable, n is suspected as a result of trials with small values of n. The
suspected result is assumed to hold for a particular value of n, m say, and
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used to demonstrate that it leads to the same valid result for n = m + 1.
To complete the proof it is shown that the assumption holds for some special
value, such as n = 1, and by induction for all values of n = 2, 3, . . .

To validate the counting process, the set S of positive integers is assumed.
For each number s in S let S also contain the next integer s + 1. Since S
contains 1, it contains all positive integers. This is not a proof but a demon-
stration that counting operates consistently in terms of the mathematical
induction principle.2

In the simplest mode of counting the members of one set is matched on
a one-to-one basis with those of another, like the set of ten fingers, or a pile
of markers collected together without internal order. The count generated
for an object of the first set is known as its cardinal number. However, the
reference set could be an ordered aggregate in which every element has a
rank or place. Counting against such a set yields an ordinal number for each
member of the first set. This distinction becomes important when assigning
numerical positions to each chemical element in sequence of the periodic
classification.

2.2.1 Arithmetic

Addition and multiplication are defined on the counting numbers: addition
in terms of counting and multiplication in terms of addition. The positive
integers are used to count the members in a set. On counting the members
of two separate sets in a single count, without starting over at 1, the result is
the sum of the two separate counts. Addition can be given a formal definition
that shows how to generate sums involving s + 1, n + s + 1, etc. from sums
involving s, by mathematical induction. Multiplication can also be given
formal inductive definition based on addition, generating the product n(s+1)
from n · s.

The order in which two sets are combined during addition or multiplica-
tion makes no difference to the outcome. This property is expressed in terms
of the following laws:

a + b = b + a a · b = b · a Commutative law

(a + b) + c = a + (b + c) (ab)c = a(bc) Associative law

a(b + c) = ab + ac (a + b)c = ac + bc Distributive law

2The mathematical induction principle is not proved to be a property of the positive
integers, but is postulated as a defining property. It gives a formal rule for generating the
sequence of counting numbers.
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Among the integers, 0 is the identity with respect to addition. It is the
integer for which

n + 0 = 0 + n = n, for every integer n.

For any positive integer m the corresponding negative −m is the additive
inverse. It is the integer for which

m + (−m) = (−m) + m = 0

By definition
0 · m = m · 0 = 0, for each integer m.

It is often necessary to use the fact that positive integers are ordered
with a relation >, which can be defined in terms of counting or in terms of
addition. In terms of counting n > m (read, n is greater than m) if n comes
after m in the sequence of counting. In terms of addition:
Let m and n be positive integers. Then n > m if there is a positive integral
difference d, such that n = m + d.

Binary Numbers The specification of common numbers in decimal nota-
tion is almost certainly a remnant of counting practice using a ten-finger
base. To base 10 the number 1234 is interpreted as

1234 = 103 + 2 × 102 + 3 × 101 + 4 × 100.

This representation is not unique and the same number can be expressed
to any base. Binary, or base 2, notation has become especially important
because of computer usage, where it has the advantage of involving only two
digits, 0 and 1, like the on and off positions of a switch. The binary number
1000011, for instance, is transcribed into decimal notation, by writing the
extended form3

1000011 = 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20

= 64 + 0 + 0 + 0 + 0 + 2 + 1

= 67

It may be shown by mathematical induction that any decimal number can
be transcribed into binary notation.

3The symbol 2 does not exist in binary notation, 2 = 10 in binary.
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2.2.2 Divisibility

The positive integers have the Archimedean property: given positive integers
a and b, there is a positive integer n for which bn > a.
This theorem is proved by induction and provides the basis for the division
algorithm:
Let a be a positive integer and let c be a non-negative integer. Then there is
a non-negative integer b for which c = ab + r, with 0 ≤ r ≤ b.
As a corollary, the integer a divides positive integer c, written a|c, if there
exists a natural number b, such that c = ab. The integer a is called a divi-
sor of c.

Let a and b be integers, not both zero. An integer d is a common divisor
of a and b if d|a and d|b. The integer g is a greatest common divisor (GCD) of
a and b, written (a, b), if g is a common divisor of a and b, and g is divisible
by every common divisor of a and b.

The ideal GCD, (a, b)

Consider all integers of the form

n = ax + by (2.2)

Suppose that d is a common divisor of a and b such that a = da′ and b = db′

for some a′ and b′. Then

n = da′x + db′y = d(a′x + b′y) ; i.e. d|n.

Thus any integer of form (2.2) is a multiple of (a, b) and so (a, b)|n. All
integers n in (2.2) are multiples of (a, b) and hence (a, b) is the smallest
positive value that n can take.

All the integers in (2.2) form what is called an ideal of integers: a set of
integers selected so that if two of them are added or subtracted the answer
is again one of the set; if one of them is multiplied by an integer, the answer
once more belongs to (2.2). From (2.2)

y = −a

b
x +

n

b

is an equation of a straight line of slope −a/b and intercept n/b. As n ranges
over the multiples of (a, b) the graph ranges over a family of parallel lines.
The perpendicular distance d between any of the lines and the origin is
n/

√
a2 + b2. The graph for n = 6x + 9y is shown in Figure 2.1. The line

corresponding to (a, b) is the one with smallest n and passing closest to the
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5

5 100
(−1,1) θ

θ

n/a

n/b
n=54

n=3

y

x

d=5

Figure 2.1: The ideal of integers n = 6x + 9y represented as a family of
straight lines.

origin. In this case n = 3 and the line goes through the lattice point with
integral coordinates (−1, 1),

(6, 9) = 3 = −1(6) + 1(9)

The GCD of two integers a and b is the smallest positive integer among the
linear expressions, ax + by, where x and y are integers.

2.2.3 Prime Numbers

Every natural number a is divisible by 1 and a, referred to as improper
divisors. Thus, 6 has the proper divisors 2 and 3 and improper ones 1 and 6.
If the number n > 1 has no divisors other than the improper ones n is said
to be a prime number. Otherwise n is composite.

If an integer a divides an integral multiple of another number, a|bn, only
when a|n, the integers a and b are said to be relatively prime or coprime.
This statement is equivalent to the following theorem, given without proof:
An integer a is relatively prime to b if and only if (a, b) = 1.

An integer p is irreducible if p > 1 and if p has no divisors strictly between
1 and p; that is no d|p with 1 ≤ d < p → d = 1. (The arrow → reads, implies.)

The Sieve of Erathosthenes

One way to find primes is to wash away the composite integers, leaving the
primes caught in the sieve. The procedure is illustrated in Figure 2.2 that
lists all numbers from 2 to 100. The first prime 2 is circled, followed by
striking out all of its multiples in the table. Next 3 is circled and all of its
larger multiples are struck out. Alternate multiples of 3 have already been
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2 3 6 7 8 9 10

11 12 13 14 15 16

4 5

17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 34 35 36 37 38 39 40

41 42 43 44 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77

81

79

82 83 84 85 86 87 88 89

91 92 93 94 95 96 97 98 99 100

45

33

78 80

90

Figure 2.2: The sieve of Erathostenes to find prime numbers <100.

washed out as multiples of 2. When the prime number 11 is reached all of its
multiples, less than 100 have already been removed. Only 25 prime numbers
remain in the sieve. If a number n is composite, at least one of its factors
must be ≤√

n. Thus, the primes between
√

n and n are obtained by deleting
the multiples of all primes up to, but not beyond

√
n.

Euclid’s Theorem

The numbers 1 and −1 are neither prime nor composite. They are units. Any
non-primitive integer >1 is divisible by a prime. The proof of this theorem
depends on the definition that a composite integer has a factorization, n =
n1n2. Choose the factorization that minimizes n1, i.e. such that n1 is prime.
If it is not prime, then n1 = n′

1n
′
2 with 1 < n′

1 < n1, so that n = n1n2 =
(n′

1n
′
2)n2 = n′

1(n
′
2n2). This result contradicts the assumption that n1 is the

smallest divisor of n. The theorem has been proved.
The theorem is now used to prove Euclid’s famous theorem that there

are infinitely many primes.

Proof Suppose that there is only a finite set of prime numbers, e.g. those
between 1 and the largest prime pn. Form the product of these primes and
consider the integer

N = (2 · 3 · 5 · · · pn) + 1
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By the previous theorem this number N is either a prime or it is divisible
by a prime. However, from N − (2 · 3 · 5 · · · pn) = 1, it cannot be divisible by
any of the primes between 1 and pn: if some prime from the list, pi|N then
pi would also have to divide 1. Then either N is prime or some other prime
(po 	= pi)|N , contrary to the assumption that the finite list contains all the
primes.

2.2.4 Magic Numbers

The ancient belief that numbers had magical powers prompted investigation
into the internal structure of numbers as reflected by their divisors or their
shapes.

One possible measure of the qualities of a number n is provided by the sum
ς(n) of its divisors. On this basis numbers are considered deficient, perfect or
abundant for ς(n) < n, ς(n) = n, or ς(n) > n, respectively.

Perfect Numbers

The first perfect number is 6 = 1+ 2+ 3. In another notation perfect numbers
are identified by the sum of all positive integers d such that d|n, i.e.

σ(n) =
∑
d|n

d and τ(n) =
∑
d|n

1

where τ(n) is the number of divisors of n. A perfect number is a positive
integer for which σ(n) = 2n. For the perfect number 28,

σ(28) =
∑

d = 1 + 2 + 4 + 7 + 14 + 28 = 56

τ(28) =
∑

1 = 6

Amicable Numbers

Ancient Greeks called two positive integers m and n amicable (friendly) if
the sum of the proper divisors of m equals n − 1 and the sum of the proper
divisors of n equals m − 1.
Suppose that σ(m) = σ(n) = m + n. Then

σ(m) − m = n

σ(n) − n = m

which defines an amicable pair.
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Pythagoras found the smallest amicable pair:

220 :
∑
d|n

d = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

284 :
∑
d|n

d = 1 + 2 + 4 + 71 + 142 = 220

The pair, m = 3× 5× 7× 9× 13 = 12,285 and n = 3× 5× 7× 139 = 14,595
represent a pair of odd amicable numbers.

m-Gonal Numbers

m-Gonal numbers are defined by generalization of triangular numbers, known
to the ancients as 1, 3, 6, 10, 15, etc. Each triangular number counts the dots
that can be arranged evenly in equilateral triangles of increasing size (Fig-
ure 2.3). The number of points in each row of the large triangle is one more
than the number on the previous row. Let tn represent the nth triangular
number. Then tn = tn−1 +n, n > 0, e.g. t0 = 0, t1 = 0+1 = 1, t2 = 1+2 = 3,
t3 = 3 + 3 = 6, etc.

To find a general formula for tn, form the sum

k∑
n=1

tn =

k∑
n=1

(tn−1 + n) =

k∑
n=1

tn−1 +

k∑
n=1

n

=

k−1∑
i=0

ti + k(k + 1)/2

so that tk =
k∑

n=1

tn −
k∑

n=0

tn −
k−1∑
n=0

tn = k(k + 1)/2

Figure 2.3: Generation of triangular numbers.
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0+1=1

1+3=4

4+5=9

etc.9+7=16

Figure 2.4: Definition of square numbers.

Square numbers are defined in strict analogy with triangular numbers
(Figure 2.4). Hence, for s0 = 0 and n > 0, sn = sn−1 + 2n − 1.
Let all si = 0, for i < 0. Then, for l ≥ 0, sl = sl−1 + 2l + 1.
The formula in this form will be shown to describe the orbital angular momen-
tum degeneracy of hydrogen wave functions and the number of electronic
energy sublevels for principal quantum number, n,

n−1∑
l=0

(2l + 1) = n2 (2.3)

m-Gonal numbers, m > 4, follow the same pattern.

Pyramidal Numbers Pyramidal numbers are generated by generalization
of m-gonal numbers from two- to three-dimensional representation. The sim-
plest pyramidal numbers are the tetrahedral numbers, 1, 1+3 = 4, 4+6 = 10,
10+10 = 20, 20+15 = 35, etc., obtained by adding the next triangular num-
ber to the previous tetrahedral number, starting from p1

3 = 1. In geometrical
representation the tetrahedral numbers count the number of equal spheres
that fill a tetrahedron to a given level (Figure 2.5). Each layer contains a
triangular number of points (spheres), i.e. 1, 3, 6, 10, 15, etc. These numbers
will be encountered again as half the integral solutions (n) to the radical√

4n + 1 which generate the parabola that describes nuclide stability and
periodicity in terms of the golden ratio.

Pascal’s Triangle

This ancient array of numbers that provides formulae to the coefficients that
occur in binomial expansions, e.g.

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4

was known to Arab mathematicians long before the time of Pascal. Such
an array of coefficients is shown in Table 2.1. The table is constructed by
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Figure 2.5: Geometric representation of tetrahedral numbers. The frame at
right shows the centres of touching spheres only.

Table 2.1: Pascal’s triangle.

20156 15 6
1 5 10 10 5 1

1
11

1

1 4 6 4 1
1 3 3 1

1 2 1
1 1

1

7 21 35 35 21 7

0
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0
1

C
1

1

C
i
3

C
i
4

C
i
5

Ci
6

C
i
7

C
0

C
1
2

C
2
22

C
0

forming the sums Cn+1
i = Cn

i + Cn
i−1 of the two numbers immediately above

any given number. Note that when n is prime, the binomial coefficients Cp
i

for i = 1, 2, . . . , p − 1 are all divisible by p.
Since binomial coefficients can be either even or odd an interesting pat-

tern is generated by colouring all squares containing odd numbers black and
leaving all the even ones blank.

The pattern of Figure 2.6 belongs to a class of geometrical objects known
as fractals. A fractal is something that displays the same structure at any
magnification. This symmetry property is known as self-similarity.

A surprising property of Pascal’s triangle is the preponderance of blank
space. As the total area under consideration is increased the total black area
becomes insignificant and tends to zero. This trend means that almost all
numbers in Pascal’s triangle are even.
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Figure 2.6: Fractal patterns in Pascal’s triangle.

2.2.5 Fundamental Theorem of Arithmetic

From the definition that p|bc → p|b or p|c it follows by repeated application
that any integer >1 can be factored into a product of primes. It will be
shown, not only that each integer has a prime factorization, but also that the
factorization is unique. Unit factors will not be shown in the factorization
unless the given integer is negative, when the unit factor −1 is included.
Positive prime factors will be listed in increasing order of size. The following
theorem follows within these conventions.

The fundamental theorem of arithmetic Every integer >1 (or <−1)
has exactly one factorization into primes.

Proof Suppose n is an integer >1. Then either n is prime, or it is divisible
by a prime, p, say n = pq, for some quotient q. Again, either q is prime or
it is divisible by a prime, say q = p1q1. Either q1 is prime or q1 = p2q2. On
repeated application of the same rule it is eventually shown that any integer
n > 1 or (< −1) has some factorization into a product of primes. If not,
suppose some integer n > 1 has two different factorizations,

n = p1p2 . . . pr and n = q1q2 . . . qs

with primes listed in increasing order of size, pi ≤ pj for i < j and similarly
for the q’s.
Since p1|n in the p-factorization, p1 must also divide n in its q-factorization:

p1|n, where n = q1q2 . . . qs

Now compare p1 and q1. If p1 	= q1, then p1|q2q3 . . . qs. Similarly, either p1 = q2

or p1|q3 . . . qs, and so on. Eventually, p1 must equal one of the q’s. Then,
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p1 ≥ q1, the smallest of the q’s. Repeat the process for q1, showing that q1

equals one of the p’s and q1 ≥ p1. Then p1 = q1. Divide n by p1 = q1, getting

n/p1 = p2p3 . . . qs

As before it can now be shown that p2 ≥ q2 and q2 ≥ p2, so that p2 = q2,
and so on.
Assume that s > r such that after r steps

n/p1p2 . . . pr = 1 = qr+1qr+2 . . . qs

However, each q is prime and >1. Therefore r = s. The factorization is
unique.

GCD and LCM of factored Integers

It is now possible to prove the

Theorem If a = pa1
1 pa2

2 . . . par
r and b = pb1

1 pb2
2 . . . pbr

r where the p’s are prime
and the exponents ai and bi are non-negative integers, then

(a, b) = pc1
1 pc2

2 . . . pcr
r

where each ci = min{ai, bi}.

Proof Note that any exponent equal to zero implies that the corresponding
pi does not occur in the relevant factorization, (p0 = 1).
The divisors of a are the integers of the form d = pd1

1 pd2
2 . . . pdr

r , where 0 ≤
di ≤ ai, for each i. Each d|a, therefore

a = d
(
pa1−d1

1 pa2−d2
2 . . . par−dr

r

)
No other integers divide a, since4 pgi

i � ai if gi > ai or if pi is not one of the
primes in the factorization of a. From this observation, pc1

1 pc2
2 . . . pcr

r divides
both a and b and is in turn divided by every common divisor.

4�, does not divide



32 CHAPTER 2. NUMBER THEORY PRIMER

Corollary Two positive integers are relatively prime iff5 their factoriza-
tions have no primes in common.
[a, b], the least common multiple (LCM) of a and b is a multiple of a and a
multiple of b and it divides every common multiple of a and b.

Using arguments like those in the derivation of (a, b) it is shown that
[a, b] = pm1

1 pm2
2 . . . pmr

r , where each mi = max{ai, bb}.
The GCD and LCM of two positive integers can be found from their

factorizations by using the minimum and maximum exponent for each prime
power, respectively.

2.2.6 Gaussian Integers

Introduction of the unit −1 is necessary to ensure that the fundamental
theorem applies to both positive and negative integers. The question arises
whether the fundamental theorem would still hold if the class of integers is
defined even wider than in (2.1). The Gaussian integers are members of the
imaginary quadratic field Q(

√−1) and constitute such an extended class.
They form a ring often denoted Z[i] and have the form a + bi, with a and
b ordinary integers and i =

√−1. To avoid possible confusion the ordinary
integers may be referred to as rational integers, Z[1], or simply Z. Note that
in both sets Z and Z[i] the sum, difference and and products of all integers
are integers, but (a + bi)|(c + di) only if there is an e + fi such that

(a + bi)(e + fi) = (ae − bf) + (af + be)i = s + di

An element of Z[i] is a unit if it divides 1, and hence also every element
of Z[i]. The units of Z[i] are ±1 and ±i. A number π in Z[i] is prime if it is
not a unit and if in every factorization π = αβ one of α or β is a unit.

A number of properties and theorems which can be proved [13] for
Gaussian integers will be given here without proof, noting that in general
the proofs have much in parallel with the corresponding proofs for rational
integers.

1. If α = a + bi is an element of Z[i] its norm N(α) or Nα, is defined to
be αα∗ = |α|2 = a2 + b2, (α∗ = a − bi is the complex conjugate of α).
The norm has the following properties:

(a) If α is in Z as well as Z[i], then Nα = α2.

(b) N(αβ) = NαNβ

5iff, if and only if
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(c) Nα = 1 iff α is a unit.

(d)

Nα

⎧⎨
⎩

= 0 if α = 0
= 1 if α = ±1 or ± i
> 1 otherwise

(e) If Nα is prime in Z, then α is prime in Z[i].

The converse of (e) is false: 3 is prime in Z. N3 = 32 = 9. Suppose
3 = αβ. Then 9 = NαNβ. If neither α nor β is a unit Nα 	= 1,
Nβ 	= 1, so Nα = Nβ = 3. But this means that if α = a + bi, then
a2 + b2 = 3, which is impossible for any pair of integers a, b in Z.

2. If α and β are Gaussian integers, β 	= 0, then there exist two integers
π and ρ such that

α = πβ + ρ Nρ < Nβ

3. If π is prime and π|αβ then π|α or π|β.

4. The fundamental theorem of arithmetic holds in Z[i].

5. Euclid’s theorem holds for primes in Z[i].

2.2.7 The Binomial Equation

Finding the square root of a complex number A is equivalent to finding the
solution X of the quadratic equation X2 = A. Let A = a+ ib and X = x+ iy.
Then the real numbers x and y must be such that

(x + iy)2 = a + ib = x2 + y2 + 2ixy

Therefore x2 + y2 = a, 2xy = b. Combined with the identity

(x2 + y2)2 = (x2 − y2)2 + 4x2y2

this gives

x2 + y2 =
√

a2 + b2

and hence

x2 =

√
a2 + b2 + a

2
, y2 =

√
a2 + b2 − a

2
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With the correct sign convention [14] the required solutions are

X = ±
⎛
⎝

√√
a2 + b2 + a

2
+ (sign)i

√√
a2 + b2 + a

2

⎞
⎠ (2.4)

where sign= + or − as b > or < 0. For b = 0, X = ±√
(sign) a, sign= + or

− as a > or < 0. When a = b = 0 there is only one trivial solution, X = 0.
The binomial equation xn = a has a simple trigonometric solution based

on De Moivre’s formula [14]

(cos θ + i sin θ)n = cos nθ + i sin nθ (2.5)

Write a = r(cos θ + i sin θ)

x = ρ(cos nϕ + i sin nϕ) = a

Hence ρn = r and nϕ = θ + 2kπ for any integer k, since the equality holds
for all nϕ that differs from θ by the full angle. The nth roots of the complex
angle follows as

x = n
√

r

(
cos

θ + 2kπ

n
+ i sin

θ + 2kπ

n

)

Geometrically these roots are the vertices of a regular polygon with n sides.
The equation xn = 1 defines the roots of unity of degree n. In this case

r = 1, θ = 0 and the roots are obtained from the formula

cos
2kπ

n
+ i sin

2kπ

n
= e2πik/n (2.6)

2.2.8 Algebraic Number Theory

Extension of the number system to include Gaussian integers leads to the
much wider notion of algebraic number theory. Any algebraic integer of the
form a+ b

√
d where d is square free, forms a quadratic field Q(

√
d). If d > 0,

the field is a real quadratic field, and if d < 0, it is an imaginary quadratic
field. In one example, the integers in Q(

√−3) are called Eisenstein integers.
The algebraic integers in an arbitrary quadratic field do not necessarily

have unique factorizations. For example, the fields Q(
√−5) and Q(

√−6) are
not uniquely factorable, since

21 = 3 · 7 = (1 + 2
√−5)(1 − 2

√−5)

6 =
√−6(

√−6) = 2 · 3
although the above factors are all prime within their fields.
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The totality of all algebraic integers is said to form a ring, which is a set
of numbers that contains α + β, α − β, αβ when it contains α and β. For a
ring in general, but not necessarily always:

(a) The commutative law of multiplication ab = ba, does not hold

(b) There is no identity element of multiplication

(c) The cancellation law of multiplication does not hold

An integral domain is a specialized ring and a field is a specialized integral
domain.

There are no primes in the ring of all algebraic numbers. For let α be an
integer different from zero or a unit. One can always write α =

√
α
√

α. If
α satisfies p(x) = 0, then

√
α satisfies p(x2) = 0, so

√
α is an integer. This

condition does not prevail in the ring of integers in a fixed algebraic number
field K. Then α|β if β/α is an integer of K; ε is a unit if ε|1; α is prime if it is
not zero or a unit, and if any factorization α = βγ into integers of K implies
that either β or γ is a unit.

A set A of integers in K is an ideal if, together with any pair of integers
α and β in A, the set also contains λα + µβ for any integers λ and µ in K.
Two ideals in K are equivalent, A ∼ B, if there are two non-zero integers α
and β in K such that α(A) = β(B). The totality of ideals in K equivalent
to a fixed ideal A 	= (0) is said to constitute a class. The number of classes
is called the class number h of K. It turns out that [13] a field has unique
factorization of integers into primes iff its class number is 1.

Functions In defining a function f : X → Y , it means that a unique
element of Y is assigned to each element of X. If no element of Y is assigned
to more than one element of X, the function f is called an injection or one-
to-one [16]. In symbols it is implied (⇒) that

∀x1, x2 ∈ X, [x1 	= x2 ⇒ f(x1) 	= f(x2)]

If each element of Y is assigned to some (∃) element of X, the function f
is a surjection, ∀y ∈ Y,∃x ∈ X, y = f(x). If f is both an injection and a
surjection, it is called a bijection.

Suppose that f : X → Y is a function and A is a subset of X, i.e. A ⊆ X.
The function g : A → Y can be defined by g(a) = f(a) for all a ∈ A. This
function is called a restriction of f to A and is denoted by f |A.
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2.3 Distribution of Prime Numbers

The distribution of prime numbers is a constant theme of number theory.
Euclid’s theorem that proves the existence of an infinite number of primes is
well known. Equally famous is Dirichlet’s theorem:
The arithmetic progression a + kn, n = 1, 2, 3, . . . contains infinitely many
primes if a and k are coprime.
This theorem can be proved in several ways [4]. Neither of the theorems
however, explain the rather irregular distribution of primes among the natural
numbers. As conjectured by Gauss the number of primes π(x) less than or
equal to a given number x is asymptotic to x/ log x. Stated differently

lim
x→∞

π(x) log x

x
= 1

this conjecture, after satisfactory proof, is now known as the prime number
theorem. The sieve of Erastosthenes identifies all primes less than a given
maximum, but it also fails to solve the problem of prime-number distribution.

A much celebrated computer-generated graphic that appears to reveal
a mysterious regularity in the distribution of prime numbers was published
some time ago [17], made it to the cover of Scientific American [19] and
features on many websites [18]. It is known as a prime-number spiral and the
positions of primes show up visibly along lines, parallel to the main diagonals
of the dense spiral. The first 700 integers, (mod 100), arranged on a spiral
are shown in Figure 2.7.

The method whereby the spiral is constructed is shown on the right in
Figure 2.7. The anticlockwise progression that defines the spiral is shown to
be made up by the alternating addition of square numbers (2.2.4) from the
right and the left, respectively. All the even squares are thereby constructed
to appear along the NW diagonal and the odd squares along the SE diag-
onal. This construction explains the diagonal distribution of primes, since
in any E-W or N-S column even and odd numbers alternate, whereas they
are segregated in diagonal directions. By filling all blocks that represent odd
numbers a chequerboard pattern is generated. All primes, with the exception
of 2, are thus constructed to occur along these diagonal lines. The pattern
of Figure 2.7 (left) arises from distinction between composite (white) and
prime numbers (black), rather than between even and odd integers. Devia-
tions from the chequerboard pattern that create the irregular appearance of
Figure 2.7 are readily explained:

(a) The parallel lines adjacent to the square diagonals contain the odd
numbers n2 − 1 = (n + 1)(n − 1) and must be prime free. Like the
diagonal of square numbers these lines therefore have no black marks.
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Figure 2.7: Reconstruction of the number spiral claimed to exhibit a strongly
nonrandom appearance [17]. The positions of all prime numbers are indicated
in black. Squares of the natural numbers are shown blocked in along one main
diagonal. The small diagram on the right shows how the spiral is made up
of square numbers. The shading shows that odd and even numbers define a
chequerboard pattern.

(b) The lines (n2 ± 1) adjacent to the diagonal of odd squares contain only
even integers and apart from 2, no other primes.

(c) All numbers on the line n− 2 parallel to the even-square diagonal, are
even.

(d) Another prominent prime-free diagonal array of odd numbers, i.e. 21,
45, 77, etc. is of the form n2 − 4 = (n − 2)(n + 2).

(e) In general any set of numbers n2−m2 = (n−m)(n+m), for n odd and
m even, is prime free and occurs along a line parallel to the diagonal
and situated between two lines of even integers.

(f) Two of the most conspicuous features clearly visible on extended com-
puter maps of the spiral are two clear streaks at right angles marked
on Figure 2.7 by two small arrows. The vertical streak consists of
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two empty columns. The odd numbers in the column on the left are
composite numbers related to the squares n2 by n2− 1

2
(n+3), factoring

into (2n − 3)(n−1
2

). Those in the second column are

n2 − 1

2
(n + 1) = (2n + 1)

(
n − 1

2

)

The contiguous prime-free horizontal rows are

n2 +
1

2
(n − 1) = (2n − 1)

(
n + 1

2

)

and n2 +
1

2
(n − 3) = (2n + 3)

(
n − 1

2

)

The appearance of diagonal blocks of three adjacent prime-free lines is
explained in full. These blocks are striking features of the computer graphic.
As shown for the vertical and horizontal empty blocks, all other features of
the prime-number spiral can be explained by similar simple arguments. The
spiral display does not reveal any new information or pattern related to the
distribution of prime numbers and the entire construct is no more than a
special arrangement of the sieve of Erasthosthenes.

2.3.1 Twin Primes

The number spiral of Figure 1.2 is more informative than that of Figure 2.7,
since it clearly demonstrates the occurrence of twin primes (p, p + 2), cousin
primes (p, p + 4) and sexy primes (p, p + 6) [20]. It confirms that all twin
primes, excepting 2 and 3 are of the form 6n± 1. As a matter of fact, it
further shows that all primes, except 2 and 3 are of the form 6n ± 1. The
periodicity of the spiral is 24 and hence all numbers on the radial lines through
the small even numbers n = 2 to 24 are of the form n+ 24m, m = 1, 2, 3 . . . ,
and therefore include all even positive integers. The radial lines through
odd multiples of 3 < 24 cover all of the remaining multiples of 3 as in the
sieve of Erasthostenes. The eight remaining radial lines, of the form 6n± 1,
contain all remaining numbers i.e. the prime numbers ≥5 and their common
multiples. The prime number distribution according to the 24-number spiral
is shown in Figure 2.8. A remarkable feature demonstrated in Figure 2.8 is
that the squares of all prime numbers ≥5 occur along the radial line through
1, together with prime and composite numbers of the form 24m + 1. The
squares of familiar primes occur at m = 1, 2, 5 . . . , etc. Squares of squared
primes occur at m = 25, 100, . . . . For those values of m that do not label
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Figure 2.8: The 6n± 1 prime number cross, showing prime numbers in black
and squares of primes as open circles. Twin primes are connected by arcs.

the positions of prime numbers, 24m + 1 is not the square of an integer,
i.e. m = 3, 4, 6, . . . . This observation suggests that all integers of the form
j =

√
24m + 1 should be prime. However, for m = 51, 126, . . . etc., j =

5×7, 5×11, etc. There is no obvious way to distinguish between these prime
and composite square roots.

It is remarkable that the set of integers generated by the sequence j =√
24m + 1 is identical to the set i = 6n ± 1, distributed over the eight arms

of the cross of Figure 2.8. This observation is summarized by the formula

m =
n

2
(3n ± 1) , n = 1, 2, 3 . . .

that applies to all primes ≥5 and their common multiples. The m-values of
possible twin primes differ by n.
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2.3.2 The Sieve Revisited

The 6n± 1 prime cross of Figure 2.8 corresponds to the first stage of sifting
out composite numbers by the Erastosthenes procedure, i.e. removal of all
multiples of the first two prime numbers 2 and 3. The same procedure can
be continued to screen out the multiples of successive higher prime numbers,
p = 5, 7, 11, 13, . . . etc., from the set of Figure 2.8, by rearrangement on
spirals of period 2p. A spiral of period 14 is shown in Figure 2.9. The multiples
of 7 are found grouped together on two radial lines c+

m = p(6m + 1) and
c−m = p(6m− 1), p = 7. The same result is found for spirals of period 10, 22,
. . . 2p . . . , with multiples of p located at positive values of

c±m = p(6m ± 1), m = 0, 1, 2, . . . (2.7)

For a given prime its multiples in common with those of lower primes occur
as cm with 6m < p. It is shown in Table 2.2 how this procedure screens
out composite numbers less than 300. The procedure outlined here may be
used as an algorithm to identify prime numbers, but not as a formula to
generate them. The problem is that each formula such as (2.7) generates, not
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Figure 2.9: The prime numbers ≥5 and their common multiples arranged on
a 14-period spiral.
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Table 2.2: Composite numbers of the form p(6m ± 1) < 300.

p
m

5
+

−

−
7
+

+

+

+

−

−

−

11

13

17

25 55 85 115 145 175 205 235 265 295

6 8 9 10754321

35 65 95 125 275245215185155

77 119 161 203 245 287

49 91 133 175 217 259

121 187 253

143 209 275

221 299

169 247

289

only multiples of p, but also the common multiples of all other primes. Any
formula that generates only prime numbers must therefore be complicated.

2.3.3 Prime-generating Polynomials

It is generally agreed that no rational algebraic function can consistently
yield prime numbers. However, several low-order polynomials are known to
generate primes between well-defined limits. The best known example is the
family of polynomials

P = n2 + n + p, n = 0, 1, . . . , p − 2

in which P is prime iff the field Q(
√

1 − 4p) has class number h = 1, restrict-
ing the allowed values of p to p = 2, 3, 5, 11, 17 and 41 [13, 21]. The case
p = 41 defines Euler’s formulae, n2 ±n+41, that give distinct primes for the
40 consecutive integers n = 0(1) to 39(40).

The variable part of the Euler formula

n2 ± n = k (2.8)

is related to tetrahedral numbers, the golden ratio, twin primes and the
periodic table.
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Prime Spirals

Approximation [23] of the zth prime number by

pz = z ln z, i.e. z = epz/z,

suggests that the position of a prime number may be represented by its
phase angle on a logarithmic spiral of the form [22] z = kecθ (c = cot ϕ).
ϕ denotes the constant angle of the spiral with radii through the pole, and
k is a scale factor. In a simplified demonstration, shown in Figure 2.10, the
phase angle is chosen as z radians, such that the angular difference between
successive primes is 1 radian and prime positions appear at points pz = kz
on an Archimedean spiral. The positions of the first 100 primes are shown
on smaller scale in Figure 2.11. The spiral that connects the points is not
shown and a set of spiral arms shows up more conspicuously. This pattern is
related to Fibonacci phyllotaxis that occurs in botanical growth and other
logarithmic spirals in Nature with a divergence angle of χ = 137.5◦, rather
than 1 radian as used in the demonstration. In radians, χ = 2π/Φ2, where
Φ = 1.6180 . . . is the golden number. Without further proof this relationship
is interpreted to indicate a connection of the prime number distribution with
the golden section and Fibonacci numbers.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 2.10: Distribution of prime numbers on a spiral.
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Figure 2.11: The first 100 prime numbers distributed on a spiral.

2.4 Fibonacci Numbers

Leonardo Fibonacci of Pisa in his book Liber Abaci (Book of the Abacus)
published in 1202, posed the following question:

How many pairs of rabbits will be produced in a year, beginning
with a single pair, if in every month each pair bears a new pair
which becomes productive from the second month on?

The problem is analyzed in Table 2.3: Each month some baby pairs grow
up and must be added to the number of adult pairs of the previous month.
Each adult pair of the previous month produces one baby pair so that the
current number of baby pairs is the same as the number of adult pairs of the
previous month. Except for the starting point, the three rows of Table 2.3 are
alike, and each represents a Fibonacci sequence, consisting of the Fibonacci
numbers,

F0 = 0, F1 = F2 = 1, F3 = 2, F4 = 3, F5 = 5, . . .

in general
Fn+1 = Fn + Fn−1 ; n > 0, F1 = 1, F2 = 1

This kind of recursion formula is cast into the generalized Fibonacci sequence

un+1 = un + un−1, u1, u2 to be chosen.

The case u1 = 1, u2 = 3 is called the Lucas sequence, with Lucas numbers
1, 3, 4, 7, 11, 18, etc.
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Table 2.3: Rabbit breeding in Fibonacci sequence.

Start

Adult pairs

Baby pairs

No. of pairs

Months elapsed

1

0

1

1 1

2

2

2

2

3

3

3

4

5

5

53

1

1 5

8

8 13

6 7 8 9 10 11 12

13

8

21

13

34

21

89

55

144

89

233

21 34 55

55

34

89 144 233

144

377

2.4.1 The Golden Ratio

The most important feature of the Fibonacci sequence is that the ratio
between successive Fibonacci numbers converges to an irrational number,
known as the golden ratio, Φ, i.e.

lim
n→∞

Fn+1

Fn
= Φ = 1.61803 . . .

This irrational number has several unique properties, established by simple
calculation, e.g.

Φ =
1

Φ
+ 1 (2.9)

Φ2 = Φ + 1 (2.10)

The golden ratio is an irrational number, but not a transcendental one (such
as π) since it can be obtained as a solution to the polynomial Equation
(2.10), i.e.

Φ =
1 ±√

1 + 4

2
= 1.61803 . . . or − 0.61803 . . .

The first of these is generally considered to be the golden ratio, whereas the
second solution, τ = − 1

Φ
.

Any power of the golden ratio can be broken down into the sum of smaller
powers, such as

Φ5 = Φ4 + Φ3

and ultimately reduced to the sum of an integer and an integer multiple of
the golden ratio. Take

Φ6 = Φ5 + Φ4 = 2Φ4 + Φ3

= 2(Φ3 + Φ2) + (Φ2 + Φ)

= 2(2Φ2 + Φ) + (2Φ + 1)

= 8Φ + 5
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The two coefficients are successive Fibonacci numbers. In general

Φn = FnΦ + Fn−1

The golden ratio can also be derived from trigonometric functions

Φ = 2 sin

(
3π

10

)
= 2cos

(π

5

)

τ = 2 sin
( π

10

)
= 2cos

(
2π

5

)

These angles are all fractions of 3π/5 = 108◦, characteristic of a regular
pentagon. It is therefore not unexpected to find that the golden ratio turns
up in examples of fivefold symmetry. An interesting example is provided by
a regular decagon, radius R, unit sides, θ = π/5, shown in Figure 2.12. Draw
BD to bisect ABC. From similar triangles BCD and ABC it follows that

BD

DC
=

1

R − 1
=

AB

BC
= R

Hence R2 − R = 1, i.e. R = Φ.
Joining together pairs of congruent triangles gives rise to two geometrical
shapes ABCE and ABDE, known as kite and dart, the respective objects of
Penrose tiling [25]. With these tiles a surface can be covered completely in
an asymmetric and non-periodic way with small areas of five-fold symmetry
occurring, as shown on the left in Figure 2.12.

3θ
2θ 2θ

θθ

θ
K

D A

B

C

D E
R

Figure 2.12: Diagram to demonstrate the relationship between Φ, fivefold sym-
metry and the objects of Penrose tiling.
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Φ

1

1

0

Φ Φ
1

1

1d

θ

Figure 2.13: Euclid’s construction of the golden ratio.

Euclid’s Construction

In order to construct a regular pentagon, Euclid derived the golden ratio
geometrically. The circle from the midpoint on one side of a unit square
through an opposite corner, as in Figure 2.13, intersects the extension of
that side at a distance φ. The unit pentagon is obtained by construction
around a diagonal of length φ. The angle θ = tan−1(1/2) = 26.6◦.

Self-similarity

Kepler has been quoted [24] to write

[T]he golden ratio served the creator as an idea when he intro-
duced the continuous generation of similar objects from similar
objects.

Adding the same length again to the short segment (d) of intersecting diag-
onals of the pentagon, its ratio to the remaining section

φ − 2d

2d
=

1

φ

again equals the golden ratio. This process may be continued indefinitely to
generate a sequence of ever smaller copies of the original diagonal divided into
two parts related by φ. The same process may be unfolded in the opposite
direction to create larger copies. This property is called self-similarity. Setting
2d = 1, the equation φ2 − φ = 1 yields the value of the golden ratio, φ =
(1 +

√
5)/2.

The property of self similarity of the golden section becomes evident from
its definition as a continued fraction

x = 1 +
1

1 + 1
1+ 1

1+ 1
1+...

= 1 +
1

x
, i.e. x = Φ
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Table 2.4: Pascal triangle to show relationship with Fibonacci sequence.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 . . .

1 6 15 20 . . .
1 7 21 . . .

1 8 . . .
1 . . .

1 1 2 3 5 8 13 21 34 55 .

Self similarity as a symmetry is best known from fractal structures [29]. The
chaotic nature of turbulent flow, for instance, is fractal and the self-similar
symmetry that develops spontaneously can also be considered as related to
the golden section.

To demonstrate without proof that the golden section and the Fibonacci
sequence also relate to fractal structures the Pascal triangle of Table 2.1 is
rearranged by shifting each row two positions to the right with respect to the
previous row, to give the arrangement shown in Table 2.4. Summation over
the columns generates the Fibonacci numbers.

2.4.2 Phyllotaxis and Growth

The spiral patterns in composite flower heads and cones, which almost invari-
ably involve Fibonacci numbers, have been a topic of discussion for cen-
turies. The mechanism leading to the appearance of Fibonacci numbers is
well known [26] and accepted: successive leaves appear on the stem at an
angle of about 137.5◦ (360/Φ2), the golden section of the unit circle, which
is between 3/8 and 2/5 of a revolution. Thus five leaves make up just under
two revolutions and eight leaves just over three revolutions. In a composite
flower head, the individual florets are usually formed in leaf axils, resulting
in the same rule of placement, but in a far more concentrated fashion. The
number of opposing spirals, or helical whorls (parastichies) in many flower
heads correspond [22, 27] to adjacent Fibonacci numbers, e.g. 21 and 34, 34
and 55, etc.

These growth spirals are often stated to be logarithmic spirals, like those
that occur in shells and horns, as noted by D’Arcy Thomson [28]. However,
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Figure 2.14: Archimedean spiral through a set of points with divergence angle
of 137.5◦.

the cell areas between flower heads do not increase exponentially and the
angle between spiral and radius vector is not constant, but increases
towards 90◦.

Patterns of Fibonacci phyllotaxis are shown superimposed on the
Archimedean spiral of Figure 2.14 in Figure 2.15.

The same set of points, generated by the divergence angle of 137.5◦ form
the basis of all frames in Figure 2.15. The spiral arms are constructed by con-
necting points, separated in numerical sequence by the Fibonacci numbers 2,
3, 5 and 8. The fifth frame shows the five- and eightfold arms in superposi-
tion. The final frame represents F7 = 13. It is clear that all Fibonacci spirals
occur in each flower head. Their visibility is related to and may be masked
by the number of florets.

2.5 Rational Fractions

Fair division of an integer number (a) of objects among a smaller number of
recipients (b) is not always possible, i.e.

a

b
= q + r , r ≥ 0 (2.11)

The remainder r 	= 0 whenever b � a. However, in the field of rational numbers
that contains an inverse element a−1 for each integer a 	= 0, such that aa−1 =
1, division, except by 0 is always possible. Some rational numbers ab−1 are
integers (r = 0). If not,

ab−1 =
a

b
is called a rational fraction; a and b integer.
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79

Figure 2.15: Fibonacci spirals: From the top (left to right) the number of spiral
arms corresponds to F3, F4, F5, F6, F5 + F6 and F7.

The ordering of rational fractions is more complicated than for integers.
Firstly, equality is defined by the equivalence relation:

a

b
=

c

d
is equivalent to ad = bc
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It has the required properties of:

Reflexivity: a
b

= a
b

since ab = ba.

Symmetry: If a
b

= c
d

then c
d

= a
b

(ad = bc implies cb = da)

Transitivity: If a
b

= c
d

and c
d

= e
f
, the a

b
= e

f
because ad = bc, cf = de,

and thus adf = bcf = bde. Therefore af = be, since d 	= 0.

Secondly, inequality:

a

b
<

c

d
is equivalent to ad < dc.

This relation is

Irreflexive: a
b

≮ a
b

Asymmetric If a
b

< c
d
, then c

d
≮ a

b

Transitive: If a
b

< c
d

and c
d

< e
f
, then a

b
< e

f
.

These properties only follow when the denominators are taken to be pos-
itive. Furthermore, the statement

a

b
<

c

d
means the same as

c

d
>

a

b
.

Hence, among common fractions there exists a trichotomy: For two fractions
a
b
, c

d
one and only one of the following statements can be true:

a

b
<

c

d
,

a

b
=

c

d
,

a

b
>

c

d
.

Indeed, among integers, either ad < bc or ad = bc or ad > bc. Because of the
transitivity of equality and inequality, an ordering of the fractions becomes
possible.

2.5.1 The Farey Sequence

An ordered sequence of non-negative reduced fractions between 0 and 1
whose denominators do not exceed the number N was discovered by Farey in
1816. The numerator and denominator of a reduced fraction have no common
divider. The number N determines the order of the sequence. The low-order
Farey sequences are
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0/1

3/11 3/102/91/6

1/5

1/4

2/7

1/3

3/8

4/11 3/13

2/5

5/12

3/7

4/9

1/2

5/9

4/7

3/5

7/12 8/13

5/8

7/11

2/3

5/7

7/10 8/11

3/4

7/9

4/5

5/6

1/1

Figure 2.16: Farey sequence of rational fractions. Starting with the first row
and reading from right to left 3/7 is identified as the 12th rational fraction.

N = 1 : 0
1
, 1

1

N = 2 : 0
1
, 1

2
, 1

1

N = 3 : 0
1
, 1

3
, 1

2
, 2

3
, 1

1

N = 4 : 0
1
, 1

4
, 1

3
, 1

2
, 2

3
, 3

4
, 1

1

N = 5 : 0
1
, 1

5
, 1

4
, 1

3
, 2

5
, 1

2
, 3

5
, 2

3
, 3

4
, 4

5
, 1

1

A generalized table that serves to order and enumerate all rational fractions,
starting with 0/1 and 1/1, is obtained on generating each rational number
from two that brace it from above, by separate addition of numerators and
denominators of the bracing pair. The result is shown in Figure 2.16.

Farey established that two consecutive fractions h/k and l/m obey the
relationship

hm = kl − 1 or

∣∣∣∣ h l
k m

∣∣∣∣ = −1

This relationship, at the basis of (1.6), and other relationships were proved
by Cauchy [4], using mathematical induction. Because of this relationship
any Diophantine equation6 of the form

ax + by = 1, (a, b) = 1, (2.12)

is solvable.

Proof Assume 0 < a < b. Then, since (a, b) = 1, a
b

is a reduced fraction
that occurs in some Farey sequence (e.g. of order b). Let h

k
< a

b
be an adjacent

pair, such that ak − bh = 1. Therefore, x = k, y = −h solves the equation.
As a corollary the equation

ax + by = c (2.13)

6An equation satisfied by integers.
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written in the form a(x0c) + b(y0c) = c, has the solution x = x0c, y = y0c.
This result leads immediately to Euclid’s lemma:
If a and b are coprime and a|bc then a|c.

Let d = (a, b) be the GCD of a and b. Then (a/d, b/d) = 1. If not,
(a/d, b/d) = δ and hence d.δ divides both a and b. Because of the maximality
of d it follows that δ = 1. Using (2.12) integers x and y can be found such
that

a

d
x +

b

d
y = 1

and thus ax + by = d. The GCD of a and b has been shown to be a linear
combination of a and b with integer coefficients. In terms of the LCM [a, b]
similar arguments can be used to show that ab = (a, b)[a, b].

2.6 Modular Arithmetic

Modular, or Gaussian arithmetic is not unlike regular, or Euclidean arith-
metic. Whereas Euclidean arithmetic operates on the infinite set of all inte-
gers, Gaussian (modulo) arithmetic works with sets of residue classes. In
regular arithmetic ab = 0 is only possible with either a or b equal to zero,
but not so in modular arithmetic that involves congruence relations.

2.6.1 Congruences

Let a, b,m be integers, m positive. It is said that a is congruent to b modulo
m, a ≡ b (mod m) if m|(a−b). The congruence relation (≡) is an equivalence
relation on the set of integers, and therefore is,

Reflexive : a ≡ a (mod m)

Symmetric : if a ≡ b (mod m) then b ≡ a (mod m)

Transitive : if a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m)

The condition a ≡ a (mod m) simply means m|(a − a).
If a ≡ b (mod m), then m|(a − b), so that m|(b − a) and b ≡ a (mod m).
Finally, if a ≡ a (mod m) and b ≡ c (mod m) then m|(a − b) and m|(b − c)
so m|(a − b) + (b − c), m|(a − c) and a ≡ c (mod m). Thus congruence is
an equivalence relation, and the set of integers is partitioned into disjoint
classes. Any two integers in the same class are congruent to one another, and
no two integers in distinct classes are congruent to one another.
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According to (2.11) every integer leaves a remainder r, 0 ≤ r < m, on
division by m. It can be shown that a and b are congruent modulo m iff they
leave the same remainder on division by m. First suppose

a = qm + r, b = q′m + r, 0 ≤ r < m

Then
a − b = (q − q′)m, ±m|(a − b)

so that m|(a − b). Conversely suppose a ≡ b (mod m). Let

a = qm + r , b = q′m + r , 0 ≤ r < m , 0 ≤ r′ < m

Then (a − b) = (q − q′)m + (r − r′). Since m|(a − b), m|(r − r′). But −m <
r − r′ < m, so m � (r − r′), unless r = r′.

Congruence Classes

To estimate the number of congruence classes it is noted that the integers
0, 1, . . . ,m − 1 lie in different classes. Given any integer some suitable mul-
tiple of m may be added or subtracted to arrive at one of the integers
0, 1, . . . ,m − 1. Thus there are just m congruence classes modulo m, and
the set of integers 0, 1, . . . ,m−1 form a set of representations, one from each
class.

The congruence classes of integers modulo m are said to provide a par-
tition of the set of integers. The significance of this result is that, given two
integers a and b, their congruence classes [a]m and [b]m are either equal or
disjoint, summarized by the reciprocal implications (⇔),

a ≡ b (mod m) ⇔ [a]m = [b]m

a 	≡ b (mod m) ↔ [a]m ∩ [b]m = ∅

∅ represents an empty set.

Arithmetic Operations

Congruences behave like equalities with respect to addition and multiplica-
tion, and obey the following rules:

(a) If a ≡ b (mod m) then b ≡ a (mod m).

(b) If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

(c) If a ≡ b (mod m), then ka ≡ kb (mod m) for any integer k.
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(d) If ai ≡ bi (mod m) for i = 1, 2, . . . , n, then

a1 + a2 + · · · + an ≡ b1 + b2 + · · · + bn (mod m)

a1a2 . . . an ≡ b1b2 . . . bn (mod m)

To prove the additive rule for a ≡ b (mod m) and c ≡ d (mod m) it is noted
that if m|(a − b) and m|(c − d) then m|[(a − b) + (c − d)] or m|[(a − c)
− (b + d)]. Hence a + c ≡ b + d (mod m). The multiplication rule follows
from the observation that m|(a − b)c implies ac ≡ bc (mod m) and that
m|b(c−d) implies bc ≡ bd (mod m). Then ac ≡ bd (mod m) follows through
the transitivity of the congruence relation. The last part of (iv) is verified
for n = 2 from which the general case follows by repeated application. By
(iii) a1a2 ≡ b1a2 (mod m), b1a2 ≡ b1b2 (mod m) so that by (ii) a1a2 ≡ b1b2

(mod m).
Unlike addition, subtraction and multiplication, congruences cannot be

divided unrestrictedly. Compare

2 ≡ 12 (mod 10) 1 	≡ 6 (mod 10)

although
2 ≡ 24 (mod 11) 1 ≡ 12 (mod 11)

In fact, if ab ≡ ac (mod m) and (a,m) = 1, then b ≡ c (mod m). For if
m|(ab−ac) then m|a(b−c) and it follows from Euclid’s lemma that m|(b−c).
Hence

(e) If ka ≡ kb (mod m), then a ≡ b (mod m
d
), where d = (k,m). In par-

ticular, a ≡ b (mod m) if k and m are coprime, d = 1.

A set of integers is a complete residue (or remainder system modulo m) iff
it consists of exactly m integers, no two of which are congruent modulo m.

Theorem If a1, a2, . . . , am form a complete residue system modulo m, and
if (a,m) = 1, then aa1, aa2, . . . , aam also form such a system.
For aai ≡ aaj (mod m), then ai ≡ aj (mod m) by property (e).

Fermat’s Theorem If p is a prime and (a, p) = 1, then ap−1 ≡ 1 (mod p).
The numbers 0, 1, 2, . . . , p − 1 form a complete residue system modulo p.
Hence 0, a, 2a, . . . , (p − 1)a do also, by the preceding theorem. Now each
number on the list is congruent to exactly one on the other list. Omitting 0
from each list, since zeros correspond, it follows from (d) that

a.2a . . . (p − 1)a ≡ 1.2 . . . (p − 1) (mod p)
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or
(p − 1)!ap−1 ≡ (p − 1)! (mod p)

Property (e) allows (p − 1)! to be divided out. Hence

ap−1 ≡ 1 (mod p) (2.14)

Corollary If p is prime, then ap ≡ a (mod p), for any integer a.

Euler’s Function

Whereas the number of congruence classes modulo m is equal to m, the
number of classes with elements prime to m is designated ϕ(m) and is called
Euler’s function. For a prime number p it is clear that ϕ(p) = p − 1. For
m = pα, ϕ(pα) = pα − pα−1.
The Euler function ϕ(n) has the property

n =
∑
d|n

ϕ(d) (2.15)

where the summation extends over all divisors d of n.

Proof Write down all fractions l/n of fixed denominator n, 0 ≤ l/n ≤ 1,
whether reduced or not:

1

n
,

2

n
,

3

n
, . . . ,

n − 1

n
,

n

n

They are n in number. Some, as 1/n and (n − 1)/n are reduced in form. In
the others common divisors of numerator and denominator may be cancelled.
The resulting reduced denominators are then divisors d of n; for each divisor
d of n all reduced proper fractions of denominator d will appear in the list.
They are ϕ in number. Counting the fractions according to their reduced
denominators then proves the theorem.

2.6.2 Higher Congruences

Solvability of the Diophantine equation ax + by = c, (a, b) = 1, implies solv-
ability of the linear congruence ax ≡ c (mod m), with (a,m) = 1, suggesting
that congruences may be considered in much the same way as algebraic equa-
tions. Consider

f(x) = a0x
n + an−1

1 + · · · + an ≡ 0 (mod p), (a0, p) = 1 (2.16)
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where p is prime. Since xp ≡ x (mod p) for all x it is possible to eliminate
all powers xp, xp−1, xp−2, . . . , by replacing them by lower powers of x. It
may therefore be assumed that n < p in all of these congruences. Such a
congruence need not have a solution. For example, x2 ≡ 3 (mod 7) has no
solution since 02 ≡ 0, 12 ≡ 1, 22 ≡ 4, 32 ≡ 2, 42 ≡ 2, 52 ≡ 4, and 62 ≡ 1
(mod 7). Just as in the theory of algebraic equations, a congruence of degree
n and prime number modulus p can have at most n solutions. This statement
holds if (2.16) has no solutions. Suppose it has a solution x1. Then

a0x
n
1 + a1x

n−1
1 + · · · + an ≡ 0 (mod p)

Subtract this congruence from (2.16) to give

a0(x
n − xn

1) + a1(x
n−1 − xn−1

1 ) + · · · + an−1(x − x1) ≡ 0 (mod p) (2.17)

which any x satisfying (2.16) must also satisfy. The congruence (2.17), how-
ever, may be written as

(x − x1) · (a0x
n−1 + b1x

n−2 + · · · + bn−1) ≡ 0 (mod p) (2.18)

where the b’s are expressions obtained from x1 and the a’s. Since p divides
the product in (2.18), it must divide one of the factors. Any x that satisfies
(2.16) must therefore satisfy either x − x1 ≡ 0 (mod p) or

a0x
n−1 + b1x

n−2 + · · · + bn−1 ≡ 0 (mod p)

The first alternative yields again x1. The second may or may not yield a
solution. That second congruence is of degree (n− 1), the highest coefficient
is again a0, and since the theory holds for the first-degree congruence a0x +
f1 ≡ 0 (mod p), induction proves the

Theorem The number of solutions of the congruence (2.16) is at most n
for any degree n.

Primitive Congruence Roots

A congruence of degree n modulo a prime number p cannot have more than
n solutions modulo p. This maximal number can be attained as shown by
the example

xp−1 − 1 ≡ 0 (mod p)

with solutions x ≡ 1, 2, . . . , (p − 1).
It follows that if d|p − 1 then xd − 1 ≡ 0 (mod p) has d solutions. From
p − 1 = md follows the identity

xp−1 − 1 =
(
xd − 1

) (
x(m−1)d + x(m−2)d + · · · + 1

)
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Now, the congruence xd − 1 ≡ 0 (mod p) has at most d solutions, and the
congruence x(m−1)d + x(m−2))d + · · · + 1 ≡ 0 (mod p) has at most (m − 1)d
solutions. If xd − 1 ≡ 0 (mod p) has less than d solutions, then xp−1 − 1 ≡ 0
(mod p) would have less than d + (m − 1)d = p − 1 solutions, which is not
the case. Thus xd − 1 ≡ 0 (mod p) does indeed have d solutions.

If δ|d, then xδ − 1 divides xd − 1 algebraically. Thus any solution of
xδ − 1 ≡ 0 (mod p) is also a solution of xd − 1 ≡ 0 (mod p). The solution
x0 of xp−1 − 1 ≡ 0 (mod p) is said to belong to the exponent d if it is a
solution of xd − 1 ≡ 0 (mod p), but is not a solution of xδ − 1 ≡ 0 (mod p)
for any δ < d. It is also said that x0 is a primitive solution of xd − 1 ≡ 0
(mod p). If a solution belongs to the exponent d, then necessarily d|(p − 1).
For e = (d, p − 1), then e = md + r(p − 1) for suitable integers m and r,
since the GCD of two numbers is a linear combination of these. Therefore
xe ≡ (xd)m(xp−1)r ≡ 1 · 1 ≡ 1 (mod p). Since e ≤ d, it follows from the
minimality of d that e = d and hence d|(p− 1). The solutions of xp−1 − 1 ≡ 0
(mod p) may be separated into classes, each class containing those solutions
that belong to the exponent d. Only the divisors d of (p − 1) need to be
considered.

Let ψ(d) denote the solutions that belong to the exponent d, that is the
number of primitive solutions of xd − 1 ≡ 0 (mod p). It can be shown that
ψ(d) = ϕ(d), Euler’s function.

Proof The statement is true for d = 1, 2. For ϕ(1) = 1, and the congruence
x − 1 ≡ 0 (mod p) has the unique solution x ≡ 1. Also ϕ(2) = 1, and the
congruence x2 − 1 = (x − 1)(x + 2) ≡ 0 (mod p) has the unique primitive
solution x ≡ p − 1, to be proved by induction. Suppose ψ(δ) = ϕ(δ) for all
δ < d. Since every solution of xd − 1 ≡ 0 (mod p) is a primitive solution of
xδ − 1 (mod p) if δ|d, then

d =
∑
δ|d

ψ(δ)

By induction, ψ(δ) = ϕ(δ) for all divisors δ of d, except perhaps d itself,
one has

d =
∑
δ|d

ϕ(δ) + ψ(d) − ϕ(d)

By definition of Euler’s function (2.15) however, d =
∑

δ|d ϕ(δ). Thus ψ(d)−
ϕ(d) = 0, as required.

As a corollary the primitive solutions of xd − 1 ≡ 0 (mod p) are seen to
exist for all d|(p − 1). In particular, there exists a primitive solution to the
congruence xp−1 − 1 ≡ 0 (mod p) and the theorem insures that there exist
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ϕ(p − 1) primitive solutions. A primitive solution of xp−1 ≡ 0 (mod p) is
called a primitive root modulo p.

The regular 17-gon

The theory of primitive congruence roots applies to the problem of cyclo-
tomy: division of the circumference of a circle in equal parts. This was first
achieved by Gauss and the most spectacular case, the regular heptadecagon
is discussed in detail by Rademacher [4]; a condensed version of which is
presented here. The geometrical procedure to construct the 17-gon by means
of ruler and compass only, based on the analysis of Gauss, is described by
Coxeter [22]. The regular 17-gon is considered as an object in the complex
plane, as shown in Figure 2.17. The vertices are complex numbers inscribed
in the unit circle about the origin and with one vertex at the point of the
complex number 1. Any other vertex is at z = x + iy. Since |z| = 1 each
zj = cos θj + i sin θj, j = 1, 2, . . . , 16. The vertices divide the circle into equal
parts, so that θj = jθ1, where θ1 = (2π/17). The 17th vertex is again at 1
and hence, by (2.5)

1 = cos 17θ1 + i sin 17θ1 = (cos θ1 + i sin θ1)
17 = z17

1

R

I

1

z

z

1

16

21.2

z = x  + iy 
θ j

j=1,2,...,16

o

= cos    +  sin θ ji

Figure 2.17: Regular 17-gon in the complex plane.
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Table 2.5: Table of 10n (mod 17) residues.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10n(17) 1 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12

Thus z1 is a root of the equation z17 − 1 = 0. Since

z17 − 1 = (z − 1)(z16 + z15 + · · · + z + 1) and since z1 	= 1,

it follows that z1 is a root of

z16 + z15 + · · · + z + 1 = 0 (2.19)

The problem reduces to finding a solution to this equation.
Since 17 is prime, there exist primitive roots modulo 17. For example, 10

is a primitive root (mod 17) since 1016 ≡ 1 (mod 17), but no lower power
of 10 is congruent to 1 modulo 17. Table 2.5 lists the values of 10n (mod 17)
for specific powers of n. Each residue which is prime to 17 occurs once on the
bottom row, which constitutes a cyclic group. When the exponents of (2.19)
are ordered according to the order of the residue table, it becomes

z + z10 + x15 + z14 + · · · + z8 + z12 = 1 (2.20)

where the exponents are successive powers of (mod 17).
The method introduced by Gauss breaks this equation up into two sums,

called periods, by grouping together even and odd entries, respectively:

η1 = z + z15 + z4 + z9 + x16 + z2 + z13

η2 = z10 + z14 + z6 + z5 + z7 + z3 + z11 + z12

η1 + η2 = −1

The desired solution consists of finding the 64 terms of the product η1η2. As a
first step each element of η1 is multiplied by the element of η2 directly below
it. The successive products are zz10 = z11, z15z14 = z29, etc. After reducing
the exponents modulo 17, the sum of the products

z11 + z12 + z10 + z14 + z6 + z5 + z7 + z3

corresponds again to η2. The reason for this is that successive exponents of
z in (2.19) differ by a factor of 10 (mod 17). Therefore successive exponents
in η1 and η2 differ by a factor of 100 modulo 17. A set of products obtained
by cyclic selection of factors from both η1 and η2 will always yield a sum
modulo 17 corresponding to either η1 or η2. Eventually it is found that

η1η2 = 4η1 + 4η2 = −4
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From these relations a quadratic equation with the roots η1 and η2 can be
set up as

(y − η1)(y − η2) = 0

i.e.
y2 + y − 4 = 0

It has roots7

η1 , η2 =
1

2

(
−1 ±√

1 + 16
)

=
1

2

(
−1 ±

√
17

)
This procedure is continued by forming new periods such that

η′
1 + η′

2 = η1 η′
3 + η′

4 = η2

and η′′
1 + η′′

2 = η′
1, etc., ending up with the equation satisfied by z and z16,

z2 + η′′
1z + 1 = 0

η′′
1 =

1

8

{
−1 +

√
17 +

√
2(17 −

√
17)

+ 2

√
17 + 3

√
17 −

√
2(17 −

√
17) − 2

√
2(17 −

√
17)

}

which is a real quantity. Since η′′
1 = z + z16 = z + z1 = 2cos θ, where θ is the

central angle of the 17-gon.
The success of the Gauss construction depends on the fact that 16= 17− 1

is a power of 2. This fact allows the periods to be halved over and over, and so
to reduce the solution of the cyclotomic equation of degree 16 to the solution
of a sequence of quadratic equations. If p is a prime of the form 2k + 1, the
method may be used to construct the regular p-gon with ruler and compass.
For the number to be prime k must be a power of 2, say k = 2n and suitable
primes would be of the form 22n

+ 1. Examples of such (Fermat) primes are

P0 = 3 = 21 + 1

P1 = 5 = 22 + 1

7In general, for a p-gon η1 and η2 are quadratic irrationalities and ±p appears under
the radical. It will be shown later that this is a Gaussian sum.



2.7. PERIODIC ARITHMETIC FUNCTIONS 61

P2 = 17 = 24 + 1

P3 = 257 = 28 + 1

P4 = 65537 = 216 + 1

P5 = 232 + 1 is not a prime, being divisible by 641.

2.6.3 Partitions and Equivalence Relations

The relation of congruence modulo m partitions the set of integers Z into m
disjoint congruence classes. This is an example of a more general concept,
known as an equivalence relation. An equivalence relation on a set corresponds
to a partition of the set [16].

Partitions

The power of a set X, denoted by P(X), is the set of all subsets of X. A
partition of the set X is a subset Π of P(X), i.e. a set of subsets of X, such
that:

(a) the subsets in Π are non-empty, i.e. A ∈ Π ⇒ A 	= ∅,

(b) the subsets in Π are disjoint, i.e. ∀A1A2 ∈ Π(A1 	= A2) ⇒ A1∩A2 = ∅,

(c) the subsets in Π cover X : ∀x ∈ X,∃A ∈ Π, x ∈ A. (For all x in X, for
some subset A in Π, x is an element of A.)

The set of congruence classes modulo m

Z = {[a]m|a ∈ Z} = {[a]m|a ∈ Rm

is a partition of Z into m subsets.
Two elements of a set that are in the same subset of the partition are

said to be related, written as a ∼ b, that constitutes an equivalence relation.

2.7 Periodic Arithmetic Functions

Gauss’s construction shows that all cyclotomic equations

xp−1 + xp−2 + · · · + x + 1 = 0 , p prime

can be solved by rational operations and successive extraction of roots. A
solution of the algebraic equation

xn − 1 = 0 (2.21)



62 CHAPTER 2. NUMBER THEORY PRIMER

(compare Eq. 2.6) is called the nth root of unity or a root of unity of order n.
The number 1 is a root of unity of any order, or a trivial root. Some roots of
(2.21) are not roots of xk − 1 = 0 with k < n. Such roots are called primitive
roots of unity. Any root ζ of (2.21) is a primitive root of some equation
xk − 1 = 0, 0 < k ≤ n. In particular, any root of (2.21) is a primitive root of
unity of order d, where d|n.

Let ζj, j = 1, 2, . . . , v be all the primitive roots of (2.21), to define the
cyclotomic polynomial Fn(x) of order n, as

Fn(x) =
∏

j

(x − ζj)

Fn(x) will be a monic polynomial.8 Evidently

xn − 1 =
∏
d|n

Fd(x) (2.22)

For instance, F1(x) = x − 1, x2 − 1 = F1(x) · F2(x), F2(x) = x + 1. It may
be proved by induction that the cyclotomic polynomial Fn(x) of order n is
a monic polynomial of degree ϕ(n) with integer coefficients. The theorem
which holds for n = 1, 2 is next assumed valid for all Fk(n), k < n. Now

xn − 1 = Fn(x) ·
∏

d(<n)|n
Fd(x) = Fn(x) · Gn(x), say

But, because d < n, Gn(x) is a product of monic polynomials with integer
coefficients, hence it is also monic with integer coefficients. Then

Fn(x) =
xn − 1

Gn(x)
(2.23)

Since the divisor has highest coefficient 1 long division procuces only integer
coefficients.

Let v be the degree of Fn(x) and assume the degree ϕ(d) for Fd(x), d < n.
The total number of classes modulo n, i.e.

n = v +
∑

d(<n)|n
ϕ(d)

8Polynomial with leading coefficient, an = 1.
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Since every solution of xn−1 ≡ 0 (mod p) is a primitive solution of xd−1 ≡ 0
(mod p)

n =
∑
d|n

ϕ(d)

By induction every solution of d is also a solution of n, except perhaps n
itself,

n = v − ϕ(n) +
∑
d|n

ϕ(d)

Since, by definition n =
∑

d|n ϕ(d), the degree of Fn(x) follows as v = ϕ(n).
By long division it follows that

F3(x) =
x3 − 1

F1(x)
= x2 + x + 1

F4(x) =
x4 − 1

F1(x)F2(x)
= x2 + 1

F5(x) =
x5 − 1

F1(x)
= x4 + x3 + x2 + x + 1

F6(x) =
x6 − 1

F1(x)F2(x)F3(x)
=

x6 − 1

x4 + x3 − x − 1
= x2 − x + 1

etc.

2.7.1 The Lagrange Resolvent

For any prime p, by (2.23)

xp − 1 = F1(x) · Fp(x) = (x − 1)Fp(x)

i.e.
Fp(x) = xp−1 + xp−2 + · · · + x + 1

Let ζ be a primitive root of unity of order p. Then Fp(ζ) = 0 or ζ + ζ2 +
· · · + ζr = −1, where r = p − 1. Now take the primitive congruence root g
modulo p. Then gr ≡ 1 (mod p) and no lower power of g can be congruent
to 1 modulo p. The r = p− 1 numbers g0, g1, . . . , gr−1 are congruent modulo
p to some permutation of the numbers 1, 2, . . . , r, and since the exponent of
ζ counts only modulo p, the previous equation may be written

ζg0

+ ζg1

+ · · · + ζgr−1

= −1

This equation is written in the form of a Lagrange resolvent as

(1, ζ) = −1
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A Lagrange resolvent is defined in terms of an rth root of unity ρ, not nec-
essarily primitive, as the sum

(ρ, ζ) = ζ + ρζg + ρ2ζg2

+ · · · + ρr−1ζgr−1

Take a prime number p ≡ 1 (mod 4) so that r = p − 1 ≡ 0 (mod 4). The
numbers ±1, ±i are the 4th roots of unity and therefore also rth roots of
unity. Four Lagrange resolvents are defined, in this notation, for the primitive
root ζ of unity of order p:

(1, ζ) = ζ + ζg + ζg2

+ · · · + ζgr−1

= −1

(−1, ζ) = ζ − ζg + ζg2 − · · · − ζgr−1

(1, ζ) = ζ + iζg − ζg2 − · · · − iζgr−1

(−i, ζ) = ζ − iζg − ζg2

+ · · · + iζgr−1

2.7.2 Gaussian Sums

The sum of primitive roots of unity used in the theory of the regular 17-gon
corresponds to (1, ζ) = −1, broken down into the two sums

η1 = ζg0

+ ζg2

+ · · · + ζgr−2

η2 = ζg1

+ ζg3

+ · · · + ζgr−1

where r = p− 1, an even number. In terms of Lagrange resolvents, therefore

η1 + η2 = (1, ζ)

η1 − η2 = (−1, ζ)

The sum η1 only shows exponents which are squares: 1 = g0, g2, . . . , gr−2. The
summands in η2 show exponents which are not squares and not congruent to
squares modulo p. Indeed, η1 has all the summands which are congruent to
a square modulo p, (except 0). For a square t2, p � t, there exists u such that

gu ≡ t2 (mod p)

An exponent v can be found so that

t ≡ gv (mod p)

gu ≡ g2v (mod p)

Since g is a primitive congruence root modulo p, this congruence implies
u ≡ 2v (mod r) which shows that u is even since r is even. The numbers
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that are congruent to a square modulo p are called quadratic residues modulo
p, i.e. the numbers 1, g2, g4, . . . , gr−2 (mod p); the others, i.e. g, g3, . . . , gr−1

are called quadratic nonresidues modulo p. The number of quadratic residues
is equal to the number of quadratic nonresidues, and that number is r/2 =
(p − 1)/2.

In (−1, ζ) the powers with quadratic residues as exponents have a plus
sign, those with quadratic nonresidues a minus sign. This difference is reflec-
ted by the Legendre symbol, defined as(

m

p

)
=

{
+1 if m is a quadratic residue modulo p
−1 if m is a quadratic nonresidue modulo p

With p � m, the special Lagrange resolvent

(−1, ζ) =

p−1∑
m=1

(
m

p

)
ζm

is called a Gaussian sum, G(ζ). If also
(

m
p

)
= 0 for p|m, then, more generally

G(ζ) = (−1, ζ) =

p−1∑
m=0

(
m

p

)
ζm

This definition is further generalized by writing for any integer t

G(ζ t) =

p−1∑
m=0

(
m

p

)
ζ tm (2.24)

For t ≡ 0 (mod p)

G(ζ0) =

p−1∑
m=0

(
m

p

)
= 0

since there are as many quadratic residues as nonresidues. For t 	≡ 0 (mod p)
choose t′ such that tt′ ≡ 1 (mod p). Put tm ≡ m′ (mod p) so that m ≡ m′t′.

Since m′ runs with m through a full residue system modulo p, from (2.24)

G(ζ t) ≡
∑

m′ (mod p)

(
m′t′

p

)
ζm′

=

(
t′

p

) p−1∑
m′=0

(
m′

p

)
ζm′

or

G(ζ t) =

(
t

p

)
G(ζ)

In this form G(ζ t) is seen to be a periodic function in t of period p.
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2.7.3 Finite Fourier Series

Periodic arithmetic functions such as G(ζ t) can be expanded in finite Fourier
series, in complete analogy to Fourier series in analysis. The expansion is
based on the

Theorem Let F (t) be a function defined for all integers t with the period
m, and let η be a primitive mth root of unity. Then

F (t) =
m−1∑
u=0

a(u)ηut (2.25)

with

a(u) =
1

m

m−1∑
t=0

F (t)η−tu (2.26)

Proof Formula (2.25) for t = 0, 1, . . . ,m − 1 represents a system of m
linear equations for m unknowns a(u). To be solvable a(u) must fulfill certain
conditions. Multiply both sides of (2.25) by η−vt and sum over t:

m−1∑
t=0

F (t)η−vt =
m−1∑
t=0

(
m−1∑
u=0

a(u)ηut

)
η−vt

=

m−1∑
u=0

a(u)

m−1∑
t=0

η(u−v)t

= m · a(v) , i.e. u = v

It follows that a(u), if it exists as a solution, is unique and can only have the
form (2.26). That this a(u) satisfies (2.25) can be seen by direct substitution

m−1∑
u=0

a(u)ηut =
1

m

m−1∑
u=0

(
m−1∑
s=0

F (s)η−us

)
ηut

=
1

m

m−1∑
s=0

F (s)

m−1∑
u=0

ηu(t−s)

= F (t)

which proofs the theorem for s = t.
The a(u) may be called Fourier coefficients of the finite Fourier series

(2.25). Because of the periodicity of F (t) and a(u) with the period m, the
series in (2.25) and (2.26) may be taken over any complete residue system
modulo m.
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2.7.4 Periodic Functions

A function f : R → C is called periodic of period L > 0 if for every x ∈ R,
f(x + L) = f(x) [30]. If f is periodic of period L, then the function F (x) =
f(Lx) is periodic of period 1. Moreover since f(x) = F (x/L), it suffices to
consider periodic functions of period 1 only, simply called periodic.

The functions f(x) = sin 2πx, f(x) = cos 2πx, and f(x) = exp(2πix) are
periodic. Further, every given function on the half-open interval [0, 1) can
be extended to a periodic function in a unique way. By definition the inner
product 〈., .〉 on a complex vector space V , is the map from V ×V to C that
satisfies the following conditions:

(a) For every w ∈ V the map v �→ 〈v,w〉 is C linear

(b) 〈v,w〉 = 〈w, v〉
(c) 〈., .〉 is positive definite, i.e. 〈v, v〉 ≥ 0; and 〈v, v〉 = 0 implies v = 0

If f and g are periodic, so is af + bg for a, b ∈ C, so that the set of peri-
odic functions forms a complex vector space, denoted by C(R/Z), the linear
subspace of all continuous periodic functions f : R → C.

For k ∈ Z the function ek = exp(2πikx) lies in C(R/Z). If k, l ∈ Z the
inner product

〈ek, el〉 =

{
1 if k = l
0 if k 	= l

It follows that, for varying k, the ek give linearly independent vectors in the
vector space C(R/Z). Finally, if

f(x) =

n∑
k=−n

ckek(x)

for some coefficients ck ∈ C, then ck = 〈f, ek〉 for each k.

Proof If k = l, then

〈ek, el〉 =

∫ 1

0

e2πikxe−2πikxdx =

∫ 1

0

1dx = 1

Now let k 	= l and set m = k − l 	= 0; then

〈ek, el〉 =

∫ 1

0

e2πimxdx

=
1

2πim
e2πimx

∣∣∣∣
1

0

=
1

2πim

(
1 − 1

)
= 0
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From this result the linear independence derives as follows. Suppose that

λ−ne−n + λ−n+1e−n+1 + · · · + λnen = 0

for some n ∈ N and coefficients λk ∈ C. For the theorem to hold all coeffi-
cients λk must vanish. To show this, let k be an integer between −n and n.
Then

0 = 〈0, ek〉
= 〈λ−ne−n + · · · + λnen, ek〉
= λ−n〈e−n, ek〉 + · · · + λn〈en, ek〉
= λk

Thus the (ek) are linearly independent, as claimed. In the same way it follows
that ck = 〈f, ek〉 to complete the proof.

If the mapping f : R → C is periodic and integrable on the interval [0,1],
the numbers

ck(f) = 〈f, ek〉 =

∫ 1

0

f(x)e−2πikxdx, k ∈ Z

are called the Fourier coefficients of f . The series
∑∞

k=−∞ ck(f)e−2πikx is called
the Fourier series of f .

The space C(R/Z) introduced as the space of continuous periodic func-
tions on R has another interpretation [30]:
Assume the equivalence relation on R:

x ∼ y ⇔ x − y ∈ Z

For x ∈ R its equivalence class is given by the restriction

[x] = x + Z = {x + k|k ∈ Z}
Let R/Z be the set of all equivalence classes. This set can be identified by
the half-open interval [0,1). It can also be identified with the unit torus

T = {x ∈ C : |z| = 1}
since the map e : R → T that maps x to e(x) = exp(2πix) gives a bijection
between R/Z and T.

A sequence [xn] is said to converge to [x] ∈ R/Z if there are representatives
x′ ∈ R and x ∈ R for the classes [xn] and [x], such that the sequence (x′

n)
converges to x′ in R. In the interval [0,1) this means that either xn converges
to x in the interval [0,1) or that [x] = 0 and the sequence xn decomposes into
two subsequences, one of which converges to 0 and the other to 1.
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The best way to visualize R/Z is as the real line rolled up by either
identifying the integers or by using the map exp(2πix) or by gluing the
ends of the interval [0,1] together. It will be shown in the following that the
periodicity of atomic matter arises from precisely such a closure in atomic
number, neutron number or mass number.



Chapter 3

Periodic Table of the Elements

The periodic table of the chemical elements is the single most important con-
cept in chemistry. It has evolved as a classification scheme through a number
of well-defined stages. It has provided, at all stages, a detailed summary of
all available knowledge pertaining to the physical and chemical properties
of the elements and their compounds. More importantly, it reflects the cur-
rent state of theoretical chemistry at any time. The classification was based
at different times on the appearance of substances, chemical affinity, atomic
weight, atomic number and the electronic configuration of atoms. The paral-
lel development of a periodic table is traced in the following historical review,
based to a large extent on the work of Partington [31].

3.1 Historical Development

The earliest concepts with a chemical flavour arose from philosophical discus-
sions contrasting atomic and continuity models of matter. These theories were
all swept aside by Aristotle (3rd century BC) who smothered further specula-
tion with his pronouncement of primary matter on which specific forms could
be impressed by the fundamental properties of being hot, cold, moist or dry,
to various degrees. By combining these properties in pairs, as in Figure 3.1,
the four elements, fire, air, water and earth are obtained. A fifth element,
aether was added at a later stage. Early Egyptian arts of working with met-
als, glass and dyes inspired manipulations by magicians and alchemists in
classical times. Despite a clear chemical content, these operations can hardly
be recognized as chemistry in the same sense as today’s science.

The origin of the modern science is usually traced back to the publica-
tion of Robert Boyle’s Sceptical Chymist in 1661. The single most important
feature of this work is the identification of primitive elements, of which

71
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mixed bodies are made up, and into which the mixed ones are ultimately
resolved. Apart from signalling the beginning of chemistry, this book is cer-
tainly the first sensible classification, not only of chemical substances, but
also of the chemical elements. Sixty years later (1718) Geoffroy the Elder
published an Affinity Table, reproduced here in Figure 3.2. In each column
any substance would displace any of those standing below it, from their com-
pounds. In a series of acids, for example, sulphuric acid displaces hydrochloric
and nitric acids from their salts, because it has a higher affinity for the
base. Another 50 years later (1785) an English translation of Bergman’s more
detailed Dissertation on Elective Attractions was published, still without
strict separation of elements and compounds.

FIRE

WATER

Moist

Hot

Cold

EARTH

Dry

AIR

Figure 3.1: Definition of the four elements by Aristotle.

Figure 3.2: Geoffroy’s Affinity Table. Deciphering the table is left as an exer-
cise to the reader.
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At about the same time (1789) in Traite élémentaire de chimie, Lavoisier
published the first list of chemical elements based on the definition of Boyle.
As he himself anticipated, a number of earths (lime, magnesia and alumina)
and alkalis (potash and soda) included as elements, were later shown to be
compounds. These are the oxides that cannot be decomposed by heating and
chemical reduction. It is instructive, but not surprising, to note that heat was
included in the list as an element. At the period in question chemical reaction
was considered synonymous with the effects of heat or fire on ponderable
matter. Central to chemistry was the theory of combustion, which has an
interesting history of its own.

3.1.1 The Theory of Combustion

The alchemists used heat routinely to bring about chemical change. It was
known to them that metals, other than gold and silver, when heated in open
crucibles underwent chemical transformation into a calx. Since the calx is
heavier than the metal before heating, it was natural to assume that the
absorbed fire contributed the observed difference in weight. In alchemist
theory the principle of combustibility was identified with the element sul-
phur, supposed to be a constituent, together with salt and mercury, of all
matter. The element salt represented the fixed part that remained after cal-
cination whilst mercury was the principle of metallicity, contained in all
metals.1

Both this three-element theory of Paracelsus and Aristotle’s four-element
doctrine were overturned by Boyle on the basis of simple repeatable experi-
ments to demonstrate that none of these seven elements could be extracted
from metals, other than mercury itself, by any process. Boyle performed
experiments to show that the calcination of tin, like the combustion of sulphur
consumed an amount of gas from the atmosphere. To confuse the issue he
also found that gunpowder caught fire when heated in the absence of air and
continued to burn under water. Boyle’s experiments were repeated by his
erstwhile assistant, Robert Hooke who formulated the first rational theory of
combustion (1665). In summary:

A universal agent that supports combustion occurs in air, or fixed
in saltpetre (nitre).

1The sought after transmutation of base metals into gold was taught to occur on altering
the proportions of mercury and sulphur by adding the philosopher’s stone.
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He called the atmospheric component, nitrous air. The combustion behaviour
of gunpowder was ascribed to its nitre content. John Mayow (1674) elabo-
rated on Hooke’s theory with supporting experiments and concluded that air
consisted of nitrous air, which supports combustion and respiration, together
with a second inert gas. Mayow never succeeded in isolating nitrous air
although he merely had to heat nitre to melting in order to obtain that
product:

2KNO3 → 2KNO2 + O2

This simple procedure could have changed the course of chemistry. In the
event, Mayow’s obviously valid theory lost ground, to be replaced by the
totally speculative phlogiston theory of Becher and Stahl.

The Phlogiston Theory

Rather than reject the theories of Aristotle and Paracelsus, Becher (1669), in
an effort to preserve their valid content, proposed some modification to bring
them into line with new ideas of the day. It was argued that material bodies
consisted of air, water and three earths; one inflammable (terra pinguis), the
second mercurial and the third fusible or vitreous. These were the sulphur,
mercury and salt of the alchemists, in more modern guise.

A refined version of the theory was published (1723) and popularized
by another German professor, Georg Stahl. He used the name phlogiston for
terra pinguis. When bodies burn phlogiston escapes. When the original bodies
are recovered by reduction, phlogiston is replaced. Oil, wax and charcoal are
rich in phlogiston, and may restore it to a burnt material. When zinc burns
in air, phlogiston (φ) escapes2

zinc → calx + φ

2In modern terminolgy the oxidation/reduction, Zn�ZnO, is described in terms of
electronic theory by the equations

Zn → Zn++ + 2e

Zn++ + 2e → Zn

not dissimilar from the phlogiston formulation.

P � P5+ + 5e
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When the white calx of zinc is heated with charcoal zinc distils

calx of zinc + φ → zinc

Phosphorous burns to produce an acid and much heat

phosphorous → acid + φ

Heated with charcoal, phlogiston is absorbed and phosphorous is reproduced
(see footnote).

Stahl’s theory united many previously isolated facts and was widely ac-
cepted during the eighteenth century. The increase in weight during the cal-
cination of metals was largely ignored and this fact was destined later to
overturn the phlogiston theory. Instead of accepting the role of air in com-
bustion processes, phlogistonists came up with the improbable assumption
that phlogiston possessed negative weight.

The phlogiston theory is often held up to ridicule, but this is unfair both
to the theory and the scientists who upheld it. When the opposing argu-
ments finally came to a head both parties were too stubborn to consider
compromise and one theory had to go. As suggested here in footnote mate-
rial the phlogiston theory was re-invented a hundred years later as the mod-
ern electronic theory of oxidation and reduction. Maybe Stahl’s thinking
was too far ahead of his time, while his experimental acumen lagged too far
behind.

A new theory of combustion was formulated after the discovery of oxygen
and the pioneering work of Lavoisier, whose theory of combustion consisted
of four half-truths:

1. Substances burn only in pure air (oxygen).

2. Non-metals such as sulphur, phosphorous and carbon, produce acids
on combustion.

3. Metals produce calces (basic oxides) on absorption of oxygen.

4. Combustion is not due to the escape of phlogiston, but to chemical
combination with oxygen.

One experimental observation with a ready explanation in phlogiston theory,
could not be explained by Lavoisier: A metal like zinc dissolves in acid giving
off inflammable air. A salt is left in solution, which on strong heating leaves
the calx of the metal. The same salt is formed when the calx dissolves in
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acid, but no inflammable air is evolved. Lavoisier’s theory failed to account
for the inflammable air, which in the old theory could be identified with φ:

metal(calx + φ) + acid → salt + φ

calx + acid → salt

When it became clear (1781) that water consisted of oxygen and hydrogen
(inflammable air), this last obstacle to Lavoisier’s theory disappeared and
from about 1785 the phlogiston theory was finally abandoned.

Although Lavoisier’s theory of combustion, in some respects, was less
comprehensive than phlogiston theory, it brought the importance of mass
balance during chemical change to the fore. This new awareness of the con-
servation of matter dominated chemical research for the entire nineteenth
century and, on the basis of Dalton’s atomic theory, provided the experi-
mental evidence that led to the formulation of the periodic law.

3.1.2 Atomic Theory

The law of conservation of mass is almost self-evident. Aristotle quoted the
5th century BC Greek philosopher Empedokles as saying:

Nothing either comes into being or is destroyed, but things are
merely transformed depending on the ratio of basic substances to
one another.

Two thousand years later Lavoisier declared:

Nothing can be created, and in every process there is just as much
substance present before and after the process has taken place.

The new paradigm set in motion by Lavoisier’s statement was soon to produce
conspicuous results, embodied in the fundamental laws of chemical combina-
tion.

Laws of Chemical Combination

Within 10 years of Lavoisier’s execution three basic laws had been established
experimentally:

Law of Constant Proportions This law was stated by Proust in 1797:

Elements combine in definite proportions by weight, so that the
composition of a pure chemical compound is independent of the
way in which it is prepared.
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Law of Multiple Proportions This law was formulated by John Dalton
in 1803, based on some theoretical speculation and later proven experimen-
tally by Berzelius.

When two elements combine to form more than one compound,
the weights of one element which unite with identical weights of
the other are in the ratio of small whole numbers.

Law of Equivalent Proportions Aspects of this law were already appre-
ciated by Cavendish in 1766. The first clear statement of the law is probably
due to Berthollet (1802):

The weights of two (or more) substances which separately react
chemically with identical weights of a third are also the weights
which react with each other, or are related to them in the ratio
of small whole numbers.

Dalton’s Theory

The Greek philosophers Leukippos and Demokritos taught that matter is
composed of small indivisible particles called atoms. Dalton (1803) developed
this theory into a form that could explain the laws of chemical combination.
Dalton’s theory can be summarized in the form of three statements:

1. The chemical elements are composed of minute particles of matter
called atoms, that remain undivided in all chemical changes. The atom
is the smallest mass of an element which can take part in a chemical
reaction.

2. Each kind of atom has a definite weight. Different elements have atoms
differing in weight.

3. Atoms combine in simple numerical ratios.

The assumption that atoms are indestructible leads directly to the law of
conservation of mass. Since compound atoms (molecules) in Dalton’s theory
are all alike and all atoms of the same element are identical, the law of
constant proportions follows immediately.

If two elements combine in more than one ratio, any pair of different
molecules are formed with compositions AmBn and AkBl, where m,n, k, l are
small integers. The number of atoms A that combine with one B is m/n and
k/l respectively, in the ratio ml/nk, i.e. a whole-number ratio. Hence the
weights of B combining with identical weights of A are in the ratio of whole
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numbers that satisfies the law of equivalent proportions. Molecules formed by
atomic pairs from the set A, B, C must have compositions AmCn, BkCl, ApBq,
where m,n, k, l, p, q are small whole numbers. Hence p, q are either the same
as m,k or whole multiples of them. This is the law of multiple proportions.

Dalton’s theory does not address the problem of atomic weights directly.
At best it allows the determination of relative atomic weights, but only if the
atomic ratios in the final product of atomic interaction is known. Although
it may be known that 8 parts of oxygen combine with 1 part of hydrogen, the
relative weights cannot be deduced unless the exact atomic composition of
water is known. Dalton actually considered this composition to be HO and
determined the relative atomic weights of H and O to be 1 and 8, respectively.

Dalton represented atoms by circles with suitable identification marks, as
shown by the following examples. The present chemical notation was finally

carbon

phosphorus

sulphuroxygen

nitrogen

C

L

water

lead

copper ammonia

olefiant gas

marsh gas

hydrogen carbonic oxide

carbonic acid

nitric acid

established by Berzelius (1813) and it soon replaced Dalton’s symbols.
Not only does an atomic symbol identifies an element but it also repre-

sents an atom with the characteristic atomic weight of that element. The
law of equivalent proportions and Dalton’s theory allow the experimental
determination of equivalents or equivalent weights of the elements.

Valency The valency of an element in a given compound is defined as the
ratio of the atomic weight to the equivalent of the element in that compound.
If E is the equivalent, A the atomic weight and n the valency of an element,
A = nE. Since, by definition, one atom of hydrogen combines with a weight
E of a given element, n atoms of hydrogen will combine with a weight A and
therefore n is equal to the valency of the element in the resulting compound.
In other words, the valency of an element is measured by the number of
hydrogen atoms which unite with one atom of that element. Chlorine is uni-
valent and may also be used instead of hydrogen to determinne the valencies
of elements in compounds such as PCl5. Oxygen is bivalent and may be used
in the same way to fix valencies in compounds such as Cl2O7 and OsO4.

Equivalents Once the hydrogen equivalent has been defined as 1 mass
unit, the equivalents of other elements can be developed according to a tree
structure on analyzing suitable binary compounds formed with other ele-
ments, by weight. Hydrogen is replaced from acids by many metals and by
collecting the displaced gas of known density, metal equivalents are deter-
mined directly. The weight of metal displaced from a solution of its salts by
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other metals is used next to determine new equivalents. Once the equivalent
of silver has been obtained, a known weight of silver nitrate in solution is
treated with measured quantities of soluble metal chlorides to precitate the
silver as AgCl and measure the equivalents of still other metals. Suitable
reactions can always be found to expand the number of known equivalents
and cross-check previous results until a self-consistent set has been created.

The exact equivalents of all known elements were determined and refined
during the nineteenth century by many chemists, including Berzelius, Stas,
Richards, Hönigschmid, and others. Without an independent measurement
of valency however, atomic weights could not be obtained from these results,
until Cannizaro demonstrated (1858) how to interpret the hypothesis of Avo-
gadro to this effect.

The Hypothesis of Avogadro

The first quantitative studies of chemical reaction in the gas phase were
conducted on mixtures of hydrogen and oxygen by Cavendish (1781) who
established that the combining volumes were very nearly in the ratio 2:1.
Investigations were extended to reaction between other gases by Gay-Lussac
who formulated the general law:

When gases take part in chemical changes the volumes of the
reacting gases, and those of any gaseous products are in the ratio
of small whole numbers.

All measurements were carried out under the same conditions of temperature
and pressure.

The results of Gay-Lussac were interpreted by Berzelius and by Dalton
to mean that equal volumes of elementary gases contain equal numbers of
atoms and this led to a situation of conflict with Dalton’s atomic theory. As
an example, one volume of hydrogen reacts with one volume of chlorine to
produce two volumes of hydrogen chloride. This result cannot possibly be
interpreted to mean that one atom of hydrogen and one atom of chlorine
produced two particles of the compound atom - Dalton’s terminology. The
issue was resolved by Amedeo Avogadro in 1811.

The Hypothesis Avogadro made the assumption that

Equal volumes of all gases and vapours, under the same condi-
tions of temperature and pressure, contain identical numbers of
molecules. A molecule is the smallest mass of a substance capable
of existing in the free state.
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The essence of this assumption is that the particles of elementary gases are
not atoms, but divisible molecules. It was shown that the volumetric rela-
tionships in the reaction between hydrogen and chlorine can be rationalized
on the assumption that molecules of both hydrogen and chlorine consisted
of two atoms each. The interaction may then be formulated as

H2 + Cl2 → 2HCl

in line with the volumetric data.
Consistent application of Avogadro’s hypothesis shows that whereas most

metal vapours are monoatomic, most non-metals occur in the gas phase as
diatomic molecules. Notable exceptions include O3, P4, As4 and S8.

Relative Density It follows from Avogadro’s hypothesis and Dalton’s the-
ory that the weights of equal volumes of gases or vapours, at the same tem-
perature and pressure, are in the ratio of their molecular weights. On defining
the relative density of a gas or a vapour as the ratio

Weight of a given volume of the gas

Weight of an equal volume of hydrogen

at the same temperature and pressure, Avogadro’s hypothesis shows that the
relative density is also equal to the ratio

Weight of one molecule of the gas or vapour

Weight of one molecule of hydrogen

since equal volumes contain identical numbers of molecules.
On the hydrogen equivalent scale the molecular weight of hydrogen gas

is 2, and the relative density of a gas reduces to (molecular weight)/2. Hence

Molecular weight = (relative density) × 2

Another consequence of Avogadro’s hypothesis is that a gram-molecular
weight (mol) of any gas at S.T.P3 occupies the same volume, known as the
molar volume. If M is the molecular weight of a gas of density D (in gl−1

at STP)
M

D
= Vm

3Standard Temperature and Pressure is defined as 0◦C and 1 atmosphere pressure.
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Oxygen with M = 32 has D = 1.429 gl−1, hence Vm = 22.4 l. According
to Avogadro Vm has this same value for all gases. Furthermore, the number
of molecules in a mol is the same for all gases, and is known as Avogadro’s
number NA, It has been measured by a variety of methods, giving values in
general good agreement, now accepted as NA = 6.022 × 1023 mol−1.

Cannizaro’s Principle

For many years, during the first half of the nineteenth century, there appears
to have been a stand-off between the research camps using atomic theory
and gas laws respectively. Whereas Dalton confused molecules with atoms,
Avogadro used the hydrogen molecule rather than the hydrogen atom as
molecular weight standard. Once this confusion had been cleared up by
Cannizaro in 1858 the determination of absolute atomic weights became pos-
sible by systematic use of Avogadro’s hypothesis. A typical procedure starts
with the determination of molecular weights, by vapour density measure-
ment, of a number of volatile compounds of a given element. The weight of
the element under study, in 1mol of each selected compound, is next estab-
lished by chemical analysis. The smallest weight so established is interpreted
as the gram-atomic weight of that element.

Cannizaro’s principle may be summarized to state:

The atomic weight of an element is the smallest weight of that
element contained in a molecular weight of its compounds.

It is not sufficient to apply Cannizaro’s principle to one or two compounds
of an element, even if the vapour of the element itself is included. The
chances of a meaningful result improve as a variety of more compounds are
included in the test battery. Since vapour density measurements are not of
the highest accuracy, the molecular weights obtained by this method are
approximate and the derived atomic weights are in need of refinement by
other methods.

3.1.3 Measurement of Atomic Weights

Cannizaro’s insight showed how to convert the accumulated data on chemi-
cal equivalents into atomic weights. In view of the large number of elements
and chemical reactions involved in these measurements it was imperative to
strive for the highest possible accuracy in order to obtain a self-consistent
set of reliable atomic weights. Two of the most diligent scientists in this pur-
suit were the Belgian chemist Jean Stas and Theodore Richards at Harvard.
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The type of challenge these scientists had to face is summarized well in the
words of Richards:

Every substance must be assumed to be impure, every reaction
must be assumed to be incomplete, every method of measurement
must be assumed to contain some constant error, until proof to
the contrary can be obtained. As little as possible must be taken
for granted.

Atomic weights, by definition are relative weights. It is essential therefore
that independent workers should agree on a standard reference. At various
times atomic weight scales were based on H= 1, H= 2, O = 1, O = 10, O = 16
and O = 100. In the second half of the nineteenth century the oxygen 16 scale
was generally accepted.

Long before final agreement on the atomic weights of different elements
was possible many regularities between atomic weights and chemical proper-
ties were noticed. One observation, more than anything else, that highlighted
clear parallels between atomic weight and chemical properties was the dis-
covery of isomorphism, and the use of this concept in the determination of
atomic weights.

Isomorphism

The Abbé René Haüy, the founder of crystallography postulated (1822) two
fundamental axioms:

1. Identity of crystalline form (except in the regular system)
implies identity of chemical composition

and conversely,

2. difference in crystalline form implies difference in chemical
composition

One of the early known exceptions was calcium carbonate that crystallizes
either as hexagonal calcite, or orthorhombic aragonite. The alums were found
to have the same crystalline form despite different chemical composition.

On the basis of similarities between crystals such as Na2HPO4·12H2O and
Na2HAsPO4·12H2O Mitscherlich proposed (1819) a variation on the axioms,
based on the property of isomorphism, or the tendency of different substances
to crystallize in the same form. Since many analogous compounds of phos-
phorous and arsenic were found to be isomorphous, this name was applied
to the elements themselves. Isomorphous elements were later defined more
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Table 3.1: Elements of the same group are known to form isomorphous com-
pounds. Several elements occur in more than one group.

ISOMORPHOUS ELEMENTS

I Cl, Br, I, F; Mn (compare KMnO4 and KClO4)
II S, Se; Cr, Mn, Te (in compounds K2RO4)
III As, Sb, Bi; Te(element); P, V (salts); N, P (organic bases)
IV K, Na, Cs, Rb, Li; Tl, Ag
V Ca, Sr, Ba, Pb; Fe, Zn, Mg; Ni, Co, Cu
VI Al, Fe, Cr, Mn
VII Cu, Ag in lower oxides, Au
VIII Pt, Ir, Pd, Rh, Ru, Os; Au, Fe, Ni, Sn, Te
IX C, Si, Ti, Zr, Sn; Fe,Ti
X Mo, W, Cr

generally as elements that form isomorphous compounds with the same ele-
ments or radicals, and can replace one another in compounds without change
in crystalline form. The free elements need not have the same crystalline
form, although this possibility is not excluded. In most, but not all cases,
isomorphism was found to occur among elements that are chemically alike.4

An important consequence of isomorphic relationships is the possibility of
classifying the elements into groups, such that the members of each group can
replace one another in their compounds without significant change in crystal-
lographic form. The groups of isomorphous elements shown in Table 3.1 reveal
chemical similarities in many cases. The grouping of elements according to
Table 3.1 must have provided powerful impetus to encourage development of
a general classification of the elements to reflect their chemical similarities. In
that sense tables of this kind may be considered as precursors of the periodic
table.

The idea of isomorphism also made an important contribution to the
determination of atomic weights. Vapour densities could in general be mea-
sured only for compounds of non-metals and another way had to be found
to establish the atomic weights of metals. Isomorphism provided a way of
linking up the atomic weights of metals and non-metals.

Analysis of a pair of isomorphous salts gives the relative atomic weights of
the two distinct atoms directly. For example, the atomic weight of selenium

4Accurate crystallographic work of a later era has shown that isomorphous crystals
have the same symmetry without having identical unit cells.
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was established in this way in 1828, following the discovery of the isomor-
phism of sodium sulphate and selenate, and also the corresponding silver
salts. The atomic weight of a metal may also be linked to that of a non-
metal. Potassium permanganate is isomorphous with potassium perchlorate,
giving the atomic weight of Mn assuming that of Cl to be known. As another
example, the manganate, chromate, sulphate and selenate of potassium are
all isomorphous, thus connecting the atomic weights of Mn, Cr and Se to that
of S. Finally a whole series of divalent metals form double sulphates of the
general type MI

2M
II(SO4)2·6H2O where MI is an alkali, or other monovalent

metal and MII may be Mg, Mn, Fe, Co, Ni, Cu and Zn, the atomic weights
of which may be linked through Mn to those of S and Cl.

Another interesting case of isomorphism led to the correction of the
atomic weight of vanadium. Berzelius described the following four miner-
als by the formulae shown:

Apatite 3Ca3(PO4)2·CaF2

Pyromorphite 3Pb3(PO4)2·PbCl2
Mimetite 3Pb3(AsO4)2·PbCl2
Vanadinite 3Pb3V2O6·PbCl2

Since the four minerals are isomorphous Roscoe re-investigated the vana-
dium compound and concluded that Berzelius must have mistaken the oxide
VO for V and so assigned the wrong atomic weight. The corrected formula
3P3(VO4)2·PbCl2 established the correct atomic weight for V.

Atomic weight, as the most fundamental property of an element that
could be measured accurately, soon became an important parameter, in addi-
tion to chemical properties, for the classification of the elements, culminating
in the formulation of the periodic law.

3.1.4 The Periodic Law

The publication of affinity tables, designed to impose some order amongst
the increasing number of elements identified since the time of Boyle, were
mentioned before. That was one of many attempts to classify chemical enti-
ties. The general aim of any classification is to group together those entities
that resemble each other and to separate those which differ. The best classi-
fication will be that which brings together things which resemble each other
in the greatest number of ways. The elements were grouped at various times
into metals and non-metals, into acidic and basic, electronegative and elec-
tropositive. They were classed according to valency and according to many
other properties.
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In all chemical change one property was found to remain unaltered and
the most satisfactory system of classification was based on this property, the
atomic weight of the elements. Early efforts to achieve such classification
suffered from unreliable experiments and inconsistent results, reported by
different schools. As methodologies improved and consensus was reached on
theories of atoms and molecules, the classifications became more convincing.

Credit for the first successful classification of the elements in terms of
atomic weight usually goes to Döbereiner (c.1820) who noticed regularities in
the atomic weights of chemically related elements and formulated the law of
triads. In groups of three related elements the atomic weights are either much
the same (e.g. iron, cobalt, nickel) or else exhibit a constant difference when
arranged in sequence. Three triads with their atomic weights and differences
are listed in Table 3.2.

Several other workers (Lenssen, Dumas, Gmelin, Van Pettenkofer, Cooke)
elaborated on the triad theme to formulate families of related elements with
numerical relationships, according to simple arithmetic rules, between their
atomic weights. By 1858 the five families shown in Table 3.3 had been rec-
ognized.

In 1862 De Chancourtois proposed a classification, based on revised atomic
weights according to Cannizaro. He plotted atomic weights on the surface of

Table 3.2: Examples of Döbereiner triads of elements. The atomic weight of
each middle element is approximately the mean of the atomic weights of the
extreme elements.

Calcium Strontium Barium
40 87 137

47 50
Chlorine Bromine Iodine

35.5 80 127
44.5 47

Sulphur Selenium Tellurium
32 79 128

47 49

Table 3.3: Early classification of elements with recognizable periodic features.

Mg Ca Sr Ba
Li Na K

F Cl Br I
O S Se Te
N P As Sb Bi
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Figure 3.3: Helical arrangement of elements with increasing atomic weight.

Table 3.4: Illustration of the law of octaves as proposed by Newlands.

1 H 2 Li 3 Be 4 B 5 C 6 N 7 O
8 F 9 Na 10 Mg 11 Al 12 Si 13 P 14 S
15 Cl 16 K 17 Ca 19 Cr 18 Ti 20 Mn 21 Fe etc.

a regular cylinder with a circumference of 16 units, equivalent to the atomic
weight of oxygen. The resulting helical curve is shown, opened up, in Figure 3.3.
It positions related elements close to a set of straight lines. He concluded that
the properties of the elements are the properties of numbers. This conclusion
summarizes the main theme of the present monograph rather well.

A new system of classification, proposed by Newlands in 1865, was
obtained by arranging the elements in order of increasing atomic weight
(Table 3.4). The position of each element in the sequence was assigned an
ordinal number, starting from 1 for H. He noted that, in this sequence, every
eighth element is a kind of repetition of the first, like the eighth note in an
octave of music, and he called this the law of octaves. In such a table, ele-
ments of the same family tend to occur in the same column. Like the helix
of De Chancourtois the law of octaves breaks down after Ca.

Periodic Classifications

In 1869, quite independently and in apparent ignorance of previous work
Dmitri Mendeléeff in Russia and Lothar Meyer in Germany proposed a
comprehensive classification of the elements according to a scheme that be-
came known as the periodic law.
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Figure 3.4: Lothar Meyer’s atomic volume curve, redrawn.

Lothar Meyer Lothar Meyer went beyond mere classification of the ele-
ments as a function of atomic weight. He provided graphical evidence that
elemental periodicity was more than an illusion, as hinted by some con-
temporaries.5 He calculated atomic volumes in milliliter on dividing gram-
atomic weights by elemental density in units of gram per cubic centimeter
(V = M/d), and plotted this quantity as a function of atomic weight. A
reconstruction of his original plot is shown in Figure 3.4. It is noticed imme-
diately that the family of alkali metals signal periodic limits to an almost
smoothly varying function over the intervening elements. Between Li and Cs
there appears to be two short periods, followed by two long ones. Lothar
Meyer himself considered each long period to consist of two short ones cen-
tred at Ni and Pd respectively, and he saw the beginnings of a seventh period
beyond Cs.

Apart from providing dramatic illustration of periodicity amongst
elements, Lothar Meyer formulated a periodic classification, almost indis-
tinguishable from that of Mendeléeff. His work was, admittedly published
somewhat later than that of his Russian rival. It still does not explain why
Mendeléeff managed to get almost sole credit for the first formulation of the
periodic law. What made the difference probably was Mendeléeff’s audacity
to predict the existence of undiscovered elements on the basis of gaps in his
table.

5When Newlands discussed the law of octaves at a meeting of the London Chemical
Society in 1866 he was asked if he had ever examined the elements according to their
initial letters [32].
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Mendeléeff The name Mendeléeff became a household word after publi-
cation of his periodic law and periodic table, shown in Table 3.5.

The following quotation [33] describes the first announcement of the peri-
odic law in Mendeléeff’s own words:

(1) The elements, if arranged according to their atomic weights,
exhibit an evident periodicity of properties. (2) Elements which
are similar as regards their chemical properties have atomic wei-
ghts which are either of nearly the same value (platinum, iridium,
osmium) or which increase regularly (e.g. potassium, rubidium,
cæsium). (3) The arrangement of the elements or of groups of
elements in the order of their atomic weights, corresponds with
their so-called valencies. (4) The elements, which are the most
widely diffused in nature, have small atomic weights, and all
the elements of small atomic weight are characterised by their
sharply-defined properties. They are therefore typical elements.

Table 3.5: The 1891 version of Mendeléeff’s Periodic Table (Redrawn
from [33]).
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(5) The magnitude of the atomic weight determines the character
of an element. (6) The discovery of many yet unknown elements
may be expected. For instance, elements analogous to aluminium
and silicon, whose atomic weights would be between 65 and 75.
(7) The atomic weight of an element may sometimes be amended
by aid of a knowledge of those of the contiguous elements. Thus
the combining weight of tellurium must lie between 123 and 126,
and cannot be 128. (8) Certain characteristic properties of the
elements can be foretold from their atomic weights.

In the 1891 version of the table shown here, the gaps in the original, on
the basis of which the elements eka-boron, eka-aluminium and eka-silicon
had been predicted with remarkable accuracy, had already been filled after
discovery of Sc, Ga and Ge.

Mendeléeff’s table takes a form still in current use, which arranges the
elements horizontally in order of their atomic weights and vertically accord-
ing to common properties. Although Mendeléeff’s achievement is not in
dispute his statement [33] about Lothar Meyer’s contribution rings less than
generous:

With regard to the work of Prof. Lothar Meyer respecting the
periodic law (Notes 12 and 13), it is evident, judging from the
method of investigation, and of his statement (Liebig’s Annalen
Supt. Band 7, 1870, 354), at the very commencement of which
he cites my paper of 1869 above mentioned, that he took the
periodic law in the same form that it was given by me.

Fact is that the atomic volume curve focuses the periodicity of many other
elemental properties much better than any matrix tabulation.

In his Faraday lecture of June 4, 1889, Mendeléeff made the following two
statements [33]:

(1) The periodic law has shown that our chemical individuals
(atoms) display a harmonic periodicity of properties, dependent
on their masses. Now natural science has long been accustomed
to deal with periodicities observed in nature, to seize them with
the vice of mathematical analysis, to submit them to the rasp of
experiment. And these instruments of scientific thought would
surely, long since, have mastered the problem connected with
the chemical elements, were it not for a new feature which was
brought to light by the periodic law, and which gave a peculiar
and original character to the periodic function. . . . The periods of
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the elements have a character very different from those which are
so simply represented by geometers. They correspond to points,
to numbers, to sudden changes of the masses, and not to a con-
tinuous evolution.

(2) In the theory of numbers only do we find problems analo-
gous to ours, and two attempts at expressing the atomic weights
of the elements by algebraic formulæ seem to be deserving of
attention, although neither of them can be considered as a com-
plete theory, nor as promising finally to solve the problem of the
periodic law. . . .What we can at present only be certain of is this:
that attempts like the(se) two must be repeated and multiplied,
because the periodic law has clearly shown that the masses of the
atoms increase abruptly, by steps, which are clearly connected in
some way with Dalton’s law of multiple proportions.

Apart from the work of Reynolds, described below, we are not aware of any
serious effort to follow up on these suggestions, until now.

The Zero Group

It is ironic that Mendeléeff who gained recognition for predicting the discov-
ery of new elements on the basis of gaps in his table, failed to spot the largest
series of gaps, now filled by the noble gases of group 0. The discovery of argon
in the atmosphere by Raleigh and Ramsey in 1894 came as a complete sur-
prise to the chemical world. No logical place could be found in the periodic
table for the new element with atomic weight slightly higher than that of
potassium. Helium gas was discovered a few years later and it was predicted
by Thomsen [34] that there was room for six inert gases to occupy the space
between neighbouring halogens and alkali metals in the periodic table. He
proposed the long form of the periodic table, shown in Figure 3.5, and later
adopted by Bohr as a basis of the electronic configuration of the atoms.

Cs Ba La Ce

Rb Sr Y Zr Cb Mo Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Tl Pb BiHgAuPtIrOs

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Na Mg Al Si P S Cl A

NeFONCBBeLi

H He

Figure 3.5: Long form of the periodic table of Thomsen and Bohr.
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Discovery of the inert gases, to which a valency of zero was assigned,
stimulated many theories to link the relative periodic position of an element
to its valency, the inert gases supplying a bridge between electronegative and
electropositive elements.

3.1.5 Interlude

The classical periodic table attained its final form with the accommoda-
tion of the inert gases, and represented a self-consistent logical construct to
which most important concepts of chemistry could be reduced. During the
final period of its reign it was used to make adjustments to atomic-weight
measurements and direct the search for undiscovered elements.

Reynolds A final effort to find a simple numerical basis for the periodic
classification was made by Reynolds [35], who likened elemental periodicity
to the stationary waves in a knotted string, such as are set up when one end
of a light cord is vibrated with a large tuning fork. Part of the proposed wave
structure is shown in Figure 3.6 as a function of atomic weight.

Discrepancies

When all major anomalies had been removed from the periodic table, a few
niggling defects persisted and some fundamental questions remained unre-
solved. One of the most serious problems was the inverted positions of pairs
of elements: K and Ar, Co and Ni, Te and I. There was the difficulty to
allocate positions to the rare earth elements. A remarkable difficulty was the
position of hydrogen, which belonged with neither the alkali metals nor the
halogens, but could fit with either group. Like the related problem presented
by Prout’s hypothesis these difficulties remained unresolved depite numerous
efforts.

Ne Ar Kr Xe

605040 100 110 120 130 140908070302010
Fe

Co
Ni

H

Ru Rh Pd

150 160 170

?
Pr

Nd
Sm

He

Figure 3.6: Periodic table in the form of harmonic waves, as a function of
atomic weight, proposed by Reynolds [35]. Elements are located on the bold
curves.
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Prout’s Hypothesis Prout’s hypothesis, published anonymously in 1815,
was based on the observation that the atomic weights of most atoms are
whole multiples of the atomic weight of hydrogen. The simplest explanation
of this observation is that the elements are different aggregates of the atoms of
primordial hydrogen. Despite many results in support of the hypothesis there
were notable exceptions, such as chlorine with an atomic weight of 35.5 on
the H= 1 scale. Interest in the hypothesis flared up again some 40 years later
when some deviant atomic weights were remeasured by Stas, who found more
of them close to whole numbers. After an exhaustive search however, even
Stas had to admit (1865) that, based on experimental evidence, Prout’s law
was an illusion. Discovery of the periodic law, which soon after demonstrated
a clear relationship amongst elements, based on atomic weight, once again
seemed to imply a common origin of all matter.

Marignac, discoverer of the elements Yb and Gd, tried (1860) to rescue
Prout’s hypothesis by suggesting that small variations of atomic composi-
tion could be responsible for deviations from whole number values. The same
theme was taken up by Crookes in 1888 as a result of his experiments on elec-
tric discharge through gases. He postulated that a given element could be a
mixture of several meta-elements which, despite identical chemical proper-
ties, could have different atomic weights. Crookes had the same experience as
Stahl, Prout, Newlands and Marignac before him, his views being dismissed
as fantasy by his peers.

End of the Line

Towards the end of the nineteenth century, at about the time that the peri-
odic table gained consensus shape, a number of unexpected phenomena that
revealed an internal structure of atoms, were discovered. In less than two
decades new concepts such as line spectra, cathode rays, radioactivity, X-
radiation, positive rays, quantum effects, Rutherford scattering and mass
spectrometry became commonplace in physics and chemistry. These discov-
eries had an immediate impact on the conceptual basis of the periodic table
and dictated its future development.

Most dramatic was the discovery of radioactivity (1896) by Becquerel,
who observed that uranium salts spontaneously emitted radiation which
affected photographic plates. It soon became clear that the radiation occurs
when an atom decays into an atom of another element. By 1910 enough evi-
dence had accumulated to cause the collapse of the atomic-weight basis of
the periodic table. Study of the radio elements revealed that when radiation
in the form of an α-particle is emitted, an element shifts back its position
in the periodic table by two places, but when a β-particle is ejected, it goes
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forward one place. From this rule it followed that more than one type of atom
may end up at the same periodic site. The end product of three radioactive
elements uranium, actinium and thorium were found to be three chemically
equivalent types of lead atom, called isotopes, with atomic weights of 206,
207 and 208, respectively. The message was clear: atomic weight is not a
unique descriptor of an element and measured atomic weights may well be
the average of several isotopes.

By 1918 isotopy had been shown to be common amongst most elements
and by the technique of mass spectrometry, devised by Aston, the atomic
weights of different isotopes could be measured individually and accurately.
Aston found all atomic weights measured by his technique to be whole num-
bers on the oxygen standard. He drew the conclusion that Prout’s hypothesis
of a century ago, may, after all prove to be correct. Radioactivity signalled
the end of the line for the periodic table of Lothar Meyer and Mendeléeff.

3.1.6 Atomic Structure

The first inkling that an atom has internal structure came with the discovery
of the electron.

The Electron

The existence of electrons was first inferred from electrochemical measure-
ments, summarized by Faraday’s law of electrolysis:

a given quantity of electricity always liberates the same mass of
a given substance, proportional to the equivalent weight of that
substance, i.e.

m =
MQ

nF
(3.1)

Here m is the mass of an element of atomic weight M liberated at an elec-
trode by the passage of an amount Q of electricity. A constant amount F of
electricity is always associated with one equivalent of electrochemical reac-
tion. The integer n was interpreted as the number of elementary charges
on an ion or charged atom, in solution. It was proposed by Stoney (1891)
that this natural unit of electricity be called an electron and taken to be
the quantity of electricity that must pass through an electrolytic solution
in order to liberate one atom of a monovalent substance. Since one Faraday
(9.6484× 104 C) liberates one mole of a monovalent substance that contains
an Avogadro number (6.0221× 1023) of atoms, an electron of charge is given
by e = F/NA.
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Final discovery of the electron is credited to J.J. Thomson (1900) who
observed free electrons in an evacuated discharge tube and measured the
ratio of charge to mass, e/me, using an instrument as described graphi-
cally in Figure 3.7. Displacements of the beam, measured in perpendicularly
applied electric and magnetic fields of known strengths, were assumed to be
proportional to charge and inversely proportional to the mass (or momen-
tum) of an electron and their ratio calculated directly. The charge of the
electron was finally measured independently by Millikan (1909) who bal-
anced the gravitational force on charged oil droplets by an applied electric
field.

Currently accepted values of the charge and mass of an electron are

e = 1.6022 × 10−19C

me = 9.1094 × 10−31kg

If the mass of an electron is considered to be of purely electrostatic origin,
it may be assumed that the potential field energy of an electron confined to
a sphere of radius rel is equal to the relativistic energy of the rest mass m0.
Hence,

Epot =
e2

4πε0rel

= m0c
2

rel =
e2

4πε0m0c2
= 2.8 × 10−15m (3.2)

+

−

− +
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A

C
e

S

Figure 3.7: An applied voltage (V) draws electrons from the negatively charged
cathode (C) and directs them to the anode (A). The beam is passed through
narrow slits in the anode to define a sharp spot where it hits the fluorescent
screen (S). The narrow beam is deflected by an applied electric field (E) and
a perpendicular magnetic field (B).
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known as the classical radius of the electron.6 From the known atomic weight
of hydrogen and Avogadro’s number the mass of a hydrogen atom was known
to be

mH =
1.008

6.024 × 1026
= 1.673 × 10−27kg

The ratio mH/me = 1837 shows that the mass of an electron is very small
compared to that of H. It therefore seemed plausible to assume that an atom
consisted of a heavy, positively charged sphere of matter with small, light,
regularly spaced negatively charged electrons embedded therein, to give a
neutral whole.

Radioactivity

Another discovery soon led to observations that showed this plum-pudding
model to be seriously in error. Some of the heavy elements were found to
spontaneously emit a mysterious type of radiation that indicated atoms of
these elements to be intrinsically unstable. Such radioactive elements were
found to emit three types of radiation, classified as α, β and γ rays respec-
tively. The γ-rays could be identified as high-energy radiation, β-rays as
identical to electrons and α-rays turned out to be doubly ionized He atoms,
i.e. He2+. It was α-rays, used in scattering experiments that caused a rethink
of the simple atomic model of the day.

In 1910 Rutherford, and others, studied the scattering of a beam of
α-particles when passed through thin metal films. Most of the α-particles
passed through the metal films with little or no deviation. Surprisingly how-
ever, some of the α-particles were scattered through large angles and even
bounced back from the metal film. To account for the observed scattering it
was argued that high-angle scattering resulted from near collisions between
α-particles and dense, positively charged atomic cores.

Nuclear Model of the Atom

Scattering of an α-particle with positive charge 2e, approaching a positive
point charge Ze with velocity v0 can be simulated in terms of Coulomb’s law
that specifies the repulsive force between these charged bodies at a vector
distance r apart, as

F =
2Ze2

4πε0r2

r

r
(3.3)

6The actual size of an electron however, is a function of its environment [36] and in the
hydrogen atom it may be of the same size as the entire atom.
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Figure 3.8: Diagram to illustrate the scattering of an α-particle of charge 2e
by a fixed nucleus of charge Ze, according to Coulomb’s law.

The scattering is shown diagrammatically in Figure 3.8 in terms of the impact
parameter b, which is the distance of closest approach of the α-particle to
the target nucleus, assuming that no deflection occurs. A simple derivation
[37] shows that

b =
k

mv2
0

cot(θ/2) (3.4)

db = − k

2mv2
0

1

sin2(θ/2)
dθ (3.5)

k =
2Ze2

4πε0

The differential db quantifies the range dθ in scattering angle at which par-
ticles are observed. The angle θ decreases with increasing b. Integration, to
allow for rotational symmetry of the scattering process, produces the differ-
ential cross section. The surface element on the unit sphere (Figure 3.9) is
called a solid angle. If the detector subtends a solid angle dΩ the number
of particles observed at angle θ obeys the scattering formula in terms of the
differential cross section

dσ

dΩ
=

Z2e4

(4πε0)2m2v4
0 sin4(θ/2)

(3.6)

This formula was tested experimentally. Keeping the solid angle dΩ constant,
the sin4(θ/2) law is reproduced exactly in the counting rate of scattered α-
particles. With particle energies up to 5 MeV and scattering angles of 150◦,
corresponding to an impact parameter of 6× 10−15m, no deviations from the
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Figure 3.9: Solid angle of scattering defined. The detector D subtends a solid
angle dΩ at the scattering centre.

Rutherford formula are observed. The number of charges on the nucleus Z
was fitted empirically and found to agree with the numerical position of the
target material in the periodic table.

For near-central collisions, the scattering of fast particles at large θ or
small b, deviations from the Rutherford formula are observed. Under these
circumstances Coulomb’s law is apparently no longer obeyed. The α-particles
approach the nuclei so closely that another, short-range interaction force, the
nuclear force, becomes effective. The final conclusion is that virtually all of
the atomic mass is concentrated in a nucleus of radius R � 10−15m.

For very large impact parameters (small deflection angles), the Rutherford
formula is likewise no longer exactly valid, because now the Coulomb poten-
tial of the nucleus is screened by the extranuclear electrons. These effects
occur for b > 10−10m.

The radius of the nucleus is defined (Figure 3.10) as the distance at which
the effect of the nuclear potential is comparable to that of the Coulomb
potential. For nuclei of mass number A it is found empirically that

R � (1.3 ± 0.1)A1/3 × 10−15m

= r0A
1/3

e.g. R(12C) = 2.7 × 10−15m R(208Pb) = 7.1 × 10−15m
These radii are comparable to the classical radius of an electron. The rela-
tionship between nuclear mass and nuclear radius implies that the density
of nuclear matter is constant and independent of the size of the nucleus. If
the nucleus is assumed to be made up of A identical nucleons, this number is
proportional to the nuclear volume. On the atomic mass scale each nucleon
has mass 1/NA. The nuclear density calculates as

ρn =
Mn

Vn

=
(A/NA)

4
3
π(r0A−1/3)3

=
3

4πr3
0NA

≈ 2 × 1017kg m−3 (3.7)
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Figure 3.10: Schematic diagram to compare Coulomb and nuclear potentials
as a function of the radial distance from the nuclear centre.

The number density of nucleons in the nucleus

Nn = ρnNA =
3

4πr3
0

(3.8)

� 1.4 × 1044m−3

It was postulated by Rutherford on the basis of (3.6) that an atom had a
dense positively charged nucleus, surrounded by a diffuse cloud of negatively
charged electrons. Suggestions that electrons revolve about the nucleus like
planets around the sun, were difficult to defend in view of the fact that
accelerated charges were known to radiate energy. Although electrostatic
attraction to the positive nucleus would be balanced by the centrifugal force
on the orbiting electron, loss of radiant energy would continually disturb this
balance.

3.1.7 Atomic Number

The numerical position of an element in the periodic table has already been
mentioned, with hindsight, as a measure of the positive charge, concentrated
at the atomic nucleus. This identification was first proposed by Van den
Broek [38]. Atomic order, rather than atomic weight, was stated to provide
an improved guide to the solution of elemental problems. Thus, the correct
sequence of elements in the periodic table depends on atomic order rather
than atomic weight. It was suggested that, if the elements were arranged in
increasing order of number of electrons surrounding the positive nucleus of
the neutral atom, the numerical position of each element in this sequence, to
be called its atomic number, corresponds to the proper position occupied by
this element in the periodic sequence. At the time, atomic numbers could be
assigned for elements up to about 57, where Mendeléeff’s table also ran into
problems to include the recently discovered lanthanides.
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These proposals were not only in line with Rutherford’s atomic model, but
also corrected the patently wrong sequence for the pairs Ar, K and Co, Ni,
according to atomic-weight classification. The significance of atomic number
was confirmed soon after through an analysis of the characteristic X-ray
spectra of the elements.

X-radiation

X-rays were discovered by Röntgen in 1895 as the radiation emitted when
a beam of fast cathode rays strikes a solid target in an evacuated tube
(Figure 3.11). Since accelerated charges are known to be a source of elec-
tromagnetic radiation it could be argued that when a beam of electrons is
stopped at a solid anode radiation should result. Radiation produced by such
a mechanism is aptly named in German as Bremsstrahlung, (brake radiation).

The wavelength of x-rays was first measured in one of the crucial exper-
iments of physics, proposed by Von Laue (1912). If theoretical speculation
about the nature of crystals as made up of periodically repeating elementary
building blocks, or unit cells, were right, it was argued that such unit cells
should be of dimensions comparable to the conjectured wavelength of x-rays.
Indeed, crystals were found to act as a three-dimensional diffraction grat-
ing for x-rays and the positive outcome of the first experiment vindicated
two theories at once: x-rays consist of waves and crystals of regular building
blocks. Wavelengths in the region of 13–48 pm could be measured.

The nature of the emitted X-radiation depends on the accelerating volt-
age and the composition of the anode target material. In the case of pure
anode material the radiation consists of a continuous component, called
white radiation, which is Bremsstrahlung, with a superimposed line spec-
trum (Figure 3.12).

X−rays

Electrons
Water

Figure 3.11: Schematic diagram of a typical x-ray tube consisting of an elec-
tron gun and a water-cooled anode in an evacuated metal tube. The transpar-
ent windows are made of beryllium.
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Figure 3.12: Part of the Mo x-ray emission spectrum.
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number. All plots are based on modern Kα1 data [40].

X-ray Line Spectra Moseley [39] (1913) studied the x-ray spectra of 39
elements with atomic weights between Al and Au. All of the spectra were
remarkably alike and consisted of groups of lines, referred to as K, L, M, etc. It
was noticed that the wavelengths of corresponding lines from each group, for
different elements, varied in a regular way with the atomic weights of the tar-
get material. This relationship, as demonstrated graphically in Figure 3.13, is
not mathematically precise. The relationship between wavelength and atomic
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number, shown for comparison in the same figure, is obviously a better fit.
The final frame in Figure 3.13 shows the square root of characteristic frequen-
cies plotted against atomic number. This linear relationship must obviously
be of fundamental importance, which only became apparent after publication
of Bohr’s quantum model of the atom later in the same year. It is remarkable
how unrelated work of Rutherford, Van den Broek, Von Laue and Bohr, from
four different countries, happened at about the same time. Together, but not
in isolation, these researches established a new paradigm for the refinement
of the periodic table of the elements.

3.2 Theoretical Development

One of the unsolved problems of late nineteenth century physics with a direct
bearing on the arrangement of electrons in atoms and which became of deci-
sive importance in explaining the structure of the periodic table was the
understanding of atomic line spectra.

3.2.1 Atomic Line Spectra

It has been known since the days of Kirchhoff and Bunsen (c.1859) that each
element emits a characteristic line spectrum when in the incandescent state.
This observation was interpreted to mean that atoms cannot be structureless,
but an interpretation of the spectra in terms of atomic structure only became
possible when definite relationships between the spectral lines of any one
element came to light.

When hydrogen gas is excited in an electric discharge tube, the emitted
light does not occur as a continuous spectrum, but as a mixture of compo-
nents with sharply defined frequencies. A schematic drawing of such a pho-
tographically recorded spectrum is shown in Figure 3.14. In 1885, Balmer
pointed out that a simple relation existed between the different lines in this
spectrum of hydrogen. The spectrum, illustrated in Figure 3.14 consists of a
series of lines known as Hα, Hβ, Hγ , Hδ, etc., extending from the red into the
ultraviolet region. Balmer observed that the wavenumber of each line of the
series could be represented by the formula

ν̄ =
1

λ
= R

(
1

22
− 1

n2

)
(3.9)

where R is a constant and n = 3, 4, 5, 6, etc. As n → ∞ the limiting wavenum-
ber, or head of the series is approached at ν̄ = R/4. This simple numerical
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Figure 3.14: First eight lines in the Balmer series of H emission lines, n =
3 → 10 in ν = Rc

(
1
22 − 1

n2

)
. The line on the right marks the head of the

series.

relationship is probably the most important empirical formula ever discov-
ered. It represents the first instance of an atomic property characterized by
integers, which is now recognized as fundamental to the development of mod-
ern quantum theory. The significance of the discovery was apparently lost
on contemporary scientists who dismissed it as a numerical oddity without
physical meaning.7

Further regularities in line spectra were soon discovered by Rydberg, Ritz,
Lyman, Paschen and others, culminating in the general formula

ν = Rc

(
1

m2
− 1

n2

)
(3.10)

that summarized all known series of hydrogen line spectra. The constant R,
named Rydberg’s constant has the numerical value R = 1.0974 × 107 m−1,
c = 3 × 108 ms−1 is the speed of light and m and n are integers, such that
n > m = 1, 2, 3 . . ., each value of m defining another spectral series.

The mysterious integers that were found to characterize atomic line spec-
tra found a ready explanation in terms of the quantum theory of radiation
first mooted by Max Planck in 1901.

3.2.2 Quantum Theory

The quantum theory as first used by Planck is nothing but the first atomic
theory of energy. Planck’s problem dealt with the radiation emitted by hot
objects and the dependence of wavelength on the temperature of the emit-
ter. It is well known that the colour inside a furnace changes from red,

7Numerical relationships between planetary orbits are still treated with the same con-
tempt as mere coincidence by astrophysicists.



3.2. THEORETICAL DEVELOPMENT 103

through yellow, to white as the temperature increases. A closed furnace with
a small orifice that allows radiation to escape without disturbing the interior
equilibrium has the peculiar name black body. A black body is any cavity
that contains radiation in thermal equilibrium with the walls of the cav-
ity. The material of the walls emits and absorbs thermal radiation at all
wavelengths. It was shown experimentally and theoretically that the energy
radiated by a black body depends on the temperature. The spectral distri-
bution of this radiation is of a universal nature and the results of typical
measurements are shown schematically in Figure 3.15. The fact that the
observed spectral distribution could not be simulated correctly by any theo-
retical thermodynamic model developed into a major irritant for the physics
community.

The total radiated energy and radiation density were known from Stefan’s
law,

ρ = aT 4 (3.11)

but the theoretical derivation of the radiation density and hence the value
of a, by integrating the average energy contributions ε̄ over all vibrational
modes, i.e.

ρ(ν)dν =
8πε̄ν2dν

c3
(3.12)

was unsuccessful. The problem consists of finding the correct form of ε̄.

1.0 2.0 3.0 4.0 5.0 6.0
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λ .106m

Figure 3.15: Spectral distribution of black-body radiation at different temper-
atures.
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The brute force attempt by Raleigh and Jeans to integrate over all energy
levels in the Boltzmann distribution

ε̄ =

∑∞
0 εne−εn/kT∑∞
0 e−εn/kT

(3.13)

based on the assumption that energy changes continuously, produced the
form ε = kT and the density distribution

ρ(ν)dν =
8πkTν2dν

c3
(3.14)

in terms of Boltzmann’s constant k.
This formula fits the experimental curve only at long wavelength. At short

wavelength
lim
λ→0

ρ(λ) = lim
ν→∞

ρ(ν) = ∞
It predicts that thermal equilibrium can be sustained only by endless absorp-
tion of thermal energy, and conversion into radiation energy of wavelengths
approaching zero. This result is known as the ultraviolet catastrophe.

In another attempt to find the correct solution Wien proposed the empir-
ical formula

ρ(ν)dν =
8πkβ

c3
e−βν/Tν3dν (3.15)

that gives an excellent fit at high frequencies, but fails at low frequency and
high temperature.

By writing x = ν/T both the Raleigh and Wien formulae can be cast into
the form

ρ(ν)dν =
8π

c3
F (x)ν3dν

such that

F (x) =

{
kβe−βx (Wien)
k/x (Raleigh)

Planck, who eventually solved the problem tried to find a fundamental basis
for the form

F (x) = kβ
(
eβx − 1

)−1

that converts to the Wien function at large x and to the Raleigh function at
small x.8

8The exponential function

ex = 1 + x + (x2/2!) + (x3/3!) + . . .

For small x it reduces to ex � 1 + x
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To obtain the correct form of β, consistent with experiment, some dras-
tic assumptions are necessary. Most important, and based on the fact that
integration of the energy function leads to the ultraviolet catastrophe, it is
necessary to assume that the energy does not change continuously and hence
that the infinite summations must be carried out directly. To achieve that,
summation over an elementary energy pulse ε, such that nε = εn, is required.
Since the distribution of εn must predict smaller contributions to the radia-
tion density at high frequency, it is necessary that the factor exp(−εn/kT )
should diminish. This happens when ε ∝ ν, i.e. εn = nhν. The proportion-
ality factor h is known as Planck’s universal constant. The average energy is
calculated by evaluation9 of the resulting expression:

ε̄ =
hν

∑∞
n=0 n exp(−nhν/kT )∑∞

n=0 exp(−nhν/kT )

A function of the required form is obtained, provided β = h/k, to give the
radiation density

ρ(ν)dν =
8πh

c3

(
ehν/kT − 1

)−1
ν3dν (3.17)

This formula is consistent with the experimental distribution and on integra-
tion it leads to Stefan’s law, i.e.

ρ =

[
8π5k4

15h3c3

]
T 4

9The numerator, written in the form

e−x + e−2x + e−3x + . . .

+ e−2x + e−3x + . . .

+ e−3x + . . .

+ . . .

rearranges to

(ex − 1)−1 + e−x (ex − 1)−1 + e−2x (ex − 1)−1 + . . .

= (ex − 1)−1 (
1 − e−x

)−1

The denominator has the same form as the second term and hence

ε̄ = hν
(
ehν/kT − 1

)−1

(3.16)
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The essential problem highlighted by Planck’s analysis is that the equipar-
tition principle (ε̄ = kT ) does not hold for vibrational states and that a quan-
tum (atomic) theory is required for radiation energy. The value of Planck’s
constant is independent of the composition of the black body and has dimen-
sions of action = energy× time. h = 6.6254 × 10−34 Js.

Returning to the Rydberg equation (3.10), multiplied by h it becomes an
energy equation

hν = Rch

(
1

m2
− 1

n2

)
= Em − En (3.18)

where Em and En correspond to the energy of the system before and after the
emission of the energy quantum hν. Furthermore, apart from an arbitrary
constant

En = −Rch/n2 (3.19)

On the basis of these results Bohr developed a theory to account for line
spectra in terms of atomic structure.

3.2.3 The Bohr Model

As the basis of his atomic model Bohr accepted the frequency condition of
(3.18).

ν =
1

h
(En − Em)

to mean that extranuclear electrons in atoms are confined to discrete energy
levels described by positive integers, n and m. The allowed energies corre-
spond to a series of stationary states of the electron and transition between
two stationary states occurs with the emission or absorption of a monochro-
matic quantum of radiation of frequency ν = ∆E/h. While the electron
remains in a stationary state n its energy remains constant (3.19). In the
case of a hydrogen atom a single electron is associated with a proton at the
nucleus and to avoid the electron being pulled into the nucleus it is assumed
to be accelerated by the Coulombic attraction of e2/4πε0r

2 to stabilize a cir-
cular orbit of radius r, about the nucleus. If the electron orbits the nucleus
at constant velocity v = 2πrω and frequency of revolution ω, mechanical
stability requires

mv2

r
= mr(2πω)2 =

e2

4πε0r2

ω2 =
e2

16π3ε0mr3
(3.20)
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Contrary to classical theory that requires an accelerated electron to radiate
energy at the same frequency, ν = ω, Bohr postulated a quantum condition
that prevents radiation by electrons in stationary states. The kinetic energy
of the orbiting electron

1

2
mv2 =

1

2
· 4π2mr2ω2 =

e2

8πε0r

The potential energy

Ep =

∫ r

∞

e2

4πε0r2
dr = − e2

4πε0r

The total energy

E =
1

4πε0

[
e2

2r
− e2

r

]
= − e2

8πε0r

Removal of the electron from the atom requires an ionization energy W =
−E. The radius of the orbit and the frequency of revolution become

r =
e2

8πε0W
, ω =

(
32ε2

0W
3

me4

) 1
2

(3.21)

There are no grounds to assume that the classical frequency of rotation
should be simply related to the quantum-mechanical frequency of radiation
generated by transition between (radiationless) stationary states. By anal-
ogy with Planck’s analysis of black-body radiation however, Bohr could argue
that such a relation should exist at low frequency. The classical Raleigh-Jeans
equation gives the same result as the quantum-mechanical Planck distribu-
tion at very low frequency. Bohr postulated this Principle of Correspondence
between classical and quantum theories to be generally valid, and in the case
of the hydrogen atom to apply at large values of n. For a transition between
neighbouring orbits the frequency of radiation emitted is

ν = Rc

{
1

n2
− 1

(n + 1)2

}

which, for large n reduces to 2Rc/n3, and under these conditions the corre-
spondence principle implies that ν = ωn, i.e.

2Rc

n3
=

(
32ε2

0W
3

me4

) 1
2
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This expression is combined with that for orbital energy, W = Rch/n2, such
that

2Rc

n3
=

2

nh

(
Rch

n2

)
=

2W

nh

and (
2W

nh

)2

=
32ε2

0W
3

me4

En = −W = − 1

n2
· me4

8ε2
0h

2
(3.22)

The calculated value of

Rc =
n2W

h
=

me4

8ε2
0h

3
= 3.29 × 1015s−1

agrees with the experimental value of Rydberg’s constant. The electronic
energy is quantized in terms of the quantum number n and the orbital radius

rn =
n2h2ε0

πme2
(3.23)

The square of the angular momentum

L2 = (pr)2 = Ek(2mr2) =
e2

8πε0r
· 2mr2 =

2me2r

8πε0
=

(
nh

2π

)2

The angular momentum, like the energy, is therefore quantized, in units of
� = h/2π.

The origin of the hydrogen line spectrum is neatly accounted for in terms
of the transitions indicated on Figure 3.16. Despite the convincing explana-
tion of hydrogen line spectra, the planetary model proposed by Bohr could
never be extended to describe the electronic configuration of atoms other
than hydrogen, or to provide an acceptable model for chemical bonding. On
the other hand, regularities in the Kα x-ray emission spectra observed by
Moseley, e.g.

ν = Rc(Z − 1)2
(

1

12
− 1

22

)
(3.24)

where Z is atomic number, seem to follow the Bohr model rather well. It
seems reasonable to interpret (3.24) to define the observed lines as due to
the transition of an electron from an orbit of quantum number 2 to one of
quantum number 1 for a nuclear charge of Z − 1. The equation works less
well for the L and M series that involve transitions between higher electronic
levels.
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Figure 3.16: Diagram to show how the line spectrum of hydrogen is generated
by electronic transitions between energy levels of quantum number n.

Any relationship with the periodic table claimed on the basis of the Bohr
model remained conjectural because there is no reliable estimate of the num-
ber of electrons that may co-exist at a given Bohr level. It is primarily for
this reason that the Bohr model was never really accepted by the chemistry
community. An alternative, based on traditional thinking on chemical bond-
ing, valency and electron affinity, although static rather than dynamic, was
no less effective than the Bohr model to account for the ultimate stability of
the atom. From a modern perspective, the Bohr model is essentially classical
with a quantum gloss, to be accepted in good faith as a valid explanation of
stationary states. In the long term however, it stimulated enquiry that pro-
duced the more successful wave-mechanical model of the atom. During the
interim the periodic table acquired its final form, still in general use today,
on the basis of the static atomic model of Lewis, Langmuir and Bury.

3.2.4 Static Model of the Atom

Efforts to correlate observed variation of chemical parameters with known
periodicities of the elements, independent of any atomic model, resulted in a
scheme that could be interpreted to define the most likely relative positions
of electrons with respect to an atomic nucleus and one another. This scheme
was based on the planetary Bohr model, ignoring questions of stability. The
simplified model, proposed by Kossel, considered the extranuclear electrons
to be situated in concentric shells. In passing along the elemental sequence,
each fresh atom contains one electron more than its predecesser. The opening
of each fresh period in the periodic table was assumed to correspond to
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placement of the first electron in a new shell. The maximum number of
electrons accommodated in any shell was considered fixed by numbers in the
series

N = 2(1 + 22 + 22 + 32 + 32 + 42 + . . . ) (3.25)

proposed by Rydberg [41].
In response, Bohr is quoted [42], to state:

This interpretation of the atomic number may be said to signify
an important step toward the resolution of a problem which for a
long time has been one of the boldest dreams of natural science,
namely, to build up an understanding of the regularities of nature
upon the consideration of pure numbers

A more general scheme was proposed at about the same time by Lewis.

The Lewis Model

The scheme, first proposed by Lewis [43], accepted the nuclear structure of
the atom and that the number of electrons in each atom corresponds to the
ordinal position (2.2) of the element in the periodic table. To account for the
chemical inertness of the elements of group 0, a special stability, associated
with either an electron pair or a group of eight electrons, was postulated.

In terms of this scheme the helium atom has two electrons close to the
atomic nucleus. Neon consists of a pair of inner electrons (as in helium)
inside a cube of eight electrons. Argon has the same arrangement of ten inner
electrons, surrounded by eight additional electrons at the corners of a larger
external cube. The electrons of all other atoms have the same arrangement as
atoms with atomic number one unit less, plus an additional electron, placed
according to the sequence defined for the inert gases. In chemical reactions
all atoms tend to either take up or give up electrons so as to resemble either
helium or one of the other elements of the inert group. Thus, lithium, which
contains one electron outside the helium pair, tends to give up this extra
electron and hence is electropositive in its chemical properties, while fluorine
that has only one electron short of the neon cube, is highly electronegative.
When lithium reacts with fluorine an electron is transferred to create the
Li+F− pair. This tendency of atoms to acquire an outermost shell of eight
electrons is satisfied not only by transfer, but also by sharing of electron
pairs between atoms to form covalent bonds. It was emphasized by Lewis
that shared electrons always occur in pairs and that the rule of two was even
more fundamental than the rule of eight.



3.2. THEORETICAL DEVELOPMENT 111

The Langmuir Model

The ideas of Lewis were extended by Langmuir [44] to all elements of the
periodic table. It was stated:

In attempting to determine the arrangement of electrons in all
atoms, we must be guided by the numbers of electrons which
make up the atoms of the inert gases; in other words by the
atomic numbers of these elements, namely, helium 2, neon 10,
argon 18, krypton 36, xenon 54, and niton 86.

These are the numbers of the series defined by Rydberg [41]. Presumably
therefore, there must be something about an arrangement of 18 or 32 elec-
trons that makes it just as stable as the cube in the case of neon and argon.
Langmuir proposed that electrons in atoms are distributed through a series of
concentric shells, and, in the case of the inert gases, that the electrons in each
shell are arranged symmetrically about a plane through the nucleus. Consecu-
tive shells contain 2, 8, 18 and 32 cells. The innermost cells can accommodate
only one electron while each of the other cells can hold two electrons. The
factor 2 in Rydberg’s series is accounted for by the assumption of the sym-
metry plane and repetition of the square factors leads to the assumption of
two electrons per cell. On the basis of these postulates Langmuir derives the
electronic structures of different elements shown in Table 3.6. The elements
are arranged so that elements with electrons in the same layer occur in the
same column. A periodic table based on this proposed electronic distribution
is in almost perfect register with the modern long form of the table. Moving
the two sets of elements shown enclosed in stippled boxes, as indicated by
vertical arrows, reproduces the modern table.

The Bury Model

Langmuir’s theory was modified by Bury [45], assuming that instead of 2, 8,
18, or 32 electrons in the outer layer, the maximum number of electrons in
this layer cannot exceed 8. It was argued that the number of electrons in a
shell can exceed 8, only in inner shells, when an accumulation of electrons
has already commenced in an outer layer. On the basis of this postulate
an arrangement of inert gas electronic configuration in keeping with known
chemical properties was derived as shown in Table 3.7. Bury’s modification
does not affect the general layout of the periodic table and like Langmuir’s
scheme it predicts the correct classification of the chemical elements. It has
the additional merit of reflecting electronic structures of individual elements,
well in line with modern experimental results.
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Table 3.6: Arrangement of electrons in atoms, according to Langmuir (1919).

31

Rn  32

Bi  29

Pb  28

Tl  27

Hg  26

Au  25

Pt  24

Ir  23

Os  22

21

W   20

Ta  19

Hf  18

Lu  17

Yb  16

15

Er  14

Ho  13

Dy  12

Tb  11

Gd  10

Eu   9

Sm   8
7

Cs   1

Ba   2

La   3

Ce   4

Pr  5

Nd   6

IVa

5537

IIIb

191131

I IIa IIb IIIa
Group I.....

II....

III...

IV...

N:
Layer:

Cb   5V    5

VIII.

VII..

VI...

V....

I.....

II....

III...

VI...

0.....

IV...

V....

VII..

Rb   1K    1Na   1Li   1H    1

Sr   2Ca   2Mg   2Be   2

87

IVb

Ra   1
1

......Rare Earths

Ac   3Y    3Sc   3B    3

Ti   4C    4

Ux   52

U     6Cr   6 Mo   6

7Mn   7

Ru   8Fe   8

Rh   9Co   9

Pd  10Ni  10

Cu  11 Ag  11

Zn  12 Cd  12

In  13Ga  13

Ge  14 Sn  14

Sb  15As  15P    5N    5

O    6 S    6 Se  16 Te  16 RaF 30

I   17Br  17Cl   7F    7

Xe  18Kr  18Ar   8Ne   8He  2

Th   4

Al   3

Si   4 Zr   4

Finally it was possible to reconcile the chemical table with the Bohr-
Sommerfeld atomic model, which introduced additional quantum numbers
ad hoc to describe individual elliptical orbits for electrons, and to be in line
with spectroscopic results.
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Table 3.7: Electronic structure of rare-gas atoms in terms of Bury’s proposals.

Element

Shell

QMLK PON

He

Kr

Rn

Ne

Ar

Xe

2

2

2

2

2

2

8

8

8

8

8

18

18

8

8

8

8

18

32

18

18

3.2.5 The Sommerfeld Model

The first modification to the Bohr model of the atom, by Sommerfeld [46] was
the introduction of elliptical orbits, in addition to the circular. To specify an
elliptic orbit it was necessary to introduce an azimuthal quantum number na

together with a radial quantum number nr, such that the principal quantum
number n = na + nr. To keep the new system consistent with spectroscopic
observation it was necessary to specify a number of selection criteria that
restrict possible electronic transitions between orbital energy levels, e.g. (i)
When n changes by unity, the transition is restricted to occur between cir-
cular orbits; (ii) In all other cases, ∆nr = ±1.

Classification of spectral lines on the basis of general appearance and
behaviour, showed that an emission spectrum could be divided up into four
series, called principal, sharp, diffuse and fundamental. To address this issue
Sommerfeld argued that a third quantum number was needed to describe elec-
tronic orbits in three-dimensional space. The discovery [47] that an electron
has intrinsic angular momentum, called spin, neccessitated the introduction
of a fourth quantum number. The physical significance of the four quantum
numbers was interpreted to be:
n principal quantum number that defines the energy
l defines the angular momentum
ml defines the direction of the angular momentum
ms the spin quantum number

A fifth selection principle was provided by Pauli’s exclusion principle, which
states that two electrons on the same atom may not have four quantum
numbers the same.
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In terms of the four quantum numbers it was possible to associate the
appearance of the four spectral series with specific changes in values of l
during transition. On this basis orbital electrons were characterized as s, p,
d, f , for l = 0, 1, 2, 3, respectively.

It is not too difficult to show the parallel between the Sommerfeld and
Bury schemes, either of which can serve as a basis to interpret the periodic
table, although the order of orbital stability remains an empirical result. The
basic common assumption is that electrons in an atom occupy the available
energy levels in the order of increasing principal quantum number. To first
approximation, all electrons with common n therefore have the same orbital
energy. Because of mutual repulsion between electrons however, electronic
energies at a given level also vary as a function of angular momentum and
quantum number l. For a given value of l, the quantum number ml can have
integral values in the range −l ≤ ml ≤ l. For the sub-level defined by l = 0
there is only a single allowed value of ml = 0, known as the s-state. For
l = 1, ml = −1, 0, 1, the sub-level has a degeneracy of 3, and is known as a
p-state. For d and f states, l = 2, 3, the sub-levels are five- and seven-fold
degenerate respectively. The exclusion principle dictates that a maximum of
two electrons can be accommodated for each allowed value of ml. It follows
that s, p, d and f sub-levels can accommodate maxima of 2, 6, 10 and 14
electrons respectively. The restrictions on the quantum number l therefore
imply that for n = 1, only one s sub-level is allowed. For n = 2, s and p
sub-levels are allowed. For n = 3 there are s, p and d sub-levels, and for
n = 4 there are s, p, d and f sub-levels. The accepted notation to specify
the electronic distribution at a given energy level is of the form nlx, where
l indicates the sub-level specification and x the number of electrons at that
sub-level. The occupation of energy levels and sub-levels does not strictly
follow the sequence dictated by increasing n and l, but an empirical scheme
follows directly from Table 3.7. As an example, the electronic configuration
of Kr is defined by 1s22s22p63s23p63d104s24p6.

An improved theoretical model that leads to quantitative relationships
between the electronic configurations that feature in the periodic classifica-
tion was provided by the wave-mechanical description of hydrogen.

3.2.6 Wave-mechanical Atomic Model

Quantum-mechanical description of the hydrogen atom without ad hoc as-
sumptions was made possible by De Broglie’s postulate that any particle or
object with linear momentum p has an associated wavelength λ = h/p that
accounts for its wavelike properties. Wave mechanics, as an alternative to
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particle mechanics, is formulated by incorporation of the quantum conditions
of Planck (E = hν) and De Broglie into a classical equation of wave motion.

Wave Motion and Wave Mechanics

The simplest discription of a wave is as a disturbance which is periodic in
space and time. Periodicity in space means that it repeats at regular intervals,
known as the wavelength, λ. Periodicity in time means that it moves past a
fixed point at a steady rate characterised by the period τ , which counts the
number of crests passing per unit time. By definition then, the velocity of the
wave c = λ/τ . It is customary to use the reciprocals of wavelength 1/λ = ν̄,
known as the wave number and 1/τ = ν known as the frequency, in some
applications. The amplitude A is the maximum value of the disturbance. In
the case of a sine wave that repeats at intervals of 2π, the wave disturbance
can be described as

z = A sin

(
x

λ
· 2π − t

τ
· 2π

)
= A sin 2π(ν̄x − νt)

A more general formulation is

z = A sin 2π
(x

λ
− tν

)
+ B cos 2π

(x

λ
− tν

)
In terms of the identity exp(iθ) = cos θ + i sin θ, this formulation is equivalent
to

z = A exp 2πi
(x

λ
− tν

)
In order to impart wave properties to material particles, momentum and
energy defined according to the postulates of De Broglie and Planck

p = h/λ E = hν

Di
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e
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x,t

Figure 3.17: Wave motion, periodic in space and time.
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are introduced into the wave equation instead of the normal wave variables,
to define a wave function

Ψ = A exp 2πi

(
x

λ
− t

τ

)

= A exp 2πi

(
px

h
− Et

h

)

To examine how this wave function describes the position of a particle it is
necessary to determine how Ψ changes as a function of x and t. The first
derivatives are obtained as

∂Ψ

∂x
= Ψ

(
2πip

h

)
and

∂Ψ

∂t
= Ψ

(
−2πiE

h

)

using the prescription
d

dx
(eu) = eu du

dx

The derivative expressions rearrange into

pψ =
h

2πi

d

dx
(ψ) and EΨ =

ih

2π

∂

∂t
(Ψ)

The lower case symbol ψ is used to denote a time-independent wave func-
tion. In each of these equations the product of a variable that represents a
dynamical observable and a wave function, equals a differential operator that
operates on the wave function. It is said that to each quantum-mechanical
observable there corresponds an operator,

p → h

2πi

d

dx
(3.26)

E → ih

2π

d

dt
(3.27)

The operator that corresponds to the total energy is known as the Hamiltonian
operator, H. The corresponding wave equation reads

HΨ =
ih

2π

∂Ψ

∂t
= EΨ

In another formulation the classical Hamiltonian

H = E = T + V =
(mv)2

2m
+ V =

p2

2m
+ V
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By substituting the momentum operator this expression is transformed into
the wave mechanical form

Hψ =
1

2m

h

2πi

d

dx

(
h

2πi

dψ

dx

)
+ V ψ = Eψ

i.e.

− h2

8π2m
· d2ψ

dx2
= (E − V )ψ

which rearranges into the more familiar forms

d2ψ

dx2
+

8π2m

h2
(E − V )ψ = 0

d2ψ

dx2
+

2m

�2
(E − V )ψ = 0

The variable h-bar, � = h/2π. The wave equation in one of these forms is
known as Schrödinger’s equation in one dimension. The first term is the
kinetic energy in operator form and V is the classical potential energy.
Schrödinger’s equation is a second-order differential equation and therefore it
has an infinite number of solutions. The physical interpretation of ψ however,
implies that some of the mathematical solutions are physically unacceptable.
When these solutions are rejected it means that certain values of E are not
allowed, which introduces the idea of quantized energy.

Wave-mechanical Model of the Hydrogen Atom

An electron associated with the nucleus of a hydrogen moves under the influ-
ence of a potential

V = − e2

4πε0r

where r corresponds to the separation between the positive and negative
charge centres. Like the particle in a circular Bohr orbit the electron is
expected to have quantized energy and angular momentum. The origin of
the latter can be visualized in terms of De Broglie’s postulate by assuming a
standing wave stabilized by a cyclic boundary condition, as shown in Figure
3.18(a). To avoid destructive interference it is necessary that an integral
number of wavelengths span the orbit and hence

nλ = 2πr =
nh

p
hence pr =

nh

2π

This condition, first proposed by Bohr, leads directly to the quantum con-
ditions of the Bohr model and accounts for observed line spectra. It is an
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Figure 3.18: (a) Orbital electron in the hydrogen atom represented by a stand-
ing De Broglie wave. (b) Diagram to show the relationship between Cartesian
(x,y,z) and spherical polar (r, θ, φ) coordinates, in terms of the vector r.

improvement on the Bohr model in the sense that an accelerated charge is not
invoked directly, although a mechanically stable orbit is still assumed. The
pure quantum-mechanical description does not suffer from this defect and is
provided by solution of Schrödinger’s equation with Coulomb potential.

Schrödinger’s equation in three dimensions reads

∇2ψ =
d2ψ

dx2
+

d2ψ

dy2
+

d2ψ

dz2
+

8π2m

h2
(E − V )ψ = 0

Since cartesian coordinates are not appropriate to handle problems in spher-
ical symmetry it is necessary to transform to the more appropriate spherical
polar coordinates r, θ and φ as defined by Figure 3.18(b) and the transfor-
mation equations:

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

An expression for the Laplacian operator ∇2 can be obtained directly by
forming the appropriate derivatives. The result, given without proof is

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
Λ2

The term in Λ contains the total angular dependence, independant of r. The
radial wave equation, without angle dependence is

d2ψ

dr2
+

2

r

dψ

dr
+

2m

�2

(
E +

e2

4πε0r

)
ψ = 0 (3.28)
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For large r the equation becomes

d2ψ

dr2
+

2mEψ

�2
= 0

This equation is familiar in the form k2 = 2mE/�2 < 0, with solutions ψ =
exp(−kr). Substitution of this solution into (3.28) gives

dψ

dr
= −ke−kr = −kψ

d2ψ

dr2
= −k

dψ

dr
= k2ψ

and hence

k2 − 2k

r
+

2mE

�2
+

me2

2πε0�2r
= 0

Since this equation is valid for all r the respective sums that are dependent
and independent of r should individually be equal to zero, i.e.

k2 +
2mE

�2
= 0 and − 2k +

me2

2πε0�2
= 0

Thus

k =
me2

4πε0�2
=

(
1

r1

)
Bohr

and E = −k2�2

2m
= (E1)Bohr

Rigorous solution of the three-dimensional Schrödinger equation

∇2ψ +
2m

�2

(
E +

e2

4πε0r

)
ψ = 0

is achieved by separation of variables, writing

ψ(r, θ, φ) = R(r) · Y (θ, φ)

The radial equation has acceptable solutions only for integral values of the
principal quantum number n, related to the total energy by an equation

E = −constant

n2
= −E1

n2
, n = 1, 2, . . .

En = −
(

e4me

32π2ε2
0�

2

)(
1

n2

)

En − Em =

(
e4me

8ε2
0h

2

)(
1

m2
− 1

n2

)



120 CHAPTER 3. PERIODIC TABLE OF THE ELEMENTS

The angular dependent part of the wave function likewise has solutions char-
acterised by integral values of the two quantum numbers l and ml, known as
the angular momentum and magnetic quantum numbers respectively,

l = 0, 1, 2, . . . , (n − 1)

ml = l, l − 1, . . . ,−l, 2l + 1values

More complicated atoms have complicated wave functions. However, since
all atoms are centred around a nucleus it follows that one-electron wave
functions will all have the same angular dependence in all atoms. It means
that the hydrogen wave functions Y (θ, φ) will separate out of all atomic
wave functions. These one-electron wave functions, called orbitals will there-
fore be the same for all atoms and for this reason the different s, p, d, f
orbitals, derived from the H solution can be assigned to all other atoms. Their
shapes are determined by the values of the quantum number l. The nega-
tive values of the energy indicate that the electron is bound to the nucleus.
To uncouple it from the nucleus it is necessary to promote the electron to
the level E = 0, n = ∞. This ionization requires an amount of energy
−E1 = 22 × 10E−19J. The experimentally measured value agrees precisely
with the theoretical value.

Electronic states of wave functions with common n, but different values of
l and ml have the same energy and are said to be degenerate. Wave functions
with l = 0, 1, 2, 3 describe electronic states with different angular momenta
and are referred to as s, p, d, f states. The degeneracy of these states depend
on allowed values of ml and therefore amount to 1, 3, 5, 7 respectively.

Electron Spin

Solutions of Schrödinger’s equation for the hydrogen electron predict that
different states at the same energy level are distinguished by the quantum
numbers l and ml, which quantify the angular momentum of the electron in
quantities of

L2 = L2
x + L2

y + L2
z = l(l + 1)�2 (in total) Lz = ml� (in projection)

For any given l there are 2l+1 different values of ml, from −l to l. These pre-
dictions can be tested in Stern-Gerlach experiments. Electrons interact with
a magnetic field by virtue of their angular momenta. An electric charge (elec-
tron) only has a magnetic moment when it rotates, or has non-zero angular
momentum, and it can only interact with a magnetic field if it has a magnetic
moment. In a typical SG experiment a beam of evaporated metal atoms is
passed between the poles of a magnet. When a beam of silver atoms is used
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Figure 3.19: Schematic illustration of a beam of silver atoms split into two
when passed through an inhomogeneous magnetic field.

an unexpected result is obtained. As shown in Figure 3.19 the magnetic field
splits the beam into two components. All but one of the 47 electrons in a
silver atom are part of a spherically symmetrical core, with no net angu-
lar momentum. The observed magnetic effect must therefore be linked to
the single valence electron, which however, has l = 0 and hence zero angular
momentum, as well.

To account for the magnetic interaction it was necessary to postulate an
intrinsic magnetic moment arising from electron spin. If the electron were
like a classical spinning object the magnetic moment µz in the field direc-
tion would assume all values between ±µ. A continuous beam of atoms,
evenly spread around the direction of the incoming beam, is predicted to
emerge from the SG magnet; some atoms displaced in the direction of the
field and some in the opposite direction. What is observed instead is that
the beam is split into two distinct components. The observation implies
that the component Sz of the electron spin S has only two possible val-
ues, S+

z (up) and S−
z (down). The two possible values of Sz are multi-

ples of some fundamental unit of angular momentum; numerically Sz =
±�/2.

The same SG arrangement can be used to measure orbital angular momen-
tum. Atoms with different ml will respond differently to the magnetic field
and the beam is split into 2l + 1 bundles. The quantum number l can hence
be determined by counting the number of spots on the detecting screen, one
for each value of ml. A typical outcome is shown in Figure 3.20.

Angular momentum is a strictly conserved quantity in classical mechan-
ics, and the two new levels observed with silver atoms suggest that there is
an additional contribution of s� to the angular momentum, Lz, through a
quantum number s, such that 2s + 1 = 2, i.e. s = 1/2. As before, a quantum
number ms, with possible values between −s and +s describes the additional
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Figure 3.20: Stern-Gerlach experiment to demonstrate the resolution of elec-
tronic orbital angular momentum states in an inhomogeneous magnetic field.

angular momentum in projection, Sz = ±(1/2)�. The quantum-mechanically
conserved quantity becomes

J = L + S

only part of which (L) is accounted for by Schrödinger’s equation.

Schrödinger’s Equation and Spin The non-appearance of electron spin
as a solution of Schrödinger’s equation shows that in some sense the equation
is incomplete. The Schrödinger equation for a free electron consists of a time
and a space part

i�
∂Φ

∂t
= − �2

2m
∇2Φ (3.29)

or rearranged into (
2mi�

∂

∂t
+ �2∇2

)
Φ = 0

it appears as a combination of one linear and one squared operator, Ê and
p̂2, where

Ê ← i�
∂

∂t
and p̂ ← −i�∇

A linear Schrödinger operator would have the advantage of a wave equation
which is linear in both space and time derivatives. The most general equation
with the required form is

S = AÊ + B · p̂ + C = 0

such that S2 = 2mÊ − p̂2, i.e.

(AÊ +B · p̂+ C)2 = A2(Ê2)+ 2AB(Êp̂)+ 2AC(Ê)+ 2BC(p̂)+ B2(p̂2)+ C2
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To match the Schrödinger formulation, (2mÊ − p̂2), it is necessary that

A2 = AB = BC = C2 = 0

2AC = 2m

B2 = ±1

These conditions are clearly impossible if A,B and C are complex numbers,
but could be satisfied by square matrices. Typical examples are the Pauli
matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

and in particular

Bi =

(
σi O
O σi

)
where O is the 2 × 2 null matrix, and

A =

(
O O
I O

)
C =

(
O 2mI
O O

)

where I is the 2 × 2 unit matrix. In terms of these matrices the Schrödinger
equation becomes

E

(
O O
I O

)(
ψ
χ

)
+

(
σi O
O σi

)
pi

(
ψ
χ

)
+

(
O 2mI
O O

)(
ψ
χ

)
= 0

i.e.

E

(
O
ψ

)
+ (σ · p)

(
ψ
χ

)
+ 2m

(
χ
O

)
= 0

It is required that

Φ =

(
ψ
χ

)
is a two-component vector in order to allow matrix multiplication. By adding
the three terms the equation becomes(

σ.p 2m
E σ.p

)(
ψ
χ

)
= O

which is
(σ · p)ψ + 2mχ = 0

Eψ + (σ · p)χ = 0
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It follows that ψ and χ are not linearly independent,

χ = −(σ · p)ψ

2m

whereby

Eψ =
(σ · p)2ψ

2m

Since σ2 = 1, this is simply the Schrödinger equation

(2mE − p2)ψ = 0

=⇒
(

2mi�
∂

∂t
+ �2∇2

)
ψ = 0

This may well appear not to produce anything new until the electron is
examined in an external magnetic field. The wave equation then takes the
form

i�
∂ψ

∂t
= − �2

2m

(
∇− ieA

�c

)2

ψ +
�e

2mc
(σ · B)ψ + V ψ

which is the Pauli equation, first obtained empirically by the addition of an
extra operator to the Schrödinger Hamiltonian to account for electron spin.
The importance of this equation lies in the term that reflects an intrinsic
magnetic moment

µ =
�e

2mc
σ

which is exactly as required to explain the fine structure of electronic spectra
in terms of a spin angular momentum of σ/2 and a Landé factor of 2. The
matrix representation of the spin operator requires the spin state of a particle
to be represented by row vectors, commonly interpreted as spin ‘up’ or ‘down’.
An arbitrary state function Ψ must be represented as a superposition of spin
up and spin down states

|↑〉 =

(
1
0

)
, |↓〉 =

(
0
1

)

Ψ = ψ+ |↑〉 + ψ− |↓〉 =

(
ψ+

ψ−

)

This two-component wave function is known as a spinor.
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Exclusion Principle To understand how electrons with spin interact, it
is useful to examine a system consisting of two electrons, such as the helium
atom. Let this two-electron system be described by the wave function, in
space coordinates, Φ(r). If the electrons are interchanged the wave function
will in general be different, (Φ′), but since the electrons are identical (ignor-
ing spin) the energy of the system will not be affected. The wave functions
therefore belong to degenerate levels.

Suppose that the effect of interchanging of electrons is correctly described
by some operator, π, i.e. πΦ = Φ′. By repeating the operation the situation
is reversed and the system returns to its initial state, i.e.

πΦ′ = π2Φ = Φ

which shows that π = ±1. The wave function is said to be either symmetri-
cal (π = 1) or anti-symmetrical with respect to the interchange of electron
coordinates. Now let Φa(r1) and Φb(r2) be one-electron wave functions for
electrons a and b at coordinates r1 and r2 respectively. The combined func-
tion can then be formulated in terms of the product functions

ψ1 = Φa(r1)Φb(r2) and ψ2 = Φa(r2)Φb(r1)

or a linear combination of these. It is noted that the functions

ψ± =
1√
2
(ψ1 ± ψ2)

correctly describe wave functions that are either symmetrical or anti-sym-
metrical with respect to electron interchange. The factor 1/

√
2 ensures

normalization.
For two identical particles (Φa = Φb) it is noted that ψ+ approaches a

maximum at r1 = r2, whereas ψ− approaches zero. This means that two
electrons in the same state would tend to stay together if the wave function
is symmetrical and to avoid each other when the wave function is anti-
symmetrical under exchange. It follows that the function ψ(r) is automati-
cally symmetrical and that the anti-symmetric function vanishes identically.
To arrive at the correct formulation of the ground state of the helium atom
it is necessary to also take into account the effect of spin, represented by the
functions α and β. There are four possibilities, according to the electrons
having the same spin, either up or down:

α(1)α(2) or β(1)β(2)

and states with the spins opposed:

− 1√
2
{α(1)β(2) ± β(1)α(2)}
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It is reasonable to expect that each of these spin states could occur in com-
bination with the ground-state space function ψ+(r) to yield four different
levels at the ground state. However, for the helium atom only one ground-
state function can be identified experimentally and it is significant to note
that only one of the spin functions is anti-symmetrical, i.e.

ψ−(s) =
1√
2
{α(1)β(2) − β(1)α(2)}

Since ψ+(r) is symmetrical, this suggests that the total wave function ψ =
ψ+(r)ψ−(s), and anti-symmetrical. There is no theoretical ground for this
conclusion, which is a purely empirical result based on a variety of experimen-
tal measurements. However, it seems to apply everywhere and to represent
a law of Nature, stating that systems consisting of more than one particle of
half-integral spin are always represented by anti-symmetric wave functions.

To ensure that many-electron wave functions are anti-symmetrical, each
electron must be in a different quantum state. This result is known as Pauli’s
exclusion principle, which states that no two electrons in a many-electron
system can have all quantum numbers the same. In the case of atoms it is
noted that since there are only two quantum states of the spin, no more than
two electrons can have the same set of orbital quantum numbers.

3.2.7 Aufbau Procedure

The currently most popular form of the periodic table is shown in Figure 3.21.
The numbering of the groups from 1 to 18 is considered best to emphasize the
relationship between the periodic position of an element and the electronic
configuration of its atoms.

The energy levels of a hydrogen electron, according to the Schrödinger
solution increase in the order

1s< 2s< 2p< 3s< 3p< 3d< 4s< 4p< 4d< 4f < 5s< 5p< 5d< 5f, etc.

The exclusion principle restricts the number of electrons per energy level to
a pair with opposed spins. An empirical rule, proposed by Hund, requires
that degenerate levels be singly occupied by electrons of parallel spin, before
pairing occurs. It is commonly accepted that the electronic configuration of
any element, up to the second most energetic electron, is identical to that of
the element at the preceeding position in the periodic classification. The final
electron goes into the lowest unoccupied level. Application of these rules to
derive the electronic configuration of any element, starting from hydrogen, is
known as the Aufbau procedure (building up procedure).
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Figure 3.21: Modern version of the periodic table. The most recent convention
is to number groups from 1 to 18.

The scheme works well in terms of Schrödinger’s solution, up to element
18. Instead of the 3d level however, the final electron of K goes to 4s. Under-
graduate teachers explain that interelectronic effects like penetration, screen-
ing and repulsion, not operative in hydrogen, are responsible for switching
the levels ns < (n − 1)d < (n − 2)f , that seems to account for the block
structure of the periodic table in terms of a modified Aufbau sequence. The
s, p, and d blocks thereby consist of groups 1–2, 3–12, and 13–18, respec-
tively. The f block fits between groups 2 and 3 and is placed separately for
printing economy only.

Spectroscopically measured electronic configurations confirm the broad
classification, but not the detail. The transition series (d block), for instance,
do not end in group 12. The coinage metals of group 11 all have outer con-
figurations of d10s1, suggesting completion of d levels in group 10. However,
the configurations Ni(3d84s2), Pd(4d10) and Pt(5d96s1) are all different. Still,
groups 11 and 12 clearly fit better with the s block.

The number of electrons in a closed shell of principal quantum number n
is given by the sum 2

∑n−1
l=0 (2l+1) = 2n2, which is related to but not identical

with Rydberg’s empirical series (3.25). According to the Schrödinger formula,
closed shell arrangements occur at atomic numbers Z = 2, 10, 28, 60, etc.
These are not the numbers, 2, 10, 18, 36, etc. at which elemental periods
come to a close according to the empirical rules of Langmuir and Bury.
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3.3 Conclusion

The importance of the periodic table of the elements in the development of
20th century chemistry cannot be overemphasized, despite the fact that it
led to a complete misreading of the chemical properties of the ‘inert’ gases
[48]. Systematic inorganic chemistry without a periodic table is impossible to
imagine. Of even more importance is the development of quantum theory, in
direct response to the electronic structure of atoms as revealed by the peri-
odic classification. The belief of overzealous commentators that the periodic
table has been reduced to a by-product of quantum theory, is belied by the
facts.

Despite serious discrepancies between the Schrödinger model and the
observed periodic table, it is pretended that a complete theory of the periodic
table exists. To quote one authority [49]:

We imagine the bare nucleus of atomic number Z, and then feed
into the orbitals Z electrons in succession. The order of occupa-
tion is

1s2s2p3s3p4s3d4p5s4d5p6s . . .

and each orbital can accommodate two electrons. This order of
occupation is approximately the order of energies of the individual
orbitals, because, in general, the lower the energy of the orbital,
the lower the total energy of the atom as a whole when that orbital
is occupied. However, there are complicating effects arising from
electron-electron repulsions that are important when the orbitals
have similar energies (such as 4s and 3d orbitals near Ca and
Sc), and we must take special care. . . electron-electron repulsions
are comparable to the energy difference between the 4s and 3d
orbitals, and a simple analysis no longer works.

The less simple analysis that works, is never presented, because it does not
exist.

It must be concluded that a periodic system based on the energy spec-
trum of the hydrogen electron, according to Schrödinger’s solution, can-
not be reconciled with the observed periodic table of the elements. It fails
because it ignores all interaction with the environment and no amount of
patchwork is ever going to rescue this situation. It is a myth that chem-
istry derives from quantum theory. More fundamental than both is the peri-
odic table that reduces the properties of matter to a number basis, which
is revealed only peripherally in the differential equations of quantum
theory.
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The failure of quantum theory to account for the details of nuclear struc-
ture relates to a more elaborate number system involved there. Sporadic
efforts to classify sub-atomic species into periodic groups have not succeeded
so far and the resolution of the problem lies in the future.



Chapter 4

Structure of Atomic Nuclei

4.1 Introduction

The search for a nuclear structure started with the first observation of
radioactivity. As described in the previous chapter, three types of natural
radioactivity are observed.

In α-decay, a helium nucleus is emitted from the radioactive nuclide with
a change in both atomic and mass numbers:

(Z,A) → (Z − 2, A − 4) + 4
2He

In β-decay, a negative electron is emitted where upon the nuclear charge
increases by one unit, without change in mass number:

(Z,A) → (Z + 1, A) + β−

In γ-decay an electromagnetic photon is emitted without change in atomic
or mass number:

(Z,A)∗ → (Z,A) + hν

The naturally occurring radio elements occur in series that represent
the decay steps, starting from a parent nucleus and ending with a non-
radioactive, stable nuclide. The atomic and mass numbers of any member
of a radioactive series are related to those of a precursor by the equations

A = A0 − 4Nα

Z = Z0 − 2Nα + Nβ

where Nα and Nβ are the numbers of α and β particles emitted. These
expressions obey the mass-number relationship A = 4n + m, that gives rise

131
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to four series, defined by m = 0, 1, 2, 3, known as the 4n, 4n + 1, 4n + 2 and
4n + 3 series. The starting and end members of the four series are

232Th → 208Pb
237Np → 209Bi

238U → 206Pb
235U → 207Pb

The 4n+1 series does not occur in Nature, and starts from an artificially pro-
duced nuclide. The remaining three series account for most naturally occur-
ring radioactive nuclides, not formed by cosmic radiation. Those unaccounted

for are 4n
(40

19
K(β), 144

60Nd(α), 176
71Lu(β), 192

78Pt(α)
)
, 4n + 2

(50

23
V(EC), 138

57La(β),

4n+ 3
(87

37
Rb(β), 115

49In(β), 147
62Sm(α), 187

75Re(β)
)
. It is noticable how the 4n+ 1

series is, once more, not represented. The symbol EC designates electron
capture, that occurs when an atomic nucleus absorbs an orbital electron to
reduce its nuclear charge by one unit.

The energetics of α-decay is commonly discussed as a tunnelling phe-
nomenon that assumes the particle confined to a box of nuclear dimensions.
However, there is no evidence that free α-particles occur in atomic nuclei
and it would be meaningless to consider their potential energy in this region.
The energy of the total nucleus is reduced by the process that creates an
α-particle.

The same argument applies to β decay. The fact that electrons are emit-
ted does not imply their free existence in the nucleus. The fusion between
proton and electron in the nucleus produces a new species, p + e → n, with
the disappearance of their individual identities. The only problem with this
formulation is that all of the particles involved here have half-integral spins.
The neutrino was invented to ensure the conservation of angular momentum.

4.2 Mass and Binding Energy

The discovery of isotopes cleared up the problem of fractional atomic weights
and showed that the mass of each atom is close to an integral multiple of
a basic atomic mass unit, which is the approximate mass of a nucleon. By
international agreement the atomic mass unit is defined as 1/12 of the mass
of 12C. The energy equivalent is 931.481 MeV.

The atomic mass unit is about 0.8% smaller than the average mass of
a nucleon. This means that an energy equivalent to 0.8% of their mass is
needed to free nucleons from the nucleus. The energy needed to split up a
nucleus completely into free protons and neutrons is called its binding energy.
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In practice it is the binding energies of atoms rather than of smaller nuclei
that are measured. The binding energy (EB) therefore contains a contribution
from electron mass, i.e.

EB = c2(ZmH + Nmn − M) (4.1)

where mH and mn are the masses of hydrogen and a neutron, respectively.
N = A−Z. The electron mass contributions to atomic mass M and to ZmH

cancel.
Nuclear mass data are obtained mainly by mass spectrometry, including

measurement of mass differences between species with equal mass number,
such as 16O+ and (12C 1H4)

+. The relationship E = mc2 has been tested
exhaustively in terms of such measurements and its validity confirmed exper-
imentally. Many tabulations of mass excess (ME) and binding energy of
nuclides fail to emphasize that nuclear binding energy must be calculated
from mass excess on the 1H rather than 12C mass scale. The convertion of
ME on 12C scale to binding energy therefore consists of

BE = −ME + (Zmp + Nmn)

with mp = 7288.696 keV, mn = 8071.596 keV. A plot of binding energy per
nucleon [50] is shown in Figure 4.1.
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Figure 4.1: Binding energy per nucleon (MeV) shown as a function of mass
number. Note the change of scale at A= 70. The small inset shows the semi-
empirical binding-energy curve that fits experimental values surprisingly well.
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The graph displays three important features. The fact that atomic masses
are close to integral multiples of the atomic mass unit suggests that the
binding energy per nucleon should be independent of nuclear size. This infer-
ence is well supported by observation, with a mean of about 8MeV per
nucleon for all atoms.

There is a maximum around A = 60, with a slow decrease as A increases
above 60. The existence of the maximum shows that energy would be released
in either the fusion of two light elements to form a heavier one or in the fission
of a heavy element to form two lighter elements.

There are secondary peaks at the nuclei 4
2He, 12

6C, 16
8O, 20

10Ne, and 24
12Mg,

made up of integer numbers of α-particles. The most prominent of these is
that of 4He itself. 8

4Be decays very rapidly into two α-particles.

4.2.1 Models of the Nucleus

Attempts to rationalize the shape of the binding-energy curve led to the
formulation of three simple nuclear models and a semi-empirical formula that
reproduces the binding curve rather well. The physical interpretation of the
various terms in the semi-empirical formula are based on different models,
suggesting that the three models represent different aspects of the nuclear
structure and that each of them gains prominence over a limited mass range.
Each of these will be discussed in turn.

Alpha-particle Model

The secondary maxima observed in the binding curve may be interpreted
to mean that the relevant nuclei might be treated as groups of α-particles.
The relatively high stability of these nuclei, and the large binding energy of
4He, make it plausible to assume that pairs of protons and neutrons become
associated together inside the nucleus, for short periods as α-particles.

The average binding energy per nucleon is about 8MeV, and that for
an α-particle is 7MeV. So, it seems plausible that a nucleus could consist
of α-particles bound together with energies of about 1MeV per nucleon.
About 7/8th of the binding energy per nucleon would then be accounted for
if the nucleons were grouped into α-particles, with relatively weak interac-
tion between α-particles. Quantitative details of the model have not been
calculated.
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The Fermi Gas Model

In another approach the nucleons are regarded as noninteracting Fermi par-
ticles, like the sea of electrons in a metal. The size of the well is based on the
nuclear radius derived from the Rutherford model of the atom,

R = r0A
1
3 (4.2)

The spherical potential well of volume 4πr3
0A/3 and depth sufficient to accom-

modate all nucleons to a Fermi level at −8Mev with respect to the exterior
is assumed to accommodate all nucleons. The energy levels of protons and
neutrons are alike, but not identical, because of a Coulomb force that affects
only protons. Both protons and neutrons obey the exclusion principle, so
that filling of the lowest and subsequent pairs of energy levels corresponds
to the formation of α-particles. The saturation of each pair of levels corre-
sponds with the formation of the next α-particle. After a level is filled the
next nucleon must go into a higher level which reduces the average binding
energy per nucleon and a dip occurs in the EA/A curve.

This α-particle effect becomes less visible when the proton and neutron
levels get out of step and the nth proton level coincides with the n−1 neutron
level. This mismatch becomes apparent as A > 40. Schematic nucleon levels
are shown in Figure 4.2.

Because of electrostatic repulsion proton levels are increasingly pushed
upwards and heavy nuclei contain more neutrons than protons. All that
remains of the α-particle effect is pairing, which causes nuclei with an even
number of protons and an even number of neutrons to be more tightly bound
than those with an odd number of each.

The Liquid-drop Model

Because of the short range of the nuclear force, nucleons only interact with
their closest neighbours, but because of large vibrations interaction between
nucleons is more like the interaction in a liquid rather than a crystal. In
terms of this model the nucleus is held together by surface tension, work-
ing against Coulomb repulsion between protons, that tends to disrupt the
nucleus. The model has been particularly useful in visualizing nuclear fission.
Whereas the disruptive Coulomb repulsion increases with A, the stabilizing
surface effects decrease. Sufficiently heavy nuclei may therefore be predicted
to spontaneously fracture into smaller fragments and less heavy nuclei should
split if excited into the proper kind of oscillation. In many cases such excita-
tion is brought about by the absorption of a slow neutron. The shape of the
binding-energy curve explains the release of energy when the heavy nucleus
splits into two roughly equal parts, as is the case for 235U.
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Figure 4.2: Nuclear proton and neutron energy levels to show the low-energy
forms corresponding to integral numbers of α-particles in the nucleus.

4.2.2 The Semi-empirical Mass Formula

A formula that matches nuclear binding energies quite well was proposed by
Von Weizsäcker (1935), in the form

EB = a1A − a2A
2/3 − a3(N − Z)2

A
− a4Z

2A−1/3 ± δ(A) (4.3)

where a1, a2, a3, and a4 are adjustable parameters and δ(A) is a function of
A chosen to account for the pairing effect. Combined with (4.1) a formula
for the mass of each nucleus is obtained as:

M = ZmH + Nmn − EB

c2
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Each adjustable parameter has a well-defined physical interpretation, with
values adjusted to agree with experimental observation.

The first two terms of (4.3) are based on the liquid-drop model. The num-
ber of nearest neighbours does not depend on the total number of nucleons
and the binding energy per nucleon is therefore the same in all nuclei. The
contribution to the total binding energy is simply proportional to the mass
number. This is not a good assumption for light nuclei that contain a small
number of nucleons.

The contribution made by nucleons in the surface of the nucleus to the
binding energy, must clearly be less than of those in the interior. A nucleus
of radius R has surface area of 4πR2 = 4πr2

oA
2/3. Hence the correction term

−a2A
2/3.

The third term is based on the Fermi gas model of the nucleus. Because
neutron and proton levels are almost equal, there is a tendency, if electrostatic
interaction is ignored, for the binding energy to be greater when N = Z. To
understand the effect of a neutron excess on this term it is supposed that
a situation of balance (N = Z) is disturbed by conversion of protons into
neutrons, and vice versa. The number so converted will be N − Z. For each
conversion the binding energy decreases by an amount which is proportional
to the fractional difference between the highest occupied neutron and proton
levels, (N − Z)/A.

The electrostatic effect is taken into account by the next term. The energy
of interaction between two point charges Ee ∝ q1q2/r. For the charge distri-
bution represented by Z protons in a sphere of radius roA

−1/3 it is assumed
that additional protons are added one by one to those already smeared out
over the nucleus. Since there are Z(Z−1)/2 pairs of protons the work required
to bring the protons together is

W =
Z(Z − 1)e2

8πε0(r)av

If the protons are uniformly distributed throughout a nucleus of radius R,
(r)av is proportional to R and hence to A1/3, so that the Coulombic interac-
tion term may be written as −a4Z

2A−1/3.
The term ±δ(A) allows for the pairing effect. The positive (negative) sign

applies for nuclei with both N and Z even (odd). When A is odd this term
is zero.

The binding energy curve calculated from parameters that best fit the
observed masses is shown in Figure 4.1.
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4.2.3 Nuclear Stability

The cornerstone of all classical atomic theories was the permanence of the
atom. The first indication that this atomic axiom was wrong, came with the
discovery of radioactivity. It was finally destroyed by the detection of cosmic
rays, that revealed atomic instability on a cosmic scale. That the illusion
of atomic permanence persisted for so long is probably related to the fact
that the naturally occurring radioactive nuclei are comparatively rare and
of high atomic mass. The more common elements occur in a narrow band
within certain limits of neutron to proton ratios, reasonably well defined
empirically, but theoretically poorly understood. The common mapping to
define the stability of naturally occuring nuclides, known as a Segré chart is
shown in Figure 4.3.

Although the region of stability is not precisely delineated, three general
regions of instability are easily identified. Nuclides with (A − Z) : Z ratios
below the upper limit for stable nuclides, decay by either positron emission
and/or electron capture:

a
pX − β+ → a

p−1Y

Those with ratios larger than the field of stability decay by β emission:

a
pX − β− → a

p+1Y

Nuclides with Z > 83 decay in a sequence of steps, but mainly by α emission:

a
pX − α → a−4

p−2Y

A few α-unstable nuclides with Z < 83 are known, but they have not been
categorized systematically. The effect of β+ decay is to increase the ratio
(A − Z)/Z, while β− decay decreases this ratio. The effect of α decay is to
increase (A−Z)/Z and decrease Z. In all cases the radioactive decay serves
to produce a daughter nucleus closer to the region of stability.

A number of empirical rules for the distribution of stable nuclides, iso-
topes and isotones (nuclides with the same number of neutrons) emerge from
Figure 4.3.

1. For even Z there are always at least two values of N = A − Z which
give stable isotopes, with the exception of 9

4Be.

2. For odd Z there are never more than two stable isotopes.
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Figure 4.3: The stable nuclides and their composition in terms of protons and
neutrons. The straight line represents the ratio (A − Z)/Z = 1.

3. For even N there are always at least two values of Z which give stable
isotones, except N = 2 and 4.

4. For odd N there are never more than two stable isotones.

The only odd−Z elements that form stable nuclides with the same number
of protons and neutrons are H, Li, B, and N. For large Z the only stable
nuclides with equal proton and neutron numbers are of even Z.

It is clear from these rules that the behaviour of neutrons and protons in
an atomic nucleus is essentially the same. The missing elements Z = 43 and
61 are the analogues of the missing isotones N= 19, 21, etc. The large number
of stable isotopes of even-Z elements is the analogue of the large number of
stable even-N isotones. The number of even-Z isotopes and even-N isotones
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reach local maxima for Z or N = 20, 28, 50, and 82, referred to as magic
numbers. These observations support the view that protons and neutrons
are two forms of a more fundamental particle, the nucleon.

For heavy nuclei there is an increasing excess of neutrons over protons,
also described as an asymmetry factor that has an effect on the stability of
a nucleus. An empirical formulation of this energy term

Eas ∝ (A − 2Z)2

A

has been discussed many times, e.g. [51]. The asymmetry term expresses the
fact that, in a quantized system of neutrons and protons, any excess neutrons
will be pushed up to levels occupied by neutrons only (compare Figure 3.2).
The resulting nuclei are therefore not stabilized by the α-particle effect. If
the (A − 2Z) excess neutrons are regarded as producing a deficit of binding
energy, the fraction of nuclear volume so affected is (A − 2Z)/A. The total
deficit is proportional to the product of the two factors

Eas = −aa
(A − 2Z)2

A

where aa is to be evaluated empirically. The Coulomb energy,

Ec = −ac
Z2

A
1
3

is affected by the asymmetry factor such that

∆E = Ec − Ea = aa
(A − 2Z)2

A
− ac

Z2

A
1
3

For each value of A there is a minimum, hence(
∂(∆E)

∂Z

)
A

= 0

i.e.

4aa
(A − 2Z)

A
− 2ac

Z

A
1
3

= 0

Hence
aa

ac

=
1

2

ZA
2
3

(A − 2Z)

This ratio has been determined empirically equal to 32, such that the neutron
excess

A − 2Z =
1

2

ZA
2
3

32
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With the rough rule A � 2Z this expression reduces to

A − 2Z � A
5
3

128
= 0.0078A

5
3

Alternatively,
A − 2Z = 0.025Z

5
3 (4.4)

Cosmic Rays

It was observed early in the previous century that experiments involving
electroscopes consistently registered some residual leak, caused by ionizing
radiation. The major cause of this leakage could be traced to radioactive
impurities in the earth. Placing ionization chambers in high-altitude bal-
loons however, showed that although the ionization decreased with altitude,
it reached a minimum at about 2,000 m and then started to increase steadily
with height. It was concluded that some form of penetrating radiation that
comes to the earth from outside was partially absorbed by the atmosphere
and therefore becomes more intense at high altitudes.

It is known today that cosmic-ray flux almost certainly fills the Milky
Way and corresponds to an energy density in interstellar space of about
1MeV m−3 (10−13Jm−3) [52]. Most cosmic rays consist of high-energy pro-
tons, α-particles and heavier nuclei up to an atomic number 26 (iron),
although much heavier particles are also observed. The mean energy of cos-
mic ray protons is about 2 GeV, but cosmic-ray particle energies up to 1011

GeV (30 J) have been measured.
Primary cosmic rays consist almost entirely of fully ionized atomic nuclei

moving at relativistic speeds. In the atmosphere these particles have fre-
quent collisions with stationary nuclei, struck with such violence that nucle-
ons may become dislodged, leaving the residual nucleus in a highly excited
state. A great many spallation fragments may evaporate from the excited
nucleus as fast-moving singly-charged particles, several slower and multiply-
charged fragments, together with nucleons, mesons and other exotic particles.

A fundamental discovery arising from cosmic ray research was the detec-
tion in 1932 of a new particle. It was noticed that among cosmic ray tracks in
an expansion chamber were some, identical to those produced by an electron,
but deflected by a magnetic field in a direction opposite to that expected for
a negatively charged particle. The tracks appeared to be formed by positive
electrons, now called positrons. When hard x-rays are absorbed by matter the
quantum of radiation is sometimes completely absorbed by an atom which
simultaneously emits a positron and an electron. This process is known as pair
production. If the absorption takes place in a cloud chamber a paired track



142 CHAPTER 4. STRUCTURE OF ATOMIC NUCLEI

Figure 4.4: Schematic drawing of pair production of electron and positron in
a cloud chamber and deflected by an applied magnetic field.

may be observed to come from the absorbing atom in a magnetic field. Simi-
lar pairs, shown schematically in Figure 4.4, are sometimes seen in cosmic-ray
photographs.

The discovery of heavy electrons now called mesons, has a striking simi-
larity to the discovery of the positron, since the existence of both types was
predicted theoretically, before being recognized during cosmic-ray studies.
Mesons and positrons will be discussed in more detail later on.

4.2.4 Nuclear Synthesis and Abundance

A central, but elusive aim of nuclear research for almost a century has been
the understanding of nuclear synthesis, particularly in the hands of astro-
physicists. The dearth of experimental data to drive such enquiry has often
resulted in the bending of synthesis theory to follow current thinking in cos-
mogony, rather than the other way around. This situation has not changed
materially since the publication of two comprehensive reviews of the prob-
lem in 1950 [53, 54], after the decline of Lemâıtre’s, but before the advent of
Gamow’s big-bang theories. This period provided an opportunity to consider
rival theories without prejudice.

The back-to-back reviews [53, 54] compared the strengths and weak-
nesses of two models and reached opposite conclusions. Ter Haar concluded
that “the equilibrium theory offers a better solution how to account for
the observed abundances of the chemical elements than the α − β − γ the-
ory”.1 Not surprisingly, Alpher and Herman argued for “a number of indi-
cations that element formation probably took place in an early prestellar

1The α−β − γ notation refers to the seminal big-bang paper under the names Alpher,
Bethe, and Gamow, The origin of chemical elements, published on 1 April 1948 [55].
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state of the universe, in which it is difficult to conceive of the existence for a
sufficiently long time of the physical conditions required for an equilibrium
among nuclei.” They added: “Difficulties of the kind mentioned and in partic-
ular the freezing-in problem have led to the development of non-equilibrium
theories of element formation, unattractive as they may be in requiring the
discussion of specific nuclear reactions.”

Alpher’s preference is clearly conditioned by cosmology rather than sci-
ence, but in the event it led to the total elimination of the equilibrium model
from subsequent enquiry. A complicating factor in the argument is the con-
tinuously changing evidence provided by astronomical observation. In both
theories, the success is measured in terms of predicted nuclear abundances
and invariably these predictions depend on the nature and characteristics of
known types of star, assumed as the seat of nucleogenesis. As more powerful
telescopes identify new types of heavenly body, new possibilities of nuclear
synthesis open up and the model has to be reworked. This process contin-
ues for the α − β − γ model only. The equilibrium model was abandoned
before the discovery of quasars and black holes, that obviously provide more
attractive environments for nuclear synthesis. The only mechanism for the
dispersal of freshly synthesized material is still assumed to be supernovae
and this assumption could also stand reassessment.

The Abundance Criterion

The main premise of both models is that a successful theory should predict
the correct cosmic abundances of all nuclides. This idea, that abundances
hold the clue to nucleogenesis probably stems from a proposal by Harkins in
1915 that the abundance of an element depends on two factors:

1. The structure of the nuclei of its atoms

2. The relative abundance of the materials used in the formation of the
element in question

The Harkins theory of nuclear structure [56] was formulated before the
discovery of the neutron, but predicted the existence of this particle [57].
An atom was described in terms of a mass number, P , that specifies the
number of protons in a nucleus, an atomic number Z, that specifies the num-
ber of extranuclear electrons and the number of nuclear electrons, N [58].
Another fundamental quantity was defined as the isotopic number

n = P − 2Z = 2N − P = N − Z

which today would be called the neutron excess of a nucleus, (4.4).
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The essence of Harkins theory is that all atomic nuclei are built up from
α-particles and clusters Hx of hydrogen atoms, with x = 0, 1, 2, 3 to yield
mass numbers of 4n, 4n − 2, 4n ± 1, together with charge compensating
electrons. The formula was shown to hold for the most abundant isotopes of
the elements of atomic number less than 30.

In his early work Harkins tested his ideas against the prediction, made
on the basis of the He-H nuclear model, that there should be a marked dif-
ference in the abundance of elements with even and odd atomic numbers,
respectively. This prediction was tested against elemental abundances mea-
sured in meteorites, which showed that the even-numbered nuclei were more
abundant by a factor of 70.

In his later work Harkins estimated the added stability of helium by
comparison to the mass of four hydrogen atoms and introduced the con-
cept of a packing fraction that later led to the theory of nuclear fusion and
defines the source of stellar energy. On the basis of nuclear build-up by the
addition of α-particles Harkins predicted the existence of seven unknown
stable nuclides. The subsequent discovery of all seven rates with the pre-
dictions that gained acceptance of Mendeléeff’s table in the scientific world.
Harkins discovered [59] a classification of the stable nuclides in terms of the
ratio N/P and showed that this ratio never exceeds the value 0.62 in atomic
species. The same classification was rediscovered independently many years
later [5] and the maximum was shown, more precisely, to be the golden ratio
τ = 0.6180 . . ..

A summary of the scheme of nuclear synthesis in terms of what was
termed the principle of regularity and continuity of series was published in
1949 [60].

Cosmic Abundance

Although the models of Harkins are now all but forgotten, the central idea
that any theory of nuclear synthesis should account for the observed abun-
dancies of nuclides, remains. Analytical techniques have been refined to the
point where cosmic abundances can be stated with confidence for all natu-
rally occurring nuclides. Cosmic abundances are derived from a variety of
measurements on systems under vastly different conditions, e.g. meteorites,
cosmic rays, stellar spectra, interstellar clouds and nebulae, supernova rem-
nants, the earth’s crust, the surface of the sun, and others.

Abundance stipulates the fraction of a given sample that represents the
species of interest. To define cosmic abundance it is therefore necessary to
find an agreed reference standard accessible in all situations listed above. In
modern work the mass density relative to 106 silicon atoms is used as the
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standard. The mass density is defined in terms of the molar atomic mass of
species j,

Wj = mj/mu (mu = m(12C)/12 = 1/NA = 1.66 × 10−27kg)

=
[
ZjmH +

(
Aj − Zj

)
mn − Bj/c

2
]
/mu

For 12C
W (12C) · mu = m(12C) = 6mH + 6mn − B(12C)/c2

i.e.

B(12C)

m(12C)
=

6(mH + mn)NA

12
− 1

=
WH + Wn

2
− 1

Using this relationship, the expression for Wj reduces to

Wj =
1

mu

[
ZjmH +

1

2
Ajmn − Zjmn +

1

2
Ajmn − Bj/c

2
]

=
1

mu

[
ZjmH − Zjmn +

Ajmn

2
− AjmH

2
− Bj

c2

]
+ Aj

(mn + mH

2

)
NA

=
1

mu

[(
Zj − Aj

2

)(
mH − mn

)]
+ Aj

(Wn + WH

2

)

= Aj + Aj

[
B
(12

C
)
/12 − Bj/Aj

muc2

]
+

(
Zj − Aj

2

)(
WH − WN

)
Because of the small difference between proton and neutron mass the last
term can be ignored. Let Nj be the number density of species per unit
volume. The mass density becomes ρm = Njmj. For a mixture of species
ρm =

∑
j NjWj/NA, which becomes

ρm =
∑

j

(
NjAj

NA

)(
1 + bj

)

where

bj =
B
(12

C
)− 12Bj/Aj

m
(12

C
)
c2

To obtain a density independent of composition the small factor, bj is set to
zero. Hence

ρ =

∑
j

(
NjAj

)
NA
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and the nuclear fraction for species j is defined as

Xj =
NjAj

ρNA

Finally, the ratio of the number of nuclei of species j to the total number of
nucleons in the system

Yj =
Xj

Aj

=
Nj

ρNA

which is a mole fraction.
Abundances on the Si6 scale are defined as

log yi = log fSi + log Yi

For ySi = 106 and assuming YSi = 2.529×10−5 as the mole fraction of silicon,
log fSi = 10.5971.

The Anders-Grevesse [61] table of cosmic abundances, used in Figure 4.5,
is based on this scale. The cosmic abundances of all non-radioactive nuclides
are plotted in Figure 4.5 according to the (mod 4) classification of Harkins.
The bottom frame is a composite of the three upper frames. There are two
unmistakable features:

1. The three series exhibit the same trends.

2. For nuclei of comparable mass, abundances decrease in series order
4n > 4n + 2 > 4n ± 1.

Nucleogenesis

The modern view of nucleogenesis [62] discounts the equilibrium model as
a viable proposition, having been discarded on the strength of an earlier
analysis [63], summarized as follows [64]:

The general trend of these isobaric abundances clearly approxi-
mates an exponential decrease with increasing A, until A ∼ 100,
above which the relative abundance is roughly independent of A.
There is no overwhelmong distinction between even-A and odd-A.

It was concluded that, in “theories which invoke a great event rather than a
continuum of creation” equilibrium conditions of synthesis would lead to an
exponential decrease in abundance, such that for heavy nuclei the predicted
abundance “is ∼ 1050 smaller than the observed abundances”.
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Figure 4.5: Cosmic abundance of the stable nuclides.

On re-examination of the abundances shown in Figure 4.5, there is little
evidence to support these conclusions. There is a clear distinction between
even-A and odd-A nuclei, already noted very early on [65], as well as between
A = 4n and A = 4n + 2 nuclei. These differences are most prominent at
A < 150 and disappear altogether for the heavy nuclei. This is the exact
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behaviour to be expected for equilibrium systems that develop from different
starting materials, but use a common building block.

It is instructive to examine the model that was used to simulate nuclear
synthesis in a state of statistical equilibrium which was subsequently frozen
down [53]. The probability of the system being in a given quantum state with
N neutrons and Z protons with chemical potentials µ and λ respectively is
given by the grand canonical ensemble

e[µN+λZ−E(N,Z)]/kT

with partition function

Q =
(2πAkT )3/2g

h3

that treats the system as an ideal gas of protons and neutrons. Qualitatively,
the concentration of nuclei in the ground state is given by

cA = QeµA/kT = bA3/2e−cA

which represents the abundance as a function of mass number. The predicted
exponential decrease of abundances is shown for the 4n series of nuclides in
Figure 4.6. The curve of Figure 4.6 has b = 106 and c = 1/6. These parameters
have been selected simply to demonstrate a measure of resemblance with
observed abundances. Because of the scatter, it is no better and no worse
than any other approximate smooth curve through the points. It shows that
an exponential function need not be such a disastrously wrong predictor
of abundances as to discount all equilibrium models, particularly if nuclear
synthesis is driven by neither a great event nor continuous creation. The
obvious resemblance between the abundance curves of the 4n, 4n + 2 and
4n ± 1 series, shown in Figure 4.5, points to an equilibrium model.

Detailed comparison of the models of nucleogenesis is complicated by
the two assumptions that cosmic abundance is the same as solar system
abundance [62] and that all nuclear synthesis after the big bang has happened
in the familiar types of star that eventually disintegrate as supernovae. The
second assumption is the most problematical. It provides the theoretical basis
of the non-equilibrium or big-bang model of nuclear synthesis. It assumes
that the big bang produced all matter in the form of light elements, mainly
hydrogen and helium. Initially [66] it was assumed that all nuclides originated
from the big bang, but the difficulty to bridge the gap due to the non-
existence of nuclides of mass number 5 and 8 was interpreted to prevent any
significant build-up to heavier elements by proton and neutron capture in
the limited few minutes of reaction time.
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Figure 4.6: Cosmic abundances of the non-radioactive nuclides with A = 4n
on a logarithmic scale. The superimposed curve represents the abundances
a = bA3/2 exp(−cA) with b = 106, c = 1/6.

The modern big-bang model postulates that all matter emerged from that
event as hydrogen and helium, which at a later stage fused together in active
stars to produce heavier nuclei. The reaction products would remain at the
centre of the star so that the composition of the star gradually becomes
richer in the heavy reaction products. An instability eventually sets in as
the star runs out of fuel and a consequent gravitational collapse may initi-
ate a catastrophic nuclear explosion that releases the heavy elements syn-
thesised at the core, during a supernova. It is necessary to assume that
material, enriched in heavy elements and ejected by many stars, accumu-
lates in space, to become available for further condensation into new
stars.

The role of the big bang in the non-equilibrium scenario is to account for
the high abundance of H and He, relative to the heavier elements. The stellar
synthesis of all other elements is assumed to proceed according to a proposal,
originally made by Hoyle [67] to refute big-bang synthesis. It is therefore of
interest to note that an alternative explanation of helium abundance exists.
Only a small percentage of stars are massive enough to become supernovae.
Many other aging stars simply blow off their outer layers while heavy elements
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remain trapped in their core remnants. The outer layers consist mainly of
helium, produced by hydrogen-burning chain reactions, such as

4p → 4He + 2e+ + 2ν

Given sufficient time, helium should therefore accumulate in interstellar space.
It appears that the helium abundance problem is largely self-generated by
the theory that restricts the age of the universe to 1010 years.

The process of element building in stars is supposed to proceed by a
variety of nuclear reaction sequences, such as

3 4He → 12C + γ
12C + p → 13N + γ

13N → 13C + e+ + ν
13C + p → 14N + γ, etc.

to produce nuclei as heavy as Fe, but not beyond that.
The simplest sequence of nuclear reactions that occur in stars is known

as hydrogen burning, with end products 4He and 14N. Towards the end of the
hydrogen-burning cycle the temperature has increased sufficiently for helium
burning to kick in. The main products, called ashes, of helium burning are
12C, 16O and 22Ne. After helium, nuclear fuels that ignite in consecutive
stages of increasing temperature, with their ashes, are:

12C → 20Ne, 24Mg, 16O, 23Na, 25,26Mg
20Ne → 16O, 24Mg, 28Si, . . .
16O → 28Si, 32S, . . .
28Si → 56Ni, A ≈ 56 nuclei
56Ni → n, 4He, 1H

To account for the building up of elements above iron, it is necessary to resort
to the idea of neutron-capture reactions. The neutrons may be supplied by
(α, n) reactions, such as

13C + 4He → 16O + n
17O + 4He → 20Ne + n

21Ne + 4He → 24Mg + n

In the notation X(p,γ)Y that represents the nuclear reaction X+p → Y+ γ,
the more important types of reaction, responsible for nuclear synthesis in
stars, include

(p, γ), (p,n), (p, α), (n, γ), (n, α), (α, γ)
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and their inverses, e.g.
16O (α, γ) 20Ne

20Ne (α, γ) 24Mg

18O (n, γ) 19F

22Ne (α, γ) 26Mg

22Ne (α,n) 25Mg

Also represented are heavy-ion reactions with emission of proton, α, neutron
or deuteron, e.g.

12C + 16O→ 26Al+ 2H

There are myriads of possible nuclear reactions that might and probably
do occur in the interior of stars and which could and probably do contribute
to the formation of heavier, from lighter nuclei. The predominant type of
reaction, responsible for the formation of elements beyond the iron group,
is generally assumed to be neutron capture followed by β-decay to stable
nuclides. One aspect common to all possible reactions, and especially to neu-
tron capture, is the non-discrimination between nuclei of odd and even mass
number that feature together in one complicated reaction network. There is
nothing to suggest that a web of reactions, entangled in this fashion, should
produce the separate series of products with comparable abundance distri-
butions, clearly distinguishable in Figure 4.5.

The final word on nucleogenesis has obviously not been spoken. There
are just too many loose ends and unwarranted assumptions to provide a
consistent picture. Too many alternative mechanisms are ignored without
mention or comment. The role of black holes, quasars, Seyfert galaxies and
white holes, all of which could participate in a chain of nuclear synthesis, is
not understood and therefore ignored. Even cosmic ray abundances, matched
on the scale of solar abundances show up some important discrepancies [68].
Both H and He have low abundances in cosmic rays, whereas the elements
Li, Be and B are five orders of magnitude more abundant. The relatively low
abundance of the elements between Ca and Fe does not show up like that
in cosmic radiation. The relative abundance of odd-Z elements is uniformly
higher for cosmic rays. As a result there is much less variation in cosmic ray
abundances than in solar and meteoric abundances. The general trend is a
decrease in abundance from He to Fe with regular, though minor variation
between even and odd-Z elements.
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4.3 Theoretical Models

The Harkins model of nuclear structure antedates the discovery of neu-
trons, mesons and neutrinos, but it provides the correct atomic mass bal-
ance in terms of protons and electrons only. The equilibrium structure of an
atom may therefore, to first approximation be described in terms of a sin-
gle Hamiltonian pertaining to A protons and A electrons, of which Z are in
extranuclear space.

4.3.1 The Shell Model

Schrödinger’s equation for Harkins atoms has never been solved. The best
alternative wave-mechanical model of an atomic nucleus is a semi-empirical
shell model. Just like atoms with closed electron shells certain nuclei with
“magic numbers” of nucleons (neutrons or protons) are more tightly bound
than the average nucleus [69]. These nuclei have a lower mass and a greater
abundance than would otherwise be expected. As an example the element
Sn with Z = 50 has more stable isotopes (10) than any other element. Magic
number nuclei also have very small quadrupole moments, indicating a nearly
spherical shape. Such nuclei do not readily add an additional nucleon of the
same type. An additional nucleon, when added, like valence electrons in an
alkali metal, is loosely bound.

The shell structure suggested by these observations is difficult to visualize
in a body as dense as a nucleus. A helpful suggestions due to Wigner can be
understood in terms of a strong interaction between neighbouring nucleons
that amounts to the exchange of a virtual particle and the interchange of
nuclear identity.

p pnn

The same holds for interaction between neutron and proton pairs. In effect,
two nucleons in contact appear to interpenetrate each other and hence move
freely through the nucleus. Since the exact shape of the potential between
nucleons is not known, the Wigner model suggests a shape between that of
a square well and a harmonic oscillator. According to such a model [70],
each neutron moves independently in a common potential well that is the
spherical average of the nuclear potential produced by all other nucleons, and
each proton moves independently in a common potential that is the average
of the nuclear potential of all other nucleons, together with the coulombic
potential of the other protons. This calculation produces groups of energy
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levels separated by gaps which indicate shell closure at the magic numbers 2,
8 and 20 states. Further gaps appear at non-magic numbers such as 40, but
there is no gap at 50 or 82. The shell model, after further refinement gained
general acceptance only when observed nuclear angular momenta were shown
to agree with values predicted with the model.

Neutrons and protons are assumed to occur in potential wells that differ
only in their potential-energy zeros. Actual potential wells are defined in
terms of estimates for heavy nuclei, such as 208

82Pb. The nuclear states for a
spherical well are defined by

− �2

2m
∇2ψ = Eψ (4.5)

For infinitely high walls at r = R, it is assumed that ψ = 0 at r ≥ R. As
(4.5) is separable in spherical polar coordinates, ψ(r, θ, φ) = ul(r)Ylm(θ, φ),
and the radial function satisfies

− �2

2m

1

r

d2

dr2
(rul) +

�2

2m

l(l + 1)

r2
ul = Eul (4.6)

with boundary conditions that u(r) is finite at r = 0 and zero at r = R.
The solutions to (4.6) are spherical Bessel functions jl(kr), with energies

of the type

E(n, l) =
�2

2m

(xnl

R

)2

, x = kR (4.7)

The labelling of energy levels for varied l differs from the convention for
electronic levels. Their sequence in terms of increasing energy is

1s < 1p < 1d < 2s < 1f < 2p < 1g...

As each nucleon has two possible spin states, ms = ±1
2
, there are (4l + 2)

degenerate states for given (n, l).
A crucial step in establishing the nuclear shell model was the recognition

[71] that there must be a term for spin-orbit coupling in the self-consistent
potential felt by the nucleons, of the form Uso(r)L.s. Angular momentum is
conserved only in the form of L2, s2 and J = L + s. It has been shown
that for given l and s = 1

2
, the allowed values of j are: l + 1

2
, with (2l + 2)

allowed values of jz, and l − 1
2
, with 2l allowed values of jz. On introduction

of spin-orbit coupling, the (4l + 2)-fold levels therefore split into two levels
each, which may be labeled nll+ 1

2
, nll− 1

2
. Experiment shows that the state

with j = l + 1
2

invariably has less energy than the state with j = l − 1
2
.



154 CHAPTER 4. STRUCTURE OF ATOMIC NUCLEI

The sequence of energy shells (with occupation numbers) inferred from
experiment for both neutrons and protons is

1s(1/2) < 1p(3/2) < 1p(1/2) < 1d(5/2) < 2s(1/2) <
2 6 8 14 16

1d(3/2) < 1f(7/2) < 2p(3/2) < 1f(5/2) < 2p(1/2) <
20 28 32 38 40

1g(9/2) < 1g(7/2) etc.
50 58

The magic numbers of protons and neutrons for which the nucleus is
particularly stable, as compared with neighbouring nuclei:

N,Z : 2, 8, 20, 28, 50, 82, 126 and N = 184

coincide with completion of the subshells 1s(1/2), 1p(1/2), 1d(3/2), 1f(7/2)
and 1g(9/2). Doubly-magic nuclei for which both neutron and proton number
are magic are particularly stable and have relatively high abundances com-
pared to their neighbours, e.g. 4

2He2, 16
8O

8, 40
20Ca20, 208

82Pb126. Beyond N,Z = 50
the proton and neutron energy spectra are no longer identical.

It has been claimed [72] that in an atomic nucleus the close packing of
spherons, consisting of two or four nucleons, in successive layers with packing
sequences dictated by spin-orbit levels, reaches level completion at the magic
numbers 2, 8, 20, 50, 82 and 126. An unconvincing aspect of the model
is that inner layers may be of different composition in different nuclei. The
completion of layers at selected magic numbers therefore depends on a unique
and unpredictable choice of so-called inner-core, outer-core and mantle layers.

4.3.2 Strong Interaction

The presence of both protons and neutrons, tightly packed together in an
atomic nucleus shows that the interaction that keeps these particles together
cannot be of simple electromagnetic origin. The situation is somewhat akin
to the formation of molecules by the interaction between positively charged
atomic nuclei. However, in the latter case the mediation by oppositely charged
electrons is readily understood as providing the necessary force of attraction.
Quantum theory provides a convincing model of chemical bonding in terms
of electron exchange between atomic nuclei [73]. In simple terms, a chemical
bond may be viewed as the exchange of an electron between two positively
charged ions, with the electron passing back and forth between them. The
simultaneous exchange of two electrons between the ions ensures electric
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neutrality. Where Pauli’s principle demands opposite spins for the bonding
electrons, an electron-pair bond is formed.

It is not unreasonable to expect the interaction between nucleons in an
atom to be of the same type, but possibly involving an exchange particle
of higher mass than the electron. In this instance bond formation requires
the exchange of positive and negatively charged, as well as neutral particles,
according to the scheme, first proposed by Yukawa (1935):

p + π− → n

n + π+ → p

n + πo → n

p + πo → p

Electrons and positrons are clearly not suitable to mediate this type of inter-
action, although their role in chemical bonding is parallel to the function of
π± in the nucleus. The neutral particle πo has a function, equivalent to that
of a photon during electronic transitions in an atom.

The photon that mediates the electronic interaction is only observed when
there is a transition to another energy level stimulated by energy absorbed
from an external source. In the equilibrium state of an atom virtual photons
are thought to be continually emitted and reabsorbed by electrons, only
causing energy fluctuations within the limits of the uncertainty principle of
quantum mechanics,

∆t ∼ �/∆E

The greater the distance between the charges the longer the time required
for exchange and the smaller the energy of the exchanged photon. Although
photons are not limited in range their momentum diminishes at long range
and the force of interaction becomes weaker, as observed. The strong inter-
action within the nucleus was observed to operate at very short range only,
as shown in Figure 3.10. These observations led Yukawa [74] to postulate
the presence of three particles, called mesons, of equal mass, µ and different
charges, within atomic nuclei.

In terms of Yukawa’s model virtual mesons are exchanged between pro-
tons and neutrons in the nucleus. To explain why no fluctuation in proton or
neutron mass is observed as a result, it is necessary to assume that the time
elapsed between absorption and emission involving a given nucleon is within
the uncertainty limit. As for photons the interaction is assumed to propagate
at a velocity v ∼ c, close to the speed of light. The range of interaction, unlike
electromagnetic interaction, is limited and estimated to be of the same order
as the classical radius of the electron e2/4πε0mc2 = 2.8 × 10−15 m (3.2).
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The meson is a relativistic particle and in order to find its appropriate
wave function it is necessary to start from the relativistic classical Hamilto-
nian for a free particle

H =
(
p2c2 + µ2c4

) 1
2

by introducing the momentum and energy operators (3.26 and 3.27)

p → −i�
∂

∂x

H → i�
∂

∂t

This substitution leads to the Klein-Gordon equation for a zero-spin particle:(
∇2 − 1

c2

∂2

∂t2

)
ψ =

(µc

�

)2

(4.8)

For µ = 0 the familiar equation for the electromagnetic field is obtained. The
mass term

µc

�
=

2π

λC

relates to the Compton wavelength of the meson and was interpreted by
Yukawa to characterize the known range of the strong interaction, r0, shown
in Figure 3.10. To first approximation r0 � rel/2 (3.2) and the ratio of
mesonic to electronic mass follows as

µ

m
=

8πε0�c

e2
=

2

α
= 274

where α is the electronic fine-structure constant.
Assuming ψ = ψ(r), (4.8) becomes

1

r2

d

dr

(
r2 dψ

dr

)
=

(µc

�

)2

ψ

which readily integrates to the Yukawa potential

ψ(r) =
A

r
exp[(−µc/�)r]

Soon after Yukawa’s proposal a particle, called mesotron or muon, (µ) of
mass 220me, that decays into an electron and a neutrino

µ− → e− + ν
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was discovered in cosmic radiation. Whereas the Yukawa particle had to
interact strongly with nuclear matter, the experimental particle was found
to have little, if any, interaction, apart from electrical, with matter. In fact,
the cosmic-ray meson was found capable of penetrating kilometers of solid
rock without interacting with atomic nuclei.

The real Yukawa particle, called a π-meson or pion (π) of mass 273me

was discovered in cosmic radiation in 1947. It escaped detection because it is
extremely short-lived and therefore rarely occurs outside of nuclei. Charged
pions decay into muons and neutrinos

π± → µ± + νµ

and the neutral pion decays into either two photons

πo → 2γ

or
πo → e+ + e− + γ

Before 1935 and the discovery of mesons that started the proliferation of
nuclear particles, there were only protons, neutrons and electrons, together
with their antiparticles. The photon, although well known to exhibit particle-
like behaviour was considered, more conveniently as an excitation of the
electromagnetic field because it lacked the attributes of mass, charge and half-
integer spin, characteristic of fermionic particles. The electrical neutrality of
the neutron could be ascribed to its composite nature as made up of proton
and electron. The niggling observation that neutron decay did not preserve
angular momentum and energy was addressed by invention of the neutrino,
with zero mass and charge and half-integer spin, i.e.

n → p + e + ν̄

4.4 Particle Physics

For a brief period nuclear structure was well understood in terms of the five
sub-nuclear particles, proton, neutron, electron, neutrino and photon. The
discovery of positrons and mesons did not immediately complicate the issue.
The Yukawa particles, or pions, postulated to mediate the strong interaction
were demonstrated to be extremely short-lived, decaying within about 10−16s,
first to muons and eventually to electrons and positrons:

π± → µ± + ν → e± + ν + ν̄

πo → 2γ → 2e+ + 2e−
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This simple picture was complicated with the discovery of new, more massive
particles, in cloud chamber photographs of cosmic rays. These strange new
particles included hyperons, that decay to protons, and kaons whose decay
products consist of mesons. These observations were soon followed by the
discovery of many resonance particles with widely varying properties. Clas-
sification of these new particles required the introduction of new quantum
numbers to specify properties such as isospin, strangeness, charm and baryon
number. The question remained whether or not to regard the hundreds of new
particles as truly elementary. The theoretical consensus to resolve the issue
is based on the symmetry properties of matter and particles. This symmetry
includes charge conjugation that links matter to antimatter.

4.4.1 Antimatter

The idea of a shadowy parallel antiworld most certainly did not originate with
Dirac’s equation, nor with discovery of the positron. An argument based on
annihilation of a positive and negative pair of electrons to create a quantum
of energy, was used in 1904 by Jeans to explain radioactivity. Later on he
gave credit to Newton for the idea. To state that negative-energy solutions of
Dirac’s equation provided the first indication of antimatter is to ignore the
fact that, like Dirac’s equation, the Klein–Gordon equation (4.8) also has
negative-energy solutions. However, for spin half particles Dirac’s equation
is the appropriate form.

To obtain a relativistic wave equation for fermions, Dirac started with a
Hamiltonian based on the operators (3.26) and (3.27), i.e.

HΨ = �i
∂Ψ

∂t
= EΨ

Since the theory of relativity treats space and time variables on an equivalent
basis the Hamiltonian operator

H =
(
p2c2 + m2c4

) 1
2

should, like the time variable, be expressed in terms of linear momentum
operators only,

p̂k → �i
∂

∂xk

(k = 1, 2, 3)

such that
E2 =

(
α · pc + βmc2

)2

This formulation leads to the Dirac equation(
E − α · pc − βmc2

)
Ψ = 0 , p = i�∇
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or

i�
∂Ψ

∂t
= −i�cα · ∇Ψ + βmc2Ψ

which requires that the wave function has the form of a column vector Ψ =
{Ψ1,Ψ2, . . . ,ΨN}, while α and β are non-commuting N × N matrices [73].

In two-dimensional notation the four-dimensional energy and momentum
eigenfunctions of Ψ(z, t) are obtained as solutions of the secular equation[

u1

u2

] [
E + mc2 cpz

cpz E − mc2

]
= 0

i.e.
E2 − m2c4 − (cpz)

2 = 0

whereby
E = ±c

√
p2

z + m2c2

Dirac’s equation describes particles with the correct relativistic relation
between energy and momentum eigenvectors, but as for the KG equation,
both positive and negative energy eigenstates occur.

The appearance of negative energy states was initially considered to be
a fatal flaw in the Dirac theory, because it renders all positive energy states
unstable. There is nothing to prevent an electron with positive energy from
cascading down the negative levels ad infinitum. A solution to this dilemma
was proposed by Dirac in terms of a many-particle theory. Observing that
spin-1

2
particles, such as electrons, obey the Pauli exclusion principle, it was

suggested that in the normal ground state (vacuum state) of Nature all pos-
sible negative energy levels are already occupied. This principle prevents any
electron from falling into negative energy states and so ensures the stability
of positive-energy physical states. For an electron of rest mass m0 the energy
gap separating the negative and positive energy solutions is exactly 2m0c

2,
and it will be possible to excite an electron from the negative energy sea
into a positive energy state. It then leaves a hole in the sea. This hole in the
negative energy, negatively charged states, behaves exactly as a particle with
the same mass as that of an electron, but having a positive electric charge
(Figure 4.7). It may therefore be identified with a positron. If the excitation
is effected by absorption of a γ-ray photon the result will be transformation
of radiation energy into the creation of an electron–positron pair. Positrons
created in this way will disappear rather fast due to the fact that the exis-
tence of a positron is equivalent to a hole in the negative energy sea. An
ordinary electron must soon fall down into the negative energy state caus-
ing both electron and positron to disappear and the equivalent energy to
be regained in the form of electromagnetic radiation. The four-component
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Figure 4.7: Schematic drawing of the Dirac sea of negative-energy electrons,
relative to real electrons. Particle and wave pictures are shown on the left
and right respectively.

spinors obtained as wave functions from the Dirac equation may now be
interpreted as describing the spin-up and spin-down states of both electron
and positron.

The arguments outlined here apply to any relativistic fermion. For each
fermionic particle there must be a sea of negative-energy fermions, such as
antiprotons, antineutrons and antineutrinos. Although mutual annihilation
has not been observed experimentally, there is good reason to assume that
π± and also µ± mesons are antiparticles to one another. The two-quantum
decay of πo may be taken as experimental proof that this particle is identical
with its antiparticle. Two πo mesons could mutually annihilate each other to
leave only energy quanta.

Antimatter in bulk is more than a theoretical curiosity. Several atoms of
antihydrogen have recently been produced by the combination of antipro-
tons and positrons. Because of the preponderance of matter on the planet,
larger quantities of more complex forms of antimatter become increasingly
more difficult to handle. The possibility that large cosmic domains consist
exclusively of antimatter is real, although the existence of such structures
has not been confirmed experimentally. The generally accepted large-scale
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symmetry of the universe demands that half of all stuff should be in the form
of antimatter. The debate on this issue is still open.

Awkward questions about the electromagnetic and gravitational fields
of infinitely many particles in the vacuum remain unanswered. Also, the
Dirac theory, amended by the hole proposition is certainly not a one-particle
theory, and hence not a relativistic generalization of Schrödinger’s equation.
However, it is at the root of quantum field theory that provides the basis to
modern symmetry theories of sub-nuclear structure. Most important of the
fundamental symmetry laws is the charge–parity–time (CPT) relationship
that differentiates between matter and antimatter.

4.4.2 The CPT Theorem

Reflection and inversion symmetry operations differ from common symme-
try operations such as rotation and translation in being discrete rather than
continuous. A law of Nature is said to be reflection (or inversion) invariant
if the probability for any process equals the probability for the mirror image
of that process. An example of such a symmetrical process is provided by
energy emission when an excited atom returns to its ground state. If the
laws that govern the structure of the atoms, and the emission of photons,
are reflection invariant, the angular distribution must remain unchanged if
reflected in a mirror that leaves the excited state unchanged. The process
is described mathematically by means of an operator P which, when act-
ing on any state, produces another state wherein all spatial coordinates are
inverted. Since two reflections restore the original state, P 2 = 1. The oper-
ator has the two eigenvalues π = ±1, called parity states. Even and odd
parity states are related in the same way as the enantiomers of a chiral
molecule.

Another discrete symmetry, known as charge conjugation C implies the
equivalence of a particle and its antiparticle. Like parity the wavefunction of
a system may be even or odd under this operation:

Cψ = ±ψ

The last of the three discreet symmetries, T or time reversal is visualized as
a result of reversing the direction of all motion in a system. Symmetry under
time reversal implies that if a system can evolve from a given initial state to
some final state, then it is possible to start from the final state and proceed
to the initial state by reversing all momenta.

Although each of the separate discreet symmetries may be approximate
only, the CPT theorem is universally accepted to hold. The consequences
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of CPT are that particles and antiparticles should have the same masses
and lifetimes. Furthermore, if any number of discreet symmetries are inex-
act, there must be a compensating symmetry of the remaining operations to
cancel the first effect and ensure exact CPT symmetry. The only known laws
of Nature that do not display reflection or, in some cases CP symmetry are
weak interactions.

Weak Interaction

Neutrons are kept fixed in stable atomic nuclei by the strong interaction. Free
neutrons however, decay by β-emission with a half-life of about 10 min. The
interaction that keeps a free neutron intact is obviously much weaker than the
strong nuclear interaction. It is for the same reason that unstable nuclei may
decay by β-emission. The strong force that operates between protons and
neutrons clearly has no effect on electrons. Particles with half-integral spin
and sensitive to strong interaction are called baryons and those not affected
are called leptons. The weak force, like its strong counterpart acts at short
distance only.

An early puzzle about β-decay was the observation that the electrons
emerge with a range of energies up to a maximum that corresponds to the
energy equivalent of the mass loss. Most electrons seem to lose some of their
energy during decay. To account for this energy loss and to ensure conserva-
tion of angular momentum, the existence of a neutrino, another lepton, was
postulated. Neutron decay, formulated as n → p + e− + ν̄ requires release of
an antineutrino to conserve spin angular momentum. This event corresponds
to four fermions reacting at a point:

ν

n
p

e

The wave function of the neutron is transformed into that of the proton
and the wave function of an incoming neutrino (equivalent to an outgoing
antineutrino) is transformed into that of the electron. The purely leptonic
decay of mesons fits the same description, µ± → e± + ν + ν̄:
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+−+−

ν

ν

eµ

What seems to be an adequate description of the weak interaction cannot
explain why a decay process such as

µ− → e− + γ

is never observed. To account for this it was necessary to postulate that
neutrinos are of two types, electron neutrinos νe and muon neutrinos νµ. With
this distinction the β-decay of the neutron involves only electron neutrinos:

n → p + e− + ν̄e

and the muon decay of the pion involves only muon neutrinos:

π− → µ− + ν̄µ

The muon decay into an electron therefore involves two types of neutrino:

µ− → e− + ν̄e + νµ

The distinction between neutrino and antineutrino allows formulation of a
conservation law for lepton number, Nl. The law requires Nl = 0 for nucleons,
Nl = 1 for e− and ν, and Nl = −1 for e+ and ν̄. Both electron-type and
muon-type lepton number is conserved separately.

The most surprising finding about weak interactions was the observation
that parity is not conserved in weak interaction. Parity violation occurs in
the β-decay of 60Co, spin-polarized in a magnetic field,

60Co → 60Ni + e− + ν̄

The heavy arrow in Figure 4.8 represents the nuclear spin. It generates rota-
tion in the x − y plane and is therefore not affected by reflection in this
plane. The frame on the left shows the expected momentum vectors of decay
electrons in a symmetrical situation. The emitted β-radiation has the same
angular distribution around positive and negative field directions. In actual
experiments the distribution shown on the right is observed. Spatial reflection
is therefore not a symmetry of the β-decay interaction. Parity is violated.
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Figure 4.8: The effect of mirror symmetry on the β-emission from 60Co. The
frame on the left shows the situation for emission that preserves parity. The
frame on the right represents observed behaviour. The large arrow represents
the nuclear spin in the direction of the applied magnetic field.

The asymmetry in direction also has an effect on the spin of the β-
electrons. The electrons show a net preference to spin in one of the two
possible ways, as reflected in the polarization of the electrons, defined as

p =
NR − NL

NR + NL

= −v

c

where NL(NR) is the number of left (right) spinning electrons in a measured
sample; v and c are the velocities of electrons and of light. For p = 1 all elec-
trons have the same (right) spin. The relationship between polarization and
velocity can be measured experimentally. Scattering experiments have shown
that electrons moving at relativistic speeds have a net negative polarization,
P ∼ −1 and for slow electrons P ∼ 0.

In a decay process such as

152Eu → 152Sm∗ + ν
152Sm∗ → γ

the spins of ν and γ must be correlated. From the fact that the emitted
photon is polarized it has been deduced that neutrinos always have the same
spin, opposite to that of the antineutrino.
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From spin measurements on electrons and positrons in muon decay it
was concluded that charge-conjugation symmetry C was also violated during
weak interaction. Still, the combined operation CP could be obeyed. This
possibility may be thought of as analogous to the conservation of baryon
number n = n(B) − n(B̄). In spite of the fact that the number of baryons
can change with time, so can the number of antibaryons and their dif-
ference is conserved. However, the decay of neutral kaons into π+ + π−

has been interpreted to violate CP symmetry, and hence the weak interac-
tion has none of the operations P , C or CP as an exact symmetry. The
only discrete symmetry that could be exact is CP with time reversal –
CPT.

4.4.3 The Quark Model

Since about 1950 the study of cosmic ray events in cloud chambers led to
the discovery of many new particles with unexpected properties of mass and
lifetime. To make sense of these new characteristics it was often necessary
to invent new conservation laws and quantum numbers. Apart from parity,
quantum numbers to specify isospin (I), strangeness (S) and baryon number
(B) came into general use.

Isospin The strong interaction between protons and neutrons is not affected
by electric charge and the two types of particle may be considered as
symmetry-related forms of the same particle, the nucleon. The nucleon, like
particle spin, is a two-level system and may be described in the same formal-
ism. Proton and neutron states are related by the isospin operator in abstract
two-dimensional space. The total isospin I = 1

2
and by analogy with directed

spin, the projection I3 = ±1
2

distinguishes between proton and neutron states
of the nucleon. A nucleon has both ordinary spin and isospin. The charge of
a nucleon may be defined as Q = I3 + 1

2
.

Baryon Number B = 1, −1, 0 for nucleons, antinucleons and for mesons
and leptons respectively. Baryons are a subset of hadrons, or particles affected
by the strong nuclear force. Hadrons, more massive than protons by factors
up to 1,000, including kaons and hyperons which became known as strange
particles, are known.

Strangeness What was strange about these particles is the relatively long
life (∼10−10 s) for particles, produced by strong interaction between pions and
protons, normally expected to yield short-lived products with decay times of
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∼10−23 s. The particles appear to be formed by strong interaction between
pion and proton

π− + p → Λ

However, their rate of decay is much longer than the rate of formation, and
more appropriate to the decay of a particle held together by weak interaction.
The problem was overcome by the suggestion that such particles are formed
in pairs, much like the pair production that leads to the formation of electron
and positron. Once formed, these particles are stable against further decay
because of charge conservation. The e+ and e− pair are the lightest possible
charged particles. By analogy it was assumed that hyperon and kaon must
possess some internal property which is conserved. This property became
known as strangeness. If K0 is the lightest strange particle it should be stable
once separated from Λ0. The analogy is not perfect since the strange particles
decay eventually. Strangeness appears not to be rigorously conserved and, in
particular, is not conserved in weak interaction.

Strange particles always emerge in pairs, such as a hyperon and neutral
kaon,

π− + p → Λ0 + K0

(0) (0) (−1) (+1)

The quantum numbers for strangeness are shown in brackets. Strangeness
is assumed to be a conserved quantity of the strong interaction. Decay of a
single strange particle into non-strange components can therefore not proceed
by strong interaction. Instead, particles such as hyperons are assumed held
together by weak interaction that does not preserve strangeness and the decay

Λ0 → π− + p ∆S = 1

therefore is a slow process. Neutron decay shows that isospin is another
example of a quantity which is not conserved in weak interaction:

n → p + e− + ν̄

Hadrons

With the proliferation of resonance particles efforts were made to classify
these particles according to some scheme comparable to the periodic table of
the elements. On the other hand, many of these entities appeared to be com-
posite rather than elementary particles, judging by their high mass, spin and
internal quantum numbers. Even the nucleon appears to be composite. The
strong force, like a chemical interaction, seems to consist of an attractive and
a repulsive part (Figure 3.10), suggesting some sub-structure. More evidence
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to this effect comes from the discovery of a short-lived excited state of the
nucleon, called ∆ and from lepton scattering with an angular distribution
related to the spatial charge distribution of a target nucleon. Measurements
of this type revealed that nucleons have charge radii of ∼0.8 fm, which was
interpreted to mean that the nucleon has internal structure [75].

These observations inspired a search for a small number of fundamental
units, dubbed partons, that may be combined in a variety of ways to gener-
ate all of the observed hadrons. Typical families of related hadrons can be
identified amongst the excited states of the nucleon.

The Baryon Spectrum The lowest lying multiplets of the baryon spec-
trum is shown in Figure 4.9. Each of these baryon states has baryon num-
ber B = 1 and multiplicity 2I + 1. The term nucleon refers only to the
ground-state doublet that represents proton and neutron, I3 = ±1

2
. Among

the excited states there are other degenerate doublets with Q = 1 and 0,
I = 1

2
.

There are also quartets of degenerate states, such as ∆, with isospin I = 3
2
,

I3 = −3
2
, −1

2
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2
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2
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Figure 4.9: The lowest lying multiplets that define an octet and a decuplet,
of the baryon spectrum, after [75]. Numbers on the diagram specify ordinary
spin and parity.
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Figure 4.10: Decay of the excited ∆ baryon state.

that agree with the simple charge formula. A more appropriate formula for
all multiplets is

Q = I3 +
1

2
Y, Y = B + S + C (4.9)

where S and C are the new quantum numbers for strangeness and charm
assigned to the baryon states. The quantity Y is referred to as hypercharge.
The quantum numbers Q,B, I3, S and C are all additive.

The relaxation of an excited baryon quartet state is illustrated in
Figure 4.10 and seen to be effected by the emission of charged pions. The π
triplet must be assigned total isospin I = 1, so that I3 = 1, 0,−1 for π+, πo

and π− respectively. For the charge formula to hold Y = 0 and since B = 0
for pions, it further follows that S = C = 0 for all π. Charge conjugation has
the effect of replacing I3 by −I3 and hence π+ and π− are mutual antiparti-
cles, whereas πo, like a photon, is its own antiparticle. Hadrons have baryon
number 1, and antihadrons have baryon number −1. Each stable hadron, like
those in Figure 4.9 eventually becomes a proton, after a series of decays.

The attributes I, S and C are conserved in strong, but not in weak
processes. Baryon number is conserved absolutely2 and this prevents decay
of the proton in processes such as p → e+πo, or p → e+νν. The lower limit
on the proton lifetime is ∼ 1031 years.

Quarks

For the postulate of a parton as a sub-nucleonic particle, to have any credi-
bility, it should be defined in such a way as to account for all details of

2The massive preponderance of baryons over antibaryons in the observable universe
provides a popular argument in favour of proton decay as a mechanism to destroy anti-
matter.
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baryonic spectra and the behaviour of mesons, outlined in the preceding
sections. The quark model, proposed 40 years ago by Gell-Mann and others,
represents such a scheme, based on the following assumptions:

1. Quarks, denoted by q, are fermions, since they have to combine into
objects of half-integer spin (baryons), and others of integer spin
(mesons).

2. The baryon is composed of three quarks qqq and the baryon spectrum
corresponds to the various quantum states of the qqq system. Since
baryon number is additive it has the value B = 1

3
for each quark.

Antiquarks q̄ have B = −1
3
.

3. A meson consists of a quark and an antiquark, and therefore B = 0. As
the meson’s constituents can annihilate, there are no absolutely stable
meson states.

4. To account for the additive quantum numbers I3, S and C of hadrons,
defined as either qqq or qq̄ composites, at least five distinct types
(flavours) of quark are required.

(i) A pair of ordinary quarks, u(p) and d(own), that carry only isospin,
but no other quantum numbers. Thus (u, d) is an I = 1

2
doublet

with I3 = 1
2

or −1
2

respectively. The antidoublet is (d̄, ū).

(ii) The strange quark s, that carries strangeness, but not charm or
isospin. It is convenient to assign s = −1.

(iii) The charmed quark, c, that carries charm, having c = 1.

(iv) The fifth quark, b, that only carries the new attribute character-
istic of some meson states.

5. A sixth t(op) quark is required by theoretical analysis [75].

Charge and Mass Using the additive charge formula (9) and assuming
B = 1

3
the following are obtained for the common quarks:

Qu =
1

2
+

1

2
· 1

3
=

2

3

Qd = −1

2
+

1

2
· 1

3
= −1

3

Qc = 0 +
1

2

(1

3
+ 1

)
=

2

3

Qs = 0 +
1

2

(1

3
− 1

)
= −1

3
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Since only the ordinary quarks u and d carry isospin, all isospin properties
of hadrons must come from these quarks. Any property of a hadron that
depends on strangeness or charm must, by the same reasoning, be due to the
presence of strange or charmed quarks among its constituents.

Since isolated quarks have never been observed an estimate of their mass
remains ambiguous. It is however clear from hadron spectra that the mass
of the c-quark, mc is larger than that of u, d or s, and that the s-quark is
heavier than u and d.

Interaction The strong force that keeps quarks together and which result
in the strong interaction between hadrons is independent of quark flavour.
In particular, the (u, d) isodoublet have the same strong interaction, despite
the small u− d mass difference, which is poorly understood in quark theory.

Classification of Hadrons To demonstrate how hadrons may be classified
in terms of their quark structure, only the baryon octet shown in Figure 4.9
will be considered. The simplest structures are obtained from a combination
of the ordinary u and d quarks only. There are two possible flavour combi-
nations, uud(Q = 1) and udd(Q = 0), and since both have spin of 1

2
, these

are the logical arrangements to represent p and n. The corresponding spin
structure is shown in Figure 4.11. Symmetrical combinations uuu and ddd
are ruled out for 1

2
spin.

The state with two s-quarks follows the same pattern. These two quarks
must have parallel spins and the u or d quark must have opposite spin, to
yield a resultant 1

2
. As a result there are two isodoublets, one with S = 0,

and another with S = −2:

ψ(u↑u↑d↓) = N+ = p ψ(u↓s↑s↑) = Ξ0

ψ(d↑d↑u↓) = N 0 = n ψ(d↓s↑s↑) = Ξ−

The remaining spin 1
2

combinations are uus, uds, dds. There are two possi-
bilities: either the two ordinary quarks provide the total isospin, I = 1, or
else I = 0. Because of the overall symmetry the spins of the ordinary quarks

Figure 4.11: Spin structure of a nucleon.
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Figure 4.12: The lowest spin 1
2

baryon octet.

must add up to 1 if I = 1, or 0 if I = 0. The spin of s must add appropriately
to give spin 1

2
. I = 1 is a triplet state and I = 0 a singlet:

ψ(u↑u↑s↓) = Σ+

ψ(u↑d↑s↓) = Σ0 ψ(u↑d↓s↑) = Λ0

ψ(d↑d↑s↓) = Σ−

Altogether there are eight states in the spin 1
2

baryon octet, shown in Figure
4.12 as an (I3, S) diagram. The lowest lying states of the baryon spectrum
falls neatly into the octet of Figure 4.12. The non-charmed baryons of spin
3
2

forms a decuplet that fits the second multiplet of Figure 4.9.

4.4.4 Deep Inelastic Scattering

The elegance and utility of the mathematical scheme that led to the devel-
opment of the quark model is not contingent on the existence of quarks
as physical entities. To probe for the experimental evidence that confirms
the existence of quarks the structure of nucleons continues to be explored.
Although free quarks have never been observed, experiments referred to as
deep inelastic scattering have provided circumstantial evidence of their exis-
tence. In these experiments the known interactions of leptons are used to
probe the structure of nucleons.
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A proton is about 10−15m in diameter and to resolve any structure below
that requires a probe of even smaller wavelength. The associated momentum,
calculated as p = h/λ, exceeds 1 GeV/c and is sufficiently high to disinte-
grate any target on impact. The main measurement of the experiments is the
variation of cross-section (effective target area) of the nucleon as a function
of energy loss and scattering angle of the incident lepton. At high momenta
the complicated scattering off a nucleon of finite spatial extent, is replaced
by scattering off a point-like parton. The photon ceases to scatter off the
nucleon as a coherent object and, instead, scatters incoherently off individ-
ual point-like partons.

Reversion to the simplicity of point-like scattering after a relatively more
complicated transition phase is interpreted [76] to indicate that a more basic
level within the nucleon has been reached.

The result of highly inelastic scattering of leptons by nucleons is the
production of jet-like structures, consisting of hadrons. The interpretation
is that the large momentum transfer ejects an individual parton from the
parent hadron. However, free partons have never been observed. Instead, it
is thought that before the struck parton can escape from the nucleon some
confining mechanism comes into play by pulling parton–antiparton pairs from
the vacuum. This sequence is illustrated in Figure 4.13.

The formation of jet-like structures is also observed during high-energy
annihilation of e+e− pairs and hadron–hadron collisions. During e+e− anni-
hilation it is assumed that a qq̄ pair is formed:

e+e− → γ → qq̄

Because of the strong interaction between the quarks the primary pair is pre-
vented from separating. Instead, it is energetically favourable for the strong
field to produce a secondary quark pair q1q̄1 and to form singlet mesons,
m = qq̄1 and m̄ = q1q̄, which are not sensitive to long-range confining forces.

The important assumption is that the cross-section for deep inelastic scat-
tering can be calculated by addition over individual parton–probe interac-
tions and that the complicated final-state interactions become important only
over long space–time distances. This argument implies a force that varies with
distance. At the short distances of initial interaction (10−17m) the interquark
force is weak and the quarks are essentially free. As the distance between two
quarks increases beyond the nucleon diameter (10−15m), the force increases
indefinitely to confine the quarks, perhaps permanently, within the hadron.
Any energy expended in the effort to separate the quarks will be sufficient
to extract a new quark–antiquark pair from the vacuum and create a new
hadron.
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Figure 4.13: (i) A high-energy electron hits a parton inside a proton. The
parton is ejected, at the speed of light, and fragments into hadrons, forming
a jet. (ii) A deep inelastic probe strikes a parton (a) and (b), which flies off
with relativistic momentum until it is restrained by some confining mecha-
nism (c) that pulls parton-antiparton pairs from the vacuum to create new
particles (d).

The tendency of the interquark forces to become weaker at small distances
is known as asymptotic freedom. The other tendency of interquark forces
to become increasingly stronger as the quarks are separated, is known as
confinement. A picturesque description [77] of confinement is infrared slavery.
In a way, the quarks may be thought of as bound like prisoners on a chain
gang. If they stay close together nothing happens and they can move around
freely. The problem starts when one prisoner tries to get away from the
others. If that happens, all the prisoners are again reminded that they are in
chains.

Theory of Quarks

An understanding of all interactions in Nature, including those in the sub-
nuclear region seems to require four different forces with different characteris-
tics. Most familiar is the gravitational force that pervades the entire universe
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and obeys an inverse square law:

F = G
m1m2

r2

Best understood is the electromagnetic interaction. It is of infinite range and
the strength of the force is characterized by the fine-structure constant

α =
e2

�c
=

1

137

The source of the force is electric charge which can be either positive or
negative and appears as an integral multiple of the electronic charge, i.e.
Q = Ne. The force between two separated charges is

F = K
Q1Q2

r2

The resemblance between the formulae for electromagnetic and gravitational
forces suggests that a common theory to embrace both phenomena could be
formulated.

Electromagnetic phenomena are governed by Maxwell’s laws, that intro-
duce the photon as a particle that mediates the interaction, in the same way
that the strong interaction between nucleons is mediated by pions. It is there-
fore tempting to use the theory of electromagnetism as a model to develop a
single unified theory to describe the four forces of Nature in terms of a single
formalism.

The most successful theory of the electromagnetic field is quantum elec-
trodynamics (QED), the first example of what became known as gauge the-
ories. A detailed, but simple introduction to the concept of gauge invariance
has been published before [73] and only a brief summary is provided here.

Gauge Theory

QED is based on the conservation of electric charge. This means that the
Lagrangian3 density which describes the electron wave function must be
invariant under symmetry transformation through time, space and rotation.
Symbolically

GL(ψe) → L(ψ′
e)

3The Lagrangian is the dynamic function that links the energy, momentum and angular
momentum of a system.
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The symmetry group G, denoted U(1), corresponds to a simple shift in the
phase of the electron wave function. The transformation of phase is said to
be global since it represents an identical operation at all points in space–time.
Although the actual phase of the wave function is unobservable, differences
in phase can be detected.

Global gauge invariance accounts for conservation of charge without allow-
ing for local changes of phase, i.e. between neighbouring space–time positions.
Such a local gauge transformation amounts to

G(x)L(ψe) → L′(ψ′
e)

where x = (x, t) denotes a space–time vector. Since the Lagrangian itself is
changed by this transformation the theory is no longer invariant. To restore
the gauge invariance it is necessary to introduce a second field to compen-
sate for the local change in wave function. The required field must have
infinite range, since there is no limit to the distances over which the phase
conventions must be reconciled. The new field must therefore be massless.
In fact, the field required for local gauge invariance can be shown to be the
Maxwell electromagnetic field whose quantum is the photon. The way in
which two electrons interact by exchanging a photon is shown diagrammati-
cally in Figure 4.14. The changes in the photon wave function cancel out the
changes in the Lagrangian resulting from a local phase transformation. So,
the introduction of the photon leads to local gauge invariance. Symbolically

G(x)L(ψe, A) → L(ψ′
e, A

′)

where A denotes a four-vector that describes the electromagnetic field, viz.
the photon’s wave functions.

Electroweak Gauge Field

The formulation of a gauge theory for the weak interaction led to the unex-
pected result that electromagnetic and weak interactions are different mani-
festations of a single electroweak gauge field with broken symmetry.

e

ee

e
γ

Figure 4.14: The interaction between two electrons by the exchange of an
electromagnetic gauge boson, or virtual photon.
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R

Figure 4.15: Symmetry breaking as the marble rolls down from the centrally
raised dome at the bottom of a wine bottle.

The existence of asymmetric solutions to a symmetric theory comes about
when the symmetric state is not the state of minimum energy and on tran-
sition to this ground state the intrinsic symmetry of the system is sponta-
neously broken. A spectacular example of this phenomenon is provided by a
marble, precariously balanced at the raised centre at the bottom of a wine
bottle (Figure 4.15). A small perturbation will cause the marble to fall into
the trough, to a position of lower energy, which is one of an infinite set of
rotationally symmetrical sites. Although the Lagrangian is symmetric, the
actual ground state will be asymmetric.

On replacing the marble by a spinless particle with two components φ1

and φ2, the axes labeled φ1 and φ2 represent average values of the associated
quantum fields. The energy is not a minimum at the zero values of the field
(below the elevated central point), but along the circle defined by

φ2
1 + φ2

2 = R2

This equation defines the vacuum states of the theory, characterized by non-
zero average values for φ1 and φ2. For G, the rotation group in the plane, the
Lagrangian is still symmetric under the global transformation

GL(φ1, φ2) → L(
φ′

1, φ
′
2

)
However, if in addition the Lagrangian is required to be invariant under
local gauge transformation, it is necessary to introduce a compensating gauge
particle, in order to maintain the invariance, i.e.

G(x)L(
φ1, φ2, A

) → L(
φ′

1, φ
′
2, A

′)
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If the fields are now redefined by shifting the origin of coordinates such that
the axes pass through the point of minimum energy, the new field components

φ′′
1 = φ1, φ′′

2 = φ2 − R

and the Lagrangian

L(
φ1, φ2, A

) ≡ L(
φ′′

1, φ
′′
2, A

′′)
In the new Lagrangian, instead of the two-component particle (φ1, φ2) and
a massless gauge particle, there now appears a massive spinless particle φ2

(Higgs boson) together with a massive vector gauge particle A′′, that contains
three polarization states. In summary

A
φ1

}
→ massive A′′

φ2 → massive φ′′
2

Based on these ideas a unified theory for the weak and electromagnetic
interactions was developed by Glashow, Weinberg and Salam. The theory
describes the interactions of leptons by the exchange of W bosons and pho-
tons, and invokes the Higgs mechanism to generate the masses for the W
bosons.

To ensure that the interactions between leptons conserve weak isospin4

and weak hypercharge, the total Lagrangian was defined to be invariant under
the groups SU(2)5 and U(1) at the same time. This procedure defines the
gauge particle W = (W +,W 0,W−).

Following the procedure for symmetry breaking outlined above, it was
found that the U(1) symmetry of QED remains unaffected. The photon
remains massless and W gauge bosons become massive. The theory was con-
firmed by the discovery at CERN of the W± and W 0 bosons with the exact
predicted masses.

4Weak isospin is the property that relates electrons to neutrinos in the same way that
protons are related to neutrons by isospin.

5The rotation

GSU(2)

(
νe

e−

)
→

(
ν∗

e

(e−)∗

)

in weak isospin space turns the leptons into equivalent mixtures of the electron–neutrino.
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4.4.5 Quantum Chromodynamics

Soon after the proposal of the quark model it was realized that the suggested
quark content of some particles violated the quantum-mechanical exclusion
principle that demands wave functions to be anti-symmetrical under particle
exchange.

The wave function that describes a hadron made up of three quarks is
the product of three factors

ψ = ψspace × ψspin × ψflavour

In some hadrons three quarks have the same flavour and hence the flavour
factor must be symmetrical under the exchange of any two quarks. The same
is true for the spin factors since the three quarks in many hadrons have
the same spin. Since the total particle spin represents the sum of the three
quark spins it means that there is no orbital angular momentum and that
the three quarks must be positioned symmetrically. Consequently, the space
factor is also symmetrical under the exchange of any two quarks. As all three
factors are symmetric, the total wave function must be symmetric and the
combination of three quarks seems to violate Pauli’s principle.

Coloured Quarks

The way out of the symmetry problem was to assume that quarks carried
another quantum number to distinguish between identical quarks and pro-
duce an antisymmetric wave function. The additional quantum number could,
at the same time, be chosen to specify a new type of charge that represents
the source of the strong field. By analogy with the electric charge, the new,
so-called colour charge must be assigned to individual quarks in such a way
that the combination is colourless for neutral particles. This statement is
equivalent to saying that all hadrons are colour singlets, which also is the
simplest symmetric multiplet, e.g. red, blue, green for qqq. In such combina-
tions the colour of an individual quark, like the phase of an electron wave
function remains invisible. The confinement of the quarks within hadrons can
accordingly be restated as the confinement of the colour quantum number.

Colour Gauge Theory

The fundamental idea of QCD is that the colour charges of the quarks act as
the sources of the strong chromodynamic force between quarks, just as elec-
tric charge acts as the source of the electromagnetic force between electrically
charged particles. As the quarks carry both colour and electric charge, they
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experience both the strong and electromagnetic forces. However, the chromo-
dynamic force is so much stronger than the electromagnetic, that the latter
may effectively be ignored.

To incorporate these ideas into a gauge theory it is noted that the quark
colour triplet may serve as a fundamental representation of the symmetry
group SU(3). The fundamental symmetry of the colour force may be taken
as invariance under the redefinition (transformation) of quark colours. Like
the phase of the electron wave function in QED, colour is unobservable in
QCD and no real phenomena should depend on the convention that defines it.

Let the initial quark colours be defined by the multiplet

q =

⎛
⎝ r

b
g

⎞
⎠

The colour transformation

GSU(3)q →
⎛
⎝ c1(rbg)

c2(rbg)
c3(rbg)

⎞
⎠ ≡

⎛
⎝ v

y
o

⎞
⎠

mixes the colours into three different proportions of r, g and b, say violet, yel-
low and orange. Since the colour coding may be different at different points in
space, the Lagrangian is required to be locally gauge invariant under SU(3).
For the Lagrangian to remain invariant a new gauge field must be introduced:

GSU(3)(x)L(ψ1, ψ2, Ã) → L(ψ′
1, ψ

′
2, Ã

′)

As in other gauge theories local invariance requires the introduction of a
new gauge field to communicate the local colour convention between the
quarks. The quanta of this gauge field are massless spin-1 particles, called glu-
ons. They mediate the chromodynamic forces between quarks: whereas pho-
tons cannot interact directly among themselves, gluons carry colour charge
and so give rise to their own colour fields (Figure 4.16). It means that
they can interact amongst themselves directly. By analogy with Van der
Waals forces between neutral atoms, the residual chromodynamic effects that
remain between colour singlet states after internal colour neutralization, are
responsible for the strong forces between hadrons.

Grand Unification

It appears feasible in principle to formulate a gauge theory based on a super
group that incorporates SU(3) × SU(2) × U(1) in a unified description of
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Figure 4.16: Quarks interact by gluon exchange. The colour quantum numbers
flowing into the gluons are equivalent to those of a qq̄ pair.

strong and electroweak fields. That would certainly solve the unexplained
matching of charges carried by colour singlet leptons (−1) and colour triplet
quarks (3 × 1

3
).

Following the discovery of τ mesons and their neutrinos there appears to
be a symmetric relationship between quarks and leptons:(

u c t
d s b

)
↔

(
νe νµ ντ

e− µ− τ−

)

Both quarks and leptons appear to be point-like objects.
A grand unified theory should incorporate a hierarchy of spontaneous

symmetry breaking which reflects transition from very high energy simplicity
to the observed low-energy complexity. One expectation of grand unification
is the elimination of baryon-number conservation, by allowing transformation
of a (B = 1

3
) quark into a lepton (B = 0) or an antiquark (B = −1

3
). The

consequence is possible decay of the proton that could account for the cosmic
imbalance between matter and antimatter.

4.4.6 Primary Structure

The theory of quarks, leptons and gauge fields defines an elegant logical
construct, but not without its drawbacks as a theory of matter. The quest
has been the ultimate elementary zero-dimensional point particle. At present
19 empirical parameters are required for such identification, without any
certainty that the ultimate fermions from which all matter is constructed have
been identified. Grand unified theories all suggest that the grand symmetry
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in itself must be badly broken, which indicates at least one deeper level of
structure. The argument seems to be trapped in an endless cascade.

Even more worrisome is the concept of a point particle as the building
block of higher dimensional structures. The current theory will most likely
have to give way to a more abstract one without fundamental particles, but
which describes phenomena that share the attributes now ascribed to quarks
and leptons. A search for a physically acceptable description of the electron
that accounts for its behaviour in macroscopic environments [36], identified
a wave description as the most appropriate. That avoids the necessity of
dealing with point objects and the infinities that it generates.



Chapter 5

Elements of Cosmography

There are three recognized disciplines designed to provide a description of
the world, or cosmos, and these are often badly mixed up and even used
interchangeably. Cosmogony attempts to document the origins and history
of the cosmos, mainly in terms of myths and theology. Cosmology is that part
of metaphysics that views the world as the totality of all phenomena in space
and time. Plato distinguished between opinion or belief and knowledge by
identifying objects of opinion as appearances and the objects of knowledge
as realities. The role of metaphysics is to identify the ultimate realities at the
basis of knowing the whole world. It is necessary to challenge all assumptions
before finally arriving at an account of the nature of all things that is fully
coherent and fully thought out. Modern cosmology has failed this objective
by embracing the concept of an expanding universe as first-principle reality,
without question. The third discipline, known as cosmography, is the science
that describes and maps the general features of the universe. It is, by defi-
nition based on observation, mainly astronomical, from which it derives its
theories.

Most authors fail to distinguish between the three disciplines and present
a hodge-podge of the three under the term cosmology. No further effort will
be made to correct the accepted terminology here and the remainder of
this chapter will be presented in the same modern style that amounts to
an unstructured mix of science, mathematics, speculation and dogma.

Because of the massive appeal of big-bang cosmology to religious and
scientifically lay communities, and the uncritical support of the mass media,
an unbiased opinion on the cosmological issue is rare and can only be
expressed with caution. Two exceptions that strive to document the extensive
volume of data, and the slippery ground trodden by theories based on extra-
polation from local observation to the edges of the universe, are the works of
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Figure 5.1: The notes in one octave and their relationship to the fractional
lengths of vibrating segments of the string.

Satterthwaite [78] and of Narlikar [79]. The discussion that follows is based on
a review by one of the authors in the 1993 Year Book to an encyclopedia [80].

5.1 Historical

The earliest known metaphysical cosmology was that of the Pythagorean
cult, who based their model on the assumption that numbers provided the
only intelligible structure of what is out there. Their dictum, all is number,
probably derived from noting the functional significance of numbers in the
objective world and, particularly in music.

The string of a lyre when plucked, vibrates over its entire length and
produces a sound of specific pitch. When pinched at half length the pitch
becomes one octave higher and sounds in harmony with the fundamental
note. Further harmonious overtones are produced by pinching the string so
as to restrict its vibration to segments of length corresponding to rational
fractions of the total length.1 When pinching the string at a point which is
not a simple fraction, the generated tone is not in harmony with the others.

1Strictly Pythagorean tuning on 12 uniform strings per octave, like a piano keyboard,
would result from the fractional lenghts, starting from any key, as shown in Figure 5.1.
However, to ensure maximum harmony of chords the uniform spacing, a between adjacent
notes should be such that

a12 =
1
2

i.e. a = 12

√
1
2

an irrational number. The problem of tuning exists in finding a compromise between the
two scales.
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This observation probably represents the first demonstration of a fundamen-
tal relationship between science and mathematics.

The Pythagoreans concluded that a harmonious relationship of similar
type pervaded the whole world and reflects the ultimate nature of reality.
These relations, like the multiplication table are timeless and changeless, and
define a static world. The cult even denied the existence of incommensurable
fractions, considered to be irrational, and only looked for perfect structures
in Nature.

The cosmology that views the world as a static whole and considers
motion and change as an illusion, is linked to the name of Parmenides of
Elea. His pupil Zeno gave several convincing proofs of the doctrine, such as
the analysis of an arrow in flight. At any instant the tip of the arrow occupies
a definite position. At that instant the arrow cannot move, for an instant has
no duration. Hence at each instant the arrow is at rest, which means that it
never moves.2

Although the static model of the universe is rarely taken seriously in
modern times, the link forged between number theory and cosmology remains
in vogue. The ancient conviction that the truth about the world is locked up
in numbers is still alive. The prevailing cosmology at any given period, can-
not be more advanced than the current number system. With the acceptance
of irrationals into the number system, to enable general root extraction, the
static world order lost its appeal. Although the restriction on roots of nega-
tive numbers remained, a less eccentric world view, based on real numbers,
became possible. With motion accepted as scientific fact, the static universe
was replaced by a mechanical system with plausible theories on cosmogony,
mainly due to Laplace. He maintained that, given the initial position and
velocity of every particle in the universe at any particular instant, and given
all the forces at work in Nature, a super-intelligence could calculate with
precision the entire past and future history of the cosmos.

The most advanced modern cosmologies have the freedom of complex
numbers, quantum theory and non-Euclidean geometry. However, the avail-
able scope is even wider. Hypercomplex numbers are the equivalents of com-
plex numbers in n dimensions. The algebra to handle these numbers, initiated
by Grassmann (c.1840), has never been worked out in detail and, except for
the occasional use of n-dimensional vectors, still awaits proper implimenta-
tion in science.

2Conversely, since an instant has no duration the arrow tip passes through each point
without coming to rest.
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For centuries after Pythagoras, numbers that could be used to express
incommensurable quantities were banned for being irrational. At a later stage
extension of the number system to incorporate complex numbers was also
resisted by mathematicians, branding these as imaginary, until they found
application in science. The n-dimensional hypercomplex numbers, and with
them cosmologies that require multidimensional curved space, are still on
the black list. Until all available scientific evidence has been re-examined in
terms of this more extensive number system, any claim of a metaphysically
sound cosmology is therefore premature and probably wrong.

The modern number system is still incomplete in one last respect, namely
the infinite. Infinity paradoxes have been around since the time of Zeno and,
despite impressive progress over the last century, they still abound. From the
work of Cantor there emerged the idea of transfinites, that transcend the
infinite. However, the new paradox of an ultimate transfinite re-introduced
all of the problems formerly associated with infinity, in a new guise.

Another anomalous feature of the infinite is demonstrated by the tangent
function, as shown in Figure 5.2. From the definition, tan θ = a/b, it follows
that tan 0 = 0 and tanπ/2 = ±∞. As θ → π/2 from below, tan θ → ∞,
and as θ → π/2 from above, tan θ → −∞. The only logical conclusion to
be drawn is that ∞ = −∞ and that the real line intersects itself at infinity.
If an infinite universe is interpreted in the same sense it therefore means
that space must close onto itself, not in one, but in n dimensions. Unless
the implications of this requirement are understood, it makes no sense to
entertain notions like the beginning of time and the universe.

The idea of closure at infinity is not new in mathematics, being the prin-
ciple that underlies perspective geometry, that assigns a single extra point to
the real line at infinity. Since there are no parallels in perspective space, cos-
mography that recognizes this principle cannot be based on affine geometry.
Most current cosmologies are crippled by this requirement.

ta
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θ

θ
θπ
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a

Figure 5.2: The trigonometric tan function.
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5.2 Cosmological Paradoxes

Although the principle is not always respected, there is general agreement
that an acceptable cosmological model should provide a plausible explanation
to a number of scientific facts based on observation. Three of the major issues
are usually formulated as paradoxes, representing experimental observations
at variance with intuition. These paradoxes are:

• The Olbers or dark-night paradox

• The Zwicky or dark-matter paradox

• The chirality paradox

In addition, factors such as the cosmic microwave background and the large-
number coincidences, are also considered important.

Common ground for discussion of these issues is found in the theory of
general relativity that provides a geometric model to account for gravity, the
dominant interaction on a cosmic scale. It is formulated in a four-dimensional
manifold of space and time. This manifold assumes its simplest form in the
absence of matter. In this hypothetical state the manifold is euclidean and
represents the four-dimensional equivalent of a flat plane of infinite extent.
Since the vast intergalactic spaces are considered to be empty, the large-scale
structure of space–time is considered to be essentially euclidean, with local
distortions in the vicinity of large accumulations of mass. The gravitational
field is defined as the gradient of the manifold that slopes towards massive
bodies. An experimental test of the model is the shift in apparent positions
of stars during a solar eclipse, shown in Figure 5.3. It shows that light rays do
not move along euclidean straight paths, but along the geodesics of the non-
euclidean geometry of space–time. The assumed euclidean nature of space–
time is an axiom of special relativity and is not dictated by the general theory.
The possibility that space–time is curved on a large scale can therefore not
be discounted, especially not, in view of the earlier observation about infinity
and perspective geometry.

5.2.1 Olbers Paradox

It is fair to assume that the heavenly bodies are distributed evenly through
space and considering their vast number, it is very likely that an observer
who focuses in any randomly selected direction, should be looking directly
at some star or galaxy. Since all galaxies are not at the same distance from
earth they will not appear equally bright. However, if the density of galaxies
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position.
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Figure 5.3: Apparent displacement of stellar position due to gravitational
interaction with the sun observed during an eclipse.

through space is constant the number of galaxies at a given distance must
increase with a factor which is proportional to the square of the distance.
This conclusion follows immediately from the simple formula that specifies
the surface area of a sphere, A = 4πr2.

Since light from a source is radiated equally in all directions the intensity
beamed in a certain direction must decrease by the same quadratic factor
with distance. It follows that galactic light that originates in a spherical shell
centred on the earth, reaches the planet with the same constant intensity,
irrespective of distance,

I =
I0

r2
· 4πr2 = constant,

for all r. On this basis it was argued by Olbers that the night sky cannot be
dark.

So convincing is this argument that any cosmology without an explana-
tion of the effect, fails directly. The simplest explanation in plain English is
that light which travels over large distances becomes tired. Although such
light is supposed to travel through empty space, during a journey over billions
of light years a photon must encounter many dust particles, gas molecules,
ionized material, atoms, plasma and other cosmic debris, despite the low den-
sity of these materials. Each encounter affects the energy of the photon, which
is inversely proportional to the wavelength of the photon, E = hν = hc/λ.
As the photon looses energy, the wavelength increases. The longer the path
length, the larger the shift in wavelength would be. This explanation works
well for a universe which is infinite in space and time. Other cosmologies
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require alternative explanations, such as an expanding universe or curved
space–time.

5.2.2 Zwicky Paradox

This paradox refers to an inconsistency in the mass of galaxies as estimated by
two different, equally valid methods. Galactic mass is estimated either from
brightness or from rate of rotation. Since both methods are based on sound
physical principles it means that some aspect is overlooked and the necessary
assumptions required to convert either luminosity or angular-velocity data
into a measure of mass, need to be re-examined.

The relationship between luminosity (L) and mass (M) for a star of
radius R was first estimated by Eddington from Stefan’s law (3.11) that
relates energy density in a radiation field to the mean temperature, � ∝ T 4.
Assuming T ∝ M/R and dT/dr � T/R, the energy flux per unit area fol-
lows as

1

ρ

d�

dr
∝ M 3

R2

where ρ = M/R3, is the mass density. The luminosity over the whole surface
area, L ∝ M 3, was thus found to be independent of the radius and propor-
tional to the third power of the mass of a star.

The second method to estimate galactic mass assumes that all galaxies
rotate around a central attractor in the same style as the milky way and the
solar system. This means that galaxies do not rotate like a rigid wheel, where
all particles rotate with the same period. Their rotation is differential and
the period of each object depends on the distance from the galactic centre.
If the period of revolution can be measured at a known distance from the
galactic centre, the mass of the galaxy can therefore be estimated by the
same formula (Kepler’s harmonic law) that calculates the solar mass from
the earth’s orbital period (P ) and its mean distance (R) from the sun, i.e. [81]

M =
4π2R3

GP 2

G is the gravitational constant.
If the galactic plane of rotation is directed towards the earth the orbital

period can be measured by observing the relative Doppler shifts (see
Section 5.3.1) of light sources at opposite edges of the galaxy, as shown in
Figure 5.4. From the difference in wavelength the period of revolution and
hence the mass of the galaxy can be calculated. As for the solar system, the
total mass may be assumed to good approximation to be concentrated in the
centre.
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Figure 5.4: Schematic diagram to illustrate the astronomical observation of
the period of galactic rotation.

The paradox consists therein that the second method consistently yields
masses significantly larger than the luminosity method. Two explanations
that immediately spring to mind are that the galactic mode of rotation resem-
bles that of a rigid wheel, or that a large percentage of invisible mass resides
in the galactic halo. For the second reason the difference in mass is colloqui-
ally known as dark matter.

5.2.3 Antimatter Paradox

The highly respected CPT theorem (Section 4.4.2) dictates a universal bal-
ance between matter and antimatter, which is nowhere observed. Although
this is a real paradox it features less prominently in cosmological discourse. It
is commonly stated that a slight imbalance, which occured without cause at
the time of the early universe, initiated the annihilation of most matter and
all of antimatter. This argument is too weak to resolve the paradox and the
challenge remains for any serious cosmology to locate the missing antimatter
and explain the chirality of space.

5.3 Cosmological Models

The leading cosmological models and some others with potential strength
can now be submitted to the test of resolving the paradoxes. Although there
are too many rival models to list, they all belong to one of three classes:
expansion models, plasma models and curvature models. Each of these will
be discussed separately.
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5.3.1 The Expanding Universe

The most important factor in modern cosmology is Olbers’ paradox. Because
of subsequent spectroscopic analysis of galactic light that highlighted the
same problem, the paradox has become linked to the name of Hubble.

Many experiments have shown that, in spectral composition, the light
from remote galaxies differs from terrestrial light. Each chemical element
radiates and absorbs light at characteristic frequencies and leaves a finger-
print when it interacts with a light beam. In this way elements in the solar
corona absorb their characteristic frequencies, with the effect that sunlight
shows dark lines at these frequencies when analyzed on earth. Although the
finger-prints of the elements also occur in galactic light they are no longer at
the exact same frequencies as in the solar spectrum. In most cases the entire
pattern is shifted towards longer wavelength, in a process referred to as a
red shift.

In static models of the universe the tired-light hypothesis accounts for
these red shifts, especially since the magnitude of the shifts correlates well
with distance from the galactic source. Since however, cosmological models
based on the theory of general relativity and large-scale euclidean geometry,
appear to be dynamic rather than static, an alternative explanation of red
shifts, offered by Hubble, gained general acceptance. Hubble associated the
red shifts with the Doppler effect of receding sources.

The Doppler Effect

If a radiating body is in motion with respect to an observer, the apparent
wavelength of the radiation is shortened if the motion is towards the observer
and lengthened if the motion is away from the observer. This phenomenon,
known as the Doppler effect may be observed as the change in pitch of its
whistle when a train passes an observer. The same effect also occurs in all
forms of electromagnetic radiation. The mechanism of the phenomenon is
shown in Figure 5.5, [78]. A stationary body is assumed to radiate at a
constant wavelength (λ) and the wavefronts will be concentric spheres as
shown on the left. For a body in motion the wavefronts are compressed in
the direction of propagation and the apparent wavelength for an observer
in the direction of approach, λB, will be shortened, or blue shifted. In the
opposite direction the wavefronts appear further apart and the wavelength,
λR appears red shifted.
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Figure 5.5: Waves radiated by stationary (left) and moving (right) sources
respectively.

Big-Bang Theory

Hubble, who discovered the relationship between red shift and distance, pro-
posed a new model of the universe on the assumption that galactic red shifts
had their origin in the Doppler effect. With the exception of a few blue shifts
observed for not too distant galaxies, galactic light in general is red shifted
by an amount proportional to their distance from earth. All of these galaxies
therefore appear to be receding from the milky way at velocities that depend
on their distance from the observer.

At first glance this condition seems to imply a privileged position of planet
earth at the centre of the universe. In fact, the interpretation stays the same if
all galaxies are assumed to move apart at a rate that depends on the pairwise
distance between individual galaxies. An analogy often used to simulate the
situation is that of a spotted balloon that is being inflated. All the spots move
apart at a rate that depends on the distance between the spots. A raising
plum pudding is a better three-dimensional analogon.

An immediate implication of an expanding universe is an unusual situa-
tion at both beginning and end of the process. Extrapolation into the future
suggests that an increasing number of galaxies would approach the horizon
at which they recede at the velocity of light and out of the observable uni-
verse. At some stage the expansion must progress to the point where only
the milky way remains in the locally observed universe and eventually the
dispersion must approach a zero-density vacuum state.

Extrapolation into the past suggests the inverse scenario of increasing
density, until the singular state of infinite density is approached at the very
beginning, or the moment of the big bang. At this instant of infinitely high
temperature there is no distinction between matter and energy and all forces
of Nature converge into a single totally symmetric interaction. Even space
and time are assumed to have their beginning at this fateful moment.
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The big-bang theory has had a chequered career. The idea was first
mooted by the novelist Edgar Allan Poe in his essay Eureka in 1849. Based
on the ideas of Olbers he postulated a closed universe and an explosive begin-
ning to prevent immediate gravitational re-collapse. The same idea was put
forward as serious science by Lemâıtre in 1931, arguing that the increasing
entropy of the universe implies that everything started from a single atom.
The idea was grabbed by Millikan to explain cosmic radiation. This early
version of the big-bang theory is now all but forgotten.

The concept was revived by Gamow in a paper published with co-authors
Alpher and Bethe (α, β, γ) on 1 April 1948 [55]. It was argued that only
some nuclear explosion of cosmic proportion could furnish the conditions
under which heavy elements could be obtained by the fusion of hydrogen
and helium. Although the synthesis argument has been superseded by less
extravagent models, the grand concept survived. At that stage however, the
big bang temporarily made way to steady-state theory, to be discussed next,
but made a comeback when radio-astronomical observations suggested an
evolutionary cosmic structure at variance with steady state.

The microwave background With both cosmological models under stress
an alternative model of a big bang in a closed universe was proposed by Dicke.
The objective was to calculate the helium content as a fraction of the total
mass of the universe by theoretical variation of the photon:proton ratio. The
correct percentage was found at a ratio that predicted a radiation density to
persist in the closed universe at a temperature of 30K.

Before the prediction could be tested experimentally microwave back-
ground radiation at an apparent temperature of 3K was discovered and
interpreted as final vindication of the big bang. To account for the differ-
ence between predicted and observed temperatures the theory was adapted
by tracing back the origin of the radiation to a time at which matter and
radiation first became decoupled and the early universe transparent. This
happened when the temperature had dropped sufficiently for electrons and
protons to combine into hydrogen atoms and photons were no longer con-
fined by scattering off free electrons. The observed Planckian distribution
(Figure 3.15) of the background radiation agrees with thermalization of the
radiation prior to decoupling.

The observed microwave background turns out to be remarkably smooth
and isotropic. So much so that the expansion since the big bang was found
to be hopelessly inadequate to account for this observation. At that stage
particle physics came to the rescue with the postulated inflationary stage of
expansion.
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Inflation Some of the most fundamental elementary particle theories apply
at such high energies that experimental testing is not feasible. Grand uni-
fied theories (GUTs) are of this type (see Section 4.4.4). The operative
assumption is that, at sufficiently high energy (temperature) the different
forces of Nature become indistinguishable. As a testing ground for GUTs the
conditions that presumably prevailed at the big bang are therefore highly
appropriate. It is natural to argue that strong, weak, electromagnetic and
gravitational fields were but one at the beginning. As the early universe
cooled down through expansion the symmetry that equipoised the different
forces broke down spontaneously (see Section 4.4.3).

Other processes of this type are well known as phase transformations.
When a chemical system cools down, interactions that are too weak to mani-
fest at high temperature, become dominant in producing additional structure
which lowers the symmetry of a new emerging phase. From the theoretical
models that are used to describe the different forces, the energies at which
symmetry breaking should occur, can be calculated and correlated with the
age of the early universe. One of the features that can be calculated is the
time at which matter and radiation decoupled to initiate the spreading of
background radiation. On the basis of these calculations the size of the uni-
verse at that stage was much too small to account for the isotropic spread of
the background radiation as observed today.

To remedy the situation it may be recalled that in many chemical sys-
tems phase transitions do not always happen immediately the transition
temperature is reached. The system is said to be supercooled and one effect
thereof is that the latent heat of transition is not released. The inflationary
scenario consists of postulating a supercooled universe and assuming that
the latent heat is utilized to drive a hugely accelerated expansion before
symmetry breaking sets in.

This suggestion has spawned several mathematical models of the infla-
tionary period, none of which has been totally successful. What they have in
common is to predict an expansion factor of about 1030 over a period of 10−32

seconds, probably driven by anti-gravity. This may sound like science fiction
but it provides the only explanation in big-bang theory of the microwave
isotropy and predicts sufficiently high density of the universe to eventually
arrest the expansion. During the inflationary period all temperature differ-
ences are wiped out and the geometry of space is flattened. The theory now
prescribes the mass of the universe and the 1% dark matter inferred from the
Zwicky paradox is increased to 99%. According to particle theory all of this
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is non-baryonic mass or wimps.3 A convenient feature of wimps is that they
cannot be detected by any means. Had it not been for the explicit assurance
of the experts, many a layman could mistake this scheme for mythology
rather than science.

Measured against the stated criteria, the big bang accounts for the Olbers
paradox, aggravates the Zwicky problem and does not address the chirality
issue.

The steady-state Universe

An alternative to big-bang cosmology in an expanding universe was proposed,
almost simultaneously with the Gamow theory, by Hoyle and his co-workers.
Their theory became known as the steady-state model. The model is based
on the idea of continuous creation of matter to compensate for diminishing
density brought about by expansion of the universe. New matter is proposed
to appear in the form of hydrogen which becomes incorporated into condens-
ing clouds that contract to form new galaxies to replace those that disappear
at the edge of the observable universe. This elegant idea gets around the
unpalatable singularity which is the big bang, but like the latter is impossible
to test experimentally.

The essence of a steady state, its homogeneity and isotropy, was the very
reason why it fell into disfavour. The rise of radio astronomy led to the
discovery of many unusual extragalactic sources associated with supernovae,
galactic centres, pulsars and quasi-stellar objects (QSOs) or quasars. Many
of these are associated with faintly visible objects with enormous red shifts
which were therefore interpreted as objects that only occured in the distant
past. This implied evolutionary history of the universe is incompatible with
the homogeneity of a steady state. More recent observations suggest a non-
Doppler origin of the intrinsic red shifts of quasars, which may therefore be
much closer and of more recent vintage than thought before. Although the
evolutionary argument then looses its force, the entire basis of the expanding
universe is also called into question. A more devastating blow to the steady-
state model was delivered by the discovery of the microwave background for
which it had no reasonable explanation.

QSSC At the time, when both expanding-universe theories encountered
serious problems, a hybrid model of big-bang and steady-state cosmologies
was countenanced [82]. This quasi steady-state cosmology is formulated in

3Weakly interacting massive particles.
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terms of a cosmic field that allows interparticle interaction at a distance, as
required by Mach’s principle.4 Instead of continuous creation of matter it is
here assumed that matter has limited life and that particle world lines are not
endless. Such a world line may begin at a finite point in space-time and end
at another. This means that a particle is created and, after a finite lifetime
annihilated. It is further assumed that a typical particle to be created is a
particle of Planck mass,

mP =

(
�c

G

) 1
2

The Planck particle decays into a number n ∼ 6×1018 of secondary baryons,
mesons, leptons and photons. The sites of matter creation are potentially
explosive and the explosions drive the expansion of space. Sites where X-ray
and γ-ray activity occurs are the sites where creation of matter currently
takes place, and include QSOs and active galactic nuclei. The reason why
creation seems to happen in compact regions close to an event horizon is
because the theory cannot be formulated in flat space-time. A strong gravi-
tational disturbance is necessary to trigger a creation event through explosive
acceleration of the Mach-field bosons.

From this point onwards all the useful arguments developed in big-bang
cosmology are invoked as features of the mini-bang creation events, with-
out the incommodious singularity of the former. The microwave background
is ascribed to thermalization due to a postulated fog of metallic whiskers in
intergalactic space. Dark matter is ascribed, not to wimps, but to the gravita-
tional effects of invisible remnants of burnt-out stars. In big-bang cosmology
there is not sufficient time to allow this interpretation.

5.3.2 Plasma Cosmology

One of the defects of expansion cosmologies is their exclusive reliance on
gravity, while ignoring electromagnetic interaction. Cosmic radio sources
attest to electromagnetic activity at an enormous scale. A variety of spec-
troscopic measurements suggest the presence of ionized plasma particles in
intergalactic space.

The study of plasmas, especially in the presence of magnetic fields, is
an important branch of physics. Since the sun, and possibly all stars, have
magnetic fields it is reasonable to look for plasma effects on a cosmic scale.

4The principle implies that the laws of mechanics depend on interaction with all matter
in the universe.



5.3. COSMOLOGICAL MODELS 197

The leader of this quest is Hannes Alfvén, who has already succeeded to
simulate a variety of observed cosmic structures and apparent interactions in
the plasma laboratory. The simplest and smallest of these is the aurora bore-
alis or northern lights. The largest includes vortex filaments and whirlpools
with dimensions of billions of light years. The fact that such structures
are continually observed around galactic centres and often between galaxies
within a cluster, together with the fact that no other reasonable explanation
of those phenomena exists, provide conclusive proof that the structure of the
universe cannot be explained adequately without consideration of electro-
magnetic effects.

The difference in approach between Alfvén and big-bang cosmologists is
instructive. The latter concentrate exclusively on the presumed first few sec-
onds of creation, the one aspect not amenable to experimental test. Plasma
cosmology, on the other hand, relies on astronomical observation and labora-
tory tests. The simulation of the most diverse galactic structures known, by
computer modelling based on simple plasma models, is particularly impres-
sive. It is clear that any future cosmology has to take plasma effects into
account. At this stage it is already obvious that magnetic fields and electric
currents are more effective than gravity in concentrating matter into plasma
strings or filaments that could act as nucleation centres for the growth of
solar systems, galaxies and larger clusters. It is therefore important to note
how plasma arguments may serve to resolve the three paradoxes.

The most important of the three is Hubble expansion which the plasma
model addresses together with the antimatter problem. It is argued that
plasma processes not only lead to a large-scale separation of matter and anti-
matter, but also prevent their subsequent mixing. During chance encounters
large explosions result. Maybe not as large as a big bang, but large enough
to drive local expansion, observed as red shifts.

The dark-matter paradox is not addressed.
The microwave background is explained quite simply. High-energy elec-

trons trapped in a magnetic field absorb and re-emit microwaves at the same
wavelength. Over billions of years this process creates an isotropic back-
ground and represents a diffuse glow from the fog of plasma filaments that
occur in any galaxy.

5.3.3 Curved-space Cosmology

Although the Doppler interpretation of galactic red shifts is generally accepted
as the most likely, it is by no means a unique explanation. It is well known
that red shifts may be explained equally well in terms of a static universe
with curved space and time. In this case the galactic light source and the
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Figure 5.6: Red shift as a function of space curvature.

observer are no longer on the same time coordinate and if the curvature is
elliptical the light beam has to catch up with the observer along the time
coordinate. This situation is pictured in Figure 5.6. The apparent euclidean
and actual curvilinear spatial axes do not coincide and galactic light emitted
at time t0 reaches the observer at time x/c+∆t. It is the time difference that
creates the illusion of the galaxy receding at position xe.

The rotation of a galaxy will also appear differently in flat space and
in intrinsically curved space. The apparent and actual radii of rotation in
curved space will be different and cause an interpretational error that leads
to Zwicky’s paradox. The amount of curvature needed to account for the
mass difference can be used to calculate the radius of a closed universe and
this value should correlate with the Hubble radius, derived from observed red
shifts. Such a calculation therefore provides a falsifiable test of the model in
the Popper sense of theoretical prediction against experimental observation.

Sporadic attempts are made to analyze cosmological effects in curved
space, but no comprehensive reformulation of general relativity and its conse-
quences in space–time with large-scale curvature, has been attempted. Spec-
ulative analysis of a closed universe in continuously curved space with an
involution [9] shows that such a construct accounts for all three paradoxes.
The Planckian microwave spectrum is a property of any closed universe. In
such a universe, as on a Möbius strip, two sides of the same surface are sepa-
rated by an interface, interpreted as the vacuum. Matter on opposite sides of
the interface is of opposite chirality. Transplantation through the involution
imperceptibly transforms matter into antimatter, to explain why no traces
of substantial concentrations of antimatter have ever been detected.

5.3.4 The Anthropic Principle

No discussion of modern cosmology can be complete without mention of the
large-number coincidences and their interpretation within the big-bang scena-
rio. This issue concerns the values of three cosmic quantities in dimensionless
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units. The origin of the argument is obscure but it has been commented on
by Eddington and by Dirac.

The three numbers (N3, N2, N1) represent the baryonic mass number of
the universe, the strength of gravitational interaction and the Hubble age
of the universe, respectively. An apparent relationship between the three
numbers is suggested by their generally accepted values of N1 = 1.5 × 1040,
N2 = 5 × 10−39 and N3 = 1.5 × 1078.

A supposed mystery lies therein that this simple relationship must dis-
appear as the world ages. Maybe there is no mystery apart from a meaning-
less coincidence. However, prominent cosmologists maintain that a profound
balance in the make-up of the universe is responsible for shaping a unique
environment in which sentient beings may flourish.

As explained by Dicke, the link between N3 and N2 is provided by Mach’s
principle. The meaning of N1 depends on the need for it to come into register
during the epoch when conditions favour the appearance of intelligence. The
assertion that initial values were set by design at the time of the big bang
in order to prepare the ground for the advent of mankind on planet earth,
is known as the anthropic principle. The appearance of humans at time 1040

corresponds to the time needed for a first generation of stars to burn out and
release the elements required for biological life on a new planet. Without the
balance between N3 and N2 this development would not be possible.

The anthropic argument completes the myth that universal structure has
developed to accommodate mankind, the centre of the universe. This argu-
ment puts back the clock to pre-Copernican times. The flaw in the argument
is that it only holds in an expanding universe. In curved space the meaning
of the dimensionless quantities changes. The number N1 no longer measures
a Hubble age, but rather a Hubble radius of the universe, to yield a dimen-
sionless volume, V ∼ 10120. If N3 is the total mass, N2 = N3/V = 1040 is the
density of the universe, about which there is no mystery.

5.3.5 Elemental Synthesis

Elemental synthesis, the most speculative issue in cosmology tends to be
of pivotal importance in the argument between rival theories. It could, at
the same time, therefore serve to identify sufficient common ground for the
formulation of some general model.

One point of probable consensus is that elemental synthesis occurs in the
plasma state during violent events characterized by extreme electromagnetic
activity. In some models these synthetic events happen at singular points such
as the big bang, or perhaps black holes at galactic centres. In other models
synthesis occurs in normal stars while quasars and other objects associated
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with x-ray and γ-ray emission are being implicated more often. Many such
objects remain to be characterized more closely. Because of this uncertainty
it is probably somewhat premature to ponder mechanisms of elemental syn-
thesis too closely. The same is true about the mode of dispersal of the newly
synthesized material through the cosmos. Having quasars and other active
regions involved, it is no longer necessary to rely on supernovae as the only
vehicle of dispersal.

Another common principle that seems to emerge is cyclic annihilation
and creation of matter, for instance in a universe that pulsates between big
bangs and crunches. In a like manner, matter disappears in black holes and
re-emerges through gushers, also known as white holes. The advantage of
this type of scenario is non-violation of the first law of thermodynamics.
The disadvantage, to many minds, probably is the total silence about initial
creation. However, should the observable universe be in equilibrium, such
enquiry is idle speculation. One assumption that renders speculation redun-
dant is the assumption that matter is no more than a special configuration
of world space. This being the case the only approach towards a general cos-
mology is through specification of the nature of the vacuum substratum and
the geometry of space–time.

5.4 Chirality of Space–time

Pasteur, who was first to isolate optical isomers from racemic mixtures, both
by crystallization and by specific biological activity, is purported [84] to have
made the grand conjecture

L’universe est dissymmétrique

before the French Academy of Sciences, expressing his conviction that the
chirality of molecules and of life processes was a function of the asymmetry
of the universe. Today there is no further doubt that Pasteur was right,
although most cosmological models simply ignore this important fact.

The electromagnetic right-hand rule is the most direct demonstration
that space is chiral. In fact, it provides a simple way of communicating to a
remote intelligence the local definition of left and right, assuming familiarity
with physical phenomena at both ends. The observations that space, matter
and biological activity are all of fixed chirality in this corner of the universe
must mean more than mere coincidence. The known chirality of space, and
in turn the interaction of matter with electroweak fields dictates the chirality
of biological activity. To put all of this into perspective it will be necessary
to clarify the notion of chiral space.
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Figure 5.7: One enantiomer of hexahelicene which is a fragment of a helical
surface.

This problem was addressed [83] by identification of infinite chiral struc-
tures of dimension (n − 1) that completely fill an isotropic continuum Rn.
That means chiralizing an isotropic straight line R1, plane R2, space R3 and
hyperspace R4.

Existence of the chiral hexahelicene molecule, one enantiomer of which
is shown in Figure 5.7, prompted efforts to fill the space R3 with a chiral
two-dimensional helical figure.

5.4.1 The Helicoid

The construction starts with a right circular helix defined as the locus of
a point moving in space under the action of a continuous twist [22]. The
cylindrical coordinates of a point P on the helix are

x = a cos θ, y = a sin θ, z = aθ tan α ≡ cθ, (c = a tan α)

The helix, shown in Figure 5.8, resembles the rail of a spiral staircase and
has the equations

a2 = x2 + y2,
y

x
= tan θ = tan

z

c
, z = cθ

which express it as the curve of intersection of two surfaces: the circular
cylinder, a2 = x2 + y2, and the helicoid,

y

x
= tan

z

c
= tan θ

The helicoid is defined as the conoid5 generated by lines parallel to the plane
XOY which intersects the Z-axis. The shape of the helicoid which is swept

5A conoid is the locus of a line that always intersects a fixed line (Z) and a given curve,
and is parallel to a given plane [85].
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Figure 5.8: Circular helix and helicoid, on the right.

out by the parallel lines, is like the ceiling of the staircase, or a propellor
blade. With decreasing c the space between successive planes of the helicoid
also decreases and eventually as c → 0 and a → ∞ the helical surface of
the helicoid completely fills R3. The chirality of this space, like the absolute
configuration of the unit propellor depends on the direction in which the
locus that defines the helix, is followed.

5.4.2 The Chiral Plane

Perhaps easier to envision is the way in which the plane R2 can be filled by a
chiral curve, in this case an Archimedean spiral, ρ = aθ, shown in Figure 5.9.

From x = ρ cos θ, y = ρ sin θ follows the parametric equations

x = aθ cos θ, y = aθ sin θ

It is evident that as a → 0 the distance between adjacent coils of the spi-
ral becomes infinitesimally small, until the space R2 is completely filled, as
demonstrated in Figure 2.13.

5.4.3 General Theory

From the first example follows that R3 is filled by a two-dimensional chiral
plane that screws along a special axis. Likewise the one-dimensional Archi-
medean spiral fills R2 starting from a special point at the spiral centre. These
observations may be generalized into the conjecture that an isotropic con-
tinuum Rn is chirally filled by an (n − 1)-dimensional chiral motif that coils
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Figure 5.9: Archimedean spiral to demonstrate the chirality of two-
dimensional space.

around a special (n− 2)-dimensional site. To test this proposition it is noted
that an infinite straight line R1 is filled by a sinusoidal chiral sequence of
points that satisfy the law r = aθ sin θ, as shown in Figure 5.9. Filling of R1

by points according to this law requires the presence of a central zero point.
Compared to the central point at the origin of the Archimedean spiral, this
point is of higher multiplicity and hence of dimension less than zero. The law
r = aθ cos θ leads at R1 to an achiral sequence of points with an inversion
centre at r = π/2. It may be inferred that the chiral filling of continua Rn

by figures of (n − 1)-dimensionality is also possible for n > 3 if a sinusoidal
coordinate is retained.

It seems likely that hyperspace R4 may be chirally filled by helical three-
dimensional space that requires a two-dimensional plane as a special element
of the whole system. It may, in general, be conjectured that an n-dimensional
isotropic space is filled by an (n− 1)-dimensional chiral figure coiled around
a special (n − 2)-dimensional achiral site.

It is of special interest to note that a closed five-dimensional universe of
the type (R4, t) proposed by Thierrin [86] could be viewed as filled by a four-
dimensional chiral hyperspace, wrapped around an achiral three-dimensional
space, which is the vacuum as defined in Section 5.3.3. As already pointed out,
the 4D enantiomers interconvert on displacement along the achiral vacuum.
Since the fifth dimension in this model represents time, it means that the
material 4D universe that completely fills five-dimensional space–time per-
sists for all time. Time has no beginning or end in such a closed universe.
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5.5 The Vacuum Substratum

Cosmology, which by definition provides the most comprehensive descrip-
tion of all physical phenomena, is required to be consistent with the most
advanced theories of the physical world, at present recognized as quantum
field theory (QFT) and the theory of relativity.

Relativity restricts the maximum velocity of matter to be less than that
of a light signal, which is restricted to c. Should an object go faster than
light, the electromagnetic fields that hold its atoms together are left behind,6

causing the atoms to disperse and the matter to fall apart. Because of these
restrictions it is not possible to obtain a relativistically consistent definition of
an extended rigid body, because this would imply signals faster than light. To
overcome the problem it was necessary to define particles such as electrons, as
extensionless points, or singularities in a field, which in QFT generate infinite
fields, that many scientists find objectionable. One way out is to accept that,
like classical mechanics, quantum theory has its own limitations and breaks
down outside of a given region of applicability. A reasonable assumption [87]
is that the limits to valid theories of the physical world are related to the
three fundamental constants of the observable world, �, c and G.

Planck’s constant � specifies the minimum amount of angular momentum,
c= (ε0µ0)

− 1
2 is the maximum rate of transmission of an electromagnetic signal

as determined by the permeability and permittivity of the vacuum, and G,
the gravitational constant specifies the inverse-square law of gravity. The
force exerted on a mass m1 in the gravitational field of another mass m2, is
given by

F = m1
d2r

dt2
∝ m1m2

r2

i.e.
d2r

dt2
=

Gm2

r2

For mass points in the gravitational field of the earth the acceleration due to
gravity is

d2r

dt2
= g =

GME

r2

It is noted that the three fundamental constants reflect the macroscopic
physical properties of space–time, or the vacuum.

6Sound waves produced by an aircraft are left behind when it goes faster than sound.
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Natural limits to the domain of quantum mechanics are next assumed to
correspond to the elementary quantities of mass, length, time and energy,
represented in Planck units, derived from the fundamental constants by:

mP ≡
(

�c

G

) 1
2

� 2.2 × 10−8 Kg

lP ≡
(

G�

c3

) 1
2

� 1.6 × 10−35 m

tP ≡
(

G�

c5

) 1
2

� 5.4 × 10−44 s

EP =

(
c5�

G

) 1
2

� 1.2 × 1019 GeV

The electromagnetic and gravitational fine-structure constants relate the fun-
damental constants to the charge of the electron and mass of the proton,
respectively.

α =
e2

�c
� 1

137
Gm2

p

�c
= 5 × 10−39

the latter corresponding to the large number, N2 of the anthropic argument.
The implications of restricting the use of quantum theory and relativity

to lengths in excess of lP and energies less than EP only, are profound. When
moving into the sub-quantum region the familiar notions of space and time
fade away into something which, at present is unspecifiable. The infinite fields
around singularities disappear automatically since Coulomb’s law no longer
applies, and the restrictions on propagation of signals become irrelevant.

The most general model of the vacuum substratum has been formulated
by Bohm [87] in terms of an implicate order and holomovement. Substructure
models in terms of particles and antiparticles of Planck mass, or standing
waves formed by the superposition of advanced and retarded spherical waves
have also been proposed [11].

5.5.1 Implicate Order and Holomovement

Bohm’s model is based on the assumption that the undivided wholeness of
the universe, recognized by both quantum theory and relativity, originates
from a sub-quantum plenum. In the same way that a hologram enfolds all
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aspects of a three-dimensional structure in an apparently featureless pattern,
the macroscopic world is enfolded or implicated at the substratum level.
A hologram does not look at an object at all. It gives rise to an image when
suitably illuminated. Whereas the laws of physics refer mainly to the explicate
order, it is now proposed that primary relevance be given to the implicate
order in the formulation of these laws. The motion of particles at the quantum
level is also in explicate order, but not always at the manifest level because it
is affected by the active information represented by the quantum potential.

In the production of a hologram or the modulation of a radio wave, a
structure is enfolded in an electromagnetic wave. The universe, which includes
the whole of existence, contains not only the electromagnetic and other fields
that are known now, but also an indefinitely large set of further fields that are
unknown and may never be known in totality. Recalling that the essential
qualities of fields exist only in their movement, this total ground is called
the holomovement. It is undefinable and immeasurable. Observable particles
are the ripples on this sea of underlying activity. It is this activity which is
responsible for zero-point energy. It can also be regarded as the source of the
quantum potential, which has the form

Vq = − �2

2m

∇2R

R

where R is the amplitude of the quantum field. The quantum potential is
responsible for the non-local interaction in many-body quantum systems.

Non-locality is reflected therein that if an order is enfolded throughout all
of space and time, it cannot coherently be regarded as constituting a signal
that would propagate information from one place to another over a period
of time. This means that where implicate order is involved, the descriptive
language of relativity theory will no longer apply.

It is not clear how to interpret implicate order in an expanding universe,
but not difficult to imagine holomovement to happen at the interface of the
curved-space structure described in Section 5.3.3.

5.5.2 Information Theory

Another approach that may help to overcome some of the awkward con-
clusions of modern physics is based on information theory as developed by
Stonier [88]. The basic postulate is that the universe is made up of three
components : matter, energy and information. In a sense, what mass is to
the manifestation of matter, and heat is to energy, organization is to infor-
mation. Heat is the form of energy that lacks information. All other, more
structured forms of energy contain an information component.
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Like mass and energy, information may also be assumed quantized in the
form of infons. In view of the interconvertibility of energy and information,
a close relationship between photons and infons is implied. The relativistic
energy equation

E =
m0c

2√
1 − v2/c2

(5.1)

shows that a massless particle has zero energy unless it travels at the speed
of light, in which case E = 0

0
becomes indeterminate. Although the value of

the energy cannot be calculated from (5.1), it is non-zero. The same applies
to relativistic momentum,

p =
m0√

1 − v2/c2

A massless particle, at any speed but c however, has zero energy and momen-
tum. Such a particle differs from a photon which has energy (hν) and momen-
tum. An infon could be of this type, with wavelength

λ =
h

p
=

h
√

1 − v2/c2

m0

Only at velocity v = c does the wavelength become indeterminate, but finite.
For v 	= c, λ → ∞. Thus, an infon is a photon whose wavelength has been
stretched to infinity. Conversely, a photon is an infon that travels at the
speed of light.7 The fact that only quanta which travel at velocity c can
be perceived as receptors is not unlike the way in which the absorption of
radiation requires a receptor, attuned to the incoming frequency according
to the Bohr frequency condition, ∆E = hν. It seems that the receptor must
in fact be attuned to both entrance velocity of the incoming particle, as well
as its alternating magnetic field.

In the same way that different photons define an electromagnetic spec-
trum, there may be many different infons that together comprise an informa-
tion spectrum. Some obvious examples are phonons, excitons, and the holes
left in atomic shells by ejected electrons. The electron cloud that surrounds
an atomic nucleus has the structure of organized energy. This structure, or
morphe arises from interaction with the field of the nucleus that imposes a

7This result has an interesting corollary for the theory of energy transmission according
to the absorber-theory model [11]. The supposed standing wave or virtual photon that
connects emitter and receptor, is recognized as equivalent to the infon as defined here.
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unique pattern on the surrounding intra-atomic space. Should an electron be
ejected from the cloud, a hole, which continues to interact with the field, is
left behind. Such a hole is equivalent to an infon. When the electron drops
to a lower level the excess energy combines with the hole in the outer shell
to form a photon that may escape from the atom, provided its velocity is
modulated by the structured space to match c. The same applies to incom-
ing energy approaching at a velocity near c. Before absorption can occur
the incoming velocity, once more, needs modulation to c. That is the role of
structured intra-atomic space. It appears that, whereas each electron in an
atomic charge cloud can interact with a photon of characteristic frequency,
all electrons only recognize photons with velocity c.

The notion that infons are interconvertible with photons and can be prop-
agated at speeds different from c has important cosmological consequences.
Consider a star that recedes at velocity v. Assume that emitted photons are
transformed into pure information quanta, that would impinge on earth with
velocity c−v. Unlike photons, these quanta have no momentum, frequency or
wavelength and remain undetected by conventional receptors. In order to be
detected it is necessary for those quanta to be accelerated to velocity c when
they reach a receptor. Gravitational curvature could cause such acceleration.

Of all the quanta emitted by the star that recedes at velocity v, only those
accelerated to velocity c + v would reach earthly receptors at velocity c, to
be converted to and detected as light quanta. Now, if the frequency of the
quanta, ν = v/λ, remains constant as set on original emission, acceleration
to c must cause an increase in wavelength, observed as a red shift. Also, all
other things being equal, the greater the velocity at which the star recedes,
the smaller will be the fraction of quanta that can be accelerated to reach
velocity c. The effect of this is that stars with large red shifts must appear
faint, not by virtue of their distance from earth, but because of their high
speed of recession. Many galaxies may therefore not be as remote as suggested
by Hubble’s law and the universe much smaller than commonly thought.
Furthermore, infons that originate at stars that move towards earth, arrive
with velocities v + c and there is no device to slow them down to the obser-
vable velocity of c. Such stars therefore remain invisible and hence, all galactic
objects appear to be red-shifted. This argument undercuts the entire rationale
of an expanding universe inferred from observed red shifts.



Chapter 6

The Periodic Laws

The properties of the elements are the properties of numbers. –
Alexandre Émile Beguyer de Chancourtois, 1862.

6.1 Introduction

The periodic law of the elements is the most fundamental principle of chem-
istry. It became firmly established in about 1875 amidst one of the most bit-
ter controversies since the collapse of the phlogiston theory. The principle at
issue is best remembered as Prout’s hypothesis. To account for the fact that
most of the atomic weights, that provided the basis for periodic classification,
were measured to be uniformly close to whole numbers, it postulated hydro-
gen as the basic building block of all matter. Of the common elements some
typical (modern) relative atomic weights that illustrate the point, include
H(1.008), He(4.003), Be(9.012), C(12.011), N(14.007), O(15.999), F(18.998),
Na(22.990), and many more. The most conspicuous exceptions to the rule,
the elements Cl(35.453), Cu(63.546) and Rb(85.468) became the subject
of intense research aimed at the refutation of Prout’s hypothesis, by the
measurement of the most accurate atomic weights. The results refuted the
hypothesis which eventually however, prevailed with the discovery of isotopes.

With hindsight Prout’s hypothesis is seen to reflect the composition of
atoms in terms of protons, neutrons and electrons. Each proton–electron
pair in an atom may be thought of as either a hydrogen atom or a neutron.
The identity of an atom is fixed by the number of protons in the nucleus.
Isotopes are atoms in which different numbers of neutrons are associated
with the same fixed number of protons. A mixture of different isotopes in an
elemental sample leads to non-integral atomic mass and apparent break-down
of Prout’s conjecture. A surprising aspect of the periodic law, that applies
to elements only, is that no effort has been made, until very recently [5], to

209
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obtain a generalized formulation of the law that applies to all stable nuclides
in terms of neutron count N and/or mass number A.

In that study [5] it was found that the 264 stable (non-radioactive)
nuclides are distinguished by two factors, a proton (atomic) number and a
proton:neutron ratio. When examined in terms of these factors the nuclides
neatly divide into two classes, of even and odd mass number (A = Z + N)
respectively. The plot of Z/N vs Z for even mass numbers is shown in
Figure 6.1.

Nuclides are represented by small circles on a set of easily discernable
festoons. Consecutive nuclides on the same festoon differ by the equivalent of
an α-particle, i.e. by two protons and two neutrons. Each festoon terminates
in two radioactive nuclides, indicated by open circles. The terminal nuclide
on the high-Z/N side decays by positron emission and/or electron capture.
The first stable decay product from this process lies on the next lower festoon
of the same family. The nuclides of even mass number separate into two 81-
member families of mass 4n and 4n + 2 respectively, distinguished by two
differently filled type of circle in Figure 6.1. The terminal nuclide on the low
Z/N side of any festoon decays by β emission. The straight lines AB and
BC were found [5] to provide a simple prescription for predicting the range
of stable isotopes of any given element. AB represents the relationship

N =
Z

1 − Z tan θ
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Figure 6.1: Plot of the even mass number stable nuclides to show their build-
up from α-particles. The limiting lines AB and BC predict the same region of
stability as demarcated by the irregular profile drawn to emphasize periodicity.
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Like Z, the number N must be a discrete whole number. The integer, obtained
from N as calculated, by discarding fractions, correctly describes the mini-
mum number of neutrons for given Z, that can be associated with the lightest
stable isotope of atomic number Z. The line BC identifies the heaviest sta-
ble isotope for given Z in like manner. These observations imply that each of
the even-mass series can be generated by adding consecutive α-particles to a
single starting entity, as shown in Figure 6.2 for some nuclides of the series
A = 4n.

When a nuclide that lies outside the area of stability, as calculated from
the line AB is reached in the course of this progression, positron emis-
sion and/or electron capture returns the sequence into the area of stability.
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Figure 6.2: The 81 nuclides of the series A = 4n are defined by the addition
of α-particles to 12C. Whenever a radioactive species is generated the process
is continued by restarting from the first stable decay product, as demonstrated
in the diagram.
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No additional rules are required to correctly predict all stable nuclides of
atomic number not exceeding 83. The only unexplained feature is a small
number of α-unstable nuclides that occur within the triangle of stability.
Their positions are left blank in Figure 6.1.

The odd-mass nuclides occur in analogous fashion as two 51-member
sequences (4n ± 1) in a triangle, completely enclosed within the triangle
of Figure 6.1.

It is of interest to identify those nuclides that lie within the excluded
triangle at the tip of the triangle of stability, as shown in Figure 6.1. The
(radioactive, α-emitter) nuclides, predicted to lie in this region by extension
of the four series that generate the stable (non-radioactive) nuclides, are
shown in Table 6.1 and in Figure 6.3. The 36 additional nuclides within the
tip of the triangle increase the number of possible nuclides to 300 and the
number of elements to 100.

Another way of defining the area in Figure 6.1 to which stable nuclides are
confined, is by drawing straight-line segments that separate filled and empty
circles, respectively. The turning points of the discontinuous boundary lines
are found to correspond surprisingly well with atomic numbers, known to

Table 6.1: The α-unstable nuclides shown in Figure 6.3. The experimental
evidence to support the selection is not too reliable.

Z 4n 4n + 1 4n + 2 4n + 3

84 Po 212 213 211
85 At 213 215
86 Rn 216 217 218 215
87 Fr 221 219
88 Ra 224 225 226 223
89 Ac 227
90 Th 228 229 230
91 Pa 233 231
92 U 236 237 238 235
93 Np 239
94 Pu 241 242 243
95 Am 245
96 Cm 248 249
97 Bk 251
98 Cf 255
99 Es 257

100 Fm 261
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Figure 6.3: Nuclides with 83 < Z < 102 generated by the rules for α-addition
derived for the stable nuclides.

represent closed-shell electronic configurations in the periodic table of the
elements. As shown in Figure 6.1 these line segments can be constructed
so as to match an eight-group observed table, shown in Figure 6.4, almost
perfectly. This unexpected result implies that the periodic table of the ele-
ments is a subset of a more general periodic law of the stable nuclides.
A new feature of Figure 6.4, not noticed before in any periodic classifica-
tion, is the spread of the 14-element f -series across two periods, such that
the sixth member (62Sm,94Pu) occurs in the same group as the elements
with filled p and d sub-shells. It will be shown that this property, rather
than an accidental curiosity, introduces a fundamental feature of periodic
classification.

Had the rare earth elements been known to Lothar Meyer, this extra
element of periodicity would have been revealed in his atomic volume plot,
Figure 3.3. A modern form of the LM curve, showing atomic volume as a
function of atomic number is in Figure 6.5. Instead of connecting all points
in sequence of Z, the curve, in Figure 3.3, is interrupted at those points
where completion of s, p, d and f energy levels are known to occur. By this
procedure the curve fragments into regions made up of either two or eight
elements, except in the rare-earth domain. Taken together with the preceed-
ing couple of elements, Cs and Ba, a break at Sm divides this domain into
two eight-member segments at an obviously special point on the curve. All
segmented regions now occur in strict alternation as negatively and posi-
tively sloping curves. Not only does the fragmented curve therefore fit the
observed periodic table of Figure 6.4 in all respects, but furthermore, reflects
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the precise details on which electropositive and electronegative elements used
to be distinguished traditionally [31]. The fundamental basis of the elusive
electronegativity concept is here revealed for the first time as a periodic prop-
erty of the elements. Calculated from ionization radii [6], as the electrochem-
ical potential of the valence state [89], it displays the same periodicity as the
LM curve.

Even more surprising was to find that nuclidic periodicity matches the
distribution of prime numbers.

6.2 Number Spiral and Periodic Laws

A remarkable property of the eight-group table of the elements is that it has
several features in common with the 24-group spiral of the natural numbers,
shown in Figure 1.2.

Number theorists refer to prime numbers as the atoms of mathematics.
In the same way that atoms are the building blocks of all matter (nuclides)
all numbers are created by multiplication of combinations of prime numbers.
Reminiscent of the 8-group table, prime numbers occur on eight arms at
6n ± 1 along the spiral.

To understand the compact form of the observed periodic table, periodic
octets may be interpreted to be made up of either (2s+6p), (8+2)d, or (8+6)f
electrons per subshell, arranged in such a way that closed-shell configurations
occur at groups 2 and 8 only. In essence, the compact periodic table therefore
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defines the closure of electron pairs and octets in groups 2 and 8 respectively.
An equivalent property is recognized in the number spiral by forming the
sums

σ(j+1) =

24(j+1)∑
n=24j

n = (2j + 1)300 , j = 0, 1, 2 . . . (6.1)

over all natural numbers. The sums

σi = a, 3a, 5a, 7a . . . , (a = 300)

have coefficients that match the numbers of s, p, d and f electron pairs
required to complete the atomic sub-shells. Each of the sums σi may there-
fore be read to represent the total number of electron pairs of a given type,
obtained by summing over a atoms. However, only one third of the numbers
in each cycle are located on the prime-number arms. Any parallel between
atomic structure and the prime-number distribution therefore implies:

(a) A total of 300 different nuclides

(b) A total of 100 different elements

(c) Nuclide periodicity of 24

(d) Elemental periodicity of 8

Each of these four conditions is now examined in more detail, starting with
nuclide periodicity.

To explore the idea that stable nuclides have a periodicity of 24 the 264
nuclides are arranged in order of increasing mass and atomic numbers on a
24×11 matrix [5] shown as Figure 6.6. Plotted on the axes of Figure 6.1, each
period is represented by a numbered block of 24 nuclides, separated by the
set of bold hemlines in Figure 6.7. The α-emitters at atomic numbers beyond
83 could add further periods, as indicated by the dotted line in Figure 6.7.

Since the bold hem lines are not parallel vertical lines, the atomic numbers
at which the eleven periods come to a close are functions of the ratio Z/N .
As discussed before [5] an almost perfect match with the observed periodic
table of Figure 6.4 is found at the ratio τ = Z/N = 0.6180 . . . , also known
as the golden ratio. At this ratio (line b in Figure 6.7) the eleven periods
end at the atomic numbers 10, 18, 28, 36, 38, 46, 48, 56, 62, 70, 80. All of
these numbers occur in either group 8 or 2 of the compact periodic table in
Figure 6.4. This observation confirms the conclusion reached on the basis of
Figure 6.1, to the effect that the stable nuclides obey a periodic law based
on the same principle as the periodic law of the elements.
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The periodic principle is commonly taught to be defined by Schrödinger’s
equation of an electron in the coulombic field of a proton [37]. Strictly speak-
ing however, the Schrödinger solution predicts the energy spectrum

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f ... etc.
2 4 10 12 18 28 30 36 46 60 ... etc.

This row of numbers, also marked along line a in Figure 6.7, corresponds
with the closure of sub-shells in the Schrödinger spectrum. A hypothetical
idealized eight-group table based on the Schrödinger spectrum is also shown
in Figure 6.4. As before, closure of all sub-shells occurs in groups 2 and 8.
All of the hemlines of Figure 6.7 extrapolate to closed sub-shell points along
a and so predict the same periodicity as shown in Figure 6.4. Line a occurs
at the ratio Z/N = 0.6 − δ, where δ = τ − 0.6.

The differences between the observed periodic table and the table based
on the wave-mechanical description of the hydrogen atom are largely due
to interelectronic interactions that operate in all atoms except hydrogen.
Stated differently, Schrödinger’s analysis is based on a model that ignores
all interaction except the coulombic attraction between an isolated proton
and an electron. The model implies an essentially empty universe that only
contains one hydrogen atom, whereas any real atom occurs in a universe
which is densely populated by additional matter.

According to the theory of general relativity there exists a reciprocal
relationship between matter and the curvature of space–time. An empty uni-
verse, by definition, therefore corresponds to euclidean flat space–time and
any material universe exists in curved space–time [73].

Schrödinger’s one-electron equation, in principle, predicts electronic con-
figurations for atoms in flat space-time, different from those observed in the
real world. It is inferred that the electronic structure of atoms may be sensi-
tive to the environment, as determined by the local curvature of space–time.
For this interpretation to hold it can be argued that extrapolation of the hem
lines of Figure 6.7, towards higher values of Z/N , must reveal how the struc-
ture of the periodic table is affected by increased curvature of space–time in
regions of high mass density, or pressure. In fact, a logical periodic structure
occurs at Z/N = 1. At this ratio, line d, the first three periods close at the
atomic numbers 14, 24 and 32 which seem to indicate filling of electronic
levels in an inverted sequence of f → d → p → s.

A periodic table constructed on the basis of the atomic numbers on line d
and, once more closing all sub-levels at groups 2 and 8, shown in Figure 6.4,
differs from the arrangement obtained by inversion of the Schrödinger table.
Extrapolation to Z/N = 1 + 2δ however, produces the completely inverted
table along line c. This table is also shown in Figure 6.4.
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The observation [5] that all stable nuclides can be divided into four groups,
in which neighbouring nuclides differ by the equivalent of a single α-particle,
could indicate a build-up mechanism by α-addition, for the formation of all
nuclides, starting from the four elementary units, neutron (n), proton (p), 2H,
and α. Since the Z/N ratio of an α-particle is unity, all four series approach
this same ratio after a sufficient number of steps. Nuclide synthesis by this
assumed mechanism may therefore occur in a state of curvature that limits
nuclide stability by a Z/N ratio of one.

The conditions of curvature, envisioned for elemental synthesis, can only
be realized in a massive stellar object. Since the form of the periodic table
under these circumstances is assumed known, it is possible, in principle to
calculate the nature of the stellar object. Compression of the hydrogen atom
is known to shift electronic energy levels. In the highest state of compression,
i.e. at a compression radius of 0.1 a0, at which orbital energies have been
calculated [90], the hydrogen sub-levels in order of increasing energy are

1s < 2p < 3d < 2s < 4f < 3p < 5g < 4d
2 8 18 20 34 40 58 68

Some inversion is already apparent at this level of compression. The 2p and
3d levels are lower than 2s, followed immediately by 4f . Although more
calculation is needed, it is therefore likely that total inversion of the levels
could result from further compression. Since g-levels never occur in known
electronic configurations, the appearance of 5g was disregarded. The energy
spectrum defined by line d may then be assumed to prevail under conditions
of synthesis.

Release of the synthesized heavy atoms is assumed to occur on disinte-
gration of the stellar object. Many of these nuclides will be unstable against
radioactive decay in the changed environment of decreased curvature and
pressure. Within the solar system only 264 stable nuclides survive, while the
energy spectrum inverts from d to b.

In terms of the prime-number model there should be 300 nuclides, spread
over 100 elements. However, two atomic numbers, 43 and 61, are never
reached during generation of the four series of nuclides, by α-addition. The
maximum allowed atomic number for stable nuclides at Z/N = 1 there-
fore increases to 102. Speculations based on prime-number distribution sup-
port the conclusions drawn from Figure 6.7. There may well be sufficient
α-unstable nuclides at the tip of the triangle of stability to increase the num-
ber of elements to 100 and their isotopes to 300.

The proposed parallel between the nuclear and extranuclear structures of
an atom remains to be demonstrated. The inference that elemental periodic-
ity is a subset of nuclide periodicity demands that the nuclear and electronic
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arrangements of an atom obey the same mathematical relationship. More
precisely, that Schrödinger’s equation for proton and electron describes both
nuclear and electronic energy states. However, this equation has not been
solved. The best alternative wave-mechanical model of the nucleus is the
semi-empirical shell model (Section 4.3.1).

It is of interest to see whether any structure that reproduces the results
of the shell model, or a related spectrum, can be recognized in the periodic
function for stable nuclides. One position where to search for such a rela-
tionship is in Figure 6.7 at Z/N = 0, i.e. Z = 0, which probably describes
the arrangement of nucleons in an atomic nucleus. Extrapolation of the hem
lines to this zero ratio, shown in Figure 6.8, displays a prominent meeting of
lines at proton numbers of 4, 10, 16, 24, 32 and 48.
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Z/N = 0.
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Figure 6.9: Energy spectra of atomic nuclei according to a hypothetical one-
particle model (left) and the shell model (right), presented in the form of
compact periodic tables.

This set of numbers allows construction of a reasonable spectrum that
fits an eight-group table1 to the energy sub-shells of the shell model, as
shown in Figure 6.9. The spectrum defined by these points is related to, but
not identical, with the experimental spectrum used in the definition of the

1The appearance of four- and sixfold degenerate subgroups requires that closed-shell
arrangement could appear in groups 2, 4, 6 and 8. The sub-level notation used in the
tables does not imply that spin-orbit coupling can be deduced from the extrapolation of
hemlines.
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shell model. At the ratio of Z/N � 0.22 (line f) however, intersecting hem
lines indicate a spectrum defined by the points 6, 14, 20, 28, 32 and 40,
identical to an eight-group arrangement that satisfies the shell model, also
shown in Figure 6.9, on the right hand side. The differences between the two
sets are minor and not unlike those between the one-electron Schrödinger
spectrum and the experimentally observed periodic table of the elements. It
may therefore be argued that line e corresponds to a one-particle description
of atomic nuclear structure, whereas line f also compensates for interparticle
effects.

However, there is another interpretation of this set of numbers. Whereas
the numbers at Z/N = 0.22 clearly refer to protons in the nucleus, those
at Z/N = 0, i.e. Z = 0, can only refer to neutrons. Since the neutron
energy spectrum is better defined in terms of neutron number, N = A/Z,
it is necessary to convert the observed atomic numbers to the neutron scale.
Assuming an increasing N/Z ratio, this transformation may be defined as
4 → 6, 10 → 14, 16 → 20, 24 → 28, 32 → 38, 48 → 56, 54 → 68, to yield
essentially the same shell-model description for neutrons as for protons.

6.3 General Periodic Function

Four of the points along e (0, 4, 10, 24) (Figure 6.8) connect up with two
sets of four points each on c, one set below 51 (0, 14, 24, 32) and the other
higher than 51 (70, 78, 88, 102). The spacings between consecutive points of
the lower set (14, 10, 8) are inverse to those between consecutive points of
the higher set (8, 10, 14). Together with the pairs (38,64) and (46,56) the
sequence

0, 14, 24, 32, 38, 46, 56, 64, 70, 78, 88, 102

along c, is symmetrical around 51. Because of this symmetry the entire dia-
gram of Figure 6.8 may be rearranged to define a closed system.2 The first
step of the rearrangement consists of moving the set of points at Z > 51 to
the opposite side of Z/N = 0, as shown in Figure 6.10.

2Some prominent points along c may appear to be arbitrarily deleted from the set that
defines the symmetry. As shown in Figure 6.4, this happens because all of the atomic
numbers in groups 2 and 8 do not represent closed sub-shell arrangements, although all
of the latter are in groups 2 and 8. The exceptions in group 2 are numbers 8, 16, 40, 48,
72 and 80, which correspond to either f8 or d2 configurations. The three f8 numbers are
symmetrically transposed to p6 arrangements in group 8 whilst the d2 numbers correlate
with d8 arrangements in group 8, in line with the overall symmetry.
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band. Because of the double cover the area also doubles to make provision for
both matter and anti-matter.

The pairs of points Z = 0, 102 and Z = 50, 52 are next identified in an
operation that requires the introduction of a topological twist. The result
is a Möbius band, as shown in Figure 6.11. Only the first four lines are
shown on the Möbius band. When plotted on the orientable double cover
[91] of a Möbius band available room for the periodic function of elements
and isotopes appears to be doubled. One possible interpretation is that the
function describes atoms of matter and of anti-matter. Starting from zero
space–time curvature along line a, the function follows the hem lines through
the configurations represented by lines b and d to a situation of total inversion
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of electron configuration at infinite curvature along c. What appears to be
a singularity at this point may therefore be interpreted as a transition from
matter to antimatter instead. That may well be the fate of matter that enters
a black hole.

The numbers shown in parentheses in Figure 6.11 represent points on the
invisible underside of the Möbius double cover. The lines, shown extended
beyond the points 0, 14, 24 and 32 are the mirror images of the lines joining
these points to points greater than 51 on line c of Figure 6.11. These mirror
lines describe the periodicity of anti-matter and where they pass behind
line e(0,4,10,24), symmetry related points e(102,98,88,78) are inferred to
occur. By adding these additional points and mirrored lines to Figure 6.8, the
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the appearance of the shell-model spectrum along f and g.
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symmetrical arrangement of Figure 6.12, which is a two-dimensional mapping
of the Möbius band,3 is obtained.

The symmetrical disposition around Z = 51 may now be used as a guide
for connecting additional points along c to associated points on e. It is sig-
nificant to note how the sixth position of the f -series (f ′ = 6) along c, once
more appears with the filled sub-shell configurations.

By incorporating the symmetry-generated points on e with those (< 51)
obtained before, the one-particle nuclear spectrum of Figure 6.9 (left) is read-
ily extended to 102. However, the observed shell-model spectrum does not
appear along f (at 0.2+ δ) as expected, but along g (0.2− δ), where it refers
to anti-matter states. The equivalent lines for matter are not shown, but
since these lines would not be displaced by the gap of 2δ between lines d
and c, they would produce the expected periodic points for Z > 51 at the
level f . The shell-model results are therefore extended by this construction
to a value of 102, as shown in Figure 6.9 on the right.

The nuclear energy spectra derived from Figure 6.12 refer to periodic
relationships based on atomic number Z, and strictly apply to proton states
only. Nuclear states for neutrons are derived in 6.5 from periodicities based
on N = A − Z.

6.4 Hidden Symmetry

Closure of the atomic number function over a period of 102 at level c provides
the key to understanding elemental periodicity. It is remarkable how early
workers like Reynolds [35] already likened the periodic table, then based on
atomic weights, to vibrations on a stretched string. An improved representa-
tion was later proposed by Stewart [7] in terms of atomic numbers. Stewart’s
diagram comes tantalizingly close to summarising the observed periodicity
of the elements in terms of a standing wave of period 8. It has nodes at 2,
10, 18, 27, 36, 45, 54, 62, 70, 78, 86, 95, almost identical to the periodicity
defined by the compact periodic table (Figure 6.4), with nodes at 2, 10, 18,
20, 28, 36, 38, 46, 54, 62, 70, 78, 86, 94 and 102. The compact table avoids the
periods of 9 introduced by Stewart, by the insertion of two additional short
periods of 2. Probably because the analysis [7] was only partially successful

3Only those lines that also occur in Figure 6.7 refer to matter. The lines, generated by
the mirror line at p = 51, and sloping in the opposite sense, strictly describe anti-matter
only. The nuclear structures with p > 51, described in the next paragraph, are therefore
anti-matter structures, assumed to mirror material nuclei.
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it is now all but forgotten. However, the approximate symmetry observed by
these workers may well reflect another, more fundamental hidden symmetry.

In pursuit of the proposed hidden symmetry it is found that the periodic
table based on the antisymmetric arrangement at c (Figure 6.12) is seen
to correspond well with a standing wave structure, obtained by arbitrary
but equal displacement of consecutive pairs of periodic points in opposite
direction, as shown in the upper frame of Figure 6.13. The nodal points
between atomic numbers 3 and 99 are regularly spaced at intervals of 16,
double the observed periodicity and identical to the periodicity of the Telluric
helix proposed by De Chancourtois [92]. All of the nodal atoms appear in
group 5 of the antisymmetric table (Figure 6.4) and on three arms of the
number spiral, as shown in Figure 1.2.

To allow for the possibility that the displacement of periodic points need
not be the same everywhere, the empirical wave of Figure 6.13 was redrawn
as a sine wave,

z = sin 2π

(
i − 3

32

)
, i = 0, 102 (6.2)

as shown in the second frame of Figure 6.13. The adjusted positions of the
periodic points are identified. It is of significance that the periodic symmetry
is represented by a sine, rather than a cosine curve. As discussed in 5.4.3 it
may be inferred that elemental periodicity occurs in chiral space.

The symmetry observed along line c of Figure 6.12, is broken (hidden)
at the other Z/N ratios where familiar forms of the periodic table occur,
but it re-emerges along line e which represents the symmetrical state of
nuclear structures. The construction is shown in the two lower frames of
Figure 6.13. The upper frame shows the periodic wave obtained by arbi-
trary, but equal displacement of the pairs of points (10,14), (24,32), (38,48),
(54,64), (70,78), (86,92) that appear along line e of Figure 6.12. In the lower
frame is shown how this curve is modified into the same sine wave (6.2).
The highlighted points are those that define the one-particle spectrum of
Figure 6.9.

The sine curve (at both c and e) is closed by identification of points 0 and
102. In Figure 6.13 closure of the curve implies that the natural elements are
restricted to atomic numbers 0 → 101, with the exception of numbers 43 and
61. The total of 100 natural elements therefore includes Z = 0, which is the
neutron that appears to be stable under the conditions defined by the ratio
Z/N = 1. The third frame of Figure 6.13 shows two forms of (6.2), with
positive and negative arguments of the sine function, the latter suggested
to represent atoms of anti-matter. The non-periodic region is blown up in
Figure 6.14. It contains the elements 0n, p(1H), α(2He), 100Fm and 101Md, and
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Figure 6.14: Non-periodic part of the symmetric function that describes
atomic periodicity. Stippled lines and asterisks indicate anti-matter. Atomic
numbers 102 and 0 (neutron) coincide to yield a possible (101− 2) + 1 stable
elements.

their anti-matter equivalents, marked with asterisks. This region corresponds
to the short period introduced by Reynolds and Stewart.

To understand how the periodic symmetry is hidden in periodic tables at
different Z/N ratios, it is instructive to examine the familiar periodic table
at Z/N = τ . The energy spectrum is dictated by the local curvature and the
only allowed states are those that produce closed sub-shell arrangements at
groups 2 and 8, indicated by the set of short vertical lines in Figure 1.5.

The only way in which to meet this requirement is by introducing three
blank regions, six numbers wide, between atomic numbers 2 and 3, 20 and 21,
and 38 and 39, 18 blank spaces in total. It now becomes necessary to dis-
tinguish between atomic numbers that do not increase in the blank regions,
and symmetry numbers that increase evenly from 0 to 102. The atomic num-
ber that coincides with the maximum symmetry number of 102 ≡ 0, is 84.
Only 84 (102-18) elements (atomic numbers 0 to 83) are therefore allowed
at Z/N = τ . However, under these conditions the neutron decays and since
atomic numbers 43 and 61 cannot be realized, there are only 81 stable ele-
ments. The compact form of the periodic table of the elements in terms of
both atomic and symmetry numbers is shown in Figure 6.15.

In Figure 6.13 the symmetry of the one-particle nuclear spectrum is
mapped onto the sine curve. The non-periodic region now consists of struc-
tures with neutron and/or proton numbers of 0, 1 and 2, including n, p, 2H
and α, the starting materials of nuclear synthesis.

6.5 Neutron Periodicity

It can be demonstrated that the nuclear shell structure for neutrons is also
a periodic relationship. The same procedure that was used to demonstrate
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Figure 6.15: Periodic table of the elements that incorporates all known fea-
tures of hidden symmetry. Both symmetry numbers and atomic numbers are
shown.

the relationship between elemental and nuclidic periodicities may be used by
plotting the distribution of nuclides as a function of Z/(A − Z) vs (A − Z),
i.e. Z/N vs N . Such a plot is shown in Figure 6.16. The region of stability is
readily shown to be enclosed by a profile with special points that define the
neutron shell structure surprisingly well. Figure 6.17 shows how the nuclide
periodicity of 24 generates the same periodic law in terms of neutron number
at Z/N ratios of both τ and 1. A remarkable feature of the neutron energy
spectrum derived from Figure 6.17 is that it remains invariant with respect
to proton:neutron ratio. In terms of previous arguments this invariance must
also hold with respect to environmental factors. The shell structure derives
from a hypothetical potential somewhat between that of a square well and a
three-dimensional isotropic oscillator. The predicted numbers of like nucleons
that completely fill consecutive energy levels are shown along the top rows of
Table 6.2. For nucleon number less than 50 these numbers coincide with the
empirically established magic numbers that correspond to exceptionally sta-
ble arrangements. By assuming strong spin-orbit coupling a different order
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Figure 6.17: Neutron energy levels derived from the assumed periodicity of
24 for the stable nuclides. Closed neutron levels of the shell model [70] are
shown for comparison.

of energy levels, shown in the middle rows is obtained. The filling of prin-
cipal square-well levels now coincides everywhere with the magic numbers.
However, the predicted spins of many nuclei do not agree with known exper-
imental values. To improve the situation several pairs of spin sub-levels have
been reversed in order, or superimposed where the energies are degenerate.
This empirically improved scheme gives rise to the alternative closure of shells
shown in the bottom rows of Table 6.2. Many important exceptions remain
unresolved. In the present context it is important to note the fair match
between the turning points of Figure 6.16 and the closed neutron levels of
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Table 6.2: Nucleon energy spectrum according to the nuclear shell model.
Magic numbers are in the columns marked m.

m m m m m
2 8 20 40
2 6 8 14 18 20 28 34 38 40 50

16 32

m m
70 112

58 64 68 70 82 90 100 106 110 112 126
56 76 80 92 104 118 124

the shell model, especially for N < 82. This match strongly suggests that the
periodicity of the stable nuclides in terms of mass number, atomic number,
or neutron number obeys related laws.

Figure 6.16 refers specifically to the neutron spectrum of the nucleus
whereas Figure 6.12 reflects the nuclear proton spectrum.

Up to nucleon number 50 the two spectra are identical. The next level
closes at Z = 58 in the proton spectrum and N = 56 in the neutron spec-
trum. This difference implies an inverse order of the levels d5/2 < g7/2 for
protons. From here on the neutron levels indicated by Figure 6.16 deviate
appreciably from the accepted shell levels of Table 6.2. The two different
schemes can be compared in terms of their predicted nuclear spins under
spin-orbit coupling.

According to Figure 6.16 a reasonable level sequence at N > 82 is 2f7/2 <
3p3/2 < 2f5/2 < 3s1/2 < 1h9/2 < 1i13/2, compared to the scheme 1h9/2 <
2f7/2 < 3p3/2 < 1i13/2 < 2f5/2 < 3p1/2, still widely quoted, even in recent lit-
erature. Only the spins derived by fitting an energy spectrum to the quantum
numbers obtained from Figure 6.16 are shown in Table 6.3.

The fit with measured spins is substantially better compared to the
conventionally accepted scheme, but many of the heavy-nucleus spins had,
admittedly, not been measured at the time of Goeppert-Mayers analysis [71].
Of the 102 nuclides with an odd number of nucleons only 62 spins4 can be
shown to be consistent with spin-orbit predictions. The high-multiplicity lev-
els, designated g, h, and i show the poorest match. Of the 34 spins at these

4Numerical values of nuclear spin and other nuclear properties used in this work, such
as thermal neutron cross section and coherent neutron scattering length, have been taken
from the Rubber HCP [93].
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Table 6.3: Nuclear spins assigned according to the level structure of
Figure 6.16 and assuming spin-orbit coupling.
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levels only 8 are predicted correctly. It is clear that nuclear spins cannot be
accounted for in terms of simple proton and neutron energy-level occupation
according to Hund’s rules and that an additional spin factor operates. How-
ever, it now appears doubtful that this additional factor is of the hypothetical
type assumed by the shell model.
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6.5.1 The Magic Diagram

Extrapolation of the hem lines of Figure 6.17 to Z/N = 0 should reveal
beyond doubt any periodic relationship among neutrons in the nucleus. The
extrapolation is shown in Figure 6.18, producing seven well-defined points.
Only two of these are not among those already established at Z/N = 1
or τ . The two extra points fit in exactly with the magic-number pattern of
Table 6.2. Altogether 16 distinct points are recognized on the diagram. Only
three of these, 90, 102 and 112, are not members of the generally accepted
most likely set of points that constitute the magic spectrum, according to
Table 6.2. All the magic numbers, except for 2 which cannot be resolved, are
however, there.

The distinction between neutrons and protons in the nucleus where they
constitute a two-level system, is a convenience only. The magic numbers
derived from Figure 6.18 must therefore refer equally to both types of nucleon
and represent a periodic relationship, dictated by strong interaction. Super-
imposed on this strong periodicity there must be another function that min-
imizes coulombic repulsion and which is defined by the relative positions of
protons and neutrons. The spectrum that appears along line e of Figure 6.8
will be interpreted as describing this distribution function. The same distri-
bution is generated by inserting the line Z/N = 0.22 on the magic diagram,
as was done in Figure 6.8 in order to identify the shell-model spectrum. How-
ever, as before, the numbers along Z/N = 0.22 on the N -scale need to be
converted to atomic numbers when applied to protons. A reasonable transfor-
mation, 10 → 8, 38 → 32, 58 → 48, 80 → 56, 98 → 68, 104 → 72, 118 → 80,
126 → 82, reconfirms the conclusion that protons and neutrons are correctly
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Figure 6.18: Diagram to show the extrapolation of the hem lines of figure 6.17
to the proton:neutron ratio of zero. The three lines, Z/N = 1, τ, 0, together
define the neutron energy energy spectrum, widely known as magicity. The
line at Z/N = 0.22 define points of the proton spectrum.
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ordered by virtually the same energy-level shell structure in the nucleus. A
notable exception is the substitution of 48 for 50 in the proton spectrum and
the appearance of 66, 72 and 80, not part of the pure neutron spectrum.
With the full magic spectrum at hand there are sufficient data to explore
the possibility of defining an energy spectrum, consistent with magicity and
without invoking spin–orbit coupling.

A sub-level structure built around three basic sequences,

A(2, 4, 8)

B(4, 6, 10)

C(2, 6, 8, 12)

is readily shown to account for the entire observed spectrum. Treating A,
B, C as three types of principal energy level, the tentative sequence of sub-
levels shown in Table 6.5 solves the problem directly. The implications are
clear. There is no need to resort to the poorly understood model of spin-
orbit coupling. The magic spectrum cannot be generated by a central-field
potential and the shell model must be abandoned. The implications thereof
will be examined more thoroughly in Chapter 8.

Apart from confirming the shell structure, which is directly revealed for
protons at Z/N = 0.22 in Figure 6.8 and for neutrons at Z/N = 0 in Figure
6.18, the set of numbers that occurs at Z/N = 0 in Figure 6.8 and Z/N = 0.22
in Figure 6.18 contains information about the relative distribution of protons
and neutrons in the nucleus. This distribution in the nucleus has an equally
simple form, not of the central field type. As shown in Table 6.4 the most
distinct feature is a periodicity of 16 in atomic number.

It is suggested that an acceptable model of the nuclear structure should
reflect both of these periodicities related to neutrons and protons, as well as
the periodicity in mass number.

Table 6.4: Table to summarize the relative distribution of nucleons that min-
imizes coulombic repulsion, in terms of atomic number.

A D EB C
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80
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Table 6.5: The neutron spectrum, better known as magicity, based almost
entirely on an interpretation of Figure 6.18 and the proposed sub-level
structure.
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6.6 Nuclide Periodicity

The nuclidic periodicity of 24 which is fundamental to the scheme adopted
here has been inferred from the rather tenuous link, assumed to exist between
a number spiral and atomic structure. It is therefore gratifying to find that
the same pattern appears naturally on arranging the stable nuclides by mass
number as a function of Z/N . The resulting plot is shown in Figure 6.19.
Linear-segment profiles drawn to enclose the area of stability are seen to cor-
relate well with mass numbers at the closure of the periods of 24. The hem
lines are all of infinite slope and the predicted periodicity is therefore inde-
pendent of proton:neutron ratio. Nucleon numbers that close the observed
nuclidic periods are shown in Table 6.6. Selected proton and neutron levels
that provide a reasonable match with the observed numbers are also shown.
This match, although convincing, is rarely perfect. Neutron (N) and proton
(Z) levels reach saturation near the closure of the nucleon (A) levels. The
slight mismatch may be expected to show up in the physical and symme-
try properties for nuclides in these off closed-shell regions. An unexplained
periodic feature, Z,N,A = 8n, 11n, 19n, is particularly striking for periods
beyond 4, and although the match is no better than approximate, it suggests
the operation of a simple number pattern that underlies the composition of
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Figure 6.19: Stable nuclides placed as a function of proton:neutron ratio and
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Table 6.6: Comparison of the eleven nuclide periods of 24 with periodicity
predictions and mean proton, neutron and mass number periods of 8, 11 and
19, respectively.

Observed Derived

n 8n 11n 19n A Z N A Z N

1 8 11 19 28 14 14 32 16 16

2 16 22 38 48 22 26 48 20 28

3 24 33 57 68 30 38 70 32 38

4 32 44 76 85 37 48 88 38 50

5 40 55 95 102 44 58 104 48 56

6 48 66 114 117 50 67 118 50 68

7 56 77 133 132 56 76 132 56 76

8 64 88 152 152 62 90 154 64 90

9 72 99 171 169 69 100 168 68 100

10 80 110 190 188 76 112 188 76 112

11 88 121 209 209 83 126 208 82 126

atomic nuclei. The most important conclusion to be drawn from Table 6.6
is that the periodicity, first inferred from the distribution of prime numbers,
gets such overwhelming support from several unrelated constructions that
the possibility of a lucky coincidence can be ruled out, in favour of finding a
sound basis for the observations in number theory.



Chapter 7

Periodicity and Number
Theory

The Farey sequence, as defined in number theory, provides a modular clas-
sification of entities made up of integral numbers of two types of particle,
such as protons and neutrons. If the stability of such entities is assumed to
depend on an increasing excess of one particle type (neutrons), compositions
(nuclides) of constant excess are shown to be stabilized over limited regions,
related in extent to the golden ratio, and leading to a periodic relation-
ship that depends on relative stabilities. This stability trend is shown to be
identical to the hypothetical periodicity amongst stable nuclides, postulated
before on the basis of prime-number distribution on a spiral. Triangles of
stability that limit the number of possible nuclides are shown to derive from
limiting ratios, defined by fractions generated by the Farey procedure from
Fibonacci numbers. The results correlate well with experimental stabilities
inferred from measured mass defects and with solar abundances.

7.1 Introduction

It has been demonstrated [5] that an atomic model based on the distribu-
tion of prime numbers on a spiral may be used to analyze, not only the
periodic law of the chemical elements, but also of the stable nuclides. The
method relies on the assumption that all stable nuclides have been generated
from four elementary units, by progressive addition of α-particles. Since there
are no theoretical grounds for assuming such a mode of nuclear build-up it
is of interest to establish if number theory provided an alternative to this
assumption. The first objective is to find a generator from number theory to
predict all possible combinations of neutrons and protons that may constitute

237
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a stable (non-radioactive) nucleus. The next step is to formulate appropriate
bounds to distinguish between stable and radioactive nuclides. Finally, the
known periodicity of the closed set of stable nuclides should be amenable
to analysis in terms of modular arithmetic. Once the number theory is in
place it should be possible to formulate a physical model in parallel with the
number theory.

All of these aspects will be explored in this chapter, starting with a brief
summary of the α-particle model.

7.2 Nuclear Synthesis by α-particle Addition

It is assumed that all stable nuclides can be obtained by the systematic
addition of α-particles to four elementary units.

By assumption, the four elementary units are nucleons made up of neu-
trons and anti-neutrons (marked by an asterisk) only, i.e. n∗n∗, n∗, nn∗, n,
with neutron numbers of −2, −1, 0, and 1. The first few steps of α-addition
proceed as follows:

n∗n∗ α−→ 2He
−β+−→ 2H

α−→ 6Li
α−→ 10B −→ (A = 4n − 2)

n∗ α−→ 3He
α−→ 7Be

−β+−→ 7Li
α−→ 11B −→ (4n − 1)

n∗n α−→ 4He
α−→ 8Be(unstable)

α−→ 12C −→ (4n)

n
α−→ 5He(unstable)

α−→ 9Be
α−→ 13C −→ (4n + 1)

After addition of three α-particles the series of mass number (4n − 2)
and (4n − 1) have progressed to the boron isotopes 10B and 11B, whilst the
4n and (4n + 1) series have reached 12C and 13C respectively. The neutron
excess, defined as A − 2Z, for the four series at this stage is 0, 1, 0 and
1 respectively. It is only after 24 steps that the four are found in register
again, all having reached isotopes of Ti with neutron excess of 2, 3, 4 and 5
respectively, an increase of four units each over the initial neutron numbers.
The same happens again after 24, 36 and 47 steps. This manifestation of a
periodic structure is at the basis of this entire analysis.

Empirical evidence is needed to establish its fate (i.e. mode of decay) once
an unstable nuclide is generated in the course of α-addition. However, any α
addition or β-decay changes neutron and proton counts by integral amounts.
The proton:neutron ratio for any nuclide must therefore be a rational fraction.
It will be examined how the fractional ratio Z/(A − Z) changes with Z
in the course of each of the four progressions that may be designated by
A(mod4) ≡ 3, 2, 0, 1 respectively.
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Table 7.1: The four isotope sequences.
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The four-series table of stable isotopes is reproduced in Table 7.1 for easy
reference. Underlined symbols indicate that the progression by α-addition is
interrupted at the next step, which involves a nuclide that decays by positron
emission and/or electron capture. The steps marked with a hash produce a
product that decays by β-emission. Asterisks in the table identify α-emitters.
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7.3 Nuclides in Farey Sequence

The allowed fractions for the 4n, A(mod4) ≡ 0 series are identified graphically
in Figure 7.1. The simplest row of fractions results from Z = A − Z, i.e. a
uniform neutron excess of 0 and a proton:neutron ratio, Z/(A−Z) = 1. The
next simplest sequence has a neutron excess of 4. After dividing out common
factors, either 4 or 2, the fractions representing possible proton:neutron ratios
are 1/3, 1/2, 3/5, 2/3, 5/7, 3/4, . . ., with alternate differences, denominator-
numerator, of 2 and 1, to be called the rank of the fraction. Further sequences,
characterized by neutron excesses of 4k, k = 2, 3 . . ., are shown in Figure 7.1.
In each sequence, a number k − 1 of additional fractions occur between each
pair of ranks 1 and 2. These additional fractions have ranks equal to 2k and
the factors of 2k.

The simplest sequence of fractions in the A(mod4) ≡ 2 series, once more
has neutron excess and rank zero, i.e. 1/1, 3/3, 5/5, etc., followed by a
sequence with neutron excess 2 and rank 1, i.e. 2/4, 4/6, 6/8, 8/10, etc.
The next sequence 2/8, 4/10, 6/12, 8/14, 10/16 has neutron excess of 6 and
ranks in the order 1,3,3,1,3,3,1... In general, each sequence is characterized

0

0.1

0.2

0.3

0.4

0.5

0.9

0.8

0.7

0.6

1

1/3

1/2

3/5

2/3
5/7

10 20 30 40 50 60 70 80 90 100

τ

11/12 10/119/10 8/97/813/156/7 11/135/69/114/5
7/9
3/4

Z/
(A

−Z
)

Atomic number

Figure 7.1: Possible combinations of integers Z and A−Z such that A = 4n,
represented as rational fractions plotted against Z. Only fractions of ranks
1 and 2 are shown. Between each neighbouring pair of ranks 1 and 2 there
appear k − 1 (k = 1, 2, ...) additional fractions of rank equal to 2k or the
factors of 2k. The irrational number τ at Z = 102 represents a limiting point
that will be shown to characterize the stability of possible nuclides.
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by a neutron excess of 4k + 2, k = 0, 1, 2..., and 2k fractions of rank 2k + 1,
or the factors, if any, of 2k − 1, between any neighbouring pair of unit-rank
fractions.

The odd series A(mod4) ≡ 1, 3 (4n±1) add nothing new to the structure
and together they define the same pattern of fractions as A(mod4) ≡ 2,
but at neutron excess of 4k ± 1. The appearance of the only nuclide with
negative neutron excess, 3He, and first member of the series 2/1, 4/3, 6/5, . . .,
of rank and neutron excess −1, shows that the pattern established for positive
fractions extends unchanged into the negative region.

Table 7.2 shows the ranks of all fractions that define the unique motif that,
when repeated, generates all allowed fractions consistent with the build-up
of nuclides by successive α addition. A remarkable property of Table 7.2 is
that it shows 1:1 correspondence with the well-known Farey sequence, first
formulated to allow ordering and enumeration of all rational fractions [94].
One half of the Farey sequence is reproduced in Figure 7.2 to demonstrate
this correspondence.

The rank, r of the simpler fractions is indicated by surrounding r-gons.
The significance of the Farey sequence featuring in the α-addition process,
is to confirm that all possible proton:neutron ratios are realized within this
mechanism.

Table 7.2: The ranks of fractions featuring in sequences with increasing com-
plexity and representing possible proton:neutron ratios resulting from nuclear
synthesis by α-particle build-up.
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Figure 7.2: One half of the Farey sequence reproduced twice to show the rela-
tionship with possible fractions generated during nuclear synthesis according
to α-particle addition. The upper diagram highlights fractions that occur in
sequences with A = 4n and the lower one applies to all other sequences. The
connecting lines identify the order in which rational fractions appear by rank.
In this table each rational number is generated from the two that brace it from
above by separate addition of numerators and denominators.

7.4 Triangle of Stability

Having identified the Farey sequence as the generator of allowed proton:
neutron ratios, it remains to establish the actual region over which the pos-
sible nuclides will be stable. To this effect it is noted that, as in Figure 6.2,
each of the sequences of constant neutron excess plots on a straight line of
slope 2 on axes A vs Z, shown in Figure 7.3 for actual nuclides.

The magnitude, x of each linear segment that represents the range of
stability for given neutron excess is estimated by noting that invariably,
∆A = 2∆Z, whereby

x2 = (∆A)/2)2 + (∆A)2

x = (
√

5/2)∆A = (Φ − 1/2)∆A = (2Φ − 1)∆Z
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Figure 7.3: The relationship between A and Z for some nuclides of the series
A(mod4) ≡ 0, with ratios Z/(A−Z) shown as fractions, for comparison with
Figures 7.1 and 7.2.

where Φ = 1.6180..., known as the golden ratio or golden section.1 The
proton:neutron ratio at which each of the slope-2 line segments of Figure 7.3
terminates in an unstable nuclide is known from observation and relates to
the triangle of Figure 7.1 that also involves the golden section.

Because of their implied relationship to τ the lines that define the sta-
bility triangle are most likely generated by Fibonacci fractions. The first few
Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, etc. The rational fractions that
occur between the first non-zero Fibonacci fractions, i.e. 1/1 and 2/3 may
be established by the Farey procedure, which is demonstrated in Figure 7.2.
The resulting fractions are shown in Figure 7.4. These fractions converge to
1/1 at the one end and 2/3 at the other end. By choosing 5/8 as the second
limit the convergence proceeds in exactly the same way through 2/3 towards

1The symbols Φ and τ are often used interchangeably for both the irrational number
1.6180.. and its reciprocal 0.6180.. To avoid confusion the symbol τ will be used here for
the latter and Φ for the former.
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Figure 7.4: Low-rank fractions in the Farey sequence between the Fibonacci
fractions 1/1 and 2/3.

5/8, and beyond towards τ , for higher Fibonacci fractions. It is shown in
Figure 7.5 that all relevant points of intersection on the straight line from 1
to τ , that could refer to actual nuclides are generated by the Farey sequence
that approaches 2/3. The value τ is approached at Z = 102.

All fractions beyond 3/4, at the centre of the Farey sequence, are further
seen to define points of intersection between the curves of constant A − 2Z
and the straight line between coordinates of (14/19,0) and (τ), 102) at the
intersection with the line 1 → τ . The straight lines, so generated, are iden-
tical to the empirical limits of Figure 7.1 and automatically limit the maxi-
mum allowed atomic number of a stable element to 83. The limiting lines for
nuclides of odd mass number lie inside the triangle of stability for even mass
number [5], and may also be generated by the procedure described above. By
definition, a proton:neutron ratio of unity is not defined for odd mass num-
ber. The maximum ratio is Z/(A − Z) = 19/20 that occurs for A − 2Z = 1
at Z = 19. The Farey sequence of fractions between 19/20 and 2/3 defines
the limiting lines.

The range of all sequences determined by the procedure above, each with
constant neutron excess A − 2Z is shown as a function of atomic number Z
vs A − 2Z, plotting as horizontal line segments in Figure 7.6. Each of the
four sequences

(A − 2Z)(mod4) ≡ 0, 2, 1, 3 (7.1)
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Figure 7.5: Diagram to show points of intersection between curves of constant
A − 2Z and the straight lines that limit the occurrence of stable nuclides.

consists of 11 segments. When collected into a single set the 264 stable
nuclides occur on 44 segments of constant A − 2Z, ranging from 0 to 43,
contained within the triangle of stability.

The modular form of the distribution (7.1) suggests that the 264 nuclides
may be arranged into groups of 24, repeating as eleven periods, as conjectured
before [5]. The origin of this periodicity remains to be established.

7.4.1 Nuclidic Periodicity

The regular recurrence of four isotopes of the same element generated by
the four sequences, A(mod4) ≡ 2, 3, 0, 1 provides one possible basis for the
proposed periodicity. Indeed, the first recurrence happens with the isotopes of
Ti with neutron excess numbers of A−2Z = 2, 3, 4, 5 – a uniform increase of
four units over the neutron numbers of the starting set, and it coincides with
the completion of the second set of 24 on the 24× 11 matrix [5]. Two further
exact coincidences occur with four isotopes of Sn (A − 2Z = 14, 15, 16, 17)
and of Os (A − 2Z = 34, 35, 36, 37), closing periods 6 and 10, respectively.

These exact coincidences therefore happen when the period number,
P (mod4) ≡ 2. Further recurrences are observed at

Mo(10,11,12,13)
Ru(10,11,12,13)
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Figure 7.6: Four plots of atomic number Z vs neutron excess A− 2Z for the
nuclidic sequences (A−2Z)(mod4) ≡ 0, 2, 1, 3 respectively. Each plot consists
of 11 segments centred at positions of mass and atomic number indicated by
small arrows.
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The total of 11 observed recurrences does not necessarily define the 11
expected periods. The consecutive Mo and Ru recurrences, for instance, only
show that none of the four sequences has been interrupted between these two
elements by the generation of some radioactive nuclide. Furthermore, one or
more of the isotopes defining a recurrence at the close of a period may be
radioactive and hence does not feature in the table of stable isotopes. An
example of such an incomplete coincidence is provided by the isotopes of
Zn(6,7,8,-) that lacks the β-unstable nuclide 69Zn to complete the expected
quartet; its position being taken up by an isotope of 69Ga. Extending this
argument, the expected coincidence at the end of the fourth period may be
viewed as having the nuclide 85Rb replacing the missing 85Kr isotope in the
quartet Kr(10,11,12,-).

A plausible reconstruction, based on the preceding observations, that may
reflect the 24-group periodicity of stable nuclides, is shown in Table 7.3. It
serves to identify the linear segments that occur in each period. For compari-
son the nuclides at which each period has previously been found to terminate
are underlined in Table 7.3. It is reassuring to find that a simple average over
the mid-points of those segments grouped together as in Table 7.3, agrees
well with the corresponding end member of the 11 × 24 matrix. This agree-
ment, demonstrated in Table 7.4, makes good physical sense and follows the
magic-number periodicity (Figure 6.18) fairly well.

7.5 Nuclear Stability

It is clear that nuclidic stability is some function of the proton:neutron ratio,
R = Z/(A − Z), and may be viewed as arising from an interaction that
depends on the exchange of electrons between neutrons and protons. Only
one stable nucleus, that of 3He has R > 1. Nuclei of the 4n series with Z < 20
all have R = 1. Beyond Z = 20 all nuclei have R < 1 and this ratio decreases
steadily with increasing Z. These observations imply that with increasing
mass or atomic number a larger excess of neutrons over protons is needed to
overcome coulombic repulsion and stabilize an atomic nucleus. The stability
of the nucleus in a given sequence at constant A − 2Z, reaches an optimum
at a certain point after which it steadily declines until an unstable nuclide
is reached, at both ends of the line segment of constant neutron excess.
At the lower end the unstable nucleus decays by β− emission and at the
higher end by β+ and/or electron capture. This trend occurs in all four series
A(mod4) ≡ 0 → 3, but not necessarily in phase. If it is assumed that the
maximum stability in each segment occurs near the mid-point, the average
maximum for a set of four neighbouring segments in a common range of Z,
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Table 7.3: Eleven periods of nuclides.

Period End member Recurrence Enclosed segments

1 Si Si(−,−,0,1)

2 Ti Ti(2,3,4,5)

3 Zn Zn(6,7,8,−)

4 Rb Rb(−,11,−,−)    

Kr(10,11,12,−)

Ru(10,11,−,−)

Ru(12,13,14)

Sn(14,15,

5

6

Ru

Sn Sn(16,17,18,19)

20,21,22,23

)52,42,32,22,−,02(aB7 Ba

8 Sm Sm(26,−,28,−) 24 29

Gd(26,27,28,29)

16,17,18,19

12,13,14,15

10,11

6,7,8,9

2,3,4,5

0,1

9 Tm Yb(30,31,32,33)

Tm(−,31,−,−) 30,31,32,33

10 Os Os(34,35,36,37)

Hg(38,39,40,41)

34 39

11 Bi Bi(−,43)

28

48

68

85

102

117

132

209

188

169

152

should then coincide with the common centre of gravity. Nuclidic periodicity
as identified before may thus be related to a periodic fluctuation of nuclear
stability as a function of A and/or Z. As shown schematically in Figure 7.7,
in any period of 24, nuclear stability first decreases to a minimum, as each
segment in turn terminates in a radioactive nuclide, after which the series
continues with an increased neutron excess, building up to another maximum
at the end of the period. Since the line segments at constant neutron excess
in the odd series A(mod4)≡ 1, 3, are in general shorter than those of the
even series, the pattern of overlap gets out of step. Any number of segments
may hence occur in different periods, but the average is four. A schematic
representation of the proposed periodicity as a function of mass number is
shown in Figure 7.8. In the middle of each period the stability falls below the
limiting line beyond which β-type emission occurs.



7.5. NUCLEAR STABILITY 249

Table 7.4: Observed and calculated periodicities.
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Figure 7.7: Schematic diagram to envisage the periodic stability trend among
stable nuclides and how it arises as an average over the mid points of nuclidic
groups of constant neutron excess.
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Figure 7.8: Periodic trend proposed to derive from nuclidic stability. When-
ever the periodic curve falls below the β line the corresponding nuclide will
be unstable against β± decay.

It now becomes clear why the recurrence of four consecutive isotopes tends
to coincide with period termination. The latter occurs close to the point of
maximum local nuclear stability for all four series, A(mod4) ≡ 0 → 3, and
hence maximum likelihood that each series should produce a stable isotope.

The question of periodic nuclear stability may be considered as solved in
principle. It remains to work out the quantitative details that would predict,
amongst other things, the abundances of stable nuclides and the distribution
of α-emitters.

7.5.1 Nuclear Binding Energy

An immediate demonstration that the predictions of the previous section are
essentially correct comes from an examination of experimentally measured
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Figure 7.9: Plot of experimental binding energies for nuclides of the same
type as shown in Figure 7.3.

nucleus binding energies (NBE). The measurement is invariably that of a
mass defect.2

A plot of BE vs (N−Z)/Z may, for instance, be scaled to appear virtually
indistinguishable from a plot of Z/(A − Z) vs Z. A plot of BE vs Z, for the
same nuclides of Figure 7.3, is shown in Figure 7.9.

It may be scaled to near coincidence with the plot of A vs Z, shown in
Figure 7.3. These relationships need considerably more study, but at first

2A possible source of confusion in the estimation of nucleus binding energies from
measured mass excess (ME), is the arbitrary assignment of 12 a.m.u. to the mass of the
isotope 12C. The effect of this is that the 12C nuclide seems to have a mass excess of zero
by definition, although its binding energy must have some positive value. Zero binding
energy must clearly be rather associated with 1H, which on the 12C scale has a ME of
7.29MeV. The apparent minimum in a table of ME at about Z = 50, occurs for the same
reason on the 12C scale. To convert ME (on 12C scale) to NBE (on 1H scale) it is necessary
to subtract the appropriate number (Z) of proton and (N) neutron masses,

NBE = ME − (Zmp + Nmn) where mn = 8.07 MeV
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Figure 7.10: Experimental binding energy per nucleon for the nuclides of Fig-
ure 7.9.

glance they suggest that the qualitative stability measure of Figure 7.7 may
be related to binding energy per nucleon. The variation of this quantity with
atomic number is shown in Figure 7.10. There is no direct correspondence
between the two graphs, but the central idea of maximum stability near the
central nuclide in a series of constant neutron excess is clearly borne out.

7.5.2 β-Stability

The diagram shown in Figure 7.5 provides a summary of how naturally occur-
ring nuclides may be identified by number theory and how their stability is
controlled by the golden section. To find the theory that applies specifically
to nuclides of mass number A and atomic number Z, it is necessary to iden-
tify the fractions along the vertical axis with Z/(A − Z) and the numbers
on the horizontal axis with Z(A). Fractions that represent allowed nuclear
compositions are generated by the Farey sequence in the interval (0, 1), as
four sub-sets, at points A(mod4) ≡ 0 → 3. Each sub-set further subdivides
into segments of constant A − 2Z. Curves connecting points of the even
mass-number segments generate a straight line through a set of points on
the curves, at coordinates corresponding to fractions generated by the Farey
sequence, in an interval defined by successive non-zero Fibonacci fractions,
e.g. (1/1, 2/3). This straight line extends from the unit fraction at Z = 0
to the irrational fraction τ = 1/Φ at (atomic) number 102 and it limits the
stability of nuclides against β+ decay.

A sub-set of the fractions that define the limiting line, i.e. those with
values less than 3/4, generates another straight line at second points of
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intersection with the curves, in the interval (14/19, τ). This second line limits
the stability of nuclides against β-decay. The area between the limiting lines
represents the triangle of nuclear stability against β-type decay. A smaller
triangle of stability for the odd series is contained within the larger triangle
for even mass-number. Its number-theoretic definition arises from the Farey
sequence in the interval (19/20, 2/3). The theory behind α-decay remains
obscure.

Each of the modular sub-sets is represented in the triangle of stability
by 11 segments of constant A − 2Z, adding up to 44 segments with A − 2Z
increasing from 0 to 43. Within each segment nuclear stability reaches a local
maximum, half-way between β− and β+ unstable species, to define eleven
periods of fluctuating nuclear stability, accommodating 24 nuclides in each
period.

The observations of the previous paragraph are summarized in Figure 7.11
that shows a plot of all stable nuclides on axes A− 2Z vs Z. The nuclides at
which the 11 periods end are marked by squares and connected by approxi-
mate curves. The discontinuity in period 8 coincides with a large number of
α-unstable nuclides in this region.

The profile that bounds the area of stability once more reveals a struc-
ture, based on a set of atomic numbers that features prominently in the
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Figure 7.11: Map of the stable nuclides in a field defined by the variation
of neutron excess as a function of atomic number. The nuclides are grouped
into four families defined by A(mod4) = 0, 1, 2, 3. The eleven nuclidic periods
repeat between the nuclides represented by squares.
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periodic classification of the elements, and first recognized [5] in a plot on
axes Z/(A − Z) vs Z. This structure establishes the important principle that
the periodic law of the chemical elements is a subset of a more general law
that governs the periodicity of stable nuclides.

Neutron excess is shown in Figure 7.12 as a function of mass number.
The diagram confirms the discontinuity in the expected linear periodicity of
the nuclear-stability function. As in Figure 7.11 the discontinuity coincides
with the appearance of the lanthanide series. It sets in at the point where the
sequence based on α-addition runs into the region of (β−)-instability at 137Ba
and 139La, shown in Table 7.1. Beyond the lanthanides the stability function
becomes linear again. The stability profiles match the hem lines that define
the assumed periodicity of 24 well.

Figures 7.11 and 7.12 demonstrate, once more, the important relation-
ship that exists between the stable nuclides and the Farey sequence. To
better appreciate this relationship any fraction m/n may be considered as
a point (n,m) in the Cartesian plane. A fraction m/n is called visible iff
the segment of the straight line connecting the origin with the point (n,m)
contains no other grid points. Now imagine a ray along the positive x-axis,
rotated counter-clockwise to mark all visible points, inside the first octant,
whose x-coordinates does not exceed some number, N say. For example, if
N = 5, the succession of visible fractions

1 2 3 4 5
x

y

1

2

3

4

5

0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1, may be recognized as the
Farey sequence, F5. All other Farey series are obtained in the same manner.
All the marked fractions (m/n) are proper (m < n) and each fraction equals
the slope of the line connecting the corresponding point with the origin.
Therefore, they are traversed in ascending order. The rotating ray indicated
in Figure 7.11 marks the visible points of the Farey sequence that maps the
points of Figure 7.1. All other points are generated from the visible set by
repetition at regular intervals, according to slope.
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Figure 7.12: Neutron excess of stable nuclides as a function of mass number.
Short vertical markers indicate the position of some odd nuclei with high
thermal-neutron cross sections.

It is noted that the first indication of nuclidic periodicity [5] arose from
analysis of the prime-number distribution, mapped onto the 6n ± 1 arms of
a 24-stop number spiral with features reminiscent of extranuclear electronic
configurations. Whereas this previous analysis relied primarily on an empir-
ical match, no such assumption has been made in the number analysis. The
two approaches lead to the same picture.

7.6 Golden Parabola

The central two-part curve of Figure 7.11 intersects each linear segment of
constant neutron excess at, or close to the position of the nuclide of maximum
binding energy on that segment. Each segment terminates at both ends in a
rational fraction Z/N of the Farey sequence generated by Fibonacci numbers.
The two resulting limiting curves both converge to τ . The function (2.8)

x2 − x − n = 0

describes a parabola with largely the same property. It is a more general form
of the expression, x2 − x − 1 = 0 (2.10) that generates the golden mean.

The proposed function defines the parabola shown as an inset in Figure
7.13; it has a minimum n = −1

4
at x = 1

2
. A related parabola is obtained

from the end members of the linear segments on plotting maximum and
the negative of minimum atomic numbers for each section against neutron
excess. The two parabolas coincide after scaling the theoretical x-coordinate
by a factor 2τ = 1.236 and matching the neutron excess to n. The minimum
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point of the curve shifts to τ . The relationship between the two sets of axes
is defined by A − 2Z = 4n. The resulting curve is described by the equation

x2 − 2τx − 4τ2n = 0

with solutions x = τ(1 ±√
1 + 4n). The relationship between x and atomic

number, after scaling is Z = 10(2x − 1). These results establish the elusive
general relationship that exists between neutron excess and atomic number.
The scatter around the mean curve arises from two factors – the relatively
lower stability of nuclides with odd mass number and the restriction of both
Z and A to integer values. The nuclides enclosed within the two arms of the
golden parabola are the same as those in the triangle of stability.

To obtain the golden parabola (Figure 7.13) that fits the stability bounds
of nuclides it is necessary to scale the x-coordinate by a factor 2τ . Since the
point (x, n) = 0 is not affected by the scaling, the resulting parabola is no
longer centred at x = 1

2
, (Z = 0), but at x = τ , i.e. Z = 10(1.236−1) = 2.36.
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Figure 7.13: Nuclides have a limited range of stability for each value of neu-
tron excess, A-2Z. The maximum Z of these ranges plotted against A-2Z
define the right arm of the parabola shown in the diagram. The left arm of the
parabola is obtained by plotting minimum Z as negative integers. The curve
is described by the equation x2 − 2τx − 4τ2n = 0, i.e. x = τ(1 ±√

1 + 4n).
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This shift of the golden parabola has an effect on the way in which a periodic
function can simulate the symmetrical periodic state of the elements. This
state was found to occur at the ratio Z/N � 1.04, and it follows the sine
curve (6.2)

z = sin 2π

(
i − 3

32

)
, i = 0, 102

Appearance of the non-periodic part (Figure 6.11) at Z < 3, first noticed
by Reynolds [35], is now seen to arise from recentring of the parabola from
0 to 2.36. The nearest integer at which the periodic section can start is at
Z = 3.



Chapter 8

Properties of Atomic Matter

8.1 Periodicity

The conclusions of the previous two chapters suggest that, by virtue of their
digital binary make-up, a valid physical model of neutral atoms, and of matter
in general, follows directly from number theory. The number basis of nuclide
periodicity is summarized in Figure 8.1. The point of convergence appears
to be the same as in Figure 6.1, that shows the variation of proton:neutron
ratio with atomic (or mass) number. Should the two points of convergence
be identical it means that

N − Z

Z
=

Z

N

at that point. This equality rearranges to

Z2 + NZ − N 2 = 0

with solutions

Z =
−N ±√

N 2 + 4N 2

2
= Nτ

This result provides final proof that the limiting ratio Z/N for stable nuclides
is, not approximately, but exactly equal to the golden ratio.

The numbers of importance in Figure 8.1 are A, Z, N = A − Z, Ne =
A − 2Z and the irrational number τ = 1/φ. The field of stability, when
mapped as a function of A, converges to Ne/Z = τ at A = 262 = 100φ2.
The limiting lines intersect the vertical axis (A = 0) at τ2 = 0.382... and
τ2 − 0.5 = 0.5 − τ = −0.118... It is noted that the point (A − 2Z)/Z = τ2

corresponds to Z/N = Z/(A−Z) = 1/(τ2 + 1) = (1 + φ)/(2 + φ) = 0.723...,

259
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Figure 8.1: Plot of the stable nuclides to show the ratio of neutron excess to
atomic number as a function of mass number. The plot seems to converge to
a limiting value of τ = 0.618 . . . at about A = 262.

a number1 that featured in many plots of Chapters 6 and 7. Isotopes of any
single element occur as linear arrays between the points A = 2Z and A = Zφ2

at Ne/Z = 0, and τ respectively, as marked for elements with Z = 10n.
Assuming a point of convergence at A = 262 the number of stable elements
is limited to 100, as first inferred from the number spiral,2 Figure 1.2.

The relationship A = Zφ2 corresponds to A − Z = Z(φ2 − 1) = Zφ, i.e.
Z/(A−Z) = τ of Figures 6.1 and 6.4. Points A = 2Z translate into Z/N = 1.
The limiting point A = 200 accords with the inference that under cosmic con-
ditions which favour a proton/neutron ratio of unity, the maximum number
of stable nuclides is 100. Slopes of the limiting lines are fixed (Figure 7.5)
by their intersection with the 44 Ne curves at fractional values of Z/N that
follow the Farey sequences in the intervals (1,5/8) and (14/19,5/8).

The variation of neutron imbalance, Nx is shown as both Ne/Z and Z/N
on the same diagram, Figure 8.2, as a function of A, for the isotopes of a

1This number is close to tan
(

π
5

)
= 0.7265, at the trigonometric basis of the golden

ratio.
2Symmetry arguments favour Z = 102 and maximum A = 300. The actual numbers of

stable elements and nuclides are 81 and 264, respectively. The limiting lines in Figure 8.2
do not define the triangle of stability and have been inserted to emphasize the convergence.
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Figure 8.2: Neutron imbalance as a function of mass number for the isotopes
of selected elements.

number of selected elements. As in Figure 8.1, the values of Ne/Z for the
isotopes of a given element are mapped on straight lines between coordinates
Nx = 0, A = 2Z (N = Z) and Nx = 1, A = 3Z (N = 2Z). For (N−Z)/Z = τ ,
A = N + Z = Z(2 + τ) = Zφ2. Similarly, the values of Z/N for a set of
isotopes appear on smooth curves between coordinates 1, 2Z (N = Z) and
1
2
, 3Z (N = 2Z). For Z/N = τ , A = Z(1 + 1/τ) = Zφ2. The intersection

of straight lines and curves for the same element, always happens at exactly
Nx = τ , independent of assumption.

The limiting lines that define the triangle of stability, for maximum atomic
number Z = M , are given by the following expressions:

A

Z
=

(5τ − 3)A

M
+ (3 − τ)

2A

Z
=

(9τ − 5)A

M
+ (5 − 2τ)

The correctness of these expressions is demonstrated by equating the two
solutions for A/Z, i.e.

2(5τ − 3)A

M
+ 2(3 − τ) =

(9τ − 5)A

M
+ 5 − 2τ
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which simplifies to3 (A/M)(τ − 1) = −1 i.e. A = M/τ2. The most probable
value of M = 100 finally confirms the validity of the assumption, origi-
nally based on the number spiral, that the number of stable elements never
exceeds 100.

The empirically established periodicity of the stable nuclides and of the
chemical elements has been demonstrated consistent with simple number
theory and the golden mean. The inference that the properties of nuclear
stability and solar abundance are functions of the same periodicity will be
explored next.

8.2 Nuclear Stability

Nuclear stability is commonly defined in terms of either binding energy (BE)
or binding energy per nucleon (BE/A). Periodic relationships that involve
these quantities are not totally convincing, e.g. in Figure 7.10. To bring out
the effect more clearly it may be necessary to introduce a binding energy term
that relates to neutron excess. This is done by defining the contributions z
and n of individual protons and neutrons to the total nucleus binding energy,
such that

Zz + Nn = BE

and forming the difference

z − n = BE

(
N − Z

NZ

)
+

[
n

(
N

Z

)
− z

(
Z

N

)]

3The limiting lines, (1) and (2), y1,2 = (A − 2Z)/Z are given by

A

100 200

0
.2

1
2 2τ

−1
/21−τ

τ

1/2−τ

M/τ2

y

y1 = (2τ−1)τ2A
M + 1 − τ y2 = (2τ− 1

2 )τ2A

M + 1
2 − τ

= (5τ−3)A
M + 1 − τ = (9τ−5)A

2M + 1
2 − τ

A
Z = (5τ−3)A

M + 3 − τ A
Z = (9τ−5)A

2M + 5
2 − τ
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Figure 8.3: Plot of BE(1/Z − 1/N) vs A.

The term in square brackets vanishes for z/n = (Z/N)2. The ratio Z/N is
known to vary between 1 and φ, which then implies either z = n or z = nφ2,
both of which are reasonable assumptions at the extreme ratios of the triangle
of stability, as in Figure 6.1.

The quantity BE(N−Z)/NZ is shown for all stable nuclides as a function
of mass number in Figure 8.3. The remarkable resemblance that it shows with
the plot of Figure 8.1 indicates that, since BE/N is not a constant, it must
obey the periodic law of the nuclides. In fact, both BE/N and BE/Z are
found to obey the periodic law, but with opposed trends which cancel in the
combined plot of Figure 8.3. To emphasize the periodicity, plots of BE/N
and BE/Z are shown in Figure 8.4 for the nuclides A(mod4) ≡ 0. Whereas
the binding energy per proton varies periodically with mass number over
a limited range, the binding per neutron decreases steadily, such that the
difference converges to 8.5MeV, the energy equivalent of τ . Several vital
factors emerge from these plots:

1. Nuclear stability is a periodic function of mass number and neutron
imbalance;

2. The returns on nuclide stabilization by an increased neutron excess
diminish at high mass number and approach zero at about A = 210,
the natural limit to nuclide stability.

3. If nucleogenesis happens in equilibrium processes, as implied by the
assumed model of α-addition, nuclide abundance should obey the same
periodic law as nuclear stability.
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ments of constant neutron excess, as numbered. For N = Z the plots coincide.
Vertical hem line segments demarcate the 11 nuclidic periods.

8.2.1 Cosmic Abundance

There is an important difference between the two rival theories of nucleoge-
nesis which has not been investigated before. Only the equilibrium-synthesis
model implies a direct relationship between nuclear stability and cosmic
abundance. As pointed out before (Section 4.2.4, Nucleogenesis) there is
nothing to suggest that the web of reactions assumed in non-equilibrium the-
ories should produce nuclides in abundance related to their binding energies.
Having established a periodic trend that dictates nucleus binding energies
(Figure 8.4), nuclidic abundances can be tested against the same periodic
law, to either confirm or rebut the equilibrium model.

Using Anders-Grevesse [61] abundance data, separate plots of solar abun-
dance vs mass number A, for all sets of nuclides with common neutron excess,
Ne = N −Z = 0, 43, are shown in Figure 8.5. For the sake of clarity the plots
are grouped together according to A(mod4) ≡ 0, 2, (1, 3). Despite agreed
uncertainty around abundance data the plots for even mass number clearly
show the expected periodicity inferred from Figure 8.4. Vertical hem lines
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Figure 8.5: Solar abundances [61] of stable nuclides plotted in subgroups of
constant neutron excess and groups A(mod4).

correspond to the periods of the 11 × 24 matrix defined before (6.2). The
periodicity among odd mass number nuclides is not as striking, but equally
convincing. It follows that the periodic law of Figure 7.7 applies to both
nucleus-binding energies and nuclide abundance. The plots of Figure 8.5 iden-
tify several outliers, that may be re-examined.

It is instructive to note how the scatter plots of Figures 4.5 and 4.6
acquire new meaning on grouping the data points into 4 × 11 families of
common neutron excess. The 11 families of each modular, A(mod4), group
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obey the 11×24 periodic law, first inferred from the number spiral, Figure 1.2.
Empirical evidence, based on solar abundances therefore identifies neutron
excess as fundamental to the periodic classification of the stable nuclides.

If nuclides derived from a variety of synthetic processes with different
mechanisms, there cannot be a general rule that relates their abundance
to binding energy. Current models of nucleogenesis therefore need serious
revision. The bulk of stellar material must clearly originate from equilibrium
processes that would yield products, after degradation, in quantities related
to their relative stabilities.

8.3 Nuclear Structure

The demonstrated failure of the shell model with spin–orbit coupling to
account for observed nuclear spins argues for an alternative definition of the
shell structure of atomic nuclei. A vital clue on how to overcome the problem
is provided by the observed periodicity of the nuclides. The mass numbers
at which nuclidic periods close, show remarkable correspondence with the
periodic table of the elements. The mass numbers 28, 48, 68, 85 and 102 run
in parallel with the atomic numbers that close the electronic 3d(28), 5s(48),
4f(70), 6p(86) and 5f(102) levels. Although the neutron magic spectrum has
been shown to arise in a non-central potential the total nucleon spectrum, on
the other hand, is shown by its correspondence to the extranuclear electronic
spectrum, to be of the central-field type. This observation suggests that pro-
tons and neutrons should be treated as equivalent within a common periodic
law. In theory only charge and isospin differentiate between the two equiva-
lent nucleon states. Although the observed decay of free neutrons by electron
and neutrino emission may suggest that such leptons could contribute to
nuclear spin, there is no interaction to stabilize such a distribution within
the nucleus. Those electrons that may formally be considered to produce the
charge balance in the nucleus, have no independent existence in that regime
and disappear into the quark structure of the nucleus.

To describe the behaviour of the extranuclear electrons they are consid-
ered to exist in a central coulombic field which they cannot penetrate more
deeply than to a well-defined limiting level that defines a ground-state energy
for the most strongly bound electron. The energy spectrum of the nucleus
is found to obey the same law as the extranuclear electrons, albeit at much
higher energies. To rationalize this observation it is assumed that available
energy levels for nucleons are defined by the same relationship that specifies
extra-nuclear electronic energy levels, only with different boundary condi-
tions. Nucleons are made up of quarks in up and down flavour and respective
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charges of 2
3

and −1
3
. Although quarks remain confined their polarization

effects provide the strong interaction between nucleons, conveniently inter-
preted in terms of virtual pion exchange, e.g.[

ψ(uud) ≡ N+
]
+ ψ(ūd) → ψ(ddu) ≡ N 0

which is formally equivalent to the Yukawa prescription

p +
[(

e− + ν̄e

) ≡ π−] → n

The total cohesive energy must increase with mass number, but since
quarks may be considered homogeneously distributed throughout the nucleus,
the binding energy remains essentially constant at about 8.5 MeV per nucleon,
the energy equivalent of τ . The packing of nucleons follows the same pattern
as the stacking of extra-nuclear electrons in the central field of the nucleus.
The tendency of atoms to have spherical symmetry is achieved by quenching
of orbital angular momentum [11] and this leads to Hund’s rule that links the
number of unpaired electrons at any level to the orbital angular-momentum
quantum number, l. The basic pattern of nuclear spin distribution is proposed
to obey the same rule.

Nuclear interactions are on the edge of sub-quantum phenomena in the
Bohm sense of Section 5.5. The neutrino, which essentially carries spin angu-
lar momentum only is probably no more than a vortex in the substratum,
while electrons and quarks are the solitary waves at the source of elec-
tromagnetic charge and mass. It is futile to look for a quantum model of
these entities; only their manifestations in familiar space behave quantum-
mechanically.

Stability of the proton indicates interaction at the sub-coulomb level.
The partons or quarks, postulated as constituents of the proton must there-
fore reside within the sub-quantum plenum. Their confinement is due to the
coulombic field that only exists between points more than a Planck length
apart. The quarks in a nucleon therefore stay together in order to avoid the
Coulomb field.

8.3.1 Bound-state β− Decay

Bound-state β− decay is a weak decay mode in which the decay elec-
tron remains in a bound atomic state rather than being emitted into the
continuum. This mode was observed for the first time [95] in the case of
163Dy, which is stable as a neutral atom, but when fully ionized, it decays to
163Ho with a half-life of 47 days. Another dramatic difference of this type,
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and one which could have serious implications for theories of nucleosynthesis
and cosmic abundance, concerns the 187Re – 187Os pair [96].

Bound-state β− decay of fully ionized 187Re nuclei that circulate in a
storage ring has been observed. The time-dependent growth of hydrogenlike
187Os ions was measured and a half-life of 33 years for bare 187Re could be
determined, compared to 42 Gy for neutral 187Re atoms. The decay electron
remains in a bound state and the total decay energy is carried away by the
simultaneously emitted antineutrino. The atomic charge state remains the
same.

The driving force of the decay process is the enhanced attraction between
the Os nucleus and the extranuclear electronic charge cloud, compared to Re.
It is pointed out [96] that 187Os76+ decays by capturing an electron from the
continuum.

Bound-state decay accords with the quark model of the nucleus. The
overall configuration of an atom depends on the total charge distribution.
Imbalance due to ionization may hence be restored by electron flow from the
core. Because of the large discrepancy in energy between core and extranu-
clear levels, equilibrium is strongly biased towards the core, making bound-
state decay a rare event at extreme levels of ionization. However, like electron
capture, it provides experimental evidence of continuity between the nucleus
and extra-nuclear electrons, consistent with the observation that a common
periodic law governs both regions.

8.3.2 Nuclear Spin

Sub-atomic particles with spin are confined to well-defined energy levels and
sub-levels. For extranuclear electrons the resultant spin, called the multiplet,
is non-zero for all partly-filled sub-levels. Normal multiplets arise from the
spins of equivalent electrons when the sub-level is less than half full. Inverted
multiplets arise when the sub-level is more than half full.

According to Hund’s rule the multiplet of highest multiplicity for a given
configuration is lowest in energy, and therefore favoured. In the case of atomic
nuclei non-zero spin is observed mainly for nuclides with an odd number of
nucleons. The effect is that for l-fold degenerate levels a total of only l non-
zero multiplets are observed. In this case the spins of relevant nuclides are
conveniently summarized by listing them in the same order as the allowed
multiplets. In such a table the l successive multiplets per sub-level correspond
to the observed spins of l successive odd nuclides, listed in order of increasing
mass number. This is feasible since only for A = 113 are there more than
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one odd nucleus with the same mass number. An effort to understand and
predict nuclear spins must involve the following steps:

1. Define the distribution that assigns nucleons, considered in order of
increasing mass number to energy sub-levels defined by an appropriate
periodic law.

2. Compare the implied multiplet structure with observed spins and estab-
lish the nuclear equivalent of Hund’s rule.4

3. Consider the effect of secondary periodic laws, pertaining to individual
types of sub-atomic particle, that may have an effect on the total spin
carried by the nucleus.

The assignment of nuclear spins in terms of the 11 × 24 periodic law and
central-field interaction is summarized in Figure 8.6 and Table 8.1. Since
all, but a few, of the even mass number nuclei have zero spin, only the
spins associated with odd-numbered nuclides are shown on the energy-level
diagram as 2σ, where σ represents half-integer spins.

The energy-level assignment uses the one-electron spectroscopic notation
and follows the structure of the observed periodic table of the elements as
closely as possible, consistent with the 11 × 24 periodicity of the stable
nuclides. Placement of the 6s level at the end of the third period could,
for instance, ensure a perfect match with the table of elements (Figure 6.4),
without materially affecting the argument. As in the Schrödinger problem,
sub-level energies are assumed to increase in the order s < p < d < f < g
for any principal quantum number n. Multiplicity of the sub-levels is fixed
by the degeneracy of 2l + 1 for l = 0 → n − 1. Five consecutive nuclei with
an odd number of nucleons will, for instance, be involved with the stepwise
occupation of the available energy levels at l = 2, with total spins of 1, 3,
5, 7, 9 respectively. Not more than five of these can be parallel and any spin
observed in excess thereof must be of different origin. For convenience, the
spin distribution of the consecutive odd nuclei is denoted by nd(1 − 5) and
treated as separate sites, or blocks in a set of five.

Individual nuclear spins may be assigned in terms of Hund’s rule that
specifies maximum parallel spins in degenerate sub-levels. By this procedure
one third of the spins are predicted correctly. It is noted that in a significant

4This procedure differs from the spin assignment according to the shell model, which
assumes that the total angular momentum (j = l + s) is carried by the single nucleon at
the highest energy level in the nucleus [97].



270 CHAPTER 8. PROPERTIES OF ATOMIC MATTER

1

3

1

1 3

1 1

9

3 3

3p

2s

2p 3s

3d

4s

4p

4d

4f

6p

6f

8s 5g

7d

6g

1 3 3 5 5

5 3 3 3 5

28

48

68

86

102

118

132

152

188

210

170

5s3 3 73 57

7p

6d

3 9

1 5 7 1 5 1 3

3 3 7 5 7 7 5

1 5 7 7 9 7 1 5 1

Hund´s rule (h)

h+4n

9s 8p5 7 7 1

7f

110s 9p

1 1 5

5

7

91 1

1 1 11

7 7 1 5 7 33

1

3

18

3

a=h  2

a+4n

h−4

a−4

1 3 1 33 33

5f

3 3 55p

3 3 9 5 15d36s

3

9 1 5 9 5 5 5 57s

33

35

9

4

Figure 8.6: Reconstruction of the 102 odd-nucleon nuclear spin values (2×σ)
in terms of a modified Hund’s rule.

number of cases Hund’s rule underestimates the observed spin by 4n units,
i.e. σ = h + 4n, n = 1, 2; e.g. 5/2 or 9/2 for predicted 1/2, etc. It will be
argued that these additional spins arise in the orbital angular momentum of
distorted non-spherical nuclei. In an even larger number of cases observed
spins differ from Hund’s rule values by two units, h = 4n ± 2, n = 0, 1, 2.
Overestimation in this case is assumed due to extra pairing of nucleon spins.
Spin assignment according to these two schemes is defined in Table 8.2. It
is of interest to note how the boldly outlined central part of the alternative
Table 8.2(b) that describes spin pairing beyond the Hund prediction, fits into
Table 8.2(a). All nuclear spins are assigned correctly on the basis of these
generalizations although it is not possible to predict when each of the rules
should apply.
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Table 8.1: Assignment of nuclear spins in terms of Hund’s rules and nuclear
distortion.

A NZ 2σA NZ 2σ
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As a first step towards identification of the alternatives to Hund’s rule it
is noted that all observed spins (1/2 → 9/2) can be stated in the form of the
modular equivalence

2σ ≡ (h + 4n)(mod10)

where h is the number of parallel spins predicted by Hund’s rule. A simple
pattern that summarizes alternatives to Hund’s rule in terms of n is shown
in Table 8.2(c). This table transforms (a) into (b) by modular addition.

Predicting the Spin

The prediction of individual spins requires an understanding of the mecha-
nism whereby spins are generated by the nuclear equivalent of Hund’s rule
symmetry, and interact with spins contributed by asymmetry effects. There
appears to be periodic factors that relate to both atomic and neutron num-
ber, superimposed on the grand periodicity that relates to mass number. One
interpretation is that the overall periodicity depends on the packing of nucle-
ons whereas additional factors arise from nuclear charge distributions in the
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Table 8.2: (a) Hund’s rule spin (b) Alternative spin (c) Excess spin as
multiples of n, in modular notation.

g
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d

p
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3 1

3
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2 2 2 3

3 3
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3

33
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33

3

3

1

1 1

5 5 5

555 53

3

b

3 3

7

2 2

nucleus. These are not smoothly varying functions of mass number and may
have an effect on nuclear spin.

Neutron excess changes in steps of unity within each of the four modular
series A(mod 4) of nuclides. Breaks occur where the build-up of a series by
α-particle addition reaches a β-unstable nuclide, e.g.

A
ZX − β+ → A

Z−1 Y

Interplay of the two factors are demonstrated in Figure 8.7. Arrows indicate
breaks in the regular sequence that also indicate switching between an even
and odd number of positive charges on the nucleus, i.e. between odd neutron
or proton number. In the case of the 4f sub-level, the 4f(k) multiplets sepa-
rate into two groups. For odd k, the nuclei are from the A = 4n+1 series, have
an even number of charges and a-type spins. For 5f(k) the opposite is true.
Even-k nuclei are now from the 4n − 1 series, with even charges and a-type
spin. In both cases the remaining nuclei behave differently, but not uniformly
so. Evidently the spin type depends on the interplay of at least three fac-
tors: the mass-number series (4n± 1), the even–odd charge distribution and
placement within the sub-level, k. Each of these indices can be represented
as either plus or minus one and the product of the three interpreted as indi-
cating either h or a spin type. Whereas mass and charge indices are fixed,
definition of the sub-level index is less obvious. An important clue is pro-
vided by the observation (Figure 8.8) that a sub-level index which oscillates
between positive and negative values down the row of ns sub-levels, predicts
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Figure 8.7: Nuclides of the 4n± 1 series assigned to the energy levels of Figure
8.6 and showing radioactive breaks.

the correct spin in all cases, with two provisos: The 1s entry does not describe
a composite nuclide and is included only for completeness. Secondly, 3He(2s)
is the only nuclide with an excess of charged nucleons and the charge index is
therefore inverted from even to odd. Starting from each s and moving to the
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right, the index oscillates through consecutive sites on contiguous sub-levels.
At the fifth level however, the sequence along sub-levels with common n,
and hence the index oscillation, is interrupted by the insertion of sub-levels
with higher n. The 5d sub-level is anomalous because of the superposition of
another periodic factor as discussed below. It does not affect the other levels
as 5f falls into step with 6p. The sequence 7s → 7p → 6d → 6f → 8s → 5g
follows regular oscillation. 7d picks up from either 7p of 8s. After level 8,
the np sub-level no longer follows directly on ns, but rather on (n + 1)s, e.g.
9s → 8p → 7f .

As shown in Figure 8.8, the three-index products as defined above, predict
the correct spin type (h or a) in 83 out of 102 cases.
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Figure 8.8: Predicted spin arising from the interplay between three main
indices and two periodic functions. The charge index is shown as either e(ven)
or o(dd), the mass number index as ±1, and the multiplet index by + or −.
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A regular pattern which is related to the discrepancies suggests that addi-
tional factors are at work in fixing these nuclear spins. The first, most obvious,
is the observation (Figure 8.6) that all, but two of the periodic groups end at
a nuclide of h-type, irrespective of the three-index product. Spin types that
have been adjusted in terms of this ad hoc rule are identified by H labels in
Figure 8.8. The two spins, at 6p(3) and 6f(7), not adjusted, are subject to
the next, stronger rule.

Most of the remaining discrepancies are observed to bear a close relation-
ship with the relative proton–neutron distribution predicted by Figures 6.8
and 6.9. The relevant atomic numbers 4, 10, 16, 24, 32, 38, 48, 54, 56, 64 and
78 correlate well with observed discrepancies at A = 7(2p3), 19(3d1), 31(4p1),
53(4f 4), 73(5d3), 85(6p3), 113(6d3), 125 − 131(6f 4−7), 135(5g1), 155(7d2),
195(7f 4−6). In most cases an inversion of predicted spin type occurs for these
nuclides. At 4f(3), 6d(3), 6f(4, 6), 7f(4, 6) and 6g(7) unit spins, rather than
the predicted five occur, without affecting spin type. It will be argued that
spherical symmetry for nuclei that would normally distort, is restored by the
closure of the charge-energy shell. At 5d(3) and 6d(3) the effect is an (h+8)-
type spin at the site of maximum multiplicity, compared to a-type for all
other d, f and g sub-levels. This case is closely analogous to the appearance
of dynamic Jahn-Teller distortion in molecular systems.

The strong preference for spins of type a = h − 2 at sites of maximum
multiplicity in d, f and g levels overrides the three-index rule where the latter
predicts h-type spins at such sites on 4f , 5g and 6f . At 6f the discrepancy
coincides with the periodic effect causing all spins from 6f(4) to 6f(7) to be
inverted. At 6p(3) an a-type spin at the end of period 4 is induced. Since the
closure of both charge and mass periods coincides at this point, the combined
effect carries through to the previous nuclide, 6p(2). Related to this feedback
and to the inverted sequence at 6f(4 − 7), the spin at 3d(4) is inverted by
a related knock-on effect that stops with an a-type spin on the central site
of the sub-set. The spin type of only three nuclides, those with configuration
4d(2), 5f(5) and 7d(5) remain undetermined.

The final unresolved issue is identification of the nuclei with an excess of
4n on the spins predicted by the scheme of Table 8.2. As shown in Figure 8.6,
many of these occur near the end of the mass-number periods, suggesting that
the excess may coincide with an arrangement which is sensitive to distortions
of the Jahn-Teller [98] type. This set includes nuclides with A = 17, 27, 45,
47, 67, 87, 101, 133, 151, 161, 163, 209 and excludes those nuclides at the end
of sub-levels, also affected by the completion of the charge-energy levels, i.e.
2p3, 4p3 and 6f 7. The opposing charge–nucleon effect is best illustrated at
4p3 that closes between the charge level at A = 33 and the neutron level at
A = 37. The relatively high thermal-neutron cross section of 35Cl at 44 barn
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will be shown to relate to this coincidence. According to the seminal table
of Figure 6.6 three periods end at a nuclide of odd mass number, i.e. 85, 117
and 169. This oddity has been glossed over before for the sake of uniformity,
but it now appears to be important. It is precisely at these positions that the
h + 4n rule breaks down and applies to an immediately preceding nucleus
instead. The 6f and 6g discrepancies are discussed below.

The distortion of atomic nuclei is analogous to the Jahn-Teller distortion
of inorganic coordination complexes where a ligand field is of higher sym-
metry than the electronic charge density on a central metal ion. A typical
example is the Cu(II) ion with d9 configuration in an octahedral ligand field.
To compensate for the symmetry mismatch, the coordination geometry is dis-
torted in a mode that enhances electronic interaction with the central ion. In
the case of nuclei the arrangement of nucleons in general and of neutrons and
protons individually, is dictated by different periodic laws. A completely filled
nucleon energy level represents a special high-symmetry arrangement. How-
ever, should this arrangement coincide with an incomplete neutron or proton
level, the high-symmetry is lowered spontaneously, exactly as in the case of
molecular Jahn-Teller distortion. The resulting distortion of the nucleus is
responsible for the release of orbital angular momentum that would remain
quenched in the undistorted high-symmetry configuration.

The reconstruction of nucleon interaction within each mass-number pe-
riod, in terms of total nucleons and effective pions (neutron and proton peri-
ods), is shown in Table 8.3. The completion of neutron and/or proton levels
immediately after mass levels, causing Jahn-Teller distortion, is clearly evi-
dent. Completion of proton and neutron levels at A = 33(16) and 37(20)
respectively, cause distortions in opposite sense at A = 35(4p3), that carries
no extra spin. The sub-levels 6f 7, 5d5 and 7p3 are not affected by partially
completed neutron or proton levels.

At period 4 that ends at A = 85, the immediately preceding odd nucleus,
as well as the next, have the predicted spin + 8. Near the end of period
6 (A = 117) extra spins appear at A = 113, at the end of another magic
sub-level. The closure of period 9 (A = 169) coincides with a magic sub-level
2B(6) that runs from A = 159 − 169 and the four nuclides at A = 161 − 167
all have spins increased by four. Another straight run of five augmented spins
occurs along magic period 2A(4) (A = 37−47) at the end of period 2. Of the
remaining four augmented spins, three appear at the end of magic periods
1B(4)(A = 59), 1C(2)(A = 73) and 3A(2) )(A = 139). The increased spin
at A = 93 can only be due to its position, near the beginning of the magic
sub-level 1C = (91 − 100).

Most of the regularities outlined above apply more faithfully to periods
1–6 than to higher periods. The reason for this trend becomes obvious from
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Figures 7.11 and 7.12. The regular trend, represented on those diagrams by a
mean stability curve over the early periods, breaks down abruptly at the end
of period 7 with the appearance of the lanthanides. It re-appears over the
last two periods, but with different slope. Uncertainty over 6g(5), 6g(9) and
7f(7) may therefore just as well be treated as special cases since the sample
is too small to establish an alternative pattern.

Summary

Nuclear spin has resisted prediction for a long time because a large number
of observed values exceed expectation in terms of the odd number of either
protons or neutrons responsible for the spin. The most successful prediction to
date has been based on a scheme of spin–orbit coupling, formulated without
the support of a reasonable physical model. The model has been reworked
here with the benefit of the larger number of measured spins now available,
and careful assignment (Table 6.3) of both proton and neutron levels to
ensure the best fit. The total of 62 out of 102 spins correctly predicted, may
be considered as optimal because of the almost random distribution of the
remaining discrepancies. The most negative aspect of the scheme is the fact
that an adequate explanation of the assumed strong spin–orbit coupling has
never been provided.

The spin–orbit scheme performs better than standard Russel-Saunders
coupling because it provides a mechanism to rationalize the observation
of spin, almost uniformly higher than expected. Splitting of the sub-levels
defined by the quantum number l into 2l values of l − 1

2
and 2l + 2 values

of l + 1
2
, allows more flexibility for matching the empirically observed magic

numbers. The formulation of Table 6.9 should therefore be seen as matching
magic numbers rather than the Goeppert-Mayer scheme.

Tight packing of nucleons should promote quenching of orbital angu-
lar momentum to ensure maximum approach to a spherically symmetrical
nucleus and affect the occupation of degenerate energy levels exactly as in
the case of extranuclear electrons. The expected result is multiplet structure
according to Hund’s rule [11]. Being more massive than electrons, nucleons
may however, be expected to behave differently in situations of high spin,
because of the higher kinetic energy required for the outermost nucleon to
orbit the tightly packed kernel. The effect would be exactly the opposite of
spin–orbit coupling. The first and end members of a degenerate sub-level are
expected to follow Hund’s rule better than those at the centre where increased
spin pairing must be expected. The observations embodied in Table 8.7 con-
firm this conjecture.
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The analysis of nuclear spin is seen to depend exclusively on the behaviour
of odd-numbered nucleons in the outermost nuclear shell, floating on a tightly
packed spherically symmetrical kernel. Whatever the nature of the strong
interaction, the spherical core may be approximated by a central field for
the mobile outer layer of nucleons. The energy spectrum should therefore be
closely analogous to that of the extranuclear electronic charge cloud. This
argument justifies the energy-level sequence of Figure 8.6, defined to match
the periodicity of the nuclides as specified in Figure 6.6. It is reassuring to
find an almost 2:1 preference for Hund’s rule spins at the beginning and end
of degenerate levels and a similar preference for reduced spin at the central
sites.

Deviations from the qualitative picture are plentiful, but rational. Apart
from the grand periodicity of nucleons, protons and nucleons follow different,
but related periodic laws which interact with the former and the modular
composition of each nuclide. Systematic consideration of all these factors
results in a unique definition of virtually all nuclear spins. Of overriding
importance is the recognition that the observed excess over Hund’s rule spins
in about one quarter of all cases may be rationalized by spontaneous distor-
tion of atomic nuclei.

8.3.3 Packing of Nucleons

Because of the interplay between periodicities nuclear structure must be
such as to satisfy at least two different periodic functions at the same time.
Nucleon periodicity is defined by Table 6.6 and Figure 8.6, neutron periodic-
ity by Table 6.5 and proton periodicity in Table 6.4. The schematic diagram
in Table 8.3 shows a simple model solution to the overall problem. Solid ver-
tical lines represent shells of closely packed nucleons, held together by pions,

Table 8.3: Numerical details of periodicities in atomic nuclei.
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shown as stipled lines. The neutron (π−) excess increases with an average
of four units per period as the ratio Z/(A − Z) gradually decreases from 1;
converging to τ . The neutron and proton levels, although obeying entirely
different periodic functions, stay largely in step with nucleon periodicity. The
mismatch is responsible for deviations of the observed nuclear spins from the
predicted Hund’s-rule values.

Comment

The model outlined here has reached the same level of development as the
periodic table of the elements in the hands of chemists around 1920. At the
time, it provided the main impetus for a formulation of quantum theory that
provided a theoretical basis for the observed periodicity. An important advan-
tage on that occasion was that the required eigenvalues for electronic energy
and angular momentum were known from the periodic law, and the potential
field from the nuclear model of the atom. In the present instance an energy
spectrum is provided by Table 6.5 and the potential field relates to the annu-
lar charge distribution. An important parameter that specifies the potential
field is the neutron excess, that varies in step with the proton/neutron ratio,
from an initial value of 1 and coverging to τ . A simple one-partricle model
locates an effective unit of negative charge within a spherical annulus and
a total positive charge of N/Z on the walls. The calculation is left as an
exercise to the reader.

Geometrical Model of the Nucleus

The quark model of atomic nuclei does not provide an inequivocal account
of internucleon interaction. Accepting that the main interaction is of the
dispersion type, it is most unlikely that a static arrangement of nucleons
would occur, but a probability nucleon density that, on the average, resembles
crystalline close packing is not excluded. Close-packing models of atomic
nuclei, the most famous of which is that of Pauling [72], have been proposed
and from the observed distribution of nuclear spins, such proposals are not
totally unreasonable.

The appearance of 4n excess spin has been correlated convincingly with
the mismatch between nucleon periodicity and magicity. At the same time
the appearance of these excess spins occurs at surprisingly regular intervals
of mass number. Most of them repeat at intervals defined by multiples of
8, i.e. 8n, n = 1, 9, along two related number sequences that remain out of
phase across the entire range, by 10 mass numbers. A scale model is shown in
Table 8.4. In five special cases, repetition after four mass numbers is observed.
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Table 8.4: Periodic recurrence of excess spin along two mass-number series
that stay out of phase by 10 units.
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The observed regularity appears related to the packing of nucleons. The phase
difference is generated at the outset and then it persists. A two-dimensional
model of parallel layers that exhibit such a property is shown in Figure 1.7.
A three-dimensional analogue of such a model arrangement is required to
explain the observed trend. It bears no relationship to the close-packed model
of the nucleus proposed by Pauling [72].

According to the two-dimensional analogy the packing of nucleons occurs
in two parallel layers that spiral together from the centre outwards. To remain
in phase it is necessary that nucleons should occupy progressively more space
as their distance from the origin increases. The literal meaning of this require-
ment is that nucleons at the centre are compressed, relative to those on the
outside. This compression may be compared with the size effect of Rydberg
atoms that expand in rarefied environments. Compression in the nucleus is
due to the strong interaction.

The diagram in Figure 1.7 is based on Fibonacci phyllotaxis, distorted to
emphasize the occurrence of parallel layers. In the botanical analogue (e.g.
in a sunflower head) the arrangement assures closest packing of self-similar
florets that grow in size, with retention of shape, from the centre, outwards. If
the packing of protons follows the same pattern in three dimensions they may
be viewed as spreading along three-dimensional Fibonacci spirals (compare
Figure 2.14), interspersed by layers of neutrons that spiral in the opposite
sense. This phyllotaxis predicts the ratio of protons to neutrons to be the
ratio of successive Fibonacci numbers, which is known to converge to the
golden ratio at high mass number.

The proposed packing is related to the mysterious role of the golden ratio
in all periodic relationships in and between atoms. It explains why neutron
imbalances should converge to τ and why heavy nuclei become unstable,
even before they reach the limiting size. The strong grip on the outer layer of
nucleons, inflated in size, is no longer adequate to prevent fragments in the
form of α-particles to escape from the nucleus.



8.3. NUCLEAR STRUCTURE 281

8.3.4 Nuclear Size and Shape

One measure of nuclear size and shape is the thermal-neutron cross section
of atomic nuclei. Up to mass number 20 these are all in the millibarn range,
(1 barn = 10−24 cm−2). For mass numbers 20 < A < 139 the cross sections
are typically less than 10, with only about 15% exceeding this limit. In the
range 139 < A < 176, corresponding to the lanthanides, 52% exceed 10 b
and 20% exceed 100 b. In the range 176 < A < 209, 20% exceed 10 b and
7% exceed 100 b. The nuclides of highest cross section are 113Cd(2 × 104b)
and 164Dy(2 × 103b). The distribution for odd-mass nuclei is highlighted in
Figure 7.12 that shows the clustering of high cross sections in the region
identified before in terms of anomalous stability properties. A large number
of α-emitters occur in this region. Around A = 190 high cross section again
correlates with α-instability. Since the likelihood of nuclear distortion must
increase with size, it may be inferred that those nuclei proposed to acquire
additional spin by non-spherical distortion, should have large neutron cross
sections. This correlation is explored in Table 8.5. With few exceptions, the
nuclei predicted to have high spin due to distortion, are those with high
neutron cross sections. Those odd-mass nuclides with normal spin and high
cross section are interpreted to have large polarizable but symmetrical nuclei,
not subject to distortion by other periodic factors. Two even-mass nuclides
are included in Table 8.5 to emphasize the observation that the two groups

Table 8.5: Relatively high thermal-neutron cross sections of odd-mass nuclei
with high nuclear spins.
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Figure 8.9: Diagram to illustrate the periodic relationship between thermal-
neutron cross section, nuclear size, polarizability and high-spin nuclides.

of high-spin nuclides, A = 43 − 51 and A = 161 − 167 occur in regions of
uniformly large polarizable nuclei. To emphasize the common periodicity of
nuclear size and polarization related spin, all affected nuclei are shown in
Figure 8.9, that collates the nuclides into modular groups of A(mod4).

Black circles represent polarizable odd-mass nuclei of high spin. Open cir-
cles represent large odd-mass nuclei not subject to distortion. Crosses identify
even-mass nuclei of high cross section. Because of symmetry these nuclei can-
not distort to a more stable state and several nuclides in this mass region
are α-unstable. The surmized packing regularity of layers that are out of
phase by ten units, is highlighted by thin lines connecting odd-mass nuclei.
To a large extent even-mass nuclei follow the same trend. It has been pointed
out before [97] that collective properties of nuclei may arise from collective
motion, in which many nucleons contribute cooperatively to nuclear prop-
erties. Both vibrational and rotational collective motions may, for instance,
be recognized in the nuclear magnetic moment they generate by the cir-
culation of the charge carried by protons. Because of these effects many
nuclei are permanently deformed. It has been a problem to understand how
shell-model orbits, calculated from a spherical potential, result in a non-
spherical nucleus. Figure 8.11 suggests a possible solution.5 Nuclei enclosed

5Although an accurate description of the effect, it is not an explanation.
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in the circles, centred between major magic numbers, are those most severely
deformed and also those that occur far from filled neutron and proton shells.

The observed location of deformed nuclei corresponds well with the obser-
ved trends in neutron scattering cross sections, shown in Figure 7.11 and cor-
relates with the lanthanide break in the mean stability curve of Figure 7.11.
The entire argument for assignment of excess over Hund’s rule spins and the
analysis of nuclear packing and shape are obviously based on the same idea
of cooperative interactions and nuclear distortion.

Neutron Scattering Length

Another well-documented property that relates to the size of nuclides is neu-
tron scattering length. It provides a rough measure of the maximum distance
at which a neutron which has been scattered off a nucleus still interacts with
the nuclear field.

l−l

As shown in the sketch, a negative scattering length, derived by back
extrapolation of a divergent scattering track, may be interpreted to indi-
cate an impervious closed shell of nucleons. The strongest attraction on an
external neutron is expected to be exerted in the vicinity of closed shells.
A number of high and negative pairs of scattering length, such as 36S-48Ti;
45Sc-53Cr; 58Fe-62Ni; 81Br-83Kr; 111Cd-113Cd; 164Dy-168Yb; and 174Yb-186W,
may be associated in this sense with the closed nucleon shells at A = 48,
48, 68, 85, 117, 168 and 188 respectively. Closer scrutiny of all available data
suggests that in a family of nuclides with common neutron excess, scattering
length varies periodically with mass number, to reach minima close to or at
the completion of packing-energy shells as sketched on the right. Plots for
nuclides of mass number A = 4n+2 follow the proposed pattern particularly
well, as shown in Figure 8.10. The plot of odd-mass nuclei has no breaks
because there is little overlap between curves for different neutron excess.
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Figure 8.10: Neutron scattering length (in femtometre) of stable nuclides,
plotted as a function of neutron excess and mass number.
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Figure 8.11: Distribution of stable nuclides relative to major magic num-
bers, after [97]. Those nuclei far removed from closed shells by magic number
are subject most to nuclear distortion The two straight lines represents Z/N
ratios of unity and τ , respectively.

8.3.5 Parity

The success in accounting for the observed ground-state assignment of nuclear
parity has been claimed [97] as a great triumph for the shell model. Indeed,
up to about Z = 50 the assignment of π = (−1)l appears almost flawless,
but at higher mass numbers it goes seriously wrong. Like spin, parity is
considered a property of the entire nucleus. The parity operation causes an
inversion of all coordinates through the origin. Since observable properties
depend quantum-mechanically on ψ2 it follows that, if V (r) = V (−r), then
ψ2(r) = ψ2(−r), and ψ(−r) = ±ψ(r). The case ψ(r) = +ψ(r) is known
as positive or even parity, while the case ψ(−r) = −ψ(r) is negative or
odd parity. In three dimensions, the parity operation applied to spherical
harmonics, Y (l,ml) gives a phase (−1)l:

Y (l,ml) = (−1)lY (l,ml)

Central potentials, which depend only on the magnitude of r, are thus invari-
ant with respect to parity, and their wave functions have definite parity, odd
for l odd and even for l even.
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The wave function for a system of many particles is formed from the prod-
uct of the wave functions of individual particles. In practice such a proce-
dure is not possible and there is no theoretical relationship between spin and
parity. Scrutiny of experimental assignments of nuclear parities (Table 8.6)
suggests the existence of a periodic relationship, much simpler than the spin
distribution function. Although parity assignments for odd-neutron and odd-
proton nuclei have many aspects in common for low mass number, this trend
breaks down for N or Z > 32. Unlike spin, the variation of nuclear parity can
therefore not be formulated as a function of A, but rather as two separate
functions on N and Z, respectively. The best candidate function is defined
in table 6.5, mindful of possible deviations in the proton case.

On a first trial the energy spectrum of Table 6.5 predicts nuclear par-
ity in complete correspondence with experimental values for odd-neutron
nuclides. In order to formulate parity as π = (−1)l, where l is some quantum
number related to the energy levels of Table 6.5, the arrangement shown
in Table 8.7 predicts all parity inversions correctly with l defined as the
sum l = k + n. n may be considered as a principal quantum number and
l as an auxiliary number that defines energy sub-levels and their degen-
eracies, shown in parentheses. Using the same quantum numbers, the pari-
ties of all odd-proton nuclides are readily interpreted in terms of the same

Table 8.6: Experimental nuclear parity of odd nuclei and its variation with
magic number.
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Table 8.7: Assignment of nuclear parity in terms of the energy levels defined
in Table 6.5.
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scheme. The only discrepancy with observed parity occurs at 2B(4)1, i.e.
165Ho, which has odd parity. A corresponding discrepancy at 2B(6)3 occurs
in the neutron assignment for 163Dy, with odd parity. A second discrepancy
in the neutron assignment occurs at 2B(10)5, i.e. 179Hf, with odd parity.
What these nuclides have in common are high spin, long coherent scattering
lengths, and high neutron cross section, with excitation, shown in paren-
theses in Table 8.5. There is sufficient evidence to conclude that the three
exceptions occur because of real physical effects, and not because of wrong
assignment.

An important feature of Table 8.6 is the way it ties together purely the-
oretical and purely experimental observations on a one-to-one basis. The
neutron and proton shell structures that occur in the table may be accepted
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as complete and final. It has hence now been established beyond reasonable
doubt that the energy spectra of neutrons and protons in the nucleus are not
identical, but complementary.

It has already been shown in Table 6.6 how the mass numbers at the
closing of the 11 nucleon shells are approximated by nuclear compositions
containing neutron and proton numbers that represent completion of these
respective shells. As an extension of this observation it can be readily demon-
strated that several atomic numbers which represent the completion of proton
levels, also describe stable nuclides with a magic number of neutrons. As a
matter of interest, the resulting nuclides are 4He, 12C, 16O, 32S, 48Ca, 60Ni,
70Ge, 72Ge, 88Sr, 90Zr, 92Mo, [104Cd], 112Cd, 132Ba, 154Gd, 162Dy, 168Er, 172Yb,
188Os, 208Pb. Reference to Tables 8.1 and 8.5 shows that in a remarkable num-
ber of cases, odd nuclei, contiguous to these closed-shell nuclides have spins
in excess of Hund’s rule values, and/or exceptionally high neutron cross sec-
tions, characteristic of deformed nuclei. The remainder of the nuclides with
excess spin can, in fact be shown to include a magic number of either protons
or neutrons, or lies one mass unit away from an even mass nuclide with this
property.

Spin assignment by the spin–orbit shell model makes no distinction bet-
ween normal and high spins and predicts the latter rather poorly. The regular
appearance of high spins for off closed-shell nuclides therefore has no special
meaning. In the scheme presented here, this feature identifies a real physical
basis of the assignment.

8.3.6 α-Instability

Radioactivity in the form of β-type decay or electron capture is a well-defined
periodic property of atomic nuclei. Any nuclide with a proton/neutron ratio
that falls outside the triangle of stability decays by β− emission, if on the
low ratio side, and by positron emission or electron capture on the high-ratio
side. According to their values of neutron excess, those naturally occurring
β-emitters, not generated by cosmic-ray activity (4.1) do not belong with
any of the four modular series summarized in Table 7.1 and hence cannot
be products of the postulated equilibrium process of Sections 6.1 and 7.2.
These nuclides must be of more recent origin in stellar synthesis as proposed
by Hoyle [67].

A number of nuclides, predicted stable on the proposed criterion, decay
by α-emission. At first glance the distribution of these nuclides appears to
be almost random. Viewed against the distribution of distorted nuclei and
large cross sections, a more regular pattern emerges. An obvious common
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Figure 8.12: Diagram to show the coordinates of α-unstable nuclides, marked
by asterisks enclosed in larger circles, with respect to filled proton and neutron
energy shells.

property of the α-emitters is their proximity to a straight line of slope 3/5
that passes through the coordinates of several stable nuclides plotted on
a Z/N diagram, as shown in Figure 8.12. All nuclides shown in the plot,
lie on a family of straight lines with the same slope, only two of which
have been drawn in. The affected nuclides are on the line closest to the
stability limit. Black circles on the diagram identify nuclides of exceptionally
high neutron scattering cross section and expected to be distorted, following
Figure 8.11.

An additional common feature is the proximity of both proton and neu-
tron energy-level lines. It means that these nuclides have configutations close
to completed energy levels for both protons and neutrons. It has been argued
that symmetrical conformations close to filled levels are likely to distort, in
order to gain stability. However, when both proton and neutron levels are
involved, distorting effects are likely to work in opposite directions. It may,
in fact, prevent the asymmetric distortion that could have enhanced the
packing energy. Lacking such stabilization, these nuclides may disintegrate
radioactively.

The same reasoning explains, for the first time, why 8Be does not exist.
The corner inset on Figure 8.12 shows the environment of this nuclide on a
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Z − N plot, relative to the proton and neutron energy levels. Some other
(synthetic) α-emitters are also shown. Compared to the heavy α-emitters,
the nuclides shown here are much lighter and the stated neutron scattering
cross sections (mbar) may appear negligible in comparison. On a local scale
however, the stable nuclei amongst the α-emitters have relatively large cross
sections. The situation is fully analogous to that in the lanthanide region
where the radioactivity is also due to an inability of nuclei to lower their
energy by distortion.



Chapter 9

The Grand Pattern

9.1 The Golden Ratio

This investigation has touched on many aspects, starting from the supposition
that reality is a reflection of the number system. Towards the end of the quest
this is the only conjecture to survive. No other preconceived idea could be
upheld. Not a single result was correctly anticipated, but always compre-
hensible in a new guise. In retrospect, the central conclusion that supports
the entire edifice is the magic of the golden ratio. As soon as its importance
appears to be fully understood, it offers a new surprise at a deeper level. The
use of Fibonacci numbers to order stable nuclides is the most recent surprise.
Although it has been demonstrated that the triangle of stability is defined
by a sequence of Fibonacci fractions, the deeper significance was not fully
appreciated. It can now be shown that any consecutive triplet of Fibonacci
numbers from the sequence

1, 1, 2, 3, 5, 8, 13, 21, etc.

gives a valid classification of the nucleonic composition of all stable nuclides.
The entire analysis, up to this point has been conducted in terms of the

first triplet that maps the nucleon numbers {Z,N,A} �→ {1, 1, 2}. In practice
this means that by adding the Fibonacci numbers, in sequence, to any set
{Z,N,A} that represents a stable nuclide, a feasible composition of the next
possible stable nuclide is generated. In order to characterize the α-emitters it
was necessary to use the mapping {Z,N,A} �→ {3, 5, 8}. In an almost trivial
exercise it is easily demonstrated that the mapping {Z,N,A} �→ {2, 3, 5}
provides another valid description. The difference between the various map-
pings lies in the slope of the Z/N relationship, that changes from 1/1, 2/3,
3/5, etc., in a sequence that approaches the golden ratio. The closer it gets to
the golden ratio, the more rigorous is the classification of nuclides. Examples

291
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of modular classifications in terms of the triplets {3, 5, 8} and {5, 8, 13} are
shown in Figure 9.1.

Along with increased rigour, the visual impact of the higher classifications
deteriorates very rapidly. Compared to the modular classification A(mod 4)
shown in Figures 6.2, 7.1 and 7.3, the modular families A(mod 8) and A(mod
13) appear on straight lines that are spaced much more closely and virtually
unrecognizable to the unaided eye. The situation is exactly equivalent to the
recognition of spirals in Figures 2.13 and 2.14. The more fundamental single
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Figure 9.1: The top diagram shows a plot of all stable nuclides with
A(mod 8) ≡ 0, along straight lines of slope 3/5. In the bottom part the
nuclides with A(mod 13) ≡ 2, 3 are shown in the same style. Interspersed,
but not shown, among the nuclides shown on the diagrams, are all the other
modular groups of each decomposition.
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spiral of Figure 2.13, although it navigates through the same points as those
of Figure 2.14, is impossible to recognize without guidance.

The important conclusion is that the distribution of protons and neutrons
in atomic nuclei, although superficially governed by sets of Fibonacci num-
bers, is in fact fixed by the golden ratio. The implications of this observation
are far reaching.

9.2 Nuclear Structure

Of primary importance are the consequences for the geometrical distribution
of nuclear matter. What is directly implied is that, although the actual pro-
ton:neutron ratio in a given nucleus may be far from τ , the major interaction
arises in extended regions with the exact τ distribution. As in Figure 8.12
all modular groups can be interpreted to occur on lines with slope τ and
non-zero intercepts. One interpretation is that the proton excess is concen-
trated in a cluster, leaving the correct ratio that maximizes proton–neutron
interaction elsewhere. The same reasoning was used before to argue for a
three-dimensional spiral distribution of nucleons.

The crude picture that may be drawn from the previous arguments is of a
proton-enriched cluster, associated with protons and neutrons in golden ratio,
spiralling out in opposite directions to constitute a three-dimensional ana-
logue of botanical phyllotaxis. Strong interaction is mediated by the exchange
of virtual pions that also serve to neutralize coulombic repulsion. In a for-
mal sense each neutron corresponds to a proton, which is associated with
negative charge and compensating angular momentum, which on disintegra-
tion occurs as neutrinos. There is no suggestion that leptons or pions have
independent existence in an atomic nucleus. In the same way that sodium
metal loses its well-known chemical properties when it enters into chemical
combination with chlorine to form salt, the leptons when swallowed into the
nucleus disappears into newly created entities, called neutrons. Even indi-
vidual nucleons lose their identity when they combine to establish an atomic
nucleus. However, in the same way that ionic positions in a sodium chloride
crystal provide a useful working model for simulating the physical properties
of the crystal, a formal geometrical model has heuristic value.

In this sense, the statement that protons and neutrons spiral in opposite
directions does not imply the existence of separate spirals. There is only one
grand spiral of the type shown in Figure 2.13. Apparent secondary spirals are
like the perceived spiral arms, F5 + F6, in Figure 2.14. The total construct
is therefore more like the space-filling chiral helicoid shown in Figure 5.8.
The helicoidal structure determines the chirality of matter, as opposed to
anti-matter, its enantiomeric form. Nuclear parity may be related to the



294 CHAPTER 9. THE GRAND PATTERN

dominant macroscopic Fibonacci spirals associated with protons and neu-
trons respectively. This interpretation is in line with the ease whereby nuclei
may switch parity at the completion of nuclear energy levels.1

9.3 The Five Domains

The essence of the golden ratio is hidden somewhere in fivefold symmetry,
and manifests itself in the details of atomic structures, in a way that can
only be guessed at. It is no accident that prominent periodic relationships
are encountered at Z/N ratios of � 1.0, 0.6 and 0.2, at intervals of 0.4
apart. In the extended closed interval [1.0,−1.0], these limiting values define
five equal domains, but experience shows (Figure 6.12 and Eq. 6.2) that
actual atomic periodicities arise in the closed interval [1.02,−1.02], shown in
Figure 9.2. The symmetrical two-dimensional reconstruction contains all the
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Figure 9.2: Elements of symmetry that relate to the golden ratio and dictate
the arrangement of sub-atomic matter.

1The spirals of Fibonacci phyllotaxis always involve two adjacent Fibonacci numbers,
Fn and Fn+1. For n even, the dominant spiral has opposite parity from n + 1. For n odd,
the situation reverses. The switch happens at the completion of nuclear energy levels,
where parity is reversed, until the next level is reached.
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information about observed periodic relationships and is obtained by placing
the quantity 100Z/N on the same scale as atomic number and reflecting
the familiar triangle of stability in the line Z/N = τ . The significance of
Z/N = 0.2 ± .018 immediately becomes apparent. It represents the limit
between nuclear and extranuclear regions. The region 0.2 → 0.582 may be
interpreted as both positron distribution in anti-atoms, or as the region of
electron capture by the nucleus. The τ -equivalent in atomic number is 62. A
vertical line through this point intersects the triangle of stability at the onset
of the lanthanide region of nuclear distortion, where the average nuclear-
stability trend breaks down (compare Figures 7.11 and 9.1) and cuts through
the cluster of α-emitters. Remarkably, the line between (102,102) and (62,18)
coincides with the limiting hem line of nucleon period 11, Figure 6.7. It
separates stable nuclides from the trans-bismuth α-emitters.

The emphasis on Z, rather than N or A, happened for historical reasons.
There is little doubt that equivalent analyses of stable nelements (elements
defined in terms of neutron number) and melements (defined in terms of mass
number) would produce the same type of golden symmetry. As an example,
the nelement equivalent of Figure 8.2 is shown in Figure 9.3. It demonstrates
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Figure 9.3: Nuclides of selected nelements with N = 10, 20, 30, 40, 50, 58,
74, 82, 90, 100 and 126, plotted as functions of mass number and neutron
imbalance, both as Z/N and (N − Z)/Z. Many important aspects of nuclide
symmetry and periodicity, shown on the diagram, are explained in the text.
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the complementary nature of elements and nelements. Where the isotopes
of the elements plot as straight lines, the isotones of the nelements occur
along smooth curves, and vice versa. The linear relationship between isotones
in the Z/N region defines straight lines that meet at neutron imbalance
coordinate, y = −1.0. They intersect the lines y = 1 and y = τ at mass
number coordinates, x of 2N and φN , respectively. The slopes of these lines
are hence given by

tan θ =
(1 − τ)s

(2 − φ)N
=

s

N

From Figure 9.2 the value of the scale factor is assumed s = 100 and this fac-
tor has been used in preparation of the diagram to ensure the same measure
being used on both axes. The predicted angles correspond to their measured
values, e.g.

θ(40) = tan−1

(
100

40

)
= 68◦

With the axes properly scaled it was further noticed that the isotones in the
(N − Z)/Z region actually lie on circles, centred at points that approach
(394, φ) as N → 165. This observation has the important implication that
the limiting atomic number for natural nuclides, i.e. the value to which the
triangle of stability converges, is indeed 102 and not 100. This conclusion
follows from the observation that the circle of radius φ, centred at (394, φ),
intersects the line Z/N = τ at the mass number coordinate 267, and not-
ing that 102φ = 165 and 102φ2 = 267, the limiting values for N and A
respectively. It needs to be re-iterated that the convergence to τ and iden-
tification of the point of convergence, have both now been established on
the basis of internal evidence, without assumption. A second circle, centred
at (394, 0) and radius φ intersects the limiting line x = 267 at coordinates
(267, 1.02). The isotone circles are centred at points along this second circle,
starting from the point marked 0 and approaching the limit defined before.
This result is equally important and confirms the structure assumed in Fig-
ure 9.2. The periodicity of the elements has already been worked out on this
basis. The straight line (shown extended to y = −1) and circle, through the
hypothetical limiting nuclide, N = 165 are shown, intersecting at (267, τ),
with slope θ = tan−1

(
100
165

)
= 31.2◦.

The periodicities of nelements and melements must clearly follow the same
pattern, i.e. on the basis of 165 and 267 members, respectively. Details of the
nucleon periodicity by mass number are summarized for the stable nuclides
in Table 8.6 and the preliminary periodic table for neutrons and protons in
the nucleus is in Table 8.7.
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9.3.1 A Golden Diagram

Despite the superficial resemblance between isotope and isotone plots, there
are significant differences, and both of them bristle with golden symmetry.
Re-examination of Figure 8.2 shows that the isotopes of each element also
occur on circular segments in the Z/N region. In fact, the generating circles
are readily demonstrated to be centred at regular points along another cir-
cular segment, as shown in Figure 9.4. Isotope curves for more elements have
been added to the modified diagram by noting that each such curve intersects
the lines at imbalance coordinates, y = 1.0, τ and 0.5, at x = 2Z, φ2Z and
3Z respectively. As shown on the inset, the central points define a smooth
function on Z. The curves for the limiting cases, Z = 102 and 0 are also
shown. These circles are centred at coordinates of (330[7-6τ ], 2.38[3-τ ]) and
(165[102φ], 0.75) respectively. The curve for Z = 102 intersects, as expected
at A = 204 with y = 1.0 and at A = 267 with y = τ . It is tangent to y = 0.5
and is the limiting curve beyond which no stable nuclides can occur. The
generating circle that defines the centring of the isotope curves, is itself cen-
tred at coordinates (447,−0.38[τ −1]). The value of this x coordinate derives
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Figure 9.4: Figure 8.2, modified to show the construction of circular segments
that connect the isotopes of a given element in a plot of Z/N vs A.
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from the identity 2(2 − τ)φ = 4.47. On the mass number scale the large
rectangle in the diagram therefore measures (3 − τ) + (1 − τ) = 276 × 447,
which is a golden rectangle.

The lines that connect isotopes in the lower half of the imbalance plot have
slopes of 100/Z and converge at (x, y) = (0,−2). The Sn line, for instance,
is inclined at θ = tan−1 2 = 63.4◦. The Z = 102 limiting line is inclined at
θ = 44.4◦.

Isotopes of given Z and isotones with N = Z map on to lines with
the same slope, but displaced by ∆x = Z. The respective x-coordinates at
y = 1.0, τ and 0 are marked on the right in Figures 9.3 and 9.4. These two dia-
grams illustrate that periodic classifications in terms of Z and N are equally
fundamental. The reason why only the former has gained relative prominence
is because of its direct link to extranuclear electron distributions that control
chemical properties. The fact is that a systematic search for observable peri-
odic trends amongst nelements or melements has never been considered. One
topical issue that could benefit by redefinition as a periodic function of mass
number, rather than atomic number, is superconductivity, to be addressed,
as a practical application, in the penultimate chapter of this monograph.

9.4 Matter Transformation

The five domains of Figure 9.2 correlate with five possible states of atomic
aggregation, or perhaps with three states of matter and three states of anti-
matter, with one region in common as shown in Figure 9.5. This interpreta-
tion is consistent with previous conclusions and even more compelling when
the regions are mapped on the Möbius strip of Figure 6.11. This operation
links regions I and V through an involution and produces an additional five
antimatter regions. There are in fact two Möbius twists in this construction
which is closed in the direction of both atomic number (0 �→ 102) and pro-
ton:neutron ratio (1 �→ −1). This orthogonality implies periodicity as a func-
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Figure 9.5: Schematic diagram to identify various regions on the double cover
of the Möbius band, obtained by identifying Z = (0, 102) and Z = (51, 51).
Nm= nuclear matter.
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tion of number, as well as the continuity of the different forms of matter, and
can only be understood on a closed Möbius surface, which is a projective
plane [11].

To map the surface of a Möbius band on a single two-dimensional euclidean
strip, the double cover is opened at a single point only and split along the
interface between individual elements of the double cover. The double cover,
opened up, and after unwinding, is shown in Figure 9.5. It shows the surface,
stretched between identical points with a common coordinate of unity. The
left- and right-hand halves of the diagram lie on opposite sides of the inter-
face in the intact Möbius band. Discontinuity between matter and antimat-
ter states seems to occur at the two points labled 0. These positions are on
opposite sides of the interface. The regions of nuclear matter may hence be
joined by cutting through the interface and continuing on the reverse side as
indicated by the arrows. The same applies to regions of nuclear antimatter.
The combined operation that amounts to the interpenetration of two intact
surfaces is impossible in three-dimensional space, but feasible in four. This
effect is illustrated by the impossible construction of either a Klein bottle or
a Roman surface as models of the projective plane in three dimensions.

The interpretation of Figure 6.12 in terms of Figure 9.5 is straight for-
ward. Recognizing the region between ±0.22 as characteristic of nuclear mat-
ter explains why the intersection of periodic hem lines at Z/N = 0.18 and
0.22 yields details of nucleon distribution and why the spectrum at Z/N = 0
is a purely neutron spectrum. The properties of atomic matter are encoded
in the field demarcated by Z/N = 0.62 and −0.62. Two periodic tables are
generated by intersecting hem lines at these coordinates, being the observed
and purely theoretical tables, respectively. The inverted counterparts of these
tables are generated near Z/N = 1, where nuclear synthesis by an equilib-
rium process has been assumed to occur. The matching thermodynamic con-
ditions are that of high temperature and pressure. Atomic nuclear levels are
revealed at Z/N = 0, which on the cosmic scale are encountered in neutron
stars. By analogy with theories on the formation of neutron stars [52] it may
be argued that conditions of high pressure and low temperature prevail in
this region. The regions marked, plasma, are intermediate between atomic
and nuclear regions. This is also the region of lepton exchange between the
nucleus and the extranuclear charge cloud. In one direction it embodies the
process of electron capture and in the opposite direction, bound-state β−-
decay [Section 8.3.1]. On the cosmic scale it requires low pressure and high
temperature.
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9.4.1 The Cosmic Phase Diagram

The conjectural conclusions reached here point at a new interpretation of
Figure 9.2 as a cosmic phase diagram. It represents a torus which is closed
with a twist, therefore a projective plane embedded in four dimensions. By
the theory of periodic functions (Section 2.7.4) it may hence be inferred that
the distribution of matter in the cosmos is self-similar with the periodicity
of atomic matter. In principle, the diagram therefore maps the topology of
space-time and regulates transformation between different states of matter
that occur with periodic regularity.

Convergence to the golden ratio probably relates to the geometry of the
cosmos, as a balance between general curvature and the overall size of the
universe, as measured by Hubble’s constant. The observation [2] that spiral
galaxies display the structural golden ratio in the same way as biological
growths, implies aspects of self-similarity and evidence of the general curva-
ture of space.

Although cosmic periodicity is not evident in astronomical observation,
there is evidence out there of neutron stars, plasma activity, extreme condi-
tions in black holes and quasars, empty space and moderate regions, to fit
the phase diagram. The apparent lack of observable periodicity between these
isolated objects is not too surprising. Self-similarity only becomes apparent
with appropriate scaling. As an example, the symmetry between electrons
in an atom, planets in a solar system and stars in a spiral galaxy, is easily
overlooked because of differences in scale.

At the same time there are some observations that sit uneasily with stan-
dard cosmography, but find ready explanation in terms of the ideas devel-
oped here. It was suggested before [5] that inherent red shifts associated with
quasar light [99] find a simple explanation in terms of variable electronic con-
figurations of atoms in strong gravitational fields. A related phenomenon that
raises serious controversy is the observation of anomalous Fraunhofer lines
in quasar light [100]. According to some theorists this observation implies
that the fine-structure constant varies with time. However, an alternative
explanation is now also available if the electronic configuration of atoms, and
hence their electronic spectra, should be a function of their thermodynamic
environment. The observed deviations from expected absorption frequencies
therefore do not relate to time, but to differences in the local curvature of
space–time.

The discovery of isotope periodicity [5], that later revealed the hidden
symmetry of periodic classification [101], was made possible only by exploring
the relationship between atomic structure and the prime-number cross [102].
The observed isotope periodicity has been shown to be, not only consistent
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with the known electronic configuration of atoms and the energy spectra
of nuclei, but also a reliable predictor of unexpected relationships between
atoms of matter and anti-matter. The most significant aspect of this discovery
is that elaborate details of atomic and nuclear structure, strictly results of
quantum theory before, have been derived here without the use of higher
mathematics. The conclusion that an intimate link exists between natural
numbers and the physical world is almost inescapable.



Chapter 10

The Golden Excess

10.1 Introduction

It has been demonstrated that nuclear properties such as spin, parity and
stability are functions of more than atomic number, characterizing these as
properties of nuclides rather than elements. Other properties, usually thought
of as functions of atomic number only, may well be of the same type. One such
property is superconductivity, first observed as a property of certain metals at
low temperature. Periodic variation of superconductivity with atomic number
has been analyzed by many authors [103, 105, 106]. A number of trends
appear to be well established. Pure elemental superconductivity is restricted
to metals, but many semi-metals and non-metals become superconducting
under special conditions such as cooling at high pressure or after structural
modification. Whereas the critical temperature for non-metals increases with
applied pressure, the inverse is often observed for superconducting metals.
Superconductivity cannot be induced in ferromagnetic or anti-ferromagnetic
metals.

Most of the superconducting metals with critical temperatures Tc > 1K
occur as either single isotopes (Al, V, Nb, Tc, La and Ta), or twin isotopes,
(Ga, In, Re and Tl). All of these are odd mass-number isotopes. More of the
elements that have been claimed to be superconductors at a lower level are
also of this type: P, As, Y, Cs, Lu; Br, Sb, Ir. In other cases isotope enrich-
ment towards lower atomic mass results in increased Tc. This latter obser-
vation features prominently in the BCS theory of superconductivity [107]
that invokes the coupling of electrons to lattice phonons. Statistical analysis
[108] of the correlation between normal-state properties and superconduc-
tivity however, casts serious doubt on the validity of the conventional BCS
theory. From another point of view these isotope effects may be interpreted

303



304 CHAPTER 10. THE GOLDEN EXCESS

to define metallic superconductivity as a property of nuclides rather than of
elements. To better understand the phenomenon it needs to be characterized
in terms of nuclidic rather than elemental periodicity.

10.2 Nuclide Periodicity

The most stable arrangement of atomic nuclei is predicted to occur as the
ratio of protons to neutrons approaches the golden ratio, Z/N → τ =
0.6180 . . . . The lightest nuclei have Z/N = 1 and this ratio decreases steadily
with increasing Z, approaching τ . However, not a single nucleus ever achieves
this ratio, which is projected to occur at Z = 102, since all nuclides with
Z > 83 are unstable, albeit for different reasons. Still, the nucleon distri-
bution Z/N = τ plays a prominent role in the stabilization of all nuclei by
condensation of the proton excess into a positive surface layer. The proton
excess has a unique value for each nuclide, i.e.

x = Z − τN

A plot of x/Z vs A, the mass number, is shown in Figure 10.1 and reveals the
periodicity of nuclides as a function of A. The boundary profile that defines
the region of stability is readily drawn to divide the 264 stable nuclides into
11 groups of 24. The nuclear properties mentioned above echo this same
periodicity. When Figure 10.1 is redrawn in Figure 10.2 as a function of
atomic number rather than mass number, the periodic profile is preserved
and the 11 hemlines slant away from the vertical to intersect the Z-axis at
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Figure 10.1: Mass-number periodicity of relative proton excess based on golden
ratio packing of nucleons.
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Figure 10.2: Atomic-number periodicity derived from golden-ratio packing of
nucleons.

points that define the periodic closure of eleven prominent electronic energy
shells, Z = 10, 18, 28, 36, 38, 46, 48, 54, 62, 70, 78 (compare Figure 6.4).

The periodic table of the elements is thereby defined as a subset of nuclidic
periodicity. Characterization of superconductivity in terms of the more fun-
damental classification and the implied structure of atomic nuclei will be
examined here.

10.2.1 Superconducting Nuclides

In the first instance an empirical match between the superconducting prop-
erties of the elements and the periodic table of the nuclides is observed
on plotting x directly against A to show the actual number of excess pro-
tons for each nuclide. This number never exceeds 13, reaches a maximum
at A = 106 (Z = 48) and approaches zero at A = 267 (Z = 102). Note
that 267 = 102/τ2. The nuclides at which each of the eleven periods comes
to a close are circled in Figure 10.3. It is observed as an empirical rule of
thumb that the maximum proton excess that allows superconductivity in
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Figure 10.3: Diagram for discussion of the correlation between elemental
superconductivity and nuclear proton excess.

each period lies close to that of the circled nuclei. Following this trend an
empirically defined upper x limit for each period, shown as horizontal lines,
can be chosen to differentiate between potential superconductors and non-
superconductors. In a few cases, nuclei such as 27Al, 118Sn and 133Cs that
occur close to periodic hem lines, could better be considered part of the con-
tiguous group. A summary of all nuclides, predicted to be potential super-
conductors, is shown in Table 1.

Entries for non-metals are shaded. None of these turn superconducting on
cooling, except under high pressure, as indicated. Some nuclides in this group
which are present in low abundance have not yet been demonstrated to be
superconductors. Some others (9Be, 53Cr, and 108Pd) require some structural
modification or high pressure (7Li, 142Ce and 196Pt) to become supercon-
ducting. Magnetic nuclides such as 64Ni and the lanthanides are excluded on
other grounds. Iron transforms into a non-magnetic phase under pressure.
The radioactive isotope 87Rb with 28% abundance and proton excess of 6.0,
in period 5, suggests that the Rb metal could be a superconductor under
appropriate conditions. The only serious exception is 174Yb.
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Table 10.1: Elemental superconductivity tabulated as a periodic function of
mass number. Radioactive isotopes are marked by asterisks.
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Non-metals, known to superconduct, are included in Table 10.1, which
strictly refers only to metals, as the effect of pressure has not been consid-
ered.1 The only class of non-metal where superconductivity has never been
demonstrated are the noble gases, which are excluded, albeit for reasons

1Pressures in excess of 100GPa are often required to produce superconducting states.
The effect of such pressures may not be limited to structural transformation and remains
largely conjectural.
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Figure 10.4: Linear plot of Tc as a function of proton excess for single isotope
group 3 metals.

unknown.2 The most successful non-metals that turn superconducting under
pressure are sulphur and phosphorus. Based on proton excess superconduc-
tivity could very likely be induced in solid halogens. Weak effects at very
high pressure have been observed only for Br and I.

The chemically alike single-isotope metals Al, V, Nb, La and Ta exhibit
an almost linear relationship between nuclear proton excess and Tc, shown
in Figure 10.4. The isotopes of lowest allowed mass number of the other
non-magnetic elements (B, Ga, In, Tl) of the same elemental periodic group
are shown as open circles, assumed to obey the same linear relationship.
The corresponding values of Tc at normal pressure are predicted as 0, 5.2, 8
and 3.8K respectively. It may be inferred that the preparation of metals in
single-isotope form has the potential of substantially increasing critical tem-
peratures, especially when conditions such as modified crystal structure that
render the lower mass-number isotopes superconducting, can be identified.

10.2.2 Periodic Effects

The onset of superconductivitty is clearly conditioned by some periodic rela-
tionship that becomes evident in Figure 10.3. Previous efforts to find such
a periodic relationship have failed, as these were invariably based on atomic

2Xe has been transformed into a metallic state without turning superconducting under
high pressure.
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number periodicity. The immediate conclusion is that superconductivity is
not a chemical, but a nuclear phenomenon, directly linked to the proton
excess.

Closer scrutiny of Figure 10.3 shows that the limiting value of x for each
period lies close to half-way between the points of intersection of the closing
vertical hemline, at the end of the period, with the two limiting curves.
Given the approximate nature of the limiting curves the match is remarkably
close. The situation is reminiscent of the break in chemical properties for a
series of elements, with the same electronic valence shell, that occurs at half
occupation of the sub-shell. In this instance the effect arises from Hund’s rule
that stipulates parallel spins for the first 2l + 1 electrons in a sub-shell with
angular momentum quantum number l.

We postulate a related rule for the layer of excess protons. For those
nuclei with all spins parallel in the excess layer, alignment of these spins on
neighbouring nuclei in the bulk material, must generate a powerful magnetic
effect. Such alignment will be inhibited as soon as spin pairing in the excess
layer becomes necessary.

Any nuclide with a number of excess protons, less than half the capacity
for its periodic group, is a potential superconductor. The critical tempera-
ture, which is a measure of this tendency, increases with increasing x, until
spin pairing commences. For a given element the number of neutrons in the
nuclei of its isotopes decreases with decreasing mass number, while the proton
excess increases. Isotope enrichment towards lower mass number is therefore
predicted to raise the critical temperature – once more up to the isotope
mass number where spin pairing starts.

The nuclear magnetic field which is caused by the alignment of excess
spins is directed against external, and atomic, magnetic fields. Applied mag-
netic fields, below some critical value, will be expelled from superconductors.
Supercritical fields destroy the superconducting state. Critical fields are pre-
dicted to be proportional to the proton excess of a superconducting nuclide.

These conjectures will next be compared with the phenomenon of super-
conductivity as observed experimentally and with known nuclear spins.

10.3 Superfluidity

A phenomenological analysis of the related phenomena of superfluidity and
superconductivity, due to Bohm and Hiley [109], is based on the observation
that at low temperature many substances enter a state in which currents (of
either atoms or electrons) flow indefinitely without viscosity or resistance.
This state is stable only up to a certain temperature at which the property
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disappears. To explain superflow in 4He, made up of bosons, all particles are
described by a single condensate wave function

Ψ0 ∝ exp

[
iK ·

∑
j

rj

]

and assumed to move at the same velocity v = K/m, K in units of � and rj

represents the coordinate of the jth particle. To maintain stable superflow no
particle may go at a slower velocity, v′ = (K − q0)/m, by giving up energy.
This means that external perturbation cannot change the momentum of a
single particle in the system from K to K − q0 without affecting the other
particles in such a way as to bring about a net increase in energy of the whole
system.

Without this condition it should be possible for the momentum of the ith
particle to increase, giving rise to the excited wave function

Ψi = exp[−iq0 · ri]Ψ0

= exp

[
iK ·

∑
j �=i

rj

]
exp [i(K − q0)ri]

Although this is a possible solution of Schrödinger’s equation, for bosons,
the wave function has to be symmetrical and the lowest state of excitation
corresponding to a loss of momentum q0, will be

Ψ =
∑

j

exp
[−iq0 · rj

]
Ψ0 (10.1)

This wave function is defined in the configuration space of all particles,

i�
∂Ψ

∂t
=

[
− �2

2m

∑
j

∇2
j + V

]
Ψ

Writing Ψ = R exp(iS/�) and defining P = R2 = Ψ∗Ψ, this gives

∂S

∂t
+

∑
j

(∇jS)2

2m
+ V + Vq = 0

where

Vq = − �2

2m

(∑∇2
j

)
R

R

The quantum potential Vq contains R in both denominator and numerator,
so that it does not necessarily fall off with distance. This means that each
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particle can depend on distant features of the environment, and also, that
all particles remain coupled at long distances. The behaviour of each particle
may depend non-locally on the configuration of all others. The effect of the
wave function on the particles is determined by the phase S and the quantum
potential, both of which depend only on the form of the wave function and
not on its amplitude. In this sense the wave function is regarded as containing
active information.

A small perturbing potential which is a symmetric function of all parti-
cles changes the wave function (10.1) and the probability density only in the
neighbourhood of the perturbation. Since the perturbed wave function van-
ishes at infinity, all particles will eventually return to their initial velocity.
It follows that the liquid as a whole flows around the obstacle and recon-
stitutes its flow in the original direction. The quantum potential of the
wave function (10.1) provides the active information that keeps the parti-
cles moving together in spite of perturbations that would otherwise scatter
them.

Superconductivity is described in exactly the same terms, except that the
charge carriers are electron pairs which act like bosons. Small obstacles in
their path may be overcome by going around them and to reform without
scattering, in the same way as happens for 4He. Under special conditions
the guidance principle and the quantum potential have the ability to orga-
nize the activity of an entire set of particles in a way that depends on a
pool of information common to the whole set. What remains is to recog-
nize the conditions under which the non-local cooperation of charge carriers
happens.

Figure 10.5: Simple model of an atomic nucleus based on Fibonacci phyl-
lotaxis.
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10.4 Structure of the Nucleus

The mechanism whereby the stacking of nucleons stabilizes an atomic nucleus
is demonstrated by considering a hypothetical nucleus with Z/N = 1, built
up according to the principle of Fibonacci phyllotaxis in three dimensions.
Suppose that protons are spaced along five clockwise spiralling arms and
neutrons on eight anticlockwise spiralling arms. Unlike botanical phyllotaxis
the two sets of spirals are not coplanar and spread three-dimensionally in
opposite sense to fill a spherical volume, while accommodating the same
number of nucleons. When the supply of neutrons (N = Z) runs out only
5Z/8 protons have been placed, such that Z(1−5/8) are left over to be spread
around the surface, as shown schematically in Figure 10.5. For N 	= Z the
excess x = Z − 5N/8, which is shown for all stable nuclides in Figure 10.6
as a function of mass number, A. All but one (3He) of the nuclides occur in
this plot on a 44× 44 grid. The grid lines of positive slope correspond to the
44 possible values of neutron excess (N − Z), perpendicular to 44 values of
2Z − N . The same mapping of the nuclides are obtained by plotting Z vs
3Z − 2N in directions respectively defined by the vector sum and difference
of N − Z and 2Z − N .

It is noted that the three equivalent mappings of the nuclides represent
the surface excess in terms of three different Fibonacci ratios: Z− 1

2
N , Z− 2

3
N ,

and Z − 5
8
N , as functions of N − Z, Z and A respectively. The vector sums

of (2Z −N) + (3Z − 2N) and of the orthogonal pair (N −Z) + Z define the
axes that map the surface excess Z − 3

5
N as a function of N . This mapping

is shown as a separate plot in Figure 10.7.

0

10

−10

30

20

10 20 30 40 50 70 80

60
−10

0

10

20

30

90

Atomic number

8Z
−
5N

3Z
−

2N

2Z
−N N−Z

A
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The relationship between the various maps follows directly from the
Fibonacci series and the fractions defined by successive terms of the series:

0 1 1 2 3 5 8 . . . .
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1
1
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5
8

. . . . τ

i.e.

Z − 1

2
N ↔ N − Z (i)

Z − 2

3
N ↔ Z (ii)

Z − 3

5
N ↔ N (i) + (ii)

Z − 5

8
N ↔ A = Z + N

Figure 10.3 defines the map Z − τN at convergence,3 to be called the golden
excess.

The proton/neutron ratio adjusts from 5/8 to τ by a modest increase of
the spacing between protons along the spirals and concentration of the excess
within the positive shell on the nuclear surface.

The profile shown to enclose the map of Figures 10.6 and 10.7 has a dis-
tinct break along the perpendicular bisector of Amax = 267 that also bisects

3According to the Fibonacci expansion Z − τN is orthogonal to A + τN = A(1 + τ 2);
hence x ⊥ A.



314 CHAPTER 10. THE GOLDEN EXCESS

Nmax = 165 and Zmax = 102 at this point. Amax = Nmax +Zmax = Nmax/τ =
Zmax/τ

2; the same break as observed before with respect to numerous other
nuclear properties. A less prominent break near Zmax/3, not emphasized
before, is seen in Figure 10.3 and reflected in the superconductivity of the
nuclides.

10.5 Superconductivity

It has been known for almost 100 years that the conduction properties of
certain metals change abruptly at temperatures near absolute zero when their
resistivities become vanishingly small. It was found by Kamerlingh Onnes
(1911) that a current of several hundred amps, started in a lead ring under
these conditions persisted indefinitely. This remarkable property is known as
superconductivity. Such currents are generally started by magnetic induction,
but above a certain critical magnetic field strength the superconductivity
disappears. The conductor is placed in a supercritical magnetic field, which is
then reduced gradually. Electric currents are induced when the field becomes
subcritical and these currents which persist for extended periods may be
detected through their external magnetic effects.

The magnetic properties of superconductors are as dramatic as their elec-
trical properties. When a specimen is placed in a magnetic field and then
cooled through the critical temperature, the magnetic flux is expelled from
the specimen, then said to exhibit perfect diamagnetism. The magnetic field
need not be of external origin and may be the result of electric current flow
in the conductor. This, so-called Meissner effect provides a useful diagnostic
for superconduction, often demonstrated by the levitation of a small magnet
over a superconducting system.

The onset of superconductivity is associated with a second-order phase
transition, characterized by a discontinuity in heat capacity without latent
heat.

10.5.1 The Phase Transition

The sharp transition in many (type 1) superconductors has been traditionally
interpreted to mean that electrons behaved coherently and interacted non-
locally [109]. At the transition point, a fraction of the conduction electrons,
condensed into a phase with reduced free energy, is supposed to give rise to
superconductivity. At T = 0K all conduction electrons are assumed to be in
the superfluid phase. As the temperature is raised, the number of electrons
in the condensed state decreases until at T = Tc all electrons are normal.
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The existence of an energy gap in this two-fluid model has been verified
experimentally. The absorption of electromagnetic radiation was found to
increase abruptly when the frequency was increased to a critical value that
matches the energy gap. For aluminium the critical frequency falls in the
microwave region.

In the BCS theory the condensed phase is ascribed to the formation of
electron pairs by the exchange of virtual lattice phonons with wave vector k,
between electrons of opposite spin and equal momenta. The total momentum
of any electron pair is

(�k + mv) + (−�k + mv) = 2mv

As in the two-fluid model, more electrons condense into this phase as the
temperature is lowered.

To rationalize the creation of the energy gap it is necessary to assume
that the normal density of states as a function of energy is modified when the
metal becomes superconducting [110]. The occupancy of states with energy
between EF + ∆ and EF − ∆, where EF is the Fermi energy of the normal
metal, is now forbidden. To keep the total number of states below The Fermi
level the same, a sharp increase in density of states near the energy gap is
assumed, as shown in Figure 10.8. At T = 0K all electrons are coupled as
pairs and occupy the states with energy E < EF − ∆. As the temperature
is raised, some pairs decouple into normal electrons by excitation to states
with energy E > EF + ∆.

In a normal conductor the collisions of electrons with phonons and lattice
irregularities result in a transfer of kinetic energy to the lattice. This process
is the origin of resistance and joule heating. In a superconductor collisions
still occur between pairs and the lattice. However, if one of the electrons of a
pair is to suffer a loss in kinetic energy, decoupling of the pair occurs with an

EF EF

0<T<TcT = 0

E E

2∆

(E)(E)

Figure 10.8: Density of states in a superconductor according to BCS theory.
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increase of 2∆ in potential energy. If the loss in kinetic energy by scattering
is less than 2∆ the electron pair will not decouple and the common velocity
of the pair will remain the same.

Phase transitions are caused by spontaneous breakdown of symmetry
when a system rearranges from a situation of high symmetry to a degener-
ate situation of lower symmetry. In the case of superconductivity, symmetry
breaking of a gauge field in the form of a macroscopic wave function defines
a conserved current that predicts the Meissner effect as well as zero elec-
tric field and resistivity [73]. Symmetry breaking, although consistent with
BCS theory, does not directly imply phonon interaction and the physical
rearrangement that triggers the transition remains unspecified.

Since the BCS model does not apply to all forms of experimentally known
superconductivity and correlates poorly with related normal-state properties,
it is not unreasonable to look for another type of lattice involvement in
the process, different from the creation of Cooper pairs by electron–phonon
coupling. One alternative is a rearrangement that involves the lattice at Tc

and leads to the disappearance of the periodicity which is responsible for
the forbidden bands that cause the scatter of charge carriers. The existence
of a nuclear surface excess of protons, which has been shown empirically to
correlate well with superconduction, offers such an alternative.

Nearly-free electron models assume periodic potentials to arise from the
promotion of valence electrons into a conduction band, leaving behind a
periodic array of positive ion cores. In fact, there is no energy gap or con-
duction band without a periodic potential. This paradox may be eliminated
by ascribing the periodicity to positive charges at the nuclear surface.

The mathematical formalism of band structure in solids is unaffected by
the alternative assumption, but the physical picture changes dramatically.
The temperature dependence of conduction properties can now be related
directly to modification of the atomic lattice and cooperative effects involv-
ing the positive surface layers. At the characteristic temperature an applied
(sub-critical) magnetic field causes alignment of excess proton spins. The
resulting magnetic field eventually expels the applied flux and the electric
lattice potential is smoothed out to a constant level,4 thereby eliminating
the periodicity responsible for the scatter of charge carriers. The electronic
quantum potential, no longer inhited by scattering centres, now extends non-
locally through the entire crystal and the electron gas becomes superfluid.
There is no need of a special effect to mediate the formation of boson pairs.

4Equivalent to the original ideal Drude model of metallic conduction.
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10.5.2 The Critical Temperature

Transition to a superconducting phase happens when the protonic surface
layers on atomic nuclei line up to form structured layers of lower symme-
try. This transition is temperature driven and depends on two factors: the
magnitude and spin of the surface charge and the separation between atomic
nuclei. The first factor is a function of both proton and neutron count in the
nucleus and the second depends on crystal structure.

Surface alignment would clearly be counteracted by a mixture of isotopes
in a specimen. Each isotope of characteristic surface excess requires a different
internuclear spacing for optimal alignment of spins. Hence the presence of
even small amounts of different isotopes could seriously affect the critical
temperature of a pure metal. An important factor that increases Tc of pure
metals therefore is the production of isotopically pure materials.

For many nuclides (single isotopes) with a favourably large surface excess
the natural internuclear spacing may be inappropriate to allow the super-
conduction transition. Various modes of structure modification could have
an important effect in such cases.

10.5.3 Crystal Chemistry

There are three distinct types of compound that turn superconducting on
cooling of the bulk material – elements (especially metals), binary compounds
(alloys) and a variety of complex structures. The proposed alignment of posi-
tively charged surface-excess layers can only be a common factor, responsible
for the onset of superconductivity, if linear chains of closely spaced active
nuclei occur in all of these different types of compound. To explore this pos-
sibility the different types of superconductor are examined in turn.

Superconducting Elements

The most prominent superconducting metals are listed in order of decreasing
Tc in Table 10.2, not including those with Tc < 1 K in the bulk form. Linear
chains of the type shown in Figure 10.9 are readily identified for the structure
types A1, A2 and A3, along the [110], [111] and [100] directions respectively.
In the rhombohedral structure of Hg the channel that contains the linear
chain is distorted, such that α = 70◦ rather than 90◦. At T < 13◦C Sn
has the diamond structure. Although not perfectly linear, continuous chains
of the same type identified for the other metals, run through the lattice.
The tetragonal unit cell of In (c/a = 1.08) is pseudo-cubic close packed, A1.
Atomic chains in Ga are non-linear, with alternating interatomic separations,
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Table 10.2: List of metals that turn superconducting on cooling below Tc. The
structure types A1, A2 and A3 are commonly known as cubic close packed
(ccp), body-centred cubic (bcc) and hexagonal close packed (hcp) respectively.
Parameter d denotes the distance of closest approach in the chain.

Metal Tc/K Excess Structure Space d/Å
type Group

Nb 9.25 8.77 A2 Im3m 2.86
Tc 7.80 8.28 A3 P63/mmc 2.70
Pb 7.20 5.08 A1 Fm3m 3.50
La 6.00 6.16 A1 P63/mmc 3.74
V 5.40 5.64 A2 Im3m 3.62
Ta 4.47 6.06 A2 Im3m 2.86
Hg 4.15 4.96 A10 R3̄m 3.00
Sn 3.72 7.85 A4 Fd3m 2.80
In 3.41 8.08 A6 I4/mmm 3.24
Tl 2.38 5.35 A3 P63/mmc 3.42
Re 1.70 5.56 A3 P63/mmc 2.74
Al 1.18 4.32 A1 Fm3m 2.89
Ga 1.08 6.20 A11 Cmca 2.42

α

Figure 10.9: Linear chain of atoms that occurs in most metal structures.

more characteristic of atomic pairs, typical of non-metals. In amorphous film
form the critical temperature has been raised as high as 8.6K [106]. The
effect of this quenching procedure on crystal structure is not known.

In metals of cubic symmetry there is no unique direction for the flow of
persistent superconduction currents, unless these are initiated by a magnetic
field. Non-metals become superconducting only at pressures which are suffi-
ciently high to cause metallization. Hydrogen with its single proton can never
go superconducting.
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Superconducting Alloys

An amazing number of superconducting alloys and binary compounds of com-
position AB, AB2, AB3 and of more complicated or non-stoichiometric formu-
lation are known. One of the components is invariably a potential elemental
superconductor, with Ag2F as the only possible exception. A subgroup of AB
compounds with close-packed cubic (NaCl – Fm3̄m) or hexagonal (P63mc or
P6̄m2) structures is of special relevance for this discussion.

The compounds of type MX, listed in Table 10.3, are interstitial solid
solutions of C and N in the metals. All of the metals are known supercon-
ductors and must be assumed responsible for the observed superconductivity
of the compounds. In the cubic structures the metal atoms appear as linear
chains along [110] directions with M–M distances somewhat longer than in
the structures of the elementary metals. The enhanced critical temperatures,
compared to the free metals, must therefore be due to another structure-
related factor. All of these metals have the bcc structure, which is not close-
packed. In this structure type only 68.1% of the available space is occupied
by touching spheres, compared to 74.1% in ccp structures. Tight confinement
of the conducting chain therefore appears to be as important as interatomic
spacing in the superconducting state.

This confinement principle is of decisive importance in the case of super-
conducting intercalation compounds of C60 fullerene. Indications [111] that
superconductivity (Tc = 0.55K) occurs in single-walled carbon nanotubes,
define C as a potential superconducting element. Fullerene itself is not

Table 10.3: Superconducting binary compound AB with B1 structure.

MC MN
M Tc/K Tc/K Tc/K
d/Å d(M–M) d(M–M) d(M–X) d(M–M) d(M–X)
Mo 0.92 14.3 13

2.72 3.02 2.14 (hex)
Nb 9.25 11.5 16

2.86 3.16 2.23 3.11 2.20
Ta 4.47 10.3 13

2.86 3.15 2.23 3.06 2.17
W 0.02 10

2.74
Zr 0.6 10.7

3.20 3.24 2.29
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superconducting, but becomes a superconductor on intercalation by the alkali
atoms K, Rb and Cs. Critical temperatures in these compounds have been
shown [112] to scale monotonically with the M3C60 lattice constants upon
alkali–metal substitution and as a function of pressure, providing conclu-
sive proof that the superconductivity relates to conduction along chains of
fullerene units, rather than alkali atoms. Further confirmation comes from the
crystal structure of K3C60 [114]. The closest K–K distance at 6.17Å is much
larger than in metallic potassium. The most important feature of the inter-
calation structure, compared to pristine C60 is the way in which interstitial
K atoms lock the fullerene units into a more ordered arrangement. The rota-
tional disorder of C60 is reduced to only two possible orientations, sufficiently
alike to constitute a superconducting string. As the average size of intersti-
tial alkali atoms increases with progressive substitution of K by Rb and/or Cs
atoms, the state of order and the critical temperature increase accordingly. As
a result Tc varies inversely with lattice constant, which explains the negative
effect of pressure and the failure of Na3C60 to show superconductivity.

The most striking group of binary superconductors is the AB3 family
of compounds with structure type A15, space group Pm3̄n. Details of the
structure type are shown in Figure 10.10. Each A atom is coordinated by 12
atoms of the B type and each B atom is tetrahedrally surrounded by four
atoms of type A. In all cases, shown in Table 10.4, the B atoms are known

B(0)

A(0)

B(1/4,3/4)

A(1/2)

B(1/2)

Figure 10.10: The A15 structure type of AB3 compounds.
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Table 10.4: Superconduction critical temperatures (K) and d(B-B)/Å of AB3

compounds of structure type A15.

M m MTi3 MV3 MCr3 MMn3 MZr3 MNb3 MMo3 MTa3 MW3

↓ →
Al 11.8 18.0 0.58

2.59 2.48
Si 17.1 12.5 19.0 1.4

2.36 2.86 2.58 2.45
Ga 16.8 14.5 0.78

2.41 2.58 2.47
Ge 11.0 23.2 1.43 8.0

2.39 2.58 2.47
As 0.20

2.38
Tc 15

Ru 3.3 10.6
2.34

Rh 0.38 0.3 2.64 10
2.39 2.39 2.56

In 13.9 9.2
2.65

Sn 5.8 3.8 0.92 18.05 8.35
2.49 2.82 2.65 2.64

Sb 5.8 0.8 0.72
2.61 2.47 2.63

Re 15.0

Os 4.68 1.05 12.7
2.34 2.57 2.48

Ir 5.4 0.45 1.9 9.6
2.51 2.35 2.57 2.48

Pt 0.58 3.0 10.9 0.4
2.52 2.41 2.58 2.49

Au 0.74 0.92 11.5
2.44 2.74 2.60

Pb 0.76 17

Bi 4.5
2.66

O 3.35

Self 0.4 5.4 mod - 0.6 9.25 0.92 4.47 0.02
2.92 2.62 2.50 3.20 2.86 2.72 2.86 2.74
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a

Figure 10.11: Perspective drawing of the superconducting chain in A15 struc-
tures. An AB4 tetrahedral unit is outlined.

superconductors. The projective drawing of Figure 10.11 shows the linear
array of B-type atoms at an interatomic separation of d(m–m)= a/2, within
a channel of A-type atoms. By comparison, d(m–M) = (

√
5/4)a and d(M–M)

= (
√

3/2)a), are both larger than d(m–m). The m-m chains of superconduct-
ing atoms must clearly be identified as the active element in the structure.
Critical temperatures and m–m distances for this family of compounds are
shown in Table 10.4. Interatomic distances in the active chains are uniformly
shorter, compared to the parent metals. The atoms that constitute the sup-
porting channel have an obvious effect on Tc. In the series of Nb compounds
a substantial increase in Tc is observed for its compounds with Al, Si, Ga,
Ge and Sn – all of these are superconductors with relatively high proton
excess. In, Pt, and Au have little or no effect while Rh, Os, Ir and Bi have
a negative influence. Apart from In, these elements have no, or only weak,
superconducting properties.

The pattern for V is essentially the same. In this case In has a positive
effect, Sn and Pt are neutral, with As, Rh, Sb and Au all negative.

The high performance of several other compounds from Table 10.4 as
superconductors is noted, but the samples are too small to draw general
conclusions. The relevant compounds are: OsCr3, SiMn3, (Tc,Ru,Os,Ir)Mo3,
(Sn,Sb,Ir)Ti3, and (Ge,Rh,Sn,Pb)Ta3.

Some other binary compounds that deserve special mention, because of
their relatively high critical temperatures, with Tc in brackets, include: RuW
(7.5), MoRu (10), RhZr2 (11), CMo2 (12.2), LaC3 (11.0), MoTc3 (15.8),
Y2C3 (11.5) and MgB2 (39.0). In all of these cases, and for the many non-
stoichiometric compounds, superconductivity is readily understood on the
basis of the principles already outlined, except for the last compound on the
list.

Boron is not a superconductor at normal pressure. This is readily under-
stood from its structure, made up of close-packed icosahedral units, shown
in Figure 10.12. Under pressure, links between the units may form, and
atomic chains that support superconductivity so established. The hexagonal
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Figure 10.12: Left: Perspective drawing of the icosahedral cluster of boron
atoms in the metal. Right: The hexagonal structure of MgB2. Close-packed
layers of Mg atoms (open circles) are overlaid by atomic networks consisting
of zig-zag chains of close-packed B atoms running in the directions indicated
by arrows.

structure of MgB2 [115] in (001) projection is shown in Figure 10.12. The dis-
tance of 1.78 Å between boron atoms in magnesium diboride is the same as in
the metal. The zig-zag chains, in either direction, span all of the boron atoms
in a layer. The superconductivity may therefore be interpreted as a function
of the entire lattice of boron atoms in the crystal. This remarkable compound
[116], which is intermediate between traditional and high-temperature super-
conductors, provides indisputable evidence that all superconductors function
by the same mechanism and that a single theory should account for their
properties.

The compound Ba(Bi0.2Pb0.8)O3 with Tc = 13.2K [117] is another inter-
mediate, in a structural sense, between low and high-Tc superconductors.
This compound has a slightly distorted perovskite (CaTiO3) structure type
(E21, Pm3̄m) and exhibits the same linear atomic (Ba) chains that char-
acterize all high-Tc superconductors. The perovskite structure is shown in
Figure 10.13.

High-Tc Superconductors

The discovery of superconductivity (Tc = 36 K) in the La-Ba-Cu-O system
[118] inaugurated the search for high-temperature superconducting ceramics,
which led to the identification [119] of the distorted perovskite YBa2Cu3O7

with Tc = 93 K. The idealized structure [120] of this compound, which is
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Figure 10.13: The perovskite structure.

c=11.688A

b=
3.820A

a= Vacancy

O

Cu

Ba BaY

3.893A

Figure 10.14: Idealized defect perovskite structure of 1-2-3 superconductors.

characteristic of a whole family of (1-2-3) M(Ba,Sr)2Cu3O9−x superconduc-
tors, is shown in Figure 10.14.

This layered structure was soon [122] likened to the chain of Nb atoms
in GeNb3, the traditional superconductor with maximum Tc, at the time.
Noting that the Y chain could be replaced by magnetic lanthanide atoms
without affecting the activity of 1-2-3, the active element was identified as the
coordinated Cu polyhedra. This theme has been taken up by all subsequent
authors, so that the chains of Ba and/or Sr atoms were never implicated as
the superconducting entities. Quite remarkably, not a single high-Tc ceramic
has been synthesized without Ba and/or Sr at the alternate body centres
of the perovskite units, as in Figure 10.14. The interatomic distances in the
resulting chain along [010] are, on average, equal to 3.82 Å. This separation
is considerably shorter than d(Ba–Ba) = 4.34 Å and d(Sr–Sr) = 4.30 Å in the
parent metals. Given the proton excess of 5.15 for 138Ba and 6.99 for 88Sr,
enhanced Tc for both metals is predicted immediately.

The other group of superconducting copper oxide ceramics, La2−xMxCuO4

with M = Ce, Sr, Ba, and structures, formally related to that of K2NiF4

[123], can also be considered as derivatives of a distorted perovskite struc-
ture. The structure of an authentic superconducting single crystal in this
class has never been determined. All indications are that only a small frac-
tion of each sample has bulk superconductivity and that the crystals show a



10.5. SUPERCONDUCTIVITY 325

range of Tc values [124]. The La and (Sr, Ba) atoms have been determined
to be distributed at random over the equivalent sites of the same position,
although the possibility of short range ordering could not be ruled out [125].
The distance within a chain of atoms, independent of space group, converges
to about 3.76 Å, at 10K, equivalent to d(La–La) and considerably less than
d(M–M) for Ba and Sr in the free metals. Evidence of phase ordering near
10K [127] strongly supports the possibility of segregated chains, like those
in 1-2-3, to be responsible for the observed superconductivity.

Organic Superconductors

The most common component of organic superconductors is bis-ethylened-
ithia-tetrathiafulvalene, codenamed ET [128]:

H2C

H2C

CH2

CH2

S

S

S

S

C C

S

S

S

S

C

C C

C

whose complex (ET)2Cu(NCS)2 has Tc = 11.4K. The common structural
feature in a variety of related superconductors, often with Se replacing S, is
the appearance of segregated stacks of planar molecules, such that multiple
linear strings of S or Se atoms occur in the stacking direction, at separations
close to van der Waals contact distances. The interpretation is obvious.

10.5.4 An Alternative Mechanism

On the basis of an exhaustive analysis of the correlations between normal-
state properties and the superconductivity of materials Hirsch [108] con-
cluded that

Hall coefficient is by far the normal-state property most closely
associated with the existence or nonexistence of superconductiv-
ity among all properties considered. The quantities most closely
associated with BCS theory, electronic specific heat, Debye tem-
perature, and electrical conductivity, rank consistently low in
their degree of association with superconductivity according to
these measures.

Within the conventional theory of superconductivity there is no
correlation between existence of superconductivity in a material
and the sign of its Hall coefficient.
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The conventional theory of superconductivity has been firmly
in place for several years, and had been thought to describe
superconductivity in all materials. In recent years, new fami-
lies of materials have been discovered that do not seem to fit
the conventional framework, and scientists have been working in
developing new theoretical frameworks to describe the new mate-
rials. However, the applicability of the conventional theory to the
“conventional” materials has not been called into question. Per-
haps this is the time to do so.

In view of these strong indications that the conventional theory of supercon-
ductivity is in trouble, the alternative mechanism that developed from the
notion of a golden excess of protons on atomic nuclei, will be outlined and
assessed against the Hirsch criteria.

The Assumptions

1. Atomic nuclei are constructed on the basis of three-dimensional
Fibonacci phyllotaxis. In a nucleus, consisting of Z protons and N
neutrons, nuclear growth terminates when all neutrons have been con-
sumed, leaving a golden excess of x = Z − τN protons as a surface
layer.

2. The golden excess is a periodic function of A, Z and N and reaches a
characteristic maximum, xm, in each of the 11 × 24 nuclide periods.

3. The alignment of spins on the excess protons obeys Hund’s rule with
respect to xm. The normal multiplets <xm/2 have the same magnetic
spin quantum number, ms. For x > xm/2 inverted multiplets have
paired spins.

4. In a closely spaced linear, or near linear, array of nuclei with x < xm/2
a ferromagnetic transition at T = Tc causes alignment of the surface
layers and eliminates the periodic variation in nuclear potential, which
is responsible for the electronic band structure of nearly-free-electron
theory [129]. Superconductivity becomes possible.

Nuclear Spin

A crucial test of the proposed mechanism lies with the appearance of nuclear
spin, which is summarized in Figure 8.6 and ascribed (Section 8.3.2) to
the distribution of nucleons in an atomic nucleus. A remarkable correlation
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between those nuclides with an excess of 4n(�/2) spins, due to nuclear distor-
tion, and elemental superconductivity is immediately obvious. The relevant
nuclides, (compare Table 8.5), with total spin in units of �/2 are:

17O(5), 25Mg(5), 27Al(5), 43Ca(7), 45Sc(7), 47Ti(7), 49Ti(7), 51V(7),
59Co(7), 67Zn(5), 73Ge(9), 75As(5), 83Kr(9), 87Sr(9), 91Zr(5), 93Nb(9),
95Mo(5), 97Mo(5), 99Ru(5), 101Ru(5), 105Pd(5), 113In(9), 121Sb(5),
123Sb(7), 127I(5), 133Cs(7), 139La(7), 141Pr(5), 143Nd(7), 145Nd(7),
151Eu(5), 153Eu(5), 161Dy(5), 163Dy(5), 165Ho(7), 167Er(7), 173Yb(5),
175Lu(7), 177Hf(7), 179Hf(9), 181Ta(7), 185W(5), 209Bi(9).

The symbols in bold print represent magnetic species which can be eliminated
from the list for that reason. Others, such as 25Mg are excluded by their excess
values of x. The remaining nuclides include all of the single-isotope elements
with high transition temperatures at ordinary pressure, i.e. Nb, V, Ta, La,
Al, as well as the high-spin radioactive isotopes 115In∗(9/2) and 187Re∗(5/2).

In view of this result it appears all the more likely that superconduction
is to be associated, not only with a proton surface excess, but also with high
nuclear spin. It opens up the intriguing possibility that the two effects have
a common origin, namely the packing of protons and neutrons in the nucleus
and that superconduction is an almost exclusive property of nuclides with
odd mass number. Transition temperatures for superconductivity, by this
criterion, must then depend on the abundance and spin of odd-mass nuclei
with x < xm/2.

This proposition lies uneasily with a number of the classical supercon-
ductors such as Pb, Hg, Tl and Sn. Closer scrutiny reveals that three of
these elements have at least one low-lying metastable isomer with high spin:
207mPb(13/2), 199mHg(13/2) and 119mSn(11/2). Several of the other excep-
tions also have high-spin isomers:

77mSe(7/2), 89mY(9/2), 113mCd(11/2), 125mTe(11/2), 137mBa(11/2),
183mW(11/2), 189mOs(9/2), 193mIr(11/2), 195mPt(13/2).

Although there is no known mechanism for promotion of these nuclides into
those high-spin isomeric states on cooling, the regularity mocks coincidence
and cannot be ignored. One possibility is that magnetic interaction may
change only the spin state without activating the isomeric state. Three of the
remaining high-mass exceptions are the twin-isotope elements: 69Ga(60%),
71Ga(40%); 79Br(51%), 81Br(49%); and 203Tl(30%), 205Tl(70%). The only
element that lacks an odd-mass isotope and for which superconductivity has
been reported, is Ce.
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Most of the low-mass elements that turn superconducting on compression
or structure modification have isotopes with spin 3/2, i.e. 7Li, 9Be, 11B, 33S,
53Cr and 57Fe. The only exceptions are 13C, 29Si and 31P with spin 1/2.

In all cases superconduction is proposed to arise from the alignment of
spins carried by the excess proton layer. Should the number of excess pro-
tons exceed xm/2, cooperative alignment of the inverted multiplet spins is
inhibited across the lattice and superconductivity is suppressed.

Reworking Table 10.1 in terms of odd-mass nuclides only leads to minor
adjustments and confirms the previous identification of superconducting ele-
ments. Prediction of superconductivity, still unconfirmed by experiment, e.g.
for Yb, is not of major concern. Observed superconductivity for nuclides, at
variance with the rules of prediction, is more serious. The following nuclides in
this class therefore need to be re-examined: 15N, 17O, 29Si, 31P, 57Fe, 105Pd, Ce.

The first clue to understanding of their anomalous behaviour is provided
by the conditions under which Pd becomes superconducting, i.e. on low-
temperature He+ irradiation with a 400 kV ion accelerator [130]. Should this
treatment lead to

105
46Pd + 4

2He → 109
48Cd

and cause the formation of trace amounts of high-spin 109Cd(5/2) with half-
life of 463 days, EC→109Ag, the intermediate nuclide would be the supercon-
ducting species. Enhancement of the effect, induced by α-particle bombard-
ment, would provide experimental evidence to support the proposal.

Maybe a related effect can account for the observed superconduction of
Ce. It is postulated that the pressure-induced effect, in this case, is not due to
structural modification, but to reversible, pressure-induced electron capture:

140
58Ce � 140

57La, 40 hrs(β−)

producing high-spin, odd–odd, 140La(6/2), followed by bound-state β− decay.
Such an event would go undetected.

On a related theme, the record Tc = 20K for Li under pressure could
relate to the 2/2 spin of odd–odd 6Li, which means that both major isotopes
carry spin. Likewise, both 10B(6/2) and 11B(3/2) would contribute to the
superconductivity of MgB2.

Stable odd-odd nuclides only occur for A < 16. Should the effective xm/2
for this special subgroup be assigned at 1.7, half of the assumed 3.4 for the
first period of nuclides, the failure of N to reach the superconducting state
under pressure, needs no further explanation. However, if

16
8O � 16

7N(4/2) 7.13 s(β−)

occurs under pressure, oxygen is well within range, x = 1.42.
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The low spin of the presumed active nuclides 13C, 29Si and 31P does
not adequately explain the effect of pressure in this instance. However, the
reversible processes:

12
6C � 12

5 B(2/2) 20.4ms(β−)
28
14Si(0) � 28

13 Al(6/2) 2.24m(β−)
31
15 P(1/2) � 31

14 Si(3/2) 2.62 h(β−)

should they occur under high pressure, would promote superconduction.
The erratic dTc/dp response of many elements can be related to an

interplay between the radioactive equilibrium proposed here, and pressure-
induced structure modification. The critical temperature of sulphur increases
with pressure, up to Tc = 17K at 160 GPa, in contrast to Se and Te which
respond negatively at low pressure. This effect could be the result as the
major isotope of S acquires spin in the process:

32
16S � 32

15P(3/2) 14.3d(β−)

The supposedly active low-abundance isotope 57Fe with x(6.8) > xm/2 may
also not be responsible for the observed superconductivity of non-magnetic
Fe under pressure. The major isotope, if transformed reversibly,

56
26Fe � 56

25Mn(6/2) 2.58 h(β−)

produces a high-spin species with x = 5.8 < xm/2.
For most metallic superconductors dTc/dp ≤ 0. The exceptions are Ca,

Sr, Ba, Y, Sc, Lu, V and Zr. It probably means that electron capture could be
a factor in these exceptional cases, as evidenced by the following processes,
with respect to the most abundant isotope in each case:

40
20Ca � 40

19K(8/2) 1.28Gy(β−)
88
38Sr � 88

37Rb(4/2) 17.8m(β−)
138
56Ba � 138

55Cs(6/2) 32.2m(β−)
89
39Y(1/2) � 89

38Sr(5/2) 50.3 d(β−)
45
21Sc(7/2) � 45

20Ca(7/2) 165 d(β−)
175
71Lu(7/2) � 175

70Yb(7/2) 4.19 d(β−)
51
23V(7/2) � 51

22Ti(3/2) 5.80m(β−)
90
40Zr � 90

39Y(4/2) 64.1 h(β−)

Even irrespective of spin, the x parameter is invariably reduced to more
favourable values.
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The magnetic field generated by aligned spins will be opposed to the
applied field and its effects will be shown to account for the Meissner effect
and the positive Hall coefficient of superconducting materials.

The prime objective of an alternative mechanism of superconductivity is
that it should apply to all forms of superconductor. This is the major achieve-
ment of the golden excess alternative. In the second place it should be falsifi-
able and serve to identify and prescribe suitable procedures for the production
of improved superconductors. In this case the method identifies, for each ele-
ment, the isotope with maximum potential as a superconductor, by relating
its proton excess to the optimum value of xm/2 in its mass-number periodic
group. By stipulating maximum homogeneity of the conduction chain, mate-
rials with the active conductor in the form of a single isotope is prescribed.
Selection of the best matrix for support of the conduction chain depends on
such interactions that minimize the interatomic distances within the chain.

Examples

Compounds of tin represent a promising class for further study. The element
occurs in several allotropic forms and a mixture of ten isotopes, spread over
two mass-number periods. The nuclide 119Sn (x = 7.2) in isotopically pure
form should have critical temperatures far in excess of the 3.72K of natural
tin. The nuclide 117Sn has x = 8.45, fractionally higher than the first estimate
of xm/2, could acquire spin of 11/2, to become the prime target, despite
its relatively low abundance. Another intriguing feature of tin is the low
density of its low-temperature modification (5.75 gcm−3), compared to 7.31
of the close-packed higher-temperature allotrope. Any dopant or matrix that
promotes the stability of the high-density arrangement at low temperature,
and the formation of a close-packed linear array, would yield an improved
superconductor.

Another element whose performance as a superconductors should improve
with isotope purification is Pb, with natural Tc = 7.2K, and 22% abundance
of the active 207Pb isotope.

For immediate application it seems likely that the critical temperature
of 1-2-3 Ba superconductors could be raised close to room temperature by
isotope purification. The target isotope in this case is 137Ba with 11% abun-
dance and x = 5.77, which in isotopically pure form could improve 1-2-3
superconductivity dramatically.

The prognosis for 1-2-3 Sr is equally good. 87Sr has x = 7.64 and abun-
dance of 7%.

In the class of organic superconductors enrichment of 77Se, with 8% abun-
dance should be of obvious benefit.
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Figure 10.15: Generation of an electric field in the direction j × B, known
as the Hall effect.

Of the cheap industrially important metals, which could be considered
for future isotopically pure superconducting use, the most obvious include
Cr, Fe, Zn and Mo.

10.5.5 Hall Effect

Charged particles moving at right angles to a magnetic field experience a
side-ways force and this gives rise to the Hall effect as shown in Figure 10.15.
The magnetic force, FB = Bzevx = −jxBz/n, where vx is the velocity of the
electrons in the x-direction. As no current flows in the y-direction the build-
up of charge at the edges of the conductor amounts to an electric field Ey =
Fy/e. In the steady state, the magnetic and electrical forces are balanced,

FB = Fy : eEy = −jxBz/n

and the ratio RH = Ey

jxB
= − 1

ne

is known as the Hall coefficient of the material. A surprising aspect is that in
some instances the Hall coefficient may be positive, RH > 0. The standard
explanation is that, in addition to electrons in the conduction band, positive
holes in the valence band may also act as charge carriers.

The relative numbers of negative and positive charge carriers are assumed
to depend on the electronic band structure of the conductor and can, in prin-
ciple, be calculated by nearly-free electron methods. When positive carriers
are in the majority, RH > 0. However, there is no obvious explanation of the
Hirsch correlation between positive Hall coefficient and superconductivity in
terms of positive-hole charge carriers. It is not even sure that, irrespective
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of superconduction, energy band theory can actually predict meaningful cor-
relation between hole concentration and positive RH at all [131].

A totally different interpretation is possible in terms of golden excess.
In this instance a magnetic field, applied perpendicular to a linear array of
superconducting atoms, aligns the excess spin system

S

N

so as to generate an internal field in the opposite sense. The net effect is an
increased RH , which may even assume positive values for a sufficiently high
excess.

The situation is more complicated in the case of 1-2-3 systems where
both normal-state conductivity and Hall effect are anisotropic [132]. The Hall
coefficient is positive when the magnetic field is applied parallel to the c-axis,
and negative when the field is normal to c. In both cases the Hall density,
defined as nH = 1/RH , is a linear function of temperature, precluding a
direct identification of nH with the carrier density [131].

The observed behaviour is in line with the golden-excess interpretation
that defines the superconduction direction along the Ba/Sr chains, rather
than along CuO2 planes, as generally assumed. The anomalous conductivity
ρc, compared to ρab and to other, isotropic, superconductors also favours
superconduction along Ba/Sr chains.

10.6 Nuclear Stability

This story has now come full circle. The original assumption of a fixed num-
ber of stable nuclides has often been disputed on the grounds that nuclear
stability is a relative, rather than an absolute concept, as no atomic nucleus
has an infinite half-life. This criterion is, admittedly, too strict to allow any
useful definition of stability. In the present context it is therefore necessary
to stipulate the thermodynamic parameters that may affect nuclear stability.
In summary, it is the local curvature of space which determines, not only the
arrangement of extranuclear matter, known as the electronic charge cloud,
but also the configuration of each nucleus, and the overall atomic state of
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equilibrium. This curvature is fixed by the golden ratio. It is instructive to
examine how this equilibrium is established.

Consider an atom consisting of a nucleus and a swarm of orbiting elec-
trons. A given electron may reduce its potential energy by photon emission
as it approaches the nucleus under coulombic attraction. The emission of
each photon reduces the angular momentum by an amount �. When the
orbital angular momentum has been reduced to zero the radiation stops
and the electron remains in a stationary state by spreading around the
nucleus.

Because of the exclusion principle only two electrons, with paired spins,
may share the space of minimum potential energy, which now constitutes an
impenetrable shield between the nucleus and more energetic electrons. Should
one of the base-level electrons be dislodged, its place is taken up by an outer
electron, with emission of an x-ray photon. While the low-energy vacant site
exists the atom is said to be in an excited state, which relaxes by the emis-
sion of an energy photon. The same thing happens in the nucleus. Because
of previous perturbation (e.g. by cosmic-ray bombardment) a nucleus may
find itself in an excited state. The occurrence of bound-state β− decay (Sec-
tion 8.3.1) reveals that an excited nuclear state can also result from disturb-
ing the equilibrium between the nucleus and the extranuclear charge. In this
instance, an otherwise stable nucleus is rendered radioactive by stripping off
the electron shield that surrounds it. This event is quantified by a dramatic
decrease of the observed nuclear half life.

Remarkably however, the nuclei in a given sample do not decay simulta-
neously, which means that they are not simultaneously in the excited state.
This behaviour is not related to state of aggregation, as in chemical kinet-
ics, and is also observed as the property of isolated nuclei in a storage ring.
What emerges is a dynamic system that approaches equilibrium by random
rearrangement steps. This rearrangement is entropy driven and the rate of
decay, measured as the half-life, reflects how close or how far the system is
from equilibrium. In near-equilibrium systems the rearrangement into the
excited state, from where decay happens, takes a long time and the rate at
which consecutive decay events occur, is slow. Systems, far from equilibrium
may be considered highly excited and decay happens with minimum delay.
The rate law is exponential, known as first order.

The stability of the electron shell, in turn, is subject to disturbance by
nuclear imbalance, leading to events such as β capture. In this case the angu-
lar momentum that enables the emission of a γ-ray photon is carried by an
antineutrino, released from the nucleus.
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Nuclear stability, redefined in line with these principles, relies on the role
of the golden ratio (τ) which dictates the optimum arrangement of both
nucleons and extra-nuclear electrons, which together constitute a holistically
balanced unit, conditioned by the geometry of space (π) and the rate of
decay (e). A total of 264 nuclides satisfy the criteria and these are the nuclei,
colloquially referred to as stable.



Chapter 11

Chemical Periodicity

11.1 Introduction

The major contribution of chemistry to theoretical science has been the
periodic table of the elements. Although it enabled the classification of inor-
ganic compounds, the anticipated impact of this discovery, on the under-
standing of chemical phenomena, has not been felt. Although some link
between elemental periodicity and quantum theory became evident, the fun-
damental theory of chemistry, once thought secure, remained elusive. With
the realization that the periodicity of atomic matter arises from number pat-
terns, rather than quantum mechanics, another look at chemical concepts
could well be useful. The unforeseen role of the golden ratio in the com-
position and function of atomic nuclei could conceivably recur in the laws
that govern the behaviour of molecules and other chemical species. It would
indeed be rather odd if the self-similarity that links atomic nuclei and botan-
ical growth was absent from chemical systems, intermediate to these.

The quest for chemical theory remains focussed on chemical change and
the nature of chemical interaction, involving electrons, atoms and molecules.
Conventional wisdom has identified the key to solving this vexing problem as
chemical bonding. It is exasperating to find that a body of self-perpetuating
bonding jargon, supposedly based on quantum theory, has gained such res-
pectability, by uncritical use among students of chemistry, that any
re-examination of the situation is treated with deep suspicion. The hidden
reality is that the little understanding there is, can be recognized as rem-
nants of the nineteenth century theory of chemical affinity that developed in
parallel with the periodic table. The modern concepts of valency, electroneg-
ativity and reactivity have their origins in this era and have never gained real
quantum-mechanical respectability. It is proposed to revisit these concepts

335
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as periodic, rather than quantum, functions in an effort to rediscover their
fundamental meaning.

11.2 Electronegativity

In historical context the electronegativity concept developed in a natural
way from the early distinction between antagonistic elements, later loosely
identified as metals and non-metals, and later still as electropositive and elec-
tronegative elements, classified as a function of their periodic atomic volumes
[31] – (1953).

Lothar Meyer’s atomic volume curve, in its modern form (Figure 6.5), still
provides one of the most convincing demonstrations of elemental periodicity
and an equally clear exposition of atomic electronegativity. The segmented
regions occur in strict alternation as negatively and positively sloping curves.
This is exactly the basis on which electropositive and electronegative elements
used to be distinguished traditionally [31]. This theoretical notion, in one
form or the other, has survived into the present, where, as will be shown, it
provides a precise definition of electronegativity.

The first known attempt to quantify electronegativity was due to Pauling,
who devised an empirical scale, on the basis of thermochemical data [133]. It
relies on the simple idea that an electrovalent linkage between a pair of elec-
tropositive and electronegative atoms results from the transfer of an electron
between the two:

e.g. Na+ Cl → Na+Cl−

whereas a covalent linkage between a homopolar pair requires equal sharing
of two electrons:

e.g. Cl · + · Cl → Cl:Cl

All possible diatomic combinations, AB, correspond to situations between
the two extremes. The larger the difference in electronegativity, |xA − xB|,
the larger is the electrovalent component that stabilizes the linkage, and the
smaller the covalent contribution. For any diatomic interaction, such as A–B,
in a molecule, the difference between the dissociation energy D(A–B) and
the (arithmetic or geometric) mean of the energies D(A–A) and D(B–B) is
assumed [134], to reflect the difference in electronegativity of the two atoms,
interpreted as the power of an atom in a molecule to attract electrons to
itself. To hold for both definitions of the covalent mean it is assumed that,
ideally

1

2
(DAA + DBB) =

√
DAA · DBB



11.2. ELECTRONEGATIVITY 337

or squared:

D2
AA − 2DAADBB + D2

BB = (DAA − DBB)2 = 0 or ∆2
AB

such that ∆ = 0 for A = B, or ∆ = |xA − xB|2 for A 	= B, defining
electronegativities xA and xB through the relation

xA − xB =
√
|DAA − DBB|

The well-known Pauling scale of electronegativities results from this defini-
tion of xA on specifying dissociation energies in units of electron volt.1

In a more fundamental approach Mulliken redefined electronegativity
[135] as the average of the ionization potential and electron affinity of an
atom. Although the Mulliken definition:

χM(A) =
1

2
(IA + EA)

expresses electronegativity as an energy, rather than its square root as in the
Pauling definition, it is widely interpreted that a linear relationship exists
between the two scales, as in [136]:

χM = 3.15χP

This absurd assumption has never been formally challenged, with the
result that the notion of a periodic electronegativity function has lost all
credibility, despite sporadic efforts to revive it in terms of experimental vari-
ables such as hardness [137] and atomic polarizability [138], or the empirical
formulae:-

χ = 0.313{(n + 2.60)/r2/3}
χ = 0.31{(n + 1)/r} + 0.50

χ ∝ (n + 1)/
√

2r

χ = 0.359
(
Zf/r

2
)

+ 0.744

χ = 1.66(n/α)1/3 + 0.37

of Liu [139], Gordy [140], Cottrell and Sutton [141], Allred and Rochow (AR)
[142] and Nagle [138], respectively.

All of these formulations suffer from the same defect of being dimension-
ally inconsistent. They have no common basis and no sensible fudge factor

1In later work [134] Pauling used a value of 30 instead of the factor 23 that converts
kilocalorie per mole into electron volt.
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to project a theoretically sound relationship from these proposals, without
addressing the problem of dimensional confusion, has been defined.

The scales of Pauling [134] and of AR [142] are routinely cited [143] and
widely used on the assumption of being equivalent, despite huge numerical
discrepancies. The Pauling scale measures the square root of an energy and
the AR scale measures a force. Simple dimensional analysis shows that the
two scales are related by a factor K, with dimensions such that:

K · M 1/2LT−1 = MLT−2

Charge, measured in coulomb, has dimensions C = M 1/2L3/2T−1, which
means that K has dimensions CL−3/2, or in terms of volume (L3), CV −1/2 =
(C2V −1)1/2. Neither charge nor volume, featuring in this complicated con-
version, has been properly explained.

In reality, both scales are simply too erratic and unreliable to serve as
a benchmark to guide theoretical modelling. On Pauling’s scale there are
too many criteria at play: bond energy or bond dissociation energy; arith-
metic mean or geometric mean; different ligands around the central bond of
interest; different oxidation states; standard state or valence state; molecular
geometry – all of these variables have been implicated as environmental fac-
tors that could affect the estimate of atomic electronegativity in molecules.
The AR scale, empirically based on variable single-bond covalent radii, is
hardly more secure, but somewhat more regular as a periodic function, com-
pared to the Pauling scale.

The simple truth is that the state of any atom within a molecule depends
too critically on its special environment to support the idea of an atom
with fixed electronegativity in all molecules. An alternative is to consider
the valence state of a free atom as reference; more precisely, the first acti-
vated state of a neutral atom, before it enters into chemical interaction with
another atom, electron or molecule. To demonstrate the validity of such the-
ory it is not necessary to reproduce any of the empirical scales in exact
detail. However, there should be strong qualitative agreement with the intu-
itive notion.

11.2.1 The Quantum-Potential Scale

A proper theoretical basis of electronegativity has in fact been identified
before [89] as the ground-state energy Eg of a free valence-state electron,
confined to its first ionization sphere. In order to avoid dimensional conflict,
valence-state electronegativity may be defined equally well as the square
root,

√
Eg, of the valence-state confinement energy, which, by definition,

should relate to AR electronegativities by χv = χAR/K.
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Confinement energies are calculated directly from atomic ionization radii,
r0, obtained by Hartree–Fock–Slater simulation of uniform compression of
atoms [6] under the modified boundary condition limr→rc ψ = 0, in which
rc < ∞. Increased pressure is simulated by decreasing the critical radius rc

of the impenetrable sphere. The simulation consists of multiplying all one-
electron wave functions by the step function

S = exp

[
−

(
r

rc

)p]
, with p >> 1

as part of the iterative procedure.
Simulated compression results in raising all electronic energy levels. Inter-

electronic interaction leads to internal transfer of energy such that a single
electron eventually reaches the ionization limit on sustained compression. At
this point there is zero interaction between the ionized valence electron and
the atomic core, although the valence electron remains confined to a sphere
of radius r0. The ground-state energy of such a confined particle amounts to

Eg =
h2

8mr2
0

With energies in eV and radii in Å units the numerical value of the opera-
tional quantity

√
Eg = 6.133/r0. The state of the confined particle is awk-

ward to explain by conventional quantum theory but is readily understood in
the Bohmian interpretation that describes the energy Eg, that derives from
compressive work, as pure quantum potential energy [11]:

Vq = − h2∇2R

8π2mR

Rearranged into the more familiar form of Schrödinger’s amplitude equation:

∇2R +
8π2m

h2
VqR = 0

it correctly describes the confined particle, providing Vq = Eg = h2/8mr2
0

and R is the zero-order spherical Bessel function with first zero at r0.
Since r0 is characteristic of each atom, characteristic energies are pre-

dicted for atomic valence-state electrons. It is the atomic equivalent of the
Fermi energy of an electron at the surface of the Fermi sea in condensed
phases, and in that sense represents the chemical potential of the valence
electron for each atom. Electronegativity has been defined independently
[137] in almost identical terms before.
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Relating Eg to electronegativity provides the theoretical basis of this
concept, derived non-empirically and without assumptions from first princi-
ples. It is a function of the electronic configuration of atoms only and emerges
naturally as the response of an atom to its environment. It is indeed the ten-
dency of an atom to interact with electrons and the fundamental parameter
that quantifies chemical affinity and bond polarity. It is precisely “the aver-
age one-electron valence shell energy of a ground-state free atom” that Allen
proposed [144] as the third dimension of the periodic table.

The Valence State

Two independent sets of ionization radii for all atoms have been calculated
[6, 11] using exponential parameters p = 20 and 100, respectively. In both
cases a clear periodic relationship appears, but the values at p = 100 are
consistently lower. This difference reflects the steepness of the barrier that
confines the valence electron, shown schematically in Figure 11.1.

In a chemical environment the barrier is unlikely to be infinitely sharp
and there should be some optimum value of p that describes the situation
best. The choice of p = 20 was conditioned by comparison with indepen-
dent chemical evidence that relates to ionization radii. A set of atomic radii,
derived as an estimate to describe a single valence electron, uniformly spread
over a characteristic sphere for each atom, has been known for a long time
[145]. These radii were fixed by the assumption that electrostatic interaction
between such uniform charge distributions, surrounding monopositive atomic
cores, should correspond to the experimental values of binding energy for any
pair of atoms.

The idea of relating Eg to electronegativity is supported by the interesting
correspondence that it shows with atomic first ionization potentials [93]. On
average

IP/Eg = 0.42n

rc

r

p=100

p=20

0

S

Figure 11.1: The step function S = exp[−(r/rc)
p] – schematic.
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where n is the number of the main periodic group in which the atom occurs.
This relationship allows a fair estimate of radii in cases of uncertainty, e.g.
for light elements like He.

It is instructive to examine the periodic variation of valence-state elec-
tronegativities χv =

√
Eg, shown in Figure 11.2. The sequence, as a function

of atomic number, fragments spontaneously into the same segments as the
Lothar–Meyer curve. All segments, in this case, have positive curvature, slop-
ing towards the origin on the left and towards closed-shell configurations on
the right. The qualitative trends are immediately recognized as closely related
to the known empirical trends of electronegativity scales. The slope of these
curves, at an atomic position, represents the change in energy as a function
of atomic number (electron count), and defines the chemical potential of the
electrons, dE/dN = −µ, at that point. When the AR scale is plotted on
the same graph there is exact agreement with χv only at the positions of the
closed-shell noble gases and a linear variation with atomic number within
each period of elements.
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Figure 11.2: Periodic variation of χv =
√

Eg as a function of atomic number.
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11.2.2 Derivation of a Common Scale

Convincing linear relationships between χAR and χv could be demonstrated
immediately for all periodic families with p valence shells. A convenient phys-
ical interpretation of the relationship is to consider K as a valence-electron
density, ρ = 1 for a closed shell and ρ = x−µ < 1 for non-closed shells with µ
vacant sites. As an example, x = 1.1 for the 2p valence shell. Although it is
tempting, and feasible, to scale all calculated values of χv to the AR scale, by
assigning appropriate values to x, the chemical significance of electronegativ-
ity is obscured in the process. All evidence therefore supports the conclusion
that

√
Eg is a good measure of valence-state electronegativity. Not only does

it parallel both the AR and Pauling scales convincingly, but it also relates
directly to the Mulliken proposal.

For n > 2 the average formula, Eg = 2.4IP /n reduces to Eg � 0.5IP , and
applies to the majority of elements. Because electron affinities are generally
of smaller magnitude than IP , the Mulliken energy-scale formula is explained
directly. A sufficient number of high-precision atomic electron affinities, to
test the Mulliken formula,

χ2
M = Eg = 0.5(IP + EA)

are however, known [93]. By scaling χM against χv within periodic fami-
lies, reliable values of unmeasurable electron affinities can be obtained by
interpolation.

It is noted that electron affinity represents the energy difference between
the ground state of a neutral atom and the lowest state of the corresponding
negative ion. In many cases the negative-ion state is too unstable to allow
experimental measurement of EA. All noble gases with closed p sub-shells,
and many elements with closed s sub-shells belong to this group. Interpolated
values for such elements are parenthesized in Table 11.1.

Electronegativities on the Mulliken scale, as redefined here, agree remark-
ably well with the valence-state values calculated from ionization radii, and
by inference, also with Pauling electronegativities, once the square-root rela-
tionship between the scales is properly recognized. The obvious general solu-
tion is to abanbon all efforts to scale towards traditional values of χ and to
recognize χv = 6.133/r0 as the new electronegativity function.

11.3 Chemical Bonding

The ultimate test for any electronegativity scale, by definition, lies in its abil-
ity to rationalize the nature and energy of chemical interactions. As noted
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Table 11.1: Summary of ionization radii (r0), characteristic radii (rx), and
Mulliken radii (rM ) in Å units; valence-state (χv) and Mulliken (χM ) elec-
tronegativities in units of

√
eV ; interatomic distance (re) or its estimate

(d); measured (Dx) and calculated (Dc) dissociation energies, in kilojoule
per mole, for diatomic molecules.

Z Sy r0 χv χM re, (d) d/rx Dx Dc rx rM

1 H 0.90 6.81 6.25 0.741 0.96 436 432 0.77 0.98
2 He 0.30 8.18 (0)
3 Li 1.25 4.91 1.73 2.673 0.99 110 103 2.70 3.54
4 Be 1.09 5.63 (0.8) (1.94) 1.14 59 68 1.70
5 B 1.62 3.79 2.07 1.590 0.86 290 300 1.85 2.96
6 C 1.60 3.83 2.50 1.312 0.71 596 614 1.85 2.45
7 N 1.56 3.93 (1.2) 1.098 0.67 857 947 1.65
8 O 1.45 4.23 2.75 1.208 0.80 498 496 1.51 2.23
9 F 1.36 4.51 3.23 1.412 1.03 159 162 1.37 1.90

10 Ne 1.20 5.11 (1.7)
11 Na 2.73 2.25 1.69 3.079 1.03 75 74 3.00 3.63
12 Mg 2.35 2.60 (0) (2.78) 1.32 9 15 2.10
13 Al 2.61 2.35 1.79 2.466 0.95 133 139 2.60 3.43
14 Si 2.40 2.56 2.18 2.246 0.75 310 314 3.00 2.91
15 P 2.20 2.79 2.37 1.893 0.67 485 488 2.81 2.59
16 S 2.05 2.99 2.49 1.889 0.71 425 427 2.66 2.46
17 Cl 1.89 3.24 2.88 1.988 0.86 243 241 2.30 2.13
18 Ar 1.81 3.39 (3.0)
19 K 3.74 1.64 1.56 3.905 1.04 57 56 3.74 3.93
20 Ca 3.26 1.88 1.75 (3.43) 1.18 15 30 2.90 3.50
21 Sc 3.13 1.96 1.83 (2.79) 0.89 163± 21 151 3.13 3.35
22 Ti 3.01 2.04 1.86 (2.52) 0.97 118 123 2.60 3.30
23 V 2.95 2.08 1.91 (2.28) 0.81 269 257 2.80 3.21
24 Cr 2.98 2.06 1.93 (2.17) 0.87 155 215 2.50 3.18
25 Mn 2.94 2.09 (0.2) (2.38) 1.19 42 40 2.00
26 Fe 2.87 2.15 2.01 (2.16) 1.03 118 109 2.10 3.05
27 Co 2.85 2.15 2.07 (2.18) 0.91 167 183 2.40 2.96
28 Ni 2.86 2.14 2.10 (2.17) 0.87 204 215 2.50 2.92
29 Cu 2.85 2.15 2.12 2.220 0.87 201 206 2.55 2.89
30 Zn 2.78 2.21 (0.2) (2.32) 1.16 29 34 2.00
31 Ga 3.29 1.86 1.79 (2.12) 1.01 138 129 2.10 3.43
32 Ge 2.94 2.09 2.14 (2.13) 0.73 274 361 2.90 2.87
33 As 2.62 2.26 2.30 2.103 0.72 382 375 2.92 2.67



344 CHAPTER 11. CHEMICAL PERIODICITY

Table 11.1: (Continued)

Z Sy r0 χv χM re, (d) d/rx Dx Dc rx rM

34 Se 2.40 2.56 2.43 2.166 0.75 331 325 2.90 2.52
35 Br 2.28 2.69 2.75 2.281 0.88 290 300 2.59 2.23
36 Kr 2.12 2.89 (2.4)
37 Rb 4.31 1.42 1.53 (4.31) 1.05 46 49 4.10 4.01
38 Sr 3.83 1.60 1.69 (3.74) 1.25 16 14 3.00 3.63
39 Y 3.55 1.73 1.81 (3.09) 0.87 159± 21 148 3.55 3.39
40 Zr 3.32 1.85 1.84 (2.77) 0.73 298 275 3.80 3.33
41 Nb 3.30 1.80 1.96 (2.49) 0.62 513 431 4.00 3.13
42 Mo 3.21 1.86 1.98 (2.37) 0.70 436 353 3.40 3.10
43 Tc 3.16 1.94 1.98 (2.35) 0.74 330 316 3.16 3.10
44 Ru 3.13 1.98 2.05 (2.31) 2.99
45 Rh 3.08 1.99 2.07 (2.34) 0.76 236 252 3.08 2.96
46 Pd 2.49 2.46 2.11 (2.39) 0.96 136 135 2.49 2.91
47 Ag 3.04 2.02 2.11 (2.51) 0.90 163 165 2.80 2.91
48 Cd 3.02 2.03 (0) (2.59) 1.30 11 16 2.00
49 In 3.55 1.73 1.74 (2.83) 0.98 100 104 2.90 3.52
50 Sn 3.26 1.88 2.06 (2.44) 0.87 195 192 2.80 2.98
51 Sb 3.01 2.04 2.20 (2.52) 0.74 299 293 3.40 2.79
52 Te 2.81 2.18 2.34 2.557 0.77 258 252 3.30 2.62
53 I 2.60 2.35 2.60 2.666 0.91 153 147 2.92 2.36
54 Xe 2.49 2.50 (1.5)
55 Cs 4.96 1.24 1.48 4.47 1.04 44 48 4.30 4.14
56 Ba 4.48 1.37 1.64 3.74
57 La 4.13 1.48 1.74 (3.25) 0.72 247± 21 244 4.50 3.52
58 Ce 4.48 1.37 1,80 (3.18) 0.71 243± 21 254 4.48 3.41
59 Pr 4.53 1.35 1.79 (3.17) 0.91 130± 29 125 3.50 3.43
60 Nd 4.60 1.33 (1.0) (3.16) 0.99 84± 29 89 3.20
61 Pm 4.56 1.34 (1.1)
62 Sm 4.56 1.34 (1.0)
63 Eu 4.60 1.33 1.81 (3.47) 1.16 34± 17 33 3.00 3.39
64 Gd 4.22 1.45 (0.5)
65 Tb 4.59 1.34 (0.7) (3.07) 0.90 131± 25 136 3.40
66 Dy 4.56 1.34 (0.7)
67 Ho 4.63 1.32 (0.4) (3.03) 1.01 84± 30 85 3.00
68 Er 4.63 1.32 (0.3)
69 Tm 4.62 1.33 1.90 (3.00) 1.11 54 52 2.70 3.23
70 Yb 4.66 1.32 1.76 (3.38) 1.13 21± 17 41 3.00 3.48
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Table 11.1: (Continued)

Z Sy r0 χv χM re, (d) d/rx Dx Dc rx rM

71 Lu 4.24 1.45 1.70 (2.99) 0.88 142 ± 33 150 3.40 3.61
72 Hf 3.83 1.60 (0.1)
73 Ta 3.57 1.72 1.98 (2.49) 0.67 390± 96 372 3.70 3.10
74 W 3.42 1.79 2.08 (2.38) 0.68 486± 96 376 3.50 2.95
75 Re 3.38 1.81 2.00 (2.38) 0.68 386 ± 96 376 3.50 3.07
76 Os 3.37 1.82 2.18 (2.33) 0.67 415 ± 77 393 3.50 2.81
77 Ir 3.23 1.90 2.29 (2.36) 0.73 361 ± 68 324 3.23 2.68
78 Pt 3.16 1.94 2.35 (2.39) 0.75 308 295 3.20 2.61
79 Au 3.14 1.95 2.40 2.472 0.81 226 232 3.05 2.56
80 Hg 3.12 1.97 (0.9) (2.61) 1.31 17 16 2.00
81 Tl 3.82 1.61 1.75 (2.96) 1.06 63 ± 17 68 2.80 3.50
82 Pb 3.47 1.77 2.21 (3.05) 0.98 87 97 3.10 2.78
83 Bi 3.19 1.92 2.03 2.660 0.83 197 204 3.19 3.02
84 Po 3.14 2.06 2.27 (2.91) 0.83 186 187 3.50 2.70
85 At 3.12 2.16 (8.3)*
86 Rn 3.82 32.31 (1.9)

∗ Interpolated ionization potential.

Homonuclear bonds

Bond d d′ Dx Dc MM d d′ Dx Dc

CH3–CH3 1.541 0.83 368 353 Cr 2.67 1.07 99 72
CH2=CH2 1.337 0.72 598 592 Mo 2.76 0.81 260 212
CH≡CH 1.202 0.65 836 815 2.50 0.74 411 300
NH2–NH2 1.47 0.89 296 294 2.21 0.65 593 443
HO–OH 1.48 0.98 213 200 2.12 0.62 759± 220 507
SiH3–SiH3 2.32 0.77 293 290 W 3.22 0.92 234 119
HS–SH 2.05 0.77 284 327 2.16 0.62 779± 220 493
GeH3–GeH3 2.41 0.83 259 225 Re 2.61 0.75 129 270

2.21 0.63 562± 121 471

already, the thermochemical scheme devised for this purpose by Pauling,
relies on too many variables to be representative of all elements. The quantum-
potential valence-state scheme that only depends on atomic ionization radii,
like the Mulliken scale, has a clear advantage in this respect and because
of its more fundamental basis it is preferred over the empirical Mulliken
scale.

The most representative class of experimentally well characterized relev-
ant compounds that could be used as a benchmark are the diatomic molecules,
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which have been studied spectroscopically in terms of dissociation energy and
equilibrium interatomic distance. A reliable, and frequently updated, list of
these parameters is available from the Handbook of Chemistry and Physics
[93]. Analysis of this data set by point-charge simulation of intramolecular
interactions provides a direct procedure to assess the utility of ionization
radius as a parameter that describes the strength of chemical bonds.

11.3.1 Point-Charge Model

In the same way that electronegativities determine the polarity of diatomic
interactions, ionization radii should define the effective electronic charge
clouds that interpenetrate to form diatomic molecules, as shown schemat-
ically in the following figure. The overlap of two such spheres defines a lens
of focal lengths fixed by the ionization radii, r1 and r2, at an interatomic
distance d = x1 + x2.

y

x
r

y
x1

r1 r2

x1 x2

1 2 3

O

The lens consists of two parts, each of which is generated as a solid of
revolution by rotating the semi-circle x2 + y2 = r2 about Ox. The resulting
solid body has the volume
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=
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In the problem of interest: r2
1 − x2

1 = y2, r2
2 − x2

2 = y2.

r2
1 − r2

2 = x2
1 − x2

2 , x1 + x2 = d , x2 = d − x1

Hence
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For the special cases:

1. r1 = r2 : V0 = π

(
4

3
r3 − r2d +

d3

12

)

2. d = r1 + r2 : V0 = 0

3. d ≤ r1 − r2 : V0 =
4

3
πr3

2

Each of the two overlapping spheres is considered to enclose a single valence
electron that surrounds a monopositive atomic core. The electrostatic inter-
action is represented by point charges, related in magnitude to V0, V1 and
V2, by assuming that electron 1 is associated with nucleus 2 for a fraction
ε = V0/V1 of the time, such that a charge of ε+ appears on nucleus 1 and a
charge of δ+ = V0/V1 on nucleus 2 [145]. The foreign electrons which move in
the field of nucleus 1 for a time fraction δ can be represented by a charge δ−

in the overlap region, and likewise by a charge ε− with respect to nucleus 2.
The total electrostatic energy of interaction is made up of four compo-

nents:

1. Nuclear–nuclear repulsion amounting to δε/d

2. Electron–electron repulsion, given by δε/p, where p = r1 + r2 − d, the
thickness of the lens
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3. Attraction between nucleus 1 and electron 2, given by δε/b, where b =
(r1/r2)(d/2), with r1 < r2

4. Interaction between nucleus 2 and electron 1, given by δε/(d − b)

From the expression for V0 follows the formula for

δε =
[
d3

16
− 3d

8
(
r2
1 + r2

2

)− 3
16d

(
r2
2 − r2

1

)2 +
1
2
(
r3
1 + r3

2

)]2

/(r1r2)3

When the smaller cloud is completely enclosed by the bigger (r2 > r1 + d)
the extra polarization amounts to an additional attraction between point
charges of ±[1− r1/(r2 − d)] at a distance d. The total energy of interaction
reduces to:

E = K

[
δε

{
1

b
+

1

d − b
− 1

d
− 1

p

}
+ X

]

where K is a dimensional constant and X = 0, unless r2 > r1 + d, when
X = [1 − r1/(r2 − d)]2/d.

To demonstrate the validity of the point-charge model it is applied to
homopolar diatomic molecules first. In this special case the overlap formulae
reduce to:

V0 = π

[
4

3
πr3 − r2d +

d3

16

]

ε = 1 − 3d

4r
+

1

16

(
d

r

)3

E = Kε2

[
3

d
− 1

2r − d

]

The interaction energy (E) between a homonuclear pair of atoms can be
simulated by charges, defined in terms of d′ = d/r0, as

ε = 1 − 3d′/4 + (d′)3/16

E = Kε2/r0

[
3

d′ −
1

2 − d′

]
(11.1)

Setting K = r0, the binding energy (E′), obtained in diatomic units and
shown as a negative quantity, varies as a function of d/r0 as in Figure 11.3.

The energy function (11.1) remains attractive at all values of d′ until
ε reaches its natural limit, which by definition corresponds to exactly one
pair of electrons, allowed by the exclusion principle, between the nuclei. An
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Figure 11.3: Binding energy curve for homonuclear diatomic molecules, based
on point-charge interaction; in diatomic units.

obvious turning point, by this argument, is expected to occur when ε = 1/2,
in which case each nucleus controls one half of the bonding pair. This occurs
when d′ = 0.695. However, trial calculations show several diatomic molecules
having d′ < 0.695. It simply means that the bonding pair at this point is
spread over the total volume, defined by the overlap lens, which implies that
the charge density in the internuclear region remains below the exclusion
limit. Further calculations show that the minimum ratio for any diatomic
molecule, d/r0 = d′ > τ , approaches the golden mean.

The inference is clear: the exclusion principle kicks in at the point where
the internuclear region is saturated with a spin-paired set of electrons. Inter-
nuclear region is interpreted as a volume that depends on both internuclear
distance and atomic size, i.e. d/r0 with a critical value of τ . In the same
way that the golden ratio determines the phyllotaxis and packing density of
nucleons and florets, it also regulates the formation of chemical bonds. In
this case the effect is known as the Pauli exclusion principle, whose oper-
ation has remained a mystery until now. Being linked directly to τ , the
riddle is solved: the exclusion principle is dictated by the curved structure of
space.
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11.3.2 The Diatomic Energy Function

According to (11.1) the point-charge simulation of homonuclear diatomic
species reduces to a common basis in terms of a single characteristic potential-
energy function. As additional factors need to be taken into account when
dealing with heteronuclear diatomics, only homonuclear species will be con-
sidered here as a test of the valence-state scheme.

The point-charge density increases monotonically with decreasing d′ until
it reaches a maximum at the critical ratio of d/r0 = τ . At this point ε =
0.5513 and

E′ = 0.3

[
3

τ
− 1

2 − τ

]
which rearranges into the expression

E′ = 0.3

[
5.734 − 1

d′

]

that describes the energy for all d′ < τ . The total binding-energy curve there-
fore consists of attractive and repulsive parts that intersect at the point
d′ = τ , E′ = 1.244.

The dissociation energy of a homonuclear diatomic molecule (Figure 11.3),
is shown in dimensionless units (D′), as a function of the interatomic distance,
in units of the characteristic radius, d/r0 ≡ d′. The energy minimum on the
curve corresponds to the maximum possible dissociation energy, at the golden
ratio d′ = τ . The dissociation energy in familiar units is obtained as

Dc = KD′/r0

with r0 in units of Å and the dimensional constant K = 14.36 or 1385.7 for
units of electron volt or kilojoule per mole, respectively.

For a large number of, especially metallic, diatomic molecules equilib-
rium interatomic distances have not been measured spectroscopically. These
elements could be included in the sample by noting that for those metals
with measured re, it is related to δ, the distance of closest approach in the
metal, by re = 0.78δ. On assuming this to be generally valid, reference val-
ues of interatomic distance (d) became available for virtually all elements, as
shown in Table 11.1.

Using ionization radii as characteristic radii, dissociation energies of the
correct order were calculated for the majority of elements. Modest adjust-
ment of r0 to a set of empirical radii, rx, resulted in the detailed match
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between observed (De) and calculated (Dx) dissociation energies, as shown in
Table 11.1. A comparable set of Mulliken radii, calculated as rM = 6.133/χM ,
for each element, is also listed in the table. The variation of r0, rx and rM

across periodic groups is compared in Figure 11.4.
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Figure 11.4: Electronegativities as periodic functions.
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The most informative comparison is between ionization radii and the set
of empirically adjusted radii. The Mulliken radii confirm that the observed
trends reflect chemically meaningful effects. All of those elements that form
diatomic molecules rather than metals (i.e. the traditional non-metals) have
rx > r0. A number of traditional metals, which also have rx > r0, i.e. Li, Be,
Na, Zr, Nb, Mo, La, Ta, W, Re and Os, are all known to form exception-
ally stable diatomic molecules, compared to their congeners. In addition, the
elements Mo, W and Re are known to form supershort, so-called quadruple
dimetal bonds [146]. It has been stated [147] that niobium and tantalum
“though metallic in many respects, have chemistries in the V oxidation state
which are very similar to those of typical nonmetals.”

The matching of characteristic radii to fit the curve of Figure 11.3 is
more than one-dimensional parameterization. The radii, fixed by this proce-
dure, can be used to derive dissociation energies for heteronuclear diatomic
molecules and of all chemical bonds with known interatomic distances. As
an example, dissociation energies of homonuclear bonds, as a function of
interatomic distance, in compounds such as ethane, ethylene and acetylene,
follow immediately from Figure 11.3, as tabulated in Table 11.1. The calcula-
tion for heteronuclear bonds is more complicated, but the results are equally
convincing.

Despite considerable uncertainty in experimental dissociation energies of
dimetal bonds of various order, the values calculated from observed inter-
atomic distances agree reasonably well with measured values, summarized
before [148].

11.3.3 Bond Order

The observation of a non-random discrepancy, between characteristic atomic
radii rx and ionization radii r0, infers that the former also has real chemical
significance, to be further explored. For electropositive atoms the relation
rx < r0 indicates a tendency to form positive ions and metals rather than
covalent bonds. For electronegative elements the discrepancy appears to be
simply related to the properties commonly referred to as bond order and
multiple bonding.

Although the picture of chemical bonding that emerges from the present
analysis is radically different from the standard model, its elucidation of
experimentally observed trends is no less general. The idea of bond order
does not occur, as all chemical bonds are defined here in terms of a single pair
of electrons, exchanged between chemically interacting atoms, as dictated by
the exclusion principle. Cursory examination of Table 11.1 however, shows
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that the traditional classification in terms of bond order is paralleled by
grouping chemical bonds in terms of interatomic distance, d′ = d/rx.

For bond orders

<1 : 1.03 < d′

1 : 0.8 < d′ < 1.03

2 : 0.695 < d′ < 0.8

3 : 0.65 < d′ < 0.695

4 : 0.618 < d′ < 0.65

This classification is neither more nor less rigorous than the definition of
bond order as the number of electron pairs shared in the formation of mul-
tiple bonds, and has the distinct advantage of predicting a continuous range
of non-integral bond orders. An alternative definition [149] that links the
bond-order concept to molecular rearrangement explains the d′ classification
more logically than multiple bonding: “The elimination of a ligand pair from
contiguous atoms in a molecule increases the bond order between them by
unity . . .”. This happens because the distribution of valence electrons depends
on the number of ligands. The valence density must obviously be different in
ethane and ethene:

C CH H
H

HH

H
C C

H

H

H

H
−

Since all covalent bonds are considered here as the exchange of a single
pair of electrons between atomic cores, it is difficult to visualize a drastic
modification of the interatomic C–C attraction caused by the transforma-
tion, but fairly obvious that the repulsion can be reduced considerably due
to screening of the nuclei by the additional valence density. It amounts to
modification of the effective nuclear charge [150]. The empirical screening
function

k = −0.295b + 1.3 (11.2)

has been demonstrated [149, 148] to relate binding energies as a function
of bond order b, for all pairs of atoms, through the screening factor, k. In
practice it was shown that two chemical bonds, which differ in order only,
are both correctly described by the same Morse function, with allowance for
screening according to (11.2).

In terms of the diatomic curve of Figure 11.3 a given bond, at two differ-
ent orders is characterized by Morse curves, modified and centred at positions
related by (11.2) [151]. This simulation produces correct dissociation ener-
gies as a function of observed interatomic distance, and without regard to
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Figure 11.5: Bonds of order o1 and o2 related by the curve d′ = d/r0 vs D′.

steric effects related to ligand and valence-shell screening. When steric effects
are taken into account, dissociation energies calculated from interatomic dis-
tance, expressed in units of ionization radius will be consistently too low.

Steric deformation of a chemical bond lowers the dissociation energy as
indicated by the arrow along the local Morse curve in Figure 11.5, while
stretching the interatomic distance from d′

1 to d′
2, the experimentally observed

value. Calculation of D′
c, using the diatomic curve, gives a value which is too

low compared to the measured D′
m. This discrepancy can be compensated

for by assuming a characteristic radius rx > r0, bigger than the ionization
radius, which measures interatomic distances free of strain.

Using the electronegative elements with open s–p valence shells, as an
example, it is assumed that one electron from each atom mediates the cova-
lent attraction, that paired electrons, which become part of the core, have
only a steric effect, and the remaining unpaired electrons are responsible for
screening.

screen

CoreCore

The bond orders predicted for the 2p diatomic molecules are B2 – 1, C2 – 2,
N2 – 3, O2 – 2, F2 – 1.

Screening reduces the interatomic distance along the diatomic curve and
steric effects stretch the distance along the local Morse curve. Taking ethane
as an example, assuming the interatomic distance free of strain as d = 1.35 Å,
i.e. d/r0 = 0.84, the dissociation energy is calculated as Dc = 390 kJmol−1.
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The difference of ∼40 kJmol−1 represents the energy required to stretch the
C–C bond by ∼0.2 Å against a Hooke’s law force constant of ∼5.5 mdyneÅ−1.

11.3.4 Molecular Mechanics

The analysis of molecular properties by the methods of molecular mechanics
is formulated in terms of three, essentially unobservable, Hooke’s law parame-
ters – force constant, bond length and dissociation energy of strain-free bonds
[152]. These parameters are obtained as empirical estimates, only valid within
closely related molecular families. The ideal parameter set, which is transfer-
able across all elements, bond types and bond orders, is still unattainable.

Noting the use of screening constants, which relate different bond orders
through a family of Morse curves, it follows that force constants can be
derived for any bond. In principle, a fully transferable force field can hence be
calculated directly from the diatomic energy function and atomic ionization
radii.

11.4 Epilogue

Many of the claims made in this work will surely be considered extravagent
at first sight. Some of the inferences may in fact be totally misconstrued.
However, there is no doubt that a fundamental relationship between numbers
and matter has been identified. This interaction is mediated by the golden
ratio that shapes the world. It is no accident that self-similarity permeates
the universe from the infinitesimally small to the immeasurably large. The
totality is closed and appears periodic at all levels. This first observation is,
inevitably, no more than the tip of an iceberg.

The numerical regularity in the structure of the solar system, known as the
Bode–Titius law [78], represents an unexplored missing link in the self-similar
symmetry of the cosmos. It occupies the gap between atomic nuclei, atoms,
molecules and biological systems on the one hand, with galaxies, quasars and
other mysterious objects, on the other. There is much to be explored before
the interplay between π, e and τ can be appreciated.
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theory, 315

kinetic energy to lattice,
transfer, 315

symmetry breakdown of,
316

Superconductivity metals, 303,
309

Superconductors, magnetic
properties, 314

Superfluidity, 309
Symmetrical two-dimensional

reconstruction, 294
Symmetry element, 223

T

Tetrahedral numbers geometric
representation, 29

Theoretical models
shell model, 152–154

Tired-light hypothesis, 188, 191
Trans-bismuth α-emitters, 295
Triangles in spherical and

hyperbolic
two-dimensional space, 2

Triangular number, 27
Trigonometric tan function, 186
Twin primes, 38–43

U

Universe, static model of
Parmenides and Zeno, 185
tired-light hypothesis, 191

V

Vacuum substratum
general model of, 205
implicate order and

holomovement, in terms
of, 205, 206
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information theory
infon and electromagnetic

spectrum, 207
postulates, 206
quanta emitted by star, 208

Planck’s constant and
electromagnetic fields, 204

Valence state, 215
Valency of element, 78

W

Wave-mechanical atomic model,
114–126

Wave-mechanical model, of
nucleus, 220

Wien function, 104
Wigner model, 152

X

X-Rays
line spectra, 100–101
radiation, 99–100

Y

Yukawa’s model, 155–156

Z

Zero curvature, 6
Zwicky paradox

galactic mode of rotation, 190
mass of galaxies,

inconsistency in, 189
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